
www.allitebooks.com

http://www.allitebooks.org

Neo4j High Performance

Design, build, and administer scalable graph database
systems for your applications using Neo4j

Sonal Raj

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Neo4j High Performance

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2015

Production reference: 1250215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-515-4

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sonal Raj

Reviewers
Roar Flolo

Dave Meehan

Kailash Nadh

Commissioning Editor
Kunal Parikh

Acquisition Editor
Shaon Basu

Content Development Editor
Akshay Nair

Technical Editor
Faisal Siddiqui

Copy Editors
Deepa Nambiar

Ashwati Thampi

Project Coordinator
Mary Alex

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Kevin McGowan

Jonathan Todd

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Valentina Dsilva

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sonal Raj is a hacker, Pythonista, big data believer, and a technology dreamer. He
has a passion for design and is an artist at heart. He blogs about technology, design,
and gadgets at http://www.sonalraj.com/. When not working on projects, he can
be found traveling, stargazing, or reading.

He has pursued engineering in computer science and loves to work on community
projects. He has been a research fellow at SERC, IISc, Bangalore, and taken up
projects on graph computations using Neo4j and Storm. Sonal has been a speaker
at PyCon India and local meetups on Neo4j and has also published articles and
research papers in leading magazines and international journals. He has contributed
to several open source projects.

Presently, Sonal works at Goldman Sachs. Prior to this, he worked at Sigmoid
Analytics, a start-up where he was actively involved in the development of machine
learning frameworks, NoSQL databases, including Mongo DB and streaming using
technologies such as Apache Spark.

I would like to thank my family for encouraging me, supporting my
decisions, and always being there for me. I heartily want to thank
all my friends who have always respected my passion for being
part of open source projects and communities while reminding me
that there is more to life than lines of code. Beyond this, I would
like to thank the folks at Neo Technologies for the amazing product
that can store the world in a graph. Special thanks to my colleagues
for helping me validate my writings and finally the reviewers and
editors at Packt Publishing without whose efforts this work would
not have been possible. Merci à vous.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Roar Flolo has been developing software since 1993 when he got his first job
developing video games at Funcom in Oslo, Norway. His career in video games
brought him to Boston and Huntington Beach, California, where he cofounded
Papaya Studio, an independent game development studio. He has worked on
real-time networking, data streaming, multithreading, physics and vehicle
simulations, AI, 2D and 3D graphics, and everything else that makes a game tick.

For the last 10 years, Roar has been working as a software consultant at
www.flologroup.com, working on games and web and mobile apps. Recent
projects include augmented reality apps and social apps for Android and iOS
using the Neo4j graph database at the backend.

Dave Meehan has been working in information technology for over 15 years.
His areas of specialty include website development, database administration,
and security.

Kailash Nadh has been a hobbyist and professional developer for over 13 years.
He has a special interest in web development, and is also a researcher with a PhD in
artificial intelligence and computational linguistics.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Neo4j 7

Graphs and their utilities 8
Introducing NoSQL databases 8
Dynamic schemas 9
Automatic sharding 10
Built-in caching 11
Replication 11

Types of NoSQL databases 11
Key-value stores 11
Column family stores 12
Document databases 13
Graph databases 13
Graph compute engines 15

The Neo4j graph database 16
ACID compliance 17
Characteristics of Neo4j 18
The basic CRUD operations 20

The Neo4j setup and configurations 21
Modes of setup – the embedded mode 22
Modes of setup – the server mode 26
Neo4j high availability 27

Machine #1 – neo4j-01.local 27
Machine #2 – neo4j-02.local 28
Machine #3 – neo4j-03.local 28

Configure Neo4j for Amazon clusters 29
Cloud deployment with Azure 31
Summary 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Querying and Indexing in Neo4j 37
The Neo4j interface 37

Running Cypher queries 38
Visualization of results 39

Introduction to Cypher 39
Cypher graph operations 40

Cypher clauses 41
More useful clauses 42

Advanced Cypher tricks 43
Query optimizations 43
Graph model optimizations 46

Gremlin – an overview 47
Indexing in Neo4j 50

Manual and automatic indexing 50
Schema-based indexing 52
Indexing benefits and trade-offs 53

Migration techniques for SQL users 54
Handling dual data stores 54
Analyzing the model 54
Initial import 56
Keeping data in sync 57
The result 57

Useful code snippets 57
Importing data to Neo4j 57
Exporting data from Neo4j 60

Summary 60
Chapter 3: Efficient Data Modeling with Graphs 61

Data models 62
The aggregated data model 62
Connected data models 62

Property graphs 63
Design constraints in Neo4j 64
Graph modeling techniques 66

Aggregation in graphs 66
Graphs for adjacency lists 67
Materialized paths 67
Modeling with nested sets 68
Flattening with ordered field names 69

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Schema design patterns 70
Hyper edges 70
Implementing linked lists 72
Complex similarity computations 73
Route generation algorithms 74

Modeling across multiple domains 76
Summary 77

Chapter 4: Neo4j for High-volume Applications 79
Graph processing 80
Big data and graphs 81
Processing with Hadoop or Neo4j 83
Managing transactions 84

Deadlock handling 86
Uniqueness of entities 87
Events for transactions 88

The graphalgo package 90
Introduction to Spring Data Neo4j 93
Summary 97

Chapter 5: Testing and Scaling Neo4j Applications 99
Testing Neo4j applications 100
Unit testing 101

Using the Java API 101
GraphUnit-based unit testing 103

Unit testing an embedded database 104
Unit testing a Neo4J server 106

Performance testing 107
Benchmarking performance with Gatling 110
Scaling Neo4j applications 112
Summary 117

Chapter 6: Neo4j Internals 119
Introduction to Neo4j internals 120
Working of your code 120

Node and relationship management 122
Implementation specifics 123

Storage for properties 123
The storage structure 123
Migrating to the new storage 126

Caching internals 126

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Cache types 126
AdaptiveCacheManager 127

Transactions 128
The Write Ahead log 128
Detecting deadlocks 130

RWLock 131
RAGManager 131
LockManager 131

Commands 132
High availability 133

HA and the need for a master 134
The master election 134

Summary 135
Chapter 7: Administering Neo4j 137

Interfacing with the tools and frameworks 138
Using Neo4j for PHP developers 138
The JavaScript Neo4j adapter 139
Neo4j with Python 140

Admin tricks 140
Server configuration 140
JVM configurations 142
Caches 144

Memory mapped I/O configuration 146
Traversal speed optimization example 147
Batch insert example 148

Neo4j server logging 149
Server logging configurations 149
HTTP logging configurations 149
Garbage collection logging 150
Logical logs 150
Open file size limit on Linux 151

Neo4j server security 152
Port and remote connection security 152
Support for HTTPS 153

Server authorization rules 153
Other security options 156

Summary 156

Table of Contents

[v]

Chapter 8: Use Case: Similarity Based
Recommendation System 157

The why and how of recommendations 158
Collaborative filtering 158
Content-based filtering 158
The hybrid approach 159

Building a recommendation system 160
Recommendations on map data 165
Visualization of graphs 167
Summary 169

Index 171

Preface
Welcome to the connected world. In the information age, everything around
us is based on entities, relations, and above all, connectivity. Data is becoming
exponentially more complex, which is affecting the performance of existing data
stores. The most natural form in which data is visualized is in the form of graphs.
In recent years, there has been an explosion of technologies to manage, process,
and analyze graphs. While companies such as Facebook and LinkedIn have been
the most well-known users of graph technologies for social web properties, a quiet
revolution has been spreading across other industries. More than 30 of the Forbes
Global 2000 companies, and many times as many start-ups have quietly been
working to apply graphs to a wide array of business-critical use cases.

Neo4j, a graph database by Neo Technologies, is the leading player in the market for
handling related data. It is not only efficient and easier to use, but it also includes all
security and reliability features of tabulated databases.

We are entering an era of connected data where companies that can master the
connections between their data—the lines and patterns linking the dots and not just
the dots—will outperform the organizations that fail to recognize connectedness. It
will be a long time before relational databases ebb into oblivion. However, their role
is no longer universal. Graph databases are here to stay, and for now, Neo4j is setting
the standard for the rest of the market.

This book presents an insight into how Neo4j can be applied to practical industry
scenarios and also includes tweaks and optimizations for developers and
administrators to make their systems more efficient and high performing.

Preface

[2]

What this book covers
Chapter 1, Getting Started with Neo4j, introduces Neo4j, its functionality, and norms
in general, briefly outlining the fundamentals. The chapter also gives an overview
of graphs, NOSQL databases and their features and Neo4j in particular, ACID
compliance, basic CRUD operations, and setup. So, if you are new to Neo4j and need
a boost, this is your chapter.

Chapter 2, Querying and Indexing in Neo4j, deals with querying Neo4j using Cypher,
optimizations to data model and queries for better Cypher performance. The basics of
Gremlin are also touched upon. Indexing in Neo4j and its types are introduced along
with how to migrate from existing SQL stores and data import/export techniques.

Chapter 3, Efficient Data Modeling with Graphs, explores the data modeling concepts
and techniques associated with graph data in Neo4j, in particular, property graph
model, design constraints for Neo4j, the designing of schemas, and modeling across
multiple domains.

Chapter 4, Neo4j for High-volume Applications, teaches you how to develop applications
with Neo4j to handle high volumes of data. We will define how to develop an
efficient architecture and transactions in a scalable way. We will also take a look at
built-in graph algorithms for better traversals and also introduce Spring Data Neo4j.

Chapter 5, Testing and Scaling Neo4j Applications, teaches how to test Neo4j
applications using the built-in tools and the GraphAware framework for unit and
performance tests. We will also discuss how a Neo4j application can scale.

Chapter 6, Neo4j Internals, takes a look under the hood of Neo4j, skimming the
concepts from the core classes in the source into the internal storage structure,
caching, transactions, and related operations. Finally, the chapter deals with HA
functions and master election.

Chapter 7, Administering Neo4j, throws light upon some useful tools and adapters that
have been built to interface Neo4j with the most popular languages and frameworks.
The chapter also deals with tips and configurations for administrators to optimize
the performance of the Neo4j system. The essential security aspects are also dealt
with in this chapter.

Chapter 8, Use Case – Similarity-based Recommendation System, is an example-oriented
chapter. It provides a demonstration on how to go about building a similarity-based
recommendation system with Neo4j and highlights the utility of graph visualization.

Preface

[3]

What you need for this book
This book is written for developers who work on machines based on Linux, Mac OS
X, or Windows. All prerequisites are described in the first chapter to make sure your
system is Neo4j-enabled and meets a few requirements. In general, all the examples
should work on any platform.

This book assumes that you have a basic understanding of graph theory and are
familiar with the fundamental concepts of Neo4j. It focuses primarily on using Neo4j
for production environments and provides optimization techniques to gain better
performance out of your Neo4j-based application. However, beginners can use this
book as well, as we have tried to provide references to basic concepts in most chapters.
You will need a server with Windows, Linux, or Mac and the Neo4j Community
edition or HA installed. You will also need Python and py2neo configured.

Lastly, keep in mind that this book is not intended to replace online resources, but
rather aims at complementing them. So, obviously you will need Internet access to
complete your reading experience at some points, through provided links.

Who this book is for
This book was written for developers who wish to go further in mastering the Neo4j
graph database. Some sections of the book, such as the section on administering and
scaling, are targeted at database admins.

It complements the usual "Introducing Neo4j" reference books and online resources
and goes deeper into the internal structure and large-scale deployments.

It also explains how to write and optimize your Cypher queries. The book
concentrates on providing examples with Java and Cypher. So, if you are not using
graph databases or using an adapter in a different language, you will probably learn
a lot through this book as it will help you to understand the working of Neo4j.

This book presents an example-oriented approach to learning the technology, where
the reader can learn through the code examples and make themselves ready for
practical scenarios both in development and production. The book is basically the
"how-to" for those wanting a quick and in-depth learning experience of the
Neo4j graph database.

While these topics are quickly evolving, this book will not become obsolete that
easily because it rather focuses on whys instead of hows. So, even if a given tool
presented is not used anymore, you will understand why it was useful and you will
be able to pick the right tool with a critical point of view.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "This is equivalent to the assertSubGraph()
method of the GraphUnit API."

A block of code is set as follows:

<dependency>
<groupId>org.Neo4j</groupId>
<artifactId>Neo4j-kernel</artifactId>
<version>2.1.4</version>
<scope>test</scope>
<type>test-jar</type>
</dependency>

Any command-line input or output is written as follows:

sudo service neo4j-service status

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
Finish to complete the package addition process."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[5]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

Preface

[6]

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Getting Started with Neo4j
Graphs and graph operations have grown into prime areas of research in computer
science. One reason for this is that graphs can be useful in representing several,
otherwise abstract, problems in existence today. Representing the solution space of
the problem in terms of graphs can trigger innovative approaches to solving such
problems. It's simple. Everything around us, that is, everything we come across
in our day-to-day life can be represented as graphs, and when your whiteboard
sketches can be directly transformed into data structures, the possibilities are
limitless. Before we dive into the technicalities and utilities of graph databases
with the topics covered in this chapter, let's understand what graphs are and
how representing data in the form of graph databases makes our lives easier.
The following topics are dealt with in this chapter:

• Graphs and their use
• NoSQL databases and their types
• Neo4j properties, setup, and configurations
• Deployment on the Amazon and Azure cloud platforms

Getting Started with Neo4j

[8]

Graphs and their utilities
Graphs are a way of representing entities and the connections between them.
Mathematically, graphs can be defined as collections of nodes and edges that denote
entities and relationships. The nodes are data entities whose mutual relationships
are denoted with the help of edges. Undirected graphs have two-way connections
between edges whereas a directed graph has only a one-way edge between the
nodes. We can also record the value of an edge and that is referred to as the weight
of the graph.

Ni : Nodes
Ri : Directed Edges denoting

Relationships

N1

N2

N3

R1

R2

Modern datasets of science, government, or business are diverse and interrelated,
and for years we have been developing data stores that have tabular schema. So,
when it comes to highly connected data, tabular data stores offer retarded and highly
complex operability. So, we started creating data stores that store data in the raw
form in which we visualize them. This not only makes it easier to transform our ideas
into schemas but the whiteboard friendliness of such data stores also makes it easy to
learn, deploy, and maintain such data stores. Over the years, several databases were
developed that stored their data structurally in the form of graphs. We will look into
them in the next section.

Introducing NoSQL databases
Data has been growing in volume, changing more rapidly, and has become more
structurally varied than what can be handled by typical relational databases. Query
execution times increase drastically as the size of tables and number of joins grow.
This is because the underlying data models build sets of probable answers to a query
before filtering to arrive at a solution. NoSQL (often interpreted as Not only SQL)
provides several alternatives to the relational model.

Chapter 1

[9]

NoSQL represents the new class of data management technologies designed to
meet the increasing volume, velocity, and variety of data that organizations are
storing, processing, and analyzing. NoSQL comprises diverse different database
technologies, and it has evolved as a response to an exponential increase in the
volume of data stored about products, objects, and consumers, the access frequency
of this data, along with increased processing and performance requirements.
Relational databases, on the contrary, find it difficult to cope with the rapidly
growing scale and agility challenges that are faced by modern applications, and they
struggle to take advantage of the cheap, readily available storage and processing
technologies in the market.

Often referred to as NoSQL, nonrelational databases feature elasticity and scalability.
In addition, they can store big data and work with cloud computing systems.
All of these factors make them extremely popular. NoSQL databases address the
opportunities that the relational model does not, including the following:

• Large volumes of structure-independent data (including unstructured, semi-
structured, and structured data)

• Agile development sprints, rapid iterations, and frequent repository pushes
for the code

• Flexible, easy-to-use object-oriented programming
• Efficient architecture that is capable of scaling out, as compared to expensive

and monolithic architectures due to the requirement of specialized hardware

Dynamic schemas
In the case of relational databases, you need to define the schema before you can add
your data. In other words, you need to strictly follow a format for all data you are
likely to store in the future. For example, you might store data about consumers such
as phone numbers, first and last names, address including the city and state—a SQL
database must be told what you are storing in advance, thereby giving you
no flexibility.

Agile development approaches do not fit well with static schemas, since every
completion of a new feature requires the schema of your database to change. So,
after a few development iterations, if you decide to store consumers' preferred items
along with their contact addresses and phone numbers, that column will need to be
added to the already existing-database, and then migrate the complete database to an
entirely new schema.

Getting Started with Neo4j

[10]

In the case of a large database, this is a time-consuming process that involves
significant downtime, which might adversely affect the business as a whole. If the
application data frequently changes due to rapid iterations, the downtime might be
occurring quite often. Businesses sometimes wrongly choose relational databases in
situations where the effective addressing of completely unstructured data is needed
or the structure of data is unknown in advance. It is also worthy to note that while
most NoSQL databases support schema or structure changes throughout their
lifetime, some including graph databases adversely affect performance if schema
changes are made after considerably large data has been added to the graph.

Automatic sharding
Because of their structure, relational databases are usually vertically scalable, that is,
increasing the capacity of a single server to host more data in the database so that it
is reliable and continuously available. There are limits to such scaling, both in terms
of size and expense. An alternate approach is to scale horizontally by increasing the
number of machines rather than the capacity of a single machine.

In most relational databases, sharding across multiple server instances is generally
accomplished with Storage Area Networks (SANs) and other complicated
arrangements that make multiple hardware act as a single machine. Developers
have to manually deploy multiple relational databases across a cluster of machines.
The application code distributes the data, queries, and aggregates the results of the
queries from all instances of the database. Handling the failure of resources, data
replication, and balancing require customized code in the case of manual sharding.

NoSQL databases usually support autosharding out of the box, which means that
they natively allow the distribution of data stores across a number of servers,
abstracting it from the application, which is unaware of the server pool composition.
Data and query load are balanced automatically, and in the case of a node or server
failure, it can quickly replace the failed node with no performance drop.

Cloud computing platforms such as Amazon Web Services provide virtually unlimited
on-demand capacity. Hence, commodity servers can now provide the same storage
and processing powers for a fraction of the price as a single high-end server.

Chapter 1

[11]

Built-in caching
There are many products available that provide a cache tier to SQL database
management systems. They can improve the performance of read operations
substantially, but not that of write operations and moreover add complexity
to the deployment of the system. If read operations, dominate the application,
then distributed caching can be considered, but if write operations dominate the
application or an even mix of read and write operations, then a scenario with
distributed caching might not be the best choice for a good end user experience.

Most NoSQL database systems come with built-in caching capabilities that use
the system memory to house the most frequently used data and doing away with
maintaining a separate caching layer.

Replication
NoSQL databases support automatic replication, which means that you get high
availability and failure recovery without the use of specialized applications to
manage such operations. From the developer's perspective, the storage environment
is essentially virtualized to provide a fault-tolerant experience.

Types of NoSQL databases
At one time, the answer to all your database needs was a relational database. With
the rapidly spreading NoSQL database craze, it is vital to realize that different use
cases and functionality call for a different database type. Based on the purpose of
use, NoSQL databases have been classified in the following areas:

Key-value stores
Key-value database management systems are the most basic and fundamental
implementation of NoSQL types. Such databases operate similar to a dictionary by
mapping keys to values and do not reflect structure or relation. Key-value databases
are usually used for the rapid storage of information after performing some
operation, for example, a resource (memory)-intensive computation. These data
stores offer extremely high performance and are efficient and easily scalable. Some
examples of key-value data stores are Redis (in-memory data store with optional
persistence.), MemcacheDB (distributed, in-memory key-value store), and Riak
(highly distributed, replicated key-value store). Sounds interesting, huh? But how do
you decide when to use such data stores?

Getting Started with Neo4j

[12]

Let's take a look at some key-value data store use cases:

• Cache Data: This is a type of rapid data storage for immediate or future use
• Information Queuing: Some key-value stores such as Redis support queues,

sets, and lists for queries and transactions
• Keeping live information: Applications that require state management can

use key-value stores for better performance
• Distributing information or tasks

Column family stores
Column family NoSQL database systems extend the features of key-value stores to
provide enhanced functionality. Although they are known to have a complex nature,
column family stores operate by the simple creation of collections of key-value pairs
(single or many) that match a record. Contrary to relational databases, column family
NoSQL stores are schema-less. Each record has one or more columns that contain the
information with variation in each column of each record.

Column-based NoSQL databases are basically 2D arrays where each key contains
a single key-value pair or multiple key-value pairs associated with it, thereby
providing support for large and unstructured datasets to be stored for future use.
Such databases are generally used when the simple method of storing key-value
pairs is not sufficient and storing large quantities of records with a lot of information
is mandatory. Database systems that implement a column-based, schema-less model
are extremely scalable.

These data stores are powerful and can be reliably used to store essential data of large
sizes. Although they are not flexible in what constitutes the data (such as related
objects cannot be stored!), they are extremely functional and performance oriented.
Some column-based data stores are HBase (an Apache Hadoop data store based on
ideas from BigTable) and Cassandra (a data store based on DynamoDB and BigTable).

So, when do we want to use such data stores? Let's take a look at some use cases to
understand the utility of column-based data stores:

• Scaling: Column family stores are highly scalable and can handle tons of
information without affecting performance

• Storing non-volatile, unstructured information: If collections of attributes or
values need to persist for extended time periods, column-based data stores
are quite handy

Chapter 1

[13]

Document databases
Document-based NoSQL databases are the latest craze that have managed to gain
wide and serious acceptance in large enterprises recently. These DBMS operate in a
similar manner to column-based data stores, incorporating the fact that they allow
much deeper nesting of data to realize more complex data structures (for example,
a hierarchal data format with a document, within another document, within a
document). Unlike columnar databases that allow one or two levels of nesting,
document databases have no restriction on the key-value nesting in documents. Any
document with a complex and arbitrary structure can be stored using such data stores.

Although they have a powerful nature of storage, where you can use the individual
keys for the purpose of querying records, document-based database systems have their
own issues and drawbacks, for example, getting the whole record to retrieve a value of
the record and similarly for updates that affect the performance in the long run.

Document-based databases are a viable choice for storing a lot of unrelated complex
information with variable structure. Some document-based databases are Couchbase
(a memcached compatible and JSON-based document database), CouchDB, and
MongoDB (a popular, efficient, and highly functional database that is gaining
popularity in big data scenarios).

Let's look at popular use cases associated with document databases to decide when
to pick them as your tools:

• Nested information handling: These data stores are capable of handling data
structures that are complex in nature and deeply nested

• JavaScript compatible: They interface easily with applications that use
JavaScript-friendly JSON in data handling

Graph databases
A graph database exposes a graph model that has create, read, update and delete
(CRUD) operation support. Graph databases are online (real time) in nature and
are built generally for the purpose of being used in transactional (OLTP) systems.
A graph database model represents data in a completely different fashion, unlike
the other NoSQL models. They are represented in the form of tree-like structures or
graphs that have nodes and edges that are connected to each other by relationships.
This model makes certain operations easier to perform since they link related pieces
of information.

Getting Started with Neo4j

[14]

Such databases are popular in applications that establish a connection between
entities. For example, when using online social or professional networks, your
connection to your friends and their friends' friends' relation to you are simpler to
deal with when using graph databases. Some popular graph databases are Neo4j
(a schema-less, extremely powerful graph database built in Java) and OrientDB (a
speed-oriented hybrid NoSQL database of graph and document types written in
Java; it is equipped with a variety of operational modes). Let's look at the use cases of
graph databases:

• Modeling and classification handling: Graph databases are a perfect
fit for situations involving related data. Data modeling and information
classification based on related objects are efficient using this type of
data store.

• Complex relational information handling: Graph databases ease the use of
connection between entities and support extremely complex related objects
to be used in computation without much hassle.

70% of the Use Cases

D
at

a
S

iz
e

Data Complexity

Key-Value

Column-Family

Document-Store

Graph Database

NoSQL database performance variation with size and complexity

Chapter 1

[15]

The following criteria can help decide when the use of NoSQL databases is required
depending on the situation in hand:

• Data size matters: When large datasets are something you are working on
and have to deal with scaling issues, then databases of the NoSQL family
should be an ideal choice.

• Factor of speed: Unlike relational databases, NoSQL data stores are
considerably faster in terms of write operations. Reads, on the other hand,
depend on the NoSQL database type being used and the type of data being
stored and queried upon.

• Schema-free design approach: Relational databases require you to define
a structure at the time of creation. NoSQL solutions are highly flexible and
permit you to define schemas on the fly with little or no adverse effects on
performance.

• Scaling with automated and simple replications: NoSQL databases are
blending perfectly with distributed scenarios over time due to their built-in
support. NoSQL solutions are easily scalable and work in clusters.

• Variety of choices available: Depending on your type of data and intensity
of use, you can choose from a wide range of available database solutions to
viably use your database management systems.

Graph compute engines
A graph compute engine is a technology that enables global graph computational
algorithms to be run against large datasets. The design of graph compute
engines basically supports things such as identifying clusters in data, or applying
computations on related data to answer questions such as how many relationships,
on average, does everyone on Facebook have? Or who has second-degree
connections with you on LinkedIn?

Getting Started with Neo4j

[16]

Because of their emphasis on global queries, graph compute engines are generally
optimized to scan and process large amounts of information in batches, and in this
respect, they are similar to other batch analysis technologies, such as data mining
and OLAP, that are familiar in the relational world. Whereas some graph compute
engines include a graph storage layer, others (and arguably most of them) concern
themselves strictly with processing data that is fed in from an external source and
returning the results.

Data extraction, transformation,
and load

Stored Records
(Working Storage)

Graph Compute
Engine

In-Memory Processing

A high-level overview of a graph computation engine setup

The Neo4j graph database
Neo4j is one of the most popular graph databases today. It was developed by Neo
Technology, Inc. operating from the San Francisco Bay Area in the U.S. It is written
in Java and is available as open source software. Neo4j is an embedded, disk-based,
fully transactional Java persistence engine that stores data structured in graphs
rather than in tables. Most graph databases available have a storage format of
two types:

• Most graph databases store data in the relational way internally, but they
abstract it with an interface that presents operations, queries, and interaction
with the data in a simpler and more graphical manner.

• Some graph databases such as Neo4j are native graph database systems.
It means that they store the data in the form of nodes and relationships
inherently. They are faster and optimized for more complex data.

In the following sections, we will see an overview of the Neo4j fundamentals,
basic CRUD operations, along with the installation and configuration of Neo4j in
different environments.

Chapter 1

[17]

ACID compliance
Contrary to popular belief, ACID does not contradict or negate the concept of
NoSQL. NoSQL fundamentally provides a direct alternative to the explicit schema in
classical RDBMSes. It allows the developer to treat things asymmetrically, whereas
traditional engines have enforced rigid sameness across the data model. The reason
this is so interesting is because it provides a different way to deal with change,
and for larger datasets, it provides interesting opportunities to deal with volumes
and performance. In other words, the transition is about shifting the handling of
complexity from the database administrators to the database itself.

Transaction management has been the talking point of NoSQL technologies
since they started to gain popularity. The trade-off of transactional attributes
for performance and scalability has been the common theme in nonrelational
technologies that targeted big data. Some databases (for example, BigTable,
Cassandra, and CouchDB) opted to trade-off consistency. This allowed clients to read
stale data and in some cases, in a distributed system (eventual consistency), or in
key-value stores that concentrated on read performance, where durability of the data
was not of too much interest (for example, Memcached), or atomicity on a single-
operation level, without the possibility to wrap multiple database operations within
a single transaction, which is typical for document-oriented databases. Although
devised a long time ago for relational databases, transaction attributes are still
important in the most practical use cases. Neo4j has taken a different approach here.
Neo4j's goal is to be a graph database, with the emphasis on database. This means
that you'll get full ACID support from the Neo4j database:

• Atomicity (A): This can wrap multiple database operations within a single
transaction and make sure that they are all executed atomically; if one of the
operations fails, a rollback is performed on the entire transaction.

• Consistency (C): With this, when you write data to the Neo4j database, you
can be sure that every client accessing the database afterwards will read the
latest updated data.

• Isolation (I): This will make sure that operations within a single transaction
will be isolated one from another so that writes in one transaction won't
affect reads in another transaction.

• Durability (D): With this, you're certain that the data you write to Neo4j
will be written to disk and available after a database restart or a server crash.
If the system blows up (hardware or software), the database will pick itself
back up.

The ACID transactional support provides seamless transition to Neo4j for anyone
used to relational databases and offers safety and convenience in working with
graph data.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Neo4j

[18]

Transactional support is one of the strong points of Neo4j, which differentiates
it from the majority of NoSQL solutions and makes it a good option not only for
NoSQL enthusiasts but also in enterprise environments. It is also one of the reasons
for its popularity in big data scenarios.

Characteristics of Neo4j
Graph databases are built with the objective of optimizing transactional performance
and are engineered to persist transactional integrity and operational availability. Two
properties are useful to understand when investigating graph database technologies:

• The storage within: Some graph databases store data natively as graphs,
which is optimized by design for storage, queries, and traversals. However,
this is not practiced by all graph data stores. Some databases use serialization
of the graph data into an equivalent general-purpose database including
object-oriented and relational databases.

• The processing engine: Some graph databases definitions require that they
possess the capability for index-free adjacency, which means that nodes that
are connected must physically point to each other in the database. Here, let's
take a broader view that any database which, from the user's perspective,
behaves like a graph database (that is, exposes a graph data model through
CRUD operations) qualifies as a graph database. However, there are
significant performance advantages of leveraging index-free adjacency in
graph data.

Graph databases, in particular native ones such as Neo4j, don't depend heavily on
indexes because the graph itself provides a natural adjacency index. In a native
graph database, the relationships attached to a node naturally provide a direct
connection to other related nodes of interest. Graph queries largely involve using this
locality to traverse through the graph, literally chasing pointers. These operations
can be carried out with extreme efficiency, traversing millions of nodes per
second, in contrast to joining data through a global index, which is many orders of
magnitude slower. There are several different graph data models, including property
graphs, hypergraphs, and triples. Let's take a brief look at them:

• Property graphs: A property graph has the following characteristics:
 ° Being a graph, it has nodes and relationships
 ° The nodes can possess properties (in the form of key-value pairs)
 ° The relationships have a name and direction and must have a start

and end node
 ° The relationships are also allowed to contain properties

Chapter 1

[19]

• Hypergraphs: A hypergraph is a generalized graph model in which a
relationship (called hyperedge) can connect any number of nodes. Whereas
the property graph model permits a relationship to have only one start node
and one end node, the hypergraph model allows any number of nodes at
either end of a relationship. Hypergraphs can be useful where the domain
consists mainly of many-to-many relationships.

• Triples: Triple stores come from the Semantic Web movement, where
researchers are interested in large-scale knowledge inference by adding
semantic markup to the links that connect web resources. To date, very little
of the web has been marked up in a useful fashion, so running queries across
the semantic layer is uncommon. Instead, most efforts in the Semantic Web
movement appear to be invested in harvesting useful data and relationship
information from the web (or other more mundane data sources, such as
applications) and depositing it in triple stores for querying.

Some essential characteristics of the Neo4j graph databases are as follows:

• They work well with web-based application scenarios including metadata
annotations, wikis, social network analysis, data tagging, and other
hierarchical datasets.

• It provides a graph-oriented model along with a visualization framework for
the representation of data and query results.

• A decent documentation with an active and responsive e-mail list is a
blessing for developers. It has a few releases and great utility indicating that
it might last a while.

• Compatible bindings are written for most languages including Python,
Java, Closure, and Ruby. Bindings for .NET are yet to be written. The REST
interface is the recommended approach for access to the database.

• It natively includes a disk-based storage manager that has been completely
optimized to store graphs to provide enhanced performance and scalability.
It is also ready for SSDs.

• It is highly scalable. A single instance of Neo4j can handle graphs containing
billions of nodes and relationships.

• It comes with a powerful traversal framework that is capable of handling
speedy traversals in a graph space.

