
www.allitebooks.com

http://www.allitebooks.org

Oracle ADF Enterprise
Application Development—
Made Simple

Successfully plan, develop, test, and deploy enterprise
applications with Oracle ADF

Sten E. Vesterli

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle ADF Enterprise Application Development—
Made Simple

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2011

Production Reference: 1060611

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849681-88-9

www.packtpub.com

Cover Image by David Guettirrez (bilbaorocker@yahoo.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sten E. Vesterli

Reviewers
Aino Andriessen

Duncan Mills

Frank Nimphius

Grant Ronald

Acquisition Editors
Dhwani Devater

Rashmi Phadnis

Development Editor
Hyacintha D'Souza

Technical Editor
Aditi Suvarna

Project Coordinator
Vishal Bodwani

Proofreader
Stephen Swaney

Indexer
Rekha Nair

Graphics
Geetanjali Sawant

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sten E. Vesterli picked up Oracle development as his first job after graduating
from the Technical University of Denmark, and hasn't looked back since. He has
worked with almost every development tool and server Oracle has produced in
the last decade and a half, including Oracle ADF, JDeveloper, WebLogic, SQL
Developer, Portal, BPEL, Collaboration Suite, Designer, Forms, Reports, and even
Oracle Power Objects.

He started sharing his knowledge with a conference presentation in 1997 and
has since given more than 50 conference presentations at Oracle OpenWorld
and at ODTUG, IOUG, UKOUG, DOAG, and other user group conferences. His
presentations are consistently highly rated by the participants, and in 2010 he
received the ODTUG Best Speaker award.

He has also written numerous articles, participated in podcasts, and written the book
Oracle Web Applications 101.

Oracle has recognized Sten's skills as an expert communicator on Oracle technology
by awarding him the prestigious title Oracle ACE Director, carried by less than 100
people in the world. He is also an Oracle Fusion User Experience Advocate and sits
on the Oracle Usability Advisory Board.

Based in Denmark, Sten is a partner in the Oracle consulting company Scott/
Tiger, where he works as a senior principal consultant. When not writing books
or presenting, he is helping customers choose the appropriate technology for their
needs, teaching, mentoring, and leading development projects.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

I'd like to thank the many members of the ADF Enterprise Methodology Group
(ADF EMG) who meet online and in person to discuss and share the best practices.
Your insights have helped shape my opinion on good enterprise ADF development
and have improved the book. In particular, I'd like to thank the group founder Chris
Muir, as well as moderators and organizers Simon Haslam and John Flack, who
ensure that the discussions on the group mailing list stay on topic. If you are serious
about enterprise ADF development, you need to join this group: http://groups.
google.com/group/adf-methodology.

Other ADF EMG members I'd like to single out for special mention include John
Stegeman (author of the ADF Essentials series on Oracle Technology Network),
prolific ADF blogger Andrejus Baranovskis, enterprise developer Aino Andriessen.

Oracle's Laura Akel, Susan Duncan, Duncan Mills, Frank Nimphius, and Grant
Ronald have also provided valuable information, feedback, and access to the latest
software - I am grateful for the time you have taken to comment on this book and
show me new features.

I'd also like to thank my children, Michael and Maria, for patiently waiting for my
Tiefling Rogue to return to our gaming sessions to continue the battle against the
undead, and for learning to make crêpes when daddy didn't have time.

And finally, I'd like to thank my wonderful wife Lotte for her unhesitating support
for the idea of me writing another book, for taking care of my tasks in the household
while I was writing, and for our coffee breaks together when I needed to recharge
my batteries.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Aino Andriessen is a principal consultant and expertise lead in Application
Lifecycle Management at AMIS; an Oracle, Java, and SOA specialist based in
the Netherlands. His focus is on Oracle ADF, JHeadstart, SOA, and Enterprise
Java development, application lifecycle management, architecture, and quality
management. He is a frequent presenter at the ODTUG Kaleidoscope, Oracle Open
World, and UKOUG TechEBS. He writes articles and publishes them at the AMIS
technology blog (http://technology.amis.nl/blog/).

Duncan Mills is a senior director of product management for Oracle's Application
Development Tools including Oracle JDeveloper, Oracle Enterprise Pack for
Eclipse, NetBeans, Oracle Forms, and the ADF Framework. Duncan is currently
responsible for product direction, evangelism, and courseware development around
the development tools products. He has been working with Oracle in a variety of
application development and DBA roles since 1988. For the past nineteen years he
has been working at Oracle in both support and product development, spending the
last eight years in product management. Duncan is the co-author of the Oracle Press
books Oracle JDeveloper 10g for Forms and PL/SQL Developers: A Guide to Web
Development with Oracle ADF and Oracle JDeveloper 11g Handbook: A Guide to
Fusion Web Development.

www.allitebooks.com

http://www.allitebooks.org

Frank Nimphius is a senior principal product manager in the Application
Development Tools organization at Oracle Corporation. In his product management
role, Frank contributes to the development and the evangelization of the Oracle
JDeveloper and Oracle Application Development Framework (ADF) products. Frank
runs the ADF Code Corner website (http://www.oracle.com/technetwork/
developer-tools/adf/learnmore/index-101235.html) and publishes on the OTN
Harvest blog (http://blogs.oracle.com/jdevotnharvest/). He is the co-author of
the Oracle Fusion Developer Guide book, published by Oracle Press in 2010.

Grant Ronald is a senior group product manager working for Oracle's Application
Development Tools group responsible for Forms and JDeveloper where he has a
focus on opening up the Java platform to Oracle's current install base. Grant joined
Oracle in 1997, working in Oracle support, where he headed up the Forms/Reports/
Discoverer team responsible for the support of the local Oracle Support Centers
throughout Europe, Middle East, and Africa. Prior to Oracle, Grant worked for seven
years in various development roles at EDS Defence.

Grant is author of the Quick Start Guide to Oracle Fusion Development: Oracle
JDeveloper and Oracle ADF, published in 2010.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To Lotte, Michael, and Maria

Table of Contents
Preface 1
Chapter 1: The ADF Proof of Concept 11

The very brief ADF primer 12
Enterprise architecture 12

Frontend 12
Backend 13

ADF architecture 13
Entity objects and associations 14
View objects and View Links 15
Application modules 16
The ADF user interface 17
ADF Task Flows 17
ADF pages and fragments 18

The Proof of Concept 18
What goes into a Proof of Concept? 19
Does the technology work? 19
How long does it take? 20
The Proof of Concept deliverables 21

Proof of Concept case study 21
Use cases 22

UC008 task overview and edit 22
UC104 Person Task timeline 23

Data model 23
Getting started with JDeveloper 25

The JDeveloper window and panels 26
Setting JDeveloper preferences 27

Proof of Concept ADF Business Components 29
Database Connection 29
Building Entity Objects for the Proof of Concept 31
Building associations for the Proof of Concept 33

Table of Contents

[ii]

Building view objects and view links for the Proof of Concept 34
Creating view objects for value lists 35
Creating a view object for tasks 36
Building an application module for tasks 39
Creating view objects for scheduling 40
Building an application module for scheduling 43

Proof of Concept ADF user interface 45
Creating ADF task flows 45
The tasks page 46

Creating the tasks page 46
Running the Initial Tasks Page 50
Refining the Tasks Page 51
Running the Tasks Page with parameters 54
Adding database operations 55
Running the tasks page with database operations 56

Creating the scheduled tasks page 57
Adding the Gantt component 57

Navigation 58
Summary 60

Chapter 2: Estimating the Effort 61
Gathering requirements 61

Use cases 62
User stories 64
Non-functional requirements 64
Requirements list 65
Screen design 65

Application architecture 66
The Work Breakdown Structure 66

Estimating the solution 69
Top-down estimate 69
Bottom-up estimate 70

Three-point estimates 70
Grouping: simple, normal, hard 71
More input, better estimates 72

Adding it all up: the final estimate 73
Swings and roundabouts 73
Calculating standard deviation for a task 74
Calculating standard deviation for a project 75

Sanity check 76
From effort to calendar time 76
Summary 77

Chapter 3: Getting Organized 79
Skills required 79

Table of Contents

[iii]

ADF framework knowledge 80
Object-oriented programming 81
Java programming 81
Database design and programming 82
XML 82
Web technologies 83
Regular expressions 83
Graphics design 83
Usability 84
Testing 85

Organizing the team 85
Project manager 86
Software architect and lead programmer 86
Regular programmers 87

Building business components 87
Building the user interface 88
Skinning 88
Templates 89
Defining data validation 89
Building support classes 90
Building database stored procedures 90

Build/configuration manager 91
Database and application server administrator 91
Graphics designers 92
Usability experts 93
Quality assurance, test manager, and tester 93
Data modelers 94
Users 94

Gathering the tools 95
Source control 95
Bug/issue tracking 96
Collaboration 97

Shared documents 97
Discussion forums 97
Online chat 98

Test and requirement management 98
Automated build system 99

Structuring workspaces, projects, and code 100
Workspaces 100

Common code workspace 101
Common user interface workspace 102
Common model workspace 102
Database workspace 103

Table of Contents

[iv]

Subsystem workspaces 103
Master workspace 103

Using projects 104
Naming conventions 104

General 104
Java packages 105
Database objects 106
ADF elements 107
File locations 108
Test code 109

Summary 109
Chapter 4: Productive Teamwork 111

The secret of productivity 111
Integrate your tools 112
The Oracle solution 112

Team Navigator 113
Chat 114

Oracle Team Productivity Center 114
Installing the server 114
Installing the client 116
Administration tasks 119

Adding users and teams 120
Connecting to a Jira repository 120
Connecting to a Subversion repository 121
Connecting to a chat server 122
Disconnecting 123

Getting started with work items 123
Connecting to your work item repository 123
Creating a work item 124

Daily work with work items 124
Finding work items 124
Setting the active work item 126
Linking work items 126
Tagging work items 127

Chatting with team members 127
Saving and restoring context 127

Version control 128
The Subversion software 129
Effective Subversion 129
Logging on 130
Initial load 131
Working with Subversion 132
Teamwork with Subversion 134

Table of Contents

[v]

Getting a new copy 134
Getting other people's changes 134
Automatic merge 135
Handling conflicts 135
Avoiding conflicts 137

Subversion and Oracle Team Productivity Center together 138
Summary 139

Chapter 5: Prepare to Build 141
Task flow templates 141

Creating a task flow template 142
Contents of your master task flow template 143

Exception handling page 144
Common Help or About pages 144
Initializers and finalizers 144

Creating several levels of templates 145
Page templates 145

Creating a page template 146
Using layout containers 147
Facet definitions 147
Attributes 149

Framework extension classes 150
How Java classes are used in ADF 151
Some Java required 152
The place for framework extension classes 152
Creating framework extension classes 153
Using framework extension classes 156

Packaging your Common Code 157
Summary 158

Chapter 6: Building the Enterprise Application 159
Structuring your code 159

Workspaces 160
The workspace hierarchy 160
Creating a workspace 161
Working with ADF Libraries 162

ADF Library workflow 162
Using ADF Libraries 163

Building the Common Model 164
Creating the workspace 164
Using framework extension classes 165
Entity objects 165

Generating primary keys 167
Business rules 167

Table of Contents

[vi]

User interface strings 168
Common view objects 168
Testing the Common Model 170
Exporting an ADF Library 170

Organizing the work 171
Preconditions 171
Development tasks 172
Creating business components 173

Building view objects, view links, and application module 173
Implementing business logic 174
Testing your business components 175

Creating task flows 175
Reviewing the task flows 176
Creating the page fragments 176
Implementing UI logic 177
Defining the UI test 177
Reviewing the UI test 177

Implementing Task Overview and Edit (UC008) 178
Setting up a new workspace 178
Getting the libraries 178
Creating business components 179

Starting work 180
Building the main view object 180
Building the application module 182
Testing your business components 183
Checking in your code 184
Finishing the tasks 184

Creating the task flow 184
Starting work 185
Building the task flow 185

Creating the page fragments 186
Layout 186
Data table 186
Search panel 187
Running the page 188
OK and Cancel 189

Checking in your code 190
Deploying your UC008 subsystem 191

Implementing person task timeline (UC104) 192
Setting up a new workspace 192
Getting the libraries 193
Creating business components 193

Creating view objects for scheduling 193
Building the persons view object 194

Table of Contents

[vii]

Building the tasks view object 194
Building the master-detail link 194
Building the MinMaxDate view object 195
Building the application module 196
Testing your business components 197
Finishing the tasks 197

Building the Task Flow 197
Building the page 198

Adding a Gantt chart component 198
Defining start and end time 199
Running the page 201

Checking in your code 201
Deploying your UC104 subsystem 201

Building the master application 201
Setting up the master workspace 202
Getting the Libraries 202
Create the master page 203

Create the layout 204
Adding the menu 204

Creating a dynamic region 204
Understanding the dynamic region 206
Additional code for task flow switching 207

Storing the selected task flow value 207
Accessing the session bean from the backing bean 208
Setting the task flow values 209
Making the region re-draw itself 210

Summary 211
Chapter 7: Testing your Application 213

Initial tests 213
Working with JUnit 214
What to test with JUnit 214
A good unit test 215
Unit testing ADF applications 215
Preparing for unit testing 216

Setting up a test project 216
Adding default testing 217

Real unit testing example 221
Adding a test case 221
Implementing the logical delete 224
Re-testing 226

Automating unit testing 226
User interface tests 227

Working with Selenium 227
What to test with Selenium 228

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[viii]

Installing Selenium 228
A simple test with Selenium 229
Automating user interface tests 232

Setting up to run Selenium JUnit tests 234
Starting the Selenium server 235
Running the test 236

Using Selenium effectively 236
Value checking options 236
Lazy content delivery 237
Testing context menus 237
Verifying item ID 238

Testing passivation and activation 238
Stress/performance tests 240

Working with JMeter 240
What to test with JMeter 240
Installing and running JMeter 241
A simple test with JMeter 241

Setting up JMeter as a proxy 242
Recording a session 244

Post-processing a recorded session 244
Adding a Cookie Manager 245
Defining variables 245
Extracting values 246
Fixing the path and the parameters 246

Running a recorded session 247
The Oracle alternative 247
Summary 248

Chapter 8: Look and Feel 249
Controlling the appearance 249

Cascading Style Sheets basics 250
Styling individual components 251

Building a Style 252
InlineStyle and ContentStyle 252

Why does it look like that? 254
Conditional formatting 257

Skinning 258
What should I skin? 258
What can I skin? 259
Skinning overview 261
Starting a skin 262
Creating a skin CSS file 263

Creating the CSS file 263
Style Classes 265
Global Selector Aliases 265

Table of Contents

[ix]

Faces Component Selectors 266
Data Visualizations Component Selectors 267
Finding the selector at runtime 267

Providing images for your skin 268
Changing the color scheme 269
Creating a resource bundle for your skin 271
Packaging the skin 272
Using the skin 273

Summary 274
Chapter 9: Customizing the Functionality 275

Why customization? 275
How does an ADF customization work? 276
Applying the customization layers 277
Making an application customizable 278

Developing the customization classes 278
Building the classes 279
Implementing the methods 280
Deploying the customization classes 281

Enabling seeded customization 281
Linking the customization class to the application 282
Configuring the customization layers 283

Setting up JDeveloper for customization 285
Making the customization class available to JDeveloper 285
Selecting the customization role 286

Performing the customization 287
Customizing business components 288
Customizing the pages 289
Customizing strings 291
What cannot be customized? 293

Summary 293
Chapter 10: Securing your ADF Application 295

Security basics 295
Authentication 296
Authorization 296
The Oracle security solution 297

Security decisions 297
Authentication 297
Authorization 298
Where to implement security 298

Implementing ADF security 298
Security model 299

Table of Contents

[x]

Authentication type 300
Access grants 301
Welcome page 302

Application roles 303
Implementing user interface security 304
Implementing data security 305

Defining protected operations 306
Protecting an entity object 306
Protecting an attribute 307

Granting operations to roles 307
Users and groups 309

Mapping the application to the organization 309
Example users and enterprise roles 310
Assigning application roles 312
Running the application 313
Removing inaccessible items 313

Summary 314
Chapter 11: Package and Deliver 315

What is in the package? 315
The runnable application 316
Database code 316
Installation and operation instructions 316

Preparing for deployment 317
Cleaning up your code 317

Database connections 317
Test users and groups 319
Other development artifacts 320

Setting the application parameters for production use 320
Application module tuning 320
Controlling database locking 321
Tuning your ADF application 322

Setting up the application server 322
Installing the ADF Libraries 324
Setting up your domain 325
Creating a DataSource on the server 326

Deploying the application 330
Direct deployment 330

Creating an application server connection 330
Deploying your application directly 332

File deployment through the console 334
Creating the EAR file 334
Deploying the EAR file 335

Table of Contents

[xi]

Scripting the build process 337
Creating a build task 337
Moving your task to the test/integration server 339
Adding a Checkout 339
Adding the database 340
More scripting 340
Automation 341

Summary 341
Appendix: Internationalization 343

Automatic internationalization 344
How localizable strings are stored 346
Defining localizable strings 349
Performing the translation 351
Running your localized application 352

Testing the localized business components 352
Testing the localized user interface 353

Localizing formats 354
More internationalization 354
Summary 355

Index 357

Preface
Welcome to your first real-life enterprise ADF application!

The book you are holding in your hands is about building serious applications
with Oracle Application Development Framework (ADF). You know that actual
development work is only one part of a successful project, and that you also need
structure, processes, and tools.

That is why this book will take an enterprise focus, following a complete project from
inception to final delivery. Along the way, you will be building a proof of concept
application, but you will also be setting up and using all the professional support
tools you need for a real-life project.

This book will take you through the entire process of building an enterprise ADF
application – from the initial idea through proof of concept, tool choice, preparation,
coding support classes, building the application, testing it, customizing it, securing it,
and finally deploying it.

What is an enterprise application?
Enterprise applications are the strategic applications in the enterprise. They will
handle critical business functions and tend to be big and complex. In the past, it
was acceptable that users had to take training classes before they were able to use
the application, but today, enterprise applications are also required to be user-
friendly and intuitive. As they are deployed throughout the organization, they will
need sophisticated security features. And because of the cost of developing and
implementing enterprise applications, they will remain in use for a long time.

Preface

[2]

Application size
An enterprise application is big – containing lots and lots of code modules,
interacting in complex ways among themselves and with external systems.

Typically, this means that an enterprise application also has a lot of different screens
where the user will interact with the system. However, it is also possible that the
complexity of the enterprise application is hidden from the user; a good enterprise
application might seem deceptively simple to the average user.

Development team
The complexity of an enterprise application means that it will have to be built by
a larger team. It will use several technologies, so you need people skilled in all the
relevant areas. And because of its sheer size, you will need to have people working
in parallel on different parts of the application in order to develop it within a
useful timeframe.

Because of the interdependencies among the different parts of the application,
an enterprise application cannot simply be partitioned out among developers.
Instead, development work must be carefully planned so that the foundation is laid
down before the rest of the house is built – while at the same time allowing for the
inevitable changes as the project progresses.

Development tools
Naturally, you need an integrated development environment (IDE) to build the
actual application. This book assumes that the entire team will be using Oracle's
free JDeveloper tool for all work. The choice of IDE can be the subject of almost
religious fervor and some projects allow each developer to choose his or her favorite
IDE. However, in an enterprise project, the benefits from having everyone use the
same tool clearly outweighs any minor benefit achieved by using other IDEs with
marginally better support for one or the other task.

In addition to the IDE, you will also need source control – a server holding all the
different versions of the development artifacts, and a client on each development
workstation. This book uses the popular Subversion tool as an example of how to use
source control in an enterprise project with JDeveloper.

Another important tool is an issue-tracking tool. This can be used to track defects in
code as well as ideas, development tasks, and many other things. In this book, the
well-known Jira tool is used, integrated into Oracle Team Productivity Center (TPC).
The use of TPC allows the development team to link Jira issues with code artifacts for
maximum traceability.

Preface

[3]

Finally, you need a scripting tool. In a small project, it might be sufficient to build
applications directly off the IDE, but in an enterprise application, you need a tool to
ensure that you can build your project in a consistent manner. This book uses Ant as
an example of a scripting tool for ADF projects.

Lifetime of an enterprise application
Because of the effort and cost involved in building enterprise applications, they are
not casually thrown away and re-built. Indeed, many organizations are still running
enterprise applications built more than a decade ago.

The longevity of enterprise applications makes it extremely important that they are
well built and well documented. Most developers will be familiar with the pain of
having to maintain a poorly documented application, and understand the need for
good documentation.

But while documentation is important, it is just as important that the application is
built in a recognizable, standard way. This is why this book advocates using the ADF
framework in its intended way – so that coming generations of developers can look
at the code and immediately understand how the application is built.

What this book covers
Before your organization embarks on building an enterprise application using Oracle
Application Development Framework, you need to prove that ADF will indeed be
able to meet the application requirements.

Chapter 1, The ADF Proof of Concept, will take you through building a proof of concept
application using the normal ADF components: ADF Business Components for
the middle tier and ADF Faces and ADF Task Flows for the user interface. The
application will access data stored in relational tables and use both the standard ADF
components and an ADF Data Visualization component (a Gantt chart). This chapter
contains step-by-step instructions and can be used as a hands-on exercise in basic
ADF development.

Once you have proved that ADF is capable of delivering the necessary functionality,
you need to figure out which components will be part of your application, and to
estimate the total effort necessary to build it.

Chapter 2, Estimating the Effort, will provide checklists of task you must remember in
your estimate as well as some guidelines and estimation techniques that you can use
to calculate how much time it will take to build the application.

Preface

[4]

The next step after having decided to proceed with an ADF enterprise project is to
organize the development team.

Chapter 3, Getting Organized, explains the skill you need to build an enterprise
application, and how to organize your team. It also explains which tools you
need in your enterprise project, and how you should structure your code using
separate workspaces connected through the powerful ADF Library functionality for
maximum efficiency.

In order for the team to work efficiently towards the project goal, each developer
needs a development workstation with full integration to all necessary tools.

Chapter 4, Productive Teamwork, describes how to set up and use Oracle Team
Productivity Center, which serves as an integration hub, connecting your issue
tracking system (for example, Jira) and other tools to JDeveloper. It also explains how
to work effectively with Subversion and JDeveloper together for version control.

With your workstation all set up and ready to go, you need one more thing before
starting development in earnest: Templates and framework extension classes. For a
small application it might be OK to just start coding and work out the details as you
go along. However, in an enterprise application, the rework cost of such an informal
approach can be prohibitive.

Chapter 5, Prepare to Build, explains the task flow and page templates you need to build
a uniform user interface in an efficient way, explains why you need your own ADF
framework extension classes, and how to build these.

Now that all the infrastructure and templates are in place, and the development
workstation has been configured with all necessary connections, it is time to prove the
entire development flow.

Chapter 6, Building the Enterprise Application, walks you through creating the same
proof of concept application as in Chapter 1, but this time using all the enterprise
support tools configured and prepared in Chapters 4 and 5. The application is built
in a module manner in separate subsystems and integrated together in a master
application to illustrate how a large enterprise application should be structured.

By the end of this chapter, you will have proved that the entire enterprise toolset is
functional and have re-built the proof of concept application using correct enterprise
methodology.

Preface

[5]

All applications need to be tested – but enterprise applications need testing much
more than smaller applications for two reasons:

•	 The size and complexity of an enterprise application means that there are
more interfaces where things can go wrong

•	 The long expected life of an enterprise application makes it almost certain
that other developers will be maintaining it in years to come

For both of these reasons, it is important that the application comes with test cases
that prove correct functionality. It will not be sufficient to have a collection of test
scripts that must be manually executed – these will not be consistently executed and
will surely become out of date over the lifetime of the application. Your tests must
therefore be automated so they can be executed as part of the build process.

Chapter 7, Testing your Application, explains how to write code tests in the form of
JUnit test cases, how to use Selenium to record and play back user interface tests, and
how to use JMeter to for load testing your ADF application.

Your organization will, of course, have graphical standards that the application must
adhere to. In an ADF application, the look of the application can easily be modified
in a process known as "skinning". By developing several skins, you can even deploy
the same application multiple times with very different visual identities – an
invaluable feature for independent software vendors.

Chapter 8, Look and Feel, explains how to use the powerful skin editor that is new in
JDeveloper 11g release 2 to create Cascading Style Sheets to create a new "skin" for
your application corresponding to your enterprise visual identity.

Looking at the requirements for your application, you might identify a number of
pages or screens that are almost, but not quite, identical. In many cases, you do not
have to develop each of these individually – you might be able to develop one master
page and use functional customization to provide different groups of users with
different versions of the page.

The ability to easily customize application functionality is one of the truly
outstanding features of the Oracle ADF framework. Here, you benefit from the fact
that Oracle has developed ADF for real-life, large enterprise applications like Oracle
Fusion Applications. And, if you are an independent software vendor producing
software for sale, you can use this feature to easily customize a base application for
individual customers.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Chapter 9, Customizing the Functionality, explains how to set up an application for
customization using ADF Meta Data Services and how to use the special JDeveloper
"customization" role to perform the actual customization.

Your enterprise application needs a robust, role-based security model.

Chapter 10, Securing your ADF Application, explains how to secure both user interface
(task flows and pages) and data access (Entity Objects) using ADF security features,
and how ADF security ties in with WebLogic security features.

Once the individual parts of the application have been built and tested, it is time to
build a complete deployment package.

Chapter 11, Package and Deliver, describes how an enterprise application deployment
package is built, and how the development team can set up their own stand-alone
WebLogic server to ensure that the deployment package will work when handed
over to the operations team.

An enterprise application might have to be made available in several languages.

Appendix A, Internationalization, explains how internationalization works in ADF, and
how to produce a localized application.

How to read this book
This book follows an enterprise application from inception to final delivery, and you
can read the chapters in sequence to learn a proven method for successfully building
an enterprise application that meets business requirements, on time and on budget.

However, each chapter can also be read on its own if you just need information on a
specific topic. For example:

•	 Chapter 1, The ADF Proof of Concept, can serve as a quick introduction to ADF,
allowing an experienced developer to get started with ADF

•	 Chapter 4, Productive Teamwork, explains how to set up and use Oracle Team
Productivity Center to integrate issue tracking with Jira into JDeveloper

•	 Chapter 9, Customizing the Functionality, explains how to use the power of
Meta Data Services to build a customizable ADF application

Ready to build a real-life enterprise application? Let's get started!

Preface

[7]

What you need for this book
•	 Oracle JDeveloper: This essential tool is free and can be downloaded from

the Oracle Technology Network (http://otn.oracle.com). The examples in
this book use version 11.1.1.4, but you should easily be able to use 11.1.1.5 or
JDeveloper 11g Release 2.

•	 A database: You can use the free Oracle Database Express Edition 11g
Release 2, which is also available from the Oracle Technology Network.

•	 Version control software: This book uses Subversion as an example, but
there are many other fine version control systems available.

•	 Issue tracking software: This book uses Jira from Atlassian, but many other
options are available.

•	 A scripting tool: This book uses and recommends Apache Ant.

Who this book is for
This book is for developers in general - both web developers and developers
experienced with classic 4GL tools such as Oracle Forms - who wish to learn how to
develop modern, user-friendly web applications in an Oracle environment. It is for
novice ADF developers who wish to learn how to use JDeveloper and ADF, as well
as for more experienced ADF developers who wish to improve their knowledge and
understanding of ADF and how to use it effectively.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Choose the ElemKey attribute and then
click on the green plus sign."

A block of code is set as follows:

(:pResponsible is null or PERS_ID = :pResponsible)
and (:pProgramme is null or PROG_ID = :pProgramme)
and (:pText is null or upper(TEXT) like '%' || upper(:pText) || '%')

Preface

[8]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public class RoleLayerCC extends CustomizationClass {
public CacheHint getCacheHint() {
return CacheHint.MULTI_USER;
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "When you
are done entering the WHERE clause, click on the Test button to verify that your
SQL is valid."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[9]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

The ADF Proof of Concept
Your organization has decided that ADF might be the right tool to build your next
enterprise application—now you need to set up an experiment to prove that your
assumption is correct.

