
www.allitebooks.com

http://www.allitebooks.org

Oracle 10g/11g Data and
Database Management Utilities

Master twelve must-use utilities to optimize the
efficiency, management, and performance of your daily
database tasks

Hector R. Madrid

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle 10g/11g Data and Database Management Utilities

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2009

Production Reference: 1220609

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847196-28-6

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Hector R. Madrid

Reviewers
Hans Forbrich

Peter McLarty

Ulises Lazarini

Acquisition Editor
James Lumsden

Development Editor
Dhiraj Chandiramani

Technical Editor
John Antony

Indexer
Rekha Nair

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Priya Mukherji

Project Coordinator
Leena Purkait

Proofreader
Lesley Harrison

Production Coordinator
Dolly Dasilva

Cover Work
Dolly Dasilva

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hector R. Madrid is a highly respected Oracle professional with 20 years of
experience as a full time DBA. He has been working with Oracle databases from
version 5.0 up to the latest 11g release. He was the first Oracle Certified Master in
Latin America and he holds the Oracle Certified Professional certificate for all Oracle
versions starting with 7.3 up to 11g.

He obtained a bachelor's degree in Electronic Engineering from the Metropolitan
Autonomous University in 1992, with a major in Digital Systems and Computers.
He obtained a Master's degree in Computer Science from the same University.
He has collaborated with Oracle Corp. as an instructor teaching the database track
since 1996.

Hector works as a database consultant for several major firms, dealing with a
wide range of DBA requirements, ranging from daily DBA tasks to defining and
maintaining mission critical and high availability systems.

He has presented different technical papers at several Oracle conferences. He is the
author of the Blog 'Oracle by Madrid' a Blog specializing in Oracle database topics.

To my parents Higinio Rivera and Teresa Madrid who taught me the
basis of who I am now.

My wife Claudia and my daughter Alexandra for their extraordinary
patience and support during the development of this book

Hans Forbrich, a respected Oracle ACE Director, who has forged
each letter of this title with knowledge and experience, for his
valuable technical feedback and all his comments both in this book
and in general in the Oracle community.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Hans Forbrich has been around computers for 40 years. Indeed, while studying for
his BSc EE in the 1970s he worked as a contract programmer to help pay for school.
Hans has been working with Oracle products since 1984. In the field service group
at Nortel he was introduced to Oracle Database version 4. He joined Oracle Canada
to work in the Communications vertical from 1996 to 2002. In 2003 Hans started
Forbrich Computer Consulting Ltd., which has become a successful international
Oracle consultancy and Oracle training partner based in St. Albert, near Edmonton,
Alberta, Canada.

As an Oracle ACE Director and OCP, Hans frequently responds in various
Oracle Forums, teaches for Oracle University, consults with Oracle customers
on maximizing value from Oracle licenses, and speaks at Oracle User Group
conferences around the world. He holds a strong belief that Oracle products provide
significant value and the key to extracting that value—and reducing the effective cost
of the product—is in understanding the product and using the right tool for the job.

I thank my wife of 27 years for her patience, especially while
I experiment in the lab. And also, I thank my two sons for their
patience, their assistance at computer setups, and help with those
same experiments. (I am proud to note that Son #1, aka Employee
#2, aka Chief Network & Systems Administrator, has achieved his
MSc EE this past year!) Finally I thank Edmonton Opera and my
colleagues there for allowing me to break away from computers
and unwind on stage with the Edmonton Opera Chorus.

www.allitebooks.com

http://www.allitebooks.org

Peter McLarty has worked with technology for over 25 years. He has been working
with Unix and databases for over 10 years with 8 years experience as an Oracle DBA.
Peter has worked with Oracle 7.3 through to Oracle 11. Peter has a number of years
experience supporting Oracle Application Server. He has experience with RAC
and Oracle Maximum Availability Architecture. Peter maintains his own web site
with articles about many topics of interest to him and not always about databases
or Oracle. Peter has a diverse background in IT supporting his DBA skills and is
now involved in Architecture and System Assurance. Peter works for Pacific DBMS,
whose office is in Margate, Queensland. Peter is married with 2 children, and several
pets to support. When he is not doing things with computers he likes to follow his
football team or study things about Asia and learn Thai.

I would like to thank my family for giving me peace to review
this book.

Ulises Lazarini is the president of Consultoria Informatica Lazarini, and a partner
of Oracle with more than 10 years experience of working with Oracle databases.
He has also been an OCP member since Oracle 7.3.4, 8, 8i, 9i, 10g, and so on.

He has been an Oracle instructor in the kernel field for more than 12 years. Ulises has
been a speaker at Oracle Open World (September 2008, "Migration from Siebel 7.8
running on SQL Server to Oracle 10g RAC") and a DBA Consultant on two successful
Oracle database cases. He has been very active in installing and monitoring RAC
environments for OLTP and data warehouse databases.

He has been responsible for high availability on global databases.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Data Pump 9

Data Pump features 9
Data Pump architecture 10
Setting up the practical scenarios 11
Data Pump export 12

Data Pump export modes 12
A simple Data Pump export session 14
Data Pump export filtering operations 15
Use of parameter file 16
Retrieve original data 17
Data Pump export space estimation 19
Dump file multiplexing 20
Transporting data among different versions 21
Data Pump export interactive mode 22

Data Pump restart capability 25
Getting information about the export job 25
Data Pump import 26

Remap function 27
Data Pump import network mode 29

Improving performance with Data Pump 31
Working with the Data Pump API 31
Data Pump 11g new features 33

Compression 33
Encrypted dump file sets 33
Enhancements for Data Pump External Tables 33
Single partition transportable for Oracle Data Pump 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Overwrite dump files 34
XML Datatypes 34

Summary 34
Chapter 2: SQL*Loader 35

SQL*Loader basics 36
Preparing the demo environment 38

Our first simple load 39
The SQL*Loader log file 40
Fixed record size format load 42
Variable record size format load 44
Stream record format load 44

Specifying a particular character set 46
Load on the fly 48
Direct path versus Conventional path load 49

Direct path load pros 51
Direct path load cons 51

Loading Large Objects (LOBs) 52
Loading multimedia files 54
Resumable load 56
Parallel load 60
General performance booster tips 61
Summary 62

Chapter 3: External Tables 63
The External Table basics 64
Let's setup the environment 65

A basic External Table 67
Creating External Table metadata, the easy way 70
Unloading data to External Tables 73

Inter-version compatibility 74
Data transformation with External Tables 76

Extending the alert.log analysis with External Tables 80
Reading the listener.log from the database 84

Mapping XML files as External Tables 87
Dynamically changing the external reference 88
Oracle 11g External Table enhancements 89
Summary 89

Chapter 4: Recovery Manager Advanced Techniques 91
Recovery Manager basics 92

Getting started with a Recovery Manager session 93
Format masks used by recovery manager 100

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

What happens in a user-managed online backup? 101
Myths related to the online backup method 103

Configuring a multiplexed backup 104
Configuring the RMAN recovery catalog 106
A simple backup session 108

Backup compression 109
Fast backup compression 109
Improving data set compression with the ZLIB algorithm (11g only) 111

Faster backups through intra-file parallel backup
and restore operations (11g only) 113
Block media recovery 114
Backup duration and throttling 117
Database cloning 118

Database cloning procedure 119
Database cloning on the fly (11g only) 121

Inter-platform database migration 123
Migrate to and from an ASM environment 127
General backup advices 128
Summary 129

Chapter 5: Recovery Manager Restore and Recovery Techniques 131
Oracle database recovery 131

Instance failure 132
Media failure 132
Complete recovery 133
Incomplete recovery 134

Loss of data files 137
Queries used to diagnose data files 137
Loss of a non-critical datafile 139
Loss of a temporary datafile 143

Managing temporary datafiles 144
Loss of a critical datafile 145

Loss of redo log files 148
Loss of the inactive redo log group 150
Loss of the current redo log group 151

Test restore 156
Crosscheck command 158
Nologging considerations 159
Summary 161

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 6: Session Management 163
User sessions in a dedicated server architecture 164

Instance self registration process 165
Blocking sessions 166

Optimistic versus pessimistic locking 168
Row lock contention monitoring 168
Killing sessions 172
Deadlock handling 174
Sniped sessions 175
Orakill 177

Services 179
Resource Manager 181

Resource Manager Elements 182
Configuring resources assigned to users 183
Configuring resources assigned to services 184

Creating the database user 184
Service names definition 184
Listener verification 185
TNS entry configuration 185
Resource consumer group creation 187
Service mapping 188
Resource plan definition 190
Resource manager plan activation 190
Testing and monitoring 191

Active Session History (ASH) 193
Session monitoring, the traditional way 196
Summary 198

Chapter 7: Oracle Scheduler 199
Oracle Scheduler concepts 200
Getting started with the Oracle Scheduler 203

Required privileges 203
Scheduling our first job 204

Creating the job 205
Specifying procedure arguments 207
Enabling the job schedule 208
Using Enterprise Manager 208

Time expression syntax 211
The repeat interval 211
Regular schedule 211
Combined schedule 216

Exclude scenario 217
Include scenario 218

Table of Contents

[v]

Intersect scenario 220
Time expression examples 221

Programs 222
Creating programs manually 223
Defining a program using Enterprise Manager 224

Schedules 225
Jobs and Job Classes 226
Managing the Scheduler 228

Enable or disable components 229
Managing job logs 229

Monitor a Job Execution 229
Purging the job log 232

Data dictionary related views 233
Summary 234

Chapter 8: Oracle Wallet Manager 235
The Oracle Wallet Manager 235

Creating the Oracle Wallet 237
Enabling Auto Login 237
mkwallet, the CLI OWM version 238
Managing Wallets with orapki 239

Oracle Wallet Manager CSR generation 242
Storing the Oracle Wallet in the Windows registry 245

Save Wallet to the registry 245
Open the Wallet from the registry 246
Save as to a different registry location 246
Open the Wallet from the registry, save it to the file system and vice versa 247
Delete the Wallet from the registry 247
Configuring the Wallet location 247

Storing the Wallet in an LDAP server 248
Uploading the Wallet to an LDAP server 248
Downloading the Wallet from LDAP 249

Using certificates for authentication 250
Public Key Infrastructure tools 250

Using the Oracle Wallet to store database credentials 250
Summary 254

Chapter 9: Security Management 255
Using the Oracle Wallet to encrypt backups 255

Recovery Manager encryption 256
Using the transparent mode 256
Using the password mode 259

Table of Contents

[vi]

Using the dual mode 262
RMAN backup shredding (11g only) 263
Data pump encryption 263

The enterprise user 264
Configuring the environment 266

How Oracle SSO works 266
Configure access to the LDAP directory 267
Registering the database against the OID 268
Shared schema 269

Summary 273
Chapter 10: Database Configuration Assistant 275

DBCA 276
Database creation 277

Database templates 277
Database identification 278
Management options 279
Database credentials 280
Storage options 280
Database file locations 280
Database content 281
Initialization parameters 282

Memory 282
Character sets 283
Connection mode 284

Database storage 284
Creation options 285

Database edition 286
Database template management 287

Template management operations 288
Creating a seed database out of a current database 289
Database related file location 290
Migrating a single instance database to RAC 292

Automatic Storage Management configuration 292
ASM 292
How to setup ASM using DBCA 293

Select the Configure ASM option 294
Run the localconfig shell script as root 294
Set the SYS password and the ASM instance parameters 295
Setup disk groups 296
ASM disk group's validation 298

Setting up ASM in a Windows environment 299

Table of Contents

[vii]

ASM setup 299
Disk layout 300
Logical partitions 300
Setup ASM 300

DBCA, Batch mode 301
DBCA response file example 302
Where can you get a DBCA response file 303

Summary 305
Chapter 11: Oracle Universal Installer 307

OUI basics 307
OUI components 308
Setting up a stage area 310

DVD distribution 310
Troubleshooting an installation session 311
Oracle Universal Installer JRE 312
OUI system requirements 313

OUI basic and advanced installation modes 313
OUI Basic Installation 314
Licensed installed options 315
OUI Advanced Installation 315

Modes of installation 317
OUI command line parameters 317

Command line variables usage 321
Silent installation mode 322

The response file structure and syntax 323
Customizing a response file 324
Creating a response file out from an actual installation 325
The Batch installation, step by step 325
Creating a response file to perform a batch deinstallation 329

The oraparam.ini file 331
OUI return codes 332
Installing Oracle from the Web 332
Recovering a lost Inventory 333
Cloning Oracle Home using OUI 335
Summary 335

Chapter 12: Enterprise Manager Configuration Assistant 337
Enterprise Manager Components 338

Differences between EM DB Control and EM Grid Control 339
Enterprise Manager configuration 340

How to find out if the console components are currently installed 340
Console setup prerequisites 341

Table of Contents

[viii]

Configuring EM using DBCA 342
Manually configuring Enterprise Manager with EMCA 344
Manually assigning EM managing ports 348

EMCA Command Line Interface 351
EMCA commands 352
EMCA flags 353
EMCA general Command-Line Parameters 354
EMCA backup parameters 355
EMCA ASM parameters 355
EMCA Cluster (RAC) parameters 355

EMCA 10g Release 1 356
EMCA 10gR1 syntax 356
EMCA 10gR1 options 356
EMCA 10gR1 parameters 357
EMCA 10gR1 RAC parameters 358
EMCA silent mode 358

EM directory structure 359
EMCA log files 361
The SYSMAN configuration files 361
The SYSMAN log files 361

Environment changes 363
Changing the IP address or host name 364
Changing administrative passwords 364

Changing SYSMAN password 365
Changing DBSNMP password 366

Securing Enterprise Manager 367
Summary 368

Chapter 13: OPatch 369
OPatch 369
Downloading the latest OPatch version 370
OPatch requirements 371
OPatch syntax 372

OPatch options 373
Oracle maintenance using OPatch 373
Applying a single patch using OPatch 374
Querying the Oracle inventory 376
Rolling back a failed OPatch session 376
Considerations after applying a patch 377
OPatch in Oracle 11g 378
Oracle Configuration Manager Registration 380

Table of Contents

[ix]

Critical Patch Updates 381
Find out the installed patches 381
Critical Patch Advisory 383

Hot patching (11g only) 383
Troubleshooting OPatch 384

PATH environment variable 384
OPatch log files 384

Using Enterprise Manager for software maintenance 385
Enterprise Manager Metalink configuration 385
Refresh from Metalink Job 386
Downloading and staging patches 389
The Patch Cache 391

Managing Patches in EM 11g 392
Patch Advisor 394

Critical Security Patches 394
Feature based patching 395

View Patch Cache 396
Patch prerequisites 396
Stage patch 397
Apply patch 397

Summary 398
Index 399

Preface
Does your database seem complicated? Are you finding it difficult to work with
it efficiently? Database administration is part of a daily routine for all database
professionals. Using Oracle Utilities, administrators can benefit from improved
maintenance windows, optimized backups, faster data transfers, and more reliable
security, and can in general do more with the same time and resources.

You don't have to reinvent the wheel, just learn how to use Oracle Utilities
properly to achieve your goals. That is what this book is about; it covers topics
which are oriented towards data management, session management, batch
processing, massive deployment, troubleshooting, and how to make the most out
of frequently used DBA tools to improve your daily work.

Data management is one of the most frequently required tasks; doing a backup
is a must-do task for any company. Data management includes several tasks
such as data transfers, data uploading and downloading, reorganizing data, and
data cloning, among many others. If people learn to use a tool and things appear
to go well, few will question if their approach is optimal. Often it is only when
maintenance windows start shrinking; due to the ever increasing amount of data
and need for business availability, that problems with any particular approach get
identified. People tend to get used to using the old export/import utilities to
perform data management and if it works, they probably will consider the problem
solved and continue to use an obsolete tool. This book explores further possibilities
and new tools. It makes the user question if his/her current environment is
optimized and teaches the reader how to adopt more optimized data management
techniques focusing on the tools and requirements most frequently seen in modern
production environments.

Preface

[2]

What this book covers
Chapter 1 deals with Data Pump. Data Pump is a versatile data management tool.
It is much more than just an exp/imp upgrade; it allows remapping, dump file
size estimation, restartable tasks, network transfers, advanced filtering operations,
recovering data after a commit has been issued, and transferring data files among
different oracle versions. It includes a PL/SQL API so it can be used as a base to
develop data pump-based systems.

Chapter 2 involves a description of the SQL*Loader. It describes how SQL* Loader
is the tool to upload plain text format files to the database. If SQL* Loader properly
configured, you can greatly increase the speed with which uploads are completed.
Loading data to take care of the character set will avoid unnecessary headaches, and
you can optimize your loading window. There are several tips and tricks to load
different character sets to the database and load binary data to BLOB fields. This tool
can be used to load data on the fly and you will learn how to proactively configure it
to get a smooth load.

Chapter 3 is all about External Tables. The external table is a concept Oracle
introduced in 9i to ease the ETL (Extraction Transformation and Loading) DWH
process. An external table can be created to map an external file to the database so
you can seamlessly read it as if it was a regular table. You can extend the use of the
external tables concept to analyze log files such as the alert.log or the network log
files inside the database. The external table concept can be implemented with the
Data Pump drivers; this way you can easily and selectively perform data transfers
among databases spanning different Oracle versions.

Chapter 4 specializes in advanced techniques involved in optimizing the Recovery
Manager. Recovery Manager can be optimized to minimize the impact in production
environments; or it can run faster using parallel techniques. It can be used to clone a
database on the same OS or transport it over different platforms, or even change the
storage method between ASM and conventional file system storage and vice versa.

Chapter 5 talks about the Recovery Manager. Recovery manager first appeared back
in 8.0, but it was not until 9i that it began to gain popularity among DBAs as the
default backup/recover tool. It is simple and elegant and the most frequently used
commands are pretty simple and intuitive. This chapter presents several practical
database recovery scenarios.

Preface

[3]

Chapter 6 is about Session Management. The users are the main reason why the
DBA exists. If it were not for the users, there would be no database activity and there
would be no problems to be solved. How can you easily spot a row lock contention
problem? What should be done to diagnose and solve this problem? What does it
mean to kill a user session? Managing sessions means you can regulate them by
means of Oracle profiles; this may sooner or later lead to snipped sessions; what are
those snipped sessions? How do you get rid of them? This chapter discusses several
user session management issues.

Chapter 7 talks about the Oracle Scheduler. The Oracle Scheduler is a powerful tool
used to schedule tasks in Oracle. This tool can perform simple schedules as well
as complex schedules; you need to understand time expressions and the Oracle
scheduler architecture to take advantage of this utility.

Chapter 8 will teach you about Oracle Wallet Manager. Oracle Wallet Manager is
the cornerstone and entry point for advanced security management. You can use
it to manage certificates and certificate requests. You can store identity certificates
and retrieve them from a central location, or you can use the registry in a Windows
environment. You can hide passwords without using OS Authentication mechanisms
by storing the user password inside the wallet.

Chapter 9 deals with security of the system. Most people worry about having
a valid backup that can be used to effectively recover data, but not all of them are
concerned about the backup security; if a backup can be used to recover data, this
doesn't actually mean the data will be recovered at the same site where it was taken
from. OWM is a tool which can be used to have the backup encrypted, so sensitive
data can be secured not only from the availability point of view, but also from the
confidentiality point of view. Security has to do also with identifying who the real
user is; this can be achieved with the enterprise user. This chapter explains step by
step how to set up an environment with enterprise identity management using the
Enterprise Security Manager.

Chapter 10 talks about Database Configuration Assistant. Creating a database is
one of the first tasks the user performs when installing Oracle, but this tool goes far
beyond the simple task of creating the database; it can be used to manage templates,
create a database in silent mode, and configure services in an RAC environment.
Configuring database options and enabling the Enterprise Manager DB Control can
be done here. DBCA is also the easy way to start up and configure an Automatic
Storage Management (ASM) environment.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Chapter 11 provides details about the Oracle Universal Installer. Installing Oracle
is more than just a next → next button pressing activity; OUI is a tool to manage
software. Most people care about database backups, as well as configuration file
backups, but what about the Oracle installer repository? This set of files is most often
underestimated unless a hardware failure makes the DBA understand what Oracle
software maintenance is. OUI can perform silent and batch installations; it can also
perform installations from a central software depot accessible through the Web.

Chapter 12 is about the Enterprise Manager Configuration Assistant. Most DBAs use
EM as the basic DBA administration tool; it is a very intuitive database management
console. Most people depend on it to easily perform most of the administration
and operation tasks that otherwise would be time consuming to complete through
character console mode. But what happens when it is not available, either because of
a change in the network topology or a firewall that restricts access to the managing
port? Then the user needs to have the console reconfigured to bring it back into
operation. EMCA is the character mode tool used to perform this task.

Chapter 13 talks about OPatch. Patching the RDBMS is required to keep the software
up to date. When a patchset is to be applied OUI is used, but when a single patch or
a CPU is to be applied OPatch must be used. You will learn how to perform a basic
patch application task, list the patch inventory, find out if a patch has already been
applied, maintain the software and the software inventory, and learn how and when
to perform a patch application while the database is up and running.

What you need for this book
This book requires the reader to know the basics of SQL, and have some experience
with Oracle 10g and 11g databases.

This book covers an Oracle database installation on Linux, although the techniques
detailed are equally applicable to other operating systems.

Who this book is for
This book is aimed at all Oracle professionals who wish to employ must-use data
and database utilities, and optimize their database interactions.

Entry-level users can acquaint themselves with the best practices needed to get jobs
done in a timely and efficient manner. Advanced users will find useful tips and
How-Tos that will help them focus on getting the most out of the database, utilities,
and fine-tune batch process.

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code will be set as follows:

BEGIN
 dbms_resource_manager_privs.grant_switch_consumer_group(
 grantee_name => 'SCOTT',
 consumer_group => 'OLTP',
 grant_option => FALSE
);
END;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

ALPHA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1522))
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = alpha)
)
)

Any command-line input or output is written as follows:

orapki wallet create -wallet <Path to Wallet>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "From the
main menu choose the Operations menu and then select the Add Certificate Request
submenu, a form as shown in the following screenshot will be displayed where you
can capture specific information.".

Preface

[6]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/6286_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Data Pump
Storage technology is improving day by day, and the more storage that becomes
available at a low cost, the more data appears to fill it up. Managing high volumes
of data becomes impractical if we take the traditional export/import approach, as
this tool is very limited. Let's remember that export/import has been available in
Oracle for a very long time, it dates back to Oracle Release 5, and it has been adapted
to incorporate some meaningful new features. When 10g first appeared, a complete
re-engineering took place and a new product was conceived to meet today's data
management requirements. It was the Data Pump.

Data Pump allows better manageability, and performance; it can be parameterized
to meet particular data management requirements, such as direct export/import
operations between different databases (or even different versions, starting with 10g
Release 1). It can remap data object definitions, and access them by means of either
a Command Line Interface (CLI) batch or interactive interface. In turn, the data
pump Application Programming Interface (API) allows a programmer to embed
data pump code inside a regular PL/SQL application so that it manages its own
data without requiring a direct Database Administrator (DBA) or Database Owner
(DBO) intervention.

Data Pump features
Data Pump provides these features:

•	 Better performance and more manageability than the old export/import
•	 It is a server side tool
•	 Resume / suspend control
•	 Network Mode
•	 Restartable
•	 Fine grained object Selection
•	 Provides a Metadata API

Data Pump

[10]

Oracle Data Pump is a facility available since Oracle 10g Release 1. It first appeared
back in 2003. It enables high speed data and metadata transfers. It is an efficient,
manageable, adaptive tool that can be used in more than one mode; namely, the
regular command line interface, the suspended mode, the network mode, and the
PL/SQL API mode. Besides the CLI interface, it is used by Enterprise Manager,
SQL*Loader (by means of the external data pump table driver), the PL/SQL API,
and other clients.

Data Pump is a productive tool designed to make the DBA's life easier. It can be
easily set to a suspended mode and brought back to work wherever it was stopped.
A session does not need an interactive connection to perform data management,
so it can leave an unattended job and it can be resumed any time. This tool doesn't
need to generate a file to transfer data in a database-to-database mode; it is the so
called network mode, which is very useful when a single load is performed. When
this data transfer mode is used, data does not have to be erased afterwards as there
is no intermediate file created to move the data. The network mode is similar to
the conventional named pipes which are used to perform data transfers on the fly;
however, this traditional approach is not available on all Operating Systems (OSes)
(Windows does not support named pipes). If a task is launched, even if a degree
of parallelism hasn't been specified, it can be modified at run time, so resource
consumption can be increased or decreased at will.

Data Pump allows high speed data movement from one database to another. The
expdp command exports data and metadata to a set of OS files known as a dump
file set. Compared with the traditional export/import tool set, Data Pump allows a
DBA to easily clone accounts, move objects between tablespaces and change other
object features at load time without being required to generate an SQL script to have
the object modified, rebuilt and loaded. This kind of on-the-fly object redefinition is
known as the remap feature. Data Pump performance is significantly better than that
of the old export/import tools.

Data Pump architecture
Data Pump is a server side tool; even if it is remotely invoked, all the command
actions and file generation will take place on the host where the database resides,
and all directory objects refer to paths in the server. Oracle Data Pump requires
a Master Table which is created in the user's schema when a Data Pump session
is open. This table records the Data Pump's session status and if the job has to be
stopped (either on purpose or due to an unexpected failure), the Data Pump knows
where it was when it is brought back to work. This table is automatically purged
once the job is finished. The master table will match the job name given, by means of
the command line parameter job_name, or Oracle can choose to generate a name for
it, in case this parameter hasn't been defined.

Chapter 1

[11]

expdp impdp Enterprise Manager Other clients

DBMS_DATAPUMP
[API to Oracle's data and metadata movement engine]

Oracle_Loader Oracle DataPump Direct
Path API

DBMS_METADATA
[Metadata API]

External Table API

Oracle Data Pump

Oracle Data Pump has a master process that is responsible for orchestrating the data
pump work. This master process is automatically created when either an impdp or
expdp is started. Among other things, this process is responsible for populating the
master table and spawning several worker processes (in case Data Pump has been
directed to work in parallel mode).

Setting up the practical scenarios
Data Pump is a server side tool. In order for it to work with the remote file system it
requires an access to the file by means of Oracle directory objects. On the database
you must create directory objects and make sure the physical paths at the OS level
are readable and writable by the oracle user. The examples provided assume a
default database was created with the default oracle demo schemas; we'll be using
the SCOTT, HR, SH, and OE demo schemas; when the database is created make sure
the default demo accounts are selected.

Let's connect with the SYS administrative account by means of a regular SQL
command line interface session, in this example the SYS user is used only for
demonstration purposes, and the goal of SYS is to create the directory objects and
grant privileges on these directories to the demo users. You can use any user who
has been granted privileges to read and write on a directory object.

$ sqlplus / as sysdba

Data Pump

[12]

Let's create two directories, one for the default dump files and the other for the
default log dest:

SQL> create directory default_dp_dest

 2 as '/home/oracle/default_dp_dest';

SQL> create directory default_log_dest

 2 as '/home/oracle/default_log_dest';

Some privileges are required for the users to have access to these oracle directories:

grant read, write on directory default_dp_dest to scott;
grant read, write on directory default_dp_dest to hr;
grant read, write on directory default_dp_dest to sh;
grant read, write on directory default_dp_dest to oe;

grant read, write on directory default_log_dest to scott;
grant read, write on directory default_log_dest to hr;
grant read, write on directory default_log_dest to sh;
grant read, write on directory default_log_dest to oe;

grant create database link to scott;
grant create database link to hr, oe, sh;

grant exp_full_database to scott, hr, sh, oe;

In this example, the exp_full_database privilege is granted to the demo accounts.
This is done to allow the users to work on the database, but you can restrict them to
only manage the data that belongs to their schemas.

Data Pump export
Data Pump export (expdp) is the database utility used to export data, it generates a
file in a proprietary format. The generated file format is not compatible with the one
generated by the old export (exp) utility.

Data Pump export modes
Data Pump export modes define the different operations that are performed with
Data Pump. The mode is specified on the command line using the appropriate
parameters. Data Pump has the following modes:

Chapter 1

[13]

•	 Full export mode: This mode exports the whole database; this requires the
user to have the exp_full_database role granted.

•	 Schema mode: This mode selects only specific schemas, all objects belonging
to the listed schemas are exported. When using this mode you should be
careful, if you direct a table to be exported and there are objects such as
triggers which were defined using a different schema, and this schema is not
explicitly selected then the objects belonging to this schema are not exported.

•	 Table mode: The tables listed here are exported, the list of tables, partitions,
and dependent objects are exported. You may export tables belonging to
different schemas, but if this is the case then you must have the exp_full_
database role explicitly granted to be able to export tables belonging to
different schemas.

•	 Tablespace mode: This mode allows you to export all tables belonging to
the defined tablespace set. The tables along with the dependent objects are
dumped. You must have the exp_full_database role granted to be able to
use this mode.

•	 Transportable tablespace mode: This mode is used to transport a
tablespace to another database, this mode exports only the metadata of the
objects belonging to the target set of listed tablespaces. Unlike tablespace
mode, transportable tablespace mode requires that the specified tables be
completely self-contained.

Data Pump Export provides different working interfaces such as:

•	 Command line interface: The command line interface is the default and
the most commonly used interface. Here the user must provide all required
parameters from the OS command line.

•	 Parameter file interface: In this mode the parameters are written in a plain
text file. The user must specify the parameter file to be used for the session.

•	 Interactive command line interface. This is not the same interactive
command line most users know from the regular exp command. This
interactive command line is used to manage and configure the running jobs.

www.allitebooks.com

http://www.allitebooks.org

Data Pump

[14]

A simple Data Pump export session
Now let's start with our first simple Data Pump export session. This will show us
some initial and important features of this tool.

Here we will start with a basic Data Pump session to perform a simple logical
backup. The command expdp has the following arguments:

Initially we define a Dumpfile (A). As it will be managed by means of a database
directory object (B) it is not necessary to define the path where the dump file will
be stored. Remember, the directory objects were previously defined at the database
level. This session will export a user's Schema (C). No other parameters are defined
at the command prompt and the session begins.

It can be seen from the command output that an estimation (D) takes place;
this estimates the size of the file at the file system, and as no other option for the
estimation was defined at the command line it is assumed the BLOCKS method will
be used. The estimation by means of the BLOCKS method isn't always accurate, as it
depends on the blocks sampled. Block density is a meaningful error factor for this
estimation, it is better to use STATISTICS as the estimation method.

Chapter 1

[15]

At the output log, the Master table (F) where the job running information is
temporarily stored can be seen. The job name takes a default name (E). It is a good
practice to define the job name and not let Oracle define it at execution time, if a DBA
names the Job, it will be easier to reference it at a later time.

Data Pump export filtering operations
At the command line, filtering options can be specified. In this example, it is used
to define the tables to export, but we can also specify whether the dump file will
(or will not) include all other dependent objects.

The include (A) and exclude options are mutually exclusive, and in this case as
include was declared at the command line and it requires special characters, those
must be escaped so the OS doesn't try to interpret them. When a longer include or
exclude option is required, it is better to use a parameter file, where the escape
characters are not required.

Data Pump

[16]

All the filtered objects (C) to be exported were saved in the dump file along with
their dependent objects (B). If you change the command line with the following, it
will prevent all the indexes being exported:

$ expdp hr/hr dumpfile=default_dp_dest:EmpDeptNoIndexes
tables=EMPLOYEES,DEPARTMENTS exclude=INDEX:\”LIKE \'\%\'\”
logfile=default_log_dest:EmpDeptNoIndexes

As can be seen, the exclude or include clause is actually a where predicate.

Use of parameter file
Using a parameter file simplifies an otherwise complex to write command line, it
also allows the user to define a library of repeatable operations, even for simple
exports. As previously seen, if a filtering (object or row) clause is used—some extra
operating system escape characters are required. By writing the filtering clauses
inside a parameter file, the command line can be greatly simplified.

Comparing this command line (A) against the previously exposed command lines,
it can be seen that it is more readable and manageable. The SHParFile.dpp file from
the example contains these command options:

Chapter 1

[17]

USERID=sh/sh
DUMPFILE=shSales
DIRECTORY=default_dp_dest
JOB_NAME=shSalesCompleteDump
TABLES=SALES
LOGFILE=default_log_dest:shSales

The parameter file is a plain text format file. You may use your own naming
conventions. Oracle regularly uses .par for the parameter files, in this case it used .dpp
to denote a Data Pump parameter file. The file name can be dynamically defined using
environment variables, but this file name formatting is beyond the scope of Oracle and
it exclusively depends on the OS variable management.

JOBNAME (C) is the option to specify a non-default job name, otherwise oracle will
use a name for it. It is good practice to have the job name explicitly defined so the
user can ATTACH to it at a later time, and related objects such as the Master table
(B) can be more easily identified.

Retrieve original data
In some circumstances, it may be useful to export the image of a table the way it
existed before a change was committed. If the database is properly configured,
the database flashback query facility—also integrated with dpexp—may be used.
It is useful for obtaining a consistent exported table image.

In this example a copy of the original HR.EMPLOYEES table is made
(HR.BAK_EMPLOYEES), and all the tasks will update the BAK_EMPLOYEES table
contents. A Restore Point is created so that you can easily find out the exact time
stamp when this change took place:

SQL> CREATE RESTORE POINT ORIGINAL_EMPLOYEES;

Restore point created.

SQL> SELECT SCN, NAME FROM V$RESTORE_POINT;

 SCN NAME

---------- --------------------------------

 621254 ORIGINAL_EMPLOYEES

SQL> SELECT SUM(SALARY) FROM EMPLOYEES;

SUM(SALARY)

 691400

This is the way data was, at the referred SCN. This number will be used later,
to perform the expdp operation and retrieve data as it was, at this point in time.

Data Pump

[18]

Next a non-reversible update on the data takes place.

SQL> UPDATE BAK_EMPLOYEES SET SALARY=SALARY*1.1;

107 rows updated.

SQL> COMMIT;

Commit complete.

SQL> SELECT SUM(SALARY) FROM BAK_EMPLOYEES

SUM(SALARY)

 760540

Here we have a time reference and the goal is to restore data as it was.

Below are the contents of the data pump parameter file used to retrieve data.

USERID=hr/hr
DIRECTORY=default_dp_dest
DUMPFILE=hrExpAtRestorePoint
JOB_NAME=hrExpAtRestorePoint
TABLES=BAK_EMPLOYEES
LOGFILE=default_log_dest:hrExpAtRestorePoint
FLASHBACK_SCN=621254

The parameter FLASHBACK_SCN states the point in time from when the table is to
be retrieved.

Chapter 1

[19]

Once the backup is taken, the current table is dropped. When the import takes place
it rebuilds the table with the data, as it was before. The import parameter file has
been temporarily modified so it defines the log file name, and it includes only the
minimum required parameters for the impdp task (C).

USERID=hr/hr
DIRECTORY=default_dp_dest
DUMPFILE=hrExpAtRestorePoint
JOB_NAME=ImpAtRestorePoint
TABLES=BAK_EMPLOYEES
LOGFILE=default_log_dest:hrImpAtRestorePoint

Once the import job is finished, a query to the current table shows the data 'as it was',
prior to the update command.

SQL> select sum(salary) from bak_employees;

SUM(SALARY)

 691400

Data Pump export space estimation
Proactively estimating the amount of space required by an export file prevents
physical disk space shortages. Data Pump has two methods to estimate the space
requirements: Estimation by block sampling (BLOCKS) or estimation by object
statistics (STATISTICS).

ESTIMATE={BLOCKS | STATISTICS}

•	 BLOCKS—The estimate is calculated by multiplying the number of database
blocks used by the target objects times the appropriate block sizes.

•	 STATISTICS—The estimate is calculated using statistics for each table.
For this method to be as accurate as possible, all tables should have been
analyzed recently.

The second method leads to more accurate results and can be performed in a more
efficient way than the BLOCKS method; this method requires reliable table statistics.

Data Pump

[20]

It can be seen from an export execution, that space estimation is always carried out,
and the default estimation method is BLOCKS. The BLOCKS method is used by default
as data blocks will always be present at the table, while the presence of reliable
statistics cannot be taken for granted. From performance and accuracy perspectives
it is not the best choice. It takes longer to read through the whole table, scanning the
data block to estimate the space required by the dump file. This method may not be
accurate as it depends on the block data distribution. This means that it assumes all
block data is evenly distributed throughout all the blocks, which may not be true
in every case, leading to inaccurate results. If the STATISTICS keyword is used, it is
faster; it only has to estimate the file size from the information already gathered by
the statistics analysis processes.

Taking the export of the SH schema with the ESTIMATE_ONLY option and the option
BLOCKS, the estimation may not be as accurate as the STATISTICS method. As these
test results shows:

ESTIMATE_ONLY Reported Estimated Dump File Size
BLOCKS 15.12 MB
STATISTICS 25.52 MB
ACTUAL FILE SIZE 29.98 MB

From the above results, it can be seen how important it is to have reliable statistics
at the database tables, so any estimation performed by data pump can be as accurate
as possible.

Dump file multiplexing
Data Pump export is an exporting method that is faster than the old exp utility.
Export speed can between 15 and 45 times faster than the conventional export utility.
This is because the original export utility uses only conventional mode inserts,
whereas Data Pump export uses the direct path method of loading, but in order
for it to reach the maximum possible speed it is important to perform the parallel
operations on spindles other than those where the database is located. There should
be enough I/O bandwidth for the export operation to take advantage of the dump
file multiplexing feature.

Chapter 1

[21]

The options used to generate an export dump in parallel with multiplexed dump
files are:

USERID=sh/sh
DUMPFILE=shParallelExp01%u,shParallelExp02%u
DIRECTORY=default_dp_dest
JOB_NAME=shParallelExp
TABLES=SALES
LOGFILE=default_log_dest:shParallelExp
ESTIMATE=statistics
PARALLEL=4

Notice the %u flag, which will append a two digit suffix to the Data Pump file. These
options will direct export data pump to generate four dump files which will be
accessed in a round robin fashion, so they get uniformly filled.

The resulting export dump files are:

shParallelExp0101.dmp
shParallelExp0102.dmp
shParallelExp0201.dmp
shParallelExp0202.dmp

Transporting data among different versions
Data Pump allows data transfers among different Oracle versions that support
the feature. (Note the feature was introduced in Oracle Database 10g Release. 1).
The database must be configured for compatibility of 9.2.0 or higher. This feature
simplifies data transfer tasks. In order for this to work it is important to consider the
source version versus the destination version. It works in an ascending compatible
mode, so a Data Pump export taken from a lower release can always be read by the
higher release, but an export taken from a higher release must be taken with the
VERSION parameter declaring the compatibility mode. This parameter can either take
the value of COMPATIBLE (default) which equals the compatible instance parameter
value, LATEST, which equals the metadata version or any valid database version
greater than 9.2.0. This last statement doesn't mean Data Pump can be imported on
a 9.2.0 database. Rather, it stands for the recently migrated 10g databases which still
hold the compatible instance parameter value set to 9.2.0.

If the COMPATIBLE parameter is not declared an export taken from a higher release
won't be read by a lower release and a run time error will be displayed.

Data Pump

[22]

When performing data transfers among different database versions, you should be
aware of the Data Pump compatibility matrix:

Data Pump client and server compatibility:

expdp and impdp
client version

10.1.0.X 10.2.0.X 11.1.0.X

10.1.0.X Supported Supported Supported
10.2.0.X NO Supported Supported
11.1.0.X NO NO Supported

Each Oracle version produces a different Data Pump file version, when performing
expdp/impdp operations using different Data Pump file versions you should be
aware of the file version compatibility.

Version Data
Pump Dumpfile
Set

Written by
database with
compatibility

Can be imported into Target
10.1.0.X 10.2.0.X 11.1.0.X

0.1 10.1.X Supported Supported Supported
1.1 10.2.X No Supported Supported
2.1 11.1.X No No Supported

Data Pump export interactive mode
Data Pump is meant to work as a batch utility, but it also has a prompt mode,
which is known as the interactive mode. It should be emphasized that the
data pump interactive mode is conceptually different from the old interactive
export/import mode. In this release, the interactive mode doesn't interfere with
the currently running job, it is used to control some parameter of the running job,
such as the degree of parallelism, kill the running job, or resume job execution in
case of a temporary stop due to lack of disk space.

In order for the user to ATTACH to a running job in interactive mode, the user must
issue the Ctrl-C keystroke sequence from an attached client. If the user is running on
a terminal different from the one where the job is running, it is still possible to attach
to the running job by means of the explicit ATTACH parameter. It is because of this
feature that it is useful to not let Oracle define the job name.

Once attached there are several commands that can be issued from the open
Data Pump prompt:

Chapter 1

[23]

Command Description (Default)
CONTINUE_CLIENT Return to logging mode. Job will be re-started if idle
EXIT_CLIENT Quit client session and leave the job running
HELP Summarize interactive commands
KILL_JOB Detach and delete job
PARALLEL Change the number of active workers for current job

PARALLEL=

START_JOB Start/resume current job. START_JOB=SKIP_CURRENT will
start the job after skipping any action which was in progress
when job was stopped

STATUS Frequency (seconds) job status is to be monitored where
the default (0) will show new status when available
STATUS=[interval]

STOP_JOB Orderly shutdown of job execution and exits the client.
STOP_JOB=IMMEDIATE performs an immediate shutdown of
the Data Pump job

In this scenario the expdp Command Line Interface (CLI) is accessed to manage a
running job. First a simple session is started using the command:

expdp system/oracle dumpfile=alphaFull directory=default_dp_dest full=y
job_name=alphaFull

The JOB_NAME parameter provides a means to quickly identify the running job.

Data Pump

[24]

Once the job is running on a second OS session a new expdp command instance is
started, this time using the ATTACH command. This will open a prompt that will
allow the user to manage the running job.

expdp system/oracle attach=alphaFull

After showing the job status it enters the prompt mode where the user can issue the
previously listed commands.

In this case a STOP_JOB command has been issued. This notifies the running session
that the command execution has been stopped, the job output is stopped and the OS
prompt is displayed. After a while the user reattaches to the running job, this time
the START_JOB command is issued, this resumes the job activity, but as the expdp
session was exited no more command output is displayed. The only way the user
can realize the job is running is by querying the DBA_DATAPUMP_JOBS view or by
browsing the log file contents.

The ATTACH command does not require the job name if there is
only a single JOB running. If there is more than one concurrent
job running then the user must specify the job name.

Chapter 1

[25]

Data Pump restart capability
In case of failure or any other circumstances that prevent the Data Pump job from
successfully ending its work, an implicit recommencing feature is activated. The
job enters a suspended mode that allows the DBA to attach this feature to the job.
It is important to emphasize that the master job table must positively identify the
interrupted job, otherwise it won't be possible to restart the job once the circumstance
behind the failure has been properly corrected.

In order for the user to attach to the job, it must be connected with the ATTACH
command line option properly set. At this point, it becomes evident why it is a
good practice to have a name for the data pump job, other than the default system
generated name.

Getting information about the export job
When a Data Pump task takes place, it can be monitored to find out if everything is
running fine with it. A view named DBA_DATAPUMP_JOBS can be queried to check the
task status.

SQL> select * from dba_datapump_jobs;

In this query it can be seen that a FULL (C) EXPORT (B) data pump job named
SYS_EXPORT_FULL_01 (A) is in Executing State (D). It is executing with a default
parallel degree of 1 (E). In case of trouble, the status changes and it would be time to
work with the CLI mode to ATTACH to the job and take corrective action.

Data Pump

[26]

Data Pump import
Data Pump import (impdp) is the tool used to perform the data import operation,
it reads the data from a file created by Data Pump export. This tool can work in
different modes such as:

•	 Full import mode: This is the default operation mode. This mode
imports the entire contents of the source dump file, and you must have
the IMP_FULL_DATABASE role granted if the export operation required the
EXP_FULL_DATABASE role.

•	 Schema mode: A schema import is specified using the SCHEMAS parameter.
In a schema import, only objects owned by the current user are loaded. You
must have the IMP_FULL_DATABASE role in case you are planning to import
schemas you don't own.

•	 Table mode: This mode specifies the tables, table partitions and the
dependent objects to be imported. If the expdp command required the
EXP_FULL_DATABASE privilege to generate the dump file, then you will
require the IMP_FULL_DATABASE to perform the import operation.

•	 Tablespace mode: In this mode all objects contained within the specified set
of tablespaces are loaded.

•	 Transportable tablespace mode: The transportable tablespace mode imports
the previously exported metadata to the target database; this allows you to
plug in a set of data files to the destination database.

•	 Network mode: This mode allows the user to perform an import operation
on the fly with no intermediate dump file generated; this operation mode is
useful for the one time load operations.

The Data Pump import tool provides three different interfaces:

•	 Command Line Interface: This is the default operation mode. In this mode
the user provides no further parameters once the job is started. The only
way to manage or modify running parameters afterwards is by entering
interactive mode from another Data Pump session.

Chapter 1

[27]

•	 Interactive Command Interface: This prompt is similar to the interactive
expdp prompt, this allows you to manage and modify the parameters of a
running job.

•	 Parameter File Interface: This enables you to specify command-line
parameters in a parameter file. The PARFILE parameter must be specified in
the command line.

Remap function
One of the most interesting import data pump features is the REMAP function.
This function allows the user to easily redefine how an object will be stored in the
database. It allows us, amongst many other things, to specify if the tables to be
loaded will be remapped against another schema (REMAP_SCHEMA). It also changes
the tablespace where the segment will be stored (REMAP_TABLESPACE). In case of a
full data pump import, the function can also remap where the database files will be
created by means of the REMAP_DATAFILE keyword.

Let's show the REMAP_SCHEMA facility. It is common practice to have a user's schema
cloned for testing or development environments. So let's assume the HR schema is
to be used by a recently created HRDEV user, and it requires all the HR schema objects
mapped in its schema.

Create the HRDEV user. In this case the user HRDEV is created with the RESOURCE
role granted. This is only for demonstration purposes, you should only grant the
minimum required privileges for your production users.

SQL> create user HRDEV ident

 2 identified by ORACLE

 3 default tablespace USERS;

User created.

SQL> grant CONNECT, RESOURCE to HRDEV;

Grant succeeded.

Data Pump

[28]

Export the HR Schema objects using the following command:

$ expdp system/oracle schemas=HR dumpfile=DEFAULT_DP_DEST:hrSchema
logfile=DEFAULT_LOG_DEST:hrSchema

Import the HR Schema objects and remap them to the HRDEV user's schema. Using the
following command:

$ impdp system/oracle \

dumpfile=DEFAULT_DP_DEST:hrSchema \

logfile=DEFAULT_LOG_DEST:hrSchema \ REMAP_SCHEMA=HR:HRDEV

Chapter 1

[29]

The import session runs as follows:

The HRDEV schema automatically inherits, by means of a cloning process (REMAP_
SCHEMA), 35 objects from the HR schema, which includes tables, views, sequences,
triggers, procedures, and indexes.

Data Pump import network mode
One of the most interesting data pump features is the network mode, which allows
a database to receive the data directly from the source without generating an
intermediate dump file. This is convenient as it saves space and allows a networked
pipeline communication between the source and the destination database.

The network import mode is started when the parameter NETWORK_LINK is added
to the impdp command, this parameter references a valid database link that points
to the source database. This link is used to perform the connection with a valid user
against the source database. A simple CREATE DATABASE LINK command is required
to setup the source database link at the target database.

Data Pump

[30]

.It can be seen that the import operation takes place at the 11g database; meanwhile
the export is taken from a 10g Release 1 database by network mode using a database
link created on the 11g side. This example is a classical data migration from a lower
to a higher version using a one-time export operation.

The source database is 10.1.0.5.0 (A), and the destination database version is 11.1.0.6.0
(C). There is a database link named db10gR1 (B) on the 11g database. In order for this
export to work it is important to consider version compatibility. In network mode the
source database must be an equal or lower version than the destination database, and
the database link can be either public, fixed user, or connected user, but not current
user. Another restriction of the data pump network mode is the filtering option; only
full tables can be transferred, not partial table contents.

At the target site a new database link is created:

CREATE DATABASE LINK DB10GR1
CONNECT TO <username> IDENTIFIED BY <password> using <TNSAlias>;

This alias is used at import time:

impdp <username>/<password> network_link=<DBLink> tables=<List of Tables
to Import> logfile=<Directory Object>:file_name

Chapter 1

[31]

The network import mode provides a practical approach for one-time data transfers.
It is convenient and reduces the intermediate file management that is usually required.

Improving performance with Data Pump
There are some considerations the user should pay attention, in order to take full
advantage of this tool. When performing a data pump export operation it can
perform faster if using parallelism, but if this is not used properly, the process may
end up serializing, which is very likely to happen if the dump files are written to the
same disk location.

When performing a data pump import operation, we should consider the same
parallelism issue. If using an enterprise edition, the degree of parallelism can be set
and can be tuned so that there will be several parallel processes carrying out the
import process. It is advisable to ensure the number of processes does not exceed
twice the number of available CPU's.

Also, the tablespace features are important. The tablespace should be locally managed
with Automatic Segment Space Management (ASSM); this will allow the insert
process to perform faster.

Other features that should be considered are related to database block checking. Both
db_block_ckecking and db_block_checksum impose a performance penalty. It has
been reported by some users that this penalty is meaningful when batch loading takes
place. It is advisable to either disable these parameters or reduce the emphasis. Those
instance parameters are dynamic, so they can be modified during the operation.

Other instance parameters to consider are those related to parallelism, the
parallel_max_servers, and parallel_execution_message_size. When using
parallelism, the large_pool_size region should be properly configured.

Working with the Data Pump API
The Data Pump API allows the PL/SQL programmer to gain access to the data pump
facility from inside PL/SQL code. All the features are available, so an export/import
operation can be coded inside a stored procedure, thus allowing applications to
perform their own programmed logical exports.

The stored program unit that leverages the data pump power is DBMS_DATAPUMP.

This code shows a simple export data pump job programmed with the
DBMS_DATAPUMP API.

Data Pump

[32]

This sample code required the DBMS_DATAPUMP program units to perform the
following tasks:

•	 FUNCTION OPEN
•	 PROCEDURE ADD_FILE
•	 PROCEDURE METADATA_FILTER
•	 PROCEDURE START_JOB
•	 PROCEDURE DETACH
•	 PROCEDURE STOP_JOB

The account used in the next example is used merely for demonstration purposes.
In a practical scenario you can use any user that has the execute privilege granted
on the DBMS_DATAPUMP package and the appropriate privileges on the working
directories and target objects.

conn / as sysdba

set serveroutput on

DECLARE
 dp_id NUMBER; -- job id

BEGIN
 -- Defining an export DP job name and scope
 dp_id := dbms_datapump.open('EXPORT','SCHEMA',NULL,'DP_API_EXP_
DEMO','COMPATIBLE');

 -- Adding the dump file
 dbms_datapump.add_file(dp_id, 'shSchemaAPIDemo.dmp', 'DEFAULT_DP_
DEST',
 filetype => DBMS_DATAPUMP.KU$_FILE_TYPE_DUMP_FILE);

 -- Adding the log file
 dbms_datapump.add_file(dp_id, 'shSchemaAPIDemo.log', 'DEFAULT_LOG_
DEST',
 filetype => DBMS_DATAPUMP.KU$_FILE_TYPE_LOG_FILE);

 -- Specifying schema to export
 dbms_datapump.metadata_filter(dp_id, 'SCHEMA_EXPR', 'IN (''SH'')');

 -- Once defined, the job starts
 dbms_datapump.start_job(dp_id);

 -- Once the jobs has been started, the session is dettached.
Progress can be monitored from dbms_datapump.get_status.
 -- in case it is required, the job can be attached by means of the
dbms_datapump.attach() function.

 -- Detaching the Job, it will continue to work in background.
 dbms_output.put_line('Detaching Job, it will run in background');
 dbms_datapump.detach(dp_id);

Chapter 1

[33]

 -- In case an error is raise, the exception
 -- is captured and processed.
EXCEPTION
 WHEN OTHERS THEN
 dbms_datapump.stop_job(dp_id);
END;
/

Data Pump 11g new features
'The features described so far are valid in both 10g and 11g, but there are specific
features available only in 11g such as:

•	 Compression
•	 Encrypted dump file sets
•	 Enhancements for Data Pump external table management
•	 Support for XML data types

Compression
The compression feature in 10g is related to the metadata, not the actual data part of
the dump files. With 11g, this feature was improved to allow either the metadata, the
row data or the complete dump file set to be compressed. This shrinks the dump file
set by 10 to 15 percent.

Encrypted dump file sets
In 11g it is possible to use the encrypted dump file sets feature to have the dump set
encrypted. Data Pump in 11g includes other keywords to manage encryption, such
as ENCRYPTION_ALGORITHM, and ENCRYPTION_MODE which requires the Transparent
Data Encryption (TDE) feature to perform the encryption process. This feature will
be addressed in more depth in the security chapter

Enhancements for Data Pump External Tables
In 10g, when a row in an external table was corrupted, it led to the entire process
being aborted. Data Pump 11g is more tolerant under these circumstances, allowing
the process to continue with the rest of the data.

www.allitebooks.com

http://www.allitebooks.org

Data Pump

[34]

Single partition transportable for Oracle
Data Pump
With this feature, it is possible to move just one partition or sub partition between
databases without having the need to move the whole table. A partition can be
added as part of an existing table or as an independent table.

Overwrite dump files
In 10g dump files had to be removed by the DBA prior to any attempt to
overwrite them. In 11g a new keyword was added, REUSE_DUMPFILES,
which defaults to 11g, and when activated simply overwrites the existing dump files
(if they already exist).

XML Datatypes
In previous Data Pump releases, the XML data type was not supported, all Oracle
XML data types are supported with Oracle Data Pump. You can use all other
datatypes, however you should be aware that the Data Pump driver for external
tables restricts the use of certain data types.

Summary
Data Pump is one of the least known and under-exploited data management tools in
Oracle, in part due to the widely used regular export/import utility. Most user's are
used to the old tool and as the data pump export dump file is not compatible with
the old utilities, there is a point of no return when starting to use the Data Pump
utility. However, when the user gets acquainted with the Data Pump features and
feels more comfortable using this alternative for regular data management processes,
they will notice how productivity and manageability improve.

Data Pump allows more flexible data management scenarios than its predecessor,
the regular export/import utilities. Once the power of Data Pump is deployed by the
user on the DBA's day-to-day tasks, Data Pump will automatically be positioned as
the de-facto data management tool. It is available in all Oracle editions starting
from 10g Release 1. Getting to know this tool allows the DBA to plan much more
flexible scenarios.

In the next chapter another useful data management tool will be addressed,
SQL*Loader, a tool that is used to perform plain file loads to the database.

SQL*Loader
Transferring data in plain text file format is common when performing tasks such as
loading a database for the first time, data warehouse maintenance, ASCII backups,
or spatial data management. Knowing how to efficiently use and tailor this tool
allows the user to optimize the time invested in performing one of the most labor
intensive and time consuming maintenance tasks.

During the upload process it is important to foresee any space allocation issues
that may prevent the load process from successfully finishing. It is important to
either gauge the tablespace requirements, or proactively launch automatic space
management tasks.

It is important to know how to perform the data load with different character sets,
so that users don't risk losing data, and to ensure that even if the data load completes
successfully it doesn't end up showing those boring 'question marks' because of
character set incompatibilities.

There are several ways to perform the load of large objects, such as long texts or
multimedia files. By knowing the issues, and the caveats that should be considered,
the user will be able to perform a data load more efficiently.

SQL*Loader

[36]

SQL*Loader basics
Sometimes, an external source provides data in an unwanted format. As database
users, we can only deal with whatever way the data has been formatted, and do
our best to load it. Sometimes an interface has to be built specifically to perform
a complex format load. The purpose of SQL*Loader is not only to provide a plain
format data loader tool, but also a means to allow a complex data set to be loaded.
The user can leverage the power of SQL*Loader by:

•	 Loading several data files on the same session
•	 Specifying a particular character sets to be loaded
•	 Conditionally loading data
•	 Performing pre-loading phases
•	 Loading data from a variety of sources, including named pipes
•	 Loading either logical or physical records
•	 Loading regular data as well as Large Objects and object/relational data
•	 Taking advantage of parallelism and direct path loads to accelerate the

load process

SQL*Loader's architecture is both simple and elegant. It requires at least one or
two input files to start processing data, one of them is the datafile and the other the
control file; it may produce two or three output files, one for the log file, another for
the bad file and another file known as discard file.

Datafile(s) Controlfile

DiscardfileLogfile

Badfile

Database

SQL*Loader

Looking at the above diagram, SQL*Loader files are defined as follows:

Chapter 2

[37]

Datafile: This is the actual plain-data file. This datafile must have a consistent format
(along with its contents) according to the predefined format described by the control
file. This is the source file and under certain circumstances, such as a one-time load,
this file may also have the control file contents embedded. There may be more than
one datafile for a single data load, the number of datafiles is specified in the control file.

Controlfile: This file describes the way data is structured; it specifies whether the
record will have a commonly used record delimited by a carriage return, or a record
that spans several lines. This control file specifies if the record is a fixed size column
record or if the columns are delimited by an exclusive character in a variable size
record format. It can specify: the data types, lengths, precision, character set, use
of secondary data files, different data files, record structure, and many other data
description parameters.

The control file uses format free syntax, which means control file contents can span
multiple lines and can contain multiple space characters to separate keywords.
Control file commands are case insensitive, but it should be pointed out that quoted
strings are literally read.

In summary, the control file describes the input (what and how to read), the output
(where and when to load), and the mapping between the two.

Logfile: Once a data loading session is over, all meaningful activity is recorded in
the log file. This is a plain format file where session activity is recorded. The logfile
describes the control file specifications, the amount of data loaded, the elapsed time
to complete the load, information about defective rows, and the parameters used
during a selective data load. The script to create an external table can also be found
here if the proper command line option is specified.

Discardfile: All records that didn't match any condition specified during a conditional
load are, if specified, sent to the discard file. The user can specify the maximum
number of discarded records to be sent to the discard file before aborting the load
process. The discard file is optional and the user must explicitly request its creation.

Badfile: If a malformed record is found, or if a record doesn't meet a particular
constraint condition, it is sent to the bad file. There it may have a second chance
to be loaded once the defect has been corrected. There are a maximum number of
records allowed during a load to be considered defective, and by default this number
is 50. Once the maximum number of bad records is reached, the load process is
automatically aborted and proper log information is recorded at the log file.

SQL*Loader

[38]

Preparing the demo environment
We will require a demo user to perform the loads, a regular tablespace, and some
basic privileges for the SQL*Loader demo user. The paths and other particular
references are included as mere examples, and to meet the syntax requirements.
Actual implementations may differ. During the development of
these demonstrations, data from either the HR or SCOTT schemas was used.
The next examples use the SYS user to perform administrative tasks, it is only for
demonstration purposes, any user with privileges to create a tablespace is enough
to setup the environment, and any user who has permission to insert data into a
given table is enough to perform the data loading procedure. The paths used and
the Oracle SID referred here are just based on a specific demo database used.

connect / as sysdba
create tablespace sqlldrdemo
datafile '/u01/oracle/oradata/beta/sqlldr01.dbf' size 32m
autoextend on next 16m;

create user sqlldrdemo
identified by oracle
default tablespace sqlldrdemo
quota unlimited on sqlldrdemo;

grant connect, resource to sqlldrdemo;

connect sqlldrdemo/oracle

create table emp
 (empno number(4) not null,
 ename char(10),
 job char(9),
 mgr number(4),
 hiredate date,
 sal number(7,2),
 comm number(7,2),
 deptno number(2))
tablespace sqlldrdemo;

create table dept
 (deptno number(2),
 dname char(14) ,
 loc char(13))
tablespace sqlldrdemo;

Chapter 2

[39]

Our first simple load
Let' start working with the basics. In this scenario we will perform a simple load
where the main points will be presented. A simple source datafile will be loaded
and exposed to the main points a simple load has to consider.

In order for you to perform the first basic load, a simple text file has to be created;
this file will be the control file. The control file defines how the load will be executed,
it specifies the target table(s), the data file format, what to do in case of error, and
which other special features will be either used or not.

This first control file was taken from the demonstrations available from the Oracle
Home once the companion disk (demo section) has been installed. This is the
ulcase1.ctl control file. The comments are specified by using two hyphens at
the beginning of the line. All text following the hyphens up to the end of the line is
considered a comment and it is not interpreted.

LOAD DATA: The beginning of the file starts with the keyword LOAD DATA (A).
It assumes the target table is empty. In case there is data already loaded, and
depending on what exactly is being planned we can either APPEND or REPLACE.
If no modifier is specified, then it means the table must be empty before attempting
to insert data, otherwise a runtime error will show up. The user must have at least
the SELECT privilege on the table. If the option APPEND is used, it means that we can
just proceed to insert data; the user must be careful with the unique and primary
key constraints. For the REPLACE option, all data in the table will be removed prior
to starting the load; the user must have the SELECT and DELETE privileges to be able
to perform the operation with this option. It should be pointed out that deleting a
complete table may lead to severe performance problems, so it is better to use the
TRUNCATE option, it will be faster and as it applies over all the data rows, it performs
significantly faster than the REPLACE option.

SQL*Loader

[40]

INFILE (B): This option can be used to specify where the source data file is. It can
be a simple one time relative small load, as shown in the example. In this case, there
is no need to have a separate source data file, so it can be embedded in the same
file as that of the control file. As shown on the image, this option is specified at the
start (*) (B), indicating that the data section will start as the first row right after the
BEGINDATA (E) keyword is found, and it will stop at the end of file (F). In this
case there can be no more control file commands from this point on. Any additional
control file commands will be treated as malformed rows and will be sent to the
bad file. In case another datafile needs to be specified, it could be defined from the
file with the same INFILE keyword. It can also be defined with the command line
argument DATA.

There are three ways to specify how data is organized; in fixed or variable field
length (D) or in stream format.

Once the control file has been created, a typical SQL*Loader command line would
read like this:

sqlldr username/password control=controlFileName.ctl

In this case, the username and password appear as the first parameter, so we do not
need to specify the user-id keyword. Next the control file is declared, as the INFILE
* keyword was specified inside the file, no datafile specification is required. Log file
and Bad File names are automatically generated, and those files will hold the same
name as that of the control file with the default file extensions *.ctl and *.bad.

As an example, the command line issued to start the first load is:

sqlldr sqlldrdemo/oracle ulcase1

You should notice that it is assumed that both the demo user and the demonstration
tables were properly created. The script ulcase1.sql creates the tables EMP
and DEPT.s.