• It is completely transactional in nature. It is ACID compliant and supports
features such as JTA or JTS, 2PC, XA, Transaction Recovery, Deadlock
Detection, and so on.

Getting Started with Neo4j

[20]

• It is built to durably handle large graphs that don't fit in memory.
• Neo4j can traverse graph depths of more than 1,000 levels in a fraction of

a second.

The basic CRUD operations
Neo4j stores data in entities called nodes. Nodes are connected to each other with the
help of relationships. Both nodes and relationships can store properties or metadata
in the form of key-value pairs. Thus, inherently a graph is stored in the database.
In this section, we look at the basic CRUD operations to be used in working
with Neo4j:

CREATE (gates { firstname: 'Bill', lastname: 'Gates'})

CREATE (page { firstname: 'Larry', lastname: 'Page'}), (page) -
[r:WORKS_WITH] - > (gates)

RETURN gates, page, r

In this example, there are two queries; the first is about the creation of a node that
has two properties. The second query performs the same operation as the first one,
but also creates a relationship from page to gates.

START n=node(*) RETURN "The node count of the graph is "+count(*)+" !" as
ncount;

A variable named ncount is returned with the The node count of the graph is
2! value; it's basically the same as select count(*).

START self=node(1) MATCH self<--friend

RETURN friend

Assuming that we are using this simple database as an example, these commands
will return the page node keeping in mind the direction of the relationship:

START person=node(*)

MATCH person

WHERE person.firstname! ='Bill'

RETURN person

Chapter 1

[21]

This query searches through all nodes and matches the ones with the firstname
property that is equal to Bill. The ! symbol makes sure that only nodes that possess
the property are to be taken into consideration, to prevent errors.

START person=node(*)

MATCH person

WHERE person.firstname! ='Bill'

SET person.age = '60'

RETURN person

The node that has the firstname property as Bill is searched and adds another
property called age that has the value 60.

START person = node(*)

MATCH person

WHERE person.firstname! = "Larry"

DELETE person

In this query, we match all nodes that have firstname equal to Larry and perform a
delete operation on them.

START node = node(*)

MATCH node-[r]-()

DELETE node, r

This query is used to fetch all nodes and relationships and performs a delete
operation on them.

So, you now know how to perform basic CRUD operations on a Neo4j graph.
We will encounter more of these queries in more complex forms in later chapters
in the book.

The Neo4j setup and configurations
Neo4j is versatile in terms of usability. You can include and package Neo4j libraries
in your application. This is referred to as the embedded mode of operation. For
a server setup, you install Neo4j on the machine and configure it as an operating
system service. The latest releases of Neo4j come with simple installer scripts for
different operating systems. Let's take a look at how to configure Neo4j in the
different modes of operation.

Getting Started with Neo4j

[22]

Modes of setup – the embedded mode
Neo4j in the embedded mode is used to include a graph database in your application.
In this section, we will see how to configure Neo4j embedded into your application in
Eclipse IDE. Ensure that you have the proper version of eclipse IDE from https://
www.eclipse.org/downloads/ and the Neo4j Enterprise edition TAR archive from
the other downloads section at http://www.neo4j.org/download.

Within Eclipse, navigate to File | New | Java Project, give your project a preferred
name, and then click on Finish.

Under the Project Properties page, select the option for Java Build Path (1) on
the sidebar, proceed to the Libraries tab (2), and then click on the button for Add
External JARs (3). You can now locate the external JAR files of the libraries you want
to add from here.

Navigate to the directory you extracted Neo4j under and look under the libs
directory. Select all the *.jar files and click on Add. Click on Finish to complete the
package addition process.

Chapter 1

[23]

In the Eclipse navigation sidebar, right-click on the src folder of the newly created
project and navigate to New | Package. In the dialog that appears, add a new
package name. In the example, we have added com.neo4j.chapter1. Click on the
Finish button.

Right-click on the package created and create a new Java class by navigating to New
| Java Class and name it accordingly (use HelloNeo to run the following example).
Click on Finish. Add the following code into your project. This is a sample program
to test whether our embedded setup is working fine:

package com.neo4j.chapter1;

importorg.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Direction;
import org.neo4j.graphdb.Relationship;
import org.neo4j.graphdb.Transaction;
import org.neo4j.graphdb.RelationshipType;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;

public class HelloNeo {
 //change the path according to your system and OS
 private static final String PATH_TO_DB = "path_to_your neo4j_
installation";

 String response;
 GraphDatabaseService graphDBase;
 Node node_one;
 Node node_two;
 Relationship relation;

Getting Started with Neo4j

[24]

 private static enum RelationTypes implements RelationshipType {
HATES }

 public static void main(final String[] args)
 {
 HelloNeo neoObject = new HelloNeo();
 neoObject.createGraphDb();
 neoObject.removeGraph();
 neoObject.shutDownDbServer();
 }

 void createGraphDb()
 {
 graphDBase = new GraphDatabaseFactory().newEmbeddedDatabase(
PATH_TO_DB);

 Transaction tx = graphDBase.beginTx();
 try
 {
 node_one = graphDBase.createNode();
 node_one.setProperty("name", "Bill Gates, Microsoft");
 node_two = graphDBase.createNode();
 node_two.setProperty("name", "Larry Page, Google");

 relation = node_one.createRelationshipTo(node_two,
RelationTypes.HATES);
 relation.setProperty("relationship-type", "hates");

 response = (node_one.getProperty("name").toString())
 + " " + (relation.getProperty("relationship-
type").toString())
 + " " + (node_two.getProperty("name"
).toString());
 System.out.println(response);

 tx.success();
 }
 finally
 {
 tx.finish();
 }
 }

 void removeGraph()
 {

Chapter 1

[25]

 Transaction tx = graphDBase.beginTx();
 try
 {
 node_one.getSingleRelationship(RelationTypes.HATES,
Direction.OUTGOING).delete();
 System.out.println("Nodes are being removed . . .");
 node_one.delete();
 node_two.delete();
 tx.success();
 }
 finally
 {
 tx.finish();
 }
 }

 void shutDownDbServer()
 {
 graphDBase.shutdown();
 System.out.println("graphdb is shutting down.");
 }
}

On running the program, you will see the different stages of operation if your
configuration is correct. In fact, there is an easier way to set up this configuration if
you are familiar with Maven.

Apache Maven is a software project management and comprehension
tool. Based on the concept of Project Object Model (POM), Maven can
manage a project's build, reporting, and documentation from a central
piece of information. You can learn more about Maven from the official
website at http://maven.apache.org/.

Start a new Maven project on Eclipse and edit pom.xml to have the following lines
for the dependencies:

<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>

Getting Started with Neo4j

[26]

 <groupId>org.neo4j</groupId>
 <artifactId>neo4j</artifactId>
 <version>2.0.1</version>
</dependency>
</dependencies>

When you save the pom.xml file, the Neo4j dependencies are installed into the
project. You can now run the preceding script and test the configuration.

Modes of setup – the server mode
To develop applications on single machines locally, the embedded database is
efficient and serves the purpose. Most of the examples in this book can be tested with
the embedded setup. However, for larger applications that deal with rapidly scaling
data, the server mode of Neo4j provides the necessary functionality.

Setting up a Neo4j server is relatively easy. You can include Neo4j startup and
shutdown as a normal operating system process. For most Linux distributions, the
following procedure would suffice:

1. The latest release of Neo4j can be downloaded from http://www.neo4j.
org/download. Select the compressed archive (tar.gz) distribution for your
operating system.

2. The archive contents can be extracted using tar -cf <filename>.
The master directory housing Neo4j can be referred to as NEO4J_HOME.

3. Move into the $NEO4J_HOME directory using cd $NEO4J_HOME and run the
installer script using the following command:
sudo ./bin/neo4j-installer install

4. If prompted, you will be required to enter your user password for super-user
access privileges to restricted directories:
sudo service neo4j-service status

This indicates the state of the server, which in this case is not running.

5. The following command starts the Neo4j server:
sudo service neo4j-service start

6. If you need to stop the server, you can run this from the terminal:
sudo service neo4j-service stop

Chapter 1

[27]

During installation, you will be asked to select the user under which Neo4j will.
You can specify a username (the default is neo4j), and if that user does not exist
on that system, a system account in that name will be created and the ownership
of the $NEO4J_HOME/data directory will be assigned (chown) to that user. It is a
good practice to create a dedicated user to run this service, and hence it is suggested
that the downloaded archive is extracted under /opt or the package directory for
optional packages on your system.

If you want the Neo4j server to no longer be a part of the system startup service, the
following commands can be used to remove it:

cd $NEO4J_HOME

sudo ./bin/neo4j-installer remove

If the server is running, it is stopped and removed.

Neo4j high availability
In this section, we will learn how to set up Neo4j HA onto a production cluster. Let's
assume that our cluster has three machines to be set up with Neo4j HA.

Download Neo4j Enterprise from http://neo4j.org/download, extract the
archive into the machines on the production cluster, and perform the following
configurations to the local property files of the HA servers:

Machine #1 – neo4j-01.local
File: conf/neo4j.properties:

A unique Id for this machine, must be non-negative
ha.server_id = 1

Specify other hosts that make up this database cluster.
ha.initial_hosts = neo4j-01.local:5001,neo4j-02.local:5001,neo4j-03.
local:5001

You can also specify the hosts using their IP addresses
ha.initial_hosts = 192.168.0.61:5001, 192.168.0.62:5001,
192.168.0.63:5001

Getting Started with Neo4j

[28]

File: conf/neo4j-server.properties:

Mention the IP address to which this database server will listen
to. 0.0.0.0 means it will listen to all incoming connections.
org.neo4j.server.webserver.address = 0.0.0.0

Specify the mode of operation as HA if the mode is High
Availability or set to SINGLE if using a cluster of 1 Node
(This is default setting)
org.neo4j.server.database.mode=HA

Machine #2 – neo4j-02.local
File: conf/neo4j.properties:

A unique Id for this machine, must be non-negative
ha.server_id = 2

Specify other hosts that make up this database cluster.
ha.initial_hosts = neo4j-01.local:5001,neo4j-02.local:5001,neo4j-03.
local:5001

You can also specify the hosts using their IP addresses
#ha.initial_hosts = 192.168.0.61:5001, 192.168.0.62:5001,
192.168.0.63:5001

File: conf/neo4j-server.properties:

Mention the IP address to which this database server will listen
to. 0.0.0.0 means it will listen to all incoming connections.
org.neo4j.server.webserver.address = 0.0.0.0

Specify the mode of operation as HA if the mode is High
Availability or set to SINGLE if using a cluster of 1 Node
(This is default setting)
org.neo4j.server.database.mode=HA

Machine #3 – neo4j-03.local
File: conf/neo4j.properties:

A unique Id for this machine, must be non-negative
ha.server_id = 3

Specify other hosts that make up this database cluster.

Chapter 1

[29]

ha.initial_hosts = neo4j-01.local:5001, neo4j-02.local:5001, neo4j-03.
local:5001

You can also specify the hosts using their IP addresses
ha.initial_hosts = 192.168.0.61:5001, 192.168.0.62:5001,
192.168.0.63:5001

File: conf/neo4j-server.properties:

Mention the IP address to which this database server will listen
to. 0.0.0.0 means it will listen to all incoming connections.
org.neo4j.server.webserver.address = 0.0.0.0

Specify the mode of operation as HA if the mode is High
Availability or set to SINGLE if using a cluster of 1 Node
(This is default setting)
org.neo4j.server.database.mode = HA

Use the following commands on the neo4j script on each server to start up the
servers. The order in which the servers are started is not important:

neo4j-01$./bin/neo4j start (# to start first server)

neo4j-02$./bin/neo4j start (# to start second server)

neo4j-03$./bin/neo4j start (# to start third server)

If the database mode has been set to HA, the startup script does not wait for the
server to become available, but returns immediately. The reason being that each
machine does not accept requests till the setup of a cluster has been completed. For
example, in the preceding configuration, this happens when the second machine
starts up. In order to monitor the state of the startup process, you can trace messages
in the console.log file created during the setup. You can find the location of the log
file printed before the startup script terminates.

Configure Neo4j for Amazon clusters
The most popular thing among the cloud deployment platforms has been Amazon
Web Services (AWS), particularly on their EC2 cluster-computing systems. These
services are not only easy to set up but offer a wide range of services and support
that make the life of admins a lot easier in the long run.

Getting Started with Neo4j

[30]

Neo4j, like a lot of other databases, is quite easy to configure and set up on an AWS
server. In this section, we outline the deployment process for a Neo4j instance on
Amazon EC2 (short for Elastic Compute Cloud). This process requires you to have a
valid AWS account and be familiar with launching instances. If you feel you need to
level up your experience with AWS, I would recommend that you follow the official
guide of Amazon so that you are able to connect with your instance with SSH; the
official guide is available at http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/EC2_GetStarted.html.

You will also need a copy of the latest stable version of Neo4j for Unix Systems. The
community edition will suffice for developmental purposes. The latest downloads
can be found at http://www.neo4j.org/download. You can then perform the
following steps:

1. You need to open the AWS management console and select Ubuntu Server
12.04.1 LTS 64-bit or start a basic 32-bit Linux instance. You could start
an Ubuntu AMI but it does not include a Java installation, which is a key
dependency of Neo4j, so you've got to install it manually.

2. In the Instance Details section, select m1.large as the type and make sure
that Availability Zone is set to any of the us-east regions. A new security
group needs to be created or you can use the default one and configure a new
security rule for the port to be used by the Neo4j server.

3. When the instance is launched, a TCP rule is created on the 7474 port used
by Neo4j with 0.0.0.0/0 as the source address. What we did was open the
7474 port for all external access (with 0.0.0.0 being the universal identifier).
If you intend to use the Neo4j REST API by remote calls from another server,
then for security reasons you can change the source field to that of the
external server. The 22 port also needs to be open for SSH.

Now, it's time to install Neo4J into the system; let's do this by performing the
following steps:

1. Open a terminal on your local system where we downloaded Neo4j. We now
copy or transfer the archive to the AWS server using the scp command:
scp -i filename.pem neo4j-community-2.1.2-unix.tar.gz ec2-user@
PUBLIC_DNS_OF_INSTANCE:/home/ec2-user

2. You will need to provide the absolute path to your pem key file, which is
typically found in ~/.ssh, the filename of the Neo4j server, and the public
DNS of your EC2 instance (ec2-user by default). Next, we establish a
connection with our EC2 instance using SSH:
ssh -i filename.pem ec2-user@PUBLIC_DNS_OF_INSTANCE

Chapter 1

[31]

3. Extract the archive contents for the Neo4j server:
tar xvfz neo4j-community-2.1.2-unix.tar.gz

4. You need to move the content into /usr/local and change the folder
name to neo4j:
sudo mv neo4j-community-2.1.2-unix.tar.gz /usr/local/neo4j

5. You now need to enable external access to the Neo4j server by editing the
Neo4j configurations file. You need to open neo4j-server.properties
under the conf directory of the master folder and append the following line:
org.neo4j.server.webserver.address = 0.0.0.0

This creates an open connection for anyone to access the Neo4j server.
For restricted access, you can specify the IP of the machine, which will
act as the source.

6. Finally, the server is started from the installation directory using the
following command:
sudo ./bin/neo4j start

A startup script can be created to automate the server initiation. To check whether
the deployment succeeded, you need to pop up a browser on your local machine and
key in http://PUBLIC_DNS_OF_INSTANCE:7474.

This should direct you to the Monitoring and Management console of Neo4j on your
AWS server. Voilà! We're done.

Cloud deployment with Azure
In this section, you will learn how to deploy Neo4j to a Linux VM hosted on Azure.
Azure has wizards to guide you, but we will be using Command-line Interface
(CLI) tools for our setup. If CLI tools are not installed on the system, you can install
them using the Node package manager with the following command:

npm install azure-cli

When the tools are installed, we open a terminal, type azure, and we are greeted
with cool ASCII art and some common commands. Now, to create our new Linux
VM on Azure, we need the following information:

• The DNS name of our VM, which will later be used to access your app as
DNS_name.cloudapp.net. We will be using myDNS.

Getting Started with Neo4j

[32]

• The name of an existing Ubuntu distribution image that can be
selected from existing ones (type azure vm image list to view
all images) or a custom image can be uploaded. Here, we use
z12k89b3b3w66g78t94rvd5b73dsrd23__Ubuntu-12_04_1-LTS-amd64-
server-20140618-en-us-50GB.

You can now create the Linux VM with the following command in the terminal:

azure vm create myDNS z12k89b3b3w66g78t94rvd5b73dsrd23__Ubuntu-12_04_1-
LTS-amd64-server-20140618-en-us-50GB username -e -l "West US"

In this command, username is the default user account that will be created whose
username is specified later. The -e flag enables SSH on the default port 22. The -l
flag permits specifying the region where the VM will be deployed. Now we have the
VM created and we can easily access it with SSH.

ssh username@myDNS.cloudapp.net

Since we are using an Ubuntu instance, we will install Neo4j using the Debian
repository by performing the following steps:

1. Add the repository to your system configuration:
echo 'deb http://debian.neo4j.org/repo stable/' > /etc/apt/
sources.list.d/neo4j.list

2. The dependency list needs to be refreshed with the following command:
sudo apt-get update

3. Neo4j is installed using the following command:
Sudo apt-get install neo4j

If we need to access Neo4j from external applications or servers, we need to
configure the Neo4j properties accordingly by performing the following steps:

1. Open the /etc/neo4j/neo4j-server.properties file. Add the following
line to the file:
org.neo4j.server.webserver.address = 0.0.0.0

2. Also, confirm that the SSL port is enabled:
org.neo4j.server.webserver.https.enabled = true

If the server was already started, we need to restart it with the following command:

sudo /etc/init.d/neo4j-service restart

Chapter 1

[33]

We will now navigate to the Azure portal and the port that Neo4j runs on (7474 by
default) has to be opened if the server is intended to be used as a database server. In
this case, we map the 7474 port with the 80 port so that the port need not be specified
with the requests. We will be using the add new endpoint function of Azure for
this, as shown below:

In order to test whether our installed application has successfully deployed, we can
test it with the following call:

curl http://myDNS.cloudapp.net

Getting Started with Neo4j

[34]

If it works, we have successfully set up Neo4j on Azure. However, the fun does not
end there. If your Azure subscription gives you access to apps for the Azure store,
then you will find that Neo4j has been included as an app there. So, the first thing
you need to do is install Apps for Azure.

Search and select the latest version of Neo4j that is available in the store and then
click on Deploy To Cloud in the screen that appears. We then need to select the
data center and provide our Windows Azure Subscription details in the form of our
publishsettings file.

We then select the size of our VM and specify a password for the administrator that
will be mailed after the completion of the deployment.

Chapter 1

[35]

Next, once the deployment completes, you can RDP into the VM using the admin
credentials from http://manage.windowsazure.com. Similar to the previous
process, if we want our server to be accessible from external hosts, we will need to
add the following line to the neo4j-server.properties file:

org.neo4j.server.webserver.address = 0.0.0.0

Summary
In this chapter, you learned about what NoSQL databases are and how important a
role graph databases play when datasets are large, complex, and inter-related. You
also learned about the different modes of operation of Neo4j, namely, embedded,
server, and high availability, and how to configure each of them. Also, Neo4j is
easy to set up in cloud deployment environments such as Amazon Clusters and
Windows Azure, which offer native built-in support for Neo4j as a scalable database
management system.

In the next chapter, we will be dealing with how to efficiently query Neo4j and also
study the indexing support that can be used to optimize traversals.

Querying and
Indexing in Neo4j

From what we learned in the previous chapter, we can say that while a relational
database can be used to obtain the average age of all the people in a room, a graph
database can indicate who is most likely to buy a drink. So, the utility of graph
databases in the information age is vital.

In this chapter, we are going to take a look at the querying and indexing features of
Neo4j and focus on the following areas:

• The Neo4j web interface
• Cypher queries and their optimization
• Introduction to Gremlin
• Indexing in Neo4j
• Migration techniques for SQL users

The Neo4j interface
Neo4j comes with a browser-based web interface with the ability to manage your
database, run queries in Cypher or REST, as well as visualization support for graphs.
You can view the status of your database with a node and the relationship count and
disk usage stats under dashboard. The data browser helps you to run queries and
visualize the results in the form of a graph. You can use the console option to run
queries on the database. Cypher and REST are supported in the console of the web
interface. Gremlin support was deprecated in the recent version but you can always
use it as a powerful external tool. Overall, the web interface provides developers
with an easy-to-use system with a frontend for monitoring and querying.

www.allitebooks.com

http://www.allitebooks.org

Querying and Indexing in Neo4j

[38]

Running Cypher queries
The default page when you open Neo4j is http://localhost:7474/browser/, and
it is an interactive shell in the browser to execute your queries in a single or multiline
format. You can also view the results locally in the timeline format along with tables
or visualizations depending upon the query. Queries can be saved using the star
button in the pane and the current content in the editor will be saved. Drag and drop
of scripts for stored queries or data import is also possible in this interface.

For administrative purposes, you can redirect to the webadmin interface at http://
localhost:7474/webadmin/, which houses several features and functions that can
be used to manage and monitor your database system.

The Neo4j webadmin interface

Chapter 2

[39]

Visualization of results
The most fascinating way of interacting with graphs is visualization. When you
run Cypher queries, the result set is generally made up of nodes and relationships
that are viewed in the data browser. Clicking on a node or a relationship in the
visualizations will show a popup that contains the properties of that entity.

Visualization of results

You can also customize the content and colors, based on the label or type of
relationship. A label is a named graph construct that is used to group nodes or
relationships into sets; all nodes labeled with the same label belong to the same set.
A type refers to different types of relationships that are present in the graph. (This
is different from __type__, which is a property in Spring Data Neo4j used to map
objects to nodes/relationships.) The elegance and design of Neo4j comes from the
fact that every interaction that we have with it is a demonstration. It not only has a
fluid and interactive UI but also a high-end administrative functionality.

Introduction to Cypher
Cypher is a graph query language that is declarative in nature. It supports
expressive, efficient execution of queries and the updating of data on graph data
stores. Cypher has a simple query construct but its power lies in the fact that we can
express very complicated queries in a simple visual manner. This helps a developer
to focus on the problem domain rather than worry about access issues of the
database.

Querying and Indexing in Neo4j

[40]

Cypher as a query language is humane by design. It is developer friendly as well as
easily usable by an operations professional. Cypher's goal is making simple things
easy and complex things possible; it bases its constructs on basic English prose,
which makes queries increasingly self-explanatory. Since it is declarative in nature,
Cypher emphasizes on expressing clearly what data has to be fetched from a graph,
rather than how it is to be fetched, unlike most scripting and imperative languages
such as Gremlin, or general-purpose programming languages such as Ruby or Java.
In this approach, the optimization of queries becomes an implementation issue
instead of going for the on-the-fly "updation" of traversals when the underlying
structure or indexing of a database changes.

The Cypher syntax has been inspired by some well-established approaches for
efficient querying. Some keywords in Cypher such as ORDER BY and WHERE are
similar in functionality to those used in SQL. SPARQL-like (a primitive graph query
language by Google) approaches for the matching of patterns have been adopted in
Cypher; languages such as Python and Haskell have also inspired certain semantics.

Cypher graph operations
Cypher is a whiteboard-friendly language. Like the data on which it is used, queries
in Cypher follow a diagrammatic approach in their syntax. This helps to target the
use of graph databases to a greater variety of audience including database admins,
developers, corporate professionals, and even the common folk. Let's take a look
at some Cypher queries before diving into the best practices and optimizations
for Cypher.

The following pattern shown depicts three entities interrelated through a
relationship denoting the NEEDS dependency. It is represented in the form of an
ASCII art:

(A)-[:NEEDS]->(B)-[:NEEDS]->(C), (A)-[:NEEDS]->(C)

The previous statement is in the form of a path that links entity A to B, then B to
C, and finally A to C. The directed relation is denoted with the -> operator. As it is
evident, patterns denoted in Cypher are a realization of how graphs are represented
on a whiteboard. It is worth noting that although a graph can be constructed with
edges in both directions, the query-processing languages operate in one direction,
for example, from left to right as in the preceding case. This is handled using a list of
patterns that are separated with commas. Cypher queries fundamentally make use
of patterns of the ASCII art. What a cypher query does is hold on to some initiating
part of the graph with a section of its pattern and then use the remaining parts of the
pattern to search for local matching entities in the graph.

Chapter 2

[41]

Cypher clauses
Being a language for querying data, Cypher consists of several clauses to perform
different tasks. A simple basic operation with cypher makes use of the START
clause to anchor to the source, which is succeeded by a MATCH clause that is used
to conditionally traverse through desired nodes in the graph and finally a RETURN
clause that outputs the matching values or some computable action result. In the
following query, we find a connecting flight path for the city of Alabama
using Cypher:

START city1=node:location(name='Alabama')
MATCH (city1)-[:CONNECTS]->(city2)-[:CONNECTS]->(city3), (city1)-
[:CONNECTS]->(city3)
RETURN city2, city3

The preceding snippet contains the following three clauses:

• The START clause: This clause is used to indicate single or multiple starting
points for the graph in consideration. The starting points in consideration can
be nodes or relationships. We can look the start nodes up with the help of an
index or occasionally accessed through the IDs of some node or relationship.
In the previous query, we obtain the initial node with the help of an index
called location that is asked to locate a place stored with the name property
set to 'Alabama'. This statement returns a reference that we bind to an
identifier called city1 in the previous example.

• The MATCH clause: These statements indicate that Cypher matches the
pattern given with the initial identifier through the rest of the graph for find
a match for the pattern. This way, we retrieve the data that we desire. Nodes
are drawn with a set of parentheses and the relationships are indicated
with the help of the --> and <-- symbols that also include the direction in
which the relationship exists. Within the dashes in the previous symbols for
relationships, we can insert the names of the relationships within a set of […
] and the name of the connecting relationship can be indicated after a colon.
Since the pattern in the MATCH clause can occur in many ways, and if the size
of the dataset is increased manifold, we will get a very large set of matched
results. To avoid this, we use anchoring for a part of the pattern with the help
of the START clause.
The Cypher engine can then match the rest of the querying pattern in the
graph surrounding the initiating points or nodes.

Querying and Indexing in Neo4j

[42]

• The RETURN clause: The RETURN clause is used to specify the resulting
nodes and connecting relationships that matched the pattern along with their
properties in the form of identifiers, which in the previous example matched
instances of city2 and city3. This follows a lazy binding approach for all
the nodes that matched to some identifier that is specified in the query as the
traversals take place in the graph.

More useful clauses
Some other essential clauses that Cypher supports for the construction of complex
queries in the graph are listed as follows:

• CREATE: You can use this clause to define a new node or a new relationship.
If you want only unique occurrences of nodes/relationships in the graphs,
then you can use the CREATE UNIQUE clause to avoid the creation of
duplicate entities.

• MERGE: This clause is equivalent to MATCH or CREATE. It can also be used
with the help of indexes and unique constraints to find an existing entity or
otherwise create a new one.

• WHERE: This clause provides a specification of conditions that can be used to
filter nodes and relationships based on their stored properties.

• SET: This clause is used to assign values to properties of nodes or
relationships.

• WITH: This clause is used to pipeline the output of one query in the form of
input into the next query, thereby making the chaining of queries possible.

• UNION: This clause acts as a conjunction operation for queries in Cypher. You
can combine the action of multiple queries on the data to produce a final
result with the help of this clause.

• DELETE: It is used for the removal of any type of entities in the graph, be it
nodes or relationships or their individual properties.

• FOREACH: This is an action clause that can be used to sequentially update the
elements in a set of entities.

Some of these query clauses are radically similar to those in SQL. Cypher is intended
to be simple enough so that it can be easily and quickly grasped by developers. Its
clauses indicate that the operations are applied on graphs instead of relational
data stores. We'll deal with some more clause-based examples in due course in
the chapter.

Chapter 2

[43]

Advanced Cypher tricks
Cypher is a highly efficient language that not only makes querying simpler but
also strives to optimize the result-generation process to the maximum. A lot more
optimization in performance can be achieved with the help of knowledge related to
the data domain of the application being used to restructure queries.

Query optimizations
There are certain techniques you can adopt in order to get the maximum
performance out of your Cypher queries. Some of them are:

• Avoid global data scans: The manual mode of optimizing the performance
of queries depends on the developer's effort to reduce the traversal domain
and to make sure that only the essential data is obtained in results. A global
scan searches the entire graph, which is fine for smaller graphs but not for
large datasets. For example:
START n =node(*)
MATCH (n)-[:KNOWS]-(m)
WHERE n.identity = "Batman"
RETURN m

Since Cypher is a greedy pattern-matching language, it avoids discrimination
unless explicitly told to. Filtering data with a start point should be undertaken
at the initial stages of execution to speed up the result-generation process.

In Neo4j versions greater than 2.0, the START statement in the
preceding query is not required, and unless otherwise specified,
the entire graph is searched.

The use of labels in the graphs and in queries can help to optimize the search
process for the pattern. For example:
START n =node(*)
MATCH (n:superheroes)-[:KNOWS]-(m)
WHERE n.identity = "Batman"
RETURN m

Using the superheroes label in the preceding query helps to shrink the
domain, thereby making the operation faster. This is referred to as a label-
based scan.

Querying and Indexing in Neo4j

[44]

• Indexing and constraints for faster search: Searches in the graph space can
be optimized and made faster if the data is indexed, or we apply some sort
of constraint on it. In this way, the traversal avoids redundant matches and
goes straight to the desired index location. To apply an index on a label, you
can use the following:
CREATE INDEX ON: superheroes(identity)

Otherwise, to create a constraint on the particular property such as making
the value of the property unique so that it can be directly referenced, we can
use the following:
CREATE CONSTRAINT ON n:superheroes
ASSERT n.identity IS UNIQUE

We will learn more about indexing, its types, and its utilities in making Neo4j
more efficient for large dataset-based operations in the next sections.

• Avoid Cartesian Products Generation: When creating queries, we should
include entities that are connected in some way. The use of unspecific or
nonrelated entities can end up generating a lot of unused or unintended
results. For example:
MATCH (m:Game), (p:Player)

This will end up mapping all possible games with all possible players and
that can lead to undesired results. Let's use an example to see how to avoid
Cartesian products in queries:
MATCH (a:Actor), (m:Movie), (s:Series)
RETURN COUNT(DISTINCT a), COUNT(DISTINCT m), COUNT(DISTINCTs)

This statement will find all possible triplets of the Actor, Movie, and Series
labels and then filter the results. An optimized form of querying will include
successive counting to get a final result as follows:
MATCH (a:Actor)
WITH COUNT(a) as actors
MATCH (m:Movie)
WITH COUNT(m) as movies, actors
MATCH (s:Series)
RETURN COUNT(s) as series, movies, actors

This increases the 10x improvement in the execution time of this query on the
same dataset.

Chapter 2

[45]

• Use more patterns in MATCH rather than WHERE: It is advisable to keep
most of the patterns used in the MATCH clause. The WHERE clause is not exactly
meant for pattern matching; rather it is used to filter the results when used
with START and WITH. However, when used with MATCH, it implements
constraints to the patterns described. Thus, the pattern matching is faster
when you use the pattern with the MATCH section. After finding starting
points—either by using scans, indexes, or already-bound points—the
execution engine will use pattern matching to find matching subgraphs. As
Cypher is declarative, it can change the order of these operations. Predicates
in WHERE clauses can be evaluated before, during, or after pattern matching.

• Split MATCH patterns further: Rather than having multiple match patterns
in the same MATCH statement in a comma-separated fashion, you can split
the patterns in several distinct MATCH statements. This process considerably
decreases the query time since it can now search on smaller or reduced
datasets at each successive match stage.
When splitting the MATCH statements, you must keep in mind that the best
practices include keeping the pattern with labels of the smallest cardinality
at the head of the statement. You must also try to keep those patterns
generating smaller intermediate result sets at the beginning of the match
statements block.