You can compare the situation at the start of a project to standing in front of a
mountain with the task to excavate a tunnel. The mountainsides are almost vertical,
and there is no way for you to climb the mountain to figure out how wide it is. You
can take two approaches:

•	 You can either start blasting and drilling in the full width of the tunnel
you need

•	 You can start drilling a very small pilot tunnel all through the mountain, and
then expand it to full width later

It's probably more efficient to build in the full width of the tunnel straight from the
beginning, but this approach has some serious disadvantages as well. You don't know
how wide the mountain is, so you can't tell how long it will take to build the tunnel.
In addition, you don't know what kind of surprises might lurk in the mountain—
porous rock, aquifers, or any number of other obstacles to your tunnel building.

That's why you should build the pilot tunnel first—so you know the size of the task
and have an idea of the obstacles you might meet on the way.

The Proof of Concept is that pilot tunnel.

The ADF Proof of Concept

[12]

The very brief ADF primer
Since you have decided to evaluate ADF for your enterprise application, you
probably already have a pretty good idea of its architecture and capabilities.
Therefore, this section will only give a very brief overview of ADF—there are many
whitepapers, tutorials, and demonstrations available at the Oracle Technology
Network website. Your starting point for ADF information is http://otn.oracle.
com/developer-tools/jdev/overview.

Enterprise architecture
A modern enterprise application typically consists of a frontend, user-facing part and
a backend business service part.

Frontend
The frontend part is constructed from several layers. In a web-based application,
these are normally arranged in the common Model-View-Controller (MVC) pattern
as illustrated next:

The View layer is interacting with the user, displaying data as well as receiving
updates and user actions. The Controller layer is in charge of interpreting user
actions and deciding which screens are presented to the user in which order. And
the Model layer is representing the backend business services to the View and
Controller, hiding the complexity of storing and retrieving data.

This architecture implements a clean separation of duties— the page doesn't have
to worry about where to go next, because that is the task of the controller. And the
controller doesn't have to worry about how to store data in the data service, because
that is the task of the model.

Chapter 1

[13]

Other Frontends
An enterprise application could also have a desktop application
frontend, and might have additional frontends for mobile users or
even use existing desktop applications like Microsoft Excel to interact
with data. In the ADF technology stack, all of these alternative
frontends interact with the same model, making it easy to develop
multiple frontend applications against the same data services.

Backend
The backend part consists of a business service layer that implements the business
logic and provide some way of accessing the underlying data services. Business
services can be implemented as API code written in Java, PL/SQL or other
languages, web services, or using a business service framework such as ADF
Business Components.

Under the business services layer there will be a data service layer actually storing
persistent data. Typically, this is based on relational tables, but it could also be XML
files in a file system or data in other systems accessed through an interface.

ADF architecture
There are many different ways of building applications with Oracle Application De-
velopment Framework, but Oracle has chosen a modern SOA-based architecture for
Oracle Fusion Applications. This brand new product has been built from the ground
up as the successor to Oracle E-Business Suite, Siebel, PeopleSoft, J.D. Edwards and
many other applications Oracle has acquired over the last couple of years.

If it is good enough for Oracle Fusion Applications, arguably the
biggest enterprise application development effort ever under-
taken by mankind, it is probably good enough for you, too.

Oracle Fusion Applications are using the following parts of the ADF framework:

•	 ADF Faces Rich Client (ADFv), a very rich set of user interface components
implementing advanced functionality in a web application.

•	 ADF Controller (ADFc), implementing the features of a normal JSF con-
troller, but extended with the possibility to define modular, reusable page
flows. ADFc also allows you to declare transaction boundaries so one
database transaction can span many pages.

•	 ADF binding layer (ADFm), standard defining a common backend model
that the user interface can communicate with.

The ADF Proof of Concept

[14]

•	 ADF Business Components (ADFbc), a highly productive, declarative way
of defining business services based on relational tables.

You can see all of these in the following figure:

There are many ways of getting from A to B—this book is about
travelling the straight and well-paved road Oracle has built for Fusion
Applications. However, other routes might be appropriate in some
situations: You could build the user interface as a desktop application
using ADF Swing components, you could use ADF for a mobile
device, or you could use ADF Desktop Integration to access your data
directly from within Microsoft Excel. Your business services could be
based on Web Services, EJBs or many other technologies, using the
ADF binding layer to connect to the user interface.

Entity objects and associations
Entity objects (EOs) takes care of object-relational mapping: Making your relational
tables available to the application as Java objects. Entity objects are the base that
view objects are built on, and all data modifications go through the entity object.
You will normally have one entity object for every database table or database view
your application uses, and this object is responsible for producing the correct SQL
statements to insert, update or delete in the underlying relational tables.

Chapter 1

[15]

The entity objects helps you build scalable and well-performing applications by
intelligently caching records on the application server in order to minimize the load
the application places on the database.

Like entity objects are the middle-tier reflection of database tables and database
views, Associations are the reflection of foreign key relationships between tables.
An association represents a connection between two entity objects and allows ADF
to relate data in one entity object with data in another. JDeveloper is normally able
to create these automatically by simply inspecting the database, but in case your
database does not contain foreign keys, you can build associations by hand to tell
ADF about the relationships in your data.

View objects and View Links
While you do not really need to make any major decisions when building the
entity objects for the Proof of Concept, you do need to consider the consumers of
your business services when you start building view objects—for example, what
information you would display on a screen.

View objects are typically based on entity objects and you will be using them for
two purposes:

•	 To provide data for your screens
•	 To provide data for lists of values (LOVs)

The data handling view objects are normally specific for each screen or business
service. One screen can use multiple view objects—in general, you need to create
one view object for each master-detail level you wish to display on your screen. One
view object can pull together data from several entity objects, so if you just need to
retrieve a reference value from another table, you do not need to create a separate
view object for this.

The LOV view objects are used for drop-down lists and other selections in your user
interface. They will typically be defined as read-only and because they are reusable,
you will define them once and re-use them everywhere you need a drop-down list
on a specific data set.

View Links are used to define the relationships betweens the view objects and are
typically based on associations (again often based on foreign keys in the database).

The ADF Proof of Concept

[16]

The following figure shows an example of two ways to display the data from the
familiar EMP and DEPT tables. The left-hand illustration shows a situation where
you wish to display a department with all the employees of the department in a
master-detail screen. In this case, you create two view objects connected by a view
link. The right-hand illustration shows a situation where you wish to display all
employees, together with the name of the department where they work. In this case,
you only need one view object, pulling together data from both the EMP and DEPT
tables through the entity objects.

Application modules
Application modules encapsulate the view object instances and business service
methods necessary to perform a unit of work. Each application module has its own
transactional context and holds its own database connection. This means that all of
the work a user performs using view objects from one application module is part of
one database transaction.

Application modules can have different granularity, but typically, you will have one
application module for each major piece of functionality. If your requirements are
specified with use cases, there will often be one application module for each major
use case. However, multiple use cases can also be grouped together into one ap-
plication module – indeed, it is possible to build a small application using just one
application modules.

Application modules for Oracle Forms
If you come from an Oracle Forms background and are
developing a replacement for an Oracle Forms application, your
application will often have a relatively small number of complex,
major Forms, and larger number of simple data maintenance
Forms. You will often create one Application Module per major
Form, and a few application modules that each provide data for a
number of simple Forms.

Chapter 1

[17]

If you wish, you can combine multiple application modules inside one root
application module. This is called nesting and allows several application modules to
participate in the transaction of the root application module. This also saves database
connections because only the root application module needs a connection.

The ADF user interface
The preferred way to build the user interface in an ADF enterprise application is
with JavaServer Faces (JSF). JSF is a component-based framework for building web-
based user interfaces that overcome many of the limitations of earlier technologies
like JavaServer Pages (JSP).

In a JSF application, the user interface does not contain any code, but is instead built
from configurable components from a component library. For your application, you
will want to use the sophisticated ADF 11g JavaServer Faces (JSF) component library,
known as the ADF Faces Rich Client.

There are other JSF component libraries—for example, the
previous version of the ADF Faces components (version
10g) has been released by Oracle as Open Source and is
now part of the Apache MyFaces Trinidad project. But for a
modern enterprise application, use ADF Faces Rich Client.

ADF Task Flows
One of the great improvements in ADF 11g was the addition of ADF Task Flows.

It had long been clear to web developers that in a web application, you cannot
just let each page decide where to go next—you need the controller from the MVC
architecture. Various frameworks and technologies have implemented controllers
(both the popular Struts framework and JSF has this), but the controller in ADF Task
Flows is the first controller capable of handling large enterprise applications.

An ADF web application has one Unbounded Task Flow where you place all the
publicly accessible pages and define the navigation between them. This corresponds
to other controller architectures. But ADF also has Bounded Task Flows, which are
complete, reusable mini-applications that can be called from the unbounded task
flow or from another bounded task flow.

The ADF Proof of Concept

[18]

A bounded task flow has a well-defined entry point, accepts input parameters and
can deliver an outcome back to the caller. For example, you might build a customer
management task flow to handle customer data. In this way, your application can be
built in a modular fashion—the developers in charge of implementing each use case
can define their own bounded task flow with a well-defined interface for others to
call. The team building the customer management task flow is thus free to add new
pages or change the navigation flow without affecting the rest of the application.

ADF pages and fragments
In your task flows, you can define either pages or page fragments. Pages are
complete web pages that you can run on their own, while page fragments are
reusable components that you place inside regions on pages. An enterprise
application will often have a small number of pages (possibly only one), and a
larger number of page fragments that dynamically replace each other inside a
region. This design means that the user does not see the whole browser window
redraw itself—only parts of the page will change as one fragment is replaced with
another. It is this technique that makes an ADF application seem more like a desktop
application than a traditional web application.

On your pages or page fragments, you add content using layout components, data
components and control components:

•	 The layout components are containers for other components and control
the screen layout. Often, multiple layout components are nested inside each
other to achieve the desired layout.

•	 The data components are the fields, drop-down lists, radio buttons and so on
that the user interacts with to create and modify data.

•	 The control components are the buttons and links used to perform actions in
an ADF application.

The Proof of Concept
The Proof of Concept serves two purposes:

•	 To demonstrate that the technology works
•	 To gather some metrics about your development speed

If we return to the tunnel analogy, we need to demonstrate that we can drill all the
way through the mountain, and measure our drilling speed.

Chapter 1

[19]

What goes into a Proof of Concept?
The most important part of the Proof of Concept is that it goes all the way through
the mountain – or in application development terms: All the way from the user
interface to the backend data service and back.

If your data service is data in relational tables and you will be presenting it in
ordinary fields and tables on the screen, the part of your proof of concept that
demonstrates the technology is fairly straightforward.

However, if your data service is not just relational tables – if you are using Web
Services or API code in C++, Java, or PL/SQL, you need to demonstrate that you
can retrieve data from your data service, display it on the screen, modify it and
successfully store the changes in the backend data service.

You might also have user interface requirements that require more advanced
components like trees, graphs, or even drag-and-drop functionality for the end user.
If that is the case, your proof of concept user interface needs to demonstrate the use
of these special components.

There might also be other significant requirements you need to consider. Your
application might have to use a legacy authentication mechanism like logging on
to the database. Or it might have to integrate with legacy systems for authorization
or customization. Or you might need to support accessibility standards allowing
your application to be used by people with disabilities. If you have these kinds of
requirements, you must evaluate the risk to your project if you cannot meet them.
If they are critical to your project's success, you need to validate them in a Proof
of Concept.

Does the technology work?
The short answer is yes. Hundreds of organizations have already followed
Oracle's lead and built big enterprise applications using Oracle ADF. It is very
straightforward to use the ADF framework with relational tables—the framework
handles all the boring object-relational mapping, allowing you to concentrate on
building the actual application logic.

You are likely to inherit at least some of the data model from a pre-existing system,
but in rare cases, you will be building a data model from scratch for a brand new
application. JDeveloper does allow you to build data models, but Oracle also has
other tools (for example, SQL Developer Data Modeler) that are specialized for the
task of data modeling. Either way, the ADF framework does not place any specific
restrictions on your data model—any good data model will work great with ADF.

The ADF Proof of Concept

[20]

But your requirements are special, of course. Nobody has ever built an application
like the one you are about to build—that is the essence of a project: To do something
non-trivial that has not been done before. After all, if you did not need anything
special, you could just pick up a standard product off the shelf. So you need to
consider all your specific requirements to see if ADF can do it.

The answer is still yes. The ADF framework is immensely powerful as it is, but it
also allows you to modify the functionality of ADF applications in myriad ways to
meet any conceivable requirement. If you have to work through a data access API,
for instance, you can override the doDML() method in entity objects – allowing you
to say: "Instead of issuing an UPDATE SQL statement, call this API instead." And if
you need to work with existing web services for modifying data, you can create Data
Sources from web services.

But you shoud not just take my word (or anybody else's word) for it. Building an
enterprise application is a major undertaking for your organization, and you want to
prove that your application can meet the requirements.

How long does it take?
It depends mainly on three things: The size of the task, the complexity of the task,
and the speed of development.

The size and complexity of the task is given by your requirements. It would be a rare
project where all requirements are known exactly at the beginning of the project, but
if you have the set of detailed requirements, you can make a good estimate of project
size and complexity.

The speed of development will be the great unknown factor if ADF is new to you
and your team. Using your previous development tool (for example, Oracle Forms),
you were probably able to convert your knowledge of project size and complexity
into development effort—but you don't yet know what your development speed will
be with ADF.

Development speed varies over time with all tools as shown next. You will often
discover that your initial development speed actually decreases slightly in the
beginning as you move from using the tool with all default settings to actually
figuring out all the options. Then comes a learning period, and finally the take-off
point where real productivity starts:

Chapter 1

[21]

You can use your initial development speed as an approximation of the productive
development speed if you need to produce a rough estimate early in the project.
However, if you do this, you must be aware that there will be a period of 1-2
months of lower productivity before you start climbing up to your full productive
development speed.

The Proof of Concept deliverables
The outcome of the proof of concept is not architecture in the form of boxes and
arrows on a PowerPoint slide. David Clark from the Internet Engineering Task Force
said, "We believe in running code" and that is what the Proof of Concept should
deliver in order to be believable and credible to developers, users, and management:
Running code.

If you want to convince your project review board that ADF is a viable technology,
you need to bring your development laptop before your project review board and
perform a live demonstration.

Additionally, it is a good idea to record the running proof of concept application
with a screen-recording tool and distribute the resulting video file. This kind of
demo tends to get watched in many places in the organization and gives your project
visibility and momentum.

Proof of Concept case study
You are a developer with DMC Solutions—an IT company selling a system for
Destination Management Companies (DMC). A DMC is a specialized travel
agency, sometimes called an "incoming" agency, and works with clients in the
country where it is based.

The ADF Proof of Concept

[22]

Run DMC
On an average packaged tour, you will probably not enjoy the services
of a DMC. But if you manage to qualify for a company-paid trip to
some exotic location, your company is likely to engage the services
of a DMC at the destination. And if you have ever participated in
a technology conference, a DMC will normally be taking care of trans-
fers, dinners, receptions, and so on.

The system that DMC Solutions is selling today is based on Oracle Forms, and the
sales force is saying that our competitors are offering systems with a more modern
look and a more user-friendly interface. Your mission, should you choose to accept
it, is as follows:

•	 Prove that ADF is a valid choice for a modern enterprise application
•	 Set up a project to build the next generation of destination management

software (the XDM project)

The rest of this chapter shows how to build the proof of
concept application, implementing two use cases. You can
simply read it to get a feel for the tasks involved in creating
an ADF application, or you can use it as an ADF hands on
exercise and perform each step in JDeveloper on your own.

Use cases
Your manager has dusted off the specification binder for the existing system and
asked you to implement Use Case 008 Task Overview and Edit. Additionally, he
wants you to implement the newly specified Use Case 104 Person Task Timeline.

These two use cases represent basic application functionality (the ability to search
and edit data) as well as a graphical representation of time data—something new
that was not possible in Oracle Forms.

UC008 task overview and edit
This screen allows the user to search for tasks by responsible person, program or a
free-text search. Data can be updated and saved back to the database:

Chapter 1

[23]

For simplicity, we will not implement the application menu, but instead just have a
button labeled Timeline that invokes UC104.

UC104 Person Task timeline
Your manager would like something such as the Gantt charts he uses to track
projects, which shows the tasks assigned to each person on a timeline:

Again, we will not have a menu, just a button for returning to UC008.

Data model
The destination management system works with Events (such as "Oracle OpenWorld
2011"). Within each event, there will be a number of programs (for example, "VIP
Pharma Customers"). One person is responsible for each programme. Within a
programme, there will be a number of Tasks that point to standard elements from
the element catalog. Examples of elements could be a Limo transfer, a dinner, an
excursion, and so on. Each task will be assigned to exactly one person.

The ADF Proof of Concept

[24]

The following diagram shows just the parts of the (much larger) existing data model
that we need for the Proof of Concept:

If you want to follow along with the proof of concept, building it in JDeveloper on
your own workstation, you can download SQL scripts for creating the relevant part
of the data model from the book companion website at www.enterpriseadf.com.
This script also contains some anonymized data.

Chapter 1

[25]

Getting started with JDeveloper
Oracle JDeveloper is Oracle's strategic development tool and the only tool with full
support for ADF Development. While Oracle will continue to support NetBeans and
offer a lot of functionality for Eclipse, they have also clearly stated that JDeveloper is
the tool of choice for building Oracle ADF applications.

JDeveloper is freely available for download and use from the Oracle Technology
Network (otn.oracle.com), normally through a download link from the front page.
If you do not already have a free oracle.com account, you will have to create one.

The illustrations in this book show JDeveloper 11g Release 1, version 11.1.1.4.0,
but since JDeveloper is a rapidly developing product, there might be a newer
version out by the time you read the book. However, the basics have not changed
over the last couple of years, and you should be able to immediately find the
dialogs and options you are looking for. In addition, since Oracle has built a very
large application based on this version, you can be sure that there will be a simple
migration path moving forward.

The following steps describe how to create a workspace for an ADF enterprise
application—if you want to use this chapter as a hands-on exercise, use the
suggested values in each step:

1. Start JDeveloper.
2. Choose File | New. In the New Gallery dialog box, chose Applications

(under General) and choose Fusion Web Application (ADF). JDeveloper
offers you many other types of applications, including Java Desktop
Application (ADF), but you want a Fusion Web Application.

3. Give your application a name (for example, XdmPoC), choose where to
put it in the file system (you can leave the default of C:\JDeveloper\
mywork\XdmPoC), and provide an Application Package Prefix. Use your
organization's Java prefix, followed by your project abbreviation (for the
proof of concept, use com.dmcsol.xdmpoc).

Java Package prefix
Traditionally, package names start with your organization internet domain
with the elements reversed. So, if your company domain is mycompany.
com, your package names would all start with com.mycompany. How-
ever, some organizations (like Oracle) feel that their names are sufficiently
unique that they don't need to include the first com.
If your organization has ever used Java before, your Java package prefix has
probably already been chosen and documented somewhere. Ask around.

www.allitebooks.com

http://www.allitebooks.org

The ADF Proof of Concept

[26]

4. You can simply click Next through the rest of the wizard.
5. This will create you a new application containing the two projects Model

and ViewController. In the main window, JDeveloper will show you the
Application Checklist as shown next:

The application checklist actually gives a great overview of the steps involved in
building an ADF application, and if you click the little triangles to expand each step,
you will see links to the relevant JDeveloper functionality for that step, together with
links to relevant places in the documentation. It even has checkboxes that you can
check as you have completed the different phases in developing your ADF application.

The JDeveloper window and panels
JDeveloper contains a lot of different windows and panels for different purposes.
The above screenshot shows the most commonly used panels, but you can toggle
each of the many panels on and off using the View menu.

Chapter 1

[27]

If you have not worked with JDeveloper before, please take a moment to familiarize
yourself with the typical panels shown previously:

•	 In the middle is the main window where you will be configuring business
components, designing pages, and writing code.

•	 Below the main window is the Log window showing system messages,
compiling results, deployment messages and many other types of
information.

•	 In the top left corner is the Application Navigator, where you can see all of
the components in your workspace in a hierarchical structure.

•	 In the bottom left corner is the Structure panel. This important panel shows
the detailed structure of the component you are working on. When you, for
example, are working on a page in the main window, this panel will show a
tree with all the components on the page.

•	 In the top right corner is the Resource Palette showing connections to
application servers, databases, and so on. The Component Palette will also
appear as a separate tab in this location when editing a page, allowing you to
select components to add to the page.

•	 In the bottom right corner is the Property Inspector where you can inspect
and set properties on the currently selected item.

You can rearrange these panels to your liking by grabbing the tab at the top of
each panel and dragging it to a new location or even drag it out of JDeveloper to
make it a floating window. This can be useful if you have multiple monitors. If you
accidentally change the layout to something you do not like, you can always choose
Window | Reset Windows to Factory Settings.

Setting JDeveloper preferences
Before you start working with JDeveloper, you should set the preferences (under
Tools | Preferences). There are literally hundreds of references to set, most of which
will not have any meaning to you yet. That's OK—the defaults are mostly fine.

The ADF Proof of Concept

[28]

One setting that you should change is the business package naming. Open
the Business Components node and choose Packages. Set values for Entity,
Association, View Object, View Link, and Application Module as shown next:

These settings tell JDeveloper to place different types of business components in
separate sub packages for an easier overview when you have many components.
These are just defaults to create a good starting point—as you build your application,
you might decide to move your business components and classes to other packages,
and JDeveloper makes this safe and easy.

Chapter 1

[29]

You should also set Encoding on the Environment node to UTF-8 to have all your
files created in UTF-8 for maximum cross-platform portability. (If you're on Microsoft
Windows, this value is probably set to a default Windows character encoding.)

Proof of Concept ADF Business
Components
Once the data model is in place, the next step is to build the ADF Business
Components. The description in this book is fairly brief and assumes that you
have worked a little bit with ADF before, for example, by going through a basic
ADF tutorial on the Oracle Technology Network website (otn.oracle.com). You
can find links to some relevant tutorials on the book companion website www.
enterpriseadf.com.

For the Proof of Concept, we will leave all business components in the default
location: The Model project in the Proof of Concept application workspace.
However, when building a real-life enterprise ADF application, you will be splitting
up your application into multiple application workspaces and using ADF libraries to
collect these into the master application. Working with smaller workspaces enforces
modularity in the code, makes it faster for the developer to find what he's looking
for, allows faster checkouts from source control – and JDeveloper also runs faster
and better when not handling thousands of objects at the same time.

We will return to the proper structuring of workspaces in Chapter 3, Getting Organized.

Database Connection
As you might have noticed from the application checklist, the first step after Plan
your Application is to create a connection to the database schema where your
application tables reside. Simply choose File | New and in the New Gallery choose
Connections (under General) and then Database Connection.

The ADF Proof of Concept

[30]

In the Create Database Connection dialog, give your connection a name and provide
username, password, and connection information. If you are working locally with
the small, free version of the Oracle Database (Oracle Express Edition), you choose
the thin driver, enter localhost as Host Name, leave JDBC Port at the default value
of 1521 and enter xe in the SID field. A default local installation of other database
editions typically has the value orcl for SID, but is otherwise identical. If you are
running against a remote database, ask your database administrator for connection
information. Click Test Connection to check that you have entered everything
correctly and then OK:

Chapter 1

[31]

Building Entity Objects for the Proof of
Concept
For the Proof of Concept, we will only be building entity objects for the tables that
need to meet the requirements of the two use cases. To start building, select the
Model project and choose File | New or right-click on the Model project and choose
New from the context menu.

Make sure you select the Model project before you start creating
business components. A default Fusion Web Application (ADF)
workspace comes with two projects: A Model project for the business
components and a ViewController project for the user interface.

In the New Gallery, choose ADF Business Components (under Business Tier) and
then Entity Object. Give the entity object a name (use the name of the corresponding
table in mixed case, singular form, for example person) and select the corresponding
schema object. You can either write the database object name in the field or click
Browse to query the database.

Naming Standards
When you start your enterprise application development project
in earnest, you need naming standards for everyone to follow.
We'll return to naming standards in Chapter 3, Getting Organized.

In Step 2 of the wizard, just click Next to create entity object attributes for every
column in the database. In ADF, there is no overhead at run time from having
attributes for unused columns—when the ADF framework issues a SELECT
statement to the database, it retrieves only the attributes that are actually needed
by the view object.

The ADF Proof of Concept

[32]

In Step 3 of the wizard, you can define the entity attributes in detail. One thing that
often needs to be changed here is the type for primary key columns. If the table has
a numeric ID column and a database trigger that sets this value when the record is
created in the database, you need to set the Type to DBSequence:

Notice that the ADF framework has now changed the values in the right-hand side
of the dialog box: Updatable is now set to While New, and in the Refresh After
box, the checkbox for Insert is now checked. This means that the entity object will
automatically retrieve the primary key value created by your trigger. If you are using
an Oracle database, ADF will use the RETURNING feature in Oracle SQL to get the ID
back as part of the insert (without having to make a second round-trip to the database).

You do not have to make any changes in steps four through six, so you can simply
click Finish here to close the wizard and create your entity object.

Chapter 1

[33]

For the proof of concept, you need to follow the previous procedure to create entity
objects for the following tables:

•	 PROGRAMMES
•	 TASKS
•	 PERSONS
•	 ELEMENTS (doesn't need DBSequence chosen)

When you are done, the Model project in the Application Navigator should look
like this:

Building associations for the Proof of
Concept
When you have created the entity objects, you will normally find that JDeveloper has
automatically discovered the relationships between them, based on the foreign keys
defined in the database.

If you have configured JDeveloper Preferences as recommended in the introduction,
all of the associations can be found in the application navigator under model |
entity | assoc as shown in the previous Figure.

The ADF Proof of Concept

[34]

The missing link
The ADF framework needs to know about the relationship
between entities. In case you have to build an ADF application
on an existing database where relations between data records
are not implemented as foreign keys in the database, you can
define associations in JDeveloper.

Building view objects and view links for the
Proof of Concept
To determine which view objects to build, you must look at the screens you need.
This allows you to determine both the data you need to present and the value lists
you will need.

Looking at the Task Overview screen (UC008), we see that all data is at the same
level (no master-detail), so we will just need one Tasks view object to display
the data.

Additionally, we'll need three value lists:

•	 Programmes (for the Programme drop-down list for search)
•	 Persons (for the Responsible drop-down list for search)
•	 Services (for the Service drop-down list in the data table)

Looking at the Person Task Timeline screen (UC104), there are clearly no value lists.
Because data is presented graphically, it is not immediately obvious whether the data
contains any master-detail relationship. To determine if that is the case, consider how
you would display the same information in ordinary fields and tables. Such a screen
might show:

•	 One person
•	 A number of tasks assigned to that person

This shows us that there is actually a master-detail relationship hidden here, so we
need one view object for Persons, one view object for their Tasks, and a view link
connecting the two.

Chapter 1

[35]

Creating view objects for value lists
To create a view objects for Persons, choose File | New, and in the New Gallery
choose View Object. It is a good idea to give your view objects a name that in-
dicates their intended usage as lists of values—for the list of persons, use the name
PersonLOV. Leave the data source at Updatable Access through Entity Objects.

Always use Entity Objects
In ADF 10g and earlier, the recommendation was to use Read-Only
Access through SQL Query when you did not need to change the data.
In ADF 11g, the benefit from caching that entity objects offer outweighs
the slight performance benefit from executing SQL directly. The recom-
mendation is, therefore, to always access data through entity objects.

In step 2 of the wizard, choose the Person entity object and move it to the box on the
right. You can remove the checkmark in the Updatable box, since we will only be
using this view object for the drop-down list:

The ADF Proof of Concept

[36]

In step 3 of the wizard, move the fields you want to the right-hand side—note that
the primary key attribute will always be included:

In step 5 (Query), you define the ordering of records by entering initials in the Order
By field. Then click Finish to create the view object.