The SQL*Loader log file
This file describes the execution details, and shows exactly what happened. In case
of any failure this is the first place to go for troubleshooting. Let's take a look at the
details of a log file generated after the execution of the previous load example.

Header: A generic header is shown where the RDBMS version is shown along with
the time this tool was invoked, plus some copyright information.

Chapter 2

[41]

File names (A): At least three file names are specified, the first stands for the control
file name used to perform the load, the second one for the data file, in this case, as
the INFILE * keyword was specified, the data file holds the same name as that of
the control file. In case any defective rows were to be found, those would have been
sent to the bad file, and as no name was specified for this file, it holds by default the
same name used for the control file plus the .bad as its file extension. And finally the
discard file; in this case this was not a conditional load, so there was no need to have
this file specified.

The number of rows to load was ALL (B), which is the default. If a load failed for
some reason, then it is possible to restart the load at a specified row, skipping the
other N previous rows; this fact is reported here. As mentioned, (by default) the
maximum number of allowed defective rows is fifty, if the fiftieth error shows up,
the load is automatically aborted and this information is reported. The number of
permissible defective rows can be changed. In cases where no errors are allowed,
zero must be specified.

Path used (C): This could say Direct or Conventional, depending on which kind of
data load was used.

Data file format (D): In this particular case, a variable record size was specified.
This can be seen just by the order of the columns plus a star sign as the value of the
length column.

SQL*Loader

[42]

Execution details (E): This provides the number of successfully loaded rows, the
number of defective rows, and the number of discarded and the number of null
records found.

The space allocated for the bind array (F) is reported here. In this case, as a variable
record size was requested, the bind array is prepared with an additional amount of
memory, and compared with a fixed file size format. The bind array is meaningfully
bigger, and this fact is considered for performance issues during data load.

Finally, the timing (H) is reported plus a summary (G) of all the records that were
either skipped, read, rejected or discarded, plus the total elapsed time, which counts
from the time the command is started (from the command line) up to the moment
when the SQL*Loader utility finishes and closes its session.

Fixed record size format load
This format has records fixed in length. Padded spaces are used at the end of each
field, if required, to have the column fixed in size. This kind of format has better load
performance than the variable sized format. It is easier to define at the control file
specification, and its length is always interpreted in character length semantics.

Chapter 2

[43]

In a fixed record format, the control file specifies the column name (A), the physical
position of the column in the file, starting to count with the column 1 and specified
by the keyword POSITION (B), and the specific data type (C).

It is important to point out that the date format specified at the control file assumes
the data file matches the default date format, according to the configured locale. If
this condition is not met, then a malformed date format error will be shown and
the load is very likely to be aborted due to the maximum defective row limit. If a
different format is specified at the data file, then a date mask must be specified next
to the DATE type declaration.

HIREDATE POSITION(32:40) DATE "DD-MON-RR"

Once this initial fixed field size is executed, the log file will read as follows:

SQL*Loader

[44]

Variable record size format load
This allows more flexibility than the fixed record format, but it requires a field
separator character, different from any character used by the data. The variable
record format is always read in byte length semantics. This is the most common
way of loading exported spreadsheets (.csv files). For repeated loads of CSVs, it is
suggested to use External Tables (explained in the next chapter).

Compared with the fixed size, the variable record size data file will use less physical
space when stored in the OS, but the size of the bind array used to perform the
load will be significantly bigger, so this should be considered when choosing which
format to use to perform the data load.

Taking a look at this code snippet, it can be seen that in order for the user to define
a variable length record size—a delimiter is required. This character must be unique
and not form part of the actual data to be loaded.

LOAD DATA
INFILE *S
INTO TABLE ABC
FIELDS TERMINATED BY ':'
(ID, ABC)
BEGINDATA
27:ABCDEFGHIJKLMNOPQRSTUVWXYZ
28:ABCDEFGHIJKLMNOPQRSTUVWXYZ
29:ABCDEFGHIJKLMNOPQRSTUVWXYZ
30:ABCDEFGHIJKLMNOPQRSTUVWXYZ
31:ABCDEFGHIJKLMNOPQRSTUVWXYZ
32:ABCDEFGHIJKLMNOPQRSTUVWXYZ
33:ABCDEFGHIJKLMNOPQRSTUVWXYZ
34:ABCDEFGHIJKLMNOPQRSTUVWXYZ
35:ABCDEFGHIJKLMNOPQRSTUVWXYZ
36:ABCDEFGHIJKLMNOPQRSTUVWXYZ

Stream record format load
This is a flexible way to specify data input. The 'end of record' character is determined
as data is read. If a record delimiter is not specified at the control file, then either the
carriage return or the carriage return and line feed are used to delimit the record,
depending on the particular operating system used. A file is in stream record format
when the records are not specified by size; instead SQL*Loader forms records by
scanning for the record terminator. This is a flexible way to define the data input
format, but it should be noted that a performance penalty applies for this format.

Chapter 2

[45]

We will assume data is produced in this format, and the control file used to perform
the data load has been configured accordingly:

--
-- It loads a DEPT Variable Record Format with Stream record
organization
--
LOAD DATA
INFILE 'loadDeptDatStream.dat' "str '|'"
TRUNCATE
INTO TABLE DEPT
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(DEPTNO, DNAME, LOC)

Here we can see the new str keyword, which declares which string sequence is used
to define the end of the record. By the way, the option used to perform the load is
TRUNCATE, which instructs SQL*Loader to perform the workload once current data
has been truncated. It is faster than the REPLACE option.

The data format used during this test was:

10,ADMINISTRATION,SEATTLE,|20,MARKETING,TORONTO,|30,PURCHASING,SEATTLE,
|40,HUMAN RESOURCES,LONDON,|50,SHIPPING,SOUTH SAN FRANCISCO,
|60,IT,SOUTHLAKE,|70,PUBLIC RELATIONS,MUNICH,|80,SALES,OXFORD,
|90,EXECUTIVE,SEATTLE,|100,FINANCE,SEATTLE,|110,ACCOUNTING,SEATTLE,
|120,TREASURY,SEATTLE,|130,CORPORATE TAX,SEATTLE,
|140,CONTROL AND CREDIT,SEATTLE,|150,SHAREHOLDER SERVICES,SEATTLE,
|160,BENEFITS,SEATTLE,|170,MANUFACTURING,SEATTLE,
|180,CONSTRUCTION,SEATTLE,|190,CONTRACTING,SEATTLE,
|200,OPERATIONS,SEATTLE,|210,IT SUPPORT,SEATTLE,|220,NOC,SEATTLE,
|230,IT HELPDESK,SEATTLE,|240,GOVERNMENT SALES,SEATTLE,
|250,RETAIL SALES,SEATTLE,|260,RECRUITING,SEATTLE,
|270,PAYROLL,SEATTLE,|

In this data sample, just ignore the carriage return character. The data is a continuous
stream whose records are delimited by the pipe character.

When defining the delimiter string these additional escape sequences can be used:

•	 \n indicates a line feed
•	 \t indicates a horizontal tab
•	 \f indicates a form feed
•	 \v indicates a vertical tab
•	 \r indicates a carriage return

SQL*Loader

[46]

Specifying a particular character set
A commonly seen requirement is loading data in a character set different from the
WE8ISO family. When performing a load with a particular character set it should
be specified with the NLS_LANG environment variable. In case it is not specified this
way, it must be declared at the control file with the CHARACTERSET parameter. The
character set will automatically be converted to the specified character set as long
as the target database supports the conversion, otherwise a question mark will be
loaded instead, indicating that the target database either didn't understand the
conversion or the character set at the target database is not a superset of the source
character set data.

In this example a load takes place using different character sets on this table,
the purpose of the table is to store a multilingual error catalog:

CREATE TABLE ERRORCATALOG
 (
 LANGUAGE VARCHAR2(3),
 ERROR_NUMBER NUMBER(6),
 ERROR_STRING NVARCHAR2(1000)
);

The first datafile to store is in Japanese, the second demo is Chinese and several
other control files are prepared to load different languages for this multilingual
demonstration table.

The Japanese datafile is:

Chapter 2

[47]

The prepared control file for this session declares the character set as JA16SJIS,
to perform this load:

load
characterset JA16SJIS
append
into table ERRORCATALOG
fields terminated by '|' optionally enclosed by '"'
(LANGUAGE ,ERROR_NUMBER ,ERROR_STRING)

In this example a Chinese data file is loaded, as shown:

The control file used to perform this load declares the character set as ZHS16GBK

load
characterset ZHS16GBK
append
into table ERRORCATALOG
fields terminated by '|' optionally enclosed by '"' (LANGUAGE
,ERROR_NUMBER ,ERROR_STRING)

SQL*Loader

[48]

Once the different control files have been prepared, all the datafiles are loaded.
By querying the table from iSQL*Plus, we get the resulting catalog:

Load on the fly
SQL*Loader has a powerful interface that allows loads from different sources;
it can read data from disk, tape or a named pipe. This feature allows loads on the fly
without the creation of an intermediate data file, which is a very convenient strategy
for loads that will only take place once and whose data source is dynamic. Let's
have a named pipe created, so there is no datafile in-between, and data is directly
consumed by the database through SQL*Loader.

On the OS prompt, let's create a named pipe. A process will then send data to the
named pipe and SQL*Loader will read it from there.

Chapter 2

[49]

This data load procedure is not available for Windows as
this platform does not allow the use of the named pipes
required to perform the data load on the fly.

At a Unix prompt, let's create a regular named pipe:

mkfifo abcpipe.dat

Send data to the named pipe and leave the process in the background:

cat abc.dat > abcpipe.dat &

Load data from the named pipe:

sqlldr sqlldrdemo/oracle direct=true control=abc data=abcpipe.dat

It can be seen that SQL*Loader performs the load seamlessly. The data source was
obtained from the named pipe and then read and loaded by SQL*Loader.

You can remove the named pipe, just like any other regular file:

rm abcpipe.dat

The advantage of this approach is that there is no intermediate file created,
saving space and performing a clean one time load from a dynamic data source.

Direct path versus Conventional
path load
If SQL*Loader is properly configured the load can be sped up in a meaningful way
by means of the direct path load. Direct path was a new feature introduced in Oracle
7.3, and it hasn't changed too much since then. Direct path is an Oracle feature that
allows an insertion process to go directly to the database files without using the
database transactional mechanism. It allows the data load process to be performed
in the fastest possible way. It must be noted that there is a price to pay in the
transaction and recoverability models for the increased processing speed.

SQL*Loader

[50]

When a conventional path load takes place, SQL*Loader fills a bind array buffer and
passes it to the Oracle database so it is processed by means of regular SQL INSERT
commands—SQL*Loader performs a batch insert assembling 64 rows (by default).
Afterwards a commit command is issued. This approach makes the database buffer to
allocate resources to perform the insert, and generates a transaction that is logged by
the redo log buffer, and sent to the redo log files. After the checkpoint process is fired,
the dirty database block buffers are sent from the database buffer cache to its final
destination (the database files) by means of the Database Writer (DBWR) process.

Space
Management

Conventional
Path

Direct
Path

SQL Command
Processor

Write DB
Blocks

Find
candidate

blocks

Get new extents
Adjust HWM

Buffer
Cache

Redo log
Management

DBWR

Database

On the other hand, the direct path engine uses the column array structure to format
Oracle data blocks and build index keys. It assembles the database blocks externally.
Once they are ready, SQL*Loader simply finds out where the segment high water
mark is placed, then adjusts and inserts the database blocks directly to the database
files. During direct path insert mode, redo information may or may not be generated
depending on the logging mode, or if the 'force logging' database mode has been
enabled, so there could be some serious recoverability issues.

In order for SQL*Loader to work in direct path mode it is enough to declare the
DIRECT=Y command line parameter. Some considerations must be present in order
for you to take advantage of this feature, as explained here:

•	 Use Locally Managed Tablespace (LMT)
•	 Use ASSM
•	 Allocate space before, don't let dynamic space allocation be triggered during

the load
•	 Make sure you have enough space, not only for the data to be loaded, but

also for the index segments

Chapter 2

[51]

There is a price to pay for the additional performance boost that you should be
aware of.

Direct path load pros
•	 The primary benefit of direct path load is that it is faster than the

conventional path load
•	 It performs data saves, skipping the database buffer cache
•	 It doesn't have to wait for the DBWR background process to write to the

database files
•	 It can be parallelized

Direct path load cons
•	 It may require more space as direct path load looks for never used blocks

beyond the high water mark. If the user is not aware of this, several bubbles
of partially used blocks may remain below the High Water Mark (HWM).

•	 It allows no concurrent transactions to take place at the target table at while
the load is in progress.

•	 It doesn't fire triggers.
•	 It doesn't validate check constraints.
•	 The character set must be consistent with that of the database; otherwise

character conversion may take place.

In this demo a simple table has been created. This table holds two columns, one is the
id and the other is a varchar2 column. 8 million rows were inserted, and then those
rows were extracted to a text datafile. On the first exercise the load takes place by
means of the conventional path. On the second test, the load is performed by means
of direct path loads. The results are:

Case 1 Case 2 Case 3 Case 4
Path Conventional Direct Conventional Direct
Primary Key No No No No
Extent pre-allocation No No Yes Yes
Time 914s 14.6s 883.2s 13.9s

SQL*Loader

[52]

From the tests, meaningful time differences between a conventional and a direct path
load can be shown. So it is worth considering the possibility of loading data in direct
path mode.

Case 5 Case 6
Path Conventional Direct
Primary Key Yes Yes
Extent pre-allocation No No
Time 944s 50s

During this test, a primary key constraint was added. The primary key related index
took 1 minute 16.4 seconds. Considering this, if the table already has indexes, in the
case of direct path load, it takes less time to leave the index and perform the load
than inserting the whole data and rebuilding the index afterwards. In the case of
conventional path loading, if the table already has indexes, it takes about the same
time to complete the load with or without indexes. It should be pointed out that the
more indexes there are, the more effort is required to maintain them. On direct loads,
the indexes are maintained by data saves; it uses temporary extents and then merges
this data to the maintained indexes. On the other hand a conventional path maintains
the indexes with regular transactional procedures. Depending on the number of
indexes it may be better to set them to an unusable state and have them rebuilt after
the load has finished.

Loading Large Objects (LOBs)
There are several ways to load multimedia files. This kind of data is provided in
a raw format, so the most suitable data type to store this information in is: the
Binary Large Object (BLOB). Both the LONG and LONG RAW are not considered in this
discussion as it is not good practice to preserve these kinds of columns.
The long data type is considered deprecated for the new features; it has been a
constant throughout all the new releases, starting with 8.0. Most of the new features
are supported for LOB data types, but not for LONG data types.

Chapter 2

[53]

A LOB is a data type that stores a Large Object, and it can be of BLOB, Character
Large Object (CLOB), National Character Large Object (NCLOB) or BFILE specific
data type. It is useful to employ large objects to store multimedia files (binary LOBs),
large amounts of text such as descriptions, commentaries, or the particular case of
XMLType columns. Text can also be specified in national character sets. There are
two kinds of LOBs:

•	 Internal LOBs: They are stored inside the database and are protected by the
transactional mechanism of the database and the regular backup policies.

•	 External LOBs: They live outside the database and are at the sole
responsibility of the user for protection and maintenance. The BFILE keeps
only the information of the path to the external file, inside the database.

Loading a LOB can be done from either a primary datafile, which happens to be in
line in the same datafile, or from a secondary lob file, which is a more natural way to
address multimedia files, and reduces the overhead of handling records to delimit
the lob data.

LOB data can be present in predetermined size fields. In the next control file code
you can see the amount of data reserved for the LOB. As the LOB is not guaranteed
to always have the same size, the lob data can be padded with blank spaces. The way
to load this data is by means of either CHAR or RAW data types.

Let's first prepare the CLOB load demonstration table:

CREATE TABLE CLOBDEMO (
 NAME VARCHAR2(16),
 DESCRIPTION CLOB
);

A control file that loads CLOB data into the previously create table is then prepared:

LOAD DATA
INFILE 'demo.dat' "STR '|'"
APPEND
INTO TABLE CLOBDEMO(
 NAME POSITION(01:16) CHAR,
 DESCRIPTION POSITION(18:256) CHAR DEFAULTIF DESCRIPTION=BLANKS
)

SQL*Loader

[54]

The data comes in a record delimited format with fixed field size.

Note: we saw the record delimiter parameter before in the stream section.

first This is the first demo record for the lob
Second line of the first record|second This is the second
demo record for the lob
Second line of the second record|third This is the third
demo record for the lob
Second line of the third record|

Loading multimedia files
This is another case of LOB loading, in this case the BLOB data type is used to store
binary data. When loading records from the same data file, there is an overhead
involved to find out the record length. Loading from a secondary data file is
more suitable for loading LOB data. When loading LOB data this way there is no
requirement that the LOB field fits in memory, the load takes place by reading from
the LOB file in 64K chunks.

When loading data from a LOB file, there are two ways to specify the LOB file; it can
be specified either statically or dynamically. In the first case, the file is specified in the
same control file. In the case of a dynamically defined LOB file, the file is specified
within the data file and it is read into a FILLER field (from the datafile) which is then
used as a parameter in the control file to specify where the LOB file is.

A FILLER field acts as a place holder; it is not read as actual data, its position is just
considered in the data file to find other field positions or, in this case, to read its
information as source of data for a dynamic 'variable' inside the same control file.

Let's first prepare the table for this demonstration:

CREATE TABLE image_table (
 image_id NUMBER(5),
 file_name VARCHAR2(30),
 image_data BLOB
);

In the example, the load is performed by means of a dynamically specified LOB
file name.

Chapter 2

[55]

In the control file, the LOBFILE keyword was specified; it declares that the next
field to load is a CLOB field (A) which takes file_name (B) as a parameter. The first
column of the data file is just a regular numeric column; the second column stands
for the LOB file name. This format is suitable for loading image and multimedia files,
which by nature are found as standalone files.

Once the files have been loaded it is possible to use any BLOB viewer to retrieve
them from the database. By means of a BLOB viewer, a GIF or JPEG can be retrieved
and displayed on a regular browser, just like any other image.

SQL*Loader

[56]

Resumable load
When a lengthy load takes place, the last thing a user wants to see is an ORA- error
or any other error displayed on the console. This is an emerging issue which usually
has to do with a lack of resources to finish the job. There should be enough free
space not only for the data to be loaded, but also for the related indexes as well. As
SQL*Loader has a default number of rows to commit in a batch load, there is no risk
of exhausting the undo regions during a conventional data load.

While performing a lengthy load with a constrained time frame it is better (for peace
of mind) to reduce the possibility of any unforeseen circumstances arising that may
prevent the successful completion of the task. That is why storage levels must be
evaluated to ensure there is enough free space to hold the massive load, otherwise it
will have to be restarted by means of a recalculation of the SKIP value to jump to the
point of failure, and continue the load from that point on.

Another more practical approach is to use the RESUMABLE feature. This feature
was first introduced in Oracle 9i Release 1. If an error occurs there are two options.
Create a PL/SQL script intelligent enough to diagnose and automatically correct the
error, this PL/SQL stored unit would be triggered by the AFTER SUSPEND system
trigger. If there is no PL/SQL script, a SUSPEND feature may be used in favor of the
user, allowing the user to take a time-out before the process finally crashes, this time
will allow the user to avoid a scenario similar to this one:

$ sqlldr sqlldrdemo/oracle direct=y control=abc.ctl

SQL*Loader: Release 10.2.0.1.0 - Production on Mon Aug 11 20:45:17 2008

Copyright (c) 1982, 2005, Oracle. All rights reserved.

SQL*Loader-2026: the load was aborted because SQL Loader cannot continue.

Load completed - logical record count 2917806.

$

Chapter 2

[57]

In the above slide it can be seen that the load was aborted because SQL*Loader
cannot continue. It had reached 2,917,806 rows out of 8,000,000 rows, so it is far
from being finished. The log shows an ORA-01653 error (A), which means that the
tablespace has reached its maximum capacity and can no longer grow. As it is not
possible to keep on loading data, it immediately shows the abort message, and on the
SQL*Loader side there is nothing else to do but to suggest the DBA continue the load
at a later time once the problem has been solved using the SKIP=2913364 command
line clause, specified at (C). There it can be seen in the log file that the related index
was processed up to the last saved key (D).

There is another more efficient and proactive way to deal with these kinds of loads.
The resumable feature will take care of the load process, and will diagnose and
troubleshoot things according to what the DBA has programmed. It is assumed
the DBA is proactive enough to foresee all possible events so that the load runs
unattended, or at least the DBA must program a process to send an alert to the
operator in charge, so the operator can react accordingly.

SQL*Loader

[58]

In this second example, the operator will launch SQL*Loader, this time with the
RESUMABLE feature enabled. In order for the user to use the resumable feature, it
must have the RESUMABLE privilege granted.

$ sqlplus / as sysdba

SQL> grant RESUMABLE to SQLLDRDEMO;

Grant succeeded.

Let the load begin, and this time use the keywords:

•	 resumable: This keyword enables the RESUMABLE feature; by default its value
is FALSE.

•	 resumable_name: This declares what the name of the resumable identifier
will be; displayed at the DBA_RESUMABLE view.

•	 resumable_timeout: This is the time to wait in case an outstanding issue
arises. The operator must detect, diagnose, and correct the problem before
this time expires. By default it waits 7,200 seconds.

In this example the command line used was:

$ sqlldr sqlldrdemo/oracle resumable=true resumable_name=ABC_LOAD
resumable_timeout=300 direct=true control=abc

Here, the resumable keyword was defined as true, a name is used to identify the
resumable event and a 5 minute time out was declared. In this scenario an operator
has to identify the problem by querying the DBA_RESUMABLE view; once identified, fix
the problem and let the resumable feature exit on its own from the suspend mode to
successfully finish the load.

Chapter 2

[59]

By querying the DBA_RESUMABLE view (A), it can be seen that a problem with an
INSERT statement arose, this problem produced an ORA-01653 error, the same as the
one reported in the previous log file.

The operator reacts and manually increases the size of the delinquent datafile (B),
providing enough space for the process to continue.

Once the problem has been fixed the process continues. As long as there are no
more problems, both the SUSPEND_TIME and ERROR_MSG columns will display null
values (C). As soon as the process finishes the entry, the DBA_RESUMABLE view is
cleared (D).

This approach happens to be more manageable, but it still requires manual
intervention. During a batch load scheduled during a constrained time frame at
(let's say) three o'clock in the morning, it is better to be peacefully resting in bed,
rather than waiting for your mobile to display an alert because the process has
aborted and the load has to be launched again. In this case a special system trigger is
coded, the AFTER SUSPEND trigger.

The resumable feature triggers when an outstanding associated event is about to
abort the process, issuing a SUSPEND event to the database. An AFTER SUSPEND trigger
fires and it executes the routine the DBA has programmed.

SQL*Loader

[60]

In this scenario an AFTER SUSPEND trigger is created:

$ sqlplus / as sysdba

create trigger SQLLDR_RESUMABLE_HANDLER

after suspend on database

begin

 execute immediate 'alter database datafile 6 resize 384m';

end;

/

This trigger will fire and will increase the size of the datafile where the load takes
place. The PL/SQL code is only for demonstration purposes, the handler procedure
should be intelligent so it is able to diagnose what the source of the problem is, and
react accordingly.

Once the trigger has been programmed, the load will take place once again, and
this time it requires no operator intervention. As soon as the process enters into the
SUSPEND mode, the database will fire the system event trigger AFTER SUSPEND, and
automatically increase the size of the faulty tablespace. Once the root problem has been
automatically fixed the load will simply continue just as if nothing had happened.

As the resumable feature is a database feature, it is useful not only for SQL*Loader,
but also for any other database batch related process that requires
self-healing routines to keep the process up and running. There is an API named
DBMS_RESUMABLE that can be used inside PL/SQL code.

Parallel load
A parallel load can be used to perform the data load more efficiently. It is a suitable
data load strategy for partitioned tables. When performing the load the data file is
partitioned so that each single session grabs its piece of data and all the sessions can
execute the job simultaneously on the same table.

In order for the user to enable parallel loading, once the data has been split into
several files, the clause PARALLEL=TRUE must be specified for each session. If the user
is working on a Unix like operating system, then the workload can be left running as
a background process.

Chapter 2

[61]

sqlldr sqlldrdemo/oracle control=pload01.ctl DIRECT=TRUE PARALLEL=TRUE
&
sqlldr sqlldrdemo/oracle control=pload02.ctl DIRECT=TRUE PARALLEL=TRUE
&
sqlldr sqlldrdemo/oracle control=pload03.ctl DIRECT=TRUE PARALLEL=TRUE
&
sqlldr sqlldrdemo/oracle control=pload04.ctl DIRECT=TRUE PARALLEL=TRUE
&

In this example, four processes execute the data load in parallel. The degree of
parallelism must be tuned, so that the process doesn't end up serializing due to data
file access problems.

When performing a parallel load some issues should be considered:

•	 Indexes are not maintained and will be marked as UNUSABLE, so the user
must schedule an index maintenance task afterwards.

•	 The user should look for the constraint status after the load. Both constraints
and triggers must be manually enabled after the load.

General performance booster tips
In order to take advantage of maintenance windows to perform the data load, here is
some advice for improving load performance and better using the time frame.

•	 When performing a load, do not use logical records, map in one-to-one
physical records to logical records.

•	 Use LMT with ASSM, this combination is available from Oracle 9i
Rel. 2 onwards.

•	 Use a fixed size field data file format over the variable sized with delimiter
characters.

•	 Try to avoid character set conversions, try to use the same character set on
the client side and at the server side.

•	 If possible use direct load; this is the fastest way to load data.
•	 When loading data try to have the data preordered at the data file by the

most important index, this way when the index is created the clause NOSORT
can be used. The index will be created faster.

•	 If possible, use parallel loads, and parallel index maintenance.

SQL*Loader

[62]

•	 When loading LOBS, use Secondary Data Files (SDF) instead of embedding
them in the same datafile.

•	 When performing direct path loads, it is advisable to mark indexes
as unusable. This way the overhead will be avoided in the temporary
tablespace due to the space consumption for the index maintenance task
that takes place when data is loaded. Once data load is over, a regular index
rebuild operation can be scheduled.

Summary
Loading ASCII data from an external source is a frequent task in data warehouse
environments when migrating data from other non-compatible databases. The kind
of information and the way it may be formatted are important to consider it is the
time to define the control file to execute the load.

When the load takes place it is sensible to take advantage of the time frame, avoiding
unexpected issues that may prevent the process from finishing on time, particularly
those loads that must be executed on a just-in-time basis. Proactively defining a
resumable load will help the user to avoid problems and automatically correct
unforeseen issues.

A situation may arise where you would need to load different character sets on the
same database, and the user should be aware of the implications and best practices in
this situation.

Several kinds of loads can be performed, from just plain and simple fixed record
rows to complex formats. Loading a variety of data types, from plain text files to
binaries, and large objects is possible. There are several resources the user may
consider to use time (efficiently) during maintenance windows.

There are many more data load examples, but analyzing them here goes beyond the
scope of this book, you may want to refer to the documentation found at the RDBMS
demonstration section in your Oracle Home.

When data loads require some transformation to meet particular requirements it
becomes necessary to load data into a stage area where data is taken from to execute
data transformation routines. This stage area can be skipped and optimized with the
use of external tables; this topic, and others related to external tables, will be covered
on the next chapter.

External Tables
When working in data warehouse environments, the Extraction—Transformation—
Loading (ETL) cycle frequently requires the user to load information from external
sources in plain file format, or perform data transfers among Oracle database in
a proprietary format. This requires the user to create control files to perform the
load. As the format of the source data regularly doesn't fit the one required by the
Data Warehouse, a common practice is to create stage tables that load data into the
database and create several queries that perform the transformation from this point
on, to take the data to its final destination.

A better approach, would be to perform this transformation 'on the fly' at load time.
That is what External Tables are for. They are basically external files, managed either
by means of the SQL*Loader or the data pump driver, which from the database
perspective can be seen as if they were regular read only tables.

This format allows the user to think about the data source as if the data was already
loaded into its stage table. This lets the user concentrate on the queries to perform
the transformation, thus saving precious time during the load phase.

External Tables can serve not only as improvements to the ETL process, but also as
a means to manage database environments, and a means of reducing the complexity
level of data management from the user's point of view.

External Tables

[64]

The External Table basics
An External Table is basically a file that resides on the server side, as a regular flat
file or as a data pump formatted file. The External Table is not a table itself; it is
an external file with an Oracle format and its physical location. This feature first
appeared back in Oracle 9i Release 1 and it was intended as a way of enhancing the
ETL process by reading an external flat file as if it was a regular Oracle table. On its
initial release it was only possible to create read-only External Tables, but, starting
with 10g—it is possible to unload data to External Tables too.

In previous 10g Releases there was only the SQL*Loader driver could be used to
read the External Table, but from 10g onwards it is now possible to load the table
by means of the data pump driver. The kind of driver that will be used to read the
External Table is defined at creation time. In the case of ORACLE_LOADER it is the same
driver used by SQL*Loader. The flat files are loaded in the same way that a flat file
is loaded to the database by means of the SQL*Loader utility, and the creation script
can be created based on a SQL*Loader control file. In fact, most of the keywords that
are valid for data loading are also valid to read an external flat file table.

The main differences between SQL*Loader and External Tables are:

•	 When there are several input datafiles SQL*Loader will generate a bad file
and a discard file for each datafile.

•	 The CONTINUEIF and CONCATENATE keywords are not supported by
External Tables.

•	 The GRAPHIC, GRAPHIC EXTERNAL, and VARGRAPHIC are not supported for
External Tables.

•	 LONG, nested tables, VARRAY, REF, primary key REF, and SID are
not supported.

•	 For fields in External Tables the character set, decimal separator, date mask
and other locale settings are determined by the database NLS settings.

•	 The use of the backslash character is allowed for SQL*Loader, but for
External Tables this would raise an error. External Tables must use quotation
marks instead.
For example:
SQL*Loader
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY "\"
External Tables
TERMINATED BY ',' ENCLOSED BY "'"

Chapter 3

[65]

external plain file

ORACLE_LOADER

ORACLE_DATAPUMP

external dump file
SQL>SELECT*

FROM EXT_TAB;

A second driver is available, the ORACLE_DATAPUMP access driver, which uses
the Data Pump technology to read the table and unload data to an External Table.
This driver allows the user to perform a logical backup that can later be read back
to the database without actually loading the data. The ORACLE_DATAPUMP access
driver utilizes a proprietary binary format for the external file, so it is not possible
to view it as a flat file.

Let's setup the environment
Let's create the demonstration user, and prepare its environment to create an
External Table. The example that will be developed first refers to the External Table
using the ORACLE_LOADER driver.

create user EXTTABDEMO
 identified by ORACLE
 default tablespace USERS;

alter user exttabdemo
 quota unlimited on users;

grant CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE MATERIALIZED VIEW,
 ALTER SESSION,
 CREATE VIEW,
 CREATE ANY DIRECTORY
to EXTTABDEMO;

External Tables

[66]

A simple formatted spool from this query will generate the required external
table demonstration data. The original source table is the demonstration
HR.EMPLOYEES table.

select
 EMPLOYEE_ID ||','||
 DEPARTMENT_ID ||','||
 FIRST_NAME ||','||
 LAST_NAME ||','||
 PHONE_NUMBER ||','||
 HIRE_DATE ||','||
 JOB_ID ||','||
 SALARY ||','||
 COMMISSION_PCT ||','||
 MANAGER_ID ||','||
 EMAIL
from HR.EMPLOYEES
order by EMPLOYEE_ID

The above query will produce the following sample data:

Chapter 3

[67]

The External Table directory is defined inside the database by
means of a DIRECTORY object. This object is not validated at
creation time, so the user must make sure the physical directory
exists and the oracle OS user has read/write privileges on it.

$ mkdir $HOME/external_table_dest

SQL> CREATE DIRECTORY EXTTABDIR AS '/home/oracle/external_table_dest';

The above example was developed in a Linux environment, on Windows platforms
the paths will need to be changed to correctly reflect how Oracle has been set up.

Now, the first External Table can be created.

A basic External Table
Here is the source code of the External Table creation.

External Tables

[68]

The create table command syntax is just like any other regular table creation (A), (B),
up to the point where the ORGANIZATION EXTERNAL (C) keyword appears,
this is the point where the actual External Table definition starts. In this case the
External Table is accessed by the ORACLE_LOADER driver (D). Next, the external
flat file is defined, and here it is declared the Oracle DIRECTORY (E) where the flat
file resides. The ACCESS PARAMETERS (F) section specifies how to access the flat
file and it declares whether the file is a fixed or variable size record, and which other
SQL*Loader loading options are declared. The LOCATION (H) keyword defines the
name of the external data file. It must be pointed out that as this is an External Table
managed by the SQL_LOADER driver the ACCESS_PARAMETERS section must
be defined, in the case of External Tables based on the DATAPUMP_DRIVER this
section is not required.

The columns are defined only by name (G), not by type. This is permitted from the
SQL*Loader perspective, and allows for dynamic column definition. This column
schema definition is more flexible, but it has a drawback—data formats such as those
in DATE columns must match the database date format, otherwise the row will be
rejected. There are ways to define the date format working around this requirement.
Assuming the date column changes from its original default format mask
"DD-MON-RR" to "DD-MM-RR", then the column definition must change from a
simple CHAR column to a DATE with format mask column definition.

Original format:

"HIRE_DATE" CHAR(255)

Changed format:

"HIRE_DATE" DATE "DD-MM-RR"

When working with an External Table, the access parameter is
not validated at creation time, so if there are malformed rows,
or if there are improperly defined access parameters, an error is
shown, similar to the one below.

ERROR at line 1:
ORA-29913: error in executing ODCIEXTTABLEFETCH callout
ORA-30653: reject limit reached
ORA-06512: at "SYS.ORACLE_LOADER", line 52

Once the data is created and all required OS privileges have been properly validated,
the data can be seen from inside the database, just as if it were a regular Oracle table.

Chapter 3

[69]

This table is read only, so if the user attempts to perform any DML operation against
it, it will result in this error:

SQL> delete ext_employees;
delete ext_employees
 *
ERROR at line 1:
ORA-30657: operation not supported on external organized table

As the error message clearly states, this kind of table is only useful for read
only operations.

This kind of table doesn't support most of the operations available for regular tables,
such as index creation, and statistics gathering, and these types of operations will
cause an ORA-30657 error too. The only access method available for External Tables
is Full Table Scan, so there is no way to perform a selective data retrieval operation.

The External Tables cannot be recovered, they are just metadata definitions stored
in the dictionary tables. The actual data resides in external files, and there is no
way to protect them with the regular backup database routines, so it is the user's
sole responsibility to provide proper backup and data management procedures. At
the database level the only kind of protection the External Table receives is at the
metadata level, as it is an object stored as a definition at the database dictionary level.
As the data resides in the external data file, if by any means it were to be corrupted,
altered, or somehow modified, there would be no way to get back the original data.
If the external data file is lost, then this may go unnoticed, until the next SELECT
operation takes place.

External Tables

[70]

This metadata for an External Table is recorded at the {USER | ALL | DBA}_TABLES
view, and as this table doesn't actually require physical database storage, all storage
related columns appear as null, as well as the columns that relate to the statistical
information. This table is described with the {USER | ALL | DBA}_EXTERNAL_TABLES
view, where information such as the kind of driver access,
the reject_limit, and the access_parameters, amongst others, are described.

SQL> DESC USER_EXTERNAL_TABLES

 Name Null? Type

 ------------------------------- -------- --------------

 TABLE_NAME NOT NULL VARCHAR2(30)

 TYPE_OWNER CHAR(3)

 TYPE_NAME NOT NULL VARCHAR2(30)

 DEFAULT_DIRECTORY_OWNER CHAR(3)

 DEFAULT_DIRECTORY_NAME NOT NULL VARCHAR2(30)

 REJECT_LIMIT VARCHAR2(40)

 ACCESS_TYPE VARCHAR2(7)

 ACCESS_PARAMETERS VARCHAR2(4000)

 PROPERTY VARCHAR2(10)

This is the first basic External Table, and as previously shown, its creation is pretty
simple. It allows external data to be easily accessed from inside the database,
allowing the user to see the external data just as if it was already loaded inside
a regular stage table.

Creating External Table metadata,
the easy way
To further illustrate the tight relationship between SQL*Loader and External Tables,
the SQL*Loader tool may be used to generate a script that creates an External Table
according to a pre-existing control file.

SQL*Loader has a command line option named EXTERNAL_TABLE, this can hold one
of three different parameters {NOT_USED | GENERATE_ONLY | EXECUTE}. If nothing is
set, it defaults to the NOT_USED option.

This keyword is used to generate the script to create an External Table, and the
options mean:

•	 NOT_USED: This is the default option, and it means that no External Tables are
to be used in this load.

Chapter 3

[71]

•	 GENERATE_ONLY: If this option is specified, then SQL*Loader will only read
the definitions from the control file and generate the required commands,
so the user can record them for later execution, or tailor them to fit his/her
particular needs.

•	 EXECUTE: This not only generates the External Table scripts, but also executes
them. If the user requires a sequence, then the EXECUTE option will not only
create the table, but it will also create the required sequence, deleting it once
the data load is finished. This option performs the data load process against
the specified target regular by means of an External Table, it creates both
the directory and the External Table, and inserts the data using a SELECT AS
INSERT with the APPEND hint.

Let's use the GENERATE_ONLY option to generate the External Table creation scripts:

$ sqlldr exttabdemo/oracle employees external_table=GENERATE_ONLY

By default the log file is located in a file whose extension is .log and its name
equals that of the control file. By opening it we see, among the whole log processing
information, this set of DDL commands:

CREATE TABLE "SYS_SQLLDR_X_EXT_EMPLOYEES"
(
 "EMPLOYEE_ID" NUMBER(6),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25),
 "EMAIL" VARCHAR2(25),
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE,
 "JOB_ID" VARCHAR2(10),
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6),
 "DEPARTMENT_ID" NUMBER(4)
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY EXTTABDIR
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 BADFILE 'EXTTABDIR':'employees.bad'
 LOGFILE 'employees.log_xt'
 READSIZE 1048576
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM

External Tables

[72]

 REJECT ROWS WITH ALL NULL FIELDS
 (
 "EMPLOYEE_ID" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "FIRST_NAME" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "LAST_NAME" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "EMAIL" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "PHONE_NUMBER" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "HIRE_DATE" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "JOB_ID" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "SALARY" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "COMMISSION_PCT" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "MANAGER_ID" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "DEPARTMENT_ID" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
)
)
 location
 (
 'employees.txt'
)
)

The more complete version is shown, some differences with the basic script are:

•	 All the column definitions are set to CHAR(255) with the delimiter character
defined for each column

•	 If the current working directory is already registered as a regular DIRECTORY
at the database level, SQL*Loader utilizes it, otherwise, it creates a new
directory definition

•	 The script specifies where the bad files and log file are located
•	 It specifies that an all-null column record is rejected

Chapter 3

[73]

In the case of the EXECUTE keyword, the log file shows that not only are the scripts
used to create the External Table, but also to execute the INSERT statement with the
/*+ append */ hint. The load is performed in direct path mode.

All External Tables, when accessed, generate a log file. In the case of the
ORACLE_LOADER driver, this file is similar to the file generated by SQL*Loader. It has
a different format in the case of ORACLE_DATAPUMP driver. The log file is generated
in the same location where the external file resides, and its format is as follows:

<EXTERNAL_TABLE_NAME>_<OraclePID>.log

When an ORACLE_LOADER managed External Table has errors, it dumps the 'bad'
rows to the *.bad file, just the same as if this was loaded by SQL*Loader.

The ORACLE_DATAPUMP External Table generates a simpler log file, it only contains the
time stamp when the External Table was accessed, and it creates a log file for each
oracle process accessing the External Table.

Unloading data to External Tables
The driver used to unload data to an External Table is the ORACLE_DATAPUMP access
driver. It dumps the contents of a table in a binary proprietary format file. This way
you can exchange data with other 10g and higher databases in a preformatted way to
meet the other database's requirements. Unloading data to an External Table doesn't
make it updateable, the tables are still limited to being read only.

Let's unload the EMPLOYEES table to an External Table:

create table dp_employees
 organization external(
 type oracle_datapump
 default directory EXTTABDIR
 location ('dp_employees.dmp')
)
as
 select * from employees;

This creates a table named DP_EMPLOYEES, located at the specified EXTTABDIR
directory and with a defined OS file name.

www.allitebooks.com

http://www.allitebooks.org

External Tables

[74]

In the next example, at a different database a new DP_EMPLOYEES table is created,
this table uses the already unloaded data by the first database. This DP_EMPLOYEES
External Table is created on the 11g database side.

create table dp_employees(
EMPLOYEE_ID NUMBER(6),
FIRST_NAME VARCHAR2(20),
LAST_NAME VARCHAR2(25),
EMAIL VARCHAR2(25),
PHONE_NUMBER VARCHAR2(20),
HIRE_DATE DATE,
JOB_ID VARCHAR2(10),
SALARY NUMBER(8,2),
COMMISSION_PCT NUMBER(2,2),
MANAGER_ID NUMBER(6),
DEPARTMENT_ID NUMBER(4)
)
organization external
(
 type oracle_datapump
 default directory EXTTABDIR
 location ('dp_employees.dmp')
);

This table can already read in the unloaded data from the first database.
The second database is a regular 11g database. So this shows the inter-version
upward compatibility between a 10g and an 11g database.

SQL> select count(*) from dp_employees;

 COUNT(*)

 107

Inter-version compatibility
In, the previous example a 10g data pump generated an External Table that was
transparently read by the 11g release.

Let's create an 11g data pump External Table named DP_DEPARTMENTS:

create table dp_departments
 organization external(
 type oracle_datapump
 default directory EXTTABDIR

Chapter 3

[75]

 access parameters
 (
 version '10.2.0'
)
 location ('dp_departments.dmp')
)
as
 select * from departments
Table created.

SQL> select count(*) from dp_departments;

 COUNT(*)

 27

In the previous example it is important to point out that the VERSION keyword
defines the compatibility format.

access parameters
(
 version '10.2.0'
)

If this clause is not specified then an incompatibility error will be displayed.

SQL> select count(*) from dp_departments;

select count(*) from dp_departments

*

ERROR at line 1:

ORA-29913: error in executing ODCIEXTTABLEOPEN callout

ORA-39142: incompatible version number 2.1 in dump file

"/home/oracle/external_table_dest/dp_departments.dmp"

ORA-06512: at "SYS.ORACLE_DATAPUMP", line 19

Now let's use the 10g version to read from it.

SQL> select count(*) from dp_departments;

 COUNT(*)

 27

External Tables

[76]

The VERSION clause is interpreted the same way as the VERSION clause for the data
pump export, it has three different values:

•	 COMPATIBLE: This states that the version of the metadata corresponds to
the database compatibility level.

•	 LATEST: This corresponds to the database version.
•	 VERSION NUMBER: This refers to a specific oracle version that the file is

compatible with. This value cannot be lower than 9.2.0.

Data transformation with External Tables
One of the main uses of the External Tables is their support of the ETL process,
allowing the user to perform a data load that is transformed to the target format
without an intermediate stage table.

Let's read an External Table whose contents are:

This data can be loaded in a single command to multiple tables. Let's create several
tables with the same structure:

Chapter 3

[77]

SQL> desc amount_jan
 Name Null? Type
 ----------------- -------- ------------
 REGION VARCHAR2(16)
 AMOUNT NUMBER(3)

Now we can issue a command to send the data from the External Table to the
different tables.

INSERT ALL
 INTO AMOUNT_JAN (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_FEB (REGION, AMOUNT) VALUES(COUNTRY, FEB)
 INTO AMOUNT_MAR (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_APR (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_MAY (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_JUN (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_JUL (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_AUG (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_SEP (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_OCT (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_NOV (REGION, AMOUNT) VALUES(COUNTRY, JAN)
 INTO AMOUNT_DEC (REGION, AMOUNT) VALUES(COUNTRY, JAN)
SELECT COUNTRY,
 JAN,
 FEB,
 MAR,
 APR,
 MAY,
 JUN,
 JUL,
 AUG,
 SEP,
 OCT,
 NOV,
 DEC
FROM REGION_REVENUE;

In this example, we will perform a conditional insert to different tables depending on
the value of the amount column. We will first create three tables, one for low, another
for average, and a third for high amounts:

SQL> create table low_amount(
 2 region varchar2(16),
 3 month number(2),
 4 amount number(3));
Table created.
SQL> create table high_amount as select * from low_amount;
Table created.

External Tables

[78]

Now we can read the External Table and have the data inserted conditionally to one
of three mutually exclusive targets.

INSERT ALL
 WHEN (JAN <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '01', JAN)
 WHEN (FEB <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '02', FEB)
 WHEN (MAR <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '03', MAR)
 WHEN (APR <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '04', APR)
 WHEN (MAY <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '05', MAY)
 WHEN (JUN <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '06', JUN)
 WHEN (JUL <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '07', JUL)
 WHEN (AUG <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '08', AUG)
 WHEN (SEP <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '09', SEP)
 WHEN (OCT <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '10', OCT)
 WHEN (NOV <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '11', NOV)
 WHEN (DEC <= 500) THEN
 INTO LOW_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '12', DEC)
 WHEN (JAN > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '01', JAN)
 WHEN (FEB > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '02', FEB)
 WHEN (MAR > 500) THEN

Chapter 3

[79]

 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '03', MAR)
 WHEN (APR > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '04', APR)
 WHEN (MAY > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '05', MAY)
 WHEN (JUN > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '06', JUN)
 WHEN (JUL > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '07', JUL)
 WHEN (AUG > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '08', AUG)
 WHEN (SEP > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '09', SEP)
 WHEN (OCT > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '10', OCT)
 WHEN (NOV > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '11', NOV)
 WHEN (DEC > 500) THEN
 INTO HIGH_AMOUNT(REGION, MONTH, AMOUNT)
 VALUES (COUNTRY, '12', DEC)
SELECT COUNTRY,
 JAN,
 FEB,
 MAR,
 APR,
 MAY,
 JUN,
 JUL,
 AUG,
 SEP,
 OCT,
 NOV,
 DEC
FROM REGION_REVENUE;

External Tables

[80]

Extending the alert.log analysis with
External Tables
Reading the alert.log from the database is a useful feature which can help you
to find any outstanding error messages reported in this file.

create table ALERT_LOG(
 text_line varchar2(512)
)
 organization external (
 type ORACLE_LOADER
 default directory BACKGROUND_DUMP_DEST
 access parameters(
 records delimited by newline
 nobadfile
 nodiscardfile
 nologfile
)
 location('alert_beta.log')
);

Once the External Table has been created, the alert.log file can be queried just like
any other regular table.

SQL> select text_line from alert_log

 2 where text_line like 'ORA-%';

TEXT_LINE

ORA-1109 signalled during: ALTER DATABASE CLOSE NORMAL...

ORA-00313: open failed for members of log group 1 of thread 1

ORA-00312: online log 1 thread 1: '/u01/oracle/oradata/beta/redo01.log'

ORA-27037: unable to obtain file status

ORA-00313: open failed for members of log group 2 of thread 1

ORA-00312: online log 2 thread 1: '/u01/oracle/oradata/beta/redo02.log'

ORA-27037: unable to obtain file status

ORA-00313: open failed for members of log group 3 of thread 1

ORA-00312: online log 3 thread 1: '/u01/oracle/oradata/beta/redo03.log'

ORA-27037: unable to obtain file status

Chapter 3

[81]

Querying the alert.log file up to this phase is useful just to see the contents of
the file and look for basic ORA-% strings. This could also be achieved by using the
alert.log link in the Enterprise Manager (EM).

The alert.log file can be queried by means of the EM, but as this can only be
viewed from the EM in an interactive mode, you can only rely on the preset alerts.

External Tables

[82]

If further automatic work needs to be done, then it is useful to do some more work
with the alert analysis tool. A temporary table can be used to store the contents of
the ALERT_LOG table, along with an extra TIMESTAMP column, so it can be queried in
detail in an EM-like manner.

create global temporary table TMP_ALERT_LOG (
 LINE_NO NUMBER(6),
 TIMESTAMP DATE,
 TEXT_LINE VARCHAR2(512)
)
on commit preserve rows;

A bit of PLSQL programming is necessary so the ALERT_LOG file can be modified and
inserted into the TMP_ALERT_LOG, (enabling further queries can be done).

declare
cursor
 alertLogCur is
 select ROWNUM, TEXT_LINE
 from ALERT_LOG;
currentDate date;
altertLogRec ALERT_LOG.TEXT_LINE%TYPE;
testDay varchar2(10);

begin
currentDate := sysdate;

for alertLogInst in alertLogCur loop
 -- fetch row and determine if this is a date row
 testDay := substr(alertLogInst.text_line, 1, 3);
 if testDay = 'Sun' or
 testDay = 'Mon' or
 testDay = 'Tue' or
 testDay = 'Wed' or
 testDay = 'Thu' or
 testDay = 'Fri' or
 testDay = 'Sat'
 then
 -- if this is a date row, it sets the current logical record date
 currentDate := to_date(alertlogInst.text_line, 'Dy Mon DD HH24:
 MI:SS YYYY');
 end if;
 insert into TMP_ALERT_LOG
 values(
 alertLogInst.rownum,
 currentDate,
 alertLogInst.text_line
);
end loop;
end;
/

Chapter 3

[83]

As the contents of the alert.log end up in a temporary table, more than one DBA
can query it at the same time, or restrict the DBA's accessibilities. There is no need to
manage the purge and maintenance of the table after the session has ended, it can be
indexed and there is little overhead by means of this procedure. More over, as this is
a temporary object, minimum redo log information is generated.

Once the external ALERT_LOG and the temporary ALERT_LOG tables have been
created, it is possible to perform, not only filters by date (provided by Enterprise
Manager) but also any query against the alert.log file.

SELECT TIMESTAMP, TEXT_LINE
FROM TMP_ALERT_LOG
WHERE TIMESTAMP IN (
 SELECT TIMESTAMP
 FROM TMP_ALERT_LOG
 WHERE TEXT_LINE LIKE 'ORA-%'
)
AND TIMESTAMP BETWEEN SYSDATE-30 AND SYSDATE
ORDER BY LINE_NO;

Further treatment can be done on this concept to look for specific error messages,
analyze specific time frames and perform drill down analysis.

This procedure can be extended to read the trace files or any other text file from
the database.

External Tables

[84]

Reading the listener.log from the database
One particular extension of the above procedure is to read the listener.log file.
This file has a specific star-delimited field file format which can be advantageous,
and eases the read by means of the Loader driver.

The file format is as follows:

21-JUL-2008 00:39:50 * (CONNECT_DATA=(SID=beta)(CID=(PROGRAM=perl)(HOS
T=alpha.us.oracle.com)(USER=oracle))) * (ADDRESS=(PROTOCOL=tcp)(HOST=1
92.168.2.10)(PORT=8392)) * establish * beta * 0
21-JUL-2008 00:39:56 * (CONNECT_DATA=(SID=beta)(CID=(PROGRAM=perl)(HOS
T=alpha.us.oracle.com)(USER=oracle))) * (ADDRESS=(PROTOCOL=tcp)(HOST=1
92.168.2.10)(PORT=8398)) * establish * beta * 0
21-JUL-2008 00:40:16 * service_update * beta * 0
21-JUL-2008 00:41:19 * service_update * beta * 0
21-JUL-2008 00:44:43 * ping * 0

The file has a format that can be deduced from the above data sample:

TIMESTAMP * CONNECT DATA [* PROTOCOL INFO] * EVENT [* SID] * RETURN
CODE

As you can see this format, even though it is structured, it may have a different
number of fields, so at loading time this issue must be considered.

In order for us to map this table to the database, we should consider the variable
number of fields to have the External Table created. We'll create a temporary table so
that this doesn't create an additional transactional overhead.

Now, let's create an External Table based on this format that points to:
$ORACLE_HOME/network/log

create directory NETWORK_LOG_DIR
as '$ORACLE_HOME/network/log';

Now, let's create the External Table:

create table LISTENER_LOG (
 TIMESTAMP date,
 CONNECT_DATA varchar2(2048),
 PROTOCOL_INFO varchar2(64),
 EVENT varchar2(64),
 SID varchar2(64),
 RETURN_CODE number(5)
)
organization external (
 type ORACLE_LOADER
 default directory NETWORK_LOG_DIR

Chapter 3

[85]

 access parameters (
 records delimited by NEWLINE
 nobadfile
 nodiscardfile
 nologfile
 fields terminated by "*" LDRTRIM
 reject rows with all null fields
 (
 "TIMESTAMP" char date_format DATE mask "DD-MON-YYYY HH24:MI:SS
",
 "CONNECT_DATA",
 "PROTOCOL_INFO",
 "EVENT",
 "SID",
 "RETURN_CODE"
)
)
 location ('listener.log')
)
reject limit unlimited;

The structure of interest is specified above, so there will be several rows rejected.
Seeing as this file is not fully structured, you will find some non formatted
information; the bad file and the log file are not meaningful in this context.

Another application of the LISTENER_LOG External Table is usage trend analysis. This
query can be issued to detect usage peak hours.

SQL> select to_char(round(TIMESTAMP, 'HH'), 'HH24:MI') HOUR,
 2 lpad('#', count(*), '#') CX
 3 from listener_log
 4 group by round(TIMESTAMP, 'HH')
 5 order by 1;
HOUR CX
----- --
14:00 ###
15:00 ##########################
16:00 ######################
17:00 #####################
18:00 #####################
19:00 ###############

Reading the listener.log file this way allows the DBA not only to keep track
of the listener behavior, but also it allows a security administrator to easily spot
hacking attempts.

External Tables

[86]

Let's find out who is trying to access the database with sqlplus.exe.

SQL> select timestamp, protocol_info

 2 from listener_log

 3 where connect_data like '%sqlplus.exe%'

 4 /

TIMESTAMP PROTOCOL_INFO

-------------------- --

01-SEP-2008 14:30:37 (ADDRESS=(PROTOCOL=tcp)(HOST=192.168.2.101)
 (PORT=3651))

01-SEP-2008 14:31:08 (ADDRESS=(PROTOCOL=tcp)(HOST=192.168.2.101)
 (PORT=3666))

01-SEP-2008 14:31:35 (ADDRESS=(PROTOCOL=tcp)(HOST=192.168.2.101)
 (PORT=3681))

The use of External Tables to analyze the listener.log can be used not only to have
an in-database version of the listener.log perform periodic and programmatic
analysis of the listener behavior, but also to determine usage trends and correlate
information with the audit team so that unauthorized connection programs can
be easily and quickly spotted. Further useful applications can be found by reading
the listener.log file. There are two fields that must be further parsed to get
information out of them, but parsing those fields goes beyond the scope of this
chapter. The structure that the analysis should consider is detailed next:

Connect String
1. SID: The Database Oracle SID, which is populated if the connection was

performed by SID, otherwise it is NULL.
2. CID: It contains two subfields, PROGRAM and HOST
3. SERVER: This field indicates the connection type, either dedicated or shared
4. SERVICE_NAME: This field is populated when the connection is performed

by a Service instead of SID.
5. COMMAND: The command issued by the user.
6. SERVICE: Present only when listener commands are issued.
7. FAILOVER_MODE: In Real Application Clusters (RAC) environments this

field is used if the client performed a connection due to a failover. It shows
the failover mode used.

Chapter 3

[87]

Protocol
1. PROTOCOL: Indicates the used to perform the connection; this will be TCP

most of the times.
2. HOST: This is the client's IP Address.
3. PORT: The port number of the oracle server used to establish the connection.

Mapping XML files as External Tables
XML has become a de facto information exchange format, which is why oracle has
included the XML Database (XDB) feature from 9.2.0. However, it requires the
data to be actually loaded into the database before it can be processed. An External
Table allows the user to take a quick look at the contents of the external file prior to
performing any further processing.

In this example an External Table is created out of an XML file. This file is read by
means of a CLOB field, and some further XDB commands can be issued against the
external XML file to extract and view data.

Let's create the external XML file first:

create table EMPLOYEES_XML (xmlFile CLOB)
organization external (
 type ORACLE_LOADER
 default directory EXTTABDIR
 access parameters (
 fields (xmllob char terminated by ',')
 column transforms (xmlFile from lobfile(xmllob))
)
 location('employees.dat')
)
reject limit unlimited;

The employees.dat file contains the file name of the XML file to load as an
external CLOB file. This file, for the purpose of the demo, contains the file name:
employees.xml.

External Tables

[88]

Now the file can be queried from the database as if it was a regular table with a
single XML column.

Dynamically changing the external
reference
When managing External Tables, there should be an easy way to redefine the
external source file. It is enough to change the External Table properties by means of
an ALTER TABLE command. Let's create a stored procedure that performs this task by
means of a dynamically generated DDL command. This procedure, named Change_
External_Table redefines the location property. Using a stored program unit is a
flexible way to perform this task.

create procedure change_external_table
(p_table_name in varchar2
, p_file_name in varchar2
) is
begin
execute immediate 'alter table '
|| p_table_name
|| ' location ('''
|| p_file_name

Chapter 3

[89]

|| ''')' ;
exception
when others
then
raise_application_error(sqlcode,sqlerrm) ;
end ;
/

Oracle 11g External Table enhancements
External Tables work the same in 10g and in 11g, so there are no differences when
working with these two versions. When working with Data Pump External Tables,
and one single row proves defective, the data set reading operation is aborted.
An enhancement in this 11g release prevents the data load aborting, thus saving
reprocessing time.

Summary
Managing data with External Tables is a means not only for mapping external
flat files as regular (but limited) tables inside the database, but also a tool to more
efficiently perform administrative tasks such as programmatically processing
database log files such as the alert.log or the listener.log files. It can be used to
easily view external XML formatted files from inside the database without actually
loading the file to the database. It can also be used as a means of unloading data in
temporary external storage to exchange data among different Oracle versions. This
particular feature allows the user to easily build an Oracle Datamart that allows the
pre-formatting and summarization of data from the source, enabling it to be directly
inserted into the target data warehouse.

The different uses an External Table has allows the user to take full advantage of
external flat files and have them loaded to the database in a very easy and convenient
way. There are limitations with External Tables, such as the lack of indexes, the full
table scans operations that must be performed even if a single row is to be accessed, the
lack of security for the flat files, and the lack of transactional control, but certainly the
advantages this concept offers overcome its disadvantages. The flexibility to manage
data in different ways makes it the default choice for data exchange operations.

Recovery Manager Advanced
Techniques

Recovery Manager is a powerful tool. It can easily and efficiently perform the day to
day "must-do" backup tasks.

As time goes by databases become bigger and bigger. There almost seems to be a
competition to break the storage world record, where just one decade ago it was
amazing to hear about databases that had broken the Gigabyte limit. Today the
limit is at the Terabyte range, and in a few more years it won't be surprising to find
databases storing Petabytes or more.

Considering this growth, unless technology radically changes the speed to store and
retrieve data, it becomes more and more important to choose the right backup strategy.

Today the term User Managed Backup (UMB) is less frequently used in the
oracle communities and the reasons are obvious. UMBs are not reliable, and must
backup the complete datafile, even if there are many blank blocks. A UMB cannot
detect block corruptions at backup time. This may result to a redundant backup.
Considering the database size and the backup and restore maintenance windows,
the UMB is becoming an obsolete backup technique.

Recovery manager can deal with today's databases, it can proactively detect block
corruptions, it can perform incremental backups, it allows backup compression, it
can use transparent data encryption to provide secure backup environments, and it
won't perform a useless backup.

Recovery Manager Advanced Techniques

[92]

In this chapter, we will be looking at methods to administer the Recovery
Manager and to optimize the backup task. This will include backup multiplexing,
configuration of a recovery catalog, performing backup in compressed mode,
enabling backup compression, and the compression algorithms. We will also
be looking the process of performing an intra-file parallel backup, reducing the
performance impact of performing a backup, cloning a database on the fly, using
Recovery Manager to migrate a database to a different platform, and finally,
migrating the database to an ASM environment.

Recovery Manager basics
Recovery Manager (RMAN) is a tool that efficiently and reliably performs backup,
restoration, and recovery tasks on Oracle Databases. It can be used from a Command
Line Interface (CLI) or from the Enterprise Manager Web Console. It is still available
in 10g from the Enterprise Manager Java Console. However, its usage is discouraged
as this console has become obsolete and it is no longer available in 11g.

RMAN is a utility that works in a client-server fashion when launched in CLI mode,
or in a three-tier fashion when launched from the EM Console. It commands actions
from the client side and the entire backup and restore operations take place on
the server side using the server storage resources. The database to be managed is
known as the TARGET database. RMAN may optionally use a database to keep
track of the backups. This database is known as the recovery catalog database, and
is an independent database that stores information about the backup operations for
different databases. This database shouldn't reside on the same server as the target
database, and this database must have its own backup strategies. It is a good practice
to perform the RMAN operations using a recovery catalog database, as this not only
provides longer backup records, leveraging the target database control file from
storing this information, but it can also be used to store frequently used
RMAN scripts.

The backups can be stored on a server-side attached disk system, or if available,
they can be stored on tape. A certified tape unit must be configured properly and
for it to properly work with the RMAN script, a third party must supply the Media
Management Library (MML).

Chapter 4

[93]

Enterprise Manager

connect
CATALOG

Command Line Interface

(Optional)

Disk Storage
System

SBT_TAPE
MML

Media Management
Library

connect
TARGET

Client Side

Server Side

Target
Database

Recovery
Catalog

Database
(rcvcat)

rman>

Getting started with a Recovery Manager
session
Archivelog mode is mandatory if you wish to get the most out of any backup and
recovery strategy. Archivelog mode is required not only to perform an online backup
but also to unleash the power of all of the recovery strategies. For OLTP databases,
the archivelog mode is necessary.

Both in 10g and in 11g databases a flash recovery area is, if selected at creation time,
defined to store the archivelog files.

Recovery Manager Advanced Techniques

[94]

Let's configure the archivelog mode for our demo database:

This database is currently working in No Archive Mode (A). In order for it to be
configured in Archivelog mode, first it must be shut down in a consistent mode (B).
This means that the shutdown mode must be normal, transactional, or immediate.
The database cannot be shut down in abort mode as the datafiles must be consistent
when Archivelog mode is enabled. Once stopped, the database must be mounted
(C) and the ALTER DATABASE ARCHIVELOG command issued (D). Afterwards
the database can be opened (E) and it will be in Archivelog mode (F) and ready for
online backups.

