
www.allitebooks.com

http://www.allitebooks.org

Node Security

Take a deep dive into the world of securing your Node
applications with Node Security

Dominic Barnes

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Node Security

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-149-7

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Dominic Barnes

Reviewers
Johannes Boyne

Dan Palmer

Acquisition Editors
Antony Lowe

Grant Mizen

Commissioning Editor
Mohammed Fahad

Technical Editor
Shashank Desai

Project Coordinator
Romal Karani

Proofreader
Hardip Sidhu

Indexer
Rekha Nair

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dominic Barnes is a web developer as a hobbyist and by profession. Since writing
HTML with Microsoft Notepad back in high school, he has grown in skill through
the many opportunities he has had. With experiences in ColdFusion, ASP.NET, PHP,
and now Node.js, his passion is to create applications that people find useful. To him,
the user experience is paramount and requires writing secure and high-performance
code, no matter what platform is being used.

I want to thank Jesus Christ above all, for blessing me with the
opportunities to serve people through my work with technology.
Without Him, I would not be where I am today and I could not do
what I do without His work in my life. He has also blessed me richly
through my lovely wife, Joanie, who is the best friend I could ever
ask for. She has supported and encouraged me through this entire
process, and she helps me work hard and put forth excellence in
everything I do. I love her very much, and cannot picture my life
without her.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Johannes Boyne is the technical project lead for VIRTUAL TWINS®,
an indoor-navigation and information system by Archkomm GmbH.

His work with Node.js begun with Version 0.4 and since then he has supported the
Node.js community, and recently he joined the Node Security Project as an auditor.

He started as a rich Internet application developer and did consulting work later
on till he joined Archkomm for the VIRTUAL TWINS® project. He is interested in
new technologies such as NoSQL, high-performance and highly scalable systems,
as well as cloud computing. Besides work he loves sports, reading about new
scientific researches, watching movies, and travelling.

He also worked on the books Rich-Internet-Applications with Adobe Flex 3 and Adobe
Flex 4 both by the author, Simon Widjaja.

Dan Palmer is a Computer Science Master's student at the University of
Southampton, UK, and has worked at as a software developer at a range of
companies during his education. He always had a keen interest in security, and has
recently completed a placement at MWR InfoSecurity as a security tools developer
and penetration tester. He has also worked in the past as a Node.js web developer
and Mac OS software developer, making software and services for end users.

I'd like to thank all those I have worked with over the past few years,
who have helped me develop my software development skills, and
also my appreciation for security in many contexts, and the impact
it has across our industry. Thanks Keith, Gerhard, Geoff, Dan, Mike,
Martin, Dave, and everyone else. I really appreciate the help and
advice you've all given me.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to Node.js 5

History of Node.js 5
How Node.js differs? 6
Securing Node.js applications 9
Summary 9

Chapter 2: General Considerations 11
JavaScript security 12
ES5 features 13

Strict mode 13
Object property descriptors 16

Static program analysis 20
Considerations for Node.js 21

Callback errors 21
EventEmitter error handling 22
Uncaught exceptions 22
Domains 23
Process monitoring 25

npm modules (third-party code) 26
Summary 27

Chapter 3: Application Considerations 29
Introduction to Express 29
Authentication 32

HTTP Basic Authentication 32
HTTP Digest Authentication 34
Introducing Passport.js 35
OpenID 39
OAuth 41

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Authorization 44
Security logging 47
Error handling 51
Summary 53

Chapter 4: Request Layer Considerations 55
Limiting the request size 55

Using streams instead of buffering 57
Monitoring the event loop's responsiveness 59
Cross-site Request Forgery 60
Input validation 62
Summary 66

Chapter 5: Response Layer Vulnerabilities 67
Cross-site Scripting (XSS) 67
Denial of Service 73
Security-related HTTP headers 73

Content security policy 73
HTTP Strict Transport Security (HSTS) 77
X-Frame-Options 78
X-XSS-Protection 79
X-Content-Type-Options 79
Cache-Control 80

Summary 80
Index 81

www.allitebooks.com

http://www.allitebooks.org

Preface
Node.js is a fast-growing platform for building server applications using JavaScript.
Now that it is being used more widely in production settings, Node.js applications
will begin to be specifically targeted for security vulnerabilities. Protecting your
users will require the understanding of attack vectors that are unique to Node.js
as well as those shared with other web application platforms.

What this book covers
Chapter 1, Introduction to Node.js, introduces Node.js and explains how it differs from
other development platforms.

Chapter 2, General Considerations, goes over the general security considerations,
particularly within JavaScript itself as well as Node.js applications in general.

Chapter 3, Application Considerations, addresses the security issues related to the
applications in general, including authentication, authorization, and error handling.

Chapter 4, Request Layer Considerations, covers vulnerabilities that are specific to
request handling, such as Cross-site Request Forgery (CSRF).

Chapter 5, Response Layer Vulnerabilities, deals with the issues that arise during or after
the response is processed, such as Cross-site scripting (XSS).

To get the most from this book, you should have Node.js installed on your system.
Instructions are available for many platforms at http://nodejs.org/. Be familiar
with npm and its command-line usage. It is bundled with Node.js, so no additional
installation is required.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Who this book is for
This book is intended to help the developers to secure their Node.js applications,
whether they are already using it in production, or considering it for their next
project. Understanding of JavaScript is a prerequisite, and some experience with
Node.js is recommended, but not required.

Conventions
In this book, you will find a number of styles of text that distinguishes between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "It should be noted that the EventEmitter
object has a very specific behavior regarding the error event."

A block of code is set as follows:

function sayHello(name) {
 "use strict"; // enables strict mode for this function scope
 console.log("hello", name);
}

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[3]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Preface

[4]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Node.js
Node.js has ushered in the age of server-side JavaScript, the next logical step from
the renaissance that client-side JavaScript has experienced over the last few years.
While Node.js is not the first server-side JavaScript implementation, it has certainly
become the most popular. By leveraging the best features of JavaScript as a language
and nurturing a vibrant community, Node.js has become a tremendously popular
platform and framework, with no signs of slowing down. A great description of
what Node is can be found at http://nodejs.org/:

Node.js is a platform built on Chrome's JavaScript runtime for easily building
fast, scalable network applications. Node.js uses an event-driven, non-blocking I/O
model that makes it lightweight and efficient, perfect for data-intensive real-time
applications that run across distributed devices.

History of Node.js
The project began as the brain-child of Ryan Dahl back in 2009. At JSConf.eu
(a conference held annually in Europe) that year, he made his presentation and
changed the face of JavaScript development. His speech included an impressive
demonstration of a complete IRC server that had been written in roughly 400 lines
of JavaScript. During his presentation, he outlined why he started the project, why
JavaScript became such an integral part of it, and what goals he sought to accomplish
along the way in the field of server programming – particularly with regards to how
we deal with input and output (I/O).

Later that year, the npm project began, with the goal of managing packages for
Node.js applications, as well as creating a publicly available registry for sharing
code between Node.js developers. As of version 0.6.3 of Node.js, npm is deployed
and installed alongside Node.js, making it the de facto package manager.

Introduction to Node.js

[6]

How Node.js differs?
What makes Node.js different from other platforms is in how it approaches I/O.
It uses an event-loop in conjunction with asynchronous I/O, which allows it to
achieve a high level of concurrency with a light footprint.

Typically, when a program needs some sort of external input, it does so in a
synchronous fashion. The following line of code should be very familiar to
any programmer:

var results = db.query("SELECT * FROM users");
print(results[0].username);

All we are doing here is querying a SQL database for a list of all users, and then we
are printing out the first user's name. When querying a database like this, there are
many intermediary steps that need to be taken, such as:

1. Opening a connection to the database server.
2. Transmitting the request over the network to that server.
3. The server itself needs to process the request after receiving it.
4. The server must transmit the response back over the network to

our application.

This list does not cover all the specifics, as there are many more factors than are
necessary for the point to be made. By looking at our source code, this is treated
as an instantaneous action, but we know better. We often neglect this wasted
time because it is so fast that we don't notice it happening. Consider the
following table:

The Cost of I/O
L1-cache 3 cycles
L2-cache 14 cycles
RAM 250 cycles
Disk 41,000,000 cycles
Network 240,000,000 cycles

Each I/O operation has a cost, which is paid directly in a program that uses
synchronous I/O. There could easily be millions and millions of clock cycles
that occur before the program can progress.

Chapter 1

[7]

When writing an application server, a program like this can only serve one user at a
time, and the next user cannot be served until all the I/O and processing is complete
for the previous user. This is unacceptable of course, so the easiest solution is to
create a new thread for each incoming request, so they can run in parallel.

This is how the Apache web server works, and it is not difficult to implement.
However, as the number of simultaneous users increase, the amount of memory
used also increases. Each of those threads requires overhead at the operating system
level, and it adds up pretty quickly. In addition, the overhead of context switching
between those threads is more time consuming than desired, further compounding
the problem.

The nginx web server uses an event loop at its core to handle processes. By doing so,
it is able to handle more simultaneous users at once, with fewer resources. An event
loop requires that the bits of processing be broken up into small pieces, and run in
a single queue. This removes the high cost of creating threads, switching back and
forth between those threads, and requires less demand of the overall system. At the
same time, it fills in the processing gaps, particularly those that occur during the wait
for I/O to complete.

Node.js takes the event-driven model that nginx uses to such great success, and it
exposes that same capability for many types of applications. In Node.js, all I/O is
entirely asynchronous and does not block the rest of the application thread. The
Node.js API accepts function parameters (usually known as a "callback function")
for all I/O operations. Node.js then fires off that I/O operation, and lets another
thread outside the application do the processing. After that, the application is free
to continue handling other requests. Once the requested operation is complete, the
event-loop is notified, and the callback function is invoked with the results.

As it turns out, waiting for I/O to complete is the most expensive part of many
applications in terms of raw processing time. With Node.js, the time spent waiting
for I/O is completely detached from the rest of your application's processing time.
Your application just uses callback functions to process results as simple events,
and JavaScript's ability to use closure retains the function's context, despite being
executed asynchronously.

If you were to take up the task of writing a multi-threaded application, you would
have to concern yourself with concurrency problems like deadlocks, which are
very difficult (if not impossible) to reproduce and debug in real-world applications.
With Node.js, your primary application logic runs on a single thread, free of such
concurrency problems, while the time-consuming I/O is handled on your behalf
by Node.js.

Introduction to Node.js

[8]

Like any other platform, Node.js has an API developers can use to write their
applications. JavaScript itself lacks a standard library, particularly for performing
I/O. This actually turned out to be one of the reasons that Ryan Dahl chose
JavaScript. As the core API can be built from the ground up, without needing to
worry about creating conflicts with a standard library, in case it is done wrong
(given JavaScript's history, this is not an unreasonable assumption).

That core library is minimalistic, but it does include modules for the essentials.
This includes, but is not limited to: filesystem access, network communication,
events, binary data structures, and streams. Many of these APIs, while not
difficult to use, are very low-level in implementation. Consider this "Hello
World" demonstration straight from the Node.js website (with comments added):

// one of the core modules
var http = require('http');
// creates an http server, this function is called for each request
http.createServer(function (req, res) {
 // these parameters represent the request and response objects
 // the response is going to use a HTTP status code 200 (OK)
 // the content-type HTTP header is set as well
 res.writeHead(200, {'Content-Type': 'text/plain'});
 // lastly, the response is concluded with simple text
 res.end('Hello World\n');
}).listen(1337, '127.0.0.1');
console.log('Server running at http://127.0.0.1:1337/');

This server uses the http core module to set up a web server that simply sends
"Hello World" to anyone who makes a request of it. This is a simple example,
but without comments, this consists of only six lines of code in all.

The Node.js team has opted to keep the core library limited in scope, leaving the
community of developers to create the modules they need for everything else,
such as database drivers, unit-testing, templating, and abstractions for the core
API. To aid in this process, Node.js has a package manager called npm.

npm is the tool that handles installing dependencies for Node.js applications. It opts
for locally bundled dependencies, rather than using a single global namespace. This
allows different projects to have their own dependencies, even if the version varies
between those projects.

Chapter 1

[9]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/supportand register to have the files e-mailed directly to you.

In addition to allowing for the use of third-party modules, npm also makes
contributing to the registry a public affair. Adding a module to the registry is as
simple as a single command, making the barrier to enter extremely low. Today,
the npm registry has over 42,000 packages listed and is growing faster by the day.

With the registry growing so fast, it's obvious there is a vibrant ecosystem behind
it. I can personally attest to the fact that the Node.js developer community is very
friendly, extremely prolific, and has an enormous amount of enthusiasm.

Securing Node.js applications
When it comes to securing your application, there are many factors to consider.
We will start by examining JavaScript itself, then analyze Node.js as a platform, and
reveal some of the internals that are relevant to the discussion. After that, we will
investigate considerations and patterns for your applications as a whole. Last, we
will survey vulnerabilities at the request and response level of your applications.
By the end of this book, you should have enough understanding of the internals of
Node.js to not only address what we are discussing here, but also to grasp any future
vulnerability that may appear for your applications.

Summary
In this chapter, we explored the history of the Node.js project itself, and gave
some background to the development environment and community. In the next
chapter, we will start by looking at security features present within the JavaScript
language itself.

General Considerations
Building secure Node.js applications will require an understanding of the many
different layers that it is built upon. Starting from the bottom, we have the language
specification that defines what JavaScript consists of. Next, the virtual machine
executes your code and may have differences from the specification. Following
that, the Node.js platform and its API have details in their operation that affect
your applications. Lastly, third-party modules interact with our own code and
need to be audited for secure programming practices.

First, JavaScript's official name is ECMAScript. The international European
Computer Manufacturers Association (ECMA) first standardized the language
as ECMAScript in 1997. This ECMA-262 specification defines what comprises
JavaScript as a language, including its features, and even some of its bugs. Even
some of its general quirkiness has remained unchanged in the specification to
maintain backward compatibility. While I won't say the specification itself is
required reading, I will say that it is worth considering.

Second, Node.js uses Google's V8 virtual machine to interpret and execute your
source code. While developing for the browser, you have to consider all the other
virtual machines (not to mention versions), when it comes to available features.
In a Node.js application, your code only runs on the server, so you have much
more freedom, and you can use all the features available to you in V8. Additionally,
you can also optimize for the V8 engine exclusively.

Next, Node.js handles setting up the event loop, and it takes your code to register
callbacks for events and executes them accordingly. There are some important details
regarding how Node.js responds to exceptions and other errors that you will need to
be aware of while developing your applications.

