
.neT
Development
Using the
Compiler api

—
Jason Bock

www.allitebooks.com

http://www.allitebooks.org

 .NET Development
Using the

Compiler API

 Jason Bock

www.allitebooks.com

http://www.allitebooks.org

.NET Development Using the Compiler API

Jason Bock
Shakopee
Minnesota, USA

ISBN-13 (pbk): 978-1-4842-2110-5 ISBN-13 (electronic): 978-1-4842-2111-2
DOI 10.1007/978-1-4842-2111-2

Library of Congress Control Number: 2016945755

Copyright © 2016 by Jason Bock

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Pramila Balan, Aaron Black, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, James Markham, Natalie Pao, Susan McDermott,
Matthew Moodie, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Laura Lawrie
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com , or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com/9781484221105 . For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in
the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484221105
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author .. ix

About the Technical Reviewer .. xi

Acknowledgments .. xiii

Introduction ... xv

 ■Chapter 1: An Overview of the Compiler API 1

 ■Chapter 2: Writing Diagnostics ... 33

 ■Chapter 3: Creating Refactorings and Handling Workspaces 69

 ■Chapter 4: Using the Scripting API ... 107

 ■Chapter 5: The Future of the Compiler API 139

Index .. 155

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author .. ix

About the Technical Reviewer .. xi

Acknowledgments .. xiii

Introduction ... xv

 ■Chapter 1: An Overview of the Compiler API 1

From Closed to Open ... 1

What Do Compilers Do? .. 2

Compilers as a Closed Box ... 4

Compilers as an Open Box .. 6

Compiling Code ... 6

Referencing Assemblies ... 6

Building Code ... 8

Creating Code Using Trees .. 10

Visualizing Trees ... 10

Building Trees ... 17

Navigating and Editing Trees ... 20

Finding Content from a Node .. 21

Finding Content Using Walkers ... 22

Semantic Models .. 23

Editing Trees ... 25

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vi

Annotations and Formatters .. 29

Using Annotations ... 29

Using Formatters .. 30

Conclusion ... 32

 ■Chapter 2: Writing Diagnostics ... 33

The Need to Diagnose Compilation ... 33

Designing the Diagnostic .. 35

Understanding the Problem .. 35

Using the Syntax Visualizer .. 36

Creating a Diagnostic .. 37

Using the Template ... 37

Building the Diagnostic ... 39

Providing Code Fixes ... 43

Designing the Fix .. 44

Implementing the Fix .. 45

Using Syntax Trees ... 46

Parsing Statements .. 50

Executing the Diagnostic and Code Fix .. 52

Debugging Diagnostics ... 54

Unit Testing ... 54

VSIX Installation .. 60

Visual Studio Logging ... 61

Deploying and Installing Diagnostics .. 66

VSIX Packaging ... 66

NuGet Packaging .. 67

Conclusion ... 68

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vii

 ■Chapter 3: Creating Refactorings and Handling Workspaces 69

Consistency in Structure ... 69

Developing a Refactoring .. 73

Understanding the Problem .. 73

Creating a Refactoring Solution .. 75

Building the Refactoring ... 76

Executing the Refactoring .. 82

Debugging Refactorings .. 86

Unit Testing ... 86

VSIX Installation .. 91

Interacting with a Workspace .. 91

What Is a Workspace? .. 91

Updating Solutions and Projects ... 93

Conclusion ... 106

 ■Chapter 4: Using the Scripting API ... 107

What Is a Scripting Language? ... 107

Orchestrating an Environment .. 107

Dynamic Capabilities .. 108

Using the C# REPL ... 109

Loading Code in Script.. 113

Making C# Interactive ... 114

Referencing the Scripting NuGet Package ... 115

Evaluating Scripts ... 115

Analyzing Scripts .. 119

State Management in Scripts ... 122

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

Concerns with the Scripting API .. 125

Scripts, Performance, and Memory Usage ... 126

Scripts and Security ... 130

Conclusion ... 138

 ■Chapter 5: The Future of the Compiler API 139

Current Usage.. 139

Generating Mocks ... 139

Building Code with Code... 143

Other Compiler API-Based Tools and Frameworks ... 147

Looking into C#’s Future .. 147

A Quick Story About Property Change Notifi cations ... 148

Reusing Common Implementations .. 150

Conclusion ... 153

Index .. 155

www.allitebooks.com

http://www.allitebooks.org

ix

 About the Author

 Jason Bock is a Practice Lead for Magenic
(http://www.magenic.com) and a Microsoft MVP (C#).
He has 20 years of experience working on a number of
business applications using a diverse set of frameworks
and languages such as C#, .NET, and JavaScript. He is
the author of Metaprogramming in .NET, Applied .NET
Attributes , and CIL Programming: Under the Hood of .NET .
He has written numerous articles on software development
issues and has presented at a number of conferences and
user groups. He is a leader of the Twin Cities Code Camp
(http://www.twincitiescodecamp.com). Jason holds a
Master’s degree in electrical engineering from Marquette
University. Visit his website at http://www.jasonbock.net .

www.allitebooks.com

http://www.magenic.com/#_blank
http://www.twincitiescodecamp.com/#_blank
http://www.jasonbock.net/#_blank
http://www.allitebooks.org

xi

About the Technical
Reviewer

 A prolific writer on cutting-edge technologies, Fabio Claudio Ferracchiati has
contributed to more than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is
a .NET Microsoft Certified Solution Developer and lives in Milan, Italy. You can read his
blog at http://www.Ferracchiati.com .

http://www.ferracchiati.com/

xiii

 Acknowledgments

 I’d like to thank Apress for contacting me at VSLive in 2015 and asking me if I’d be
interested in writing a book on the Compiler API. Getting the opportunity to write on
a topic that I’ve been deeply interested in since I heard about it eight years ago was
something I just couldn’t pass up. Specifically, I’d like to thank Anne Marie Walker, James
DeWolf, Mark Powers, Melissa Maldonado, and Fabio Claudio Ferracchiati for their
assistance, guidance, and editing prowess—they made the book far better than it would
have been if I did it on my own.

 Thanks also to Magenic, especially Greg Frankenfield and Paul Fridman, for
creating and growing a great place to work. I’ve been with Magenic for 15 years, and I feel
fortunate to work for a dynamic and innovative company where I fit in. Here’s to another
15 (or more!) years. I’d also like to thank Jeff Ferguson for providing a couple of figures for
me that are used in the book.

 Finally, I’d like to thank my family for their support and encouragement: my wife
Liz and my sons Hayden and Ryan. I am grateful to have found someone like Liz and that
we’ve been able to have two awesome sons.

xv

 Introduction

 Most developers I know typically view coding as a means to an end. That is, they write
the code to satisfy the requirements set forth by the business. The code is interpreted or
compiled, but either way, the final result is machine code that executes and (hopefully)
does the right thing.

 However, there’s more to software development than just that. I’m not talking about
process or patterns per se; what I’m getting at is for developers to view their code in
a more analytical way. Throughout my career, I’ve run into numerous cases in which
I would’ve loved to have the ability to analyze my code so I could find errors quickly.
I’ve also wanted to be able to extend and augment languages in certain ways so I didn’t
have to write the same code over and over again. The primary language that I’ve used
throughout my career has been C#, and although C# is a fine language to develop in, it
seemed to lack these dynamic, analytical capabilities.

 That’s no longer the case. Microsoft has provided public, open-source components
in its Compiler API that allows developers to create analyzers that will help them detect
problematic issues. This API also empowers developers to build code at runtime to create
amazing, dynamic applications and libraries. Because all of this code is open source, it’s
available to read and contribute to. Enabling .NET developers to shape and mold the
future of the .NET compilation system is a wonderful thing to behold, and it’s exciting to
see the development community embrace this model.

 I wrote this book to help you navigate this new open-source API world. In it, I
demonstrate how to use the Compiler API to write custom analyzers and refactorings to
improve your code base. I show you how to use the Scripting API (part of the Compiler
API) to use C# as a scripting language, a feature that was essentially unavailable to C#
developers. I also illustrate how to use the Compiler API in innovative ways that go
beyond these typical scenarios. My hope is that when you’ve finished this book, you’ll
view C# and the ecosystem that supports it in a fundamentally different (and hopefully
positive!) way—as a language that is open in terms of its implementation and its
community involvement.

 Who This Book Is For
 This book is for architects and developers who have experience with C# and want to dive
deeper into how code is compiled and executed. There’s no expectation that the reader
has any experience with compilers, but I do assume that the reader has foundational
knowledge of C#.

■ INTRODUCTION

xvi

 Chapter Contents
 To give you a feel for the content in the book, here’s a brief synopsis of each chapter.

• Chapter 1 —You’ll get an introduction to the Compiler API and its
constituent parts: syntax trees, semantic models, and formatters.

• Chapter 2 —This chapter covers diagnostics. You’ll learn how to
write analyzers and build code fixes to automate code corrections.

• Chapter 3 —Refactoring code is a primary tenant for developers.
This chapter shows you how to write refactorings to clean up your
code base.

• Chapter 4 —C# is now a scripting language! In this chapter, you’ll
see how the Scripting API works.

• Chapter 5 —You’ll discover how developers are using the
Compiler API to empower their own components and get a
preview of a future C# feature based on the Compiler API that
could fundamentally change how you write code in C#.

 Code Samples
 Throughout the book I show code snippets to illustrate various aspects of the Compiler
API. You’ll find all of the code at https://github.com/jasonbock/compilerAPIBook .
The folder structure is set up to map the code content to each chapter of the book.

 Errata
 The author, the technical reviewers, and many Apress staff have made every effort to find
and eliminate all errors from this book’s text and code. Even so, there are bound to be
one or two glitches left. To keep you informed, there’s an Errata tab on the Apress book
page (www.apress.com/9781484221105). If you find any errors that haven’t already been
reported, such as misspellings or faulty code, please let us know by e-mailing support@
apress.com .

 Customer Support
 Apress wants to hear what you think—what you liked, what you didn’t like, and what you
think could be done better next time. You can send comments to feedback@apress.com .
Be sure to mention the book title in your message.

 Contacting the Author
 Feel free to follow me on Twitter at @jasonbock. My web site is http://www.jasonbock.net .
You can also contact me via e-mail at jasonb@magenic.com .

http://dx.doi.org/10.1007/978-1-4842-2111-2_1
http://dx.doi.org/10.1007/978-1-4842-2111-2_2
http://dx.doi.org/10.1007/978-1-4842-2111-2_3
http://dx.doi.org/10.1007/978-1-4842-2111-2_4
http://dx.doi.org/10.1007/978-1-4842-2111-2_5
https://github.com/jasonbock/compilerAPIBook
http://www.apress.com/9781484221105
http://support@apress.com
http://support@apress.com
http://www.jasonbock.net/

1© Jason Bock 2016
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2_1

 CHAPTER 1

 An Overview of the
Compiler API

 This chapter covers the basics of the Compiler API, including the essentials of a compiler
and their history in the .NET world. You’ll learn how to compile code and the trees that
constitute the fundamental API data structure. You’ll discover how to build your own
trees from scratch and navigate their content. Finally, we’ll explore annotating and
formatting trees.

 From Closed to Open
 Compilers are used more than any other tool by a developer. Every time you tell Visual
Studio to build your code, you’re invoking csc.exe, which is the C# compiler. Without
compilers, your C# code would be worthless. In this section, you’ll gain an understanding
of what compilers do, how they’ve been designed in the .NET world, and how they have
changed in .NET 4.6.

 ■ Note You can invoke csc.exe directly from the command line, but generally most .NET
developers will use it indirectly through Visual Studio or some other IDE.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2111-2_1) contains supplementary material, which is
available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2111-2_1

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

2

 What Do Compilers Do?
 It’s almost a tradition in the developer’s world to have a program print “Hello world” to
get familiar with the fundamentals of a language, so that’s where we’ll start our discussion
of compilers. Here’s code that will do just that:

 using System;
 namespace HelloWorld
 {
 class Program
 {
 static void Main(string[] args)
 {
 Console.Out.WriteLine("Hello world");
 }
 }
 }

 Figure 1-1 shows you what you’ll see when you run the program.

 Figure 1-1. Running a simple Hello World program

 Of course, your computer didn’t “execute” that text. There’s a translation step that,
most of the time, you probably don’t think about, and that’s what the compiler does.
It’s easy to say that you’ve compiled your code, but there’s a lot that a compiler has to
do to make your code actually execute. Let’s do a simplistic examination of a compiler’s
workflow to get a better understanding of its machinery.

 First, the compiler scans your text and figures out all the tokens that are contained
within. Tokens are the individual textural pieces within code that have meaning based
on a language’s specification. These can be member names, language keywords, and
operators. For example, Figure 1-2 shows what the line of code that prints out “Hello
world” looks like when it’s tokenized.

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

3

 The compiler will find everything it can about that line of text and break it up into
separate chunks. That includes the period between Console and Out , the tabs before
the Console token, and the semicolon at the end of the line. The compiler also has to be
smart enough to figure out when there are problems and report meaningful errors when
its process is finished without stopping on that one error because there may be more
issues in the code.

 But the complexities of tokenizing code don’t stop here. Now the compiler needs
to figure out what those tokens really mean. A tab isn’t important from an execution
standpoint, but it may matter if you’re debugging your code, as the compiler needs to
make sure the debugging information ignores that whitespace correctly when a developer
creates breakpoints in code. A semicolon means that the line of code is complete, so that’s
important to know, although you’re not really doing any execution with that character.
But what does the period mean? It may mean that you’re trying to access a property
on an object, or call a method. Which one is it? And if it’s a method, is it an extension
method? If so, where does that extension method exist? Is there an appropriate using
statement in the file that will help the compiler figure out where that method is? Or is the
developer using a new feature in C#6, like using static , which needs to be accounted
for? The compiler needs to figure out semantics for these tokens based on the rules of the
C# language, and if you’ve ever read the C# specification, you know that this can be an
extremely difficult endeavor.

 ■ Note You’ll find the C# specification at https://www.microsoft.com/en-us/
download/details.aspx?id=7029 , although at the time of this writing, it was at version 5;
C#6 features are not included.

 Finally, the last job of the compiler is to take all the information it’s assembled and
actually generate a .NET assembly . This assembly, in turn, contains what’s known as an
Intermediate Language (IL) that can be interpreted by the Common Language Runtime
(CLR) along with metadata information, such as the names of types and methods.
Transforming tokens into IL is a nontrivial job. If you’ve spent any time working with
members in the System.Reflection.Emit namespace , you know it’s not easy to encode
a method correctly. Forget just one IL instruction and you may end up creating an
assembly that will crash horribly at runtime.

 Figure 1-2. Breaking code into separate tokens

https://www.microsoft.com/en-us/download/details.aspx?id=7029
https://www.microsoft.com/en-us/download/details.aspx?id=7029

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

4

 To summarize, Figure 1-3 demonstrates what a compiler does with code, although
keep in mind that this is a rudimentary view of a compiler’s internal components .

 Figure 1-3. General steps that a compiler takes to produce executables

 Here’s a brief description of each step:

• Parsing finds each token in code and classifies it.

• Semantics provides meaning to each token (e.g., is the token a
type name or a language keyword?).

• Emitting produces an executable based on the semantic analysis
of the tokens.

 Compilers are complex beasts. Whenever I’ve done a talk on the Compiler API and
asked the audience how many people have created and/or worked on a compiler, I rarely
see even one hand go up. Most developers do not spend a significant amount of time
developing and maintaining a compiler. They might have written one in a college class,
but writing compilers is not an activity most developers ever do on a day-to-day basis.
 Developers are typically more concerned with creating applications for customers. Plus,
creating a compiler that handles the specifications of a given programming language is
typically difficult. It’s a challenge for just two different implementations of a compiler
for a language written by two different teams to work exactly the same. Therefore,
developers who use a programming language will gravitate to a very small set of compiler
implementations to reduce the chances of discrepancies.

 ■ Note If you’re interested in learning more about compilers, check out Modern Compiler
Design (Springer, 2012) at http://www.springer.com/us/book/9781461446989 .

 Compilers as a Closed Box
 In the .NET space, the compiler has been a monolithic executable that did not have
any public APIs exposed. Essentially, you give it path information to the files you want
to compile (or include as resources in the assembly) and it produces your executable.
Figure 1-4 illustrates how this works.

http://www.springer.com/us/book/9781461446989

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

5

 Notice that you can pass in a handful of optional switches to the compiler to
control tasks like optimization (/optimize) and release or debug (/debug) builds. But
this interaction is very limited. There’s no way to plug into the compiler’s pipeline and
augment the process, nor can you use any of its functionality outside of compilation.

 ■ Note You can find the latest set of switches for VS2015 at https://msdn.microsoft.
com/en-us/library/6ds95cz0.aspx .

 Why is this an issue? There are two reasons. First, there are a number of products, both
for purchase and open-source, that analyze your code to find issues and suggest refactorings
to improve your code’s structure and reliability. As discussed in the previous section, parsing
and analyzing code is not a trivial endeavor. All of these products and libraries need to
invest a fair amount of time duplicating the compilation logic that already exists in the .NET
compilers. But they have no choice but to reproduce that functionality as there’s no way to
access it. This gives rise to the issue of inconsistency. It’s possible that the .NET compiler
logic and another tool’s logic may disagree when it comes to analyzing a specific piece of
code. Even if these tools get everything right, whenever a new version of C# comes along with
new features, they have to update their code to make sure they’re current.

 The second reason is that because the compiler is closed, it’s harder to build a strong
community around it. Traditionally, Microsoft has controlled the compiler’s implementation
without publishing its source. Although C# is a popular language with millions of
developers using it, the community at large hasn’t had direct access to its core parts, such
as the compiler. There are developers who have a deep interest in being part of that project,
either by fixing issues or adding new features to the product. Without an open community,
C# developers didn’t have a lot of options available to influence the language’s direction.

 Figure 1-4. The compiler is a closed box that just does its job

https://msdn.microsoft.com/en-us/library/6ds95cz0.aspx
https://msdn.microsoft.com/en-us/library/6ds95cz0.aspx

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

6

 Compilers as an Open Box
 Fortunately, Microsoft started working on a new version of the compilers sometime
around 2007, using the code name Project Roslyn. This new compiler infrastructure
opens up the internals of the pipeline via a public .NET API so anyone can use its
functionality within any .NET application. This is a big improvement for tools that provide
code analysis as well as for developers who may want to do code generation and dynamic
compilation in their own applications. There is now one open standard that everyone
can use. Furthermore, as you’ll see in Chapters 2 and 3 , you can use this API to enhance a
.NET developer’s experience within Visual Studio via diagnostics and refactorings.

 Not only are the compiler assemblies freely available to use, the source code is
now available for anyone to read and contribute to! On April 4, 2014, Microsoft pushed
the entire Compiler API code base to CodePlex. Since then, the project has migrated to
GitHub (http://github.com/dotnet/roslyn) with numerous individuals (Microsoft
employees and others who don’t work for Microsoft) contributing to the code base and
providing feedback to various issues and feature requests. This is a major departure
from the traditional Microsoft model of closed source. Although Microsoft will always
publish “official” versions of the compilers through traditional channels, there’s nothing
to prevent you from being an active member of this community and contributing to its
continuing evolution.

 Compiling Code
 Having an open source compiler for C# is exciting news, but where do we start? How
can you use the compiler’s assemblies? In this section you’ll get an introduction into the
Compiler API. You’ll create a C# project that references the Compiler API assemblies, and
then you’ll use them to compile code on the fly.

 Referencing Assemblies
 Let’s start by creating a project that references the Compiler API assemblies from NuGet
so we can build and execute a Hello World application. For the rest of the book, I won’t
go through these explicit steps of project creation and setup, especially as all of the code
samples are online, but this one time I’ll walk through it so you know exactly what needs
to be done. Create a console application, making sure that the .NET Framework version is
4.6.1, as shown in Figure 1-5 .

http://dx.doi.org/10.1007/978-1-4842-2111-2_2
http://dx.doi.org/10.1007/978-1-4842-2111-2_3
http://github.com/dotnet/roslyn

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

7

 Now, go to the Solution Explorer. Right-click on the References node, and select
Manage NuGet Packages . Select Browse, and type in “Microsoft.CodeAnalysis”. You
should see a list that looks something like the one in Figure 1-6 .

 Figure 1-5. Creating a project that will reference the Compiler API assemblies

 Figure 1-6. Finding the right Compiler API NuGet package

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

8

 Select the “Microsoft.CodeAnalysis” package and install the latest stable version
(which, at the time of this writing, was 1.1.1). This, as the description says, is the “all-in-one”
package for the Compiler API. As you get familiar with the assemblies within the Compiler
API world, you can be more selective with the package you pick, but for this example we’ll
use this package.

 ■ Note You can also get the packages shown in Figure 1-6 via the Package Manager
Console (which can be found under View ➤ Other Windows) and then execute the
 Install-Package Microsoft.CodeAnalysis command. Use whichever tool you’re
comfortable with.

 Building Code
 Once NuGet is finished adding the various Compiler API assemblies to your project, you
can see how the basics work. Change the Program.cs file so that it looks like Listing 1-1 .

 Listing 1-1. Compiling a “Hello World” application

 using Microsoft.CodeAnalysis;
 using Microsoft.CodeAnalysis.CSharp;
 using System.IO;
 using System.Reflection;

 namespace CompileHelloWorld
 {
 class Program
 {
 static void Main(string[] args)
 {
 var code =
 @"using System;

 namespace HelloWorld
 {
 class Program
 {
 static void Main(string[] args)
 {
 Console.Out.WriteLine(""Hello compiled world"");
 }
 }
 }";

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

9

 var tree = SyntaxFactory.ParseSyntaxTree(code);
 var compilation = CSharpCompilation.Create(
 "HelloWorldCompiled.exe",
 options: new CSharpCompilationOptions(
 OutputKind.ConsoleApplication),
 syntaxTrees: new[] { tree },
 references: new[]
 {
 MetadataReference.CreateFromFile(
 typeof(object).Assembly.Location)
 });

 using (var stream = new MemoryStream())
 {
 var compileResult = compilation.Emit(stream);
 var assembly = Assembly.Load(stream.GetBuffer());
 assembly.EntryPoint.Invoke(null,
 BindingFlags.NonPublic | BindingFlags.Static,
 null, new object[] { null }, null);
 }
 }
 }
 }

 Let’s go through this code in detail. The code variable is a string that contains the
code you want to compile. In this case, it’s the same code you saw in the “Hello World”
example at the beginning of this chapter, except with a slightly different “Hello” message.
We need to parse this code, so that’s what ParseSyntaxTree() does (syntax trees will be
covered in greater detail in the “Creating Code Using Trees” section later in this chapter).
Once we have a tree, we can compile that tree using a CSharpCompilation object , which
we get from calling Compile() . Notice that we can specify that this compilation should
produce a console application (the OutputKind value), and that it needs to reference the
assembly that System.Object comes from (MetadataReference.CreateFromFile()).
If this code was referencing types from other assemblies, those MetadataReference
objects should be passed into Compile() as well.

 The last step is to emit the assembly. Notice that the assembly isn’t actually written
to disk because we’re using a MemoryStream rather than a file-based stream. You can also
pass in other streams to capture debug and resource information related to the assembly
if you’d like. Once the assembly is created, it’s a simple matter of using the EntryPoint
property to get access to Main() and invoke it. Figure 1-7 shows what you should see
when you run this program.

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

10

 Figure 1-7. Running code that compiles code at runtime

 ■ Note As you can see in Listing 1-1 , the Compiler API usually has a fair amount of
types, method overloads, and optional arguments. In fact, the Microsoft.CodeAnalysis.dll
assembly has 246 types and over 23,000 methods! Going through every possible option in
this book would be extremely counterproductive; you are highly encouraged to do your own
spelunking and explore the numerous types and members that the Compiler API has.

 This was a quick introduction into the Compiler API. Now let’s take a closer look at
trees, the main data structure the Compiler API uses.

 Creating Code Using Trees
 In the previous section, you saw how you could change text into executable code via the
Compiler API. One of the major components of that process was creating a tree. Let’s take
a deeper dive into what this structure is and how it works. We’ll start by using tools that
help you see what a tree looks like and how it is composed.

 Visualizing Trees
 Most developers know what a tree structure is. It starts with one object that contains a list
of objects, where those objects can also contain lists of objects, and so on. If you wanted
to represent a simple mathematical function, F(a) , that performs a calculation like “2 * a”
as a tree, you’d probably do it using a similar tree to the one in Figure 1-8 .

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

11

 In this case, what the tree represents is easy to see. The “*” node is multiplication,
the “2” node is the constant value 2, and the “a” node is the argument to the fuction. Of
course, the code we all write is far more complex than that. The trees in the Compiler API
that derive from code we’d usually write will never be as small as the tree in Figure 1-8 . As
Figure 1-9 illustrates, these trees can get quite large.

 Figure 1-8. Modeling the “2 * a” function as a tree

 Figure 1-9. A small part of a tree

 The tree in Figure 1-9 is a very small fragment of the code used in Listing 1-1 .
Figure 1-10 shows the entire tree for that code.

 Figure 1-10. The full code tree

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

12

 Even with a small piece of C# code, the tree can get so large you can’t even read any
of the descriptions for any of the nodes!

 Now, you may be wondering how the diagrams in Figure 1-9 and 1-10 were created.
It’s a tool that comes with the installation of the .NET Compiler SDK that you’ll really want
to install if you’re going to work with the Compiler APIs. Let’s make sure you have the
required set of tools installed on your machine so you’ll be able to generate this diagram
if you want as well as build other components discussed in other chapters in this book. To
do this, act like you’ll create a new project form the Extensibility node (even though you
won’t), and you should see an option in the list called “Install Visual Studio Extensibility
Tools” as illustrated in Figure 1-11 .

 Figure 1-11. Installing the Extensibility tools

 Second, go thorugh the same project creation steps, except this time you should see
a “Download the .NET Compiler Platform SDK” option as shown in Figure 1-12 .

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

13

 ■ Note Unfortunately, this second step will create a project that is worthless. To circumvent
this unnescessary project creation step, you can try to download the SDK directly by going
to http://go.microsoft.com/fwlink/?LinkID=526901 .

 In subsequent chapters we’ll use the project templates that are installed by
performing these steps, but for now we’ll just use one extremely useful window that
should have been added in Visual Studio after you installed these tools. Select View ➤
Other Windows to see an option for Syntax Visualizer.

 ■ Note You can also use Quick Launch (Ctrl+Q) to search for and access Syntax Visualizer.
Ctrl+Q is one of the most powerful keystrokes you can use in Visual Studio as it can find any
command in the product, while also showing you if there’s a key mapping for that tool. If you
haven’t used it before, I highly recommend getting familiar with it.

 The Syntax Visualizer makes it easy to see what the full tree looks like for a given
piece of code in Visual Studio. Figure 1-13 is a screenshot of the Visualizer in action.

 Figure 1-12. Installing the Compiler Platform SDK

www.allitebooks.com

http://go.microsoft.com/fwlink/?LinkID=526901
http://www.allitebooks.org

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

14

 Figure 1-14. Highlighting a specific piece of code to move around in the tree

 Figure 1-13. Using the Visualizer to show the tree for code in a file

 The root node is a “compilation unit,” which contains other nodes like using
directives and a namespace declaration. (I’ll cover the specific types later in this section.)
If you click on a specific member in your code, the tree will expand to that exact node in
the tree. In Figure 1-14 , the focus has been moved to the declaration of the Program class.

 We’ll get to what the types mean shortly. For now, notice that the Syntax
Visualizer moved to the node in the tree that represents the name of the class—an
 IdentifierTokenNode , which is part of a ClassDeclaractionSyntax node .

 The tree will also work if you have errors in your code, which demonstrates how
hard the Compiler APIs work to give you a tree with as much information as possible.
Figure 1-15 shows what the tree looks like if you remove the opening curly brace after the
namespace declaration.

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

15

 You can see that the tree starts highlighting certain nodes with a pink rectangle to
illustrate that there are errors within. You may not be able to see the pink highlighting
color if you’re viewing this in grayscale, but it’s there onscreen. The Legend button shows
what each color in the tree represents, as you can see in Figure 1-16 .

 Figure 1-15. The Syntax Visualizer with errors in the code

 Figure 1-16. The color coding in the Syntax Visualizer

 Up to now I’ve been using the word “node” in a generic fashion to talk about the
members within a tree, but it’s time to get a little more formal about the types within a
Compiler API tree. There are essentially three base types: SyntaxNode , SyntaxToken, and
 SyntaxTrivia. SyntaxNode is an abstract class that can contain other tree types (either
directly or indirectly). Specific kinds of SyntaxNode classes are ClassDeclarationSyntax ,
which specifies the contents of a class, and ParameterListSyntax , which defines the
parameters for a methd. A SyntaxToken is a struct that defines a termination in the tree
and is used to specify items like keywords, idenifiers, braces, and so on. The different
kinds of tokens are represented by the Kind property, which is a SyntaxKind enumeration
value . SyntaxTrivia are also structs, and they make up all the “unimportant” parts of
code, like spaces, tabs and end-of-line characters. Although they don’t affect the resultant

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

16

executable, they are important to retain. To prove how important, go into someone’s
code, and if they put the opening curly brace to a member definition on the next line,
move it to the end of the previous line. You’ll definitely get some feedback for changing
that coding style! We’ll focus on preserving trivia in Chapters 2 and 3 when we change
code for a developer to improve their applications.

 Finally, if you want to create the diagram in Figure 1-10 , simply right-click on any
node within the Visualizer, and select View Directed Syntax Graph. Figure 1-17 shows this
context menu.

 Figure 1-17. Using the Syntax Visualizer to print a pretty tree diagram of your code

 The Syntax Visualizer is a tool that you’ll probably end up using a lot as you wade
through the Compiler API because it makes it easy to find out what nodes constitute a
specific part of the C# language. For example, an IdentifierTokenNode does what its
name implies: it identifies a node within a tree. As you’ve seen in Figures 1-13 , 1-14 , and
 1-15 , the Syntax Visualizer shows the names of the node kinds, like CompilationUnit and
 NamespaceDeclaration . The node’s type name appears in the Properties section of the
Syntax Visualizer, as shown in Figure 1-18 .

http://dx.doi.org/10.1007/978-1-4842-2111-2_2
http://dx.doi.org/10.1007/978-1-4842-2111-2_3

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

17

 The Syntax Visualizer is great for finding out which parts of your code map to what
types in the Compiler API. All you have to do is type some code in Visual Studio, and the
visualizer automatically shows you everything you need to see in a tree. But how can you
create and manipulate the tree structure itself? That’s what we’ll do in the next section.