Chapter 4

[95]

The database is now in Archivelog Mode (A), and it takes the default %t_%s_%r.dbf
(B) file format for the archivelog files (this format will be explained later in this
chapter), which will be located at the flash recovery area (C).

The flash recovery area can be used to store the archivelog files as well as the RMAN
backups, and it should be frequently monitored to make sure it will always have
enough free space for the daily production environment. If it ever suffers a resource
shortage and the free space is not enough to store the archivelog files, then database
activity will be frozen until the flash recovery area is freed again.

Recovery Manager Advanced Techniques

[96]

The Flash Recovery Area is configured by means of two parameters,
the DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE. They specify
the physical location of the flash recovery area and the maximum allocated space
for it. The default maximum size is set at 2 Giga bytes, which will most likely be
insufficient for a production environment.

Now let's configure the RMAN environment:

$ rman target username/password@targetDatabase catalog rcatuser/password@
RecoeryCatalogDatabase

During the RMAN session's start, shutdown or incomplete recovery operations may
take place. The user that connects to the target database must have the SYSDBA role
granted. If the user connects locally at the server, where the target database resides
and OS authentication is enabled, then it is enough to specify target as the
target connect, it is assumed the ORACLE_SID environment variable has been
properly specified.

Chapter 4

[97]

RMAN stores the configuration in the control file. The command to display the
current configuration is shown next:

RMAN configuration parameters are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default
CONFIGURE BACKUP OPTIMIZATION OFF; # default
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE CONTROLFILE AUTOBACKUP OFF; # default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'; #
default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; #
default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/u01/oracle/oracle/
product/10.2.0/db_1/dbs/snapcf_beta.f'; # default

The SHOW ALL command output is explained next.

export ORACLE_SID=ORCL
$ rman target /
RMAN> SHOW ALL;

•	 RETENTION POLICY: Since Oracle 9i Rel. 1, RMAN can specify the retention
period for a backup. Once the retention period has expired the backup is
considered obsolete and it can be purged. The retention policy specifies
this retention period with one out of two mutually exclusive policies. It can
specify that the backup will be retained for an explicit period given that the
RETENTION POLICY is configured to a RECOVERY WINDOW OF n days.
It can also specify a given number of redundant backups (REDUNDANCY
n), which means that after n+1 backups, the oldest backup from this series is
considered obsolete and RMAN can get rid of it.

•	 BACKUP OPTIMIZATION: This directs RMAN to not backup datafiles
which have not changed since the last backup operation. This option can
be overridden any time if the FORCE modifier is used at backup time.

•	 DEFAULT DEVICE TYPE: When issuing an RMAN backup or restore
operation, a device channel should be specified, otherwise RMAN will use
the device specified with this parameter.

•	 CONTROLFILE AUTOBACKUP: This option specifies whether an
automatic copy of the controlfile and spfile will be taken each time
a backup or a structure change takes place.

Recovery Manager Advanced Techniques

[98]

•	 CONTROLFILE AUTOBACKUP FORMAT: By default this is set to %F,
which specifies that backups should be made in the oracle managed file
format. If no path is specified, by default this file is stored in the flash
recovery area, in a directory created by RMAN, which is named after
the sysdate and the backup format. The path where the controlfile
auto-backup is stored can be seen by issuing a simple list backup command.

The next screen shot shows the LIST BACKUP (A) command issued to display
recently taken backups and the automatically generated controlfile backup (B).

•	 DEVICE TYPE DISK: This parameter is used to configure specific
channel limits.

•	 DATAFILE BACKUP COPIES: This specifies the number of multiplexed
backups to be generated. By default, it will only generate one single backup.

•	 ARCHIVELOG BACKUP COPIES: Just like the datafile backup copies
parameter, this parameter configures the number of multiplexed archivelog
backups to be performed.

•	 MAXSETSIZE: This parameter limits the maximum size for a backup set.
The parameter value is by default specified in bytes. Don't set it unless
you are sure you want to limit the backup set size. If the backup space
requirements exceed this limit the backup operation is aborted.

Chapter 4

[99]

•	 ENCRYPTION: This parameter specifies whether the backup will use the
Transparent Data Encryption (TDE) facility. This feature is only available
in the Enterprise Edition, from 10g Rel. 2 and later. It requires a properly
configured TDE facility.

•	 ENCRYPTION ALGORITHM: The DBA can specify which particular
encryption algorithm will be used to encrypt the RMAN backups.

•	 ARCHIVELOG DELETION POLICY: This parameter defines when the
archivelog files are eligible for deletion. This policy applies to all archivelog
destinations. By default this option is turned off. This makes RMAN consider
archivelog files eligible for deletion when either it has already been backed
up at least once or if the archivelog files have already been transferred to their
remote destinations (Data guard configurations). If the flash recovery area
runs out of space, RMAN purges the archivelog files if it determines that the
archivelog files are eligible for deletion based on the previously stated criteria.

The options this parameter can hold are BACKED UP integer TIMES TO DEVICE TYPE
and for a data guard configuration other options are: APPLIED ON STANDBY and
SHIPPED TO STANDBY. The BACKED UP integer TIMES TO DEVICE TYPE command
specifies that the archivelog files won't be eligible for deletion unless n archivelog
backups have been taken, this option can always be overridden by the RMAN
FORCE option.

•	 SNAPSHOT CONTROLFILE NAME: The snapshot controlfile is a
consistent copy of the controlfile that recovery manager automatically creates
during a backup operation. By default, it is stored in the $ORACLE_HOME/dbs/
sncf$ORACLE_SID.ora file (for Unix like environments) or the %ORACLE_
HOME%\database\SNCF%ORACLE_SID%.ORA file on Windows environments.

•	 COMPRESSION ALGORITHM: This parameter is available starting with
11g; it declares the compression algorithm to be used by RMAN to produce
zipped backups. It utilizes the BZIP2 algorithm by default.

If a parameter configuration is to be set to its default value then the CLEAR keyword
must be used along with the CONFIGURE command:

CONFIGURE RMAN PARAMETER CLEAR;

If you want to verify the setting of a particular rman parameter, then issue the
SHOW command:

SHOW RMAN PARAMETER;

The SHOW ALL command shows all currently set rman parameters.

Recovery Manager Advanced Techniques

[100]

To show the CLEAR command, in the following example, some rman parameters are
modified and then set back to their default values:

The SHOW ALL command displays all the current parameter values (A). The next
command configures the recovery window (B) changing it from 1 redundant backup
(default value) to 2 days. Afterwards the CLEAR command is applied on the recently
modified parameter (C), and finally it shows its original value (D).

Format masks used by recovery manager
You can use the following format masks for the files generated by recovery manager.

Format Mask Description
%a Specifies the activation ID of the database
%c Specifies the copy number of the backup piece within a set of duplexed

backup pieces
%d Specifies the name of the database
%D Specifies the current day of the month from the Gregorian calendar
%e Specifies the archived log sequence number

Chapter 4

[101]

Format Mask Description
%f Specifies the absolute file number
%F Combines the Database ID (DBID), day, month, year, and sequence into

a unique and repeatable generated name
%h Specifies the archived redo log thread number
%I Specifies the DBID
%M Specifies the month in the Gregorian calendar in MM format
%N Specifies the tablespace name
%n Specifies the name of the database, padded on the right with n characters

to a total length of eight characters
%p Specifies the piece number within the backup set
%s Specifies the backup set number
%t Specifies the backup set timestamp
%T Specifies the year, month, and day in the Gregorian calendar
%u Specifies an eight-character name constituted by compressed

representations of the backup set or image copy number
%U Specifies a system-generated unique filename (this is the default setting)

What happens in a user-managed online
backup?
There are two ways to perform a backup; the offline backup and the online backup:
The first one is performed when the database has been cleanly shutdown (normal,
immediate or transactional). The second one is performed when the database is open.

The offline database backup does not require the database to be in archivelog mode;
meanwhile the online database backup requires the database to be in archivelog
mode. An online backup is usually preferable to an offline backup, as an online
backup does not require the database to be shutdown.

For the DBA to be able to perform a recoverable online backup the database must be
in archivelog mode. The backup can be performed either as a user managed backup
or an RMAN managed backup. When the backup starts, Oracle issues a checkpoint
operation against the datafile, this flushes all target related database blocks to the
datafiles belonging to the tablespace; afterwards the datafile header is frozen.

Recovery Manager Advanced Techniques

[102]

The next query is used to display the datafile header after the ALTER TABLESPACE
BEGIN BACKUP command is issued.

SQL> select file# "FileNo",

 2 status "Status",

 3 checkpoint_time "ChkptTime",

 4 checkpoint_change# "ChkptChg",

 5 checkpoint_count "ChkptCnt",

 6 fuzzy "Fuzzy"

 7* from v$datafile_header

 FileNo Status ChkptTime ChkptChg ChkptCnt Fuz

---------- ------- ---------- ---------- ---------- ---

 1 ONLINE 29-10:1944 13326323 361 YES

 2 ONLINE 29-10:1944 13326323 324 YES

 3 ONLINE 29-10:1944 13326323 361 YES

 4 ONLINE 29-10:1532 13287836 362 YES

 5 ONLINE 29-10:1944 13326323 323 YES

 6 ONLINE 29-10:1944 13326323 274 YES

 7 ONLINE 29-10:1944 13326323 270 YES

Every datafile on this database has the same checkpoint, except for the datafile
related to the tablespace, which is currently in hot backup mode. This tablespace can
be monitored on the V$BACKUP dynamic view.

SQL> SELECT FILE#, STATUS, CHANGE#, TIME

 2* FROM V$BACKUP

 FILE# STATUS CHANGE# TIME

---------- ---------- ---------- ----------

 1 NOT ACTIVE 0

 2 NOT ACTIVE 0

 3 NOT ACTIVE 0

 4 ACTIVE 13287836 29-10:1532

 5 NOT ACTIVE 0

 6 NOT ACTIVE 0

 7 NOT ACTIVE 0

Chapter 4

[103]

Myths related to the online backup method
There are many myths related to the online backup feature, one relates to the amount
of redo information, and another widely spread myth has to do with the datafile
activity. There is additional information stored in the online redo log the first time
a data block is changed when in hot backup mode. Afterwards only the regular log
entries are recorded. The reason why this is the only extra information generated has
to do with the second fact, the datafile has normal read/write activity, except for its
header which remains frozen during the hot backup session. Once the backup starts
it reads the database blocks, but there are two IO levels: that of the database block
and that of the OS block, which happen to have different sizes.

The following diagram shows how the fractured block issue is produced during a
user managed online backup. If the backup operation reads an oracle block and in
the middle of the operation, the RDBMS requests a write operation, the datafile
backup will read an inconsistent database block. If the additional redo information
was not generated then a fractured block issue would be raised, and the recovery
process would not be possible. The datafile header remains frozen as a milestone
telling to the recovery process where it has to start. During the recovery process,
the fractured blocks are repaired and the recovery transaction is performed until
the limit established during the recover session.

Disk Storage
System

User Managed
Backup

RDBMS

Hot Backup
read operation

First OS fetch
(Old Block
version)

Second OS fetch
(Old Block
version)

Fractured
Block

1 Oracle Block=n OS Blocks

Database Block
write operation

New Block
Version

Recovery Manager Advanced Techniques

[104]

Recovery Manager has a fractured block management system that is comparatively
better. It performs a consistent database block backup by reading a number of OS
blocks equivalent to multiples of database blocks.

Configuring a multiplexed backup
This allows the user to specify more than one backup path. Let's configure two
specific parameters, datafile backup copies for device type disk, and a couple of
channels for disk IO.

RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT 'D:\HOME\ORACLE\BACKUP\
RMAN\%U.BUS', 'D:\HOME\ORACLE\BACKUP2\RMAN\%U.BUS';

RMAN> CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 2;

RMAN> CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 2;

Once the path is configured let's backup the database:

RMAN> backup database;

Starting backup at 23-OCT-08

allocated channel: ORA_DISK_1

channel ORA_DISK_1: sid=146 devtype=DISK

channel ORA_DISK_1: starting full datafile backupset

channel ORA_DISK_1: specifying datafile(s) in backupset

input datafile fno=00001 name=D:\ORACLE\PRODUCT\10.2.0\ORADATA\ALPHA\
SYSTEM01.DBF

input datafile fno=00003 name=D:\ORACLE\PRODUCT\10.2.0\ORADATA\ALPHA\
SYSAUX01.DBF

input datafile fno=00005 name=D:\ORACLE\PRODUCT\10.2.0\ORADATA\ALPHA\
EXAMPLE01.DBF

input datafile fno=00002 name=D:\ORACLE\PRODUCT\10.2.0\ORADATA\ALPHA\
UNDOTBS01.DBF

input datafile fno=00004 name=D:\ORACLE\PRODUCT\10.2.0\ORADATA\ALPHA\
USERS01.DBF

channel ORA_DISK_1: starting piece 1 at 23-OCT-08

channel ORA_DISK_1: finished piece 1 at 23-OCT-08 with 2 copies and tag
TAG20081

023T121900

piece handle=D:\HOME\ORACLE\BACKUP\RMAN\03JTS65L_1_1.BUS comment=NONE

piece handle=D:\HOME\ORACLE\BACKUP2\RMAN\03JTS65L_1_2.BUS comment=NONE

channel ORA_DISK_1: backup set complete, elapsed time: 00:01:46Finished
backup at 23-OCT-08

Starting Control File and SPFILE Autobackup at 23-OCT-08

piece handle=D:\ORACLE\PRODUCT\10.2.0\FLASH_RECOVERY_AREA\ALPHA\

Chapter 4

[105]

AUTOBACKUP\2008_

10_23\O1_MF_S_668866848_4J1DMKHS_.BKP comment=NONE

Finished Control File and SPFILE Autobackup at 23-OCT-08

Now, let's backup the archivelog files:

RMAN> backup archivelog all delete input;

Starting backup at 23-OCT-08

current log archived

using channel ORA_DISK_1

channel ORA_DISK_1: starting archive log backupset

channel ORA_DISK_1: specifying archive log(s) in backup set

input archive log thread=1 sequence=2 recid=1 stamp=668709676

input archive log thread=1 sequence=3 recid=2 stamp=668709684

input archive log thread=1 sequence=4 recid=3 stamp=668866560

input archive log thread=1 sequence=5 recid=4 stamp=668867197

channel ORA_DISK_1: starting piece 1 at 23-OCT-08

channel ORA_DISK_1: finished piece 1 at 23-OCT-08 with 2 copies and tag
TAG20081023T122637

piece handle=D:\HOME\ORACLE\BACKUP\RMAN\05JTS6JU_1_1.BUS comment=NONE

piece handle=D:\HOME\ORACLE\BACKUP2\RMAN\05JTS6JU_1_2.BUS comment=NONE

channel ORA_DISK_1: backup set complete, elapsed time: 00:00:09

channel ORA_DISK_1: deleting archive log(s)

archive log filename=D:\ORACLE\PRODUCT\10.2.0\FLASH_RECOVERY_AREA\ALPHA\
ARCHIVEL

OG\2008_10_21\O1_MF_1_2_4HWM3NT8_.ARC recid=1 stamp=668709676

archive log filename=D:\ORACLE\PRODUCT\10.2.0\FLASH_RECOVERY_AREA\ALPHA\
ARCHIVEL

OG\2008_10_21\O1_MF_1_3_4HWM42SJ_.ARC recid=2 stamp=668709684

archive log filename=D:\ORACLE\PRODUCT\10.2.0\FLASH_RECOVERY_AREA\ALPHA\
ARCHIVEL

OG\2008_10_23\O1_MF_1_4_4J1DBGSV_.ARC recid=3 stamp=668866560

archive log filename=D:\ORACLE\PRODUCT\10.2.0\FLASH_RECOVERY_AREA\ALPHA\
ARCHIVEL

OG\2008_10_23\O1_MF_1_5_4J1DYD7F_.ARC recid=4 stamp=668867197

Finished backup at 23-OCT-08

Starting Control File and SPFILE Autobackup at 23-OCT-08

piece handle=D:\ORACLE\PRODUCT\10.2.0\FLASH_RECOVERY_AREA\ALPHA\
AUTOBACKUP\2008_

10_23\O1_MF_S_668867208_4J1DYSBD_.BKP comment=NONE

Finished Control File and SPFILE Autobackup at 23-OCT-08

Recovery Manager Advanced Techniques

[106]

This configuration has created a duplex backup destination. This is useful when
more than one backup is required in a production environment. The duplex backup
must be specified outside the flash recovery, otherwise an ORA-19806 will be raised.

Configuring the RMAN recovery catalog
Using a recovery catalog is not mandatory, but using one will free the controlfile
from the overhead of keeping track of backups, allowing a longer backup history.
It avoids a single point of failure, and allows the DBA to securely store backup
information in a central repository.

Storing the backup information in the RMAN repository, also allows the DBA to
create and store recovery manager scripts.

The repository is created as a regular schema on a regular Oracle database.
The repository isn't a super database, able to rescue other databases and capable
of rescuing itself; suitable backup strategies must be provided for it so it can be
restored and recovered in case of failure.

The procedure to create the RMAN repository is outlined next:

1. Create a database whose purpose will be that of storing the backup
information. Even though the overhead of managing the backup information
is not meaningful, it doesn't mean it is advisable to create the recovery
repository on an existing database. I would not recommend it. This should be
an independent database responsible for watching over the other databases.

2. Create a regular tablespace; this will be used to store the recovery catalog
schema objects.

3. Create a regular user in the recovery catalog database and assign catalog
administrative privileges to it. Assign the previously created tablespace to it
as its default tablespace. This user can have the database default temporary
tablespace as its temporary tablespace.

4. Make sure the connectivity to this database has been properly setup.
5. Open a recovery manager session and connect to the recovery catalog

database as the recovery catalog owner.
6. Issue the command to create the recovery catalog.
7. Connect to each target database and have it registered against the

recovery catalog.
8. From this point on, the backup environment can call on this site to have all

databases registered against it.

For the purposes of the demonstration, a regular database has been created and it has
been configured.

Chapter 4

[107]

Now, let's follow the previous procedure and let's have our environment registered
against the recovery catalog.

In the above demonstration, when trying to connect to the target database,
an RMAN-06004 error shows up, the reason for this is that the database has not been
registered yet against this repository.

It is important to note that the database to be registered has a unique database id,
this information can be taken out of the V$DATABASE dynamic view.

SQL> select name, dbid from v$database;

NAME DBID

--------- ----------

ORCL 1196669688

Recovery Manager Advanced Techniques

[108]

A cloned database won't have a unique DBID. If you register a cloned
database and if the source database is already registered, then this
cloned database will be misinterpreted as a new incarnation of the
source database. Prior to registering a cloned database, you must run
the newdbid utility (nid) against the cloned database.

A simple backup session
The backup command has a wide variety of options, for the purposes of this chapter
we'll keep things plain and simple:

An information systems rule of thumb states:

No matter what, just make sure you have a valid backup for your environment

So let's create a simple full database backup using the BACKUP DATABASE command,
this will create a full backup of our database, and it will be useful to show the main
basic backup and recover RMAN features.

RMAN> backup database;

Starting backup at 23-OCT-08

using channel ORA_DISK_1

channel ORA_DISK_1: starting full datafile backupset

... rman Backup progress log ...

channel ORA_DISK_1: backup set complete, elapsed time: 00:01:26

Finished backup at 23-OCT-08

Recovery manager only performs the backup on the database files, archivelog files,
controlfile and spfile. It doesn't backup temporary datafiles and redo log files.

Now, let's assume there is a problem with some of our datafiles. Our production
environment may risk being out of business if the failure compromises critical
database files; the point here is what does critical mean in this context? From a purely
Oracle technical point of view, a critical datafile is a file that must be consistent,
available and online for the database to be up and running. The critical files are those
related to the SYSTEM, SYSAUX and UNDO tablespaces. There are other files that
hold the production data and other files such as the temporary datafiles. These can
easily be troubleshooted.

Chapter 4

[109]

Loss of critical datafiles: If a technically defined critical datafile is
lost, there is no way to start the database, and the file must be restored
and fully recovered for the database to be open.
Loss of non-critical datafiles: In this case, the database can be opened
as long as the missing datafiles are declared offline. A recover operation
can take place on the specific missing database files once they have been
restored from a valid backup.

The recovery manager command used to perform the restore and recover operations
are precisely RESTORE and RECOVER. They have a simple syntax. The emphasis in this
book is on the RMAN features rather than the rman syntax.

Backup compression
If limited disk space is available, or a backup across a network environment imposes
bandwidth restrictions, or if the backup is to be transported on media with a limited
storage capacity, then a compressed backup is a good option.

Fast backup compression
The compressed backup can be directly configured as an option for the CONFIGURE
CHANNEL command.

CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO COMPRESSED
BACKUPSET;

Once the backup is performed, it will be done in a compressed format.

The compression can also be configured in a non-persistent way, it can be specified
directly as a command option:

BACKUP AS COMPRESSED BACKUPSET DATABASE PLUS ARCHIVELOG;

In order for the DBA to recover from a compressed backup, they just need to issue
the regular RESTORE/RECOVER commands. There are no specific parameters required
to recover from a compressed backup set.

Recovery Manager Advanced Techniques

[110]

Let's take a look at the backup with compression enabled:

RMAN> BACKUP AS COMPRESSED BACKUPSET DATABASE PLUS ARCHIVELOG;

Starting backup at 23-OCT-08

current log archived

allocated channel: ORA_DISK_1

channel ORA_DISK_1: sid=149 devtype=DISK

channel ORA_DISK_1: starting compressed archive log backupset...

channel ORA_DISK_1: starting compressed full datafile backupset...

channel ORA_DISK_1: backup set complete, elapsed time: 00:00:03

Finished backup at 23-OCT-08

Starting backup at 23-OCT-08

current log archived

using channel ORA_DISK_1

channel ORA_DISK_1: starting compressed archive log backupset...

Finished backup at 23-OCT-08

The backup takes place just as any other regular RMAN backup. Now let's take a
look at the generated fileset.

These are the files generated by a regular full database backup:

 980447232 o1_mf_annnn_TAG20081023T230825_4j2lktyv_.bkp
 7143424 o1_mf_ncsnf_TAG20081023T230936_4j2lpr9g_.bkp
 417792 o1_mf_annnn_TAG20081023T231218_4j2ls4bs_.bkp
 1776123904 o1_mf_nnndf_TAG20081023T231221_4j2ls73t_.bkp
 7143424 o1_mf_ncsnf_TAG20081023T231221_4j2lwkc3_.bkp
 87040 o1_mf_annnn_TAG20081023T231416_4j2lwsom_.bkp

And these are the files generated with the compress option enabled:

 1383424 o1_mf_annnn_TAG20081023T235442_4j2o8mw3_.bkp
 318857216 o1_mf_nnndf_TAG20081023T235445_4j2o8p3d_.bkp
 1114112 o1_mf_ncsnf_TAG20081023T235445_4j2ofwk3_.bkp
 59392 o1_mf_annnn_TAG20081023T235738_4j2og3r3_.bkp

No Compressed Backup Compressed Backup
Backup set size 2,643 M 307 M
Backup pieces 6 4

In comparison with the regular backup set, the size of the compressed backup set is
significantly smaller and less backup files were produced.

Chapter 4

[111]

Improving data set compression with the ZLIB
algorithm (11g only)
One new feature in 11g is more efficient compression, using the ZLIB Algorithm.
In previous releases, RMAN used the BZIP2 algorithm for backupset compression;
however, there was a CPU cost penalty involved. 11g introduced a ZLIB
algorithm, which is less aggressive in terms of CPU usage. The user can decide
which compression algorithm to use by setting a value to the COMPRESSION
ALGORITHM RMAN configuration parameter.

The default value for the Compression algorithm in 11g is:

CONFIGURE COMPRESSION ALGORITHM 'ZLIB';

If you want to revert to the BZIP2 algorithm, just change the setting to reflect this:

CONFIGURE COMPRESSION ALGORITHM 'BZIP2';

If your system doesn't see the CPU compromised when performing a compressed
backup you can consider this technique. If you are performing a backup against a
tape device that also performs some sort of compression, don't mix both techniques,
use either that of the tape or that of RMAN. Mixing both won't lead to a satisfactory
result as you cannot compress an already compressed data set.

Recovery Manager Advanced Techniques

[112]

The two tests performed show the total time elapsed when the No Compress option
was specified on the backup channel. All the tests were performed against the
default general-purpose 11g database. The first and the last peaks have to do with
the I/O activity related to the read datafile task and the write backup task; the
backup activity takes around 1 minute 36 seconds and the CPU remains around 15%
and 25% within this actual backup period.

Now let's activate the compressed backup feature, first with the BZIP2 algorithm,
next with the ZLIB algorithm:

Here it can be observed, at first glance, the time it took to perform the backup with
the BZIP2 algorithm and the amount of CPU required for each algorithm. When the
BZIP2 algorithm was used, the CPU consumption was between 60% and 70%, and
there were some peaks that consumed near 80% CPU. However, when using the
ZLIB algorithm, the CPU consumption was between 50% and 60%, reaching some
peaks that were for short periods of time between 70 and 80%.

The table below summarizes the results:

Compression
algorithm

Elapsed
time

CPU
consumption

File size Compression
rate

No Compressed 95 s 15% - 25% 1,521 M 1
BZIP2 136 s 60% - 70% 252 M 0.17
ZLIB 86 s 50% - 60% 282 M 0.19

BZIP2 provides a marginally better compression rate at a higher CPU and time cost
than the ZLIB algorithm.

Chapter 4

[113]

Faster backups through intra-file parallel
backup and restore operations (11g only)
When a parallel backup takes place there are several backup processes started. Each
one is responsible for processing one file at a time. Oracle is aware that this strategy is
fine for the current average database size, but this strategy soon may not be enough.

This scalable solution for backups is also known as the multi-section backup. Each
datafile is divided into a defined number of sections, each section is defined as a
contiguous range of database blocks, and each parallel process takes care of one section
at a time, so several parallel processes manage a big database file at the same time.

Datafile
Backup
media

Section 1

Section 2

Section 3

Section n

Channel

Channel

Channel

Channel

Let's issue the command to perform the multi section backup:

One-off configuration of device type and parallelism.
CONFIGURE DEVICE TYPE sbt PARALLELISM 4;
CONFIGURE DEFAULT DEVICE TYPE TO sbt;

Divides the tablespace in 512M sections.
RUN {
 BACKUP SECTION SIZE 512M TABLESPACE any_huge_TS;
}

Recovery Manager Advanced Techniques

[114]

Some issues you should keep in mind when performing this kind of backup:

•	 The file size should be bigger than the section size; otherwise RMAN won't
use multi section backups

•	 A backup set always includes the whole datafile, regardless of whether it was
produced by multi section backup or not

•	 If RMAN determines that more than 256 sections will be produced, then
RMAN adjusts the section size to meet this maximum

•	 The last section size may be less or equal than the defined backup section

Block media recovery
Block media recovery is a powerful and very practical RMAN feature. This feature
allows the DBA to recover from the dreaded ORA-01578 ORACLE data block
corrupted (file # <fileNo>, block # <blockNo>) error. In order for RMAN to
be successful in recovering from this error, some conditions must be met:

•	 The database must be in archivelog mode.
•	 You must have a full database backup. A level 1 incremental backup is not

supported in this scenario because in a missing archivelog scenario the
recovery process would fail.

•	 If flashback is enabled, RMAN can look for valid block copies, making the
recovery process faster.

In the following example, some blocks were corrupted at datafile 5. The corruptions
were created using the Unix command dd. When querying the database looking for
data using a regular SELECT SQL command, the ORA-01578 error shows up:

SQL> select * from employees;

select * from employees

 *

ERROR at line 1:

ORA-01578: ORACLE data block corrupted (file # 5, block # 84)

ORA-01110: data file 5: '/u01/oracle/oradata/beta/example01.dbf'

SQL> select * from departments;

select * from departments

 *

ERROR at line 1:

ORA-01578: ORACLE data block corrupted (file # 5, block # 56)

ORA-01110: data file 5: '/u01/oracle/oradata/beta/example01.dbf'

Chapter 4

[115]

At this point, a dbv command is issued from the command line prompt to find out
the status of datafile 5. DBV here stands for Database File Verifier.

$ dbv file='/u01/oracle/oradata/beta/example01.dbf'

DBVERIFY - Verification starting : FILE = /u01/oracle/oradata/beta/
example01.dbf

Page 16 is marked corrupt

Corrupt block relative dba: 0x01400010 (file 5, block 16)

Bad header found during dbv:

Data in bad block:

 type: 67 format: 7 rdba: 0x0a545055

 last change scn: 0x0000.0006d15a seq: 0x1 flg: 0x06

 spare1: 0x52 spare2: 0x52 spare3: 0x0

 consistency value in tail: 0xd15a0601

 check value in block header: 0xcb3b

 computed block checksum: 0xe446

Several other pages were found to be corrupt:

DBVERIFY - Verification complete
Total Pages Examined : 12800
Total Pages Processed (Data) : 4405
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 1279
Total Pages Failing (Index): 0
Total Pages Processed (Other): 1581
Total Pages Processed (Seg) : 0
Total Pages Failing (Seg) : 0
Total Pages Empty : 5515
Total Pages Marked Corrupt : 20
Total Pages Influx : 0
Highest block SCN : 4860803 (0.4860803)

Recovery Manager Advanced Techniques

[116]

We already found out that there are problems with our database; it is time to have
them fixed as soon as possible. If a user managed backup is available this would be
the last option, as this is not reliable; if this datafile was already corrupt when the
backup took place, the datafile backup would also be corrupt and this would lead
us to a very complicated situation. RMAN detects the corruptions during a backup
or a backup validate operation. In the following case, we issue the VALIDATE backup
against datafile 5 to verify the datafile:

RMAN> backup validate datafile 5;

Starting backup at 26-OCT-08

allocated channel: ORA_DISK_1

channel ORA_DISK_1: sid=145 devtype=DISK

channel ORA_DISK_1: starting full datafile backupset

channel ORA_DISK_1: specifying datafile(s) in backupset

input datafile fno=00005 name=/u01/oracle/oradata/beta/example01.dbf

channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01

Finished backup at 26-OCT-08

This command will fill up the V$BACKUP_CORRUPTION dynamic view.
This information will be useful when RMAN builds up the block fix list:

SQL> SELECT FILE#, BLOCK#, MARKED_CORRUPT, CORRUPTION_TYPE

 2 FROM V$BACKUP_CORRUPTION;

 FILE# BLOCK# MAR CORRUPTIO

---------- ---------- --- ---------

 5 16 YES CORRUPT

 5 56 YES CORRUPT

 5 72 YES CORRUPT

 5 84 YES CORRUPT

 5 112 YES CORRUPT

This information can also be gathered from the V$DATABASE_BLOCK_CORRUPTION
dynamic view. We have the file number as well as the specific block number to
repair. Now there are two options to carry out this task:

1. Issue the BLOCKRECOVER DATAFILE file# BLOCK block# command, listing
each corrupted block.

2. Issue the BLOCKRECOVER CORRUPTION LIST command, this will read the
information from the views mentioned above to build the target block list.
This option is easier than the first one when there are several blocks to fix.

Chapter 4

[117]

The following rman command reads the corruption list and performs the block
recovery process without prompting the user for each individual block:

RMAN> BLOCKRECOVER CORRUPTION LIST;

Starting blockrecover at 26-OCT-08

using channel ORA_DISK_1

channel ORA_DISK_1: restoring block(s)

channel ORA_DISK_1: specifying block(s) to restore from backup set

restoring blocks of datafile 00005

More restore/recovery information is displayed:

media recovery complete, elapsed time: 00:00:10
Finished blockrecover at 26-OCT-08

The problem is solved and the information recorded in the V$DATABASE_BLOCK_
CORRUPTION dynamic view is automatically cleared once the problem is solved.

Backup duration and throttling
Performing a database backup is a task that consumes large amount of resources.
If the production system worked from nine to five, Monday to Friday, then we would
easily be able to find a maintenance window, which could be used to schedule the
costly backup operation. But what about a 24x7 system where it is very hard to find
a maintenance window where the backup task must fiercely compete with other
processes to gain access to CPU and I/O resources to achieve the task? The answer,
so far, is simple, the backup must be done, whatever the price to be paid.

Oracle 10g introduced a nice feature that allows the DBA to launch the backup
task reducing system resource consumption. It allows the DBA to control the
backup duration so that the backup may take longer but it will also consume fewer
system resources.

Recovery Manager Advanced Techniques

[118]

In the following example a backup operation takes place. As you can see—the first
run shows the amount of CPU consumed by the regular backup operation against
the time that operation takes to complete. On the second run, the duration has been
configured so that the workload against the database is minimized. The backup
operation takes longer, but the advantage of it is the reduced performance impact.
This can be seen in the example below:

Regular backup:

RMAN> BACKUP DATABASE;

Backup duration and throttling:

RMAN> BACKUP
2> DURATION 0:10
3> MINIMIZE LOAD
4> DATABASE;

Database cloning
Cloning a test or development environment after the backup has been taken from the
production environment is a very good opportunity to test if the backup will serve
its purpose. This is not the only time when a database clone is required, there are
several other scenarios, such as providing a fresh environment for developers and
pre-production environments, manually setting up a disaster recovery site, upgrade
preparation, and performance and stress testing, to name just a few.

Chapter 4

[119]

Database cloning procedure
Let's assume we have a Source Database named SRCDB and the target database,
named CLONEDB. A Unix like environment is assumed, but this can be implemented
on Windows as well, just be aware of the particular Oracle implementation on a
Windows platform (orapwd file name, service creation, path format).

When performing the clone process, two channels must be open, one for the target
database, and the second one for the auxiliary database. The auxiliary connection
performs the heavy part of the clone process, this will open a session at the cloned
database and it will perform the restore/recover operations required at the auxiliary
site. The clone database may reside either on the local host or on the remote hosts.
In most cases, due to storage capacity or other factors, the clone database will reside
remotely, so it is important to consider where the backup is located at the remote site;
the same paths must be used and the backup must be transferred to the auxiliary site.
If using a tape based backup, the auxiliary site must have access to the tape device;
it is possible to use Network File System (NFS) to have access to the backup too.

The clone procedure is shown below:

1. Start by creating a password file for the Cloned (CLONEDB) instance:
orapwd file=/u01/app/oracle/product/10.2.0/db_1/dbs/orapwCLONEDB
password=password entries=10

2. Configure the connectivity (tnsnames.ora and listener.ora). Properly
identify the database at the tnsnames.ora and have the instance manually
registered against the listener.ora files, both files located at the $ORACLE_
HOME/network/admin directory.

3. Manually register the database against the listener (listener.ora):
(SID_DESC =
 (ORACLE_HOME = /u01/app/oracle/product/10.2.0/db_1)
 (SID_NAME = CLONEDB)

)

4. Add the target CLONEDB to the tnsnames.ora:
CLONEDB =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myhost.mydomain.com)(PORT
= 1521))
)
 (CONNECT_DATA =
 (ORACLE_SID = CLONEDB)
)
)

Recovery Manager Advanced Techniques

[120]

5. Reload the listener:
$ lsnrctl reload

6. Next, create an init.ora file for the cloned database. In case the same
database file paths cannot be used on the auxiliary host, either because it
is the same source host or because those paths are not reproducible on the
target, then proper values for DB_FILE_NAME_CONVERT and LOG_FILE_NAME_
CONVERT are required.
DB_NAME=CLONEDB

CONTROL_FILES=(/u02/oradata/CLONEDB/control01.ctl,
 /u02/oradata/CLONEDB/control02.ctl,
 /u02/oradata/CLONEDB/control03.ctl)

Convert file names to allow for different directory structure.
DB_FILE_NAME_CONVERT=(/u02/oradata/SRCDB/,/u02/oradata/CLONEDB/)
LOG_FILE_NAME_CONVERT=(/u01/oradata/SRCDB/,/u01/oradata/CLONEDB/)

block_size and compatible parameters must match those of the
source database
DB_BLOCK_SIZE=8192
COMPATIBLE=10.2.0.1.0

7. Connect to the cloned instance:
ORACLE_SID=CLONEDB; export ORACLE_SID
sqlplus /nolog
conn / as sysdba

8. Create an SPFILE based on the init.ora:
CREATE SPFILE FROM PFILE='/u01/app/oracle/admin/CLONEDB/pfile/
init.ora';

9. Start the database in NOMOUNT mode:
STARTUP FORCE NOMOUNT;

10. Connect to the TARGET, CATALOG, and AUXILIARY databases. In this code
snippet, the clone database process is performed using the catalog database,
but it is not required, it can be performed with or without a recovery catalog.
At the auxiliary site, using RMAN, three connections are open, one for the
Source Database (SOURCEDB), another for the Catalog database (RCAT),
and one more for the cloned database (CLONEDB):
ORACLE_SID=CLONEDB; export ORACLE_SID
rman TARGET sys/password@SRCDB CATALOG rman/rman@RCAT AUXILIARY /

Chapter 4

[121]

11. Recovery Manager provides the DUPLICATE command to perform the clone
operation. The cloned database can either be completely recovered up to the
last redo entry available or it can be cloned to a point in time, this would be
equivalent to an incomplete recover operation at the auxiliary site. The two
cases are shown below:
	° First case, clone the database in complete recovery mode:

DUPLICATE TARGET DATABASE TO CLONEDB;

	° Second case, clone the database up to a defined point in time in
the past using an incomplete recover:
DUPLICATE TARGET DATABASE TO CLONEDB UNTIL TIME 'SYSDATE-2';

At the end of this point, the process is finished; the newly created CLONEDB
database is ready to be used as an independent new database.

The DUPLICATE command will take care of the final details. It will create the
controlfile for the cloned environment, restore all datafiles and manage the auxiliary
instance. As an additional task, it will open the database with the resetlogs option
and it will create a new DBID for the cloned database, except for the DUPLICATE ...
FOR STANDBY case.

Database cloning on the fly (11g only)
As you have seen, Oracle 10g required the database to have a backup, and some
manual preparation must be done prior to the clone process execution. Starting with
11g the DBA is leveraged from some tasks. With 11g, it is no longer required to have
the target spfile created, this can be created on the fly, and there is no need to have
a pre-existing backup from the source database. RMAN reads the original database
files the same way it reads the datafiles for a backup operation and transfers the
on-the fly backup to the auxiliary database using an inter-instance network
connection. RMAN utilizes an in-memory rman script to perform the cloning tasks
at the auxiliary location. Some preparation at the destination site must be still
performed prior to the clone process; the cloned environment must be already
identified with a password file, which holds the same password as that defined at
the source site.

Recovery Manager Advanced Techniques

[122]

The following diagram illustrates the clone on the fly procedure using the
DUPLICATE ... FROM ACTIVE DATABASE command. Intermediate files
are not required to clone the database.

DUPLICATE ...
FROM ACTIVE DATABASE

Auxiliary DB
(Destination)

Target DB
(Source)

The command modifier used to perform the task is FROM ACTIVE DATABASE,
which makes RMAN aware of both the Auxiliary DB (Destination) and the Target
DB (Source). The source database can either be in archivelog or no-archivelog mode.

When this operation takes place, the DBA should be aware of the required resources
at the source database, CPU, I/O and bandwidth, so there may be some overhead
involved during the clone operation. You have seen from previous topics the amount
of resources consumed by a regular backup operation.

When the clone operation takes place, it may be possible that the destination site
doesn't have the same paths used at the source database, so it is required to specify
the DB_FILE_NAME_CONVERT and the LOG_FILE_NAME_CONVERT, which directs RMAN
as to where the database files (at the destination) are to be created. These parameters
as well as many other parameters can be specified as arguments at the time the
DUPLICATE command is issued. This feature allows the DBA to save time issuing the
ALTER SYSTEM commands at the destination instance.

DUPLICATE TARGET DATABASE
 TO CLONEDB
 FROM ACTIVE DATABASE
 SPFILE
 PARAMETER_VALUE_CONVERT '/u01','/u02'
 SET LOG_FILE_NAME_CONVERT '/u01','/u02'
 SET DB_FILE_NAME_CONVERT '/u01','/u02'
 SET SGA_MAX_SIZE 512M
 SET SGA_TARGET 400M;

Chapter 4

[123]

The PARAMETER_VALUE_CONVERT is used to avoid specifying each path related
parameter, this parameter doesn't define the LOG_FILE_NAME_CONVERT or DB_FILE_
NAME_CONVERT parameters.

Inter-platform database migration
When performing an inter-platform migration operation, due to natural OS
incompatibilities, the most commonly used method is a regular export/import
(exp/imp or the Data Pump version). This approach happens not to be a scalable
solution. The amount of data to transfer is directly proportional to the time taken
to complete. Day by day databases are growing larger and the maintenance
windows are becoming narrower, so a logical data transfer may leave us in a very
uncomfortable situation. If the database is 10g Release 1 or higher, the DBA can take
advantage of the inter-platform transportable tablespace feature. The total amount
of time it takes to have the database migrated to the target platform is equal to the
time it takes to prepare all tablespace metadata to be exported, plus the time it takes
to copy the datafiles to the target platform, plus the time to apply the inter-platform
datafile conversion, plus the time it takes to have the metadata imported.

The reason why a datafile belonging to a database created on HP-UX cannot be
read on a database created on a Windows x32 platform, or a datafile belonging to
a database on Linux cannot be read on Solaris is Endianess. Endianess is a term
used in computing and refers to the byte ordering used to represent data. This term
was coined after the Jonathan Swift's novel The Gulliver's Travels which depicts the
conflicts between Lilliput and Blefuscu who discussed which side was the right one
to crack the egg, the little end or the big end. Technically speaking, the big endian
format defines that the most significant byte is stored at the memory location with
the lowest address; the next byte value in significance is stored at the following
memory location and so on. On the other hand, the little endian format states that
the least significant byte value is at the lowest address, and the other bytes follow in
increasing order of significance.

The procedure to transport a tablespace across platforms is as follows:

1.	 Make the tablespace read only.
2. Verify that you are working with a valid transportable set, that is

non self-contained tablespaces or tablespaces containing objects belonging
to SYS are not valid.

3. Extract the metadata with the transport_tablespace option.
4. Check out the source and target endian format, if those are compatible just

proceed, otherwise use RMAN to perform the endian conversion either at the
source or the target platform.

Recovery Manager Advanced Techniques

[124]

5. Transfer the datafiles to the target platform (if the DBA decides to perform
the format conversion at the target platform, then the file transference must
be performed first).

6. Import the tablespace metadata at the target database.
7. Make the tablespace read/write.

Some important points to consider when performing an inter-platform tablespace
transportation are:

•	 The source and target database character sets must be the same
•	 The source and target platforms must have the same Endianess, if this is not

the case; it is when RMAN must perform the endianess conversion.
•	 The tablespace name must be unique at the target database and the data must

be self-contained. If the tablespace is not unique, then it must be renamed.

Let's create a regular locally managed tablespace on a windows platform. The goal is
to have this tablespace migrated to a server running under a Linux operating system:

SQL> create tablespace MIGRATE_TO_UNIX_TS

 2 datafile 'C:\ORACLE\PRODUCT\10.1.0\ORADATA\ALPHA\MIGRATE_TO_UNIX_
TS_01.DBF' size 64m

 3 extent management local

 4 segment space management auto uniform size 64k;

Tablespace created.

SQL> create table system.where_are_you_from(

 2 Question varchar2(40),

 3 Answer varchar2(80))

 4 tablespace MIGRATE_TO_UNIX_TS;

Table created.

SQL> select * from where_are_you_from;

QUESTION ANSWER

---------------- --------------------------------

Version Oracle Database 10g Enterprise
 Edition Release 10.1.0.5.0 - Prod

OS Platform Microsoft Windows IA (32-bit)

Endian Format Little

SQL> exec dbms_tts.transport_set_check('MIGRATE_TO_UNIX_TS', TRUE);

SQL> SELECT *

 2 FROM transport_set_violations;

no rows selected

Chapter 4

[125]

The next step is to set this tablespace in read-only mode and have the
metadata exported:

SQL> alter tablespace MIGRATE_TO_UNIX_TS read only;

SQL> create directory DATA_PUMP_DIR

 2* as 'C:\Oracle\product\10.1.0\admin\alpha\dpdump';

SQL> grant read,write on directory data_pump_dir to public;

At the OS prompt the export Data Pump utility is invoked to generate a dump file
containing the metadata required to perform the tablespace transportation:

C:\>expdp system/oracle dumpfile=MigrateToLinux directory=DATA_PUMP_DIR
transport_tablespaces=MIGRATE_TO_UNIX_TS

Export: Release 10.1.0.5.0 - Production on Tuesday, 28 October, 2008 2:57

Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.5.0 -
Production

With the Partitioning, OLAP and Data Mining options

Starting "SYSTEM"."SYS_EXPORT_TRANSPORTABLE_01": system/********
dumpfile=MigrateToUnix direct

ory=DATA_PUMP_DIR transport_tablespaces=MIGRATE_TO_UNIX_TS

Processing object type TRANSPORTABLE_EXPORT/PLUGTS_BLK

Processing object type TRANSPORTABLE_EXPORT/TABLE

Processing object type TRANSPORTABLE_EXPORT/TTE_POSTINST/PLUGTS_BLK

Master table "SYSTEM"."SYS_EXPORT_TRANSPORTABLE_01" successfully loaded/
unloaded

Dump file set for SYSTEM.SYS_EXPORT_TRANSPORTABLE_01 is:

 C:\ORACLE\PRODUCT\10.1.0\ADMIN\ALPHA\DPDUMP\MIGRATETOUNIX.DMP

Job "SYSTEM"."SYS_EXPORT_TRANSPORTABLE_01" successfully completed at
02:58

Recovery Manager Advanced Techniques

[126]

During a regular transportable tablespace operation, the next step is to have the
related datafile(s) copied to the target platform, but in this case, it is not possible, as
these are two different platforms. So there it is when RMAN comes to the rescue. The
goal of RMAN is to transform the endianess from the source OS to the target OS, and
this operation can take place either at the source or at the
target platform.

Conversion on a Windows source host to a Solaris destination file.

CONVERT TABLESPACE my_tablespace
 TO PLATFORM 'Solaris[tm] OE (32-bit)'
 FORMAT='C:\Oracle\Orastage\TransportSet\%U';

Conversion on a Solaris destination host from a Windows source file.

CONVERT DATAFILE=
 '/Oracle/Orastage/TransportSet/SourceDatafile01.dbf',
 '/Oracle/Orastage/TransportSet/SourceDatafile02.dbf'
 FROM PLATFORM 'Microsoft Windows IA (32-bit)'
 DB_FILE_NAME_CONVERT
 '/Oracle/Orastage/TransportSet','/u01/oradata/TARGETDB';

Once this is done, just proceed with the regular metadata import operation, so the
tablespace is adopted at the target database and the inter-platform transportable
tablespace operation gets done.

[oracle@alpha ~]$ impdp system/oracle dumpfile=MIGRATETOUNIX.DMP
directory=DATA_PUMP_DIR trans
port_datafiles=/u01/oracle/oradata/gamma/MIGRATE_TO_UNIX_TS_01.DBF
Import: Release 11.1.0.6.0 - Production on Tuesday, 28 October, 2008
3:06:19
Copyright (c) 2003, 2007, Oracle. All rights reserved.
Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 -
Production
With the Partitioning, OLAP, Data Mining and Real Application Testing
options
Master table "SYSTEM"."SYS_IMPORT_TRANSPORTABLE_01" successfully loaded/
unloaded
Starting "SYSTEM"."SYS_IMPORT_TRANSPORTABLE_01": system/********
dumpfile=MIGRATETOLINUX.DMP di
rectory=DATA_PUMP_DIR transport_datafiles=/u01/oracle/oradata/gamma/
MIGRATE_TO_UNIX_TS_01.DBF
Processing object type TRANSPORTABLE_EXPORT/PLUGTS_BLK
Processing object type TRANSPORTABLE_EXPORT/TABLE
Processing object type TRANSPORTABLE_EXPORT/TTE_POSTINST/PLUGTS_BLK
Job "SYSTEM"."SYS_IMPORT_TRANSPORTABLE_01" successfully completed at
03:06:39

Chapter 4

[127]

Migrate to and from an ASM environment
RMAN is the only available method to migrate from and to ASM environments.
ASM is an efficient and reliable storage mechanism that first appeared in 10g Rel. 1.
There are two ways to backup an ASM environment, one is by means of a low level
disk dump, which performs a complete raw device dump and does not allow the
DBA to select individual storage structures such as tablespaces or datafiles; the other
method is by means of Recovery Manager. Today, ASM seems pretty complex and
abstract for several DBAs, but once it is setup and is up and working, it is seamless
to work with it, and it is quite the same as if it was a regular storage unit with
tablespaces and datafiles. The flash recovery area, redologs, backups, and datafiles
live in there and are managed just like any other regular database file.

The database could have been created in an ASM environment since the very
beginning, but what about if this was not the case? Is there a means to move datafiles
inside an ASM storage unit? Or is there a way to take a datafile out of an ASM
environment and convert it into a regular datafile without recreating the physical
structure. The answer is RMAN, which, by the way, is the only available method to
backup and restore individual datafiles.

This code snippet performs the migration of not only a datafile, but also the whole
database from a regular environment to an ASM storage unit. The commands are
launched from an rman prompt:

Start nomount to perform controlfile level operations.
STARTUP NOMOUNT;
The controlfile is copied from its current position
to the DiskGroup inside the +ASM instance
RESTORE CONTROLFILE FROM '/u01/oracle/oradata/orcl/control01.ctl';
The database can be mounted now
ALTER DATABASE MOUNT;
This operation will perform the database copy
to the +DiskGroup destination
BACKUP AS COPY DATABASE FORMAT '+DiskGroup';
This command updates the controlfile and declares
that the official database files are those recently copied
SWITCH DATABASE TO COPY;
Renames all redolog files to logfiles inside the ASM
this command must be issued for each existing redo log file

SQL "ALTER DATABASE RENAME '/u01/oracle/oradata/rdo01.log' to
'+DiskGroup';
This opens the database and creates a new redolog file set
inside the ASM
ALTER DATABASE OPEN RESETLOGS;

Recovery Manager Advanced Techniques

[128]

Don't forget about the temporary datafiles, rman doesn't
manage the temporary datafiles, so the DBA must be aware
of this prior to releasing the database to production.
Finally get rid of the old temporary datafiles
SQL "ALTER TABLESPACE TEMP ADD TEMPFILE";
SQL "ALTER DATABASE TEMPFILE '/u01/oracle/oradata/temp01.dbf' DROP;

The old database files at the regular file system can now be removed. At this point
the database has been migrated to the ASM environment. If the DBA wants to
manage a hybrid environment, then it is possible to use the COPY command to
manage individual database files.

General backup advices
As previously stated, no matter what, you must always have a valid backup. A
backup is protection for a company's most valuable asset, its data. Throughout the
years, I have heard thousands of Halloween tales related to loss of data. Some good
advice is listed next. The following is not a complete set of best practices, and the
DBA should always make sure to have a tested backup/recovery procedure to be
efficient and effective in restoring data, in case of failure.

•	 Always check the backup output log.
•	 The validity of a backup should never be taken for granted.
•	 If possible, periodically use your backup to replicate the production

environment on a test or development environment to verify it can be used to
recover the production environment in case of failure.

•	 Watch out for scheduled backups that are synchronized with other file
processing routines. More than one backup has been rendered corrupt after
a batch zip assumed it had ended at a specified pont in time. If the backup
is to be processed further, then the Oracle 10g/11g scheduling mechanism
should be used, this allows the DBA to create asynchronous tasks and
program OS activities.

•	 Before any major change or any maintenance task that compromises data,
a backup should be performed.

•	 Periodically verify that the recovery procedures meet the maintenance
windows agreed with the users.

Chapter 4

[129]

•	 Never deploy a new application to a production environment unless it has
been thoroughly tested in a development environment.

•	 Consider a replicated site, a data guard of some sort for your production
environment, in case of failure at the primary site you'll always have a plan B
where your production will continue uninterrupted.

•	 Create a scaled down copy of your production environment where you can
put to the test all possible failure scenarios, it is very important to keep in
good shape by practicing different recovery techniques and make sure that in
case of a real failure you are prepared to apply the right recovery strategy in
the least possible time.

•	 After each backup, make sure you have a doubled backup copy at a remote
location; this will ensure that in case of site failure you can always have a
second valid copy of your data.

•	 Keep the backup media stored in a physically safe place.

Summary
When the production data, the most company's valuable asset, is involved—checking
the status of the backup procedures, verifying those will take back our database
safe and sound, measuring both, time it takes and space it requires are some of the
common tasks a DBA must perform.

Thinking today of the old, de facto deprecated, User Managed Backup concept is
equivalent to taking our database back to the 7.3 prehistoric ages. Since Recovery
Manager first appeared as a new feature back in 8.0, it has never stopped evolving.
Release after release, Oracle has continuously developed new features, improving it
and making it more user friendly. Starting with Oracle 9i, RMAN has introduced a
set of new features that has turned this tool into the default choice to perform backup
and recovery strategies. Oracle is always improving this tool and making it more
efficient. Both in 10g and 11g there are several features oriented to make the backup
and recovery session more productive, and more manageable.

It is an absolute must to make sure you have a valid procedure to bring back to
life your database in case of failure, but it is equally important to know how to
perform this procedure in the most efficient way. This chapter has focused more on
the RMAN features that provide efficiency and manageability rather than on the
command syntax. RMAN is a very extensive topic, and when addressing it there are
never enough pages, but the chosen topics and the way they were explained here
had the purpose of hopefully making you aware that there are always more efficient
ways to perform must-do tasks.

Recovery Manager Restore
and Recovery Techniques

Once a backup has been taken the second part of the process is to perform the restore
or recover operation. This is an operation no one wants to have to undertake, but you
must be prepared to do so if it is required. This chapter deals with the recovery tasks
from the recovery manager point of view.

All the scenarios assume that you have a database in archivelog mode and a valid
backup which was taken using recovery manager. The database used to perform the
demonstrations is a regular general purpose database created with the DBCA.
The scenarios are performed with the SYSDBA role because this role can manage
the Oracle instance and it can perform incomplete recovery operations.

Oracle database recovery
There are two situations when a database recovery process will be required, one is
after an instance failure, and the other is after a media failure. The recovery process
takes information from the redo log files or the archivelog files as required and applies
the changes found there against the datafiles. The applied changes depend on each
individual datafile, and they range from the last applied change against the datafile to
the last System Change Number (SCN) recorded at the control file.

The recovery process will read the transactions and it will apply all the recorded
changes against the datafiles, the changes are from either committed or uncommitted
transactions. During the first recovery phase all changes stored in either the archive
log files or the redo log files are applied against the datafiles (this is known as rolling
forward). During the second recovery phase all uncommitted transactions are rolled
back. The recovery process ends when all the changes have been applied against the
database files or if the DBA explicitly defined a point where the recovery process must
stop, then the recovery process will end when the recovery manager reaches that point.

Recovery Manager Restore and Recovery Techniques

[132]

The controlfile is a critical file during the recovery process as this file contains the
information that marks the transactional point the database must reach to perform a
complete recovery process.

Instance failure
An instance failure happens when the database did not receive the last checkpoint
before the instance was shutdown, leaving the datafiles in an inconsistent state. This
can happen when a SHUTDOWN ABORT command is issued or when the host is abruptly
shutdown after a power failure and there was no way to properly shutdown the
database with a SHUTDOWN NORMAL|IMMEDIATE|TRANSACTIONAL command. At
startup time Oracle realizes there is a difference between the SCN information stored
in the controlfile and the SCN information recorded at the datafile headers. Once
the difference has been stated the System Monitor Background Process (SMON)
starts an automatic instance recovery process by reading the missing transactions
from the redo log files and applying them against the datafiles requiring them. This
process does not require DBA intervention and it does not require the database to
be in archivelog mode. Once all the transactions have been applied the database is
automatically opened by the instance.

Media failure
A media failure happens when a datafile gets corrupted or lost. This requires the
DBA to take a valid backup and restore the missing datafile or datafiles to their
original location (if possible) or to a different location. The last applied transaction
found in the restored datafiles comes from the backup time, which most probably
is far away from the range stored at the redo log files, so it is required to read the
missing transactions from the archivelog files. At this point the startup process will
be stopped thus letting the DBA know that a database recovery process is required.

If the database is not in Archivelog mode then it is not possible
to apply a database recovery process and in the best case
scenario the only information that will be restored will be from
the last valid offline backup time.

In the following image a recovery process takes place:

1. The first step restores the missing datafiles from a valid backup.
2. At this point all physical structures are available but there are missing

changes, so a recovery process is required.
3. Once the process is finished the database is open.

Chapter 5

[133]

Media Recovery

SCN

SCN

Transactions Recovered

RECOVER

Missing Transactions

Online & archived
log files

Rollforward

Undo Blocks

Rollback

I.

II.

1

2

3

RESTORE

Database
Backup

Complete recovery
The following image depicts the complete recovery process. In a complete recovery
all pending changes are applied against the database files. The recovery goal is
determined after the information stored in the controlfile.

1. In a complete recovery scenario only the missing or corrupt datafiles need to
be restored.

2. The recovery process aims to recover the inconsistent datafiles.
3. Once the process is finished the database is open.

www.allitebooks.com

http://www.allitebooks.org

Recovery Manager Restore and Recovery Techniques

[134]

The log sequence number (the monotonically increasing number that counts the
number of log switches) continues from the last sequence number.

alter database open;

Complete Recovery

SCN SCN

RECOVER1

3

Rollforward

Rollback

I.

II.

RESTORE

Database
Backup

Applied
Transactions

Missing
Transactions

2

Incomplete recovery
In an incomplete recovery process the applied changes are behind the maximum
change number recorded at the control file. The process requires the DBA to restore
all data files (temporary files are not considered) from a valid backup. All other
physical structures remain unchanged.

Don't touch the controlfile and the redo log files as they identify
the highest possible SCN to which the restore may be performed.

Chapter 5

[135]

The process requires the DBA to define the recovery goal. This can be specified in
terms of a timestamp, a System Change Number, or a specific log switch number.
Once the recovery process has reached the recovery goal it is stopped and the
database is opened with the RESETLOGS option. The log switch number is reset to 1
and it is recorded as a new database incarnation. The database changes that were
made between the recovery goal and the last database SCN will be lost forever.

Before an incomplete recovery process takes place it is advisable to have a valid
backup so you can rollback the scenario just in case things don't work as expected.

In particular, some DBAs will make an additional copy
of all online redo logs as these files store critical information
used during recovery.

You must be aware that the control file contents are modified after the process is
finished. You must have a control file backup so that the scenario can be restored to
its initial state just as if nothing had happened.

Incomplete Recovery

SCN SCN

RECOVER

1

3

Rollforward

Rollback

I.

II.

RESTORE

Database
Backup

Applied
Transactions

Missing
Transactions

2 Lost transactionsRestore all datafiles

alter database open resetlogs;

Recovery Manager Restore and Recovery Techniques

[136]

An incomplete recovery process is required when you want to take the database
back to a point in time to undo a critical change that cannot be undone in any other
way. It is also required if a missing archive log prevents a complete recovery from
completing, or if a backup control file is used.

In RMAN there are three ways to define the target point in time for an incomplete
recover, by means of the sequence log switch number, the SCN, or by time stamp.

Syntax Description
UNTIL TIME = 'date
string'

Specifies a time as an upper limit. RMAN selects
only files that can be used to recover up to but not
including the specified time.

UNTIL SCN = integer Specifies an SCN as an upper limit. RMAN selects
only files that can be used to recover up to but not
including the specified SCN.

UNTIL SEQUENCE = integer
THREAD = integer

Specifies a redo log sequence number and thread as
an upper limit. RMAN selects only files that can be
used to recover up to but not including the specified
sequence number.
The THREAD parameter makes sense in RAC
environments.

The following examples are rman commands used to perform an incomplete recover:

Incomplete recover defined by timestamp:

RMAN> RESTORE DATABASE UNTIL TIME "TO_DATE('10/04/09','MM/DD/YY')";

Incomplete recover using a redo log switch number:

RUN{
 SET UNTIL SEQUENCE 9876 THREAD 1;
 RESTORE DATABASE;
 RECOVER DATABASE; # recovers through log 9875
 ALTER DATABASE OPEN RESETLOGS;
 }

Chapter 5

[137]

In this example an incomplete recover utilizes the SCN as the recovery
goal definition:

RUN{
 RESTORE DATABASE;
 RECOVER DATABASE UNTIL SCN 123456; # recovers through SCN 123455
 ALTER DATABASE OPEN RESETLOGS;
 }

Loss of data files
When a media loss occurs it can hit either critical or non-critical data files or a
combination of both. In the event of media loss several Oracle storage structures
may be compromised, this includes redo log files, control files and temporary files
also. Non critical database files are all database file except those that belong to the
SYSTEM, SYSAUX, and UNDO tablespaces. The critical data files are those that belong to
the SYSTEM, SYSAUX, and UNDO tablespaces. The procedure to recover from a loss of
datafiles, either critical or non-critical is quite the same, the difference comes after the
database possibility to be open with the damaged data files offline and perform the
recovery process when the database is open.

Queries used to diagnose data files
There are two basic queries that are frequently used to diagnose problematic data
files. The first one is used to display the information in the data file header. The
second one is used to display the data files requiring to be recovered.

Datafile Header: The data file header stores vital information used by the SMON
background process at start-up time to determine if the data file is consistent or
not. This information includes the SCN. If the database received its last checkpoint
before the Oracle instance was shutdown then the SCN will be consistent, otherwise
the SCN won't match that stored in the control file and this will alert SMON. By
querying the datafile header you will know if the datafile is or is not consistent. The
following query is used to query the datafile header:

col FILE_NAME for a45
col TIMESTAMP for a9
col FILE# for 9999

select D.FILE#,
 D.NAME FILE_NAME,
 H.CHECKPOINT_CHANGE#,

Recovery Manager Restore and Recovery Techniques

[138]

 to_char(H.CHECKPOINT_TIME, 'HH24:MI:SS') TIMESTAMP
from V$DATAFILE D, V$DATAFILE_HEADER H
where D.FILE# = H.FILE# ;

Recover File: The inconsistent datafiles are reported at the V$RECOVER_FILE
dynamic view. It is important to query this view since at startup time, after SMON
has determined that there are data files that required to be manually recovered, a
message will be displayed showing only the first inconsistent data file. The complete
list of inconsistent data files is shown with the following query:

col FILE# for 9999
col FILE_NAME for a45
col ERROR for a25

select D.FILE#,
 D.NAME FILE_NAME,
 R.ERROR
from V$RECOVER_FILE R, V$DATAFILE D
where R.FILE# = D.FILE#;

Chapter 5

[139]

Loss of a non-critical datafile
From the Oracle perspective a non critical file is a file that does not prevent the
database from being opened if it is taken off line. Certainly, the DBA must assess
how critical a datafile is from the business' perspective. However, technically
speaking Oracle can be operational if a non-critical datafile is damaged.