General Considerations

[12]

Atop Node.js is the developer API. This API is written mostly in JavaScript which
allows you, as a JavaScript developer, to read it for yourself, and understand how it
works. There are many provided modules that you will likely end up using, and it's
important for you to know how they work, so you can code defensively.

Last, but not least, the third-party modules that npm gives you access to, are in
great abundance, which can be a double-edged sword. On one hand, you have
many options to pick from that suit your needs. On the other hand, having a
third-party code is a potential security liability, as you will be expected to support
and audit each of these modules (in addition to their own dependencies) for
security vulnerabilities.

JavaScript security
One of the biggest security risks in JavaScript itself, both on the client and now
on the server, is the use of the eval() function. This function, and others like
it, takes a string argument, which can represent an expression, statement, or a
series of statements, and it is executed as any other JavaScript source code.
This is demonstrated in the following code:

// these variables are available to eval()'d code
// assume these variables are user input from a POST request
var a = req.body.a; // => 1
var b = req.body.b; // => 2
var sum = eval(a + "+" + b); // same as '1 + 2'

This code has full access to the current scope, and can even affect the global object,
giving it an alarming amount of control. Let's look at the same code, but imagine if
someone malicious sent arbitrary JavaScript code instead of a simple number. The
result is shown in the following code:

var a = req.body.a; // => 1
var b = req.body.b; // => 2; console.log("corrupted");
var sum = eval(a + "+" + b); // same as '1 + 2; console.
log("corrupted");

Due to how eval() is exploited here, we are witnessing a "remote code execution"
attack! When executed directly on the server, an attacker could gain access to server
files and databases. There are a few cases where eval() can be useful, but if the user
input is involved in any step of the process, it should likely be avoided at all costs!

Chapter 2

[13]

There are other features of JavaScript that are functional equivalents to eval(),
and should likewise be avoided unless absolutely necessary. First is the Function
constructor that allows you to create a callable function from strings, as shown in
the following code:

// creates a function that returns the sum of 2 arguments
var adder = new Function("a", "b", "return a + b");
adder(1, 2); // => 3

While very similar to the eval() function, it is not exactly the same. This is because
it does not have access to the current scope. However, it does still have access to the
global object, and should be avoided whenever a user input is involved.

If you find yourself in a situation where there is an absolute need to execute an
arbitrary code that involves user input, you do have one secure option. Node.js
platform's API includes a vm module that is meant to give you the ability to compile
and run code in a sandbox, preventing manipulation of the global object and even
the current scope.

It should be noted that the vm module has many known issues and edge cases.
You should read the documentation, and understand all the implications of what
you are doing to make sure you don't get caught off-guard.

ES5 features
ECMAScript5 included an extensive batch of changes to JavaScript, including the
following changes:

1. Strict mode for removing unsafe features from the language.
2. Property descriptors that give you control over object and property access.
3. Functions for changing object mutability.

Strict mode
Strict mode changes the way JavaScript code runs in select cases. First, it causes
errors to be thrown in cases that were silent before. Second, it removes and/or
change features that made optimizations for JavaScript engines either difficult
or impossible. Lastly, it prohibits some syntax that is likely to show up in future
versions of JavaScript.

Additionally, strict mode is opt-in only, and can be applied either globally or for an
individual function scope. For Node.js applications, to enable strict mode globally,
add the –use_strict command line flag, while executing your program.

General Considerations

[14]

While dealing with third-party modules that may or may not be
using strict mode, this can potentially have negative side effects
on your overall application. With that said, you could potentially
make strict mode compliance a requirement for any audits on
third-party modules.

Strict mode can be enabled by adding the "use strict" pragma at the beginning
of a function, before any other expressions as shown in the following code:

function sayHello(name) {
 "use strict"; // enables strict mode for this function scope
 console.log("hello", name);
}

In Node.js, all the required files are wrapped with a function expression that handles
the CommonJS module API. As a result, you can enable strict mode for an entire file,
by simply putting the directive at the top of the file. This will not enable strict mode
globally, as it would in an environment like the browser.

Strict mode makes many changes to the syntax and runtime behavior, but for the
sake of brevity we will only discuss changes relevant to application security.

First, scripts run via eval() in strict mode cannot introduce new variables to the
enclosing scope. This prevents leaking new and possibly conflicting variables into
your code, when you run eval() as shown in the following code:

"use strict";
eval("var a = true");
console.log(a); // ReferenceError thrown – a does not exist

In addition, the code run via eval() is not given access to the global object through
its context. This is similar, if not related, to other changes for function scope, which
will be explained shortly, but this is specifically important for eval(), as it can no
longer use the global object to perform additional black magic.

It turns out that the eval() function is able to be overridden in JavaScript. It can
be accomplished by creating a new global variable called eval, and assigning
something else to it, which could be malicious. Strict mode prohibits this type
of operation. It is treated more like a language keyword than a variable, and
attempting to modify it will result in a syntax error as shown in the following code:

// all of the examples below are syntax errors
"use strict";
eval = 1;
++eval;
var eval;
function eval() { }

Chapter 2

[15]

Next, the function objects are more tightly secured. Some common extensions to
ECMAScript add the function.caller and function.arguments references to each
function, after it is invoked. Effectively, you can "walk" the call stack for a specific
function by traversing these special references. This potentially exposes information
that would normally appear to be out of scope. Strict mode simply makes these
properties throw a TypeError remark, while attempting to read or write them,
as shown in the following code:

"use strict";
function restricted() {
 restricted.caller; // TypeError thrown
 restricted.arguments; // TypeError thrown
}

Next, arguments.callee is removed in strict mode (such as function.caller and
function.arguments shown previously). Normally, arguments.callee refers to
the current function, but this magic reference also exposes a way to "walk" the call
stack, and possibly reveal information that previously would have been hidden
or out of scope. In addition, this object makes certain optimizations difficult or
impossible for JavaScript engines. Thus, it also throws a TypeError exception,
when an access is attempted, as shown in the following code:

"use strict";
function fun() {
 arguments.callee; // TypeError thrown
}

Lastly, functions executed with null or undefined as the context no longer coerce
the global object as the context. This applies to eval() as we saw earlier, but goes
further to prevent arbitrary access to the global object in other function invocations,
as shown in the following code:

"use strict";
(function () {
 console.log(this); // => null
}).call(null);

Strict mode can help make the code far more secure than before, but ECMAScript
5 also includes access control through the property descriptor APIs. A JavaScript
engine has always had the capability to define property access, but ES5 includes
these APIs to give that same power to application developers.

General Considerations

[16]

Object property descriptors
Object properties have the following three hidden attributes that determine what
mutations can occur to them:

• writable: If this is false means the property value cannot be changed
(in other words, read only)

• enumerable: If this is false means the property will not come up during
for in loops

• configurable: If this is false means the property cannot be deleted

While defining an object property with an object literal or through assignment, which
is the most common method, each of these three hidden properties defaults to true.
This makes the property completely open to modification in every respect. However,
there are a few new functions that allow application developers to set these property
attributes on their own, restricting access to certain object properties. The property
descriptor API is completely opt-in, and the default behavior of object properties
does not change, even in ES5.

First, the Object.defineProperty() function allows you to specify a single
property and its accessor descriptor on a specified object. It takes three arguments:
the target object, the name of the new property, and the descriptor object mentioned
earlier. An accessor descriptor is just an object that contains specified properties
corresponding to the attributes listed earlier.

The accessor descriptor tells JavaScript engine, the access level to give to
our new property. While using Object.defineProperty() and its
related functions, it is important to note that all the descriptor attributes
value are by default set to false. This is the opposite effect when
compared to basic assignment.

var o = {};

// the next 2 statements are completely identical in result

o.a = "A";

Object.defineProperty(o, "a", {
 writable: true,
 enumerable: true,
 configurable: true,
 value: "A"
});

Chapter 2

[17]

Both of these statements have the same result, and the latter is much more verbose.
However, traditional assignment cannot affect any of the descriptors, unlike the
latter. Let's see what it takes to create a "locked down" property:

var o = {};

Object.defineProperty(o, "a", {
 value: "A"
});

What we have just done is created a property that cannot be written, deleted, or
enumerated, making it immutable. This allows application developers to control
data access, even while sharing objects across various code boundaries.

One last capability afforded by accessor descriptors is to allow developers to create
getter and setter functions for specific properties. A getter is a function that returns
the data when a property is accessed, and a setter stores the data that is sent via an
assignment. This is illustrated in the following code:

var person = {
 firstName: "Dominic",
 lastName: "Barnes"
};

Object.defineProperty(person, "name", {
 enumerable: true,
 get: function () {
 return this.firstName + " " + this.lastName;
 },
 set: function (input) {
 var names = input.split(" ");
 this.firstName = names[0];
 this.lastName = names[1];
 }
});

console.log(person.name); // => "Dominic Barnes"

This code creates a property that contains data from two other properties on the
same object, and it is computed dynamically. The same could be accomplished
with a function in many cases, but this enables more separation between the two
operations, without needing two separate functions on the object itself.

General Considerations

[18]

The next function, Object.defineProperties(), is similar. This one, however, only
takes two arguments, the host object and another object that is a hash of multiple
properties, where the property values are all accessor descriptors. This is seen in the
following code:

var letters = {};

Object.defineProperties(letters, {
 a: {
 enumerable: true,
 value: "A"
 },
 b: {
 enumerable: true,
 value: "B"
 }
});

console.log(letters.a); // => "A"
console.log(letters.b); // => "B"

This allows us to condense multiple property definitions into a single function call,
which is more about convenience than anything else. Next up is the most powerful
of them all: the Object.create() function. This function creates a completely new
object from scratch, and also assigns it a prototype. This is reflective of the prototypal
nature of JavaScript, and we will not take time to discuss that further, as it is not
particularly relevant to this discussion.

This function only takes two arguments, the prototype for the new object (or null
to assign no inheritance at all), and a properties object just like we use in Object.
defineProperties(), as shown in the following code:

var constants = Object.create(null, {
 PI: {
 enumerable: true,
 value: 3.14
 },
 e: {
 enumerable: true,
 value: 2.72
 }
});

Chapter 2

[19]

By setting the prototype as null, instead of some other object, we have created a
completely plain object that inherits nothing, not even from the Object.prototype
object. This is desirable as even modifications to Object.prototype (which is a bad
idea anyway) will not adversely affect objects created with this method.

There are a few other special functions for changing an object's accessibility. First is
the Object.preventExtensions() function, which prevents new properties from
being added to the object specified, as shown in the following code:

var o = {
 a: "A",
 b: "B",
 c: "C"
};

o.d = "D"; // works as expected

Object.preventExtensions(o);

o.e = "E"; // will not work

As you can see, this allows you to configure an object so that nobody else can create
additional properties on your object. If you include strict mode in the mix, the last
assignment will throw an error rather than failing silently. Also, it should be noted
that this operation cannot be reversed once it has occurred.

Next is the Object.seal() function which takes an object, and prevents properties
from being deleted, in addition to the effects of the Object.preventExtensions()
function. In other words, this takes all the existing properties and sets their
configurable property attributes to false.

var o = {
 a: "A",
 b: "B",
 c: "C"
};

delete o.c; // works as expected

Object.seal(o);

delete o.b; // will not work

General Considerations

[20]

This is powerful because we can preserve the structure of an object, but still
allow property values to change. Like before, this operation cannot be reversed.
In addition, adding the strict mode causes an exception to be thrown, rather
than allowing the operation to fail silently.

Last up is the most powerful of them all, the Object.freeze() function. This
function applies all the same effects as Object.seal(), and also completely locks
down all the properties. No values can be changed (that is, all writable attributes
are set to false), and the property descriptors are all unmodifiable. This makes the
object effectively immutable, and prevents all other attempts to change anything
about the object, as shown in the following code:

var o = {
 a: "A",
 b: "B",
 c: "C"
};

// works as expected
o.a = 1;
delete o.c;

Object.freeze(o);

// will not work
o.a = "A";
delete o.b;

Freezing an object is, like the other operations, irreversible. In strict mode, errors will
be thrown during any attempt to write or change the object.

Static program analysis
Keeping a track of all the things we have discussed here can be overwhelming.
The problem is compounded, when a team of people are working on the same
project. Tools that perform static analysis take your source code (without
executing it), and check for specific code patterns that you can configure.

For example, you can configure JSHint to forbid the use of eval() and require strict
mode for all your functions. By letting it examine your source code, it will alert you
when these rules are violated. This can be used in conjunction with version control to
prevent insecure code from being added to your project's repository. In addition, it
can also be used prior to releases to ensure that all the code is secured before heading
out to production.

Chapter 2

[21]

JSHint is a community-driven fork of the JSLint project. JSLint is opinionated and it
is not as configurable as many desired, so JSHint was created to fill that gap. Both are
great tools, and I highly recommend you adopt either one for your JS projects. While
static analysis will not catch everything, it will help ensure a higher quality of code
through automation.

Considerations for Node.js
JavaScript has exceptions built into the language as an error-handling construct.
When an exception is thrown, there needs to be some code to detect that error and
handle it appropriately. However, if an exception remains uncaught, it will trigger
a show-stopping error.

In the browser, an uncaught exception immediately halts any execution that takes
place. This will not cause your web page to crash, but it has the potential to leave
your application in an unstable place.

In Node.js, an uncaught exception will terminate the application thread. This is very
different from other server-side programming languages like PHP, where a similar
error only causes a single request to fail. Now, you must contend with your entire
server and application being abruptly halted.

Callback errors
The first step you can take is to make sure you throw errors in an expected and
predicable way, so they can be effectively caught later. In Node.js, the convention for
asynchronous actions that use a callback is to send an Error object, to that callback
function, as the first argument. This is the standard convention used in Node.js core,
and it has been widely adopted by the community.

var fs = require("fs");

fs.readFile("/some/file", "utf8", function (err, contents) {
 // err will be...
 // null if no error has occurred … or
 // an Error object with information about the error
});

The preceding code simply reads a file into a string. This operation has a callback
that takes two arguments. The first is an Error object, but only if an error occurred
during this I/O operation, such as the file not existing. By simply passing the error
object as a function argument, this does not technically "throw" an exception. Your
application should still handle these errors, by correcting them, if possible. If an
unexpected error occurs, or if it cannot be corrected directly, you should throw that
error yourself, rather than swallowing errors quietly, and creating hard-to-debug
scenarios for yourself later.

www.allitebooks.com

http://www.allitebooks.org

General Considerations

[22]

EventEmitter error handling
The Node.js core has a widely used utility object called the EventEmitter. This is
an object that can be instantiated or inherited from that allows for binding to and
emitting events for asynchronous actions. When an error is encountered by an
EventEmitter object, the convention is to emit an error event with an Error
object as a parameter.

var http = require("http");

http.get("http://nodejs.org/", function (res) {
 // res is an EventEmitter that represents the HTTP response

 res.on("data", function (chunk) {
 // this event occurs many times
 // each with a small chunk of the response data
 });

 res.on("error", function (err) {
 // this event occurs if an error occurs during transmission
 });
});

The preceding code simply makes an HTTP request to http://nodejs.org/.
The resulting object is an EventEmitter object that represents the HTTP response.
It emits multiple data events, as it receives data from the server, and if an error
occurs during transmission (similar to a network disconnection) then an error
event is emitted.