 Building Trees
 In this section, we’ll create a tree from scratch. We’ll use the example of the “2 * a”
function mentioned in the previous section and turn that into a C# method:

 namespace BuildingTrees
 {
 public static class Doubler
 {

 Figure 1-18. Seeing the type name for a node within a tree

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

18

 public static int Double(int a)
 {
 return 2 * a;
 }
 }
 }

 ■ Note In C# you can’t just write a small piece of code like “2 * a”; you need a method
declaration along with a class. However, in Chapter 4 you’ll see how you can use the
Scripting APIs to do just that!

 To create a tree that will represent this code, you’ll use the SyntaxFactory class along
with the SyntaxTree class. First, let’s create the namespace declaration:

 var treeNamespace = SyntaxFactory.NamespaceDeclaration(
 SyntaxFactory.IdentifierName("BuildingTrees"))

 The SyntaxFactory class has a large number of static methods to create any node,
token, or trivia you need in a tree. In this case, NamespaceDeclaration() is called,
passing in the IdentifierNameSyntax object creatd from IdentifierName() to create a
 NamespaceDeclarationSyntax object .

 Next, create a class:

 var doublerClass = SyntaxFactory.ClassDeclaration("Doubler");

 Then add the Double method to that class:

 var doubleMethod = doublerClass.WithMembers(
 SyntaxFactory.SingletonList<MemberDeclarationSyntax>(
 SyntaxFactory.MethodDeclaration(
 SyntaxFactory.PredefinedType(
 SyntaxFactory.Token(
 SyntaxKind.IntKeyword)),
 SyntaxFactory.Identifier("Double"))));

 Notice that with a MethodDeclarationSyntax , you need to define the return type,
which, with Double() is an int. That’s why PredefinedType() is called, using SyntaxKind.
IntKeyword as “int” is already known in the C# type system.

 To actually create the entire CompilationUnitSyntax object that contains all of
the nodes, tokens, and trivia takes a fair amount of code. It’s also quite repetitive in
nature. If you want to see the entire tree, you’ll find it in the BuildingTrees project for
this chapter. Keep in mind that the code wasn’t generated by hand. There’s a wonderful
tool that you can use that generates a CompilationUnitSyntax for you based on a C#
code snippet called RoslynQuoter. You can get the code for the RoslynQuoter tool at
 https://github.com/KirillOsenkov/RoslynQuoter , but there’s an online version of it at
 http://roslynquoter.azurewebsites.net/ . Figure 1-19 shows what this website looks like.

http://dx.doi.org/10.1007/978-1-4842-2111-2_4
https://github.com/KirillOsenkov/RoslynQuoter
http://roslynquoter.azurewebsites.net/

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

19

 The lines of code to generate the CompilationUnitSyntax object is around 100.
That’s a lot! But once you have that root node, you can put it into a tree:

 var tree = SyntaxFactory.SyntaxTree(unit);

 Once the tree is created, you can compile that tree and invoke the method, as shown
in Listing 1-2 .

 Listing 1-2. Compiling a syntax tree

 var compilation = CSharpCompilation.Create(
 "Doubler.dll",
 options: new CSharpCompilationOptions(
 OutputKind.DynamicallyLinkedLibrary),
 syntaxTrees: new[] { tree },
 references: new[]

 Figure 1-19. Using RoslynQuoter to generate syntax trees

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

20

 {
 MetadataReference.CreateFromFile(
 typeof(object).Assembly.Location)
 });

 using (var stream = new MemoryStream())
 {
 var compileResult = compilation.Emit(stream);
 var assembly = Assembly.Load(stream.GetBuffer());

 var type = assembly.GetType(
 $"{Program.NamespaceName}.{Program.ClassName}");
 var method = type.GetMethod(Program.MethodName);

 var result = (int)method.Invoke(null, new object[] { 2 });

 Console.Out.WriteLine(result);
 }

 Figure 1-20 shows what you should see when you pass 2 into the Double() method .

 Figure 1-20. Dynamically invoking a method compiled at runtime

 Now you know how to create trees from scratch . But how can you navigate their
content and change what they contain? That’s what we’ll cover in the next section.

 Navigating and Editing Trees
 In the previous section, you saw how to create a tree. But what if you’re given a tree
that you didn’t create? You may want to find out what’s in it and potentially change it.
In this section, we’ll cover a couple of different ways you can do that via node methods
and classes called walkers. We’ll also see what semantic models can do to make tree
traversal easier. Finally, you’ll discover how to edit these trees to create a new tree.
This information is critical to understand when we cover diagnostics in Chapter 2 and
refactorings in Chapter 3 , so make sure you’re comfortable with these concepts before
you move on to the content in those chapters.

http://dx.doi.org/10.1007/978-1-4842-2111-2_2
http://dx.doi.org/10.1007/978-1-4842-2111-2_3

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

21

 Finding Content from a Node
 Using trees created for you is something you’ll do a lot if you’re using the Compiler API.
As you’ve already seen, these trees are rich with information. When you run Listing 1-3 ,
you’ll see that the resultant tree has nearly 60 items within it:

 Listing 1-3. Getting a count of all nodes in a tree

 var code = @"
 using System;

 public class ContainsMethods
 {
 public void Method1() { }
 public void Method2(int a, Guid b) { }
 public void Method3(string a) { }
 public void Method4(ref string a) { }
 }";

 var tree = SyntaxFactory.ParseSyntaxTree(code);
 Console.Out.WriteLine(
 tree.GetRoot().DescendantNodesAndTokensAndSelf(
 _ => true, true).Count());

 There’s a couple of “Descendant” methods that you can use on a node to find
information within it. Listing 1-4 uses DescendantNodes() to find all the methods within
that tree.

 Listing 1-4. Using DescendantNodes() to find methods

 private static void PrintMethodContentViaTree(SyntaxTree tree)
 {
 var methods = tree.GetRoot().DescendantNodes(_ => true)
 .OfType<MethodDeclarationSyntax>();

 foreach (var method in methods)
 {
 var parameters = new List<string>();

 foreach (var parameter in method.ParameterList.Parameters)
 {
 parameters.Add(
 $"{parameter.Type.ToFullString().Trim()} {parameter.Identifier.Text}");
 }

 Console.Out.WriteLine(
 $"{method.Identifier.Text}({string.Join(", ", parameters)})");
 }
 }

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

22

 Figure 1-21 shows what you’ll see when you run the code in Listing 1-4 .

 Figure 1-21. Using DescendentNodes() to find method content

 Note that although it looks like you’re getting type information back as “int” and
“Guid” in the console window, the trees don’t have that type information available. All a
tree has is knowledge about the textural content of the tree’s information and how that
content relates to C#. You’ll see how you can get closer to that type information in the
upcoming “Semantic Models” section, but first let’s look at another way you can peruse a
node’s content.

 Finding Content Using Walkers
 You can use a “walker” class in the Compiler API to discover the information on a tree.
For example, the CSharpSyntaxWalker class is a visitor class that will start with a given
node and visit every node within that node’s tree. Listing 1-5 shows how you can write a
class to visit methods in a node, just like what you saw in Listing 1-4 .

 Listing 1-5. Using a walker to find methods in a tree

 public sealed class MethodWalker
 : CSharpSyntaxWalker
 {
 public MethodWalker(SyntaxWalkerDepth depth = SyntaxWalkerDepth.Node)
 : base(depth)
 { }

 public override void VisitMethodDeclaration(MethodDeclarationSyntax node)
 {
 var parameters = new List<string>();

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

23

 foreach (var parameter in node.ParameterList.Parameters)
 {
 parameters.Add(
 $"{parameter.Type.ToFullString().Trim()} {parameter.Identifier.Text}");
 }

 Console.Out.WriteLine(
 $"{node.Identifier.Text}({string.Join(", ", parameters)})");

 base.VisitMethodDeclaration(node);
 }
 }

 You can override the “Visit” method that matches the kind of content you’re
looking for. In this case, we want to find method defintions, so we override
 VisitMethodDeclaration() . The code is essentially the same as what you saw with
 DescendantNodes() in Listing 1-4 , with the same results. So, when should you use
one over the other? Using the methods on the node works well if you just want to find
one kind of node. You also don’t have to create a new class to do that. The walker is
advantageous if you want to find multiple node kinds in the tree, as you’ll walk it once.
Doing that with the node methods can be more cumbersome. Experiment with both and
see which one works best with the problem at hand.

 In either case, you’re still working with nodes and tokens. If you want more
information about the tree’s content, you’ll need to get semantic information, which we’ll
cover in the next section.

 Semantic Models
 If you were trying to find crucial information in a node and all you had were the traversal
tools described in the previous sections, you’d get frustrated pretty quickly. The nodes
have a lot of information, but it’s not always obvious how they relate to one another,
especially as it pertains to C# and .NET information. For example, what are the type
names? Is a class sealed? Is this argument by reference? You could try and piece all of
that information together with the nodes, or you can use the semantic model. A semantic
model provides a layer on top of the tree to provide a level of information you can’t easily
stitch together from syntax.

 To get a model, you need to use a compilation object like the one in Listing 1-6 .

 Listing 1-6. Using a semantic model to discover method information

 private static void PrintMethodContentViaSemanticModel(SyntaxTree tree)
 {
 Console.Out.WriteLine(nameof(Program.PrintMethodContentViaSemanticModel));
 var compilation = CSharpCompilation.Create(
 "MethodContent",
 syntaxTrees: new[] { tree },
 references: new[]

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

24

 {
 MetadataReference.CreateFromFile(typeof(object).Assembly.Location)
 });

 var model = compilation.GetSemanticModel(tree, true);

 var methods = tree.GetRoot().DescendantNodes(_ => true)
 .OfType<MethodDeclarationSyntax>();

 foreach (var method in methods)
 {
 var methodInfo = model.GetDeclaredSymbol(method) as IMethodSymbol;
 var parameters = new List<string>();

 foreach (var parameter in methodInfo.Parameters)
 {
 var isRef = parameter.RefKind == RefKind.Ref ? "ref " : string.Empty;
 parameters.Add($"{isRef}{parameter.Type.Name} {parameter.Name}");
 }

 Console.Out.WriteLine(
 $"{methodInfo.Name}({string.Join(", ", parameters)})");
 }
 }

 To get method symbol information, you use GetDeclaredSymbol() on a
semantic tree obtained from the CSharpCompilation object . You then cast that to an
 IMethodSymbol , and use that to print out method information as shown in Figure 1-22 ,
which looks exactly the same as Figure 1-21 .

 Figure 1-22. Using a semantic model to find method content

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

25

 Note that in this case, we can use the RefKind property to easily figure out if the
parameter is passed by reference. To do this with a syntax tree, you’d have to look to
see if the descendents of a ParameterSyntax object contains a SyntaxToken that is of a
 RefKeyword kind. It’s doable, but the semantic model makes it easier to find that out.

 Also, keep in mind that obtaining a semantic tree requires the compilation object to
perform extra work to assemble it. If you run the NavigatingTrees project in the Chapter 1
folder from the book’s source code repository, you’ll see a brief pause when the code gets
the semantic model. The model is handy to have around as it makes discovery a much
easier endeavor with usually less code, but that comes with a small performance price.
You’ll have to weigh the cost between the two depending on your scenario.

 Now you know how to peruse a tree and find out different aspects about it. But what
if you want to change the tree? We’ll cover that in the next section.

 Editing Trees
 In Chapters 2 and 3 , you’ll need to change the code that a developer has entered to either
fix it or refactor it. This requires modifying a tree. However, let’s be clear: you don’t modify
trees in the Compiler API because they’re immutable. If you call a method to replace
a node in the tree, you get a new node back. The original node’s child content hasn’t
change; the node you got back as a return value is the one with the changes. This may
seem like a fairly large memory footprint to deal with all in the name of immutability, but
you gain a lot by having immutable structures, like the ability to easily compare between
the two nodes in Visual Studio (you’ll see this in Chapters 2 and 3). Plus, the size of the
memory footprint doesn’t double the working set of your process every time you modify
a new node. The Compiler API team has worked hard to ensure that the performance and
memory footprint of the compiler is efficient.

 ■ Note If you want a deep dive into the inner workings of trees and how they work with
reducing memory pressure, read the article at http://robinsedlaczek.com/2015/04/29/
inside-the-net-compiler-platform-performance-considerations-during-syntax-

analysis-speakroslyn/ .

 Let’s explore two different ways you can get a “modified” tree back in the Compiler
API: replace methods and rewriters. Let’s say that you want to change all of the methods
in a class so they’re public. Listing 1-7 contains the starting tree.

http://dx.doi.org/10.1007/978-1-4842-2111-2_1
http://dx.doi.org/10.1007/978-1-4842-2111-2_2
http://dx.doi.org/10.1007/978-1-4842-2111-2_3
http://dx.doi.org/10.1007/978-1-4842-2111-2_2
http://dx.doi.org/10.1007/978-1-4842-2111-2_3
http://robinsedlaczek.com/2015/04/29/inside-the-net-compiler-platform-performance-considerations-during-syntax-analysis-speakroslyn/
http://robinsedlaczek.com/2015/04/29/inside-the-net-compiler-platform-performance-considerations-during-syntax-analysis-speakroslyn/
http://robinsedlaczek.com/2015/04/29/inside-the-net-compiler-platform-performance-considerations-during-syntax-analysis-speakroslyn/

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

26

 Listing 1-7. Building the source tree

 var code = @"
 using System;

 public class ContainsMethods
 {
 public void Method1() { }
 protected void Method2(int a, Guid b) { }
 internal void Method3(string a) { }
 private void Method4(ref string a) { }
 protected internal void Method5(long a) { }
 }";

 var tree = SyntaxFactory.ParseSyntaxTree(code);

 To change the contents of the node from Listing 1-7 via a replace method, you can
use the ReplaceNodes() method, as shown in Listing 1-8 .

 Listing 1-8. Replacing nodes in a tree via ReplaceNodes()

 private static void ModifyTreeViaTree(SyntaxTree tree)
 {
 Console.Out.WriteLine(nameof(Program.ModifyTreeViaTree));
 Console.Out.WriteLine(tree);
 var methods = tree.GetRoot().DescendantNodes(_ => true)
 .OfType<MethodDeclarationSyntax>();

 var newTree = tree.GetRoot().ReplaceNodes(methods, (method,
methodWithReplacements) =>

 {
 var visibilityTokens = method.DescendantTokens(_ => true)
 .Where(_ => _.IsKind(SyntaxKind.PublicKeyword) ||
 _.IsKind(SyntaxKind.PrivateKeyword) ||
 _.IsKind(SyntaxKind.ProtectedKeyword) ||
 _.IsKind(SyntaxKind.InternalKeyword)).ToImmutableList();

 if (!visibilityTokens.Any(_ => _.IsKind(SyntaxKind.PublicKeyword)))
 {
 var tokenPosition = 0;

 var newMethod = method.ReplaceTokens(visibilityTokens,
 (_, __) =>
 {
 tokenPosition++;

 return tokenPosition == 1 ?
 SyntaxFactory.Token(
 _.LeadingTrivia,
 SyntaxKind.PublicKeyword,
 _.TrailingTrivia) :

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

27

 new SyntaxToken();
 });
 return newMethod;
 }
 else
 {
 return method;
 }
 });

 Console.Out.WriteLine(newTree);
 }

 There’s a lot going on in Listing 1-8 , so let’s go through it step by step. Once we get
a list of MethodDeclarationSyntax nodes , we call ReplaceNodes() . In this overload, we
pass in the list of methods we want to replace, and then a Func that takes two arguments
and returns a MethodDeclarationSyntax object . In our implementation, we’ll only look
at the first argument, as that is a reference to an element that you may want to replace.
In the Func , we look for tokens with DescendantTokens() that represent the visibility of
the method. If none of them are a “public” token, then we replace the visibility tokens via
 ReplaceTokens() . The first token in the list is changed to a “public” token, and the rest
are removed with a new SyntaxToken() —this effectively gets rid of the token from the
tree. Note that we keep the leading and trailing trivia around the first node so we don’t
lose what the developer has put in the code to format it they way they want it to be.

 Figure 1-23 shows what the tree looks like before and after the modification.

 Figure 1-23. Modifying a tree with replacement methods on nodes

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

28

 Remember that the original tree has not changed. All of the work in this code has
only created a new tree with new nodes.

 As always, there are lots of other methods you can use to replace content, like
 ReplaceTrivia() , so depending upon your scenario, take a look at the SyntaxNode you
have and see if a different “Replace” method matches your needs.

 You can also use a visitor class to rewrite the node. You inherit from the
 CSharpSyntaxRewriter class and override the correct “Visit” methods you need to create
a new node. Listing 1-9 shows what a rewriter looks like to make all methods public.

 Listing 1-9. Replacing nodes in a tree via a rewriter class

 public sealed class MethodRewriter
 : CSharpSyntaxRewriter
 {
 public override SyntaxNode VisitMethodDeclaration(MethodDeclarationSyntax node)
 {
 var visibilityTokens = node.DescendantTokens(_ => true)
 .Where(_ => _.IsKind(SyntaxKind.PublicKeyword) ||
 _.IsKind(SyntaxKind.PrivateKeyword) ||
 _.IsKind(SyntaxKind.ProtectedKeyword) ||
 _.IsKind(SyntaxKind.InternalKeyword)).ToImmutableList();

 if (!visibilityTokens.Any(_ => _.IsKind(SyntaxKind.PublicKeyword)))
 {
 var tokenPosition = 0;

 var newMethod = node.ReplaceTokens(visibilityTokens,
 (_, __) =>
 {
 tokenPosition++;

 return tokenPosition == 1 ?
 SyntaxFactory.Token(
 _.LeadingTrivia,
 SyntaxKind.PublicKeyword,
 _.TrailingTrivia) :
 new SyntaxToken();
 });
 return newMethod;
 }
 else
 {
 return node;
 }
 }
 }

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

29

 Using the rewriter to get a new node is pretty simple:

 var newTree = new MethodRewriter().Visit(tree.GetRoot());

 As with reading nodes, the approach you use to create new nodes is up to you.
 Before we close out this chapter, let’s look at two more pieces of a tree that you may

find useful when you create and/or modify trees: annotations and formatters.

 Annotations and Formatters
 You’ve seen the core parts of trees that the Compiler API uses throughout its pipeline.
But there are two parts to the tree that, while they may not be highly important to the
resulting compilation output, you (and those who read the code generated by a tree) may
find them useful. They are annotations and formatters. Let’s start with annotations.

 Using Annotations
 Being a .NET developer means you’ve probably used attributes in some capacity. For
example, if you use a unit testing framework, you typically mark a method that should be
run as a test with some kind of attribute, like this:

 [TestMethod]
 public void MyTest() { /*...*/ }

 The TestMethodAttribute is a piece of metadata in your code that lies dormant
until code looks for the existence of that attribute and reacts accordingly. In this unit
testing example, a test runner would use Reflection to find all methods marked with
 TestMethodAttribute and invoke them during a test run.

 In the Compiler API, you can use an instance of the SyntaxAnnotation class to mark
nodes and tokens with a piece of information you’d like to use later on. The annotations
won’t do anything when the code is compiled; they’re only there for you to find and
perform some specfic action based on their existence. For example, if you wanted to
know how many methods were changed to public based on code from Listing 1-8 , you
can add an annotation to the new MethodDeclarationSyntax object like this:

 const string newMethodAnnotation = "MethodMadePublic";

 // ... method rewriting goes here ...

 return newMethod.WithAdditionalAnnotations(
 new SyntaxAnnotation(newMethodAnnotation));

 Then you only need one line of code to get the count of changed methods from a tree:

 newTree.GetAnnotatedNodes(newMethodAnnotation).Count();

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

30

 Annotations are not required for anything you do when you work with trees. In fact,
they won’t show up when you print code or save it to a text file, nor will they end up in a
resulting executable. But they can come in handy when you want to tag elements in a tree
to quickly find them later. Speaking of printing code, let’s now look at how you can format
your code (and, interestingly enough, use an annotation to specify formatting).

 Using Formatters
 As mentioned earlier in the “Visualizing Trees” section, developers can be really picky
about the code they write when it comes to formatting. If they want the curly brace on the
next line, they write this:

 public class MyClass
 {
 // ...
 }

 But if someone comes along and changes it to this:

 public class MyClass {
 // ...
 }

 stern words may be spoken to the one who made the change! How you format your code
makes no difference in the way the code will execute when it’s compiled, but having
consistency pervasive in a code base is one indication that the development team is
striving for clean, healthy code.

 One way to handle formatting is to explicity add in all the trivia manually. With
the RoslynQuoter tool mentioned earlier in the “Building Trees” section, you may have
noticed that you had the option to “Preserve original whitespace”. If you use that option,
all of the nodes created from SyntaxFactory have explicit leading and trailing trivia lists
defined. If you omit that option, then the code is less verbose, but it does have a call to
 NormalizeWhitespace() at the end of the factory calls.

 What does NormalizeWhitespace() do? Essentially it applies some “common”
C# formatting to the code represented in the tree. For example, consider the code
in Listing 1-10 .

 Listing 1-10. Creating a ClassDeclarationNode

 public static class Program
 {
 public static void Main(string[] args)
 {
 Program.FormatClassNode();
 }

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

31

 private static void FormatClassNode()
 {
 Console.Out.WriteLine(nameof(Program.FormatClassNode));
 var code = SyntaxFactory.ClassDeclaration("NewClass");
 Console.Out.WriteLine(code);
 Console.Out.WriteLine(code.NormalizeWhitespace());
 }
 }

 Here’s the output when the code from Listing 1-10 is run:

 FormatClassNode
 classNewClass{}
 class NewClass
 {
 }

 Notice that the second line is the class definition with no formatting, and the
last two lines are the definition with formatting applied. You can use overloads of
 NormalizeWhitespace() to define the indentation and end-of-line trivia if you’d like, but
that’s it—you have to use whatever formatting NormalizeWhitespace() decides to apply.

 You can also use workspaces to define how the tree’s code should be formatted.
We’ll cover workspaces in detail in Chapter 4 , but for now you can think of a workspace
as a way to abstract how a solution, projects, and files should be managed. The
following code shows how you can use different implementations of the Workspace class
(AdhocWorkspace and MSBuildWorkspace) to format your code:

 Console.Out.WriteLine(Formatter.Format(code, new AdhocWorkspace()));
 Console.Out.WriteLine(Formatter.Format(code, MSBuildWorkspace.Create()));

 In both cases, the output is the same as it is for NormalizeWhitespace() . In other
chapters we’ll use workspaces for testing and project and solution management.

 There’s one other way you can specify how nodes should be formatted. It’s by using
the Annotation property on the Formatter class, like this:

 Console.Out.WriteLine(
 code.WithAdditionalAnnotations(Formatter.Annotation));

 If you print the node to the console window, it will look like the original node’s
output: classNewClass{} . However, the reason you’d want to do this is when you create
a code fix, which we’ll talk about in Chapter 2 . The code fix engine will look for nodes
that have this annotation, and format their content based on the rules specified by the
developer in Visual Studio. In cases with a new node in a console application, adding this
annotation doesn’t change anything. However, when you’re creating a code fix, using
 Formatter.Annotation is valulable because you can let other aspects of the Compiler API
handle code formatting for you.

http://dx.doi.org/10.1007/978-1-4842-2111-2_4
http://dx.doi.org/10.1007/978-1-4842-2111-2_2

CHAPTER 1 ■ AN OVERVIEW OF THE COMPILER API

32

 Conclusion
 In this chapter, you received an introduction into the Compiler API world. You saw how
you could parse code and create executables based on the syntax trees produce. You
learned how you to create trees directly and produce new trees based on a tree’s content.
Finally, you saw how you can use annotations and formatting with syntax trees . In the
next chapter, we’ll use this newfound knowledge of trees to create diagnostics and code
fixes to help you find and fix errors in your code.

33© Jason Bock 2016
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2_2

 CHAPTER 2

 Writing Diagnostics

 Chapter 1 provided a foundational tour of the Compiler API. In this chapter, you’ll use
that knowledge to build diagnostics. You’ll learn how to quickly find issues in code and
provide code fixes to a developer when appropriate. You’ll also learn how to write unit
tests for diagnostics and code fixes as well as debug your diagnostic code.

 The Need to Diagnose Compilation
 One of the first rules that I learned as a software developer is to “fail fast.” The quicker
you can find an issue in your code, the less damage it can do (especially if you find it on
your machine, then no one can blame or make fun of you). Consider this example: in
1997, I was working on a very stressful project, in part because it didn’t have any testing
in place, and I was about to go on my honeymoon. I was one of only two developers on
the project, and the rest of the project team was concerned about resolving issues while I
was away. We spent a fair amount of time testing the code before I left, but unfortunately
it wasn’t enough. During my leave, the application didn’t process data correctly as it
should, and the other developers had to scramble to find the problem. When I returned,
people were not happy. The problem was supposedly due to one line of code that didn’t
handle boolean logic correctly. The moral of this story is to slow down and introduce
a strict process to ongoing development that results in a stable application with better
testing. Not being able to find the existing error at all resulted in a lot of preventable
tension and grief.

 Now, a problem like this can’t be found by tooling. Meaning, a tool doesn’t know
if “ if(!isValid) ” or “ if(isValid) ” is “correct” based on what the application needs
to do. But there are many cases in which developers need to follow specific idioms. If
they don’t, really bad things can happen, like an entire service can crash. Case in point:
while working on an application in 2007 that used Windows Communication Foundation
(WCF) , I created an operation that was one-way, which looked something like this:

 [OperationContract(IsOneWay = true)]
 public string MyOperation() { return null; }

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2111-2_1
http://www.allitebooks.org

CHAPTER 2 ■ WRITING DIAGNOSTICS

34

 ■ Note For more information about a one-way operation, see https://msdn.
microsoft.com/en-us/library/system.servicemodel.operationcontractattribute.

isoneway%28v=vs.110%29.aspx .

 What the method did isn’t important. What is important is how the operation was
defined. It’s marked with the OperationContractAttribute with IsOneWay set to true .
This means that as soon as the service starts handling the request, the client can move
on. This is nice for processing event data where the client doesn’t want to wait for that
processing to finish, but if you make a method one-way, you can’t return anything from
it. My method was returning a string . This is a problem that will cause an exception, but
I didn’t see it until I actually hosted the service and invoked it from a client. If I ran a unit
test against the code where I wasn’t hosting the service, it worked. Compilation was also
fine—the C# compiler has no knowledge of specific idioms that frameworks must enforce.
So I thought I was good...until we tried to run it in our development environment, and it
failed miserably. Granted, this didn’t get into production, but I didn’t fail fast.

 The ideal situation would’ve been to know there was an issue as soon as I typed that
code into Visual Studio. However, in 2007, there really wasn’t a way to do this. Sure, you
could write a custom FxCop/Code Analysis rule to check for this issue, but you would
have to wait until you compiled the code to find it. Knowing as soon as you write the code
is the fastest “fail fast” you can do.

 ■ Note To learn how to make custom code analysis rules in VS2010 run in FxCop and
VS2008, see http://blog.tatham.oddie.com.au/2010/01/06/custom-code-analysis-
rules-in-vs2010-and-how-to-make-them-run-in-fxcop-and-vs2008-too/ .

 Now, with the Compiler API, you can write a diagnostic that will analyze portions
of your code to see if they have any issues that the C# compiler doesn’t know about.
You control the rules that are enforced. Here are some examples:

• You don’t want any developers using DateTime.Now ; rather,
 DateTime.UtcNow should be used to catch any places in code
where DateTime instances are obtained as a local kind.

• All classes that inherit from a certain base class should be
serializable.

• You want to put a TimeSpan value into an attribute, but you can’t do
that directly; you have to use a string value formatted to a TimeSpan ,
so you want to verify that the value is formatted correctly.

 You can probably come up with others based on your own development experiences,
which is why diagnostics are such a powerful feature in the new compiler and its
integration into Visual Studio. Most rules, idioms, practices, and so on can be codified
into a diagnostic that will run for everyone on the development team so issues can be
identified and (potentially) automatically fixed. In the next section, we’ll examine the
details of creating a diagnostic with a code fix.

https://msdn.microsoft.com/en-us/library/system.servicemodel.operationcontractattribute.isoneway(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.operationcontractattribute.isoneway(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.servicemodel.operationcontractattribute.isoneway(v=vs.110).aspx
http://blog.tatham.oddie.com.au/2010/01/06/custom-code-analysis-rules-in-vs2010-and-how-to-make-them-run-in-fxcop-and-vs2008-too/
http://blog.tatham.oddie.com.au/2010/01/06/custom-code-analysis-rules-in-vs2010-and-how-to-make-them-run-in-fxcop-and-vs2008-too/

CHAPTER 2 ■ WRITING DIAGNOSTICS

35

 Designing the Diagnostic
 Having the desire to find issues in code is one thing. But how do you do it? Let’s spend a
bit of time going over the design process first and how you can use the Syntax Visualizer
to assist your diagnostic implementation.

 Understanding the Problem
 As you saw in Chapter 1 , the Compiler API is vast, and it’s easy to get lost. Knowing
exactly what the problem is and all the potential variants that can crop up in code can be
overwhelming, depending on the nature of the issue you’re trying to find. No matter how
well-designed the Compiler API is, we’re still dealing with tokens, parsing and semantics,
so we need to have a good understanding of what we’re trying to find in code.

 Let’s go through an example of enforcing a particular coding standard. In my
experience I’ve sometimes seen frameworks expose classes that defined virtual methods
that had to be invoked if the method was overriden. For example, a base class may look
something like this:

 public class MyBaseClass
 {
 protected virtual void OnInitialize() { /* ... */ }
 }

 If you inherited from this class, you needed to do this:

 public class MySubClass
 : MyBaseClass
 {
 protected override void OnInitialize()
 {
 base.OnInitialize();
 /* ... */
 }
 }

 In other words, you had to call the base class’s implementation, and then you could
add in whatever implementation you needed to do.

 The problem with this approach is that there’s no way to enforce it with the C#
compiler. Overridden methods are not required to call the “base” implementation,
yet with some designs this is a requirement. Unfortunately, you could easily override
 OnInitialize() and forget to call the base class’s implementation and the C#
compiler will happily produce an assembly based on your errant code. Adding XML
documentation to the method helps, but it doesn’t enforce that requirement, and that’s
what we really need.

http://dx.doi.org/10.1007/978-1-4842-2111-2_1

CHAPTER 2 ■ WRITING DIAGNOSTICS

36

 So, let’s write a diagnostic that checks if the base class’s implementation is invoked
somewhere within our overridden implementation. We’ll only concern ourselves with
virtual methods that are marked with a MustInvokeAttribute . If a subclass overrides that
method, it must call the base class’s implementation. That sounds like a good plan, but
what are we going to need to look for in a syntax tree to handle this analysis correctly? In
the next section, we’ll use the Syntax Visualizer to get a clearer picture of the possibilities.

 Using the Syntax Visualizer
 Getting a vision for what an analyzer will need to do from a design perspective is a good
thing, but we’ll need more information. Specifically, we have to dig into a syntax tree to
find the nodes to see what it is we’re really looking for—for example, we’ll need to find
the nodes related to method calls and whether or not they’re virtual. Figure 2-1 shows the
tree for the code you saw in the “Understanding the Problem” section.