When a non-critical datafile is missing, the procedure to bring back the database to
the open state and fully recovered is as follows:

1. Try to open the database. As at least one datafile is missing the Oracle
instance won't open the database and an error will be displayed.

2. Identify the missing data files.
3. Proceed to restore the previously identified data files from a valid backup.
4. At this point it is up to the DBA to put offline the restored datafiles and open

the database or just proceed to the recover process
5. Recover the datafile or datafiles.
6. If the database was open before the recover process was executed on the

problematic data files then just put online the recovered data files. Otherwise,
if the database was left in a mount state then proceed to open the database
once the recover process is finished.

Recovery Manager Restore and Recovery Techniques

[140]

In the following scenario, a non-critical datafile has been lost. Two datafiles
belonging to the USERS and EXAMPLE tablespaces are deleted on purpose. This will
create an error at startup time. When a datafile is missing, only the first missing
datafile is reported in the SQL prompt. So, we need to find out the complete list of
missing datafiles. A query is issued to find all problematic datafiles.

A recovery manager session is opened to proceed with the recovery process. This
will show that there are two non-critical datafiles missing, so the recovery process
can take place while the database is open.

A new rman session is started. rman is directed to restore the missing data files from
the backup media. As these data files are not critical for the database to be open the
datafiles are set offline, the database is open and the recovery process can take place
while the database is in a productive state. Then rman determines which one is a
suitable backupset for the restore and recovery operations.

Chapter 5

[141]

You must remember that critical and non-critical is an adjective qualified
from the Oracle perspective, not from the production environment
point of view, so you must assess if you can afford to partially enter into
production with the remaining data structures.

At this point, the database has entered into production, the users can start opening
sessions in the database. The recovery process takes place at this point. It is enough
to issue the recover command from the rman prompt. The recover process takes place
only at the datafile level, it points to the specific datafiles that are offline.

Recovery Manager Restore and Recovery Techniques

[142]

In the image the RESTORE procedure is shown, it is not a requirement to open the
database. You only have to put the missing datafiles offline. The missing datafiles
can be restored and recovered after the database is open.

The last step in this recovery process is to put back online the recovered datafiles:

SQL> ALTER DATABASE DATAFILE 4 ONLINE;

SQL> ALTER DATABASE DATAFILE 5 ONLINE;

In the next image the datafiles are set online and the status is verified from the
V$DATAFILE_HEADER dynamic view. There it can be seen that there are no more
datafiles listed in the V$RECOVER_FILE view, this means all missing datafiles have
been recovered and there are no further recover actions to be performed.

Chapter 5

[143]

Loss of a temporary datafile
Temporary tablespaces are never backed up. They are not considered as part of
a backup strategy. A temporary datafile can always be recreated if required. Its
information is not considered critical for database recovery purposes.

Starting 10g Rel. 2 at database open time Oracle automatically rebuilds the missing
temporary datafiles.

In the following scenario, the user used for demonstration purposes is SYS connected
as SYSDBA. The temporary datafile configuration is that of the default database
created with the DBCA assistant.

Originally, the datafile is physically located in the directory reported by the
V$TEMPFILE dynamic view (A). A query explicitly requiring sort segments is issued
(B). In the middle of the sort operation from another OS session the temporary
datafile is physically removed and some errors are displayed on the screen letting the
user know that some temporary datafiles are missing (C).

Recovery Manager Restore and Recovery Techniques

[144]

If the temporary datafile is lost then the database operations
requiring temporary segments will be interrupted and
an ORA-01565 and ORA-27037 errors will be displayed.

It is confirmed that the file has been physically removed from the file system (D).

The datafile belonging to the temporary tablespace TEMP is lost. In this scenario
it is enough to bounce the Oracle instance for this issue to be corrected. Oracle
automatically recreates the missing temporary datafile at startup time (E). This can
be confirmed by taking a look at the file system. The temporary datafile has been
recreated at its original location (F).

Managing temporary datafiles
In the previous scenario the database was shutdown to force the temporary
datafile creation at startup time. This means that the database's availability was
compromised while the shutdown or startup procedure took place.

Chapter 5

[145]

In the following scenario it was not needed to restart the database. It was enough
to simply create a new temporary datafile (G) and get rid of the lost datafile
definition (H).

Loss of a critical datafile
The critical datafiles must be online in order for the oracle instance to be able to open
the database. If a critical datafile is lost then a recovery operation must be performed
so the database can be opened.

When a critical database file is lost, the procedure to bring the database back to
business is as follows:

1. Try to open the database, the procedure will stop the database at the mount
point and the error message will show the missing datafile or datafiles.

2. Verify at the V$RECOVER_FILE how many other datafiles are missing besides
the one reported in the previous error.

3. Issue the restore command. This will restore the correct datafile from the
backup media.

4. As the database won't allow the datafile to be set offline a recover operation
must take place.

Recovery Manager Restore and Recovery Techniques

[146]

Once the complete recovery process is finished, to alter the database status so it gets
to the open state. At this point the recovery process is finished and the database is
taken back to its production state.

In the next example three critical datafiles are lost. For demonstration purposes the
datafiles belonging to the SYSTEM, SYSAUX and UNDO tablespace were deleted on
purpose. When the DBA tries to open the database an ORA-01157 error is displayed
letting the DBA know that there is a problem with datafile 1. This is not the only
datafile missing, so a query against the V$RECOVER_FILE view is required to find out
how many other datafiles are missing.

Chapter 5

[147]

A look at the related alert<SID>.log file, will show information about the missing
datafiles too.

ALTER DATABASE OPEN

Tue Jun 2 10:13:05 2009
Errors in file /u01/app/oracle/admin/alpha/bdump/alpha_dbw0_28543.trc:
ORA-01157: cannot identify/lock data file 1 - see DBWR trace file
ORA-01110: data file 1: '/u01/app/oracle/oradata/alpha/system01.dbf'
ORA-27037: unable to obtain file status
Linux Error: 2: No such file or directory
Additional information: 3

Tue Jun 2 10:13:05 2009
Errors in file /u01/app/oracle/admin/alpha/bdump/alpha_dbw0_28543.trc:
ORA-01157: cannot identify/lock data file 2 - see DBWR trace file
ORA-01110: data file 2: '/u01/app/oracle/oradata/alpha/undotbs01.
dbf'
ORA-27037: unable to obtain file status
Linux Error: 2: No such file or directory
Additional information: 3

Tue Jun 2 10:13:05 2009
Errors in file /u01/app/oracle/admin/alpha/bdump/alpha_dbw0_28543.trc:
ORA-01157: cannot identify/lock data file 3 - see DBWR trace file
ORA-01110: data file 3: '/u01/app/oracle/oradata/alpha/sysaux01.dbf'
ORA-27037: unable to obtain file status
Linux Error: 2: No such file or directory
Additional information: 3
ORA-1157 signalled during: ALTER DATABASE OPEN...

Three critical datafiles are missing, so it is not possible to open the database unless
these files are completely recovered.

A critical database file cannot be set offline, and the database cannot be opened until
the datafile is completely recovered.

Recovery Manager Restore and Recovery Techniques

[148]

In this recovery scenario, rman performs the restore and the recovery operation of the
missing datafiles. Once they are completely recovered the database is open and the
recovery process finishes.

Loss of redo log files
The redo log files are written by the background process Log Writer (LGWR) with
the information stored at the log buffer. If the log files are not available the process
gets stuck, the transactional activity in the database is frozen and an error message
is written to the alert.log file (ORA-00313: open failed for members of log
group ## of thread ##), as shown in the next screenshot.

Chapter 5

[149]

When a loss of redo log files occurs there are two different scenarios which depend
on the status of the lost redo log. If the lost redo log had the status of inactive it is not
critical. It is just enough to logically remove the group and rebuild it. On the other
hand, if the status of the lost redo log file was CURRENT, then the situation may get
complicated as the CURRENT status means the redo log was at that time written by the
LGWR process, and the DB Writer (DBWR) process had not yet synchronized the
datafiles by writing the dirty blocks from the DB buffer cache to the datafiles.

The query used to monitor the redo logs is:

col GROUP# for 99999
col STATUS for A8
col MEMBER for A40

select F.GROUP#,
 SEQUENCE#,
 L.STATUS,
 MEMBER
from V$LOGFILE F, V$LOG L
where F.GROUP# = L.GROUP#
order by GROUP#
/

These scenarios are detailed in the next sections.

Recovery Manager Restore and Recovery Techniques

[150]

Loss of the inactive redo log group
In this scenario, it is assumed that there are three redo log groups with no
multiplexed members. The loss of an inactive redo log group means all the available
members of an inactive group are lost or corrupt.

CURRENTINACTIVE

LGWR

The problem will be noticed when the LGWR tries to perform the log switch and it
tries to make the broken redo log group CURRENT. The redo log group does not
physically exist, so the transactional activity is frozen and an error starts to show up
in the alert.log file.

ORA-00313: open failed for members of log group 1 of thread 1
ORA-00312: online log 1 thread 1: '/u01/app/oracle/oradata/alpha/
redo01.log'
ORA-27037: unable to obtain file status
Linux Error: 2: No such file or directory
Additional information: 3
logfile 1 open failed:313
*** 2009-06-03 05:40:23.138 21373 kcrr.c

The missing redo log group makes the database stop all transactional activity until
the redo log group gets cleared. The redo log group cannot be archived, so the
information previously stored there will be lost. The command issued to clear the
redo log group is:

SQL> ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 1;

Chapter 5

[151]

The number evidently depends on the log group number reported in the alert.log
file. After the command has been issued, Oracle automatically recreates the redo log
file and it continues as if nothing has happened. You don't need to shutdown and
re-open the database, and the normal users activity is resumed.

You must be aware that since the CLEAR UNARCHIVED option was
issued an archived log file is missing, thus creating a gap. You must
perform a complete backup as soon as possible. Otherwise you will
face an incomplete recovery scenario due to missing archivelog files.

Loss of the current redo log group
This scenario is similar to the previous one. The main difference here is that the lost
redo log is the one marked as CURRENT. This is a very serious situation as this means
the information that was currently being written by the LGWR is lost, the changes
were not written to the archivelog destination yet and there is no way this can be
retrieved elsewhere. In this scenario you will face an incomplete recovery situation and
you will loose the data stored at that time in the current redo log group.

CURRENT INACTIVE

LGWR

In the case of the loss of the current redo log, the procedure involves an incomplete
recover scenario. You should be aware that all the changes recorded in the redo log
do not longer exist, they used to be at the redo log buffer, and they were flushed
when the entries were written to this redo log file.

Recovery Manager Restore and Recovery Techniques

[152]

 In the following scenario there were several transactions applied against the
database. After the commit is confirmed, all the changes are recorded at the
CURRENT redo log group. The CURRENT redo log group is lost. At this point
an incomplete recovery takes place. There may still be transactional activity at the
database, but sooner or later all the transactional activity will be frozen.

Once the database is not able to handle any more transactions all transactional
activity will be stuck until the situation that prevents the redo entries from being
stored in the redo log files is corrected. In the meantime all attempts to login to the
database will be greeted with this error message:

[oracle@alpha ~]$ sqlplus scott/tiger

SQL*Plus: Release 10.2.0.4.0 - Production on Fri Jun 5 23:48:09 2009

Copyright (c) 1982, 2007, Oracle. All Rights Reserved.

ERROR:

ORA-00257: archiver error. Connect internal only, until freed.

Enter user-name:

At this point the first reaction the DBA may have is to shut down the
instance. In this kind of scenario this will lead to a definite loss of data.

In the following scenario the CURRENT redo log file is lost after a high
transactional activity.

Chapter 5

[153]

As soon as the database gets frozen and the ORA-00257 error is displayed the
DBA performs a shutdown abort (A) against the database. When the DBA tries to
open the database (B) the errors ORA-00313, ORA-312 and the error ORA-27037
are displayed; these errors mean that there is a missing redo log that contained
information required to perform the instance recovery (C). By taking a look at
the original directory where the redo log file was supposed to be found the DBA
confirms that the redo log file has disappeared (D).

Three queries are performed to show why it is not possible to recover information
and why the loss of a CURRENT redo log file implies an incomplete recovery
operation. In the first query (E) the change number ranges are retrieved from the
redo log files:

select GROUP#,
 STATUS,
 FIRST_CHANGE#
from V$LOG;

Recovery Manager Restore and Recovery Techniques

[154]

By the time the Oracle instance was shut down the change number recorded at the
datafiles (F) so far can be retrieved with this query:

select FILE#,
CHECKPOINT_CHANGE#
from V$DATAFILE_HEADER;

There is a third query that finds out the last change the database should have to be
considered consistent (G), this information is the change number recorded at the
control file.

select CONTROLFILE_CHANGE#
from V$DATABASE;

The following table describes the scenario faced by the database

Change Number Value
Change Number from the controlfile 3025326
Change Number from the redo logs 3024793
Last Change applied against the datafiles 3015145

The datafiles must be at the change number 3025326, which was in the missing redo
log file. Oracle cannot make up this information and there is no way to recover it,
so an incomplete recovery process must be started by the DBA and all the changes
stored in the missing redo log will be lost.

After an incomplete recovery you must get a full database backup as soon as
possible. This will be your new restore point after the reset logs operation.

Before starting the incomplete recovery you must make sure you have a valid
backup you can use to undo the incomplete recovery just in case something does not
work as expected.

A rman session is started. The rman command shown in the following image
performs three operations:

•	 Defines the point where the incomplete recovery process will be (H)
•	 Performs the restore operations (I)
•	 Performs the recovery process bound to the condition defined in the first

bullet (J)

Chapter 5

[155]

The rman code used to execute the recover process follows:

RUN{
 SET UNTIL SEQUENCE=201;
 RESTORE DATABASE;
 RECOVER DATABASE;
 }

The first clause defines the point where the recovery manager process will be
stopped (201), which is the redo log number of the lost log file. The second clause
performs the restore operation (all datafile) and the last clause will execute the
recover process bound to the constraint defined in the first clause.

Once the process has finished an ALTER DATABASE OPEN RESETLOGS
command is issued, this resets the log switch number to 1 and it starts a new
database incarnation.

Recovery Manager Restore and Recovery Techniques

[156]

When the incomplete recover process has finished you must take a full
database backup as soon as possible, this will be your lifeboat in case
something happens shortly after resetting the log sequence.

Test restore
A production environment cannot be conceived without a backup policy. Not having
a backup compromises overall productivity directly or indirectly related to the
database. It is pretty evident that your job and that of the people responsible for the
operation will be compromised as well. Performing a backup is a must do task in all
production environments, but testing the backup doesn't seem to be as important for
some corporations. Testing a backup is as important as performing the backup itself.

A useless backup is equivalent to not having a backup at all. At the least,
it wastes time that could have been used to formulate alternate strategies.

When asked about a backup policy most declare they have one implemented. On
the other hand, when asked about a test policy, very few hands are raised. Then,
what is the acid test for every backup? Most of the times the answer is: it is required
after a real life failure scenario. The reason why most people don't implement a test
policy is because of a lack of resources. It is very difficult for some companies to
have a duplicated environment to test the backup each time a new backup is taken.
The rman test restore feature is a convenient way to validate the backup will work as
expected when needed. The test restore rman command performs the restore cycle
without actually restoring the database

In the following scenario a retention policy of three redundant backups is defined.
A test restore is performed against each backupset.

The command issued to test each backupset is:

RESTORE VALIDATE DATABASE FROM TAG='Tag name';

If the backup is valid then it will show a validation complete message.

Chapter 5

[157]

Once an rman session is started (A) the retention policy is displayed (B) as well as
the backup summary information (C). The test backup is performed against each
backupset. The outcome from the first backup test shows the message starting
validation of datafile backupset (D). rman will read the backupset and will simulate
a database restore operation. Once the process is finished it shows the validation
complete (E) message. This means the backup is sound, and it is considered valid for
recovery purposes. The complete test for each backupset is not shown in the image,
but it is enough to replace the tag name in the restore command.

Recovery Manager Restore and Recovery Techniques

[158]

Crosscheck command
The crosscheck command is used to validate the physical backup is located where
rman thinks it is. rman stores the backup information either in the controlfile or
in the rman repository. If a restore operation needs to be carried out, rman determines
the best suitable backupset and archivelog files required to successfully perform
the recover process. If the backup is not where it is supposed to be then there will
be problems.

In the following scenario rman validates the backup sets:

There are three backupsets, this can be queried using the LIST BACKUP command (A):

LIST BACKUP OF TABLESPACE USERS SUMMARY;

Chapter 5

[159]

This is only to find out the backupset tag where a particular tablespace was stored.
Afterwards, the CROSSCHECK command is issued against a particular backupset (B).
In the first case the validation was successful for all backup pieces involved (all
backup pieces were marked as AVAILABLE).

CROSSCHECK BACKUPSET TAG='Tag Name';

On the second execution of the CROSSCHECK command, a backup piece is missing, so
it doesn't pass the CROSSCHECK test and it is marked as EXPIRED (C).

A final query is issued to find out which tablespaces are compromised after the
EXPIRED backup pieces.

Nologging considerations
The nologging option is advantageous from the performance perspective, but from
the recover perspective if it is not properly managed this will lead to sever errors.
Nologging means no changes are recorded in the redo log files, so there is no way
the information can be retrieved from the redo or archive mechanism in case of need.

In the following scenario an index is created using the NOLOGGING option.

Recovery Manager Restore and Recovery Techniques

[160]

The first step prepares the scenario. A demonstration table is created. It uses a
conventional path to create the table using a Create Table As Select (CTAS) syntax
(A). Then the index is created (B), this command utilizes the NOLOGGING clause. This
will only record information about the object creation. Data dictionary information is
always recorded, but it won't record the changes on the data blocks, thus provoking
data corruption.

An error is created on purpose (C). The datafile related to the USERS tablespace is
removed, thus requiring a recovery process to be started. The commands issued to
bring back the USERS tablespace are regular rman commands:

RUN{
 SQL 'ALTER TABLESPACE USERS ONLINE' ;
 RESTORE TABLESPACE USERS;
 RECOVER TABLESPACE USERS;
 SQL 'ALTER TABLESPACE USERS ONLINE' ;
 }

Once the process has finished, a query against the demonstration table is issued.
According to the execution plan this query utilizes the index, not the table.

Query:

SELECT COUNT(*)
FROM DEMO_SEGMENTS
WHERE OWNER='SCOTT';
Execution Plan:
SELECT STATEMENT
 SORT AGGREGATE
 INDEX RANGE SCAN (I_DEMO_SEGMENTS)

The I_DEMO_SEGMENTS index was created using the NOLOGGING clause and it was at
the recently recovered USERS tablespace. As no other precautions were taken, the
index is rendered corrupt.

The error displayed is:

ORA-01578: ORACLE data block corrupted (file # 4, block # 480)

ORA-01110: data file 4: '/u01/app/oracle/oradata/alpha/users01.dbf'

ORA-26040: Data block was loaded using the NOLOGGING option

Chapter 5

[161]

These errors are apparently due to a corrupt block. This is not the result of
a physical corruption, but a data block that was loaded using the NOLOGGING option
(ORA-26040). The recover process tried to recreate the index but as it had no data
stored in the recover structures there was no way this task could successfully insert
data into the index, even though rman reported a successful recover process (it was
successful in terms of the available changes applied).

Take a backup after a NOLOGGING statement or utility execution;
otherwise your data will be corrupted after a recover operation.

Summary
The restore operation may take place under several conditions, such as the accidental
loss of datafiles, media failure or a complete host failure, just to name a few cases.
The scenario may end up in a loss of a critical or non-critical datafiles, a loss of the
redo log (current or inactive), or a combination of such scenarios. You must always
be prepared to face whatever critical situation comes up.

There are some pieces of advice you should keep in mind; practice the use of
recovery manager, and get familiar with the syntax. Even if you have an application
built on top of rman to perform the backup or recover operations you must know the
nuts and bolts that make it work. Build a database that represents your production
environment and practice different recovery scenarios on it, this will keep your
recovery skills sharp and ready to be used any time.

Most botched recoveries can be attributed to human error. Make sure your backups
are valid and usable. Consider including a test backup policy in your production
environment. If you are using a tape to store your backups ensure your devices
are periodically maintained and keep track of the used tapes. When planning your
backup strategies keep in mind the Safety First principle and never take anything for
granted. There are thousands of horror tales related to backup systems and failed
recover scenarios.

The next chapter will address session management. It will guide the reader on how
to diagnose, troubleshoot, and monitor sessions. Database sessions are what keep the
database moving.

Session Management
Previous chapters have focused on using a single utility to improve your data
management. This chapter will be slightly different. Here, we will look at several
different tools and techniques for managing sessions in the database.

Users are very important to a DBA in many ways, but first they are the reason why
there is need for a DBA. Users (either real or their electronic counterparts) are what
keep the database in motion. Managing sessions means the DBA must monitor,
tune and troubleshoot the entire outstanding user's activity in the oracle instance.
We have different faces of database activity throughout the day, and over weeks,
months, and years. It looks like the same data behaving differently throughout a
given period, so there will be moments when the database is reported to be slow,
there will be times when the database apparently will hang, and there will be other
times when the database's performance will look normal from the user's perspective.
What is the reason why the database's performance changes?

Monitoring, diagnosing, and troubleshooting sessions involve several tools
and techniques; specific sections of Enterprise Manager are focused on session
management, as we will see throughout this chapter. The exposed tools behave
the same on Unix like and Windows environments; except the troubleshooting last
resource, killing the session, which has specific behaviors on Windows platforms due
to the specific architecture implementation, and we will have to deal with it by using
the orakill tool.

In this context the user session can either be a session generated by a real user or by a
program directed to perform some activity against the database. This session can be
connected either in dedicated or shared mode.

Session Management

[164]

User sessions in a dedicated server
architecture
 When a user requests a remote connection to the database it must first contact the
listener. The listener redirects the request to the Oracle Instance. This will spawn a
new Oracle Server Process, which from now on will be the process who will interface
the user with the database; if the connection to the database is local to the machine,
it may be established across the network or by Inter-Process Communication (IPC),
and the Oracle server process will be spawned too. This Oracle server process will
be assigned to the user for the whole time the user remains attached to the database.
The new user session will be assigned a Serial Number and a Session Id. These are
the numbers used to uniquely identify a user connected to the database. The serial
number guarantees that session-level commands are applied to the correct session
objects in case a new session is started with the same SID. A user session can be
initially monitored with the V$SESSION dynamic view.

Server
Process

Listener

Database

PMON

1

3

Dedicated server architecture

User
Process

2

4

The PMON background process registers the Oracle instance against the Listener
(in a self registration configuration), PMON registers information about dedicated
server processes with the Listener. A User Process starts a connection against the
Oracle instance by looking for the Listener, the Listener redirects the user process to
the oracle Server Process and the dialog will be conducted from now on between the
oracle server process and the user process. For each active connection in a Dedicated
Server Architecture there will be one oracle Server Process on the host machine.

Chapter 6

[165]

The connection through a dedicated server is the most widely used connection mode
in most Oracle databases.

Instance self registration process
Starting with Oracle 8i, Oracle introduced the instance self registration process.
This allows a running instance to contact the local listener and register itself against
it. This mechanism is a convenient way to simplify listener configuration.

Assuming the listener is started prior to the Oracle instance, PMON will look for
the listener located on the default 1521 port. In a few seconds the listener will have
acknowledged the Oracle instance and it will be able to contact users with the Oracle
instance. If the listener is not configured to listen on its default 1521 port then the
LOCAL_LISTENER parameter must explicitly specify where the local listener is.

To do this, create a new entry in the tnsnames.ora file; this entry specifies the
listener address. Set the value of the LOCAL_LISTENER instance parameter to that
of the previously declared entry.

tnsnames.ora file entry:

LISTENER1525 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS =
 (PROTOCOL = TCP)
 (HOST = HostName)
 (PORT = 1525)
)
)
)

LOCAL_LISTENER instance parameter:

LOCAL_LISTENER = LISTENER1525

Define the INSTANCE_NAME and SERVICE_NAMES parameter in the server parameter
file (spfile).

instance_name = orcl
service_names = (orcl.oracle.com, finance, payroll)

An oracle instance must have only one instance name, but it can have several
service names.

Session Management

[166]

The instance must be up and running for the listener to maintain its registration, as
soon as it is shutdown the registration information is removed from the local listener.
The instance doesn't require reaching the Mount state to start the registration
process, it is enough to have it started.

Once it is configured the Oracle instance will take at most 60 seconds to register
itself against the listener, after it has registered itself it will update its status every
10 minutes.

You can issue the lsnrctl services listener command to display the instance
registration information. If everything is successful, then the user can reach the
Oracle instance through the listener; else an ORA-12514 error is displayed.

Blocking sessions
When two or more different sessions compete for the same row simultaneously,
Oracle will immediately raise the lock enqueue mechanism, which lets one process
at a time modify the row. The lock will be released once the transaction is finished
(after a commit or rollback command is issued). The first process that takes the row
locks it, meanwhile the other processes will have to wait. If this wait time is visible to
the user then it can be misinterpreted as a slow performance problem.

Blocking sessions are issues that should be solved at the program level, but in the
mean time it is the DBA's responsibility to detect them and fix them. A blocking
session may be normal during production time, this is not the real problem. Oracle is
prepared to queue sessions, the real problem begins when a session hangs and leaves
the other session indefinitely waiting for the row lock to be released.

Blocking sessions can easily be detected with Enterprise Manager. Besides the
intermittent phone calls the DBA will receive because of the sudden slow performance,
the DBA can determine there are hung sessions by using the information shown by
Enterprise Manager.

Chapter 6

[167]

On the Enterprise Manager front page the Active Sessions graph can be seen. When
looking at the performance tab, you will see that there are several sessions waiting
and also what the session is waiting for. Here, the Application event is the most
common outstanding event in the system. A lot of waits due to the Application
event means that the currently running applications leave their sessions on the lock
enqueue mechanism.

Clicking on the Top Activity link, will take the DBA to the processes details page.
The reason why the system is slow is that there are several sessions waiting for the
same row to be freed. The sessions may remain waiting there forever.

Session Management

[168]

Optimistic versus pessimistic locking
Both optimistic and pessimistic locking will produce the same effect; the difference
will be seen at the time the data is being locked.

Optimistic Locking: In optimistic locking data is not locked when it is selected, it is
locked with subsequent update operations. Before locking the data rows it must be
verified that nobody else has already locked them.

UPDATE
SET val1 = new_val1,
 val2 = new_val2,
...
WHERE key = key_value;

Pessimistic Locking: This means that data will be locked when it is selected to make
sure nobody else updates it in between. The SELECT ... FOR UPDATE command
uses the pessimistic locking.

Pessimistic locking requires a database session to be maintained between the SELECT
and the UPDATE operations. In web applications it is not guaranteed that a database
session is maintained, so optimistic locking must be used.

Row lock contention monitoring
Once a process locks a row or a set of rows, other processes are prevented from
changing the data rows. Oracle's enqueue mechanism can be monitored from the
Enterprise Manager Active Session Waiting: Application window.

Chapter 6

[169]

The culprit is discovered as enq:Tx Row Lock Contention. Meanwhile, the other
processes just keep waiting. Now, it is time to correct this situation, either the user
has to commit or rollback the pending transactions or the DBA will have to kill the
user's session.

At the bottom of the page of the Enterprise Manager Performance Tab we find two
links, one named Blocking Sessions, and a second one named Hang Analysis. Both
can be used to monitor the blocking sessions; the first one is in character mode, and
indented to show the session that caused the hang, meanwhile the Hang Analysis
shows the hung sessions in graphic mode.

Looking at the graphical Hang Analysis tool it shows a graphical representation
of the hung sessions. It shows the sessions in three colors; green, yellow, and red.
Green is shown as soon as the blocking event is detected, and this status will remain
for about 30 seconds, if the session remains blocked then it will change the status to
prolonged wait (yellow), and if the event remains for another 30 seconds the status
will be changed to hung (red).

Session Management

[170]

Another convenient way to monitor the lock chain is the Blocking Sessions tool
accessed from the OEM Performance page. Now let's take a look at the session details,
to both evaluate the impact of the hung session and to proceed to kill the user session.

You can select the session to show its details either from the Hung Analysis or the
Blocking Sessions. In this case you can click the View Session button. This will
take you to the session details page, or you can directly proceed to kill the session.
The session details will show you where the session comes from, when this was
logged on the database, who the related OS user is, the name of the application that
launched the session, and the reason why this session is maintained in a wait status.

Chapter 6

[171]

If we are not successful in convincing the user to finish the transaction, then we'll
have to kill the session. Once the session has been killed the PMON will issue a
rollback action on behalf of the user and the locks held by the oracle server process
will immediately be released.

When talking about users and sessions we regularly think of real users connected
to the database from their applications. The real problem is that most of the modern
applications use a three tiered architecture, and unless there is a means provided by
the application to identify who the real user is and where it is connected from,
the DBA cannot do much to phone the user and kindly ask him/her to finish the
hung transaction.

Session Management

[172]

On a three tiered architecture the problem is even worse. If the application tier
doesn't provide a mechanism to detect and eliminate hung sessions, then in case
of a connection failure between the application tier and the client tier, the database
session may remain active and the locks might be held. If the user tries reconnecting
it may attempt the same transactions against the same locked rows its last session left
behind. This session will end up hung and the DBA will have to manually kill the
blocking session.

Killing sessions
Enterprise Manager shows two options to get rid of a session, you must be aware
of the behavior and the implications of the different options. When killing a session
from enterprise manager, there are two options: KILL IMMEDIATE and POST
TRANSACTION. On the first case the command issued is:

ALTER SYSTEM KILL SESSION 'SID,SERIAL#' IMMEDIATE;

And for the second option, the command issued is:

ALTER SYSTEM DISCONNECT SESSION 'SID,SERIAL#' POST_TRANSACTION;

When killing sessions in character mode there are more options:

ALTER SYSTEM KILL SESSION 'SID,SERIAL#' [IMMEDIATE];

KILL SESSION: This clause with no arguments instructs Oracle to terminate a
session, rolls back any ongoing transactions and release locks, and it can partially
recovery session resources. This marks the session status as KILLED, and this status
remains until the user process issues any SQL command against the database. When
this happens, the RDBMS replies with the ORA-00028: your session has been killed
message and the session is definitely wiped off. If the session shows no further
database activity, then the session may remain in KILLED status in the V$SESSION
indefinitely until the client interacts with the database again.

IMMEDIATE: This option will mark the session as KILLED in the V$SESSION
view. The difference between a regular KILL SESSION and an IMMEDIATE KILL
SESSION is that this one will also leave the KILLED status for a while (about 30
seconds) then Oracle will definitely get rid of it. This option releases all session
allocated resources. It rolls back pending transactions, and it will return control
immediately. When a session is killed with the immediate option, it receives the
ORA-03113: end-of-file on communication channel error message.

ALTER SYSTEM DISCONNECT SESSION 'SID,SERIAL#' [POST_TRANSACTION |
IMMEDIATE];

Chapter 6

[173]

POST_TRANSACTION: This option leaves the user session alive, it allows the user
to complete any transaction activity. As soon as the user issues either a commit or
roll back command the session is disconnected.

IMMEDIATE: This simply kills the session. It releases all allocated session
resources, sends the ORA-00028 error message to the user, and kills the Oracle
server process. The DISCONNECT IMMEDIATE option behaves the same as the
KILL IMMEDIATE option.

In the above image it can be seen there is a blocking session (A) whose SID is 159,
according to V$SESSION this is blocking three other sessions, 138, 153, and 130.
The DBA issues a simple KILL SESSION command (B), this kills the user session,
but as there are no parameters specified to kill the session, the default behavior
 of this command will simply kill the session, the entry at the V$SESSION will
remain there until somehow the oracle server detects some user activity so it can
send the ORA-00028 error message. When monitoring the sessions, the KILLED
status (C), as well as the new blocking session, session 138 (D), which was the next
session in line on the enqueue mechanism, all killed sessions are reported in the
alert<SID>.log file.

Session Management

[174]

Deadlock handling
A deadlock occurs when two sessions competing for the same resources lock out
one another while waiting for the resources to be released. Deadlock is an issue
directly handled by Oracle; the DBA cannot do anything about it. As the root
problem resides with the application logic, deadlock events should be reported to
the development team.

The above image shows the sequence that produces a Deadlock. All the time
references of this particular example happened at 21 hours, so in the time reference
will be shown in minutes/seconds.

1. At 08 minutes 24 seconds, the first session issues a transaction against a table.
2. At 08 minutes 35 seconds, the second session updates another row, different

from the one chosen by the first session.
3. At 08 minutes 46 seconds, the first session tries to acquire a lock on the same

row the second session is currently locking. The first session will be waiting
for the lock on the row to be released, there is no error displayed on the
screen so far.

Chapter 6

[175]

4. At 09 minutes 14 seconds, the second session performs a transaction against
the same row the first session originally locked, this closes the deadlock and
an ORA-00060 error is raised on the first session. The second session doesn't
realize this waits for the last resource to be released so it can continue its
work. Oracle rolls back just the last transaction issued on the first session,
hoping this session ends its current transaction.

5. Oracle's locking mechanism has prevented a deadlock to freeze both
mutually locking transactions. This error is reported at the alert<SID>.log
file, and a trace session file is also generated so the developers can analyze
and correct the program logic to prevent this phenomenon from happening
in the future.

Below is an excerpt from the alert.log file:

Sun Nov 16 21:07:07 2008
ORA-00060: Deadlock detected. More info in file /u01/oracle/admin/
beta/udump/beta_ora_21291.trc.

There it states that a secondary trace file details the recently detected deadlock
problem. This trace file details the platform, the session where the deadlock was
detected, the SQL command issued, and a warning message that reads:

The following deadlock is not an ORACLE error. It is a

deadlock due to user error in the design of an application

or from issuing incorrect ad-hoc SQL. The following

information may aid in determining the deadlock:

Deadlock graph:

Sniped sessions
Killing a hung session may be a good tactic, but it requires the DBA to constantly
be monitoring the system or program a job that performs this task automatically.
Another strategy could be to use the user profiles and declare a time out for a
session. If a session ever issues a commit or roll back and if this is still alive, then
the end user will perceive a "performance slow down", but it won't remain hung as
previously shown. However, if the user never comes back, then there should be a
mechanism that disconnects the user and wipes off its session.

When a profile time out is configured and a session exceeds its inactivity time, the
session status is marked as SNIPED, this will hold this status until the user tries to
issue any command against the oracle server, then the error message sent to the user
is ORA-02396: exceeded maximum idle time, please connect again. As soon as a
user session is marked as SNIPED the locks held by the user are released.

Session Management

[176]

In the next example a user issues a transaction and holds the lock, when a second
user tries to issue a transaction against the same row the first session has previously
locked, it remains waiting for the resource to be released (A). We don't know when
this will be, so a time out has previously been configured at the user's profile. Once
its timeout has expired the session is marked as SNIPED (B) and the row control
automatically goes to the next session waiting in line for the resource. As soon
as the first session receives the ORA-02396 error message the session is definitely
disconnected and it disappears from the V$SESSION view.

Now, what would happen if the original session never issues another command
against the database? The SNIPED status would remain there indefinitely. If the
DBA wants to completely wipe off the session from the V$SESSION view then they
would need to kill the related OS process. It should be pointed out that killing an
OS process means to kill the related Oracle Server Process, considering the user
connected to the Oracle instance by means of a dedicated server process, and in Unix
like environments this easily works as it is enough to identify the OS process and
have it killed with a regular kill -9 OS command (this works for Unix like platforms
only, Windows utilizes the orakill tool). This task can even be coded in a shell script
and scheduled so it periodically checks and wipes off SNIPED sessions.

Chapter 6

[177]

TEMPFILE=/tmp/$$.tmp
sqlplus system/system_password <<EOF
spool $TEMPFILE
select p.spid from v\$process p,v\$session s
where s.paddr=p.addr
and s.status='SNIPED';
spool off
EOF
for i in 'cat $TEMPFILE | grep "^0123456789"'
do
kill -9 $i
done
rm $TEMPFILE

Orakill
On Windows platforms the OS architecture is different; it works with threads.
In Windows a process is defined as a container for address space and threads,
the thread is the fundamental schedulable entity in the system. So there is no way
to find a single Oracle server process at the OS in the way that we can on Unix like
platforms, it simply doesn't exist as a session/OS process pair, the only process the
DBA will find is a running oracle.exe process which embodies both the background
and the user processes. A tool for Windows platforms to kill oracle processes from
the OS prompt was specifically created by Oracle; the orakill.exe tool. In the next
sequence a session has been marked as SNIPED on a Windows platform, and then the
DBA may leave a task that periodically cleans up the SNIPED sessions.

Orakill Usage: orakill sid thread

where sid = the Oracle instance to target

thread = the thread id of the thread to kill

The thread id should be retrieved from the spid column of a query such as:

select spid, osuser, s.program from

v$process p, v$session s where p.addr=s.paddr

Orakill receives two arguments; the oracle instance name and the "OS PID". As
Windows doesn't actually have a processes ID for the session process Oracle makes
one up, and it can be queried from the V$PROCESS dynamic view. A kill SNIPED
script is created, this queries the V$PROCESS view, takes the SPID, and it passes this
value as argument to the ORAKILL.exe tool.

Session Management

[178]

Let's assume some sessions remain SNIPED:

SQL> select username, sid, status from v$session

 2 where status='SNIPED';

USERNAME SID STATUS

------------------------------ ---------- --------

HR 132 SNIPED

HR 158 SNIPED

An SQL script to search and kill SNIPED session is created. This SQL script
(killSniped.sql) is launched from an oracle session. This script dynamically
creates several calls to the ORAKILL tool with the proper parameters.

store set sqlsettings.sql replace
set pagesize 0
set feedback off
set trimspool on
set termout off
set verify off
spool killSniped.bat
select 'orakill &1 '|| spid
from v$process p, v$session s, v$instance i
where p.addr=s.paddr
and s.status='SNIPED';
spool off
host killSniped
@sqlsettings
host del killSniped.bat
host del sqlsettings.sql

Launch killSniped from the OS:

C:\>sqlplus / as sysdba @killSniped orcl

C:\>orakill orcl 3340

Kill of thread id 3340 in instance orcl successfully signalled.

C:\>orakill orcl 2812

Kill of thread id 2812 in instance orcl successfully signalled.

Chapter 6

[179]

You can check it from the v$session:

SQL> select username, sid, status from v$session

 2 where status='SNIPED';

no rows selected.

The SNIPED sessions have been wiped off.

Services
Services are the single most important tool available to perform instance
consolidation. In this context, a service refers to the name by which a client can
connect to the instance, this is configured by the SERVICE_NAMES instance parameter,
and it defaults to DB_UNIQUE_NAME.DB_DOMAIN if defined.

Connecting through services in an RAC environment is useful to have shifted the
service across instances depending on availability and scalability. Using services in
a single instance is not frequently seen. Most DBA's configure the default service
and even more, there are DBA's who simply ignore this parameter and configure
connections to the database by means of TNS entries compatible with Oracle 8.0
using the Oracle SID instead of the Oracle Service.

In single instance environments sessions can be tuned by services. There are other
session management tools like Resource Manager, which can provide different
resource allocation emphasis based on the service the user defines to connect to the
database, rather than the user itself.

In order to configure services in an Oracle environment, the dynamic SERVICE_NAMES
instance parameter must be configured.

In this example the SERVICE_NAMES parameter has been configured so the instance
can be reached by four different names:

SQL> SELECT VALUE FROM V$PARAMETER

 2 WHERE NAME = 'service_names';

VALUE

--

beta, humanresources, sales, orders

From this point on each user will connect to the database by means of the following
services: beta, humanresources, sales, or orders.

Session Management

[180]

The listener has been configured to accept the services, which can be verified by
means of the lsnrctl services command:

Each session can be connected by means of a different service name. In the next
example we are connecting three different sessions, each one to a different service:

SQL> select sid, serial#, username, service_name

 2 from v$session

 3* where username in ('HR','SH','OE')

 SID SERIAL# USERNAME SERVICE_NAME

---------- ---------- ------ ---------------- --

 132 3713 OE orders

 134 2210 HR humanresources

 138 8125 SH sales

Chapter 6

[181]

Connecting users using services adds another identification dimension and allows
the DBA to selectively allocate resources based on services. This can be achieved
using Resource Manager.

Resource Manager
Resource Manager is a tool that provides the DBA more control over the resource
allocation; this circumvents problems with inefficient OS resource allocation. The
OS allocates CPU resources based on OS priorities, Oracle processes have the
same priority against the OS scheduler, so it doesn't matter if you launch a CPU
consuming task, this process may become a CPU hog. As a DBA there is nothing
to do from the OS side as it is not advisable to change the process priority of any
Oracle process.

Other problems that may be found at the OS level are:

•	 An excessive amount of context switching, resulting in an overhead when a
high number of OS processes is found.

•	 Inefficient scheduling from the OS side: It may reschedule an Oracle server
process while it holds latches, resulting in a reduction in the latch hit ratio.

•	 Inadequate resource allocation: This happens because from the OS point of
view all processes are the same, and processes consuming a high amount of
OS resources will be treated the same as any other process in the OS.

•	 The OS is not capable of controlling the degree of parallelism an Oracle process
demands, resulting in an unbound resource allocation from a few processes
that may create resource starvation for all the other concurrent process.

Resource Manager was created to address these issues, allowing the DBA to control
specific Oracle resources from inside the instance; such as the degree of parallelism, the
relative CPU consumption, the maximum amount of I/O, Undo resources, maximum
number of sessions allowed to share a given resource, and execution and idle time.

Session Management

[182]

Resource Manager Elements
Resource Manager comprises four main components:

1. Resource Consumer Group
2. Resource Plan
3. Resource Consumer Group Mapping
4. Resource Plan Directive

Oracle User
Client O.S. User
Client Programs
Client Machine
Services
Module
Module and Action

Resource Group

Resource Plans Directives

Resource Manager Elements

Element Description
Resource Consumer Group The group of users that share the same

resource requirements.
Resource Plan This is a plan that defines through directives

how the instance resources will be allocated.
Resource Allocation Method This is the policy or method used by Resource

Manager to allocate resources. This is used by
resource consumer groups and plans.

Resource Plan Directive Directives are defined inside a Resource Plan
and they define how resources are allocated to
the individual resource consumer groups.

Resource Consumer Group Mapping This defines the mapping between users and
resources consumer groups.

At a given time a Resource Plan directs how resources are allocated.
The instance parameter used to define it is the dynamic RESOURCE_MANAGER_PLAN
instance parameter.

Chapter 6

[183]

DBMS_RESOURCEMANGER is the package used to administer, create and maintain the
Resource Manager components. There are several data dictionary views where
information about Resource Manager can be gathered.

Configuring resources assigned to users
You can map resources to database users, so that each user has a predetermined
amount of resources allocated during its session. The steps to implement Resource
Manager for database users are as follows.

•	 Create the database user and grant appropriate system and object privileges
as required.

•	 Create the required Resource Consumer Groups.
•	 Map the users with the different Resource Consumer Groups. A user can

belong to more than one Resource Consumer Group.
•	 Create the Resource Plans; each Resource Plan has different directives

defined. The Resource Directives define how resources are allocated, they
state the relative CPU emphasis, the active session pool with queuing, the
degree of parallelism limit, the execution time limit, the undo pool and the
idle time limit.

•	 Map the resources allocated to each Consumer Group through the Resource
Plan directives.

•	 Once the Resource Manager infrastructure has been properly defined, use the
RESOURCE_MANAGER_PLAN instance parameter to define which plan rules. You
can use DBMS_SCHEDULER to define the time frame where a given Resource
Plan is active.

This section only outlines the procedure to start allocating resources through
Resource Manager to the database users. Most production applications don't
work with database users, they rather use the application schema user as the only
identifiable user in the database and it becomes difficult to find out who the real user
is and the amount of resources to allocate to each user, a more practical approach
in this case is to use the consumer group switching feature. The consumer group
switching feature allows a user to change the consumer group it was originally
attached at connect time to a different consumer group depending on its actual
resource consumption profile. Another alternative to deal with this situation is to
use the Resource Consumer Groups mapped to Services, which is described in more
detail in the next section.

Session Management

[184]

Configuring resources assigned to services
It was previously stated that Services introduce a new tuning dimension even in
a single instance configuration. The procedure to allocate resources to database
sessions connected to the Oracle instance through services is outlined next.

1. Create a database user and grant system and object privileges as required.
2. Define the different service names the instance uses to register against the

listener configuring the SERVICE_NAMES instance parameter.
3. Verify the listener properly identifies all the service names associated to the

Oracle instance.
4. Configure the tnsnames.ora entries that define which specific service will be

used to get connected to the Oracle instance.
5. Create the Resource Consumer Groups.
6. Map the service names against the different Consumer Groups as required.
7. Create the Resource Plans and define the directives as required.
8. Define the value of the RESOUCE_MANAGER_PLAN instance parameter.
9. Test and Monitor.

Creating the database user
For the purpose of this demonstration the SCOTT demo user will be used, this user
only requires the default privileges. The user SCOTT may need to be unlocked and
its password may need to be reset.

SQL> ALTER USER SCOTT

 2 IDENTIFIED BY TIGER

 3 ACCOUNT UNLOCK;

Service names definition
The Oracle instance is defined with a unique name known as the global name. The
global name is used as the default service name the instance will use to register itself
against the listener. The SERVICE_NAMES instance parameter is used to define all the
service names that can be used to access the instance.

SQL> ALTER SYSTEM

 2 SET SERVICE_NAMES = 'alpha, datawarehouse, sales';

The names defined here will be registered against the listener at most within the next
10 seconds.

Chapter 6

[185]

Listener verification
Once the service names have been redefined, just issue an lsnrctl status or an
lsnrctl services command, this will list all the service names defined in the
previous step.

TNS entry configuration
There must exist one TNS connection descriptor for each previously defined service,
so that the users can use it to specify which service it will use to connect to the
Oracle instance.

ALPHA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1522))
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = alpha)
)
)

Session Management

[186]

SALES =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1522))
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = sales)
)
)

DATAWAREHOUSE =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1522))
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = datawarehouse)
)
)

In this example the same SCOTT database user can use three different connect
descriptors to establish a connection to the database; each service will be later
configured and mapped against a determined plan so that each connection has
specific resource allocation.

Session 1: $ sqlplus SCOTT/TIGER@ALPHA

Session 2: $ sqlplus SCOTT/TIGER@SALES

Session 3: $ sqlplus SCOTT/TIGER@DATAWAREHOUSE

Once the users are connected through the different services this can be monitored on
the V$SESSION dynamic view.

Chapter 6

[187]

As no Resource Consumer Group has been defined, the one used is the default
OTHER_GROUPS, this is the default Consumer Group all the users belong to.

Resource consumer group creation
Throughout the next topics, Enterprise Manager will be used to configure Resource
Manager. Specific commands can be obtained by clicking on the Show SQL button
any time prior to issuing the command.

At the Administration tab there is a section that is used to configure Resource
Manager. It can see in the following screen shot.

Session Management

[188]

Click on the Consumer Groups link, there you will find a button that creates the
groups. By clicking on the Create button a new window appears where the name of
the group (Consumer Group) and an optional documentation text (Description) can
be entered. The scheduling policy is the resource allocation method for distributing
CPU among sessions in the consumer group. The default is ROUND_ROBIN, which uses
a round-robin scheduler to ensure that sessions are fairly executed. You can change
it to RUN_TO_COMPLETION; this scheduling method specifies that sessions with the
largest active time are scheduled ahead of other sessions.

Service mapping
Each service is mapped against a specific Resource Consumer Group; this allows
the user that connects through a given service to be automatically mapped against
a Consumer Group. The user must have the Resource Consumer Group granted;
otherwise the user will be mapped against the DEFAULT_CONSUMER_GROUP, no matter
which service it used to gain access to the database.

In order for the user to be granted permissions with the consumer group, the
permissions can be set either in the User configuration section in Enterprise Manager,
or using the DBMS_RESOURCE_MANAGER.GRANT_SWITCH_CONSUMER_GROUP stored unit.

Chapter 6

[189]

BEGIN
 dbms_resource_manager_privs.grant_switch_consumer_group(
 grantee_name => 'SCOTT',
 consumer_group => 'DSS',
 grant_option => FALSE
);
END;
BEGIN
 dbms_resource_manager_privs.grant_switch_consumer_group(
 grantee_name => 'SCOTT',
 consumer_group => 'OLTP',
 grant_option => FALSE
);
END;

The service mapping is configured by clicking on the Consumer Group Mappings link
in the Resource Manager Section. Once the screen appears, you will see that you can
map a Consumer Group with several objects, such as database users, OS client users,
OS client programs, services, client machines, modules and modules and actions.

In the above example the service DATAWAREHOUSE is mapped against the DSS
Consumer Group, meanwhile the SALES service is mapped against the OLPT
Consumer Group.

Session Management

[190]

Resource plan definition
In this stage of development the plan directives are defined. You can edit the
directives by clicking on the edit action menu in the Consumer Group listing.
Directives associated with a Consumer Group are CPU emphasis, maximum degree
of parallelism, session pool (used to limit the maximum number of concurrent users
belonging to a specific consumer group), undo pool, maximum execution time,
consumer group switching and idle time.

This is the last step in configuring the Resource Manager elements. The next step
activates a specific plan.

Resource manager plan activation
There are several places where the plan can be activated, it can be done from
the Resource Plans window, the Resource Manager monitor or directly from the
SQL*Plus command line.

If you are using SQL*Plus CLI, and connected as a privileged user issue the
ALTER SYSTEM command:

Chapter 6

[191]

SQL> ALTER SYSTEM
 2 SET RESOURCE_MANAGER_PLAN = ActivatedPlan;

The activated plan indicates the plan that rules the current instance:

The DBMS_RESOURCE_MANAGER package can be used too to achieve the same result.

SQL> begin
 2 DBMS_RESOURCE_MANAGER.SWITCH_PLAN ('ActivatedPlan');
 3 end;
 4 /

You can use the DBMS_SCHEDULER package to perform plan activation at specific
points in time, this is useful to allow a daily plan to be active during working hours
and a maintenance plan active during off hours.

Testing and monitoring
Two tests are performed to show the different emphasis achieved once Resource
Manager does its work. During the first scenario the SCOTT user is connected
through two different services, the sales and the datawarehouse services. The active
plan was originally OLTP, which simulates an environment where the users that
entered the database through the datawarehouse service are relegated to a lower
CPU priority. On the second scenario the plan is switched to an off hours plan, in this
plan the directives the users that entered the database through the datawarehouse
service automatically have a higher CPU priority.

Three sessions are open, each session gets access through a different service, thus
the resource allocated for each connection are different and the CPU emphasis
each session will experiment will depend on the currently active plan. Each session
performs the same workload starting at the same time so they compete for the same
resources within the same time frame.

Session Management

[192]

Scenario 1: DAILY_PLAN is active. In this scenario all users connected through the
sales service are favored and automatically receive more CPU emphasis. The number
of CPU yields and the wait time are higher for users that gain access through the
datawarehouse service.

Scenario 2: The instance switches to the NIGHTLY_PLAN. In this scenario all users
connected through the datawarehouse service are favored and automatically receive
more CPU emphasis. The number of CPU yields and the wait time are higher for
users that gain access through the sales service.

Chapter 6

[193]

Throughout these scenarios it was evident the advantage of controlling resource
allocation to the different database sessions through the service mapping. This is
particularly useful when there is no way to distinguish a session user in the database.
Once it was configured it becomes easy to access as the application only has to
change the connection descriptor to get into the database through an specific service.
When this concept is extended to the RAC environment the tuning possibilities get
multiplied as this allows a better workload balance, a dynamic node allocation, and
it allows the DBA to better comply with the service level agreements.

Active Session History (ASH)
Let's assume there was an outstanding user activity, the performance was reported
to be slow, but there is no more activity on the database, how would the DBA be able
to identify what the problem was? The only possible way is by means of a tool that is
able to generate a report of the past user activity, the Active Session History Report,
known also as ASH.

You can view the Active Session History Report via the Performance tab. At the
Average Active Sessions section you should see a button named Run ASH Report,
clicking this will take you to the ASH report time frame specification, once the period
of time has been set, the report can be generated.

Session Management

[194]

Here you can see the time frame specification and the report header, for your
convenience the report can be saved in HTML format for further analysis.

The Active Session History report is produced out of several AWR tables, the AWR
takes a periodic activity snapshot and it stores the information for a given period of
time, seven days by default. The DBA views that can be used to read the historical
information from the AWR are listed with this query.

SELECT table_name

FROM dictionary

WHERE table_name like 'DBA/_HIST/_%' ESCAPE '/'

ORDER BY table_name;

The V$ACTIVE_SESSION_HISTORY view provides sampled session activity in the
instance. Active sessions are sampled every second and are stored in a circular buffer
in SGA. An active session is defined as a session connected to the database that is
waiting for an event that does not belong to the Idle wait class.

Chapter 6

[195]

The reported information belongs only to the active sessions. Using the ASH
enables you to examine and perform detailed analysis on both current data in the
V$ACTIVE_SESSION_HISTORY view and historical data in the DBA_HIST_ACTIVE_
SESS_HISTORY view.

The ASH report can be obtained not only from enterprise manager, but also from the
SQL*Plus command line. There is an SQL script that performs this task, and it can be
directed to write the report to either a text file or an HTML file.

You can use the following script to generate the ASH report from a SQL*Plus prompt:

@?/rdbms/admin/ashrpt.sql

Actually, the ashrpt.sql script is just a launcher script that collects parameters and
invokes the ahsrpti.sql script.

The main view where the ASH report is taken from is DBA_HIST_ACTIVE_
SESS_HISTORY.

The character mode report interactively asks for some parameters; the kind of report
output, the start of evaluation period defined in hours/minutes, the upper time limit
and the ASH report name.

Session Management

[196]

The report has seven main sections:

•	 The report header: A report summary that provides generic information.
•	 Top Events: The most outstanding events reported during the given period

of time.
•	 Load Profile: This section reports which were the most active database

services, the most outstanding clients and the top SQL command types issued.
•	 Top SQL: This is self explanatory, the most meaningful SQL statements.
•	 Top Sessions: This shows the most active sessions, it shows the session

details ordered by the activity percentage, the reason why the event is
considered a top session, and other session specific details. This section also
includes a blocking sessions and a parallel query report section.

•	 Top Object / Files / Latches: This details which objects were used the most.
•	 Activity Over Time: This section summarizes the activity over the given

period of time.

Session monitoring, the traditional way
Dynamic v dollar (v$) views have been historically used to perform session
monitoring in character mode, this is useful when the DBA creates batch procedures
or develops PLSQL programming to monitor the users activity.

The traditional views used to perform manual analysis and session analysis
queries are:

•	 V$SESSION: This view lists information for each current session.
•	 V$SESSION_CONNECT_INFO: This view displays information about network

connections for the current session.
•	 V$SESSION_CURSOR_CACHE: This view displays information on cursor usage

for the current session.
•	 V$SESSION_EVENT: This view lists information on waits for an event by a

session. If you see a value of zero on the TIME_WAITED and AVERAGE_WAIT
columns, this means that the platform does not support the fast timing. If this
is the case then set the TIMED_STATISTICS instance parameter to true.

Chapter 6

[197]

•	 V$SESSION_LONGOPS: This view provides information about tasks that last
more than 6 seconds. This view is useful to monitor the task progress. It is
required to run on cost based optimizer and have the TIMED_STATISTICS or
SQL_TRACE instance parameter to TRUE.

•	 V$SESSION_OBJECT_CACHE: This view displays object cache statistics for the
current user session on the local instance.

•	 V$SESSION_WAIT: This view displays the resources or events for which
active sessions are waiting. The columns P1 and P1RAW have the same
value, the difference is that the PnRAW columns display the value in
hexadecimal format. If the WAIT_TIME column has a value of -2, this means
that the platform does not support the fast timing mechanism and the
TIMED_STATISTICS instance parameter must be set to TRUE.

•	 V$SESSION_WAIT_CLASS: This view displays the time spent in various wait
event operations on a per-session basis.

•	 V$SESSION_WAIT_HISTORY: This view displays the last 10 wait events for
each active session.

•	 V$SESSMETRIC: This view displays the last 10 wait events for each
active session.

•	 V$SESSTAT: This view lists user session statistics. The statistic name
associated with each statistic number (STATISTIC#) can be found in the
V$STATNAME view.

•	 V$SESS_IO: This view lists I/O statistics for each user session.
•	 V$SESS_TIME_MODEL: This view displays the session-accumulated time for

various operations.
•	 V$SES_OPTIMIZER_ENV Displays the contents of the optimizer environment

used by each session.

You may refer to the Oracle documentation for further details on the column
description of each view.

Session Management

[198]

Summary
Oracle sessions are the living part of the database; they are the elements that keep
performance views moving. Monitoring instance activity just provides an idea of
the average database activity, but this information is not enough to enable the DBA
to troubleshoot a particular peak, or to help them identify which user is issuing
a resource consuming SQL statement. The monitoring tools provided by Oracle
starting with 10g frees the DBA from the time consuming analysis task, and points
the DBA to the root of the problem. Those tools not only show what the problem
is, but they also categorize the different problems found by impact and provide a
diagnostic and a solution.

Enterprise manager, and the session management sections are a complete set of
productive tools that allow the DBA to quickly focus on what the problem is, even if
this is a complex problem that otherwise would have taken the DBA a lot more time
to find out where the root of the problem was.

Oracle Scheduler
When the lights go off at the office, the automated tasks take place. Scheduling tasks
to be run at a given time is one of the most frequently performed activities in many
companies. I would even go so far as to say in all companies.

There are a lot of tasks that must be executed at a specific time; day or night,
weekdays, weekends, or holidays. Scheduling a task may not be new, this could be
solved to a certain extent with the Windows Scheduler (on Windows platforms), or
with the cron utility (Unix like systems). Although, you should be aware that these
schedules assume your batch program is intelligent enough to not only perform a
given task, but also to proceed with a plan B in case something is wrong. Your batch
should also be intelligent enough to detect when an event is raised and proceed to
trigger a sequence. This is just like expecting a file to arrive and you only know the
estimated arrival time, but you are not certain about the exact time, and you cannot
proceed with the rest of the tasks in a processing chain unless this file arrives.

The Oracle Scheduler is much more than just a Scheduler to program automatic
tasks; this is a complete system that lets you schedule complex chains and make
decisions based on the task's outcome. It allows you to specify maintenance
windows, assign priorities, configure job classes, and more.

Oracle Scheduler

[200]

Oracle Scheduler concepts
A Scheduler should be able to be controlled with a minimum of two basic
parameters, what you want to launch, and when you want to start launching
it (plus how often this task should be launched). A good Scheduler has additional
capabilities such as monitoring, repetition control, suspending, resuming, and
cancelling tasks. In previous Oracle versions (8i to 9i) this was performed by means
of the DBMS_JOB. The problem with this package was that the scheduling mechanism
required you to provide a date expression, not quite readable when the scheduling
was a bit more complex than usual. DBMS_JOB was not originally intended to be a
Scheduler, it was simply designed to be a job initialization utility limited to jobs
inside the database.

When dbms_scheduler was designed (it was originally derived from OEM's mgmt_
jobs), Oracle had in mind a tool that could make the user's life easier. This tool was
able to manage complex schedules, create scheduling patterns that could be reused,
and launch different tasks seamlessly. You could create a Scheduler for a regular
PLSQL task as well as an OS task that could be launched from the database server
side, all without requiring the OS Scheduler. Sometimes, you may need to launch
a task within a given time frame (maintenance window). During this maintenance
window the task may require special attributes when scheduled, such as a specific
priority, an emphasis on parallelism or other OS resources. There is the need to
create a job pattern for those tasks that require similar scheduling parameters.

Then Oracle created the DBMS_SCHEDULER. This is a powerful tool that in a simple
and elegant way handles complex schedules. In order for you to be able to manage
the Scheduler, you should first get acquainted with some basic Oracle concepts.

Resource
Consumer

Group
Resource Plan Window Window Group

Schedule

Event

Time

Job Class Job Job Chain

Program Job = Program + Schedule

Chapter 7

[201]

Program: Program and Job are two different concepts. Program relates to the
metadata about what should be run; it specifies the program object, the program
action, and the program type. A Job specifies when the program is to be executed,
so the same program can be scheduled at different times and frequencies by different
jobs. When working with programs, the program is meant to separate the what part
of the job.

Schedule: The Schedule defines the point in time when a job is programmed to be
executed, and how often the job will be executed (frequency). This could be just a
onetime execution or a repetitive execution. For jobs to be scheduled at a later time,
it specifies when the job will start executing, and for repetitive jobs it also specifies
the start time and whether the job will run indefinitely or when the job schedule will
expire. The schedule also specifies if a job will be executed when an event is raised. A
schedule is also a database object. When working with simple jobs, the job can define
what is going to be run and when it is going to be run. The Schedule is a means of
separating the when part of the job.

Job: A Job is a user-defined task programmed to be run at a specific point in time, a
job specifies what will be run and when it will be run. This task may be programmed
to be run once or several times. The task could be a PL/SQL block. A job is a
database object.

Job Classes: If you create several jobs that share the same attribute values, then those
jobs could be included under the same job class. If a Job is assigned to a Job Class
then the job inherits the attributes defined for that Job Class. All the jobs belong to
a job class, if a job class is not specified at job creation time; the job automatically
belongs to the DEFAULT_JOB_CLASS.

Window: A Window is a time frame used to redefine allocation resources among
jobs. The Window is defined along with resource manager to specify resource
allocation policies. The Window specifies the resource plan to be activated and
each job class specifies which resource consumer group to map. The Windows may
overlap in time, if this happens the Window with the higher priority is chosen over
the Window with lower priority.

Oracle Scheduler

[202]

Window Groups: When a job is required to be scheduled on different windows, you
can define several windows and then group them under a single name. Let's assume
a maintenance job is chosen to be run when the workload is lower during weekends,
nights and holidays. There are two regular windows—Weekend, and Weeknight,
and several other windows, each one defining one holiday. All of these windows can
be grouped under a Window Group named Maintenance_Window.