It should be noted that the EventEmitter object has a very specific behavior
regarding the error event. If you have an EventEmitter object that emits an error
event, but has no attached listeners to respond to the event, then the corresponding
Error object is thrown, and will likely become an uncaught exception. This means
that any unhandled error events will crash your application, so always bind an
error event handler, while using the EventEmitter object.

Uncaught exceptions
When an uncaught exception does occur, Node.js will print the current stack trace,
and then terminate the thread. There is a global object available to all Node.js
applications called process. It is an EventEmitter object with a special event called
"uncaughtException" that gets emitted, when an uncaught exception is brought
up to the main event loop. By binding to this event you can set up custom behavior,
such as sending an email, or writing to a special log file. This can be seen in the
following code:

Chapter 2

[23]

process.on("uncaughtException", function (err) {
 // we're just executing the default behavior
 // but you can implement your own custom logic here instead
 console.error(err);
 console.trace();
 process.exit();
});

In the preceding code, I've simply done what Node.js does by default.
As I mentioned before, you can implement your own error-logging procedures.
You need to make sure to terminate the process yourself via the process.exit()
function, if you are using a custom handler.

While it is possible to continue the application after an uncaught exception,
it is not recommended! By definition, an uncaught exception has interrupted
the normal flow of your application, leaving it in an unstable and unreliable
state. If you simply swallow the error, and continue processing, then you
are wandering into a dangerous territory. The Node.js documentation equates
this with unplugging a computer to shut it down. You can get away with it a few
times, but if it keeps happening repeatedly, the system will become increasingly
unstable and unpredictable.

Domains
While the uncaughtException event allows us to handle errors, it is still rather
crude. You lose much of the original context from where the error originates,
which makes it a bit more difficult to debug later. As of Node.js v0.8, there is a
new error-handling mechanism available, called Domains. They are a way to group
different I/O operations together so that in the event of an error, the domain object is
notified instead of the process object via the uncaughtException event. This allows
you to preserve the context of the error itself, and helps you to prepare for and
correct the error in future.

In addition to preserving context, domains also allows you to gracefully shut down
related services in the event of an error. If you have an HTTP server running, and an
error occurs for one of your users, simply shutting down the server will immediately
interrupt any other users that are currently using the server at the same time.
This isn't fair to those users, so we need to be able to shut down our server more
gracefully. We should stop the server from accepting new connections, and let the
current requests be fulfilled before shutting down the server.

var http = require("http"),
 domain = require("domain"),
 server = http.createServer(),
 counter = 0;

General Considerations

[24]

server.on("request", function (req, res) {
 // this domain will cover this entire request/response cycle
 var d = domain.create();
 d.on("error", function (err) {
 // outputs all relevant context for this error
 console.error("Error:", err);

 res.writeHead(500, { "content-type": "text/plain" });
 res.end(err.message);

 // stops the server from accepting new connections/requests
 console.warn("closing server to new connections");
 server.close(function () {
 console.warn("terminating process");
 process.exit(1);
 });
 });

 // adding the req and res objects to the domain allows
 // errors they encounter to be handled by the domain
 // automatically
 d.add(req);
 d.add(res);

 d.run(function () {
 if (++counter === 4) {
 throw new Error("Unexpected Error");
 }

 res.writeHead(200, { "content-type": "text/plain" });
 res.end("Hello World\n");
 });
});

server.listen(3000);

The preceding code sets up a simple HTTP server that will respond four times before
an error occurs. For each request, a domain is created, which can be passed around to
all the various pieces of our request handler, and any asynchronous operations can
be run in the domain's context. On request number 4, we will throw an Error object.
The domain has an error event handler that outputs the error information, a stack
trace, and then proceeds to shut down the server. First, it sends the current request
an error message, then it stops accepting new requests, and finishes serving all the
current requests it has in its queue. Once this is completed, the process itself
is terminated.

Chapter 2

[25]

We could technically implement what I demonstrated here with the
uncaughtException event. However, if you are running multiple servers
(for example, an HTTP server and a WebSocket server) side by side in your
application (or even running multiple processes with the cluster module), that
event handler won't necessarily give you the context you need to handle those
errors specific to the server that encountered the error. In fact, you won't even be able
to distinguish between different requests with the uncaughtException event, as that
context is lost as well. With domains, you can handle errors more gracefully, without
losing context.

Node.js has a module called cluster, which allows you to take advantage of multiple
core environments. It does this by spawning multiple worker processes that share
the same server port, and the cluster module handles message passing between
those processes for you. If an error happens in one of those workers, a domain
would allow you to easily shut down only that single server and worker process,
while letting the others continue operating normally. Once that process finishes
cleaning up and exiting, you can spawn a brand new one to take its place, and
your application will experience zero downtime as a result.

Process monitoring
With that said, stuff is going to go wrong. You shouldn't ignore uncaught exceptions
as your application will be unstable, and will leak references and memory. The only
safe way to deal with uncaught exceptions is to stop that process. The implication
here is that your server will be unavailable to other users. This means that if a
malicious user can figure out a way to trigger an uncaught exception on your server,
they are effectively executing a denial of service attack against your other users.

The solution is to have a process monitor that can watch your application process
and automatically restart it whenever it is stopped. There are many options out
there, including ones that are platform-specific. Some available process monitors
include forever, mon, and upstart. The point is you should implement some sort
of process monitoring, so you do not have to manually restart your applications,
if something goes wrong.

Once you have a process monitor in place, be sure to configure it to log errors
somewhere so that you can keep a track, in order to correct harmful and fatal errors
in your application. It is also wise to monitor how often your application crashes,
and correct errors as fast as possible.

General Considerations

[26]

npm modules (third-party code)
As mentioned before, one of the biggest features of Node.js is its vibrant community
and fast-growing registry of modules. Because the Node.js core API is intentionally
small and focused, you are likely to incorporate other modules, so you don't have to
write a lot from scratch.

Just as you will take efforts to audit your code for security practices, you should
also take an active role in monitoring the npm modules; you end up including in
your project. Many projects out there on npm are completely open source, and
often available on GitHub or other similar online resources. This makes it easy to
look through the source manually for things that stand out. As a last resort, you
can inspect the local packages that npm downloads while installing dependencies,
although you are not guaranteed to get everything that is part of the package's
development environment.

While picking out modules to adopt, look for the ones that include a test suite of
some sort. If they have running tests, it will be easier for you to know for certain that
functionality is working as designed. Second, look for projects that incorporate some
static analysis, which will usually come in the form of JSHint or JSLint. Look at their
style guide or static analysis configuration to understand what rules they abide by.
Many projects of this type have some sort of build process, which likely will include
a way to run automated tests, static analysis, and other related tools.

One of the focuses that Node.js developers place into their modules is to make them
small, highly-focused, and composable (that is, they are easily interoperable with
other modules). As such, they usually are very small in terms of lines of code and
complexity, making it much easier to write securely and in a testable fashion. This
works greatly to Node.js platform's advantage when it comes to application security.

There is an up-and-coming undertaking called the Node Security Project, which
can be found at http://nodesecurity.io/. Their goal is to audit every single
npm module for security vulnerabilities. They are in need of Node.js developers
and security researchers to assist them, as they have a monumental task ahead of
them. If you are interested in securing your own applications already, you can likely
contribute the time you spend auditing modules that you end up using to this team
for their own registry. This is a great way to accomplish your own goals, as well as
contributing to the Node.js community as a whole.

Chapter 2

[27]

Summary
In this chapter, we examined the security features that applied generally to the
language of JavaScript itself, including how to use static code analysis to check for
many of the aforementioned pitfalls. Also, we looked at some of the inner workings
of a Node.js application, and how it differs from typical browser development, when
it comes to security. Lastly, we briefly discussed the npm module ecosystem, and
the Node Security Project, which aims to audit each and every module for security
purposes. In the next chapter, we will look at security considerations for applications
in general.

Application Considerations
Now it's time to deal with real-world applications! As mentioned before, one of
Node.js platform's killer features is the wealth of modules and rapidly moving
community. It is still important to audit every module that you use for security,
but using modules is likely going to become an indispensable part of your workflow.

Because of its immense popularity, I will be writing my code examples to specifically
targeting Express applications. This should cover the vast majority of Node.js
applications out there today, but many of the concepts we will cover apply to
any platform.

Introduction to Express
Express is a minimal web development framework for Node.js that focuses
on remaining small, yet robust. It is built on top of another framework called
Connect, which is a platform for writing HTTP servers with small plugins
known as middleware.

The architecture of Connect and Express allows you to use only what you require,
and nothing else. This works very nicely into the security discussion, as you aren't
incorporating lots of functionality that you don't use, which leaves the doors open
for security vulnerabilities that may go unchecked.

Connect is bundled with over 20 commonly used middleware, adding capabilities,
such as logging, sessions, cookie parsing, request body parsing, and more. While
defining a Connect or Express app, you simply add the middleware that you
intend to use as shown in the following code:

var connect = require("connect"),
 app = connect(); // create the application

// add a favicon for browsers

Application Considerations

[30]

app.use(connect.favicon());

// require a simple username/password to access
app.use(connect.basicAuth("username", "password"));

// this middleware simply responds with "Hello World" to every request
// that isn't responded to by previous middleware (i.e. favicon)
app.use(function (req, res) {
 res.end("Hello World");
});

// app is a thin wrapper around Node's http.Server
// so many of the same methods are available
app.listen(3000);

console.log("Server available at http://localhost:3000/");

Here, we are creating an application with three middleware: favicon, basicAuth,
and a custom one of our own. The first two are provided by Connect, and they can
each take configuration to specify their exact behavior.

Middleware is always executed in the order it was attached, which is
something to keep in mind while you are determining what and when
to attach.

Connect uses continuation-passing style, which means that each middleware
function is given control, and must pass control to the next middleware in the
continuation when it has completed. In terms of our application here, each
middleware is given the request and response object and has full control over
the life cycle of the request.

Since they are executed in order, let us examine how a request/response cycle
operates for this application. Since middleware has full control, it can take one
of the following three main courses of action:

• Respond to the request outright, ending the continuation
• Modify the request or response object for other middleware in

the continuation
• Do nothing and simply initiate the next layer of middleware

Chapter 3

[31]

Luckily for us, we have examples of all the three right here! First, when an
application comes into this server, it is run through the favicon middleware. It
checks the uniform resource identifier (URI), and if it matches /favicon.ico,
it responds with a favicon icon for the browser. If the URI does not match,
it simply passes over to the next middleware.

Next up, if the request proceeds, is the basicAuth middleware. This prompts
the user to provide a username and password combination using HTTP Basic
Authentication. If the user does not provide the correct credentials, the server
responds with 401 (Unauthorized) and ends the request. If the user successfully
provides the correct username and password, the request object is modified to
include the user's information and then the next middleware is initiated.

Last up is our custom middleware, which is probably the simplest one you could
have. All it does is send Hello World as the response body. This means that no
matter what URI we request (other than /favicon.ico of course), and as long as
we provide the correct credentials, we will see Hello World.

Now that you have a basic understanding of how middleware works, let's move on
to Express, and what it adds to Connect. Express adds routing, HTTP helpers, a view
system, content negotiation, and other features using the Connect system. In fact, an
Express app looks very similar to a Connect app as shown in the following code:

var express = require('express'),
 app = express();

app.use(express.favicon());
app.use(express.basicAuth("username", "password"));

app.get("/", function (req, res) {
 res.send('Hello World');
});

app.listen(3000);

Express automatically includes the Connect middleware within its own namespace,
so you can use them without needing to explicitly require Connect. In addition,
it adds some powerful features of its own, notably the routing feature we are
using here.

Express was heavily inspired by the Sinatra web framework for Ruby. Each HTTP
verb (GET, POST, and so on) has a corresponding function on the app object. Here, we
are saying that an HTTP GET request for the URL / will send Hello World. Any other
URL will get a 404 (Not Found) error, except /favicon.ico, which is covered by the
favicon middleware.

Application Considerations

[32]

Express is minimalistic and remains out of your way to develop your application
as you see fit. It doesn't lock you into an MVC framework, or a particular view
engine, and allows you to include whatever npm modules you like to power
your application.

Authentication
Authentication is a process of determining that a user is who they claim to be, when
they are attempting to perform some action through your application. There are
many ways to accomplish this, and I will cover some of the more common ones here.
With a few exceptions, my examples will boil down to a couple of available npm
modules. You are more than welcome to use others to accomplish the same goals.

HTTP Basic Authentication
The first is the HTTP Basic Authentication, and it is one of the simplest techniques
available. It allows a username and password to be submitted along with an HTTP
request, and allows the server to restrict access if the expected credentials are
not sent.

While using a web browser, a page that requires the HTTP Basic Authentication will
prompt the user with a dialog box asking for their username and password. After the
user enters their information, the browser typically stores those credentials for a set
period of time, rather than constantly prompting the user on each page.

The main advantage of this method is that it is very simple to implement. In fact,
it can be done in as little as one line with Connect. In addition, this method is
completely stateless and requires no out-of-band information with the request.

There are a number of important disadvantages, first of which is that it is not
confidential. In other words, a basic HTTP request includes the username and
password in plain text. Technically it is encoded as base64, but that is not an
encryption method. As a result, this technique must be combined with some sort
of encryption, such as HTTPS. Otherwise, the request can be intercepted by packet
sniffers, and the credentials are no longer secret.

Also, the efficiency of this method is less than ideal. When a request is made for
a page that requires the HTTP Basic Authentication, the server effectively has to
process that first request twice. On the first attempt, the request is denied, and
the user needs to supply their credentials. On the second attempt, the credentials
are sent with the request itself, and the server has to process the authentication
again. Depending on how the username and password are validated, this can
be an unacceptable delay that is incurred for each request.