 Figure 2-1. Discovering which nodes are in play for method invocations

 To get this screenshot, I highlighted the “OnInitialize” base method call in
the overriden method. That’s why the IdentifierNameSyntax node is highlighted.
It’s a child of an InvocationExpressionSyntax node, which in turn is a child of a
 MethodDeclaration .

 That tells us about the definition of a method and its structure, but we want to find
out that if a method is an override, and the method it’s overriding has [MustInvoke] ,
then we have to find at least one invocation of that base class method in the method’s
definition.

 We’ll attack the problem from two angles. If the user is adding a method
invocation in code, we’ll keep looking at the parent nodes until we either get a null or
a MethodDeclarationSyntax reference . If the user is declaring or changing a method
declaration, we want to examine that “root” node for child invocations. Either way,
once we get a MethodDeclarationSyntax reference, we’ll check to see if it’s overriding

CHAPTER 2 ■ WRITING DIAGNOSTICS

37

a method that is marked with [MustInvoke] . If it is, then we’ll look through all of its
descendants for InvocationExpressionSyntax nodes and determine if at least one of
those invocations is the base method. If we don’t find any, then we’ll report that as a
diagnostic issue. To implement this approach, we’ll need to work with both syntax nodes
and objects that come from a semantic model, as you’ll see in the next section.

 By the way, where is this MustInvokeAttribute class defined? I put it into a separate
assembly called MustInvokeBaseMethod . It’s a good idea to separate the analyzer from
the rest of your main code that you’ll be analyzing. Even though in this case we have an
assembly with only one attribute, we still want that diagnostic code out of what would
normally be an assembly that has all of our logic and structure in it.

 In the next section, we’ll finally get into the details of a diagnostic.

 Creating a Diagnostic
 We now have a fairly good idea of what we need to look for in code for this diagnostic,
which we’ll call MustInvokeBaseMethodAnalyzer . In this section, you’ll learn how to get
the right projects and classes in place to build the diagnostic.

 Using the Template
 In the “Visualizing Trees” section in Chapter 1 , we walked through a couple of installation
steps to get the Syntax Visualizer in place. This also installed a couple of templates to make
it easier to create diagnostics and refactorings. Let’s use them to get our projects in place.

 Create a solution in Visual Studio, and add a new project to that solution (File ➤ New
➤ Project, or Ctrl+Shift+N). You should see an option under the Extensibility node called
 Analyzer with Code Fix (NuGet + VSIX) as shown in Figure 2-2 .

 Figure 2-2. Creating a new diagnostic project

http://dx.doi.org/10.1007/978-1-4842-2111-2_1

CHAPTER 2 ■ WRITING DIAGNOSTICS

38

 The resulting solution will have three new projects in it, as Figure 2-3 shows.

 Here’s a brief description of these new projects:

• MustInvokeBaseMethod.Analyzers —this Portable Class Library-
based project is where you’ll define your analyzer and any code
fixes.

• MustInvokeBaseMethod.Test —this .NET MSTest-based
project references your analyzer project so you can write tests
against your diagnostic. We’ll talk about this project later in
the “Unit Testing” section.

• MustInvokeBaseMethod.Vsix —this VS Package-based project
references your analyzer and allows you to quickly test your
analyzer code in a new Visual Studio instance.

 Figure 2-3. Creating a diagnostic project creates three new projects

CHAPTER 2 ■ WRITING DIAGNOSTICS

39

 When you create a diagnostic project, the template will generate a diagnostic that
looks for types with lowercase letters and provides a code fix to make the name all
uppercase. It’s kind of a silly rule, but it does illustrate the machinery you need in place
to ensure your diagnostic is implemented correctly. In the next section, we’ll build the
diagnostic and code fix for our base virtual method scenario, but if you’ve never built one
before, I encourage you to take a look at that code just to see how it’s laid out.

 ■ Note I personally don’t like the layout of the projects. If you get the source code, you’ll
notice the directory structure is slightly different than what the template generates, and
I’ve also deleted a fair amount of boilerplate code that it generates. Keep in mind that the
template is a good start, but as your experience with diagnostics increases, you’ll probably
want to change the code as well. Also, you don’t have to use the template. Maybe you don’t
want the VSIX project, or you want to use a different testing framework than MSTest. Feel
free to experiment as you become more familiar with diagnostics and how they work.

 One other project that we’ll add is the MustInvokeBaseMethod project. All this will
contain is the MustInvokeAttribute —its definition looks like this:

 [AttributeUsage(AttributeTargets.Method,
 AllowMultiple = false, Inherited = true)]
 public sealed class MustInvokeAttribute
 : Attribute
 { }

 This may seem like a bit of overkill, having a project to contain just one type, but it’s
best to separate your analyzer code from the code you’re going to analyze. Remember, the
analyzer project is a Portable Class Library (PCL) , and it can’t reference assemblies that
are not PCLs, so if you put all your code into the same assembly, this would force your
main code to follow the same PCL restrictions. PCLs have a limited set of APIs that they
can use from the .NET Framework, and, depending on what your code needs to do, you
may end up not being able to implement certain features. Also, keep in mind that when
you keep code separated in a non-PCL project, the analyzer project can’t reference that
 MustInvokeBaseMethod project, but that’s okay. Keeping a strict boundary between the
analyzer and the code to analyze also removes issues like versioning, and most of the time
you’ll discover nodes via their names, not by a specific type.

 Building the Diagnostic
 We’ve covered the basics of the diagnostic design and how to use the analyzer project
template. Let’s get into the details of how you set up and implement a diagnostic.

CHAPTER 2 ■ WRITING DIAGNOSTICS

40

 Diagnostic Class Setup
 The first thing that needs to be done is get the class definition correct. Here’s the
definition of the analyzer, which was lifted from the analyzer generated from the project
template:

 [DiagnosticAnalyzer(LanguageNames.CSharp)]
 public sealed class MustInvokeBaseMethodAnalyzer
 : DiagnosticAnalyzer
 {
 /* ... */
 }

 Note that you add the DiagnosticAnalyzer attribute to the class definition as well as
use DiagnosticAnalyzer as the base class. Using DiagnosticAnalyzer in the inheritance
hierarchy requires you to implement two virtual members that you’ll see in a moment.
The attribute is used primarily by tools like Visual Studio that will use its existence to
discover the class and use it as an analyzer. Although we don’t talk about VB in this book,
you can write analyzers for VB just as easily as you can for C#. In fact, if your analyzer is
generic enough, it’s possible to write an analyzer in one language that can target both
languages.

 When you inherit from DiagnosticAnalyzer , you have to override two abstract
members: a read-only SupportedDiagnostics property and an Initialize() method.
Listing 2-1 shows how they are defined.

 Listing 2-1. Defining required diagnostic members

 private static DiagnosticDescriptor rule = new DiagnosticDescriptor(
 "MUST0001", "Find Overridden Methods That do Not Call the Base Class's
Method",

 "Virtual methods with [MustInvoke] must be invoked in overrides",
 "Usage", DiagnosticSeverity.Error, true);

 public override ImmutableArray<DiagnosticDescriptor> SupportedDiagnostics
 {
 get
 {
 return ImmutableArray.Create(
 MustInvokeBaseMethodAnalyzer.rule);
 }
 }

 public override void Initialize(AnalysisContext context)
 {
 context.RegisterSyntaxNodeAction<SyntaxKind>(
 this.AnalyzeMethodDeclaration, SyntaxKind.MethodDeclaration);
 }

CHAPTER 2 ■ WRITING DIAGNOSTICS

41

 An analyzer can support multiple diagnostics. This means that you can report on
more that one issue from an analyzer. In our case, there’s only one scenario we need to
find, so we’ll only return one DiagnosticDescriptor rule within an ImmutableArray . The
 ImmutableArray class comes from the System.Collections.Immutable assembly, which
you can use from any .NET project because it’s in NuGet.

 A DiagnosticDescriptor object defines a number of characteristics about an
analyzer violation. Some of these constructor values are descriptions that will be used
to help you understand why code is being shown with an issue. The first value is an
identifier, which you use to relate specific rule violations to code fixes—you’ll see this put
to use later in the “Providing Code Fixes” section. You can also specify the severity of the
violation with the DiagnosticSeverity enumeration. An Error value will show up as a
red squiggle under the bad code in Visual Studio, whereas a Warning level creates a yellow
squiggle. Finally, the isEnabledByDefault argument value specifies that the analyzer
should be enabled as soon as Visual Studio finds it.

 The Initialize() method is used to inform the Compiler API engine of
the specific nodes you want to analyze. In our example, we want to focus on
 MethodDefinitionSyntax nodes, so we used RegisterSyntaxNodeAction() . The first
argument is an Action<SyntaxNodeAnalysisContext> , which is where we’ll figure out
if a method has virtual method issues. We’ll cover what AnalyzeMethodDeclaration()
does in the next section, “Analyzing Code.” There are other “Register” methods on the
context object that you can use to handle other actions, like RegisterSymbolAction()
and RegisterCompilationAction() . You may want to use these methods to handle
different parts and phases of the compilation process. As always, experiment and peruse
the APIs—you never know when a different method may solve a problem you have in a
better way.

 Now that the essentials of the analyzer are in place, let’s see how we determine if we
have an error in our code.

 Analyzing Code
 Our AnalyzeMethodDeclaration() method is where we need to figure out if a virtual base
method must be invoked. The method is somewhat long, so we’ll go over it in two pieces.
Listing 2-2 contains the first part.

 Listing 2-2. Starting the implementation of the diagnostic’s analysis.

 private void AnalyzeMethodDeclaration(SyntaxNodeAnalysisContext context)
 {
 var method = context.Node as MethodDeclarationSyntax;
 var model = context.SemanticModel;
 var methodSymbol = model.GetDeclaredSymbol(method) as IMethodSymbol;

CHAPTER 2 ■ WRITING DIAGNOSTICS

42

 context.CancellationToken.ThrowIfCancellationRequested();

 if(methodSymbol.IsOverride)
 {
 var overriddenMethod = methodSymbol.OverriddenMethod;

 var hasAttribute = false;
 foreach (var attribute in overriddenMethod.GetAttributes())
 {
 if(attribute.AttributeClass.Name == "MustInvokeAttribute")
 {
 hasAttribute = true;
 break;
 }
 }

 The first thing we’ll do is grab the MethodDeclarationSyntax node that either the
user is currently working on, or a node that has been parsed. We can safely make the
type cast as we said we only want nodes where the SyntaxKind is MethodDeclaration
in Initialize() . Next, we’ll obtain the IMethodSymbol for that node with the semantic
model’s GetDeclaredSyntax() , which we’ll use to determine some aspects of the
method. But notice that the next action is to call ThrowIfCancellationRequested() on
the CancellationToken from the context. Visual Studio wants the developer to have a
responsive experience, so if your analysis is going to take too long, you should exit and
not report any issues. That call from the token will get you out of your analysis method
quickly if a cancellation has been requested. How often you should call this method is
up to you, but if your analysis method is more than a couple of lines of code, you should
probably call it at least once.

 Now that we have our method symbol, we want to see if it’s a method that’s
overriding another method, which is what the IsOverride property gives us. If the
method is an override, we can find the method that it’s overriding via OverriddenMethod .
We have to check if that overriden method has a MustInvokeAttribute on it, so we iterate
through the AttributeData objects in the array returned from GetAttributes() . If at
least one object has the name “MustInvokeAttribute.” then we know we need to keep
going further. For our example, this simple name test is sufficient. You may want to make
sure that a type is within a namespace and/or within a specific assembly. In those cases,
you can use the ContainingNamespace and ContainingAssembly properties to get that
name information and compare these property values to expected name values.

 At this point, we know we have a method that’s overriden a method
with [MustInvoke] . We now need to find an invocation of that base class
method, otherwise we have to report an error. Listing 2-3 has the other half of
 AnalyzerMethodDeclaration() .

CHAPTER 2 ■ WRITING DIAGNOSTICS

43

 Listing 2-3. Finishing the implementation of the analyzer.

 context.CancellationToken.ThrowIfCancellationRequested();
 if(hasAttribute)
 {
 var invocations = method.DescendantNodes(_ => true)
 .OfType<InvocationExpressionSyntax>();
 foreach (var invocation in invocations)
 {
 var invocationSymbol = model.GetSymbolInfo(
 invocation.Expression).Symbol as IMethodSymbol;

 if (invocationSymbol == overriddenMethod)
 {
 return;
 }
 }

 context.ReportDiagnostic(Diagnostic.Create(
 MustInvokeBaseMethodAnalyzer.rule,
 method.Identifier.GetLocation()));
 }
 }
 }

 We use DesendantNodes() to find InvocationExpressionSyntax nodes . If one of
them is the same as the overriden method, we’re good. We use GetSymbolInfo() to
obtain an IMethodSymbol reference based on the invocation’s Expression property. If
that reference equals the overriden method, we’re done.

 If we don’t find a call to the base class method, we report an error via
 ReportDiagnostic() . We use GetLocation() on the identifier from the original
 MethodDeclarationSyntax node . This means that Visual Studio will add a red
squiggle under the method definition’s name. If we used GetLocation() off of the
 MethodDefinitionSyntax node itself, the squiggle would be under the entire method. It’s
somewhat of an aesthetic choice. Lots of red will get a developer’s attention, but it may
also be too broad of a UI hint, especially if the method is large. Again, use what you think
best serves the developer who uses your analyzer.

 With the analyzer in place, we can think about writing a code fix to provide an
automatic way to correct the error for the developer. We’ll do that next.

 Providing Code Fixes
 It’s great that we can alert a developer of an issue as soon as they make it; what would
make it better is fixing it for them as well. You can write code fixes for analyzers that do
just that. Before we look at the code that does this, let’s think about how we can create a
fix for [MustInvoke] .

CHAPTER 2 ■ WRITING DIAGNOSTICS

44

 Designing the Fix
 Let’s start by looking at a couple of coding conditions that can happen in a method. If our
base method looks like this:

 protected virtual void OnInitialize()

 It’s pretty easy to create a fix—all we need to do is call it like this:

 base.OnInitilize();

 Therefore, we just need to generate an invocation. But there’s far more you can do
with a method. What if the method is defined like this?

 unsafe protected virtual int[] OnInitialize(string a, Guid b, char* c, ref
long d);

 Now we have a return value, arguments that take pointer types and a ref argument as
well. Fixing it would take code that looks like this:

 var onInitializeResult = base.OnInitialize(a, b, c, ref d);

 Fortunately, we can just pass in the parameters from the overriden method to this
method invocation. The developer may want to change that, but a code fix can do this as a
simplistic heuristic and let the developer choose to alter it as needed. The developer can
also ignore the code fix entirely and correct the issue manually. Providing a code fix does
not require the developer to use it; it’s just another way to assist the developer.

 Of course, we’re assuming that there isn’t a variable called onInitializeResult .
We’ll need to make sure that we check all local variables and see if there are any that have
that name. If so, we’ll have to come up with some heuristic to ensure the name is unique
without coming up with an ugly name with random characters. Writing a good code fix
means you try to generate code that a developer would accept as their own.

 So, here’s what we need to do with this code fix:

• Determine if there are any arguments for the method invocation.
If so, use the current method definition’s parameters.

• Determine if there’s a return value. If so, we’ll capture that with a
simple “var” statement, generating a variable name that is unique.

• We’ll also make sure that our added invocation is the first
statement that occurs in the overridden method.

 Now that we have a plan in place, let’s implement the code fix.

CHAPTER 2 ■ WRITING DIAGNOSTICS

45

 Implementing the Fix
 First, here’s the definition of the code fix class:

 [ExportCodeFixProvider(LanguageNames.CSharp)]
 [Shared]
 public sealed class MustInvokeBaseMethodCallMethodCodeFix
 : CodeFixProvider
 {
 /* ... */
 }

 You need to add the ExportCodeFixProvider and Shared attributes as well as inherit
from the CodeFixProvider class for your code fix to work correctly. When you inherit
from CodeFixProvider , there are two members that you must provide implementations
for: the FixableDiagnosticIds property and the RegisterCodeFixesAsync method . The
property is easy to implement:

 public override ImmutableArray<string> FixableDiagnosticIds
 {
 get
 {
 return ImmutableArray.Create("MUST0001");
 }
 }

 The identifier we pass into the array is the same one that the diagnostic uses for
the rule it reports when a code violation is detected. This is used to tie the rule and fix
together so Visual Studio can provide the fix for the issue.

 Before we get to RegisterCodeFixesAsync() (in the next section),
there’s another virtual member that you don’t have to override, but you should:
 GetFixAllProvider ():

 public override FixAllProvider GetFixAllProvider()
 {
 return WellKnownFixAllProviders.BatchFixer;
 }

 This tells Visual Studio that if there are other occurrences of this code issue within a
selected scope (document, project, or solution), Visual Studio will automatically apply the
fix within that scope. The default implementation for this method in CodeFixProvider is
to return null , so if you want Visual Studio to do fixes for you solution-wide, you should
have the method return BatchFixer .

CHAPTER 2 ■ WRITING DIAGNOSTICS

46

 ■ Note If you want see how CodeFixProvider is implemented, visit this link:
 http://source.roslyn.io/#Microsoft.CodeAnalysis.Workspaces/CodeFixes/
CodeFixProvider.cs .

 Now that the boilerplate is out of the way, let’s add this fix. We’re going to do it two
ways: one that generates trees and the other that parses a statement in a string. Let’s do
the tree approach first.

 Using Syntax Trees
 Here’s the implementation for creating a base method invocation. We’ll start with the
general implementation of RegisterCodeFixesAsync() , which is shown in Listing 2-4 .

 Listing 2-4. Implementing RegisterCodeFixesAsync() in a Code Fix class.

 public override async Task RegisterCodeFixesAsync(CodeFixContext context)
 {
 var root = await context.Document.GetSyntaxRootAsync(
 context.CancellationToken).ConfigureAwait(false);

 context.CancellationToken.ThrowIfCancellationRequested();

 var diagnostic = context.Diagnostics[0];
 var methodNode = root.FindNode(diagnostic.Location.SourceSpan) as
MethodDeclarationSyntax;

 var model = await context.Document.GetSemanticModelAsync(
 context.CancellationToken);

 var methodSymbol = model.GetDeclaredSymbol(methodNode) as IMethodSymbol;

 var invocation = MustInvokeBaseMethodCallMethodCodeFix.CreateInvocation(
 methodSymbol);
 invocation = MustInvokeBaseMethodCallMethodCodeFix.AddArguments(
 context, methodSymbol, invocation);
 var statement = MustInvokeBaseMethodCallMethodCodeFix.CreateStatement(
 context, methodNode, methodSymbol, invocation);
 var newRoot = MustInvokeBaseMethodCallMethodCodeFix.CreateNewRoot(
 root, methodNode, statement);

 const string codeFixDescription = "Add base invocation";
 context.RegisterCodeFix(
 CodeAction.Create(codeFixDescription,
 _ => Task.FromResult(context.Document.WithSyntaxRoot(newRoot)),
 codeFixDescription), diagnostic);
 }

http://source.roslyn.io/#Microsoft.CodeAnalysis.Workspaces/CodeFixes/CodeFixProvider.cs
http://source.roslyn.io/#Microsoft.CodeAnalysis.Workspaces/CodeFixes/CodeFixProvider.cs

CHAPTER 2 ■ WRITING DIAGNOSTICS

47

 The first thing we do is get the MethodDeclarationSyntax node for the method that
had the issue in the first place. We get its location from the Diagnostics array property
and then find it from the SyntaxNode tree node. Then we pull its related IMethodSymbol
from the semantic model, which will make our lives a little easier later on.

 Now we build our InvocationExpressionSyntax node in CreateInvocation() :

 private static InvocationExpressionSyntax CreateInvocation(
 IMethodSymbol methodSymbol)
 {
 return SyntaxFactory.InvocationExpression(
 SyntaxFactory.MemberAccessExpression(
 SyntaxKind.SimpleMemberAccessExpression,
 SyntaxFactory.BaseExpression().WithToken(
 SyntaxFactory.Token(SyntaxKind.BaseKeyword)),
 SyntaxFactory.IdentifierName(
 methodSymbol.Name))
 .WithOperatorToken(
 SyntaxFactory.Token(
 SyntaxKind.DotToken)));
 }

 This code generates an expression like this: “ base.BaseMethod() ”. Calling
 BaseExpression() provides the “base” keyword, and IdentifierName() creates the
name of the method to invoke.

 Next, we have to add any arguments to the invocation if needed—this is shown in
Listing 2-5 .

 Listing 2-5. Adding arguments for the base method invocation.

 private static InvocationExpressionSyntax AddArguments(
 CodeFixContext context, IMethodSymbol methodSymbol,
 InvocationExpressionSyntax invocation)
 {
 context.CancellationToken.ThrowIfCancellationRequested();

 var argumentCount = methodSymbol.Parameters.Length;
 if (argumentCount > 0)
 {
 // Define an argument list.
 var arguments = new SyntaxNodeOrToken[(2 * argumentCount) - 1];

 for (var i = 0; i < argumentCount; i++)
 {
 var parameter = methodSymbol.Parameters[i];
 var argument = SyntaxFactory.Argument(
 SyntaxFactory.IdentifierName(parameter.Name));

CHAPTER 2 ■ WRITING DIAGNOSTICS

48

 if (parameter.RefKind.HasFlag(RefKind.Ref))
 {
 argument = argument.WithRefOrOutKeyword(
 SyntaxFactory.Token(SyntaxKind.RefKeyword));
 }
 else if (parameter.RefKind.HasFlag(RefKind.Out))
 {
 argument = argument.WithRefOrOutKeyword(
 SyntaxFactory.Token(SyntaxKind.OutKeyword));
 }

 arguments[2 * i] = argument;

 if (i < argumentCount - 1)
 {
 arguments[(2 * i) + 1] = SyntaxFactory.Token(SyntaxKind.CommaToken);
 }
 }

 invocation = invocation.WithArgumentList(
 SyntaxFactory.ArgumentList(
 SyntaxFactory.SeparatedList<ArgumentSyntax>(arguments))
 .WithOpenParenToken(SyntaxFactory.Token(SyntaxKind.OpenParenToken))
 .WithCloseParenToken(SyntaxFactory.Token(SyntaxKind.CloseParenToken)));
 }

 return invocation;
 }

 If arguments are necessary, we build up the argument list via SyntaxFactory.
Argument() . If the parameter is a ref or an out , we add those keywords with
 WithRefOrOutKeyword . We also have to separate each argument with a SyntaxToken
of kind SyntaxKind.CommaToken . That’s why the arguments array’s size looks a little
awkward at first. For example, if we have four arguments, we need to generate four
 ArgumentSyntax objects plus three SyntaxToken representing the commas between
the arguments, which means the array will have seven elements. Once we have all of
the arguments, we add them to invocation via WithArgumentList() , remembering to
reassign invocation to the return value.

 Now we need to create a StatementSyntax node that will contain the invocation.
This is where we’ll handle the call if it returns a value or not, which is showing in
Listing 2-6 .

CHAPTER 2 ■ WRITING DIAGNOSTICS

49

 Listing 2-6. Creating a statement for the method invocation

 private static StatementSyntax CreateStatement(CodeFixContext context,
 MethodDeclarationSyntax methodNode, IMethodSymbol methodSymbol,
 InvocationExpressionSyntax invocation)
 {
 context.CancellationToken.ThrowIfCancellationRequested();

 StatementSyntax statement = null;

 if (!methodSymbol.ReturnsVoid)
 {
 var returnValueSafeName = CreateSafeLocalVariableName(
 methodNode, methodSymbol);

 statement = SyntaxFactory.LocalDeclarationStatement(
 SyntaxFactory.VariableDeclaration(
 SyntaxFactory.IdentifierName("var"))

 .WithVariables(SyntaxFactory.SingletonSeparatedList
 <VariableDeclaratorSyntax>(

 SyntaxFactory.VariableDeclarator(
 SyntaxFactory.Identifier(returnValueSafeName))
 .WithInitializer(SyntaxFactory.EqualsValueClause(invocation)))));
 }
 else
 {
 statement = SyntaxFactory.ExpressionStatement(invocation);
 }

 return statement.WithAdditionalAnnotations(Formatter.Annotation);
 }

 If we have to handle a return value, we create a local variable and assign the return
value to that. We get the name of this local variable from CreateSafeLocalVariable
Name() – Listing 2-7 shows what it looks like.

 Listing 2-7. Creating a safe variable name for a return value

 private static string CreateSafeLocalVariableName(
 MethodDeclarationSyntax methodNode, IMethodSymbol methodSymbol)
 {
 var localDeclarations = methodNode.DescendantNodes(
 _ => true).OfType<VariableDeclaratorSyntax>();
 var returnValueName =
 $"{methodSymbol.Name.Substring(0, 1).ToLower()}{methodSymbol.Name.

Substring(1)}Result";
 var returnValueSafeName = returnValueName;
 var returnValueCount = 0;

CHAPTER 2 ■ WRITING DIAGNOSTICS

50

 while (localDeclarations.Any(_ =>
 _.Identifier.Text == returnValueSafeName))

 {
 returnValueSafeName = $"{returnValueName}{returnValueCount}";
 returnValueCount++;
 }

 return returnValueSafeName;
 }

 We use the name of the method as a base for the variable name (making it camel-
cased in the process), and keep adding a numeric value to the end until we find a unique
name. The chances of us even getting into the while loop once is extremely small, but
with this code in place we don’t ever have to worry about running into a collision.

 Finally, once the statement is generated, we register a code fix on the context via
 RegisterCodeFix() , which uses a new root created from CreateNewRoot() :

 private static SyntaxNode CreateNewRoot(
 SyntaxNode root, MethodDeclarationSyntax methodNode,
 StatementSyntax statement)
 {
 var body = methodNode.Body;
 var firstNode = body.ChildNodes().FirstOrDefault();

 var newBody = firstNode != null ?
 body.InsertNodesBefore(body.ChildNodes().First(),
 new[] { statement }) :
 SyntaxFactory.Block(statement);

 var newRoot = root.ReplaceNode(body, newBody);
 return newRoot;
 }

 Notice that we have to be a bit careful in the case in which the method doesn’t have
any code in it. In that case, the body won’t have any child nodes, so we can just create a
new BlockSyntax node. Otherwise, we insert our new StatementSyntax node as the first
child node in the method’s body.

 Parsing Statements
 Although creating trees like the ones you saw in the previous section aren’t too hard,
it’s also not an easy endeavor. I had to use a combination of the Syntax Visualizer and
RoslynQuoter tools to ensure I was generating the right nodes. This is kind of tedious.
Fortunately, there’s an alternative approach that you can use in some scenarios that
results in a lot less code than creating trees and nodes manually. You can generate the
code you want as a string , and then use SyntaxFactory ’s ParseStatement() to give you
a StatementSyntax node directly. Listing 2-8 shows how that’s done.

CHAPTER 2 ■ WRITING DIAGNOSTICS

51

 Listing 2-8. Using ParseStatement() to generate a tree

 private static StatementSyntax CreateStatement(
 MethodDeclarationSyntax methodNode, IMethodSymbol methodSymbol)
 {
 var methodParameters = methodSymbol.Parameters;
 var arguments = new string[methodParameters.Length];

 for(var i = 0; i < methodParameters.Length; i++)
 {
 var parameter = methodParameters[i];
 var argument = parameter.Name;

 if (parameter.RefKind.HasFlag(RefKind.Ref))
 {
 argument = $"ref {argument}";
 }
 else if (parameter.RefKind.HasFlag(RefKind.Out))
 {
 argument = $"out {argument}";
 }

 arguments[i] = argument;
 }

 var methodCall =
 $"base.{methodSymbol.Name}({string.Join(", ", arguments)});

{Environment.NewLine}";

 if(!methodSymbol.ReturnsVoid)
 {
 var variableName = MustInvokeBaseMethodCallMethodCodeFix.

CreateSafeLocalVariableName(
 methodNode, methodSymbol);
 methodCall = $"var {variableName} = {methodCall}";
 }

 return SyntaxFactory.ParseStatement(methodCall)
 .WithAdditionalAnnotations(Formatter.Annotation);
 }

 Logically, this code ends up at the same spots as the other approach but with a
lot less code. Essentially, a statement is created, like “var onInitializeResult = base.
OnInitialize(a, b);”, and then this string is passed into ParseStatement() . That’s it! Note
that there are other “Parse” methods on SyntaxFactory , like ParseExpression() and
 ParseArgumentList() . Depending on the kind of code fix you need to make, it may be
easier to generate the code in a string and let SyntaxFactory do the heavy lifting.

CHAPTER 2 ■ WRITING DIAGNOSTICS

52

 ■ Note You may be wondering which technique you should use: tree generation or text
parsing. This article does a great job analyzing each option, providing suggestions when you
should use one over the other: http://blog.comealive.io/Syntax-Factory-Vs-Parse-
Text/ .

 Executing the Diagnostic and Code Fix
 After all that work, it’s finally time to see our code run in Visual Studio. The easiest way to
do this is to make the VSIX project the startup solution and run that project. It’ll create a
new instance of Visual Studio with the analyzer installed as an extension (we’ll talk more
about deployments in the “Deploying and Installing Diagnostics” section). Create a new
solution, and create a base class with a virtual method that has the [MustInvoke] on it.

 ■ Note Because we’re only looking for an attribute by name and we don’t look at the
name of its containing assembly, you could create an attribute in this test project with
the name “MustInvokeAttribute”. You could also reference the project and/or its resultant
assembly that we created before that has the attribute already defined.

 Create a class that inherits from the base class, override the virtual method, but don’t
call it. You should see a red squiggle under the method definition, as Figure 2-4 shows.

 Figure 2-4. Getting the diagnostic to display in Visual Studio

http://blog.comealive.io/Syntax-Factory-Vs-Parse-Text/
http://blog.comealive.io/Syntax-Factory-Vs-Parse-Text/

CHAPTER 2 ■ WRITING DIAGNOSTICS

53

 Now, move the cursor so it’s on the method definition, and press Ctrl + “ . ” . You
should see the code fix window pop up with a code diff view, as shown in Figure 2-5 .

 Notice the options at the bottom of the popup. If there were other base method
invocation issues like this in the document, project, or solution, we could choose to fix
them all at once. Applying the fix makes the error go away!

 We can also make the method take some arguments and return a value—the code fix
handles it as expected. If we had this code in place:

 protected override int OnInitialize(int a, string b)
 {
 return 43;
 }

 Figure 2-6 shows what the code fix would do.

 If we had a variable that collided with our initial choice, Figure 2-7 shows that we
won’t collide with it.

 Figure 2-5. Getting the code fix to display in Visual Studio

 Figure 2-6. Calling the base method with a return value

CHAPTER 2 ■ WRITING DIAGNOSTICS

54

 ■ Note If you type “override” in a class and select the option in Visual Studio to generate
the override, it’ll automatically generate a call to the base class method, which is exactly
what we want. But the reason this diagnostic and code fix is in place is to guard against
developers who may delete that call when the designer of the base class requires the
invocation.