Weekend

W
eekN

ight

W
eekN

ight

W
eekN

ight

W
eekN

ight

W
eekN

ight

M T W T F S S

Window Group
Job

Resource Manager: The Resource Manager is a means of providing the DBA with
more control over resource allocation. It specifies the amount of resources a process
may use, it determines the degree of parallelism, the CPU emphasis, the maximum
blocking time, and the maximum idle time, among other resources. In the Scheduler
context, it specifies the resource limits for a Window or a Job Class. Resource
Manager represents an entire subsystem of DBA resource control and is closely
tied to Services (previously discussed). The Oracle Scheduler has been designed to
integrate with that subsystem.

CRM
Plan

DWH
Plan

OLTP
group

DSS
group

90%

10%

OLTP
group

DSS
group 90%

10%

WeekDay
Window

WeekNight
Window

08:00 17:00 22:00 07:00

Resource Manager

Chapter 7

[203]

Job Chains: Scheduling a single task can be relatively easily done, it can be
scheduled to be run at a specific point in time, or, as previously seen, it can be
triggered after a specific event is raised. But when a task depends on other tasks to be
completed before they can be scheduled, or if a task is to be conditionally scheduled,
a complex shell script must be prepared.

Time Schedule: This is the most frequently used schedule. Normally the tasks are
scheduled at a given point in time, which can occur once or on a repetition basis. A
time expression is required to define when the task will be executed.

Event Schedule: A Job cannot only be scheduled by a time expression, but also by
a non-deterministic situation. Assuming a file arrives around 2:00 a.m., but not at a
precise point in time, if a chain process is waiting for this event to start just in time,
then a regular schedule may either start too early or too late, and would not be a
convenient way to schedule the file processing job. An event-based schedule is more
suitable for this scenario, this way we will always know that a process chain won't
start unless the required triggering condition is met.

An event-based schedule requires a queue specification and an event condition to
be met.

Getting started with the Oracle Scheduler
There are a number of database privileges and properties that need to be set for a
user to be able to access and utilize the Scheduler. Once the user has been granted
the proper privileges they are ready to use the DBMS_SCHEDULER package.

Required privileges
In order for you to create a new job manager you must grant the
SCHEDULER_ADMIN role.

GRANT SCHEDULER_ADMIN TO <username>;

This role provides a lot of power for a regular user, allowing the grantee to run
any code. If this happens to be a regular user who will launch its own jobs, then it
should be granted the CREATE JOB privilege. This allows the grantee to create jobs,
schedules, and programs in its own schema.

GRANT CREATE JOB TO <username>;

Oracle Scheduler

[204]

If the user will be performing other management tasks besides creating jobs and
schedules, then the DBA should grant the MANAGE SCHEDULER privilege. This allows
the grantee to create, alter or drop windows, job classes, and windows groups, as
well as manage the Scheduler attributes and purge the Scheduler log. These tasks are
often performed by the DBA, so the database administrator should assess if the user
really requires this privilege level.

GRANT MANAGE SCHEDULER TO <username>;

Let's create the Scheduler manager with the minimum privileges required to create
basic objects and manage the Scheduler:

create user OSCHEDMGR
identified by ORACLE
default tablespace USERS
quota unlimited on USERS;

grant create table,
 create procedure,
 create sequence,
 manage scheduler
to OSCHEDMGR;

This code creates a regular user with minimum privileges to use dbms_scheduler to
create jobs:

create user OSCHEDULER
identified by ORACLE
default tablespace USERS
quota unlimited on USERS;

grant
 create session,
 create table,
 create procedure,
 create sequence
 create job
to OSCHEDULER;

Scheduling our first job
In this example the user issues a Scheduler job by means of the
DBMS_SCHEDULER.CREATE_JOB that is a stored procedure. The parameters
required by the CREATE_JOB procedure depend on the version of the stored
procedure used. CREATE_JOB is an overloaded procedure, there are six different
versions of it, so when programming a task using this procedure, be sure to use
the right parameter combination for the selected CREATE_JOB procedure.

Chapter 7

[205]

This schedule task is composed of a simple database stored unit that updates
a table at a specified time. First you must create the procedure, and then schedule it.
At this stage this schedule doesn't include the program or the schedule concept to
create the job, those are explicitly defined in one step. In a later example these will be
created separately.

The parameters used in this example are explained next.

Creating the job
The jobs are created using the CREATE_JOB procedure. The following parameters
are used in the example and are as shown in the screenshot:

JOB_NAME: Jobs are database objects and require a unique name that follows
the standard Oracle object naming convention.

JOB_TYPE: There are several different kinds of jobs—programs (external OS
commands or shell scripts), PL/SQL Blocks, Stored Procedures, executable
programs, or chains.

JOB_ACTION: This refers to the procedure name to be executed.

REPEAT_INTERVAL: DBMS_SCHEDULER utilizes time expressions with a particularly
simple syntax to define the job frequency. In the example, the job was specified to
run every two minutes (FREQ=MINUTELY; INTERVAL=2).

START_DATE: The start date is defined with a timestamp using time zone data
type. In the example, it is defined using the to_timestamp_tz function.

END_DATE: If this parameter is defined, it means the job will finish being scheduled
at this point in time; otherwise it means the job will keep on running indefinitely.

JOB_CLASS: This parameter specifies the job class to which the job will be related.
All jobs must belong to a job class. As it is not defined in this case, the job will belong
to the DEFAULT_JOB_CLASS.

COMMENTS: This is a varchar2 column which is intended for the job creator to
document what the job does.

AUTO_DROP: The job creator can specify whether or not the task will be
automatically dropped after it is completed.

Oracle Scheduler

[206]

NUMBER_OF_ARGUMENTS: If the task to be launched requires arguments, this
parameter specifies the number of arguments. The actual parameter values are not
defined here; those are defined with the DBMS_SCHEDULER.SET_JOB_ARGUMENT_
VALUE procedures.

ENABLED: If there are no more parameters to be specified, the job can be enabled by
setting the ENABLED value to TRUE. By default, this value is set to FALSE, so the job
is created disabled.

This example schedules the LOG_ENTRY stored program unit, this is a simple user
created procedure that obtains a sequence number and inserts a record into a log
table. This is described next:

create table oscheduler.job_log(
 id number(10),
 exec_time date,
 what varchar2(50))
tablespace users;

create sequence oscheduler.seq;
grant create procedure to oscheduler;

create or replace procedure oscheduler.ins_job_log_entry(
 log_info IN varchar2)
as
begin
 insert into job_log values(
 seq.nextval,
 sysdate,
 log_info
);
 commit;
end;
/

This procedure requires an argument and a log info file. It also requires a special
treatment when the procedure will be scheduled.

Chapter 7

[207]

Specifying procedure arguments
In the above example, the job to be scheduled requires one argument, the argument
is defined using the DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE procedure. This
requires three parameters, JOB_NAME, ARGUMENT_POSITION, and ARGUMENT_VALUE.

•	 JOB_NAME: This is the job name defined at job creation time.
•	 ARGUMENT_POSITION: The arguments are defined by position, this is a

PLS_INTEGER value that specifies the parameter position.
•	 ARGUMENT_NAME: The argument can be defined not only by position,

but also with the parameter name. In the case of PL/SQL procedures
this refers to the parameter name defined at the PL/SQL program unit
creation time.

•	 ARGUMENT_VALUE: This is the argument value, it is specified as a
VARCHAR2 value. If the value is not a varchar2, then the procedure
SET_JOB_ANYDATA_ARGUMENT_VALUE must be used instead.

Oracle Scheduler

[208]

Enabling the job schedule
Once the job has been properly created, then it is time to enable it, this is done
using the DBMS_SCHEDULER.ENABLE procedure. The only argument it requires is the
job name.

Using Enterprise Manager
Enterprise Manager is a convenient way to schedule a job, its interface is intuitive
and user friendly. The Scheduler manager is found on the Administration tab in
the Database Scheduler section. There you will find the Job definition section, the
one first used to schedule a simple job (Jobs, Schedules and Programs), Window
Management (Windows, Window Groups), Program definition (Programs),
Job Classes, and Chains.

By clicking the Job definition section, the form to specify a simple job appears:

Chapter 7

[209]

The kind of jobs that Scheduler accepts are Programs (specified Scheduler programs),
PL/SQL anonymous blocks, stored procedures, executables (OS programs), and
chains. The command type section will change the layout and the kind of arguments
requested depending on the kind of command to schedule. The command used in
the example was a simple PL/SQL stored unit with one parameter.

Oracle Scheduler

[210]

Once the job and job type has been defined, the next step is to define the schedule.

The Scheduler specifies when this job will be launched as well as the job frequency
and the time this task will be programmed to start. The schedule type can be a
standard Scheduler, an already defined schedule object, a standard PL/SQL, which
means you will provide a time expression similar to the one used with DBMS_JOB, it
can also be run within a predefined window, or an asynchronous schedule by means
of the event scheduling. Each schedule type will change the form layout accordingly.

If a standard schedule is used, the repeating interval can be specified as a value from
seconds to years. The repeating interval will also change the page layout depending
on the kind of interval.

Finally, you can specify the time the job will be started; this can either be launched
immediately or at a specific point in time.

Chapter 7

[211]

Time expression syntax
Prior to DBMS_SCHEDULE, the way to specify the repeating interval with the
DBMS_JOB was pretty complex, and not very easy to read. The time expressions were
PL/SQL expressions that resulted in a rigid schedule pattern. The syntax used by the
Scheduler time is far more flexible and powerful, and, among many other features,
the richness of the time expressions is one of the Scheduler's strengths.

The repeat interval
The repeat interval goes from as little as seconds, to years. The frequency can
be defined seconds, minutes, hours, days, weeks, months, and years.

The syntax used to write time intervals can be specified either using a regular
schedule or a combined schedule.

repeat_interval = regular_schedule | combined_schedule

Regular schedule
The regular schedule is composed of three main sections—the frequency definition,
the interval, and the timing specification.

regular_schedule =
 frequency_clause
 [";" interval_clause]
 [";" bymonth_clause]
 [";" byweekno_clause]
 [";" byyearday_clause]
 [";" bydate_clause]
 [";" bymonthday_clause]
 [";" byday_clause]
 [";" byhour_clause]
 [";" byminute_clause]
 [";" bysecond_clause]
 [";" bysetpos_clause]
 [";" include_clause]
 [";" exclude_clause]
 [";" intersect_clause]
 [";" periods_clause]
 [";" byperiod_clause]

Oracle Scheduler

[212]

Combined schedule = schedule_list
 [";" include_clause]
 [";" exclude_clause]
 [";" intersect_clause]

Repeat Interval = Frequency Clause [; interval] [; timing]

YEARLY

MONTHLY

WEEKLY

DAILY

HOURLY

MINUTELY

SECONDLY

Frequency clause

Interval

Interval Num { ..999}1

timing

BYMONTH {[JAN, FEB, ... DEC] |
[1, 2, ... 12]}

BYWEEKNO {1,2, ... 53}

BYYEARDAY {[minus] 1,2, ... 366}

BYDATE{Date [YYYY]MMDD
|[offset | span]}

BYMONTHDAY {[minus] 1,2, ...31}

BYDAY
{[minus][weekDayNum]MON, TUE, ...SUN}

=1 ..53(yearly freq.)
=1 ..5(monthly freq.)

BYHOUR {0, 1, ..23}
BYMINUTE {0, 1, ...59}
BYSECOND {0, 1, ...59}

Frequency clause: This can be either a predefined frequency or a user defined
frequency. The predefined frequencies are YEARLY, MONTHLY, WEEKLY,
DAILY, HOURLY, MINUTELY, and SECONDLY. A task whose schedule is
programmed with the clause FREQ=MINUTELY will wait for the next minute to
start being scheduled.

In this example a task is programmed to run each minute, so the frequency clause is
declared MINUTELY:

sys.dbms_scheduler.create_job(
job_name => '"OSCHEDULER"."TEST_MINUTELY"',
job_type => 'STORED_PROCEDURE',
job_action => 'OSCHEDULER.INS_JOB_LOG_ENTRY',
repeat_interval => 'FREQ=MINUTELY',
start_date => systimestamp at time zone 'America/Chicago',
job_class => 'DEFAULT_JOB_CLASS',
comments => 'Test Minutely Scheduling',
auto_drop => FALSE,
number_of_arguments => 1,
enabled => FALSE);

Chapter 7

[213]

Interval clause: The interval clause defines the time when the next occurrence of the
schedule will take place; it ranges from 1 to 999 and its default value is 1.

Let's assume this scenario; if the user defines a schedule to occur HOURLY at an
interval of three (hours, it uses the same unit as the frequency clause), starting at
midnight with no ending clause defined, it means that the job will first run at 00:00
hours, and the next occurrence will be at 03:00 hours, next will be at 06:00, next will
be at 09:00, and so on. In this example the time expression is:

'FREQ=HOURLY;INTERVAL=3'

Timing Specification: The individual timing clauses that define a timing expression
are detailed in the table below.

BY{ * } clause Syntax and Definition
BYMONTH BYMONTH = { (JAN, FEB, ... DEC) | (1, 2, ...

12) }

This specifies on which month or months the job is scheduled to be
run. The syntax allows this time expression to be written either with
numbers or with the month acronyms. Several months can be specified.
Let's assume a task is scheduled to run in July, October and December;
the time expression should be defined to run yearly, on the previously
specified months, and its syntax would be:

FREQ=YEARLY;BYMONTH=JUL,OCT,DEC

BYWEEKNO BYWEEKNO = {1, 2, ... 53}

This defines the Week number according to the ISO-8601 standard.
A week starts on Monday and ends on Sunday, its value ranges from
1 to 52 (or 53 in a leap year). Parts of a week can be found on the
previous year and parts of a week may be found on the next year.
The BYWEEKNO is valid only on a YEARLY interval. According to
the standard the week containing the first Thursday of the year is
considered the week number one, for example on January 2004, the
first day of the year was on Thursday, so this was considered the first
week of the year, and it started on Monday 29th December 2003.

Oracle Scheduler

[214]

BY{ * } clause Syntax and Definition
BYYEARDAY BYYEARDAY = {[minus] 1, 2, ..., 366}

The value of the year day ranges from 1 to 366, each year day is
assigned a number and depending whether the year is or is not a leap
year, the maximum value will range from 1 to 365 for the former and
366 for the later. In a regular year, the year day 59 corresponds to
March 1 , meanwhile on a leap year the same year day corresponds to
February 29
When the value is preceded by a minus sign it means the day is
counted from the last day of the year backwards. If the year day has a
value of 20, it means it is the January 20, but if the value is -20, then the
resulting date is December 11.

FREQ=YEARLY;BYYEARDAY=-20

BYDATE BYDATE = {Date [YYYY]MMDD | [[+|-]offset | [+|-|^]
span]}
This specifies a list of dates in the YYYYMMDD format. If the YYYY
format mask is not included then it assumes the current year.
The BYDATE specifier can be simplified using the span and offset
modifiers, which will produce a set of consecutive dates. The
expression BYDATE=0201, 0202, 0203, 0204, 0205, 0206,
0207, 0208, 0209, 0210 can be simplified with the span modifier
this way: BYDATE=0201+9D. The span modifier can be qualified
with plus sign, which is an increasing date range starting with the
given date, when it has the minus sign it stands for a monotonically
decreasing date range starting with the given date, and if it has the
circumflex sign, this means it is a range that spans n-days centered on
the given date.
The expression BYDATE=0201+14D is equivalent to a range of dates
starting at 0201 and ending at 0215. This expression can also be written
using the offset modifier this way: BYDATE=0201+OFFSET:2W

Chapter 7

[215]

BY{ * } clause Syntax and Definition
BYMONTHDAY BYMONTHDAY = {[minus] 1, 2, ..., 31}

The month day is the regular calendar day, it starts the first day of the
month and it may end on the 28th, 29th, 30th, or 31st day of the month,
depending on the specific month and year. If the month day includes
a minus sign, this means that it counts backwards from the last day of
the month, so a convenient way to refer to the last day of the month is
with the expression BYMONTHDAY= -1.

BYDAY BYDAY = {[minus] [weekDayNum] MON, TUE, ... SUN}

weekDayNum = {1 .. 53} (yearly) | {1 .. 5} (monthly)

The day refers to the week day ranging from MON to SUN, and the
weekDayNum stands for the number of the week , which will span
from 1 to 53 (in a yearly frequency) or from 1 to 5 (in a monthly
frequency). So the 33rd Wednesday of the year can be expressed as:
FREQ='YEARLY'; BYDAY = 33 WED
Meanwhile the third Thursday of the month can be expressed as:
FREQ='MONTHLY'; BYDAY = 3 THU

If the BYDAY clause is preceded by the minus sign it means it will be
counted backwards, so if you want to represent the last Friday of the
year then you would use:
FREQ='YEARLY'; BYDAY = -1 FRI

BYHOUR BYHOUR = {0, 1, ... 23}

This specifies the hour in a 24 hour format ranging from 0 (12:00 a.m.)
to 23 (11 p.m.).

BYMINUTE BYMINUTE = {0, 1, ... 59}

This specifies the minutes past the hour the task will be scheduled,
it ranges from 0 to 59. Its meaning is straightforward.

BYSECOND BYSECOND = {0, 1, ... 59}

This specifies the seconds past the minute the task will be scheduled,
it ranges from 0 to 59. Its meaning is straightforward.

Oracle Scheduler

[216]

Combined schedule
The repeat interval can also be combined, and it can be seen as a set of points in time
that can be intersected with other points in time, it can be included, excluded, or
intersected. The repeated schedules are included only once in the resulting schedule.

combined_schedule = schedule_list [";" include_clause] [";" exclude_
clause] [";" intersect_clauseintersect_clause]

Combined Schedule INCLUDE Combined Schedule EXCLUDE

Schedule
List A

Schedule
List B

Schedule
List A

Schedule
List B

Schedule
List A

Schedule
List B

Combine Schedule INTERSECT

Repeated schedules are included only once

As previously shown on the diagram there are three ways to define a combined
schedule. They are the include, exclude and intersect clauses.

Include: The include clause merges the resulting schedules from two or more
named schedule lists. The repeated schedules are included only once. The include
operation is equivalent to the Union set operator.

Exclude: This excludes the values in common with the schedule list A. The exclude
clause is equivalent to the Minus set operator.

Intersect: The intersect clause is equivalent to the intersect set operator. This
specifies an intersection between the calendaring expression results and the set of
timestamps defined by one or more named schedules. Only the timestamps that
appear both in the calendaring expression and in one of the named schedules are
included in the resulting set of timestamps.

Chapter 7

[217]

Exclude scenario
Let's assume this scenario, a process is scheduled to run on the first calendar day
of the month at 08:00 a.m., except on January 1. Two schedules are created, one for
January the first, and the second for the first day of each month.

In the following example JAN_FIRST is a schedule that resolves to the single
date 01-JAN:

BEGIN
sys.dbms_scheduler.create_schedule(
 repeat_interval => 'FREQ=YEARLY;BYYEARDAY=1',
 start_date => systimestamp at time zone 'America/Mexico_
 City',
 comments => 'Single date January 1st',
 schedule_name => '"SYS"."JAN_FIRST"');
END;

This schedule resolves for the first day of each month except January 1st:

BEGIN
sys.dbms_scheduler.create_schedule(
 repeat_interval => 'FREQ=MONTHLY;BYMONTHDAY=1;BYHOUR=8;EXCLUDE=
 JAN_FIRST',
 start_date => systimestamp at time zone 'America/Mexico_
 City',
 comments => 'First day of the month',
 schedule_name => '"SYS"."FIRST_MONTH_DAY_SCHED"');
END;

Both schedules can be queried from Enterprise Manager DB Control Console.

Oracle Scheduler

[218]

The resulting schedule will include the first day of each month, except January 1st. It
must be pointed out that the FIRST_MONTH_DAY_SCHED schedule is defined to run at
08:00 a.m., meanwhile Jan 1 does not have a defined time.

Excluded dates without a time component are treated as twenty four
hour periods. All timestamps that fall on an excluded date are removed.

Considering the previously detailed expression:

FREQ=MONTHLY;BYMONTHDAY=1;BYHOUR=8;EXCLUDE=JAN_FIRST

All instances of the job are removed for Jan 01.

COMBINED SCHEDULE - EXCLUDE

FREQ=MONTHLY; BYMONTHDAY=1; BYHOUR=8; EXCLUDE=JAN_FIRST

FIRST_MONTH_DAY_SCHED JAN_FIRST

Feb 1st

Mar 1st Apr 1st

May 1st

Jul 1st

Sep 1st

Jun 1st

Aug 1st

Oct 1st

Dec 1stNov 1st

Jan 1st

Include scenario
In this scenario two schedules are defined, the first one defines several holidays, and
the second one defines a maintenance schedule that is meant to run every Sunday
and on holidays. If a given date is both a Sunday and a holiday, the scheduled task is
meant to run only once.

Chapter 7

[219]

BEGIN
sys.dbms_scheduler.create_schedule(
 repeat_interval =>
 'FREQ=YEARLY;

 BYYEARDAY=1,-286,-245,-241,-110,-107,-81,-60,-42,-7',
 start_date =>
 to_timestamp_tz('2009-05-12 America/Mexico_City',
 'YYYY-MM-DD TZR'),
 comments => 'Company Holidays',
 schedule_name => '"SYS"."HOLIDAYS"');
END;
/

This schedule is configured to run every Sunday, including holidays:

BEGIN
sys.dbms_scheduler.create_schedule(
 repeat_interval => 'FREQ=WEEKLY;BYDAY=SUN;BYHOUR=6;BYMINUTE=30;
 INCLUDE=HOLIDAYS',
 start_date => systimestamp at time zone 'America/Mexico_
 City',
 comments => 'Every Sunday and Holidays',
 schedule_name => '"SYS"."EVERY_SUNDAY"');
END;
/

COMBINED SCHEDULE - INCLUDE

EVERY_SUNDAY HOLIDAYS

Sundays
Company
Holydays

Company Holidays On Sunday

FREQ=WEEKLY;BYDAY=SUN;BYHOUR=6;BYMINUTE=30; INCLUDE=HOLIDAYS

Oracle Scheduler

[220]

Intersect scenario
In this intersect scenario only the dates that are both a Sunday and the first day of the
month will be displayed.

This schedule selects every Sunday:

BEGIN
sys.dbms_scheduler.create_schedule(
 repeat_interval => 'FREQ=WEEKLY;BYDAY=SUN',
 start_date => systimestamp at time zone 'America/Mexico_City',
 comments => 'Every Sunday',
 schedule_name => '"SYS"."EVERY_SUNDAY"');
END;
/

The next scenario intersects the resulting timestamps from EVERY_SUNDAY with the
first day of the month.

BEGIN
sys.dbms_scheduler.create_schedule(
 repeat_interval => 'FREQ=MONTHLY;BYMONTHDAY=1;INTERSECT=EVERY_
 SUNDAY',
 start_date => systimestamp at time zone 'America/Mexico_City',
 comments => 'Every Sunday 1st during the year',
 schedule_name => '"SYS"."EVERY_SUNDAY_1ST"');
END;
/

Only the common dates are selected by this schedule.

COMBINED SCHEDULE - INTERSECT

EVERY_SUNDAY FIRST DAY OF THE MONTH

Sundays First day of
each month

FREQ=MONTHLY;BYMONTHDAY=1;INTERSECT=EVERY_SUNDAY

Chapter 7

[221]

The resulting dates for the next five scheduled results are those shown in the
below image:

Time expression examples
The Oracle Scheduler time expressions are rich, flexible, and powerful. Once you
get familiar with the basic syntax rules, you realize the syntax is pretty simple and
straightforward. Let's take a look at some examples:

Schedule Requirement Expression
Daily at noon FREQ=DAILY;BYHOUR=12;BYMINUTE=0;

BYSECOND=0'

Daily at midnight FREQ=DAILY;BYHOUR=0;BYMINUTE=0;
BYSECOND=0'

The last day of each month at 9:30 p.m. FREQ=MONTHLY;BYMONTHDAY=-1;
BYHOUR=21;BYMINUTE=30;BYSECOND=0

Every Tuesday and Friday at 9:00 p.m. FREQ=WEEKLY; BYDAY=TUE,FRI;
BYHOUR=21; BYMINUTE=0; BYSECOND=0

First Monday of each Quarter FREQ=MONTHLY; BYMONTH=1,4,7,10;
BYDAY=1MON

Last day of the Month FREQ=YEARLY; BYMONTHDAY=-1

Oracle Scheduler

[222]

Programs
A program is a collection of metadata detailing what the Scheduler will run. A
schedule specifies when the program will be executed. You can create a job using
existing programs and schedules.

If a program is to be scheduled by a single Job, then the program can be defined
within the job definition, but if the same program is to be scheduled under different
circumstances and more than once, then the use of programs should be considered.

There are different kinds of programs:

•	 PL/SQL Blocks: These are anonymous PL/SQL blocks written at program
creation time.

•	 Stored Procedures: This is a regular stored procedure PL/SQL unit.
•	 Operating System Executables: This is a shell script or any other OS

executable. Scheduling programs inside the database is a more convenient
way to schedule OS tasks, this allows more integration and more control over
the task execution cycle. If the regular OS Scheduler is used (crontab
in Unix like systems and Task Manager on Windows platforms) then there is
no way to monitor, control or regulate the task behavior. The user depends
only on the OS scheduling mechanism to launch the job. Even though the
Windows Task Manager has a good degree of complexity to schedule a task,
it definitely doesn't have a point of comparison with the Oracle Scheduler.
On the other hand, the crontab mechanism is too far primitive if we make
the same comparison. So if the program requires a complex schedule,
it will be much easier to define and manage it using the Oracle
scheduling infrastructure.

When launching a program you must be aware of the permissions at
the Operating System level, otherwise you may receive the ORA-27369:
job of type EXECUTABLE failed with exit code: Permission denied
error message. This may happen even though you may have the proper
privileges when you execute the task directly at the operating system.
In Unix like system this error has to do with the privileges of the
extjob program located in the $ORACLE_HOME/bin directory, by
default this runs with a SUID, making an external job run as the nobody
user belonging to the nobody group.

Chapter 7

[223]

Creating programs manually
A program is defined using the CREATE_PROGRAM procedure from the
DBMS_SCHEDULER package. It requires us to specify the program name, owner, type
of program, and argument definition. The program can be created in an enabled
status from the beginning, but in this case the program is enabled once the complete
configuration task is finished.

To create a program based on an already existing program unit:

BEGIN
DBMS_SCHEDULER.CREATE_PROGRAM(
 program_name =>'OSCHEDULER.LOG_INFO_PROG',
 program_action =>'OSCHEDULER.INS_JOB_LOG_ENTRY',
 program_type =>'STORED_PROCEDURE',
 number_of_arguments=>1,
 comments =>'Log Info Stored Procedure Program',
 enabled =>FALSE);
END;

Once the program is created, the next step is to define the required arguments:

BEGIN
DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
 program_name =>'OSCHEDULER.LOG_INFO_PROG',
 argument_name =>'LOG_INFO',
 argument_position=>1,
 argument_type =>'VARCHAR2',
 default_value =>'',
 out_argument =>FALSE);
END;

And finally the program is enabled.

BEGIN
DBMS_SCHEDULER.ENABLE(
 name=>'OSCHEDULER.LOG_INFO_PROG');
END;

The following piece of code shows the way to create an OS program using
DBMS_SCHEDULER.

In this piece of code a simple shell script is scheduled. The script executes an echo
and redirects the output to an OS file:

echo 'date' Log Entry Generated from the OS > /tmp/OracleJob.log

Oracle Scheduler

[224]

This script is saved to /home/oracle/bin/record_os_log_entry.sh. Once the
shell script is ready the next step is to create a dbms_scheduler program named
OSCHEDULER.OS_LOG_RECORD_PROG:

BEGIN
DBMS_SCHEDULER.CREATE_PROGRAM(
 program_name =>'OSCHEDULER.OS_LOG_RECORD_PROG',
 program_action =>'/home/oracle/bin/record_os_log_entry.sh',
 program_type =>'EXECUTABLE',
 number_of_arguments=>1,
 comments =>'OS level log entry record',
 enabled =>FALSE);
END;

BEGIN
DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
 program_name =>'OSCHEDULER.OS_LOG_RECORD_PROG',
 argument_name =>'LogEntryText',
 argument_position =>1,
 argument_type =>'CHAR',
 default_value =>'Default log entry',
 out_argument =>FALSE);
END;

BEGIN
DBMS_SCHEDULER.ENABLE(
 name =>'OSCHEDULER.OS_LOG_RECORD_PROG');
END;

Defining a program using Enterprise Manager
Using Enterprise Manager to define a program is a convenient and pretty
straightforward way to perform this task, it allows the user to view a list of all
existing Scheduler programs, create new programs or clone a program from an
existing template, edit a program and provide different maintenance levels to
existing programs.

This screenshot shows how a program is defined using Enterprise Manager:

Chapter 7

[225]

Schedules
Schedules are named, reusable calendar objects. They may be used for multiple jobs.
Instead of declaring the same schedule for different jobs, just define it once and use it
as a named schedule for different job definitions.

The schedule is created using DBMS_SCHEDULER.CREATE_SCHEDULE

PROCEDURE CREATE_SCHEDULE(
 SCHEDULE_NAME
 START_DATE
 REPEAT_INTERVAL
 END_DATE
 COMMENTS
)

Oracle Scheduler

[226]

In this example a new schedule is created, it is defined to run hourly at an interval of
six hours. This schedule is defined to start at invocation time and runs indefinitely.

BEGIN
DBMS_SCHEDULER.CREATE_SCHEDULE(
 schedule_name => 'demo_schedule',
 start_date => SYSTIMESTAMP,
 end_date => null,
 repeat_interval => 'FREQ=HOURLY;INTERVAL=6',
 comments => 'Hourly schedule at an interval of six hours');
END;

Jobs and Job Classes
The Job is the programmed execution of a task at a given time and during a given
period of time. Once the schedule and the program objects have been defined, they
can be used in a job definition making it simpler and more readable.

BEGIN
sys.dbms_scheduler.create_job(
 job_name => '"OSCHEDULER"."OS_LOG_RECORDS_JOB"',
 program_name => 'OSCHEDULER.OS_LOG_RECORD_PROG',
 schedule_name => 'OSCHEDULER.MINUTELY_SCHEDULE',
 job_class => 'DEFAULT_JOB_CLASS',
 auto_drop => FALSE,
 enabled => TRUE);
END;

A Job Class is a way of grouping jobs and linking them to a resource consumer
group, so that you can define common properties among different jobs in a single
operation. This enables the same behavior and same properties among homogeneous
jobs. You can specify attributes at the class level; you can also define the order in
which a job is started. Linking to resource manager is important as this is a way you
can emphasize the resources allocated to all the jobs that run under a given
Job Class.

Chapter 7

[227]

A Job Class is created using the CREATE_JOB_CLASS procedure. In this example it is
defined as a resource consumer group, and this is assigned to a job class. All the jobs
belonging to this job class will have the same resource allocation policies defined for
the class.

In the demonstration database there are several consumers groups currently defined:

SQL> select CONSUMER_GROUP

 2 from DBA_RSRC_CONSUMER_GROUPS;

CONSUMER_GROUP

OTHER_GROUPS

DEFAULT_CONSUMER_GROUP

SYS_GROUP

LOW_GROUP

AUTO_TASK_CONSUMER_GROUP

OLTP

DSS

When creating a Job Class this can be defined to run under the LOW_GROUP:

SQL> BEGIN

 2 dbms_scheduler.create_job_class (

 3 job_class_name => 'LOW_GROUP_JOB_CLASS',

 4 resource_consumer_group => 'LOW_GROUP');

 5 END;

 6 /

We verify the Job Class by querying the DBA_SCHEDULER_JOB_CLASSES view:

SQL> select JOB_CLASS_NAME,

 2 RESOURCE_CONSUMER_GROUP

 3 from DBA_SCHEDULER_JOB_CLASSES;

JOB_CLASS_NAME RESOURCE_CONSUMER_GROUP

------------------------------ ------------------------------

DEFAULT_JOB_CLASS

AUTO_TASKS_JOB_CLASS AUTO_TASK_CONSUMER_GROUP

LOW_GROUP_JOB_CLASS LOW_GROUP

Oracle Scheduler

[228]

Now a Job can belong to this class, automatically being enforced to comply with the
resource allocation policy that governs the Job Class.

BEGIN
sys.dbms_scheduler.set_attribute(
 name => '"OSCHEDULER"."TEST_MINUTELY"',
 attribute => 'job_class',
 value => 'LOW_GROUP_JOB_CLASS');
END;
/

And finally we can see the job belongs to the LOW_GROUP_JOB_CLASS:

SQL> select OWNER,

 2 JOB_NAME,

 3 JOB_CLASS

 4 from DBA_SCHEDULER_JOBS

 5 where OWNER = 'OSCHEDULER';

OWNER JOB_NAME JOB_CLASS

---------- ---------------------- ----------------------

OSCHEDULER TEST_SCHEDULER DEFAULT_JOB_CLASS

OSCHEDULER TEST_MINUTELY LOW_GROUP_JOB_CLASS

OSCHEDULER MONTHLYTEST DEFAULT_JOB_CLASS

OSCHEDULER OS_LOG_RECORDS_JOB DEFAULT_JOB_CLASS

Managing the Scheduler
While defining a schedule it is not required to launch the schedule immediately
afterwards. A scheduled task can be created in a disabled status so that the user can
schedule it at a later time.

All tasks leave a log that can be used to validate that the task was successful or to
find out if a scheduled task failed and why. The user should know how and when to
purge it so it doesn't grow too big.

Chapter 7

[229]

Enable or disable components
The DBMS_SCHEDULER.ENABLE enables a Scheduler component, such as a program,
job, window or window group, and DBMS_SCHEDULER.DISABLE disables components.

This procedure enables a job belonging to the demo Scheduler. In the previous
section the TEST_MINUTELY Scheduler job was defined.

EXEC sys.dbms_scheduler.enable('"OSCHEDULER"."TEST_MINUTELY"');

Managing job logs
There are two important tasks to perform with the logs; these tasks are to monitor
them and schedule a purge task on them. All job related activity generated by means
of the dbms_scheduler leaves a log behind for forensic purposes in case something
goes wrong with the job or just to make sure the job ran successfully. Once the user
has made sure everything went well and there is nothing else to debug, the log
information becomes a ballast the user should get rid of, otherwise this can easily
flood the database with useless information.

Monitor a Job Execution
The outcome from the job Scheduler can be monitored at the [DBA | USER | ALL]_
SCHEDULER_JOB_LOG views. The views are listed later in this chapter.

SQL> SELECT LOG_ID, LOG_DATE, JOB_NAME, STATUS

 2 FROM USER_SCHEDULER_JOB_LOG

 3 WHERE LOG_DATE > TRUNC(SYSDATE)

 4* ORDER BY LOG_ID

 LOG_ID LOG_DATE JOB_NAME STATUS

---------- ------------------------------------ ------------- ----------

 17824 30-NOV-08 12.21.42.547453 AM -06:00 TEST_MINUTELY SUCCEEDED

 17825 30-NOV-08 12.22.42.538071 AM -06:00 TEST_MINUTELY SUCCEEDED

 17826 30-NOV-08 12.23.42.080787 AM -06:00 TEST_MINUTELY SUCCEEDED

Oracle Scheduler

[230]

Several different queries can be issued against the database to monitor the
job activity.

Requirement Query
Details on Job runs select log_date,

 job_name,

 status,

 req_start_date,

 actual_start_date,

 run_duration

from dba_scheduler_job_run_details;

Running Jobs select job_name,

 session_id,

 running_instance,

 elapsed_time,

 cpu_used

from dba_scheduler_running_jobs;

Query Job History select log_date,

 job_name,

 status

from dba_scheduler_job_log;

Query all schedules select schedule_name,

 schedule_type,

 start_date,

 repeat_interval

from dba_scheduler_schedules;

Query all jobs and their attributes select *

from dba_scheduler_jobs;

Query all programs select *

from dba_scheduler_programs;

Query all program arguments select *

from dba_scheduler_program_args;

Chapter 7

[231]

The job can also be monitored from Oracle Enterprise Manager in the Operation
Detail section (A). This section can be accessed from Main Page | Administration |
Database Scheduler | Jobs | Job Name | Operation Detail (A).

For each generated log entry a consecutive log ID value is generated, this ID is useful
when manually referencing a log entry from the scheduled job log views (B). The
table displays the time stamp when the log entry was generated (C), the Operation
column (D) will display the current activity, in case the job ran at the specified time
stamp the status will be RUN, if the task comes to an end, the most recently executed
task will display the COMPLETED status. The Status (E) column shows how this
job execution ended; each job will show either SUCCEEDED or FAILED as its
status. The details of each job run can be seen by either clicking on the Log ID link or
selecting the log ID with the select radio button and clicking on the VIEW button.

Oracle Scheduler

[232]

Purging the job log
Among the factory programmed jobs, Oracle provides a job named PURGE_LOG.

This job is in charge of purging the job log. PURGE_LOG (A) is a job owned by SYS
which generates logs only when it runs, this job belongs to the DEFAULT_JOB_
CLASS (B) and is scheduled with the SYS.DAILY_PURGE_SCHEDULE (C), a schedule
configured as a standard schedule to be launched daily at 03:00 a.m.

Name
Schema
Enabled
Description
Type
Procedure Name :dbms_scheduler.auto_purge

:PURGE_LOG_PROG
:SYS
:TRUE
:purge log program
:STORED_PROCEDURE

Schedule
Schema
Schedule Type
Frequency
Interval
Scheduled by

: DAILY_PURGE_SCHEDULE
: SYS
: standard
: DAILY
: 1
: 03h 00m 00s

Default log retention period = 30 days

Program

SYS.PURGE_LOG_PROG

Schedule

SYS.DAILY_PURGE_SCHEDULE

Job

SYS.PURGE_LOG

Chapter 7

[233]

The PURGE_LOG job launches a Program named SYS.PURGE_LOG which is defined as
a STORED_PROCEDURE and whose procedure name is DBMS_SCHEDULER.AUTO_PURGE.
This stored program unit receives no arguments and it purges the logs based on
its retention period. The DEFAULT_JOB_CLASS has no explicit retention period
declared, so it takes the default value of 30 days. This should be enough to maintain
a reasonable amount of log history for most practical situations, but as the purge
log job has been defined using the standard DBMS_SCHEDULER infrastructure you can
tailor it to fit your particular log retention needs.

Data dictionary related views
The Oracle Scheduler DBA related data dictionary views are:

View Description
DBA_SCHEDULER_CHAINS All Scheduler chains in the database.
DBA_SCHEDULER_CHAIN_RULES All rules from Scheduler chains in the database.
DBA_SCHEDULER_CHAIN_STEPS All steps of Scheduler chains in the database.
DBA_SCHEDULER_GLOBAL_ATTRIBUTE All Scheduler global attributes.
DBA_SCHEDULER_JOBS All Scheduler jobs in the database.
DBA_SCHEDULER_JOB_ARGS All arguments with set values of all Scheduler

jobs in the database.
DBA_SCHEDULER_JOB_CLASSES All Scheduler classes in the database.
DBA_SCHEDULER_JOB_LOG Logged information for all Scheduler jobs.
DBA_SCHEDULER_JOB_RUN_DETAILS The details of a job run.
DBA_SCHEDULER_PROGRAMS All Scheduler programs in the database.
DBA_SCHEDULER_PROGRAM_ARGS All arguments of all Scheduler programs in

the database.
DBA_SCHEDULER_RUNNING_CHAINS All steps of all running chains in the database.
DBA_SCHEDULER_SCHEDULES All schedules in the database.
DBA_SCHEDULER_WINDOWS All Scheduler windows in the database.
DBA_SCHEDULER_WINDOW_DETAILS The details of a window.
DBA_SCHEDULER_WINDOW_GROUPS All Scheduler window groups in the database.
DBA_SCHEDULER_WINDOW_LOG Logged information for all Scheduler windows.
DBA_SCHEDULER_WINGROUP_MEMBERS Members of all Scheduler window groups in

the database.
V$SCHEDULER_RUNNING_JOBS Currently running jobs.
DBA_QUEUE_SCHEDULES Describes the current schedules for

propagating messages.

Oracle Scheduler

[234]

Summary
Starting with release 10g, the scheduling mechanism has considerably evolved from
a simple task launcher to a powerful Scheduler. Oracle Scheduler allows complex
scheduling that would be otherwise very difficult to program in previous releases.
The OS Scheduler is very limited compared with the potential provided by the
Oracle Scheduler.

Oracle provides an enriched set of scheduling time expressions that allow the user
to define complex time expressions. Even though Oracle Scheduler has greatly
simplified the way to schedule tasks, its concepts and syntax are not quite clear at
first glance, Oracle is aware of the scheduling complexity, but Enterprise Manager
frees the DBA from this complexity, displaying the Scheduler mechanism in a very
simple an intuitive way, allowing the DBA to be more productive when defining the
different required schedules.

In this chapter, we learned the basic Scheduler concepts, the time expression syntax,
and the Scheduler management basics. In the next chapter, we will explore a tool
that is the keystone of certified security. When a simple username and password is
not enough to provide an authentication mechanism, when managing certificates
becomes a must, then you must get acquainted with a tool that is the gateway to a
higher security level, the Oracle Wallet Manager.

Oracle Wallet Manager
The Oracle Wallet Manager (OWM) is the tool used by Oracle to manage the
authentication processes. It is a key tool for managing most of the authentication and
security related tasks in an Oracle environment, this includes; authenticating users,
providing SSL communication, and configuring the Transparent Data Encryption
(TDE) feature, among others. There are two modes to work with the Oracle Wallet,
the first one is by using the Java Oracle Wallet Manager console and the second one
is by means of the mkwallet command line version, this method is suitable for batch
processing. The Wallet is a very sensitive element; there are several ways to store it, not
only in its file at the file system level, but also in the registry (for Windows platforms
only). It can also be stored in an LDAP compliant directory.

The Oracle Wallet Manager
Oracle Wallet Manager is a password protected stand-alone Java application
tool used to maintain security credentials and store SSL related information
such as authentication and signing credentials, private keys, certificates, and
trusted certificates.

OWM uses Public Key Cryptographic Standards (PKCS) #12 specification for the
Wallet format and PKCS #10 for certificate requests.

Oracle Wallet Manager stores X.509 v3 certificates and private keys in
industry-standard PKCS #12 formats, and generates certificate requests according
to the PKCS #10 specification. This makes the Oracle Wallet structure interoperable
with supported third party PKI applications, and provides Wallet portability across
operating systems. Additionally, Oracle Wallet Manager Wallets can be enabled to
store credentials on hardware security modules that use APIs compliant with the
PKCS #11 specification.

Oracle Wallet Manager

[236]

The OWM creates Wallets, generates certificate requests, accesses Public Key
interface-based services, saves credentials into cryptographic hardware such as smart
cards, uploads and unloads Wallets to LDAP directories, and imports Wallets in
PKCS #12 format.

In a Windows environment, Oracle Wallet Manager can be accessed from the
start menu. The following screenshot shows the Oracle Wallet Manager Properties:

In a Unix like environment, OWM can be accessed directly from the command line
with the owm shell script located at $ORACLE_HOME/bin/owm, it requires a graphical
environment so it can be launched.

Chapter 8

[237]

Creating the Oracle Wallet
If this is the first time the Wallet has been opened, then a Wallet file does not yet
exist. A Wallet is physically created in a specified directory. The user can declare the
path where the Oracle Wallet file should be created.

The user may either specify a default location or declare a particular directory. A file
named ewallet.p12 will be created in the specified location.

Enabling Auto Login
The Oracle Wallet Manager Auto Login feature creates an obfuscated copy of the
Wallet and enables PKI-based access to the services without a password. When this
feature is enabled, only the user who created the Wallet will have access to it.

Oracle Wallet Manager

[238]

By default, Single Sign-On (SSO) access to a different database is disabled. The auto
login feature must be enabled in order for you to have access to multiple databases
using SSO.

Checking and unchecking the Auto Login option will enable and disable
this feature.

mkwallet, the CLI OWM version
Besides the Java client, there is a command line interface version of the Wallet, which
can be accessed by means of the mkwallet utility. This can also be used to generate a
Wallet and have it configured in Auto Login mode. This is a fully featured tool that
allows you to create Wallets, and to view and modify their content.

The options provided by the mkwallet tool are shown in the following table:

Chapter 8

[239]

Option Meaning
-R rootPwd rootWrl DN keySize
expDate

Create the root Wallet

-e pwd wrl Create an empty Wallet
-r pwd wrl DN keySize certReqLoc Create a certificate request, add it to Wallet

and export it to certReqLoc
-c rootPwd rootWrl certReqLoc
certLoc

Create a certificate for a certificate request

-i pwd wrl certLoc NZDST_CERTIFICATE
| NZDST_CLEAR_PTP

Install a certificate | trusted point

-d pwd wrl DN Delete a certificate with matching DN
-s pwd wrl Store sso Wallet
-p pwd wrl Dump the contents of Wallet
-q certLoc Dump the contents of the certificate
-Lg pwd wrl crlLoc nextUpdate Generate CRL
-La pwd wrl crlLoc certtoRevoke Revoke certificate
-Ld crlLoc Display CRL
-Lv crlLoc cacert Verify CRL signature
-Ls crlLoc cert Check certificate revocation status
-Ll oidHostname oidPortNumber
cacert

Fetch CRL from LDAP directory

-Lc cert Fetch CRL from CRLDP in cert
-Lb b64CrlLoc derCrlLoc Convert CRL from B64 to DER format
-Pw pwd wrl pkcs11Lib
tokenPassphrase

Create an empty Wallet. Store PKCS11 info
in it

-Pq pwd wrl DN keysize certreqLoc Create cert request. Generate key pair on
pkcs11 device

-Pl pwd wrl Test pkcs11 device login using Wallet
containing PKCS11 information

-Px pwd wrl pkcs11Lib
tokenPassphrase

Create a Wallet with pkcs11 info from a
software Wallet

Managing Wallets with orapki
A CLI-based tool, orapki, is used to manage Public Key Infrastructure components
such as Wallets and revocation lists. This tool eases the procedures related to PKI
management and maintenance by allowing the user to include it in batch scripts.

Oracle Wallet Manager

[240]

This tool can be used to create and view signed certificates for testing purposes,
create Oracle Wallets, add and remove certificate and certificate requests, and
manage Certification Revocation Lists (CRLs)—renaming them and managing them
against the Oracle Internet Directory.

The syntax for this tool is:

orapki module command -parameter <value>

module can have these values:

•	 wallet: Oracle Wallet
•	 crl: Certificate Revocation List
•	 cert: The PKI Certificate

To create a Wallet you can issue this command:

orapki wallet create -wallet <Path to Wallet>

To create a Wallet with the auto login feature enabled, you can issue the command:

orapki wallet create -wallet <Path to Wallet> -autologin

To add a certificate request to the Wallet you can use the command:

orapki wallet add -wallet <wallet_location> -dn <user_dn> -keySize
<512|1024|2048>

To add a user certificate to an Oracle Wallet:

orapki wallet add -wallet <wallet_location> -user_cert -cert
<certificate_location>

The options and values available for the orapki tool depend on the module to
be configured:

orapki Action Description and Syntax
orapki cert
create

Creates a signed certificate for testing purposes.

orapki cert create [-wallet <wallet_location>] -request
<certificate_request_location> -cert <certificate_
location> -validity <number_of_days> [-summary]

orapki cert
display

Displays details of a specific certificate.

orapki cert display -cert <certificate_location> [-
summary|-complete]

Chapter 8

[241]

orapki Action Description and Syntax
orapki crl
delete

Deletes CRLs from Oracle Internet Directory.

orapki crl delete -issuer <issuer_name> -ldap <hostname:
ssl_port> -user <username> [-wallet <wallet_location>]
[-summary]

orapki crl
diskplay

Displays specific CRLs that are stored in Oracle Internet Directory.

orapki crl display -crl <crl_location> [-wallet
<wallet_location>] [-summary|-complete]

orapki crl hash Generates a hash value of the certificate revocation list (CRL)
issuer to identify the location of the CRL in your file system for
certificate validation.

orapki crl hash -crl <crl_filename|URL> [-wallet
<wallet_location>] [-symlink|-copy] <crl_directory>
[-summary]

orapki crl list Displays a list of CRLs stored in Oracle Internet Directory.

orapki crl list -ldap <hostname:ssl_port>
orapki crl
upload

Uploads CRLs to the CRL subtree in Oracle Internet Directory.

orapki crl upload -crl <crl_location> -ldap <hostname:
ssl_port> -user <username> [-wallet <wallet_location>]
[-summary]

orapki wallet
add

Add certificate requests and certificates to an Oracle Wallet.

orapki wallet add -wallet <wallet_location> -dn <user_
dn> -keySize <512|1024|2048>

orapki wallet
create

Creates an Oracle Wallet or to set auto login on for an Oracle Wallet.

orapki wallet create -wallet <wallet_location> [-auto_
login]

orapki wallet
display

Displays the certificate requests, user certificates, and trusted
certificates in an Oracle Wallet.

orapki wallet display -wallet <wallet_location>
orapki wallet
export

Export certificate requests and certificates from an Oracle Wallet.

orapki wallet export -wallet <wallet_location> -dn
<certificate_dn> -cert

<certificate_filename>

Oracle Wallet Manager

[242]

Oracle Wallet Manager CSR generation
Oracle Wallet Manager generates a certificate request in PKCS #10 format. This
certificate request can be sent to a certificate authority of your choice. The procedure
to generate this certificate request is as follows:

From the main menu choose the Operations menu and then select the Add
Certificate Request submenu. As shown in the following screenshot, a form will be
displayed where you can capture specific information.

Chapter 8

[243]

The parameters used to request a certificate are described next:

Common Name: This parameter is mandatory. This is the user's name or
entity's name. If you are using a user's name, then enter it using the first name,
last name format.

Organization Unit: This is the name of the identity's organization unit. It could
be the name of the department where the entity belongs (optional parameter).

Organization: This is the company's name (optional).

Location/City: The location and the city where the entity resides (optional).

State/Province: This is the full name of the state where the entity resides. Do not use
abbreviations (optional).

Country: This parameter is mandatory. It specifies the country where the entity
is located.

Key Size: This parameter is mandatory. It defines the key size used when a
public/private key pair is created. The key size can be as little as 512 bytes and
up to 4096 bytes.

Oracle Wallet Manager

[244]

Advanced: When the parameters are introduced a Distinguished Name (DN) is
assembled. If you want to customize this DN, then you can use the advanced DN
configuration mode.

Once the Certificate Request form has been completed, a PKCS#10 format certificate
request is generated. The information that appears between the BEGIN and END
keywords must be used to request a certificate to a Certificate Authority (CA); there
are several well known certificate authorities, and depending on the usage you plan
for your certificate, you could address the request to a known CA (from the browser
perspective) so when an end user accesses your site it doesn't get warned about the
site's identity. If the certificate will be targeted at a local community who doesn't
mind about the certificate warning, then you may generate your own certificate or
ask a CA to issue a certificate for you. For demonstration purposes, we used the
Oracle Certificate Authority (OCA) included with the Oracle Application Server.
OCA will provide the Certificate Authority capabilities to your site and it can issue
standard certificates, suitable for the intranet users. If you are planning to use OCA
then you should review the license agreements to determine if you are allowed to
use it.

Chapter 8

[245]

Storing the Oracle Wallet in the
Windows registry
On Windows operating systems the Wallet can either be stored in the file system or
in the Windows registry. Storing the Wallet in the registry has several advantages.
It creates an additional security layer, allowing transparency for all other users.
When a user profile is removed, the Wallet in the profile is also removed. The Wallet
is transparent to all other users and when the user logs out, access to the Wallet is
automatically precluded.

The supported operations are:

•	 Save a Wallet to the registry
•	 Open a Wallet from the registry
•	 Save as to a different registry location
•	 Open Wallet from the file system, save it to the registry, and vice versa
•	 Delete a Wallet from the registry

Save Wallet to the registry
In order for you to save a Wallet to the Windows registry, make sure the Use
Windows Registry check box is marked; when you command the Wallet to be saved,
it will use the Windows registry.

Oracle Wallet Manager

[246]

The Wallet will only be available to the user who saved it. At the time to save it,
the Wallet will ask the user for a location at the registry to save the Wallet.
The user can either specify a location or let the Wallet define a default binary entry
at \\HKEY_CURRENT_USER\SOFTWARE\ORACLE\WALLETS. The name of
the Windows registry where the Wallet will be stored is ewallet.p12, as you can see
in the following image:

Open the Wallet from the registry
Once the Wallet has been saved to the registry, it can be opened from the registry.
When asking Wallet manager to open a Wallet, mark the Use Windows Registry
check box. This will ask for the registry path where it will look for the Wallet.

Save as to a different registry location
The Wallet can be stored in a different registry location. It is enough to use save as,
providing a different registry path.

Chapter 8

[247]

Open the Wallet from the registry, save it to
the file system and vice versa
If the Wallet currently resides as a regular Wallet on the file system, it can be stored
in the Windows registry, just use the Save As menu option and make sure the
Use Windows Registry option is marked. If the database currently resides in the
Windows registry and you want to save it to the file system, it is enough to use the
Save As option with the Use Windows Registry option marked.

Delete the Wallet from the registry
You can get rid of a Wallet that currently resides in the registry by selecting the
option Delete from the File menu. This will remove the entry from the registry and
will permanently delete the Wallet. You must absolutely make sure this is what you
want to do, as this option cannot be rolled back. Deleting a Wallet would mean all
the certificates contained in the Wallet will be lost.

Configuring the Wallet location
The client side networking profile file (sqlnet.ora) must be configured to let Oracle
know where the Wallet is located, so PKI-based applications know where to look for
the Wallet.

Assuming the Wallet was stored in the default location \\HKEY_CURRENT_USER\
SOFTWARE\ORACLE\WALLETS\DEFAULT, the sqlnet.ora declaration would be:

WALLET_LOCATION =
 (SOURCE =
 (METHOD=REG)
 (METHOD_DATA =
 (KEY=DEFAULT)
)
)

WALLET_LOCATION supports the following sub parameters:

•	 SOURCE: Specify the type of storage for Wallets and storage location
•	 METHOD: Specify the type of storage
•	 METHOD_DATA: Specify the storage location
•	 DIRECTORY: Specify the location of Oracle Wallets on file system
•	 KEY: Specify the Wallet type and location in the Windows NT registry

Oracle Wallet Manager

[248]

This will store the encrypted Wallet in \\HKEY_CURRENT_USER\SOFTWARE\ORACLE\
WALLETS\DEFAULT\ewallet.p12 and the obfuscated wallet in \\HKEY_CURRENT_
USER\SOFTWARE\ORACLE\WALLETS\DEFAULT\cwallet.sso.

The previously declared value is the default location, and it is the first path that Oracle
will use to look for the obfuscated Wallet if a path has not been explicitly declared.

If no obfuscated Wallet is found there, Oracle PKI applications look for it in the file
system of the local computer at: %USERPROFILE%\ORACLE\WALLETS.

Storing the Wallet in an LDAP server
An LDAP compliant directory can also be used to store and retrieve a Wallet,
providing a single point of access. It is more secure than storing it at the client side,
as it provides a way to let the manager provide more secure procedures to access
the Wallet.

Uploading the Wallet to an LDAP server
Oracle Wallet Manager can store and retrieve certificates to and from a centralized
LDAP compliant server. In order for you to be able to store a Wallet, the Wallet must
already have a user certificate installed.

The LDAP directory must have been previously configured so the Wallet can be
stored there. If the Wallet doesn't have an SSL certificate installed, then password-
based authentication will be used to access the Wallet.

You should be aware that there are two passwords to be used in an LDAP/OWM
environment, one password is used to access the LDAP server, and a second
password is used to access the Oracle Wallet. These passwords are independent and
the user should adequately handle them.

In order for you to perform the Wallet upload process, choose Wallet | Upload into
the directory service.... Then the dialog box appears asking you first to save the
Wallet prior to uploading it.

Chapter 8

[249]

If at least one certificate has SSL key usage then the Oracle Wallet tries to connect
using SSL, otherwise the user will be prompted for a password. It is assumed the
Wallet password is the same as that of the directory password.

Downloading the Wallet from LDAP
When asking Oracle Wallet Manager to download a Wallet from the LDAP server,
a dialog appears, asking the user for the User DN, directory password, and the
connection information to the LDAP server.

Once the Wallet has been downloaded it resides in the OWM's memory, and it needs
to be explicitly saved to the file system.

Oracle Wallet Manager

[250]

Using certificates for authentication
Using a simple password as a means to authenticate a database user is a weak
authentication method. A stronger authentication method can be achieved with
certificates, this requires the advanced security to be installed and configured.

Public Key Infrastructure tools
The Oracle database Public Key Infrastructure (PKI) implementation requires:

•	 Oracle Advanced Security
•	 Oracle Identity Management Infrastructure
•	 Oracle Wallet Manager
•	 Enterprise Security Manager

The procedure to configure authentication is as follows:

1. Install the PKI Tools.
2. Configure SSL on the server side. Store a certificate in the Wallet at the

server side.
3. Configure the network configuration files listener.ora and sqlnet.ora on

the server side so it supports SSL
4. Configure the client network files, sqlnet.ora and tnsnames.ora so it

supports SSL.
5. Create a user whose authentication is performed with a certificate.

Using the Oracle Wallet to store database
credentials
Storing your users' credentials in OS scripts is a common practice when performing
batch tasks, but doing so exposes the database users and creates a security breach.
The Oracle Wallet can be used to store the user's credentials, so instead of exposing
passwords in clear text format in a batch script, those can be safely stored in the
client's Wallet without compromising them.

This procedure stores a database user's credentials inside the Wallet. This features
uses the auto login feature, so it is not required to provide the Wallet password to
access to the user's credentials, the OS file permissions regulate access to the Wallet.

Chapter 8

[251]

Once the Oracle Wallet has been configured and the database credentials have been
stored the user can access the Oracle database from any tool requiring the user to
provide access to the database. The access granted to the user will be just like as
though the user has provided the password at connect time.

As the database credentials are stored in an area different from the area where the
PKI certificates are stored, you cannot use the graphical interface to manage the
database user credentials, you must use the mkstore command line utility instead.

There are different options available for the mkstore utility:

•	 Listing External Password Store Contents.
mkstore -wrl <wallet_location> -listCredential

•	 Adding Credentials to an External Password Store.
mkstore -wrl <wallet_location> -createCredential <db_alias> <user-
name> <password>

•	 Modifying Credentials in an External Password Store.
mkstore -wrl <wallet_location> -modifyCredential <dbase_alias>
<username> <password>

•	 Deleting Credentials from an External Password Store.
mkstore -wrl <wallet_location> -deleteCredential <db_alias>

Oracle Wallet Manager

[252]

Using the mkstore utility a Wallet is created at the client side (A).

mkstore -wrl /home/user1/wallet -create

The password being requested is the Wallet's password.

Once the Wallet has been created, using the same mkstore utility, the user's
credential is stored inside the Wallet (B).

mkstore -wrl /home/user1/wallet -createCredential scott_secure
scott tiger

The createCredential option requires three parameters:

•	 The tnsnames entry (SCOTT_SECURE)
•	 The database user name (SCOTT)
•	 Its database password (TIGER)

 The tnsnames entry doesn't need to exist right now.

Next the existence of the credential is confirmed. Using the listCredentail (C)
option of the mkstore utility:

mkstore -wrl /home/user1/wallet -listCredential

It shows the existence of one stored credential inside the Wallet that corresponds to
the SCOTT user at the database pointed by the SCOTT_SECURE tnsnames entry.

Now there are two files that must be modified at the client side, sqlnet.ora (D) and
tnsnames.ora (E), the first one defines where the Wallet resides and the last one
defines where the SCOTT_SECURE tnsnames entry is pointing.

WALLET_LOCATION =
 (SOURCE =
 (METHOD=FILE)
 (METHOD_DATA=
 (DIRECTORY=/home/user1/wallet)
)
)

SQLNET.WALLET_OVERRIDE = TRUE

The WALLET_LOCATION parameter defines the physical location of the Wallet,
meanwhile the SQLNET.WALLET_OVERRIDE parameter defines if the values stored
inside the Wallet will be used to authenticate the user (TRUE), if the value is set to
FALSE then it means that the SSL certificate will be used instead.

Chapter 8

[253]

The tnsentry found in the tnsnames.ora file (E) is just a regular tnsentry, the
name defined here must match the parameter used with the createCredential
option of the mkstore command.

SCOTT_SECURE =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = alpha)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = beta)
)
)

And finally, the most interesting part of the procedure, using the credentials stored
for the particular tnsentry, a new connection is opened against the database
without exposing the database user name and its password (F).

sqlplus /@SCOTT_SECURE

It is then confirmed that the user has successfully opened a database session (G).

SQL> SHOW USER

USER is "SCOTT"

Oracle Wallet Manager

[254]

Summary
When security requirements go beyond a simple username and password
authentication, then more sophisticated authentication mechanisms are required.
This is when certificated authentication comes up. Oracle Wallet Manager and all
other CLI related tools are the key elements to maintain and manage authentication
information to protect passwords, provide single sign on, enable secure socket layer,
store data, and provide encryption mechanisms to cipher communications.

Oracle Wallet Manager is the key element used to provide secure access to the
certificates used to authenticate users and enable all other advanced security
related features.

Security Management
Oracle provides several tools to protect your data against unauthorized access.
Encrypted backups, encrypted data pump exports, certified security, and user
authentication are just some of the useful tools and techniques that can be used
to enhance security management. The keystone tool used to manage security is
the Oracle Wallet Manager, a tool which was explained earlier in this book.

Backups are a must do task wherever an information system exists. Backing up
information is a task that should be routinely performed. The point here doesn't
actually have to do with backups by themselves, but how to manage those backups
once they are taken. A backup holds the information required to restore the system.
It allows you to restore it somewhere else, but to the original system where it was
taken from. If this is not an authorized location, or if the user is not supposed to be
authorized to restore the data, then the data's security could be compromised. Oracle
provides mechanisms based on the Oracle Wallet to protect sensitive data, not only
data stored inside the database, but also data stored on backup media.

Using the Oracle Wallet to encrypt
backups
Backups are a mandatory condition for all enterprises. They are required to ensure
data recovery is possible in case of systems failure. However, it is important not only
to have a valid backup, but also to manage the backup correctly. A backup, once
taken, is stored at some place. What would happen if a user has access to the physical
backup media, and this user performs an unauthorized backup test? The good news
is that the backup is being tested; the bad news is that we will never know the result,
not to mention that the enterprise data confidentiality will be compromised.