• Profiling of queries: You can monitor your queries' processing details in
the profile of the response that you can achieve with the PROFILE keyword,
or setting profile parameter to True while making the request. Some useful
information can be in the form of _db_hits that show you how many times
an entity (node, relationship, or property) has been encountered.
Returning data in a Cypher response has substantial overhead. So, you
should strive to restrict returning complete nodes or relationships wherever
possible and instead, simply return the desired properties or values
computed from the properties.

• Parameters in queries: The execution engine of Cypher tries to optimize
and transform queries into relevant execution plans. In order to optimize
the amount of resources dedicated to this task, the use of parameters as
compared to literals is preferred. With this technique, Cypher can re-utilize
the existing queries rather than parsing or compiling the literal-hbased
queries to build fresh execution plans:

MATCH (p:Player) –[:PLAYED]-(game)
WHERE p.id = {pid}
RETURN game

Querying and Indexing in Neo4j

[46]

When Cypher is building execution plans, it looks at the schema to see
whether it can find useful indexes. These index decisions are only valid until
the schema changes, so adding or removing indexes leads to the execution
plan cache being flushed.
Add the direction arrowhead in cases where the graph is to be queries in a
directed manner. This will reduce a lot of redundant operations.

Graph model optimizations
Sometimes, the query optimizations can be a great way to improve the performance
of the application using Neo4j, but you can incorporate some fundamental practices
while you define your database so that it can make things easier and faster for usage:

• Explicit definition: If the graph model we are working upon contains
implicit relationships between components. A higher efficiency in queries
can be achieved when we define these relations in an explicit manner. This
leads to faster comparisons but it comes with a drawback that now the graph
would require more storage space for an additional entity for all occurrences
of data. Let's see this in action with the help of an example.
In the following diagram, we see that when two players have played in the
same game, they are most likely to know each other. So, instead of going
through the game entity for every pair of connected players, we can define
the KNOWS relationship explicitly between the players.

PL
AY

ED
_I

N

Player 1 Player 2

Game

KNOWS

PLAYED
_IN

Chapter 2

[47]

• Property refactoring: This refers to the situation where complex time-
consuming operations in the WHERE or MATCH clause can be included
directly as properties in the nodes of the graph. This not only saves
computation time resulting in much faster queries but it also leads to
more organized data storage practices in the graph database for utility.
For example:

MATCH (m:Movie)
WHERE m.releaseDate >1343779201 AND m.releaseDate< 1369094401
RETURN m

This query is to compare whether a movie has been released in a particular
year; it can be optimized if the release year of the movie is inherently stored
in the properties of the movie nodes in the graph as the year range 2012-
2013. So, for the new format of the data, the query will now change to this:
MATCH (m:Movie)-[:CONTAINS]->(d)
WHERE s.name = "2012-2013"
RETURN g

This gives a marked improvement in the performance of the query in terms
of its execution time.

Gremlin – an overview
Gremlin is basically a wrapper to Groovy. It provides some nice constructs that
make the traversal of graphs efficient. It is an expressive language written by Marko
Rodriguez and uses connected operations for the traversal of a graph. Gremlin can
be considered Turing complete and has simple and easy-to-understand syntax.

Groovy is a powerful, optionally typed, and dynamic language, with
static typing and static compilation capabilities for the Java platform
aimed at multiplying developers' productivity thanks to a concise,
familiar, and easy-to-learn syntax. It integrates smoothly with any
Java program and immediately delivers to your application powerful
features, including scripting capabilities, domain-specific language
authoring, runtime and compile-time meta-programming, and
functional programming. Check it out at http://groovy-lang.org/.

Gremlin integrates well with Neo4j since it was mainly designed for use with
property graphs. The earlier versions sported the Gremlin console on the web
interface shell, but the latest version does away with it. Gremlin is generally used
with an REPL or a command line to make traversals on a graph interactively.

Querying and Indexing in Neo4j

[48]

Let's browse through some useful queries in Gremlin for graph traversals.

You can set up the Gremlin REPL to test out the queries. Download the latest build
from https://github.com/tinkerpop/gremlin/wiki/Downloads and follow the
setup instructions given on the official website. Now, in order to configure your
Gremlin with your Neo4j installation, you need to first create a neo4j.groovy file
with the path to your neo4j/data/graph.db directory and add the following lines:

// neo4j.groovy
import org.neo4j.kernel.EmbeddedReadOnlyGraphDatabase
db = new EmbeddedReadOnlyGraphDatabase('/path/to/neo4j/data/graph.db')
g = new Neo4jGraph(db)

When you start a new Gremlin REPL, you will need to load this file in order to use
Gremlin commands with your Neo4j database:

$ cd /path/to/gremlin

$./gremlin.sh

 \,,,/

 (o o)

-----oOOo-(_)-oOOo-----

gremlin> load neo4j.groovy

gremlin>

You can now try out some of the Gremlin clauses mentioned in the following points:

• You can connect to an existing instance of a graph database such as Neo4j
with the help of the following command at the Gremlin prompt:
gremlin> g = new Neo4jGraph ("/path/to/database")

• If you want to view all the nodes or vertices and edges in the graph, you can
use the following commands:
gremlin> g.V

gremlin> g.E

• To get a particular vertex that has been indexed, type the following
command. It returns the vertex that has a property name "Bill Gates" as the
name. Since the command returns an iterator, the >> symbol is used to pop
the next item in the iterator and assign it to the variable in consideration:
gremlin> v = g.idx(T.v)[[name: "Bill Gates"]] >> 1

==>v[165]

Chapter 2

[49]

• To look at the properties on the particular vertex, you need the following
command:

gremlin> v.map

==> name = Bill Gates

==> age = 60

==> designation = CEO

==> company = Microsoft

To view the outgoing edges from that node, we use the following command.
The result of that will print out all the outbound edges from that graph in the
format that consists of the node indices:

e[212][165-knows->180]

==> v.outE

• You can also write very simple queries to retrieve the node at the other end
of a relationship based on its label in the following manner:
gremlin> v.outE[[label:'knows']].inV.name

==> Steve Jobs

• Gremlin also allows you to trace the path it takes to achieve a particular
result with the help of an in-built property. All you need to do is append a
.path to the end of the query whose path you want to view:
gremlin> v.outE[[label:'knows']].inV.name.path

==> [v[165], e[212][165-knows->180], v[180], Steve Jobs]

• If we need to find the names of all the vertices in the graph that are known
by the vertex with the ID 165 and that have exceeded 30 years. Note that
conditions in the Gremlin statements are expressed in a pair of {} similar to
that in Groovy:
gremlin> v.outE{it.label=='knows'}.inV{it.age > 30}.name

• Finally, let's see how we can use collaborative filters on the vertex with the ID
165 to make calculations:

gremlin> m = [:]

gremlin> v.outE.inV.name.groupCount(m).back(2).loop(3){it.loops<4}

gremlin> m.sort{a,b -> a.value <=> b.value}

Querying and Indexing in Neo4j

[50]

The preceding statements first create a map in Groovy called m. Next, we find all the
outgoing edges from v, the incoming vertices at the end of those edges, and then the
name property. Since we cannot get the outgoing edges of the name, we go back two
steps to the actual vertex and then loop back three times in the statement to go to
the required entity. This maps the count retrieved from the looping to the ID of the
vertex and then stores them in the m map. The final statement sorts the results in the
map based on the count value. So, Gremlin is quite interesting for quick tinkering
with graph data and constructing small complex queries for analysis. However, since
it is a Groovy wrapper for the Pipes framework, it lacks scope for optimizations
or abstractions.

Indexing in Neo4j
In earlier builds, Neo4j had no support for indexing and was a simple property
graph. However, as the datasets scaled in size, it was inconvenient and error-prone
to traverse the entire graph for even the smallest of queries, so the need to effectively
define the starting point of the graph had to be found. Hence, the need for indexing
arose followed by the introduction of manual and then automatic indexing. Current
versions of Neo4j have extensive support for indexing as part of their fundamental
graph schema.

Manual and automatic indexing
Manual indexing was introduced in the early versions of Neo4j and was achieved
with the help of the Java API. Automatic indexing was introduced from Neo4j 1.4.
It's a manual index under the hood that contains a fixed name (node_auto_index,
relationship_auto_index) combined with TransactionEventHandler that
mirrors changes on index property name configurations. Automatic indexing is
typically set up in neo4j.properties. This technique removes lot of burden from
the manual mirroring of changes to the index properties, and it permits Cypher
statements to alter the index implicitly. Every index is bound to a unique name
specified by the user and can be associated with either a node or a relationship. The
default indexing service in Neo4j is provided by Lucene, which is an Apache project
that is designed for high-performance text-search-based projects. The component
in Neo4j that provides this service is known as neo4j-lucene-index and comes
packaged with the default distribution of Neo4j. You can browse its features and
properties at http://repo1.maven.org/maven2/org/neo4j/neo4j-lucene-
index/. We will look at some basic indexing operations through the Java API
of Neo4j.

Chapter 2

[51]

Creating an index makes use of the IndexManager class using the
GraphDatabaseService object. For a graph with games and players as nodes and
playing or waiting as the relationships, the following operations occur:

//Create the index reference
IndexManager idx = graphDb.index();
//Index the nodes
Index<Node> players = idx.forNodes("players");
Index<Node> games = idx.forNodes("games");
//Index the relationships in the graph
RelationshipIndex played = idx.forRelationships("played");

For an existing graph, you can verify that an entity has been indexed:

IndexManager idx = graphDb.index();
boolean hasIndexing = idx.existsForNodes("players");

To add an entity to an index service, we use the add(entity_name) method, and
then for complete removal of the entity from the index, we use the remove ("entity
name") method. In general, indexes cannot be modified on the fly. When you need to
change an index, you will need to get rid of the current index and create a new one:

IndexHits<Node> result = players.get("name", "Ronaldo");
Node data = result.getSingle();

The preceding lines are used to retrieve the nodes associated with a particular
index. In this case, we get an iterator for all nodes indexed as players who have the
name Ronaldo. Indexes in Neo4j are useful to optimize the queries. Several visual
wrappers have been developed to view the index parameters and monitor their
performance. One such tool is Luke, which you can view at https://code.google.
com/p/luke/.

Having told Neo4j we want to auto-index relationships and nodes, you might expect
it to be able to start searching nodes straightaway, but in fact, this is not the case.
Simply switching on auto-indexing doesn't cause anything to actually happen. Some
people find that counterintuitive and expect Neo4j to start indexing all node and
relationship properties straight away. In larger datasets, indexing everything might
not be practical since you are potentially increasing storage requirements by a factor
of two or more with every value stored in the Neo4j storage as well as the index.
Clearly, there will also be a performance overhead on every mutating operation
from the extra work of maintaining the index. Hence, Neo4j takes a more selective
approach to indexing, even with auto-indexing turned on; Neo4j will only maintain
an index of node or relationship properties it is told to index. The strategy here is
simple and relies on the key of the property. Using the config map programmatically
requires the addition of two properties that contain a list of key names to index as
shown below.

Querying and Indexing in Neo4j

[52]

Schema-based indexing
Since Neo4j 2.0, there is extended support for indexing on graph data, based on the
labels that are assigned to them. Labels are a way of grouping together one or more
entities (both nodes and relationships) under a single name. Schema indexed refers
to the process of automatically indexing the labeled entities based on some property
or a combination of properties of those entities. Cypher integrates well with these
new features to locate the starting point of a query easily.

To create a schema-based index on the name_of_player property for all nodes with
the label, you can use the following Cypher query:

CREATE INDEX ON :Player(name_of_player)

When you run such a query on a large graph, you can compare the trace of the path
that Neo4j follows to reach the starting node of the query with and without indexing
enabled. This can be done by sending the query to the Neo4j endpoint in your
database machine in a curl request with the profile flag set to true so that the trace
is displayed.

curl http://localhost:7474/db/data/cypher?profile=true -H "Accept:
application/json" -X POST -H "Content-type: application/json" --data
'{"query" : "match pl:Player where pl.name_of_player! = \"Ronaldo\"
return pl.name_of_player, pl.country"}'

The result that is returned from this will be in the form of a JSON object with a
record of how the execution of the query took place along with the _db_hits
parameter that tells us how many entities in the graph were encountered in
the process.

The performance of the queries will be optimized only if the most-used properties in
your queries are all indexed. Otherwise, Neo4j will have no utility for the indexing
if it has one property indexed and the retrieval of another property match requires
traversing all nodes. You can aggregate the properties to be used in searches into
a single property and index it separately for improved performance. Also, when
multiple properties are indexed and you want the index only on a particular
property to be used, you can specify this using the following construct using the
p:Player(name_of_player) index with schema indexes; we no longer have to
specify the use of the index explicitly. If an index exists, it will be used to process
the query. Otherwise, it will scan the whole domain. Constraints can be used with
similar intent as the schema indexes. For example, the following query asserts that
the name_of_player property in the nodes labeled as Player is unique:

CREATE CONSTRAINT ON (pl:Player) ASSERT player.name_of_player IS
UNIQUE

Chapter 2

[53]

Currently, schema indexes do not support the indexing of multiple properties of
the label under a same index. You can, however, use multiple indexes on different
properties of nodes under the same label.

Indexing takes up space in the database, so when you feel an index is no longer
needed, it is good to relieve the database of the burden of such indexes. You can
remove the index from all labeled nodes using the DROP INDEX clause:

DROP INDEX ON :Player(name_of_player)

The use of schema indices is much simpler in comparison to manual or
auto-indexing, and this gives an equally efficient performance boost to
transactions and operations.

Indexing benefits and trade-offs
Indexing does not come for free. Since the underlying application code is responsible
for the management and use of indexes, the strategy that is followed should be
thought over carefully. Inappropriate decisions or flaws in indexing result in
decreased performance or unnecessary use of disk storage space.

High on the list of trade-offs for indexing is the fact that an index result uses storage,
that is, the higher the number of entities that are indexed, the greater the disk usage.
Creating indexes for the data is basically the process of creating small lookup maps
or tables to allow rapid access to the data in the graph. So, for write operations such
as INSERT or UPDATE, we write the data twice, once for the creation of the node and
then to write it to the index mapping, which stores a pointer to the created node.

Moreover, with an elevated number of indexes, operations for insertions and
updates will take a considerable amount of time since nearly as many operations are
performed to index as compared to creating or updating entities. The code base will
naturally scale since updates/inserts will now require the modification of the index
for that entity and as is observed, if you profile the time of your query, the time to
insert a node with indexes is roughly twice of that when inserted without indexes.

On the other hand, the benefit of indexing is that query performance is considerably
improved since large sections of the graph are eliminated from the search domain.

Note that storing the Neo4j-generated IDs externally in order to enable fast lookup
is not a good practice, since the IDs are subject to alterations. The ID of nodes and
relationships is an internal representation method, and using them explicitly might
lead to broken processes.

Querying and Indexing in Neo4j

[54]

Therefore, the indexing scenario would be different for different applications. Those
that require updation or creation more frequently than reading operations should be
light in indexing entities, whereas applications dealing primarily with reads should
generously use indexes to optimize performance.

Migration techniques for SQL users
Neo4j has been around for just a few years, while most organizations that are trying
to move into business intelligence and analytics have their decades of data piled up
in SQL databases. So, rather than moving or transforming the data, it is better to fit
in a graph database along with the existing one in order to make the process a less
disruptive one.

Handling dual data stores
The two databases in our system are arranged in a way that the already-in-place
MySQL database will continue being the primary mode of storage. Neo4j acts as the
secondary storage and works on small related subsets of data. This would be done in
two specific ways:

• Online mode for transactions that are critical for essential business decisions
that are needed in real time and are operated on current sets of data

• The system can also operate in batch mode in which we collect the required
data and process it when feasible

This will require us to first tune our Neo4j system to get updated with the historical
data already present in the primary database system and then adapt the system to
sync between the two data stores.

We will try to avoid data export between the two data stores and design the system
without making assumptions about the underlying data model.

Analyzing the model
Let's use a simple entity set of people buying cars sold by dealers to illustrate the
process. You can fit in the process to your existing data setup. We outline the features
of the objects in our domains as follows:

Chapter 2

[55]

name : String

id : Int

Chassis_No : Int

Model : String

Dealer : String
...

id : Int

name : String
...

Person Car Dealer

save ()

buyCar ()
...

save ()
...

save ()
...

name : String

id : Int

Affiliation : String
...

The SQL schema of an existing database

We can represent the corresponding model in Neo4j as a directed acyclic graph.
The corresponding Neo4j acyclic graph handles the persistence with the database.
Mutating Cypher is used to transform the data into a graph that contains nodes and
relationships using the API of Neo4j in certain cases so that complex objects can be
handled. Each entity relates back to the underlying database with the help of an ID
that acts as the system's primary key and indexing operations are performed on this
key. The corresponding graph model is as follows:

“Person”

“Affiliation”“Dealer”

“Model 1”

“Model 2”
“Car”

buys

has_model

sells

affl_to

has_model

The corresponding representation in a graph database

When the graph modeling is complete, our application becomes independent of our
primary data store.

Querying and Indexing in Neo4j

[56]

Initial import
We now have to initiate the import of our data and store it after transformation into
the form of our graph objects. We use SQL queries in order to obtain the required
data by reading from the database, or requesting an existing API or previously
exported set of data.

//Update a person node or create one. If created, its id is indexed.

SELECT name, id from person where
Person person=new Person(res.getString("name"), res.getInt("id"));
person.save();

//Update a car or create one. If created, its id is indexed.

SELECT name, id from car where
Car car=new Car(res.getString("name"),res.getInt("id"));
car.save();

//Update a dealer or create one. An "affiliation" node is created if
not already existing. A relationship is created to the affiliation
from the dealer. The ids of both dealer and affiliation are indexed.

SELECT name, id, affiliation from dealers where
Dealer dealer=new Dealer(res.getString("name"), res.getInt("id"));
dealer.setAffiliation(res.getString("affiliation"));
dealer.save();

//A relationship is created to the car from the person and we set the
date of buying as a property of that relationship

SELECT person.id, car.id, buying_date from Purchase_Table
Person person=repository.getById(res.getInt("customer.id"));
person.buyCar(res.getInt("id"),res.getDate("buying_date");

Note that the preceding queries are abstract and will not run standalone. They
illustrate the method of integrating with a relational database. You can change them
according to your relational database schema.

Chapter 2

[57]

Keeping data in sync
Having successfully imported data between the systems, we are now required to
keep them in sync. For this purpose, we can schedule a cron job that will perform the
previous operations in a periodic manner. You can also define an event-based trigger
that will report on updates, such as cars being bought or new customers joining, in
the primary system and incorporate them in the Neo4j application.

This can be implemented with simple concepts, such as message queues, where
you can define the type of message required to be used by our secondary database
system. Regardless of the content of the message, our system should be able to read
and parse the message and use it for our business application logic.

The result
There is a loose coupling between the applications and we have used an efficient
parsing approach to adapt the data between multiple formats. Although this
technique works well for most situations, the import process might require a slightly
longer time initially due to the transactional nature, but the initial import is not a
process that occurs frequently. The sync based on events is a better approach in
terms of performance.

You need an in-depth understanding of the data pattern in your application so that
you can decide which technique is suitable. For single-time migrations of large
datasets, there are several available tools such as the batch importer (https://
github.com/jexp/batch-import) or the REST batch API on a database server that
runs Neo4j.

Useful code snippets
Data storage and operations on data are essentially well framed and documented for
Neo4j. When it comes to the analysis of data, it is much easier for the data scientists
to get the data out of the database in a raw format, such as CSV and JSON, so that it
can be viewed and analyzed in batches or as a whole.

Importing data to Neo4j
Cypher can be used to create graphs or include data in your existing graphs from
common data formats such as CSV. Cypher uses the LOAD CSV command to parse
CSV data into the form that can be incorporated in a Neo4j graph. In this section, we
demonstrate this functionality with the help of an example.

Querying and Indexing in Neo4j

[58]

We have three CSV files: one contains players, the second has a list of games, and
the third has a list of which of these players played in each game. You can access the
CSV files by keeping them on the Neo4j server and using file://, or by using FTP,
HTTP, or HTTPS for remote access to the data.

Let's consider sample data about cricketers (players) and the matches (games) that
were played by them. Your CSV file would look like this:

id,name
1,Adam Gilchrist
2,Sachin Tendulkar
3,Jonty Rhodes
4,Don Bradman
5,Brian Lara

You can now load the CSV data into Neo4j and create nodes out of them using the
following commands, where the headers are treated as the labels of the nodes and
the data from every line is treated as nodes:

LOAD CSV WITH HEADERS FROM "http://192.168.0.1/data/players.csv" AS
LineOfCsv
CREATE (p:Person { id: toInt(LineOfCsv.id), name: LineOfCsv.name })

Now, let's load the games.csv file. The format of the game data will be in the
following format where each line would have the ID, the name of the game, the
country it was played in, and the year of the game:

id,game,nation,year
1,Ashes,Australia,1987
2,Asia Cup,India,1999
3,World Cup,London,2000

The query to import the data would now also have the code to create a country node
and relate the game with that country:

LOAD CSV WITH HEADERS FROM " http://192.168.0.1/data/games.csv" AS
LineOfCsv
MERGE (nation:Nation { name: LineOfCsv.nation })
CREATE (game:Game { id: toInt(LineOfCsv.id), game: LineOfCsv.game,
year:toInt(LineOfCsv.year)})
CREATE (game)-[:PLAYED_IN]->(nation)

Chapter 2

[59]

Now, we go for importing the relationship data between the players and the games
to complete the graph. The association would be many to many in nature since a
game is related to many players and a player has played in many games; hence, the
relationship data is stored separately. The user-defined field id in players and games
needs to be unique for faster access while relating and also to avoid conflicts due
to common IDs in the two sets. Hence, we index the ID fields from both the
previous imports:

CREATE CONSTRAINT ON (person:Person) ASSERT person.id IS UNIQUE
CREATE CONSTRAINT ON (movie:Movie) ASSERT movie.id IS UNIQUE

To import the relationships, we read a line from the CSV file, find the IDs in players
and games, and create a relationship between them:

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "http://path/to/your/csv/file.csv" AS
csvLine

MATCH (player:Player { id: toInt(csvLine.playerId)}), (game:Game { id:
toInt(csvLine.movieId)})
CREATE (player)-[:PLAYED {role: csvLine.role }]->(game)

The CSV file that is to be used for snippets such as the previous one will vary
according to the dataset and operations at hand, a basic version of which is
represented here:

playerId,gameId,role
1,1,Batsman
4,1,WicketKeeper
2,1,Batsman
4,2,Bowler
2,2,Bowler
5,3,All-Rounder

In the preceding query, the use of PERIODIC COMMIT indicates to the Neo4j system
that the query can lead to the generation of inordinate amounts of transaction states
and therefore would require to be committed periodically to the database instead of
once at the end. Your graph is now ready. To improve efficiency, you can remove the
indexing from the id fields and also the field themselves the nodes since they were
only needed for the creation of the graph.

Querying and Indexing in Neo4j

[60]

Exporting data from Neo4j
Inherently, Neo4j has no direct format to export data. For the purpose of relocation
or backup, the Neo4j database as a .db file can be stored, which is located under the
DATA directory of your Neo4j base installation directory.

Cypher query results are returned in the form of JSON documents, and we can
directly export the json documents by using curl to query Neo4j with Cypher. A
sample query format is as follows:

curl -o output.json -H accept:application/json -H content-
type:application/json --data '{"query" : "your_query_here" }'
http://127.0.0.1:7474/db/data/cypher

You can also use the structr graph application platform (http://structr.org) to
export data in the CSV format. The following curl format is used to export all the
nodes in the graph:

curl http://127.0.0.1:7474/structr/csv/node_interfaces/export

To export relationships using the structr interface, the following commands are used:

curl http://127.0.0.1:7474/structr/csv/node_interfaces/out

curl http://127.0.0.1:7474/structr/csv/node_interfaces/in

These store the incoming and outgoing relationships in the graph. Although the two
sets of results overlap, this is necessary with respect to nodes in order to retrieve the
graph. A lot more can be done with structr other than exporting data, which you can
find at its official website. Apart from the previously mentioned techniques, you can
always use the Java API for retrieval by reading the data by entity, transforming it
into your required format (CSV/JSON), and writing it to a file.

Summary
In this chapter, you learned about Cypher queries, the clauses that give Cypher its
inherent power, and how to optimize your queries and data model in order to make
the query engine robust. We saw the best practices for improved performance using
the types of indexing we can use on our data including manual, auto, and schema-
based indexing practices.

In the next chapter, we will look at graph models and schema design patterns while
working with Neo4j.

Efficient Data
Modeling with Graphs

Databases are not dumps for data; rather, they are planned and strategically
organized stores that befit a particular objective. This is where modeling comes into
the picture. Modeling is motivated by a specific need or goal so that specific facets
of the available information are aggregated together into a form that facilitates
structuring and manipulation. The world cannot be represented in the way it
actually is; rather, simplified abstractions can be formed in accordance with some
particular goal. The same is true for graph data representations that are close logical
representations of the physical-world objects. Systems managing relational data
have storage structures far different from those that represent data close to natural
language. Transforming the data in such cases can lead to semantic dissonance
between how we conceptualize the real world and data storage structure. This issue
is, however, overcome by graph databases. In this chapter, we will look at how we
can efficiently model data for graphs. The topics to be covered in this chapter are:

• Data models and property graphs
• Neo4j design constraints
• Techniques for modeling graphs
• Designing schemas
• Modeling across multiple domains
• Data models

Efficient Data Modeling with Graphs

[62]

Data models
A data model tells us how the logical structure of a database is modeled. Data
models are fundamental entities to introduce abstraction in DBMS. They define
how data is connected to each other and how it will be processed and stored inside
the system. There are two basic types of data models in which related data can be
modeled: aggregated and connected.

The aggregated data model
Aggregated data is about how you might use aggregation in your model to simulate
relationships when you can't explicitly define them. So, you might store different
objects internally in separate sections of the data store and derive the relationships
on the fly with the help of foreign keys, or any related fields between the object.
Hence, you are aggregating data from different sources, for example, as depicted
in the following diagram, a company might contain a collection of the people who
work there, and a person might in turn be associated with several products within the
company, from which you might extract the related data. The aggregation or grouping
is used to form a link between entities rather than a well-defined relationship.

EmployeeCompany

Product Codename

id id

id id

Connected data models
Connected data is about relationships that exist between different entities. We
explicitly specify how the two entities are connected with a well-defined relationship
and also the features of this relation, so we do not need to derive relationships. This
makes data access faster and makes this the prominent data model for most graph
databases, including Neo4j. An example would be a PLAYS_FOR relationship between
a player and a team, as shown in the following diagram:

Chapter 3

[63]

Player

Name

Team

Country

Name

Name

PLAYS_FOR

REPRESENTS

Property graphs
The graph structure that most graph databases including Neo4j use inherently
classifies them into property graphs. A property graph stores the data in the form
of nodes. These nodes are linked with relationships that provide structure to the
graph. Relationships must have a direction and a label and must exist between a start
node and an end node (dangling relationships are not permitted). Both nodes and
relationships can have properties, which are key-value pairs that store characteristic
information about that entity. The keys have to be strings that describe the property,
while the value can be of any type. In property graphs, the number and type of
properties can vary across the entities. You can basically store all the metadata
about that entity into it in the form of properties. They are also useful in applying
constraints to the queries for faster access with the help of indexes.

Id: 1
Name: Alice

Age: 18

Id: 2
Name: Bob

Age: 22

Id: 3
Type: Group

Name: Chess

Id: 100

Label: knows

Since: 2001/10/03

Id: 101

Label: kn
ows

Since: 2001/10/04

Id: 103Label: Members

Id: 102Label: is_memberSince: 2005/7/01

Id
: 1

05
La

be
l:

is
_m

em
be

r
Si

nc
e:

 2
01

1/
02

/1
4

Id
: 1

04
La

be
l:

M
em

be
rs

A simple property graph

Efficient Data Modeling with Graphs

[64]

These are all that are required to create the most sophisticated and rich semantic
models for the graphs. Diagrams are an excellent way to view and design graph
structure models since they clarify the data model. However, in order to implement
these models in the Neo4j graph systems, you will need tools such as Cypher that
provide elegant constructs to design the most complex of systems, some of which we
will see later in the chapter.

Design constraints in Neo4j
Neo4j is very versatile in terms of data structuring, but everything has its limitations.
So, a designer ought to know where Neo4j gives up so that he can weigh his data size
and type and boil down to an efficient data model.

Size of files: Neo4j is based on Java at its core, so its file handling is dependent upon
the nonblocking input/output system. Although there are several optimizations for
interconnected data in the layout of storage files, there are no requirements of raw
devices in Neo4j. Hence, the limitation on the file sizes is determined by the core
operating system's ability to handle large files. There is no such built-in limit that
makes it adaptable to big data scenarios. There is, however, a process of internal
memory-mapping of the underlying file storage to the maximum extent. The beauty
also lies in the fact that in systems where memory gradually becomes a constraint
and the system is unable to keep all data in memory, Neo4j will make use of buffers
that will dynamically reallocate the memory-mapped input/output windows to
memory areas where most activity takes place. This helps to maintain the speed of
ACID interactions.

Data read speed: Most organizations scale and optimize their hardware to deliver
higher business value from already-existing resources. Neo4j's techniques of data
reads provide efficient use of all available system hardware. In Neo4j, there is no
blockage or locking of any read operation; hence, deadlocks need not be worried
about and transactions are not required for reads. Neo4j implements a threaded
access to the database for reads, so you can run simultaneous queries to the extent
supported by your underlying system and on all available processors. For larger
servers, this provides great scale-up options.

Data write speeds: Optimizing the write speed is something most organizations
worry about. Writes occur in two different scenarios:

• Write in a continuous track in a sustained way
• Bulk write operations for initial data loads, batch processes, or backups

Chapter 3

[65]

In order to facilitate writes in both these scenarios, Neo4j inherently has two modes
of writing to the underlying layer of storage. In the normal ACID transactional
operations, it maintains isolation, that is, reads can occur in the duration of the write
process. When the commit is executed, Neo4j persists the data to the disk, and if the
system fails, a recovery to the consistent state can be obtained. This requires access
for writes to the disk and the data to be flushed to the disk. Hence, the limitation
for writes on each machine is the I/O speed of the bus. In the case of deployment to
production scenarios, high-speed flash SSDs are the recommended storage devices,
and yes, Neo4j is flash ready.

Neo4j also comes with a batch inserter that can be used to directly work on the
stored data files. This mode does not guarantee security for transactions, so they
cannot be used in a multithreaded write scenario. The write process is sequential in
nature on a single write thread without flushing to logs; hence, the system has great
boosts to performance. The batch inserter is handy for the import of large datasets in
nontransactional scenarios.

Size of data: For data in Neo4j, the limitation is the size of the address space for
all the keys used as primary keys in lookup for nodes, relationships, and their
properties and types. The address space at present is as follows:

Entity Address space size
Nodes 235 (about 34 billion)
Relationships 235 (about 34 billion)
Relationship types 215 (about 32,000)
Properties 236 to 238 according to the type of the property (up

to about 274 billion, but will always be a minimum of
about 68 billion)

Security: There might arise scenarios where unauthorized access to the data in terms
of modification and theft needs to be prevented. Neo4j has no explicitly supported
data encryption methods but can use Java's core encryption constructs to secure the
data before storing in the system. Security can also be ensured at the level of the file
system using an encrypted data storage layer. Hence, security should be ensured at
all levels of the hosted system to avoid malicious read-writes, data corruption, and
Distributed denial of service (DDOS) attacks.