Chapter 3

[33]

In addition, there is no implemented way for browsers to log out while using this
method, aside from closing the browser itself. The credentials are stored by the
browser, and the user is not prompted to control how long it is stored, or when it
should expire. To my understanding, only Internet Explorer provides such a feature,
but it requires JavaScript in order to be triggered.

Last, as a developer, you have no control over the appearance of the login screen; it is
entirely up to the browser. While this could boil down to simple aesthetics, it could
be argued that it is more secure than a custom solution. If you desire to implement
it, it is very easy to do so. One of the bundled middleware that Connect (and by
extension, Express) affords is for this very purpose. It is called the basicAuth
middleware, and it can be configured in several ways.

While using middleware, remember the order is very important! Make
sure to place your authentication middleware early in the chain so
you are authenticating all your requests, and not running unnecessary
processing before verifying your user's identity.

First, you can simply provide a single username and password to the middleware,
giving you a single valid set of credentials for your application as follows:

app.use(express.basicAuth("admin", "123456"));

Here, we have set up our application to require the username "admin" and the
password "123456" via the HTTP Basic Authentication. This is the simplest
method of adding this authentication method.

A more advanced usage is to provide a synchronous callback function that can
perform a slightly more sophisticated authentication scheme, for example, you can
include a JavaScript object with username and password combinations that you can
use to perform an in-memory lookup. This is illustrated in the following code:

var users = {
 // username: "password"
 admin: "password",
 user: "123456"
};

app.use(express.basicAuth(function (user, pass) {
 return users.hasOwnProperty(user) && users[user] === pass;
}));

Application Considerations

[34]

We have set up basicAuth to check our users object for a corresponding username
and password combination that is valid. If the callback function returns true, the
authentication was successful. Otherwise, the authentication fails and the server
responds appropriately.

Both of the methods we just used require some sort of hardcoding of credentials
within our application's source code. The last method is more than likely the method
you will employ if you use the HTTP Basic Authentication. This is asynchronous
callback verification. This allows you to validate the request against some external
source, such as a text file or database. Refer the following code:

app.use(express.basicAuth(function (user, pass, done) {
 User.authenticate({ username: user, password: pass }, done);
}));

In this example, we have a similar configuration in that we are using a function
parameter. This function, unlike the previous example, has three arguments. It
receives the username and password as before, but also receives a callback function
that it needs to execute, when it has finished validating the credentials. For the sake
of brevity, I have not included specific implementation details.

The point is that you can perform the action asynchronously, and the callback
function takes two parameters of its own. In Node.js fashion, the first parameter
is an Error object, if the authentication fails. The second parameter is the user's
information that will be added to req.user by the middleware, allowing the
user's information to be accessed by later middleware functions.

After all is said and done, HTTP Basic Authentication is likely to be insufficient for
most applications. Next, we will discuss HTTP Digest Authentication, which was
originally designed to be the successor to HTTP Basic Authentication.

HTTP Digest Authentication
HTTP Digest Authentication aims to be more secure than the HTTP Basic
Authentication by not sending the credentials as plain text. Instead, it employs the
MD5 one-way hashing algorithm to encrypt the user's authentication information.
It is worth noting that MD5 is no longer considered a safe algorithm, which is one
strike against this particular mechanism.

I am including this explanation simply for the sake of completeness. It is not popular
and seldom recommended for use today, so I will not include any further details
or examples.

Chapter 3

[35]

It operates in the same way as the HTTP Basic Authentication in several ways. First,
the initial request by the client is rejected when authentication is required, and the
server indicates that the client needs to use the HTTP Digest Authentication. The
client computes a hash of the user's credentials and the server's authentication realm.
There are optional features available according to the specification for improving the
hashing algorithms and preventing hijacking by malicious agents.

The one advantage that the HTTP Digest Authentication has is that the password
is not transmitted over the network in plain text. This authentication method was
devised in an era, where running HTTPS/SSL for all network transactions was
prohibitively expensive both in terms of money and processing power. Now that era
has passed, and you should be using HTTPS consistently through your application.
With that being the case, the advantages of the HTTP Digest Authentication over the
HTTP Basic Authentication are practically nonexistent.

Introducing Passport.js
Now, I will be introducing a project that is a very popular authentication
layer for Connect and Express applications. The project is Passport.js
(http://passportjs.org/), and it is actually a collection of modules that
aim to provide a consistent API for authenticating, using many different
methods and providers. The rest of the examples for this section will use
the Passport.js API, and I will explain some of the more common protocols
along the way.

To use Passport.js in your application, you will need to configure the following
three pieces:

1. Authentication strategies
2. Application middleware
3. Sessions (optional)

Passport.js uses the term "strategies" to refer to a method of authenticating a request.
This could be a username and password, even third-party authentication, such as
OpenID, or OAuth. This is the first thing you will configure, and it will depend on
what methods of authentication you choose to support.

Application Considerations

[36]

As a starting example, we'll look at the local strategy, where you take an HTTP POST
request with a username and password in the body to authenticate against your own
data store as shown in the following code:

// module dependencies
var passport = require("passport"),
 LocalStrategy = require("passport-local").Strategy;

// LocalStrategy means we perform the authentication ourselves
passport.use(new LocalStrategy(
 // this callback function performs the authentication check
 function (username, password, done) {
 // this is just a mock API call
 User.findOne({ username: username }, function (err, user) {
 // if a fatal error of some sort occurred, pass that along
 if (err) {
 done(err);
 // if we don't find a valid user
 } else if (!user || !user.validPassword(password)) {
 done(null, false, { message: "Incorrect username and
password combination." });

 // otherwise, this was a successful authentication
 } else {
 done(null, user);
 }
 });
 }
));

For the sake of simplicity, this does not wire into our application, this just
demonstrates Passport.js middleware's API. What we are doing here is configuring
a local strategy. This strategy takes a single verify callback that has three arguments:
the username, password, and a callback function to be called once the authentication
is complete. (Passport.js handles extracting the username and password from the
POST request) The callback function takes three arguments of its own: an Error
object (if applicable), the user's information (if applicable, false if the authentication
fails), and an options hash.

Chapter 3

[37]

In this case, the verify callback calls some sort of user API (the specifics of that are
not important) to find a user matching the supplied username, then it proceeds with
that data into the following checks:

1. If a fatal error occurs (such as the database is down, or the network is
disconnected), then the callback is issued with that Error object as its only
argument, which will be passed outside of Passport.js to be handled by
your application.

2. If that username does not exist, or the password is invalid, then the callback
is issued with null as the first argument (since no error occurred), false as
its second argument (since the authentication itself failed), and an object with
a single message property that we can use to display a message to the user
(this third argument is optional).

3. If the user passes these checks, then the authentication was successful. The
callback is issued with null first and the user's information object second.

The use of a callback in this fashion allows Passport.js to remain completely
unaware of the underlying implementation. Now, let's move onto the middleware
configuration step. Passport.js was specifically designed to use in Connect
and Express applications, but it will work in anything that uses the same
middleware style.

After configuring Passport.js and your strategies, you will need to attach at
least one middleware to initialize Passport.js in your application as shown
in the following code:

var express = require("express"),
 app = express();

// application middleware
app.use(express.cookieParser());
app.use(express.bodyParser());
app.use(express.session({ secret: "long random string … " }));

// initialize passport
app.use(passport.initialize());
app.use(passport.session()); // optional session support

// more application middleware
app.use(app.router);

Application Considerations

[38]

This is a basic Express application, and we are attaching two Passport-related
middleware: the initialization and the optional session support. Remember, the
order is important, so you to initialize Passport.js after middleware like bodyParser
and session, but before your application router.

The session-support middleware is optional, but recommended for most
applications, as it is a very common use case, and it must be attached after
Express' own session middleware. Last, we will configure the session support
itself as shown in the following code:

passport.serializeUser(function (user, done) {
 // only store the user's ID in the session (to keep it light)
 done(null, user.id);
});

passport.deserializeUser(function (id, done) {
 // we can retrieve the user's information based on the ID
 User.findById(id, function (err, user) {
 done(err, user);
 });
});

Storing all of the available user data, especially as the number of concurrent users
increases, can be costly. As a result, Passport.js gives developers a way to configure
what is stored into the session, as well as the ability to retrieve the user's data for a
single request (rather than holding it constantly in memory). This is by no means
required, as using a shared database to store your session information can alleviate
this problem.

The serializeUser function in the preceding example receives a callback that
is executed, when the session is being initialized. Here, we are storing only the
user's ID into the session, keeping it as light as possible, while still giving us the
information we need to find their information later.

The corresponding deserializeUser function is called on each subsequent request,
and adds the corresponding user's data to the request object. In this case, we are
using a generic API to find a user, based on their ID, and issuing the callback with
that data.

As you can see, configuring and using Passport.js is easy and it fits right into the
Connect and Express methodology. There are over 120 strategies available for
Passport.js, and you can find much more documentation and examples on their
website (http://passportjs.org/).

Chapter 3

[39]

OpenID
OpenID is an open standard for authentication on the Web by the use of a
third-party service. The aim is to allow users to have a single identity on the
Web that they can then use with many applications, rather than needing to
register with each individual application. OpenID has no central authority,
each provider is independent, and the user may choose any provider that he
trusts. There are many major providers out there today, including: Google,
Yahoo!, PayPal, and many others.

The OpenID authentication process operates something like this (this is a simplified
explanation): a user is presented with an OpenID login form by a consumer. The
user enters their provider's URL. The consumer redirects the user to their provider,
the provider authenticates the user, and asks the user what information, if any,
should be shared with the consumer .The provider then redirects the user back
to the consumer, and the consumer allows the user to use their service.

To include OpenID in your application, we will use the passport-openid module.
This module is a first class module of the Passport.js project, and it gives you a
strategy for implementing a generic OpenID authentication process. First, let's
look at the following Passport.js configuration required:

var passport = require('passport'),
 OpenIDStrategy = require('passport-openid').Strategy;

// configure the OpenID Strategy
passport.use(new OpenIDStrategy(
 {
 // the URL that the provider will redirect the user to
 returnURL: 'http://www.example.com/auth/openid/return',
 // the realm should identify your application to the User
 realm: 'http://www.example.com/'
 },
 // this verify callback has 2 arguments:
 // identifier: the ID for your user (who they claim to be)
 // done: the callback to issue after you've looked the user up
 function (id, done) {
 // this is a generic API, it could be any async operation
 User.findOrCreate({ openId: id }, function (err, user) {
 done(err, user);
 });
 }
));

Application Considerations

[40]

We have included the passport and passport-openid modules, and have
configured the OpenID strategy. The configuration object (first argument)
has two required properties:

• returnURL: This is the URL that the OpenID provider will redirect the user
back to in your application

• realm: This is what the provider will show to the user to identify
your application

The second argument is the verify callback, which only takes two arguments:

• identifier: This is how the user identifies himself with your application
• done: This is the callback your application issues after looking up the user

based on the identifier

Now, you will need to configure the Express routes that you need to process the
login requests, as shown in the following code:

// this route accepts the user"s login request, passport handles the
redirect
// over to the Provider for authentication
app.post("/auth/openid", passport.authenticate("openid"));

// the Provider will redirect back to this URL (based on our earlier
// configuration of the strategy) and it will tell us whether or not
// the authentication was successful
app.get("/auth/openid/return", passport.authenticate("openid", {
 // if successful, we'll redirect the user to the hame page
 successRedirect: "/",
 // otherwise, send back to the login page
 failureRedirect: "/login"
}));

We have two configured routes, the first one takes the user's login request via POST,
and Passport.js takes care of redirecting the user to the provider. The provider has
been configured to send the user back to the returnURL, which corresponds to the
second route we have configured earlier.

Next, you will need an HTML form on your login page that POST to the route,
we configured earlier. This is illustrated in the following code:

<form action="/auth/openid" method="post">
 <div>
 <label>OpenID:</label>
 <input type="text" name="openid_identifier"/>

Chapter 3

[41]

 </div>
 <div>
 <input type="submit" value="Sign In"/>
 </div>
</form>

The only required HTML input is one that has the name "openid_identifier".
Each strategy has its own requirements, so make sure to read the documentation
for each one as you are implementing them.

What we have configured here is a basic implementation of OpenID
authentication using Passport.js. Now, we will move onto configuring
a basic OAuth implementation for authentication as well.

Where OpenID aims to allow your identity to be authenticated by a trusted
third-party, OAuth aims to allow users to share information between different
applications without needing to give up their credentials to each separate party.
If you need shared data with another service in your application, it is likely that
you will be consuming an OAuth API from that particular service. If all you
need is to verify an identity, OpenID will likely be the mechanism of choice
for that service.

OAuth
OAuth allows a user to share resources from one application to another without
needing to share their username and password with both services. In addition, it also
has the added capability of giving limited access. This limitation can be time-based,
where access is revoked after a certain amount of time elapses. It could also restrict
access to only a particular set of data, and potentially give the user more control over
what they decide to share.

This process works by using a few different sets of keys (three to be more precise).
Each stage of the authorization process builds upon the previous set of keys to
construct the keys for the next step. In addition, between each step the user is
redirected between the other applications, ensuring that the user only gives each
application the minimum amount of information needed. The explanation I will give
here is simplified, and does not cover the more technical details about topics like
encryption and signatures.

The best metaphor for what OAuth does is like a "valet key". Some luxury cars have
a special key that is limited in access. What I mean is that this special key only allows
the car to be driven for a short distance, and only allows the valet driver to access the
car as long as they have that key. This is very similar to what OAuth accomplishes, it
allows the owner to give temporary and limited access to a resource that they own,
while never giving up full control of that resource.

www.allitebooks.com

http://www.allitebooks.org

Application Considerations

[42]

There are usually three parties involved: a client, a server, and a resource owner.
The client is going to be requesting resources from the server on behalf of the
resource owner.

To use the same real-world example that the OAuth specification uses, imagine Jane
has uploaded some personal photos to a photo-sharing site and wishes to have them
printed by another online service.

In order for the print service (the client) to access the photos stored with the photo
service (the server), they will need approval from Jane (the resource owner). First,
any client application will need to register themselves with any server application
in order to obtain the first set of keys, the client keys. These keys are known by both
the client and server, and allow the server to validate the client's identity first
and foremost.

Jane is ready to get her photos printed, so she visits the print service to begin the
process. She wishes to have her photos pulled from the photo service rather than
needing to upload them to another service, so she tells the print service that she
would like photos from the photo service to be used.