Security Management

[256]

Considering these circumstances, the use of encryption techniques to protect the
backups should be considered, both for Recovery Manager and Data Pump.

Oracle Database

Advanced Security Option

Encrypted Disk Backup

Oracle
Secure
Backup

Password

Oracle Wallet Manager

rman>

Encrypted Tape Backup

Recovery Manager encryption
Recovery Manager provides three encryption modes, the transparent mode, the
password mode, and the dual mode. You must consider that Recovery Manager
encrypts only backup sets, not image copies. These encryption techniques are
available on Enterprise Edition using the Advanced Security Option and the
COMPATIBLE instance parameter must be set to at least 10.2.0.

•	 Transparent mode: This mode requires you to have the Oracle Wallet
Manager properly configured. It uses the Oracle key management
infrastructure. Transparent mode is best used for regular backups that are
meant to be restored on the same system where they were taken from.

•	 Password mode: This mode requires you to declare the password in the
rman scripts by means of the SET ENCRYPTION ON IDENTIFIED BY password
ONLY clause.

•	 Dual mode: This mode is flexible, it uses both the transparent mode and
the password mode. This kind of backup is useful when the data is to be
recovered on environments where the wallet is not available. This provides
an alternative means to restore the backup.

Using the transparent mode
This mode requires the user to configure the Wallet location and set the Master
Encryption Key. The user must have Recovery Manager configured in encryption
mode and declare the encryption algorithm to use.

Chapter 9

[257]

Configure the wallet location at the sqlnet.ora file:

NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_LOCATION =
 (DIRECTORY = /u01/oracle/product/11.2.0/
 dbhome_1/wallet)
)
)

SQLNET.WALLET_OVERRIDE = TRUE

Create the Master Encryption Key:

SQL> ALTER SYSTEM SET ENCRYPTION KEY

IDENTIFIED BY "welcome1";

If the Master Encryption Key is not set,
then these error messages will appear:
ORA-19914: unable to encrypt backup
ORA-28361: master key not yet set

Configure the encryption mode in Recovery Manager. This is a one-time operation.
From a RMAN prompt issue the command to configure it, as shown next.

Security Management

[258]

Originally, the encryption mode is not enabled (A). You must enable the encryption
for the database by setting the ENCRYPTION FOR DATABASE parameter to
ON (B). Optionally, you can set an encryption algorithm, which by default uses
AES128. A complete list of all supported encryption algorithms can be found in the
V$RMAN_ENCRYPTION_ALGORITHMS dynamic view.

Algorithm Name Algorithm Description
AES128 AES 128-bit key
AES192 AES 192-bit key
AES256 AES 256-bit key

Advanced Encryption Standard (AES) is an encryption standard adopted by the
U.S. government. AES comprises three block ciphers, AES-128, AES-192 and
AES-256. Each cipher has a 128-bit block size with key sizes of 128, 192 and 256 bits
respectively. AES requires less memory than its predecessor DES and performs fast
on both hardware and software.

The longer the key, the more time it takes to process data, and the harder it is
to attack it. The encryption algorithm you choose depends on your company's
security requirements.

Prior to starting the encrypted backup, you must open the wallet with the
wallet password (C). To do this from the RMAN prompt, issue the command to
open the wallet.

SQL 'ALTER SYSTEM SET ENCRYPTION WALLET OPEN

IDENTIFIED BY "WalletPassword" ';

Opening the wallet can be done once the Oracle instance has opened the database.
This operation is required for Transparent Data Encryption (TDE) to work. It is
not recommended to write this command to a script as this would expose the wallet
password. Once set, just issue a regular backup command, this procedure will create
a transparent mode encrypted backup (D).

Chapter 9

[259]

Watch out
You must maintain a backup policy for the Wallet. The Oracle Wallet is
the only way to access the backup when a restore operation is required.
If you lose the Wallet and the backup is totally useless!

The DBA may change the master key at any time, but this operation doesn't affect
access to previously taken backups as Oracle keeps the old master keys stored in the
Wallet. The DBA must make sure the backup policy includes the Oracle Wallet.

Using the password mode
The password mode encrypted backup process is used when the backup is meant to
be restored at a location different from the one where it was originally taken from.

When using a password mode encrypted backup, you must
supply the same password used to generate the encrypted backup.
If you loose your password, you loose your backup.

This encryption mode is suitable for environments where you must not move the
Wallet and you need to perform the restore operation somewhere else.

Security Management

[260]

In order for you to enable password mode, you must issue this command in your
RMAN session:

SET ENCRYPTION ON IDENTIFIED BY "yourPassword" ONLY;

The password defined in the previous command is enclosed in double quotes;
this is because it is a literal string. All characters are case-sensitive and are not
converted to uppercase.

In the next sequence a backup in password only mode is performed. First, a regular
tablespace is created (A), this will be used for testing purposes.

In a RMAN session, it is declared that a password only backup will be performed (B),
this clause must be issued prior to the backup instruction.

SET ENCRYPTION ON IDENTIFIED BY "password" ONLY;

Afterwards a regular backup clause is issued (C). In this example, a simple
tablespace backup is performed.

Chapter 9

[261]

In this demonstration, the test datafile is physically removed from the file system
(D), and if someone tries to perform any operation against the tablespace, it will
result in an error. So it is time for the DBA to perform a recover operation. The DBA
must use the same password during the restore operation.

First, the password must be set prior to restoring the datafile (E). Failing to provide
the password will result in the ORA-19870 and ORA-19913 error codes.

SET DECRYPTION IDENTIFIED BY "password 1" {, "password 2", ... "password
n"} ;

In this example, we only had to deal with a single backup piece, so a single
password is required, in the event that there are more backup sets involved, there
may be different passwords involved too. Oracle will read the entire password
list and if the password is able to open the backup set, it is automatically matched.
If none of the provided passwords are able to decrypt the backup set, an error is
immediately raised.

From this point on, a regular restore or recover operation takes place.

The datafile is set offline (F), a restore operation is performed (G), followed by a
recover operation (H).

Security Management

[262]

The DBA just needs to make sure that the tablespace is accessible, then it can be put
back online.

Using the dual mode
The dual mode provides two modes of access to the backup, by means of the Oracle
Wallet (transparent backup) and by means of a password set at encryption time.
The command used to declare a dual mode backup is similar to the one used for the
password only mode.

SET ENCRYPTION ON IDENTIFIED BY "password";

The procedure to perform the backup task is the same. First, the password is set prior
to the backup operation and when the restore operation takes place, it can either be
specified, or the DBA can rely on the Wallet. RMAN will know which mode to use
when the restore operation takes place; if the SET DECRYPTION command is issued
then a password based restore operation will take place. If the ALTER SYSTEM SET
ENCRYPTION WALLET OPEN command is issued, it will open the Wallet and it will use a
transparent data encryption-based restore operation.

Chapter 9

[263]

RMAN backup shredding (11g only)
The encryption key is the only means of restoring an encrypted backup. If the
key is lost, the backup is automatically lost. In 11g you can shred a backup if you
intentionally remove the master key from the Wallet. Once the key is removed, the
backup set is rendered inaccessible.

In order for you to shred a backup set, you don't need physical access to the backup
set as this operation takes place at the Wallet level.

1. Configure transparent encrypted backups:
RMAN> CONFIGURE ENCRYPTION FOR DATABASE ON;

2. Shred the backup:
RMAN> DELETE FORCE;

The backup shredding command applies only to backups performed in transparent
mode, not for dual mode or password only mode.

You must think twice before using the backup shredding command as this operation
is not reversible.

Data pump encryption
Data pump encryption relates to the already encrypted columns using TDE
techniques. When a data pump export is performed against tables that contain TDE
columns, information will be dumped in clear text in the dump file, compromising
the confidentiality of the dumped data.

Data pump includes a parameter to re-encrypt the columns, ENCRYPTION_PASSWORD.
This parameter is set at dumping time and it encrypts the information in the TDE
based columns. This password is not related to the Master Key. If you want to
restore the data, you must provide the same password that was used at export time.

expdp username/password TABLES=t1,t2... DIRECTORY=dp_dest_directory
DUMPFILE=dp_file.dmp ENCRYPTION_PASSWORD=password

Security Management

[264]

A parameter file should be specified instead of the command line
when the ENCRYPTION_PASSWORD parameter is used.

TDE Based Data

ENCRYPTION_PASSWORD

Dump File

Encrypted TDE
Columns

No Password Used

Datapump
Export

Clear Text
Warning

When using this option, you should consider the following:

•	 When you perform a data pump export against TDE data, the export will be
performed, but a warning will be displayed letting know the user that TDE
data will be written in clear text format

•	 ENCRYPTION_PASSWORD applies only to TDE data, not to the entire dump file
•	 The ENCRYPTION_PASSWORD parameter is neither supported with external

tables nor in network mode

The enterprise user
Managing users means the administrator will have to enrol the real user to the
systems the user is authorized to access. From the user's perspective we have
a single physical user who is required to log in to the different systems this user has
been granted to, and who is not willing to be authenticated against each system.
If the user was authenticated against each single system, sooner or later the system
administrator would have a hard time trying to manage the community with a non
scalable solution as either the number of users, or systems or both number of users
and systems, increases.

Chapter 9

[265]

The user is authenticated once against a centralized SSO server, and the tool to
manage the user's enrolment and provisioning is the Enterprise Security Manager.
This scenario assumes the existence of an Oracle Identity Management infrastructure
which is available through the application server infrastructure installation.

Enterprise User
Community

Single Sign On
Server

Shared
Schema

Shared
Schema

DBn

DB2

DB1

Shared
Schema

...

...

Security Management

[266]

Configuring the environment
In this example, it is assumed that the Oracle Application Server infrastructure has
been properly installed and configured. This provides the required components
to run the SSO service. A 10g Rel. 1 or Rel. 2 is assumed. The Enterprise Security
Manager in 10g can be accessed through the Enterprise Manager Java Console. In 10g
this tool is still available as an EM Java Console component; in 11g the Java Console
has been deprecated and the functionality provided by this tool can be accessed
through the Enterprise Manager DB Control Console.

How Oracle SSO works
Oracle Single Sign-On (SSO) is a service provided as part of the Oracle Application
Server Infrastructure installation. This service is meant to manage the identity of
the user centrally through the use of an Oracle Internet Directory (OID). In the
next image you will see how SSO works to identify a user and log it in to the
application server.

1. The user requests access to the server.
2. The Oracle HTTP Server (OHS) looks for a mod_osso cookie for the client. If

the cookie exists then the server gathers the client's identity and logs the user
in to the requested application.

3. If the cookie does not exist, the Web server redirects the user to the
Single Sign-On server.

4. The SSO looks for the authentication cookie, if there is no cookie then the SSO
redirects the user to an authentication screen. If authentication is successful,
then the SSO Server creates a cookie signaling the user was already
authenticated.

5. The Single Sign-On server returns the user's encrypted identity and
credentials to the Web server.

6. The Web server creates its own cookie for the user in the browser and
redirects the user to the requested URL.

From this moment on and as long as the user's session remains valid, the user will be
no longer prompted to provide authentication information.

Chapter 9

[267]

Single Sign On
Server (SSO)

Oracle HTTP
Server (OHS)

OHS

mod_osso

Client

2

3

1

6

4

5

Configure access to the LDAP directory
The Oracle SSO service is based on OID, an LDAP v3 compliant directory service.
The administrator can configure access to this component by means of the Oracle
Network Configuration Assistant (netca).

Security Management

[268]

The Net Configuration Assistant is used to declare how to access the OID server.
It declares the directory type as Oracle Internet Directory and defines the access
parameters (hostname, LDAP port and LDAP SSL port). Usually port 389 is used for
non SSL OID and port 636 is used for SSL OID port, you should first verify which
ports were actually assigned by taking a look at the <Oracle Home>/install/
portlist.ini or from the Enterprise Manager Application Server Control Ports tab.

Registering the database against the OID
The Database must be registered against the OID. The Database Configuration
Assistant is the tool used for this purpose. When asked if the database is to be
registered against the OID, the answer should be Yes (A). Next there are two
credentials that must be provided, one for the orcladmin user (OID Manager) the
distinguished name cn=orcladmin must be provided as well as its password; the
second requested credential is the Oracle Wallet password. It is confirmed and the
configuration is accepted. After a while the database is registered against the OID. This
operation should not take a long time as this is done by querying the LDAP server

Chapter 9

[269]

Shared schema
Once the database has been registered, you can create a schema that can be shared
among the Enterprise Users.

Connected as SYSDBA a user named GUEST is created. This user is different from a
regular user, as this user is not authenticated at the database level but at the SSO
level. When a user is created using the IDENTIFIED GLOBALLY clause, the user is
authenticated in the LDAP.

Once the user has been created it is granted privileges, just like any regular user,
with the GRANT command.

$ sqlplus / as sysdba

SQL> create user GUEST identified globally;

SQL> grant CREATE SESSION to GUEST;

Security Management

[270]

Next, an Enterprise user is created, and this Enterprise user is mapped to the
database user. You will have to start a session using Enterprise Security Manager
(ESM). ESM is a Java based console included with the Enterprise Manager Java
Console. ESM can be started from the OS prompt by issuing oemapp esm. In 11g
Enterprise Manager Java console was deprecated, so it is no longer available as
a Java Console, it was included in the Enterprise Manager DB Control Console
(HTML based console).

$ oemapp esm

Expand the tree under the host name until you reach the OracleDefaultDomain (D)
entry. When this is selected in the right hand panel, you will see a tabbed screen, by
selecting the Database Schema Mapping (E) you can access the panel where new
Enterprise Users are added (F).

Chapter 9

[271]

You can either type in or point to the entry corresponding to the User Distinguished
Name (G), and on the Schema field declare the name of the Shared Database Schema.

The Users node is expanded, and at the Operations menu (I) a request for a new user
is made. After filling in the Create User form (J), you have a new Enterprise User.

Security Management

[272]

In the last step a connection with the recently created user is performed. At the OS
prompt a new session with the newly created Enterprise User is made:

$ sqlplus jperez/welcome1@orcl

SQL> SHOW USER

USER IS "GUEST"

SQL> SELECT USER FROM DUAL;

USER

GUEST

SQL> SELECT SYS_CONTEXT ('userenv', 'external_name') from dual;

SYS_CONTEXT('USERENV','EXTERNAL_NAME')

--

cn=Juan Perez,cn=users,dc=us,dc=oracle,dc=com

The code snippet shows that the Enterprise User works as expected. We have a
general schema named GUEST, and an identified particular Enterprise User named
jperez. This user was able to connect to the database after being mapped to the
GUEST user.

The user jperez can open a session at the database level and individual grants can be
made for this user.

Using the same Enterprise Security Manager tool, you can create global roles. These
roles work just the same as the regular database roles, and you can assign privileges
to them and grant those roles to the users.

Chapter 9

[273]

Summary
In this chapter we have explored some practical usages of the Oracle Wallet Manager
as a keystone to provide encryption services for RMAN backups. This allows the
DBA to protect data confidentiality in case a backup is taken.

On the other side, working in an environment where users are centrally
authenticated once against a Single Sign On security server means the database must
be properly configured. There are several tools involved in this process; Network
Configuration Assistant (NETCA) which assists the DBA in configuring the files to
find the LDAP server, Enterprise Security Manager (ESM) to create and manage
enterprise users and roles and Database Configuration Assistant (DBCA) which
was used to register the database against the LDAP server.

Once the environment has been properly configured and the user has been globally
provisioned, they do not need to be locally authenticated for each database,
providing a scalable solution for user management. In the demonstration, you saw
how to orchestrate a complete security solution to centrally manage and authenticate
users, and how each tool takes part in this security strategy.

In the next chapter, we will further discuss the DBCA, a key tool which has
several uses, including enabling you to manage the initial database configuration
more efficiently.

Database Configuration
Assistant

The Database Configuration Assistant (DBCA) is much more than just an
interactive tool to easily create a database, it is also a tool that can be used to
manage Automatic Storage Management (ASM). It can create and manage
database templates, it can be used to manage database services and it is useful when
a database massive batch deployment is required. In this chapter, we will explore
the different options available in the DBCA that make it a versatile and productive
database management tool.

The DBCA can not only create a database, it can also configure an existing database,
it is an easy means to add options to a database and configure the enterprise
manager. It can manage database creation through templates, and it can configure
the ASM feature.

Database Configuration Assistant

[276]

DBCA
The DBCA is a Java based tool used to create a database, either from a template
or from scratch. This tool is useful to perform ASM configuration and manage
RAC services.

The available options are as follows:

Create a Database: This option guides you through the steps of database creation. A
database can be created from an existing template, which may or may not include the
database files. This option allows you to not only create the database, it also allows
you to save the database configuration as a new template. It can save the database
creation and configuration as scripts which can be used for future reference, or to
manually create the database.

Configure Database Options: This option is used to configure additional options
after database creation. This option is disabled if there are currently no databases.
The options you can configure here are Data Mining, Text, OLAP, Spatial, Ultra
Search, and Label Security. If you have not already configured Enterprise Manager,
you can also do it from this option, and you can also configure the Sample Schemas.
Other options available are the Standard Database Components, the JVM, XML DB,
and Intermedia.

Delete a Database: This option removes the physical database files. You must only
use this if you are certain you want to delete the database, as this operation cannot be
undone. Make sure you have a backup prior to deleting anything of even small value.

Chapter 10

[277]

Manage Templates: This option allows you to manage database templates. A DBCA
template consists of the configuration file and optionally the physical seed database
files. You can create a template from an existing template, an existing database, or, at
database creation.

Instance Management: This option is available only with RAC configurations.
DBCA is a cluster aware tool, and it automatically displays this option in RAC
environments. This option allows you to add or remove an instance to an existing
RAC database.

Service Management: This option is also available only with RAC configurations.
This allows you to distribute the availability of the different services among Oracle
instances. Here you can configure the Transparent Application Failover (TAF)
policies, and specify the preferred instance where a service will run.

Configure Automatic Storage Management: If you plan to use ASM as your
database storage manager, then you must first configure the ASM instance. Here you
can configure the disk groups and configure how redundancy will be managed. You
can add disks to existing disk groups or create new disk groups.

Database creation
The DBCA is mostly known as the tool used to create a database. If the DBA
performs a default installation with the database creation option, it can be seen how
the DBCA creates the started database. This section is a walk-through of the DBCA
creating DB screens.

Database templates
Creating a database can of course, be done using the command line CREATE
DATABASE command, but most DBA's prefer using the DBCA because it is pretty easy
and intuitive, and it allows DBA's to easily manage different database options. This
section introduces us to the concepts of templates, and this topic will be developed in
further detail later in this chapter.

Database Configuration Assistant

[278]

The Database Creation option can create the database internally using the CREATE
DATABASE command with the Custom Database option, or it can create the database
an existing template (A) which may or may not include datafiles (B). If datafiles are
included then the database is created by a cloning procedure. Optionally, you
can click the Show Details button to display data from the existing template in
HTML format.

Database identification
You must specify a name for the database. In this section you can specify the global
database and the SID name. The global database is used to uniquely identify the
database in a network environment meanwhile the SID is the Oracle instance
identifier. The name of the Oracle instance must be at most eight characters long and
it must start with an alphabetic character.

Chapter 10

[279]

Management options
In this section you can decide to configure which management graphical interface
you will use for your database, you can decide among the Enterprise Manager
database control or the Grid Control. The Grid Control option will be enabled only if
a grid agent is found. If you decide to configure database control, the port assigned
to it cannot be set here, so if you are looking for a specific port, you should use the
Enterprise Manager Configuration Assistant (EMCA) tool to manually assign a port
number. By default the EM port number is 1158 for the first configured EM port, the
second EM configured port will be assigned the 5500 port number, and from this
point on the port number will be monotonically increasing by one.

If you decide to configure Enterprise Manager (C), then you can optionally configure
email notifications and a default backup policy. If you decide not to choose these
options now you can configure them later by going to the Enterprise Manager
Configuration menu.

The email notifications require both, the Outgoing mail (SMTP) server (D) and the
email address to be set. The default backup policy schedules a daily full database
backup; this requires the OS credentials of a user allowed to execute rman (E).

Database Configuration Assistant

[280]

Database credentials
This option allows you to define the password for SYS and SYSTEM users, and if you
have chosen to configure DB Control Console, then you can specify the password
for SYSMAN and DBSNMP. You can choose to define the same password for all
users or a different password for each one of them. It is advisable to take note of the
password set at this stage; it may be required in the future if you want to reconfigure
the Enterprise Manager DB Console. SYSMAN and DBSNMP users are particularly
important to properly set up the Enterprise Manager repository, these users will be
further explained in the EMCA chapter.

Storage options
When creating a database you can choose which storage method to use. They can be
File System, ASM, or Raw Devices. ASM is a storage method that requires an ASM
instance to already exist. ASM has been available since 10.1.0 and it is a simplified
database storage method that optimizes I/O performance and simplifies datafile
management. A database can use any storage option or it can combine the three of
them. This screen only defines the initial storage method used by the database and
the DBA can later change or combine it.

The File System is the most commonly used storage option, it requires a regular file
system, and it utilizes the OS buffer cache and block mode devices. The Raw devices
option doesn't use OS resources to access the database files, it lets Oracle directly
manage the access to the unformatted device. ASM is the Oracle storage option that
has been increasingly gaining popularity among DBA's, as it is simple and combines
the best characteristics of raw devices and file system options.

Database file locations
The location of database files can be taken from the template (F), or you can choose
to define a common file location for all your files (G); a third option is that you can
choose the Oracle-Managed Files (OMF) (H), this configures the db_create_file_
dest instance parameter, allowing Oracle to set the file names. The file location
variables used during this procedure can be seen by clicking on the File Location
button (I).

Chapter 10

[281]

Database content
If you want to create Sample Schemas for this database then the Sample Schemas
check box must be selected.

For security reasons a production database should not have the
Sample Schemas created. If you omitted them at creation time and
you want to add them to a database you can still do it by installing
the demo scripts from the companion disk.

If you want to execute your own custom scripts then you can declare them on the
Custom Scripts tab. If you wish to always execute a set of SQL scripts of your own
to customize the database, create additional schemas, or whatever you require; you
can add a list of your scripts here and let the DBCA run them as soon as it finishes
creating the database.

Database Configuration Assistant

[282]

Initialization parameters
This window lets the DBA configure the instance initialization parameters. They are
the maximum number of processes allowed, the character set, and the connection
mode. The Oracle instance has more than two hundred and fifty instance parameters.
You can see the complete list of the instance parameters by clicking on the All
Initialization Parameters button. A brief description of each parameter can be
obtained from the parameter window. You are encouraged to read the Oracle
reference manuals to get a more detailed description of the initialization parameters.

Memory
The first tab defines the memory management method and the memory sizing.
Memory can either be defined as Typical (J) or Custom (K). A typical configuration
allocates memory as a percentage of the total physical memory. It should be pointed
out that by default the DBCA allocates 40% of the physical memory to the database.
If the database is created using this default parameter you may quickly run out of
physical memory if a second database is created. Oracle estimates the minimum
value in typical configuration. If this value is underestimated then DBCA will
automatically issue a warning specifying the minimum allowed value.

By default, the DBCA allocates 40% of the physical
memory in a typical configuration.

If you choose a custom configuration then you can choose between Automatic
Shared Memory Management (ASMM) and Manual Shared Memory Management
(L); unless you have previously calculated adequate parameters for each individual
SGA component parameter you should choose a typical configuration or a custom
ASSM configuration. In the ASSM mode, Oracle dynamically calculates adequate
values for each SGA component, and dynamically reassigns memory granules to
components requiring them.

Chapter 10

[283]

Character sets
This section specifies the Database Character Set (M), the National Character Set
(N), the Default Language (O), and the Default Date Format (P).

Database Configuration Assistant

[284]

Database Character Set: This parameter determines the encoding schema used to
display characters on the screen. The character set determines what languages can
be represented in the database. This is used for data stored in CHAR, VARCHAR, CLOB
and LONG datatypes, identifiers and PL/SQL variables, and SQL/PLSQL source
code storage.

National Character Set: The National Character Set is used to store Unicode
characters in a database that does not have a Unicode character set.

Default Language: This parameter determines the NLS_LANGUAGE instance
parameter, this parameter specifies day and month abbreviations, symbols for A.M.
and P.M., SQL Ordering, writing direction, and other locale parameters derived from
the language.

Default Date Format: This specifies which regional convention will be used to
display the date format. It specifies the NLS_DATE_FORMAT instance parameter value.

Even if these last two parameters have been defined here, they can be redefined later
at instance, session or command level.

Connection mode
Here you can specify either a dedicated or a shared server connection mode. By
default the dedicated server mode is chosen. In a dedicated server environment a
single Oracle server process is dedicated for each user connected to the database.
In a Shared Server connection mode a more complex architecture is defined. The
Oracle server is shared among several processes, this connection mode is advised in
OLTP environments as this allows more scalability; the dedicated mode is advised
for DSS environments and it is required for SYS connections. You can always use
both connection modes. The modes are not mutually exclusive, and this screen only
defines the default connection mode.

Database storage
The final stage of database definition shows how the database structure will be built.
It shows the datafile, controlfile, and redo log file names and locations.

Chapter 10

[285]

Creation options
On this last screen, you can specify whether you will actually create the database (Q),
or if you will Save as a Database Template(R), or if you want to Generate Database
Creation Scripts (S); all of the options can be selected.

Once the database definition process has finished you will have, if you have
specified the proper options, a fully working database. The DBCA will automatically
start the database.

You should be aware that, in Windows environments the DBCA configures a
Windows service that will automatically start the Oracle database at OS boot time.
In Unix like systems you should have this manually configured and you should
have your OS configured so it automatically starts databases at boot time; The DBCA
will only modify the /etc/oratab file and it will specify the database not to be
considered by dbstart/dbshut by default.

/etc/oratab
orcl:/u01/app/oracle/product/10.2.0/db_1:N
delta:/u01/app/oracle/product/10.2.0/db_1:N
+ASM:/u01/app/oracle/product/10.2.0/db_1:N

Database Configuration Assistant

[286]

Database edition
Defining which options to install can be done at creation time as long as the database
doesn't come from a seed database. If you created a database using the DBCA
customized creation option then you may want to install other options later.

Don't install more options than required; either way you can go back to the DBCA
edit Option to add them at a later time.

Database Edition only works to add database components, not to remove them, that
is why if you come back later to try to disable components you will find that the
already selected components are not eligible.

There are other components that may appear as not eligible too, such as Oracle
Label Security (OLS) or the Sample Schemas. If these components are grayed out
this means the component has not been installed. In the case of OLS this is included
on the database disk, but it is not installed by default. In the case of the Sample
Schemas, those are not available on the database disk, but can be found on the
companion disk.

Chapter 10

[287]

Database edition allows you to add these enterprise edition options (A):

•	 Oracle Data Mining
•	 Oracle Text
•	 Oracle OLAP
•	 Oracle Spatial
•	 Oracle Ultra Search
•	 Oracle Label Security

DBCA can also add these Standard Edition options (C):

•	 Oracle JVM
•	 Oracle XML Database
•	 Oracle Intermedia

You should be aware that enabling options may
require additional Oracle licenses.

Other options available are:

•	 Sample Schemas
•	 Enterprise Manager Repository

If Enterprise Manager was not originally configured for the database, you can come
back here and have it configured in case you don't want to use EMCA and you don't
want to further customize the Enterprise Manager DB Control Console.

On Windows, we have a Personal Edition which is designed to be used by
Developers. It is equivalent to Enterprise Edition with nearly all options turned
on. This is a very cost-effective alternate for developers, consultancies and small
organizations where only one named user accesses the database.

Database template management
Creating several databases with the same parameters can be a time consuming task if
the DBA has to define the same parameters each time. The DBA can save time when
creating the database through templates. The templates can contain only a definition
file, or they can contain both a definition file and the seed database files, which can
be used to create a new database by means of a cloning procedure.

Database Configuration Assistant

[288]

Template management operations
There are two kind of template management operations; create and delete a database
template. When creating a new database template, there are three ways to create a
new template, from an existing template, and from an existing database which may
or may not include the seed database.

The options available to create templates are:

•	 Create a template From an existing template (A). This takes an existing
definition which you can further modify and save with a different name.

•	 Create a template From an existing database (structure only) (B). This is
useful to create a new database with the same components and configuration
as those in an existing database. This kind of template is easily transported as
it doesn't require the physical tablespaces.

•	 Create a template From an existing database (structure plus data) (C). This
template is used to easily clone an existing database. This will allow the DBA
to quickly and easily clone an existing database.

Chapter 10

[289]

The Oracle templates are located at $ORACLE_HOME/assistants/dbca/templates
and there you can find two different kind of files, the *.dbt (Database Template
Definition file) and the *.dfb (rman backup files in compressed format). The
database template management session creates or edits the *.dbt file, an XML
structured text file that provides the template description details, and the *.dfb,
the seed database.

Using templates is especially useful when creating testing or
development environments, and when the company has to massively deploy
the same configuration.

If you create your templates remember that they require
separate backup and recovery considerations.

Creating a seed database out of a
current database
In the following image a database template is being created out from an
existing database.

Database Configuration Assistant

[290]

There are three parameters that must be defined, the Name of the template (E), the
Description of the template (F) and the path where the compressed rman backup file
will be stored (G).

Database related file location
When a template is created you can choose to maintain the current file locations, or
you can choose to convert the file locations to use the Oracle Flexible Architecture
(OFA) structure.

Maintaining the file locations: If the current file locations are retained, then the
paths defined in the source database will be stored. This way you can create a new
database with the same structure on a different machine.

Convert to OFA structure: Using the OFA layout is convenient if you are not
certain if the destination machine will have the same structure as the host where the
database seed was generated from.

Chapter 10

[291]

Processing the template: When the template is being processed, the DBCA will
access the source database to gather information about it (H), afterwards, the DBCA
will create the database backup file (I) and finally it will create the template file (J).
All template information and database backup files will be stored in the default
location of $ORACLE_HOME/assistants/dbca/templates with the name defined by
the DBA.

Once the process is finished you can copy the database files to another Oracle Home
if you want.

If you are copying the template to another Oracle Home location
you must make sure the target Oracle Home has the same version
and patchset as that of the source database.

Database Configuration Assistant

[292]

Migrating a single instance database to RAC
The template technique can be used to migrate a single instance database to an RAC
environment. Just create a new template based on the target database, and make
sure the template includes the datafiles. Once the template is created, make a new
database using the previously created template and you'll have the database running
in a RAC environment.

Automatic Storage Management
configuration
Automatic Storage Management (ASM) can be configured from the DBCA in all
versions starting from Oracle 10gR1. The 11gR2 has separated the ASM configuration
into another tool named ASMCA. ASM is a convenient storage method for Oracle
Databases starting with Oracle 10gR1.

ASM
ASM is a high performance storage method for Oracle Databases. This allows
striping and mirroring, and a regular database can be completely or partially stored
in ASM. ASM uses raw disks to store the data, and provides an Oracle-owned file-
system structure (metadata) to identify where the data is stored. This provides a
balance between Raw storage (high performance) and File systems (manageability)
while addressing the unique concerns of a database. In RAC environments ASM is
the preferred storage method used in case there is no cluster file system available.

ASM stripes files across the configured physical disks, it allows online disk
reconfiguration and rebalancing, and it provides redundancy on a file basis. ASM
doesn't override any currently installed volume manager; it can coexist with it and,
if there is no volume manager ASM can assume its functions. As can be seen in the
next image, database files are represented as both, regular files in a file system and
Oracle database files in an ASM storage unit. ASM doesn't require any additional
software, it can directly mange access to a raw device.

Chapter 10

[293]

Oracle plans to deprecate raw devices for future major releases, so if you still use raw
devices, it is advisable to get acquainted with ASM as an alternative method
for storage.

How to setup ASM using DBCA
ASM requires a onetime Oracle Cluster Synchronization Service (CSS) setup.
Assuming the OS has properly identified and configured raw disk devices, you can
proceed with ASM setup as follows:

1. Select the Configure ASM option.
2. Run the localconfig shell script as root.
3. Set the password for SYSDBA or SYSASM (11g only) role access.
4. Optionally, define the ASM instance parameters.
5. Set up Disk Groups.

Database Configuration Assistant

[294]

Select the Configure ASM option
When selecting the Configure Automatic Storage Management option and clicking
on the Next button, the DBCA displays a warning asking the DBA to run the
$ORACLE_HOME/bin/localconfig add script as root (A).

Run the localconfig shell script as root
The script is only run once and it will create a script named init.cssd which
will be added to the startup configuration (B). This script is responsible for
automatically starting the ocssd process at OS startup time. Once this is ready
the script run by root will display the message letting the DBA know that the CSS
service is up and running.

Chapter 10

[295]

Set the SYS password and the ASM instance
parameters
After the script has been run, the next step is to set up a password for the user SYS (E),
which will be the ASM manager (11g has created a new role named SYSASM,
so the SYSDBA role is no longer used starting this release, and will not be usable at
all in future updates.). After setting the password for the SYSDBA (or SYSASM) role
access you can optionally set the ASM instance initialization parameters
ASM_DISKGROUPS, ASM_DISKSTRING and ASM_POWER_LIMIT (F).

•	 ASM_DISKGROUPS defines which groups ASM will automatically mount
at startup time

•	 ASM_DISKSTRING specifies the paths where ASM can find candidate raw
disk devices for new or existing ASM disk groups

•	 ASM_POWER_LIMIT defines the number of parallel servers used to
perform the rebalancing disk group task

Database Configuration Assistant

[296]

Setup disk groups
ASM organizes storage in Disk Groups, a concept similar to logical volumes, so
you have to ask the DBCA to define a new disk group, then click on the Create
New Button, this will display the Create Disk Group Window (G), where you can
define the disk group name (H) and the raw disk devices (I) that will be part of this
disk group; the DBCA will display all available candidate devices. If the expected
raw devices don't appear you can click on the Change Disk Discovery Path (J)
button to look for raw devices on another path. If the raw devices don't appear after
changing the path, then validate the raw devices at the OS level and make sure the
OS properly recognizes the physical devices. Most DBA's configure at least two disk
groups, one for tablespaces and a second one for the flash recovery area, but you can
configure as many disk groups as you require.

Candidate devices are automatically discovered by the DBCA. If the DBCA is not
successful in finding candidate devices it could be because the device is already
in use, or the discovery path is not properly set, or it is not started by the OS. You
should refer to the specific OS documentation on how to setup and start raw devices.
In the particular case of Linux, you must make sure that the raw device has been
started using the Linux startup scripts, otherwise it won't be visible. The following
script was used to set up raw devices in Linux. This is included here only for
demonstration purposes, and it is not meant to be used in a production environment.
It creates files that will later be 'seen' as raw devices; a feature available in Linux
environments. Please take a look at the losetup, raw and chown commands. These
are the commands used to define and reactivate raw devices in Linux.

echo Preparing ASM disks ...

WHOAMI='whoami'
if [$WHOAMI != root] ; then
 echo $0 must be run as root
 exit 1
fi

if [! -d /u01/asmdisks] ; then
 mkdir -p /u01/asmdisks
fi
cd /u01/asmdisks

VDISK=0
DD=/bin/dd
LOSETUP=/sbin/losetup
RAW=/usr/bin/raw
LOGFILE=/tmp/asmsetup.log

date > $LOGFILE

while [$VDISK -lt 5] ; do

Chapter 10

[297]

 VDISK='expr $VDISK + 1 '
 echo -e Creating Virtual Disk $VDISK ... \\c
 if [! -f /u01/asmdisks/asm_disk$VDISK] ; then
 $DD if=/dev/zero of=asm_disk$VDISK bs=1024k count=400 2>&1>>
$LOGFILE
 fi
 $LOSETUP /dev/loop$VDISK asm_disk$VDISK 2>&1>> $LOGFILE
 $RAW /dev/raw/raw$VDISK /dev/loop$VDISK 2>&1>> $LOGFILE
 sleep 3
 chown oracle:oinstall /dev/raw/raw$VDISK 2>&1>> $LOGFILE
 chmod 777 /dev/raw/raw$VDISK
 echo Done
done
echo -e \\n Please verify execution log $LOGFILE

When setting up the ASM environment you should select external
redundancy, unless you have a Volume Manager that takes care of the stripping
and mirroring tasks.

Don't mix the High or Normal redundancy ASM configuration
with an existing mirroring/stripping configuration.

Database Configuration Assistant

[298]

ASM disk group's validation
Once the process is finished you can see the disk groups in a MOUNTED (K) state.
In the window shown below you can see the size of the disk group (L) and the space
available (M).

After this last step an ASM instance is available. You can start using it by simply
specifying the name of the disk group and a plus sign as the prefix to the logical
datafile path. ASM utilizes OMF by default, so it is not necessary to specify a path;
actually, inside ASM the paths are just logical labels.

In the next example a new tablespace is created (N), the name of the datafile consists
only of a plus sign followed by the name of the Disk Group.

create tablespace TablespaceName
datafile '+DiskGroupName';

If required, ASM creates the logical path and defines the database file name.

Chapter 10

[299]

Setting up ASM in a Windows environment
This procedure refers to a Unix like OS. The procedure to setup ASM in Windows is
quite different from the procedure in a Unix like environment. The reason is because
of the partition concepts and the way Windows handles partitions.

ASM setup
There is a procedure to prepare raw disks to be used in a ASM
environment on a Windows platform. The following procedure applies to a
Windows 2003 environment.

Database Configuration Assistant

[300]

Disk layout
At least one raw partition should available. The DISKPART utility should be used
(Win2K3) or Disk Manager (Win2K & Win2k3).Windows does not automatically
mount raw disks and make them visible. You must enable automounting. Using
Diskpart, at the Diskpart prompt, type:

DISKPART> automount enable

At the Command Prompt, type:

diskmgmt.msc

This will start the Disk Management Windows utility. If the disk is in dynamic mode,
change it to Basic mode. Create a new partition on the empty disk and select an
extended partition. Select the partition size to fill the disk. Once the wizard is ready it
will create the extended partition.

Logical partitions
Once the extended partition is created, the next step is to create the logical partitions.
In the disk management utility, you should be able to see the extended partition
created. Right click on the extended partition and create as many logical partitions
as required. Make sure you don't assign a drive letter to the partition. Also, do not
format the logical partitions; the assistant displays the option, and ensure no format
is performed on the raw disk. At this point you should be able to see the logical
partition created. Repeat these steps for as many logical partitions as required.

Setup ASM
Once you are ready with the logical partitions, the next phase is to set up the ASM
environment. Once in the Configure ASM assistant, define the Disk Group Name
(DATA for example) by clicking on the Stamp Disks. As there are currently no disks
labeled, the asmtool performs the disk labeling. Using the asmtool you should be
able to see the partitions, and the disk status, and if the Candidate device flag is set
then it can be selected and labeled. The disk name format is something like \Device\
Harddisk1\Partition_N. Once they are labeled they will appear as candidate disks,
you should be able to see them as a candidate disk back in the ASM assistant, they
will be listed in a format similar to this:

\\.\ORCLDISKDATA_N

In the final step you should be able to see the candidate disks, just compose the ASM
disk groups as required and you are done with the ASM setup procedure.

Chapter 10

[301]

DBCA, Batch mode
The DBCA is a friendly and very intuitive tool. Creating a database or performing
any other activity is a straightforward task. However, assuming a massive
deployment scenario, creating databases in the DBCA's interactive mode would be
an inefficient, time consuming task, not to mention a human error prone task.

The DBCA has considered this scenario, and it can be launched in batch mode using
either the command line or a response file.

This example shows how DBCA executes silently with no graphical interface
displayed to the user.

dbca -silent -responseFile <response file>

The response file referred to in the previous example must be created by the user, as
unlike the Oracle Universal Installer, the DBCA does not have a 'record' mode.

The next example starts DBCA in batch mode, showing the progress bar, if you want
to run in character mode only use the previous example, as presenting the progress
bar requires a graphical environment, you must have the DISPLAY environment
variable properly set.

dbca -progress_only -responseFile <response file>

Database Configuration Assistant

[302]

This case shows how the DBCA creates a database in silent mode with clone template.

dbca -silent -createDatabase -cloneTemplate -responseFile <response file>

A database can also be removed using the batch mode:

dbca -silent -deleteDatabase -responseFile <response file>

DBCA response file example
In this example a minimum response file was edited to have a database created.

[GENERAL]
RESPONSEFILE_VERSION = "10.0.0"
OPERATION_TYPE = "createDatabase"
[CREATEDATABASE]
GDBNAME = "sigma"
SID = "sigma"
TEMPLATENAME = "General_Purpose.dbc"
SYSPASSWORD = "oracle"
SYSTEMPASSWORD = "oracle"
CHARACTERSET = "WE8ISO8859P1"
NATIONALCHARACTERSET= "UTF8"
MEMORYPERCENTAGE = "12"

This example creates a database named sigma whose global name and instance
name are the same. This database is based on a predefined template used to
create a General Purpose database. In this example only the SYSPASSWORD and
SYSTEMPASSWORD parameters have been defined as no Enterprise Manager DB
Control Console configuration has been requested. This can either be configured here
or it can be configured using the emca command (The emca command offers a more
flexible way to configure the Enterprise Manager interface).

The Template name is the name of the *.dbc file, not the name
displayed in the DBCA template list. If this parameter is not properly
configured, then an error message will be displayed letting the user
know that the template doesn't exist.

A percentage of the physical memory is defined for this instance, it is important to
define this value; otherwise DBCA will take 40% by default.

And finally, the database character set and the national character set are defined.

Chapter 10

[303]

These parameters are just enough to create a database based on the "General
Purpose" existing template and customizing a minimum number of parameters to fit
a particular environment.

Where can you get a DBCA response file
A response file is available on the database installation disk, take a look under the
response directory which is located at MountPoint/database/response/dbca.rsp.
This file is divided into 10 sections. You don't have to configure all of them, just set
the parameters according to the operation you are planning to do and remove all
other unused sections except the GENERAL section.

•	 General Section [GENERAL]: This section is required for any operation you
plan to perform in batch mode. Here the version of the response file and the
operation type are defined.

•	 Create Database Section [CREATEDATABASE]: This section specifies that a
new database will be created. Here both the global name and the instance
name are defined. If an RAC database is to be created in batch, the node
list is defined. When the database is created using an existing template, the
template name is defined, the name of the template, as previously stated,
refers to the compressed rman file name, not the displayed file name in the
template catalog. SYS and SYSTEM passwords are defined here too among
other database parameters.

Database Configuration Assistant

[304]

•	 Create template from existing database section [createTemplateFromDB]:
This section is useful if you are planning to create a DBCA template out from
an existing database. This template doesn't include the rman compressed
database file backup.

•	 Create clone template section [createCloneTemplate]: This is the same as
the previous one, but this one includes the database files.

•	 Delete database section [DELETEDATABASE]: This section specifies the
required parameters to remove an existing database.

•	 Configure database section [CONFIGUREDATABASE]: This section is used to
configure different database options. There the database can be registered
against an LDAP server, and the enterprise manager can be configured. If a
grid control agent is found, it can be configured here so the database can be
accessed through the DB Grid Control Console.

•	 Generate scripts section [GENERATESCRIPTS]: This section specifies where
the generated scripts will be saved.

•	 Add instance section [ADDINSTANCE]: This section is used in RAC
environments only, and is used to add an instance to an existing RAC
configuration environment.

•	 Delete instance section [DELETEINSTANCE]: This section is also used in RAC
environments only, and it is used to remove an instance from an existing
RAC configuration.

•	 ASM configuration section [CONFIGUREASM]: This section configures an
ASM environment.

Most of the parameters in the response file have default values, there are mandatory
and optional parameters, in order for you to keep it simple, you may just want to
declare the parameter you really need.

Chapter 10

[305]

dbca—help displays all available options you can use
if you are planning to use DBCA in batch mode.

Summary
The Database Configuration Assistant, as previously seen, is much more than just a
graphical assistant you can to create a database. It is a powerful tool that can be very
useful when you need to configure different database options, customize the database
creation process, and manage templates to save time for future database creation.

This tool is the entry point to configuring Automatic Storage Management and
it is very useful in assisting the DBA in massively deploying databases with the
same configuration.

In the next chapter we will explore the Oracle Universal Installer and we will
discover how this tool is much more than just a graphical interface used to
perform next → next kinds of installation.

Oracle Universal Installer
Oracle Universal Installer (OUI) is a Java-based tool used to perform the Oracle
product installation. Most people know that this is the tool to perform the
installation, however, once the software is installed, most people forget about the
tool until the next time they need to perform a software maintenance task.

OUI makes the Oracle installation process look very easy, there are people who
underestimate OUI and they think installing Oracle is just a Next button clicking
task. If this task was that easy, then why does the OUI present several windows to
the user who performs the installation? May be it would be easier if the same OUI
could just be programmed to press the Next button by itself and report the outcome
to the user.

OUI is more than just the installation tool. If the user requires the software to be
installed more than once on a massive deployment scenario, he/she should take
the time to get acquainted with the OUI batch mode. If the user wants to centrally
manage installation stage areas, then the web install mode could be used. Getting to
know the OUI in advance allows the user not only to perform more efficient software
installation tasks, but also it allows the user to better protect and maintain existing
Oracle installations.

OUI basics
OUI first appeared in Oracle 8i (8.1.5). Prior to this release, the installation tool was
developed in C Language, and available in character mode. This installation tool was
not very flexible, and it required an installer developed for each certified platform.
Installing under a Unix like OS was a task with a look and feel different from the
Windows based installer. OUI takes advantage of the Java principle of "compile once
run everywhere", and provides the same look and feel, no matter which OS platform
you are using.

Oracle Universal Installer

[308]

OUI components
The next figure shows the main OUI components—the Oracle Inventory, the Install
log, the oraparam.ini file and the products.xml file, as well as other optional files
such as the staticports.ini and the response.rsp files.

Unix : /etc/oralnst.loc or /var/opt/oracle/oraInst.loc
Windows : HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\

inst_loc

Oracle Inventory Location

staticports.ini

products.xml

*.rsp files

oraparam.ini Install log
Oracle Inventory

A brief description of each component is as follows:

Oracle Inventory: OUI manages a repository named Oracle Inventory. This is where
Oracle keeps track of what is installed on the target machine. There is a single Oracle
inventory for each host. The Oracle Inventory consists of a set of files whose location
is kept in the oraInst.loc file (Unix like OS) or in the inst_loc (Windows) registry
entry. The Oracle inventory has gone through an evolutionary process, and back
in version 9.2.0.4.0 a major format change took place. The format used on releases
prior to 9.2.0.4.0 is not compatible with the format that came thereafter, so mixing
the inventory with old versions is not possible.

Chapter 11

[309]

Oracle Inventory location:

On Unix like OSes: /etc/oraInst.loc, or /var/opt/oracle/oraInst.loc

On Windows: HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\inst_loc

oraparam.ini: This file configures the OUI session. It defines the JRE environment
to be used, the location of the products.xml file, the OUI version, the certified OS
version list, and any special requirements, if applicable for the different supported
platforms. This file should be edited only under specific circumstances, or under the
direction of Oracle Support.

Installation log: This file records the OUI output. You can use this to validate the
installation process in case something goes wrong. The OUI log can be found at
<OUI Directory>/Inventory/logs/installActionsYYYY-MM-DD_HH-MM-
SS[AM|PM].log.

products.xml: This is an XML file that lists all the products contained in the
installation media. This file is not editable and is read by OUI at install time to gather
product information and validate it against the information it gathers from the
Oracle Inventory, if it exists.

staticports.ini: This file includes a list of ports that the user wants to be considered
by OUI at installation time. This file is particularly useful in Application Server
environments where the user wants to have the ports predefined.

response.rsp: The response file is a file that provides instructions to OUI on how
to perform an installation. This file is used when a silent mode installation is being
performed. There is no particular naming convention for this file, you can name it
with whatever name you want. The default extension for this kind of files is RSP.

Oracle Universal Installer

[310]

Setting up a stage area
When the product installation files come on several different disks (database 9i rel. 1
and rel. 2, Application Server 10g and Oracle applications), instead of mounting and
dismounting each CD, you can create an installation stage area. Each disk contents
is copied under a directory named Disk1, Disk2, ... Diskn. The number must match
with the number entry found at the disk.label file found on each physical disk at
the stage directory.

[General]
Label=Oracle9i
Number=1
Size=600.0
ReservedSize=0.0

/Orastage

/Ora920

/Ora10gR2

/Ora11gR1

/AS10gR2

/Disk1

/Disk1

/Disk2

/Disk2

/Disk3

/Disk3

/database

/database

/companion

/companion

/client

/client

DVD distribution
Starting with Oracle RDBMS 10gR1, Oracle decided to organize the installation
files in three different main sections. They are the database disk, companion disk
and client disk. If you have the CD media, you'll find each one of these disks on
a separate CD; if you have the DVD media then you'll find the related directories
together, but not mixed. The disk most frequently used is the database disk, this
contains the RDBMS files.

Chapter 11

[311]

Troubleshooting an installation session
The most frequently-reported reasons why an installation procedure may fail are:

•	 The user responsible for the installation didn't thoroughly read the
installation instructions.

•	 The OS doesn't meet all requirements as stated in the installation guide. That
is all required patches, packages, and OS parameters.

•	 The user who performs the installation lacks administrative privileges on the
target OS platform.

•	 Installation was attempted on a non supported OS Platform.
•	 A graphical environment was not properly set.

Even though installing Oracle on all certified platforms may look
the same, and the process may appear easy at first glance, you
must always read the installation instructions as well as any other
available installation notes prior to actually performing the installation
procedure. This will save you later headaches and installation rollbacks.

When an installation process fails, you must take a look at the installation log. This
records all the steps taken during the process. There are a number of reasons why an
installation process may fail. But as previously stated, most of them have to do with
install requirements not being met. Oracle is aware of this issue, in previous releases
(Oracle 9i Rel. 2) Oracle trusted the DBA had read the installation guide and the
user had made sure the OS met all the requirements, but most of the bugs reported
to Oracle support happened to be down to a lack of packages, patches or kernel
parameters that were configured wrongly. So, Oracle decided to make a change
starting with Oracle 9.2.0.7.0. In order for the DBA to be able to install this patchset,
they had to go through the OUI validation process. The OUI used to install this
patchset was the OUI 10g Release 1 version, which validates the OS requirements
and makes sure the DBA has applied all installation requirements.

Oracle Universal Installer

[312]

Oracle applies two validation levels. The first one is a generic validation, which
is performed by the first character mode screen. Here the display characteristics
(display capabilities and number of colors) and the OS version (certified OS) are
validated. The installation process goes through a second validation, this second
one has to do with product specific requirements, and it is performed after the
Select Installation Method window.

This window validates specific requirements. In this image, one of the requirements
is not met. The user has the option to either correct it or skip it and proceed after user
validates these checks (A). The user must be careful when marking the checkbox and,
and he or she should only tick it if he or she is absolutely sure any side effects during
the installation process or at production time, or that this is a requirement that can be
deferred. In this particular example the swap space was left low on purpose just
to display the warning (B).

Oracle Universal Installer JRE
OUI includes a JRE used to launch the OUI application; different versions have been
released along with the different Oracle RDBMS installers.

Chapter 11

[313]

OUI version JRE Version Related DB Version
2.2.x 1.3.1, 1.8.1 Oracle 9i Rel. 2
10.1.x 1.4.1.2 Oracle 9i Rel 2 (9.2.0.7.0) and 10.1.0
10.2.x 1.4.2 10.2.0
11.1.x 1.5.0 11.1.0

OUI includes its own JRE environment. When performing an installation,
don't mix any existing JRE with the JRE on the installation media,
otherwise the installation will fail.

OUI system requirements
For each Oracle product, Oracle states the minimum system requirements you must
meet. In the case of OUI, the minimum requirements for this application to run are:

Memory: A minimum of 32MB is required to launch OUI, but the specific memory
requirements depend on the components OUI is to install. You should check the
specific requirements for your chosen platform in the installation guide.

Disk space: OUI requires 60MB on Windows platforms and 50MB on Unix like
platforms. OUI may need up to 1MB to store the inventory files.

Display: A graphical display with at least 256 colors and a resolution of 800x600 is
required unless a character mode silent install is performed.

OUI basic and advanced installation
modes
A rookie DBA may say "It is great that Oracle defines most of the parameters with
default values" meanwhile a veteran DBA may declare "It is great that Oracle allows
you to define most of its parameters", and the rest of the DBA's will be in the middle
of those points of view. This position starts with the installation process. You may
either let OUI make most of the decisions, assuming default values for most of the
parameters and letting the user to define a minimum set of required parameters,
or, on the other hand, you can take full control of the installation process.

Oracle Universal Installer

[314]

OUI Basic Installation
OUI installation can be as easy as a Next → Next kind of installation. Starting from
10g Rel.1 Oracle decided to simplify the installation process as much as possible
by gathering as few parameters as possible from the user. This installation mode is
advantageous to a certain extent for the people who want to get started with Oracle
as soon as they have the installation media available, but it is not best practice for
production environments, as you could be installing more than required and the
default installation may have inconvenient parameters that will have to be corrected
sooner or later.

Install what you really need to install. Do not perform a default
installation just because this is the most simple and easy way to
have your environment up and running. You may have an Oracle
installation that does not comply with your license agreement and
you may leave unused ports and services open.

The Basic Installation mode (A) is really simple. It only asks for the Oracle Home
Location where Oracle RDBMS will be installed, the installation type (Standard
Edition or Enterprise Edition) and the Unix DBA Group (B). If the user decides to
create the starter database, it will ask for the Global Database Name (out of which
Oracle can determine the instance name), and the password for the administrative
users (C). Oracle will ask for the password twice just to make sure the password typed
in the first password field matches the one written on the second password field.

Chapter 11

[315]

This installation mode optionally creates a default database named the Starter
Database. This database is created using a standard file system and the same
password for all users. The database will have the Enterprise Manager DB Control
Console configured using either the default 1158 (first port assigned for Enterprise
Manager) or the first available port starting with 5500.

This easy installation mode installs an Enterprise Edition RDBMS by default
(this can be changed at the first screen shown), and other options that may require
additional licenses.

Licensed installed options
When performing an Oracle installation, the reader is encouraged to verify
the options installed. The user must make sure the installed software matches
the licensed software listed in the license agreement. If a default installation is
performed , it is very likely that there will be more options installed than those
that the user is authorized to install. Oracle publishes the product options that are
available for each different Oracle Edition at http://www.oracle.com/database/
product_editions.html. In case of doubt, contact your Oracle representative.

OUI Advanced Installation
The Advanced Installation option is a more comprehensive installation method. It
allows the user to select different passwords for the administrative accounts, define
the file storage method, specify custom initialization parameters, and specify the
products and languages to install, among other features.

In the Advanced Installation option, you can customize what to install and what
not to install. You can use the Advanced Installation system by choosing the Custom
option in the Select Installation Type window. A customized installation should be
used in cases when you want to install specific components. You can also perform
installations for ASM, which requires no database, or install the Advanced Security
Options. Here you can also choose which language your Oracle Home will support
by clicking on the Product Language button.

Oracle Universal Installer

[316]

This mode is useful if you are performing a Software only installation, which occurs
with a basic install without the starter database, or if you are willing to configure and
customize a starter database too.

You can maintain the components currently installed in your Oracle Home. By
default options such as Oracle Label Security (OLS), Connection Manager, or Data
Mining Scoring Engine are not installed. You can launch OUI at a later time to
perform product maintenance and have these individual components installed (D).

By marking the Show all components, including required dependencies checkbox
(E), you can display a dependencies tree and determine whether the dependent
components have already been installed or not.

Chapter 11

[317]

Modes of installation
When performing an installation, OUI can do it in any of these modes:

•	 Interactive Mode: This is the most widely used installation mode. To use
this mode, you must have a graphical display available. This mode shows a
number of screens which are used to gather configuration information from
the user.

•	 Suppressed-Interactive Mode: This mode combines interactive mode with
silent mode. This mode is useful when most of the installation process can be
performed by a set of response files and specific tasks are to be performed by
asking for specific parameters from the user.

•	 Silent Mode: This mode requires the user to set up a response file, this
allows the user to perform a batch install without user intervention.

•	 Cluster Install Mode: OUI is a cluster aware tool, i.e. it can detect it is being
used in an environment where Clusterware is enabled. This mode is used
to maintain Oracle Homes in a cluster topology, adding or removing nodes
from the cluster, or extending the Oracle Home of a product installation.

OUI command line parameters
OUI has several options available from the command line. These options are used
to launch a silent install with a response file, or to build a response file after an
actual installation. Other options are available to perform deinstall action, cloning,
inventory rebuilds, and cluster-related, or RAC specific tasks.

runInstaller [-options] [(<CommandLineVariable=Value>)*]

Parameter Meaning 10g Rel 2 11g Rel 1
clusterware oracle.crs,<crs
version>

Version of Cluster ready
services installed.

YES YES

crsLocation <Path> Used only for cluster
installs. Specifies the path
to the crs home location.
Specifying this overrides CRS
information obtained from
central inventory.

YES YES

Oracle Universal Installer

[318]

Parameter Meaning 10g Rel 2 11g Rel 1
invPtrLoc <full path of
oraInst.loc>

Unix only. To point to a
different inventory location.
The orainst.loc file contains:
inventory_loc=<location
of central inventory>

inst_group=<>

YES YES

jreLoc <location> Path where Java Runtime
Environment is installed. OUI
cannot be run without it.

YES YES

LogLevel <level> To filter log messages that
have a lesser priority level than
<level>. Valid options are:
severe, warning, info, config,
fine, finer, finest, basic, general,
detailed, trace. The use of
basic, general, detailed, trace
is deprecated.

YES YES

paramFile <location of file> Specify location of oraparam.
ini file to be used by OUI.

YES YES

responseFile <Path> Specifies the response file and
path to use.

YES YES

sourceLoc <location of
products.xml>

To specify the shiphome
location.

YES YES

addLangs To add new languages to an
already installed product.

YES NO

addNode For adding node(s) to the
installation.

YES YES

attachHome For attaching homes to the
OUI inventory.

YES YES

cfs Indicates that the Oracle
home specified is on cluster
file system (shared). This is
mandatory when -local
is specified so that Oracle
Universal Installer can register
the home appropriately into
the inventory.

YES YES

clone For making an Oracle
Home copy match its
current environment.

YES YES

Chapter 11

[319]

Parameter Meaning 10g Rel 2 11g Rel 1
debug For getting the debug

information from OUI.
YES YES

deinstall For deinstall operations. YES YES
detachHome For detaching homes from

the OUI inventory without
deleting inventory directory
inside Oracle home.

YES YES

enableRollingUpgrade Used in cluster environment,
to enable upgrade of a product
on a subset of nodes (on which
the product was installed).

YES YES

executeSysPrereqs Execute system pre-requisite
checks and exit.

YES YES

force Allows silent mode installation
into a non-empty directory.

YES YES

help Displays above usage help. YES YES
ignorePatchConflicts Ignore all conflicts with

existing interim patches during
an upgrade. The conflicting
interim patches are removed
from the home.

YES YES

ignoreSysPrereqs For ignoring the results of the
system pre-requisite checks.

YES YES

local Performs the operation on the
local node irrespective of the
cluster nodes specified.

YES YES

printdiskusage Log debug information for
disk usage.

YES YES

printmemory Log debug information for
memory usage.

YES YES

printtime Log debug information for
time usage.

YES YES

record -destinationFile
<Path>

For record mode operation,
information is recorded in the
destination file path.

YES YES

Oracle Universal Installer

[320]

Parameter Meaning 10g Rel 2 11g Rel 1
relink For performing relinking

actions on the Oracle home
Usage: -relink -
maketargetsxml
<location of
maketargetsxml> [-
makedepsxml <location
of makedepsxml>]
[name=value]

NO YES

removeallfiles For removing the home
directory after deinstallation of
all the components.

YES YES

removeAllPatches Remove all interim patches
from the home.

YES YES

silent For silent mode operations, the
inputs can be a response file or
a list of command line variable
value pairs.

YES YES

updateNodeList For updating the node list
for this home in the OUI
inventory.

YES YES

waitforcompletion For Windows, setup.exe will
wait for completion instead
of spawning the java engine
and exiting.

YES YES

suppressPreCopyScript Suppress the execution of
precopy script.

NO YES

acceptUntrustedCertificates Accept certificates that are not
trusted from a secure site.

NO YES

nobackground Do not show background
image.

YES YES

noclusterEnabled No cluster nodes specified. YES YES
noconsole For suppressing display of

messages to console. Console is
not allocated.

YES YES

nowarningonremovefiles To disable the warning
message before removal of
home directory.

YES YES

Chapter 11

[321]

Parameter Meaning 10g Rel 2 11g Rel 1
nowait For Windows. Do not wait for

user to hit Enter on the console
after the task (install etc.)
is complete.

YES YES

formCluster To install the Oracle
Clusterware in order to form
the cluster.

YES YES

remotecp <Path> Unix specific option. Used only
for cluster installs, specifies
the path to the remote copy
program on the local cluster
node.

YES YES

remoteshell <Path> Unix specific option. Used
only for cluster installs,
specifies the path to the
remote shell program on the
local cluster node.

YES YES

Command line variables usage
 Command line variables are specified using <name=value>; for example:

[session: | compName: | compName:version:]variableName="
valueOfVariable"]

 Session and Installer variables are specified using:

 [session:]varName=value
 Ex 1: session:ORACLE_HOME_NAME="OraHome"
 Ex 2: ORACLE_HOME_NAME="OraHome"

The lookup order is session:varName then just varName. The session prefix is used
to avoid ambiguity.

 Component variables are specified using:

 [compInternalName:[Version:]]varName
 Ex 1: oracle.comp1:1.0.1:varName="VarValue"
 Ex 2: oracle.comp1:varName="VarValue"

Oracle Universal Installer

[322]

The lookup order is compInternalName:Version:varName, then
compInternalName:varName, then just varName.

Variable Meaning 10g Rel 2
updateNodeList For updating node list for this home in

the OUI inventory.
YES

waitforcompletion For Windows, setup.exe will wait for
completion instead of spawning the java
engine and exiting.

YES

nobackground Do not show background image. YES
noclusterEnabled No cluster nodes specified. YES
noconsole For suppressing display of messages to

console. Console is not allocated.
YES

nowarningonremovefiles To disable the warning message before
removal of home directory.

YES

nowait For Windows. Do not wait for user to
hit Enter on the console after the task
(install and so on) is complete.

YES

formCluster To install the Oracle clusterware in
order to form the cluster.