Efficient Data Modeling with Graphs

[66]

Graph modeling techniques
Graph databases including Neo4j are versatile pieces of software that can be used to
model and store almost any form of data including ones that would be traditionally
stored in RDBMS or document databases. Neo4j in particular is designed to have
capabilities as a high-performance store for day-to-day transactional data as well
as being usable for some level of analytics. Almost all domains including social,
medical, and finance bring up problems that can easily be handled by modeling data
in the form of graphs.

Aggregation in graphs
Aggregation is the process in which we can model trees or any other arbitrary graph
structures with the help of denormalization into a single record or document entity.

• The maximum efficiency in this technique is achieved when the tree to be
aggregated is to be accessed in a single read (for example, a complete hierarchy
of comments of a post is to be read when the page with the post is loaded)

• Random accesses to the entries or searching on them can cause problems
• Aggregated nodes can lead to inefficient updates in contrast with

independent nodes

Comments

Blog Post

Content

Mike : “....”

Sam : “....”

Eliot : “....”

{

comments: [

{by: “Mike”, message: “...”, replies: [

{by: “Sam”, message: “...”, replies: []}

]},

{by: “Eliot”, message: “...”, replies: []}

]

}

Aggregation of entities in a blog post tree

Chapter 3

[67]

Graphs for adjacency lists
The simplest method of graph modeling is adjacency lists where every node can be
modeled in the form of isolated records containing arrays with immediate descendants
or ancestors. It facilitates the searching of nodes with the help of the identifiers and
keys of their parents or ancestors and also graph traversal by pursuing hops for each
query. This technique is, however, usually inefficient for retrieving complete trees for
any given node and for depth- or breadth-based traversals.

Materialized paths
Traversal of tree-like hierarchical structures can sometimes lead to recursive
traversals. These can be avoided with the help of materialized paths that are
considered as a form of denormalization technique. We make the identifying keys of
the node's parents and children as attributes or properties of the node. In this way,
we minimize traversals by direct reference to the predecessors and descendants.

Name : Slippers
: Men’s Shoes, ShoesCategory

Name : Emu Slippers
: Slippers, Men’s Shoes, ShoesCategory

Men’s Shoes

Shoes

Women’s
Shoes

Boots Slippers

Emu
Slippers

Query :
Category : Men’s Shoes

Since the technique allows the conversion of graph-like structures into flat
documents, we can use it for full text-based searches. In the previous data scenario,
the product list or even the subcategories can be retrieved using the category name
in the query.

Efficient Data Modeling with Graphs

[68]

You can store materialized paths in the form of an ID set, or you can concatenate
the IDs into a single string. Storing as a string allows us to make use of regular
expressions to search the nodes for complete or partial criteria. This is shown in the
following diagram (the node is included in the path):

Name : E
: E,B,ALocation

A

B C

D E

E

Query :
Location : E,B.*

Modeling with nested sets
We can also use model-graph-based structures with the help of nested sets. Although
it is used consistently with relational database systems, it is also applicable to NoSQL
data stores. In this technique, we store the leaf nodes in the tree in the form of an
array and then map the intermediate nodes to a range of child nodes using the initial
and final indexes. This is illustrated in the following diagram:

Chapter 3

[69]

start end

In due course, for data that is not modified, this structure will prove to be quite
efficient since it takes up comparatively small memory and it fetches all the leaf nodes
without traversals. On frequently changing data, it is not as effective since insertions
and updation lead to extensive index updates and therefore is a costly affair.

Flattening with ordered field names
The operation of search engines is based on flattened documents of fields and values.
In datasets for such applications, the goal of modeling is to map existing entities to
plain documents or unified nodes that can be challenging when the structure of the
graph is complex. We can combine multiple related nodes or relationships into single
entities based on their use. For example, you can combine nodes. This technique is
not really scalable since the complexity of the query is seen to grow quite rapidly as a
function of a count of the structures that are combined.

Efficient Data Modeling with Graphs

[70]

Schema design patterns
Designing a schema will vary according to the scenario of data and operations that
are being used. So, once you have designed and implemented your graph model,
you need to use the appropriate schema to retrieve interesting information and
patterns from the graph. The tool of preference would be Cypher, as it is essentially
built around graphs. Let's look at some design scenarios.

Hyper edges
The data entities can have different levels of classifications, for example, different
groups contain a given user, with different roles for each group and a user being
part of several groups. The user can take up various roles in multiple groups apart
from the one they are a member of. The association that exists between the user,
their groups, and the roles can be depicted with the help of a hyper edge. This can
be implemented in a property graph model with the help of a node that captures an
n-ary relationship.

In mathematics, a hypergraph is a generalization of a graph in which
an edge can connect any number of vertices. One edge that contains
an arbitrary number of nodes is a hyper edge. Property graphs cannot
natively support hyper edges. If you need a hyper edge in your model,
then this can be simulated by introducing an extra node.

Chapter 3

[71]

hasRoleInGroup

name = 'User1'

name = 'U1G2R1' name = 'U1G1R2'

name = 'Group2' name = 'Group1'

name = 'Role1' name = 'Group' name = 'Role2'

name = 'Role'

hasRoleInGroup

hasGroup

hasRole

canHave isA

isA
isA

isAcanHave canHave

hasGroup

hasRole

canHave

in in

In order to compute a user's role in a certain group (Group2 in this case), we make
use of the following Cypher query for the traversal of the node with HyperEdge and
calculate the results:

MATCH ({ name: 'User1' })-[:hasRoleInGroup]->(hyperEdge)-
[:hasGroup]->({ name: 'Group2' }),(hyperEdge)-[:hasRole]->(role)
RETURN role.name

The result returns the role of User1 as Role1.

To calculate all the roles of a given user in the groups and display them in the
form of an alphabetically sorted table, we need the traversal of the node with the
HyperEdge:

MATCH ({ name: 'User1' })-[:hasRoleInGroup]->(hyperEdge)-[:hasGroup]-
>(group),(hyperEdge)-[:hasRole]->(role)
RETURN role.name, group.name
ORDER BY role.name ASC

Efficient Data Modeling with Graphs

[72]

The preceding query generates the following results:

role.name group.name

"Role1" "Group2"
"Role2" "Group1"

Implementing linked lists
Since a graph database inherently stores data as a graph, it becomes an increasingly
powerful tool to implement graph-based data structures such as linked lists and
trees. For a linked list, we require the head or start node as the reference of the list.
This node will have an outbound relation with the first element in the list and an
inbound relation from the last element in the list. For an empty list, the reference
points to itself. Such a linked list is called a circular list.

Let's initialize a linked list with no elements for which we first create a node that
references itself. This is the start node used for reference; hence, it does not set a
value as its property:

CREATE (start {name: 'START'})-[:POINTS]->(start)
RETURN start

name = ‘start’

points

In order to add a value to it, we need to first find the relationship in which the new
value should be placed. In this spot, in the place of the existing relationship, we add
a new connecting node with two relationships to nodes on either ends. You also need
to keep in mind that the nodes on either end can be the start node, which is the case
when the list has no elements. To avoid the creation of two new value nodes, we are
required to use the UNIQUE clause with the CREATE command. This can be illustrated
with a Cypher query as follows:

MATCH (start)-[:POINTS*0..]->(prev),(next)-[:POINTS*0..]-
>(start),(prev)-[old:POINTS]->(next)
WHERE start.name = 'START' AND (prev.value < 25 OR next = start) AND
(25 < next.value OR next =
 start)
CREATE UNIQUE (prev)-[:POINTS]->({ value:25 })-[:POINTS]->(next)
DELETE old

Chapter 3

[73]

value = 25

name = ‘start’

pointspoints

What this clause does is that it looks for the appropriate position of the value 25 in
the list and replaces that relationship with a node containing 25 connected with two
new relationships.

Complex similarity computations
When you have a heavily populated graph, you can perform numerous complex
computations on it and derive interesting relations in large datasets of financial
organizations, stock market data, social network data, or even sports data. For
example, consider finding the similarity between two players based on the frequency
with which they have been eating certain food (weird, huh!):

MATCH (roger { name: 'roger' })-[rel1:EATS]->(food)<-[rel2:EATS]-
(raphael)
WITH roger,count(DISTINCT rel1) AS H1,count(DISTINCT rel2) AS
H2,raphael
MATCH (roger)-[rel1:EATS]->(food)<-[rel2:EATS]-(raphael)
RETURN sum((1-ABS(rel1.times/H1-rel2.times/H2))*(rel1.times+rel2.
times)/(H1+H2)) AS similarity

Hence, complex computations can be carried out with minimal code involvement.

Efficient Data Modeling with Graphs

[74]

Route generation algorithms
The greatest advantage of having your data in the form of a graph is that you
generate custom paths based on your requirements. For example, you need to find
the common friend of two people; what you essentially have to do is find the shortest
paths of length 2 using the two users and the connecting relationship between the
entities. This will give us the users who are connected to the given people by a friend
hop count of 1. Neo4j has a few graph de facto algorithms including those for the
shortest path, which can be used in the following format:

PathFinder<Path> PathToFind = GraphAlgoFactory.shortestPath(
 Traversal.expanderForTypes(FRNDS_WITH), 2);
Iterable<Path> CommonPaths = PathToFind.findAllPaths(person1, person2
);

If Cypher is what appeals to you, then to return mutual friends of person1 and
person2 by using traversals of the graph, you need the following snippet:

start person1 = node(3),person2 = node(24) match (person1)--
(Relation)--(person2) return Relation;

If you are interested in getting all the friends of a given person person1, then all you
need to do is this:

start person1 = node(3) match person1--relation--person2 where
person1--person2 return relation;

Let's look at a code snippet that uses Neo4j's existing traversal algorithms on a graph
modeled with weighted edges to calculate the least total weight (call this distance
for now):

import org.neo4j.graphdb.Node;
import org.neo4j.kernel.Traversal;
import org.neo4j.graphalgo.PathFinder;
import org.neo4j.graphalgo.CostEvaluator;
import org.neo4j.graphdb.Direction;
import org.neo4j.graphalgo.WeightedPath;
import org.neo4j.graphalgo.GraphAlgoFactory;
import org.neo4j.graphalgo.CommonEvaluators;
import org.neo4j.graphdb.RelationshipExpander;
/**
 * Finding shortest path (least weighted) in a graph
 */
public class DijkstraPath
{
 private final GraphServiceHelper graph;

Chapter 3

[75]

 //Included in the code folder
 private static final String WEIGHT = "weight";
 private static final CostEvaluator<Double> evalCost;
 private static final PathFinder<WeightedPath> djktraFindPath;
 private static final RelationshipExpander relExpndr;

 static
 {
 // configure the path finder
 evalCost = CommonEvaluators.doubleCostEvaluator(WEIGHT);
 relExpndr = Traversal.expanderForTypes(GraphServiceHelper.
MyDijkstraTypes.REL, Direction.BOTH);
 djktraFindPath = GraphAlgoFactory.dijkstra(relExpndr,
evalCost);
 }

 public DijkstraPath()
 {
 graph = new GraphServiceHelper("path_to_database");
 }

 private void constructGraph()
 {
 graph.createRelationship("n1", "n2", WEIGHT, 10d);
 graph.createRelationship("n2", "n5", WEIGHT, 10d);
 graph.createRelationship("n1", "n3", WEIGHT, 5d);
 graph.createRelationship("n3", "n4", WEIGHT, 10d);
 graph.createRelationship("n4", "n5", WEIGHT, 5d);
 }

 /**
 * Find the path.
 */
 private void executeDijkstraFindPath()
 {
 Node begin = graph.getNode("n1");
 Node endd = graph.getNode("n5");
 WeightedPath path = djktraFindPath.findSinglePath(begin, endd
);
 for (Node node : path.nodes())
 {
 System.out.println(node.getProperty(GraphServiceHelper.
NAME));
 }
 }

Efficient Data Modeling with Graphs

[76]

 /**
 * Shutdown the graphdb.
 */
 private void stop()
 {
 graph.shutdown();
 }

 /**
 * Execute the example.
 */
 public static void main(final String[] args)
 {
 DijkstraPath obj = new DijkstraPath();
 obj.constructGraph();
 obj.executeDijkstraFindPath();
 obj.stop();
 }
}

Modeling across multiple domains
Most organizations use Neo4j for the purpose of business applications. Developers
might sometimes argue that in designing the underlying data model, there ought
to be multiple graphs that are classified on the basis of subdivided domains. Others
might insist on having all of the data of the domain in a single large graph. If you
consider the facts, both these scenarios have their own trade-offs.

If the subdivided domain datasets are queried frequently in such a way that the
traversals are spread across multiple domains, then the developer who suggested
a single large graph is right. However, if you are confident that the subdivided
domains will rarely need to interact among themselves, then it would be effective to
use the multiple small graphs. This will make the system more robust and decrease
the query response time.

With all this said, it is important to outline that the more messy your graph looks
with interconnections of all kinds, the more complex queries you can practically
run to derive highly interesting relationships that will make your application more
complex and intelligent. For example, if your comprehension of music was to be
completely independent of your ability to play soccer, then the movements of the
goalkeeper will not appear like dancing (if you are thinking of music while watching
a match, you could actually interpret the movements as a dance). Humans on the
other hand are capable of seamlessly mixing so many different variations.

Chapter 3

[77]

Domains or subdomains for that matter are rarely different in the truest sense; they
overlap at times, which can be a benefit for your app if the traversals can make use
of explicit continuities in such cases. Performance depends on how frequently you
traverse and the methods you use for it. The data size and density of related
data are rather insignificant for performance if you decide to subdivide your graph
into chunks.

Although it would not be a preferred choice on single machines, if you need to
subdivide your graph based on domains, you need to keep in mind that Neo4j
graphs are essentially directories in the filesystem. So, in order to link them, you
would be required to create a class to dynamically load the path of the database
needed into memory for the querying process and remove it when the result of the
query is obtained. In a real-time scenario where loads of queries need to processed
on the fly, this is not a good idea. However, for scenarios where you need to
warehouse your data for analysis purposes, it definitely works well.

Insights for businesses require us to understand the underlying network actions in a
complex chain of values. This might require us to perform joins across several domains
with little or no distortion in the details of each domain. This process is simplified with
property graphs, where we can model a chain of values as a forest (that is, a graph of
graphs) that can include interdomain relationships on rare occasions.

Summary
Even though modeling graphs seems to be a quite expressive method of handling
the level of complexity associated with a problem domain, this expressivity is not
a guarantee that the graph is fit for the purpose it is designed for. There are several
issues of wrong modeling among graph data users, but eventually, you learn which
model is suitable for the scenario at hand.

In this chapter, we looked at how vivid modeling is possible when you have data in
graphs. We also looked at how Neo4j data can be modeled with Cypher as a tool to
decipher interesting relationships directly, which would otherwise require several
hours of computation.

In the next chapter, we will look at scenarios that handle high-volume data in
Neo4j applications.

Neo4j for High-volume
Applications

There is an exponential surge in the amount of data being created annually; a
pattern that is going to exist for quite some time. As data gets more complex, it is
increasingly challenging to get valuable insights and information from it. However,
the volume and complexity of data are not the only issues. There appears to be a
rise in semi-structured and highly interconnected data. Several major tech firms
such as Facebook, Google, and Twitter have resorted to the graph approach to tackle
complexity in the big data arena. The analysis of trends and patterns out of the
collected raw data has begun to gain popularity. From professional outlook
websites such as LinkedIn to tiny specialized social media applications cropping up
each day, all have a graph-processing layer in their core applications. The graph-
oriented approach has led many industries to come up with scalable systems to
manage information.

A multitude of next-generation databases that provide better performance and
support for semi-structured data form the backbone of the big data revolution
today. These technologies not only make the analysis, storage, and management of
high volumes of data simpler, they also scale up and scale out at an extraordinary
rate. Graph databases are crucial players that have made it convenient to house
an information web in your application that can be traversed through labeled
relationships. Graph problems are existent all round us—from managing access
rights and permission in security systems to looking for where you put the keys and
from simple graphs to complex social ones—a graph database can provide more
natural storage and rapid querying.

Neo4j for High-volume Applications

[80]

In this chapter, we will look at the use of graphs and the Neo4j database in scenarios
that handle large volumes of data including:

• Graph processing
• Use of graphs in big data
• Transaction management
• The graphalgo package of Neo4j
• Introducing spring data Neo4j

Graph processing
Graph processing is an exciting development for those in the graph database space,
since the utility of graph databases has been reinforced as a storage system as well as
a computational model. However, the processing of graph-like data can be confused
with graph databases due to the common data models they share, although each
technique operates on fundamentally different scenarios. Some graph-processing
platforms such as Pregel, developed by Google, are capable of achieving high-
computational throughput, since it adopts the Bulk Synchronous Processing (BSP)
model from the domain of parallel computing. This model supports the partition of
the graph into multiple machines and uses the localized data from the vertices for
computation. Exchange of local information takes place during the synchronization
process. This model is used to process large interconnected datasets for business
insights compared to traditional map-reduce operations, although high latency is a
concern in this case.

For enterprise scenarios, a popular batch-processing platform for large volumes of data
is Hadoop. Similar to Pregel, Hadoop is also a high-throughput and latency system
that is used to optimize throughputs of computation for extremely large datasets and
that too in parallel and exterior to the database. However, Hadoop is made for general
computational use and although you can use it for processing graphs, the system and
the components are "un-optimized" for graph-oriented operations.

What the two platforms have in common is the efficient handling of Online
Analytical Processing (OLAP) for analytics, rather than simply dealing with
transactions. This is contrary to the principles of Neo4j and other graph databases.
These principles prioritize the optimization of storage and queries for Online
Transaction Processing (OLTP), similar to relational databases, but implement a
more powerful, simple, and expressive underlying data model. This can visualized
from the following diagram:

Chapter 4

[81]

PREGEL

OLTPOLAP

HADOOP

PR
OC

ES
SI

N
G

PR
OC

ES
SI

N
G

G
RA

PH
G

EN
RA

L
PU

RP
OS

E

NEO4J

RDBMS

As depicted in the preceding diagram, Pregel is strictly an OLAP graph-processing
tool; Hadoop is a completely general-purpose OLAP system but it is closer to the
OLTP axis since several current extensions are available to achieve near real-time
processing with Hadoop. Relational databases are mostly OLTP systems that can be
logically adapted in systems that require OLAP processing. Neo4j is designed solely
for graph data and primarily involves scenarios for OLTP operations, although it can
also be used for OLAP since it has a native graph model and high-read capability.

Big data and graphs
Graph data analysis is a prime technique to extract information from very large
datasets by assessing the similarity or associativity of data points. The need for such
techniques arose when social networks started gaining popularity and expanded
their user base rapidly, but today, graph analysis has a much broader scope
of application.

Neo4j for High-volume Applications

[82]

Since graph processing has caught up in the race for crunching data, big data
platforms and communities have been innovatively adapting themselves to the
needs for solving graph problems with frameworks, such as Apache Giraph
(http://giraph.apache.org/) and MapReduce extensions such as Pregel (goo.
gl/hW3L40), Surfer, and GBASE (http://goo.gl/3QkB46); it is becoming simpler to
address graph-processing issues.

Hadoop is a large-scale distributed batch-processing framework that operates at
high latencies unlike graph databases. So, if you implement graph processing on
a Hadoop-based system, data locality will lead to a more efficient batch execution,
and therefore, we will see a higher throughput. However, latency still remains the
drawback. Hence, the approach of graph processing through Hadoop batch jobs
will not be feasible for OLTP applications, since they require quite low latency in
the order of milliseconds (as compared to the seconds in Hadoop). Hence, it will
find more applications operating on static data in the OLAP domain. You can use
this for report generation purposes from static data stored in warehouses, especially
if the data is carefully laid out. In order to increase the efficiency of such a system,
denormalization of the data needs to take place within the HBase data store, which
increases the cognitive difference between the obtained data and the manner in
which it is represented for the purpose of graph processing.

However, Neo4j rules out these drawbacks. If you use Neo4j for the purposes of
graph processing, you do not need to denormalize the data or set up any specialized
infrastructure. Neo4j works seamlessly in OLTP and uses the same database (most
often, a read-only replica in sync with the master) for OLAP, should you require to
use it. The main advantage here is the low latency even when dealing with larger
read queries as well as when exposed to heavy online loads.

Hadoop-based, batch-oriented graph processing is beneficial in scenarios where
you can read or process data external to the database as compared to manipulating
it in place. So, to obtain efficient processing, data needs to be carefully placed in
HBase with no scope of mutation in the course of the processing. Neo4j, on the other
hand, supports mutations of the graph in place, which is an essential feature to run
analytics on real-time web data.

Chapter 4

[83]

Processing with Hadoop or Neo4j
The Hadoop-based solution processes batches to provide high throughputs but at the
cost of high latency and denormalization of data. The Neo4j approach is the perfect
candidate for OLTP processing on native graph data, with an added advantage of
real-time OLAP operations that provide a modest throughput but speed things up
with a quite low latency. So, depending upon the type of data and the requirement
of your application, you can select one of the methods for an advanced graph-
processing approach. If OLTP is what you need with deep analytical insights
into your data in near real-time, then Neo4j is the answer to your prayers. For
more relaxed scenarios that can bear the high latencies in order to achieve higher
throughput, then you should consider graph-processing platforms such as Hadoop
or Pregel (developed at Google).

In fact, there have also been attempts to combine Hadoop's processing
capabilities with the native graph storage of Neo4j. You can check this out at
http://goo.gl/OTgfML.

Servers

Application Data

User Data

Servers

Data Flow Process

Cleaned
Processed Data

Cleaned
Processed Data

Data
Warehouse

Analytics
Dashboard

Query
Results

persistent
import

Graph data Store

Neo4j for High-volume Applications

[84]

Neo4j performs best in an in-memory dataset that leads to blazing-fast traversals and
implementations of complex logic. However, as the number of datasets increase, it
becomes difficult to incorporate all of it in memory for processing. Also, distributing
the dataset across multiple Neo4j instances is possible but decreases the traversal
speed. So, an alternate approach needs to be found. Analytics of the data is not
generally an online process. You can make use of this fact to intermittently load
only that part of the data you would require for the current analytical transaction,
process it, and then load new data for another. So, only when the need to populate
the analytics dashboard field arises do you load and process the data in Neo4j. This
process is illustrated in the preceding diagram. This technique is beneficial since the
importing of data in Neo4j costs relatively less compared to the analytical processing
of graphs in a relational or distributed data store.

Managing transactions
Consider corporate scenarios, or businesses generating tons of critical data; operating
on them in real time is a responsibility. On one hand, there are corporations such as
Twitter or IMDb where the volume of data is high but the criticality of data is not a
top priority. However, on the other hand, there are firms that handle high volumes
of connected financial or medical data, where maintaining the integrity of data is
of the utmost importance. Such scenarios require ACID transactions, which most
databases today have built-in support for. Neo4j is a fully ACID database, as we
discussed in Chapter 1, Getting Started with Neo4j; it ensures the following properties
with respect to transactions:

• Atomicity: When a part of the transaction is unsuccessful, the state of the
database is not changed

• Consistency: The transaction maintains the database in a consistent state
• Isolation: When transactions take place, the data being operated upon is

not accessible to any other process
• Durability: It is possible to roll back or recover the committed

transaction results

Neo4j has provision to ensure that whenever graph access, indexing, or schema-
altering operations take place, they must be processed in transactions. This is
implemented with the help of locks. Neo4j allows nonrepeatable reads, in other
words, the transactions acquire write-level locks that are only released when the
transaction terminates. You can also acquire write locks manually on entities (nodes
or relationships) for higher isolation levels such as SERIALIZABLE. The default level
is READ_COMMITTED. The core API for a transaction also has provisions to handle
deadlocks, which we will discuss later in the chapter.

Chapter 4

[85]

A transaction is confined at the thread level. You also nest your transactions, where
the nested transactions are part of the scope of the highest-level transaction. These
transactions are referred to as flat nested transactions. In such transactions, when there
is an exception in a nested transaction, the complete highest-level transaction needs
to roll back, since alterations of a nested transaction alone cannot be rolled back.

The database constantly monitors the transaction state, which basically involves the
following operations:

1. A transaction begins.
2. Operations are performed on the database.
3. Indicate whether the transaction was a success or a failure.
4. The transaction finishes.

The transaction must finish in order to release the acquired locks and the memory
used. In Neo4j, we use a try-finally code segment where the transaction is started
and the write operations are performed. The try block should end by marking
the transaction successful and the transaction should be finished by the finally
block, where the commit or rollback operation is performed depending upon the
success status of the transaction. It is important to keep in mind that any alterations
performed in a transaction are in memory, which is why for high-volume scenarios
with frequent transactions, we need to divide the updates into multiple higher- or
top-level transactions to prevent the shortage of memory:

Transaction tx = graphDb.beginTx();
try
 {
 // operations on the graph
 // ...

 tx.success();
 }
finally
 {
 tx.close();
 }

Neo4j for High-volume Applications

[86]

Since transactions operate with thread pools, other errors might be occurring when
a transaction experiences a failure. When a transaction thread has not finished
properly, it is not terminated and marked for rollback and will result in errors
when a write operation is attempted for that transaction. When performing a read
operation, the previous value committed will be read, unless the transaction that is
currently being processed makes changes just before the read. By default, the level of
isolation implemented is READ_COMMITTED, which means that no locks are imposed
on read operations, and hence, the read operations can occur in a nonrepeatable
fashion. If you manually specify the read and write locks to be used, then you can
implement a higher level of isolation, namely, SERIALIZABLE or REPEATABLE_READ.
Generally, write locks are implemented when you create, modify, or delete a
particular entity as outlined in the following points:

• Writelock a node or relationship when you add, change, or remove
properties.

• The creation and deletion of nodes and relationships require you to
implement a write lock. For relationships, the two connecting nodes need to
be write-locked as well.

Neo4j comes equipped with deadlock detection, where a deadlock occurring due to
the locking arrangement can be detected before it happens and Neo4j churns out an
exception to indicate the deadlock. Also, the transaction is flagged to be rolled back
before the exception is thrown. When the locks held are released in the finally
block, other transaction operations that were busy waiting on the resource can now
take up the lock and proceed. However, the user can choose to retry the failed/
deadlocked transaction at a later time.

Deadlock handling
When deadlocks occur frequently, it is generally an indication that the concurrent
write requests are not possible to execute to maintain consistency and isolation. To
avoid such scenarios, concurrent write updates must be executed in a reasonable
fashion. For example, deadlocks can happen when we randomly create or delete
relationships between the two given nodes. The solution is to always execute
the updates in a specific order (first on node 1 and then on node 2 always) or by
manually ensuring that there are no conflicting operations in the concurrent threads
by confining similar types of operations to a single thread.

Chapter 4

[87]

All tasks performed by the Neo4j API are thread-safe in nature, unless you explicitly
specify otherwise. So, any other synchronized blocks in your code should not
include operations relating to Neo4j. There is a special case that Neo4j includes
while deleting nodes or relationships. If you try to delete a node or relationship
completely, the properties will undergo deletion, while the relationships will be
spared. What? Why? That's because Neo4j imposes a constraint on relationships
that have valid start and end nodes. So, if you try to delete nodes that are still
connected by relationships, an exception is raised on committing transactions. So,
the transaction must be planned in such a way that no relationships to a node being
deleted must exist when the current transaction is about to be committed. The
semantic conventions that must be followed when a delete operation is required to
be performed are summarized as follows:

• When you delete a node or relationship, all properties are deleted.
• Before committing, a node must not have relationships attached to it.
• A node or relationship is not actually deleted unless a commit takes place;

hence, you can reference a deleted entity before commits. However, you
cannot write to such a reference.

Uniqueness of entities
Duplication is another issue to deal with when multithreaded operations are in
play. It is possible that there is only one player with a given name in the world, but
transactions on concurrent threads trying to create such a node can end up creating
duplicated entities. Such operations need to be prevented. One naïve approach
would be to use a single thread to create the particular entities. Another popular
approach that is used most often is to use the get_or_create operation. We can
guarantee uniqueness with the help of indexing where legacy indices are used as
locks for the smallest unique identity of the entity to enable creation only if the
lookup for that particular entity fails. The other existing one is simply returned.
This concept of get_or_create exists for Cypher as well as the Java API. This
ensures uniqueness across all transactions and threads.

There is also a third technique called pessimistic locking that is implemented
across common nodes or a single node, where a lock is manually created and
used to check for synchronization. However, this approach does not apply to a
high-availability scenario.

www.allitebooks.com

http://www.allitebooks.org

Neo4j for High-volume Applications

[88]

Events for transactions
Event handlers for transactions keep track of what happens in the course of a
transaction before it goes for a commit. You need to register an event handler to an
instance of the GraphDatabaseService, events can be received. Handlers are not
notified if the transaction does not perform any writes or the transaction fails to
commit. There are two methods, beforeCommit and afterCommit, that calculate the
changes in the data (the difference) due to that commit and that constitutes an event.

Let's now see a simple example where a transaction is executed through the Java API
to see how the components fit together:

public void transactionDemo() {

 GraphDatabaseService graphDatabase;
 Node node1;
 Node node2;
 Relationship rel;

 graphDatabase = new GraphDatabaseFactory().newEmbeddedDatabase(
DB_PATH);
 registerShutdownHook(graphDatabase);

 Transaction txn = graph.beginTx();
 try {
 node1 = graphDatabase.createNode();
 node1.setProperty("name", "David Tennant");
 node2 = graphDatabase.createNode();
 node2.setProperty("name", "Matt Smith");

 rel = node1.createRelationshipTo(node2, RelTypes.KNOWS);
 rel.setProperty("name", "precedes ");

 node1.getSingleRelationship(RelTypes.KNOWS, Direction.
OUTGOING).delete();
 node1.delete();
 node2.delete();

 txn.success();
 } catch (Exception e) {
 txn.failure();
 } finally {
 txn.finish();
 }
}

Chapter 4

[89]

When you are using the Neo4j REST server or operating in the high-availability
mode, then the following syntax can be used:

POST http://localhost:7474/db/data/transaction/commit
Accept: application/json; charset=UTF-8
Content-Type: application/json
{
 "statements" : [{
 "statement" : "CREATE (n {props}) RETURN n",
 "parameters" : {
 "props" : {
 "name" : "My Node"
 }
 }
 }]
}

The preceding REST request begins a transaction and commits it after completion. If
you want to keep the transaction open for more requests, then you need to drop the
commit option from the POST request as follows:

POST http://localhost:7474/db/data/transaction

Post this at the end of the transaction to commit:

POST http://localhost:7474/db/data/transaction/9/commit

Transactions are the core components that make Neo4j ACID-compliant and
suitable for use in scenarios where high volumes of complex critical data are being
used. Transactions, if managed efficiently, can make your application robust and
consistent, even in scenarios that require real-time updates.

Neo4j for High-volume Applications

[90]

The graphalgo package
A graph provides a very attractive solution when you want to model real-world
data. As they are more flexible than RDBMS, they offer an intuitive approach and are
practically relevant to the way we think of stuff. The graph world revolves around
several featured algorithms that are used to process graphs and for route calculation,
detection of loops, calculation of the shortest path, subgraph and pattern matching
being a few of them. Although you can implement your own collection of algorithms
and tweaks, Neo4j also includes a set of predefined algorithms that you use most
for rapid application development, even for scenarios that involve large volumes of
data. They are packaged in a library called the graphalgo that you can use directly
in your Java code fragments. The REST API also exposes a few of these algorithms
such as dijkstra's and A* to be used with requests sent to the REST server. The
graphalgo interfaces can be accessed and used in your programs using methods of
the GraphAlgoFactory class. Some of the methods that can prove quite useful
at times are:

• allPaths(PathExpander, int): This method returns an algorithm that can
be used to calculate all possible paths between two specified nodes. Paths
with loops can also be calculated using this method.

• allSimplePaths(PathExpander, int): This method returns an algorithm
that does a similar job as the allPaths algorithm, except that it returns paths
that do not contain a loop.