 Diagnostics and code fixes are formidable tools to have, and they’re not as complex
as they may seem at first glance. The core of this diagnostic is only 40 lines of code, while
the code fix (using the parsing technique) is under 50 lines of code. The key is to figure
out what you’re targeting in your code and the possible cases you can run into.

 Having the ability to write diagnostics is powerful because you’re able to enforce
coding standards and desired idioms along with providing automatic code fixes, but
you’re still dealing with parsing, trees, and so on. It’s crucial to have good testing in place
to ensure that your code works as expected. That’s what we’ll cover in the next section.

 Debugging Diagnostics
 You’ve seen how diagnostics and code fixes can reduce the amount of bugs in a code base
and enforce framework standards and expectations. In this section, we’ll cover how you
can test and diagnose issues with your analyzers.

 Unit Testing
 When I am consulting at a client, one factor that I use to determine the health of a project
is this: are there a large suite of unit tests that developers can run quickly? This isn’t a
guarantee that the project is stable, but it’s definitely a key aspect. Given how complex
compiler code can get, it’s important to have those tests in place.

 When you create the diagnostic project, the template creates an MSTest-based class
library with some helper code to assist you with writing tests that target analyzers and
code fixes. Over time I’ve created my own set of helper methods, which is included in the
code for this book. As you get more familiar with the Compiler API you’ll probably add
your own as well. You may choose to delete the project and create your own test project
using a different testing framework like NUnit, xUnit or Fixie. Whatever you choose

 Figure 2-7. Generating a local variable with a unique name

CHAPTER 2 ■ WRITING DIAGNOSTICS

55

to do, I strongly encourage you to write tests, especially if you end up changing your
implementation. Even if you don’t change your code after you’ve written it once, write
the tests!

 Let’s begin by looking at some tests you could write for the analyzer. In the first
scenario, the test will check to ensure the analyzer doesn’t fire if a base method has
 [MustInvoke] but the overriden method calls the base method. In the second scenario,
the text should fire the analyzer as the overriden method does not invoke the base
method. There are other cases to cover (and they’re in the source code) but we'll just
cover these two in the book. Here’s the first scenario:

 [TestMethod]
 [Case("Case2")]
 public async Task Case2Test()
 {
 await TestHelpers.RunAnalysisAsync<MustInvokeBaseMethodAnalyzer>(
 $@"Targets\{nameof(MustInvokeBaseMethodAnalyzerTests)}\Case2.cs",
 new string[0]);
 }

 The TestHelpers class contains a number of methods that I use to make analyzer
and code fix tests easier to write. I’ll show you what RunAnalysisAsync() does in a
moment, but first let’s address some other aspects of the test.

 The actual name of the test method is longer in the code, so I shortened it for the
book. The CaseAttribute is just a way to mark which case is being tested. As you can see
in the partial file path, that name is used to put test code in separate folders so they can be
loaded in the right test. Here’s what Case2.cs looks like:

 using MustInvokeBaseMethod;

 namespace
 MustInvokeBaseMethod.Analyzers.Test.Targets.
MustInvokeBaseMethodAnalyzerTests

 {
 public class Case2Base
 {
 [MustInvoke]
 public virtual void Method() { }
 }

 public class Case2Sub
 : Case3Base
 {
 public override void Method()
 {
 base.Method();
 }
 }
 }

CHAPTER 2 ■ WRITING DIAGNOSTICS

56

 The Build Action property for this file in Visual Studio is set to “None”, and the
Copy to Output Directory value is set to “Copy always”. This way, you can use the Syntax
Visualizer in Visual Studio to see the structure of your code and find the location of the
span where a diagnostic will report an error without having the code compiled as part
of your test assembly. Plus, by copying it to the output directory you can load its textual
context and give it to an analyzer. Let’s now take a look at RunAnalysisAsync() to see how
all of the test code ties together—this is in Listing 2-9 .

 Listing 2-9. Testing diagnostics against source code.

 internal static async Task RunAnalysisAsync<T>(string path,
 string[] diagnosticIds,
 Action<ImmutableArray<Diagnostic>> diagnosticInspector = null)
 where T : DiagnosticAnalyzer, new()
 {
 var code = File.ReadAllText(path);
 var diagnostics = await TestHelpers.GetDiagnosticsAsync(
 code, new T());
 Assert.AreEqual(diagnosticIds.Length, diagnostics.Count(),
 nameof(Enumerable.Count));

 foreach (var diagnosticId in diagnosticIds)
 {
 Assert.IsTrue(diagnostics.Any(_ => _.Id == diagnosticId),
 diagnosticId);
 }

 diagnosticInspector?.Invoke(diagnostics);
 }

 RunAnalysisAsync() loads the code in the given file with ReadAllText() . Then it
passes that code into another helper method, GetDiagnosticsAsync() , along with a new
instance of the diagnostic whose type was specified with the T generic parameter. The
following code shows you what that method does:

 internal static async Task<ImmutableArray<Diagnostic>> GetDiagnosticsAsync(
 string code, DiagnosticAnalyzer analyzer)
 {
 var document = TestHelpers.Create(code);
 var compilation = (await document.Project.GetCompilationAsync())
 .WithAnalyzers(ImmutableArray.Create(analyzer));
 return await compilation.GetAnalyzerDiagnosticsAsync();
 }

 Via Create() we’re able to get a Document instance. From that, we can compile
the project associated with the document, giving it the analyzer we created in
 RunAnalysisAsync() . Once that’s done, we return the set of diagnostics back to the call.
Listing 2-10 shows what Create() does.

CHAPTER 2 ■ WRITING DIAGNOSTICS

57

 Listing 2-10. Creating a document for test code

 internal static Document Create(string code)
 {
 var projectName = "Test";
 var projectId = ProjectId.CreateNewId(projectName);

 var solution = new AdhocWorkspace()
 .CurrentSolution
 .AddProject(projectId, projectName, projectName,
 LanguageNames.CSharp)
 .WithProjectCompilationOptions(projectId,
 new CSharpCompilationOptions(OutputKind.DynamicallyLinkedLibrary))
 .AddMetadataReference(projectId,
 MetadataReference.CreateFromFile(
 typeof(object).Assembly.Location))
 .AddMetadataReference(projectId,
 MetadataReference.CreateFromFile(
 typeof(Enumerable).Assembly.Location))
 .AddMetadataReference(projectId,
 MetadataReference.CreateFromFile(
 typeof(CSharpCompilation).Assembly.Location))
 .AddMetadataReference(projectId,
 MetadataReference.CreateFromFile(
 typeof(Compilation).Assembly.Location))
 .AddMetadataReference(projectId,
 MetadataReference.CreateFromFile(
 typeof(MustInvokeAttribute).Assembly.Location));

 var documentId = DocumentId.CreateNewId(projectId);
 solution = solution.AddDocument(documentId, "Test.cs",
 SourceText.From(code));

 return solution.GetProject(projectId).Documents.First();
 }

 We need to get a Document object, and the simplest way is to do that through
an AdHocWorkspace (I’ll discuss workspaces in Chapter 3). We add a project to the
workspace’s CurrentSolution with the appropriate metadata references. Then, we
add a C# document to the project based on the given text, and return that document to
the caller.

 If we need to test for the existence of a diagnostic, Listing 2-11 shows what that
looks like.

http://dx.doi.org/10.1007/978-1-4842-2111-2_3

CHAPTER 2 ■ WRITING DIAGNOSTICS

58

 Listing 2-11. Testing for the presence of a diagnostic

 [TestMethod]
 [Case("Case3")]
 public async Task Case3()
 {
 await TestHelpers.RunAnalysisAsync<MustInvokeBaseMethodAnalyzer>(
 $@"Targets\{nameof(MustInvokeBaseMethodAnalyzerTests)}\Case3.cs",
 new[] { "MUST0001" }, diagnostics =>
 {
 Assert.AreEqual(1, diagnostics.Count(), nameof(Enumerable.Count));
 var diagnostic = diagnostics[0];
 var span = diagnostic.Location.SourceSpan;
 Assert.AreEqual(276, span.Start, nameof(span.Start));
 Assert.AreEqual(282, span.End, nameof(span.End));
 });
 }

 In this test method, we’re testing the case in which an overriden method isn’t
invoking the base method like it should. Now we get a diagnostic coming back from the
compilation, and we can test that we only get one diagnostic back with its location being
the identifier of the method in the subclass. Because we have the code for the test in a C#
file in the test project, we can easily use the Syntax Visualizer to find the Start and End
values for the span of the diagnostic, as Figure 2-8 shows.

 Figure 2-8. Using the Syntax Visualizer to get span values

 We also need tests for the code fix. Unlike the analyzer, we can assume that the code
fix will only be invoked if there was an issue. However, we have a couple of cases to ensure
we handle arguments and return values correctly. Again, the source code has all of the
tests cases, but we’ll just cover one here. Listing 2-12 has the test that covers if a base
method invocation with no arguments and no return value was added correctly.

 Listing 2-12. Verifying that a code fix works correctly

 [TestMethod]
 [Case("Case0")]
 public async Task VerifyGetFixes()
 {
 var code = File.ReadAllText(

CHAPTER 2 ■ WRITING DIAGNOSTICS

59

 $@"Targets\{nameof(MustInvokeBaseMethodCallMethodCodeFixTests)}\Case0.cs");
 var document = TestHelpers.Create(code);
 var tree = await document.GetSyntaxTreeAsync();
 var diagnostics = await TestHelpers.GetDiagnosticsAsync(
 code, new MustInvokeBaseMethodAnalyzer());
 var sourceSpan = diagnostics[0].Location.SourceSpan;

 var actions = new List<CodeAction>();
 var codeActionRegistration =
 new Action<CodeAction, ImmutableArray<Diagnostic>>(
 (a, _) => { actions.Add(a); });

 var fix = new MustInvokeBaseMethodCallMethodCodeFix();
 var codeFixContext = new CodeFixContext(document, diagnostics[0],
 codeActionRegistration, new CancellationToken(false));
 await fix.RegisterCodeFixesAsync(codeFixContext);

 Assert.AreEqual(1, actions.Count, nameof(actions.Count));

 await TestHelpers.VerifyActionAsync(actions,
 "Add base invocation", document,
 tree, new[]
 {
 "\r\n {\r\n base.Method();\r\n }\r\n

 "});
 }

 As with the analyzer test, we create a diagnostic via GetDiagnosticsAsync() . This
time, we use that diagnostic to create a CodeFixContext . This is passed into the code fix’s
 RegisterCodeFixesAsync() . The Action<CodeAction, ImmutableArray<Diagnostic>>
instance that we pass into the context is used to capture any registered actions with the
code fix, which we can use to verify what we expect to happen in this test. The text that
is passed into VerifyActionAsync() is the changed text that we expect to see in the new
syntax tree. Here’s what VerifyActionAsync() does.

 internal static async Task VerifyActionAsync(List<CodeAction> actions,
 string title, Document document,
 SyntaxTree tree, string[] expectedNewTexts)
 {
 var action = actions.Where(_ => _.Title == title).First();

 var operation = (await action.GetOperationsAsync(
 new CancellationToken(false))).ToArray()[0] as ApplyChangesOperation;
 var newDoc = operation.ChangedSolution.GetDocument(document.Id);
 var newTree = await newDoc.GetSyntaxTreeAsync();
 var changes = newTree.GetChanges(tree);

CHAPTER 2 ■ WRITING DIAGNOSTICS

60

 Assert.AreEqual(expectedNewTexts.Length, changes.Count,
 nameof(changes.Count));

 foreach (var expectedNewText in expectedNewTexts)
 {
 Assert.IsTrue(changes.Any(_ => _.NewText == expectedNewText),
 string.Join($"{Environment.NewLine}{Environment.NewLine}",
 changes.Select(_ => $"Change text: {_.NewText}")));
 }
 }

 With these tests in place, we have a high level of confidence in our code and how
it should behave. The next section discusses testing our diagnostic code within Visual
Studio.

 VSIX Installation
 Unit tests are great, but you still need to run integration and end-to-end testing to make
sure that the code works in the environment where it will really run. As you saw in
the “Executing the Diagnostic and Code Fix” section, you can use the VSIX project to
automatically install the analyzers and code fixes in a separate instance of Visual Studio.
You can also run the code under the debugger so you can set breakpoints and see what
your code is doing when Visual Studio invokes it.

 Keep in mind that your code may stop at certain points if you use the
 CancellationToken to exit a method if cancellation was requested. Also, Visual Studio
may end up calling your code multiple times from different threads, so the debugger may
jump around a bit as you step through code. If you use the VSIX project for debugging,
try to keep your sample code that you use for testing small, or comment out most of your
sample code if you’re narrowing your focus to one specific case. It’ll make the debugging
experience easier.

 One other issue I’ve seen with the VSIX project is that, sometimes, your extension
won’t be updated, even if you update your code. There’s no hard and fast rule as to when
or why this happens, but if you notice that your analyzer or code fix code isn’t firing when
you thought it should, you may want to uninstall your extension. To do this, go to Tools ➤
Extensions and Updates. You should see a screen like the one in Figure 2-9 .

CHAPTER 2 ■ WRITING DIAGNOSTICS

61

 Select your extension and click Uninstall. Close that instance of Visual Studio, and
run your VSIX project again. That usually takes care of most update issues that I’ve seen
when I use the extension.

 Visual Studio Logging
 Even with thorough testing, it’s still possible that a developer can do something in their code
that you didn’t expect (for example, using a new feature in a new version of C#), and cause
your code fix to crash because the expected syntax tree format is no longer valid. If it does,
you’ll get the “yellow bar of death” in Visual Studio that looks like what you see in Figure 2-10 .

 Figure 2-9. Finding your extension in Visual Studio

 Figure 2-10. Getting an error notification when a code fix fails

CHAPTER 2 ■ WRITING DIAGNOSTICS

62

 The error that you see in Figure 2-10 was generated by a code fix in the
ThrowsException sample code for this book. Its sole purpose is to report a diagnostic
error whenever it runs into a method definition that returns an int :

 [DiagnosticAnalyzer(LanguageNames.CSharp)]
 public sealed class ThrowExceptionAnalyzer
 : DiagnosticAnalyzer
 {
 private static DiagnosticDescriptor rule = new DiagnosticDescriptor(
 "THROW0001", "Returning Ints From Methods",
 "Returning ints is a really bad idea.",
 "Usage", DiagnosticSeverity.Error, true);

 public override ImmutableArray<DiagnosticDescriptor> SupportedDiagnostics
 {
 get
 {
 return ImmutableArray.Create(
 ThrowExceptionAnalyzer.rule);
 }
 }

 public override void Initialize(AnalysisContext context)
 {
 context.RegisterSyntaxNodeAction<SyntaxKind>(
 this.AnalyzeMethodDeclaration, SyntaxKind.MethodDeclaration);
 }

 private void AnalyzeMethodDeclaration(SyntaxNodeAnalysisContext context)
 {
 var method = context.Node as MethodDeclarationSyntax;
 var model = context.SemanticModel;
 var methodSymbol = model.GetDeclaredSymbol(method) as IMethodSymbol;
 var returnType = methodSymbol.ReturnType;
 var intType = typeof(int).GetTypeInfo();

 if (returnType.Name == intType.Name &&
 returnType.ContainingAssembly.Name == intType.Assembly.GetName().Name)
 {
 context.ReportDiagnostic(Diagnostic.Create(
 ThrowExceptionAnalyzer.rule,
 method.Identifier.GetLocation()));
 }
 }
 }

CHAPTER 2 ■ WRITING DIAGNOSTICS

63

 The code fix, in turn, will immediately throw an exception:

 [ExportCodeFixProvider(LanguageNames.CSharp)]
 [Shared]
 public sealed class ThrowsExceptionCodeFix
 : CodeFixProvider
 {
 public override ImmutableArray<string> FixableDiagnosticIds
 {
 get
 {
 return ImmutableArray.Create("THROW0001");
 }
 }

 public override FixAllProvider GetFixAllProvider()
 {
 return WellKnownFixAllProviders.BatchFixer;
 }

 public override Task RegisterCodeFixesAsync(CodeFixContext context)
 {
 throw new NotSupportedException("I can't fix this!");
 }
 }

 As Figure 2-10 shows, Visual Studio immediately disables the analyzer—the
developer has to choose to turn it back on via the Enable button. Note that Visual
Studio does not exhibit the same behavior if a diagnostic throws an exception during its
analysis—this only occurs for the code fix side of the equation.

 This is nice in the sense that Visual Studio won’t completely crash if a code fix
keeps throwing exceptions due to bugs in the code base. However, the problem for the
developer of the fix is, how do you get any diagnostic information about the exception?
There’s a command line switch that you can pass into Visual Studio when it launches
called /log , which will write logging information to an XML file. Figure 2-11 shows what it
looks like when you pass this switch into the command line.

 Figure 2-11. Launching Visual Studio with logging enabled

CHAPTER 2 ■ WRITING DIAGNOSTICS

64

 ■ Note For more information about using /log , see https://msdn.microsoft.com/en-
us/library/ms241272.aspx .

 Notice that if you use the Developer Command Prompt that’s installed with Visual
Studio 2015, you don’t have to enter the path where Visual Studio’s executable is located.

 When you activate logging, the file is located at %APPDATA%\Microsoft\
VisualStudio\Version\ActivityLog.xml. On my machine, I found it at C:\Users\jasonb\
AppData\Roaming\Microsoft\VisualStudio\14.0. Here’s a small sample of what you’ll
find in the file:

 <?xml version="1.0" encoding="utf-16"?>
 <?xml-stylesheet type="text/xsl" href="ActivityLog.xsl"?>
 <activity>
 <entry>
 <record>1</record>
 <time>2016/01/17 15:39:29.523</time>
 <type>Information</type>
 <source>VisualStudio</source>
 <description>Microsoft Visual Studio 2015 version: 14.0.24720.0</

description>
 </entry>
 <entry>
 <record>2</record>
 <time>2016/01/17 15:39:29.523</time>
 <type>Information</type>
 <source>VisualStudio</source>
 <description>Creating PkgDefCacheNonVolatile</description>
 </entry>

 If a developer is experiencing problems with your code fix, they can invoke logging
and hopefully obtain some exception information for you. Here’s what I see when
 ThrowsExceptionCodeFix fails :

 <entry>
 <record>544</record>
 <time>2016/01/17 15:45:09.078</time>
 <type>Error</type>
 <source>ThrowsExceptionCodeFix</source>
 <description>I can't fix this!
 at MustInvokeBaseMethod.
Analyzers.ThrowsExceptionCodeFix.RegisterCodeFixesAsync(CodeFixContext
context) in M:\JasonBock\Personal\Code Projects\CompilerAPIBook\
Chapter 2\ThrowsException\ThrowsException\ThrowsExceptionCodeFix.
cs:line 30
 at Microsoft.CodeAnalysis.CodeFixes.
CodeFixService.<>c__DisplayClass19_1.<ContainsAnyFix>b__1()

 at Microsoft.CodeAnalysis.Extensions.IExtensionManagerExtensions.<
PerformActionAsync>d__2.MoveNext()</description>

 </entry>

https://msdn.microsoft.com/en-us/library/ms241272.aspx
https://msdn.microsoft.com/en-us/library/ms241272.aspx

CHAPTER 2 ■ WRITING DIAGNOSTICS

65

 You can see in the call stack that the exception is at line 30 of the
ThrowsExceptionCodeFix.cs file. It would be helpful if Visual Studio also logged the file
and location in the developer’s code where the code fix was executed as that would help
figure out why the code fix is failing. But at least this location gives you a starting point to
track down the problem.

 One last point about debugging. If you want to run Visual Studio with logging
enabled while you’re debugging your code fix, you need to change one property of the
VSIX project. Go to the project’s properties, then go to the Debug tab. In the Start Options
section, change the Command Line Arguments to what you see in Figure 2-12 .

 Figure 2-12. Changing VSIX command line options to enable debugging

 By the way, the /rootsuffix option launches Visual Studio in an “experimental”
mode. That means that your VSIX isn’t installed into your normal space. You can verify
this by looking at installed extensions in Visual Studio when you launch it normally in
Windows—you won’t see the VSIX package in that list. But as you saw in Figure 2-9 , you
will see it in the experimental instance. This is beneficial because it keeps potentially
buggy code isolated from other Visual Studio modes. However, it does change where
the log file is stored. In my case, it looks like this: C:\Users\jasonb\AppData\Roaming\
Microsoft\VisualStudio\14.0Roslyn. Note the change in the version part of the path. It
includes “Roslyn” in the path because that name was included in the command line
argument for /rootsuffix . You can choose to make your own experimental modes if
you’d like, just make sure you keep track of what got installed in it.

 ■ Note For more information about launching Visual Studio in an “experimental” mode,
see https://msdn.microsoft.com/en-us/library/bb166560.aspx .

 The last part of the diagnostic puzzle is deployment and installation, so you know
how developers can use your diagnostics and code fixes. That’s what we’ll explore in the
final section of this chapter.

https://msdn.microsoft.com/en-us/library/bb166560.aspx

CHAPTER 2 ■ WRITING DIAGNOSTICS

66

 Deploying and Installing Diagnostics
 So far, all of the code I’ve shown in this chapter has run on one machine. We want other
developers to use the code we’ve written without a lot of work. For deployment and
installation there are two options available: VSIX and NuGet packages. Let’s start with
extensions.

 VSIX Packaging
 You’ve already seen how the VSIX project helps you debug your analyzers and code fixes
by launching a separate instance of Visual Studio. You can also take the generated .vsix
file in the debug folder and publish it in numerous ways, such as e-mail attachments, file
servers, or even the Visual Studio Gallery. If you have the .vsix file, all that you need to do
is double-click on the file, and it’ll automatically kick in an installation process like the
one in Figure 2-13 .

 Figure 2-13. Installing an extension from the file

CHAPTER 2 ■ WRITING DIAGNOSTICS

67

 ■ Note For more details about publishing a Visual Studio extension, see https://msdn.
microsoft.com/en-us/library/ff728613.aspx .

 Keep in mind when you’re using a diagnostic that’s installed with a VSIX that any
errors reported by a diagnostic will not be included in the build such that the build fails.
Figure 2-14 shows you the Error window when the MustInvokeBaseMethodAnalzyer
reports an issue.

 Figure 2-14. Successful build even with diagnostic errors

 Even though there’s an error in the list, the build says it’s successful. Personally, I
don’t like this behavior. If a diagnostic is reporting a problem, but the build is successful, I
probably won’t check the Error list.

 Also, when you install a diagnostic via a VSIX, that diagnostic will run for every
project that you load in Visual Studio. For some diagnostics, this may be too coarse-
grained, especially if it’s tied to a specific framework that you only use in specific projects.
However, if the diagnostic is one that enforces an idiom with the .NET Framework that
you want all developers on your team to adhere to, this may be the right approach.

 The other installation option is a NuGet package.

 NuGet Packaging
 NuGet has become the standard way of sharing and installing assemblies in .NET. You can
find a myriad of packages that cover all sorts of aspects in software development: logging,
business rules, dependency injection containers, and so on. With diagnostics, you can
also publish your analyzers as a NuGet package. The analyzer project template will create
the necessary PowerShell scripts and the .nuspec file to create the package when you
build the project. You’ll find a .nupkg file in the appropriate subfolder of the \bin folder.
Publish that file to either Nuget.org or a local NuGet repository, and you’re done.

https://msdn.microsoft.com/en-us/library/ff728613.aspx
https://msdn.microsoft.com/en-us/library/ff728613.aspx

CHAPTER 2 ■ WRITING DIAGNOSTICS

68

 ■ Note If you change the name of the .nuspec file, you’ll have to manually change a
postbuild step in the project file. Open the project file in a text editor (or unload it in Visual
Studio and edit it there), and look in the Target element with the Name attribute set to
 AfterBuild . You’ll see the .nuspec file being passed into an invocation of NuGet.exe.
Change the name and then you won’t get any postbuild errors.

 To contrast this NuGet package installation option with the VSIX approach, errors
reported from a diagnostic will cause a build to fail. Figure 2-15 shows how this works
when you reference the MustInvokeBaseMethod.Analyzer package in a project.

 With a NuGet installation, however, remember that it’s per-project. You can install a
NuGet package across an entire solution, but if you add projects to the solution after that,
you’ll still need to remember to install the NuGet package into these new projects.

 Conclusion
 This chapter covered how diagnostics work in the Compiler API and the importance of
designing the analyzers and code fixes. I also discussed how they’re all implemented,
tested, debugged, and published. In the next chapter, we’ll move on to refactorings and
workspaces.

 Figure 2-15. Analyzers failing from a NuGet installation will fail the build

69© Jason Bock 2016
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2_3

 CHAPTER 3

 Creating Refactorings and
Handling Workspaces

 In this chapter, we’ll spend time investigating refactorings in the Compiler API. You’ll
learn how they work and what you need to do to implement one. Because refactorings
tend to use a fair amount of members in the Workspaces API, we’ll examine that as well.

 Consistency in Structure
 If there’s one term that is the most misused term in software development, it’s arguably
“refactoring.” Most of the time when a developer talks about “refactoring code,” they’re
making a number of changes to the code that break existing functionality. While that may
be something that must be done to streamline the code base or make performance better,
that’s really not what refactoring is. Here’s what I consider to be the official definition of
refactoring:

 Refactoring is the process of changing a software system in such a way
that it does not alter the external behavior of the code yet improves its
internal structure.

 —Martin Fowler, “Refactoring,” 1999, pg, xvi

 For example, consider the code in Listing 3-1 .

 Listing 3-1. Performing a simple arithmetic calculation

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Threading.Tasks;

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

70

 namespace SimpleExamples
 {
 class Program
 {
 static void Main(string[] args)
 {
 decimal value = 0;

 if(args.Length > 0 && decimal.TryParse(args[0], out value))
 {
 var initialValue = value * 2;
 var nextValue = initialValue + 3;
 var finalValue = (value * 3) - (nextValue / 2) + 2;
 Console.Out.WriteLine("Final value: ");
 Console.Out.WriteLine(finalValue.ToString());
 }
 }
 }
 }

 It’s a small piece of code that does a simple calculation: 3*x - (2*x + 3) / 2 + 2. The
code is based on what Visual Studio generates when you add a new class to a project. If I
pass in 3 to the console app, it’ll print out 7 as the answer. Is there any way we can refactor
the code so it’s a little cleaner?

 Visual Studio has some built-in refactorings that we can use in this code. If we
highlight the first three lines in the if statement, we can press Ctrl + . (period), and access
the “Extract Method” refactoring, as shown in Figure 3-1 .

 Figure 3-1. Using the Extract Method refactoring

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

71

 If I accept this refactoring, the code change is made. Visual Studio then puts me into
the Rename refactoring to give me the opportunity to change the default name of the
generated method, “NewMethod”. This is the same mode you would get if you pressed F2
on a code member. The Rename refactor is shown in Figure 3-2 .

 Figure 3-2. Using the Rename refactoring

 Figure 3-3. Creating a constant value via a refactoring

 Then I rename the method to Calculate() . Now this calculation is isolated into
its own method, so any updates can be made here rather than in the console’s Main()
method. In fact, this calculation can be refactored to 2 * value + 0.5 , so if I update
the implementation of the method, any callers of Calculate() will automatically get
that change.

 We can also pull out the string "Final Value: " , which is passed into WriteLine() ,
and put it into a constant, as shown in Figure 3-3 .

 Finally, as Figure 3-4 shows, we can remove a bunch of using statements that have
no value.

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

72

 With all these updates in place, Listing 3-2 shows what the code looks like now.

 Listing 3-2. Refactoring the simple arithmetic calculation

 using System;

 namespace SimpleExamples
 {
 class Program
 {
 private const string FinalValueMessage = "Final value: ";

 static void Main(string[] args)
 {
 decimal value = 0;

 if(args.Length > 0 && decimal.TryParse(args[0], out value))
 {
 decimal finalValue = Calculate(value);
 Console.Out.WriteLine(FinalValueMessage);
 Console.Out.WriteLine(finalValue.ToString());
 }
 }

 private static decimal Calculate(decimal value)
 {
 return 2 * value + 0.5M;
 }
 }
 }

 Figure 3-4. Removing unnecessary using statements

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

73

 Compare the original implementation in Listing 3-1 with the modifications in
Listing 3-2 . We have nearly the same number of lines of code, but we have better
organization and structure to the code, with less noise to boot. This is exactly what
refactoring is, and having tools built into to a developer’s IDE makes running
refactorings painless.

 But a tool vendor can’t provide all the refactoring that the majority of developers
would like to use. Although Visual Studio, as you just saw, has some refactorings in place,
there may other refactorings that you’d love to introduce into its system without having to
wait for Microsoft to create it or for third-party tool vendors to add more to their product,
if they ever will. However, with the Compiler API and its integration into Visual Studio,
you can define your own refactorings whenever you want. As you saw in Chapter 2 , it’s
fairly straightfoward to create an analyzer and code fix; the same is true of a refactoring.
Let’s walk through creating a custom refactoring in Visual Studio that moves all the types
from a file into their own files.

 Developing a Refactoring
 In this section, we’ll explore how a refactoring is made. We’ll examine its design first, and
then go through the steps needed to implement the refactoring.

 Understanding the Problem
 The refactoring we’re going to make in this chapter is centered on the idea that every class
should have its own file, that is, if I have code like this in a .cs file:

 public class One { /* ... */ }
 public class Two { /* ... */ }
 public class Three { /* ... */ }

 What I’d like to have is three separate files called One.cs, Two.cs, and Three.cs.
If these classes had any nested classes, they’d just come along for the ride.

 But consider this code scenario:

 public class One { /* ... */ }
 public class Two { /* ... */ }

 namespace SubNamespace
 {
 public class Three { /* ... */ }
 }

http://dx.doi.org/10.1007/978-1-4842-2111-2_2

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

74

 What I’d do in this case is have a subfolder called SubNamespace and put Three.cs
in that folder. In other words, if the following code structure exists, the resulting folder
structure should look like Figure 3-5 :

 namespace Company.Product.Core
 {
 public class One { /* ... */ }
 public class Two { /* ... */ }

 namespace SubNamespace
 {
 public class Three { /* ... */ }
 }
 }

 Figure 3-5. Folder structure for code files (assume that Three.cs exists in the
SubNamespace folder)

 Of course, the original file would be deleted unless it was already named One.cs
or Two.cs. We’d have to be careful to only clean up the original file if it was no longer
needed. But what about using directives? What if there were 5 using directives at the top,
but only 3 were needed for the code in One.cs, 2 were needed for Two.cs, and all 5 were
needed for Three.cs? What about developers who don’t follow this namespace to folder
mapping convention for file storage? Perhaps our refactoring should provide an option
to just create the new files in the current directory and let developers move them around
wherever they want to after that. Also, what if the filesnames Two.cs and Three.cs already
exist? We don’t want to overwrite what’s currently there.