Now, the printer service sends their client keys to the photo service (through a
secured HTTPS request) to retrieve a set of temporary keys. These keys are used
to identify a specified authorization request throughout the various redirects that
take place.

Once the temporary keys are retrieved, the print service redirects Jane to the photo
service. While there, Jane needs to verify her identity through whatever methods the
photo service uses. In addition, the photo service can present Jane with options to
limit the duration and scope of the authorization.

Once this verification is complete, Jane is redirected back to the print service with the
temporary tokens. She has authorized the print service access to the photo service,
which now exchanges the temporary keys for the last set of keys, the token keys.

This "access token" can now be used by the print service to request information from
the photo service under the parameters that Jane has allowed, and can be revoked
at any time by Jane or the photo service. Rather than using the generic passport-
oauth module in the following examples I will stick to the Facebook module that
uses OAuth v2.0. I have chosen this path to avoid needing to show all the variations
of OAuth in use today, since each implementation may have their own variations.
In addition, the examples here will give enough of an introduction to Passport's API
that you can apply the approach to any other provider.

Chapter 3

[43]

First, we will need to install the passport-facebook module, and then we will
configure the Passport.js strategy as shown in the following code:

var passport = require('passport'),
 FacebookStrategy = require('passport-facebook').Strategy;

// configuring the Facebook strategy (OAuth v2.0)
passport.use(new FacebookStrategy(
 {
 // developers must register their application with Facebook
 // this is where the ID/Secret are obtained
 clientID: FACEBOOK_APP_ID,
 clientSecret: FACEBOOK_APP_SECRET,

 // this is the URL that Facebook will redirect the user to
 callbackURL: "http://www.example.com/auth/facebook/callback"
 },

 // the verify callback has 4 arguments here:
 // accessToken: the token Facebook uses to verify authentication
 // refreshToken: used to extend the lifetime of the accessToken
 // profile: the user's shared information
 // done: the callback function
 function (accessToken, refreshToken, profile, done) {
 // here is where your application connects the 2 accounts
 User.findOrCreate(..., function (err, user) {
 done(err, user);
 });
 }
));

In order to use Facebook authentication, you will need to create and register an
application account with Facebook Developers (https://developers.facebook.
com/). This will likely be a similar process for other services; you will need some sort
of registration on their side in order to coordinate safely with their users. From there,
you can obtain a clientID and a clientSecret, which you put into the preceding
configuration. You will also need to specify a callbackURL, which behaves very
much like the OpenID returnURL.

Application Considerations

[44]

Next, you will need to configure routes for your Express application as shown in the
following code:

// redirects the User to Facebook for authentication
app.get("/auth/facebook", passport.authenticate("facebook"));

// Facebook will redirect back to this URL based on the strategy
configuration
app.get("/auth/facebook/callback", passport.authenticate("facebook", {
 successRedirect: "/",
 failureRedirect: "/login"
}));

This is very similar to the routes we set up for OpenID, but with one major
difference. The initial route is not an HTML form POST; it is a simple HTTP GET.
This means you can just set up a simple HTML anchor that will point them to this
route as follows:

Login with Facebook

Passport will send the user off to Facebook for authentication. When Facebook is
finished, it will redirect back to the second route, where you can redirect the user
as needed (just like the OpenID implementation).

Passport.js is a great API for abstracting all of your authentication needs, so dig into
its API documentation (http://passportjs.org/) and leverage any combination of
the over 120 strategies they have available.

Authorization
Authorization is determining what access a user has to the restricted resources or
actions in your application. Authentication deals specifically with who the user is,
whereas authorization assumes we know who they are and must determine what
they can do. Express gives us an elegant way of adding authorization built right
into our routes, which is usually the layer where authorization takes place.

What many do not realize at first about express routing is that you are able to pass
multiple handlers while defining a route. Each of them behaves like any other
middleware as shown in the following code:

function restrict(req, res, next) {
 if (req.user) {
 return next();
 } else {
 res.send(403); // Forbidden

Chapter 3

[45]

 }
}

app.get("/restricted", restrict, function (req, res) {
 res.send("Hello, " + req.user);
});

Our restrict function checks for user data (assume it is set by our authentication
layer), and if the user is valid, it allows the chain to proceed. If the user is not
logged in, it will simply respond with 403 (Forbidden).

The point here is that you can use multiple route handlers as an opportunity to
handle pre-conditions, such as checking the user's authentication status, their roles,
or any other rules regarding access. Much of this is highly dependent on how you
structure your application, and how you determine what the user has access to.

One of the more popular authorization schemes is role-based authorization. A user
can have any number of roles, such as: "member", "moderator" or "admin". Each of
these roles can be used to determine what access they have on a per-action basis.

// dummy user data
var users = [
 { id: 1, name: "dominic", role: "admin" },
 { id: 2, name: "matthew", role: "member" },
 { id: 3, name: "gabriel", role: "member" }
];

// middleware for loading a user based on a :user param in the route
function loadUser(req, res, next) {
 req.userData = users[req.params.user];
 return next();
}

// middleware for restricting a route to only a specified role name
function requireRole(role) {
 // returns a function, closure allows us to access the role
variable
 return function (req, res, next) {
 // check if the logged-in user's role is correct
 if (req.user.role === role) {
 return next();
 } else {
 return next(new Error("Unauthorized"));
 }
 };

Application Considerations

[46]

}

// this route only loads a user's data (so it is loaded via
middleware)
app.get("/users/:user", loadUser, function (req, res) {
 res.send(req.user.name);
});

// this route can only be called upon by an admin
app.del("/users/:user", requireRole("admin"), loadUser, function (req,
res) {
 res.send("User deleted");
});

In the preceding code, we have a list of available users. Assuming we have an
authentication layer in place that loads a user profile data when logged in, let's
look at the two middleware, we have defined.

First, loadUser is a simple middleware function that loads the user for the specified
route (this may be a different user from the logged in user). Here, we just have a
hard-coded list, but it could be a database call that we make asynchronously.

Second, the requireRole middleware is a bit sophisticated if you are not familiar
with closure or first-class functions. What we are doing here is returning the
middleware function, rather than simply using a named one. Through closure,
we have access to the role argument inside the returned function. This middleware
function ensures that the authenticated user has the role we are requiring.

We have two routes, the first (showing user data) is public, so it simply loads the
user data via middleware and does no authorization check. The second route
(deleting a user) requires that the authenticated user is an admin. If that check
passes, the user's data is loaded and the route proceeds as expected.

There are many authorization methods available to you, with many good modules
to pick from. Role-based authorization, as we have demonstrated here, is easy
to implement in Express and it's generally easy to understand logically. As with
authentication, your implementation depends on how you end up structuring your
application. My main intent here is to define authorization and show you some
examples to help you keep that mechanism as distinct as possible from the rest of
your application logic.

Chapter 3

[47]

Security logging
Another important aspect of security is logging, or recording various events within
your application so that they can be analyzed for anomalies. These anomalies could
be reviewed to detect places where attackers are attempting to bypass your security
methods, and by detecting these activities before an actual intrusion, further steps
can be taken to mitigate those risks. Beyond just security, logging can also help to
detect cases in your program that cause problems for your users, and allow you to
more easily reproduce and fix those problems.

Your specific application and environment will be what drives your logging
methods. By methods, I mean how your logs are recorded and stored, such as the use
of flat files in your filesystem, using some sort of database or even using third-party
logging services. While these may differ greatly from project to project, the types of
events recorded and the related information to save should be fairly consistent across
the board.

The Open Web Application Security Project (OWASP) has a great guide for
determining a logging strategy on their website (visit https://www.owasp.org/
index.php/Logging_Cheat_Sheet for further information). They recommend the
following recording logs for these specific types of events:

• Input validation failures (for example, protocol violations, unacceptable
encodings, invalid parameter names, and values)

• Output validation failures (for example, database record set mismatch and
invalid data encoding)

• Authentication successes and failures
• Authorization failures
• Session management failures (for example, cookie session identification

value modification)
• Application errors and system events (for example, syntax and runtime

errors, connectivity problems, performance issues, third party service
error messages, file system errors, file upload virus detection, and
configuration changes

• Application and related systems start-ups and shut-downs, and logging
initialization (starting and stopping)

Application Considerations

[48]

• Use of higher-risk functionality (for example, network connections, addition
or deletion of users, changes to privileges, assigning users to tokens, adding
or deleting tokens, use of administrative privileges, access by application
administrators, access to payment cardholder data, use of data encrypting
keys, key changes, creation and deletion of system-level objects, data import
and export including screen-based reports, and submission of user-generated
content especially file uploads)

• Legal and other opt-ins (for example, permissions for mobile phone
capabilities, terms of use, terms and conditions, personal data usage
consent, and permission to receive marketing communications)

In addition to their recommendations, OWASP also presents the following events
as optional:

• Sequencing failure
• Excessive use
• Data changes
• Fraud and other criminal activities
• Suspicious, unacceptable, or unexpected behavior
• Modifications to configuration
• Application code file and/or memory changes

While determining what data to store for logs, OWASP recommends avoiding the
following types of data:

• Application source code
• Session identification values (consider replacing with a hashed value if

needed to track session specific events)
• Access tokens
• Sensitive personal data and some forms of personally identifiable

information (PII)
• Authentication passwords
• Database connection strings
• Encryption keys
• Bank account or payment card holder data
• Data of a higher security classification than the logging system is allowed

to store

Chapter 3

[49]

• Commercially-sensitive information
• Information it is illegal to collect in the relevant jurisdiction
• Information a user has opted out of collection, or not consented to, for

example, use of do not track, or where consent to collect has expired

In some cases, the following information can be useful during investigations,
but should be carefully reviewed before including it in application logs:

• File paths
• Database connection strings
• Internal network names and addresses
• Non sensitive personal data (for example, personal names,

telephone numbers, e-mail addresses)

Because each application and environment is different, the approaches logging
can be equally diverse. The npm module we will look at here aims to provide a
consistent API across many different methods, in addition to allowing you to use
more than one at a time depending on the context.

The winston module (https://github.com/flatiron/winston) provides a
clean and easy to use API for writing logs. In addition, it supports many methods
of logging, including the capability for adding your own custom transports.
A transport can be described as the storage or display mechanism for a given
set of logs.

The winston module has built-in transports (as known as core modules) for
logging to the console, logging to a file and sending logs over HTTP. Beyond the
core modules, there are officially supported modules for transports, such as CouchDB,
Redis, MongoDB, Riak, and Loggly. Lastly, there is a vibrant community using the
winston API as well, with over 23 different custom transports out there today,
including an e-mail transport and various cloud services like Amazon's SimpleDB
and Simple Notification Service (SNS). The point is, it is likely that whatever
transport you may require for your logging, there may be a module already
available, and of course you are always able to write your own as well.

To get started with winston, install in via npm and you can use it right away using
the "default logger" as shown in the following code:

var winston = require('winston');
winston.log("info", "Hello World");
winston.info("Hello Again");

Application Considerations

[50]

This is by far the easiest way to get started quickly with winston, but it only uses
the console transport by default. While the default logger can be extended with
more transports and configuration, the more flexible approach is to create your own
instances of winston that you can use in various contexts within your application.
This can be done as shown in the following code:

var winston = require("winston");

var logger = new (winston.Logger)({
 transports: [
 new (winston.transports.Console)(),
 new (winston.transports.File)({ filename: 'somefile.log' })
]
});

Within your application code, I typically place the boilerplate code for such modules
in their own file. From there, you can export a pre-configured object that can be
imported and used throughout your application, for example, you can create a file
called lib/logger.js that looks like the following:

var path = require("path"),
 winston = require("winston");

module.exports = new (winston.Logger)({
 transports: [
 // only logs errors to the console
 new (winston.transports.Console)({
 level: "error"
 }),
 // all logs will be saved to this app.log file
 new (winston.transports.File)({
 filename: path.resolve(__dirname, "../logs/app.log")
 }),
 // only errors will be saved to errors.log, and we can examine
 // to app.log for more context and details if needed.
 new (winston.transports.File)({
 level: "error",
 filename: path.resolve(__dirname, "../logs/errors.log")
 })
]
});

Chapter 3

[51]

Then within other parts of your application, you can include the logger and use it
easily as follows:

var logger = require("./lib/logger");
logger.log("info", "Hello World");
logger.info("Hello Again");

In addition, winston also includes other advanced features, such as custom log
levels, additional transport configuration, and dealing with unhandled exceptions.
Also, winston is not the only logging API available for Node.js, there are other
alternatives that you can consider depending on your own needs. This is not even
to mention developing your own custom solution to give you complete control.

Error handling
One of the important aspects of any application is how it handles errors. As
mentioned before, uncaught exceptions can crash your application, so being
able to handle errors properly is an important part of your development cycle.

Responding to errors within your own application is the key, so refer back to
Chapter 2, General Considerations, for a general introduction to how to deal with
errors in Node.js. Here, we will deal specifically with Connect and Express.

First, do not throw errors directly in your route handlers. While Express is smart
enough to try/catch errors directly on the route handler, this will not help you if
you are performing some sort of asynchronous operation (this is the case most of
the time), as shown in the following code:

app.get("/throw/now", function (req, res) {
 // Express wraps the route handler invocation in try/catch, so
 // this will be handled without crashing the server
 throw new Error("I will not crash the server;
});

app.get("/throw/async", function (req, res) {
 // However, when performing some asynchronous operation
 // time) then you will lose your server if you throw
 setTimeout(function () {
 // try/catch does not work on callbacks/asynchronous code!
 throw new Error("I WILL crash the server");
 }, 100);
});

Application Considerations

[52]

Both of the preceding handlers throw exceptions. As mentioned before, Express will
execute your handler in a try/catch to handle exceptions thrown in the handler
itself. However, asynchronous code, such as the second route does not work with
typical try/catch and end up becoming uncaught exceptions. In short, don't use
throw while handling errors!

In addition to the request and response objects passed to your handlers, there is a
third argument you can utilize like any other middleware. This is commonly named
the "next" callback, and you use it like you would in middleware, to pass along to the
next item in the continuation. This is illustrated in the following code:

app.get("/next", function (req, res, next) {
 // this is the correct way to handle errors, as Express will
 // delegate the error to special middleware
 return next(new Error("I'm passed to Express"));
});

If you execute the next callback with an Error object as the first argument, then
Connect will take that error and delegate to any error-handling middleware that
you have configured. When you set up a middleware that takes four arguments,
it is always treated as error-handling middleware.