• aStar(PathExpander, CostEvaluator<Double>,
EstimateEvaluator<Double>): This method returns a variable of type
PathFinder that can use the A* algorithm to calculate the path with the
minimum weight/cost between two specified nodes.

• dijkstra(PathExpander, CostEvaluator<Double>): This method returns
a variable of type PathFinder that operates similar to the one in the previous
method, except it uses the Dijkstra's algorithm instead of A*.

• pathsWithLength(PathExpander, int): It returns an algorithm that can be
used to a specific weighted path between two nodes.

• shortestPath(PathExpander, int): From this method, you get an
algorithm to calculate all possible shortest paths that exist between a given
pair of nodes.

Chapter 4

[91]

All the preceding algorithms use an instance of PathExpander as a parameter,
which contains the logic to decide which relationship to expand on, or select the next
relationship in the process of traversal. Alternatively, the preceding methods also
allow the use of RelationshipExpander, which is a similarly flexible way of getting
the relationships from a particular node. All the preceding methods return a value of
the type PathFinder, which you can use to retrieve the paths from the algorithms.
Let's see the use of some of these through an example:

name: Banglore
x : 2
y : 1

name: London
x : 0
y : 0

name: New York
x : 7
y : 0

REL_TYPE
distance: 30

REL_TYPE
distance: 20

REL_TYPE
distance: 100

The preceding diagram illustrates a graphical scenario of interconnected cities that
we will be using for our example. The following code shows how the graph can be
created and operated upon:

//Create a sample graph
Node cityA = createNode("city", "London", "x", 0d, "y", 0d);
Node cityB = createNode("city", "New York", "x", 7d, "y", 0d);
Node cityC = createNode("city", "Bangalore", "x", 2d, "y", 1d);
Relationship distAB = createRelationship(cityA, cityC, "distance",20d
);
Relationship distBC = createRelationship(cityC, cityB, "distance",30d
);

Neo4j for High-volume Applications

[92]

Relationship distAC = createRelationship(cityA, cityB,
"distance",100d);

EstimateEvaluator<Double> estimateEvaluator = new
EstimateEvaluator<Double>()
{
 @Override
 public Double getCost(final Node node, final Node goal)
 {
 double costx = (Double) node.getProperty("x") - (Double)
goal.getProperty("x");
 double costy = (Double) node.getProperty("y") - (Double)
goal.getProperty("y");
 double answer = Math.sqrt(Math.pow(costx, 2) + Math.pow(
costy, 2));
 return answer;
 }
};

//Use the A* algorithm
PathFinder<WeightedPath> astarFinder = GraphAlgoFactory.
aStar(PathExpanders.allTypesAndDirections(),
 CommonEvaluators.doubleCostEvaluator("distance"),
estimateEvaluator);
WeightedPath astarPath = astarFinder.findSinglePath(cityA, cityB);

//Using the Dijkstra's algorithm
PathFinder<WeightedPath> dijkstraFinder = GraphAlgoFactory.dijkstra(
 PathExpanders.forTypeAndDirection(ExampleTypes.REL_TYPE,
Direction.BOTH), "distance");

WeightedPath shortestPath = dijkstraFinder.findSinglePath(cityA,
cityC);
//print the weight of this path
System.out.println(shortestPath.weight());

//Using the find all paths method
PathFinder<Path> allPathFinder = GraphAlgoFactory.shortestPath(
 PathExpanders.forTypeAndDirection(ExampleTypes.REL_TYPE,
Direction.OUTGOING), 15);
Iterable<Path> all_paths = allPathFinder.findAllPaths(cityA, cityC);

Chapter 4

[93]

The REST interface of the Neo4j server is also capable of executing these graph
algorithms, where you can define the start node and the type of algorithm in the
body of the POST request, as illustrated here:

POST http://localhost:7474/db/data/node/264/path
Accept: application/json; charset=UTF-8
Content-Type: application/json
{
 "to" : "http://localhost:7474/db/data/node/261",
 "cost_property" : "cost",
 "relationships" : {
 "type" : "to",
 "direction" : "out"
 },
 "algorithm" : "dijkstra"
}

These algorithms operate efficiently in moderate to large graphs. However, when
you are processing graphs that require visiting billions of vertices that are highly
connected in the graph, you can tweak these algorithms to improve performance.
For example, if your graph cannot fit on a single instance and you resort to a cluster,
then you need to modify your algorithm to traverse across machines, or
to calculate in parts. However, for most big data scenarios today, they provide
optimal performance.

Introduction to Spring Data Neo4j
The Spring MVC web framework is a project that exposes a model-view-controller
architecture along with components that can be used for the development of loosely
coupled and highly flexible web-based applications. The MVC-based approach is
useful for differentiating the various aspects of an application—the input and the
business and UI logic—and provides a loosely coupled relation between
the elements.

The Spring Data project was designed to ease the process of using relatively newer
technologies, such as map-reduce jobs, nonrelational and schema-less databases, and
cloud data services, to build Spring-powered applications. As far as graph databases
are considered, this project currently has support for Neo4j integration.

Neo4j for High-volume Applications

[94]

Spring Data Neo4j is a project that exposes a simple Plain Old Java Object (POJO)
model for developers to program with, which is useful in reducing the boilerplate
code (code that sees inclusion in several places without much alteration) that goes
into the creation of applications with Neo4j. This helps to extend the Java Persistence
API (JPA) data model in order to provide a cross-store solution for persistence that
uses new parts such as entities, properties, and relationships exclusively to handle
graphs. However, it is integrated in a transparent manner with pre-existing JPA
entities, which provides an edge over simple JPA-based applications. The Spring
Data Neo4j framework also includes features to map the annotated entity classes
with the underlying Neo4j graph database. It uses a template programming model
that presents a similar approach to the Spring templates, and this accounts for the
interactivity with graphs and also has repository support. The following are some of
the salient features of this framework:

• It integrates well with property graphs and has support for Gremlin
and Cypher

• Transparent access to the Neo4j server with the REST API can also be run as
an extension to the Neo4j server

• It has dynamic field traversal support and also extensive indexing practices
• Object-graph mapping for Java object entities
• Support for Spring Data repositories and dynamic type projections

Let's take a look at how you can set up a Spring Data Neo4j project to build an
application that runs Neo4j as a data store. Using a dependency management system
such as Maven or Gradle is the recommended approach to setting up the project.
To include the latest stable build of SDN in your project, specify the following
dependency in your pom.xml file:

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-Neo4j</artifactId>
 <version>3.2.0.RELEASE</version>
</dependency>

Alternatively, if you intend to use REST API calls to access the remote Neo4j server,
then the SDN dependency for REST should be included:

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-Neo4j-rest</artifactId>
 <version>2.0.0.RELEASE</version>
</dependency>

Chapter 4

[95]

Similar to other Spring Data projects, you need to define the special XML
namespaces in order to configure your project. We simply need to provide the
interface methods to define the custom finders we need to implement, and at
runtime, Spring injects the appropriate implementation at runtime. The following
context can be used for configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:Neo4j="http://www.springframework.org/schema/data/Neo4j"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
<a href="http://www.springframework.org/schema/beans/spring-beans-
3.0.xsd">http://www.springframework.org/schema/beans/spring-beans-
3.0.xsd
 <a href="http://www.springframework.org/schema/
context">http://www.springframework.org/schema/context <a
href="http://www.springframework.org/schema/context/spring-context-
3.0.xsd">http://www.springframework.org/schema/context/spring-context-
3.0.xsd
 <a href="http://www.springframework.org/schema/data/
Neo4j">http://www.springframework.org/schema/data/Neo4j <a
href="http://www.springframework.org/schema/data/Neo4j/spring-Neo4j.
xsd">http://www.springframework.org/schema/data/Neo4j/spring-Neo4j.
xsd">

 <context:spring-configured/>
 <context:annotation-config/>

 <Neo4j:config storeDirectory="target/data/db"/>

 <Neo4j:repositories base-package="com.comsysto.Neo4j.showcase"/>
</beans>

If you plan to use your Spring application to interface with the REST API, then you
need to include the server URL to direct the calls, as shown in the following code:

<!-- REST Connection to Neo4j server -->
<bean id="restGraphDatabase" class="org.springframework.data.Neo4j.
rest.SpringRestGraphDatabase">
 <constructor-arg value="http://localhost:7474/db/data/" />
</bean>

<!-- Neo4j configuration (creates Neo4jTemplate) -->
<Neo4j:config graphDatabaseService="restGraphDatabase" />

Neo4j for High-volume Applications

[96]

Example

//Creating a node entity
@NodeEntity
class Player {
 @Indexed(unique=true)
 private String player_name;

 @RelatedTo(direction = Direction.BOTH, elementClass = Player.
class)
 private Set<Player> coPlayers;

 public Player() {}
 public Player(String player_name) { this.player_name = player_
name; }

 private void playedWith(Player coPlayer) { coPlayers.
add(coPlayer); }
}

Player ronaldo = new Player("Ronaldo").persist();
Player beckham = new Player("Beckham").persist();
Player rooney = new Player("Rooney").persist();

beckham.playedWith(ronaldo);
beckham.playedWith(rooney);

// Persist creates relationships to graph database
beckham.persist();

for (Player coPlayer : beckham.getFriends()) {
 System.out.println("Friend: " + coPlayer);
}

// The Method findAllByTraversal() is part of @NodeEntity
for (Player coPlayer : ronaldo.findAllByTraversal(Player.class,
 Traversal.description().evaluator(Evaluators.
includingDepths(1, 2)))) {
 System.out.println("Ronaldo's coPlayers to depth 2: " + coPlayer);
}

// Add <datagraph:repositories base-package="com.your.repo"/> to
context config.

Chapter 4

[97]

interface com.example.repo.PlayerRepository extends
GraphRepository<Player> {}

@Autowired PlayerRepository repo;
beckham = repo.findByPropertyValue("player_name", "beckham");
long numberOfPeople = repo.count();

The preceding code denotes a scenario where we relate players who have played
together. The SDN domain class defines the Node entity along with its data and
indexes and relationships. The persist() method creates the entities into the
database. Apart from the basic CRUD operations, you can also run Cypher queries
with SDN if you have included the REST library in your dependency list for
the project:

@Query("start movie=node({self}) match
 movie-->genre<--similar return similar")
Iterable<Movie> similarMovies;

SDN is a highly efficient framework built on top of Spring; however, when you
want to load larger datasets into such applications, you might find things getting a
bit complex. In Neo4j, the batch inserter is the answer to bulk data loads, but SDN
does not support batch inserter out of the box. SDN is simply a layer of mapping
between the Neo4j entities and the Java types. You need to explicitly write code to
insert data in batches using TypeRepresentationStrategy defined for the nodes
and relationships, which creates a __type__ property for the defined entities and __
type__ indexes for nodes and relationships. You can look further into these issues at
http://projects.spring.io/spring-data-Neo4j/.

Summary
It's one thing to handle and store big data and a different one to understand it. This
is where Neo4j comes in handy as a super tool. In this chapter, we saw that not only
can you store your data in a more organized and logical manner, you can also easily
interpret the relationships that exist in the data with minimal efforts. So, as the data
grows in size, a graph database can make life easier for an analyst and a developer.
We looked at techniques that need to be kept in mind while developing applications
to handle large volumes of graph data.

In the next chapter, we will take a look at how you can go about testing the Neo4j
applications that you have built or are about to build. You will also learn about the
options available for scaling a Neo4j graph database.

Testing and Scaling Neo4j
Applications

When graph databases came into the picture, testing was an unchartered territory
and developers had a hard time ensuring that applications were configured in a
failsafe manner. With the introduction of several highly efficient graph data stores,
including Titan and Neo4j, several projects and frameworks sprung up in addition
to the built-in ones. Neo4j in particular is ACID in nature, transaction-friendly and
easy to set up, but a viable testing framework is always useful to ensure that your
application runs as intended and helps to identify hidden bugs. In this chapter, we
will cover the following topics related to the testing of Neo4j applications:

• Testing Neo4j applications with the GraphAware Framework
• Unit testing with the Java API and GraphUnit
• Performance testing
• Benchmarking performance with Gatling
• Scaling options for Neo4j applications

Testing and Scaling Neo4j Applications

[100]

Testing Neo4j applications
Neo4j as a graph database has several powerful and reliable features. Although it
does include a basic unit testing module for embedded applications, the support
for testing has still not made it into the core packages yet. You might not feel
the need to test your applications if they seem to work on your local machines.
However, it is always wise to have a rigorous testing scheme when your application
is deployed on a larger or production scale or is handling critical data and huge
traffic loads. So, when the need for testing arose for Neo4j, GraphAware came
up with an advanced framework built on top of the core Neo4j libraries, but also
included several advanced optimizations and features. Among them was the
GraphAware server that allowed developers to build Representational State
Transfer (REST) API applications on top of the Spring MVC framework, in
place of the earlier used JAX-RS. They also included a GraphAware runtime that
provided customized modules for improved transactions and continuous graph
computations on both embedded and server environments. In addition, it also
provides a GraphAware testing framework that was available only for Java-based
development before. So, embedded instances of Neo4j in applications, Spring-MVC-
controlled applications, and extension development can be easily tested using this
framework. The GraphAware framework speeds up application development with
Neo4j by extending a platform to developers to create generic or domain-specific
functionalities, analytical applications, advanced graph computation algorithms, and
much more. The GraphAware test framework provides the flexibility to easily test
code that interacts with the Neo4j database in any way. If you are a developer who
is writing or planning to write Java code for Neo4j applications, or are developing
modules for the GraphAware Framework and its APIs, then this testing framework
is going to make your life easier. To include this testing module in your project, you
can use Maven to specify it as a dependency in your pom.xml file:

<dependency>
 <groupId>com.graphaware.neo4j</groupId>
 <artifactId>tests</artifactId>
 <version>2.1.4.17</version>
 <scope>test</scope>
</dependency>

Check for the latest version number of the GraphAware Framework
from http://graphaware.com/downloads/ when including the
Maven dependency in the pom.xml file.

You can now work with unit, performance, and integration testing for your
Neo4j applications.

Chapter 5

[101]

Unit testing
Unit testing works on the smallest testable parts of the code that deal with few inputs
and a single output. When you modify Neo4j data stores using Java code, especially
in embedded applications, you make use of the ImpermanentGraphDatabase file
together with Neo4j APIs to test the code. The APIs you can use include the Java API,
is the Neo4j traversal framework, and Cypher. The REST API does not much use
with Java code. As an alternative, you can use GraphUnit to perform the integration
testing. We will take a look at both scenarios in the following sections. For the
purpose of testing, let's take an example graph that initially creates two nodes and a
relationship to connect them and sets properties on the nodes and the relationship.
The assertions that a unit test would apply on this graph and its functionality
would be:

• The creation of nodes and relationships was as expected, and the properties
and labels were set correctly

• No additional entities were created or set, including nodes, relationships,
properties, and labels

• The already existing sections of the graph, if any, remain unaltered

Not all the preceding objectives can be fulfilled by the use of Cypher. This is because
Cypher is created for declarative operations on the graph database and not for
imperative ones. So, only the first criterion can be fulfilled. It is also important to
note that asserting the existence of an entity in the database is simple, but the process
of ensuring that no extra entities were created, or no extra labels and properties were
set is a rather difficult task.

So, unit tests can be performed by asserting the graph state using the low-level
native Java APIs. Let's see how we can test using the Java API and the
GraphUnit framework.

Using the Java API
In order to use the testing facilities on an impermanent graph, the tests.jar file of
the neo4j-kernel must be present on the classpath for use. It uses the standard JUnit
fixtures to achieve the testing. This can be included in your project using the Maven
dependency along with JUnit, as follows:

<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-kernel</artifactId>
 <version>2.1.4</version>
 <scope>test</scope>

Testing and Scaling Neo4j Applications

[102]

 <type>test-jar</type>
</dependency>

Note that the <type>test-jar</type> inclusion is
important, without this you would include neo4j-kernel but not
the testing libraries.

A new database can be created for testing purposes, which will be stopped after the
tests are complete. Although, it is possible to use the database being tested upon for
intermediate operations, it is not advised to do this since it can cause conflicts and
unnecessary writes.

@Before
public void prepareTestDatabase(){
 graphDb = new TestGraphDatabaseFactory().newImpermanentDatabase();
}

@After
public void destroyTestDatabase(){
 graphDb.shutdown();
}

In the process of testing, you create nodes and assert their existence, while enclosing
the write operations in a transaction:

Node n = null;
try (Transaction tx = graphDb.beginTx())
{
 n = graphDb.createNode();
 n.setProperty("title", "Developer");
 tx.success();
}

// Check for a valid node Id
assertThat(n.getId(), is(greaterThan(-1L)));

// A node is retrieved with the Id of the node created. The id's and
// property must be matching.
try (Transaction tx = graphDb.beginTx())
{
 Node foundNode = graphDb.getNodeById(n.getId());
 assertThat(foundNode.getId(), is(n.getId()));
 assertThat((String) foundNode.getProperty("title"), is(
"Developer"));
}

Chapter 5

[103]

GraphUnit-based unit testing
GraphUnit contains a set of assertion methods that are useful in creating Neo4j tests.
What they basically do is compare whether the graph created is the same as the
graph that should be created. GraphUnit addresses the unit testing problems, thus
ensuring that no extra properties, nodes, or relationships were altered in the graph.
It gives developers the opportunity to express the desired state of the graph using
Cypher and assert that this is indeed the case. The following method is used for
this purpose:

public static void assertSameGraph(GraphDatabaseService database,
String sameGraphCypher)

The first parameter is the database whose state is being asserted. The second
parameter is a Cypher (typically CREATE) statement that expresses the desired
state of the database. The graph in the database and the graph that should be created
by the Cypher statement must be identical in order for the unit test to pass. Of
course, the internal Neo4j node and relationship IDs are excluded from
any comparisons.

If tests on graphs are large and if it is not the developer's intention to verify the state
of the entire graph, GraphUnit provides another method:

public static void assertSubgraph(GraphDatabaseService database,
String subgraphCypher)

The idea is the same, except that there are additional relationships and nodes in the
database that are not expressed in the Cypher statement. However, the Cypher-
defined subgraph must be present in the database with exactly the same node labels,
relationship types, and properties on both nodes and relationships in order for the
test to pass.

For more insights into the set of assertion methods, you can visit
http://graphaware.com/site/framework/latest/apidocs/
com/graphaware/test/unit/GraphUnit.html.

Testing and Scaling Neo4j Applications

[104]

Unit testing an embedded database
We can perform a simple unit test to assert that a pairing has been successfully
saved. A pairing is formed with two entities that represent nodes. Each entity has a
name and a directed relation between the entities. This structure is illustrated in the
following figure:

Entity PairsWith

hasEntity hasEntity

Pairing

Entity

The code to test this simple structure using the Java API is large and is difficult to
maintain for extended time periods. GraphUnit, on the other hand, enables you to
compare the current graph state to the subgraph that you intended to create, which
can be represented with the help of a Cypher statement. So, all you need to do is
write a Cypher statement to create a subgraph that contains the two entities along
with a pairing and use it as an argument to the assertSameGraph() method:

String entitySubgraph = "create (e1:Entity {name: 'Ferrari'}),
(e2:Entity {name: 'Aston Martin'}), " + "(e1)<-[:hasEntity]-(p:Pairing
{affinity: 0.50, allAffinities: [0.50]}), " + "(p)-[:hasEntity]->(e2)
merge (e1)-[:pairsWith]-(e2)";
GraphUnit.assertSameGraph(getGraphDb(), entitySubgraph);

This will ensure that the structure represented by the Cypher query string is all that
constitutes the graph that was created, with every property matching exactly.

GraphUnit contains another method to check whether the Neo4j graph contains a
desired subgraph in it. This will assert the existence of the subgraph specified by the
cypher query and filter out the other nodes and relationships:

GraphUnit.assertSubgraph(getGraphDb(), entitySubgraph);

Chapter 5

[105]

GraphUnit needs an org.neo4j.graphdb.GraphDataService handle to the
database that needs to tested. It can be used effectively with the impermanent or
embedded graph databases. To test server instances of Neo4j using the REST API, we
can use GraphAware RestTest, which we will discuss later in the chapter.

Apart from basic code testing, GraphUnit can also be used to verify that the import
of data into a graph completes successfully or not. Since data import from CSV or
other formats is not performed as transactions, this is important to check the integrity
of the data load process. So, you can use GraphUnit to write a single unit test that
verifies the subgraphs in the database created after the import, rather than inspecting
the graph visually or running queries to check.

public class graphUnitTestDemo
{
 @Test
 public void testActor()
 {
 String actorSubgraph = "Match (country:Country {name:
'BRITAIN'})<-[:From]-(actor {name: 'PIERCE BROSNAN'}), (m:Movie
{id: 5}), (min:Minutes {id: 35}) create (actor)-[:ActedIn]-
>(genre:Genre{type: 'Action'})-[:In]->(m) create (m)-[:BelongsTo]-
>(country)";
 GraphUnit.assertSubgraph(getGraphDb(), actorSubgraph);
 }
 @Test
 public void testReferee()
 {
 String refSubgraph = "Match (m:Movie {id:5}) match (c:Country
{name:'BRITAIN'}) create (m)-[:Director]->(d:Director {name:'The
Doctor'})-[:HomeCountry]->(c)";
 GraphUnit.assertSameGraph(getGraphDb(), refSubgraph);
 }
 }

This is a much simpler, convenient, and effective way to test the graph at hand.

There are several benefits of this testing technique, especially concerning readability.
Moreover, the GraphUnit version for testing is actually more fail-safe since it results
in failure, when the graph contents are more than or different to that explicitly
mentioned in the Cypher statement.

Testing and Scaling Neo4j Applications

[106]

Unit testing a Neo4J server
The GraphAware RestTest library was created to test code that is designed to connect
to a standalone server instance of Neo4j. You can set up the testing functionality on
your Neo4j server by including the following JAR files in the plugins directory:

• graphaware-resttest-2.1.3.15.6.jar

• graphaware-server-community-all-2.1.3.15.jar (or graphaware-
server-enterprise-all-2.1.3.15.jar, depending upon your
server installation.)

You can download the JAR files from http://graphaware.
com/downloads/. Check the latest versions of the JAR files while
downloading. You will also need to restart your server after dropping the
preceding JAR files in the plugins directory to be able to use the APIs.

The testing process is pretty simple. You can direct POST requests to the predefined
URLs defined in the RestTest framework to check a specific functionality. In the
server mode deployment, there are three URLs defined that you can use:

• http://server-ip-address:7474/graphaware/resttest/clear in order
to clear the database.

• http://server-ip-address:7474/graphaware/resttest/
assertSameGraph in order to assert the database state. The body of the
request must contain a URL-encoded Cypher CREATE statement defining the
expected state of the graph.

• http://server-ip-address:7474/graphaware/resttest/
assertSubgraph in order to assert the database state for a given subgraph.
The body of the request must contain a URL-encoded Cypher CREATE
statement to define the state of the subgraph.

A call to the first API endpoint will clear the database. The second API endpoint
provides a functionality that is similar to the assertSameGraph() method of
GraphUnit. This helps verify that the graph existing in the database matches the
one that will be created through the Cypher CREATE statement included in the
request body. Every aspect of the graph, including nodes, relationships, their labels
and properties, needs to be exactly the same. However, the internal IDs that Neo4j
uses to reference nodes/relationships are ignored while matching the graphs. If
the matching is successful, the response returned is an OK(200) HTTP response.
Otherwise, if the assertion fails, an EXPECTATION_FAILED HTTP response is
returned with a status code of 417.

Chapter 5

[107]

In the third endpoint case, the RestTest API validates whether the graph structure
created by the Cypher query provided is a subgraph of the graph in the database
server. This is equivalent to the assertSubGraph() method of the GraphUnit API.
The response code of the outcomes are the same as mentioned previously.

Performance testing
Apart from the validity and correctness of your code units, it is also essential at
times to run database jobs to analyze how queries, operations, and the database
itself is performing. These include mission critical operations such as banking,
financial analytics, and real-time datasets, where errors can be catastrophic. This is,
however, not a simple task. A database is a complex ecosystem that incorporates
many moving entities, namely transaction sizes, frequency of commits, database
content, type, and size of cache. The GraphAware Testing framework also provides
the PerformanceTestSuite and PerformanceTest classes to make the performance
testing process simple.

To deal with moving entities, the tests can define a parameter list that contains the
desired entity. The test framework will then proceed to generate every possible
permutation and use each of them to run the performance test a number of times.
Among other things, in the performance tests you implement, you can specify the
following entities as parameters:

• The number of times to run the tests and get performance metrics
• The number of dry runs to perform so that a warm cache is established to test

speed of cache retrievals
• The parameters that are to be used
• When to discard the test database and build a new one

Here's a simple example of performance test code that you can write:

public class PerformanceTestDemo implements PerformanceTest {
 enum Scenario {
 FIRST_SCENARIO,
 OTHER_SCENARIO
 }
 /**{@inheritDoc}*/
 @Override
 public String longName() {return "Test Long Name";}
 /**{@inheritDoc}*/
 @Override
 public String shortName() {return "test-short-name";}

Testing and Scaling Neo4j Applications

[108]

 /**{@inheritDoc}*/
 @Override
 public List<Parameter> parameters() {
 List<Parameter> result = new LinkedList<>();
 result.add(new CacheParameter("cache")); //no cache, low-level
cache, high-level cache
 result.add(new EnumParameter("scenario", Scenario.class));
 return result;
 }

 /**{@inheritDoc}*/
 @Override
 public int dryRuns(Map<String, Object> params) {
 return ((CacheConfiguration) params.get("cache")).
needsWarmup() ? 10000 : 100;
 }
 /**{@inheritDoc}*/
 @Override
 public int measuredRuns() {
 return 100;
 }
 /**{@inheritDoc}*/
 @Override
 public Map<String, String> databaseParameters(Map<String, Object>
params) {
 return ((CacheConfiguration) params.get("cache")).addToConfig(
Collections.<String, String>emptyMap());
 }
 /**{@inheritDoc}*/
 @Override
 public void prepareDatabase(GraphDatabaseService database, final
Map<String, Object> params) {
 //create 100 nodes in batches of 100
 new NoInputBatchTransactionExecutor(database, 100, 100, new
UnitOfWork<NullItem>() {
 @Override
 public void execute(GraphDatabaseService database,
NullItem input, int batchNumber, int stepNumber) {
 database.createNode();
 }
 }).execute();
 }
 /**{@inheritDoc}*/
 @Override

Chapter 5

[109]

 public RebuildDatabase rebuildDatabase() {
 return RebuildDatabase.AFTER_PARAM_CHANGE;
 }
 /**{@inheritDoc}*/
 @Override
 public long run(GraphDatabaseService database, Map<String, Object>
params) {
 Scenario scenario = (Scenario) params.get("scenario");
 switch (scenario) {
 case FIRST_SCENARIO:
 //run test for scenario 1
 return 20; //the time it takes in microseconds
 case OTHER_SCENARIO:
 //run test for scenario 2
 return 20; //the time it takes in microseconds
 default:
 throw new IllegalStateException("Unknown scenario");
 }
 }
 /**{@inheritDoc}*/
 @Override
 public boolean rebuildDatabase(Map<String, Object> params) {
 throw new UnsupportedOperationException("never needed,
database rebuilt after every param change");
 }
}

You change the run method implementation to do some real work. Then add this test
to a test suite and run it:

public class RunningDemoTest extends PerformanceTestSuite {
 /**{@inheritDoc}*/
 @Override
 protected PerformanceTest[] getPerfTests() {
 return new PerformanceTest[]{new PerformanceTestDemo()};
 }
}

Testing and Scaling Neo4j Applications

[110]

This example code skeleton shows a custom class that implements the
PerformanceTest class of the GraphAware library, which overrides the methods that
need to be tweaked according to your requirement. The result is a total of 6 parameter
permutations (the product of 2 scenarios and 3 cache types), each executed 100 times,
as we have defined. When the test run process is complete, a file with the name test-
short-name-***.txt (*** being the timestamp) appears in the project root directory.
The file contains the runtimes of each test round for the parameter permutations. For
example, the Test Long Name result file would contain something like this:

cache;scenario;times in microseconds...
nocache;FIRST_SCENARIO;15;15;15;15;15;15;15;...
nocache;OTHER_SCENARIO;15;15;15;15;15;15;15;...
lowcache;FIRST_SCENARIO;15;15;15;15;15;15;15;...
lowcache;OTHER_SCENARIO;15;15;15;15;15;15;15;...
highcache;FIRST_SCENARIO;15;15;15;15;15;15;15;...
highcache;OTHER_SCENARIO;15;15;15;15;15;15;15;...

It is also worth noting that Facebook has open sourced a benchmarking tool for social
graph databases called LinkBench, which makes it possible for the Neo4j community
to compare their performance metrics with a real and large dataset. You can check
out the details of this system at https://github.com/graphaware/linkbench-
neo4j.

Benchmarking performance with Gatling
With Benchmarking, we can compare our Neo4j process and performance metrics
with stats from other players in the industry. It is a method to measure the quality,
time, and cost of implementing a solution in a production scenario. It is also a useful
measure to constantly evaluate your needs and the current system metrics to analyze
when a change might be required to hardware or software tools.

Chapter 5

[111]

Response time metrics from Gatling

Although the Neo4j dashboard gives a good idea of the database state and metrics,
you can use Gatling, a load testing framework based on Scala, Netty, and Akka
that can test your whole application to measure end-to-end performance. The only
challenge of this tool is that you need to write your code in Scala. You can use the
built-in HTTP library to send requests to the REST server and evaluate the response
and create simulations in real time to measure performance. You can learn about
Gatling in detail at http://gatling.io/. Gatling also provides a splendid interface
to view your metrics graphically; the following are some examples:

The Gatling interface

Testing and Scaling Neo4j Applications

[112]

What we take away from the entire performance testing and benchmarking processes
is the prospect of finding loopholes and bottlenecks in the system. We can then apply
tweaks and tools to get the Neo4j system run more efficiently. Like any complex
system, Neo4j can be properly tuned to achieve optimal performance. When you
view the time-varying performance of your graph data store based on the workload
characteristics, you can figure out whether it is possible to amortize your setup steps
across many queries.

There are several tweaks possible that can help in increasing the performance of the
Neo4j system depending on the type of data stored, the size of data, or the type of
query operations performed on the data. However, here are a couple of common
generic techniques that can help improve the performance of the Neo4j subsystem:

• Warm cache: This refers to creating a cache of the relevant and most updated
data in the database, thereby reducing the lookup time for most parts of
the requests. Benchmarking should measure the empty and warm caching
behavior of your Neo4j system to provide an good performance metric.

• Simpler algorithms: Sometimes, blips in performance metrics are not
always the fault of the database or data, but that of the application-specific
algorithms you use. It is obvious that the algorithms that fit your database
must be chosen, but complexity and sophistication define performance too.
Think of graph traversals!

Scaling Neo4j applications
Large datasets in the Neo4j world refer to those that are substantially larger
compared to the main memory of the system. In scenarios with such datasets, it is
not possible for the Neo4j system to cache the entire database in memory, thereby
providing blazingly fast traversals on the graph, because it will eventually lead to
disk operations. Earlier, it was recommended to scale the system vertically using
more RAM or solid state drives that have much lower seek times for the data on the
disk compared to spinning drives. While SSDs considerably increase performance,
even the fastest SSDs cannot replace the RAM, which in the end is the limiting factor.

In order to service huge workloads and manage large sets of data in Neo4j,
partitioning graphs across multiple physical instances seem complex way to scale
graph data. In versions up to 1.2, scaling seemed to be the con of this graph data
store, but with the introduction of Neo4j High Availability (HA), there has been
significant insight to handling large datasets and design solutions for scalability and
availability.