 With this scenario in mind, let’s create a refactoring that will provide two options
to the user if there are more than 1 top-level classes in that file. One option is to create
files with the folder convention shown in Figure 3-5 . The other option is to simply create
the files in the same directory as the current file. In both cases, we need to be careful
not to create name collisions with new files and we’ll only include the necessary using
statements in the new files. In the next section, we’ll set up all of the Visual Studio
projects needed to create this refactoring.

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

75

 Creating a Refactoring Solution
 In the “Using the Template” section in Chapter 2 , we used a template to create the
analyzer projects. There’s a similar template for refactorings, as shown in Figure 3-6 .

 Figure 3-6. Using the refactoring project template

 Figure 3-7. Refactoring projects that are generated by the template

 When you click OK, you’ll get the solution layout shown in Figure 3-7 .

 As with the analyzer template, a somewhat silly example is generated that offers
a refactoring for any class to reverse its name. For example, a class named “Customer”
would be changed to “remotsuC” if this refactoring was used. But, as with the generated
analyzer example, it’s worth perusing the code to get familiar with its setup and check

http://dx.doi.org/10.1007/978-1-4842-2111-2_2

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

76

out some of the methods you might want to use in the refactorings that you create (like
 Renamer.RenameSymbolAsync() , which does a symbol rename for you across a solution).
Also, note that there is no test project made with the template. We’ll fix that problem in
the “Unit Testing” section later in this chapter.

 Note that I keep using the phrase “offer a refactoring.” Unlike an analyzer, which
will immediately show a visual indicator in Visual Studio if an issue is present (e.g., a red
squiggle under a method identifier), refactorings will not execute unless the developer
is on a particular piece of code in the editor and presses Ctrl + . (period). Refactorings
may end up doing a fair amount of work that will affect the entire solution, and doing
that analysis as often as a diagnostic may slow down Visual Studio considerably. Also,
refactorings by their defintion shouldn’t do anything to a code base that would break
current behavior. They’re only there to improve the code’s structure.

 With the projects in place, let’s work on the implementation of the refactoring.

 Building the Refactoring
 We have a good idea what we want to do with our refactoring. Now we need to implement
it. First, we’ll define the refactoring class :

 [ExportCodeRefactoringProvider(LanguageNames.CSharp,
 Name = nameof(ExtractTypesToFilesCodeRefactoringProvider))]
 [Shared]
 internal class ExtractTypesToFilesCodeRefactoringProvider
 : CodeRefactoringProvider
 {
 public sealed override async Task ComputeRefactoringsAsync(
 CodeRefactoringContext context)

 {
 /* ... */

 Similar to analyzers, we adorn our class that inherits from CodeRefactoringProvider
with a couple of attributes so environments like Visual Studio can identify them and use
them correctly. The only member that you can override is ComputeRefactoringsAsync() ,
which is where you’ll use the context to add refactorings if needed. Listing 3-3 contains
the overridden method’s implementation.

 Listing 3-3. Implementing ComputeRefactoringsAsync() in a refactoring class

 public sealed override async Task ComputeRefactoringsAsync(
 CodeRefactoringContext context)
 {
 var document = context.Document;
 var documentFileNameWithoutExtension =
 Path.GetFileNameWithoutExtension(document.FilePath);

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

77

 var root = await document.GetSyntaxRootAsync(context.CancellationToken)
 .ConfigureAwait(false);
 var model = await document.GetSemanticModelAsync(
 context.CancellationToken)

 .ConfigureAwait(false);

 var typesToRemove = root.GetTypesToRemove(
 model, documentFileNameWithoutExtension);

 if(typesToRemove.Length > 1)
 {
 context.RegisterRefactoring(CodeAction.Create(
 "Move types to files in folders",
 async token => await CreateFiles(
 document, root, model, typesToRemove,
 _ => _.Replace(".", "\\"), token)));
 context.RegisterRefactoring(CodeAction.Create(
 "Move types to files in current folder",
 async token => await CreateFiles(
 document, root, model, typesToRemove,
 _ => string.Empty, token)));
 }
 }

 We’ll check the root node from the given Document object and see how many top
level types exist in the document. That’s what’s done in GetTypesToRemove() , which is
implemented in Listing 3-4 .

 Listing 3-4. Calculating the types to remove from the file

 internal static ImmutableArray<TypeToRemove> GetTypesToRemove(
 this SyntaxNode @this, SemanticModel model,
 string documentFileNameWithoutExtension)
 {
 var typesToRemove = new List<TypeToRemove>();
 TypeDeclarationSyntax typeToPreserve = null;

 var typeNodes = @this.DescendantNodes(_ => true)
 .OfType<TypeDeclarationSyntax>();

 foreach(var typeNode in typeNodes)
 {
 var type = model.GetDeclaredSymbol(typeNode) as ITypeSymbol;

 if(type.ContainingType == null)
 {
 if(type.Name != documentFileNameWithoutExtension)
 {

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

78

 typesToRemove.Add(new TypeToRemove(
 typeNode, type));
 }
 else
 {
 typeToPreserve = typeNode;
 }
 }
 }

 return typesToRemove.ToImmutableArray();
 }

 We only want to move types to other files if they’re not nested types and they don’t
have the same name as the current document’s file name. The TypeToRemove class is a
simple, immutable object that contains the TypeDeclarationSyntax and ITypeSymbol
 objects for a given type declaration:

 internal sealed class TypeToRemove
 {
 public TypeToRemove(TypeDeclarationSyntax declaration,
 ITypeSymbol symbol)
 {
 this.Declaration = declaration;
 this.Symbol = symbol;
 }

 public TypeDeclarationSyntax Declaration { get; }
 public ITypeSymbol Symbol { get; }
 }

 If there’s more than one type, we provide two refactorings: one that puts files
into separate folders if necessary, the other puts the files into the current directory.
 CreateFiles() is where we create new files and update the current one so it doesn’t
contained the moved types. Listing 3-5 shows how it works.

 Listing 3-5. Creating new files for types

 private static async Task<Solution> CreateFiles(Document document,
 SyntaxNode root, SemanticModel model,
 ImmutableArray<TypeToRemove> typesToRemove,
 Func<string, string> typeFolderGenerator, CancellationToken token)
 {
 var project = document.Project;
 var workspace = project.Solution.Workspace;

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

79

 project = MoveTypeNodes(
 model, typesToRemove, typeFolderGenerator, project, token);

 var newRoot = root.RemoveNodes(
 typesToRemove.Select(_ => _.Declaration),
 SyntaxRemoveOptions.AddElasticMarker);

 var newSolution = project.Solution;
 var projectId = project.Id;
 newSolution = newSolution.WithDocumentSyntaxRoot(document.Id, newRoot);

 var newDocument = newSolution.GetProject(
 project.Id).GetDocument(document.Id);
 newRoot = await newDocument.GetSyntaxRootAsync(token);
 var newModel = await newDocument.GetSemanticModelAsync(token);
 var newUsings = newRoot.GenerateUsingDirectives(newModel);

 newRoot = newRoot.RemoveNodes(
 newRoot.DescendantNodes(_ => true).OfType<UsingDirectiveSyntax>(),
 SyntaxRemoveOptions.AddElasticMarker);

 newRoot = (newRoot as CompilationUnitSyntax)?.WithUsings(newUsings);
 return newSolution.WithDocumentSyntaxRoot(document.Id, newRoot);
 }

 Most of the implementation lies within MoveTypeNodes() —we’ll get back to that one
in a moment. After we move the types to different files, we then remove all of the type
declarations with RemoveNodes() . Then, we update the current document with our new
 SyntaxNode and subsequently the current Solution . Remember, whenever you think
you’re changing an object within the Compiler API it usually doesn’t change that specific
object reference because it’s probably immutable. The last thing we do is remove all of
the existing using statements and add only the ones we need. This list is generated with
 GenerateUsingDirectives() , as shown in Listing 3-6 .

 Listing 3-6. Creating all the necessary using statements for a type

 internal static SyntaxList<UsingDirectiveSyntax> GenerateUsingDirectives(
 this SyntaxNode @this, SemanticModel model)
 {
 var namespacesForType = new SortedSet<string>();

 foreach (var childNode in @this.DescendantNodes(_ => true))
 {
 var symbol = model.GetSymbolInfo(childNode).Symbol;

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

80

 if (symbol != null && symbol.Kind != SymbolKind.Namespace &&
 symbol.ContainingNamespace != null)
 {
 if ((symbol as ITypeSymbol)?.SpecialType ==
 SpecialType.System_Void)
 {
 continue;
 }

 var containingNamespace = symbol.GetContainingNamespace();

 if (!string.IsNullOrWhiteSpace(containingNamespace))
 {
 namespacesForType.Add(containingNamespace);
 }
 }
 }

 return SyntaxFactory.List(
 namespacesForType.Select(_ => SyntaxFactory.UsingDirective(
 SyntaxFactory.IdentifierName(_))));
 }

 We go through all of the descendant nodes in the given node, and if the given node
has a symbol that isn’t void and has a containing namespace that doesn’t end up being
an empty string (i.e., the global namespace), we add it to our list. This list is used to
generate UsingDirectiveSyntax objects . By the way, most .NET developers don’t use or
think about the global namespace. There’s always a “global” namespace: type “global” in
Visual Studio and you’ll see all the top-level namespaces within it, as Figure 3-8 shows.

 Figure 3-8. Using the global namespace in C#

 In the Compiler API, that global namespace will have an empty string for its Name , so
we have to ignore that one.

 Let’s go back to MoveTypeNodes() , as this is really where the essence of the
refactoring exists. This method’s implementation is shown in Listing 3-7 .

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

81

 Listing 3-7. Moving types into specific files

 private static Project MoveTypeNodes(SemanticModel model,
 ImmutableArray<TypeToRemove> typesToRemove,
 Func<string, string> typeFolderGenerator, Project project,
 CancellationToken token)
 {
 var projectDirectory = Path.GetDirectoryName(project.FilePath);
 var projectName = project.Name;

 foreach (var typeToRemove in typesToRemove)
 {
 token.ThrowIfCancellationRequested();
 var fileName = $"{typeToRemove.Symbol.Name}.cs";

 var containingNamespace = typeToRemove.Symbol.GetContainingNamespace();
 var typeFolder = typeFolderGenerator(containingNamespace).Replace(
 projectName, string.Empty);

 if (typeFolder.StartsWith("\\"))
 {
 typeFolder = typeFolder.Remove(0, 1);
 }

 var fileLocation = Path.Combine(projectDirectory, typeFolder);

 project = project.AddDocument(fileName,
 typeToRemove.Declaration.GetCompilationUnitForType(
 model, containingNamespace),
 folders: !string.IsNullOrWhiteSpace(typeFolder) ?
 new[] { typeFolder } : null).Project;
 }
 return project;
 }

 We create a new file for the project with the Project ’s AddDocument() method . A new
 CompilationUnitSyntax object is created for that document, which will contain just that
type and relevant using statements. The typeFolder variable is used to put the document
into a subfolder depending on what the typeFolderGenerator Func returns .

 ■ Note You shouldn’t pass in a blank value into the folders argument; you’ll get a
 COMException if you do. At least, this is the behavior that I saw. There’s no explicit
documentation I found on what would happen if I did that; I found out by accident. The
Compiler API doesn’t have a large volume of documentation on it unless you’re willing to
spelunk through its code base, and that’s not always a trivial endeavor. That’s why unit and
integration testing is essential to creating stable analyzers and diagnostics.

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

82

 Here’s how the new CompilationUnitSyntax is created:

 internal static CompilationUnitSyntax GetCompilationUnitForType(
 this MemberDeclarationSyntax @this,
 SemanticModel model, string containingNamespace)
 {
 var usingsForType = @this.GenerateUsingDirectives(model);

 return SyntaxFactory.CompilationUnit()
 .WithUsings(usingsForType)
 .WithMembers(
 SyntaxFactory.SingletonList<MemberDeclarationSyntax>(
 SyntaxFactory.NamespaceDeclaration(
 SyntaxFactory.IdentifierName(containingNamespace))
 .WithMembers(
 SyntaxFactory.List<MemberDeclarationSyntax>(
 new[] { @this }))))
 .WithAdditionalAnnotations(Formatter.Annotation);
 }

 We use GenerateUsingDirectives() to only get the using directives for this
declaration. Then we create a CompilationUnitSyntax with those new using directives,
a NamespaceDeclarationSyntax for the type, and the type itself.

 Now that we have the code in place, let’s run it in Visual Studio and see what it does.

 Executing the Refactoring
 With the refactoring class finished, it’s time to see what it will do in Visual Studio . Just like
the analzyer template you saw in the “Using the Template” section in Chapter 2 , a VSIX
project is created that will install your refactoring into a separate hive of Visual Studio.
Make that VSIX project the startup project, run it, and create a new class library project in
the new Visual Studio instance. Add this code to the Class1.cs file :

 using System;
 using System.Collections.Generic;
 using System.IO;
 using System.Linq;
 using System.Text;
 using System.Threading.Tasks;

 namespace IntegrationTests
 {
 public class Class1
 {
 public void DoIt(Stream stream) { }
 public class Class4 { }
 }

http://dx.doi.org/10.1007/978-1-4842-2111-2_2

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

83

 public class Class2
 {
 public Guid ProduceThis(Stream stream)
 {
 return Guid.NewGuid();
 }
 }

 namespace SubNamespace
 {
 public class Class3
 {
 }
 }
 }

 What the code does isn’t really important. We’re more interested in how our
refactoring will move the type defintions around. This code allows us to test our
refactoring scenarios.

 To invoke the refactoring, place the cursor anywhere in the code file. Press Ctrl + .
(period), and you should see options like those in Figure 3-9 .

 Figure 3-9. Getting the refactorings to show up in Visual Studio

 You might see more options based on what member the cursor is on from other
refactorings setup in Visual Studio, but the two refactoring options we create (“Move
types to files in folders” and “Move types to files in current folder”) should be in the list.

 The diff window now shows that we’ll be deleting a lot of code, but it doesn’t show
where that code will go. That’s one minor disadvantage with what our refactorings
do in that you don’t see a difference between the project and solution, and there will
be! Figure 3-10 shows what the current folder structure looks like before we apply any
refactorings.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

84

 After we accept the changes, Figure 3-11 shows what happens to the project.

 Figure 3-10. The project before the refactoring

 Figure 3-11. The project after the refactoring

 Notice that the definition of Class1 stays in Class1.cs. Here’s what the contents of that
file is now:

 using System.IO;

 namespace IntegrationTests
 {
 public class Class1
 {
 public void DoIt(Stream stream) { }
 public class Class4 { }
 }

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

85

 namespace SubNamespace
 {
 }
 }

 Irrelevant using directives are gone; only Class1 remains.
 Visual Studio also uses the convention of adding a numeric value after a file name if

you try to add a file with a name that already exists. For example, if a file called Class2.cs
was in the root directory, Figure 3-12 shows what Visual Studio does with the file collision.

 Figure 3-12. Visual Studio handles file name collisions for you

 Because refactorings are in a PCL, there’s no “File.Exists()” call you can use to
determine if you’d make a duplicate file. Fortunately, Visual Studio handles duplicates
for you.

 The other refactoring, “Move types to files in current folder”, doesn’t make any
subdirectories. Figure 3-13 shows what happens when that option is selected.

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

86

 We now have a refactoring that will move our types into different files for us. The next
section explains how to test the refactoring to ensure that they work as expected.

 Debugging Refactorings
 In this section, you’ll use two different ways to test and debug your refactoring code: unit
testing and VSIX projects.

 Unit Testing
 As discussed in Chapter 2 , unit testing is important to ensure your code works as
expected. Surprisingly, the refactoring template doesn’t create a unit test project for
you, but it’s easy to add one to the solution. We’ll stick with an MSTest-based project
to stay consistent with the analyzer examples, but NUnit or xUnit would work just fine.
Right-click on the solution in the Solution Explorer, and select Add ➤ New Project. Select
the Test node in the tree view on the left, and you should see a Unit Test Project option as
shown in Figure 3-14 .

 Figure 3-13. Files are made in the same directory as the project

http://dx.doi.org/10.1007/978-1-4842-2111-2_2

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

87

 Once the project is made, add a reference to the refactoring project so you can test
your code.

 ■ Note You’ll also need to add the right Compiler API packages. One way to make this
slightly easier is to take the packages.config file from a test project created for a diagnostics
project and put it into this test project. Also, you’ll need to update the assembly references
so the test project is referencing the Compiler API assemblies. Again, a manual but reliable
way to do this is to copy the appropriate <Reference> elements from the diagnostic test
project into the test project for the refactorings.

 There’s a lot of test cases to cover, and they’re all in the sample code, but we’ll
just cover a couple in the book. One is when a document has classes to move that would
cause a conflict; another is when there is only one class in the target document. Listing 3-8
has the test for the first scenario.

 Listing 3-8. Testing for file collisions

 [TestMethod]
 public async Task RefactorWhenFileCollisionOccurs()
 {
 ProjectId projectId = null;
 ImmutableArray<DocumentId> docIds;
 var folder = nameof(ExtractTypesToFilesCodeRefactoringProviderTests);
 var fileName = nameof(RefactorWhenFileCollisionOccurs);

 Figure 3-14. Adding a testing project for the refactoring

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

88

 await TestHelpers.TestProvider(
 $@"Targets\{folder}\{fileName}.cs", "Class1.cs",
 (solution, pid) =>
 {
 projectId = pid;
 var documentId = DocumentId.CreateNewId(projectId);
 solution = solution.AddDocument(documentId, "Class2.cs", string.Empty);
 docIds = solution.GetProject(pid).Documents
 .Select(_ => _.Id).ToImmutableArray();
 return solution;
 },
 async actions =>
 {
 Assert.AreEqual(2, actions.Length);

 foreach (var action in actions)
 {
 var operations = await action.GetOperationsAsync(
 default(CancellationToken));
 Assert.AreEqual(1, operations.Length);

 var appliedOperation = (operations[0] as ApplyChangesOperation);
 var changedSolution = appliedOperation.ChangedSolution;
 var changedProject = changedSolution.GetProject(projectId);
 var changedDocuments = changedProject.Documents.Where(
 _ => !docIds.Any(id => id == _.Id)).ToImmutableArray();

 Assert.AreEqual(2, changedDocuments.Length);

 foreach (var document in changedDocuments)
 {
 var text = await document.GetTextAsync();
 var textValue = new StringBuilder();

 using (var writer = new StringWriter(textValue))
 {
 text.Write(writer);
 }

 var resultFile = $@"Targets\{folder}\{fileName}{document.Name}";
 Assert.AreEqual(File.ReadAllText(resultFile), textValue.ToString());
 }
 }
 });
 }

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

89

 There’s a lot of code in the test from Listing 3-8 , so let’s start with the TestProvider() :

 internal static async Task TestProvider(string file, string fileName,
 Func<Solution, ProjectId, Solution> modifySolution,
 Func<ImmutableArray<CodeAction>, Task> handleActions)
 {
 var code = File.ReadAllText(file);
 var document = TestHelpers.CreateDocument(code, fileName, modifySolution);
 var actions = new List<CodeAction>();
 var actionRegistration = new Action<CodeAction>(
 action => actions.Add(action));
 var context = new CodeRefactoringContext(document, new TextSpan(0, 1),
 actionRegistration, new CancellationToken(false));

 var provider = new ExtractTypesToFilesCodeRefactoringProvider();
 await provider.ComputeRefactoringsAsync(context);
 await handleActions(actions.ToImmutableArray());
 }

 TestProvider() i s very similar to the helper method that we made for the
diagnostic test. It loads code from a file that is passed into an instance of our refactoring,
capturing any actions that the refactoring reports in ComputeRefactoringsAsync() via
the actionRegistration Action . A modifySolution Func is also passed in to modify the
generated solution from CreateDocument() . CreateDocument() is similar to the Create()
method shown in the “Unit Testing” section in Chapter 2 , so I won’t cover that again.
Just remember that it allows the tester to modify the solution if needed, and that’s exactly
what we need to do in our first test.

 In the first lambda passed into TestProvider() , we add a second empty Document
called Class2.cs. We also capture the project’s identifier and a list of all document
identifiers in the project. We use those in the second lambda, where we assert what
the refactorings did. First, we check that we got two CodeAction values back. Then we
check the operations associated with each CodeAction . We have to cast the operation to
an ApplyChangesOperation . The base type, CodeActionOperation , doesn’t provide as
much information as ApplyChangesOperation , and we need that so we can look at the
documents that changed. To get those documents, we have to remove the documents that
were there before the refactoring made changes, which is what Where() is doing. We then
compare the contents of these new documents with expected values that are stored in
files within the Targets directory.

 ■ Note It took some time to figure out how to set up the test code so I could verify
behaviors. For example, casting to ApplyChangesOperation wasn’t obvious at first.
I had to debugging the test to see what the return value was providing, because if
 CodeActionOperation was all that was available, we wouldn’t be able to meaningfully
assert anything in our tests.

http://dx.doi.org/10.1007/978-1-4842-2111-2_2

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

90

 Now, you may be wondering why there wasn’t a file named “Class21.cs” that
was generated as we saw when we ran this code in Visual Studio. In “Interacting with
a Workspace” I’ll clarify that in more detail. For now, remember that we’re using an
 AdHocWorksapce to generate our solution, project and documents; this is different than
the one you use in Visual Studio. Therefore, behaviors can be different as our test shows:
 AdHocWorkspace doesn’t generate a new file with a different name. It just overwrites the
file that exists. However, at least we can check that our refactoring moves code around as
expected.

 The second test—having only one class in the target document—is much smaller:

 [TestMethod]
 public async Task RefactorWhenOnlyOneTypeIsDefined()
 {
 var folder = nameof(ExtractTypesToFilesCodeRefactoringProviderTests);
 var fileName = nameof(RefactorWhenOnlyOneTypeIsDefined);

 await TestHelpers.TestProvider(
 $@"Targets\{folder}\{fileName}.cs", "Class1.cs",
 null,
 actions =>
 {
 Assert.AreEqual(0, actions.Length);
 return Task.CompletedTask;
 });
 }

 In this test, we only have one type definition in the source file, so we don’t expect to
get any CodeAction values generated from the refactoring.

 We can also test our extension methods using the helper methods in TestHelpers .
For example, here’s the test for GenerateUsingExtensions() :

 [TestMethod]
 public async Task GenerateUsingDirectives()
 {
 var folder = nameof(SyntaxNodeExtensionsTests);
 var fileName = nameof(GenerateUsingDirectives);

 var document = TestHelpers.CreateDocument(
 File.ReadAllText($@"Targets\Extensions\{folder}\{fileName}.cs"),
 "Class1.cs", null);

 var root = await document.GetSyntaxRootAsync();
 var model = await document.GetSemanticModelAsync();

 var directives = root.GenerateUsingDirectives(model);
 Assert.AreEqual(3, directives.Count);

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

91

 directives.Single(_ => _.Name.ToString() == "System");
 directives.Single(_ => _.Name.ToString() == "System.IO");
 directives.Single(_ => _.Name.ToString() == "System.Text");
 }

 The target file has a method that requires the using directives that
 GenerateUsingDirectives() should generate.

 Writing tests for refactorings is a good thing for the same reasons specified in the
“Unit Testing” section in Chapter 2 , but we still need to test it in Visual Studio. We’ll
briefly explore that in the next section.

 VSIX Installation
 In the “Executing the Refactoring” section, you saw how you can launch Visual Studio
with your refactoring installed. You can also run that separate instance of Visual Studio
under the debugger. We won’t repeat that discussion again, just remember to run your
refactoring in Visual Studio before you deploy it. As you saw in the previous section, the
process by which you get a Document object can affect the results of the refactoring.

 Also, the VSIX option is the only option you have to deploy and install your
refactorings to other users. There is no NuGet option provided with the default template.
This may change in the future, but for now extensions are the way to go to get your
refactorings to other developers.

 ■ Note For more information on adding NuGet support for refactorings, see
 http://stackoverflow.com/questions/33118238/ship-roslyn-code-refactoring-as-
nuget-package .

 We’ve covered testing your refactorings. Now it’s now time to go through the
Workspaces API in more detail.

 Interacting with a Workspace
 With diagnostics and refactorings, we’ve touched upon the concept of a Workspace and its
related objects. In this section, we’ll dive a little deeper and explore how they’re laid out and
how you can use them to automatically update documents with projects and solutions.

 What Is a Workspace ?
 Ever since .NET developers have been using Visual Studio, they’ve been accustomed to a
specific code layout. A simple example is any of the figures in this chapter that show the
Solution Explorer (like Figure 3-7). Each solution can contain one or more projects, and
each project can contain one or more documents. Solutions and projects can also have
zero subelements, but then they’re kind of useless!

http://dx.doi.org/10.1007/978-1-4842-2111-2_2
http://stackoverflow.com/questions/33118238/ship-roslyn-code-refactoring-as-nuget-package
http://stackoverflow.com/questions/33118238/ship-roslyn-code-refactoring-as-nuget-package

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

92

 Given this typical structure, it was essential that the Compiler API have a similar object
model in place. It’s pretty rare for code to live in isolation—that is, you only have one file
in a project and that’s all you compile. Applications are complex combinations of projects,
where changes in one piece of code can have significant ramifications. In the “Creating a
Refactoring Solution” section earlier in this chapter, the Renamer.RenameSymbolAsync()
was mentioned. That method needs a Solution object because it will look for the usage of
a member (like a method) that has been renamed and change it for the developer wherever
it’s referenced in a solution. The Workspace API gives you an abstraction over this solution
structure. Figure 3-15 gives a simplistic view of the Workspace object model.

 Figure 3-15. Workspace object model

 A Workspace contains one Solution , referenced by the CurrentSolution property.
Each Solution contains Project objects, and each Project has Document objects. The
documents can be any file, whether it’s a code, resource, or text file.

 This model doesn’t impose one specific implementation of the API. All of these
classes are not sealed, so you can create your own version of a Workspace . There are three
that you may see as you work with the Compiler API. Let’s briefly investigate each of them
in the next section.

 ■ Note The Workspace API may have members like the FilePath property on a
 Document , but that doesn’t mean that an implementation of the Workspace API has to be
file-based. You could create a custom Workspace object model that just used memory or a
database for its persistence mechansim.

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

93

 Common Workspace Implementations
 The AdhocWorkspace , as its name suggests, is useful when you want to quickly create a
 Workspace and related objects. We’ve used them in our unit tests in both this chapter
and Chapter 2 . As a refresher, here’s how you create a project from a Workspace ’s current
 Solution :

 var projectName = "Test";
 var projectId = ProjectId.CreateNewId(projectName);

 var solution = new AdhocWorkspace().CurrentSolution;
 var project = solution.AddProject(
 projectId, projectName, projectName, LanguageNames.CSharp);

 Typically, AdhocWorkspace is only used in testing scenarios. You can find these types
in the Microsoft.CodeAnalysis.Workspaces assembly.

 The MSBuildWorkspace class is another implementation of the Workspace API. This
workspace’s name also implies its target: MSBuild. You’ll use this workspace when you
interact with an MSBuild process. You’ll see this class in action in the “Using a Custom
MSBuild Task for Automatic Updates” section later in this chapter. You can find this
workspace in the Microsoft.CodeAnalysis.Workspaces.Desktop assembly .

 Finally, the VisualStudioWorkspace class is the workspace you use when
your analyzer or refactoring is running within Visual Studio. We’ll use this
workspace in the “Creating a Visual Studio Extension” section. This type exists in the
 Microsoft.VisualStudio.LanguageServices assembly .

 ■ Note If you look carefully, the actual type for the workspace you see in Visual Studio is
 Microsoft.VisualStudio.LanguageServices.RoslynVisualStudioWorkspace . That’s a
class that indirectly inherits from VisualStudioWorkspace , but it’s a small detail that you
shouldn’t worry about.

 You now know what Workspace implementations exist. In the next section, we’ll use
the last two— MSBuildWorkspace and VisualStudioWorkspace — to do some automation
with our refactorings.

 Updating Solutions and Projects
 Refactorings are good to have because they assist a developer to create cleaner, more
manageable code, but there’s an area with refactorings that needs to be addressed. There
are cases where I want my code to be updated such that features like code formatting
are done automatically, without me having to perform any manual intervention. For
example, there’s an extension called Productivity Power Tools that executes some
refactorings for you. Once you install it, you can configure it to remove and sort using
directives along with formatting code when you save a file. Figure 3-16 shows that
configuration screen.

http://dx.doi.org/10.1007/978-1-4842-2111-2_2

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

94

 ■ Note To learn more about using Productivity Power Tools, see
 https://visualstudiogallery.msdn.microsoft.com/34ebc6a2-2777-421d-8914-e29c1dfa7f5d .

 Unfortunately, the refactoring template gives developers a somewhat restricted
view on Visual Studio integration. Thankfully, we’re not limited by that template. We’ll
go through two techniques to allow your refactorings to be automatically applied in a
solution. But before we do that, let’s come up with a simple refactoring that you may
(or may not!) like: removing comments.

 ■ Note In the upcoming Visual Studio 15 preview (the next version after Visual
Studio 2015), there’s a prototype of a feature that may allow developers to create “styling”
analyzers that will automatically be enforced by Visual Studio. It’s a work in progress; visit
the following link (and check out the “Custom Code Style Enforcement” section) for more
details: https://blogs.msdn.microsoft.com/dotnet/2016/04/02/whats-new-for-c-
and-vb-in-visual-studio/ .

 Figure 3-16. Using Productivity Power Tools to automatically apply formatting and using
directive cleanup

https://visualstudiogallery.msdn.microsoft.com/34ebc6a2-2777-421d-8914-e29c1dfa7f5d
https://blogs.msdn.microsoft.com/dotnet/2016/04/02/whats-new-for-c-and-vb-in-visual-studio/
https://blogs.msdn.microsoft.com/dotnet/2016/04/02/whats-new-for-c-and-vb-in-visual-studio/

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

95

 Creating the CommentRemover Refactoring
 We’ll create a refactoring that removes any comments within a given syntax node. Keep in
mind, this is just an example. It’s not a suggestion that comments are bad in any way.
I try to keep comments to a bare minimum, but there are cases where a comment can
help others figure out why code is the way it is. Use this refactoring carefully—if you force
it upon your teammates, the response may not be positive! But it is a simple refactoring in
the sense that comments do not affect a compilation result, so removing them is a fairly
trivial endeavour.

 We have to be careful of one thing, though, and that’s what comments we remove.
Take a look at the following code:

 public class Commentary
 {
 /// <summary>
 /// Adds commentary to a piece of text.
 /// </summary>
 /// <param name="text">The text to process.</param>
 public void Process(string text)
 {
 // Here's where the real work goes.