// 4 arguments tells Express that the middleware is for errors
// you can have more than 1 if necessary
app.use(function (err, req, res, next) {
 console.trace();
 console.error(err);

 // just responds with a 500 status code and the error message
 res.send(500, err.message);
});

This special error-handling middleware goes last in your application stack, and you
are able to set up more than one if that is necessary. You can pass along control via
next like any other middleware, in case you set up multiple layers of error-handling,
for example, one layer can send an e-mail, one can log to a file, and one (the last one)
can send a response to the user.

Chapter 3

[53]

Connect also has a special middleware that you can utilize to deal with errors
without needing to hard code your own middleware. This is the errorHandler
middleware, and it will automatically respond with either plain text, JSON, or
HTML (depending on the client's headers) when an error occurs. This middleware
is expressed as follows:

app.use(express.errorHandler());

Typically, this helper is just for development use, as your production application
likely has more work to do when dealing with errors you need to be in complete
control of.

In summary, always use the "next" callback function in your route handlers to
communicate errors, never use throw. In addition, always configure some sort of
error-handling middleware by adding a middleware function with four arguments.
Use the built-in handler from Connect for development, and have your own place
for production.

Summary
In this chapter, we examined high-level security considerations that apply to
applications in general, such as authentication, authorization, and error-handling.
In the next chapter, we will examine vulnerabilities that appear during the request
phase of your applications.

Request Layer
Considerations

Some vulnerabilities appear at the request phase of your application. As mentioned
before, Node.js does little for you by default, leaving you with complete freedom to
craft a server that meets your needs.

Limiting the request size
One major request-handling feature that is commonly left out of Node.js applications
is size limits. Express (optionally) handles buffering of request body data and
parsing that request body into some meaningful data structure. While the request
is still being fulfilled, the entire content of that body is in memory. If you place
no limits, malicious users have a number of ways to affect your system, such as
exhausting memory limits, and uploading files that take up unnecessary disk space.

Depending on your needs, you will need to determine a reasonable limit for your
application. While your needs may differ, you should always set some sort of limit,
Connect and Express exposes a middleware just for this purpose, called limit:

app.use(express.limit("5mb"));

This middleware needs to be added early in the stack, otherwise it won't be caught
until it's too late. It takes a single piece of configuration, which is the upper limit on
the request size. If you send a number, it will be translated as a number of bytes.
You can also send a more readable string, such as "5mb" or "1gb".

Request Layer Considerations

[56]

This middleware responds with a 413 (Request Entity Too Large) error to be
thrown, if the limit is exceeded. First, the Content-Length header of the request is
checked, and if it is too large it denies the request outright. Of course, the header
could be faked or even absent, so the middleware also monitors the incoming data
and triggers an error if the actual request body size reaches the limit.

The bodyParser middleware is used to parse incoming request bodies for particular
content types. In fact, the bodyParser middleware specifically is just short hand
for three different middlewares namely, json, urlencoded, and multipart. Each
of these corresponds to a different content-type. Setting an absolute size via the
limit middleware is helpful, but not always enough. Some request bodies should
be limited differently than others.

For example, you may wish to allow file uploads that are up to 100 MB. However,
that same amount of JSON will bring your application to a halt, while the JSON.
parse() function runs, since it is a blocking operation. As a result, it is highly
recommended to set a much smaller limit on request bodies other than multipart
(since it deals with file uploads).

Therefore, I would recommend avoiding the bodyParser middleware, in order to be
more explicit, and allow you to set different limits for each of the sub-middlewares.

// module dependencies
var express = require("express"),
 app = express();

// limiting the allowed size of request bodies (by content-type)
app.use(express.urlencoded({ limit: "1kb" })); // application/x-www-
form-urlencoded
app.use(express.json({ limit: "1kb" })); // application/json
app.use(express.multipart({ limit: "5mb" })); // multipart/form-data
app.use(express.limit("2kb")); // everything else

While setting different limits for different content types like we are
talking about here, the results could be unexpected if you are not careful
about the order you choose for your middleware.
If the limit middleware is used first, it will cause the other middlewares
to ignore their own size limits. Make sure that you place the global limit
middleware last, so it acts as a catch-all for any other content type, and
not dealt with by the bodyParser middleware family.

Chapter 4

[57]

Using streams instead of buffering
Node.js includes a module called streams, which contains the implementation used
widely throughout Node.js platform's own core modules. A stream is a lot like a
Unix pipe, they can be read from, written to, or even both depending on the context.
I won't go into great detail here, but streams are one of Node.js killer features, and
you should be using them as much as possible in your applications and any npm
modules you publish.

If you are implementing more of a RESTful API, that accepts a file upload as a PUT
request, for example, use streams in your request handler. The following code shows
an inefficient way to handle putting a request body into a file:

var fs = require("fs");

// handle a PUT request against /file/:name
app.put("/file/:name", function (req, res, next) {
 var data = "", // data buffer
 filename = req.params.name; // the URL parameter

 req.on("data", function (chunk) {
 data += chunk; // each data event appends to the buffer
 });

 req.on("end", function () {
 // write the buffered data to a file
 fs.writeFile(filename, data, function (err) {
 if (err) return next(err); // handle a write error

 res.send("Upload Successful"); // success message
 });
 });
});

Here, we are buffering the entire request body into memory, before writing it to disk.
At small sizes, this is not a problem, but an attacker could simultaneously send many
large request bodies, and you're putting yourself in unnecessary risk by buffering. In
Node.js, with streams at your disposal, this is the long way to do it (thank goodness
the shorter way is also the best way!).

Request Layer Considerations

[58]

The following code is an example of the same request, only using a stream to pipe
the data to the destination:

var fs = require("fs");

// handle a PUT request against /file/:name
app.put("/file/:name", function (req, res, next) {
 var filename = req.params.name, // the URL parameter
 // open a writable stream for our uploaded data
 destination = fs.createWriteStream(filename);

 // if our destination could not be written to, throw an error
 destination.on("error", next);

 req.pipe(destination).on("end", function () {
 res.send("Upload Successful"); // success message
 });
});

Our example here sets up a writeable stream that represents the destination of the
uploaded data. Rather than buffering the entire request body into memory, the data
will simply be piped into that file, as it becomes available. It should be noted that this
example does not properly filter the user input; this was entirely to stay focused on
the topic of the example and should not be applied directly to production code.

Streams are a proven and effective pattern for dealing with data in numerous
contexts, and leverage the event-driven model of Node.js to its full potential.

When dealing with many simultaneous users, especially with unforeseen bursts
of traffic, it's important to be ready for disaster scenarios, where the load becomes
too much for your server to handle. This is also applicable in mitigating Denial of
Service (DoS) attacks that attempt to flood your server with more requests than it
could ever possibly handle, bringing it down completely (or just slowing it down to
a crawl) for every other user.

Chapter 4

[59]

Monitoring the event loop's
responsiveness
Building a server that doesn't just melt under heavy load can be done. One useful
pattern is to monitor the event loop's responsiveness, and deny some requests right
away, if the server is just under too much load to respond quickly. One module out
there, called node-toobusy (https://github.com/lloyd/node-toobusy) does
just that.

Once initialized, toobusy polls the event loop, and watches for lag or requests to
the event loop that takes longer than expected. In your application, you set up a
middleware layer that simply queries the monitor to determine whether or not to
add to the server's current processing queue. If the server is too busy, it will respond
with a 503, (Server Currently Unavailable) rather than taking on more load that it
is able to satisfy. Instead of crashing your server, this pattern allows you to continue
serving as many requests as possible, as shown in the following code:

var toobusy = require("toobusy"),
 express = require("express"),
 app = express();

// middleware which blocks requests when we're too busy
app.use(function(req, res, next) {
 if (toobusy()) {
 res.send(503, "I'm busy right now, sorry.");
 } else {
 next();
 }
});

app.get("/", function(req, res) {
 // each request blocks the event loop
 var start = (new Date()).getTime(), now;
 while (((new Date()).getTime() - start) <= 5000); // run for 5
seconds
 res.send("Hello World");
});

var server = app.listen(3000);

Request Layer Considerations

[60]

process.on("SIGINT", function() {
 server.close();
 // calling .shutdown allows your process to exit normally
 toobusy.shutdown();
 process.exit();
});

The preceding sample was found on node toobusy's github page. It sets up a simple
server with a middleware employing the toobusy module. It also sets up a single
route that blocks the event loop by running for five straight seconds. If a number of
simultaneous requests that block the event loop for long enough come in, the server
will start responding with a 503 (Server Currently Unavailable) error, rather than
taking on more than it should. Lastly, this also includes a graceful shutdown for
the process.

This example also demonstrates a very important point about the event loop in
Node.js that is worth repeating. The contract made between your code and the
event loop scheduler is that all code should execute quickly, to keep from blocking
the event loop for other code. This means to avoid CPU-intensive calculations in
your application code, unlike the preceding example, which blocks the CPU during
its while-loop iteration.

Node.js works best when your application is primarily I/O-bound, so CPU-intensive
operations, such as complex calculations or very large data-set iterations should be
avoided. If your system requires such operations, consider spawning the blocking
portions off as separate processes to keep from hogging your application's
event loop.

There are a couple methods to accomplish this, such as using the HTML5 Web
Worker API for node (https://github.com/pgriess/node-webworker). In
addition, a more bare-metal approach is to utilize Node's child_process module in
conjunction with Inter-Process Communication (IPC).The IPC specifics on this are
potentially heavily dependent on your platform and architecture, which is beyond
the scope of this discussion.

Cross-site Request Forgery
Cross-site Request Forgery (CSRF) is an attack vector that exploits the trust, an
application has for a specific user's browser. A request is made on the user's behalf
without their consent, allowing the application to perform some action under the
assumption that the trusted user initiated the request, even though they have not.

Chapter 4

[61]

There are a number of ways this can be accomplished. One example is that an HTML
image tag (for example, an) somehow injected into the page, legitimately or
not, such as via XSS, a vulnerability we will discuss in the next chapter. The browser
implicitly sends a request to the URL specified in the src attribute, and sends any
cookies it has as a part of the HTTP request. Many applications that track a user's
identity do so via cookies that contains some sort of session identifier, which to the
server makes it appear as though the user is making the request.

Prevention is pretty straightforward; the most common approach is requiring a
generated, user-specific token to be included with each request that modifies state.
In fact, Connect already includes the csrf middleware for just this purpose.

It works by adding a generated token to the current user's session, which can be
included in an HTML form, as a hidden input field or as a query-string value in any
links with side-effects. When a later request is being handled, the middleware checks
to ensure the value in the user's session, matches what was submitted with the
request, which fails with a 403 (Forbidden), in the event of a mismatch.

var express = require("express"),
 app = express();

app.use(express.cookieParser()); // required for session support
app.use(express.bodyParser()); // required by csrf
app.use(express.session({ secret: "secret goes here" })); // required
by csrf
app.use(express.csrf());

// landing page, just links to the 2 different sample forms
app.get("/", function (req, res) {
 res.send('Valid Invalid</
a>')
});

// valid form, includes the required _csrf token in the HTML Form
(hidden input)
app.get("/valid", function (req, res) {
 var output = "";
 output += '<form method="post" action="/">'
 output += '<input type="hidden" name="_csrf" value="' + req.
csrfToken() + '">';
 output += '<input type="submit">';
 output += '</form>';
 res.send(output);
});

Request Layer Considerations

[62]

// invalid form, does not have the required token
// throws a "Forbidden" error when submitted
app.get("/invalid", function (req, res) {
 var output = "";
 output += '<form method="post" action="/">'
 output += '<input type="submit">';
 output += '</form>';
 res.send(output);
});

// POST target, redirects back to home if successful
app.post("/", function (req, res) {
 res.redirect("/");
});

app.listen(2500);

This example application has some defined middleware, namely the bodyParser,
cookieParser, and session. These are all required by csrf, which is why they
go first in the order. In addition, there are a few routes which are as follows:

• The homepage, which just provides links to both sample forms
• The form action/target, which simply redirects the user home on a

successful submission
• The valid form, which includes the token as a hidden input and

successfully submits it
• The invalid form, which does not include the token and consequently fails,

when submitted (with a (403 Forbidden) HTTP response)

This method prevents an attacker from successfully making false requests,
as the required token will be different for each form submission.

Input validation
While protecting against many attack vectors, such as XSS, which we will deal with
in the next chapter, it is important to filter and sanitize your inputs as you receive
them from the user. This occurs during the request phase of a web application,
so we will address it here. The general rule of thumb is to always validate inputs
and escape outputs.

A popular library for validating user input is node-validator (https://github.com/
chriso/node-validator). This library is by no means the only option, but it is the
one we will be using in our examples.

Chapter 4

[63]

There are several goals of input validation, first of which is to verify that incoming
user input matches the criteria of our application and its workflow; for example, you
may want to ensure that a user submits a valid e-mail address. I am not referring to
sending an e-mail for confirmation to test that the e-mail address is real, instead I
am just talking about ensuring that they do not enter an erroneous value in the first
place. Another example is to ensure that the number matches a particular range, such
as being greater than zero.

Secondly, input filtering is meant to prevent bad data from making it into your
system that could compromise another subsystem; for example, if you accept an
input for a certain numeric input, which you then pass along to another subsystem
for some additional processing, such as a report or some other remote API. If your
users, intentionally or not, submit some other unexpected value, like a symbol or
an alphabetic character, it could cause problems in future operations. In large part,
computers are garbage-in, garbage-out, so we need to make sure we are careful with
any user input.

Thirdly, as already mentioned briefly before, input filtering is a helpful (albeit
incomplete) preventative measure against attacks like Cross-Site Scripting (XSS).
XSS attacks in HTML, CSS, and JavaScript, there are big problems with access
control, meaning that any script has the same access as every other one. This means
that if an attacker can find a way to inject further code into your page, they will have
a great degree of control, which is potentially harmful to your users. Input filtering
can help by removing malicious code that may be cleverly embedded in other
user input.

In addition to the base node-validator library, there is also a middleware plugin
(express-validator: https://github.com/ctavan/express-validator), made
especially for Express.js, which we will be using for our examples.