Repeat this procedure to create the two other value list view objects:

•	 ProgrammeLOV (based on the Programme entity object, select the attribute
called name, order by name)

•	 ServiceLOV (based on the Element entity object, select the attribute
description, order by description)

Creating a view object for tasks
To create a view object for tasks, look at the Task Overview and Edit page (UC008)
and at the data model. You will notice that we need fields for date and time, text,
start where, flight number, end where, number of passengers, and service. All of this
data comes from the TASKS table through the Task entity object.

Create a new view object (AllTasksVO), leaving the data source at Updatable Access
through Entity Objects. In step 2 of the wizard, choose the Task entity object and
move it to the right-hand side. Because we will actually be updating data through
the AllTasksVO view object, we leave the check mark in the Updatable checkbox.

Chapter 1

[37]

In Step 3, shuttle the following fields to the right hand side:

•	 StartDate
•	 Text
•	 StartWhere
•	 FlightNo
•	 EndWhere
•	 Pax
•	 ElemKey

Note that in the Available box on the left-hand side, all attributes are shown in al-
phabetical order, not in the order you placed them in the entity objects or the order
they have in the database table.

Click Next two times and choose to order by start_date. Then click Next to get to
Bind Variables (Step 6).

Bind variables
Bind variables are placeholders in your SQL that you fill with values
at run time. The ADF framework enforces the good practice to always
use bind variables when you need to change the WHERE condition of
a query. You should never simply concatenate values into an SQL
statement; if you do, the database cannot tell that it already knows the
SQL statement and will waste time parsing it again, and a malicious
user could potentially insert extra statements into your SQL.

Looking at the search box at the top of the screen sketch, you can see that we need to
limit the tasks displayed by responsible person, programme, and text. Use the New
button to create three bind variables called pResponsible, pProgramme and pText.
You can leave the other settings in this step of the wizard at their default values.

When you're done, click the Back button to return to step 5 of the wizard, and add a
WHERE clause that uses the bind variables. It should look like this:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

(:pResponsible is null or PERS_ID = :pResponsible)
and (:pProgramme is null or PROG_ID = :pProgramme)
and (:pText is null or upper(TEXT) like '%' || upper(:pText) || '%')

The ADF Proof of Concept

[38]

When you are done entering the WHERE clause, click on the Test button to verify that
your SQL is valid.

In this case, we allow null values for the bind variables, so the SQL statement has
to contain an OR branch handling this case. We are converting both the database
TEXT column and the pText bind variable to upper case to achieve case-insensitive
matching, and concatenating a wildcard character before and after the parameter
value to search for occurrences of the search text anywhere in the database value.

Point-and-click Where clauses
You can also define Named View Criteria on your view objects
(on the Query sub-tab). These allow you to build a where clause
by pointing and clicking. Read about named view criteria and the
associated af:query component in the online help.

When you click Finish, the AllTasksVO view object is created and appears in the
application navigator.

However, we are not quite done with the view object—we still need to define
which data elements use lists of values. You might remember from the page layout
illustration that Service was rendered as a drop-down list box. Double-click on the
AllTasksVO view object to edit it and choose the Attributes sub-tab. Choose the
ElemKey attribute and then click on the green plus sign next to the heading List of
Values. The Create List of Values dialog appears:

Chapter 1

[39]

In this dialog, click the green plus sign to add the List Data Source. Choose the
ServiceLOV view object and then ElemKey as List Attribute.

Since we do not want to display the actual key value (ElemKey) to the user, you
should click on UI Hints tab, and move the Description attribute to the right-hand
box. Uncheck the Include No Selection checkbox, and then click OK.

The Attributes tab also allows you to define some hints to the user interface com-
ponents about rendering the component. Double-click the StartDate attribute and
choose the Control Hints sub-tab. Set the Label Text to Start time, set Format Type
to Simple Date and in the Format field, enter the format mask dd-MMM-yy HH:mm.

The date format string used here is Java
SimpleDateFormat—not the SQL data format
strings you might be used to from the database.

Click OK and then set a Label Text for the remaining elements, referring to the user
interface sketch for UC008 (Format is only used for date and number objects).

Taking a hint
The Control Hints defined here are only that: Hints.
When building the user interface, these will be default,
but you can still decide to use another label text or format.

Building an application module for tasks
To create an application module for tasks, choose File | New and then Application
Module. Give the application module a name (for example, EditTaskService). In
step 2 of the wizard, expand the tree in the left-hand side and shuttle the AllTasksVO
to the right-hand side, together with the PersonLOV and ProgrammeLOV that we need
to create the search criteria value lists. This is all you need to do, so you can simply
click Finish to close the wizard.

Now you can verify that your application module works the way you expect it to. In
the application navigator, right-click on the EditTaskService application module
node (the icon that looks like a little suitcase), and choose Run from the context
menu. This will start the Business Components Tester where you can work with all
of the view objects that are part of your application module.

The ADF Proof of Concept

[40]

Always test your business components using the Business
Components Tester before you start using them in pages.
Whenever your page does not run the way you expect, always
use the Business Components Tester to determine if the error
is in the frontend or the backend part of the application.

Double-click on the AllTasksVO1 view object. A pop-up dialog appears, allowing
you to assign values to all the bind variables defined in the view objects. To begin,
just click OK to leave all bind variables at the value NULL.

Here, you can page through the existing data as well as insert and delete rows using
the green plus and the red cross symbol. Click on the Edit Bind Variables button (to
the right of the toolbar, with the little pencil icon) to change bind variable values and
notice how data is filtered.

Creating view objects for scheduling
For the scheduling screen, we need two view objects: one for persons, and one for
tasks assigned to persons.

We already have a view object showing persons, but this view object only contains
initials (because it was intended for the Persons drop-down in UC008). We could
create a new persons view object for UC104, but we will change the existing view
object instead.

First, you need to change the name of the view object from PersonLOV to PersonsVO
to reflect that it is no longer just used for a list of values. Changing name or package
for existing objects is called refactoring, and JDeveloper makes this easy. Simply
right-click on the PersonLOV view object and choose Refactor | Rename from the
context menu, JDeveloper will change the name of the object and automatically
update all references to it:

Chapter 1

[41]

Next, the view object needs some more attributes. To add these, open the view object
by double-clicking on it and choose the Attributes sub-tab. Click the little triangle
next to the green plus sign above the attributes and choose Add Attribute from
Entity. Do not just click the plus sign—you need to select the little triangle to get
access to the Add Attribute from Entity menu item you need:

In the Attributes dialog, add the FirstName and LastName attributes to the Selected
list. Then select the new FirstName and click the little pencil icon to edit the
attributes. Under Control Hints, set a Label Text. Repeat for LastName.

Then create another view object, giving it the name ScheduledTasksVO. In step 2 of
the wizard, move the Task entity object to the right-hand side. Since we will not be
updating tasks either, you can remove the checkbox in the Updatable field here as
well. In step 3 of the wizard, you only need to select the StartDate and EndDate
attributes – note that the TaskId primary key attribute is automatically added.

In step 5 of the wizard, we need to add a WHERE clause so that the view object will
only show tasks with both a start and an end date. Enter the following WHERE clause:

start_date is not null and end_date is not null

The ADF Proof of Concept

[42]

Then click Finish.

Since there is a master-detail relationship between persons and tasks, we also need
to create a view link. Select File | New and then View Link. Give your view link the
name PersonsTasksLink.

In step 2 of the wizard, we need to define the relationship between the two view
objects. These are connected by the foreign key PERS_TASK_FK that defines the
connection between a person and the tasks assigned to that person. Expand the
PersonsVO node on the left and choose PersTaskFkAssoc as the left-hand side
of the link. On the right, expand the ScheduledTasksVO node and again choose
PersTaskFkAssoc, this time as the right-hand side of the link. Then click Add. You
see the source and destination attributes added at the bottom of the dialog box:

You do not need to change any of the remaining settings in this wizard, so you can
simply click Next and Finish to close the dialog box.

Chapter 1

[43]

Building an application module for scheduling
Create another application module for the UC104 Person Task Timeline screen,
giving it the name ScheduledTaskService.

One or two lumps?
On one hand, each application module uses a database connection,
and your database administrator will tell you to keep this number
down. On the other hand, you want to modularize your application
so that each piece of functionality is completely developed and de-
livered by one team—this calls for multiple application modules.
We'll return to the discussion of the proper number of application
modules in Chapter 3, Getting Organized.

In step 2 of the wizard, first move the PersonsVO to the right-hand side. Then select
the Persons1 view object instance on the right and the node ScheduledTasksVO via
PersonTaskLink on the left, and click the > button to move ScheduledTasks to the
right-hand box:

The ADF Proof of Concept

[44]

Note the difference between choosing ScheduledTasksVO on its own and choosing
ScheduledTasksVO as a child of PersonsVO. If you choose the view object as a child
of another view object, the ADF framework will automatically implement the master
detail relationship – the view object will only display the records that are children of
the current record in the parent (master) view object. If you choose the view object
on its own, it will not have any relationship to the master view object and will simply
display all child records.

Then click Finish to close the wizard.

Run your new application module in the business components tester. In the
left-hand side, you will see the master view object, the view link, and the detail
view object. Double-click on the view link to see master and detail records together.
When you use the navigation buttons at the master level, you will see different detail
records displayed:

Chapter 1

[45]

Proof of Concept ADF user interface
Once you have built all the business components your application will need, you can
start building the user interface. The user interface consists of two parts: ADF Task
Flows and ADF Pages.

Pages or fragments?
As mentioned in the section on ADF architecture, an application
can use either pages or page fragments. The Proof of Concept us-
es pages for simplicity, while the professional Proof of Concept
we will be building in Chapter 6, Building the Enterprise Application
will use page fragments.

Creating ADF task flows
For the proof of concept, we will implement one bounded ADF task flow. Select the
ViewController projects and then choose File | New. You might notice that the
New Gallery looks differently now. That is because the ViewController project is
active, and this project uses different technologies.

Under Web Tier, choose JSF and then ADF Task Flow. Give your task flow a name
(for example, xdm-poc-flow), make sure the Create a Bounded Task Flow checkbox
is checked and the Create with Page Fragments checkbox is not checked. Then click
OK. You will see a blank task flow diagram in the JDeveloper main window.

In the component palette in the top right corner of the JDeveloper window, expand
the Components heading and drag in a View component. Give it the name
taskPage. Drag in another View components and give it the name schedulePage.

Then drag in a Control Flow Case components and drop it on the taskPage. Move
the cursor to the schedulePage and click. This establishes a control flow from the
taskPage to the schedulePage. The cursor will be placed in a box in the middle
of the line. Type goSchedule in this box and press Return. Drop another Control
Flow Case onto the schedulePage and drag it to the taskPage. Give this control
flow the name goTask.

The ADF Proof of Concept

[46]

This defines the two pages that we will be using in the proof of concept, as well as
the possible navigation between them. Your task flow should look like this:

Note the green halo behind the taskPage. That indicates that this is the default
activity—the first screen presented to the user when the task flow is run. You can
set another page as the default activity by right-clicking on it and choosing Mark
Activity and then Default Activity.

The tasks page
You will notice that both the pages in the task flow diagram have a little yellow
exclamation mark. That indicates that the pages do not actually exist yet, they are
only defined as placeholders in the task flow.

Creating the tasks page
To create the tasks page, double-click on the taskPage icon in the page flow
diagram. The Create JSF Page dialog appears. For the proof of concept, we start from
blank pages (make sure Blank Page is selected) – but when actually building the real
application, we will, of course, be using page templates. Click OK to create and open
the page.

Chapter 1

[47]

There are two ways to place ADF components on a JSF page: you can drag them
in from the component palette on the right, or you can drag them in from the data
binding palette on the left.

If you drag in a component from the component palette, it is not bound to any
data control. This means it has no connection to the data in the ADF business
components.If you drag in the data control from the data control palette, JDeveloper
will automatically present you with a menu of components that you can drop onto
the page. If you use this approach, the dropped component is automatically bound to
the data control you dragged in.

To add components to the task page, find and open the Data Controls panel in
the left-hand side of the JDeveloper window. You should see two data controls,
corresponding to the two application modules you have created in the Model
project: ScheduledTaskServiceDataControl and EditTaskServiceDataControl.

However, before we start dragging in data controls, we need to place a layout
component on the page to control where items are to be placed. If you come from a
4GL background (like Oracle Forms), you might be used to pixel–precise placement
of items. In JSF, on the other hand, the placement of components is controlled by
special layout components. This has the advantage that the layout components can
arrange, shrink, and expand the components they contain in order to make the best
use of the available screen area. The disadvantage to this approach is that it takes a
little while to learn to use the right layout components.

The ADF Proof of Concept

[48]

For the taskPage, we start with a Panel Stretch Layout. Find this component in the
Component Palette in the right-hand side of the JDeveloper window (under the
Layout heading) and drop it on the page:

It is a good idea to use a "stretchable" layout
component as the outer layer to ensure that your
application will utilize the entire browser window.

If you expand the Panel Stretch Layout in the Structure Panel at the bottom right of
the screen, you will see that it shows a folder-like node called Panel Stretch Layout
Facets, and under that additional folder-like nodes called bottom, center, and so on.
Many layout containers contain these containers (called facets) that you can place
your content in:

Chapter 1

[49]

If you refer back to the screen design earlier in this chapter, you see that the Panel
Stretch Layout matches our requirements: We can place the search criteria on top
(in the facet called top), the actual data in the middle (in the facet called center), and
some buttons at the bottom (in the facet called bottom). We do not need the start
and end facets, but don't have to worry about them—facets without content are not
shown at run time.

We will start with the actual data, which we will present using an ADF Table
component. Open the Data Controls panel on the right, and then open the
EditTaskServiceDataControl node. You see the AllTasksVO1 view object. Grab the
entire view object and drag it onto the center facet. When you drop a data control onto
a page, JDeveloper shows a context menu asking you which user interface elements
you want to create and bind to the data control. In this case, select first Table and then
ADF Table from the context menu. The Edit Table Columns dialog appears:

The ADF Proof of Concept

[50]

In this dialog box, you can remove the columns that you do not need, and re-order
the columns if necessary. You will see that JDeveloper has automatically selected an
appropriate UI component—ADF Input Date for date attributes or ADF Select One
Choice for attributes where a value list has been defined. For the tasks table, you only
need to delete the TaskId column and click OK. You will see a table component in
the middle of your page.

Finally, you need to tell ADF which column gets to use any extra space on the screen.
Remember that we started with a Panel Stretch Layout, which will automatically
stretch the components it contains – but a table component does not stretch until you
specify which column should expand to use any extra space.

First select the Text column and make a note of its Id property (look in the Property
Inspector in the lower right corner of the JDeveloper window) – it will be something
like c3. Then select the entire table (either in the Design window in the middle of
JDeveloper or in the Structure Panel at the lower left). The Property Inspector will
now show the properties of the table. Expand the Appearance node and set the
ColumnStretching property to the name of the Text column (for example, column:c3).

Running the Initial Tasks Page
Even though we do not have the search functionality built yet, it is about time that
we run some code. Simply right-click anywhere on the taskPage page and choose
Run from the pop-up menu. In the log window at the bottom of the JDeveloper
window, you can see the WebLogic server starting up. This will take a while.

Once WebLogic has started, a browser window will open, showing your data. Resize
the window, checking that the Text column expands and contracts.

You might want to change the initial column size for some of the columns—to
do this, in JDeveloper select an af:column element in the main window or the
structure panel and change the Width value (under the Appearance heading) in
the Property Inspector.

Chapter 1

[51]

Refining the Tasks Page
Referring back to the drawing of the tasks page, we can see that two groups of items
are missing: The search criteria at the top and buttons at the bottom.

JDeveloper makes it very easy to create items that represent bind variables. If you
expand the AllTasksVO1 node, you will see all the attributes in the view object, as
well as a node called Operations. If you expand the Operations node, you will see
a number of standard operations that all view objects offer. One of these operations
is ExecuteWithParams, and if you expand this fully, you will see the bind variables
defined in the view object (pResponsible, pProgramme and pText):

The ADF Proof of Concept

[52]

To control the layout of the search criteria, first add a Panel Group Layout (from the
Layout Component Palette) to the top facet.

The first criterion is the person responsible for the program. To add this criterion to
the page, drop the pResponsible parameter onto the Panel Group Layout in the top
facet. When you release it, a context menu appears. From this menu, select Single
Selection and then ADF Select One Choice. The Edit List Binding dialog appears:

Chapter 1

[53]

Leave Base Data Source at variables and click Add to add a new List Data Source.
Choose the Persons view object as the source. Select PersId as List Attribute (the
value that is bound to the variable). At the bottom of the dialog, choose Initials in
the Display Attribute drop-down and set "No Selection Item" to Blank Item (First
of List), then click OK.

In the Property Inspector at the lower right, set the Label property for this
drop-down to Responsible.

The second criterion is the name of the program. From the list of parameters (under
ExecuteWithParams), drag the pProgramme parameter onto the Panel Group Layout
next to the pResponsible drop-down and again drop as Single Selection, ADF Select
One Choice. Again leave the Base Data Source unchanged and click on the Add
button next to List Data Source. Choose the Programme view object as the data source
for this drop-down list, and set List Attribute to ProgId. Then set Display Attribute to
Name and again set "No Selection" Item to Blank Item (First of List). Then click OK.
In the Property Inspector, set the Label property to Programme.

The last criterion is the search text that is matched with the TEXT column. Drop the
pName parameter next to the pProgramme parameter and this time drop it as Text,
ADF Input Text w/ Label. Set the Label property to Text.

If you cannot see all the components on the screen, you can grab the bottom edge of
the top facet where you added the items, and pull it down.

Finally, you need to create a button that actually executes the search. To achieve
this, simply drag the ExecuteWithParams operation (the green gearwheel icon) onto
the page inside the Panel Group Layout, next to the three search criteria. Because
this is not a data element, but an operation, your drop choices are different. Choose
Operation, ADF Button. The default text on the button is the name of the operation
(ExecuteWithParams). In the Property Inspector panel in the bottom-right corner of
the JDeveloper window, change the Text property to Search.

The ADF Proof of Concept

[54]

Your objects are probably placed below one another right now. To change this, select
the panel group layout that you dropped in the top facet. It can be a bit hard to pick
the exact right layout or input component in the design view of the page in the center
of the JDeveloper window. Instead, look at the Structure panel at the bottom left of
the JDeveloper window:

With the panel group layout selected, look at the Property Inspector in the bottom
right-hand corner. Change the Layout property to horizontal to align the search
criteria and the button horizontally. If you resized the top facet to see everything,
you can make it smaller again.

Running the Tasks Page with parameters
To make sure we got everything correct, let us run the page again. Right-click
anywhere on the taskPage page and choose run from the pop-up menu. Because
WebLogic is already started, your page should appear quicker this time.

Play around with the drop-down lists and try different values in the text search field.
Each time you click on the search button, the table should update accordingly.

Chapter 1

[55]

Adding database operations
We can now retrieve data from the database and edit it on the screen. However, we
have not yet created a way to commit these changes to the database. For this, we
will choose an operation at the application module level. The ExecuteWithParams
operation belonged to the AllTasksVO1 view object. But if you collapse all the view
objects, you will see that the EditTaskServiceDataControl also has an Operations
node with operations Commit and Rollback:

Before you drag these operations onto your page, drop a Panel Border Layout on the
bottom facet of the page. If you refer back to the sketch of the user interface, you will
see that we need some buttons (OK and Cancel) in the left side, and the Timeline
button on the right. Because a Panel Border Layout has a number of facets along the
edge, this is a good component to ensure this layout. However, since it does not offer
a way to control orientation, we have another component to arrange the OK and
Cancel buttons.

Use the Structure panel for arranging layout containers
When you have multiple containers within one another, drop them onto
the structure panel at the lower left of the JDeveloper window. This part
of the JDeveloper UI will present layout components in a tree structure,
making it much easier to control where you drop components.

In the structure panel, expand the af:PanelBorderLayout component you just added,
and drop a Panel Group Layout on the left facet. In the Property Inspector at the
lower right in the JDeveloper window, set the Layout property of this Panel Group
Layout to horizontal.

The ADF Proof of Concept

[56]

Then drag the Commit and Rollback operations from the Operations node of
EditTaskServiceDataControl onto this Panel Group Layout and drop them as
ADF Buttons. The Structure Panel should look as shown next. For both buttons, use
the Property Inspector to set the text (to OK and Cancel), and delete the content of
the Disabled field (under Behavior) to ensure that both buttons are always active:

That is all there is to it—the ADF application module will automatically handle
everything to ensure that your changes are either committed to the database
or rolled back.

Running the tasks page with database operations
Run the page again, checking that your buttons are placed where you expect. Then
make some changes to the data, and click OK. Use a database tool to verify that your
changes are committed to the database, or close the browser and run the application
again to verify that your changes are actually stored.

We will get back to the navigation button when we have built the other page.

Chapter 1

[57]

Creating the scheduled tasks page
To create the scheduled tasks page, go back to the page flow. If you have closed the
page flow window, you can find it again in the application navigator at the top-left
in JDeveloper under Web Content, Page Flows. Double-click on the schedulePage
icon and then OK to create the page.

Adding the Gantt component
Again, we start by dragging a Panel Stretch Layout component onto the page from
the Component palette.

The component we need to implement the graphic representation of tasks assigned
to persons is a Gantt chart of type Scheduling.

Under Data Controls, open the ScheduledTaskServiceDataControl node and
drag the Persons view object onto the center facet and drop it as Gantt | Scheduling.
The Create Scheduling Gantt dialog appears:

The ADF Proof of Concept

[58]

Set the fields in this dialog as follows:

•	 Resource Id: PersId
•	 Tasks Accessor: ScheduledTasks
•	 Task Id: TaskId
•	 Start Time: StartDate
•	 End Time: EndDate

Under Table Columns, remove the extra columns, leaving only FirstName and
LastName. Then click OK. You will see a graphical representation of a scheduling
Gantt chart.

Click in the chart and then go to the Property Inspector to set values for the
StartTime and EndTime properties (for example, 2011-10-01 and 2011-10-31). The
Gantt component does not automatically scale to the dates used, and making it
do so involves a bit of code – we choose to leave this functionality out of this
Proof of Concept.

Right-click anywhere on the page and choose Run to see the actual values in the
browser, and play around with the capabilities of the Gantt chart component. We
are using it in default configuration here, but there are many customization options.
Refer to the help (Press F1 with the Gantt component selected) or the documentation
for a full description of this powerful component.

Navigation
The last thing we need to add to the Proof of Concept application is the navigation
between the pages.

Open the taskPage and look in the Structure Panel. Find the facet called Right
under the af:panelBorderLayout (right under the af:panelGroupLayout containing
the OK and Cancel buttons). Drag a Button component from the Component Palette
at the top right and drop it onto this facet. In the Property Inspector, set the Text
property to Timeline, and under Action, select goSchedule.

The goSchedule option comes from the page flow—remember, this was the title of
the only control flow arrow going away from the taskPage.

Finally, we need to drop a Spacer layout component from the Component Palette
directly onto the af:panelBorderLayout. Your Structure Panel should now look
like this:

Chapter 1

[59]

The reason we need the spacer component is that ADF automatically optimizes the
page and does not show any facets that do not have content. So if the Panel Border
Layout does not contain anything, the middle part is not shown, and the Left and
Right facets are right next to each other. With the spacer in place, the central part will
take up all the available space, pushing the Left facet left and the Right facet right.

Now open the schedulePage. Drag a Panel Group Layout onto the bottom facet and
set the Layout property to horizontal and the Halign property to right. Then drop a
Button onto the Panel Group Layout, set the Text to Overview and Action to goTask.

To test the navigation, you can now run the entire task flow. Open the xdm-poc-flow
task flow, right-click anywhere on the page and click Run. Your application starts
with the default activity (taskPage). Check that you can use the Timeline button to
go to the schedulePage, and the Overview button to go back.

The navigation between pages in the task flow only
works if you run the task flow itself, not if you run
the individual pages.

The ADF Proof of Concept

[60]

Summary
In this chapter, we discussed what a Proof of Concept is, and why you need it. You
got a very brief introduction to the ADF architecture, and saw or built a Proof of
Concept application using the entire ADF technology stack, including the advanced
Gantt chart component.

You are ready to go to your boss and demo what you can do with ADF. If he agrees
that it seems like ADF is the right tool, your next step is to produce an overall
design and estimate how long it will take to build the next generation of destination
management software. This is the topic of Chapter 2, Estimating the Effort.

Estimating the Effort
You have convinced your boss that ADF has what it takes to build the next
generation of destination management software. Now he is asking you how much
this new enterprise application will cost, and how long it will take to build.

To be able to answer these questions, you will need to gather the requirements, do a
high-level design of the solution, and estimate how long it will take.

Gathering requirements
The first step is to gather the requirements. This can be done in many different ways,
depending on your organizational culture and environment:

•	 If you are subject to regulatory requirements (for example, in the aerospace
or pharmaceutical business), you need very formal method

•	 If you are outsourcing development to an external supplier, you need
exact requirements

•	 If development will be handled by an in-house IT department, you might get
by with less formal requirements

At the formal end of the spectrum, you need a complete list of all requirements that
you can test against. If your organization is used to a more informal approach, you
might only produce a fairly complete list of use cases or user stories.

Know the requirements
Aim for as complete an understanding of the requirements as
possible. Even if you are doing agile, iterative development,
you still need to start out with a complete picture in your
mind of the end result.

Estimating the Effort

[62]

Use cases
Often, requirements are specified in the form of use cases. Each use case describes
how to perform some task, so your complete specification will consist of multiple use
cases. A small system might have less than 10 use cases while several dozen or even
hundreds might be used to specify a large system.

A use case describes the interaction between a person (by convention called an
"actor") and the system. It describes what the system does for the user to provide
business value to the actor, focusing on what is to be done and not on how it is to be
done. It should therefore not contain any technical details about the implementation.

Use cases can be written at different levels of detail:

•	 A Brief use case will be just a few sentences to use in overviews and
diagrams

•	 A Casual use case explains the use case in more detail, but still takes up less
than a page of text

•	 A Fully dressed use case is a formal specification containing a number of
fields such as Purpose, Summary, Actors, Normal flow, Exception flows,
Business rules, and so on.

If you need a high degree of formality because of regulatory requirements or because
the application is being developed by a supplier for a customer, you want fully
dressed use cases. But if you are an in-house IT department building an application
for internal use, you might start out with only brief or casual use cases and flesh out
the details as the project progresses.

In the last chapter, we worked on Use Case 008 Task Overview and Edit. A more
realistic version of the screen for this use case might look like this (with a link to a
separate screen to edit all details):

Chapter 2

[63]

In a formal description, this use case could look like this:

Name Find and Edit tasks
Number UC008
Version 1.2
Goal To update task details if situation changes
Summary Program responsible can search for tasks by responsible, program

or text. Basic task attributes can be changed directly from overview
screen; all attributes can be changed in a pop-up detail screen.

Actors Program responsible
Preconditions A program has been defined
Trigger It becomes necessary to change task details, for example, because

flights or number of passengers change
Primary flow 1. User selects responsible person, program or a free text or a

combination of these and initiate a search

2. System shows only the tasks that meet all conditions (free text
matched anywhere in Text field). Attributes show include Start Time,
Text, Start Where, Flight no., End Where, Pax and Service

3. User performs necessary changes

4. User approves or cancels the changes
Alternative flows 3a. User clicks on edit button next to task

4a. System shows a detail screen with all task attributes

5a. User performs necessary changes

6a. User closes detail window

Rejoin main flow at 4.
Post conditions All tasks remain valid
Business Rules BR024 Task start time after program start time

BR025 Valid flight number

BR026 Task pax <= service max pax
Notes Adding new tasks is out of scope for this use case
Author and date Sten Vesterli, 2011-03-26

Estimating the Effort

[64]

User stories
Agile software development methods tend to find fully dressed use cases too heavy
and prefer to work with shorter descriptions, usually called user stories. By tradition,
these are supposed to be so short that they can be fit on a single 3 x 5 index card. In
principle, there is no difference between a casual use case and a user story.