 /*
 Maybe more work goes here.
 */
 }
 }

 We definitely want to keep XML comments. Those show up in Intellisense and can
assist developers as they write their code. The single- and multiline comments like the
ones within Process() are the ones that we want to get rid of. How are these represented
in the Compiler API?

 All of the comments are represented by a SyntaxTrivia struct. The multiline comment
has the Kind property equal to SyntaxKind.MultiLineCommentTrivia . The single-line
comment’s Kind property is SyntaxKind.SingleLineCommentTrivia . Finally, the XML
comments have a Kind of SyntaxKind.SingleLineDocumentationCommentTrivia . Therefore,
all we’ll need to do is find trivia elements with the right Kind value, and replace those with
empty nodes. Let’s create an extension that will do just that to any SyntaxNode it gets.

 For this solution, which we’ll call CommentRemover ; we won’t use the refactoring
template. We’ll create a class library that references the Compiler API, and then we’ll have
one extension method that performs the necessary comment cleansing. In subsequent
chapter sections we’ll reuse that extension method to provide automatic comment
removal. Listing 3-9 shows how that extension method works.

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

96

 Listing 3-9. Removing comments from a given SyntaxNode

 public static class SyntaxNodeExtensions
 {
 public static T RemoveComments<T>(this T @this)
 where T : SyntaxNode
 {
 var triviaToRemove = new List<SyntaxTrivia>();

 var nodesWithComments = @this.DescendantNodesAndTokens(_ => true)
 .Where(_ => _.HasLeadingTrivia &&
 _.GetLeadingTrivia().Any(__ =>
 __.IsKind(SyntaxKind.SingleLineCommentTrivia) ||
 __.IsKind(SyntaxKind.MultiLineCommentTrivia)));

 var commentCount = 0;

 foreach (var nodeWithComments in nodesWithComments)
 {
 var leadingTrivia = nodeWithComments.GetLeadingTrivia();

 for (var i = 0; i < leadingTrivia.Count; i++)
 {
 var trivia = leadingTrivia[i];
 if (trivia.IsKind(SyntaxKind.SingleLineCommentTrivia) ||
 trivia.IsKind(SyntaxKind.MultiLineCommentTrivia))
 {
 triviaToRemove.Add(trivia);
 commentCount++;

 if (i > 0)
 {
 var precedingTrivia = leadingTrivia[i - 1];

 if (precedingTrivia.IsKind(SyntaxKind.WhitespaceTrivia))
 {
 triviaToRemove.Add(precedingTrivia);
 }
 }
 }
 }

 triviaToRemove.AddRange(leadingTrivia.Where(_ =>
 _.IsKind(SyntaxKind.EndOfLineTrivia))
 .Take(commentCount));
 }

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

97

 return triviaToRemove.Count > 0 ?
 @this.ReplaceTrivia(
 triviaToRemove, (_, __) => new SyntaxTrivia())
 .WithAdditionalAnnotations(Formatter.Annotation) :
 @this;
 }
 }

 We find all of the nodes and tokens that have leading trivia that contains single- or
multi-line comments. Then we go through the trivia list and add comment trivia to
our list. If the comments begin with any whitespace, we add those to our list. We also
remove any end of line trivia for the comment lines. Finally, we remove all the identified
trivia from the current node if we found any trivia to remove. This code may seem a
little awkward, but it’s done this way to keep the formatting of the developer’s code
consistent—that is, we don’t want to leave empty lines in the code when we remove the
comment trivia.

 Now that we have an extension method to remove comments from a SytnaxNode
instance , let’s see where we can use it such that it’s done automatically for the developer.
Our first option is to use a console application, which we’ll implement in the next section.

 Using the Command Line for Automatic Updates
 One of the extension points in a project is to invoke pre- and post-build events. Figure 3-17
shows what this looks like in the project’s Properties tab.

 Figure 3-17. Project build event properties

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

98

 Anything that can be run from the command line can be done in the two text boxes
shown in Figure 3-17 . Therefore, what we can do is create a console application that will
get the file location of a project or solution, and then invoke RemoveComment() on every
file’s CompilationUnitSytnax node .

 To do this, we need to provide a couple of helper methods in CommentRemover —
 RemoveCommentsFromSolutionAsync() and RemoveCommentsFromProjectAsync() — to use
the Workspace API. We’ll go through RemoveCommentsFromSolutionAsync() in the book.
The other helper method, RemoveCommentsFromProjectAsync(), is virtually identical
except it starts with a Project object, not a Solution :

 public static async Task RemoveCommentsFromSolutionAsync(
 string solutionFile)
 {
 var workspace = MSBuildWorkspace.Create();
 var solution = await workspace.OpenSolutionAsync(solutionFile);
 var newSolution = solution;

 foreach (var projectId in solution.ProjectIds)
 {
 var project = newSolution.GetProject(projectId);

 foreach (var documentId in project.DocumentIds)
 {
 var document = newSolution.GetDocument(documentId);

 if (Path.GetExtension(document.FilePath).ToLower() == ".cs")
 {
 var root = await document.GetSyntaxRootAsync();
 var newRoot = root.RemoveComments();

 if (root != newRoot)
 {
 newSolution = newSolution.WithDocumentSyntaxRoot(
 documentId, newRoot);
 }
 }
 }
 }

 workspace.TryApplyChanges(newSolution);
 }

 We call Create() on MSBuildWorkspace to get a workspace, which we can use to
open a solution file. From that solution, we go through each project and its documents. If
we find a C# file, we update that document if RemoveComments() produced any changes.
Once we’ve navigated each file, we call TryApplyChanges() to commit any changes to the
solution and its members.

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

99

 The other part of this solution is to create a console application project that
references the CommentRemover class library project. It also needs the Compiler API
assemblies from NuGet. Once those are in place, here’s what Main() does:

 static void Main(string[] args)
 {
 //System.Diagnostics.Debugger.Launch();

 if (args.Length == 0 || args[0] == string.Empty)
 {
 Console.Out.WriteLine(
 "Usage: CommentRemover.ConsoleApplication {solution or project

file}");
 }

 var file = args[0];

 if (!File.Exists(file))
 {
 Console.Out.WriteLine($"File {file} does not exist.");
 }
 else
 {
 if (Path.GetExtension(file) == ".sln")
 {
 WorkspaceCommentRemover.RemoveCommentsFromSolutionAsync(file).Wait();
 }
 else if (Path.GetExtension(file) == ".csproj")
 {
 WorkspaceCommentRemover.RemoveCommentsFromProjectAsync(file).Wait();
 }
 else
 {
 Console.Out.WriteLine("Only .sln and .csproj files are supported.");
 }
 }
 }

 Most of this code is just data validation to ensure that we have a file path in the args
array that we can give to one of the WorkspaceCommentRemover helper methods .

 With the console application in place, we now need to update its postbuild
command so that it pushes its build content to a common directory:

 xcopy "$(TargetDir)*.*" "$(SolutionDir)ConsoleApplicationOutput*.*" /Y /E /C

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

100

 Now we can create a test project that will execute this application on its prebuild event:

 "$(SolutionDir)ConsoleApplicationOutput\CommentRemover.ConsoleApplication.exe"
"$(ProjectPath)"

 We need to make sure that this test integration project doesn’t build before the
console application is built. To do this without having an explicit reference to the console
application, we can tell the solution in Visual Studio about this build dependency.
Right-click on the solution and select Project Dependencies. Figure 3-18 shows how to set
this dependency correctly.

 Figure 3-18. Setting explicit project dependencies in a solution

 With this configuration in place, a project’s code (like CommentRemover.
ConsoleApplication.IntegrationTests) will get every comment removed when it’s
built. That’s something that can’t be visualized in a picture, but Figure 3-19 shows the
integration project with a C# file open when the console application is done with its
comment removal.

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

101

 Because the file has been updated, Visual Studio will ask if you want to see those
changes. When you click Yes, you’ll see the code with all the comments removed, except
the XML comments.

 Another way to automatically run code during a build process is to use a custom
MSBuild task. Let’s look at that technique in the next section.

 Using a Custom MSBuild Task for Automatic Updates
 An MSBuild process is essentially a number of tasks executed to compile code, move
files into other directories, and so on. You can customize this process by defining your
own tasks and including them into a project file. To do this, you create a class library
and reference the Microsoft.Build.Framework and Microsoft.Build.Utilities.Core
assemblies (along with the Compiler API Nuget packages). Then you can create your
custom task by defining a class that inherits from the Task class, as shown in Listing 3-10 .

 Listing 3-10. Defining a custom MSBuild task

 public class CommentRemoverTask
 : MBU.Task
 {
 public override bool Execute()
 {
 WorkspaceCommentRemover.RemoveCommentsFromProjectAsync(
 this.ProjectFilePath).Wait();
 return true;
 }

 [Required]
 public string ProjectFilePath { get; set; }
 }

 Figure 3-19. Evidence that the console application has made changes

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

102

 Because most of the work is done in RemoveCommentsFromProjectAsync() ,
the implementation of the custom Task is thin. The only member we need to add is
 ProjectFilePath , which we’ll use when we invoke this task in a project file. The following
code snippet shows how that works:

 <UsingTask TaskName="CommentRemoverTask" AssemblyFile="$(SolutionDir)
CommentRemover.Task Output\CommentRemover.Task.dll" />

 Within a project file, you use the <UsingTask> element to give the task a name. The
 AssemblyFile attribute specifies where that custom task resides. The CommentRemover.Task
project has a postbuild step similar to the console application, where it will copy all of its
output to a directory. That directory is what AssemblyFile uses.

 To invoke the task, you can include it within either the BeforeBuild or AfterBuild
tasks; remember to set the ProjectFilePath property correctly:

 <Target Name="AfterBuild">
 <CommentRemoverTask ProjectFilePath="$(ProjectPath)" />
 </Target>

 The next time the project is built, all the comments in any C# file will be removed.
 With both the console application and custom MSBuild Task approaches, we used

the MSBuildWorkspace to modify document content within projects. In the next section,
we’ll create a Visual Studio extension that will use VisualStudioWorkspace .

 Creating a Visual Studio Extension
 Although both of the previous techniques worked (creating a command-line tool and a
custom MSBuild task), they require manual intervention to ensure they were integrated
correctly. When you’re updating project files and creating post-build steps, it’s not hard
to do something wrong during the setup. Another option is creating extensions for Visual
Studio. The advantage of this approach is the developer just double-clicks on a VSIX
file or goes to the Visual Studio Gallery to find and install it. As an extension author, you
have the ability to extend pretty much every aspect of Visual Studio. However, writing
extensions is not a trivial endeavor. We won’t go through all of the options available to you
when you create extensions, but let’s create a simple one that will provide that automatic
comment removal behavior.

 ■ Note If you want more information about extending Visual Studio, please check out the
reference at https://msdn.microsoft.com/en-us/library/dn919654.aspx .

 To create the project, you’ll go into the Extensibility node when you add a new
project, and select “VSIX Project” as shown in Figure 3-20 .

https://msdn.microsoft.com/en-us/library/dn919654.aspx

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

103

 ■ Note If you don’t see the VSIX Project option, you’ll need to install the Visual Studio SDK.
You can get more information about the SDK at https://msdn.microsoft.com/en-us/
library/bb166441.aspx .

 Next, we need to get a package class file in this project. Add a “Visual Studio
Package” file to the project, as shown in Figure 3-21 .

 Figure 3-20. Creating an extension project

 Figure 3-21. Adding a package file to the extension project

https://msdn.microsoft.com/en-us/library/bb166441.aspx
https://msdn.microsoft.com/en-us/library/bb166441.aspx

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

104

 You can leave the file as-is; I modified it a bit to get rid of some noise and focus on
what we need for our extension. Here’s the start of the class file definition:

 [PackageRegistration(UseManagedResourcesOnly = true)]
 [InstalledProductRegistration("#110", "#112", "1.0", IconResourceID = 400)]
 [Guid(CommentRemoverPackage.PackageGuidString)]
 [SuppressMessage("StyleCop.CSharp.DocumentationRules",
 "SA1650:ElementDocumentationMustBeSpelledCorrectly",
 Justification = "pkgdef, VS and vsixmanifest are valid VS terms")]
 [ProvideAutoLoad(VSConstants.UICONTEXT.NoSolution_string)]
 [ProvideAutoLoad(VSConstants.UICONTEXT.SolutionExists_string)]
 [ProvideAutoLoad(VSConstants.UICONTEXT.SolutionHasMultipleProjects_string)]
 [ProvideAutoLoad(VSConstants.UICONTEXT.SolutionHasSingleProject_string)]
 public sealed class CommentRemoverPackage
 : Package
 {
 public const string PackageGuidString = "7e923ca1-8495-48f9-a429-
0373e32500d1";

 private DTE dte;
 private DocumentEventsClass documentEvents;
 private VisualStudioWorkspace workspace;

 The first four class attributes along with PackageGuidString were created by the file
template. They’re important for Visual Studio to use our package correctly but we don’t
need to be concerned about their details now. The ProvideAutoLoad attributes (which
are not generated by default) are important, because our package needs to be loaded and
ready to go as soon as Visual Studio starts. We don’t want to wait for a developer to open a
tool window for our package’s implementation to be alive. These attributes inform Visual
Studio to initilize our package when Visual Studio is launched. The private fields are
needed so we can react to events that are happening when a developer saves a file. That
event handling is set up in Initialize() , which looks like this:

 protected override void Initialize()
 {
 var model = this.GetService(typeof(SComponentModel)) as IComponentModel;
 this.workspace = model.GetService<VisualStudioWorkspace>();
 this.dte = this.GetService(typeof(DTE)) as DTE;
 this.documentEvents = this.dte.Events.DocumentEvents as DocumentEventsClass;

 this.documentEvents.DocumentSaved += this.OnDocumentSaved;

 base.Initialize();
 }

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

105

 protected override void Dispose(bool disposing)
 {
 this.documentEvents.DocumentSaved -= this.OnDocumentSaved;
 base.Dispose(disposing);
 }

 We need to get a reference to the VisualStudioWorkspace and DTE (design time
enviroment) objects, which we can get via GetService() . Once we have them, we set up
an event handler to listen for documents that are saved. We also override Dispose() to
remove the event handler. Listing 3-11 shows what OnDocumentSaved() does.

 Listing 3-11. Implementing the DocumentSaved event in a Visual Studio extension

 private void OnDocumentSaved(EnvDTE.Document dteDocument)
 {
 var documentIds = this.workspace.CurrentSolution

 .GetDocumentIdsWithFilePath(dteDocument.FullName);

 if(documentIds != null && documentIds.Length == 1)
 {
 var documentId = documentIds[0];
 var document = this.workspace.CurrentSolution.GetDocument(documentId);

 if (Path.GetExtension(document.FilePath) == ".cs")
 {
 SyntaxNode root = null;

 if (document.TryGetSyntaxRoot(out root))
 {
 var newRoot = root.RemoveComments();

 if (newRoot != root)
 {
 var newSolution = document.Project.Solution
 .WithDocumentSyntaxRoot(document.Id, newRoot);
 this.workspace.TryApplyChanges(newSolution);
 dteDocument.Save();
 }
 }
 }
 }
 }
 }

 We need to bridge the DTE and VisualStudioWorkspace worlds to figure out the
document’s identifier. We can do this by using GetDocumentIdsWithFilePath() . If we
find the identifier, we use it to get a Document instance via GetDocument() . If we end up
changing the root node of the document by removing all the comments, we apply those

CHAPTER 3 ■ CREATING REFACTORINGS AND HANDLING WORKSPACES

106

changes to the solution. We also need to invoke Save() on the DTEDocument instance .
If we don’t do this, the changes will show up in Visual Studio, but the document will be in
an edited state again. Calling Save() ensures that the changes are saved to disk.

 Just like the VSIX projects for analyzers and refactorings, if you make the project
the startup project for the solution, Visual Studio will launch another instance of Visual
Studio with your extension automatically installed. It’s hard to demonstrate in static text
this package in action, so I encourage you to download the code and try it out yourself.
Create a project, add a C# file and put comments in the code. As soon as you save the file,
your comments will be removed.

 One last point about the VSIX project that is generated. By default, the package
is strong-named, so any assemblies that it uses must be strong-named as well. Our
 CommentRemover class library isn’t, so if we don’t make changes to the extension project,
we’ll get exceptions like FileNotFoundException , informing us that strong-named code
can’t call code from assemblies that aren’t strong names. You can turn strong-naming off
in the extension project from the Signing tab of the project’s Properties view, as shown in
Figure 3-22 .

 Figure 3-22. Turning off assembly strong-naming

 Conclusion
 In this chapter, you learned to create your own refactorings to help developers improve
code using the Compiler API. You also used the Workspace API in a number of scenarios
to implement automatic refactorings throughout a solution. In the next chapter, we’ll
explore the Scripting API.

107© Jason Bock 2016
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2_4

 CHAPTER 4

 Using the Scripting API

 So far, all the C# code you’ve seen hasn’t been any different from what you’ve been able to
do in C# since version 1.0. That is, you still write C# code, you compile it, and an assembly
is generated. Although having the inner workings of the compiler available for public
consumption via the Compiler API empowers developers to analyze and transform their
code, nothing has substantially altered the flow of the compilation process. However, that
changes with the Update 1 release of Visual Studio 2015, because within the Compiler
API is a brand-new Scripting API. With the Scripting API, C# can be treated as a scripting
language. In this chapter, I’ll show you how to use the Scripting API to provide a dynamic
way to augment applications. But before we do that, let me briefly define what a scripting
language really is.

 What Is a Scripting Language?
 Before we get into the details of the Scripting API, let’s spend some time on scripting
languages in general. What makes a language a “scripting” language? What are its
characteristics? How does it work? Are scripting languages substantially different from
other languages? Knowing the realm that you’re entering in this chapter will help you
understand the Scripting API better and how C# fits in the domain of scripting languages.

 Orchestrating an Environment
 Traditionally, scripting languages have been viewed as “glue” languages . They’re
usually not as powerful as other popular programming languages if their feature sets
are compared and contrasted. However, their power lies in their simplicity. They’re not
designed to build complex domain layers or implement web servers; rather, they work with
a given system and extend it in ways that the original designers may not have intended.
They’ll tie different parts and members together to create new functionality without having
to go through a typical compile, test, and deploy scenario that most applications will
partake in. Essentially, they orchestrate different pieces available to them.

 Well-known scripting languages that developers have used are Bash, Python, and
Lua. Another that developers in the .NET arena may have heard of and used in their
applications is Visual Basic for Applications (VBA) . VBA allows developers to control
Office applications in a programmic way. The object model for an Office application may

CHAPTER 4 ■ USING THE SCRIPTING API

108

seem quite complex at first, but you can record macros in an Office application to see
the pieces of the object model in action. Figure 4-1 shows the VBA macro editor with a
snippet of code that was created by me just typing into Word.

 By using the Macros ➤ Record Macros feature in Word (which is on the View menu),
I was able to figure out that by using TypeText on the Selection object, I could insert
whatever text I wanted to. Of course, there are far more objects and methods available to
you to control whatever part of Word you want to, but you don’t have to remember every
one. All you have to do is record your interaction and let Word generate the code for you.

 Dynamic Capabilities
 Another common aspect of a scripting language is its dynamic nature. Dynamic
languages are those where the notion of types is a loose, or even nonexistent, one. Types
can also be changed as the code executes. Examples of languages like this are Ruby and
JavaScript. These languages have the notion of classes, but class definitions can change
dramatically as code executes. Keep in mind that a scripting language can also be
statically typed. There’s no hard-and-fast rule when it comes to the dynamic capabilities
of a language and whether that qualifies it as a scripting language.

 In essence, any language can be considered a scripting language if an environment
exists to provide the user with a dynamic experience. This is typically done with
something called a Read, Evaluate, Print, Loop (REPL). Developers will use a REPL to
try different ways to run their scripts and to immediately execute functionality available
to the REPL. Lots of languages have this capability, but C# has always lacked this within
the APIs provided by the .NET Framework. However, now with the Scripting API, you
can treat C# as a scripting language. Let’s start our investigation of the Scripting API by
looking at a tool that uses this API in Visual Studio: the C# REPL.

 Figure 4-1. Creating macros in Word

CHAPTER 4 ■ USING THE SCRIPTING API

109

 Using the C# REPL
 Shipping with Update 1 of Visual Studio 2015 is the C# Interactive window. It’s a REPL
that uses the Scripting API to allow developers to quickly experiment with snippets of
C#. You won’t see Scripting API usage just yet in this section, but keep in mind that this
Visual Studio feature is powered by the Scripting API. By seeing how this window works,
you’ll better understand the capabilities available in the Scripting API to power dynamic
programming experiences.

 To start working with the C# Interactive window, open Visual Studio, and go to
View ➤ Other Windows ➤ C# Interactive window. Note that you don’t have to open or
create a project to start working with this window. Type “3 + 5” in the window and press
the Enter key. Figure 4-2 shows what you should see.

 Figure 4-2. Performing simple calculations within the C# Interactive window

 As a developer would expect, executing simple arithmetic calculations works. Let’s
set the value of that calculation to a variable called x . Once we do that, we can print out its
value, as shown in Figure 4-3 .

CHAPTER 4 ■ USING THE SCRIPTING API

110

 What’s interesting to note in Figure 4-3 is that you get Intellisense within the
interactive window. It knows there’s a variable called x within the scope of this interactive
session. It also knows that the variable is typed as an int . Scripting languages have a
tendency to have very loose typing semantics, but even though the Interactive window
is a scripting environment, C# retains its strong typing semantic. Figure 4-4 shows that
assigning x to a string after it was initially assigned to an int won’t work.

 Figure 4-3. Printing the value of a variable

 Figure 4-4. Strong typing in the C# Interactive window

CHAPTER 4 ■ USING THE SCRIPTING API

111

 At any time in the window you can type # help to learn different commands that are
available during the session. A sample of the #help output is shown in Figure 4-5 .

 For example, you can type #cls to clear the screen. You can also use #reset to clear
any current script state. Figure 4-6 shows what happens after you type #reset and then
look at the value for x .

 Figure 4-5. Using help to display various commands

 Figure 4-6. Resetting the interactive session

CHAPTER 4 ■ USING THE SCRIPTING API

112

 You can also define types within the session. To do this, you start typing the
definition of a class, and then press Enter. The Interactive window will go into a multiline
edit mode, so you can add members to the class, like fields, properties, and constructors.
Figure 4-7 shows what the window looks like when you define a class.

 Figure 4-7. Creating a class in the Interactive window

 Figure 4-8. Using classes defined in the Interactive window

 Once the class is defined, you can use it in your session. Figure 4-8 demonstrates
code that creates an instance of the class.

CHAPTER 4 ■ USING THE SCRIPTING API

113

 Note that the Interactive window experience isn’t limited to Visual Studio. If you
bring up the Developer Command Prompt for VS2015 (from the Windows Start menu),
you can type “csi” and get the same experience from a command window
(without Intellisense). Figure 4-9 shows what that looks like.

 Figure 4-9. Getting an interactive C# experience from the command line

 Figure 4-10. Loading assemblies within the Interactive window

 That’s the basics of the Interactive window in Visual Studio. Now let’s look at how to
use code assets within the Interactive window.

 Loading Code in Script
 Creating code in the Interactive window is a great way to try different implementations
without needing to create a Visual Studio solution. However, you may want to load references
to other assemblies or previous code snippets in the Interactive window. Let’s tackle the
assembly loading issue first. To do this, you use the #r directive, which requires a full path to
the location of the assembly file. Once its loaded, you can reference types from that assembly
as you normally would. You can even include using statements in your session.

 To see assembly referencing in action, create a Class Library project in Visual Studio.
Add one class called MyValue that is structured the same way as the code in Figure 4-7
earlier in the chapter. After you’ve compiled the code, figure out the path where the
assembly file exists. When you know where that is, you can type in the code you see in
Figure 4-10 (notice that your path will be different than the one shown in the figure).

CHAPTER 4 ■ USING THE SCRIPTING API

114

 After the assembly is loaded, you can reference namespaces within that assembly via
the using statement.

 At this point, there is no easy way to save all the code entered in the session to a
file. The only way to do this is to manually navigate to every line in the session buffer via
the Alt + Arrow Up keystroke and then copy each line of code to a text file. But once you
have your code in a file, you can load it at any time via the #load directive. Let’s say you
captured code in Listing 4-1 to a text file.

 Listing 4-1. Creating a simple C# script file

 #r "C:\YourCodePath\PlayingWithInteractive.dll"
 using PlayingWithInteractive;
 var value = new MyValue(8);

 Notice that the path to load the assembly in Listing 4-1 would have to change based
on where your assembly is located. Once you have that file, you can load it and examine
variables that were created from the script, as shown in Figure 4-11 .

 Figure 4-11. Loading C# script in the Interactive window

 At this point, you should have a good understanding of how the Interactive window
works in Visual Studio. Let’s move our focus away from the Interactive window and direct
it toward the code that powers its implementation: the Scripting API.

 Making C# Interactive
 You’ve already seen how to use C# as a scripting language via the Interactive window in
Visual Studio and the csi.exe command line tool. Now we’ll look at the Scripting API so
you can use it to create extensible applications within .NET. You’ll execute C# code as it’s
entered, preserve state from script execution to script execution, and even analyze the
structure of C# script code.

CHAPTER 4 ■ USING THE SCRIPTING API

115

 Referencing the Scripting NuGet Package
 The first activity you need to do is get the right NuGet package installed into your project.
This is pretty simple to do. Let’s say you create a simple console application called
 ScriptingPlayground . All you need to do is reference the Microsoft.CodeAnalysis.
Scripting package, as shown in Figure 4-12 .

 Figure 4-12. Referencing the NuGet package for the Scripting API

 Figure 4-13. Scripting API assemblies referenced in a project

 Once NuGet is done, you should see two referenced assemblies with “Scripting” in
their name, as shown in Figure 4-13 .

 Now that the project has the right references in place, let’s start using members from
the Scripting API.

 Evaluating Scripts
 The main class you’ll use for scripting is called CSharpScript . Its API surface is pretty
small, meaning that it doesn’t have a lot of methods, but within those methods is all of the
power to make C# scriptable. Let’s start by creating a simple class that will evaluate any
code given to it in a console window. This is shown in Listing 4-2 .

CHAPTER 4 ■ USING THE SCRIPTING API

116

 Listing 4-2. Evaluating code via EvalulateAsync()

 using Microsoft.CodeAnalysis.CSharp.Scripting;
 using Nito.AsyncEx;
 using System;
 using System.Threading.Tasks;

 namespace ScriptingPlayground
 {
 class Program
 {
 static void Main(string[] args)
 {
 AsyncContext.Run(() => Program.MainAsync(args));
 }

 private static async Task MainAsync(string[] args)
 {
 await Program.EvaluateCodeAsync();
 }

 private static async Task EvaluateCodeAsync()
 {
 Console.Out.WriteLine("Enter in your script:");
 var code = Console.In.ReadLine();
 Console.Out.WriteLine
 (await CSharpScript.EvaluateAsync(code));
 }
 }
 }

 ■ Note The AsyncContext class comes from a NuGet package called Nito.AsyncEx.
Currently in .NET you can’t create an async version of the Main() method in a console
application. But using AsyncContext makes this possible. Hopefully in a future version
of .NET console applications will have this capability without needing a helper class. It’s
currently a feature request on the Roslyn GitHub site (https://github.com/dotnet/roslyn/
issues/1695), but it’s unclear if it will be included in a future C# release.

https://github.com/dotnet/roslyn/issues/1695
https://github.com/dotnet/roslyn/issues/1695

CHAPTER 4 ■ USING THE SCRIPTING API

117

 Executing code via CSharpScript is as simple as calling EvaluateAsync() . Figure 4-14
shows what the console window looks like when the application evaluates code.

 Figure 4-14. Evaluating code via the Scripting API

 If you pass code that contains errors to EvaluateAsync() , you’ll get a
 CompilationErrorException . This exception has a Diagnostics property on it that you
can use to identify what the errors are with the code that was evaluated.

 Although EvaluateAsync() lets you run simple pieces of C# code, there’s more that
you can do with scripting than just code evaluation. You can allow the script to use types
and members for other assemblies. For example, let’s say you created this class in an
assembly called ScriptingContext :

 public sealed class Context
 {
 public Context(int value)
 {
 this.Value = value;
 }

 public int Value { get; }
 }

 Assuming that your console application has a reference to the ScriptingContext
assembly, you can allow script code to use the Context class by passing a ScriptOptions
object to EvaluateAsync() . Listing 4-3 shows how this works.

 Listing 4-3. Passing in assembly references to script evaluation

 private static async Task EvaluateCodeWithContextAsync()
 {
 Console.Out.WriteLine("Enter in your script:");
 var code = Console.In.ReadLine();
 Console.Out.WriteLine(
 await CSharpScript.EvaluateAsync(code,
 options: ScriptOptions.Default
 .AddReferences(typeof(Context).Assembly)
 .AddImports(typeof(Context).Namespace)));
 }

CHAPTER 4 ■ USING THE SCRIPTING API

118

 All you need to do is add a reference to the assembly that houses the Context class
via AddReferences() . The AddImports() call essentially adds a using statement with the
namespace of the Context class to the script context. Therefore, a developer doesn’t have
to provide the full type name of the class. Once you change the console application to call
 EvaluateCodeWithContextAsync() on startup, you can reference the Context class in
your script. Figure 4-15 shows what this looks like.

 Figure 4-15. Using custom types in script

 As you can see in Figure 4-15 , the code can use the Context class without any issues.
 You can also provide an instance of an object to the script, allowing the script to use

members on that object. For example, you can create a class called CustomContext that
exposes a Context object and a TextWriter :

 using System.IO;

 namespace ScriptingContext
 {
 public class CustomContext
 {
 public CustomContext(Context context, TextWriter myOut)
 {
 this.Context = context;
 this.MyOut = myOut;
 }

 public Context Context { get; }
 public TextWriter MyOut { get; }
 }
 }

CHAPTER 4 ■ USING THE SCRIPTING API

119

 Then you can create an instance of CustomContext and set the globals argument to
 EvaluateAsync() to that CustomContext instance, as shown in Listing 4-4 .

 Listing 4-4. Using a global context object

 private static async Task EvaluateCodeWithGlobalContextAsync()
 {
 Console.Out.WriteLine("Enter in your script:");
 var code = Console.In.ReadLine();
 Console.Out.WriteLine(
 await CSharpScript.EvaluateAsync(code,
 globals: new CustomContext(
 new Context(4), Console.Out)));
 }

 Note that the Out property of the Console class is given to the CustomContext
instance, letting the script print out information to the context. Figure 4-16 shows how you
can use a script to print the Value property of the Context instance to the console window
if you call EvaluateCodeWithGlobalContextAsync() from the async Main() method.

 Figure 4-16. Using a global object in a script

 So far, you’ve seen how to use EvaluateAsync() to immediately execute a piece of
valid C# code. In the next section, I’ll discuss how you can analyze the script before you
execute it.