Chapter 5

[113]

One significant pattern that uses Neo4j HA is cache sharding, which is used to
maintain increased performance with massive datasets that exceed the available
main memory space of the system. Cache sharding is not the traditional sharding
that most databases implement today. This is due to the fact that it expects a
complete dataset to be present on each instance of the database. Instead, to
implement cache sharding, the workload is partitioned among each database
instance in order to increase the chances of hitting a warm cache for a particular
request; believe it or not, warm caches in Neo4j give extremely high performance.

There are several issues that Neo4j HA addresses, the following being the
prominent features:

• It implements a fault-tolerant architecture for the database, in which you can
configure multiple Neo4j slave database instances to be exact replica sets of
a single Neo4j master database. Hence, the end user application that runs
Neo4j will be perfectly operational when there is a hardware failure.

• It provides a read-mostly, horizontally scaling architecture that facilitates
the system to handle much higher read traffic as compared to a single
instance of the Neo4j database, since every instance contains a complete
graph dataset.

In other words, cache sharding refers to the injection of some logic into the load
balancer of the high availability cluster of Neo4j, thereby directing queries to some
specific node in the cluster based on a rule or property (such as sessions or start
values). If implemented properly, each node in the cluster will be able to house a
part of the total graph in the corresponding object cache so that the required
traversal can be made.

Testing and Scaling Neo4j Applications

[114]

The architecture for this solution is represented in the following figure. Thus, instead
of typical graph sharding, we reduce the solution to that of consistent routing, which
is a technique that has been in use with web farms for ages.

Router

Server 2 Server 3Server 1

Ensures same path is taken for
all requests from the same user

cache
Neo4j HA Infrastructure

The logic that is used to perform the routing varies according to the domain of the
data. At times, you can use specific characteristics of the data, such as label names
or indexes for routing, whereas sometimes, sticky sessions are good enough. One
simple technique is the database instance that serves a request for the first time
for some user will also serve all subsequent requests for that user, with a high
probability of processing the requests from a warm cache. You can use domain
knowledge of the requests to route, for example, in the case of geographical or
location-specific data, you route requests that pertain to particular locations to
Neo4j instances that have data for that location in their warm cache. In a way, we
are shooting up the likelihood of nodes and relationships being cached and hence, it
becomes faster to access and process.

Apart from reading from the databases, to run multiple servers to harness the caching
capabilities, we also need to sync data between these servers. This is where Neo4j
HA comes into play. Effectively, with the deployment of Neo4J HA, a multimaster
cluster is formed. A write to any instance propagates the write with the help of the
HA protocol. When the elected master in the cluster is being written to, the data is
first persisted there due to its ACID nature, and then, the modification is eventually
transferred to the slaves through the HA protocol in order to maintain consistency.

Chapter 5

[115]

Router

Server 3

Neo4j HA Infrastructure

1.Write

Server 1
(master)

Server 2
(slave) (slave)

2b.Catch up

2a.Catch up

If a cluster slave mode processes a write operation, then it updates the elected master
node with the help of a transaction, and initially, the results are persisted in both.
Other slaves are updated from the master with the use of the HA protocol.

Router

Server 3

Neo4j HA Infrastructure

Server 1
(master)

Server 2
(slave) (slave)

2. Write

1.
 W

rit
e

3. Confirm

4. Catchup

Testing and Scaling Neo4j Applications

[116]

With the use of such a pattern, a Neo4J HA cluster acts as a high-performance
database for efficient read-write operations. Additionally, a good strategy for
routing, it helps to perform in-memory and blazingly fast traversals for applications.

The following is a summary of the scaling techniques implemented, depending on
the data at hand and the cost strategy:

Type 1:

Dataset size: Order of tens of GBs

Strategy: Scale a single machine vertically with more RAM

Reason: Most server racks contain the RAM of the order of 128 GB for a typical
machine. Since Neo4j loves RAM for data caching, where O (dataset) ≈ O (memory),
all of the data can be cached into memory, and operations on it can take place at
extremely high speeds.

Weaknesses: Clustering needed for availability; disk performance limits the write
scalability

Type 2:

Dataset size: Order of hundreds of GBs

Strategy: Cache sharding techniques

Reasoning: The data is too big to fit in the RAM of a single machine, but is possible
to replicate onto disks of many machines. Cache sharding increases the chances of
hitting a warm cache in order to provide high performance. Cache misses, however,
are not critical and can be optimized using SSDs in the place of spinning disks.

Weaknesses: You need a router/load balancer in the Neo4j infrastructure for
consistent routing.

Type 3:

Dataset size: TBs and more

Strategy: Sharding based on domain-specific knowledge

Reasoning: With such large datasets, which are not replicable across instances,
sharding provides a way out. However, since there is no algorithm (yet) to arbitrarily
shard graph data, we depend on the knowledge of the domain in order to predict
which node to allocate to which machine or instance.

Chapter 5

[117]

Weaknesses: It is difficult to classify or relate all domains for sharding purposes.

In most scenarios that developers face, these heuristics are a good choice. It's simple
to calculate the scale of your data and accordingly plan a suitable Neo4j deployment.
It also provides a glimpse into the future of connected data—while most enterprises
dealing with connected data are in the tens to hundreds of GB segments, with the
current rate, there will soon be a requirement for greater data-crunching techniques.

Summary
In this chapter, you learned that testing, though it might seem unimportant, is
essential and rather simple for graph data in Neo4j applications. You also learned
about the Neo4j framework from GraphAware including the GraphUnit testing
libraries for Unit tests. We saw how to test the performance of the Neo4j system and
an introduction to benchmarking it using Gatling to obtain performance metrics.
We also looked at ways to scale Neo4j applications, with Cache Sharding being an
essential technique.

In the next chapter, we will be digging into the internals of Neo4j which affect the
processing, storage, APIs, and performance of this amazing graph database.

Neo4j Internals
Databases are constantly growing around real-world storage techniques and
believed to be one of the complex accomplishments of engineering. Graph databases
such as Neo4j are taking connected data storage to an entirely different level.
However, most of us who work with Neo4j are left wondering about how it all
works internally, because there is practically no documentation about the internal
architecture of components. The kernel code base is not enormous and can be
analyzed, but it is always good to have a guide to provide us with an understanding
of the classes while abstracting the implementation details. Now that we have seen
how we can use Neo4j as an efficient and secure data store for connected data, let's
take a look at what lies under the hood and what goes on when you store, query,
or traverse a graph data store. The way Neo4j stores data in the form of nodes and
relationships inherently is intriguing and efficient, and you will get a great working
knowledge of it if you try reading through the source. In this chapter, touching upon
the core functionality, we will cover the following topics about the internal structure
and working of the Neo4j database:

• The property store structure
• How caching works
• Memory and the API functionality
• Transaction and its components
• High availability and election of HA master

Neo4j Internals

[120]

Introduction to Neo4j internals
It might look an efficient and beautiful solution for end users and developers, but,
internally, it is a completely different story. The way the modules and submodules
are interconnected is an interesting study. If you have a knack for tinkering with
code and an understanding of Java, then you can yourself analyze the classes in the
source code of Neo4j, which can be found at https://github.com/neo4j/neo4j.

Node/ Relationship Object

Cache

Traversal API Core API Cypher

Thread Local Driffs

File System Cache High Availability

Record Files Transaction Logs

DISKS

Working of your code
Let's take a look at a simple Hello World application code for Neo4j and understand
what goes on under the hood when you try to perform some simple operations on
Neo4j through the Java API. Here is the code for a sample app:

import org.neo4j.graphdb.*;
import org.neo4j.kernel.EmbeddedGraphDatabase;

/**
* Example class that constructs a simple graph with
* message attributes and then prints them.

Chapter 6

[121]

*/

public class NeoOneMinute {
 public enum MyRelationshipTypes implements RelationshipType {
 KNOWS
 }

 public static void main(String[] args) {
 GraphDatabaseService graphDb = new EmbeddedGraphDatabase("var/
base");
 Transaction tx = graphDb.beginTx();
 try {
 Node node1 = graphDb.createNode();
 Node node2 = graphDb.createNode();
 Relationship someRel = node1.createRelationshipTo(node2,
MyRelationshipTypes.KNOWS);

 node1.setProperty("message", "Hello, ");
 node2.setProperty("message", "world!");
 someRel.setProperty("message", "brave Neo4j ");
 tx.success();

 System.out.print(node1.getProperty("message"));
 System.out.print(someRel.getProperty("message"));
 System.out.print(node2.getProperty("message"));
 }
 finally {
 tx.finish();
 graphDb.shutdown();
 }
 }
}

The initiating point in the Neo4j program is the database service object
defined from org.neo4j.graphdb.GraphDatabaseService and referred to as
GraphDatabaseService. All the core functionalities for nodes, IDs, transactions and
so on are exposed through this interface. This object is a wrapper over a few other
classes and interfaces, GraphDbInstance being one of them, which starts with the
config map that the user provides (empty in the preceding case). The org.neo4j.
kernel.AutoConfigurator object then receives this, and the memory to be used
for memory-mapped buffers is computed from JVM statistics. You can change this
behavior by setting a false value for the use_memory_mapped_buffers flag, causing
the config map to be passed to an object of the org.neo4j.kernel.Config class.

Neo4j Internals

[122]

GraphDbModule, the TxModule for transactions, the manager objects for cache,
persistence, and locking (CacheManager, PersistenceModule, LockManager,
respectively) are then created and sustained until the application's execution ends. If
no errors are thrown, then the embedded database has been initiated.

Node and relationship management
NodeManager (defined in the org.neo4j.kernel.impl.core.NodeManager class)
is one of the most crucial and large classes in the Neo4j source that provides an
abstraction for the caching and the underlying persistent storage-exposing methods
to operate on nodes and relationships. The configuration that is passed is then parsed
and the caching for the nodes and relationships is initialized by figuring out their
sizes. AdaptiveCacheManager abstracts the sizing issue of the caches. NodeManager
handles the locking operations with the help of lock stripping. In order to maintain a
balance between the level of concurrency and the performance of memory, an array
stores ReentrantLocks and, depending upon the integral ID values of the node
or the relationship, locking is performed by hashing over it. When you invoke the
getNodeById() or getRelationshipById() method, it roughly follows these steps:

1. The cache is checked. If the entity already exists in the cache, it is
returned from there.

2. Based on the ID passed as a parameter, a lock is acquired.
3. The cache is checked again. If it has currently come into existence, then it is

returned (since multithreaded operations occur!).
4. The manager class is requested for persistent storage for the required entity.

If unavailable, NotFoundException is thrown.
5. The retrieved value is returned in the form of an appropriate

implementation plan.
6. The retrieved value is cached.
7. The lock is then released and the value is returned to the calling method.

This is the gist of the main work of NodeManager. However it is intended to be used
to perform many other operations that are beyond the scope of this book, but you
can check them out in the source.

Chapter 6

[123]

Implementation specifics
The Node and Relationship interfaces defined in org.neo4j.graphdb provide
implementations for NodeProxy and RelationshipProxy and contain the
unique IDs for the nodes or relationships that are represented by them. They are
used in the propagation of the method calls of the interface to the NodeManager
object that is being used. This integral ID is what is returned from the method
calls that are executed every time a node, relationship, or property is added to
EmbeddedGraphDatabase.

Nodes and relationships also use the NodeImpl and RelationshipImpl classes
defined in the org.neo4j.kernel.impl.core package; this package extends the
core Primitive class to provide abstract implementations of Properties and help
to delegate the loading and storing of property values to the object of NodeManager.
It holds the value of the ID and is extended by the implementation classes
(NodeImpl and RelationshipImpl), each of which implements the abstract methods
accordingly along with operation-specific functions (for example, the NodeImpl
class has a getRelationships() method while the RelationshipImpl class has
getStartNode()).

These are some of the types of implementations that NodeManager handles internally.

Storage for properties
The property storage of Neo4j has seen several upgrades and improvements with
recent releases, which has made it more usable and stable, while optimizing the layer
to use lesser disk space without compromising on features, and improving the speed
of operations.

The storage structure
Originally, the Neo4j property store was in the form of a doubly linked list,
in which the nodes contained additional information about the structure, along
with the property-related data. The node structure then is represented in the
following format:

Byte(s) Information
0 The 4 high bits of the previous pointer and inUse

flag
1 unused
2 The 4 high bits of next pointer
3-4 The type of property

Neo4j Internals

[124]

Byte(s) Information
5-8 The index of property
9-12 32 low bits of the previous pointer
13-16 32 low bits of the next pointer
17-24 Data for the property

So, the 8 bytes at the end were used to store the value and were sufficient to hold all
primitive types, small strings, or pointer references to the dynamic store where long
strings or arrays are stored. This, however, has a redundancy, since the complete 8
bytes are only utilized when the data stored is long, double, or string and references
are repeated for each property. This causes significant overhead. So, in the newer
versions of Neo4j, this was optimized by designing PropertyRecord, which, instead
of housing a single property, now emulates a container to incorporate a number
of properties of variable lengths. You can get a clearer outline of the present
structure here:

Byte(s) Information
0 4 high bits of the previous pointer and 4 high bits of the next pointer
1-4 The previous property record
5–8 The next property record
9–40 Payload

As you can see, the inUse flag has been done away with and the space is optimized
to include the payload more efficiently. There are 4 blocks of 8 bytes in the payload,
each of which are used in a different manner depending upon the type of data
stored in the property. The type and index of the property are necessary and always
required and hence occupy the first 3 bytes of the blocks and 4 high bits of the 4th
byte, respectively. The value of the property is dependent on the data type being
stored. If you are using a primitive that can be accommodated in 4 bytes, then
the 4th byte's lower 4 bits are skipped and the remainder of the 4 bytes are used
to store the value. However, when you are storing arrays and nonshort strings
using DynamicStore, you need 36 bits for the storage of the reference that uses the
total lower 4 bits of the 4th byte and the remaining 4 bytes. These provisions for 4
properties are stored in the same PropertyRecord, thereby increasing the space
efficiency of the storage. However, if doubles and longs are what you intend to store,
then the remaining 36 bits are skipped over and the subsequent block is used to store
the value. This causes unnecessary space wastage, but its occurrence is rare and
overall more efficient than the original storage structure.

Chapter 6

[125]

LongerShortString is a newly introduced type, which is an extension of the
ShortString operating principle, in which a string is initially scanned to figure out
whether it falls within an encoding. If it does, then the encoding is performed and
a header is stored for it that contains the length of the string, the ID in the encoding
table, and finally the original string. However, the UTF8 encoding scheme is used
when the three and a half blocks of the property block are insufficient for storage and
DynamicStringStore is used. In the case of an array, we first determine the smallest
number of bits that can be used to store the values in it and, in the process, we drop
the leading zeroes and maintain the same length for each element. For example,
when given the array [5,4,3,2,1], each element does not take a separate set of 32
bits; rather, they are stored in 3 bits each. Similarly, only a single bit is used to store
Boolean-valued array elements. In the case of dynamic arrays, a similar concept is
used. So, such a data value is stored in the following format:

Number of Bits Stored Information
4 Enumeration storing type of entity
6 The array length
6 Bits used for each item
The remaining 16 Data elements

There is one secret we are yet to explore: the inUse flag. It is, in fact, a marker to
indicate whether a property exists and is in use or not. Each block is marked to
distinguish whether it is in use and, since we are allowed to delete properties, a zero
signifies that the current property is not in use or deleted. Moreover, the blocks are
stored onto the disk in a defragmented manner. So, if some property from a set of
properties is deleted, only the remaining two are written to disk, and the deleted
property's 4th byte of the first block that is not used is marked as a zero, which
indicates that it is actually not used. If you take some time to explore the source code
of the Neo4j project, you will find these implementation details and strategies in
WriteTransaction.

Neo4j Internals

[126]

Migrating to the new storage
In a rare case, if you are dealing with an older version of Neo4j and considering an
upgrade to the newer architecture, it cannot happen without the need to change,
remove, or replace the existing data. You will need to recreate the existing database.
This ensures that existing files are not overwritten, guarantees crash-resistance, and
also backs up data. This process is relatively simple: read all nodes, relationships,
and properties for them and then convert them to the new format before storing
them. In the migration process, the size is significantly reduced as the deleted
entities are omitted, which is noticeable if a lot of deletions have been performed
on the database and it is not restarted often. The code and logic for migration is
included in the source code of the Neo4j kernel in the org.neo4j.kernel.impl.
storemigration package, which you can run both as part of a generic startup or in a
standalone manner. You will be required to set "allow_store_upgrade"="true" in
your config and then you can successfully execute the migration scripts.

Caching internals
Neo4j implements a caching mechanism that stores nodes and relationships as
useful, internal objects for rapid in-memory access. It also makes extensive use of the
java.nio package, where native I/O is utilized to use memory outside the Java heap
for mapped memory. Least Recently Used (LRU) is one of the simplest and most
popular algorithms for implementation and rapid operations for caching needs. The
Java-specific implementation makes use of the SoftReference and WeakReference
objects, which are treated in a special manner by the garbage collector for memory
reclamation. This principle is utilized in caches that grow rapidly to fill the heap but,
when the demand for memory arises for more important tasks, reclamation takes
place. So, there are no hard upper limits to caching of objects, while simultaneously
making memory available for other operations. Neo4j caches work on this principle
by default.

Cache types
Neo4j maintains two separate caches for nodes and relationships that can be
configured to have a variable upper bound in terms of size, which can be configured
by the max_node_cache_size and max_relationship_cache_size options of the
database. The implementations of caching techniques in Neo4j can be explored in
the org.neo4j.kernel.impl.cache package. Neo4j provides four different types of
caches built into the default package:

Chapter 6

[127]

Cache type Property
NoCache This is degenerate and stores nothing
LruCache This utilizes LinkedHashMap of the java.util package along with

a custom method to remove the oldest entry when deallocating
space—removeEldestEntry(); this makes it an adaptable LRU
cache

SoftLruCache An LruCache using soft values to store references and queues for
garbage-collected reference instances

WeakLruCache An LruCache using hard values to store references and queues for
garbage-collected reference instances

Weak and soft references are the basis of the behavior of Java Garbage
Collector (GC) depending on the references of an object. If the GC
finds that an object is softly reachable, it might clear these references
in an atomic manner to free up memory. However, if the GC finds an
object to be weakly reachable, then it will clear all the weak references
automatically and atomically.

The soft and weak LruCaches extend org.neo4j.kernel.impl.cache.
ReferenceCache, including a pollClearedValues() method to get rid of dead
references from the hashmap. If you need to explore the code, the cache contents are
managed by the NodeManager class, while AdaptiveCacheManager handles memory
consumptions and is configurable.

AdaptiveCacheManager
AdaptiveCacheManager manages the cache sets and their configurations along
with adapting them to the size changes. A worker thread is spawned which, on
every adaptive_cache_worker_sleep_time milliseconds (which is 3000 by
default), wakes to re-adjust the size of the caches. In the case of ReferenceCaches,
a call to the pollClearedValues() method is initiated. In the case of LruCache,
the adaptSize() method is invoked on every cache and the size is re-adjusted
depending upon the JVM memory statistics passed to the resize() method that
removes elements until the new size is achieved.

The caching mechanism in Neo4j is mainly used to cache nodes and relationships
implementations so that they can be retrieved from persistent storage and are
completely abstracted by NodeManager.

Neo4j Internals

[128]

Transactions
Transactions are an integral part of the Neo4j ecosystem and primarily dominated by
the use of two major components—the Write-Ahead Log (WAL) and the Wait-For
Graph (WFG) for detection of deadlocks prior to their occurrence.

The Write Ahead log
The WAL in the Neo4j transaction system ensures atomicity and durability in
transactions. Every change during a transaction persists on disk as and when
the request for the change is received, without modifying the database content.
When the transaction is committed, the changes are made to the data store and
subsequently removed from the disk. So, when the system fails during a commit, the
transactions can be read back and database changes can be ensured. This guarantees
atomic changes and durability of commit operations.

All the changes during transactions occur in states. On initiating a transaction (with
the beginTx() method), a state called TX_STARTED is assigned to it. There are similar
states assigned while preparing a transaction, committing it, and rolling it back. The
changes stored during transactions are called commands. Every operation performed
on the database including creation and deletion corresponds to a command and,
collectively, they define what transactions are. In Neo4j, the WAL is implemented
with the help of XaLogicalLog defined in org.neo4j.kernel.impl.transaction.
xaframework in the source, which aids in the management of intermediate files
for storage of commands during a transaction. The LogEntry class provides an
abstraction over the way in which XaLogicalLog stores its information, which
contains information for phases and stored commands of a transaction. So, whenever
the transaction manager (txManager) indicates the change of a phase in a given
transaction, or the addition of a command, it flags XaLogicalLog, which writes an
appropriate entry to the file.

Basically, files are used to store transaction logs in the root directory of the database.
The first file, nioneo_logical.log.active, is simply a marker that indicates
which of the log files is currently active. The remaining are the active log files
that follow the naming convention nioneo_logical.log.1 or nioneo_logical.
log.2; only one of them is active at a given time and read and written to with the
help of a memory buffer or heap as defined in the use_memory_mapped_buffers
configuration parameter. Neo4j also has an option to maintain backup files in a
versioned manner through the configuration parameter keep_logical_logs. They
use the nioneo_logical.log.v<version_no> format to store the file. What logically
happens is if you are set to store backups, your log files are not deleted after the
transaction; instead, they are renamed to a backup file.

Chapter 6

[129]

The logical log entries have an integral identifier for the transaction, assigned to them
by XaLogicalLog. It also maintains xidIdentMap, which maps the identifier to the
LogEntry.Start state in order to reference active transactions. Now it is evident that
write operations are appended to the log after the file offset of the start entry. You
can obtain all information about the transaction after the offset. So we can optimize
the lookup time and store the offset of the Start entry along with xidIdentMap
corresponding to the identifier for that transaction; we no longer need to scan the
log file for the offset of the transaction and directly go to the indicated start of
transaction. The LogEntry.Prepare state is achieved when the current transaction
is being prepped for a commit. When the process of a transactional commit has
been initiated, the state written can be LogEntry.OnePhaseCommit or LogEntry.
TwoPhaseCommit, depending on whether we are writing to EmbeddedGraphDatabase
or a distributed scenario (generally using a JTA/JTS service), respectively. When
a transaction is completed and is no longer needed to exist in an active state, the
LogEntry.Done state is written. At this state, the identifier to the start state is also
removed from the map (xidIdentMap) where it was stored. LogEntry.Command is
not a state as such, but a method for encapsulation of the transaction commands. The
writeCommand() of XaLogicalLog takes in a command as an argument and writes it
to disk.

The LogEntry state Operation for trigger
Start This indicates that the transaction is now

active
Prepare This indicates that the transaction is being

prepped for a commit
OnePhaseCommit This initiates a commit in

EmbeddedGraphDatabase
TwoPhaseCommit This initiates commits in a distributed

scenario
Done This indicates that a transaction is complete
Command (not an actual state) Encapsulation for the commands in the

transaction

So, all the state changes of a transaction are stored in the form of LogEntry that
contains the state indicator flags and transaction identifier. No deletions occur
whatsoever. Writing a Done state indicates that the transaction has passed. Also, the
commands causing the state change are also persisted to disk.

Neo4j Internals

[130]

We mentioned that all commands are appended with no deletions and the storage
to disk can create massive files for large transactions. Well, that's where the concept
of log rotation comes in, which is triggered once the size of the log file exceeds a
threshold (the default value is 10 MB). The rotate() method of XaLogicalLog
is invoked when the log file size exceeds the threshold during the appending of a
command and there is no live transaction taking up any space greater than 5 MB.
The rotate() function performs the following:

1. Checks the currently used log file from the .active file, which stores
the reference.

2. Writes the content of the buffer for the log file to disk and creates the new
log file with the version and identifier of the last committed transaction in
the header.

3. Initiates reading of entries from the offset of Start. All LogEntries that
belong to the current transaction are copied to the new log file and offset is
updated accordingly.

4. Disposes of the previous log file and updates the reference to the new log file
in the .active file.

All the operations are synchronized, which pauses all updating transactions till the
rotate operations are over.

How does all this facilitate recovery? When termination of XaLogicalLog occurs,
if the map is empty and no transactions are live, the .active file stores a marker
that indicates the closure of the transaction, and the log files are removed. So, when
a restart occurs, and the .active file is in the "nonclean" (or not closed) mode, it
means that there are transactions pending. In this case, the last active log file is found
from the .active file and the doInternalRecovery() method of XaLogicalLog is
started. The dangling transactions are recreated and the transaction is reattempted.

The setRecovered() method is used to indicate that a transaction has been
successfully recovered, which avoids its re-entry into the WAL during subsequent
recovery processes.

Detecting deadlocks
Neo4j, being an ACID database solution, needs to ensure that a transaction is
completed (whether successfully or unsuccessfully), thereby stopping all active
threads and avoiding deadlocks in the process. The core components that provide
this functionality include RWLock (Read Write Lock), LockManager, and RagManager
(Resource Allocation Graph Manager).

Chapter 6

[131]

RWLock
RWLock provides an implementation of the Java ReentrantReadWriteLock for
Neo4j, which allows concurrency in reading but single-threaded, exclusive write
access to the locked resource. Being re-entrant in nature, it facilitates the holder
of the lock to re-acquire the lock again. The lock also uses RagManager to detect
whether waiting on a resource can lead to possible future deadlocks. Essentially,
RWLock maintains a reference to the locking resources, that is, the threads and counts
for read and write locks. If a request for the read lock is processed by some thread,
it checks whether writes locks exist; if they do, then they should be held by the
calling resource itself which, when true, make sure the lock is granted. Otherwise,
RagManager is used to detect whether the thread can be allowed to wait without a
deadlock scenario. Write locks are handled in a similar fashion. To release locks, the
counts are reduced and waiting threads are invoked in a FIFO manner.

RAGManager
RAGManager operates with primarily the checkWaitOn() and
checkWaitOnRecursive() utility methods. It is informed of all acquired and
released locks on resources. Before invoking wait() on a thread, RWLock gets
possible deadlock information from RAGManager. It is essentially a WFG that
stores a graph of the resources and threads waiting on them. The checkWaitOn()
method traverses the WFG to find whether a back edge exists to the candidate that
needs a lock, in which case, a DeadlockDetectedException exception is raised,
which terminates the thread. This leads to an assertion that the transaction will not
complete, thereby enforcing atomicity. So, loops are avoided in a transaction.

LockManager
The sole purpose and existence of the LockManager class is the synchronization of
RWLock accesses, or creation of the locks and, whenever required, passing an instance
of the RAGManager and appropriate removal at times. At a high level of abstraction,
Neo4j uses this class for the purpose of locking.

The scheme of locks and detection of deadlock simply ensures that the graph
primitives are not granted locks in an order that can lead to a deadlock. It, however,
does not protect you from the application-code-level deadlocks arising when you
write multithreaded applications.

Neo4j Internals

[132]

The XaTransaction class in Neo4j that is the central authority in the transactional
behavior is XaTransaction. For any transaction that deals with a Neo4j resource,
the fundamental structure is defined by this class, which deals with the holding of
XaLogicalLog to persist the state of the transaction, its operations, and storage of the
transaction identifier. It also includes the addCommand() method, which is used for
normal transactional operations, and the injectCommand() method, which is used at
the time of recovery. The core class in Neo4j, which implements WriteTransaction
transactions extends the XaTransaction class, thereby exposing the extended
interface. Two types of fields are dealt with here:

• Records: This stores an integer to record a map for a particular primitive,
where the integer is the ID of the primitive

• Commands: These are stored in the form of command object lists

In the course of normal operations, the actions performed on a Neo4j primitive are
stored in the form of record objects in the store. As per the operation, the record is
modified and placed in its appropriate map. In the prepare stage, the records are
transformed into commands and are put in the corresponding Command Object list.
At this point, an apt LogEntry.Command state is written to XaLogicalLog. When
doCommit() is invoked, the commands are executed individually, which releases
the locks held and finally the commands are cleared. If a request for doRollback()
is received, the records in the map are checked. If it has been flagged as created,
the record's ID is freed by the underlying store and, subsequently, the command
and record collections are cleared. So, if a transaction results in failure, an implicit
rollback is initiated and injectCommand() is used to directly add the commands in
the commands list prior to the next commit operation. The IDs that are not yet freed
are recovered from IdGenerator of the underlying storage as and when the database
is restarted.

Commands
The command class extends XaCommand to be used in NeoStore. The command
class defines a way for storage in LogBuffer, reading back from it followed by
execution. NodeCommand is treated differently from RelationshipCommand and
likewise for every primitive. From the operations perspective, NodeCommand in
command has two essential components to work with: NodeRecord, which stores
the changes that need to be performed on the store and NodeStore, which persists
the changes. When execution is initiated, the store is asked to perform updates on
NodeRecord. To persist the command to disk, the writeToFile() method is used,
which sets a marker to the entry and writes the record fields. In order to read it back,
the readCommand() method is invoked, which restructures NodeCommand. Other
primitive command types follow the same procedure of operation:

Chapter 6

[133]

• TransactionImpl

• TxManager

• TxLog

We have seen that transactions can be implemented over NeoStore. Likewise,
there can also be transactions over a Lucene Index. All these transactions can be
committed. However, since the transactions between indexes and primitives are
connected, if WriteTransaction results in failure, then LuceneTransaction must
also fail and vice versa. The TransactionalImpl class takes care of this. Resources
are added to TransactionImpl with the help of enlistResource(), which are
bound together with the help of the TwoPhaseCommit (2PC) protocol and, when a
commit operation is requested, all the enlisted resources are asked to get prepared
and they return a status of whether the changes succeeded or not. When all return
an OK, they proceed with the commit; otherwise, a rollback is initiated. Also, each
time a transaction status change occurs, a notification is sent to TxManager and the
corresponding record is added to txLog. This WAL is used for failure recovery.
The identifier for TransactionImpl is called globalId and every resource that
enlists with it is assigned a corresponding branchId, which are bound together
as an abstraction called Xid. So, when a resource is enlisted for the first time, it
calls TxManager and writes a record to txLog that marks the initiation of a new
transaction. In the case of a failure, when a transaction needs to be reconstructed
from the log, we can associate the transaction with the resources that were being
managed by it.

TxManager abstracts the TransactionalImpl object from the program. On starting
a new transaction, a TransactionalImpl object is created and mapped to the thread
currently in execution. All methods in TxManager (except the resume method)
automatically receive the TransactionImpl object. TxLog works in a similar fashion
as XaLogicalLog with regard to the writing of entries and the rotation of files.

So, if your system crashes during the execution phase of commands in a transaction,
without a rollback, then what happens? In such a situation, the complete transaction
is replayed and the commands that were already executed before the failure would
be processed again.

High availability
Neo4j in recent years has adapted to handling larger data in a more reliable manner
with the introduction of the high availability mode. Its architecture and operations
revolve around a core concept: the algorithm for master election. In this section, we
will take a look at why we need the master and the algorithm based on which the
master is elected.

Neo4j Internals

[134]

HA and the need for a master
High availability in Neo4j replicates the graph on all the machines in the cluster and
manages write operations between them. High availability does not decentralize
the stored graph (which is called sharding); it replicates the complete graph. One
machine in the replica set has the authority to receive and propagate updates as well
as keep track of locks and context in transactions. This machine is referred to as the
master in the HA cluster and the supreme entity that handles, monitors, and takes
care of the resources in replica machines.

When you set up a Neo4j cluster, you do not need to designate a master or allocate
specialized resources to particular machines. This would create a single point of
failures and defeat the purpose of HA when the master fails. Rather, the cluster elects
its own master node when needed in a dynamic manner.

The nodes in the cluster need to communicate and they make use of a method called
atomic broadcasting, which is used to send messages to all instances in a reliable
manner. It is reliable since there is no loss of messages, the ordering of the messages
is preserved, and no messages are corrupt or duplicated. In a narrower perspective,
the operations are handled by a service called neo4j-coordinator, which basically
has the following objectives to take care of:

• A method to indicate that each machine in the cluster participates in HA,
something like a heartbeat. Failure to send this indication indicates that the
instance is unable to handle operations for the clusters.