Our first example will be a form that accepts a large variety of inputs, just to help
demonstrate as much as possible. Consider the following HTML form:

<form method="post">
 <div>
 <label>Name</label>
 <input type="text" name="name">
 </div>
 <div>
 <label>Email</label>
 <input type="email" name="email">
 </div>
 <div>
 <label>Website</label>
 <input type="url" name="website">
 </div>

Request Layer Considerations

[64]

 <div>
 <label>Age</label>
 <input type="number" name="age">
 </div>
 <div>
 <label>Gender</label>
 <select name="gender">
 <option>-- choose --</option>
 <option value="M">Male</option>
 <option value="F">Female</option>
 </select>
 </div>

 <button type="submit">Validate</button>
</form>

This sample code sets up an HTML form with five fields: name, e-mail, website,
age, and gender. A user can enter values in the provided inputs and POST to the
same URL. While processing the POST request, we will validate the data and give
some sort of response. The next code sample will be our application code:

// module dependencies
var express = require("express"),
 app = module.exports = express();

app.use(express.bodyParser()); // required by csrf
app.use(require("express-validator")()); // the validation middleware

// an HTML form to be validated
app.get("/", function (req, res) {
 res.sendfile(__dirname + "/views/validate-input.html");
});

/**
 * Validates the input, will either:
 * - sends a 403 Forbidden response in the event of validation errors
 * - send a 200 OK response if the data validates successfully
 */
app.post("/", function (req, res, next) {
 // validation
 req.checkBody("name").notEmpty().is(/\w+/);
 req.checkBody("email").notEmpty().isEmail();
 req.checkBody("website").isUrl();
 req.checkBody("age").isInt().min(0).max(100);
 req.checkBody("gender").isIn(["M", "F"]);

Chapter 4

[65]

 // filtering
 req.sanitize("name").trim();
 req.sanitize("email").trim();
 req.sanitize("age").toInt();

 var errors = req.validationErrors(true);

 if (errors) {
 res.json(403, {
 message: "There were validation errors",
 errors: errors
 });
 } else {
 res.json({
 name: req.param("name"),
 email: req.param("email"),
 website: req.param("website"),
 age: req.param("age"),
 gender: req.param("gender")
 });
 }
});

This example sets up a basic web server with only two routes, a GET / which just
sends the HTML form, we showed earlier as the response. The second route is a POST
/ which takes the data submitted from the aforementioned form, and first validates it
with the following rules:

Field Rules
name This field cannot be empty.

It must match a regular expression (this one means it must be only
alphabetic, numeric, whitespace, and a few select symbols).

e-mail This must be a valid e-mail address.
website This must be a valid URL.
age This must be a number.

It must be greater than or equal to 0.
It must be less than or equal to 100.

gender This must be either "M" or "F".

Request Layer Considerations

[66]

In addition to validating the input, it also performs some filtering and transforming
before the output, according to the following rules:

Field Rule
name Trim leading and trailing whitespace.
e-mail Trim leading and trailing whitespace.
age Convert to an integer.

Depending on how the validation goes, it will either respond with a 403 (Forbidden),
with the list of validation errors, or it will respond with a 200 (OK) with the
filtered input.

This should demonstrate that it is pretty straightforward to add input validation
and filtering to your applications, and the rewards are well worthwhile. You can
ensure that the data matches expected formats for your various workflows, and help
preemptively protect against some attack vectors.

Summary
In this chapter, we specifically examined request vulnerabilities, and provided some
ways to avoid and deal with those vulnerabilities. In the next chapter, we will look at
the response phase of applications, and the vulnerabilities that appear there.

Response Layer
Vulnerabilities

The last interaction you will have with a user request is, of course, the response.
The discussion here will focus on vulnerabilities and best practices for this portion
of your application code. This will include Cross-site Scripting (XSS), some vectors
for Denial of Service (DoS) attacks, and even HTTP headers that various browsers
use for implementing specific security policies.

Cross-site Scripting (XSS)
Cross-site Scripting (XSS) is one of the more popular topics while dealing with web
applications, as it is the default behavior of HTML/CSS/JavaScript in many respects.
Specifically, XSS is an attack vector that is used to inject untrusted and likely
malicious code into a web page. Usually, this is taken as an opportunity to inject
JavaScript code into your page that now has access to just about anything the client
has access to in that particular web page.

By default, JavaScript is executed in a global scope in the browser, including code
that was injected by an untrusted source. This is the same behavior that your
own, trusted code has, making it a dangerous vector with many possibilities. The
malicious script could find the user's session ID (usually in a cookie), and use AJAX
to send that information to someone that can then hijack the user's session.

Response Layer Vulnerabilities

[68]

The injection commonly comes from the user input that is not filtered or sanitized
before being output to the browser. Consider the following example code:

var express = require("express"),
 app = express();

app.get("/", function (req, res) {
 var output = "";
 output += '<form action="/test">';
 output += '<input name="name" placeholder="enter a name">';
 output += '</form>';

 res.send(output);
});

app.get("/test", function (req, res) {
 res.send("Hello, " + req.query.name);
});

app.listen(3000);

This script creates a server that simply sends an HTML form that is submitted
(via GET) to another page. The second route simply outputs the user's input value
to the browser.

If the user inputs their name (like Dominic) everything is well, and the user sees
"Hello, Dominic" on the next page. However, what if the user enters something else,
like raw HTML? In this case, it just outputs the HTML alongside our own HTML,
and the browser can't tell the difference.

If you enter <script>alert('hello!');</script> in that text field instead, when
you open the next page, you'll see "Hello," and the browser will trigger an alert with
"hello!" in the box. This is a harmless example, but this vulnerability has a huge
potential for damage. These attacks are accomplished through what is known as
untrusted data, which could be raw user input, information stored in a database,
or accessed via a remote data source. The untrusted data is then used by your
application to construct some sort of command that is then executed. The danger
comes when the command is manipulated to perform some action that was not the
original intent of the developers.

Chapter 5

[69]

The prototypical example of this type of attack is a SQL injection, which is where the
untrusted data is used to alter a SQL command. Consider the following code:

var sql = "SELECT * FROM users WHERE name = '" + username + "'";

Assume that the username variable comes from the user input, and the point is that
it is an untrusted data as we have defined it. If the user enters something innocuous,
like 'Dominic', then all is well, and the generated SQL looks like the following code:

SELECT * FROM users WHERE name = 'Dominic'

What if someone enters something less harmless, like: '' OR 1=1, then the generated
SQL becomes like the following:

SELECT * FROM users WHERE name = '' OR 1=1

This changes the meaning of the query entirely, rather than restricting to one
user with a matching name, now every row is returned. This could be even more
disastrous, consider the value: ''; DROP TABLE users;, it would generate a SQL
like the following:

SELECT * FROM users WHERE name = ''; DROP TABLE users;

Without any additional access, the user has caused a devastating loss of data to our
application, probably bringing the entire application down for all users.

As it turns out, XSS is another type of injection attack, and the web browser and
the HTML, CSS, and JavaScript that they execute, are optimized for these types of
attacks. There are many different contexts within each of these languages that we
need to be aware of. Consider the following template:

<h2>User: <%= username %></h2>

With our untrusted data, we could easily cause trouble by injecting additional HTML
into this value, such as <script>alert('xss');</script>, which would generate
the following HTML code:

<h2>User: <script>alert('xss');</script></h2>

Response Layer Vulnerabilities

[70]

The solution here is to use an HTML escaping on any untrusted data added to the
page in this context. This technique turns characters that are important in HTML,
such as angle brackets and quotes, into their corresponding HTML entity; preventing
them from altering the structure of the HTML they are embedded within. The
following table is an example of this conversion:

Character Entity
Less than sign (<) <

Greater than sign (>) >

Double quote (") "

Single quote (') ' (' is not a valid
HTML and should be avoided)

Ampersand (&) &

Forward slash (/) /

This method of escaping makes it harder for an attacker to alter the structure of
your HTML, making this a very important technique for securing your web pages.
However, different contexts will require further escaping techniques that we will
address shortly.

Many popular templating libraries include automatic HTML escaping by
default, but some do not. This should be an important factor to you for
choosing a template framework or library.

HTML attributes could be injected with other HTML meant to create a new context,
such as closing the attribute and starting a new attribute. Further still, this injected
HTML could be used to close the HTML tag, and inject more HTML in another
context. Consider the following template:

<img height=<%= height %> src="...">

Consider the following injected value for height: 100 onload="javascript:alert(
'XSS');", which would generate the following HTML:

The result is injected JavaScript code. HTML encoding as we used before is not
enough in this particular context, as the preceding is still a perfectly valid HTML.
In addition to HTML escaping as we mentioned before, you should require quotes
around all HTML attributes, particularly when untrusted data is involved. To cover
all cases, even unquoted attributes, you could encode all ASCII values below 256
to their HTML entity format (&#HH; or an available named entity like ",
if available).

Chapter 5

[71]

HTML attributes that involve URLs, such as href and src, are another context
altogether that require their own encoding. Consider the following template:

<a href="<%= url %>">Home Page

If the user enters the following data: javascript:alert('XSS');, then the
following HTML is generated:

Home Page

An HTML encoding is not applicable here, as the preceding is a valid HTML
markup. Instead, a fully-qualified URL should be checked for unexpected
protocols. Here, we used javascript:, which gets the browser to execute arbitrary
code, behaving like the eval() function. Lastly, the output should be escaped via
the built-in JavaScript function called encodeURI(), which escapes characters that
are invalid in URLs.

The last example I will show here is partial URLs within attributes like the ones
mentioned previously. Using the following template:

<a href="/article?page=<%= nextPage %>">Next

The nextPage variable is being used as a part of a URL, rather than being the URL
itself. The encodeURI() function we mentioned earlier has a companion called
encodeURIComponent(), which escapes more characters, because it is meant to
encode a single query-string parameter.

Another common anti-pattern is injecting JSON data into a page directly to
share data between the server and client while rendering a page. Consider the
following template:

<script>
var clientData = <%= JSON.stringify(serverData); %>;
</script>

This particular technique, while convenient, can allow for XSS attacks as well. Let's
assume the serverData object has a single property called username that reflects
the current user's name. Let's also assume that this value is able to be set by the user
without any sort of filtering between the user's input and the display on the page
(which of course should not happen).

If the user changes his name to </script><script>alert('XSS')</script> then
the output HTML would look like the following:

<script>
var clientData = {"username":"</script><script>alert('XSS');</
script>"};
</script>

Response Layer Vulnerabilities

[72]

According to the HTML specification, a </ character (even within a JavaScript string,
as we have here) will be interpreted as a closed tag, and the attacker has just created
a brand new script tag that, like any other script tag, has full control over the page.

Rather than simply trying to escape the JSON data directly, the best way to mitigate
this problem is to inject your JSON data, using another method altogether:

<script id="serverData" type="application/json">
<%= html_escape(JSON.stringify(data)) %>
</script>

<script>
var dataElement = document.getElementById("serverData");
var dataText = dataElement.textContent || dataElement.innerText; //
unescapes the content of the script
var data = JSON.parse(dataText);
 </script>

This method uses a script tag, with a predefined ID that we can use to retrieve it.
When a browser encounters a script type it does not understand, it will simply not
execute it, in addition to leaving it hidden from the user. The contents of this script
tag will be an HTML-escaped version of our JSON, which ensures we have no
context boundary crossing.

Next, we use another script (preferably in an external file, but by no means required)
with the code that finds the script element we defined, and retrieves its text content.
By using the textContent/innerText property instead of innerHTML, we get
additional escaping that the browser performs for us, just in case. Lastly, we
run the JSON data through JSON.parse to actually perform the JSON decoding.

While this method requires more fanfare, and is going to be a bit slower than the first
example, it is going to be far more secure, which is a great trade-off to make.

These examples are by no means an exhaustive list, but they should illustrate the
point that HTML, CSS, and JavaScript each have contexts that allow for various
types of code injection. Never trust your user input, and make sure you use the
appropriate escaping method depending on the context.

The Open Web Application Security Project (OWASP) is a foundation that
maintains a wiki (http://www.owasp.org/) that specifically addresses security
considerations for all web applications. They have articles on many attack vectors,
including a more comprehensive checklist for preventing many more varieties of
XSS attacks.

Chapter 5

[73]

Denial of Service
A Denial of Service (DoS) attack can come in a variety of forms, but the main intent
is to prevent users from having access to your application. One method is to flood
your server with a large amount of requests, tying up your server's resources and
preventing legitimate requests from being fulfilled.

Request flooding typically targets multithreaded servers, like Apache. This is
because the process of spawning a new thread for each request gives an easy-to-
reach upper limit on the number of simultaneous requests. With Node.js platform's
event loop, this particular type of attack is not usually as effective, although that's
not to say that it is impossible.

The event loop can still expose applications if used improperly, I cannot stress
enough how important it is to understand how it works, while writing any Node.js
application. The contract your application code has with the event loop is to always
run as fast as possible. There is only one piece of your application running at once,
so CPU-intensive can tie up resources as well. This applies in all cases, but I mention
it in this chapter to specifically address your response handlers. Generally, receiving
the request itself is less resource-intensive than performing the actions necessary to
generate the appropriate response.

As mentioned earlier, use streams whenever possible, especially while dealing
with network requests or the filesystem. Dealing with large blobs of data can be
time-consuming depending on how you are processing that data, the use of streams
can break those large operations into many small chunks, allowing other requests to
be satisfied in the process.

Security-related HTTP headers
There are some HTTP headers available that can help add some security to our web
applications. We will be looking at a module called helmet, which is written as a
collection of Connect/Express middleware that adds these headers depending on
your configuration. We will examine each of the middleware functions that helmet
includes, as well as a brief explanation of their effects.

Content security policy
First, helmet supports setting headers for a newer security mechanism for HTML and
web applications called Content Security Policy (CSP). XSS attacks circumvent the
Same-Origin Policy (SOP) by using other methods to trick browsers into delivering
harmful content.

Response Layer Vulnerabilities

[74]

For browsers that support this feature, you can restrict resources, such as images,
frames, or fonts to be loaded via white-listed domains. This limits the impact of
XSS attacks by hopefully preventing access to untrusted domains for loading
malicious content.

CSP is communicated to a browser via one or more Content-Security-Policy
HTTP headers, such as:

Content-Security-Policy: script-src 'self'

This header will instruct the browser to require that all scripts load from the current
domain only. Any scripts the browser detects coming from any other domains will
be blocked outright.

A CSP header is constructed as a list of directives separated by semicolons.
An example of a header that implements multiple CSP restrictions looks like
the following:

Content-Security-Policy: script-src 'self'; frame-src 'none'; object-
src 'none'

This header instructs the browser to restrict scripts to only the current domain
(like our previous example), and forbids the use of frames (including iframes)
and objects altogether.

Each directive is named *-src, and it is followed by a space-separated list of either
predefined keywords (which must be wrapped in quotes) or domain URLs.