 Analyzing Scripts
 Running code via EvaluateAsync() requires a bit more care than what I’ve shown so far.
For example, if there’s syntax errors, you’ll get a CompilationErrorException . Rather
than adding an exception handler to code, you can use Create() on the CSharpScript
class to be a bit more defensive in your script execution implementation. Furthermore,
these methods expose syntax trees and semantic models, so you can query the submitted
script for details on what it intends to do. Listing 4-5 demonstrates how you can perform
this script analysis (note: assume this method is part of the Program class defined in the
“Evaluating Scripts” section).

CHAPTER 4 ■ USING THE SCRIPTING API

120

 Listing 4-5. Analyzing a script’s content

 private static async Task CompileScriptAsync()
 {
 Console.Out.WriteLine("Enter in your script:");
 var code = Console.In.ReadLine();
 var script = CSharpScript.Create(code);
 var compilation = script.GetCompilation();
 var diagnostics = compilation.GetDiagnostics();

 if(diagnostics.Length > 0)
 {
 foreach (var diagnostic in diagnostics)
 {
 Console.Out.WriteLine(diagnostic);
 }
 }
 else
 {
 foreach (var tree in compilation.SyntaxTrees)
 {
 var model = compilation.GetSemanticModel(tree);
 foreach (var node in tree.GetRoot().DescendantNodes(
 _ => true))
 {
 var symbol = model.GetSymbolInfo(node).Symbol;
 Console.Out.WriteLine(
 $"{node.GetType().Name} {node.GetText().ToString()}");

 if (symbol != null)
 {
 var symbolKind = Enum.GetName(
 typeof(SymbolKind), symbol.Kind);
 Console.Out.WriteLine(
 $"\t{symbolKind} {symbol.Name}");
 }
 }
 }

 Console.Out.WriteLine((await script.RunAsync()).ReturnValue);
 }
 }

 The return value of Create() is based on a Script<T> type, with T specified as
an object (there’s also a generic version of Create() you can use if you know what
the script’s return value will be in advance). From this Script<T> class, you can get
compilation information with GetCompilation() , which returns a Compilation object.
The Compilation class is the base class for the CSharpCompilation class you saw in

CHAPTER 4 ■ USING THE SCRIPTING API

121

Chapter 1 in Listing 1-1 . Therefore, you can look at diagnostic information, syntax trees,
semantic models—everything that you learned about in Chapter 1 can be reused here to
query the structure of the given script. In this example, if we have diagnostic information,
we don’t run the script; instead, we print out the error information. Otherwise, we display
syntax and semantic information, and then run the script via RunAsync() .

 Let’s see what the code in Listing 4-5 does with a valid script. Figure 4-17 shows the
results of a successful script analysis.

 Figure 4-17. Analyzing a valid script

http://dx.doi.org/10.1007/978-1-4842-2111-2_1
http://dx.doi.org/10.1007/978-1-4842-2111-2_1#Par33
http://dx.doi.org/10.1007/978-1-4842-2111-2_1

CHAPTER 4 ■ USING THE SCRIPTING API

122

 There’s one more aspect to scripts that I should mention: storing state. Let’s look at
how state works with scripts in the next section.

 State Management in Scripts
 So far the script examples within the “Making C# Interactive” section have all been done
via a single execution of script. That is, we get a line of code from the user, execute that
script, and then the program is done. As you saw with the C# REPL in the “Using the C#
REPL” section, you can type numerous lines of script code and refer to variables and
classes issued earlier in the code. Fortunately, we don’t have to do a lot to manage state
information with the Scripting API. There’s a ScriptState class that is returned from
 RunAsync() that you can use to retain information from one script execution to another.
Listing 4-6 shows you how to use ScriptState to manage a script session (assume that
this method is part of the Program class from the “Evaluating Scripts” section).

 Listing 4-6. Using state management for scripts

 private static async Task ExecuteScriptsWithStateAsync()
 {
 Console.Out.WriteLine(
 "Enter in your script - type \"STOP\" to quit:");

 ScriptState<object> state = null;

 while (true)
 {
 var code = Console.In.ReadLine();

 if (code == "STOP")
 {
 break;
 }

 Figure 4-18 shows what happens when the submitted script contains errors.

 Figure 4-18. Analyzing an invalid script

CHAPTER 4 ■ USING THE SCRIPTING API

123

 else
 {
 state = state == null ?
 await CSharpScript.RunAsync(code) :
 await state.ContinueWithAsync(code);

 foreach(var variable in state.Variables)
 {
 Console.Out.WriteLine(
 $"\t{variable.Name} - {variable.Type.Name}");
 }

 if (state.ReturnValue != null)
 {
 Console.Out.WriteLine(
 $"\tReturn value: {state.ReturnValue}");
 }
 }
 }
 }

 As long as the given text doesn’t equal "STOP" , the code will continue running the
script. Note that we capture the return value of RunAsync() (or ContinueWithAsync() if
the state already exists). This return value will contain all of the code that was parsed in
previous script executions. For example, we can print out the variables that have been
created from each execution. Figure 4-19 shows how variables are retained as more script
is entered.

 Figure 4-19. Using state to retain script execution information

CHAPTER 4 ■ USING THE SCRIPTING API

124

 As Figure 4-19 shows, the first line of code creates a variable called x . The next
line creates a new variable y , but because we’re using ScriptState , we can reference the
 x variable.

 Keep in mind that you can always use a global context object as you saw in the code
in Listing 4-4 . You can also reuse that context object across different script executions.
Let’s say we defined a class called DictionaryContext:

 using System.Collections.Generic;

 namespace ScriptingContext
 {
 public sealed class DictionaryContext
 {
 public DictionaryContext()
 {
 this.Values = new Dictionary<string, object>();
 }

 public Dictionary<string, object> Values { get; }
 }
 }

 Listing 4-7 shows how you can manage state with a DictionaryContext instance
(again, this code is part of the Program class from the “Evaluating Scripts” section).

 Listing 4-7. Using a shared global object to store state

 private static async Task ExecuteScriptsWithGlobalContextAsync()
 {
 Console.Out.WriteLine(
 "Enter in your script - type \"STOP\" to quit:");

 var session = new DictionaryContext();

 while (true)
 {
 var code = Console.In.ReadLine();

 if (code == "STOP")
 {
 break;
 }
 else
 {
 var result = await CSharpScript.RunAsync(code,
 globals: session);

CHAPTER 4 ■ USING THE SCRIPTING API

125

 if(result.ReturnValue != null)
 {
 Console.Out.WriteLine(
 $"\t{result.ReturnValue}");
 }
 }
 }
 }

 Figure 4-20 demonstrates how shared state, stored in DictionaryContext , can be used.

 Figure 4-20. Using a global object to share state

 We don’t preserve variables between script executions, but we can store and load
values from the shared context. Notice that because all of the values are stored as an
 object , we have to cast the value back to what we think it should be if we try to retrieve it
from the dictionary.

 Although we’ve spent a fair amount of time in this chapter looking at the cool
features of the Scripting API, there are a couple of aspects of this API that you should be
aware of if you decide to include its features in your applications. These are performance,
memory usage, and security. Before I close out this chapter, let’s take a look at these
concerns in detail.

 Concerns with the Scripting API
 Being able to use C# as a scripting language is a welcome addition to the language’s
capability. However, there are a couple of areas where care should be taken to minimize
potential problems from becoming actual issues. We’ll discuss security later in the
“Scripts and Security” section, but first we’ll start with performance concerns and
memory usage in scripts.

CHAPTER 4 ■ USING THE SCRIPTING API

126

 Scripts, Performance, and Memory Usage
 When you see the Scripting API for the first time, you may start thinking about adding the
ability to extend applications with dynamic C# code execution. As you saw with VBA in
the “Orchestrating an Environment” section, exposing an object model for an application
allows users to add features that aren’t included within the application. However, keep
in mind that there’s there a cost involved with using scripts, both in performance and
memory usage.

 Let’s create a small piece of code in a console application that will continually
generate a simplistic, random C# mathematical statement and run it with the Scripting
API. Once 1000 scripts are generated, it will generate the working set of the application
along with how long it took to execute those scripts. Listing 4-8 shows how this works.

 Listing 4-8. Executing random code via the Scripting API

 using System.Diagnostics;

 private static async Task EvaluateRandomScriptsAsync()
 {
 var random = new Random();
 var iterations = 0;
 var stopWatch = Stopwatch.StartNew();

 while (true)
 {
 var script = $@"({random.Next(1000)} + {random.Next(1000)}) *
 {random.Next(10000)}";
 await CSharpScript.EvaluateAsync(script);
 iterations++;

 if (iterations == 1000)
 {
 stopWatch.Stop();
 Console.Out.WriteLine(
 $"{Environment.WorkingSet} - time: {stopWatch.Elapsed}");
 stopWatch = Stopwatch.StartNew();
 iterations = 0;
 }
 }
 }

 The code in Listing 4-8 generates code that looks like this: (452 + 112) * 34 . To run
this method, we’ll put it into a Program class:

 using Microsoft.CodeAnalysis.CSharp.Scripting;
 using Nito.AsyncEx;
 using System;
 using System.Diagnostics;

CHAPTER 4 ■ USING THE SCRIPTING API

127

 using System.Linq.Expressions;
 using System.Threading.Tasks;

 namespace ScriptingAndMemory
 {
 class Program
 {
 static void Main(string[] args)
 {
 AsyncContext.Run(
 () => Program.MainAsync(args));
 }

 private static async Task MainAsync(string[] args)
 {
 await EvaluateRandomScriptsAsync();
 }

 private static async Task EvaluateRandomScriptsAsync()
 {
 /* ... */
 }
 }
 }

CHAPTER 4 ■ USING THE SCRIPTING API

128

 Figure 4-21 shows what happens when you run this code.

 Figure 4-21. Memory and performance characteristics of script execution

 Notice that the size of the working set slowly, but surely, increases over time. Also,
the time to execute 1000 scripts slowly increases as well.

 Let’s compare this approach of generating and executing dynamically generated
code using the Scripting API with another technique: expressions. The System.Linq.
Expressions namespace has types that allow you to create methods that are compiled
to IL, just like C# code. Listing 4-9 shows how the Expressions API is used to create
methods that are functionally the same as the script code generated in Listing 4-9
(note that this method exists in our Program class).

 Listing 4-9. Executing random code via the Expressions API

 private static void EvaluateRandomExpressions()
 {
 var random = new Random();
 var iterations = 0;
 var stopWatch = Stopwatch.StartNew();

CHAPTER 4 ■ USING THE SCRIPTING API

129

 while (true)
 {
 var lambda = Expression.Lambda(
 Expression.Multiply(
 Expression.Add(
 Expression.Constant(random.Next(1000)),
 Expression.Constant(random.Next(1000))),
 Expression.Constant(random.Next(10000))));
 (lambda.Compile() as Func<int>)();
 iterations++;

 if (iterations == 1000)
 {
 stopWatch.Stop();
 Console.Out.WriteLine(
 $"{Environment.WorkingSet} - time: {stopWatch.Elapsed}");
 stopWatch = Stopwatch.StartNew();
 iterations = 0;
 }
 }
 }

 Figure 4-22 shows the performance characteristics of the Expressions API approach
by calling EvaluateRandomExpressions() from the Program ’s Main() method.

 Figure 4-22. Memory and performance characteristics of expression execution

CHAPTER 4 ■ USING THE SCRIPTING API

130

 In this case, the working set size and performance values are stable. The working set
size is also smaller than the Scripting API approach. Furthermore, based on the values
generated by this code, the Expressions API approach is three orders of magnitude faster
than the Scripting API. For example, a script takes about 0.015 seconds to run. With an
expression, it takes 0.00003 seconds.

 The benefits of using the Expressions API doesn’t mean that you should avoid using
the Scripting API; far from it! Keep in mind that this test is literally creating thousands of
scripts, and that’s typically not how scripts are executed. Scripts are used to orchestrate
other pieces of code in an application in a way that the developers didn’t initially
anticipate. Running a script 1000 times a second continuously within this context isn’t
common. Scripts are also exploratory, especially with a REPL. Once a developer has done
enough C# scripting experimentation, that code can potentially be moved into a more
typical compilation pipeline where the result is an assembly that can be optimized in
numerous ways. Finally, a script can allow you to create new classes; the Expressions API
is limited to a method implementation.

 Another area where a developer should be cautious with scripts is with security. Let’s
investigate this issue next.

 Scripts and Security
 It’s tempting to give users the ability to interact with an application’s features in ways
that were not originally codified as pieces of accepted functionality. For example, I’ve
seen a number of applications at clients that I’ve consulted for where users can create
reports based on the information contained within the application’s database. Usually,
this means they can submit SQL statements and save the data into an Excel spreadsheet.
Initially, this sounds like a great idea, because the application empowers uses to go
beyond what the application can provide. Unfortunately, this can also be a source of
unexpected problems as well, such as:

• Performance. Queries that are submitted may cause significant
delays due to unexpected fields being seached, where those fields
do not have any indexes in place. This can affect the performance
of other areas of the application.

• Resource use. If the users enter queries that start with "SELECT *" ,
they may retrieve a large amount of data that will tax the system’s
resources.

• Security. Entering queries that take advantage of SQL injection
techniques may cause significant damage to the data contained
within the database.

 Security is the issue we’ll focus on. If you want to use the Scripting API, you have to
keep in mind what functionality the user will have available and ensure they can only
use certain .NET members in their script code, or prevent them from using potentially
harmful APIs. Let’s look at an example.

CHAPTER 4 ■ USING THE SCRIPTING API

131

 This demonstration uses a console application that provides an object model for a
user to interact with. The first step is to create a simple Person class defined as follows:

 public sealed class Person
 {
 public Person(string name, uint age)
 {
 this.Name = name;
 this.Age = age;
 }

 public void Save() { }

 public uint Age { get; set; }
 public string Name { get; set; }
 }

 We’ll also create a script context that exposes a list of people:

 public sealed class ScriptingContext
 {
 public ScriptingContext()
 {
 this.People = ImmutableArray.Create(
 new Person("Joe Smith", 30),
 new Person("Daniel Davis", 20),
 new Person("Sofia Wright", 25));
 }

 public ImmutableArray<Person> People { get; }
 }

 This is the object model that we’ll pass to the CSharpScript class so scripts can
query the list and find people that match a set of criteria the user defines. Listing 4-10
shows the asynchronous MainAsync() method that is created to handle this scenario.

 Listing 4-10. Running scripts with an accesssible application object model

 using System.IO;
 using System.Linq;

 private static async Task MainAsync(string[] args)
 {
 File.WriteAllLines("secrets.txt",
 new[] { "Secret password: 12345" });

 Console.Out.WriteLine(
 "Enter in your script - type \"STOP\" to quit:");

CHAPTER 4 ■ USING THE SCRIPTING API

132

 var context = new ScriptingContext();
 var options = ScriptOptions.Default
 .AddImports(
 typeof(ImmutableArrayExtensions).Namespace)
 .AddReferences(
 typeof(ImmutableArrayExtensions).Assembly);

 while (true)
 {
 var code = Console.In.ReadLine();

 if (code == "STOP")
 {
 break;
 }
 else
 {
 var script = CSharpScript.Create(code,
 globalsType: typeof(ScriptingContext),
 options: options);
 var compilation = script.GetCompilation();
 var diagnostics = compilation.GetDiagnostics();

 if (diagnostics.Length > 0)
 {
 foreach (var diagnostic in diagnostics)
 {
 Console.Out.WriteLine(diagnostic);
 }
 }
 else
 {
 var result = await CSharpScript.RunAsync(code,
 globals: context,
 options: options);

 if(result.ReturnValue != null)
 {
 Console.Out.WriteLine($"\t{result.ReturnValue}");
 }
 }
 }
 }
 }

CHAPTER 4 ■ USING THE SCRIPTING API

133

 The code is similar to code you saw in Listing 4-5 . We create a global context object
so scripts can use members on that context. If there are no errors, we run the script.
Figure 4-23 shows what happens when a script is entered that uses LINQ to query the
 People array.

 Figure 4-24. Finding secrets in a scripting session

 Figure 4-23. Running a script to find specific people

 As expected, looking for people with a name that starts with “Joe” returns one
person. But notice that MainAsync() creates a file with secret information when it starts.
If a script user started using members from the System.IO namespace like this:

 System.IO.Directory.EnumerateFiles(".").ToList()
 .ForEach(_ => System.Console.Out.WriteLine(_));

 They’ll see “secrets.txt” in the resulting list printed out to the Console window .
Figure 4-24 shows the harm that can be done with this information.

 This isn’t good! With a small amount of code, a user can find files of interest, and
then read that file’s contents. Or, a malicious user could use System.IO types to delete
numerous files on the hard drive.

CHAPTER 4 ■ USING THE SCRIPTING API

134

 We definitely do not want users to have access to the file system in this application.
Therefore, we should prevent usage of anything from the System.IO namespace .
However, that’s not sufficient. Consider this line of code:

 System.Type.GetType("System.IO.File").GetMethod(
 "ReadAllLines", new[] { typeof(string) }).Invoke(null, new[] { "secrets.txt" });

 This code never uses any System.IO type or member directly. Rather, it uses the
Reflection API to make a method call that will read file contents. If we were specifically
looking for System.IO usage, this would circumvent it. Therefore, we definitely want to
stop any Reflection API usage.

 But there’s potentially one more issue at hand. Take a look at this script snippet:

 var person = People.Where(_ => _.Name.StartsWith("Joe"))
 .ToArray()[0]; person.Name = "Changed Name"; person.Save();

 Do we want users to have the ability to change a person’s name, along with calling
 Save() ? Granted, Save() doesn’t do anything in our example, but it’s easy to imagine a
real-world example where Save() may try to access a database and persist any changes.
Maybe the user won’t have that kind of authority with their account’s permissions, but
we can also prevent scripts that try to persist changes on a Person instance from being
executed in the first place.

 To implement all the security restrictions we just discussed, we’ll create a
 VerifyCompilation() method that will traverse nodes in the syntax tree from the script
and examine whether any undesirable members are being used in that code. Listing 4-11
shows how VerifyCompilation() is defined.

 Listing 4-11. Analyzing scripts for invalid member usage

 private static ImmutableArray<Diagnostic> VerifyCompilation(
 Compilation compilation)
 {
 var diagnostics = new List<Diagnostic>();

 foreach (var tree in compilation.SyntaxTrees)
 {
 var model = compilation.GetSemanticModel(tree);
 foreach (var node in tree.GetRoot().DescendantNodes(
 _ => true))
 {
 var symbol = model.GetSymbolInfo(node).Symbol;

 if (symbol != null)
 {
 var symbolNamespace = Program.GetFullNamespace(symbol);

CHAPTER 4 ■ USING THE SCRIPTING API

135

 if(symbol.Kind == SymbolKind.Method ||
 symbol.Kind == SymbolKind.Property ||
 symbol.Kind == SymbolKind.NamedType)
 {
 if(symbol.Kind == SymbolKind.Method)
 {
 if (symbolNamespace == typeof(Person).Namespace &&
 symbol.ContainingType.Name == nameof(Person) &&
 symbol.Name == nameof(Person.Save))
 {
 diagnostics.Add(Diagnostic.Create(
 new DiagnosticDescriptor("SCRIPT02",
 "Persistence Error", "Cannot save a person",
 "Usage", DiagnosticSeverity.Error, false),
 node.GetLocation()));
 }
 }

 if (symbolNamespace == "System.IO" ||
 symbolNamespace == "System.Reflection")
 {
 diagnostics.Add(Diagnostic.Create(
 new DiagnosticDescriptor("SCRIPT01",
 "Inaccessable Member",
 "Cannot allow a member from namespace {0} to be used",
 "Usage", DiagnosticSeverity.Error, false),
 node.GetLocation(), symbolNamespace));
 }
 }
 }
 }
 }

 return diagnostics.ToImmutableArray();
 }

 We attempt to get an ISymbol reference for every node in the syntax tree. If we come
across a method, property, or type, we look for two conditions. The first one is when the
 symbol reference is actually a call to Save() on a Person object. The other one is when
the symbol exists within either the System.IO or the System.Reflection namespace .
The GetFullNamespace() method gets us the namespace of the symbol; here’s how
 GetFullNamespace() is implemented:

 private static string GetFullNamespace(ISymbol symbol)
 {
 var namespaces = new List<string>();
 var @namespace = symbol.ContainingNamespace;

CHAPTER 4 ■ USING THE SCRIPTING API

136

 while(@namespace != null)
 {
 if(!string.IsNullOrWhiteSpace(@namespace.Name))
 {
 namespaces.Add(@namespace.Name);
 }

 @namespace = @namespace.ContainingNamespace;
 }

 namespaces.Reverse();

 return string.Join(".", namespaces);
 }

 With VerifyImplementation() in place, we need to change only one line of code in
 MainAsync() . Change this line:

 var diagnostics = compilation.GetDiagnostics();

 To this:

 var diagnostics = compilation.GetDiagnostics()
 .Union(Program.VerifyCompilation(
 compilation))
 .ToImmutableArray();

 This code combines the diagnostic results from the compilation of the script with
any custom diagnostics generated from our analysis.

 Now, let’s run a couple of tests against this new implementation. First, let’s run a script
that tries to modify and save a Person instance. Figure 4-25 shows you what happens.

 Figure 4-25. Preventing persistence on a Person object

CHAPTER 4 ■ USING THE SCRIPTING API

137

 As expected, the script isn’t executed and we get an error. Figure 4-26 shows similar
behavior when we try to use Reflection to read secret information in a file.

 Figure 4-26. Preventing Reflection calls in a script

 These security-based techniques should be kept in mind if you let users write C#
scripts in your applications. However, realize that these security measures don’t cover all
of the bases. Here are some other thoughts to consider:

• API Exclusion . There may be more APIs that you’ll need to blacklist
to prevent malicious activites from being executed. For example,
we don’t prevent members from System.Reflection.Emit from
being used here. You’d definitely want to include those members
because a user could write script that literally creates a new
assembly on the fly.

• Restricted UIs . Our example used a simple console application.
Real-world applications that users interact with are typically web-,
mobile-, or desktop-based. You can create a UI that allows users to
interact with the object model but in a restricted way. For example,
you can provide a drop down that allows the user to query the
 People list with standardized actions, like “Starts with” for the
name, and “less than” for the age. The user doesn’t enter code;
they interact with UI elements whose values are used to generate
script. However, this may limit the ability for the user to interact
with the application’s object model in ways you can’t anticipate.

• Use Restricted User Accounts . Ensure that the identity that is
used to execute the script is highly limited. For example, you
can create a user account that cannot interact with files on the
machine where the script is executed. This would prevent the
script from being able to use files even if malicious users figured
out how to write script to get around the prevention techniques
demonstrated in this section.

CHAPTER 4 ■ USING THE SCRIPTING API

138

 Trying to limit what a script can do is not a trivial endeavour. With flexibility and
extensibility comes responsibilty and governance. You must ensure that exposing script
execution in an application does not reveal any security holes for users to take advantage of.

 Conclusion
 In this chapter, you saw how you can treat C# as a scripting language with the
Scripting API. This included using the Interactive window in Visual Studio and using
the CSharpScript object to compile and execute script. Performance and security
considerations with C# as a scripting language were also investigated. In the next and
final chapter, you’ll learn how the Compiler API is already being used by open source
packages and how C# may change in the future using the Compiler API’s features.

139© Jason Bock 2016
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2_5

 CHAPTER 5

 The Future of the Compiler API

 Although this is the last chapter in this book, the story of the Compiler API doesn’t end.
What does the future hold for the Compiler API? To close out this book, we’ll look at
tools and frameworks that are already taking advantage of the Compiler API in creative
and versatile ways. We’ll also explore the upcoming possible transformation of C# with
metaprogramming and code injection.

 Current Usage
 Throughout this book, you saw how the Compiler API is used to enable a developer to
write diagnostics and refactorings, along with the Scripting API that makes C# into a
scripting language. Although these are powerful capabilities that provide a developer
with rich information about their code, there is no limitation in terms of where you can
use these API sets in your C# code. You can include the Compiler API packages and tools
that are taking advantage of the Compiler API into your own projects via NuGet. We’ll
take a look at packages that user the Compiler API in this section, starting with a mocking
framework I created called Rocks.

 Generating Mocks
 If you’ve ever done any unit testing in .NET, you’ve probably come across the need or
desire to create “fake” versions of dependencies. Let’s use a very generic example to
illustrate this. Let’s say you have a class that uses a dependency based on an interface
called IService :

 public interface IService
 {
 int GetId();
 }

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

140

 There’s a class called ServiceUser that uses an implementation of the service to get
an ID value:

 public sealed class ServiceUser
 {
 public ServiceUser(IService service)
 {
 if(service == null)
 {
 throw new ArgumentNullException(nameof(service));
 }

 this.Id = service.GetId();
 }

 public int Id { get; }
 }

 This is an example of dependency injection. The ServiceUser class needs to use an
object that implements IService , but it doesn’t care what that object does to get the ID
value. It could be calling a REST service, it could be reading a file, or it could be accessing
a database: the point is, ServiceUser doesn’t care. It only needs to call GetId() .

 Now, to test ServiceUser , we need an instance of IService . But we don’t necessarily
want to talk to the object that will be used at runtime during the unit test due to
concerns like performance and isolation. For example, if the implementation is talking
to a service, latency time may creep into the test along with other tests that need to
use the dependency. In addition, we’re testing ServiceUser ; we’re not testing how the
implementation of IService works. Focusing our testing responsibilities on the code we
want to test is essential.

 A typical approach during a test is to create a mock object. This is an object that
implements a given abstraction (like an interface), but it also allows the developer to
specify expectations. That is, the developer can state the behaviors and interactions that
should occur with the mock during the test run. There are great frameworks that already
exist in the .NET space that create mocks, such as Moq (http://www.moqthis.com) and
NSubstitute (http://nsubstitute.github.io). Listing 5-1 shows how you can run code
that will test ServiceUser ’s interaction with a mock of IService .

 Listing 5-1. Using Moq to create a mock object

 using Moq;

 private static void MockUsingMoq()
 {
 var service = new Mock<IService>(MockBehavior.Strict);
 service.Setup(_ => _.GetId()).Returns(2);

http://www.moqthis.com/
http://nsubstitute.github.io/

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

141

 var user = new ServiceUser(service.Object);
 Debug.Assert(user.Id == 2);

 service.VerifyAll();
 }

 The Mock class allows the developer to create an expectation that GetId() will be
called via Setup() . Since this method returns a value, Returns() is used to specify that
the value 2 will be returned. Debug.Assert() checks that the Id property is equal to 2,
which should have been set from the GetId() call. Finally, VerifyAll() is called on the
mock to ensure that all expectations were satisfied.

 However, there’s one architecture issue with frameworks like Moq and NSubstitute.
A mocking framework needs to synthesize a new class at runtime based on the
abstraction that it’s given. To do this, the mocking framework typically use members from
the System.Reflection.Emit namespace , which allows you to create a class on the fly.
The issue with this namespace is that you have to know how IL works in .NET. IL is the
language that any language that wants to run on .NET must compile to. While it’s not as
difficult as pure x86 assembly language, as mentioned in the “What Do Compilers Do?”
section in Chapter 1 , it’s not trivial either. IL is not a language most .NET developers
know, and even if they’ve spent time in it, it’s very easy to create code via IL that fails in
ways that have never been seen before. What we need is a better way to create code on the
fly in a language that most .NET developers know. And that’s exactly what the Compiler
API gives us and the reason I created Rocks (https://github.com/jasonbock/rocks).
Rocks is a mocking framework that’s similar to Moq and NSubstitute but has one key
difference: it uses the Compiler API to create a class at runtime rather than IL. To
a developer using Rocks, it doesn’t seem much different than other .NET mocking
frameworks. Listing 5-2 shows how to create a mock object using the same code from
Listing 5-1 except instead of using Moq it uses Rocks.

 Listing 5-2. Using Rocks to create a mock object

 using Rocks;
 using Rocks.Options;

 private static void MockUsingRocks()
 {
 var service = Rock.Create<IService>();
 service.Handle(_ => _.GetId()).Returns(2);

 var user = new ServiceUser(service.Make());
 Debug.Assert(user.Id == 2);

 service.Verify();
 }

http://dx.doi.org/10.1007/978-1-4842-2111-2_1
https://github.com/jasonbock/rocks

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

142

 But the mock generated when Make() is called is based on pure C# code. To see this,
change the line of code with Rock.Create() from this:

 var service = Rock.Create<IService>();

 to this:

 var service = Rock.Create<IService>(
 new RockOptions(
 level: OptimizationSetting.Debug,
 codeFile: CodeFileOptions.Create));

 Then, put a breakpoint on the line of code that creates a new instance of
 ServiceUser , and start Visual Studio in Debug mode. When the breakpoint is hit, press
F11, which will step into the implementation of the mock. You should see a screen in
Visual Studio similar to Figure 5-1 .

 Figure 5-1. Stepping into generated mock code in Visual Studio

 Note that the generated class uses a Guid in its name to prevent any kind of name
collision with other types. The class also inherits from IService , so any code that needs
to interact with an IService interface (like ServiceUser) can use this mock.

 What’s amazing about creating mocks using the Compiler API is that the Compiler
API makes it extremely simple to debug dynamic code generated at runtime based on
how the Compiler API is supposed to work in the first place! Rocks takes advantage of the
fact that you can compile code with debug symbols generated. There’s very little Rocks

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

143

has to do to implement debugging capabilities. If you want to do this with types from
 System.Reflection.Emit, well, it’s a long story, but it’s difficult. You have to manually
generate an .il file yourself and match up all the lines of code to debug symbols manually.
A Rocks user will probably never step into the generated mock code, but for me as the
implementor of Rocks, it’s been a great feature to take advantage of when I’m trying to
diagnose issues with my mock code generation.

 Creating mocks is one area where you can take advantage of the Compiler API’s ability to
generate code. Let’s look at another innovate package that helps you target the Web with C#.

 Building Code with Code
 Ever since .NET’s inception, MSBuild has been the standard way to build code. MSBuild
understands solutions and projects and can orchestrate their builds as well as provide
customizations to the process, such as running tests and deploying binaries. However,
MSBuild is not the only way to build code. A vast array of build tools and scripting
languages are available to use for your building concerns. One tool is called Cake
(http://cakebuild.net/) , which uses the Compiler API to execute build steps using
a C#-like domain specific language (DSL) . Let’s create a solution that has two projects
to see how we can use Cake to handle the build steps. One project is a class library
called RandomGeneration that uses a NuGet package to generate a random number, and
the other project called RandomGeneration.Tests has tests for our class library. The
 RandomGeneration project will also have a .nuspec file that can be used to generate a
NuGet package.