YES

remotecp <Path> Unix specific option. Used only for
cluster installs, specifies the path to
the remote copy program on the local
cluster node.

YES

remoteshell <Path> Unix specific option. Used only for
cluster installs, specifies the path to
the remote shell program on the local
cluster node.

YES

Silent installation mode
By default OUI performs an interactive installation. This is not a practical approach if
the user is to repetitively perform the same installation over and over again. A batch
approach is more suitable in this case. Installing in batch mode requires the user to
create a response file, this file can either be created from the available response files
in the installation media or it can be created out of an actual installation.

Chapter 11

[323]

The response file structure and syntax
The response file is a plain text format file encoded in US7ASCII character set. It
contains a set of variables defined in the form of VariableName=value format. The
variables can be of String, Boolean, Number or StringList type.

In the case of variables that don't have a default value and are required for a silent
install to be successful, they have a place holder value <Value Required>. For all
other variables which don't have a default value but are considered as optional, the
value is labelled as <Value Unspecified>.

Comments are specified with a pound sign (#) at the start of the line.

The response file provided by default (enterprise.rsp) has the following sections:

•	 General Section: In this section, both the Oracle Home path and the Oracle
Home name are specified, along with the top level components to install, and
if an deinstall takes place, it defines which components will be deinstalled.
The deinstall options are read only if the deinstall option is specified on the
command line. Other options are specified such as the language packages to
be installed, the installation type, and other cluster (RAC) related parameters.

•	 Privileged operating system groups: It is required to specify the privileged
SYSDBA and SYSOPER groups.

•	 Configuration options: After the general section has been configured the
remaining parameters have to do with database, storage and upgrade options.

•	 Database configuration: This section includes the database configuration
and management options, and the database storage options. Here there are
options that specify which kind of database will be created, the password for
the administrative schemas, the name of the Database (global and SID),
the character set and the Enterprise Manager options.

•	 Backup and recovery options: This defines the backup options; if the user
defines the database will have a default backup policy from the start. This
is used as additional options for the EM and the settings can be further
customized later.

•	 Automatic Storage Management Options (ASM): If ASM has been selected
as a storage option, this section is used to define how ASM disk groups will
be configured, the redundancy, and whether or not the user will perform the
batch upgrade of an existing ASM environment.

•	 Upgrade an existing database section: The response file not only defines that
a new database will be created and how it will be created, it also specifies if
an existing database will be upgraded.

•	 Read only section: This section can be seen at the end of the default
enterprise.rsp file, this is not user modifiable.

Oracle Universal Installer

[324]

Customizing a response file
You may get a response file from the files included in your installation media at
<mount point>/database/response. There you can find response files for OUI,
DBCA, EMCA, and NETCA, which are installation utilities that can be launched in
batch mode too.

It is important to point out that configuration assistants such as DBCA, EMCA and
NETCA are launched by OUI. If you want the assistants to be launched at install
time through a response file then you must edit the response file and parameterize it
so the assistants are launched as well. You should be aware that even if you record a
session using the assistants, the assistant related actions won't be recorded.

Depending on the license you wish to install, you can choose either the
standard.rsp (Standard Edition) or the enterprise.rsp (Enterprise Edition)
file to be customized. In the next example, a response file was created out of the
enterprise.rsp response file.

RESPONSEFILE_VERSION=2.2.1.0.0
UNIX_GROUP_NAME=dba
FROM_LOCATION="/stage/Ora10gR2/database/stage/products.xml"
ORACLE_HOME="/u01/app/oracle/product/10.2.0/db_1"
ORACLE_HOME_NAME="OraDb10g_home1"
TOPLEVEL_COMPONENT={"oracle.server","10.2.0.1.0"}
SHOW_SPLASH_SCREEN=false
SHOW_WELCOME_PAGE=false
SHOW_NODE_SELECTION_PAGE=false
SHOW_SUMMARY_PAGE=false
SHOW_INSTALL_PROGRESS_PAGE=false
SHOW_CONFIG_TOOL_PAGE=false
SHOW_XML_PREREQ_PAGE=false
SHOW_ROOTSH_CONFIRMATION=false
SHOW_END_SESSION_PAGE=false
SHOW_EXIT_CONFIRMATION=false
NEXT_SESSION=false
NEXT_SESSION_ON_FAIL=false
SHOW_DEINSTALL_CONFIRMATION=false
SHOW_DEINSTALL_PROGRESS=false
SHOW_END_OF_INSTALL_MSGS=false
COMPONENT_LANGUAGES={"en"}
INSTALL_TYPE="Enterprise Edition"
s_nameForDBAGrp="dba"
s_nameForOPERGrp="oper"
n_configurationOption=3

Chapter 11

[325]

This response file performs the installation process reading the products.xml
file from the FROM_LOCATION location. It installs the ORACLE_HOME_NAME at the
ORACLE_HOME location. OUI installs the INSTALL_TYPE edition

Creating a response file out from an actual
installation
If you are planning to reproduce the same installation a number of times then you
can record the installation session in a response file you can edit later if you require
further customization.

This code creates a response file from an actual installation:

./runInstaller -record -destinationFile <PathAndFileName>

This response file records the parameters used during the current installation,
afterwards the user can use this file to repeat the installation process in batch mode.

./runInstaller -silent -responseFile <PathAndFileName>

The path and file name refers to the location of the generated response file name
and location.

The Batch installation, step by step
Once the response file has been either created or customized, the user can perform
the batch install. Depending on the product that will be installed, the screen will be
different from the one shown in the next images.

Here a response file has been created to perform a 10g Rel. 2 RDBMS install.

RESPONSEFILE_VERSION=2.2.1.0.0
UNIX_GROUP_NAME=dba
FROM_LOCATION="/stage/Ora10gR2/database/stage/products.xml"
ORACLE_HOME="/u01/app/oracle/product/10.2.0/db_1"
ORACLE_HOME_NAME="OraDb10g_home1"
TOPLEVEL_COMPONENT={"oracle.server","10.2.0.1.0"}
SHOW_SPLASH_SCREEN=false
SHOW_WELCOME_PAGE=false
SHOW_NODE_SELECTION_PAGE=false
SHOW_SUMMARY_PAGE=false
SHOW_INSTALL_PROGRESS_PAGE=false
SHOW_CONFIG_TOOL_PAGE=false
SHOW_XML_PREREQ_PAGE=false
SHOW_ROOTSH_CONFIRMATION=false

Oracle Universal Installer

[326]

SHOW_END_SESSION_PAGE=false
SHOW_EXIT_CONFIRMATION=false
NEXT_SESSION=false
NEXT_SESSION_ON_FAIL=false
SHOW_DEINSTALL_CONFIRMATION=false
SHOW_DEINSTALL_PROGRESS=false
SHOW_END_OF_INSTALL_MSGS=false
COMPONENT_LANGUAGES={"en"}
INSTALL_TYPE="Enterprise Edition"
s_nameForDBAGrp="dba"
s_nameForOPERGrp="oper"
n_configurationOption=3

The configuration option specifies a software install only installation type will be
performed, the Oracle Home and the Oracle Home Name have been specified,
and the Installation Type and the languages to be installed are defined too. In this
response file, all the screens have been suppressed so it can completely run in
character mode. It is useful to let the progress screens appear only when the batch
install is going to be performed on a graphical screen to let the user know how the
install is progressing.

Chapter 11

[327]

The silent mode installation is triggered with this command line (A):

runInstaller -silent -responseFile <responseFileNameAndPath>
-ignoreSysprereqs

In this particular case the ignoreSysprereqs line was required as the installation
was a RDBMS 10gRel2 on an Oracle Enterprise Linux 4 platform. Even though it
is a supported platform, by the time DB10gR2 was released OEL4 didn't exist, so
it is incorrectly considered to be a non supported platform by OUI, and this is a
workaround to avoid the non supported platform error.

The OUI parameter ignoreSysprereqs must be carefully used. It prevents the
installation prerequisites from being validated, so it is the DBA's responsibility to
make sure the prerequisites can be waived.

OUI shows the initial prerequisite checking output (B) where the supported platform
is listed and it makes sure the initial prerequisites are met. OUI then reads the action
to be performed (C), the dependency analysis is performed (D), and the OS platform
is checked (E). Once it finishes the first analysis, it goes to the OS package checking.

Oracle Universal Installer

[328]

Further analysis is performed to make sure the user has properly configured the
OS and the installation prerequisites have been met. In this example Package
Checking (I), Kernel Parameter Checking (F), Memory Requirement Checking
(H) and Specific Packages Checking (G) are performed. These steps depend on the
particular OS and the options to be installed.

Other parameters are checked (J) until it reaches 100% (K). If all stages are
successfully passed, then it goes to the next step. The list of products to install; in this
case, it was specified to install all the Oracle Home products.

After the list is displayed (M), it shows the installation progress (N). Once the install
process has completely finished (O) OUI reminds the user to read the Installation log
for detailed information about the process (F).

Chapter 11

[329]

Creating a response file to perform a batch
deinstallation
A deinstallation task can also be performed in batch mode. In the next example, a
response file was created which specifies the Oracle Home is to be removed along
with the installed software.

The following is the response file used to perform the deinstall task:

RESPONSEFILE_VERSION=2.2.1.0.0
UNIX_GROUP_NAME=dba
ORACLE_HOME="/u01/app/oracle/product/10.2.0/db_1"
ORACLE_HOME_NAME="OraDb10g_home1"
DEINSTALL_LIST={"oracle.server","10.2.0.1.0"}
SHOW_SPLASH_SCREEN=false
SHOW_WELCOME_PAGE=false
SHOW_SUMMARY_PAGE=false
SHOW_END_SESSION_PAGE=false
SHOW_EXIT_CONFIRMATION=false

Oracle Universal Installer

[330]

NEXT_SESSION=false
NEXT_SESSION_ON_FAIL=false
SHOW_DEINSTALL_CONFIRMATION=true
SHOW_DEINSTALL_PROGRESS=true
REMOVE_HOMES="/u01/app/oracle/product/10.2.0/db_1"
SHOW_END_OF_INSTALL_MSGS=true

This response file configures a session to perform the deinstall task on the OraDb10g_
home1 Oracle Home. It removes all the available products in there starting with the
oracle.server root product.

When the user performs the deinstall task it uses the following command line (A):

runInstaller -silent -deinstall -responseFile <responseFileNameAndPath>

Oracle Universal Installer notifies the user that the OUI session has started (B), then
it shows the deinstall process progress by displaying dots on the screen until it
reaches 100% and the process finishes. The deinstall complete message (C) is shown
and the status is displayed on the screen (D). In this case the status was successful.
Finally OUI notifies the user that a log file has been generated (E). The log file can be
used to further analyze the session, if there were any errors.

Chapter 11

[331]

The oraparam.ini file
The oraparam.ini file can be found at <MediaMountPoint>/install/oraparam.
ini. It includes definition of where the JRE environment will be taken from, which
platforms are supported, and other basic validations. This file is not supposed to be
modified by the user, unless explicitly requested by Oracle support. It has a general
[Oracle] section where the basic OUI start-up environment is defined. There is
another section named [Certified Versions] where the list of the Oracle supported
platforms for the specific software distribution are supported, and other optional
sections that define the particularities of each supported platform.

You can start OUI with a different oraparam.ini file. This started in Oracle 10g
when Oracle Enterprise Linux first appeared as a valid platform. The Linux distro
appeared when Oracle 10g R2 was already in the market. People who installed 10gR2
on this platform surprisingly found that this Oracle OS was not a supported platform.
Oracle support then suggested creating a copy of the oraparam.ini file and adding
Enterprise Linux as a supported platform in the [Certified Versions] section.

OUI determines the Linux distro using the information found in
/etc/redhat-release.

For production environments you must always perform the installation
on an officially supported platform otherwise your installation won't be
supported by Oracle and you will be on your own.

This trick is used by people who plan to install Oracle for personal training and
testing on platforms such as Ubuntu or Fedora, to name just a few. Also, even if it
works, people must be aware that this is not supported for production environments.

Installing Oracle 10gR2 on either RHEL5 or OEL5 was similar, this was a supported
platform but it was not listed on the list of certified versions. In the next example
the oraparam.ini file was modified to support the installation of Oracle 10gR2 on
Red Hat 5

Oracle Universal Installer

[332]

Original [Certified Versions] entry:

[Certified Versions]
Linux=redhat-3, SuSE-9, redhat-4, UnitedLinux-1.0, asianux-1, asianux-
2

Modified [Certified Versions] entry:

[Certified Versions]
Linux=redhat-3,SuSE-9,redhat-4,UnitedLinux-1.0,asianux-1, asianux-2,
redhat-5

OUI return codes
At the end of an install operation OUI can return one of three different return
codes. They are 0, -1 or 1. The interpretation of these values is as described in the
next table:

Return Code Code Description
 0 The installation process ended successfully.
 1 The installation process was successful,

but some configuration assistant failed.
-1 There was at least one failed installation.

The return codes are useful in batch processing to decide whether to continue or
abort an installation process.

Installing Oracle from the Web
When OUI reads the source files at installation time, it can do so in a seamless way,
it doesn't matter if the source files are located in a CD or DVD, hard disk, network
shared file system or web, it is enough to declare the path to the products.xml file
and OUI will take care of the file transfer process to proceed with the installation.
You can take advantage of this fact and create a centrally managed software
depot accessible from the intranet. This is particularly useful when you have an
environment where remote massive deployments are to be performed.

Chapter 11

[333]

http://softwareDepot/Orastage/stage/products.xml

Central Software Server
Intranet

Remote Servers/Clients

The procedure to set up a web install is as follows:

1. Copy the disk to a stage area.
2. Publish the root of the stage area on a web server.
3. Start the Oracle Universal Installer and point to the http URL for the

products.xml file.
4. From this point on the installation will run as if the install media was on

a local device, the only difference will be that all the required files will be
dispatched from the web.

Recovering a lost Inventory
What should you do in case a central inventory gets lost? There are a couple of
scenarios here; you could have a valid Oracle Home either intact or restored from a
backup, but the central inventory is lost, if this is the case Oracle will work, but you
will notice the missing inventory when you try to do an upgrade or apply a patch. In
Oracle 10gR1 and earlier releases there is no other option but to restore the inventory
from a backup, so you should include in your backup policies a periodic ORACLE_
BASE backup which includes the different Oracle Homes and the central inventory.
In Oracle 10gR2 and 11gR1, you can register it using the following procedure:

Change to the oui/bin directory inside the target Oracle Home:

cd $ORACLE_HOME/oui/bin

Oracle Universal Installer

[334]

From this point, run the runInstaller (or setup.exe command in Windows) and
use the attachHome and invPtrLoc modifiers:

./runInstaller -silent -attachHome -invPtrLoc ./oraInst.loc ORACLE_
HOME="<Oracle_Home_Location>" ORACLE_HOME_NAME="<Oracle_Home_Name>"

Your Oracle Home will be back again in the OUI Inventory.

In the following example an Oracle Inventory recovery operation is performed.

This procedure is repeated for each Oracle Home to be restored in the
Oracle Inventory.

Once the procedure is finished for each Oracle Home the inventory is fully restored.

Chapter 11

[335]

Cloning Oracle Home using OUI
You can clone an existing Oracle Home in the same host using this procedure:

1. Install Oracle Home in its source directory, include all necessary patchsets
and patches.

2. Perform a recursive copy of the source Oracle Home to the target Oracle
Home This step must be run as root to preserve the file permissions (use the
cp -Rp command options).

3. Verify Oracle has the proper file and directory permissions in the
target directory.

4. Run the following command to clone the installation with the OUI:
cd $ORACLE_HOME/clone/bin

perl clone.pl ORACLE_HOME="<target_home>" ORACLE_HOME_
NAME="<unique_home_name>"

	° An alternative method of cloning can be achieved using
the following commands:
cd $ORACLE_HOME/oui/bin

./runInstaller -clone -silent -ignorePreReq ORACLE_
HOME="<target_home>" ORACLE_HOME_NAME="<unique_home_
name>"

If required, add -invPtrLoc <path>/oraInst.loc
or -ignoreSysPrereqs to the command line.

5. As root, run the root.sh file which is located at the target
Oracle Home directory.

Summary
Oracle Universal Inventory is more than just the Oracle Installer. It allows you to
more efficiently perform the installation tasks in an environment where batch installs
are a very frequent requirement.

Creating a silent install allows you to create a character mode installer that requires
no graphical interface. You can link several OUI sessions in batch mode and you can
use the silent mode of other tools such as DBCA and NETCA to perform a full setup
including the database and other configuration assistants.

Oracle Universal Installer

[336]

It allows you to perform software deployments using a centralized Oracle software
depot where you can install from anywhere in your intranet or even more by
combining automatized batch scripts. You can have users with basic technical skills
perform the tasks in batch mode from anywhere in your intranet.

There are post installation tasks that are to be performed such as configuring
enterprise manager, this can be done in batch mode too, and it can be fully
customized, this will be explored in more detail in the next chapter.

Enterprise Manager
Configuration Assistant

The Enterprise Manager Configuration Assistant (EMCA) is a command line Java
based configuration tool for the Enterprise Manager DB Control Console. Nowadays,
when thinking about a 11g or 10g databases' day-to-day administration most
DBA's think about Enterprise Manager. This reason is because Enterprise Manager
(EM) is a friendly and very intuitive tool for performing daily interactive database
management tasks. Issuing SQL commands from the Command Line Interface
(CLI) is an option when thinking about batch commands, mostly because the syntax
has impressively expanded and for most enterprises getting the work done is more
important than considering how it is achieved. This has made the modern DBA
depend more on the EM graphical interface. If the database doesn't have the console
configured it makes the modern DBA feel like they have gone back more than fifteen
years in Oracle administration history, to when there was no option but CLI. The CLI
is not that bad, but it does require a good memory, a lot of practice and a very good
cheat sheet to refer to. Changes in administrative passwords or network topology
turn the EM lights off. EMCA is the key tool for bringing the EM back to business,
and getting to know it makes the difference between using modern interactive
database management and the traditional less productive CLI mode.

Enterprise Manager Configuration Assistant

[338]

Enterprise Manager Components
The Enterprise Manager DB Control Console is a Java application that runs on an
Oracle Container for Java (OC4J), it requires a repository stored on the managed
database whose owner is the SYSMAN user. In the DB Control Console mode you
can configure only one console per database; Enterprise Manager Console can be
shared only in the Grid Console.

The console can be accessed either in http or in https mode, depending on the
version and on the access configuration the DBA has defined. It should be pointed
out that starting with version 10.2.0.4.0 Oracle no longer allows the console to be
in open mode, and after applying the patchset, the upgrade process secures
the console. For each console a different port is assigned and a different set of
configuration files is created. The Java application accesses the SYSMAN repository
through JDBC.

11g Encryption
Key

http / https
OC4J

JDBC
Access

EM
Repository

Managed Oracle
10g/11g Database

Enterprise Manager Database Control Console

http:// <hostname> : EMPort / em

SYSMAN

Internet
Browser

http://

Chapter 12

[339]

Differences between EM DB Control and EM
Grid Control
Grid Control and DB Control are two different administrative environments.
The scope of the DB Control is restricted to the database where it was originally
configured. Meanwhile, Grid Control is a tool to manage data centers, which
means that its scope ranges from the hardware to the application level. Grid
control can manage databases ranging from 8.1.7.4.0 to 11gR2, operating systems,
application servers, Oracle eBusiness Suite, Collaboration Suite as well as some
certified third party databases, application servers, storage managers and networks.
Grid Control is based on two basic principles, Manage Many as One and Implement
One from Many.

The discussion about Grid Control goes far beyond the scope of this book, but it is
important to inform the DBA that there is a robust environment which has remained
obscure and unnoticed by many DBAs.

Application
Servers

Hosts

Grid Control Console

Grid Control,
Single point of
administration

Third
Party

Databases

8i

11g

10g

9i

Enterprise Manager Configuration Assistant

[340]

Enterprise Manager configuration
Most DBA's have the EM automatically configured by the time Oracle creates a
database with the DBCA. The default port assigned is 1158, but if ever the DBA
needs to create and configure an additional database on the same host the default
assigned port will be 5500, then 5501 and so on. After the RDBMS installation you
should read the portlist.ini file located at <Oracle Home>/install/portlist.
ini for details on ports assigned by Oracle. The easiest way to configure EM is
with the DBCA, but this is the least customizable way to do it. You can have EM
configured in a fully customizable fashion using the EMCA command line.

How to find out if the console components are
currently installed
You can easily find out if your current Oracle installation includes the Enterprise
Manager DB control console components installed by querying the installation
with the opatch tool. The command used to find out if the console components are
installed is:

<Oracle Home>/opatch lsinventory -detail

Then look for the following entries:

Enterprise Manager Agent Core
Enterprise Manager Agent DB
Enterprise Manager Baseline
Enterprise Manager Common Files
Enterprise Manager Minimal Integration
Enterprise Manager plugin Common Files
Enterprise Manager plugin Common Files
Enterprise Manager Repository Core
Enterprise Manager Repository DB
Oracle Enterprise Manager Console DB

This output corresponds to an Oracle 10g Rel. 2 Oracle Home, meanwhile
the following output corresponds to an Oracle 11g Rel. 1 Oracle Home.

Enterprise Manager Agent
Enterprise Manager Agent Core Files
Enterprise Manager Common Core Files
Enterprise Manager Common Files
Enterprise Manager Database Plugin -- Agent Support
Enterprise Manager Database Plugin -- Management Service Support

Chapter 12

[341]

Enterprise Manager Database Plugin -- Repository Support
Enterprise Manager Grid Control Core Files
Enterprise Manager Minimal Integration
Enterprise Manager plugin Common Files
Enterprise Manager Repository Core Files
Oracle Enterprise Manager Console DB

This information can also be found in the Oracle Universal Installer's
graphical interface.

Console setup prerequisites
The easiest and least customizable procedure to setup Enterprise Manager Console is
by means of the DBCA at creation time. You just have to ask the DBCA to configure a
console for you. However, you should be aware that even the DBCA cannot take care
of basic setup prerequisites such as the host name. You must define the host name so
it doesn't contain underscores as this does not comply with DNS standard naming
conventions and you may face problems when trying to access the EM Console.

When configuring Enterprise Manager you must first properly configure the hosts
file (/etc/hosts on Unix like OSes and %WINDIR%\system32\drivers\etc\hosts
on Windows platforms), the host name can either be simple or fully qualified, but
do not leave the default localhost address. This name will be read by EMCA and it
will be used to create the console administrative directories.

Oracle RDBMS should be installed on a host with fixed IP address, and
even though it is supported to install on DHCP based servers, you must
fix the IP address by means of a loopback adapter and have this loopback
address declared as the main IP address in the hosts file. Otherwise the
Console will stop working as soon as the IP address changes.

The reason why DHCP based server configuration is not encouraged is because
if an Oracle product binds to a DHCP address or host name, it can take a lot of
administration effort to convert the product to a newly assigned address or name.

Most of the times Enterprise Manager Console fails, it is because people mistakenly
leave the IP address to be dynamically assigned. If you are using dynamic IP
addresses then you must follow the above advice.

Enterprise Manager Configuration Assistant

[342]

Configuring EM using DBCA
Assuming the database currently has no EM repository configured it can be easily
configured by the DBCA. This configuration tool is aware of the existence of the EM
repository and it can have both the Enterprise Manager repository and the console
configured. When accessing the DBCA, choose the Configure Database Options
option, then select the target database.

If the DBCA then realizes that there is no repository configured at the target
database, it displays a screen asking the DBA if the EM access should be configured
for the target database. This management option allows the DBA to decide whether
an EM console will be configured for the target database or not (A), the options
available are Database Control and Grid Control console. In case a grid control agent
is found then it will enable the Use Grid Control for Database Management option,
otherwise it will enable the Configure the Database with Enterprise Manager
option only (B). This screen also prompts the DBA for email notifications and the
daily backup default strategies. If the DBA wants to enable email, an SMTP server
is required as well as an email address for notifications to go to (C). For the Backup
strategy (D) the DBA should be aware that this is a full backup the user is supposed
to schedule at a given time. This default strategy as well as the email notifications
can be enabled at a later time or reconfigured if the DBA chooses to use them.

Chapter 12

[343]

If the DBA decides to configure the management console then the repository is created.
This option is automatically selected in the Database Content screen of the DBCA,
and the option is grayed out so that it cannot be deselected. The EM Repository is
configured at the SYSAUX tablespace, and this tablespace cannot be changed.

Enterprise Manager Configuration Assistant

[344]

The next step in configuring the EM Console is defining the password for the
administrative accounts DBSNMP and SYSMAN. You can choose to set the same
password for both of these accounts or define a different password for each one.

Take note of the passwords set for DBSNMP and SYSMAN database
users and keep them in a safe place. These passwords are required if
the user decides they need to change console options in the future.

After a while the enterprise manager console will be configured and the repository
will be created. On Windows based systems a new Windows service will be created;
this service is by default configured to automatically start at OS boot time.

Manually configuring Enterprise Manager
with EMCA
Enterprise Manager Configuration Assistant is the character mode configuration
tool for the Enterprise Manager DB Control console. This tool can be found at
<ORACLE_HOME>/bin/emca and if no options are specified then it displays the
complete command line parameters.

Chapter 12

[345]

The basic command line options used to create a console configuration on a database
where it has not previously been configured is as follows:

emca -config dbcontrol db -repos create

If the database comes from a seed database, this one will already have the SYSMAN
user created, if you proceed with using this database then the EMCA will fail and the
log files will show an error letting you know about the problem. If this happens, you
must drop the repository and configure a new one, using this command:

emca -deconfig dbcontrol db -repos drop

Prior to issuing the emca command to configure Enterprise Manager
make sure the DBSNMP account is unlocked and you have the right
password. Also, make sure there is no SYSMAN user currently on the
database, as this may mean a repository already exists. You must also
make sure there is no user nor a role named MGMT_VIE, MGMT_USER,
otherwise the configuration will fail.

The main difference between the emca and the dbca is that it cannot customize the
options of an already configured console.

In the next slide a basic EMCA session is started, this session creates a new
repository and configures the console.

Enterprise Manager Configuration Assistant

[346]

Here the image shows a basic command line is issued to create a new repository and
configure the DB Control Console (A). As there are more parameters required to
configure the console EMCA prompts for additional parameters; it asks the user to
provide the listener port (B), which DBAs typically configure to be 1521, which is the
default TNS Listener port. Then it asks for three passwords; the SYS (C), DBSNMP
(D), and SYSMAN (E) passwords. In the image it looks like the EMCA is asking
twice for the SYSMAN password, this is actually a harmless display bug that can be
safely ignored.

Make sure the DBSNMP account is unlocked and it has
a non expired valid password.

The EMCA feeds back the provided values (excluding the passwords) to the user
and waits for the user to confirm them (G). If everything is correct then the EMCA
proceeds with the configuration. The user should pay attention to the process
progress and confirm that it successfully reaches the end. The output is logged to the
directory shown on the screen, and the user must be aware of it, as if there is an error
a summary and a detail log file will be generated.

The path where the EMCA logs the executed actions as well as their outcome is
located at <Oracle Home>/cfgtools/emca/<Oracle SID>/emca_YYYY-MM-DD_HH-
MI-SS-PM.log this file will record the progress and main information; it will also
provide the name of a secondary file where further progress details are provided.

The EMCA provides progress information until it reaches the end of the
configuration process, the time it takes to finish the process depends on the I/O
speed as well as the hardware performance in general.

The final step of the setup process shows the URL to access the console (H). Take
note of this URL. This shows the EM Port to access the console, and finally (I) the
message FINISHED EMCA is displayed; this is the end of the basic setup session.

The next image shows a basic setup session using 11.2.0 (11gR2), basically, the same
command is issued (A):

emca -config dbcontrol db -repos create

Chapter 12

[347]

The same issues must be considered prior to setting up the console. As the
administrative passwords are required in this case, the EMCA will prompt the user
for the passwords and the same information as in the 10g version (B). EMCA shows
the input feedback (C) and then the process continues; at first glance it can be seen
that there are more internal steps involved. When the process finishes it also displays
the URL (C) to access the console. However, in the 11g version a difference can be
seen if we compare the URL in this release with the provide URL for the 10g release,
and it has to do with security, 11g included several security enhancements and
securing the console and the Enterprise Manager repository is among them.

Enterprise Manager Configuration Assistant

[348]

When the setup finishes it displays a warning that informs the user about the
security features and how to deal with them. Both Oracle 11g Release 1 and 11g
Release 2 encrypt repository information, and they require an encryption key. The
outcome shows the location of the key Enterprise Manager Encryption key file, take
note on this, it is very important.

You must provide backup procedures for the Encryption key file
generated to encrypt repository information. If you fail to do so, in
the event your installation faces a disaster scenario your repository
information will become permanently inaccessible.

The previously exposed cases show a basic command line used to configure the
console; however there are plenty of commands you can use to further customize the
process and make it more comprehensive and batch oriented.

Manually assigning EM managing ports
In the previous examples the EMCA was used to configure the console with basic
parameters. The HTTP port number is not required; the EMCA will automatically
assign a default port number using a monotonically increasing value, which starts
at 5500. If you want to manually assign a port number you can do it, just be careful
to use a unique port number otherwise you may collide with another previously
assigned port.

In this scenario the user assigns a port number to the console. Two prerequisites
must be met prior to this operation. They are as follows:

•	 Check the port number is free
•	 Make sure the target Oracle instance is up and running

Checking the port means ensuring that the port is currently not in use nor taken by
another application, even if the application is currently down. A good practice is
to plan your installations, this way you can always control the assigned ports and
you will always know which ports are already assigned. You can issue the netstat
command from the command line to find out if the port is currently in use as shown
in the next image.

Chapter 12

[349]

Another command that can be used to determine currently taken port numbers
is the lsof command as shown in the next image. The outlined columns show
the ports currently in use.

Enterprise Manager Configuration Assistant

[350]

You can check the EM Console configuration files to find out if the selected port
has already been configured for another EM console. The configuration files are
located at <ORACLE_HOME>/<hostname>_<OracleSID>/sysman/config/emoms.
properties, there you will find an entry named oracle.sysman.emSDK.svlt.
ConsoleServerPort, which declares the port used by the console.

The emoms.properties file cannot be directly modified by the user,
the EMCA command must be used to set the EM http Port.

If the instance is not running then the EMCA will return an error and won't perform
the configuration task.

Once you are ready, just issue the command below with the DBCONTROL_HTTP_PORT
parameter set.

emca -reconfig ports -DBCONTROL_HTTP_PORT 1158

In the following image, the command has been issued (A), all actions were logged at
the given path (B). If something doesn't work as expected, this is the first place you
should go to get feedback.

In this particular scenario a duplicate port was selected. The EMCA notices the
problem and shows the user a warning (C) alerting the user to the fact that the port
is already in use. The operation will finish, as this is not a fatal error, but if ignored it
will allow only a single EM Console to work.

Chapter 12

[351]

Once the process is finished the Database URL is displayed for the user to verify
the new URL has the correct http port.

EMCA Command Line Interface
The EMCA has several command line parameters that allow you to fully configure
your Enterprise Manager environment. The EMCA's Syntax takes up to four kinds
of parameters, the Operation to be performed, the Mode of the command, the Flags,
where required, and a list of optional Parameters. This line requires more or less
parameters depending on the command to be issued.

EMCA Syntax

emca [operation] [mode] [flags] [parameters]

dbcontrol
centralAgent
all
ports

db
asm
db_asm
repos create
repos drop
cluster
silent
backup

General
Backup
ASM
Cluster

General command-line
-respFile
-SID
-PORT
-ORACLE_HOME
-LISTENER_OH
-EMAIL_ADDRESS
-MAIL_SERVER_NAME
-DBSNMP_PWD
-SYSMAN_PWD
-SYS_PWD
-SRC_OH
-DBCONTROL_HTTP_PORT
-AGENT_PORT
-RMI_PORT
-JMS_PORT

help, h
version
config
deconfig
displayConfig
addinst
deleteInst
reconfig
upgrade
restore

Clustered Databases ASM

-ASM_OH
-ASM_SID
-ASM_PORT
-ASM_USER_ROLE
-ASM_USER_NAME
-ASM_USER_PWD

Backup

-HOST_USER
-HOST_USER_PWD
-BACKUP_SCHEDULE

-CLUSTER_NAME
-DB_UNIQUE_NAME
-EM_NODE
-EM_SID_LIST
-SERVICE_NAME

Enterprise Manager Configuration Assistant

[352]

EMCA commands
The EMCA command has several options that allow the DBA to configure the EM
DB Control Console by defining the http port the console will use, altering the
Enterprise Manager configuration, and rebuilding a repository, amongst many other
tasks. Knowing these options allows the DBA to customize the EM configuration
process. The DBCA allows the DBA to configure an EM Console, but this assistant
does not allow customization, and it assumes there is currently no EM repository
configured at the target database.

Command Description
emca -h This command shows the online help available for the

emca command; if the user types no arguments, or the user
doesn't properly specify the parameters, then this command
will be executed. Some other variants of the command are:
emca --h
emca -help
emca --help

emca –version Displays the EMCA version
emca -config dbcontrol
db [-repos (create |
recreate)] [-cluster]
[-silent] [-backup]
[parameters]

This command configures the EM control console and
optionally it can either create or recreate the EM repository;
you can also use this command to enable the automatic
backup policy and perform the operation against a
RAC configuration.

emca -config
centralAgent (db | asm)
[-cluster] [-silent]
[parameters]

The agent can work as a standalone agent or it can work
centrally if you have a grid control environment setup. The
centralized management can be performed on a database or
on an ASM configuration.

emca -config all db
[-repos (create |
recreate)] [-cluster]
[-silent] [-backup]
[parameters]

This command configures both the database files and the
centrally managed agent. The arguments are similar to
those used to configure the standalone console.

emca -deconfig
dbcontrol db [-repos
drop] [-cluster]
[-silent] [parameters]

This command is used to deconfigure the Console and
optionally drop the EM repository. This command can
apply on a regular database or on a RAC configuration.

emca -deconfig
centralAgent (db | asm)
[-cluster] [-silent]
[parameters]

The centrally managed agent is deconfigured with this
command, either from the database or from the ASM level.

Chapter 12

[353]

Command Description
emca -deconfig all db
[-repos drop] [-cluster]
[-silent] [parameters]

This variant deconfigures both the centrally managed agent
and the database.

emca -addInst (db | asm)
[-silent] [parameters]

In an RAC environment this variant is used to add a
new node to the RAC configuration, it can be related to a
database or ASM.

emca -deleteInst
(db | asm) [-silent]
[parameters]

This option removes an instance from the RAC
configuration. It can either be a database or an ASM
instance.

emca -reconfig ports
[-cluster] [parameters]

This option was previously used to reconfigure the HTTP
port number assigned by default at Console definition time.

emca -reconfig
dbcontrol -cluster
[-silent] [parameters]

This command deconfigures DB Control deployment
for a cluster database, in this case the -cluster modifier
is mandatory.

emca -displayConfig
dbcontrol -cluster
[-silent] [parameters]

You can display the deployment configuration in a RAC
environment. The displayConfig modifier can only be
used in RAC environments.

emca -upgrade (db | asm
| db_asm) [-cluster]
[-silent] [parameters]

The upgrade option performs an upgrade from a previous
DB control version to the current version. The upgrade
process has to do with the configuration files. This is not
a database or software upgrade, these tasks are supposed
to be performed separately. The command will attempt
to modify all dbcontrol instances available across the
different Oracle Homes.

emca -restore (db | asm
| db_asm) [-cluster]
[-silent] [parameters]

If something doesn't work as expected after the upgrade
process, this command can revert the changes made by an
upgrade EMCA command.

EMCA flags
Parameter Description
db This flag instructs the EMCA to execute the action against a database.
asm The operation will be performed against an ASM instance, either

single or RAC.
db_asm This option is used when performing upgrade actions, this instructs

the EMCA to apply the action against both the ASM and the
Database instance.

-repos create A new repository will be created. It is assumed that there is currently
no repository.

Enterprise Manager Configuration Assistant

[354]

Parameter Description
-repos drop This option drops an EM repository
-repos recreate Assuming there is currently a repository; this option drops and

creates a repository.
-cluster This option indicates that the requested action should take place on a

clustered database or ASM instance
-silent This option is used in batch mode, it tells the EMCA not to prompt

for further information from the user or read any user input. When
specifying this option you must also specify the -respFile to point
to a properly configured response file.

-backup This option tells the EMCA to configure the default backup policy.
If this flag is present then the EMCA will require the db_recovery_
file_dest instance parameter to be properly set at the target
Oracle instance, otherwise the EMCA will return in an error state.

EMCA general Command-Line Parameters
Parameter Description
-respFile This option declares the location of the response file to be used

when the -silent flag is declared
-SID This is the target Oracle Instance where the actions will take

place
-PORT This parameter refers to the listener parameter
-ORACLE_HOME This specifies the absolute path of the Oracle Home where

the Oracle Instance resides. No symbolic links are allowed.
-LISTENER_OH If the listener lives in a different Oracle Home from the one

where the Oracle Instance is defined, then you must specify
the Listener Oracle Home using absolute path

-EMAIL_ADDRESS If you enable email notifications this parameter is used to
declare the email address where the notifications will be sent to

-MAIL_SERVER_NAME Using mail notifications requires you to define the outgoing
mail (SMTP) server

-DBSNMP_PWD This refers to the database level DBSNMP password
-SYSMAN_PWD This is the database level SYSMAN password
-SYS_PWD This is the SYS password
-SRC_OH This specifies the absolute path to the Oracle Home of the

database that will be upgraded or restored
-DBCONTROL_HTTP_
PORT

This specifies the EM http port, if not specified the EMCA
will automatically assign one. Make sure this port is not
already taken.

Chapter 12

[355]

Parameter Description
-AGENT_PORT This is the standalone management Agent port for DB

Control. If this port is not specified, the EMCA will automatically
assign one.

-RMI_PORT This sets the RMI (Remote Method Invocation) port.
-JMS_PORT This declares the JMS (Java Messaging Service) port to

be used.

EMCA backup parameters
Parameter Description
-HOST_USER This parameter specifies the OS username
-HOST_USER_PWD This specifies the password of the previously specified user
-BACKUP_SCHEDULE This parameter specifies the time at which the daily backup

will be scheduled in 'HH:MM' format

EMCA ASM parameters
Parameter Description
-ASM_OH This parameter declares the ASM Oracle Home full path
-ASM_SID This specifies the ASM Instance name
-ASM_PORT This specifies the ASM TNS listener port
-ASM_USER_ROLE This parameter declares the role used to connect to the ASM instance
-ASM_USER_NAME This parameter declares the ASM administrator's user name
-ASM_USER_PWD This parameter specifies the password of the previously declared user

EMCA Cluster (RAC) parameters
Parameter Description
-CLUSTER_NAME This parameter declares the cluster name
-DB_UNIQUE_NAME This parameter specifies the database unique name
-EM_NODE This is the target node name where the command will be applied
-EMD_SID_LIST This parameter is a list, in a comma separated format, declaring

the names of the Oracle Instances for agent only configurations
-SERVICE_NAME This parameter declares the service name in a

clustered environment

Enterprise Manager Configuration Assistant

[356]

EMCA 10g Release 1
The EMCA command parameters have changed from Ora10gR1 to Ora10gR2; if you
still have Release 1 installed you must be aware that the EMCA parameters used in
that release were completely different to the parameters in 10gR2. I would go so far as
to say that one of the very few things these releases have in common is the tool name.

EMCA 10gR1 syntax
emca [options] [list of parameters][options] = -[a|b|c|e <node>|
f <node>|h|m|n <ndoe>|r|s|x <db>|RMI_PORT <port>|JMS_PORT <port>|
AGENT_PORT <port>|DBCONSOLE_HTTP <port>]

[list of parameters] = [HOST | SID | PORT | ORALCE_HOME | LISTENER |
HOST_USER | HOST_USER_PWD | BACKUP_HOUR | BACKUP_MINUTE |
ARCHIVE_LOG | EMAIL_ADDRESS | MAIL_SERVER | MAIL_SERVER_NAME |
ASM_OH | ASM_SID | ASM_PORT | ASM_USER_ROLE | AMS_USER_NAME |
ASM_USER_PWD | EM_HOME | DBSNMP_PWD | SYSMAN_PWD | SYS_PWD |
CLUSTER_NAME | DB_NAME | SERVICE_NAME |]

EMCA 10gR1 options
Parameter Description
-a This option configures for an ASM database
-b This configures for automatic backup
-c Configures a cluster database
-e <node> Removes a node from the cluster
-f <file> Specifies the file name that contains parameter values
-h Displays help
-m Configures EM for a central agent
-n <node> Adds a new node to the cluster
-r This option skips the creation of the repository schema
-s This option enables silent mode so the user is not prompted for

information
-x <db> This option removes a SID or DB configuration
-RMI_PORT <port> This stands for the Remote Method Invocation (RMI) port
-JMS_PORT <port> This is the Java Messaging Service (JMS) port to be used
-AGENT_PORT <port> This is the standalone management Agent port for DB Control.

If this port is not specified the EMCA will automatically assign one.
-DBCONSOLE_HTTP_
PORT <port>

This specifies the EM http port, if not specified the EMCA will
automatically assign one. Make sure this port is not already taken.

Chapter 12

[357]

EMCA 10gR1 parameters
Parameter Description
HOST Database host name
SID Database Instance name
PORT TNS Listener port
ORACLE_HOME Database Oracle Home
LISTENER TNS Listener Name
HOST_USER Host user name used for automatic backup
HOST_USER_PWD Password for the previously declared user
BACKUP_HOUR Scheduled backup hour [00-24] in number for the default

backup policy
BACKUP_MINUTE Scheduled backup minute [00-60] in number for the default

 backup policy
ARCHIVE_LOG Archive log configuration
EMAIL_ADDRESS Email address for the generated alerts
MAIL_SERVER Outgoing mail (SMTP) server for the generated alerts
ASM_OH ASM Oracle Home
ASM_SID ASM Oracle SID name
ASM_USER_ROLE This parameter declares the role used to connect to the ASM

instance
ASM_USER_NAME This parameter declares the ASM administrator's user name
ASM_USER_PWD This parameter specifies the password of the previously

declared user
EM_HOME Enterprise Manager Oracle Home
DBSNMP_PWD Password for the DBSNMP user
SYSMAN_PWD Password for the repository SYSMAN user
SYS_PWD Password for the SYS user

Enterprise Manager Configuration Assistant

[358]

EMCA 10gR1 RAC parameters
Parameter Description
CLUSTER_NAME This parameter declares the cluster name
DB_NAME This parameter specifies the database unique name
SERVICE_NAME This is the target node name where the command will be applied

EMCA silent mode
EMCA is by default an interactive tool; if required it asks the user for information
input. If needed, the EMCA can run in silent mode, thus allowing the user to include
the EMCA in a batch script for massive deployments.

EMCA Silent mode requires a plain text format response file where the parameters
are specified.

In the next example EMCA is launched in silent mode to have it reconfigured.

EMCA demo response file contents (drop):

#
EMCA parameters for silent mode setup
#
SID=sigma
PORT=1521
ORACLE_HOME=/u01/app/oracle/product/10.2.0/db_1
DBSNMP_PWD=oracle
SYSMAN_PWD=oracle
SYS_PWD=oracle

Command to deconfigure console and drop EM repository:

emca -deconfig dbcontrol db -repos drop -silent -respFile /tmp/emca_
sigma_drop.rsp

Chapter 12

[359]

EMCA demo response file contents (create):

#
EMCA parameters for silent mode setup
#
SID=sigma
PORT=1521
ORACLE_HOME=/u01/app/oracle/product/10.2.0/db_1
DBSNMP_PWD=oracle
SYSMAN_PWD=oracle
SYS_PWD=oracle
DBCONTROL_HTTP_PORT=1158

Command to configure console and create the repository:

emca -config dbcontrol db -repos create -silent -respFile /tmp/emca_
sigma_create.rsp

EM directory structure
When talking about the Enterprise Manager directory related structure, there are
basically four relevant sections in the Oracle Home, the first one has to do with
EMCA, the EMCA directory is where Oracle stores the log files related to EMCA
executions, there you will find a directory where generic EMCA output is stored,
meanwhile under this directory you will find directories named the same as each
Oracle Instance that has been configured by EMCA.

The second section is related to the specific EM console; here there are two main
directories, one stores the console configuration, most of these configuration files
are not supposed to be manipulated by the DBA unless explicitly directed by Oracle
support. There are configuration files that are modified by EMCA.

There is a fourth section located under the Oracle Home named sysman. When a new
console is created EMCA reads template configuration files from here and executes
the scripts to create or recreate the EM repository.

Enterprise Manager Configuration Assistant

[360]

As EM is a Java Enterprise Edition based application, it requires a JEE environment
so it can be executed. Oracle provides an OC4J for each configured console.
The directory can be located at the oc4j directory right at the Oracle Home level.

EM & EMCA Directory Structure

EMCA log files

Oracle Home

cfgtoollogs

emca

< >

<Hostname> <Oracle SID>

sysman

con g

config

emd

emd

opmn

recv

Console specific
configuration and
log files

sysman

Generic repository
configuration files

admin

emdrep

j2ee

jlib

recv

webapps
oc4j

j2ee

OC4J_DBConsole_<Hostname>_<Oracle SID>

application-deployments

META-INF

persistence

Directory structure related
to the OC4J containter that

runs the EM application

con g

og

lib

Chapter 12

[361]

EMCA log files
When EMCA is used it records the activity in log files located at $ORACLE_HOME/
cfgtoollogs/emca/<ORACLE_SID> you may just want to optionally backup and
purge these files when they are no longer required.

The SYSMAN configuration files
There are two main configuration files located in the
<Oracle Home>/<hostname>_<Oracle SID>/sysman/log directory. One is named
emd.properties and a second file named emoms.properties. The first file defines
the URLs used by the Upload Manager, the agent, the agent version and the agent
TZ region; these two files should not be managed manually except when explicitly
directed by Oracle Support. The second file, emoms.properties, defines how is
the SYSMAN user going to connect to the target database, it also contains the SYSMAN
password (encrypted). There is a procedure to change the password of the SYSMAN
user if required.

The SYSMAN log files
Log and trace files are the first source of information when you want to troubleshoot
the console. If the console doesn't start or it happens to be inaccessible you should
first inspect the files located at <Oracle Home>/<hostname>_<Oracle SID>/
sysman/log directory, there you will find several log and trace files. The log files
will be growing on demand as required by the involved processes, the DBA must be
aware of this and regularly maintain the files. The DBA can manage the files' growth
by configuring the maximum file size, the maximum number of files as well as the
log file location. The procedure to manage log files is outlined next.

As you are working with sensitive configuration files,
you must backup these files prior to modifying their contents.

Enterprise Manager Configuration Assistant

[362]

Log/Trace File Configuration File File Entry Description
emoms.trc <Oracle

Home>/<hostname>_
<Oracle SID>/
sysman/config/
emomslogging.
properties

log4j.appender.
emtrcAppender.
MaxFileSize

Maximum
File Size

log4j.appender.
emtrcAppender.
MaxBackupIndex

Maximum
Number
of Files
(Rotation)

log4j.appender.
emtrcAppender

File Location

emoms.log <Oracle Home>/
<hostname>
_<Oracle SID>
/sysman/config/
emomslogging.
properties

log4j.appender.
emlogAppender.
MaxFileSize

Maximum
File Size

log4j.appender.
emlogAppender.
MaxBackupIndex

Maximum
Number
of Files
(Rotation)

log4j.appender.
emlogAppender.
File

File Location

http-web-access.
log

<Oracle Home>/oc4j/
j2ee/OC4J_DBConsole_
<host>_<Oracle SID>/
config/
http-web-site.xml

<access-log
path="../
log/http-web-
access.log"
split="day"/>

Modify the
split value to
any of these
values: none,
hour, day,
week, and
month.

rmi.log <Oracle Home>/
oc4j/j2ee/OC4J_
DBConsole_<host>_
<Oracle SID>/config/
rmi.xml

<file path="../
log/rmi.log"/>

Define the
new location,
if required, of
the rmi.log
file.

emdb.nohup There are no files nor parameters to configure the log
rotation or maximum size, you have to stop the console
and manually backup or purge the file located at <Oracle
Home>/<hostname>_<Oracle SID>/sysman/log/emdb.
nohup

Chapter 12

[363]

Log/Trace File Configuration File File Entry Description
server.log <Oracle Home>

/oc4j/j2ee/OC4J_
DBConsole_<host>_
<Oracle SID>/config/
server.xml

<file path="../
log/server.log"
/>

You can only
change the
location of
the
log file.

global-
application.log

<Oracle Home>/oc4j/
j2ee/OC4J_
DBConsole_<host>_
<Oracle SID>/config/
application.xml

<log>
 <file
path="../
log/global-
application.
log"/>
 <!-- Uncomment
this if you
want to use
ODL logging
capabilities
 <odl path="../
log/global-
application/"
max-file-
size="1000"
max-directory-
size="10000"/>
 -->
</log>

Uncomment
the ODL
entry, this
will allow
log file
rotation, and
set suitable
values
for the path,
max-file-size
and max-
directory-size
as required.

em-application.log <Oracle Home>/oc4j/
j2ee/OC4J_DBConsole_
<host>_<Oracle SID>/
config/
orion-application.xml

<file
path="../../
log/em-
application.
log" />

You can only
change the
location of
the
log file.

Environment changes
Changing the network environment may happen as often as, say, the administrative
passwords get change, but when it happens, then the environment change directly
affects database and Enterprise Manager availability, which can adversely affect the
smooth operation of the site. When the environment changes you must be aware of
the consequences these changes will bring and how to restore the service as soon
as possible.

Enterprise Manager Configuration Assistant

[364]

Changing the IP address or host name
Changing the IP address means Enterprise Manager Console won't be available
and it won't be possible to start it; all the Oracle connectivity configuration files are
affected too.

As this is an administrative change, it is strongly suggested to backup the current
environment by taking a full Oracle Home and database backup. This will back-up
the current configuration files as well as the current EM repository.

The procedure used to get the environment working is as follows:

1. Shut down enterprise manager, the database and all Oracle related services.
2. Perform the IP and/or host name changes.
3. Edit the <Oracle Home>/network/admin/listener.ora and <Oracle

Home>/network/admin/tnsnames.ora files and replicate the change to
these files. This list is not at all exhaustive, depending on the network
configurations you have set up you may have to modify other files or
network connectivity configuration systems such as LDAP centralized
entries, wallets, and so on.

4. Start up the listener and databases do not start enterprise manager at this
time as its configuration won't work with the environment setup, and it
will need to be modified.

5. Deconfigure the EM Console and drop the repository.
6. Reconfigure the EM Console and have the repository created.
7. At the end of this procedure your Enterprise Manager console will

be brought back to business.

Oracle RDBMS should work on fixed IP address servers, if your server has a
dynamically assigned IP then you will have to configure a loopback adapter so you
can fix the IP references to this adapter and have the OS hosts file configured so
the official hostname and optionally the domain are associated with the loopback
adapter's IP address instead of the host's actual IP address. This information will be
read at the time EMCA performs the configuration.

Changing administrative passwords
Changing the SYSMAN password requires more than just changing the password
at the database level, if you just change the password at this level then Enterprise
Manager won't be accessible any more. The Enterprise Manager DB Console requires
two users, one of them is the Agent monitor user (DBSNMP), and the other one is
the owner of the EM repository (SYSMAN), there is a procedure to change these
administrative passwords.

Chapter 12

[365]

Changing SYSMAN password
The procedure to change the password starts with properly setting the environment
variables: ORACLE_HOME, ORACLE_SID, and PATH.

1. Shut down Enterprise Manager Console and make sure it is completely off.
emctl stop dbconsole

emctl status dbconsole

2. From a SQL*Plus prompt connected with a privileged account (SYS, SYSTEM
or SYSMAN) modify the SYSMAN's password with a regular ALTER USER
command
SQL> alter user SYSMAN identified by <SysmanNewPassword> ;

3. Verify you can open a SQL*Plus session using the SYSMAN user identified
with the recently set password.
sqlplus SYSMAN/<SysmanNewPassword>

4. The next phase has to do with replicating the change on the EM configuration
files.

5. From an OS prompt change the current directory to <Oracle Home>/
<Hostname>_<Oracle SID>/sysman/config directory.

6. Backup the emoms.properties configuration file.
7. Edit the emoms.properties file with a text editor, look for the oracle.

sysman.eml.mntr.emdRepPwd entry and replace the text string with the new
SYSMAN password written in clear text, then look for the oracle.sysman.
eml.mntr.emdRepPwdEncrypted entry and change the value to FALSE.
Enterprise Manager will automatically change the value to TRUE and it will
rewrite the password with the encrypted version.

8. Once you are ready, start the console using the regular emctl start
dbconsole command and when this step is finished verify the password
written in the previously modified configuration file has changed to the
encrypted version.

Your Enterprise Manager console should be up and running now with the new
password. You can verify the access of the SYSMAN user sessions in the database
with a simple query to the V$SESSION dynamic view.

Enterprise Manager Configuration Assistant

[366]

Changing DBSNMP password
This is the second administrative user related to Enterprise Manager and when you
need to change its password there is a procedure you must follow.

It is assumed that the ORACLE_HOME, ORACLE_SID, and PATH environment variables
are properly set.

1. Stop the standalone console:
emctl stop dbconsole

2. Verify both the console and the agents are down:
emctl status dbconsole

emctl status agent

3. Connect with a privileged user at SQL*Plus and change the DBSNMP
password:
SQL> alter user DBSNMP identified by <DBSMPNewPassword>;

4. Verify you can open a SQL*Plus session using DBSNMP and the recently
assigned password:
sqlplus DBSNMP/<DBSNMPNewPassword>

5. At the OS level change to the directory and use a text editor to modify
the targets.xml file (you must backup this file prior to proceed with the
modification).
<Oracle Home>/oc4j/j2ee/OC4J_DBConsole_<host>_<Oracle SID>/emd

6. Look for the line:
<Property NAME="password" VALUE="<encrypted_string>"
ENCRYPTED="TRUE"/>

7. Replace the encrypted value with the new password value, and the
ENCRYPTED entry value to TRUE, this will allow you to write the password
in clear text format, later EM will change this value with the encrypted
password version.

8. Finally, start the console and verify the entry you modified has been changed
to encrypted and the encryption flag is set back to TRUE.

Chapter 12

[367]

Securing Enterprise Manager
By default Oracle 10g configures the Enterprise Manager Console to be accessed
in HTTP mode, this means everything that travels from and to the EM console is
visible to any third party who monitors the network connection. When the 10g Rel.
2 RDBSM is upgraded to 10.2.0.4.0 and the databases are consequently upgraded,
Oracle modifies the console to be accessed in secure mode. In Oracle 11g Rel. 1 and
11g Rel. 2 Oracle configures the console in HTTPS mode by default.

If you have not upgraded to 10.2.0.4.0 and you want to secure the access to the EM
DB Console, then you must use the secure option of the emctl command.

emctl secure dbconsole <sysman password> <registration password>
[<hostname>]

The command takes some minutes to complete; afterwards the console can be
accessed in HTTPS mode.

In the next example a console is configured using the previously defined syntax (A),
Enterprise Manager will look for the encryption key in the repository (B), then it will
configure the wallet and the wallet access (C), and finally the console will be secured
and the access can be made from this moment on in https mode.

Enterprise Manager Configuration Assistant

[368]

The configuration changes won't be considered until Enterprise Manager restarts, so
you should stop and start the console at your earliest convenience.

emctl stop dbconsole db

emctl start dbconsole db

When accessing the console a warning will be displayed in the browser window,
letting the user know that there are problems with the certificate, even though the
certificate structure is valid, this is issued by a not known Certificate Authority. You
can accept the certificate and proceed with your session.

You can verify the change in the agent configuration, this was also modified and
the upload process will be performed in HTTPS mode too. Issue the emctl status
agent to verify the change.

Summary
Today, efficient database interactive administration cannot easily be achieved
without Enterprise Manager, this does not mean the command line interface is
obsolete, it simply means that using commands to perform the daily database
management tasks will take longer than using the graphical interface.

Considering this, keeping Enterprise Manager DB Control Console available will
provide the DBA with a more efficient way to easily manage the complexities of
Oracle databases. The tool to assist the DBA in making sure EM will be properly
configured is the EMCA, and as we have seen, the EMCA is much more than just a
tool to initially configure the console. It is a tool that allows the DBA to customize the
nuts and bolts of the console.

On the other hand, keeping the software up to date is a good practice, it wipes off
known bugs and it lets you prevent possible security breaches with a more robust
and secure software version. OPatch is the tool that allows you to manage your
software updates related to Critical Patch Updates (CPU) or individual patches. In
the next chapter OPatch will be explored.

OPatch
Oracle Corporation provides dynamic software which is constantly improving.
Oracle periodically releases software updates by means of Critical Path Updates
(CPUs). Oracle also releases individual patches depending on the circumstances.
These one-off patches can easily be applied using the OPatch tool. Oracle also
releases major maintenance updates known as Patch Sets. A Patch Set is a group of
one-off patches that have been tested and verified to work together. There may be
additional functionality as well as bug fixes included in a Patch Set. When a Patch
Set has been applied, the component-specific release number (http://download.
oracle.com/docs/cd/B19306_01/server.102/b14231/dba.htm#sthref94) is
incremented. Patch Sets are applied with the Oracle Universal Installer included
within the same patchset, and the other kinds of patches are applied using OPatch.

It is strongly suggested to keep your Oracle software updated to the last available
Patch Set level so that known bugs can be avoided and if the database faces an issue
that requires Oracle Support Services it is easier for the analyst to eliminate the
possibility of the issue being caused by a known bug from the beginning. In case of
doubt you should contact Oracle Support Services.

OPatch
OPatch is a Java based utility that requires installation of the Oracle Universal
Installer. Starting Oracle 10g Rel. 2, this tool is included in the Oracle Home. Prior
to this release the DBA had to download a patch from Metalink to install OPatch
(p2617419_10102_GENERIC.zip). OPatch in 10gRel2 is not compatible with previous
Oracle releases.

Even though OPatch is an executable, it is not located in the ORACLE_HOME/bin
directory. It has its own directory located at ORACLE_HOME/OPatch. The opatch
executable is a shell script that launches the OPatch Java class, the actual
OPatch executable.

OPatch

[370]

What is the version of the OPatch currently used? This is one of the most frequently
asked questions regarding OPatch. There is a command to find the version number,
but taking a look at the OPatch execution with no parameters will also give
you some basic useful information regarding the main commands as well as the
OPatch version.

This image shows the output of a simple OPatch command execution.

Issuing ./opatch (A) directly from <Oracle Home>/OPatch with no arguments,
shows the OPatch version. In this case, it is the same as that of the Oracle Home
(10.2.0.1.0) (B). It shows information about the Oracle Home (C) and the Central
Inventory location (D), confirms the OPatch version (E), displays the log file location
(F), and finally displays basic help messages of the main OPatch commands (G).

Downloading the latest OPatch version
You can get the latest OPatch version from metalink. Oracle distributes the OPatch
tool by means of a patch; you can get it from: http://updates.oracle.com/
download/6880880.html. Select the version and the platform that corresponds to
your environment.

Chapter 13

[371]

You must have a valid CSI and username to access
the updates.oracle.com site.

OPatch requirements
In order for you to use OPatch, some requirements must be met:

1.	 Set the Oracle Home environment variable to point to a valid Oracle
Home directory. This Oracle Home must match the one used during
the installation.

2. Java SDK 1.4 or higher must be installed.
3. The environment variable that points to the shared library must be properly

set (LD_LIBRARY_PATH or SHLIB_PATH, which depends on the OS platform).
4. OPatch creates a rollback script in case the patch installation has to be

undone. It also performs a backup of the Inventory, so you must make sure
you have enough free space for these operations.

5. Use a compatible version, 10gR2 requires OUI to be 10.2.0.1.0 or higher.

OPatch

[372]

6. When working in RAC environments, make sure the user equivalence
between hosts is correctly set.

7. Verify the Oracle Inventory is valid, you can check this by issuing the
command OPatch lsinventory -detail. This command displays the
software installed on the target Oracle Home. If this command returns no
information or it shows an error message, it means that the Inventory within
the Oracle Home is either missing or corrupt.

OPatch syntax
The opatch executable can be found at <Oracle Home>/OPatch directory and it has
this syntax:

<Oracle Home>/OPatch/opatch option [-arguments]

You should be aware that the OPatch for 10g Release 1 was a Perl script and
it had a different syntax. For more information, refer to the Metalink note 242993.1
OPatch FAQ.

Chapter 13

[373]

OPatch options
OPatch 10g Release 2 has five main options. The main options are used to list the
contents of the inventory, apply the patch, and retrieve information about the patch
and the system to be patched. These options are further detailed in the next section.

lsinventory: This option lists the inventory for a particular Oracle Home. This is
used to list the installations that can be found. When launched with no options, this
command shows the top level components found for the current Oracle Home.

apply: This option applies an interim patch to an Oracle Home from the current
directory. The patch location can be specified using the parameter patch_location.

query: This option provides information about the patch and the system
being patched.

rollback: This option is used to remove a specific interim patch from the current
Oracle Home.

version: This option is used to display the version number of the OPatch utility
being used.

Oracle maintenance using OPatch
There are several situations when an interim patch is required. The most common
one is to apply patches that correct specific bugs which you have encountered.
Another situation where software maintenance is required is when Oracle releases
the quarterly Critical Patch Update bundle. The patch task can consist of applying
a single patch or several patches at once. Specific detailed instructions are always
available in the companion README file.

Never skip the README file and never take a patch for granted;
you may face particular circumstances that, if neglected, may leave
your software in an unstable condition.

OPatch

[374]

In case something goes wrong or you want to uninstall the patch OPatch, always
performs a backup of the affected files so you can apply a rollback procedure to
return things to how they were when OPatch session has started.

It is strongly suggested to have an Oracle Home, Oracle Inventory,
and a backup of the database handy just in case something doesn't
work as expected.

Applying a single patch using OPatch
In order for you to be able to apply a patch, a generic procedure can be defined:

Thoroughly read the companion README file. Instructions stated
there supersede any procedure. This outline is merely a suggestion
that can be overridden by any specific patch instructions.

1. Make sure the Oracle environment variables are properly set.
2. Include the <Oracle Home>/OPatch directory in the PATH

environment variable.
3. Each patch requires the execution of OS commands, the PATH variable

must be able to see them.
4. Unzip the file patch file to a stage area, if you don't already have a predefined

location, the <Oracle Home>/OPatch directory is suggested as a stage area.
5. Once you are ready, at the OS prompt, change the current working

directory to the patch directory <Oracle Home>/OPatch /<PatchNumber>.
Now issue the opatch apply command, or whatever options were defined in
the README file.