• In Neo4j, the preceding method also helps to identify how many and which
machines currently exist in the cluster.

• A notification system for use in broadcasting of alerts to the
remaining cluster.

The master election
The master keeps the knowledge of the real graph, or the graph's most updated
database version. The latest version is determined by the latest transaction ID that
was executed. The ID for transactions can be a monotonically increasing entity,
as they are serialized in nature, which causes the last committed transaction ID to
reflect the database version. This information, however, is internally generated in the
database, but we require some external priority-enforcing information to be used for
elections in cases where two machines have the same transaction IDs for the latest
one. The external information can vary from machine to machine, ranging from the
machine's IP to its CPU ID presented in the form of a configurable parameter in
Neo4j called ha.server_id. The Lower the value of the server ID of an instance, the
higher will be its priority for being elected as master.

Chapter 6

[135]

So, depending upon the irregular "heartbeat" received from the current master in the
cluster, an instance can initiate an election and collect the last transaction ID from
each cluster machine. The one having the largest value is the elected master, with the
server ID acting as the tiebreaker. On election, the result is notified to the cluster and
all the machines along with the new master execute the same algorithm. When the
conclusion from all machines coincide, the notification is stopped.

Finally, let's see how atomic broadcast is implemented. Apache Zookeeper is used
to implement the Atomic Broadcast protocol (around Version 1.8) that guarantees
delivery of messages in an order. Zookeeper is capable of setting a watch on a file in
its distributed hierarchical filesystem with provisions for notifications in the event
of addition or deletion of nodes. However, later versions might be equipped with
Neo4j's own atomic broadcast. In Neo4j, the first machine creates a node defined as
the root of the cluster. An ephemeral node (a node valid for the client's lifetime) is
added as a child of the root with the server ID as the name and latest transaction ID
of its database as its content. For administrative purposes, a node called master-
notify is created along with its watch. When more machines are added, they find
the root and perform the same basic operations (apart from the administrative ones).
Any node can read and write the content of any other node (the node in the cluster
and not the one in the graph!).

So, the ephemeral node exists during the lifetime of an instance and is removed from
the children of the root when the instance fails and a deletion event is sent to all other
instances. If the failed instance was a master, then it will trigger an election and the
result will be broadcast by a write to the master-notify node. A master election can
also be triggered when a new instance is added to the cluster. Hence, the transaction
ID must be up to date to avoid the current master from losing the election. Hence,
the coordinator service needs to be configured and maintained. After this head start,
you can now explore more of the HA source.

Summary
In this chapter, we took a peek into the working of Neo4j under the hood, though not
in detail, but enough to give you a start to explore the source yourself. You learned
how the core classes for storage, the caching mechanism, and the transactions,
worked. We also explored the high availability cluster operations and the master
election mechanism.

In the next chapter we will take a look at a few useful tools that are built for and
around Neo4j to ease the life of users and admins and look into relevant use cases
for the same.

Administering Neo4j
In the course of time that Neo4j has been around, it has become a widely accepted
tool for storage and processing of large scale, highly interconnected data. From
major corporations such as eBay and Walmart, to research students, the utilities of
Neo4j have spread across the world. What makes Neo4j a great tool, is the fact that
it is open source, and community contributions are useful and valuable. Today,
Neo4j can be interfaced with several frameworks and a plethora of tools have been
developed to make operations like data loading, traversals, and testing, simpler and
more effective. It is not always about having an effective place for your application; it
is also about maintaining and administering it to obtain optimum performance from
the application. In this chapter, we will first look at how to use the Neo4j adapters for
some of the most popular languages and frameworks that are used today. In the latter
part of the chapter, we will see how admins can tweak and change the configurations
of a standard Neo4j system, so that an optimum performance system can be obtained.
The topics to be covered in this chapter can be summarized as follows:

• Interfacing Neo4j with PHP, JavaScript, and Python
• Configuring Neo4j Server, JVM, and caches
• Memory mapped I/O settings
• Logging configurations
• Security of Neo4j Server

Administering Neo4j

[138]

Interfacing with the tools and frameworks
Neo4j as a core data storage solution is quite powerful but, with the increasing
sophistication of use and rapid development practices, several tools were developed
as an effort to increase the efficiency and compatibility of a Neo4j system. Adapters
for various well known languages for server-side and client-side development have
sprung up, making the development process for Neo4j based web applications
simpler. Let us take a look at the use of some of the Neo4j adapters for the most
common web platform technologies.

Using Neo4j for PHP developers
PHP is one of the most widely popular web development languages for creating
dynamic content based application. Some common frameworks such as Wordpress
and CakePHP are developed with PHP. Now, if you are trying to develop a PHP
application, and want Neo4j at the backend for data storage and processing, you can
use the Neo4jPHP adapter very well. It is written by Josh Adell, and it exposes an
API that encourages intuitiveness and flexibility of use. Neo4jPH also incorporates
some advantageous performance enhancements of its own, in the form of lazy-
loading and caching. Let us take a look at some basic usage of this tool.

Use an editor to create a script and name it connection_test.php. Add the
following lines to it:

<?php
 require('vendor/autoload.php');

 $client = new Everyman\Neo4j\Client('localhost', 7474);
 print_r($client->getServerInfo());

If you have a database instance running on a different machine or port, you need to
accordingly change localhost to the complete address of the database machine, and
7474 to the appropriate port number.

You can now execute the script from a server instance or in a standalone manner to
view the result:

> php connection_test.php

If your server information displays successfully, then you have set up a basic
Neo4jPHP code. You can view the source of the project at https://github.com/
jadell/neo4jphp along with the detailed documentation at https://github.com/
jadell/neo4jphp/wiki/Introduction.

Chapter 7

[139]

The JavaScript Neo4j adapter
JavaScript is one of the most widely used client-side scripting languages. You can
now communicate with your client-side application along with the Neo4j server
with the use of the request module of the Node.js framework. Any other JavaScript
module which can interact with the Neo4j server by sending and receiving queries
can also be used. You can get a detailed description of the formats and protocols
of the Neo4j REST API endpoints from the official documentation at http://
neo4j.com/docs/stable/rest-api-transactional.html. You can also perform
operations like sending multiple statements in a request, as well as sharing a
transaction between several requests. The following basic function can be used to
access the remote REST endpoint with the help of JavaScript:

var req=require("request");
var traxUrl = "http://localhost:7474/db/data/transaction/commit";
function cypher(query,params,cb) {
 req.post({uri:traxUrl,
 json:{statements:[{statement:query,parameters:params}]}},
 function(err,res) { cb(err,res.body)})
}

The cypher() function can send a cypher request from the JavaScript code to the
Neo4j server and receive a response in JSON format. To use this function in your
application, you can use the following format:

var query="MATCH (n:User) RETURN n, labels(n) as l LIMIT {limit}"
var params={limit: 10}
var cb=function(err,data) { console.log(JSON.stringify(data)) }

cypher(query,params,cb)

{"results":[
 {"columns":["n","l"],
 "data":[
 {"row":[{"name":"Aran"},["User"]]}
]
 }],
 "errors":[]}

The JSON form of the results is displayed upon execution. For applications built on
top of the Node.js framework, you can use the Node.js-specific driver for Neo4j as
well. You can learn more about it at https://github.com/thingdom/node-neo4j.

Administering Neo4j

[140]

Neo4j with Python
Neo4j provides extensive support for Python and its web framework, Django.
Py2neo is a simple library written by Nigel Small, providing access to the Neo4j
REST API, and even supports Cypher queries. It has no external dependencies and is
actively maintained on Github. You can follow the project at https://github.com/
nigelsmall/py2neo.

For the Django framework, neo4django is an Object Graph Mapper (OGM) with
which you can create the model definitions in Django, along with queries for
Neo4j. It is also community supported and is useful for graph web applications
running Django at the backend. The project can be found at https://github.com/
scholrly/neo4django.

There are several other tools and frameworks to make the task of interfacing
Python applications with Neo4j painless. The most popular ones are the BulbFlow
framework (http://bulbflow.com/) which is an ORM for graph traversals
using Gremlin at the backend. NeoModel (https://github.com/robinedwards/
neomodel) is another tool with support for Django. However, a detailed discussion
of these frameworks is beyond the scope of this book.

Admin tricks
A database is the life force behind an application, and that calls for a high degree
of initial optimization depending upon the type and size of data to be stored and
resources available on the server. Being written in Java, Neo4j also requires you to
configure the Java related parameters properly as well. In the upcoming sections, we
will look at how you can tweak your system and database configurations to maintain
your Neo4j data store in good health.

Server configuration
For advanced usage of the Neo4j database, you can configure several parameters to
keep the resources in check. The primary configuration file, Neo4j, is located in the
conf/neo4j-server.properties directory. For normal development purposes, the
default settings are sufficient. However, as an administrator, you can make suitable
changes to the settings.

You can set the base directory on the disk where your database resides using the
following property:

org.neo4j.server.database.location=/path/to/database/graph.db

Chapter 7

[141]

The default port on which Neo4j operates is 7474. However, you can change the port
for accessing the data, UI and administrative use, using the following setting:

org.neo4j.server.webserver.port=9098

You can even configure the client access pattern depending upon the address of
the Neo4j database relative to the application that uses it. This helps in restricting
the use of the database to the specific application. The default value is the loopback
127.0.0.1, which can be changed with:

#allowonly client's IP to connect
org.neo4j.server.webserver.address=192.168.0.2

#any client allowed to connect
org.neo4j.server.webserver.address=0.0.0.0

You can set the rrdb (round robin database directory) for collecting the metrics on
the instance of database running. You can even specify to the database the URI path
to be used for accessing the database with the REST API (it is a relative path and the
default value is /db/data). The following settings are used:

org.neo4j.server.webadmin.rrdb.location=data/graph.db/../rrd

org.neo4j.server.webadmin.data.uri=/db/data/

The Neo4j WebAdmin interface uses a different relative path to provide access to the
management tool. You can specify the URI setting as follows:

org.neo4j.server.webadmin.management.uri=/db/manage

If the Neo4j database resides on a separate machine in the network, you can restrict
the class of network addresses that can access it (IPv4 or IPv6 or both). You need to
modify the settings in the conf/neo4j-wrapper.conf file. Look for the section titled
Java Additional Parameters, and append the following parameter to it:

wrapper.java.additional.3=-Djava.net.preferIPv4Stack=true

In order to configure the number of threads controlling the concurrency level
in the servicing of the HTTP requests by the Neo4j server, you can use the
following parameter:

org.neo4j.server.webserver.maxthreads=200

Administering Neo4j

[142]

A timeout is used by the Neo4j server to manage orphaned or broken transactions.
So, if no requests are received for an open transaction for a period configured in
the timeout (the default is 60s), the transaction is rolled back by the server. You can
configure it as:

org.neo4j.server.transaction.timeout=60

The main file for server configurations is conf/neo4j-server.properties. For
parameters to tune the performance of the database at a low level, a second file
called the neo4j.proprties file is used. You can explicitly set this file using the
org.neo4j.server.db.tuning.properties=neo4j.properties parameter
which, if not set, the server looks for in the current directory as the neo4j-server.
properties file. If no file is present, then a warning is logged by the server. When
the neo4j.properties file is set and the server is restarted, this file is loaded and the
database engine is configured accordingly.

JVM configurations
Neo4j is written in Java and hence, the settings for JVM also decide the resource
constraints that are imposed upon the database. You can however, configure these
properties in the conf/neo4j-wrapper.conf file in NEO4J_HOME in your installation.
Here are a few common properties that you can tweak according to your requirements:

Name of property What it stands for

wrapper.java.initmemory Initial size of heap (in MB)

wrapper.java.maxmemory Maximum size of heap (in MB)

wrapper.java.additional.N Additional literal parameter of the JVM (N is
the number of each literal)

The underlying JVM has two parameters that are used to control the main memory
– one each for the stack and the heap. In Neo4j, the heap size is a critical parameter,
since it controls the allocation of objects (number of objects) by the database engine.
The stack, on the other hand, is the deciding factor for the depth of the call stack for
the application.

Generally, the notion is that having a large heap size is better. With a large heap,
Neo4j can handle transactions that are much larger, and also experience high
concurrency in transactions. Neo4j speed will also increase as a bigger section of
the graph and will fit in the caches, leading to more frequently used nodes and
relationships being quickly accessible. Also, with a larger heap, the nodes and
relationship caches will be much larger as well.

Chapter 7

[143]

However, as an admin, you need to make sure that the heap fits in the system's main
memory, because if paging to disk occurs, then the performance is adversely affected.
Also, if your heap size is much larger than the requirement of the application, then
the JVM garbage collection leaves dead objects lying around for a longer time. This,
in turn, will cause longer pauses for garbage collection, and latency issues which is
not desired by the application. In a 32 bit JVM, the default heap size is 64 megabytes,
which is too small for practical applications (a 64-bit JVM heap is not useful either).
Memory is a critical factor when transactions are prominent in the system. The
following figure shows the memory footprints of different transaction types:

Batch Insert: No Transaction, no ongoing flushes, tiny memory footprint

TXTX TX TX TX TX TX TX
TX TX

DISK

Huge TX

100k - 1M elements
Too small TX, (1..10 elements)

Medium Sized

10-50k elements

MEMORY

MEMORY

Depending on the cache implementation being used, a suitable heap size coupled
with garbage collection can be used to handle most traffic by the database. The
default soft reference cache (LRU based) needs a heap larger than the data to be kept
in it, thereby being able to cache most nodes and relationships. It will let the heap
get too full, then it will trigger a garbage collection which will result in loss of cached
data. The cache storage can be prolonged by using a much larger cache. If a strong
reference cache is being used, then the entire graph must fit in the heap (cache).
Thus large heaps can avoid out-of-memory exceptions and maintain high overall
throughput.

Administering Neo4j

[144]

A weak reference cache, on the other hand, can be allocated heap, just enough
for handling the peak load (average memory x peak load) and is beneficial in low
latency scenarios.

Number of
primitives

RAM size Heap configuration Reserved RAM for the
OS

10M 2GB 512MB The rest

100M 8GB+ 1-4GB 1-2GB

1B+ 16GB-32GB+ 4GB+ 1-2GB

Caches
Caches in Neo4j are of two basic types:

• File buffer cache: It is used to cache the storage file data as it is stored on the
storage media

• Object cache: It is used for caching of nodes, relationships and properties to
be used for speeding traversals, and transactions

The Neo4j data is stored in the file buffer cache in a format identical to that used
for the representation of a persistent storage medium. This cache is helpful in
improving the read/write performance by writing to cache, and delaying writing to
the persistent storage till the rotation of the logical log. It is a safe operation since all
stored files for the transaction can be recovered in case a crash occurs.

Let us take a look at how data is stored in Neo4j and the files used for storage onto
the underlying file system. Each file in the Neo4j storage file stores uniform records
of a fixed size and a specific type:

Store file Record size Contents
neostore.nodestore.db 15 B Nodes
neostore.relationshipstore.db 34 B Relationships
neostore.propertystore.db 41 B Properties for nodes and

relationships
neostore.propertystore.
db.strings

128 B Values of string properties

neostore.propertystore.
db.arrays

128 B Values of array properties

Chapter 7

[145]

You can configure the size of the records during the creation of the data store with
the help of the array_block_size and the string_block_size parameters. These
settings come in handy when you expect to store large data records in the entities.
Another advantage of these records is that you can estimate the storage requirements
of the data in the graph, and calculate a rough cache size for the file buffer caches.

A file buffer cache exists for every distinct storage file. The file is divided by the
cache into multiple equal-sized windows containing even numbers of records. In the
process of caching, the windows that are most active are held in memory and the
hit/miss ratio for each window is constantly tracked. When the ratio for a window
that is uncached is found to be greater than those in the cache, one window from the
cache is removed and is replaced by this window.

The object cache is used to cache nodes, relationships, and properties to optimize
them for speedy graph traversals. Reading from the object cache experiences five to
ten times the speed of accessing a file buffer cache. As soon as a node or relationship
is accessed, it is added to the object cache. However, populations of the cached
objects occur lazily. Loading of the properties only occur when the property is
accessed. If a node is loaded into the cache, its relationships are not loaded until they
are accessed.

You can configure the object cache using the cache_type parameter to specify
the type of cache implementation to be used, mentioned separately for nodes and
relationships. The available options for cache types are:

Cache type Description
none No high level cache is used. Object caching does not take place.

soft Uses available memory optimally, and useful in high performing
traversals. If cache size is inadequate for frequently used parts, garbage
collector issues may occur. The community edition of Neo4j has this as
the default cache type.

weak It provides relatively short life spans for cached objects. For
applications requiring high throughput, and where the frequently
accessed section of the graph cannot fully fit into memory, this is a
suitable solution.

strong Best option for small completely in-memory graphs. This technique
loads all data into memory without any removals or releases.

hpc This refers to the high-performance cache. It dedicates memory
chunks for caching nodes and relationships and is the best option in
most scenarios. It facilitates fast lookups/writes and has a very small
footprint. This cache type is available and is the default option for the
Enterprise edition of Neo4j.

Administering Neo4j

[146]

Apart from the cache_type parameter, there are a few other parameters that can be
used to configure the way caches operate in Neo4j, and their resource constraints.
Some of the important parameters are listed as follows:

Configuration option Description (what it controls) Example value

cache.memory_ratio The percent of the available
memory that will be used
for caching. The default is 50
percent.

60.0

node_cache_array_fraction The dedicated fraction of the
heap size for the cache array for
nodes (max ten).

8

relationship_cache_array_
fraction

The dedicated fraction of the
heap size for the cache array for
relationships (max ten).

7

node_cache_size The maximum amount of heap
memory dedicated for caching
nodes.

3G

relationship_cache_size The maximum amount of the
heap memory dedicated to
caching relationships.

800M

Memory mapped I/O configuration
Memory mapped I/O can be used for read/writes to every file in the Neo4j storage.
The best performance will be obtained if complete memory mapping of the file can
occur, but if there is a shortage of memory for that, then Neo4j tries to optimize the
memory use.

Neo4j makes extensive use of the java.nio native Java package. Use of
the native I/O package allows the allocation of memory external to the
Java heap, which has to be handled separately. It will also depend on
other system processes using memory. Neo4j allocates memory, which is
a total of the JVM heap memory and the memory mapping needs, leaving
the remaining memory for system processes.

Chapter 7

[147]

It is not a great idea to use the complete available system memory for heap memory.
The Neo4j data store (in the Neo4j database directory) stores the data in separate files
which are outlined as follows:

• nodestore: It is used to store node information
• relationshipstore: It is used to store relationship information
• propertystore: All simple properties of nodes and relationships, occurring as

primitive types are saved in this file
• propertystore strings: It is the storage for string type properties
• propertystore arrays: It is the storage of all array type properties

You can configure the memory mapping configurations for the mentioned files
separately using the mapped_memory option along with the following parameters:

neostore.nodestore.db.mapped_memory=75M
neostore.relationshipstore.db.mapped_memory=100M
neostore.propertystore.db.mapped_memory=180M
neostore.propertystore.db.strings.mapped_memory=210M
neostore.propertystore.db.arrays.mapped_memory=210M

If traversal speed is the highest priority, it is good to memory map the
node and relationship stores as much as possible.

Traversal speed optimization example
Let us see an example that Neo4j uses to illustrate mapped memory allocation. In
order to tune the settings for memory mapping, we need to first look up the size of
the files in the data store in the Neo4j database directory. Let us take a case where the
size of the files is found to be as follows:

neostore.nodestore.db: 14MB
neostore.propertystore.db: 510MB
neostore.propertystore.db.strings: 1.2GB
neostore.relationshipstore.db: 304MB

Administering Neo4j

[148]

Let us say the system being used has a total memory of 4 GB, with 50 percent
reserved for the system programs. The memory allocated to the Java Heap is 1.5
gigabytes leaving about 0.5 gigabytes for memory-mapping purposes. For obtaining
optimum traversal speed, you can use a configuration for the memory mapping
as follows:

neostore.nodestore.db.mapped_memory=15M
neostore.relationshipstore.db.mapped_memory=285M
neostore.propertystore.db.mapped_memory=100M
neostore.propertystore.db.strings.mapped_memory=100M
neostore.propertystore.db.arrays.mapped_memory=0M

Since our data had no file for array based properties, we can safely allocate no
memory for memory mapping array based properties.

Batch insert example
Memory mapping can also be used to optimize batch insertion speed. Let us take a
look at an example that Neo4j uses to demonstrate this. Suppose we have a graph
with 10M nodes that are connected with 100M relationships. Every object has distinct
primitive and string type properties. For simplicity, let's say there are no array based
properties. We need to give more memory to the node and relationship stores. The
allocations can be made as follows:

neostore.nodestore.db.mapped_memory=90M
neostore.relationshipstore.db.mapped_memory=3G
neostore.propertystore.db.mapped_memory=50M
neostore.propertystore.db.strings.mapped_memory=100M
neostore.propertystore.db.arrays.mapped_memory=0M

The configuration is intended to store the entire graph in memory. A naive way to
calculate memory needed for mapping the nodes is by using the number_of_nodes *
9 bytes formula and, as for relationships, it can be number_of_relationships * 33 bytes.
You will know why, if you have read about storage basics in the previous chapter. It
is important to note that the above configuration requires a Java heap of more than
3.3G since, for batch inserter mode normal, Java buffers which are allocated on the
JVM heap memory are used in place of memory mapped ones.

Chapter 7

[149]

Neo4j server logging
The Neo4j server logs the information about the activities that takes place during
the operating lifetime of the server. It is not an overhead; it is in fact an essential
constituent for debugging, monitoring, and recovery. Neo4j provides support for
logging of key server activity, HTTP request activity as well as garbage collection
activity. Let us take a look at how to make use of these.

Server logging configurations
For event logging within the Neo4j server, the java.util.logging library of Java is
used. You can configure the logging parameters in the conf/logging.properties
file. The default level of logging is INFO, and the messages are printed on the
terminal, as well as written to a rolling file located at data/log. Depending on the
development stage and requirements, you can change the default behavior or even
turn off the logging, using:

java.util.logging.ConsoleHandler.level=OFF

This will turn off all console output. The log files have a size limit of 10M after which
rotation takes place. The files are named as neo4j.<id>.<rotation sequence
#>.log. You can configure the naming scheme, frequency of rotation, and the size of
the backlog using the following parameters respectively:

java.util.logging.FileHandler.pattern
java.util.logging.FileHandler.limit
java.util.logging.FileHandler.count

You can check out more about the FileHandler class of logging at https://docs.
oracle.com/javase/7/docs/api/java/util/logging/FileHandler.html.

HTTP logging configurations
Along with events that occur within the Neo4j server, we can also log the HTTP
requests and responses that are serviced by the Neo4j server. To achieve this, we
need to configure the logger, location of logging, and the optimal format of the logs.
You can enable HTTP logging by appending the following parameters defined in the
conf/neo4j-server.properties file:

org.neo4j.server.http.log.enabled=true
org.neo4j.server.http.log.config=conf/neo4j-http-logging.xml

Administering Neo4j

[150]

The first parameter indicates to the server that HTTP logging has been enabled for
the server. You can toggle the behavior by setting the value to false. The second
parameter specifies the format of logging, the file rollover settings that govern how the
log output is formatted and stored. By default, an hourly log rotation is used and the
generic common log format (http://en.wikipedia.org/wiki/Common_Log_Format).

If the log writes to a file, then the server initially checks whether the directory is
existent with appropriate write permissions, failing which a failure is reported and
the server does not start.

Garbage collection logging
We can also collect the logs from the garbage collector. In order to enable GC
logging, we have to uncomment the following parameter so that the appropriate
value is passed on to the server:

wrapper.java.additional.3=-Xloggc:data/log/neo4j-gc.log

GC logging cannot be directed to the terminal; we can find the log statements
in data/log/ne4j-gc.log, or the appropriate directory that we had set in the
preceding option value.

Logical logs
Logical logs are used as journals for the operations, and prove to be useful in
scenarios when a recovery is needed for the database after a crash has occurred. The
logs are generally rotated when the size exceeds a threshold (the default is 25M) and
you can specify how many logs need to be kept. The reason for storing the logical log
history is to serve incremental backups and keep the Neo4j HA clusters operational.
When not enabled, the latest populated logical log is stored. We can configure the
format using the following parameters:

keep_logical_logs=<true/false>
keep_logical_logs=<amount><type>

Some sample configurations can be specified as follows:

To indefinitely keep logical logs
keep_logical_logs=true

To store most recent populated log
keep_logical_logs=false

To keep logical logs containing committed transactions for past 30
days.

Chapter 7

[151]

keep_logical_logs=30 days

To store logical logs that contain the most recent 500,000
transactions
keep_logical_logs=500k txs

The type option supports a few other cases which are listed as follows:

Type Description Example
files Number of recent logical logs to persist 25 files

size Maximum disk size that log files can occupy 250M size

txs Number of most recent transactions to log 10M txs

hours Store logs of committed transactions from past N hours
from now.

12 hours

days Store logs of committed transactions in past N days from
now.

30 days

Open file size limit on Linux
When working with Neo4j, you need several files to be read in a concurrent manner,
since the different entities are stored in different files. However, Linux platforms
generally define an upper bound on the number of files that can be concurrently
opened. You can check the limit for the current system user with:

user@localhost:~$ ulimit -n
1024

The default value (1024) is inadequate for most practical scenarios involving indexed
entities or multiple server connections. You can increase this limit to a higher value.
Generally, a value over 40000 is recommended, depending on the patterns of use.
For the current session, you can change this value using the ulimit command,
logging in as the root user for the system. To make a system-wide persistent effect,
you need to follow these steps:

1. Open a terminal and log in as the root user using the following command:
user@localhost:~$ sudo su –

2. When your prompt changes to root@localhost:~# you can use a text editor
like vim or nano to open the /etc/security/limits.conf file.

Administering Neo4j

[152]

3. Add the following lines to the file:
neo4j soft nofile 40000
neo4j hard nofile 40000

4. Open the sudoers file at /etc/pam.d/su and add/uncomment the
following line
session required pam_limits.so

5. Restart your system to let the changes take effect.

In the preceding steps replace neo4j with the name of your current user. If you still
see exceptions such as Too many open files or Could not stat() directory then
the limit needs to be increased even further.

Neo4j server security
So, till now we looked at how to configure a Neo4j server in order to obtain optimum
performance. However, in a practical scenario, we also need to ensure that our
database server is secure enough to handle confidential and critical data. In this
section, we will look at some aspects of securing the Neo4j database server.

Port and remote connection security
When a Neo4j server is started, the default behavior is to bind the host to the
localhost with the connection port as 7474. Hence only local requests from the same
machine are serviced. You can configure this behavior in the conf/neo4j-server.
properties file by uncommenting, adding, or modifying the following lines:

http port (for all data, administrative, and UI access)
org.neo4j.server.webserver.port=7474

#let the webserver only listen on the specified IP. Default
#is localhost (only accept local connections). Uncomment to allow
#any connection.
#org.neo4j.server.webserver.address=0.0.0.0

You can also restrict access to the database from only the machines(s) on which the
application resides. So, only requests from this machine will be serviced. You can
also provide open access (a security nightmare) by changing the incoming address to
0.0.0.0. The following setting is used for this:

org.neo4j.server.webserver.address=0.0.0.0

Chapter 7

[153]

Support for HTTPS
There is built-in support for encrypted communication with SSL over HTTPS in a
Neo4j server installation. A private key and a self-signed SSL certificate is generated
when the server is initiated. In production scenarios, self-signed certificates are not
reliable. Hence, you can configure your own certificates and keys. You can either
replace the generated key and certificate with your own, or modify the conf/neo4j-
server.properties file to change the location of the key and certificates:

Certificate location (auto generated if the file does not exist)
org.neo4j.server.webserver.https.cert.location=ssl/myapp.cert

Private key location (auto generated if the file does not exist)
org.neo4j.server.webserver.https.key.location=ssl/myapp.key

You need to ensure that the key is encrypted and has the appropriate file permissions
to enable read/write access for the server. There is also support for chained SSL
certificates, where the certificates need to be merged in a single PEM file with the
private key assuming the DER format. The option to enable/disable HTTPS support
and define the port can be configured with these options:

Support toggle for https: on/off
org.neo4j.server.webserver.https.enabled=true

Port for https (for all data, administrative, and UI access)
org.neo4j.server.webserver.https.port=443

Server authorization rules
Apart from restrictions at the IP level, more detailed security policies may be
required for administrators. The authorization policies for the Neo4j server controls
access to database aspects on the basis of user or application credentials. The security
rules must first be registered with the server, making scenarios for external lookup
and authentication on the basis of role possible. The detailed configuration for this is
managed in the org.neo4j.server.rest.security.SecurityRule package.

Setup server authorization rules enforcement
Let us look at a scenario in which a security rule for failure is being registered for
restriction of access to all the external URIs. This can be configured in the conf/
neo4j-server.properties file:

org.neo4j.server.rest.security_rules=rule.
CompleteRestrictionSecurityRule

Administering Neo4j

[154]

The code for the CompleteRestrictionSecurityRule class can be defined in the
following manner:

publicclassCompleteRestrictionSecurityRuleimplementsSecurityRule
{

publicstaticfinalStringMYREALM="MyApplication";

@Override
publicbooleanisAuthorized(HttpServletRequestrequest)
 {
returnfalse; // Forces failure always
// Logic for authorization coded here
 }

@Override
publicStringforUriPath()
 {
return"/*"; //For any incoming URI path
 }

@Override
publicStringwwwAuthenticateHeader()
 {
returnSecurityFilter.basicAuthenticationResponse(MYREALM);
 }
}

This rule restricts all types of access to the server from external locations. For a
production scenario, you can configure the rule class to check for login credentials in
order to authorize users to the application.

Sample request

POST http://localhost:7474/db/data/relationship/1
Accept:application/json; charset=UTF-8

Sample response

401:Unauthorized
WWW-Authenticate:Basic realm="MyApplication"

Chapter 7

[155]

Security rules targeting with wildcards
Unlike the previous case, where all incoming requests are blocked, we can also target
the restriction to some specific type of URIs with the use of wildcards. We need to
register for this with a predefined wildcard URI path, with * specifying any section
of the path. For example, /users* will block those requests that access the user root.
In a similar fashion, the /users*type* expression refers to URIs accessing the type
option for users like /users/mark/type/new.

You can use the defined CompleteRestrictionSecurityRule security rule class
with a modification to the forUriPath method as follows:

publicStringforUriPath()
{
return"/secure/*";
}

This rule restricts only those requests that attempt to access the data under the /
secure/ directory. So, with wildcards, you can flexibly control access to different
parts of the server API.

Sample request

GET http://localhost:7474/secure/any/path/after/this/stuff
Accept:application/json; charset=UTF-8

Sample response

401:Unauthorized
WWW-Authenticate:Basic realm="MyApplication"

You can use multiple or a chain of wildcards in order to restrict a specific URI type or
a pattern of URIs. Consider the case when the forUriPath() method is changed to
take this form:

publicStringforUriPath()
 {
return"/protected/*/something/else/*/final/bit";
 }

The type of requests that this blocks are very specific and targeted in nature. An
example of the type of request restricted is as follows:

Sample request

GET http://localhost:7474/protected/any/x/y/z/path/something/else/any/
subpath/final/bit/anything
Accept:application/json; charset=UTF-8

Administering Neo4j

[156]

Example response

401:Unauthorized
WWW-Authenticate:Basic realm="MyApplication"

As a default behavior, the Neo4j server allows functionality for remote
scripting, thereby allowing complete access to the underlying database
instance from anywhere. This is better for development purposes.
However, in production stages, allowing remote scripting is a potential
high security risk, and you need to impose a sound security layer.