The available keywords include the following:

• 'self': This restricts script to the current domain
• 'none': This restricts all domains (none can be loaded at all)
• 'unsafe-inline': This allows inline code (you are highly advised to avoid

this, more discussion later)
• 'unsafe-eval': This allows text-to-JavaScript mechanisms like eval()

(also highly advised against)

The following directives are available:

• connect-src: This restricts the domains that can be connected to via XHR
and WebSockets

• font-src: This limits the domains that can be used to download font files
• frame-src: This limits the domains that frames (including inline frames)

can load

Chapter 5

[75]

• img-src: This limits the domains that images can be loaded from
• media-sr: This limits the origins for video and audio
• object-src: This allows control over the origins for objects

(for example, Flash)
• script-src: This restricts the domains that scripts can be loaded from
• style-src: This limits the domains that stylesheets can be loaded from
• default-src: This acts as a shorthand for all the directives combined

Leaving out a directive leaves its policy wide open, (as is the default behavior)
unless you specify the default-src directive.

Helmet can construct the headers for each supported User Agent (for example,
browser) based on the configuration you pass to the middleware. By default,
it will give the following CSP header:

Content-Security-Policy: default-src 'self'

This is a very strict policy, as it will only allow external resources to be loaded from
the current domain, and nowhere else. In most cases, this is simply too restrictive,
particularly if you are going to be using a CDN or allowing external services to
communicate with your own.

You can configure helmet via the middleware definition function, by adding a
property called defaultPolicy that contains your directives as an object hash,
for example:

app.use(helmet.csp.policy({
 defaultPolicy: {
 "script-src": ["'self'"],
 "img-src": ["'self'", "http://example.com/"]
 }
}));

This will instruct helmet to send the following header:

Content-Security-Policy: script-src 'self'; img-src 'self' http://
example.com/

This will restrict scripts and images to the current domain as well as the domain
http://example.com/.

Response Layer Vulnerabilities

[76]

CSP also includes a reporting capability that you can use for auditing your own
applications and detect vulnerabilities quickly. There is a report-uri directive
just for this purpose, which tells the browser what URI to send a violation report
to. Refer the following example code:

Content-Security-Policy: default-src 'self'; ...; report-uri /my_csp_
report_parser;

When the report is sent by the browser, it is a JSON document with the
following structure:

{
 "csp-report": {
 "document-uri": "http://example.org/page.html",
 "referrer": "http://evil.example.com/",
 "blocked-uri": "http://evil.example.com/evil.js",
 "violated-directive": "script-src 'self' https://apis.google.com",
 "original-policy": "script-src 'self' https://apis.google.com;
report-uri http://example.org/my_amazing_csp_report_parser"
 }
}

This report includes most of the information you should need to track down the
violation, namely:

• document-uri: The page that the violation occurred on
• blocked-uri: The violating resource
• violated-directive: The specific directive that was violated
• original-policy: The page's policy (the contents of the CSP header)

When first starting out with CSP, it may not be wise to set up a policy and start
blocking right away. While you are in the process of detailing your application's
policy, you can set up CSP to respect report-only mode.

This allows you to set up a complete policy, and rather than blocking users right
away, you can simply receive reports detailing violations. This gives you a way to
fine-tune your policy before putting it into effect.

To enable report-only mode, you simply change the HTTP header name. Instead of
what we've been using, you simply use Content-Security-Policy-Report-Only,
leaving everything else the same:

Content-Security-Policy-Report-Only: default-src 'self'; ...; report-
uri /my_csp_report_parser;

Chapter 5

[77]

In helmet, you enable report-only mode by including the reportOnly parameter in
your configuration object:

express.use(helmet.csp.policy({
 reportOnly: true,
 defaultPolicy: {
 "script-src": ["'self'"],
 "img-src": ["'self'", "http://example.com/"]
 }
}));

This sets up the same policy we used earlier, just with the addition of
report-only mode.

CSP is an excellent security mechanism that you should start using right away,
despite browser support isn't entirely there. As of this writing, it is a W3C
Candidate Recommendation, and browsers are expected to implement this
feature at a rapid pace.

HTTP Strict Transport Security (HSTS)
HTTP Strict Transport Security (HSTS) is a mechanism that communicates to a
user agent (for example, a web browser) that a particular application should only be
accessed via HTTPS, because it is an encrypted communication. If your application
ideally exists only over a secure connection, this allows you to officially declare it to
the browser.

There are only two parameters to this header, the max-age directive that tells
the browser how long (in seconds) to respect the configuration, as well as the
includeSubDomains directive that treats subdomains of the current domain
in the same fashion. Like CSP, this is communicated via an HTTP header:

Strict-Transport-Security: max-age=15768000

This tells the browser, for around six months, that the current domain from now
on should be accessed via HTTPS (even if the user accessed it via HTTP). This is
the default configuration set by helmet, which is the simplest to implement:

app.use(helmet.hsts());

This sets up the middleware for HSTS using the previously stated configuration,
the middleware definition function also takes two optional parameters. First, the
max-age directive can be set as a number (which should be represented in seconds).
Second, the includeSubDomains directive can be set as a simple Boolean value:

app.use(helmet.hsts(1234567, true));

Response Layer Vulnerabilities

[78]

This will set the following header:

Strict-Transport-Security: max-age=1234567; includeSubdomains

Browser support is not currently as complete as CSP, but is expected to proceed
down that path. In the meantime, it is worth adding to your application's
security detail.

X-Frame-Options
This header controls whether or not a particular page is allowed to be loaded into
either a <frame> or an <iframe> element. This is useful mainly to prevent malicious
users from hijacking (or "clickjacking") your users, and thereby tricking them into
performing actions they otherwise had no intention of doing.

This is communicated to the browser via another HTTP header, so when the browser
loads a URL for a frame/iframe, it will check for this header to determine the course
of action to take. The header looks like the following:

X-Frame-Options: DENY

Here, we are using the value DENY, which is the default when configured via helmet.
Other available options include sameorigin, which only allows the domain to be
loaded in a frame when on the current domain. The last option is the allow-from
option that allows you to specify a whitelist of URIs that can render the current page
in a frame.

In most cases, the default should work just fine, and you can set that up via helmet
like so:

app.use(helmet.xframe());

This adds the header as we saw it previously displayed. To configure using the
sameorigin option, use the following configuration:

helmet.xframe('sameorigin');

Lastly, this sets up the allow-from variant, which also gives you the second
parameter for setting allowed URIs:

helmet.xframe('allow-from', 'http://example.com');

Browser support for this security mechanism is quite good, so it's safe to implement
right away. The allow-from header is a caveat, which is not supported evenly,
so make sure you research the specifics depending on your requirements before
using it.

Chapter 5

[79]

X-XSS-Protection
This next header is specific to Internet Explorer, and it enables the XSS filter.
Rather than explain it myself, here is an explanation from the Microsoft
Developer Network (MSDN).

The XSS filter operates as an Internet Explorer 8 component with visibility
into all requests/responses flowing through the browser. When the filter
discovers likely XSS in a cross-site request, it identifies and neuters the
attack if it is replayed in the server's response. For further information
please visit: http://msdn.microsoft.com/en-us/library/
dd565647(v=vs.85).aspx

This featured is likely enabled by default, but in case the user has disabled it
themselves or in some select zones, it can be enabled with a simple header
that looks like the following:

X-XSS-Protection: 1; mode=block

By setting the header as 0, forces the XSS filter to be disabled, but that configuration
is not exposed via helmet. In fact, it has no configuration at all, so its usage is as
simple as:

app.use(helmet.iexss());

X-Content-Type-Options
This is another header that puts a stop to a specific behavior in certain browsers
(Internet Explorer and Google Chrome are currently the only browsers that support
this). In this case, the browser will attempt to "sniff" (for example, guess) the MIME
type of a returned resource, even if that resource sets a valid Content-Type header
on its own.

This could allow the browser to be fooled into executing or rendering a file in a way
that was unintended by the developers, causing potential security vulnerabilities
depending upon a number of factors. The point is that your server's Content-Type
header should be the only consideration the browser makes, rather than trying to
guess on its own.

Like the previous example, there is no real configuration available, and the following
header will simply be added to your application:

X-Content-Type-Options: nosniff

Response Layer Vulnerabilities

[80]

This header is configured with helmet via:

app.use(helmet.contentTypeOptions());

Cache-Control
The last middleware that helmet provides is one for setting the Cache-Control
header to no-store or no-cache. This prevents browsers from caching a given
response. This middleware also has no configuration, and is included via:

app.use(helmet.cacheControl());

You would use this middleware and header to prevent the browser from storing and
caching pages that may contain sensitive user information. However, the trade-off is
that you could take a serious performance hit when applying it across the board.

When it comes to static files and assets, such as style sheets and images, this header
will only slow your site down, and likely adding no security benefits while doing so.
Make sure to be careful how and where you apply this particular middleware within
your overall application.

The helmet module is a quick way to add these useful security features to your
application, which is enabled by the powerful middleware architecture that Connect
has created. There's a lot to many of these security features that cannot be addressed
here, and will likely change in the future, so it's best to become familiar with all
of them.

Summary
In this chapter, we looked at vulnerabilities that show up in the response phase of
application processing, such as XSS and DoS. We also looked at ways to mitigate
those specific problems, whether by defensive coding or using newer security
standards and policies to our advantage.

Index
Symbols
-use_strict command line flag 13

A
age field 65
Apache 73
Atop Node.js 12
authentication

about 32
HTTP Basic Authentication 32-34

authorization 44-46

C
cache-control header

setting 80
Connect 29
Cross-site Request Forgery. See CSRF
Cross-site Scripting (XSS) 63, 67-72
CSRF 61, 62

D
Denial of Service (DoS) 58, 73
deserializeUser function 38
directives 74
Domains 23

E
e-mail field 65
Ecma Script 12
encodeURI() function 71

error handling 51, 52
ES5

features 13-20
European Computer Manufacturers

Association. See Ecma Script
eval() function 12, 71
event loop's responsiveness

monitoring 59, 60
Express 55 29-31

F
Facebook Developers 43
Function constructor 13

G
gender field 65

H
helmet 73
HTTP Basic Authentication 31-35
HTTP Digest Authentication 34
HTTP Strict Transport Security (HSTS) 77

I
input validation 63
Inter-Process Communication. See IPC
IPC 60

J
JSHint 21
JSON.parse() function 56

[82]

K
keywords 74

M
Microsoft Developer Network (MSDN) 79

N
name field 65, 66
nginx web server 7
Node.js

about 5
applications, securing 9
considerations 21-24
features 6-8
history 5

Node.js applications
securing 9

Node Security Project 26
npm modules 26
npm (Node Packaged Modules) 5

O
OAuth 41-44
Object.create() function 18
Object.defineProperty() function 16
Object.freeze() function 20
Object.preventExtensions() function 19
Object.seal() function 19
OpenID 39, 40
Open Web Application Security Project

(OWASP) 47, 72

P
Passport.js 35-38
process.exit() function 23

R
request size

limiting 55, 56
Ruby 31

S
sameorigin option 78
security logging 47-50
security-related HTTP headers

about 73
cache-control 80
cache-control header, setting 80
Content Security Policy (CSP) 73-77
HTTP Strict Transport Security (HSTS) 77
Same-Origin Policy (SOP) 73
X-Content-Type-options 79
X-Frame-options 78
X-XSS-protection 79

serializeUser function 38
Simple Notification Service. See SNS
Sinatra 31
SNS 49
static analysis 20
streams

about 57
using, instead of buffering 57, 58

U
uncaughtException event 23, 25
uniform resource identifier (URI) 31

V
vm module 13

W
website field 65
winston module 49

X
X-Content-Type-Options 79
X-Frame-Options 78
X-XSS-Protection 79

Thank you for buying
Node Security

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Node Cookbook
ISBN: 978-1-84951-718-8 Paperback: 342 pages

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node

1. Packed with practical recipes taking you
from the basics to extending Node with
your own modules

2. Create your own web server to see Node’s
features in action

3. Work with JSON, XML, web sockets, and make
the most of asynchronous programming

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6 Paperback: 146 pages

Learn how to easily automate testing of your web
apps using Node.js, Zombie.js and Mocha

1. Use automated tests to keep your web app rock
solid and bug-free while you code

2. Use a headless browser to quickly test your
web application every time you make a small
change to it

3. Use Mocha to describe and test the capabilities
of your web app

Please check www.PacktPub.com for information on our titles

Node Web Development
ISBN: 978-1-84951-514-6 Paperback: 172 pages

A practical introduction to Node, the exciting new
server-side JavaScript web development stack

1. Go from nothing to a database-backed web
application in no time at all

2. Get started quickly with Node and discover
that JavaScript is not just for browsers anymore

3. An introduction to server-side JavaScript with
Node, the Connect and Express frameworks,
and using SQL or MongoDB database back-end

HP Network Node Manager 9:
Getting Started
ISBN: 978-1-84968-084-4 Paperback: 584 pages

Manage your network effectively with NNMi

1. Install, customize, and expand NNMi
functionality by developing custom features

2. Integrate NNMi with other management
tools, such as HP SW Operations Manager,
Network Automation, Cisco Works, Business
Availability center, UCMDB, and many others

3. Navigate between incidents and maps to
reduce troubleshooting time

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Node.js
	History of Node.js
	How Node.js differs?
	Securing Node.js applications
	Summary

	Chapter 2: General Considerations
	JavaScript security
	ES5 features
	Strict mode
	Object property descriptors

	Static program analysis
	Considerations for Node.js
	Callback errors
	EventEmitter error handling
	Uncaught exceptions
	Domains
	Process monitoring

	npm modules (third-party code)
	Summary

	Chapter 3: Application Considerations
	Introduction to Express
	Authentication
	HTTP Basic Authentication
	HTTP Digest Authentication
	Introducing Passport.js
	OpenID
	OAuth

	Authorization
	Security logging
	Error handling
	Summary

	Chapter 4: Request Layer Considerations
	Limiting request size
	Using streams instead of buffering

	Monitoring the event loop's responsiveness
	Cross-site Request Forgery
	Input validation
	Summary

	Chapter 5: Response Layer Vulnerabilities
	Cross-site Scripting (XSS)
	Denial of Service
	Security-related HTTP headers
	Content security policy
	HTTP Strict Transport Security (HSTS)
	X-Frame-Options
	X-XSS-Protection
	X-Content-Type-Options
	Cache-Control

	Summary

	Index