User stories are only useful as requirements if supplemented with some kind of ac-
ceptance test description, establishing a common understanding between the busi-
ness user and the developer about what constitutes a successful implementation.

Critical success factor: The User
A requirement for success with agile development is that the
business users are always available to answer questions throughout
the project. Unless you have solid buy-in to this process from your
business users, agile development is unlikely to succeed.

Non-functional requirements
It is normal in a software development project to focus mainly on the functional
aspects—what should the system do. However, there are many other aspects to
software quality; for example, ISO-9126 defines the following aspects:

•	 Functionality
•	 Reliability
•	 Usability
•	 Efficiency
•	 Maintainability
•	 Portability

It is important that non-functional requirements are documented in a measurable
and testable way, just like the functional requirements. Response time requirements
need to be specified in seconds (or fractions of seconds) for a specific function:

Requirement Description
NFR002 Time from user initiates search until filtered data is shown on the

screen is < 0.5 seconds.

Performance/capacity requirements need to specify the exact load the system is
expected to handle (for example, 50 concurrent users sending a request every second,
receiving a response within 0.5 second).

Chapter 2

[65]

One common non-functional requirement is that the system should be "user-
friendly". This is a very inexact requirement and needs to be detailed into something
measurable. For example: "An untrained user is able to enter five expense report
items and submit the expense report in less than three minutes."

Requirements list
If you are working with formal requirements, you need to collect all the
requirements in a common list where each requirement is given a unique ID. When
you are building your test cases to prove that the application works as specified, you
can map the test cases to the requirements. If all requirements are covered by a test
case, and all test cases succeed, your application is complete.

Ensuring complete test coverage of the requirements for an enterprise application is
a major undertaking, typically requiring a test management professional.

Screen design
In many enterprise applications, there are a small number of central screens where
most of the day-to-day work is being done. Additionally, there might be screens with
specific layout and design criteria, for example graphic dashboard-style screens. If
you have produced a use case list, you should be able to identify these special screens
easily; you might even have built some of these as part of your proof of concept.

For these screens, it makes sense to specify the screen layout in some detail as part of
the requirements process. With 100+ ADF components available, it is normally a good
idea to select a limited set of components and design all screens using this limited set.
This provides a more uniform user interface and makes it easier for the development
team to build. This selected set should be documented to the users so they know what
behavior to expect from a drop-down list box, data selection, and so on.

Because the UI design part is actually a rather small part of the overall development
time in an ADF application, and because the UI tends to evolve over the lifetime
of the project, it is not cost efficient to produce a detailed layout for every screen.
Typical data maintenance screens will be totally acceptable in the default layout
achieved when dropping a data control on to a page, for example, an ADF Form.

You should design these screen layouts (sometimes known as "wireframes") in
a tool that makes it easy to make changes. You can use a specialized tool for
wireframe screens like Balsamiq (http://balsamiq.com), which deliberately
produces a "hand-written" look to make it clear to users that this is just a sketch and
can be freely changed until exactly the right design has been achieved. The sketches
in Chapter 1, The ADF Proof of Concept and earlier in this chapter have been produced
with the Balsamiq tool.

www.allitebooks.com

http://www.allitebooks.org

Estimating the Effort

[66]

An alternative is to produce high-fidelity prototypes using a tool like Microsoft Visio.
Oracle has made a set of Visio Stencils available on http://samplecode.oracle.
com that you can download and use.

Be careful about using these high-fidelity prototypes (or actual JSF pages) as
requirements; you might run into several problems:

•	 It enables the misconception that the application is almost done
•	 It tends to fixate a very specific image in your user's minds – if an alternative

design idea appears during development, it can be hard to deviate from the
almost-finished screen the user believes to have seen

•	 You are more likely to get bogged down in detailed discussions about colors
and fonts in a project phase where the focus should be on the functionality

Application architecture
When you know the requirements and have screen design for the most important
screens, you can start designing the solution. This does not mean that you need to
know every piece of code you're going to write, but you do need to be able to break
down the work in manageable chunks.

The Work Breakdown Structure
This is typically done in the form of a hierarchical Work Breakdown Structure
(WBS) that decomposes the entire application development effort into a number of
work packages. The following list contains the work packages you will probably
need when building an enterprise ADF application. Many of the items listed here
haven't been explained yet, but will be covered in subsequent chapters—they will
make sense when you return to this chapter after reading the rest of the book.

Your Work Breakdown Structure is likely to include:

•	 Technical design
Detailed design documents providing any information the programmer will
need and which is not already in the requirements.

•	 Server setup
	° You need both a development and a test environment with a

WebLogic application server and a database
	° You need a source control repository (for example, Subversion) if you

do not already have one

Chapter 2

[67]

	° You need an issue tracking tool (for example, Jira) if you do not
already have one

	° You need a development Wiki if you do not already have one
•	 Development workstation setup

Getting each development workstation set up with JDeveloper and a local
database + connection to source control and issue tracking.

•	 Development handbook
Everything a new developer needs to know to work on your project. Includes
how to structure workspaces and project, how to work with the database,
how you intend to do version control, build management, configuration
management, issue management. Naming conventions. Security strategy, test
strategy, UI guidelines. HOWTOs for any common development tasks (for
example, how to display an error, how to create an ADF library, how to write
localizable strings).

•	 Prototyping
Creating standard ways of handling common functionality. To be
documented in HOWTO sections in the development handbook. Possibly
multiple work packages for different topics.

•	 Framework extension classes
Your own base classes that all your ADF business components should be
based on.

•	 Data model
If you do not already have a data model, you need to create tables and other
database objects.

•	 Entity objects for all tables
If you are working directly with relational tables, this should be a small
task. Include any special data access coding, if not working directly with
relational tables.

•	 View objects for common value lists
Including a common application module.

•	 Graphical design
If you are designing a public-facing application, you might have very
strict graphical design guidelines. This is likely to take less effort for
internal applications. Output from the graphical design should be
example HTML pages.

Estimating the Effort

[68]

•	 Skinning and templates
Creating page templates and a "skin" for your application, defining its
visual identity.

•	 Usability Testing
A developer cannot guess what a user finds easy. Usability testing is a
specialty of its own, requiring trained professionals.

•	 One work package per use case, subdivided into the following:
	° Task flow (typically one for each use case)
	° Data model for each screen (view objects and view links)
	° Screens (JSF page fragments)
	° Test cases
	° Technical documentation

How much testing?
It will make a big difference to your estimates how you plan to test
your use cases. An explorative test where the developer plays around
with the screen following a short checklist does not take much time,
but recording a re-playable user interface test does. Decide on this
before you estimate. We will return to testing in a later chapter.

•	 Business Logic packages
Depending on your requirements, this can be anything from one small work
package to a collection of large ones.

•	 Integration packages
Depending on your integration needs. Typically one work package per
interface (web service, file load, and so on).

•	 Main application
This work package will collect all the bounded task flows from the individual
use cases into the final application.

•	 Automated build procedure
Setting up Ant, Maven or a similar tool to automatically build your completed
application directly from source in your version control repository.

•	 System Integration Testing
Reserve at least 10% of your total development time for integration testing.
This is testing the whole application—testing individual components should
happen in the use case work packages.

Chapter 2

[69]

•	 Coordination and project management
For example, 5% of the total development effort in coordination time –
remember, a two-hour project meeting is already 5% of a work week. For
project management, use, for example, 20% of the total development effort
(but typically not more than one full-time resource).

Estimating the solution
With your work breakdown structure in hand, you can start the work of estimating
the real work involved in each group of tasks. Estimate the effort needed to
perform the task in hours or days (measured in ideal engineering hours, assuming
concentrated, uninterrupted work on the task). Do not fall into the trap of estimating
in duration —duration estimates will vary wildly, depending on how much non-
project work the person doing the estimate expects to be doing at the same time. .

Use small tasks
If you find that a work package has an estimate of more than
80 hours, revisit the work breakdown structure and split the
task into smaller sub-tasks. An estimate of 80+ hours very often
indicates an incomplete understanding of the task and carries a
large risk of overrunning the estimate.
The individual use case work packages above might break the
80-hour limit and are, therefore, divided into sub-packages.

Top-down estimate
If you are the project manager, you can probably produce a rough estimate of the
total effort involved in the project. For this, you rely on your experience with similar
projects and your intuition.

Some project managers do not like the idea of using "intuition" because it does
not feel scientific and exact. However, your other-than-conscious mind can process
a lot of information and will be able to produce some quality input to your
estimation process.

Of course, you do not start a multi-man-year project based solely on intuition—you
combine the top-down estimate with a bottom-up estimate.

Estimating the Effort

[70]

Bottom-up estimate
In order to produce the bottom-up estimate, you ask people capable of performing
each task how much effort (in hours or days) it will take to produce the necessary
output. Some projects prefer to let several people do independent estimates, while
other project methodologies like Scrum prefer team estimates using collaborative
techniques like "planning poker" (see http://www.planningpoker.com).

The productivity you observed during the proof of concept will give you an idea of
the effort involved in some of the common ADF development tasks.

You need to make clear what you include in the estimate—developers typically
forget to include things like technical documentation and repeatable test cases.

The rest of this section describes an estimation technique often used
for formal estimates that go into agreements and contracts—for
example, when a system integrator is making an offer to a customer
to build an application according to agreed specifications. If you
are an IT department building an application for internal use, Agile
methods like Scrum where development is done in a number of fixed
time windows (called "sprints") might fit your needs better.

Three-point estimates
If you ask someone for just one estimate, it is natural that the estimate will be padded
with a bit of buffer time. All sorts of unforeseen complication may emerge, so a
developer will try to anticipate these and include them in his or her estimate.

Unfortunately, even if complications do not occur, task still tend to take the
estimated time.

In order to respect the uncertainty of the task without padding every task with buffer
time for worst-case scenarios, developers and others producing estimates should
produce a three-point estimate for each task:

•	 An optimistic estimate: The best case, if things are easier than expected. You
stumble upon a framework class that can do the task; a wizard in JDeveloper
generates code for you, and so on.

•	 A likely estimate: The time you realistically expect the task to take.
•	 A pessimistic estimate: The worst-case scenario, if things are harder than

expected. The class you thought you could use does not do exactly what you
want, you run into a baffling bug when testing with multiple users, and so on.
Do not allow the pessimism to take overhand; you do not need the
pessimistic estimate to include tornadoes destroying the test server.

Chapter 2

[71]

Three-point estimates like these will clearly show the project manager which tasks
are not clearly specified or carry a greater risk. If the pessimistic estimate is much
higher than the likely estimate, the person doing the estimate is unsure about either
the task or the means to complete it. This can be addressed by specifying the task in
greater detail and possibly performing a short, dedicated proof of concept to allay
any doubts the developer or other estimator has about the task.

The data set from three-point estimates can also be used to calculate an expected time
according to the formula in Program Evaluation and Review Technique (PERT). This
technique was developed by very clever people building Polaris nuclear submarines
in the 1950s and has been used since.

The expected time is calculated as follows:

texpected = (toptimistic + 4 x tlikely + tpessimistic) / 6

This time takes the uncertainty into account and produces a better number than just
using the most likely time. The three points will also be used for some clever math
when we get to the end of the chapter where we'll be adding everything up.

Grouping: simple, normal, hard
Your work breakdown structure is likely to include many tasks of similar complex-
ity. Naturally, you are not going to estimate each of these individually, but rather
estimate an average complexity for the whole group and simply multiply this effort
with the number of code modules in the group to arrive at a total estimate.

For an ADF application, you might use the following grouping:

Element Simple Normal Hard
Entity objects Based on relational

tables
Based on API
offering insert/
update/delete
functions (for
example, a PL/
SQL API)

Based on API that does
not map directly to
insert/update/delete
operations

Value list Based on relational
table

Dependent value
lists (content
depends on other
selections)

Data model Data maintenance, 1
view object

Average screen,
2-5 view objects

> 5 view objects

Task flow 1-3 pages 4-10 pages with
simple flows

> 10 pages or complex
flows

Estimating the Effort

[72]

Element Simple Normal Hard
Screen Simple data

maintenance on one
view object

Normal screens
based on 2-5 view
objects, no special
components

Based on > 5 view objects
or using complex compo-
nents (for example, tree,
visualization, drag-and-
drop)

You can use more groups if your application has a wider variety of tasks, or you
might estimate a few hard tasks individually if they are of a higher complexity than
your other "hard" tasks.

More input, better estimates
Research shows that the average of independent estimates from several people
is likely to be closer to the correct value than any one estimate. Many Agile de-
velopment methods also recommend to involve developers, architect, testers, and
customer in discussions of the estimate.

You can try this in the office: Ask your colleagues what the distance is between two
well-known cities some distance away. You will find that the average of just five peo-
ple will be pretty close to the real distance even if some of the estimates are way off.

You do not need multiple estimates for all of the items in your work breakdown
structure, but for critical tasks or tasks where the worst-case estimate is far from the
likely estimate, consider getting a second, third, or fourth opinion.

The following table shows examples of what estimates could look like for a few of
the items from the Work Breakdown Structure described earlier. All estimates are in
ideal engineering hours:

Task
Optimistic Likely Pessimistic

Server setup
Development Server 8 16 24
Subversion, Jira and Wiki 4 10 20

Entity Objects (55 tables) 11 27 55
Graphical Design 20 40 60
Skinning and Templates

Skin 4 10 40
Page template incl. menu 8 16 24

Usability testing 40 80 160
UC 008 Task Overview and Edit

Chapter 2

[73]

Task Optimistic Likely Pessimistic
Task Flow 1 2 3

 View objects 1 3 5
Overview screen 2 4 8
Detail screen 3 6 12

Test cases 2 4 6
Technical documentation 1 2 3

You will notice that some tasks have larger variation than others. For example,
usability testing is likely to take 80 hours, but might take up to 160 hours. The reason
for the high pessimistic estimate is that we might need several iterations before the
usability is as good as we want. For other tasks, the optimistic, likely, and pessimistic
values are very close together. This indicates well-defined, low-risk tasks we are
pretty sure how to complete.

Adding it all up: the final estimate
When you have gathered all the detailed task estimates, you need to add up the
details to a total estimate for the entire project.

As a starting point, you add up all the expected task efforts. Remember that these
are calculated based on your three-point estimates using the formula earlier in this
chapter. This total is the most likely total effort needed to complete the project.

Swings and roundabouts
A fairground owner will say: "What you lose on the swings, you gain on the
roundabouts". A developer will recognize this: Some things take longer (closer to
the pessimistic estimate), and some take shorter (closer to the optimistic estimate).
However, it is extremely unlikely that everything takes as long as the pessimistic
estimate—just as it is extremely unlikely that everything goes swimmingly according
to the optimistic estimate.

Estimating the Effort

[74]

A statistician will illustrate this fact with a normal distribution curve showing
probability or likelihood on the vertical axis and project effort on the horizontal axis.
This bell-shaped curve is high in the middle, indicating that it is most likely that your
total project effort will be somewhere near the sum of all the expected task efforts.
It drops off towards the ends, showing how likely or unlikely it is that your project
duration will be dramatically different from the middle value:

The shape of the curve is defined by what is known as the standard deviation that
can be calculated from your three-point estimates. There is some math behind it, but
the net result is that it is 95% likely that your total project effort falls within plus/
minus two standard deviations. (If you're interested in the math, there is a good
treatment on Wikipedia: http://en.wikipedia.org/wiki/Standard_deviation.)

Calculating standard deviation for a task
You can calculate the standard deviation for each task using your three-point
estimates. Simply use a spreadsheet program like Microsoft Excel and the standard
deviation function (STDEVP in Excel). The inputs to this function should be six
figures (one optimistic, four likely, and one pessimistic) just like we used when
calculating expected time for a task.

This calculation will show a large standard deviation (and greater uncertainty) if
your optimistic and pessimistic values are far from the likely value.

Chapter 2

[75]

Calculating standard deviation for a project
To get from the standard deviation of the individual tasks to the standard deviation
for the whole project involves a bit of math. What you do is you calculate the square
of the standard deviation (also called the variance), and then add up the variance
values for each task. You then take the square root of the sum of variances to get the
standard deviation for the entire project.

Remember from above that it was 95% likely that the actual value is within plus/
minus two standard deviations from the middle value? So if your most likely total
effort is 1450 hours and the calculated standard deviation for the entire project is 150,
you can tell the business: "We expect the effort of the project to be 1450 hours with a
95% probability of falling in the interval from 1150 to 1750 hours."

The following table illustrates how to calculate a final estimate. Because the entire
estimate would take up several pages, this calculation example uses just four tasks
from the work breakdown structure.

Task Optimistic Likely Pessimistic Expected Std.dev. Variance
Development
Server 8 16 24 16 5 21

Page
templates 4 10 20 11 5 22

Graphical
design 20 40 60 40 12 133

Usability
testing 40 80 160 87 36 1289

Total 153 1466
Proj. std. dev 38

The values in the Expected column are calculated according to the formula earlier in
this chapter. In Excel, it would look something like (B2+4*C2+D2)/6.

Your spreadsheet software can calculate the values in the Standard Deviation column.
In Excel, this would look like STDEVP(B2;C2;C2;C2;C2;D2). This calculates the
standard deviation of one optimistic value, four likely values and one pessimistic value.

The values in the Variance column are simply the square of the standard deviation.
In Excel, this could look like POWER(F2;2).

Estimating the Effort

[76]

Finally, you calculate the sum of all variance values and take the square root of this
sum to get the standard deviation for the whole project. A statistician can explain
to you why you cannot just add up standard deviations. In Excel, this calculation
would look like SQRT(G6).

With a total expected time of 153 hours and a standard deviation of 38 hours,
you get:

•	 Expected project effort is 153 hours
•	 It is 95 percent likely that the project effort will fall between 77 and 230 hours

(plus/minus 2 times the standard deviation)

If this is too wide a span for the business to sign off on, you need to address the
major uncertainties. If, for instance, you were to limit usability testing to a maximum
of 100 hours, the expected time for this task drops to 77 hours and the project
standard deviation to 22. This leads to an expected project effort of 143 hours with a
95% confidence interval of 99 to 188 hours.

Again, this estimation methodology is intended for formal estimates where you
need to agree on project effort up front. If you do not need to commit to a fixed time
and cost at the beginning of the project, Agile development methods might fit your
needs better.

Sanity check
Once you add up all your bottom-up estimates, you should arrive at a total close to
the project manager's top-down estimate. If the estimates are not fairly close, your
project contains some uncertainty that you need to examine.

The project manager might find that the bottom-up estimate is higher because it
includes tasks he or she did not consider in the top-down estimate. That is fine. But
if you have a major discrepancy and cannot find the reason, you need to revisit your
estimates. As described above, you get better estimates if you let more people do
the estimation and then calculate averages. Do this for both your top-down and
bottom-up estimates until the total bottom-up estimate is approximately the same
and the top-down estimate.

From effort to calendar time
Remember that we have been discussing effort in this chapter, calculating in ideal
engineering hours. You need to convert this into actual calendar time, taking into
account vacation, illness, training, support of existing systems, tasks for other
projects, company meetings, and many other things.

Chapter 2

[77]

If you have already implemented detailed time tracking in your organization, you
can get a good idea of the development efficiency of each developer from historical
data. If you do not have this data, start your project plan assuming a 50% efficiency
for everyone. Then follow up on how many hours are actually spent on development
tasks for each person. This can be very different from person to person because of the
varying other tasks each team member will have.

Summary
You have gathered all the requirements, created an initial application architecture,
and a Work Breakdown Structure for the XDM project. Together with the other
developers in DMC Solutions, you have created three-point estimates for each task
in your project and calculated the total effort needed to build DMC Solutions' next
generation destination management.

Your boss was impressed with your detailed estimate and liked the fact that you had
calculated a 95 percent probability worst-case value. He has now gone to the CEO for
funding – if he gets the go-ahead, your next task is to get the project team organized.
That is the topic of Chapter 3, Getting Organized.

Getting Organized
You have proved that ADF is the right tool for your enterprise project. You have
estimated how long time it will take to build the application, and the business has
approved the project.

Time for some programmers to get together and start coding, right?

Wrong. If you are to build a successful enterprise project, you need to think about
the skills and people you need before you start. In addition, you need to set up a
few tools and establish some guidelines to ensure that everyone on the team will be
working efficiently together to achieve the common goal.

Skills required
For a small application, you might have to do all the work yourself. If you have ever
built a whole application, you might remember that some parts were fun and others
less fun. And, while functional, your application probably did not win any prizes for
design or usability.

If your enterprise application is going to be a success, people should want to use it.
That means it has to be visually attractive and user friendly—public sites such as
Facebook, Flickr, and the various Google applications have set the bar fairly high.
Your users expect the enterprise application you are building to live up the sites they
see and use regularly.

These applications are not built by one person. They are large (like your application),
so they need a sizable team of programmers. But they are also complete—the visual
identity and usability is as much part of the overall experience as the code. If you
are to live up to these high demands, you need a team with many different skills,
including the following:

•	 ADF framework knowledge

Getting Organized

[80]

•	 Object-oriented programming
•	 Java programming
•	 Database design and programming
•	 XML
•	 Web Technologies (HTML, CSS, JavaScript)
•	 Regular Expressions
•	 Graphics design
•	 Usability
•	 Testing

We will examine these necessary skills in more details in the following sections.

ADF framework knowledge
Everybody on the team will need basic knowledge of the ADF framework. This
includes project managers, testers, graphics designers, and usability experts too.
Having a common understanding of what the framework can and cannot do will
make communication within the team much easier.

The programmers will, of course, need a deeper understanding of the framework,
but not everybody has to be an expert. An experienced programmer should just
need a basic one-week training class and a couple of weeks work under experienced
supervision in order to be productive with ADF.

Finally, you need at least one person with a deep understanding of how ADF works.
This person will define project standards and provide guidelines for how to use ADF
effectively. The same functionality can be implemented in many ways in ADF. It is
the task of the ADF expert to ensure that you use the framework as much as possible
and do not code things that ADF can handle declaratively.

If you do not have anyone in your organization with these skills, you should seriously
consider hiring an experienced consultant to help you get your project off the ground
in the right direction. Once you have built up some level of skill with ADF, you might
get by with a part-time expert as long as that person is on call by phone or e-mail to
prevent you from getting stuck or travelling too far down a wrong path.

Chapter 3

[81]

Work with the Grain
When a carpenter picks up a planer to shave a piece of wood, he
will be working with the grain of the wood. This allows him to
produce a smooth surface with a minimum of effort. If he works
against the grain, the plane iron will lift the wood fibers. This
makes it harder to push the plane, and the surface will be rough.
Similarly, you need to work with the grain of the ADF framework
in order to produce a good-looking, efficient enterprise application
with the minimum amount of effort.

Object-oriented programming
You also need someone on the team who understands the principles of object-oriented
programming, but again, not every programmer on your team needs this skill.

The ADF framework takes care of most of the heavy lifting you need to build a Java
application on top of a relational database. But you will need to build your own layer
of framework extension classes that fit into the Java object hierarchy between the
standard framework classes supplied by Oracle and the ADF Java objects you are
building in your application. You might also occasionally need to develop support
classes in Java, and because Java is an Object-Oriented programming language, some
OO skills are necessary in the team.

Java programming
Not everybody who writes needs the skills of Shakespeare. But everybody who writes
need to follow rules of spelling and grammar in order to make themselves understood.

All serious frameworks provide some way for a programmer to add logic and
functionality beyond what the framework offers. In the case of the ADF framework,
this is done by writing Java code. Therefore, every programmer on the project needs
to know Java as a programming language and to be able to write syntactically
correct Java code. But this is a simple skill for everyone familiar with a programming
language. You need to know that Java uses { curly brackets } for code blocks instead
of BEGIN-END, you need to know the syntax for if-then-else, constructs and how to
build a loop and work with an array.

But not everyone who writes Java code needs to be a virtuoso with full command of
inheritance, interfaces, and inner classes.

Getting Organized

[82]

Database design and programming
In a modern three-tier application, you have two servers at your disposal: The
application server and the database server. You can build your entire application
using just the ADF Framework and the application server. But if you are running
your application on top of an Oracle database, why not make full use of the features
the database offers?

Some tasks are better handled in the database, for example, if you need to process
many rows according to some rule, without needing any input from the user. It is
inefficient to pull all data to the application server, process it, and push it back to the
database. If you program stored procedures in the database (using PL/SQL in the
case of the Oracle database), your application server simply needs to tell the database
to start working and can then return to handling the interaction with the user.

It will therefore be an advantage to have someone on your team with database
programming skills.

Additionally, in case you are building a brand-new enterprise application that does
not have to work with existing data and tables, you need someone on your team who
understands database design. The database design is the foundation your enterprise
application stands on. You will have a very hard time building a robust enterprise
application if the foundation is not rock solid.

XML
The ADF framework is meta-data driven. This means that most of the application
is not actually programmed in a programming language like Java, but is instead
defined through JDeveloper. These definitions are stored in the form of XML files.
You will notice that, for example, business components have a Source tab, allowing
you to see the raw XML file.

You do not have to write XML files to use ADF, but it will be an advantage to know a
little bit about XML so you can read the files JDeveloper builds.

Powerful and dangerous
JDeveloper also allows you to actually edit the XML files directly.
This is not necessary during normal development—you can perform
almost all changes through the wizards and dialogs in JDeveloper.
An experienced ADF developer might sometimes edit the XML
directly; this is a powerful, but also dangerous approach that can
wreck your application, or worse, introduce subtle, very hard-to-find
errors. As a beginning ADF developer, do not edit the XML.

Chapter 3

[83]

Web technologies
When your ADF application is running, the end user is interacting with a web page
in a browser. This means that your application must use the web technologies the
browser understands: HTML, Cascading Style Sheets (CSS), and JavaScript. The ADF
framework takes care of most of the details for you, but it is good to have someone
on your team that understands these technologies. That person can both help you
understand any limitations you might encounter and how to work around them.

Regular expressions
JDeveloper allows you to use regular expressions to define validation rules. Reg-
ular expressions are arcane, almost magical constructs that can express complex
requirements in very compact form. For example, the following regular expression
can be used to validate an e-mail address:

[A-Z0-9._%-]+@[A-Z0-9.-]+\.[A-Z]{2,4}

This is clearly much shorter than writing a block of Java code, but unfortunately it is
also impossible to read for someone who does not know regular expression syntax.

If you do not want to learn regular expressions, that's OK. But in an enterprise ap-
plication, you'll probably be defining so many special validation rules that it will
be worth the effort for someone to learn this syntax.

In case you are interested, the above regex reads:
Any number of characters A-Z, digits 0-9, periods, underscores,
percent or dash, followed by an @, followed by any number of
characters A-Z, digits 0-9, period or dash, followed by a period,
followed by 2 to 4 characters A-Z. (Our example assumes your
regex parser is in case-insensitive mode.)

Graphics design
Have you checked Facebook today? Or LinkedIn, or Orkut, or Flickr, or last.fm?
Have you been on amazon.com or eBay? Do these sites look like the enterprise
applications you use at work?

Getting Organized

[84]

Probably not, unless you are running Oracle Fusion Applications as shown in the
screenshot by Oracle:

Your users experience modern web applications every day, and expect your
enterprise application to be as visually attractive and user friendly. Is the average
programmer able to produce such an experience? Left alone, probably not. That is
why you should have someone with graphics design skills on your team.

Usability
Speaking of Facebook, did you take a Facebook class? No, you did not. Modern web
applications are built with such a focus on usability that everyone can use them
right away. Your users are expecting the same thing from you: That the enterprise
application you build is so user-friendly that they can use it without taking
training classes.

Chapter 3

[85]

That is not at all easy. Programmers tend to be people with a specific way of
thinking, and without guidance, they build applications for people like themselves.
The purpose of usability studies is to ensure that applications are built for the people
who will actually be using them.

Usability experts will use a variety of tools, from low-tech paper prototypes to high-
tech eye tracking equipment to achieve this goal.