6. Once the OPatch task is finished, read the contents of the log files to verify if
the patch apply task ended successfully. If a problem shows up, the log files
are the starting point for a troubleshooting session.

In the next image, a simple OPatch session is started to apply a patch against a given
Oracle Home.

Chapter 13

[375]

In this session, a patch was downloaded from Metalink and it was unzipped to a
stage area (A). Listing the files included in the patch, you can see the README.txt file
at the patch root level (B). This file could be in plain text or HTML format, there are
patches that include both formats.

Once all of the prerequisites have been met and the environment has been properly
configured, the opatch apply command is issued (C). This starts the OPatch session.
OPatch displays the Oracle Home that will receive the patch (D), the OPatch version
(E), the OUI version (F), the OUI location, and the Log File location (G).

OPatch notifies the user that the specific patch-apply session has started (H). It starts
by performing some prerequisite checks (I). In case you are required to perform a
rollback session, OPatch performs a backup of the directly affected files (J). Then it
proceeds with the actual patch apply (K) and finally it verifies the update process (L).
If everything went as expected, it will notify the user that the OPatch session ended
successfully (M).

OPatch

[376]

Querying the Oracle inventory
The simplest way to verify if a given patch has been applied is by listing the
Oracle Inventory contents. This is achieved by issuing the opatch lsinventory
[-detail] command.

Rolling back a failed OPatch session
During the patch apply session, Oracle creates a directory under the Oracle Home
named .patch_storage. Oracle creates a structure to store the procedures and
backup files to undo a patch apply session.

A basic rollback session can be started using opatch rollback -id PatchNumber.
You may require a rollback session if a patch-apply session fails:

•	 if you find a conflicting patch
•	 if the patch doesn't meet the user expectations
•	 if the patch does not fix the problem

Chapter 13

[377]

Considerations after applying a patch
After a patch has been applied, there will be things that will change. It is a good
idea to perform a backup after the patch has been applied and keep it in a safe place
in case the Oracle Home or the Oracle Inventory get compromised due to a media
failure or accidental deletion in future.

Oracle databases can still be created using DBCA, but if the patch modified the
structure or contents of the database dictionary, then you must be aware that these
changes are not replicated against the seed databases. So if you are using DBCA
to create a new database using the current seeds, the scripts or other post apply
procedures must be manually applied against the new database. If you create a
new database using the CREATE DATABASE command, there is no need to apply the
scripts that modify the database dictionary. These are already considered when the
catproc.sql or catalog.sql scripts are run.

You should have a test plan so that after applying a patch you ensure the system
works as expected. A good set of regression tests is important to verify that the patch
has not accidently broken application functionality.

OPatch

[378]

OPatch in Oracle 11g
You should be aware that OPatch is tool sensitive to the version. You cannot use the
OPatch tool from one release to patch another release. Oracle 11g introduced several
new options. The next three images show the OPatch syntax in 11g, how it changed
from the 10g release, and which options were added in this release.

Here you can see from the syntax summary that there were many more options
added, and in the next two images, the syntax of the new options is shown. The
util commands are depicted in the next image. The commands available are used
to apply SQL commands, clean up the backup, perform file copies, restore an Oracle
Home, or perform other remove or rollback actions.

Chapter 13

[379]

In the next image the detailed options of the prereq command are shown. The
prereq command listed is used to check the central inventory, look for conflicting
patches, verify the Oracle home, OUI, and Oracle installer locations, among other
checking operations. These options are particularly useful to validate the actions
before applying the patch. Checking the environment, resolving patch conflicts,
and validating the target platform are shown among many checks it carries out.
This prereq options provides reduces your chances of ending with a failed
OPatch session.

OPatch

[380]

Oracle Configuration Manager
Registration
Starting with the Oracle 10.2.0.4.0 release, Oracle added the Oracle Configuration
Manager Registration form as a part of the patchset setup. This tool allows you to
associate your configuration information with your Metalink account. This tool lets
you link your service requests with the pre-collected configuration data gathered
from the current Oracle Home.

If you are planning to use this tool, you must have available the Oracle Support
account information, which comprises of the Customer Support Id (CSI), your
Metalink Account Username and password, and the country where this CSI is valid.
When checking the box in the registration form, a window with the "Terms of Use"
is displayed. Make sure you read and understand it. Once you are ready, accept the
"Terms of Use" and fill in the required form information.

You should be aware that this functionality is available as long
as your CSI remains valid. You should contact your Oracle
representative if your CSI doesn't allow you to use this functionality.

If you require a Proxy server to access internet, fill in the required connection
information, which can be accessed by means of the Connection Settings button.

If you don't complete the registration form at this time, you can do it later, but in the
mean time if you need to apply an interim patch, a warning will be displayed letting
you know that you have already installed the Oracle Configuration Manager tool but
you have not configured it yet.

Chapter 13

[381]

Critical Patch Updates
Oracle releases a patch bundle on a quarterly basis known as a Critical Patch
Updates (CPU). It is strongly advised to install this patch as this provides
security fixes on a regular basis. The CPUs are released every January, April, July,
and October. For further information about CPU releases, you can refer to the
information provided on the Critical Patch Updates and Security Alerts page
located at http://www.oracle.com/technology/deploy/security/alerts.htm.

The procedure to install the CPU is detailed in the companion README.txt or
README.html file which describes the steps required to install the CPU in detail.
You must read this file prior to starting the apply session. The key tool to perform
the CPU install is OPatch and the specific options required to perform this task may
vary from CPU to CPU, so you must read the instructions included in the CPU.

CPUs are cumulative, so you don't have to apply all the CPUs for a given release. If
you apply the latest CPU available, you will automatically be applying all available
CPU patches released so far for the given RDBMS version. At the above URL you
will find CPU availability. When a CPU is made public, it doesn't mean it will be
available to all platforms and it won't be available to all patchset levels, you must
first verify if your platform qualifies for the released CPU. The patch number related
to the CPU is not the same for all the platforms or for all the patchset levels. You
must first find out which specific patch number corresponds to your platform and
patchset level.

Find out the installed patches
As OPatch uses the same Oracle inventory used by OUI, you can use it to get
information about the patches applied in the first instance. The information is
displayed in the form of interim patches. The following command line lists all
the applied patches so far:

opatch lsinventory -all

OPatch

[382]

However, this does not differentiate between the regular interim patches and
those applied by means of the CPU.

When the CPU patches are applied they modify the contents of a set of registry
tracking tables. The table SYS.REGISTRY$HISTORY records the total number of CPUs
applied so far to a given target. Querying this table is useful not only for the DBA
to determine the CPU level applied against the database, but also for audit tasks to
assess if a given database meets the company's patch level compliance requirements.

This query can be used to get the CPU information (the use of column formatters
is suggested):

SELECT ACTION_TIME,
 ACTION ,
 VERSION ,
 COMMENTS ,
 BUNDLE_SERIES,
FROM REGISTRY$HISTORY;

Chapter 13

[383]

Critical Patch Advisory
If your environment has Enterprise Manager Grid Control you can use the Critical
Patch Advisory, which is a valuable tool to diagnose the whole environment and
diagnose among the targets which ones require a CPU to be applied. Grid Control
can connect to Metalink and download the required patches. It also supports an
offline operation mode for those targets that don't have a direct Internet connection
available. Note that this requires both the Metalink account and the Configuration
Management Pack option. The Critical Patch Advisory is also available in Oracle 11g.

Hot patching (11g only)
Normally when a patch is applied the Oracle services must be shutdown. This means
a downtime and a maintenance window must be open while the operation takes
place. The DBA must ensure that the process will be successful on the first attempt
otherwise there it must be a fall back procedure in place.

Among the high availability features provided by 11g, Oracle introduced the Hot
patching concept. Hot patching allows the DBA to install, enable, and disable a patch
online without disruption to Oracle services. Hot patches don't require instance
shutdown, and they are installed with the traditional OPatch tool. This tool can
detect conflicts between hot patches.

OPatch

[384]

Not all patches in 11g can be installed in Hot patch mode. First you must find out if
the patch supports the hot patch apply feature. You can use the following command
to determine if this mode is allowed:

opatch query -is_online_patch <PatchLocation>

or

opatch query <PatchLocation> -all

The patches reported as Hot Patch enabled are shipped as dynamic or shared
libraries which are mapped into memory by each Oracle process. When installing a
patch in hot patch mode the oracle binary is actually not changed; even though the
patch persists across instance restart operations.

Not all OS platforms currently support hot patching, you must refer to Oracle
support to find out if your platform supports this mode.

Troubleshooting OPatch
There may be several circumstances that cause OPatch to fail in the patch apply task.
The DBA must always read the instructions and make sure they are fully understood
and the prerequisites are fully met. This reduces the number of possible failures
during the patch apply process.

Let's assume a scenario; the DBA tries to apply a patch but it is only partially
applied, OPatch works in an idempotent way, that is, the steps required by OPatch
to apply a patch are executed only once. It doesn't matter how many times the user
manually restarts the patch apply task. So if the user wants to rollback a partially
applied patch the only way to start the rollback procedure is by first finishing the
started patch apply task.

PATH environment variable
The PATH environment variable is critical. You must always make sure it is properly
set and the OS commands required by OPatch are visible; otherwise, the patch
process will fail.

OPatch log files
The OPatch log files are located under the ORACLE_HOME/patch_storage/
patchNumber directory. The log file is named <PatchNumber>_Apply_<date>.log.
This file contains all the steps sequence applied by OPatch. If a patch fails, the DBA
should refer to this file to start diagnosing what could have gone wrong during the
apply phase.

Chapter 13

[385]

Using Enterprise Manager for software
maintenance
Enterprise Manager can be used to perform software maintenance tasks. EM can be
configured to access Metalink, query the patches required by the database, download
them, and store them in a reserved area known as the Patch Cache; the DBA can
take them from this region and schedule them to be applied at a later time. You
must remember that there are licensing concerns; you require the Configuration
Management Pack.

Enterprise Manager Metalink configuration
There are a couple of requirements the DBA must meet to have Enterprise Manager
connected to Metalink and perform the Patch download process.

Configure the Metalink Credentials: This can be done by clicking on the setup link.

1. There will be a link named Patching Setup.
2. Here we will find the form where the Metalink credentials are stored.
3. In this form, there is a section to configure the Patch Cache.
4. Make sure to reserve enough space to store the patches to be downloaded.

The URL, http://updates.oracle.com is valid at this time, Oracle may change it
any time in the future, and you should contact Oracle Support Services to configure
the updates URL properly.

OPatch

[386]

When the credentials are introduced, Enterprise Manager performs a test
connection to Metalink. If this operation is successful then the user credentials can
be considered valid.

In the case of Oracle 11g, the procedure to set up Metalink access information is the
same, although the page has a different style from the one used in 10.2.0 version.

Refresh from Metalink Job
Configure a Job to perform a periodic refresh from Metalink. If you don't configure
this Job then you will receive an error while trying to access the Patch Cache that will
warn you about running a RefreshFromMetalink Job. Configure the Job that will be
periodically accessing Metalink to refresh the Patch Cache. If you take a look at the
bottom of the database page, you will see a Jobs link; by clicking on this link, you
can access the section where you can schedule this Job.

Chapter 13

[387]

This link leads to the Enterprise Manager Job definition page, these jobs are
different from the regular jobs managed by the DBMS_SCHEDULER. This is an
Enterprise Manager Job that is stored in the repository tables. These jobs work
the same way and with the same mechanism as the jobs manage with the
DBMS_SCHEDULER package, but the EM programs cannot be redefined, although
they can be rescheduled. In the Job Activity form page, you can create a new job of
RefreshFromMetalink type. The next form will ask you to provide further details;
the job Name, the schedule, and the access to the job.

OPatch

[388]

Once the job has been launched you can monitor its progress and verify the
output log. You should make sure the job has ran smoothly, otherwise a
troubleshooting session should be started. If the credentials, and if applicable, the
updates URL and the proxy parameters are properly set, then some other issues that
show up may have to do with connectivity to the site, updates site maintenance, or
time out issues.

Once the process is finished, check the log for successful completion. If the process
was not successful; then diagnose the cause of the error and, if required, raise a
Service Request at Metalink.

Chapter 13

[389]

Currently, the name of the product and the platform names have
increased in size, so you may face an issue with the column length of the
SYSMAN.MGMT_ARU_PLATFORMS and SYSMAN.MGMT_ARU_PRODUCTS
tables. If this is the case it is strongly suggested to raise a service
request at Oracle Support Services. This is documented in the
Metalink Note 459027.1.

Downloading and staging patches
Once the setup procedure is finished and you are able to synchronize with Metalink,
you can query all the patches that apply to your platform. Selecting the maintenance
tab from the main page, you can click on the Apply Patch link in the Database
Software Patching section. This will show you the available patches for the target
platform ordered by the patch release date in descending order.

You can see a process train at the top of the screen. This will lead you through
the process of downloading and applying or staging the patch for later application.
The following instructions will show you how to do it:

1. Select Patch: On the first page you have a Search Criteria form that allows
you to look up patches on Metalink. You can enter the search criteria. By
default it is related to the specific platform you are currently using. Once the
query is executed a Search Results table is filled with the patch information
that was found, there you can select a single patch to be either staged or
applied at a later step.

2. Select Destination: This screen originally was designed for the Grid Control
environment, so the target selection is based on multiple platforms where the
patch can be applied which are filtered depending on the specific release and
platform. The destination is filtered based on the patch destination type.

3. Set Credentials: The patch stage or apply operations require you to have
access to the OS as a valid user. In this case Oracle, the owner of the
installation, is the user selected to perform the tasks at the OS level. You must
provide both, the user name and the password.

4. Stage or Apply: Once the patch has been downloaded to the target
destination, you can optionally proceed to apply it or just stage it. On this
page you select if you want to run the script to apply the patch or just leave it
at the Patch Cache area. If you wish to apply the patch after it is downloaded
you must make sure your system is at a maintenance window that allows
you to perform the task and you must make sure the patch application
process won't affect system availability afterwards.

OPatch

[390]

5. Schedule: The process can be scheduled to run immediately after
the user interrogation is finished or you can schedule it to be executed at a
later time. This is the same scheduler form seen in the Job Manager. Here
you define a meaningful Job name and a Job description that allows you to
positively identify the task at a later time. This kind of task doesn't allow
future repetitions. It is assumed the patching task will be run just once,
so the only parameters you can specify have to do with the time your task
will be scheduled.

6. Summary: This final stage is the point of no return where you validate the
operation. If you feel comfortable with the parameters set then just proceed
with the task execution. The job execution time depends mainly on the patch
size to be downloaded and the Internet speed.

Enterprise Manager stages patches at <Oracle Home>/EMStagedPatches. Here you
can find all downloaded ZIP files as well as the unzipped patch under a directory
named the same as the patch number. If you want you can manually apply patches
directly using OPatch from this stage area and use Enterprise Manager as a query
and download tool.

Chapter 13

[391]

The Patch Cache
Patches downloaded from Metalink are stored in the Patch Cache. This allows you to
stage multiple patches. If a patch is not already in the stage area Enterprise Manager
can automatically download it. You can manage the Patch Cache area by manually
uploading patches to it.

The Patch Cache manager allows you to manually upload patches, apply patches
currently stored in the Patch Cache and remove patches.

In this window you can select the patch and schedule when this will be applied
by clicking the Patch button. This will proceed with an interrogation procedure
to gather how and when this patch will be applied. At the end of the patching
procedure you must read the patch-apply log files to make sure the patch was
properly applied and all steps were successfully executed.

OPatch

[392]

The tool used by the Patch Cache to proceed with the patch apply task is OPatch.
Applying patches by means of Enterprise Manager frees the user from manually
interacting with OPatch, providing the user with a friendlier, intuitive and more
productive interface. However, as you have seen in other scenarios, such an action
reduces the tool's manageability, restricting the options the user has to further
customize the process.

Managing Patches in EM 11g
Enterprise Manager in 11g is slightly different from the 10g interface; it is oriented to
provide the DBA with proactive advice on patch management and reduce the need
for user intervention during the patching process. The Oracle Configuration Manger
is the same as the one in 10g and it also requires the user to provide the connection
information to the Metalink account as well as a valid CSI. This allows Enterprise
Manager to connect to Metalink and download information about the available
patches and products. At the setup link you must configure your user name and
password to access your Metalink account. If the connection is successful then you
will start to see information about the Critical Patch Advisor displayed on the main
page, letting you know that there is a CPU available for your system.

Oracle created a new tab named Software and Support, and among the many
sections created there is one particular section named Database Software Patching
which is the section where all patch management is performed.

Chapter 13

[393]

The goal of the Database Software Patching section is to manage Oracle software
maintenance more efficiently by providing information about the latest patch
releases found in Metalink. You can patch recommendations for your current
installation, stage and apply patches, and display information about the patches and
patchsets automatically downloaded from Metalink by Enterprise Manager along
with those manually added by the users.

Database Software Patching comprises five sections:

1. Patch Advisor
2. View Patch Cache
3. Patch Prerequisites
4. Stage Patch
5. Apply Patch

OPatch

[394]

Patch Advisor
Patch advisor collects information from Metalink about the most suitable patches
for your system. It has two sections, one named Critical Security Patches, and a
second one named Patch Recommendations by Feature. The first section displays
information about the Oracle Critical Security Updates recommended for your
current installation. Meanwhile the second section refers to the recommended
patches according to the feature usage, this is also known as Feature Based Patching.

Critical Security Patches
When clicking on the recommended Critical Patch Update you can get the
information related to this particular quarterly CPU release, which is a general
purpose document that explains the CPU and displays the platform this particular
release affects. By clicking on the Show Remedies button you can focus on the
specific patch that relates to your platform. You can download, stage, and apply the
suggested patch.

Patch Remedies is a combination of patches that may consist of Patch Sets and
the interim patches most suitable for your platform chosen to resolve the selected
Critical Patch Advisory. The Remedy Details gives you information about the patch
or patches you are looking at. You can proceed to apply or stage the patch directly
from this section.

Chapter 13

[395]

If you choose to stage the patch this will be visible from the Patch Cache section and
you can schedule it to be applied later.

Feature based patching
Oracle classifies patches according to the feature they affect. This classification allows
you to easily select the most suitable patches according to the features
used in your target database. You can subscribe to a feature so you can direct
Enterprise Manager to look for patches specifically for the feature you are using.
This can be accessed from the Patch Recommendation by Feature section in the
Patch Advisor page.

OPatch

[396]

View Patch Cache
This section contains the patches that have been downloaded from Metalink or
manually added by the users. The Patch Cache works the same way in 10g and
11g, and it is a convenient way to manage patch application in your system.

Patch prerequisites
When a patch is downloaded you must make sure your system meets the
prerequisites for its installation. You can perform a manual checking or let Enterprise
Manager to take care of this task.

Chapter 13

[397]

In order for Enterprise Manager to perform the prerequisite checking, you must
provide the information related to the patch to be applied and the target database
where this patch will be installed. Set the OS credentials to perform this task and
also set when this job will be scheduled.

After a while the results are displayed in a three column table which shows the check
performed, the status (failed or passed), the details specifying the tasks performed
during the check, and in case of failure what should be done in order for the patch to
meet the install prerequisites.

This is a proactive tool that frees the DBA from manually checking if the system
meets the conditions to guarantee a successful patching session.

Stage patch
The Stage Patch section looks at Oracle Metalink for patches that meet the current
platform OS and Oracle version to be downloaded. You can use a search form to look
for a particular patch and have it downloaded and staged in the Patch Cache area.

Apply patch
Patches can be directly applied from this section. You can choose to look for a
particular patch on Metalink and have it downloaded and staged or get a patch from
the library. The forms presented interrogate the user about the specific patches to be
applied, the target list where the patch will be installed, the OS credentials that will
be used for this task, and when this job will be scheduled.

OPatch

[398]

Summary
One of the most important tasks the DBA must periodically perform is apply
patches. This ensures that the Oracle installation is kept updated and reduces the
chances of encountering known bugs. Your company policy should define whether
you should proactively patch your database or patch only when a symptom is noted.
You should always thoroughly read and make sure you understand the instructions
contained in the README file. There are two ways to patch the database; by means
of interim patches, or by means of Patch Sets. The main difference between the first
and the second option is that interim patches don't change the Oracle version and
they are applied with the OPatch tool, while the Patch Sets are installed using Oracle
Universal Installer and they change the fourth digit of the Oracle version number.

CPUs are quarterly patch bundles released by Oracle Support. It is important to keep
the software protected up to the last available CPU. This ensures your database will
be protected against any known security breaches.

You can manually manage patches by looking for patches and downloading them
from Metalink, and manually checking the prerequisites on your target platform,
or you can use the patch management tools provided by Enterprise Manager. This
helps the DBA from performing most of the manual tasks and allows the DBA to
download and stage patches, and schedule the time a patch will be applied. Oracle
11g is oriented to use a more proactive patch maintenance approach. It makes patch
maintenance tasks less susceptible to human error.

Index
Symbols
-AGENT_PORT option 355
-AGENT_PORT <port> option 356
-a option 356
-ASM_OH parameter 355
-ASM_PORT parameter 355
-ASM_SID parameter 355
-ASM_USER_NAME parameter 355
-ASM_USER_PWD parameter 355
-ASM_USER_ROLE parameter 355
-backup flag 354
-BACKUP_SCHEDULE parameter 355
-b option 354
-cluster flag 354
-CLUSTER_NAME parameter 355
-c option 356
-DBCONSOLE_HTTP_PORT<port>

option 356
-DBCONTROL_HTTP_PORT option 354
-DBSNMP_PWD option 354
-DB_UNIQUE_NAME parameter 355
-EMAIL_ADDRESS option 354
-EMD_SID_LIST parameter 355
-EM_NODE parameter 355
-e <node>option 356
\f delimiter 45
-f <file> option 356
-h option 356
-HOST_USER parameter 355
-HOST_USER_PWD parameter 355
-JMS_PORT option 355
-JMS_PORT <port> option 356
-LISTENER_OH option 354
-MAIL_SERVER_NAME option 354
-m option 356

\n delimiter 45
-n <node> option 356
-ORACLE_HOME option 354
-PORT option 354
\r delimiter 45
-repos create flag 353
-repos drop flag 354
-repos recreate flag 354
-respFile option 354
RESUMABLE feature

using 56-60
-RMI_PORT option 356
-RMI_PORT <port> option 356
-r option 356
-SERVICE_NAME parameter 355
-SID option 354
-silent flag 354
-SRC_OH option 354
-SYSMAN_PWD option 354
-SYS_PWD option 354
-s option 356
\v delimiter 45
-x <db> option 356

A
acceptUntrustedCertificates 320
Active Session History report. See ASH
addLangs 318
addNode 318
Advanced Encryption Standard (AES) 258
AFTER SUSPEND trigger 60
ARCHIVE_LOG 255
Archivelog mode, RMAN 93

ALTER DATABASE ARCHIVELOG
command 94

[400]

ARCHIVELOG BACKUP COPIES 98
ARCHIVELOG DELETION POLICY 99
BACKUP OPTIMIZATION 97
CLEAR command 100
COMPRESSION ALGORITHM 99
configuring 94-100
CONTROLFILE AUTOBACKUP 97
CONTROLFILE AUTOBACKUP

FORMAT 98
DATAFILE BACKUP COPIES 98
DEFAULT DEVICE TYPE 97
DEVICE TYPE DISK 98
ENCRYPTION 99
ENCRYPTION ALGORITHM 99
Flashy Recovery Area, configuring 96
LIST BACKUP command 98
MAXSETSIZE 98
RETENTION POLICY 97
SHOW ALL command 99
SNAPSHOT CONTROLFILE NAME 99

ASH
about 193, 194
Activity Over Time 196
load prfile 196
location 193
report header 196
top events 196
Top Object / Files / Latches 196
top sessions 196
Top SQL 196
using 195

ASM
about 275, 292, 293
features 292
setting up, DBCA used 293-298
setting up, in Windows environment 299
ASM environment
backing up 127, 128
asm flag 353
ASM_OH parameter 357

ASM parameters, EMCA
-ASM_OH 355
-ASM_PORT 355
-ASM_SID 355
-ASM_USER_NAME 355
-ASM_USER_PWD 355
-ASM_USER_ROLE 355

ASM, setting up
ASM_DISKGROUPS parameter 295
ASM_DISKSTRING parameter 295
ASM_POWER_LIMIT parameter 295
chown command 296
Configure ASM option, selecting 294
DBCA used 293-298
disk group, setting up 296
disk groups, validating 298
in Windows environment 299
localconfig shell script as root, running 294
losetup command 296
raw command 296
SYS password, setting 295

ASM, setting up in Windows environment
about 300
ASM setup 299
disk layout 300
logical partition, creating 300

ASM_SID parameter 357
ASM_USER_NAME parameter 357
ASM_USER_PWD parameter 357
ASM_USER_ROLE parameter 357
attachHome parameter 357
authentication

certificates, using 250
configuring 250
PKI tool, requirements 250

Automatic Segment Space Management
(ASSM) 31

Automatic Storage Management
Configuration. See ASM

B
backup

about 255
backuptesting 156, 157
backuptesting, command 156
datapump encryption 264
encrypting, Oracle Wallet Manager used

255, 256
RMAN backup shredding (11g only) 263
use 255

backup compression
about 109
activating 112

[401]

data set compression, improving with ZLIB
algorithm 111, 112

fast backup compression 109, 110
ZLIB algorithm used 111

backup duration 118
BACKUP_HOUR parameter 357
BACKUP_MINUTE parameter 357
backup parameter, EMCA

-BACKUP_SCHEDULE 355
-HOST_USER 355
-HOST_USER_PWD 355

basic installation, OUI
about 314, 315
Starter Database 315

batch install, silent installation mode
performing 325-328
performing, response file created 329, 330

blocking sessions
about 166
deadlock, handling 174, 175
detecting, Enterprise Manager used 166,

167
Hang Analysis 169
optimistic locking 168
Orakill 177, 179
pessimistic locking 168
Row lock contention, monitoring 168-171
sessions, killing 171-173
sniped sessions 175, 176

block media recovery
about 114, 115
BLOCKRECOVER CORRUPTION LIST,

issuing 117
conditions 114
dbv command 115
example 114
VALIDATE backup, issuing 116

C
certificate request, generating

advanced parameter 244
common name parameter 243
Country parameter 243
Key Size parameter 243
Location/City parameter 243
Oracle Certificate Authority (OCA) 244

Organization parameter 243
Organization Unit parameter 243
State/Province parameter 243
steps 242

cfs 318
clone 318
CLUSTER_NAME parameter 266
cluster parameters, EMCA

-CLUSTER_NAME 355
-DB_UNIQUE_NAME 355
-EMD_SID_LIST 355
-EM_NODE 355
-SERVICE_NAME 355

clusterware oracle.crs,<crs version> 317
combined schedule, time expression syntax

defining 216
exclude scenario 216-218
include scenario 216-219
intersect scenario 216-220

Command Line Interface (CLI) 23, 337
command line parameters, OUI

acceptUntrustedCertificates 320
addLangs 318
addNode 318
attachHome 318
cfs 318
clone 318
clusterware oracle.crs,<crs version> 317
crsLocation <Path> 317
debug 319
deinstall 319
detachHome 319
enableRollingUpgrade 319
executeSysPrereqs 319
force 319
formCluster, using 322
help 319
ignorePatchConflicts 319
ignoreSysPrereqs 319
invPtrLoc <full path of oraInst.loc> 318
jreLoc <location> 318
local 319
LogLevel <level> 318
nobackground, using 320-322
noclusterEnabled 320-322
noclusterEnabled, using 320-322
nowait 321

[402]

nowait, using 322
nowarningonremovefiles, using 320- 322
paramFile <location of file> 318
printdiskusage 319
printmemory 319
printtime 319
record -destinationFile <Path> 319
relink 320
remotecp <Path>, using 321, 322
remoteshell <Path>, using 321, 322
removeallfiles 320
removeAllPatches 320
responseFile <Path> 318
silent 320
sourceLoc <location of products.xml> 318
suppressPreCopyScript 320
updateNodeList 320
updateNodeList, using 322
variable usage 321
waitforcompletion, using 320-322

connect string
CID 86
COMMAND 86
FAILOVER_MODE 86
SERVER 86
SERVICE 86
SERVICE_NAME 86
SID 86

CONTINUE_CLIENT command 23
conventional path load

about 50
Database Writer (DBWR) process 50
demonstrating 52
time differences 52
versus direct path load 50-52

CPU
about 382
Critical Patch Advisory, using 384
installed patches 382, 383
key tool 382

Critical Path Update. See CPU
crosscheck command

about 158, 159
BACKUP command 158
crsLocation <Path> parameter 317

D
database cloning

about 118
CLONEDB 119
on the fly procedure 122
performing 119-121
Source Database (SRCDB) 119

Database Configuration Assistance. See
DBCA

database, creating
CREATE DATABASE command used 277
database, identifying 278
DBCA used 277
file locations 280
initialization parameter 282
management options, Enterprise Manager

database control 279
management options, Grid control option

279
options 284, 285
own custom script, executing 281
storage options, ASM 280
storage options, File system 280
storage options, raw devices 280
structure 284
templates 278

database edition
about 286
enterprise edition option, adding 287
other option, adding 287
standard edition option, adding 287

database recovery
about 131
complete recovery process 133
control file 132
incomplete recovery process 134-136
incomplete recovery process, defining by

timestamp 136
incomplete recovery process, redo log

switch number used 137
incomplete recovery process, rman

commands used 136
instance failure 132
media failure 132
process, taking place 132

[403]

Database Software Patching, EM 11g
patches

Apply Patch 400
Patch Advisor 396
Patch prerequisites 398, 399
Stage Patch 400
View Patch Cache 398

database template management
about 287
converting, to OFA structure 290
creating, from existing database 289, 290
file locations, managing 290
operations 288
Oracle Flexible Architecture (OFA)

structure,using 290
single instance database, migrating to RAC

292
template, processing 291
templates, creating 288

Database Writer (DBWR) process 50
data dictionary views

DBA_QUEUE_SCHEDULES 233
DBA_SCHEDULER_CHAIN_RULES 233
DBA_SCHEDULER_CHAINS 233
DBA_SCHEDULER_CHAIN_STEPS 233
DBA_SCHEDULER_GLOBAL_ATTRIBUTE

233
DBA_SCHEDULER_JOB_ARGS 233
DBA_SCHEDULER_JOB_CLASSES 233
DBA_SCHEDULER_JOB_LOG 233
DBA_SCHEDULER_JOB_RUN_DETAILS

233
DBA_SCHEDULER_JOBS 233
DBA_SCHEDULER_PROGRAM_ARGS
233
DBA_SCHEDULER_PROGRAMS 233
DBA_SCHEDULER_RUNNING_CHAINS

233
DBA_SCHEDULER_SCHEDULES 233
DBA_SCHEDULER_WINDOW_DETAILS

233
DBA_SCHEDULER_WINDOW_GROUPS

233
DBA_SCHEDULER_WINDOW_LOG 233
DBA_SCHEDULER_WINDOWS 233
DBA_SCHEDULER_WINGROUP_

MEMBERS 233

‘V$SCHEDULER_RUNNING_JOBS 233
data files’ loss

critical datafile loss 145-147
critical loss 137
diagnosing, datafile header 137
diagnosing, queries used 137
diagnosing, recover file 138
non-critical datafile loss 139-142
non-critical loss 137
temporary datafile loss 143, 144
temporary datafile, managing 144, 145

Data Pump
Data Pump 11 g, features 33
Data Pump API, working with 31-33
Data Pump import 26
performance, enhancing 31

Data Pump 11 g, features
compression 33
dump files, overwriting 34
encrypted dump file sets 33
external tables enhancements 33
single partition transportable 34
XML datatypes 34

Data Pump API, working with
DBMS_DATAPUMP 31
tasks, performing 32

Data Pump export
ATTACH command 24, 25
ATTACH parameter 22
data transfer 21
data transfer, client/server compatibility 22
data transfer, COMPATIBLE parameter 21
data transfer, VERSION parameter 21
dependable objects 16
exclude option 15
expdp command 24
file multiplexing 20
filtered objects 16
filtering operations 15, 16
include option 15
interactive mode 22
JOB_NAME parameter 23
parameter file, using 16-19
restorable mode 25
space requirement, BLOCKS method 19, 20
space requirements, estimating 19

[404]

space requirement, STATISTICS method
19, 20

START_JOB command 24
STOP_JOB command 24

Data Pump export session
database directory object 14
default name 15
Dumpfile, defining 14
estimation 14
expdp command 14
Master table 15
schema, exporting 14

Data Pump import
about 26
Command Line Interface 26
full import mode 26
HRDEV schema 29
Interactive Command Interface 27
modes 26
network mode 29-31
Network mode 26
Parameter File Interface 27
Remap function 27-29
REMAP_SCHEMA facility 27
Schema mode 26
Table mode 26
Tablespace mode 26
Transportable tablespace mode 26

data transformation, external table
alert.log analysis, extending 79-83
conditional insert, performing 77- 79
listener.log, reading from database 84- 86
several tables, creating 76, 77

DBA_DATAPUMP_JOBS 25
db_asm flag 353
DBCA

about 275, 301
Configure Automatic Storage Managemet

option 277
Configure Database options 276
Create a Database option 276
database, creating 277
database edition 286
Delete a Database option 276
emca command 302
Instance Management option 277
launching, in batch mode 301, 302

Manage Templates option 277
options 276, 277
response file example 302
response file, locating 303, 304
Service Management option 277
use 275

DBCONTROL_HTTP_PORT option 259
db flag 353
DB_NAME parameter 357
DBSNMP_PWD parameter 357
debug parameter 319
dedicated server architecture

instance self registration process 165, 166
listener 164
server process 165
user process 164
user session 164

deinstall parameter 319
detachHome parameter 319
directory structure, EM

about 359
EMCA log files 360
SYSMAN configuration files 360
SYSMAN log files 360
SYSMAN log files, manging 361, 362

direct path load
about 49
advantages 51
considerations 51
demonstrating 52
DIRECT=Y command, declaring 51
disadvantages 51
time differences 52
versus conventional path load 50-52

direct path versus conventional path load
49-52

DUPLICATE... FROM ACTIVE DATABASE
command 122

E
EM

components 338
configuring 340
DB Control and Grid Control, difference

339
DB Control Console 338

[405]

DB Control Console, accessing 338
directory structure 359
Metalink, configuring 386, 387
Metalink job, refreshing 388-390
Patch Cache 393, 394
patches, downloading 390-392
patches, staging 390- 392
Schedule step 391, 392
securing 366, 367
Select Destination step 391
Select Patch step 391
Set Credentials step 391
Stage or Apply step 391
using, for software maintenance 386

EM 11g patches, managing
about 394
Database Software Patching 395

EMAIL_ADDRESS parameter 357
EMCA

about 279, 337
ASM parameters 355
backup parameters 355
cluster parameters 355
command line interface 351
database credentials 280

EMCA 10 g Release 1
flags 353
general command-line parameters 354
using, to configure Enterprise manually

345-348
EMCA 10 g Release 1

about 356
options 356
parameters 357
RAC parameters 357
silent mode 358
syntax 356

emca -addInst command 352
EMCA command line interface

about 351
commands 352
emca -addInst command 353
emca -config all db command 352
emca -config centralAgent command 352
emca -config dbcontrol db command 352
emca -deconfig all db command 353
emca -deconfig centralAgent command 352

emca -deconfig dbcontrol db 272
emca -deconfig dbcontrol db command 352
emca -deleteInst command 353
emca -displayConfig dbcontrol -cluster

command 353
emca –h command 352
emca -reconfig dbcontrol -cluster command

353
emca -reconfig ports command 353
emca -restore command 353
emca -upgrade command 353
emca -version command 352
emca –version command 352
emca -config all db command 352
emca -config centralAgent command 268,

352
emca -config dbcontrol db command 352

emca -deconfig all db command 353
emca -deconfig centralAgent command 352
emca -deconfig dbcontrol db command 353
emca -deleteInst command 353
emca -displayConfig dbcontrol -cluster

command 353
emca -h command 352
emca -reconfig dbcontrol -cluster command

353
emca -reconfig ports command 353
emca -restore command 353
emca -upgrade command 353
emca -version command 352
EM, configuring 340

console components installation, checking
340

console setup, prerequisites 341
DBCA used 342-344
lsof command, using 349
managing ports, assigning manually

348,349
manually, EMCA used 344-348

EM_HOME parameter 357
enableRollingUpgrade parameter 319
encryption modes, Recovery Manager

dual mode 256
dual mode, using 262
password mode 256
password mode, using 259-261
supported encryption logarithms 258

[406]

transparent mode, using 256-259
Endianess 123
Enterprise Manager. See EM

KILL IMMEDIATE option 172, 173
KILL SESSION with no arguments 172
POST TRANSACTION option 173
sessions, killing 172

Enterprise Manager Configuration
 Assistant.See EMCA

Enterprise Manager, configuring
lsof command, using 349
managing ports, assigning manually 349

enterprise user
about 265
database, registering against OID 268, 269
Enterprise Security Manager (ESM), using

270
environment, configuring 266
LDAP directory access, configuring 267,268
Oracle Single Sign On (SSO), working 266
shared schema, creating 269-272

ETL
about 63
on the fly 63

executeSysPrereqs parameter 319
EXIT_CLIENT command 23
external table

10g Release 64
about 64
and SQL*Loader differentiating between 64
Change_External_Table procedure 88
creating 65
data transformation 75
Oracle 11g enhancement 89
ORACLE_DATAPUMP access driver 65, 72
properties, changing 88, 89
reading 76

external table, creating
11g data pump external table, creating

 74, 75
ACCESS PARAMETERS 67
basic external table 67-69
columns, defining 68
data, unloading 73, 74
DDL commands 70, 72
DIRECTORY 67

environment, setting up 65, 66
EXECUTE 70
external XML file, creating 87
GENERATE_ONLY 70
GENERATE_ONLY option, using 70
LOCATION 67
metadata, creating 70
NOT_USED option 70
ORACLE_LOADER driver 65, 67
ORGANIZATION EXTERNAL 67
source code 67
SQL_LOADER driver 67
XML file used 87

Extraction-Transformation-Loading. See
ETL

F
first job, Oracle Scheduler

AUTO_DROP 205
COMMENTS 205
creating 205, 206
ENABLED 206
END_DATE 205
Enterprise Manager, using 208-210
example, scheduling 204
JOB_ACTION 205
JOB_CLASS 205
JOB_NAME 205
job schedule, enabling 208
JOB_TYPE 205
NUMBER_OF_ARGUMENTS 206
procedural arguments, scheduling 207
REPEAT_INTERVAL 205
START_DATE 205

flags, EMCA
asm 353
-backup 354
-cluster 354
db 353
db_asm 353
-repos create 353
-repos drop 354
-repos recreate 354
-silent 354

flags, EMCA-repos create 353

[407]

force 319
format masks, RMAN

%a 100
%c 100
%d 100
%D 100
%e 100
%f 101
%F 101
%h 101
%I 101
%M 101
%n 101
%N 101
%p 101
%s 101
%t 101
%T 101
%u 101
%U 101

formCluster 321, 322

G
general backup-best practices 128, 129
general command-line parameters, EMCA

-AGENT_PORT 355
-DBCONTROL_HTTP_PORT 354
-DBSNMP_PWD 354
-EMAIL_ADDRESS 354
-JMS_PORT 355
-LISTENER_OH 354
-MAIL_SERVER_NAME 354
-ORACLE_HOME 354
-PORT 354
-respFile 354
-RMI_PORT 355
-SID 354
-SRC_OH 354
-SYSMAN_PWD 354
-SYS_PWD 354

H
help parameter 319
HELP command 23
HOST parameter 357

HOST_USER parameter 357
HOST_USER_PWD parameter 357
Hot Patches 383

I
ignorePatchConflicts parameter 319
ignoreSysPrereqs parameter 319
impdp. See Data Pump import
initialization parameter, database

character sets 283
character sets, Database Character Set 284
character sets, Default Date Format 284
character sets, Default Language 284
character sets, National Character Set 284
connection mode 284
memory tab 282

installation modes, OUI
Cluster Install Mode 317
Interactive Mode 317
Silent Mode 317
Suppressed-Interactive Mode 317

inter-platform migration, performing
about 123
important points 124
locally managed tablespace, creating 124,

125, 126
tablespace across platform. transporting

123, 124
Inter-Process Communication (IPC) 164
invPtrLoc <full path of oraInst.loc>

parameter 318

J
Job 226
Job Class

about 226
creating 227, 228

job logs, Oracle Scheduler
job execution, managing 229, 231
managing 229
PURGE_LOG 232, 233
purging 232, 233
queries, issuing 230, 231

jreLoc <location> parameter 318

[408]

K
KILL_JOB command 23

L
LISTENER parameter 357
Loading Large Objects. See LOBs
load performance, enhancing

tips 61, 62
LOBs

about 52
Binary Large Object (BLOB) 52
Character Large Object (CLOB) 53
CLOB(Character Large Object) load demon-

stration table, preparing 53, 54
external LOBs 53
internal LOBs 53
loading 53
multimedia files, loading 54
National Character Large Object (NCLOB)

53
local parameter 319
lock enqueue mechanism 166, 168
log file, SQL*Loader demo user

data file format 41
file names, bad file 41
file names, control file 41
file names, data file 41
file names, discard file 41
header 40
path used 41
space allocated for bind array 42
summary 42
timing 42

LogLevel <level> parameter 318
lost inventory

recovering 334

M
MAIL_SERVER parameter 357
Media Management Library (MML) 92
mkstore utility

options 238
using 251, 252

multimedia files, loading
demonstration table, preparing 54, 55

FILLER file 54
multi-section backup

about 113
commands, issuing 113
issues 114

N
Network Configuration Assistant (netca)

267
network environment, changing

DBSNMP password, changing 366
host name, changing 364
IP address, changing 364
SYSMAN password, changing 364, 365

network mode, Data Pump import
10.1.0.5.0, source database 30
11.1.0.6.0, destination database 30
about 29, 30, 31
CREATE DATABASE LINK command 29
db10gR1 link 30

newdbid utility (nid) 108
nobackground 320, 322
noclusterEnabled 320, 322
noconsole 320, 322
nologging option 159, 160
nowait 321, 322
nowarningonremovefiles 320, 322

O
OPatch tool

about 369, 370
command execution output 370
failed session, rolling back 376
in Oracle 11 g 378, 379
latest version, downloading 370, 371
log files 384
PATH environment variable 384
requirements 371
syntax 372
troubleshooting 384
used, for applying single patch 374
using, for Oracle maintenance 373

Oracle
deadlock, handling 174, 175
generic validation 312
Hot Patches 383

[409]

installing, from Web 332
lock enqueue mechanism 166, 168
maintaining, OPatch used 373
Oracle Configuration Manager Registration

380
Oracledatabase recovery 131
product specific requirement validation 312
security management 255

Oracle 11g enhancement 89
Oracle Configuration Manager Registration

380
Oracle Home

cloning, OUI used 335
ORACLE_HOME parameter 357
Oracle Internet Directory (OID) 266
Oracle inventory

querying 376
Oracle Label Security (OLS) 286, 316
Oracle RDBMS 341
Oracle Scheduler

about 199
capabilities 200
data dictionary views 233
DBMS_SCHEDULER.DISABLE component

229
DBMS_SCHEDULER.ENABLE component

229
DBMS_SCHEDULER tool 200
first job example 206-208
first job example, scheduling 204
getting started 203
Job 201
Job Chains 203
Job Classes 201
job logs, managing 229
managing 228
privileges, requiring 203, 204
Program 201
Resource Manager 202
Schedule 201
Time Schedule 203
Window 201
Window Groups 202

Oracle Universal Installer. See OUI
Oracle Wallet Manager. See OWM

about 255
datapump encryption 263, 264

Recovery Manager Encryption 256
RMAN backup shredding (11g only) 263
using, to encrypt backups 255, 256

oraparam.ini file 331
orapki tool

orapki cert create 240
orapki cert display 240
orapki crl delete 241
orapki crl diskplay 241
orapki crl hash 241
orapki crl list 241
orapki crl upload 241
orapki wallet add 241
orapki wallet create 241
orapki wallet display 241
orapki wallet export 241
syntax 240
using 240

OUI
0 return code 332
-1 return code 332
1 return code 332
about 307
advanced installation options 315, 316
basic installation 314
command line parameters 317
components 308
installation failure, reasons 311
installation failure, troubleshooting 311
installation log 309
installation modes 317
JRE versions used 312
licensed installed options 315
Oracle Inventory 308
Oracle Inventory location 309
oraparam.ini file 309, 331
origin 307
products.xml 309
response.rsp 309
silent installation mode 322
stage area, client disk 310
stage area, companion disk 310
stage area, database disk 310
stage area, setting up 310
staticports.ini 309
system requirements 313
used, for cloning Oracle Home 335

[410]

OWM
about 235
accessing, in UNIX 236, 237
accessing, in Windows 236
auto login feature, enabling 237, 238
certificate request, generating 242-244
createCredential option, parameters 252
creating 237
managing, orapki used 239
mkwallet utility, options 238, 239
mkwallet utility, using 238
Public Key Cryptographic Standards(PKCS)

#12 used 235
Single Sign-On (SSO) access 238
storing, in LDAP server 248
storing, on Windows registry 245
Transparent Data Encryption (TDE) feature

235
using, for database credentials storage 250,

251, 252, 253
WALLET_LOCATION parameters 252

OWM, storing
advantages 245
in LDAP server 248
on Windows registry 245
wallet, deleting from registry 247
wallet, downloading from LDAP server

249
wallet location, configuring 247, 248
wallet location, sub parameters 247
wallet, opening from registry 246
wallet, saving as to different registry 246
wallet, saving to file system 247
wallet, saving to registry 245, 246
wallet, uploading on LDAP server 248, 249

P
PARALLEL command 23
parallel load

about 60, 61
issues, considering 61

parameter file, Data Pump export
command line, comparing 16
JOBNAME option 17
restore point 17
using 16-19

parameters, EMCA 10 g Release 1
ARCHIVE_LOG 357
ASM_OH 357
ASM_SID 357
ASM_USER_NAME 357
ASM_USER_PWD 357
ASM_USER_ROLE 357
BACKUP_HOUR 357
BACKUP_MINUTE 357
DBSNMP_PWD 357
EMAIL_ADDRESS 357
EM_HOME 357
HOST 357
HOST_USER 357
HOST_USER_PWD 357
LISTENER 357
MAIL_SERVER 357
ORACLE_HOME 357
PORT 357
SID 357
SYSMAN_PWD 357
SYS_PWD 357

paramFile <location of file> parameter 318
Patch Advisor

about 394
critical security patches 394, 395
Feature Based Patching 394, 395
Patch Remedies 394

Patch Set 369
PKI 250
PORT parameter 357
prereq command 379
printdiskusage parameter 319
printmemory parameter 319
printtime parameter 319
program

about 222
creating, manually 223, 224
defining, using Enterprise Manager 224
Operating System Executables 222
PL/SQL Blocks 222
Stored Procedures 222

PROTOCOL
about 87
HOST 87
PORT 87

Public Key Infrastructure. See PKI

[411]

R
record -destinationFile <Path> parameter

319
Recovery Manager. See RMAN
Recovery Manager Encryption, Oracle Wal-

let Manager
Advanced Encryption Standard (AES) 258
dual mode 256, 262
password mode 256
password mode, using 259, 261
supported encryption algorithms 258
transparent mode 256
transparent mode, using 256-259

redo log files’ loss
current log group 151-155
inactive group loss 150
query used 149
scenarios 148, 149

relink parameter 320
remotecp <Path> parameter 321, 322
remoteshell <Path> parameter 321, 322
removeallfiles parameter 320
removeAllPatches parameter 320
Resource Manager

about 181
implementing, steps 183
OS level problems 181
Resource Allocation Method 182
Resource Consumer Group element 182
Resource Consumer Group Mapping ele-

ment 182
Resource Plan Directive element 182
Resource Plan element 182
service assigned resources, configuring 184
user assigned resources, configuring 183

response file, DBCA
Add instance section 304
ASM configuration section 304
Configure database section 304
Create clone template section 304
Create Database Section 303
Create template from existing database sec-

tion 304
Delete database section 304
Delete instance section 304
general section 303

Generate scripts section 304
locating 303

responseFile <Path> parameter 318
response file, silent installation mode

Automatic Storage Management Options
(ASM) 323

Backup and recovery options 323
Configuration options 323
creating, from actual installation 325
customizing 324
Database configuration 323
General Section 323
Privileged operating system groups 323
Read only section 323
uninstall task, performing 329, 330
Upgrade an existing database section 323
variables 323

RMAN
about 91, 92
advantages 91
Archivelog mode 93
BACKUP DATABASE command 108
block media recovery 114, 115
critical datafiles loss 109
DUPLICATE command 121
encryption modes 256
format masks 100
multiplexed backup, configuring 104, 105,

106
non-critical datafiles loss 109
recovery catalog, configuring 106, 107
recovery catalog database, using 92
repository, creating 106
simple backup, creating 108, 109
TARGET database 92
User Managed Backup (UMB) 101, 102

rman command 154

S
schedules

about 225
creating 226
using 225

Scheduling tasks 199
service

about 179

[412]

configuring 179-181
service assigned resources, configuring

database user, creating 184
listener, verifying 185
monitoring 191-193
resource consumer group, creating 187
Resource manager plan, activating 190, 191
resource plan, defining 190
service, mapping 188, 189
service name, defining 184
steps 184
testing 191-193
TNS entry, configuring 185, 186

SERVICE_NAME parameter 357
session management

about 163
V$SES_OPTIMIZER_ENV 197
V$SESS_IO 197
V$SESSION 196
V$SESSION_CONNECT_INFO 196
V$SESSION_CURSOR_CACHE 196
V$SESSION_EVENT 196
V$SESSION_LONGOPS 197
V$SESSION_OBJECT_CACHE 197
V$SESSION_WAIT 197
V$SESSION_WAIT_CLASS 197
V$SESSION_WAIT_HISTORY 197
V$SESSMETRIC 197
V$SESSTAT 197
V$SESS_TIME_MODEL 197

SID parameter 357
silent parameter 320
silent installation mode

batch install, performing 325-328
response file 323

single patch
applying, OPatch used 374, 375

sourceLoc <location of products.xml> 318
SQL*Loader

about 36, 64
and external table, differentiating between

64
architecture 36
badfile, defining 37
CHARACTERSET parameter 46
chinese Data file, specifying 47
controlfile, defining 37

datafile, defining 37
demo user, preparing 38
direct path versus conventional path load

49, 50
discardfile, defining 37
EXTERNAL_TABLE option 70
files, defining 36
Japanese Data file, specifying 46
load on the fly 48, 49
load performance, enhancing 61, 62
LOBs 52
logfile, defining 37
multimedia files, loading 54
parallel load 60, 61
particular set, specifying 46-48
power, leveraging 36
 RESUMABLE feature 56-60

SQL*Loader demo user
preparing 38

SQL*Loader demo user, preparing
first basic load, BEGINDATA 40
first basic load, control file 39
first basic load, INFILE 40
first basic load, LOAD DATA 39
first basic load, performing 39, 40
fixed record format 42, 43
log file, preparing 40, 41
stream record format load 44
variable fixed record format 44

START_JOB command 23
STATUS command 23
STOP_JOB ommand 23
str keyword 45
suppressPreCopyScript 320
syntax, OPatch tool

apply option 373
lsinventory option 373
query option 373
rollback option 373
version option 373

SYSMAN_PWD parameter 357
SYS_PWD parameter 357
system requirements, OUI

disk space 313
display 313
memory 313

[413]

T
three tier application

row lock contention, monitoring 172
throttling 118
time expression syntax

about 211
combined schedule 216
examples 221
regular schedule 211
regular schedule, frequency definition 212
regular schedule, interval 213
regular schedule, timing specification 213,

214, 215
repeat interval 211

Transparent Application Failover (TAF)
277

Transparent Data Encryption (TDE) feature
33 258

U
updateNodeList parameter 320, 322
User Managed Backup (UMB), RMAN

limitations 91
offline backup 101
online backup 101
online backup, myths 103, 104

util command 378

V
VERSION clause

COMPATIBLE value 76
LATEST value 76
VERSION NUMBER value 76

W
waitforcompletion 320, 322
Windows Scheduler

about 199
cron utility 199

X
XML files

mapping, as external table 87

Z
ZLIB algorithm used, backup compression

BZIP2 algorithm 112
No Compress option 111

Thank you for buying
Oracle 10g/11g Data and
Database Management Utilities

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Oracle Scheduler in
Oracle 11g Databases
ISBN: 978-1-847195-98-2 Paperback: 240 pages

Schedule, manage, and execute jobs that automate
your business processes

1. Automate jobs from within the Oracle database
with the built-in Scheduler

2. Boost database performance by
managing, monitoring, and controlling
jobs more effectively

3. Contains easy-to-understand explanations,
simple examples, debugging tips, and
real-life scenarios

Oracle SOA Suite Developer's
Guide
ISBN: 978-1-847193-55-1 Paperback: 652 pages

Design and build Service-Oriented Architecture
Solutions with the Oracle SOA Suite 10gR3

1. A hands-on guide to using and applying the
Oracle SOA Suite in the delivery of real-world
SOA applications.

2. Detailed coverage of the Oracle Service Bus,
BPEL Process Manager, Web Service Manager,
Rules, Human Workflow, and Business
Activity Monitoring.

3. Master the best way to combine / use
each of these different components in the
implementation of a SOA solution.

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Data Pump
	Data Pump features
	Data Pump architecture
	Setting up the practical scenarios
	Data Pump export
	Data Pump export modes
	A simple Data Pump export session
	Data Pump export filtering operations
	Use of parameter file
	Retrieve original data
	Data Pump export space estimation
	Dump file multiplexing
	Transporting data among different versions
	Data Pump export interactive mode

	Data Pump restart capability
	Getting information about the export job
	Data Pump import
	Remap function
	Data Pump import network mode

	Improving performance with Data Pump
	Working with the Data Pump API
	Data Pump 11g new features
	Compression
	Encrypted dump file sets
	Enhancements for Data Pump External Tables
	Single partition transportable for Oracle
Data Pump
	Overwrite dump files
	XML Datatypes

	Summary

	Chapter 2: SQL*Loader
	SQL*Loader basics
	Preparing the demo environment
	Our first simple load
	The SQL*Loader log file
	Fixed record size format load
	Variable record size format load
	Stream record format load

	Specifying a particular character set
	Load on the fly
	Direct path versus Conventional
path load
	Direct path load pros
	Direct path load cons

	Loading Large Objects (LOBs)
	Loading multimedia files
	Resumable load
	Parallel load
	General performance booster tips
	Summary

	Chapter 3: External Tables
	The External Table basics
	Let's setup the environment
	A basic External Table
	Creating External Table metadata,
the easy way
	Unloading data to External Tables

	Inter-version compatibility
	Data transformation with External Tables
	Extending the alert.log analysis with
External Tables
	Reading the listener.log from the database

	Mapping XML files as External Tables
	Dynamically changing the external
reference
	Oracle 11g External Table enhancements
	Summary

	Chapter 4: Recovery Manager Advanced Techniques
	Recovery Manager basics
	Getting started with a Recovery Manager session
	Format masks used by recovery manager
	What happens in a user-managed online backup?
	Myths related to the online backup method

	Configuring a multiplexed backup
	Configuring the RMAN recovery catalog
	A simple backup session

	Backup compression
	Fast backup compression
	Improving data set compression with the ZLIB algorithm (11g only)

	Faster backups through intra-file parallel backup and restore operations (11g only)
	Block media recovery
	Backup duration and throttling
	Database cloning
	Database cloning procedure
	Database cloning on the fly (11g only)

	Inter-platform database migration
	Migrate to and from an ASM environment
	General backup advices
	Summary

	Chapter 5: Recovery Manager Restore and Recovery Techniques
	Oracle database recovery
	Instance failure
	Media failure
	Complete recovery
	Incomplete recovery

	Loss of data files
	Queries used to diagnose data files
	Loss of a non-critical datafile
	Loss of a temporary datafile
	Managing temporary datafiles

	Loss of a critical datafile

	Loss of redo log files
	Loss of the inactive redo log group
	Loss of the current redo log group

	Test restore
	Crosscheck command
	Nologging considerations
	Summary

	Chapter 6: Session Management
	User sessions in a dedicated server
architecture
	Instance self registration process

	Blocking sessions
	Optimistic versus pessimistic locking
	Row lock contention monitoring
	Killing sessions
	Deadlock handling
	Sniped sessions
	Orakill

	Services
	Resource Manager
	Resource Manager Elements
	Configuring resources assigned to users
	Configuring resources assigned to services
	Creating the database user
	Service names definition
	Listener verification
	TNS entry configuration
	Resource consumer group creation
	Service mapping
	Resource plan definition
	Resource manager plan activation
	Testing and monitoring

	Active Session History (ASH)
	Session monitoring, the traditional way
	Summary

	Chapter 7: Oracle Scheduler
	Oracle Scheduler concepts
	Getting started with the Oracle Scheduler
	Required privileges
	Scheduling our first job
	Creating the job
	Specifying procedure arguments
	Enabling the job schedule
	Using Enterprise Manager

	Time expression syntax
	The repeat interval
	Regular schedule
	Combined schedule
	Exclude scenario
	Include scenario
	Intersect scenario

	Time expression examples

	Programs
	Creating programs manually
	Defining a program using Enterprise Manager

	Schedules
	Jobs and Job Classes
	Managing the Scheduler
	Enable or disable components
	Managing job logs
	Monitor a Job Execution
	Purging the job log

	Data dictionary related views
	Summary

	Chapter 8: Oracle Wallet Manager
	The Oracle Wallet Manager
	Creating the Oracle Wallet
	Enabling Auto Login
	mkwallet, the CLI OWM version
	Managing Wallets with orapki

	Oracle Wallet Manager CSR generation
	Storing the Oracle Wallet in the
Windows registry
	Save Wallet to the registry
	Open the Wallet from the registry
	Save as to a different registry location
	Open the Wallet from the registry, save it to the file system and vice versa
	Delete the Wallet from the registry
	Configuring the Wallet location

	Storing the Wallet in an LDAP server
	Uploading the Wallet to an LDAP server
	Downloading the Wallet from LDAP

	Using certificates for authentication
	Public Key Infrastructure tools

	Using the Oracle Wallet to store database credentials
	Summary

	Chapter 9: Security Management
	Using the Oracle Wallet to encrypt
backups
	Recovery Manager encryption
	Using the transparent mode
	Using the password mode
	Using the dual mode

	RMAN backup shredding (11g only)
	Data pump encryption

	The enterprise user
	Configuring the environment
	How Oracle SSO works

	Configure access to the LDAP directory
	Registering the database against the OID
	Shared schema

	Summary

	Chapter 10: Database Configuration Assistant
	DBCA
	Database creation
	Database templates
	Database identification
	Management options
	Database credentials
	Storage options
	Database file locations
	Database content
	Initialization parameters
	Memory
	Character sets
	Connection mode

	Database storage
	Creation options

	Database edition
	Database template management
	Template management operations
	Creating a seed database out of a
current database
	Database related file location
	Migrating a single instance database to RAC

	Automatic Storage Management
configuration
	ASM
	How to setup ASM using DBCA
	Select the Configure ASM option
	Run the localconfig shell script as root
	Set the SYS password and the ASM instance parameters
	Setup disk groups
	ASM disk group's validation

	Setting up ASM in a Windows environment
	ASM setup
	Disk layout
	Logical partitions
	Setup ASM

	DBCA, Batch mode
	DBCA response file example
	Where can you get a DBCA response file

	Summary

	Chapter 11: Oracle Universal Installer
	OUI basics
	OUI components
	Setting up a stage area
	DVD distribution

	Troubleshooting an installation session
	Oracle Universal Installer JRE
	OUI system requirements

	OUI basic and advanced installation modes
	OUI Basic Installation
	Licensed installed options
	OUI Advanced Installation

	Modes of installation
	OUI command line parameters
	Command line variables usage

	Silent installation mode
	The response file structure and syntax
	Customizing a response file
	Creating a response file out from an actual installation
	The Batch installation, step by step
	Creating a response file to perform a batch deinstallation

	The oraparam.ini file
	OUI return codes
	Installing Oracle from the Web
	Recovering a lost Inventory
	Cloning Oracle Home using OUI
	Summary

	Chapter 12: Enterprise Manager Configuration Assistant
	Enterprise Manager Components
	Differences between EM DB Control and EM Grid Control

	Enterprise Manager configuration
	How to find out if the console components are currently installed
	Console setup prerequisites
	Configuring EM using DBCA
	Manually configuring Enterprise Manager
with EMCA
	Manually assigning EM managing ports

	EMCA Command Line Interface
	EMCA commands
	EMCA flags
	EMCA general Command-Line Parameters
	EMCA backup parameters
	EMCA ASM parameters
	EMCA Cluster (RAC) parameters

	EMCA 10g Release 1
	EMCA 10gR1 syntax
	EMCA 10gR1 options
	EMCA 10gR1 parameters
	EMCA 10gR1 RAC parameters
	EMCA silent mode

	EM directory structure
	EMCA log files
	The SYSMAN configuration files
	The SYSMAN log files

	Environment changes
	Changing the IP address or host name
	Changing administrative passwords
	Changing SYSMAN password
	Changing DBSNMP password

	Securing Enterprise Manager
	Summary

	Chapter 13: OPatch
	OPatch
	Downloading the latest OPatch version
	OPatch requirements
	OPatch syntax
	OPatch options

	Oracle maintenance using OPatch
	Applying a single patch using OPatch
	Querying the Oracle inventory
	Rolling back a failed OPatch session
	Considerations after applying a patch
	OPatch in Oracle 11g
	Oracle Configuration Manager
Registration
	Critical Patch Updates
	Find out the installed patches
	Critical Patch Advisory

	Hot patching (11g only)
	Troubleshooting OPatch
	PATH environment variable
	OPatch log files

	Using Enterprise Manager for software maintenance
	Enterprise Manager Metalink configuration
	Refresh from Metalink Job
	Downloading and staging patches
	The Patch Cache

	Managing Patches in EM 11g
	Patch Advisor
	Critical Security Patches
	Feature based patching

	View Patch Cache
	Patch prerequisites
	Stage patch
	Apply patch

	Summary

	Index