Other security options
Apart from the numerous security configurations discussed, for critical deployments
it is wise to use an additional proxy similar to Apache's mod_proxy (http://httpd.
apache.org/docs/2.2/mod/mod_proxy.html). This can provide access control to
specific IPs, a range of IPs and even URI patterns. So you can essentially allow /db/
data available to external clients while /db/admin/ can be made accessible from a
specific IP. The configuration would look something like this:

<Proxy *>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.0
</Proxy>

The proxy server gives the same functionality as Neo4j's default SecurityRule feature
and you can also use both together with proper non-conflicting configurations.
However, admins often prefer Apache to the default Neo4j feature.

Summary
In this chapter, we first looked at the utilities and adapters that have been developed
for use with most popular languages and frameworks with Neo4j. We also looked
into the configurations and tricks that administrators can make use of in order to
obtain optimum performance out of their deployments. In the process, we also
discussed caches, memory mapped I/O and logging configurations, and how we can
secure access to a Neo4j server instance.

In the next chapter, we will be looking at a use case of Neo4j, where we will work
on a recommendation engine, and discuss the best practices for development and
deployment of a practical application.

Use Case – Similarity-based
Recommendation System

In the previous chapters, we have studied about how to work with different
aspects of the incredible graph database, Neo4j, from its installation, querying, and
traversals, to performance optimizations at the production level. We have also had
a peek under the hood of Neo4j in order to understand its functionality. Neo4j has a
wide range of practical applications. Typically, any scenario that includes connected
data represented graphically, Neo4j proves to be the perfect resource for storage
and processing needs. With rapidly increasing connected devices and sensor driven
technology, graph-based analytics solutions are becoming more popular in the
business world, especially because they are simpler to interpret and visualize. Graph
databases like Neo4j find extensive use in the route generation, fraud analysis, and
impact analysis in networks. However, the latest and most popular use case of graph
technologies is in the realm of recommendations. The booming sectors like social
networks, job portfolio websites, and e-commerce solutions all operate with a sound
recommendation engine at the backend. In this chapter let us understand how we
can use Neo4j to address the issues in recommendation engines. The following topics
will be discussed:

• Recommendation engine basics
• Building a recommendation engine
• Addressing map recommendation issues and visualization

Use Case – Similarity-based Recommendation System

[158]

The why and how of recommendations
In the consumer specific markets today, businesses need to stay a step ahead of the
customer in order to flourish. Recommendations use the data that the customers
generate, so that you can analyze patterns and behavior that can be used to suggest
products, people, or point of sales. Over the years, several techniques have been
developed to generate recommendations. Let us take a look at the major approaches:

Collaborative filtering
It is one of the most common techniques that recommendation engines today are
based on. Collaborative Filtering refers to the method of pattern or information
filtering with collaboration between various data sources, viewpoints, agents, etc. It
uses previous or historical data of a user, or other users, to profile a pattern, and then
uses it to predict what other content the user might like.

Let us take an example to understand this. On e-commerce websites, you are
presented with suggestions for products that you might buy, based on the search
history of your and other's profiles. Basically, based on the common data between
you and other users, the websites can suggest products which the other people have
browsed, but you haven't, yet. A similar scenario is applicable for social networks or
dating websites. As an end user, when you have followed, befriended or expressed
an interest in some people you would like to date, a system using collaborative
filtering can give you suggestions for people who match your taste. The priority of
the suggested results will depend upon what the results have in common with you,
and what their tastes are.

In this way, the activities of other users is analyzed by the recommender system,
thereby saving you precious time of browsing through profiles of irrelevant people.
This is an extremely powerful system as it lets you benefit from the activities of
people that you do not know or have never met. Thus collaborative filtering gives
you a way to obtain concrete insights for applications that generate large sets of data.

Content-based filtering
Content-based filtering uses items or target descriptions along with the profile of
the user's preferences. In such a system, each item is described and associated with
certain keywords, and for each user, profiling is done for what the user likes. So
the recommender system suggests items depending upon the user's own historical
activities in order to recommend the items that best match.

Chapter 8

[159]

Content-based filtering also uses weight values to signify how important the feature
is for a particular user, and are calculated from the content rated by the user. User
feedback, usually with likes, votes, or ratings, decide how important an attribute
is for that user. An issue that content based recommendation faces, is being able to
recommend content of multiple types based on patterns obtained from other types.
For example, it is an easy task to recommend news based on the news browsing
patterns of the user. However, it is a challenge to recommend products, forums,
videos or music, based on the news browsing patterns. Pandora Radio is an excellent
example of content based recommender, which uses the initial song of the user to
find songs with similar characteristics.

The hybrid approach
We have seen the collaborative and content-based filtering methods, but research
suggests that a hybrid of the two methods proves to be more effective. One way of
generating hybrid results is to first separately get the results from the two methods
and then combine them. You can also create a single model incorporating both
techniques. Studies suggest that performance of the hybrid recommender systems is
empirically better than that of the pure systems, and is known to give more accurate
recommendations.

Netflix, the media content delivery website, is an excellent example of a hybrid
system user. It compares the searching and viewing patterns of similar users and also
provides results for movies that have some common characteristics of the users' high
rated contents.

Let us take a look at some of the different techniques in which a hybrid system can
be generated and used:

• Switching: This technique selects one or some of the recommendation
components and applies it

• Weighted: In this technique, the numerical scores of the recommendation
components are combined

• Mixed: Here, multiple recommendation systems operate together and the
results from them are combined together

• Augmentation of features: A method is initially used to generate the
feature set to be used and this set is then passed on the next method for
providing recommendations

• Combination of features: A single recommendation system uses features
from multiple different sources to generate results.

• Cascading: It is a priority based technique in which different recommendation
systems have different priorities, which are used to settle ties in results

Use Case – Similarity-based Recommendation System

[160]

Building a recommendation system
Let us see how we can use Neo4j as the backbone to develop recommendation systems
for different data scenarios. For this purpose, we will be using the collaborative
filtering approach to process the data in hand and churn out relevant results.

In order to understand how the process works, let us use a simple data set of a dating
site where you can sign in and view the profile of people who you could potentially
date, and you can follow or like them, or vice versa. The graphical representation of
such a dataset will represent the people as nodes, and the like operations from one
person to another is represented as edges between them.

As shown in the following diagram, consider a user, John, who has just registered on
the website and created a profile for himself. He begins browsing through profiles
of women, searching for a person that might interest him. After going through the
profiles of several people, he likes the profiles of three of them – Donna, Rose, and
Martha. Now, as John is trying his luck, there are other users on the site who are
also actively searching. It turns out that Jack, Rory, Sean, and Harry have also liked
profiles of some of the people that John has liked. So, it can be inferred that their
tastes are aligned and similar. So, it is quite probable that John might like some of
the other people that the guys have already liked, but whose profiles John has yet
to come across. This is where the collaborative filtering comes into play, and we can
suggest more options for John to view, so that he has to deal with a lesser number of
irrelevant profiles.

The following diagram is an illustration of what type of relationships from our
dataset are being used by the recommender:

Girls the Candidate

wants to date

Candidate User Other Guys who would

like to date them

Women liked by the

other guys but not by

the candidate

John

Donna

Rose

Martha

Jack

Rory

Sean

Harry

Chapter 8

[161]

Creating this type of a system would require complex search and set operations for a
production-level implementation. This is where Neo4j comes to the rescue. What we
are essentially doing in the technique above, is searching for some desired patterns in
the graphical representation of our data, and analyzing the results of each sub-search
to obtain a final result set. This reminds us of a Neo4j specific tool we have studied
before – Cypher. It is beneficial to use Cypher in recommender systems, because of
the following reasons:

• It works on the principal of pattern matching, and therefore is perfect for
implementing collaborative recommendation algorithms.

• Cypher, being a declarative query language, does not need you to write code
for how to match the query patterns. You will simple need to mention what
to match and get results. This leads to simpler and smaller codes for creating
complex recommendation systems.

• Cypher, designed specifically for Neo4j will give optimum performance
for relatively large datasets, compared to writing native code for
generating recommendations.

The following code segment illustrates how the scenario described above can be
represented using Cypher.

START Person = node(2)
MATCH Person-[IS_INTERESTED_BY]->someone<-[:IS_INTERESTED_BY]-
otherguy-[:IS_INTERESTED_BY]->recommendations
WHERE not(Person = otherguy)
RETURN count(*) AS PriorityWeight, recommendations.name AS name
ORDER BY PriorityWeight DESC, name DESC;

Let us see what different parts of the preceding Cypher segment are doing in the
overall scenario:

1. We initially select the user who is the candidate for the recommendations
using the following query:
START Person = node(2)

2. The main pattern that we are searching for is about finding the women that
are liked by the people who co-incidentally share common likes with our
recommendation candidate. The following query illustrates it:
MATCH Person-[IS_INTERESTED_BY]->someone<-[:IS_INTERESTED_BY]-
otherguy-[:IS_INTERESTED_BY]->recommendations

Use Case – Similarity-based Recommendation System

[162]

3. We rule out the consideration of our candidate as a tertiary user, since by
default, the candidate, John, shares the same likes as himself which would
result in a redundant case. Hence the following statement:
WHERE not(Paul = otherguy)

4. Using the count method, we monitor the number of ways a result is obtained
during the query execution, using the following statement:
RETURN count(*) AS PriorityWeight, recommendations.name AS name

5. Finally, we return the results in the order of relevance (using the sort method
for ordering):
ORDER BY PriorityWeight DESC, name DESC;

Let us take an example of another social dataset to understand a more complex
pattern for recommending people to date. This dataset (social2.db in the code for
this chapter) contains names of people along with their genders, dating orientations,
attributes/qualities the person has, where they live, and the qualities they a looking
for in potential partner.

Chapter 8

[163]

So, let us build upon the recommendation algorithm, one step at a time:

1. First, we need the name of the person who is looking for a person to date.
The following statement can be used if you know the name:
START me=node:users_index(name = 'Albert')

2. In order to provide recommendations, we need to consider people living in a
nearby location or same town, since a person from Alaska will not prefer to
date someone from California (you know how long distance dates turn out!!).
So the following statement can be used to filter:
MATCH me-[:lives_in]->city<-[:lives_in]-person

3. From the results obtained in the preceding step, we need to match the
genders of the prospective person with the candidate depending upon
his/her orientation.

4. We also need to match the qualities that our candidate is looking for and the
qualities that the prospective person possesses. We can't be selfish though!

5. We also check if the candidate possesses the qualities that the prospective
person is looking for. Hence, the following statement follows:
WHERE me.orientation = person.orientation AND
 ((me.gender <> person.gender AND me.orientation = "straight"))
AND
 me-[:wants]->()<-[:has]-person AND
 me-[:has]->()<-[:wants]-person
WITH DISTINCT city.name AS city_name, person, me
MATCH me-[:wants]->attributes<-[:has]-person-[:wants]-
>requirements<-[:has]-me

6. To check the results obtained at this stage, you can collect the results from
the preceding statement, process them to find the number of matching
attributes between the candidate and the prospective person, by using
the following statement:
RETURN city_name, person.name AS person_name,
 COLLECT(attributes.name) AS my_interests,
 COLLECT(requirements.name) AS their_interests,
 COUNT(attributes) AS matching_wants,
 COUNT(requirements) AS matching_has

7. Depending on the practical utility of the application for which the
recommender operates, you can even sort the results on the basis of
relevance, and display to the candidate the top results.
ORDER BY (COUNT(attributes)/(1.0 / COUNT(requirements))) DESC
LIMIT 10

Use Case – Similarity-based Recommendation System

[164]

Hence, the overall Cypher query for this recommendation algorithm will look like
the following:

START me=node:users_index(name = 'Albert')
MATCH me-[:lives_in]->city<-[:lives_in]-person
WHERE me.orientation = person.orientation AND
 ((me.gender <> person.gender AND me.orientation = "straight")) AND
 me-[:wants]->()<-[:has]-person AND
 me-[:has]->()<-[:wants]-person
WITH DISTINCT city.name AS city_name, person, me
MATCH me-[:wants]->attributes<-[:has]-person-[:wants]->requirements<-
[:has]-me
RETURN city_name, person.name AS person_name,
 COLLECT(attributes.name) AS my_interests,
 COLLECT(requirements.name) AS their_interests,
 COUNT(attributes) AS matching_wants,
 COUNT(requirements) AS matching_has
ORDER BY (COUNT(attributes)/(1.0 / COUNT(requirements))) DESC
LIMIT 10

If you start Neo4j with the social2.db dataset provided in the code for this chapter,
you will find that the preceding query generates the following results
view in the web interface:

Thus, the results are displayed in tabular format containing the people with the
most matching traits with our candidate. You can also export these results from the
interface to be used in a tertiary part of your web application.

Chapter 8

[165]

The preceding algorithm is a simple representation of a recommendation system.
Much more complex systems can be constructed by combining multiple such clauses
together. Of course, similar operations can be performed with map data as well,
for recommendations of places to visit, or with sales data for providing suggestions
to customers for products they are likely to buy. However, all this is possible in
a minimalistic approach with the help of graph based technologies like Neo4j
and Cypher.

Recommendations on map data
Map data is more complex and critical than sales or social data. However, its one
advantage over the others, is that it is mostly static in nature. So what kind of
recommendations can we generate for map data? Suppose a user searches for a
location on the map, you can generate suggestions for nearby places of interest
depending upon the user's search history. For example, if a user searches for
restaurants once in a while, you could generate suggestions for restaurants in any
new locations that he visits. Let us look at how to approach this issue.

Consider a map data set which represents the locations in the form of nodes, and the
roads connecting them in the form of bi-directional relationships. The Location entity
and its properties can be illustrated as follows

Use Case – Similarity-based Recommendation System

[166]

The Road entity and its property structure can be illustrated in the web interface
as follows:

So, the map graph by itself is not sufficient to create a recommendation system. We
will need to add it to scenarios involving user specific data, such as location based
searches (advertisements or establishments to be recommended based on location
and proximity of the user) or favorable logistic paths (delivery of goods through
cab services is a very good example, where a cabbie can deliver goods to a location
if he is already headed that way. Hence, a recommender system can be devised
to suggest delivery locations to cabbies based on the areas they frequent or routes
they take. The possibilities are endless when you can reference a map graph from a
social or transport graph. So you combine the social graph and the map graph given
above, by linking a person from the first to his corresponding locality in the second.
This dual layered graph will now allow you to operate on the map, when you are
simultaneously traversing the social graph.

A similar approach can be taken for airlines or logistic graphs, where the map
component of the graph and the chief operation can be logically segregated, but
physically linked. Now you can devise your own recommendation algorithms to
consider location info for generating suggestions. Since you have now used pattern
matching to generate recommendations for social data, we leave for you an exercise to
devise a recommender for maps, according to any of the scenarios discussed earlier.

Chapter 8

[167]

Visualization of graphs
Recommendations not only help the end user or consumer, but are a boon for
analysts and business managers as well. Using graph databases like Neo4j to create
such systems also brings the added advantage of great visualization support through
its own web interface as well as several third party tools. Visualization serves two
basic purposes which are outlined as follows:

• Better understanding of the data and the level of connectivity of the data
makes it easier to plan the development process

• Analysts can use visualizations to suggest improvements to the result
generation process since a visual outlook gives a better perspective

If we consider the example of the dating application earlier, a visual overview can
assist in the identification of anomalies or outlier entities. For example, if a person is
a trouble seeker and likes to spam other people's profiles, it would show up in the
majority of connections being singular. Such cases can be identified and protected
against, by using proper visualization method.

There are several tools available that help to visualize graph data. The web interface
of Neo4j comes with its own visualization tool, where the results are displayed in the
form of a fluid graph interface with dynamic functionality to view the information
about specific displayed entities. This is how our complete map graph is visualized
in the web interface of Neo4j:

Use Case – Similarity-based Recommendation System

[168]

The gephi open source project is also an excellent tool to visualize complex and
dynamic graphs. It is a great tool for data analysis and inference and can support
a large number of graph sources. However, Linkurious is a project that deserves
special mention as it is built with Neo4j in mind. It is a versatile tool, which provides
a frontend to most of the graph database operations. Not only does it allow you to
visualize and explore the database, it also provides a search functionality to search
your graph data without any code (like a Google for graphs). You can even edit
entities in the graph from the Linkurious frontend.

You can learn more about the project at https://linkurio.us/.
If you are an admin, you will love to work with this.

Here's what the interface looks like:

Chapter 8

[169]

Summary
In this chapter, we have seen how Neo4j, as a graph database, is the best available
option for creating recommendation systems based on similarity. This takes
advantage of the pattern matching nature of the Cypher query language. We also
looked at a social network recommender example, and also discussed how to
incorporate map data into the generated suggestions. Finally, we saw the importance
of data visualization and the major tools available for this objective. Thus, this book
not only brings to you the in-depth study and administration of the Neo4j database,
but also leaves you with one of the critical and widely popular use cases in the
industry today.

Index
A
ACID compliance

about 17
Atomicity (A) 17
Consistency (C) 17
Durability (D) 17
Isolation (I) 17

AdaptiveCacheManager 127
admin tricks

about 140
caches 144
JVM configurations 142, 143
server configuration 140-142

aggregated data model 62
Amazon clusters

Neo4j, configuring for 29, 30
Amazon EC2 30
Amazon Web Services (AWS) 29
Apache Giraph

URL 82
automatic indexing 50, 51
automatic sharding 10

B
batch importer

URL 57
batch inserter 65
benchmarking performance

Gatling used 110-112
built-in caching 11
Bulk Synchronous Processing (BSP)

model 80

C
cache parameters

cache.memory_ratio 146
node_cache_array_fraction 146
node_cache_size 146
relationship_cache_array_fraction 146
relationship_cache_size 146

caches
about 144
file buffer cache 144
object cache 144

cache sharding 113
cache types

about 126
hpc 145
LruCache 127
NoCache 127
none 145
soft 145
SoftLruCache 127
strong 145
weak 145
WeakLruCache 127

Cassandra 12
cloud deployment

performing, with Azure 31-35
code

Hello World application code 120-122
NodeManger 122
relationship management 122
specifics, implementing 123

code snippets
about 57
data, exporting from Neo4j 60
data, importing to Neo4j 57-59

[172]

Collaborative Filtering 158
column-based NoSQL databases

about 12
use cases 12

command class 132
Command-line Interface (CLI) tools 31
commands

TransactionImpl 133
TxLog 133
TxManager 133

connected data models 62
content-based filtering 158
Couchbase 13
CouchDB 13
CREATE clause 42
create, read, update and delete (CRUD)

operation 13
Cypher

about 39, 40, 103, 161
benefits 161
graph operations 40

Cypher clauses
about 41
CREATE 42
DELETE 42
FOREACH 42
MATCH 41
MERGE 42
RETURN 42
SET 42
START 41
UNION 42
WHERE 42
WITH 42

Cypher tricks
about 43
graph model optimizations 46
query optimizations 43

D
database 103
data modeling

across, multiple domains 76, 77
deadlocks

detecting 130
handling 86

LockManager 131, 132
RAGManager 131
RWLock 131

DELETE clause 42
DER format 153
design constraints

about 64, 65
data size 65
file size 64
security 65

Distributed denial of service
(DDOS) attacks 65

document-based NoSQL databases
about 13
use cases 13

dynamic schemas 9, 10

E
Eclipse IDE

download link 22
embedded database

unit testing 104, 105

F
file buffer cache 144, 145
file size, design constraints

data read speed 64
data write speed 64

FOREACH clause 42

G
garbage collection logging 150
Garbage Collector (GC) 127
Gatling

URL 111
used, for benchmarking

performance 110-112
GBASE

URL 82
generic common log format

URL 150
gephi open source project 168
GraphAlgoFactory class

allPaths() method 90
allSimplePaths() method 90

[173]

aStar() method 90
dijkstrar() method 90
pathsWithLength() method 90
shortestPath() method 90

graphalgo package 90
GraphAware

about 100
URL 100

graph compute engine 15
graph databases

about 13, 14
criteria 15
use cases 14

graph data models
hypergraph 19
property graph 18
triples 19

graph modeling techniques
about 66
adjacency lists 67
aggregation 66
flattening, with ordered field names 69
materialized paths 67
nested sets 68, 69

graph model optimizations
about 46
explicit definition 46
property refactoring 47

graph operations, Cypher
about 40
clauses 41, 42

graph processing
about 80
with Hadoop or Neo4j 83

graphs
about 8
automatic sharding 10
built-in caching 11
dynamic schemas 9, 10
NoSQL databases 8, 9
replication 11
utilities 8

Gremlin
about 47
clauses 48, 49

Groovy
about 47
URL 47

H
Hadoop

about 82
graph processing, with 83

HBase 12
high availability

about 133
master election 134, 135
master, need for 134

high-volume applications
big data and graphs 81
graphalgo package 90-93
graph processing 80, 81
transactions, managing 84

HTTP logging configurations 149
hybrid approach 159
hypergraph 19

I
indexing

about 50
automatic indexing 50, 51
benefits 53, 54
manual indexing 50, 51
schema-based indexing 52-53
trade-offs 53

INFO 149

J
Java Persistence API (JPA) data model 94
JavaScriptNeo4j adapter 139
JVM configurations

about 142, 143
properties 142

K
key-value stores

about 11
use cases 12

[174]

L
Least Recently Used (LRU) 126
LinkBench

about 110
URL 110

Linkurious
about 168
URL 168

LockManager 131, 132
LogEntry state 129
logical logs 150

M
manual indexing 50, 51
map data

about 165
recommendations 165, 166

MATCH clause 41
Maven

about 100
URL 25

MemcacheDB 11
memory mapped I/O configuration

about 146
batch insert example 148
configuring 147
nodestore 147
propertystore 147
propertystore arrays 147
propertystore strings 147
relationshipstore 147
traversal speed optimization example 147

MERGE clause 42
migration techniques, for SQL users

about 54
data sync 57
dual data stores, handling 54
initial import 56
model, analyzing 54, 55
result 57

MongoDB 13

N
Neo4j

about 14
administering 137
characteristics 18
cloud deployment, with Azure 31-35
configuring, for Amazon clusters 29, 30
CRUD operations 20, 21
design constraints 64
download link 22
for high-volume applications 79
graphs 8
indexing 50
interfacing, with frameworks 138
interfacing, with Python 140
interfacing, with tools 138
processing engine 18
server, unit testing 106
storage file 144, 145
storage within 18
using, for PHP developers 138

Neo4j applications
benchmarking performance,

with Gatling 110-112
performance testing 107-110
scaling 112-115
testing 100
unit testing 101

Neo4j configurations
about 21
embedded mode 22-26
server mode 26, 27

Neo4j Enterprise
URL 27

Neo4j graph database
about 16
ACID compliance 17
characteristics 19

Neo4j HA
about 112
cache sharding 113
issues 113
neo4j-01.local 27

[175]

neo4j-02.local 28
neo4j-03.local 28
setting up 27

Neo4j interface
about 37
Cypher queries, running 38
results, visualization 39

Neo4j internals
about 120
caching 126
Hello World application code 120-122
high availability 133
property storage 123
transactions 128
URL, for source code 120

Neo4j server logging
about 149
configurations 149
garbage collection logging 150
HTTP logging configurations 149
logical logs 150
open file size limit, on Linux 151, 152

Neo4j server security
about 152
port security 152
remote connection security 152
security options 156
server authorization rules 153
support, for HTTPS 153

Netflix 159
NoSQL databases

about 8, 9
types 11

O
object cache 144, 145
Online Analytical Processing (OLAP) 80
Online Transaction Processing (OLTP) 80
OrientDB 14

P
Pandora Radio 159
performance testing

about 107
performing 107-110

PHP developers
Neo4j, using for 138

Plain Old Java Object (POJO) model 94
Pregel 82
Project Object Model (POM) 25
property graph

about 18, 63, 64
characteristics 18

property storage
about 123
migrating, to new storage 126
structure 123-125

Q
query optimizations

about 43
cartesian products generation, avoiding 44
global data scans, avoiding 43
indexing and constraints for

faster search 44
MATCH patterns, splitting 45
parameters, in queries 45
patterns, using in MATCH clause 45
queries, profiling 45

R
RAGManager 131
recommendation engine

basics 158
building 160-164
Collaborative Filtering 158
content-based filtering 158
hybrid approach 159

Redis 11
replication 11
Representational State Transfer (REST)

API applications 100
RETURN clause 42
Riak 11
rrdb (round robin database directory) 141
RWLock 131

Proudly sourced and uploaded by [StormRG]

[176]

S
scaling techniques, Neo4j applications

implementing 112-116
summary 116

schema-based indexing 52
schema design patterns

about 70
complex similarity computations 73
hyper edges 70, 71
linked lists, implementing 72, 73
route generation algorithms 74

server authorization rules
about 153
enforcement, setting up 153, 154
targeting, with wildcards 155, 156

server configuration 140, 141
server logging configurations 149
SET clause 42
sharding 10
simpler algorithms 112
Spring Data Neo4j

about 93, 97
features 94
setting up 94-97

START clause 41
Storage Area Networks (SANs) 10
structr graph application platform

URL 60
Surfer 82

T
techniques, for hybrid system

augmentation of features 159
cascading 159
combination of features 159
mixed 159
switching 159
weighted 159

techniques, for improving Neo4j subsystem
performance

simpler algorithms 112
warm cache 112

transactions, high-volume application
deadlock handling 86
event handlers 88, 89

managing 84-86
transaction state, monitoring 85, 86
uniqueness, of entities 87

transactions, Neo4j internals
commands 132, 133
deadlocks, detecting 130
Wait-For Graph (WFG) 128
Write-Ahead Log (WAL) 128, 129

triples 19
TwoPhaseCommit (2PC) protocol 133
types, NoSQL databases

about 11
column-based data stores 12
document databases 13
graph compute engines 15
graph databases 13, 14
key-value data store 11

U
UNION clause 42
unit testing, Neo4j applications

embedded database, unit testing 104, 105
GraphUnit-based unit testing 103
Java API, using 101, 102
Neo4J server, unit testing 106, 107
performing 101

V
visualization, of graphs 167, 168

W
warm cache 112
WHERE clause 42
WITH clause 42
Write-Ahead Log (WAL) 128-130
WriteTransaction transactions

commands field 132
record field 132

X
XaTransaction class 132

Thank you for buying
Neo4j High Performance

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Neo4j
ISBN: 978-1-84951-716-4 Paperback: 222 pages

Run blazingly fast queries on complex graph datasets
with the power of the Neo4j graph database

1. Get acquainted with graph database systems
and apply them in real-world use cases.

2. Get started with Neo4j, a unique NOSQL
database system that focuses on tackling data
complexity.

3. A practical guide filled with sample queries,
installation procedures, and useful pointers to
other information sources.

Learning Cypher
ISBN: 978-1-78328-775-8 Paperback: 162 pages

Write powerful and efficient queries for Neo4j with
Cypher, its official query language

1. Improve performance and robustness
when you create, query, and maintain
your graph database.

2. Save time by writing powerful queries using
pattern matching.

3. Step-by-step instructions and practical
examples to help you create a Neo4j graph
database using Cypher.

Please check www.PacktPub.com for information on our titles

Instant OpenCV for iOS
ISBN: 978-1-78216-384-8 Paperback: 96 pages

Learn how to build real-time computer vision
applications for the iOS platform using the
OpenCV library

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Build and run your OpenCV code on iOS.

3. Become familiar with iOS fundamentals and
make your application interact with the GUI,
camera, and gallery.

4. Build your library of computer vision effects,
including photo and video filters.

Building Web and Mobile
ArcGIS Server Applications with
JavaScript
ISBN: 978-1-84969-796-5 Paperback: 274 pages

Master the ArcGIS API for JavaScript, and build
exciting, custom web and mobile GIS applications
with the ArcGIS Server

1. Develop ArcGIS Server applications with
JavaScript, both for traditional web browsers
as well as the mobile platform.

2. Acquire in-demand GIS skills sought by
many employers.

3. Step-by-step instructions, examples, and
hands-on practice designed to help you learn
the key features and design considerations for
building custom ArcGIS Server applications.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Neo4j
	Graphs and their utilities
	Introducing NoSQL databases
	Dynamic schemas
	Automatic sharding
	Built-in caching
	Replication

	Types of NoSQL databases
	Key-value stores
	Column family stores
	Document databases
	Graph databases
	Graph compute engines

	The Neo4j graph database
	ACID compliance
	Characteristics of Neo4j
	The basic CRUD operations

	Neo4j setup and configurations
	Modes of setup – the embedded mode
	Modes of setup – the server mode
	Neo4j high availability
	Machine #1 – neo4j-01.local
	Instance #2 – neo4j-02.local
	Instance #3 – neo4j-03.local

	Configure Neo4j for Amazon clusters
	Cloud deployment with Azure
	Summary

	Chapter 2: Querying and Indexing in Neo4j
	The Neo4j interface
	Running Cypher queries
	Visualization of results

	Introduction to Cypher
	Cypher graph operations
	Cypher clauses
	More useful clauses

	Advanced Cypher tricks
	Query optimizations
	Graph model optimizations

	Gremlin – an overview
	Indexing in Neo4j
	Manual and automatic indexing
	Schema-based indexing
	Indexing benefits and trade-offs

	Migration techniques for SQL users
	Handling dual data stores
	Analyzing the model
	Initial import
	Keeping data in sync
	The result

	Useful code snippets
	Importing data to Neo4j
	Export data from Neo4j

	Summary

	Chapter 3: Efficient Data Modeling with Graphs
	Data models
	Aggregated data model
	Connected data models

	Property graphs
	Design constraints in Neo4j
	Graph modeling techniques
	Aggregation in graphs
	Graphs for adjacency lists
	Materialized paths
	Modeling with nested sets
	Flattening with ordered field names

	Schema design patterns
	Hyper edges
	Implementing linked lists
	Complex similarity computations
	Route generation algorithms

	Modeling across multiple domains
	Summary

	Chapter 4: Neo4j for High-Volume Applications
	Graph processing
	Big data and graphs
	Processing with Hadoop or Neo4j
	Managing transactions
	Deadlock handling
	Uniqueness of entities
	Events for transactions

	The graphalgo package
	Introduction to Spring Data Neo4j
	Summary

	Chapter 5: Testing and Scaling Neo4j Applications
	Testing Neo4j applications
	Unit testing
	Using the Java API
	GraphUnit-based unit testing
	Unit testing an embedded database
	Unit testing a Neo4J server

	Performance testing
	Benchmarking performance with Gatling
	Scaling Neo4j applications
	Summary

	Chapter 6: Neo4j Internals
	Introduction to Neo4j internals
	Working of your code
	Node and relationship management
	Implementation specifics

	Storage for properties
	The storage structure
	Migrating to the new storage

	Caching internals
	Cache types
	AdaptiveCacheManager

	Transactions
	The Write Ahead log
	Detecting deadlocks
	RWLock
	RAGManager
	LockManager

	Commands

	High availability
	HA and the need for a master
	The master election

	Summary

	Chapter 7: Administering Neo4j
	Interfacing with the tools and frameworks
	Using Neo4j for PHP developers
	The JavaScript Neo4j adapter
	Neo4j with Python

	Admin tricks
	Server configuration
	JVM configurations
	Caches

	Memory mapped I/O configuration
	Traversal speed optimization example
	Batch insert example

	Neo4j server logging
	Server logging configurations
	HTTP logging configurations
	Garbage collection logging
	Logical logs
	Open file size limit on Linux

	Neo4j server security
	Port and remote connection security
	Support for HTTPS
	Server authorization rules
	Other security options

	Summary

	Chapter 8: Use Case: Similarity Based Recommendation System
	The why and how of recommendations
	Collaborative filtering
	Content-based filtering
	The hybrid approach

	Building a recommendation system
	Recommendations on map data
	Visualization of graphs
	Summary

	Index