Testing
When the original Amazon.com website went into beta testing, it had of course
already been tested thoroughly by the developers. But Jonathan Leblang, one of the
beta testers, immediately found that you could order a negative number of books—
meaning that Amazon owed you money and would refund it to your credit card.

This anecdote illustrates that developers typically make poor testers. They have full
knowledge of all the things the application is supposed to do, so they tend to test
only a narrow range of variations on the normal case. A professional tester, on the
other hand, will test the entire range of possible inputs (including negative numbers).

Organizing the team
A complete enterprise application development project team needs to fill the
following roles:

•	 Project manager
•	 Software architect
•	 Lead programmer
•	 Regular programmer
•	 Build/configuration manager
•	 Database and application server administrator
•	 Graphics designer
•	 Usability expert
•	 Quality assurance
•	 Test manager and tester

Additionally, if you are building an application from scratch or are making
significant changes to an existing application, you will also need a data modeler.

Getting Organized

[86]

This does not mean that your team has to have a dozen people, if your enterprise
application is not very big, you can get by with fewer. But you do need to fill all of
these roles, one person can often fill more than one role.

Project manager
Naturally, you need a project manager to run an enterprise project. Project management
is a well-documented discipline that we will not be discussing in this book.

Danger! Programming Project Manager
The Programming Project Manager is the equivalent of the
player-coach in sports. It might work in amateur football, but
it does not work in professional sports. And it does not work
in enterprise application projects. If the project manager starts
writing code as the deadline looms larger, project management
deteriorates and the project ends up late and over budget.
The project manager should not be allowed to write code.

Software architect and lead programmer
The Software architect and the Lead programmer work together building an enter-
prise application like an architect and a builder work together to build a house.

The software architect designs the application, making key decisions about the use
of the ADF framework, including the use of unbounded and bounded task flows,
application module granularity and security. The lead programmer leads the team
building the application. In principle, he could build the whole application himself,
but in most real-life enterprise projects, he will build only a few key parts and spend
most of his time supervising other programmers.

Both software architect and lead programmer need a good understanding of
databases, internet technologies and the ADF Framework and must be willing to
work with the grain of the tool.

Work with the Grain
Since ADF is a very powerful framework that does a lot of work
for you, some developers distrust it and build a lot of code them-
selves. While this might be fun for the developer, it means that
the business will be spending more time and money building a
more fragile application. The lead developer must ensure that the
ADF framework is used effectively and efficiently.

Chapter 3

[87]

Apart from an enthusiasm for building enterprise applications fast with good tools,
the Lead programmer, of course, also needs good Java programming skills and some
years of experience.

Regular programmers
The regular programmers are the people doing most of the work. These are not
necessarily great artisans—simply being a competent craftsman is enough to build
great applications with ADF.

The programming tasks in your enterprise development project are likely to include:

•	 Building business components
•	 Building the user interface
•	 Skinning
•	 Templates
•	 Defining data validation
•	 Building support classes
•	 Building database stored procedures

In a typical project, the total functionality will be parceled out among team members,
who will each be building both business components and user interface elements.
However, large projects might specialize further with some people exclusively
building business components and others building the user interface.

Other, more specialized development tasks will typically be handled by one or two
persons in your team.

Building business components
While building business components, the developer will spend most of his or her
time in JDeveloper, using the wizards and dialog boxes that are part of JDeveloper.
During this task, the developer will occasionally need to read the XML files where
JDeveloper stores the metadata for a business component, and will occasionally
need to write short pieces of Java code when the default functionality of the business
components do not meet the requirements.

Developing business components typically takes between one third and half of the
total development time.

Getting Organized

[88]

Building the user interface
Building the user interface is not a trivial task. In the JavaServer Faces technology
used in ADF applications, components are not placed in specific locations, but are
placed within layout containers. The layout containers determine how and where
they are rendered on the screen, automatically resizing the components to make the
best possible use of the browser window.

If you are used to tools with pixel precise placement of components, it will take some
time to get used to working with layout containers. Programmers with experience
building web applications using HTML tables will recognize some of the challenges
you face, and programmers who have built Java swing applications will already be
familiar with the concept of layout managers.

Much of this work can be greatly simplified by creating common design patterns and
documenting their use on the project wiki or in a shared document.

The individual developer will normally be building page fragments and should
focus on the functionality—the visual appearance is controlled through templates
and skinning as described below.

The user interface also typically takes between one third and half the total
development time.

Skinning
Skinning is normally understood as the process of removing the skin from an
animal—to get to the meat, to use the fur, or both. However, the word also means,
"to cover with skin". It is this second meaning that has been picked up and redefined
in IT application development.

In ADF application development, skinning refers to the act of creating a skin for an
application. The skin is purely visual and does not affect functionality—just like a
panther (black leopard) is the same animal as a spotted leopard.

The person developing the skin needs a good understanding of Cascading Style
Sheets (CSS). If your team includes people who have built web applications, they
might already know some CSS. Developing an ADF skin can be a fairly difficult
task; Oracle is working on an ADF Skin Editor to make this process simpler. Be sure
to check the Oracle Technology website (http://otn.oracle.com, search for adf
skin editor) to see if this editor is available by the time you read this book.

Chapter 3

[89]

You do not need to define the visual attributes of every component—you start from
one of the standard skins delivered with JDeveloper and change only those parts you
want to look different. Always define a skin for your application when starting the
project, even if you don't plan to change anything. Having a skin defined makes it
easy to change the visual appearance of the application later.

You just need one person to develop and tweak the skin. This is a small, part-time task
after the initial skin definition. You do not want every developer setting detailed styles
on components— have the person doing the skinning explain the possibilities to the
rest of the team to make maximum use of this powerful ADF feature.

Templates
In ADF, your pages are normally based on templates, and you can also define page
flow templates that serve as the basis of your task flows.

These templates will often be built by the lead programmer or another
ADF-experienced developer on the team.

Defining data validation
An enterprise application is likely to make extensive use of data validation to ensure
that only the right data gets into database. You can define validation in all three
layers of the application:

•	 In the user interface
•	 In the business components
•	 In the database

Validation in the user interface is handled by Validate operations you can place on
user interface components. The advantage to this validation is that happens in the
browser without placing any load on the server. A disadvantage is that a clever and
malicious user will be able to circumvent this validation by disabling JavaScript in
the browser or by modifying data before it is sent to your application—so you cannot
depend on validation in the user interface alone.

A large number of validations can be defined declaratively in the business
components; additionally, the ADF framework also allows you to specify validation
using regular expressions, Groovy or Java code. These validation rules have the
advantage that they are well integrated into the ADF framework and validation
errors are easy to present to the user. A disadvantage is that business component
validation does not happen until the user sends the data to the application server.

Getting Organized

[90]

Finally, you can place validation rules in the database itself using PL/SQL code.
These rules have the advantage that they will always be applied, no matter how
the data gets into the database (through the application or any other way)—a
disadvantage is that validation errors are more difficult to present to the user in the
ADF pages.

Much of your validation will be built by the programmers building the business
components and user interface; on a larger team you might want to appoint someone
with experience of regular expressions as validation specialist.

Building support classes
Before the industrial age, a farmer would produce his own tools; using only the village
blacksmith for the few tasks he could not do himself. As industrialization took hold,
more and more specialized tools came into use—from steam-driven auto threshers to
today's GPS-controlled combine harvesters. This has allowed a dramatic increase in
output, but also means that the farmer is no longer able to repair his own tools.

Many developers tend to prefer the pre-industrial model when it comes to
programming—they build their own utility classes and tools instead of leaving this
task to a specialized tool builder. However, it is much more efficient to appoint
someone from the team to build the utility and support classes you need. This
ensures that each tool is only built once, is documented, and can be re-used through
the whole application.

If your team is more than a handful of people, consider appointing one developer
as the "tool builder," delivering the utility classes needed by other programmers.
Because the code written by this person will be widely used in the application, the
tool builder should be one of the more experienced team members.

Building database stored procedures
If you need to cut one log into planks, you can call a friend and get out your two-
man saw. But if you need to cut a hundred logs, you ask a sawmill to do it.

If you need to process one data record, you can retrieve it from the database, process
it in the application server and store it back in the database. But if you need to
process a hundred, a thousand or a million records, you ask the database to do it.

If your application calls for this kind of batch processing, your team needs to include
database programmers who can build stored procedures in your database. If your
application is based on an Oracle database, the language of choice is PL/SQL—but
other databases also have stored procedures in other languages.

Chapter 3

[91]

Additionally, if data gets into your database through other means than the enterprise
application, you need to implement validation and business rules at the database
level to make sure that your logic is applied to all data.

Build/configuration manager
There are two parts to building an application: The thinking and the doing. The
thinking is best done by a human, while the doing is best done by a machine. For
more on the build machine, see the section "Automated Build System" later in
this chapter.

The human is the build and configuration manager, who oversees the release and
distribution of ADF libraries. When building an enterprise ADF application, your
team will be working in different workspaces, and these workspaces will release
their content in the form of ADF libraries. The build and configuration manager has
the final word on which versions of libraries are used throughout the project and
is the person who knows that version 0.3 of your application contains the common
code library version 0.2.1 and version 0.4 of the CreateEmployee task flow.

This person is also in charge of the source control system, authorizing code branches
and overseeing merges of code back into the main development track.

Try to avoid using a developer as build/configuration manager. A good build/
configuration manager is careful, well-organized, and methodical. These are typ-
ically traits of a good systems administrator or database administrator, but not
necessarily of a developer.

What is a good day?
When you are putting together the team for your enterprise ap-
plication, ask each prospective participant this question: "What
does a good day at work look like?"
The people who talk about new, exciting tasks should be
developers. And the people who talk about all systems running
smoothly should be build and configuration managers, database
and system administrators.

Database and application server administrator
If your application was a ship, the database and application servers would be the
engine – an indispensable part of the ship, but one that is rarely seem by most of the
passengers and crew. And like the crew can use the engine order telegraph to send
instructions to the engine room, an ADF developer can use the ADF Framework to
send data and instructions to the database.

Getting Organized

[92]

The ADF developer, of course, needs to understand the
data model—just like the captain needs to understand
the physical capabilities of his ship's engine.

Every captain knows that to keep a ship in operation, you need a trained and
experienced professional in charge of the engine department: The chief engineer.
An ADF application needs the equivalent: A database and application server
administrator. A large organization might split this task into separate database
administrator and application server administrator roles.

Apart from keeping the database and application servers humming along, the
administrator can also help with performance problems. The ADF framework con-
tains many, many ways of ensuring optimal performance, but it is still possible to
run into a performance problem.

In some cases, this is caused by resource contention, for example, too many users
trying to access the same application module at the same time. Your application
server administrator can tell you in detail how your application is running and help
you configure the many ADF tuning settings.

In other cases, this is caused by the application trying to tell the database how to an-
swer a specific question instead of just asking the question and letting the database
figure out the most efficient way of finding an answer. If you want the sum of all
orders and your application is asking for each order separately, there is something
wrong with your application. Just ask the database for the sum, and it will happily
and quickly respond. Your database administrator can tell you what your application
is really asking the database—if the database is not being asked the question you
thought your application was asking, you need to look at your code.

Graphics designers
You need one or two graphics designers to create the visual identity of your
application. Some organizations will already have a detailed style manual describing
colors, fonts, and other visual attributes. In other cases, your designers have a free
hand to create the look of the application.

Graphics designers tend to prefer working in very visual tools like Adobe
Photoshop, sometimes leaving the programmers struggling with the challenge of
converting their visual ideas into running code. To avoid wasting time designing
something that cannot be built, ensure that your graphics designers have access to
the ADF component catalog (Oracle is hosting an online demo at http://jdevadf.
oracle.com/adf-richclient-demo).

http://jdevadf.oracle.com/adf-richclient-demo
http://jdevadf.oracle.com/adf-richclient-demo

Chapter 3

[93]

If you do not have graphics designers in your organization, this task can be
subcontracted. Graphics design is an area that lends itself well to online collaboration
– you can send your specifications to a designer in another country, discuss drafts
online and receive the finished design electronically. You can even hold online
graphics design contents through sites like www.99designs.com.

Usability experts
To verify that your users can actually understand and use the pretty user interface
your graphics designers have designed, you need usability experts to perform us-
ability tests with prospective users. This must happen early in the development
cycle when the screens might be little more than drawings on paper or simple
wireframe mockups, and it is cheap and easy to change the UI.

If you can afford it, have at least two usability people on your team – two people can
bounce ideas off each other and have a much better chance of coming up with creative
ideas if you hit areas where your users just do not understand your application.

Because usability is a specialized topic, you can also consider subcontracting the
whole usability task to an external supplier. However, this task cannot be sent out to
someone to perform online – you need the usability people on-site with your users to
capture all their input.

Cross-Training
While graphics design is a separate skill from usability,
graphics design and usability people must work closely
together – often, the same people will fill both roles.

Quality assurance, test manager, and tester
If you are working in an environment with strict regulatory requirements, or if you
are a vendor delivering a software product to a customer for a fixed price, you are
likely to need a Quality Assurance manager. This person has the responsibility to
ensure that agreed quality procedures are followed.

Additionally, someone must be in charge of testing the application to prove that
all requirements are met. For this, you need a Test Manager to write the test plan,
ensuring full test coverage of the agreed functionality. The Test Manager also
supervises the actual testing work and might be responsible for tracking all defects
discovered by testing. Sometimes, the roles of QA Manager and Test Manager are
combined in one person.

Getting Organized

[94]

Finally, someone will have to write the detailed test scripts, possibly record
automated test cases, and perform the test – this is the task of the professional testers.

Data modelers
If you are building your application from scratch or adding more than just a few
tables to an existing data model, you need someone with an understanding of data
modeling. The data model is the foundation of the whole application, and if the
foundation it is not well built, the whole structure will be wobbly.

The inhabitants of Pisa in Italy might be happy to have a leaning tower today, but the
duke commissioning the construction was probably not happy in the 12th century
when his beautiful campanile started leaning.

Users
You are building the application because it will fill the needs of a specific group of
users. You need user involvement for two purposes:

•	 To answer questions about the subject area
•	 For usability testing

For the first purpose, you need one expert that can explain the subject area and
answer any questions you might have. If you are working with formal, detailed
requirements documents, you might not be asking many questions, but if you are
working according to an agile development methodology, it is imperative that an
expert user is always available.

For the second purpose, you need multiple users with different experience levels
to make sure you are building an application that is easy to use for the casual users
and still efficient for the experienced power users. Depending on your ambitions for
usability, you can involve anything from a handful of users up to several dozen.

Consider your representative users to be part of your team – send them the project
newsletter, give them access to the project website, and so on. A new enterprise
application will be a big change for many people; you want the users you work with
to be your advocates and evangelists, spreading enthusiasm for the new application
across the organization.

Chapter 3

[95]

Worst practice: Design by Committee
Work with one person at a time – sit down with your expert to have your
questions on the subject area answered, or present your user interface
prototypes to one representative user at a time to gather feedback.
Having a committee of a dozen people or more questioning every aspect
of the design and moving buttons and fields around on your screen
designs will take months of extra development time without improving
the final product.

Gathering the tools
In ages past, many people had such strong beliefs that they felt it was completely
justified to burn people of different opinion at the stake. Mysteriously, similar strong
passions often emerge among programmers when someone performs the heresy of
proposing a different source control or build automation system.

The recommendations in this section are about the types of tools you need to manage
your enterprise ADF project through the entire project development process and into
production – commonly called Application Lifecycle Management (ALM) tools.
Please do not burn this book if the recommendations do not match your particular
programming religion – simply use the tool of your choice in each area.

Source control
In the 1930s, builders expected about one fatality per million dollars in construction
costs. For the Golden Gate bridge in San Francisco, this meant that 35 people were
expected to lose their lives. Actually, only eleven died. Nineteen people were saved
by a revolutionary new invention: A safety net.

When building an enterprise application, your source control system is your safety
net – the one tool you absolutely, definitely need.

Your source control system provides a centralized location for all your code – on a
professionally managed server, securely located in your data center or with a hosting
partner. This ensures that your precious source code is backed up, and that everyone
can get access to all the code whenever they need to.

It also allows to you go back to an earlier version for whatever reason—the business
might change their minds about the requirements (yes, it has been known to
happen), you might implement a change which proves to have unforeseen side
effects, a file might become corrupted due to a hardware failure. There is no excuse
for not having source control in place before development starts.

Getting Organized

[96]

A good source control system is Apache Subversion (SVN). It is fairly widespread, so
your development team is likely to have encountered it before. It integrates directly
into JDeveloper, and there are many stand-alone clients available.

So before you write the first line of code of your real application, talk to your systems
management people to find out what source control system your organization is
already using. If there is no system available for your development project, you
can easily set up a source control repository on a development server. With the low
cost of hard drives today, it is recommended to configure this server with multiple
disks in a fail-safe RAID configuration to avoid disrupting development in case of a
hard disk failure. Additionally, talk to your system administrator to make sure the
machine with your source code repository is included in the daily backup routine.

Bug/issue tracking
"In the unlikely event" (as they say in the airline industry) that your code does not
work perfectly the first time, you need some system to track issues and defects. Many
of these tools are also used to assign tasks to developers.

There is a wide variety of tools available, for example:

•	 Jira: A popular, commercial tool. Full-featured and user-friendly. Mobile
clients available (just in case you want to read bug reports on your iPhone).
Free for non-commercial use.
www.jira.com

•	 Bugzilla: An open source bug-tracking tool that scales to many thousands
of bugs/issues (not that you'd have that many, of course). More focus on
functionality than user interface – can be fairly intimidating for new users.
www.bugzilla.org

•	 FogBugz: Another commercial tool for complete project management,
including bug and issue tracking. Focus on support to end users as well with
automated classification of email bug reports and a screenshot tool for testers
and end users.
www.fogbugz.com

All of these can either be hosted externally or installed locally – again, talk to your
systems management department to see if your organization already has a bug/
issue tracking system that you can use. If not, you can install one of these tools on a
development server.

Chapter 3

[97]

If you use a project development server for bug/issue tracking, make sure that it is
backed up regularly. For an ADF project, Jira and Bugzilla have the advantage that
Oracle has already built adapters integrating them into Oracle Team Productivity
Center (OTPC). However, if you already have a bug/issue tracking system running,
there is no need to throw your existing system away. It is perfectly feasible to run
your bug/issue tracking system without integrating it with OTPC—or you could
build an OTPC adapter yourself.

Collaboration
Even if every member of your team works in the same office and you have regular
project meetings, you still need collaboration tools to facilitate communication in the
team. Several types of collaboration tools can be useful:

•	 Shared documents
•	 Discussion forums
•	 Online chat

There are many free, open source tools available for all of this. If you would rather
have something pre-built and pre-integrated, you can subscribe to web-based
services or even buy sophisticated (and pricey) tools like Oracle WebCenter Spaces
(part of the Oracle WebCenter Suite).

Shared documents
The most basic collaboration tool is shared documents, and you definitely need
this. This is where you put your development guidelines, and naming and code
standards. At the simplest, this can be a wiki or shared online documents like
Google Docs.

The important part about shared documents is to make sure that everyone can edit
them. You do not want to have to wait for the project manager to come back from
some meeting before you can update a standards document with some great idea or
much-needed improvement.

Because everyone can edit the documents, the other feature you need is a full version
history so that you can easily go back to a previous version and compare versions.

Discussion forums
Stop sending e-mails to your team. Just stop it. E-mail is so last century.…

Seriously, e-mail is not really useful for collaboration.

Getting Organized

[98]

For one thing, everybody's email inbox is already overflowing with meeting
invitations, promotional e-mails from all the companies that you gave your business
card to at the last conference in return for a free T-shirt, funny pictures of cats your
friends think you need to see, Viagra ads, and mails from friendly people who need
to borrow your bank account to transfer a couple of million dollars. This almost
ensures that someone will miss the crucial e-mail you send about changes to how
code should be checked into source control.

Secondly, collaboration is not about individual messages, but about discussions. And
e-mail programs do not really show discussions well. What you need is a real tree
view of who said what and in which order. If someone changes the subject of the
e-mail slightly, the e-mail program gets confused and is unable to follow the thread.

So do set up a discussion forum – if you do not have the software, you can use
a private group on Google Groups or another online service. One-to-many
communication and announcements go into the shared documents, and all other
communication goes to the discussion forum.

Online chat
Some people love online chat systems, and other people cannot be bothered. This is
not a required part of your collaboration toolkit, but if you think it might be useful,
try it out.

There seems to be a generational divide in online chat – younger people who have
grown up with multiple forms of digital communication tend to like it, and older
people tend to find that constant online chatter impedes their productivity.

The teams that typically achieve the greatest benefit from using an online chat
application are geographically dispersed teams in approximately the same time zone.
If you are all in the same office, you can get help by walking down the corridor, and
if you are in different time zones, the person with the answer might not be online
when you need to ask a question.

Oracle Team Productivity Center, which we will talk about in the next chapter,
contains a chat client.

Test and requirement management
Your quality assurance manager and test manager can work with spreadsheets and
documents, carefully mapping test cases to requirements. However, for an enterprise
project, you should look into professional software solutions (like HP Quality Center
and similar) for managing requirements and test cases. Many of these professional
tools will also allow you to automate your application testing.

Chapter 3

[99]

Automated build system
The final tool you should strongly consider is a build tool. Think about all the tasks
involved in building your application:

•	 Check out the latest version of the code from your source control system (you
do have one, don't you?)

•	 Compile all code
•	 Run all the unit tests you have defined
•	 Generate Javadoc and/or other documentation
•	 Audit the code for quality issues
•	 Package the whole application into a deployment package
•	 Deploy it on your test/integration server
•	 Run any automated user interface tests

Once you have set up your build tool, you can have the tool perform all of these
tasks automatically – saving developer time, reducing bugs due to manual errors and
improving the quality of your code.

Several tools are available for this, for example:

•	 Apache Ant (http://ant.apache.org)
•	 Apache Maven (http://maven.apache.org)

In addition to the pure build tools that actually execute the tasks you define, you can
also use continuous integration tools that will automatically invoke your build tool
based on specific rules. For example, you might compile and run unit tests every
time a developer checks something in to your source code repository, and run a
complete build every night at 2:00 a.m. Tools for continuous integration include:

•	 Hudson (http://hudson-ci.org)
•	 CruiseControl (http://cruisecontrol.sourceforge.net)

All of the above tools are open source, but there are commercial tools available as
well. If your organization or someone on your team already has experience with one
of them, stay with that tool. If you do not have any preferences, have someone spend
a day researching tools and choose the one the appeals the most to you.

http://maven.apache.org

Getting Organized

[100]

Structuring workspaces, projects, and
code
Your ADF application is going to consist of lots of files and development artifacts. To
prevent utter chaos, you need to decide how to divide your enterprise project into
manageable parts. Fortunately, JDeveloper and the ADF framework support this
separation very well through the concepts of workspaces and ADF Libraries.

Workspaces
JDeveloper works with the concept of application workspaces (confusingly often
just called "applications"). To avoid this confusion, the following will refer to
application workspaces as just workspaces. Each application workspace can
contain multiple projects.

You should not build your entire enterprise application in just one application
workspace. Having everything in one big workspace places an unnecessarily
heavy load on JDeveloper that will be noticeable, even on a powerful development
workstation. Additionally, because you work with version control at the workspace
level, having one big workspace means that your source control operations (updates
and commits) will take longer.

Show me only what I need
If you find that JDeveloper is showing you too many objects that
are not relevant to your task, you can define Working Sets. These
are configurable filters on your application workspace that you can
define under Application | Filter Application.

Instead of one big workspace, partition your application as follows:

•	 One common code workspace
•	 One common UI workspace
•	 One common model workspace
•	 One database workspace (unless the database already exists)
•	 A number of subsystem workspaces
•	 One master workspace

Chapter 3

[101]

Each workspace should be deployed as an ADF library that is placed under version
control. Workspaces that depend on objects from other workspaces will then import
the latest ADF Library released by that workspace. The subsystem workspaces will
include the ADF libraries released by the three common workspaces, and the master
workspace will include all the subsystem workspaces.

Get it right the first time
Think carefully about how you want to split your system into subsystems.
A subsystem should represent a logical grouping of functionality to
minimize dependencies between subsystem workspaces, and should be
implemented by a small team of no more than four developers.
Unfortunately, it is not easy to move objects and code between
workspaces once you have started building. Only change the division of
code in subsystems if you find major issues.

Common code workspace
The common code workspace is where you place your framework extension classes
and any utility classes you develop.

The people who work here will be the hardcore Java and ADF coders—the lead
programmer or the most senior programmers on the team. These classes should
be well written and extend existing classes in the right way. The work done in this
workspace will affect the entire project, so it is important to get this code right.

Getting Organized

[102]

Once the first version of the common code ADF library has been released, new
releases should be rare and will necessitate serious regression testing across the
entire project.

Common user interface workspace
The Common UI workspace is where you keep all the common elements that define
the visual identify of your application. This includes skins, page templates, and page
flow templates.

Both the skin developer and the page and page flow template developers work in
this workspace. Unless you have a large team, these two roles are likely to be filled
by the same person.

A skin defines the look of an application. Even if you do not anticipate
customizing the look of the application, you should create your own
skin at the beginning of the project. It does not take much effort to create
a skin (you can base it on one of the skins delivered with JDeveloper),
and it gives you a place to change the visual identity of the application
if you later decide you need this. We will return to skinning in Chapter 8,
Look and Feel.

Expect many minor changes to happen in the user interface template workspace,
mainly to the skin or visual identity of the application. Changes that only affect the
skin can be rolled out without affecting the functionality of the application. Changes
that affect the page and page flow templates need a bit of regression testing to ensure
that pages still work as you expect them to.

Common model workspace
In the common model workspace, you keep all of your entity objects for the whole
application. Since there will be only one entity object for each relational table, it
makes sense to gather these together in one workspace and create an ADF library
that can be shared with all dependent projects.

This workspace will also contain the view objects built for use in value lists
across the application and the application module containing these view objects.
Additionally, this workspace needs default view objects for each entity object so you
can test the EOs.

Once the initial components in this workspace have been built, only the validation
programmer is likely to be working much in this workspace, with occasional visits
from a business component developer if the need for a new value list pops up.

Chapter 3

[103]

Expect one initial release containing all the entity objects, and then a number of
releases with small changes involving validation rules as the project progresses.
Unless you make major changes involving the removal of entity objects, you do not
need much regression testing when releasing a new version of the ADF library from
the common model workspace.

Database workspace
If you keep your data model in JDeveloper, you should have a separate workspace
for the offline tables and other data elements, as well as any database diagrams
you use.

You do not need to keep your database definition in JDeveloper. While it might be
easier to use the same tool for everything, there is no real integration benefit from
having your data model in the same tool as your business objects. If you prefer to use
Oracle SQL Developer Data Modeler or another tool you are already familiar with,
feel free to do so.

Subsystem workspaces
You will generally be implementing one task flow for each use case or user story.
This means that your application can have anything from a handful to hundreds
of task flows.

You should group these task flows together in subsystem workspaces, each
developed by a small team. That team will be creating the specific view objects
necessary for the task flows in the model project of the workspace, and the task flow
and pages in the view/controller project of the workspace.

A subsystem workspace will import the common workspaces through the latest ADF
Libraries released by each of these sub-projects.

Master workspace
The master workspace is where the build and configuration manager puts everything
together. This workspace depends on all the other workspaces and contains no code
of its own—it simply serves as a container for all of the task flows your application
consists of. The final application package is built from this workspace.

Getting Organized

[104]

Using projects
Within an application workspace, you can have one or more projects. Your common
workspaces will typically contain only one project, but your subsystem workspaces
will always contain at least two or three projects:

•	 Model project
•	 View/controller project
•	 Test project

When you create a new application workspace of type Fusion Web Application,
JDeveloper will automatically create a model and a view/controller project for you.
You should not use the default project names, as this will cause problems when you
combine ADF libraries from multiple projects in the master workspace.