 Here’s what the Randomness class looks like (which exists in RandomGeneration):

 using Spackle;

 namespace RandomGeneration
 {
 public sealed class Randomness
 {
 public int GetValue(int start, int end)
 {
 return new SecureRandom().Next(start, end);
 }
 }
 }

 The SecureRandom class comes from a NuGet package I’ve created called Spackle
(https://www.nuget.org/packages/Spackle/). Speaking of NuGet, here’s what the
RandomGeneration.nuspec file looks like for this project:

 <?xml version="1.0" encoding="utf-8"?>
 <package>
 <metadata>
 <id>RandomGeneration</id>
 <version>1.0.0</version>

http://cakebuild.net/)
https://www.nuget.org/packages/Spackle/

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

144

 <authors>Jason Bock</authors>
 <owners>Jason Bock</owners>
 <description>Generate random numbers within a range.</description>
 <tags>netframework</tags>
 <language>en-US</language>
 <dependencies>
 <dependency id="Spackle" version="7.1.0" />
 </dependencies>
 </metadata>
 <files>
 <file src="RandomGeneration.dll" target="lib\net46" />
 </files>
 </package>

 Here’s the code that tests GetValue() :

 using Microsoft.VisualStudio.TestTools.UnitTesting;

 namespace RandomGeneration.Tests
 {
 [TestClass]
 public sealed class RandomnessTests
 {
 [TestMethod]
 public void GetValue()
 {
 var value = new Randomness().GetValue(2, 10);
 Assert.IsTrue(value >= 2);
 Assert.IsTrue(value <= 10);
 }
 }
 }

 Now, let’s see how we can get Cake involved in the build process. Here are the steps
we want to perform:

 1. Build the RandomGeneration class library.

 2. Run the tests in RandomGeneration.Tests .

 3. Create a NuGet package file based on the RandomGeneration.
nuspec definition.

 The first action is to create a Cake bootstrapper file . This boostrapper file is a
PowerShell script that will run our Cake build file. To make this file, open a PowerShell
window, navigate to the directory that contains the RandomGeneration solution file, and
run the following command:

 Invoke-WebRequest http://cakebuild.net/bootstrapper/windows -OutFile build.ps1

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

145

 You should get a build.ps1 file in your solution directory when this is done. Now, you
need to create a cake.build file in this directory. The cake.build file is just a text file so you
can use any text editor you want to create it. Listing 5-3 shows what the build file looks
like for our RandomGeneration solution .

 Listing 5-3. Definition of the Cake build file

 var target = Argument<string>("target", "Default");
 var configuration = Argument<string>("configuration", "Release");
 var solution = "RandomGeneration.sln";

 Task("Clean")
 .Does(() =>
 {
 CleanDirectories("./**/bin/" + configuration);
 CleanDirectories("./**/obj/" + configuration);
 });

 Task("Restore")
 .Does(() =>
 {
 NuGetRestore(solution);
 });

 Task("Build")
 .IsDependentOn("Clean")
 .IsDependentOn("Restore")
 .Does(() =>
 {
 MSBuild(solution, settings =>
 settings.SetPlatformTarget(PlatformTarget.MSIL)
 .WithTarget("Build")
 .SetConfiguration(configuration));
 });

 Task("Tests")
 .IsDependentOn("Build")
 .Does(() =>
 {
 MSTest("./**/*.Tests.dll",
 new MSTestSettings
 {
 NoIsolation = true
 });
 });

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

146

 Task("NuGetPack")
 .IsDependentOn("Tests")
 .Does(() =>
 {
 CreateDirectory("./NuGet Pack");
 CopyFile("./RandomGeneration/RandomGeneration.nuspec",
 "./NuGet Pack/RandomGeneration.nuspec");
 CopyDirectory("./RandomGeneration/bin/Release",
 "./NuGet Pack");
 NuGetPack("./NuGet Pack/RandomGeneration.nuspec",
 new NuGetPackSettings
 {
 OutputDirectory = "./NuGet Pack"
 });
 });

 Task("Default")
 .IsDependentOn("Build")
 .IsDependentOn("Tests")
 .IsDependentOn("NuGetPack");

 RunTarget(target);

 Although it may look like a lot of code, it’s pretty easy to decipher a Cake script. You
define tasks that should be run during a build with the Task() method . Tasks can have
dependencies on other tasks—for example, in this script, the “Clean” and “Restore” tasks
must execute before the “Build” task runs. Each task can execute code in the Does()
action method . It’s completely up to you to do what you think is necessary for each task.
For example, in the “Build” task, the MSBuild() method is used to build all the code in
the solution. The “Tests” task runs all of the tests via the MSTest() method. Also, keep in
mind that Cake is smart enough to run each task only once, even if tasks are declared as
dependencies more than once.

 Once you have the script file setup, you run “./build.ps1” in a PowerShell command
window. This script will get the necessary Cake components if it can’t find them, and
then the build.ps1 script will build your Cake script file. This is where the power of the
Compiler API comes into play. Because your Cake script file is really C# code, you can
write your build process in the language you code in. You can declare variables and use
other .NET libraries—it’s completely up to you. Once the code is compiled, Cake runs the
default task.

 ■ Note You'll find a number of built-in Cake tasks and methods at http://cakebuild.
net/dsl . Also, you can create your own aliases to extend the build process: you'll find
the details at http://cakebuild.net/docs/fundamentals/aliases . Additionally, there
are numerous add-ins you can use to control other tools, such as AppVeyor, Slack, and
HockeyApp; this list is at http://cakebuild.net/api .

http://cakebuild.net/dsl
http://cakebuild.net/dsl
http://cakebuild.net/docs/fundamentals/aliases
http://cakebuild.net/api

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

147

 If you haven’t set up a build server or done automated deployments, I highly
recommend you consider using a tool like Cake to do it. Automating manual steps leads
to greater productivity, and the Compiler API can empower your continuous integration
and deployment needs.

 Other Compiler API- Based Tools and Frameworks
 The Rocks and Cake packages you saw earlier are just a small sample of what’s already
available in the .NET space that use the Compiler API. Here are some other packages you
should check out:

• DotNetAnalyzers (https://github.com/DotNetAnalyzers/
DotNetAnalyzers) and StyleCopAnalyzers (https://github.com/
DotNetAnalyzers/StyleCopAnalyzers)—a suite of diagnostics
that enforce rules partially based on the StyleCop tool
(http://stylecop.codeplex.com/).

• ScriptCS (http://scriptcs.net/)—a C# scripting
implementation

• OmniSharp (http://www.omnisharp.net/)—a .NET editor
written entirely in .NET

• RefactoringEssentials (http://vsrefactoringessentials.com/)—
a suite of refactorings and analyzers

• ConfigR (https://github.com/config-r/config-r)—a package
that uses C# code to power configuration files

 This list is not exhaustive by any means. .NET code is being infused with the power of
the Compiler API. More and more tools and packages are using its capabilities to power
their features. But, what about the C# language itself? In the next section, you’ll examine
how the Compiler API may affect the fundamental way you write code in C#.

 Looking into C#’s Future
 It’s great to see open-source packages use the Compiler API in innovative and creative
ways. But wouldn’t it be ideal to share pieces of code in .NET to greatly simplify
applications? Can we change how C# works so code generation is an integral part of the
language? There are strong hints that the next version of C# will have this capability. To
close out this chapter, let’s take a theoretical look at how source generators will affect the
way you code in C# in a deep, revolutionary way.

https://github.com/DotNetAnalyzers/DotNetAnalyzers
https://github.com/DotNetAnalyzers/DotNetAnalyzers
https://github.com/DotNetAnalyzers/StyleCopAnalyzers
https://github.com/DotNetAnalyzers/StyleCopAnalyzers
http://stylecop.codeplex.com/
http://scriptcs.net/
http://www.omnisharp.net/
http://vsrefactoringessentials.com/
https://github.com/config-r/config-r

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

148

 ■ Note Keep in mind that this source generator feature is still experimental at the time
of this writing, so I won't go into any specifics on its implementation. It was demonstrated
at //BUILD (https://channel9.msdn.com/Events/Build/2016/B889 —start watching at
the 54:00 mark), and two GitHub issues are related to this feature at https://github.com/
dotnet/roslyn/issues/5561 and https://github.com/dotnet/roslyn/issues/5292 ;
related issues are tagged with “New Language Feature—Replace/Original.” In addition, it’s
in C#7's “strong interest” section for proposed features (https://github.com/dotnet/
roslyn/issues/2136). That said, there is no guarantee that source generators will be in the
next version of C#, but it's a feature that C# developers should be watching because it has
the potential to radically change how they design their applications.

 A Quick Story About Property Change Notifications
 One example of what .NET developers have been begging for in an automatic
implementation of a specific scenario is property change notification. A property change
notification happens when your class implements INotifyPropertyChanged . Here’s
one way you can implement this interface. You create a base class that implements
 INotifyPropertyChanged , as shown in Listing 5-4 .

 Listing 5-4. Providing a reusable implementation of INotifyPropertyChanged

 public abstract class Properties
 : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;

 protected Properties() { }

 protected virtual void OnPropertyChanged(string propertyName)
 {
 this.PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }

 protected void SetField<T>(ref T field,
 T value, string propertyName)
 {
 if (!EqualityComparer<T>.Default.Equals(field, value))
 {
 field = value;
 this.OnPropertyChanged(propertyName);
 }
 }
 }

https://channel9.msdn.com/Events/Build/2016/B889
https://github.com/dotnet/roslyn/issues/5561
https://github.com/dotnet/roslyn/issues/5561
https://github.com/dotnet/roslyn/issues/5292
https://github.com/dotnet/roslyn/issues/2136
https://github.com/dotnet/roslyn/issues/2136

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

149

 Then, you can inherit from the Properties class to publish property change events:

 public class IntegerData
 : Properties
 {
 private int value;
 public int Value
 {
 get { return this.value; }
 set { this.SetField(ref this.value, value, nameof(Value)); }
 }
 }

 If you use the code from Listing 5-4 and the IntegerData class in a console
application like this, you change the Value property to different values:

 private static void Main()
 {
 var properties = new IntegerData();
 properties.PropertyChanged +=
 (s, e) => Console.Out.WriteLine(
 $"Property {e.PropertyName} changed.");
 Console.Out.WriteLine(
 $"properties.Value is {properties.Value}");
 properties.Value = 2;
 Console.Out.WriteLine(
 $"properties.Value is {properties.Value}");
 properties.Value = 3;
 Console.Out.WriteLine(
 $"properties.Value is {properties.Value}");
 properties.Value = 3;
 Console.Out.WriteLine(
 $"properties.Value is {properties.Value}");
 properties.Value = 4;
 Console.Out.WriteLine(
 $"properties.Value is {properties.Value}");
 }

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

150

 As expected, you only get property change notifications when the property value
actually changes.

 Although this code works as expected, the result isn’t ideal. One problem with this
approach of using a base class is that a developer cannot use inheritance effectively.
Because you can only inherit from one class, you can’t inherit from any other classes
other than Properties . However, if you don’t provide a base class that handles
 INotifyPropertyChanged , you force every class that wants to do change notifications to
implement INotifyPropertyChanged . There are ways to get around this issue of single
class inheritance as well, but none of them solve the problem elegantly. The C# language
could address this by adding a new keyword like “notify” that a developer could use
on properties. The C# compiler would then be responsible for generating the property
changed code machinery. But, this solution isn’t scalable. There are numerous cases
where coding aspects like implementing INotifyPropertyChanged should be handled in
a repeatable fashion. We can’t create keywords every time we run into conditions where
we want to repeat an implementation of code in numerous places of an application.

 In the next section, I’ll talk about how repeatable code generation scenarios may be
improved in a future version of C#.

 Reusing Common Implementations
 A better approach to handling INotifyPropertyChanged is to provide a common,
reusable approach independent of keywords and typical code reuse techniques. The
following code snippet shows what a developer would want to do:

 [PropertyChanged]
 public partial class IntegerData
 {
 public int Value { get; set;}
 }

 Figure 5-2. Receiving property change notifications

 Figure 5-2 shows what happens.

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

151

 The idea here is that the C# compiler would see the PropertyChangedAttribute
and use the attribute’s implementation to generate code for the target class, correctly
implementing INotifyPropertyChanged . These attributes would be different than
the attributes that we currently create in that these compile-time attributes wouldn’t
be passive. The compiler would look for their presence and inform them to generate
code to augment the code that they are tied to. In the case of this hypothetical
 PropertyChangedAttribute , it would ensure the target class would implement
 INotifyPropertyChanged and implement the property changed logic within each
property setter. This technique is a huge win for developers because they no longer have
to manually write that code; the attribute will generate it for them!

 But, let’s not stop with property changed notifications. Consider a scenario in which
we have a class that implements IDisposable along with overriding ToString() and
defining a method, which is shown in Listing 5-5 .

 Listing 5-5. Defining a class with embedded, reusable implementations

 public class Person
 : IDisposable
 {
 private bool isDisposed;
 private int disposedCallCount;
 private int callTwiceCallCount;

 public Person(string name, uint age)
 {
 this.Name = name;
 this.Age = age;
 }

 public string Name { get; }
 public uint Age { get; }

 public override string ToString()
 {
 if(this.isDisposed)
 {
 throw new ObjectDisposedExcecption(nameof(Person));
 }

 return $"{this.Name}, {this.Age}";
 }

 public void Dispose()
 {
 if(this.isDisposed)
 {
 throw new ObjectDisposedExcecption(nameof(Person));
 }

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

152

 if(Interlocked.Increment(ref this.disposedCallCount) > 1)
 {
 throw new MaximumCallCountExceededException(nameof(Dispose));
 }

 // Do all the nasty gunk that you need
 // to do to support Dispose()...
 }

 public void CallTwice()
 {
 if(this.isDisposed)
 {
 throw new ObjectDisposedExcecption(nameof(Person));
 }

 if(Interlocked.Increment(ref this.callTwiceCallCount) > 2)
 {
 throw new MaximumCallCountExceededException(nameof(CallTwice));
 }

 // Do what CallTwice() does...
 }
 }

 For a simple class, there’s a fair amount of code in place that isn’t specific to the
 Person class, such as:

• Object disposal. The IDisposable interface requires a number
of steps that developers should follow to implement the idiom
correctly (see https://msdn.microsoft.com/en-us/library/
ms244737.aspx for details). Also, each member on a disposable
object should throw ObjectDisposedException if the object has
been disposed.

• Method call thresholds. Sometimes a method should only be
called a certain number of times. A typical scenario is Dispose() ,
which should only be called once. In this class, CallTwice()
should only be invoked twice.

• ToString() patterns. You may want to have a consistent format
for ToString() for all of your classes, like the property values
concatenated together with a comma and space delimiter.

https://msdn.microsoft.com/en-us/library/ms244737.aspx
https://msdn.microsoft.com/en-us/library/ms244737.aspx

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

153

 Now, compare the code in Listing 5-5 to the code in Listing 5-6 .

 Listing 5-6. Using generators in C# code

 [Disposable]
 [ToString]
 public partial class Person
 {
 public Person(string name, uint age)
 {
 this.Name = name;
 this.Age = age;
 }

 public string Name { get; }
 public uint Age { get; }

 [Throttle(2)]
 public void CallTwice()
 {
 // Do what CallTwice() does...
 }
 }

 The idea is that we’d use source generators to implement IDisposable on the
class for us. We’d also implement ToString() for the developer based on a consistent,
idiomatic pattern. Finally, we can throttle the number of times a method is called.

 The ability to weave code into existing code via compile-time attributes will
drastically reduce the amount of code a developer has to write in every class.
Additionally, the implementation of a source generator would produce C# code that
can be analyzed and debugged as easily as the code you wrote. The generator would
use syntax trees and semantic information to determine the structure of the code and
subseqently augment the tree so it contains the correct implementation. Now that you’ve
read this book and have a solid understanding of the components of the Compiler API,
you should be comfortable creating source generators for your applications.

 Conclusion
 This chapter showed you how tools and frameworks are already taking advantage of
the Compiler API to build amazing products. Packages such as Rocks and Cake are
empowered by the Compiler API to implement features that were difficult before it was
introduced. You also got a glimpse into C#’s future where the Compiler API is used to
allow developers to generate code so patterns and aspects can be exploited to simplify
implementations.

 And although you’ve come to the end of the book, the story of the Compiler API
doesn’t stop here. .NET started a major transformation that was initialized in the late
2000s when hints and small demos were given by Microsoft employees of a new world

CHAPTER 5 ■ THE FUTURE OF THE COMPILER API

154

with an accessible API to the internals of the compiler. This transformation was greatly
accelerated when Roslyn was open-sourced in 2014. Now, the .NET community is
thriving once again. The .NET Framework is being reimaged and rearchitected into .NET
Core, a nimbler, performance-driven, open-source, cross-platform version of .NET that
is evolving along with the compilation framework. Furthermore, there are even hints
that .NET will target WebAssembly in the future, making C# work natively in the browser
(see https://www.reddit.com/r/programmerchat/comments/4dxpcp/i_am_miguel_de_
icaza_i_started_xamarin_mono_gnome/d1v9xyd). The cool thing about all this work is
that anyone can contribute to this effort. I hope that you not only consider writing your
own diagnostics and refactorings along with using the Compiler and Scripting API to
empower your applications, but also consider contributing to the continual evolution of
the framework. Once again, it’s a great time to be a .NET developer!

https://www.reddit.com/r/programmerchat/comments/4dxpcp/i_am_miguel_de_icaza_i_started_xamarin_mono_gnome/d1v9xyd
https://www.reddit.com/r/programmerchat/comments/4dxpcp/i_am_miguel_de_icaza_i_started_xamarin_mono_gnome/d1v9xyd

© Jason Bock 2016
J. Bock, .NET Development Using the Compiler API, DOI 10.1007/978-1-4842-2111-2

155

 A
 AdHocWorksapce , 90, 93
 AnalyzeMethodDeclaration()

method , 41–42
 Analyzer with Code Fix (NuGet + VSIX) , 37
 ApplyChangesOperation , 89

 B
 base.BaseMethod() , 47–48
 BaseExpression() provides , 47

 C
 Cake build fi le , 145
 CancellationToken , 60
 C# interactive, scripting API

 analyzing scripts , 119–121
 NuGet package , 115
 scripts evaluation

 AddImports() , 118
 AddReferences() , 118
 CompilationErrorException , 117
 Context class , 118
 CSharpScript , 117
 CustomContext , 118–119
 custom types , 118
 EvaluateAsync() , 116–117, 119
 EvaluateCodeWith

GlobalContextAsync() , 119
 global context object , 119
 ScriptOptions , 117

 state management, scripts , 122–125
 C# interactive window

 class creation , 112
 code creation, script , 113–114
 defi ned classes , 112

 experience, command line , 113
 #help command , 111
 resetting, interactive session , 111
 simple calculations , 109
 string , 110
 variable, printing , 110

 ClassDeclaractionSyntax node , 14
 ClassDeclarationNode , 30
 ClassDeclarationSyntax , 15
 CodeRefactoringProvider , 76
 CommentRemover class , 95, 99, 106
 CommentRemover.ConsoleApplication.

IntegrationTests , 100
 CommentRemover—RemoveComments

FromSolutionAsync() , 98
 CommentRemover.Task project , 102
 Common Language Runtime (CLR) , 3
 CompilationUnit , 16
 CompilationUnitSyntax object , 18–19, 82
 CompilationUnitSytnax node , 98
 Compiler API

 annotations , 29
 assemblies , 6
 building trees , 17–20
 closed box , 4–5
 code build

 cake bootstrapper fi le , 144
 cake build fi le , 145–146
 Does() action method , 146
 MSBuild() method , 146
 RandomGeneration

solution , 143–145
 SecureRandom class , 143
 Spackle , 143
 Task() method , 146

 compiling code
 building , 8–10
 referencing assemblies , 6, 8

 Index

■ INDEX

156

 Console and Out , 3
 C#’s future

 property change
notifi cations , 148–149

 reusable implementations , 151–153
 developers , 4
 editing trees , 25–29
 extension method , 3
 fi nding content from node , 21–22
 formatters , 30–31
 “Hello world application” , 2
 internal components , 4
 mocks

 Debug.Assert() , 141
 GetId() , 141
 IService , 139–140
 object, creation , 140–141
 rocks , 141–143
 ServiceUser , 140
 System.Refl ection.Emit

namespace , 141
 VerifyAll() , 141

 navigating and editing trees , 20
 .NET assembly , 3
 open box , 6
 semantic models , 23, 25
 semicolon. , 3
 syntax trees , 32
 System.Refl ection.Emit namespace , 3
 tools and frameworks , 147
 tokens , 2–3
 use, compilers , 1
 visualizing trees , 10–12, 14–17

 ComputeRefactoringsAsync() , 76, 89
 ContainingAssembly properties , 42
 ContainingNamespace properties , 42
 CreateDocument() , 89
 CreateSafeLocalVariableName() , 49
 CSharpCompilation object , 9, 24
 CSharpScript , 115
 CSharpSyntaxRewriter class , 28
 CustomContext , 108
 Custom MSBuild task , 101

 D
 DescendantNodes() , 21
 DescendantTokens() , 27
 DiagnosticAnalyzer attribute , 40
 Diagnostics work

 analyzing code , 41, 43

 and code fi x , 52–54
 compilation , 33–34
 designing the fi x , 44
 diagnostic class setup , 40–41
 implementing the fi x , 45–46
 NuGet packaging , 67–68
 parsing statements , 50–51
 syntax trees , 46–47, 49–50
 syntax visualizer , 36–37
 template , 37–39
 the problem , 35–36
 unit testing , 54–60
 visual Studio logging , 61–62, 64–65
 VSIX installation , 60–61
 VSIX packaging , 66–67

 DiagsnoticDescriptor object , 41
 DictionaryContext , 124
 Domain specifi c language (DSL) , 143
 Double() method , 20
 DTEDocument instance , 106

 E
 EntryPoint property , 9
 EvaluateAsync() , 117
 ExportCodeFixProvider and Shared

attributes , 45
 Extract Method refactoring , 70

 F
 FileNotFoundException , 106
 FixableDiagnosticIds property , 45

 G
 GenerateUsingDirectives() , 91
 GenerateUsingExtensions() , 90
 GetDeclaredSymbol() , 24
 GetDiagnosticsAsync() , 59
 GetDocumentIdsWithFilePath() , 105

 H
 “Hello World” application , 2, 8–9

 I, J, K, L
 Identifi erNameSyntax object , 18
 Identifi erTokenNode , 14
 IMethodSymbol reference , 43, 47
 Initialize() method , 41

Compiler API (cont.)

■ INDEX

157

 InvocationExpressionSyntax
nodes , 37, 43, 47

 IService , 139

 M
 MetadataReference.CreateFromFile() , 9
 MethodDeclarationSyntax nodes ,

27, 42–43, 47
 MethodDeclarationSyntax object , 27, 29
 MethodDeclarationSyntax reference , 36
 MethodDefi nitionSyntax node , 18, 43
 Microsoft.CodeAnalysis , 7
 Microsoft.CodeAnalysis.Workspaces.

Desktop assembly , 93
 Microsoft.VisualStudio.Language

Services assembly , 93
 MoveTypeNodes() , 80
 MSBuild process , 101
 MSBuildWorkspace class , 93, 98, 102
 MustInvokeAttribute , 36, 42
 MustInvokeBaseMethod.

Analyzer package , 37–38, 68
 MustInvokeBaseMethod.Test , 38
 MustInvokeBaseMethod.Vsix , 38

 N
 NamespaceDeclaration() , 16, 18
 NamespaceDeclarationSyntax object , 18
 Nito.AsyncEx , 108
 NormalizeWhitespace() , 30–31
 NuGet installation will fail , 68

 O
 OnDocumentSaved() , 105
 onInitializeResult , 44
 OperationContractAttribute , 34

 P, Q
 PackageGuidString , 104
 ParameterListSyntax , 15
 ParameterSyntax object , 25
 ParseArgumentList() , 51
 ParseExpression() , 51
 ParseStatement() , 51
 ParseSyntaxTree() , 9
 Portable Class Library (PCL) , 39
 Productivity Power Tools , 93–94
 Project’s AddDocument() method , 81

 ProjectFilePath property , 102
 ProvideAutoLoad attributes , 104

 R
 RandomGeneration.Tests , 143
 Read, Evaluate, Print, Loop (REPL) , 107
 Refactorings

 class , 76
 Class1.cs fi le , 82–83
 command line, automatic

updates , 97–101
 CommentRemover , 95–97
 CompilationUnitSyntax object , 81
 ComputeRefactoringsAsync() , 76, 81
 CreateFiles() , 78
 custom MSBuild task, automatic

updates , 101–102
 GenerateUsingDirectives() , 79, 82
 global namespace in C# , 80
 MoveTypeNodes() , 79–80
 Moving types , 80–81
 NamespaceDeclarationSyntax , 82
 the problem , 73–74
 Project’s AddDocument() method , 81
 project after , 84
 project before , 84
 RemoveNodes() , 79
 statements , 79
 in structure , 69–73
 template , 75–76
 TypeDeclarationSyntax and

ITypeSymbol objects , 78
 types to remove , 77
 unit testing , 86–91
 updating , 93–94
 UsingDirectiveSyntax objects , 80
 in Visual Studio , 82
 Visual Studio extension , 102–106
 VSIX installation , 91
 VSIX project , 82
 workspace , 91–93

 RegisterCodeFix() , 50
 RegisterCodeFixesAsync

method , 45–46, 59
 RegisterCompilationAction() , 41
 RegisterSymbolAction() , 41
 RegisterSyntaxNodeAction() , 41
 RemoveComment() , 98
 RemoveCommentsFromProject

Async() , 98, 102
 Rename refactoring , 71

■ INDEX

158

 Renamer.RenameSymbolAsync() , 76, 92
 ReplaceTokens() , 27
 ReplaceTrivia() , 28
 ReportDiagnostic() , 43
 RoslynQuoter , 19
 RunAnalysisAsync() loads , 56

 S
 Scripting API

 executing random code , 126–128
 memory and performance

characteristics
 expression execution , 129
 script execution , 128

 and security
 API exclusion , 137
 console window , 133
 CSharpScript class , 131
 GetFullNamespace() , 135–136
 invalid member usage , 134–135
 MainAsync() method , 131, 133
 object model , 131–132
 Person class , 131
 refl ection calls, preventing , 137
 restricted UIs , 137
 restricted user accounts , 137
 Save() , 134
 secrets, scripting session , 133
 SQL statements , 130
 System.IO namespace , 133–134
 System.Refl ection namespace , 135
 VerifyCompilation() method , 134

 System.Linq.Expressions , 128
 Scripting language

 C# REPL. C# interactive window
 dynamic capabilities , 108
 “glue” languages , 107
 macros in Word , 108
 VBA , 107

 ScriptingContext , 119
 ScriptingPlayground , 113
 ServiceUser , 140
 Simple arithmetic calculation

 performing , 69
 refactoring , 72

 StatementSyntax node , 48
 SubNamespace , 74
 SupportedDiagnostics properties , 40
 SyntaxAnnotation class , 29
 SyntaxFactory.Argument() , 48

 SyntaxFactory’s ParseStatement() , 50
 SyntaxKind enumeration value , 15
 SyntaxKind.CommaToken , 48
 SyntaxKind.IntKeyword , 18
 SyntaxKind.MultiLineCommentTrivia , 95
 SyntaxKind.SingleLineCommentTrivia , 95
 SyntaxKind.SingleLineDocumentation

CommentTrivia , 95
 SyntaxNode classes , 15, 96–97
 SyntaxToken() , 27
 Syntax Visualizer with errors , 15–16, 58
 SytnaxNode instance , 97

 T
 TestHelpers class , 55
 TestMethodAttribute , 29
 TestProvider() , 89
 Th rowIfCancellationRequested() , 42
 Th rowsExceptionCodeFix fails , 64
 Tree via ReplaceNodes() , 26–27
 TypeDeclarationSyntax , 78
 typeFolderGenerator Func returns , 81

 U
 UsingDirectiveSyntax objects , 80

 V
 VerifyActionAsync() , 59
 VisitMethodDeclaration() , 24
 Visual Basic for Applications (VBA) , 107
 Visual Studio

 code fi x , 53
 display , 52
 extension , 61
 logging enabled , 63

 VisualStudioWorkspace
class , 93, 102, 105

 VSIX command line options , 65
 VSIX project , 60, 82

 W, X, Y, Z
 Windows Communication Foundation

(WCF) , 33
 WithArgumentList() , 48
 WorkspaceCommentRemover helper

methods , 99
 Workspace object model , 92

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Overview of the Compiler API
	From Closed to Open
	What Do Compilers Do?
	Compilers as a Closed Box
	Compilers as an Open Box

	Compiling Code
	Referencing Assemblies
	Building Code

	Creating Code Using Trees
	Visualizing Trees
	Building Trees

	Navigating and Editing Trees
	Finding Content from a Node
	Finding Content Using Walkers
	Semantic Models
	Editing Trees

	Annotations and Formatters
	Using Annotations
	Using Formatters

	Conclusion

	Chapter 2: Writing Diagnostics
	The Need to Diagnose Compilation
	Designing the Diagnostic
	Understanding the Problem
	Using the Syntax Visualizer

	Creating a Diagnostic
	Using the Template
	Building the Diagnostic
	Diagnostic Class Setup
	Analyzing Code

	Providing Code Fixes
	Designing the Fix
	Implementing the Fix
	Using Syntax Trees
	Parsing Statements
	Executing the Diagnostic and Code Fix

	Debugging Diagnostics
	Unit Testing
	VSIX Installation
	Visual Studio Logging

	Deploying and Installing Diagnostics
	VSIX Packaging
	NuGet Packaging

	Conclusion

	Chapter 3: Creating Refactorings and Handling Workspaces
	Consistency in Structure
	Developing a Refactoring
	Understanding the Problem
	Creating a Refactoring Solution
	Building the Refactoring
	Executing the Refactoring

	Debugging Refactorings
	Unit Testing
	VSIX Installation

	Interacting with a Workspace
	What Is a Workspace?
	Common Workspace Implementations

	Updating Solutions and Projects
	Creating the CommentRemover Refactoring
	Using the Command Line for Automatic Updates
	Using a Custom MSBuild Task for Automatic Updates
	Creating a Visual Studio Extension

	Conclusion

	Chapter 4: Using the Scripting API
	What Is a Scripting Language?
	Orchestrating an Environment
	Dynamic Capabilities

	Using the C# REPL
	Loading Code in Script

	Making C# Interactive
	Referencing the Scripting NuGet Package
	Evaluating Scripts
	Analyzing Scripts
	State Management in Scripts

	Concerns with the Scripting API
	Scripts, Performance, and Memory Usage
	Scripts and Security

	Conclusion

	Chapter 5: The Future of the Compiler API
	Current Usage
	Generating Mocks
	Building Code with Code
	Other Compiler API-Based Tools and Frameworks

	Looking into C#’s Future
	A Quick Story About Property Change Notifications
	Reusing Common Implementations

	Conclusion

	Index