Instead, name both projects after your subsystem with the suffixes Model and View,
respectively. For example, if your subsystem is called TaskHandling, you should
use project names TaskHandlingModel and TaskHandlingView. You need to
create the test project after creating the application workspace, using a name like
TaskHandlingTest.

Naming conventions
The better your standards – and the better they are adhered to – the easier your code
will be to develop and maintain. You can use some or all of the following standards
and add your own. Whenever JDeveloper automatically generate names for things,
consider if these are good enough—only write a naming standard that deviates from
the standard JDeveloper way if you feel the rule has significant benefit.

Your standards should be easily available to everyone on the project in a wiki or a
shared document.

General
You need to decide on an application name: An abbreviated project name or an
acronym that can be used in package names. You are going to be writing this over
and over, so make it as short as possible – preferably just 3 or 4 characters, for
example, xdm (for project "neXt generation Destination Management").

Chapter 3

[105]

Java packages
All your business components and your Java code will be placed in packages and
displayed in the package hierarchy in the Application Navigator in JDeveloper. To
make it easy for all team members to find everything, determine your Java package
naming hierarchy from the beginning.

As you remember from Chapter 1, The ADF Proof of Concept, the base of all your Java
package names is by tradition the internet domain name of your organization with
the elements in reverse order. Under this base package, all code belonging to the
project should be placed under your project name – for the XDM project of DMC
Solutions, this would be com.dmcsol.xdm. This is called the project base package.
All of your code should be placed in sub-packages under the project base package.

You package naming could look like the following table (where <pbp> is short for the
project base package):

Package Usage
<pbp> Project base package, no code directly here

<pbp>.framework Framework extension classes

<pbp>.common Common utility classes

<pbp>.model.entity Entity objects (always common to whole
application)

<pbp>.model.entity.assoc Associations between entity objects. Also common
to whole application

<pbp>.model.view Common view objects (for example, for lists of
values used across the whole application)

<pbp>.model.resources Resource bundles for the common model

<pbp>.<subsystem>.model.view All view objects built specifically for <subsystem>
<pbp>.<subsystem>.model.view.link View links for <subsystem>
<pbp>.<subsystem>.model.am Application module(s) for <subsystem>
<pbp>.<subsystem>.model.resources Resource bundles for the <subsystem> view

objects
<pbp>.<subsystem>.view Java classes common to the frontend part of the

application (for example, managed beans for the
task flows of the subsystem)

<pbp>.<subsystem>.view.backing Backing beans for individual pages

<pbp>.<subsystem>.view.resources Resource bundles for the frontend part of
the application (page flows, pages and page
fragments)

Getting Organized

[106]

Database objects
If you are working with an existing database, you should use the existing naming
conventions. If these are not documented, look at existing objects and use similar
naming – do not change the naming if you inherit an existing database, even if the
naming conventions are not to your liking.

If you are building a new database, you need to set naming standards at least for the
following database objects:

•	 Tables
•	 Columns
•	 Views
•	 Primary key constraints
•	 Foreign key constraints
•	 Sequences
•	 PL/SQL packages
•	 Triggers

Table names should be prefixed with the application abbreviation, even if they
reside in a database schema only used for the application. During the lifetime of your
enterprise application, people are likely to be using the data in your tables together
with other data for purposes nobody has thought of from the beginning. Prefixing
your tables names clearly identifies them as part of a specific application. Each table
name should be the plural of the record it contains, for example, XDM_TASKS.

Primary key columns should be named with the table abbreviation (3-8 characters)
and the suffix _ID, if they contain a system-generated number. Use the suffix _KEY if
the value is an alphanumeric key. For example, PROG_ID or ELEM_KEY.

Normal views should have the suffix _V. If you are using updatable views with
INSTEAD-OF triggers, use the suffix _UV.

Primary key constraints should have the name of the table with the suffix _PK, for
example PERSONS_PK.

Foreign key constraints should be named with the abbreviation of the table where
the constraint is defined, followed by the abbreviation of the table referred to, with
the suffix _FK. For example, TASK_ELEM_FK.

Sequences should have the suffix _SEQ.

Chapter 3

[107]

Triggers should have the name of the table with a three-part suffix indicating
their usage:

•	 The first part should be B or A, indicating BEFORE or AFTER
•	 The second part should be a combination of the letters I, U and D, indicating

INSERT, UPDATE or DELETE
•	 The third part should be R or S, indicating ROW or STATEMENT level

An example of a trigger name could be TASKS_BIR: Before insert at the row level.

ADF elements
You should set naming standards for the following ADF elements:

•	 Entity objects
•	 Associations
•	 View objects
•	 View links
•	 Application modules
•	 Task flows
•	 Pages

Entity objects should have the same name as the table they are based on, but
singular and without the project prefix. The entity object for the XDM_TASKS table
should thus be called Task.

By default, associations get the name of the foreign key they are based on, with the
suffix Assoc. There is no need to change this.

View objects should be named for functionality or data they include – there is no
need to force an artificial correspondence to entity object names. Use a VO suffix for
the main view objects, for example, EmploymentHistoryVO. Use a LOV suffix for
simple view objects that are only used for value lists, for example, ServiceLOV.

View links should be named with the detail view objects (without the VO suffix),
followed by the master view object (without the VO suffix) and the suffix Link. For
example TaskPersonLink.

Getting Organized

[108]

Application modules should be named according to the service they provide
(typically, the name can be derived from the subsystem that uses the application
module). Use the suffix Service. Inside application modules, JDeveloper by default
gives the individual view objects usages the name of the view object with a numeric
suffix (for example, TasksVO1). In most cases, the numeric suffix is unnecessary and
should be removed when adding a view object instance to an application module.

Task flows have both a Task Flow ID (which is also the name of the XML file) and
a Display Name that is shown in the Application Navigator in JDeveloper. The ID
should be brief and might refer to the use case number or user story it implements.
Use the suffix -flow, for example timeline-flow. Use Display Name if you feel you
need a more detailed title to identify the task flow.

File locations
Each project has a base directory in the file system that is defined when the project
is created. Under the base directory, a src subdirectory is created, and all your Java
code and ADF business component XML will be placed in subdirectories under src
matching your package names.

Your ADF view/controller project also contains a subdirectory called public_html.
The content of this directory is shown in JDeveloper under the Web Content node in
the Application Navigator. Everything in this directory is accessible from a browser
when the application is running—except for the content of the subdirectory WEB-INF.

Pages should be left in their default location (Web Content in JDeveloper,
corresponding to public_html in the file system).

Page fragments should be placed in a subdirectory fragments to separate them from
the pages. When creating page fragments by double-clicking on a view object from
a task flow, you can simply add this directory name to the end of the content of the
Directory field. This causes JDeveloper to create the subdirectory:

Chapter 3

[109]

Your page flows and page templates do not need to be directly accessible, so you
should place these under the WEB-INF directory. This prevents a malicious user from
snooping around in the application's internal files.

Test code
If you are using the Maven tool, you should follow the Maven conventions for
the placement of test code. If not, create a separate test project in each application
workspace and place your unit tests in this project.

Having the tests separate from the code makes it easier to deploy the final
application without including test code unnecessary at runtime.

Summary
You have learned which skills you need in order to build an enterprise ADF
application. Talking to your colleagues in the development department of DMC
Solutions, you found that most of the skills were available, but you also had to
find external resources to fill a few of the roles in the development team for the
XDM project.

Talking to the system administrators in DMC Solutions, you found that there was
already a Subversion repository available you could use for your project, but you
had to install a couple of additional tools for issue tracking and collaboration on your
development server.

On the project Wiki, you have described how your team should use application
workspaces to build the application in a modular fashion, and you have documented
the naming conventions that everyone on the project should use.

The next task is to get the development team together for the official kick-off and
tell everybody how to use the tools, so you can build the XDM solution in the most
efficient way. That is the topic of the next chapter.

Productive Teamwork
You have put together your team so you that all the necessary skills are available
and you have set up your development servers (versioning, issue tracking and
collaboration). You have already documented the XDM project standards in the
project Wiki - now you need to get everybody together for the kick-off and the
first official project session, telling everybody how to set up their development
workstations to work productively with the tools.

The secret of productivity
Don't you just hate it when you're in the middle of something and your boss comes
up to you with an urgent request that your just have to start on right away? You need
to put away what you are doing, get into the new task, finish it and then get back
into what you were doing before.

Productivity experts call this a context switch. And it is much more expensive in
terms of lost productivity than most people realize. Estimates of lost time vary,
but typically range from 10 minutes to an hour of lost productivity. To be more
productive, you need fewer context switches.

This book cannot really offer you advice on how to minimize boss-induced context
switches – but it can offer some guidelines for minimizing the context switches you
can influence yourself.

More pixels, better productivity
When you start working with JDeveloper, you are likely to find that
your screen is too small. If you are wasting time minimizing and
resizing panels, you need a bigger screen. Get at least a 1600 x 1200,
preferably bigger (or even better, get two). With current monitor prices,
the payback time for extra screen area can be calculated in weeks.

Productive Teamwork

[112]

Integrate your tools
An experienced computer user can switch applications in a fraction of a
second – but the context switch takes much longer than the time it takes to
press Alt+Tab or Cmd+Tab.

Firstly, you are likely to have more than two applications you switch between –
which means that every once in a while, you will have to actually look at your screen
to determine just how many Alt+Tab presses you need. Secondly, once the desired
application is on the screen, you need to reorient yourself every time. Your brain has to
determine the location of the window, find the mouse pointer and then instruct your
hand to scroll or move. Thirdly, you will occasionally have to actually use information
from the second window in the first one. You can either resize both windows to a
smaller size or cut and paste the information you need – both of which take time.

That is why you do not want to have to switch applications – you want as much as
possible integrated into your development environment.

The Oracle solution
In days past, Oracle's solution to this integration challenge would have been to
connect JDeveloper to some of their own software, like the Oracle Projects module
of the E-Business Suite. Fortunately, Oracle has moved on from the monolithic "buy-
everything-from-us" approach and with Oracle Team Productivity Center (OTPC)
offers a modern, loosely coupled integration solution.

Oracle Team Productivity Center is a free product from Oracle that connects to
different repositories of information and presents data directly in JDeveloper. The
Team Productivity Center consists of three parts:

•	 JDeveloper TPC Client
•	 Team Productivity Center Server
•	 Team Productivity Center Connectors

Chapter 4

[113]

The JDeveloper TPC Client is implemented as a JDeveloper extension. This means
that you can simply use the built-in Check for Updates function to automatically
download and install the client.

The Team Productivity Center Server is a Java application offering a number of
services that the client uses. It contains a password vault storing credentials for
third-party repositories so the user can seamlessly connect to different products, as
well as a simple task database in case you do not have any third-party repositories
you want to use.

The Team Productivity Center Connectors expose third-party repositories of
information to the client. Using a standards-based interface, a connector allows
create/update/delete operations on the underlying repository, so the developer can
do all work without leaving JDeveloper. Team Productivity Center comes with pre-
built connectors for Jira, Bugzilla, Rally, and Microsoft Project Server, as well as the
built-in simple task repository.

If you want to integrate a tool for which Oracle does not yet offer a connector,
you can develop your own connector. Oracle makes a Developer Guide available
explaining how to develop a connector, as well as a sample connector with source
code to help you get started.

Team Navigator
When you install Oracle Team Productivity Center, you get a Team Navigator entry
under View | Teams. If you choose this menu item, the Team Navigator pane opens.
This pane shows three expandable headings:

•	 Team Members
•	 Work Items
•	 Versioning

Under Team Members, you find all members of your team. If you have connected to
a chat server as described below, you also see the status of each member (available,
away, busy).

Productive Teamwork

[114]

Under Work Items, you see the Active Work Item at the top, followed by all
the repositories you have connected to (Jira, Rally, Bugzilla, and so on.). Under
each repository, lists of work items from that repository are shown. Oracle Team
Productivity Center does not store the work items itself—you define queries either at
the team level or just for yourself, and these queries show a number of work items.

Under Versioning, you find connections to the versioning system you use on
the project. The functionality here is the same as in the standalone Versioning
Navigator; the advantage to defining versioning as part of Oracle Team Productivity
Center is that the team administrator can specify the repository URL for the team.

Chat
Also on the View | Team menu, you find a Chat item that brings up a Chat pane
inside JDeveloper.

The first time you click on the connect icon, you will be asked to define a connection
to a Chat server. You can connect with any XMPP/Jabber talk client, for example,
Google Talk.

Once you are connected, you see your team members as well as buddies from this
chat server with an icon showing status, just like in other chat clients.

Oracle Team Productivity Center
If you decide to use the recommended Oracle productivity solution, you need to
install the Oracle Team Productivity Center server on a server in your environment.
If you do not want to allocate a dedicated server for this (you do not have to), you
can install the TPC server components on your test/integration server.

Installing the server
The Oracle Team Productivity Center server needs a database with a schema where
it can store its items, and a Java application server to run the server-side code. The
database can be any database that allows a JDBC connection – for example, MySQL,
the free Oracle XE database or one of the commercial Oracle database versions. If you
decide to install the Oracle Team Productivity Center server components on your
test/integration server, you can use the database already in place – simply create a
separate schema for the OTPC components. The application server can also be any
JEE application server – if you install on your test/integration server, you can use the
same WebLogic server you use for your test. If you install on a separate server, a free,
open source product like Tomcat will be sufficient.

Chapter 4

[115]

You can find the installer on the Oracle Team Productivity Center web page on the
Oracle Technology Network website (otn.oracle.com) – at the time of writing, it
could be found at http://otn.oracle.com/developer-tools/tpc/downloads.
Use the site search feature to search for Team Productivity Center if you cannot
find it

On the Oracle Team Productivity Center page, accept the OTN license and download
the Team Productivity Center Server and any connectors you need.

Once you have downloaded the install file tpcinstaller.jar to the server where
you want to install it, open a command prompt. Then set JAVA_HOME to point to
your JDK directory and set the PATH to include JAVA_HOME/bin. If your OTPC
server is running Microsoft Windows, the commands could look like this:

C:\install>set JAVA_HOME=c:\java\jdk1.6.0_22

C:\install>set PATH =c:\java\jdk1.6.0_22\bin;%PATH%

Then run the installer with the following command:

C:\install>java –jar tpcinstaller.jar

The Oracle Team Productivity Center installer starts.

In Step 2, provide connect information to the database schema where you want
OTPC to store its information. This must be an existing schema with CONNECT and
RESOURCE privileges (or similar, if you are not using an Oracle database).

In Step 5, where you are asked for an application server location, you need to
point to an auto-deploy directory – a directory where the application server will
automatically detect new applications. If you are installing Oracle Team Productivity
Center in Oracle WebLogic, the name of your directory is of the form <weblogic_
home>/user_projects/domains/<your_domain>/autodeploy, for example
c:\oracle\Middleware\user_projects\domains\xdm_test\autodeploy. If
you are using Apache Tomcat, this is the /webapps directory under your Tomcat
base directory.

In Step 6, you can choose the local connector .zip file if you have downloaded one
from the OTN website, or you can download connectors directly from the Oracle
Update center.

Productive Teamwork

[116]

Installing the client
It should be possible to install the Oracle Team Productivity Center client in
JDeveloper through the automatic update feature (Help | Check for Updates). In
the list of update sources, leave Oracle Fusion Middleware Products and Official
Oracle Extensions and Updates checked and click Next. In the dialog showing
available updates, just write team in the search field at the top to limit the list as
shown in the illustration next:

Chapter 4

[117]

Select the Oracle Team Productivity Center client itself as shown previously, and
any connections your need. When you click Next, the extension is downloaded and
installed. Then click Finish and allow JDeveloper to restart. When you select View |
Team, you should see two new sub-menus Team Navigator and Chat as shown next:

If you do not see these new menu items, it is likely that the automatic install failed
for some reason. To manually install an extension, do the following:

1. Choose Help | Check for Updates to open the Check for Updates dialog.
2. Make the dialog wider so you can see the URL of the Oracle Fusion Mid-

dleware Products update center (something like http://www.oracle.
com/ocom/groups/public/@otn/documents/webcontent/156082.xml).
Make a note of the URL and open this in a Web Browser.

Productive Teamwork

[118]

3. You will see the update center web page as shown next:

4. Scroll down on the page to the Oracle Team Productivity Center section and
click on the Download link next to the highest version number.

5. Go back to the Check for Updates dialog and choose Install from Local
File at the bottom of the dialog and browse to the tpc_bundle.zip file you
downloaded. Click Next and then Finish and allow JDeveloper to restart.

6. Repeat this procedure for any connections you need. Note that the connectors
are found in the Official Oracle Extensions and Updates section, which has a
different URL.

7. When done, restart JDeveloper.

Chapter 4

[119]

Administration tasks
When you have both the client and the server installed, choose View | Team | Team
Navigator to bring up the Team Navigator pane. By default, it shows up in the top
left part of the JDeveloper window, together with the Application Navigator, Run
Manager and Connection Navigator.

Initially, this pane just shows Connect to Team Server. Click on this text to bring
up the connection dialog. Fill in the connection details for the server you installed
on and give the administrator name and password you entered during server
installation. The dialog could look like this:

If the connection is successful, the Team Navigator panel fills in with 3 headings:
Team Members, Work Items, and Versioning. Click the little icon showing two
people to bring up the context menu as shown next:

Productive Teamwork

[120]

Choose Team Administration to open the Team Administration dialog. In this
dialog, you can add your users, define teams, and connect to Work Item repositories.

Adding users and teams
It is straightforward to add new users and teams, using the Users and Teams tabs.
You need to define both, because repositories are made available to teams, not users.
So in order to use a repository, you have to be member of a team.

Users can be either ordinary team members or team administrators with the
privilege to define, for example, team queries and team tags.

Users can be members of several teams; the drop-down box at the top of the
Team Navigator is used to the currently active team. This might be useful if
different teams use different repositories – simply change team to get access to a
different set of repositories.

Connecting to a Jira repository
As an example of how to connect to a task repository, we will connect to a Jira
repository on our development server.

No spreadsheets!
As we discussed in the last chapter, one of the tools you need for
enterprise development is a bug/issue tracker. There is no excuse
for spending valuable developer and project manager time on
keeping lists of issues in spreadsheets.
Jira from Atlassian is a popular, user-friendly tool that integrates
well with Oracle Team Productivity Center, but there are many
others (Wikipedia lists over 50 issue tracking systems).

On the Repositories tab, select the Work Item node and click the green plus sign to
add a new work item repository. Choose a Connector from the drop-down list (this
list shows only the connectors you have installed). Provide a name, define a server
and provide a server URL and port, as shown next:

Chapter 4

[121]

Then go into the Teams tab and change to the Team Repositories sub-tab. You need
to check the checkbox for your newly created repository here in order to make it
available to the team.

Connecting to a Subversion repository
To connect to your Subversion repository, select the Repositories tab, click the
Versioning node and then click the green plus sign. Choose the Subversion
connector to add a new repository, give a name and click the Teams tab.

The URL for a Work Item server is defined on the
Repositories tab, but the URL for a Versioning
server is defined on the Team Repositories tab.

Productive Teamwork

[122]

On the Teams tab, change to the Team Repositories sub-tab and check the
checkbox next to your Subversion repository. In the lower half of the tab, provide
the URL for your repository (typically of the form http://<server>:<port>/
svn/<repositoryName>):

Connecting to a chat server
First time you choose View | Team | Chat, you will be prompted to connect to a
chat server. To connect to Google Talk, enter the following information:

Chapter 4

[123]

Disconnecting
Once you are done with the management tasks, click on the team icon at the top
of the Team Navigator pane and choose Disconnect from the pop-up menu. The
Team Navigator changes back to the Connect to Team Server heading. Click on this
heading and connect back to the Team Server, this time as yourself (not using the
administrator account).

Getting started with work items
When starting a project, the project manager should convert the project plan into a
list of tasks for each developer, and register these as work items in your bug/issue/
task tracking system. This allows each developer to write comments and register
progress on tasks, split tasks into more manageable subtasks and even re-assign
tasks to other team members.

Connecting to your work item repository
Once you are logged in to your own account in Team Productivity Center, expand
the Work Items heading by clicking on the little triangle. You see the work item
repositories defined for your currently selected team. If you are a member of
several teams, select your current team from the drop-down list at the top of
the Team Navigator.

The first time you click on the plus icon to expand a repository, you will probably
get a message saying "Failed to log in to …." This just means that you have not yet
defined your credentials for that repository. Simply click Yes to go to the Account
Manager, enter your username and password for that repository, test the connection
and click OK:

Productive Teamwork

[124]

Oracle Team Productivity Center stores your credentials for work item repositories
securely. If you have several repositories, you only need to log on to the Team
Productivity Center to get access to all of them.

Because JDeveloper is already storing your version control (for example, Subversion)
credentials, Oracle Team Productivity Center does not store these. This means that
when you log out of Team Productivity Center, you log out from your work item
repositories, but not from your versioning repository.

Creating a work item
To create a new work item, right-click on the repository and choose New Issue (or
New Task, or New Bug, depending on your repository). You get a new tab in the
main JDeveloper window where you can enter details about your Issue, Task or Bug:

The fields on the tab depend on the repository and the connector – in some cases,
the underlying repository might offer more functionality through its native interface
than through the connector. This can be caused both by limitations in the API the
repository offers and limitations in how much functionality the provider of the
connector has decided to offer.

Daily work with work items
As a developer, your daily work with work items will include finding, updating,
linking and tagging them.

Finding work items
Your project manager has probably already created some tasks for you, based on the
project plan. Depending on the level of detail you want, you might have a complete
use case as a task (for example, "UC 008 Task Overview and Edit"), or you might
have a detailed breakdown with multiple tasks (for example, "UC 008 Task flow",
"UC 008 View objects", and so on).

Chapter 4

[125]

To find your assigned work items, you open the work item repository and perform a
query. Under the repository, you will see two nodes:

Under Team Queries, you find the queries your team administrator has defined for
you, and under My Queries, you can define and run personal queries.

To perform a general query, you can right-click on the My Queries node and choose
New Query. A New Issue Query tab opens (or New Task Query, or New Bug
Query, depending on your repository):

Here, you select an attribute from the first drop-down box, a condition from the
second and select or type a value in the third field. For more complicated queries,
you can click the plus sign to add additional criteria and choose either Match All or
Match Any. When you click Search, your query is executed. If you want to save the
query for later use, click the More Action button and then choose Save As. If you are
a team administrator, you have the possibility to save the query for the whole team
or just for yourself.

If you know the ID of the issue you are looking for, you can simply right-click on the
repository, choose Query by ID and enter a work item ID. The work item opens in
the JDeveloper main window as a new tab. You can change it as necessary and then
close it like any other tab by using the little x icon in the tab title.

You can query work items by tag as well. Right-click on the repository or the tag icon
next to the Work Items header, choose Query By … Tag and choose a tag. You get a
list of all items with that tag. From this list, you can double-click a work item to open
it, or click the Delete icon to remove the tag from the item.

To execute a saved query, find it under either the My Queries or Team Queries node
under the repository, right-click and choose Run.

www.allitebooks.com

http://www.allitebooks.org

Productive Teamwork

[126]

Setting the active work item
When you have queried an item, you can right-click on it and choose Make Active
to make this work item your active item. When you have an item on screen, you can
click on the Make Active button at the top to set that item as your current or active
item. The active work item is shown at the top of the Work Items list:

Whenever you commit your changes to Subversion, Oracle Team Productivity
Center will by default associate your Subversion commit with the active work item.
This is described in more detail next in the section on working with both Subversion
and Oracle Team Productivity Center.

Stay focused
Always keep an active work item selected. This serves as a subtle hint to
your brain to stay at the task at hand and increases your productivity.

Linking work items
It is possible to link work items to each other—for example, a bug in Bugzilla could
be linked to a task in Microsoft Project Server.

To create and view these links, you use the Relationships sub-tab to the left of the
item itself:

Here, you can see the relationships the work item is part of, and add new ones. If
you activate this sub-tab, you have the option to link the active work item to another
open work item or an item you have tagged.

Chapter 4

[127]

Tagging work items
You can select a number of work items by tagging them. You are free to define your
own tags with whatever meaning you want—this could be today's work, stuff for the
next release, items to discuss with Michael, or anything else.

To define tags, you click on the little tag icon at the top of the Work Items section of
the Team Navigator:

Click Manage Tags to define the tags you want. If you are a team administrator, you
can also define tags available to the whole team.

You can add a tag to an item when you first create it or anytime later you have the
item open. Simply click on the Tags sub-tab on the left side of the work item tab to
add and remove tags.

Chatting with team members
You can double-click on a team member in the Team Members part of the Team
Navigator to start a chat with that person (in the Chat pane).

Saving and restoring context
Remember the discussion from the beginning of the chapter about the cost of context
switching? Oracle Team Productivity Center contains a very nice feature to minimize
the cost of context switching: The ability to save and restore context.

Productive Teamwork

[128]

To use this feature, open a work item and click the Save Context button in the button
list at the top of the work item:

This will save your current context, including information about all open files in
the main window, the currently active workspace and the state of the Application
Navigator. When your boss walks up to you with an urgent task that requires you to
drop everything, you can simply:

1. Save your JDeveloper context.
2. Do the urgent task and return to JDeveloper.
3. Click Restore Context (the button to the left of Save Context).

JDeveloper will open all the files that were open when you saved context, and will
open the application workspace you were working on, exactly as you left it.

The Boss Key
Many years ago, before multi-tasking operating systems were
common, computer games would include a "Boss key" – a special
keystroke that would hide the game and show something that
looked like a work-related document or spreadsheet. The Save
Context button is JDeveloper's "Boss Key" – not used to hide
the application, but to make sure you can get back to where you
were as soon as you are done with the boss' urgent task.

Version control
As we discussed in Chapter 3, Getting Organized, you absolutely, definitely need to
use some kind of version control system in an enterprise development effort. You
should even use it if you are the only developer on your team!

Oracle JDeveloper comes with extensions for many different source control
systems that you can download and install using the Help | Check for Updates
functionality. Supported systems include CVS, Perforce, ClearCase and many more.

Chapter 4

[129]

The Subversion software
In this book, Subversion will be used as an example. Subversion is very popular
among JDeveloper users, for several reasons:

•	 It is widely used – lots of other people are using it and many other tools can
read your Subversion repository

•	 It is free – always a good point
•	 It is well integrated into JDeveloper
•	 It is atomic – either your whole commit goes into the repository or nothing

does. Since ADF projects consist of many interdependent files, this is very
much desirable

To use Subversion, you need a Subversion server and a client. The Subversion server
is available for all platforms—if your version control server is based on Microsoft
Windows, you can use the VisualSVN (http://www.visualsvn.com/server),
which comes as a standard Windows .MSI install file.

JDeveloper comes with a Subversion client for working with code, but if you keep
other files in Subversion as well, you probably want a stand-alone client to update
and commit to the repository. A very popular (and free) client is TortoiseSVN
(http://tortoisesvn.tigris.org), which integrates directly into the Windows
Explorer context (right-click) menu.

Effective Subversion
If you have never used Subversion before, you need to familiarize yourself with the
tool. There are many excellent resources available on the internet—a good place to
start is Chapter 1, The ADF Proof of Concept of the free e-Book on Subversion
(http://svnbook.red-bean.com).

There are many ways to use a tool like Subversion, but for an enterprise ADF project,
you should:

•	 Use the standard structure of trunk, tags and branches:
	° trunk is where you keep your main development code.
	° branches is where you store variations of the code. Each branch is a

copy of the code as it looked when you created the branch.
	° tags is where you store copies of your code corresponding to a

specific tag. You typically create a tag for each released version of
your code.

http://svnbook.red-bean.com
http://svnbook.red-bean.com

Productive Teamwork

[130]

Efficient storage
Even if it looks like Subversion keeps many copies of your code, the
branches and tags copies do not take up any significant space—they
are only pointers or virtual copies.

•	 In your trunk, create folders for each application workspace with the same
name as your application workspace

•	 Use Copy-Modify-Merge (in general, do not lock files)
•	 Check out and commit at the application workspace level (Commit Working

Copy, not just Commit for a single file)

Logging on
Before you start working with Subversion (or another versioning repository), you
need to log on:

If you are using Oracle Team Productivity Center, you can see your team repository
under the Versioning header in the Team Navigator. Double-click on the connection
to open the Edit Subversion Connection dialog, where you can enter your username
and password:

If you are not using Oracle Team Productivity Center, you can choose View | Team
| Versioning Navigator to display the versioning navigator. Here, you can right-
click on the node for your versioning system (for example, Subversion) and choose
New Repository Connection to bring up the Create Subversion Connection dialog
for defining a repository URL, username, and password.

Chapter 4

[131]

The first time you import an application workspace into Subversion, you will be
prompted to create a connection as shown next:

If you are working with Oracle Team Productivity Center, you already have the
URL—otherwise you will have to write it here. Provide a connection name and
credentials to log in to Subversion and click Test Read Access. Once you see an
"Access granted" message, you know that the connection information is valid and
you can click OK.

Initial load
As soon as you have created the application workspace and the first few functioning
objects, add your application to the Subversion repository (in Subversion
terminology, this is called importing).

To import your application workspace, select a project in the workspace and choose
Versioning | Version Application. If you have more than one connection to a
versioning system, JDeveloper prompts you to select one of them.

Productive Teamwork

[132]

The Import to Subversion wizard starts and guides you through the initial import:

1. In the Destination step, choose trunk and then click on the little "Add folder"
icon above the path box to the right. In the Create Remote Directory dialog,
enter the name of your application workspace as directory name and provide
a comment.

2. In the Source step, check that the Source directory is your application
workspace directory. Provide a comment like Initial import and click Next.

3. You do not need to change anything in the Filters step.
4. In the Options step, leave Perform Checkout checked to immediately check

out your application to continue working
5. In the Summary step, review the options and click Finish.

You can see your import running in the SVN Console Log window.

Once the import is complete, you will notice the following changes in the
Application Navigator:

•	 The projects now show the repository server they came from.
•	 Each file now has an indicator showing its state. Right now, all of them

have status Unmodified, but you will see this change as you and your team
members work on the project.

•	 Each file now shows a version number. Do not worry about the numbering
– they will seem to increase in uneven jumps. In fact, the subversion version
number increases every time anybody on the project commits anything. Refer
to a Subversion book (for example, the free e-Book at http://svnbook.red-
bean.com) for a more detailed explanation.

Working with Subversion
As you work with your project, you will notice different icons on your files
and directories.

Chapter 4

[133]

The little circle with the yellow center indicates a versioned object that has not been
changed since the last commit, and the object marked with an asterisk (TasksVO
above) is an object that has been changed since last commit. The file with a little white
X in a box (ElementsVO above) is a new, unversioned file, and the file with the plus
sign (PersonsVO above) is a new file that is scheduled for addition on next commit.

You can also choose Versioning | Pending Changes to call up the Pending Changes
window showing files changed locally ("outgoing"), new files ("candidates" to be
placed under version control, and files changed by other users on the server, but not
yet applied to your working copy ("incoming").

Every time you have made a significant change (and tested it, of course), you
check your changes into the central repository by right-clicking on the application
workspace title in the Application Navigator and choosing Versioning | Commit
Working Copy:

If you are only using Subversion (and not Oracle Team Productivity Center), the
Commit Working Copy only prompts you for a commit comment. If you are using
Oracle Team Productivity Center together with Subversion, the dialog is different—
see the following section.

Productive Teamwork

[134]

Comment Templates
If you like, you can configure a number of standard comments as
"Comment Templates" under Tools | Preferences | Versioning |
Comment Templates.

When you click OK, you see the Subversion commands issued to commit your
changes in the SVN Console Log window. The icons in the Application Navigator
also change, and the Pending Changes window should now be empty.

In order to make JDeveloper automatically add new files when you commit your
working copy, you need to set another JDeveloper preference. Under Tools |
Preferences | Versioning | General, check the checkbox Automatically Add
New Files on Committing Working Copy. If you want to manually control when
new files are added to Subversion, you can leave this checkbox unchecked and
then explicitly add them from the Pending Changes window on the Candidates
tab. Clicking on the green plus sign on this tab will change the file status from Not
Versioned to Scheduled for Addition. This means that they will be imported into
Subversion next time you commit your working copy.

Teamwork with Subversion
If you have structured your application as described in Chapter 3, Getting Organized,
you will have a number of different application workspaces. For some workspaces,
you might be the only developer, but for most, there will be a small team of
developers working on the code at the same time.

Getting a new copy
When another team member needs to start working with an application workspace
already imported into Subversion, that person simply chooses Versioning | Check
Out. He then defines a Subversion connection using his Subversion credentials
and navigates to the application workspace folder under the trunk of the version
tree. JDeveloper will now get the latest version to the local machine as that person's
working copy.

Getting other people's changes
When your colleague commits new files to the application workspace, these files
will show up in the Pending Changes window as "incoming." To get these files,
you right-click on the application in the Application Navigator and choose Update
Working Copy. This will bring your working copy up to date with the changes made
by other developers.

Chapter 4

[135]

Automatic merge
Occasionally, you and another team member will both have made changes to the same
file. Of course, Subversion does not just allow the second developer to overwrite the
changes made by the first. Instead, if your colleague committed her change first, you
will get a message from Subversion when you try to submit your file, like this:

This message tells you that the file has changed in the repository since you originally
retrieved it. If you look at the Pending Changes window, you will also see that the
same file is listed both as "Outgoing" (with your change in it) and as "Incoming"
(with the other developer's change in it).

If you now perform an Update Working Copy, Subversion is clever enough to
automatically merge your change and the incoming change to a new file containing
both your updates. You can see the changes by right-clicking on the conflicting file
and selecting Compare With – this allows you to compare all versions of the file.

Handling conflicts
But what happens if your colleague has changed some code, and you then change the
exact same lines of code in your working copy? Initially, you will get the "try updating"
message. When you try updating, you will discover several things happening:

•	 You suddenly have four versions of the file in question in the Application
Navigator—one of them with an exclamation mark, indicating a conflict:

Productive Teamwork

[136]

•	 The SVN Console Log will show a conflict
•	 The Pending Changes window will show your outgoing file with

status "Conflicts"

Since Subversion does not pass judgment on which change is the better, you
and your colleague will have to decide how to handle the conflict. Fortunately,
JDeveloper has a very nice graphical interface to help you implement your decided
conflict resolution. Simply right-click on the conflicted file and choose Resolve
Conflicts. This brings up the file in merge mode – showing your version on the left
(the .mine file), the other person's code on the right, and an editable, final version in
the middle. You can use the > and < buttons to move code from either side into the
middle, or you can simply edit the central file, if the result of your merge contains
parts from both sides:

Chapter 4

[137]

When you are done merging, click the Save and Complete Merge button in the
toolbar above the files (a little diskette icon with two colored circles). This completes
the merge, and you can now commit your working copy to the repository.

After committing, you can click on the little refresh button (two blue arrows in a
circle). You will see that the extra versions of the file (the two .rXXX files and the
.mine file) are now gone, indicating successful conflict resolution.

Avoiding conflicts
It takes time to resolve conflicts, so you should make an effort to avoid them. There
are both "soft" and "hard" methods you can use for this. The "soft" methods are
procedural (ways you agree to work in your team) and the "hard" methods are
technical, implemented using the capabilities of your version control tool.

The first "soft" method is to take the approach recommended in the last chapter and
split your application into a number of separate workspaces, connected via ADF
Libraries, you have already reduced the risk of version conflicts significantly.

The second "soft" method you can use is to assign owners to the files that are often
the source of version conflicts. If you decide that only Karen is allowed to commit
changes to the two files that the whole team keeps fighting over, she can keep the
purpose and entire structure clear in her mind. If anybody else needs a change made,
they can tell Karen and let her make the change.

Unfortunately, some of the files that you might want to assign an owner to are files
are updated by many different ADF wizards. In this case, a developer might not
even realize that he is making a change to a contested file. To avoid this, your can
use a "hard" method: Explicitly locking files. If you are using Subversion, you can
right-click on a file and choose Versioning | Lock from the context menu. This will
prevent anybody else from checking in a change to the locked file. Use this method
with caution – you can seriously disrupt the work of other developers if you lock
important ADF files.

Unmergeable files
Some files cannot be merged; you will have to lock these files to avoid
wasted work. Examples of unmergeable files are JDeveloper diagrams,
word processing files, spreadsheets, and images.

Productive Teamwork

[138]

Subversion and Oracle Team Productivity
Center together
When you install Oracle Team Productivity Center, the Commit Working Copy
dialog changes to look as shown next:

Notice the Associate with Workitems box at the bottom. Here, you can choose the
work items that this Subversion commit is related to. By default, your active work
item will be associated. You can uncheck the checkbox to associate nothing, or you
can click the green plus sign to add additional work items related to this commit.

Once you click OK to perform the commit, Oracle Team Productivity Center
registers the association. The next time you open the work item, you will see the
Subversion commit listed on the Changes sub-tab. This allows you to track exactly
what was done to address a specific issue – useful for example if you have to revisit
the issue later.

Chapter 4

[139]

Subversion, Jira and FishEye together
If you are using Jira and FishEye (a code inspection tool, also from
Atlassian), you should always make sure to enter the Issue ID in the
Comments field when committing your changes to Subversion. Right
now, this is not automatic – but it might become an option in a future
release of Oracle Team Productivity Center.
The Issue ID is the key that FishEye uses to link a Subversion commit
to a Jira Issue.

If you wish to write your own reports against Oracle Team Productivity Center, you
can look at the database schema where you installed the tool. One of the tables in this
schema is called OTPC_WORKITEM_CHANGE, and it contains the association of
work items with code commits.

Summary
You have installed Oracle Team Productivity Center and integrated it with the new
Jira issue repository you will be using for the XDM project as well as the Subversion
repository where you will be storing all your code.

Everybody on the team has been defined as a user in Oracle Team Productivity Center
so it was easy to connect each development workstation to Jira and Subversion. Each
developer can now work directly with your Jira work items from within JDeveloper,
and can easily get new code from Subversion and commit changes.

Back from the excellent kick-off pizza party last night, you and the rest of the
XDM team are ready to start writing the first production code for DMC Solutions'
brand-new enterprise application. Let's move on to the next chapter and get started!

Prepare to Build
If you have children, you might be making gingerbread figures for Christmas. Your
artistic children are likely to be hand-crafting each figure individually—but you, as
an efficiency-oriented adult, are probably using a cookie cutter to produce a whole
batch of almost identical Santas.

When you need to create many similar objects efficiently, you use a template (like
your cookie cutter). And when you need to create dozens of task flows and hundreds
of screens, all with some common elements, you use the ADF cookie cutters: Task
Flow Templates and Page Templates for the frontend View part, and Framework
Extension Classes for the backend Business Component part.

Task flow templates
You will be using bounded task flows to implement the use cases or user stories in
your application, so you will probably be building quite a few of them. And they are
likely to share some common functionality like error handling.

Therefore, you should base all your bounded task flows on Task Flow Templates
that can contain all the common functionality.

Always use task flow templates
Even if you do not know of any common functionality you might
want to use in all your bounded task flows, base them on a template
anyway. In that way, you have the possibility to add something
later if you find a need during development.

Prepare to Build

[142]

Task flow templates can be nested within one another, so you can even create a
master task flow template and then later produce other, more detailed templates
based on this master.

Because templates do not need to be directly accessible to the end user of the
application, you should take advantage of the fact that application server by default
hides the content of the WEB-INF directory. Create a subdirectory called templates
under this directory and place your templates there:

The node in the Application Navigator shown as Web Content corresponds to the
directory public_html in the file system.

Creating a task flow template
If you use the structure recommended in Chapter 3, Getting Organized, your task
flow template should go into your CommonUI workspace. If you have not already
created this, choose File | New and then Generic Application. Give your workspace
the name CommonUI and set the Application Package Prefix to your project base
package (for example, com.dmcsol.xdm). In Step 2 of the wizard, give your project
the name CommonUI and choose to include ADF Faces technology:

Chapter 5

[143]

In Step 3 of the wizard, set the Default Package to the sub-package view under your
project base package (for example, com.dmcsol.xdm.view).

To create a task flow template, select your CommonUI project and choose File | New
and then Web Tier | JSF | ADF Task Flow Template. Give your template a name
and a location (under WEB-INF as described above). You will normally check the
checkbox Use Page Fragments. Remember that we use page fragments in dynamic
regions on pages—this allows us to swap one page fragment out and another one in,
giving your ADF application a "desktop application" feel. Do not choose Create Train
for your master task flow template, because not everything is going to be a train.

Contents of your master task flow template
For your top-level or master task flow template, consider the following elements:

•	 A common exception handling page
•	 Common help or about pages
•	 Initializer and finalizer code

Prepare to Build

[144]

Exception handling page
Each task flow can have one exception handling page – the page automatically
invoked by the ADF framework in case of unhandled exceptions in your code. The
exception handling page is marked with a red exclamation mark, and you can define
a page as the exception page by selecting it in the diagram and clicking the red
exclamation mark icon in the toolbar above the diagram.

Always have an exception page
You should have a well-designed and friendly exception
page – never show your users the ugly Java exception stack.

Common Help or About pages
If you plan for your application to have a common About or Help page, this
should also go into the master task flow template. Additionally, you should place
a Wildcard Control Flow Rule on the diagram with a transition to your about or
help page. The wildcard control flow rule looks like a blue asterisk and can be found
under Control Flow in the Components section of the Component Palette.

The purpose of the wildcard control flow rule is to make a transition available to
all pages in the task flow without cluttering the diagram with a lot of lines. You can
name it something other than just * to limit the pages that can invoke the transition –
refer to the online help for details.

Initializers and finalizers
If you want to run specific code before and after a task flow executes, write Java
methods doing what you want, and then refer to these in the task flow (view the task
flow in Overview mode instead of Diagram mode and choose the General sub-tab).

Chapter 5

[145]

You might have to initialize managed beans, you might want to store session
information, or you might want common logging code to be executed whenever
entering and exiting task flows. If you base your task flows on a task flow template,
you have a place to add this code if you want.

Creating several levels of templates
If you know that your application will contain a number of specific sub-types of task
flows, you can create a task flow template hierarchy consisting of a master task flow
template and a number of more detailed task flow templates. When creating detailed
task flows, you choose to base them on your master task flow template in the Create
Task Flow Template dialog.

Your structure becomes easiest to manage if you only define each element (for
example, the exception handling page) at one level. However, it is possible to define,
for example, the exception handing page in both the master and the detail templates.
Reasonably enough, the detail takes precedence over the master task flow template.

Using Task Flow templates
When you create a task flow based on a template, pay attention to the
checkbox Update the Task Flow when the Template Changes. This
one should always be checked because this links your task flow
to the template. If this checkbox is not checked, your new task flow
will receive a copy of the elements in the template, but later changes
to the template will not affect existing task flows. Normally, you
want changes to your template to affect all task flows based on the
template, so be sure to check this checkbox.

Page templates
Just like you should never build at task flow without basing it on a task flow
template, you should never build a page without basing it on a page template. Page
templates are always referenced (never copied), so any change you make to a page
template will affect all pages based on the template.

JDeveloper comes with two advanced templates called Oracle Three Column Layout
and Oracle Dynamic Tabs Shell that you can look at to see examples of what an
enterprise template might look like.

Prepare to Build

[146]

Creating a page template
To create a page template, open the CommonUI project in your common user
interface workspace. Choose File | New and then Web Tier | JSF | JSF Page
Template. The Create JSF Page Template page opens.

If you are already a JSF layout wizard with several projects under your belt, you will
probably want to create your layout from scratch, using layout components from the
component palette.

However, you are not already familiar with JSF page layout, you can take a shortcut
by checking the Use a Quick Start Layout checkbox and click Browse to see the
built-in quick start layouts as shown next:

As part of your requirements gathering process, you should have produced sketches
of your user interface, so you already know which layout you need. Start by selecting
a one, two or three column layout in the left-hand column, then choose a type and
finally choose a Layout. You should use a layout where your main area is stretchable
(one with the crossed arrows symbol) in order to make the best use of the available
browser area.

The layout you choose here is not fixed – it is simply a good starting point that you
can further customize later as you gain experience with JSF layout.

Chapter 5

[147]

Using layout containers
In order to make the most of the available screen area, you should always start your
layout with a stretchable container like a Panel Stretch Layout or a Panel Splitter.

Stretching exercises
Some layout components (for example, Panel Stretch Layout and Panel
Splitter) stretch themselves and stretch the components inside them.
Other layout components (for example, Panel Group Layout and Panel
Form Layout) stretch, but do not stretch the components inside them.

Inside your outer container, use other layout containers as necessary until you
achieve the layout you wish. It is often necessary to place layout containers inside
other layout containers several times in order achieve the layout you want.

Since normal input fields cannot stretch, they should only placed inside containers
that do not stretch the components they contain. Components that can stretch (for
example, a Table component) should be placed inside a container that does stretch
the components they contain.

Facet definitions
In JSF terminology, a facet is an area where components can be placed. Facets are
used in two places:

•	 The JSF layout components that JDeveloper offers contain facets
•	 Your template must contain at least one facet

When you use a layout component from the Component Palette, you will see facets
that this component offers in both the Structure Panel and the main window on the
Design tab:

Prepare to Build

[148]

In the example above, a Panel Splitter component has been dropped on a page
template. As you can see from the Structure Panel, the splitter contains two facets
called first and second. In the second facet, another layout component (a Panel
Stretch Layout) has been dropped. This is a more complex component showing
five facets where you can place content (top, start, center, end, bottom).

When you are building a template, you will see a tab called Facet Definitions at the
bottom of the Create JSF Page Template dialog:

By clicking on the green plus sign, you can define the facets you wish to make
available to the programmer using the template. In the example above, the template
developer decided to provide two places for content on the template: One called
main and another called help.

Chapter 5

[149]

When you start building your page template, you decide where the programmer
using the template can place content. You do this by dropping a FacetRef
component (from the Common Components section of the Component Palette) in
your layout in the place where you want the page-specific content. When you drop a
FacetRef component, you are prompted to choose one of the facets you defined for
the template:

All the other components you place on the template page (logos, headers, and so
on) cannot be changed by the programmer using the template. He can only drop his
content in the facets you, as the template developer, have provided.

Attributes
When defining the template, you can also define template attributes. These are
like parameters for the template—each page that uses the template can set different
values. This is normally used in two ways:

•	 To place page-specific information in template areas
•	 To create different layouts based on the same template

Remember that you can only place your own components inside the defined facets
when building a page based on a template. If you want to display, for example, the
name of the current page as part of a page header (which is not a facet, but defined
in the template), you use an attribute. You then place an OutputText or other
component in the header and set its value to the attribute value using expression
language. If, for example, your template attribute has the name pageTitle, the format
of the reference is #{attrs.pageTitle}.

The other use for attributes is to define the parameters for the layout components
you use in the template. For example, you might use expression language to define
whether a specific accordion component is collapsed or expanded, the position of
a splitter or similar. To achieve this, you use an expression language reference as
above to set a property value for a layout component.

Prepare to Build

[150]

Using page templates
When creating a new JSF page, simply select the page template
from the drop-down list.
To set attributes, you need to select the template reference
on the page and use the property palette. This is not possible
from the Design view – change to Source view and select the
<af:pageTemplate> tag or use the Structure panel to find the
af:pageTemplate element.

Framework extension classes
In addition to page flow templates and page templates that are used for the
frontend part of the application, you also need another kind of template for the
backend business components.

The ADF Framework uses eight base classes for Business Components. The four
most important ones are:

•	 EntityImpl corresponds to one row of data and contains methods to create a
row, set attribute values and perform database operations.

•	 ViewObjectImpl corresponds to the view object query. The methods in this
class allow you to set bind variable, modify the WHERE clause and execute
the query.

•	 ViewRowImpl corresponds to the result set from a query and contains a
collection of pointers to the actual data stored in EntityImpl objects.

•	 ApplicationModuleImpl is an instance of an application module;
different users will have different instances. Methods in this class
handle database transactions.

The ADF framework uses four additional classes internally:

•	 EntityCache implements the cache for data retrieved from the database
•	 EntityDefImpl is the factory for producing entity objects of a specific type
•	 ViewDefImpl holds the definition of a view object
•	 ApplicationModuleDefImpl holds the definition of an application module

Chapter 5

[151]

These classes allow you to change the way ADF works at the fundamental
level – you should not want to change this.

This section will show how some of these classes are used and explain why you should
create your own framework classes, and how to do that. Complete documentation of
these classes can be found in the Javadoc that you can access from JDeveloper.

How Java classes are used in ADF
You saw in Chapter 1, The ADF Proof of Concept, that the business components that are
central to your enterprise application are implemented in XML, with an optional Java
component. If you do not define your own Java component, the framework will simply
create an instance of the standard Oracle-supplied Java class. This Java class then reads
the XML definition of the object you have defined and does all necessary work.

Every time you choose to generate a Java class for one of your business components
(Entity Objects, View Objects or Application Modules), these will be based on the
Oracle-supplied classes by default. If you look at the Java code you generate for
example for an Entity Object, part of what you see is something like this:

…
import oracle.jbo.server.EntityImpl
…
Public class TasksImpl extends EntityImpl {
…

public void remove() {
super.remove();

}
…
}

The keyword extends means that your TasksImpl class (implementing the Tasks
entity object) is based on the standard EntityImpl object, that is, the EntityImpl
class is the superclass of TasksImpl. The import statement at the top shows you the
full path to this object: oracle.jbo.server.EntityImpl.

You will notice that some of the methods in this class contain a call to the
corresponding method in the superclass, for example super.remove() in the
remove() method.

Prepare to Build

[152]

Some Java required
Have you ever seen an implementation of large enterprise applications like Oracle
E-Business Suite or SAP Business Suite that was not customized? Me neither.

Given the cost of customization and the pain involved when upgrading a heavily
customized "standard" solution, why do organizations still do it?

Because it is impossible to build a standard system that will meet every need the
organization has. Similarly, it is impossible for Oracle Application Development
Framework to directly meet every requirement in your enterprise application.
That is why we have the option to create Java classes: To implement the specific
functionality that the framework does not have built in.

The place for framework extension classes
By default, when you generate a Java class for a business component, it will directly
extend a class from the oracle.jbo.server package. You do not want this, because
you might not always be happy with the way the ADF framework does things.

If you want to change the way data is stored in a single entity object, you can just
change that one Java class. But if you are making the same kind of change to multiple
objects, good programming practice dictates that you should make this change only
once. This might be the case if you want to make all entity objects call a PL/SQL API
package instead of accessing the table directly. In an object-oriented language, this
change should be made in the superclass that your objects inherit from. However,
if you inherit directly from the Oracle-supplied classes, you cannot change the
superclass without invalidating all claims to support from Oracle.

That is why you need to place your own framework extension classes between the
Oracle-supplied classes and your own implementations, as shown next:

Chapter 5

[153]

In this way, all of your own implementation classes inherit from a class under your
own control. For example, your TasksImpl class will extend your own com.dmcsol.
xdm.framework.EntityImpl class.

Multi-layer framework extension
If you already know that your organization will be creating dozens
of Oracle ADF applications, you might want to think about creating
two layers of framework extension classes: One general (for all your
ADF applications) that extends the Oracle-supplied classes and
then specific framework extensions for each project, extending your
own general extension class.

Creating framework extension classes
The concept of framework extensions illustrates the beauty of object-oriented
programming: You simply have to create an empty class extending the Oracle-
supplied class and do nothing else. All of the methods from the Oracle-supplied
superclass are automatically available and will be executed at run time. As you
decide you need to implement specific functionality in your framework classes, you
simply add the relevant methods and they will automatically override the method
from the superclass.

Prepare to Build

[154]

If you use the recommended workspace structure, your framework extension classes
should go into your CommonCode workspace. If you have not already created
this, do this now as described above for the CommonUI workspace. In Step 2 of the
wizard, call your project FrameworkExtension and choose to include ADF Business
Components technology. In Step 3 of the wizard, set the Default Package to the sub-
package framework under your project base package (for example, com.dmcsol.
xdm.framework).

In this project, choose File | New and then General | Java | Java class. Give your
class the same name as the Oracle class you extend (for example, EntityImpl) and
place it in your framework package (<company base>.<project>.framework,
for example, com.dmcsol.xdm.framework). Extend the relevant Oracle class (for
example, oracle.jbo.server.EntityImpl). Leave Access Modifiers at public and
uncheck the checkboxes:

Chapter 5

[155]

Then click OK to create the class. It will be really simple – something like this:

package com.dmcsol.xdm.framework;

public class EntityImpl extends oracle.jbo.server.EntityImpl {
}

You do not have to put any content into this class right now. If you later find that
you need to override a method (for example the doDML() method that is called every
time ADF issues an INSERT, UPDATE or DELETE to the database), right-click inside
the class and from the context menu choose Source | Override Methods:

From the Override Methods dialog, you can check the checkboxes for the method
you want to override.

Repeat the above procedure for the remaining three ADF Business Component base
classes, so you have your own version of:

•	 EntityImpl

•	 ViewObjectImpl

•	 ViewRowImpl
•	 ApplicationModuleImpl

Prepare to Build

[156]

Do not override EntityCache, EntityDefImpl, ViewDefImpl, and
ApplicationModuleDefImpl unless you are very familiar with ADF and are sure
you understand the implications of changing them.

Using framework extension classes
Once you have created your own version of the four important classes, you must set
up JDeveloper to use your classes instead of the Oracle-supplied classes. It is easiest
to configure JDeveloper to use your own classes for all projects by choosing Tools |
Preferences and then Business Components | Base Classes. In the dialog box, fill in
the name of your own classes for the four important base classes, like this:

This will cause JDeveloper to always use your framework extension classes
whenever you generate Java classes for an ADF business component.

If you are working on multiple projects, some of which use different framework
extension classes, you can also define the base classes at the project level for your
model project (under Project | Properties).

Chapter 5

[157]

If you have an existing business component that you want to "re-fit" from the
standard Oracle class to your own framework extension class, you can choose the
Java sub-tab for the component and click on the Classes Extend button to set the
base class for your business component:

Packaging your Common Code
Both your CommonUI and your CommonCode workspaces need to be packaged
into ADF Libraries so they can be made available to the developers working on the
individual subsystems your enterprise application will consist of.

To deploy a project to an ADF Library, select the project and choose File | New,
choose Deployment Profiles (under General) and select ADF Library JAR File. Give
your ADF Library a name (use the project name, prefixed with adflib, for example,
adflibFrameworkExtension) and click OK. You do not need to make any selections
in the Edit ADF Library JAR Deployment Profile Properties dialog—simply click
OK to finish creating your deployment profile.

Once you have a deployment profile, you can right-click on your project, choose
Deploy and then the name of your deployment profile. You only need to click Next
and then Finish to perform the actual deployment that creates the ADF library file.

Prepare to Build

[158]

The ADF library file is created in a new directory called deploy that will be
created under your project (for example C:\JDeveloper\mywork\XdmCommonCode\
FrameworkExtension\deploy). The file name is the same as the name of your
deployment profile (for example, adflibFrameworkExtension.jar):

Keeping your ADF libraries under control
It is a good idea to copy your ADF libraries from the deploy directories
of each project to one common library directory, and import them into
your version control system there. In this way, the latest approved and
tested libraries are available to all developers on the project, while the
team working on the common workspaces are free to build, test, and
commit code without disrupting work on other projects.

Summary
This was the final piece of preparation for building your enterprise application.
Now you have the templates and framework classes you need, all packaged nicely
in ADF Libraries ready for use. In the next chapter, we will test that it all works by
re-building the XDM proof of concept functionality using all the correct enterprise
methods, tools and templates.

Building the Enterprise
Application

Finally! We are back to real programming! With the infrastructure in place and our
tools set up correctly, we are ready to start building our real enterprise application.
In this chapter, you will be implementing two subsystems containing the two use
cases we prototyped in the proof of concept in Chapter 1, The ADF Proof of Concept,
and will be collecting them into a completed enterprise application.

Decorate the project room
The room where your team is working should be decorated. Not with
Christmas ornaments, but with something infinitely more useful: The
Data Model. Even if you have not used JDeveloper to define your data
model, you can use JDeveloper to create a database diagram.
Print out the entire data model for your system in a size large enough
to be able to read every column in every table. Unless you work in
the construction industry, you probably do not have a printer large
enough to fit everything on one sheet—go to your local print shop or
get out the scissors and scotch tape.

Structuring your code
Your enterprise application is going to consist of hundreds of objects—entity objects,
view objects, application modules, task flows, page fragments, and many others.
That makes it imperative that you keep everything in a logical structure. A good
structure also allows you to partition work between the many people who will be
working in your team, and ensures that everyone can find what they need.

Building the Enterprise Application

[160]

Workspaces
Remember from Chapter 3, Getting Organized, that we divide up the application
between a number of workspaces. In recent versions, JDeveloper has unfortunately
started using the word "application" for what used to be called workspace. While it
is correct that you need a workspace to build an application, the opposite is not true
– you will have many workspaces that are not applications.

If you look at the definition created in the file system, you will find
that the extension for the workspace definition file is actually still
.jws (which used to mean Java WorkSpace). So whenever you see
JDeveloper use the word "Application", think "workspace".

There is no need to try to keep your entire enterprise application in one JDeveloper
"application". Using ADF Libraries, it is easy to combine separate workspaces, and
having a number of smaller development teams working on separate subsystems
ensures proper modularity of your enterprise application.

The workspace hierarchy
Your workspaces will be arranged in a hierarchy as described in Chapter 3, Getting
Organized, and the individual workspaces at lower levels will use the workspaces at
higher levels:

You already built the Common Code Workspace in Chapter 5, Prepare to Build, – this
workspace contains the Framework Extension Classes and will eventually contain all
the other general utility classes you build during the course of the project.

Chapter 6

[161]

You have also already built the Common UI Workspace in Chapter 5, Prepare to
Build, – this workspace contains your page flow and page templates. When we start
customizing the application appearance by developing a custom "skin" in Chapter 8,
Look and Feel, the style sheet and other UI artifacts from this process will also go into
the Common UI workspace.

The Common Model Workspace is new, and you will start building this workspace
later in this chapter. This is where all your entity objects go, as well as any common
view objects that will be shared across the whole application – for example, all the
view objects used by your value lists.

Creating a workspace
Whenever you need a new subsystem workspace, you choose File | New, General,
Applications, Fusion Web Application.

Name the workspace in accordance with your naming standards. If your company
domain name is dmcsol.com and your project abbreviation is xdm ("neXt generation
Destination Management"), all your project code should be placed in sub-packages
under com.dmcsol.xdm. Code for your individual task flows go into sub-packages
named after the subsystem the task flow implements. For example, you might
consider the Task Overview and Edit use case (UC008) a subsystem and place all
code for this in a package called com.dmcsol.xdm.uc008. Refer to Chapter 3, Getting
Organized, for more on package naming.

JDeveloper will automatically create two projects inside your workspace called
Model and ViewController. Because these project names are used in various
configuration files, you should change the project names to reflect the subsystem you
are implementing, for example to uc008Model and uc008View.

The model project gets .model added to the package name and the view project gets
.view added for a total package name like com.dmcsol.xdm.uc008.view. There is
no need to change these sub-package names.

Separate names for separate tasks
It is important that you use separate package and project names for
separate task flows. If you accidentally use the same name in two
different task flows, you will experience mysterious errors once you
combine them into enterprise application.

Building the Enterprise Application

[162]

Working with ADF Libraries
ADF Libraries are built from projects inside workspaces, so each workspace will
produce one or more ADF Libraries for other workspaces to use. This section sug-
gests a procedure for working productively with ADF Libraries, but if you have
another method that works, that is fine too.

Version Control Outside JDeveloper
Because the ADF libraries you produce do not show up
in the Application Navigator in JDeveloper, it is easiest to
version control them outside JDeveloper. If you are using
Subversion, TortoiseSVN is a good client that integrates with
Windows Explorer for right-click version control.

ADF Library workflow
The ADF Library workflow goes like this:

•	 The developer builds components in a workspace and performs his
own testing.

•	 When the developer is satisfied, he creates an ADF Library from within
JDeveloper. He then goes outside JDeveloper, navigates to the deploy folder
inside his project and adds it to the source code repository:

Chapter 6

[163]

•	 The Build/Deployment Manager gets the entire workspace from the source
code repository and copies the ADF Library to a common ADF Library folder
in his local file system.

•	 The Build/Development Manager works with the test team to test the ADF
Library file. When satisfied, he commits the common library folder to the
source code repository.

•	 Developers check out the common library folder from the source code
repository to a directory on their local file system (for example,
C:\JDeveloper\XdmLib).

•	 Developers create a file system connection to the common library folder on
their local machine as described next.

Using ADF Libraries
Because ADF Libraries are simply JAR files, it is possible to just add them to your
JDeveloper projects by choosing Project Properties, Libraries, Add JAR/Directory. If
you use this method, you must add the individual JAR files, not just the directory.

However, you get a better overview of your ADF Libraries if you create a file system
connection to the directory containing your JAR files. To do this, open the Resource
Palette from the View menu. Click the New button in the Resource Palette and
choose New Connection, File System:

Give your connection a name (for the sample project in this book, XdmLib) and point
to your library directory (for example, C:\JDeveloper\XdmLib).

Now the Resource Palette will show you the available libraries from all workspaces.
To actually use a library in a project, you simply select a project in the Application
Navigator and right-click on individual library in the Resource Palette and choose
Add to Project or drag it from the Resource Palette onto the project.

Building the Enterprise Application

[164]

Building the Common Model
As discussed above, your enterprise ADF application should be based on three
common workspaces: Common Code, Common UI, and Common Model. You created
the first version of the Common Code and Common UI workspaces in Chapter 4,
Productive Teamwork– all that is missing now is the Common Model workspace.

In this workspace, you will create all the entity objects used in the entire application,
as well as the view objects used for common lists of values used throughout the
application. The common model workspace can also include other view objects, if
you can identify view objects that will be used in several places in the application.

Specialized view objects for each screen will go into the subsystem workspaces that
we will build later in this chapter.

Creating the workspace
Create the workspace using File | New and Generic Application. Provide
workspace and package names in accordance with your naming standard—for the
XDM project of DMC Solutions, the workspace name is XdmCommonModel and the
package is com.dmcsol.xdm.model.

In Step 2 of the wizard, give the project name CommonModel and select ADF
Business Components technology. Because ADF Business Components depends on
Java technology, this technology will automatically be added as well:

Chapter 6

[165]

Using framework extension classes
If you did not set up JDeveloper to use your own framework extension classes
when you built them in Chapter 5, Prepare to Build, please do so now. Go to Tools
| Preferences and select Business Components, Base Classes. For the four types
of objects where you created your own classes (EntityImpl, ViewObjectImpl,
ViewRowImp, ApplicationModuleImpl), change from oracle.jbo.server to the
package name of your own classes (for example, com.dmcsol.xdm.framework). This
tells JDeveloper that every ADF Business Object built from now on should be based
on your own classes.

Then open the Resource Palette and find your shared ADF libraries. Right-click
on the Common Code library (for example, adflibXdmCommonCode) and choose
Add to Project.

Entity objects
In an ADF application, you normally have one entity object for every table in your
application. Since these entity objects can be re-used by many different view objects,
it makes sense to develop them once in the Common Model workspace and then
deploy them to all other parts of the application in the form of an ADF Library.

You can define validation rules on your entity objects as well. Validation placed here
will always be executed, no matter which view object uses the data.

Validation in the database
Remember that the only way to make sure a validation rule is always ex-
ecuted is to place it in the database. Critical data validation logic must be
implemented in the database as well. Validation at the entity object level
will only be executed when data is changed through the ADF application.

If your database contains foreign keys defining the relationship between tables,
the "Business Components from Tables" wizard in JDeveloper will build all of
your entity objects and associations. If you do not have foreign keys in the
database, the wizard can only create the entity objects – you will have to add all
associations by hand (choose File | New and then Business Tier, ADF Business
Components, Association).

Because entity objects cannot be tested in isolation, you should also generate default
view objects (one for each entity object), and one application module. This allows
you to test your entity objects through the Business Components Tester built into
JDeveloper. Your default view objects should be named …DefaultVO to make clear
to everyone that they are not intended for use in the application; similarly, your test
application module should be named something like CommonModelTestService.

Building the Enterprise Application

[166]

To create your entity objects, default view objects, and application module, perform
the following steps:

1. Choose Tools | Preferences and then Business Components, Object
Naming. Set the suffix for object View Object to DefaultVO. This makes
JDeveloper build view objects ending with …DefaultVO as we wish.

2. In the CommonModel project, choose File | New and then Business Tier, ADF
Business Components, Business Components from Tables.

3. Create a connection to the database where your tables exist and in Step 1 of
the wizard click the Query button to find all your tables. Move them to the
Selected box and click Next.

4. In Step 2 of the wizard, move all the entity objects to the Selected column.
This generates default view objects for all your entity objects. In Step 3, just
click Next.

5. In Step 4, deselect the checkbox Application Module. We do not want the
default application module from this wizard, because it includes our view
objects in every conceivable combination, and that is unnecessary here. Then
simply click Finish to close the wizard.

6. In the application navigator panel, expand the model node, then the view
node. Select the link node, press Delete and confirm the deletion. This
removes all the unnecessary view links that the wizard built for us.

7. Choose File | New and then Business Tier, ADF Business
Components, Application Module. Name the application module
XdmCommonModelTestService and click Next. In step two, expand the
tree in the left-hand box and add all the …DefaultVO view objects. Then click
Finish to close the wizard.

Do not mix test and production
You need an application module in order to test your common model en-
tity objects. There is no way of preventing this application module from
showing up in the Data Control panel when using the common model
library in your subsystem workspaces – so it should have a name that
makes clear to all developers that it is not intended for production use.

8. Choose Tools | Preferences and then Business Components, Object
Naming. Set the suffix for object View Object to VO.

Chapter 6

[167]

This procedure creates one entity object for every table, one default view object for
every entity object (simply containing all the attributes in the entity object) and one
application module containing all your default view objects. The purpose of the
default view objects and the application module is only to allow you to test the entity
objects using the business components tester – these default view objects should not
be used in the production application.

Generating primary keys
It is a good idea to let a database trigger create the primary key value for all tables
with numeric keys – the sample XDM database script contains sequences and
triggers that do this. When using trigger-supplied ID values like this, you need to
tell the ADF Framework to expect that the value for the ID columns will be changed
when a record is created in the database. To do this, open each entity object, choose
the Attributes sub-tab on the left, double-click the ID attribute and set the Type
to DBSequence:

Business rules
The above procedure creates simple entity objects containing only a few simple
business rules derived from the database (whether an attribute is mandatory and a
length limitation based on the database column definition).

Building the Enterprise Application

[168]

The common model team should add the additional business rules your application
calls for to the entity objects in the common model workspace. This is done on the
Overview tab under the Business Rules sub-tab in each entity object.

Handling PL/SQL business rules
The business rules that you might have implemented as CHECK
constraints in the database are not automatically picked up by
JDeveloper – the tool has no way of translating PL/SQL database logic
into ADF business rules. Functionally, it is enough to do the validation
in the database, but you can provide the user with better error messages
if you also implement the most important business rules in ADF.

User interface strings
You should also define the default labels used for the attributes of your entity objects
here in the Common Model. This is done by selecting an attribute, clicking the Edit
Selected Attribute button (the little pencil icon) and going to the Control Hints
sub-tab. The Label Text, Tooltip Text and other control hints you define here will
become the default wherever the attribute is used.

The user interface strings defined under Control Hints are stored in a resource
bundle – refer to Appendix A, Internationalization, for more information about resource
bundles and how to use them to translate your application.

Common view objects
Your application is almost certain to contain some view objects that can be shared
among different task flows. The view objects used for drop-down list boxes and
groups of radio buttons fall into this category; there might also be other common
data objects used throughout the application that it makes sense to place in the
Common Model workspace.

When all the entity objects and default view objects have been built, the team in
charge of the Common Model must look through all the UI sketches for the entire
application to determine which value list view objects are necessary.

For the example of this chapter, we will only consider two user cases: UC008 Task
Overview and Edit and UC104 Person task timeline. You can find the user interface
sketches further along in this chapter. Looking at these sketches, the common model
team decides they need to implement three value list view objects:

•	 ServiceLOV
•	 ProgrammeLOV
•	 ProgrammeManagerLOV

Chapter 6

[169]

The procedure for creating these is:

1. In the CommonModel project of the XdmCommonModel workspace, create
a new view object called ServiceLOV (use the suffix LOV for view objects in-
tended for lists of values). Place it in a sub-package lov under view to keep
the LOVs separate from the other view objects:

2. Choose to base it on the Elements entity object and deselect the
checkbox Updatable.

3. Choose the ElemKey and Description attributes. (An LOV view object
should include the ID or key attribute as well as any identifying attributes
that the user of the LOV view object might want to display.)

4. In Step 5, add an Order By clause.
5. Click Finish.
6. Repeat steps 1-7 for other requested view objects (ProgrammeLOV,

ProgrammeManagerLOV). ProgrammeManagerLOV would be based on
Persons but with a Where criteria limiting the LOV view object to those
persons where PROGRAMME_MANAGER_YN = 'Y'.

7. Create a new application module called XdmLovService. In the Data Model
step of the wizard, add the three …LOV view objects.

Building the Enterprise Application

[170]

Testing the Common Model
You would normally not create test cases for entity objects that simply perform
create, read, update and delete operations and implement the default business rules.
But if you have defined additional business rules, you need to test these.

Depending on your testing strategy, you might decide to write unit tests to check
your validation rules programmatically, or you might check them manually. Creating
default view objects and an XdmCommonModelTestService application module allows
you to run the application module in the Business Components tester. Here, you can
change data to verify any validation you have added to your entity objects.

Similarly, you need to test the value list view objects you created and added to the
…LovService application module, either with unit test cases or manually. We will
discuss testing strategies in more detail in Chapter 7, Testing your Application.

Exporting an ADF Library
Once you have defined and tested all the entity objects and view objects you
need, you need to deploy them to an ADF Library that can be included in other
workspaces. To do this, perform the following steps:

1. Choose the CommonModel project in your XdmCommonModel workspace.

2. Choose File | New and then Deployment Profiles (under General). Choose
ADF Library JAR File. Give your deployment profile a name that includes
the prefix adflib, your project abbreviation and "CommonModel", for
example, afdlibXdmCommonModel. This will be the name of the JAR file
this deployment profile will build.

3. Click OK a couple of times to close the wizard.
4. Right-click on your Model project and choose Deploy, XdmCommonModel.

Click Finish to generate your ADF library JAR file.

Now your common model has been packaged up into a JAR file. You can find it
in the deploy subdirectory of your project. If you point to the CommonModel
project without clicking, you will see a pop-up telling you the location of the project
definition file. The directory part of this will be something like C:\JDeveloper\
mywork\XdmCommonModel\CommonModel. If you go to that directory, you will find a
deploy subdirectory, and inside that your JAR file.

As described in the earlier section on working with ADF Libraries, you must
manually add this deploy directory to your source control system so that your
Build/Deployment manager can pick it up, have it tested and distributed.

Chapter 6

[171]

For the purposes of the example in this chapter, you can take the role of Build/
Deployment manager and copy your afdlibXdmCommonModel.jar file from
C:\JDeveloper\mywork\XdmCommonModel\CommonModel\deploy to
C:\JDeveloper\XdmLib.

Organizing the work
A climber on an expedition to Mount Everest does not just step out of his tent one
morning in base camp, pick up his rucksack, and head for the mountain. He starts
out by carefully planning the stages of his climb, splitting the total task into smaller
subtasks. This allows him to focus on the task at hand and give his full concentration
to climbing through the dangerous Khumbu Icefall at 18,000 feet – without worrying
about the Hillary Step at 28,840 feet just below the summit.

While enterprise ADF development might lack the glory (and danger) of climbing
Mount Everest, the idea of concentrating on the one task at hand still applies.
Especially while you are new to ADF development, concentrate on one task to avoid
being overwhelmed by the full complexity of the whole application. This is another
reason to build your enterprise application as a number of separate subsystems.

Preconditions
Just like the Mount Everest climber, you need skills, tools and favorable conditions.
You have built up your skills by taking classes, reading books and blogs, doing
exercises and building smaller applications. You have set up your tools as described
in Chapter 4, Productive Teamwork. The last precondition is favorable conditions.

To the Himalayan climber, favorable conditions means good, stable weather. To an
ADF developer, favorable conditions means good, stable user requirements. If you
do not have good requirements, your odds of success decrease – just like those of a
climber starting out in unsettled weather.

Good user requirements include:

•	 Textual description of the purpose of the user case.
•	 Description of all relevant business rules.
•	 Sketches of all screens, annotated with the requirements not obvious from the

visual appearance. For example, if the UI sketch shows a drop-down list box,
it must be annotated with a data source providing the values on the list.

Building the Enterprise Application

[172]

Decorate the project room
Hang all the UI sketches you have on the walls of your project room,
together with any graphical mockups showing colors and common
elements. As you start building real screens, print these out and hang
on the wall as well. Having these visual elements in front of everyone
improve the consistency of your user interface.

Development tasks
If you are using a task tracking system like Jira, you are likely to be assigned a fairly
coarse-grained task from the Work Breakdown Structure the project manager has
constructed – something like "Implement Task Overview and Edit".

Tasks at this level of granularity must be split into useful subtasks so a developer
can work on it in an efficient and effective manner. With Jira (and probably most
other task tracking solutions), you can split a task into sub-tasks. If you set up Oracle
Team Productivity Center as described in Chapter 4, Productive Teamwork, you will
have access to some basic Jira functionality directly within JDeveloper, but at the
time of writing, not the ability to create sub-tasks. For this, you need to change to the
Jira web interface, bring up the task you want to split and choose Create Sub-Task
(under the More Actions button in the Jira web interface):

Chapter 6

[173]

Your new tasks get normal Jira issue numbers, so they are available for you to work
on in JDeveloper. Remember that you can identify one task as the Active Work Item
– JDeveloper will automatically suggest that you link this item to each Subversion
commit, allowing you to track code commits against tasks.

You will normally need the following sub-tasks:

•	 Create Business Components
•	 Implement Business Logic
•	 Create Task Flows
•	 Review Task Flow
•	 Create Page Fragments
•	 Implement UI Logic
•	 Define UI test
•	 Review UI test

Use this list as a starting point, and add additional subtasks if your specific use case
calls for them, or remove any that are not relevant.

Creating business components
Your Common Model project will already contain all the entity objects as well as
view objects for the value lists. When developing the subsystem, you only need to
define the view objects specific to the subsystem, and an application module.

Building view objects, view links, and application
module
To determine which view objects you need, look at the user interface sketch. Each
separate block of data on your user interface sketch indicates a potential view object,
and any blocks of data with a master-detail connection between them indicate a view
link between the blocks.

One view object can be used in multiple places – even on separate tabs or pages – if
you want all data blocks to refer to the same record. For example, you only need
one Customer view object even if you display the customer name on one tab and the
address information for that customer on another tab. On the other hand, if you have
one tab showing customer names and another tab where the user can page through
customer addresses independent of the selection on the first tab, you need two
view objects.

Building the Enterprise Application

[174]

Remember that you can combine data from multiple entity objects in one view
object. This means that you do not need to create a view link just to retrieve a
value from another table – you only need a view link if you want to display a
master/detail relationship.

In the famous SCOTT schema that has been delivered with almost all
versions of the Oracle database, there is a table EMP with a foreign key
pointing to the DEPT table. The EMP table contains the department
number, but not the department name. If you wish to show employees
together with department name, you base your view object on both the
Emp and Dept entity objects, and select the necessary attributes from
the Emp entity object and the department name (Dname) attribute from
the Dept entity object. No view link is necessary for this.

If your user interface includes value lists, you need to determine which view
object can deliver the data you need (both the code/key and the value displayed
to the user). Most value lists will be based on common view objects that are used
throughout the application. These should be part of the Common Model workspace
that you include in your subsystem workspace.

If you find that you need a value list that is not in the common workspace, consider
if this value list is really unique to the task flow you are implementing. If you are
sure this is the case, go ahead and build it in your subsystem workspace. However,
if you are not sure that you will be the only one ever using that value list, talk to the
team in charge of the Common Model workspace to get your value list view object
included in the common model for everyone to use.

Your view objects might also include named view criteria, bind variables, and so on.

When you are done building view objects, create an application module for
your subsystem.

Implementing business logic
The team building the Common Model has already implemented some business
logic as Business Rules in the entity objects. The remaining business logic goes into
your view objects and application module. How to program ADF business logic is
outside the scope of this book, but an internet search will quickly uncover many ADF
programming resources on the Oracle Technology Network and elsewhere.

Chapter 6

[175]

Remember the database
Some business logic is better implemented as stored procedures
in the database. If you are a Java programmer not familiar with
the capabilities of the database, remember to talk to the database
developers on the team to make sure the business logic is
implemented in the right place.

Testing your business components
Once your view object is complete, test it through the business component tester.
Depending on your test strategy, you might also want to write JUnit test cases that
verify your view criteria; we will discuss testing in detail in Chapter 7, Testing Your
Application. Only write test cases for complicated stuff – you can trust the ADF
framework to retrieve the data you specify.

Creating task flows
The frontend part of the application should be built with bounded task flows using
page fragments.

A bounded task flow can contain screens, define transitions between them and even
include calls to code or other bounded task flows. It has well-defined entry and exit
points point and you can pass parameters to the task flow. Because a bounded task
flow is a complete, self-contained piece of functionality, the same task flow can be
used in several places in the application.

Your task flow should use page fragments instead of whole pages because a task
flow using fragments can be embedded in a region on a page. When you are
navigating through the task flow, only the content of the region changes – the
contents of the page outside the region are not redrawn. This makes your ADF
application look and feel like a desktop application instead of a series of web pages.

You need to include a task flow view in your task flow for every screen your user
requirements call for – but you might need additional views. It is common to create
separate search pages for the user to select data before you display it, or there might
be overview pages before you show all the details.

Do not create pages for warnings, confirmation messages and other popup-style
information. In older web applications, you might be presented with a page telling
you that the record you requested deleted has indeed been deleted. With ADF, you
can easily create real pop-up dialogs; you do not need to create separate pages in
order to present this type of information to the user.

Building the Enterprise Application

[176]

Draw Control Flow Cases for all valid transitions from one page to another. If some
transitions need to be possible from every page or from many pages, remember that
there is a Wildcard Control Flow Rule you can use to avoid cluttering up your task
flow diagram with unnecessary arrows.

Finally, add any other elements you need – like method calls (to execute code
between pages), routers (to conditionally go to one or another page), calls to other
task flows, and so on.

Reviewing the task flows
Once you have built all the task flows, have someone else review them. The reviewer
should preferably be an expert user—if this is not possible, get another team member
to perform this review.

Agile ADF programming
Modern "agile" programming dispenses with some of the docu-
mentation that traditional software development uses. Instead, the
programmers on the agile team work closely together with real
users to ensure that they deliver what the users want. Even if you
are not using an "agile" software development method, you can
achieve some of its benefit by asking your users for feedback often.

The task flow diagrams are very visual and you might believe it should be imme-
diately understandable to an end user. Still, do not just email it to the user. Sit down
with a user (or use a screen sharing and voice call tool like GoToMeeting) to present
your page flow to the user. This allows you to explain any objects in the flow that
are not obvious to a non-programmer (method calls, routers and the like), as well as
gather important feedback.

Of course, some of your task flows will consist of only one or two page fragments –
in these cases, no review is necessary.

Creating the page fragments
With the page flow built and reviewed, you can start implementing the page
fragments that make up the flow.

Before you start programming, talk to the other team members and stroll around the
project room and have a look at all the other pages and page fragments used in the
application (you did decorate your project room, didn't you?). This allows you to
identify what similar elements exist in the application, and where you might be able
to collaborate with another team member on a re-usable page fragment .

Chapter 6

[177]

Implementing UI logic
By now, you have already implemented the application business logic in entity
objects, view objects, application modules or the database. However, you might still
have a bit of programming to do if the ADF user interface components do not meet
your requirements out of the box. This part of the application is the user interface
logic and is implemented in separate Java classes that are then registered in the task
flow as Managed Beans. How to program user interface logic is outside the scope of
this book.

Defining the UI test
The final development task is to define how to test what you have built. Some people
advocate test-driven development, where the test is built before the code – however,
this approach is not useful for user interface code. Firstly, the user interface is
likely to go through a number of iterations before settling in the final form and
secondly, because automated UI test tools work best if you record a session from
a running application.

If your project is using an automated tool like Selenium, a tester should record the
test cases as the final step in the development process. If you test the user interface
manually, the tester needs to write a test script and check this document into your
Subversion repository together with the code.

Reviewing the UI test
Irrespective of whether your test is automated or manual, someone else must review
the test documentation.

For automated tests, this is simply a matter of having a tester run your script
and possibly suggest additional test cases (did you remember to test all the error
conditions? Your professional tester colleague will).

For manual tests, someone who does not know the task flow you are implementing must
run your test. The developer who has been working on a task flow for days is very
likely to accidentally skip some setup or intermediate steps because he is so familiar
with the requirements and the solution.

Building the Enterprise Application

[178]

Implementing Task Overview and Edit
(UC008)
As an example of a subsystem in an enterprise application, we will build Task
Overview and Edit (UC008). Later in this chapter, we will build Person Task
Timeline (UC104) as another subsystem, and finally, we will integrate them together
in a master application. In a real-life application, your subsystems will of course be
larger than these simple one-screen use cases.

In this section, we will go fairly quickly over building of the business components
and screens – you can refer back to Chapter 1, The ADF Proof of Concept, for more
detailed descriptions.

Setting up a new workspace
Create a new Fusion Web Application (ADF) named after your subsystem,
using a package name under your project base package, followed by the
subsystem abbreviation.

For UC008 in the XDM application, use XdmUC008 and the package name
com.dmcsol.xdm.uc008. Remember to rename the model and view projects to
UC008Model and UC008View and accept the default in the rest of the wizard:

Getting the libraries
The model project needs the Common Code workspace for the framework extension
classes and the Common Model for the entity objects. The view projects also needs
Common Code for the framework extension classes, Common Model for the value
list view objects and Common UI for the task flow template.

Chapter 6

[179]

To include these ADF Libraries to the projects in your subsystem workspace, first select
the UC008Model project and open the XdmLib node in the Resource Palette. Right-
click on adflibXdmCommonCode and choose Add to Project. In similar way, add
adflibXdmCommonModel to the UC008Model project, and add XdmCommonCode,
XdmCommonModel, and XdmCommonUI to the UC008View project.

Creating business components
You will be getting the entity objects from the common model project—now you
just need to figure out which view objects you need. To determine this, look at the
screen design:

In this case, the screen design is just a mockup – a sketch showing the approximate
layout and contents of the screen (and not all fields). In addition to the sketch, the
following additional information is given:

The full list of fields to show in the table include:
* Start time and date (mandatory)
* Text (mandatory)
* Start location (mandatory)
* Flight no. (optional)
* End date and time (optional)
* End location (optional)
* No. of persons (optional)
* Service (mandatory)
* Comments (optional)
The list of services comes from the total catalog of elements.
The list of persons responsible (filter criteria) shows only those persons
marked as program managers.
The list of programmes (filter criteria) shows all programmes.

Building the Enterprise Application

[180]

The screen has two boxes, which often indicates two view objects. However, closer
examination reveals that the topmost box doesn't really contain any data – it's
just search criteria. So you need one view object showing tasks, including all
required columns.

Your screen shows three value lists, but the team in charge of the common model
should already have built …LOV view objects for these. If you find that you need value
list view objects that you cannot find in the common model project, ask the common
model team to add them, so that they can be used across the entire application.

Starting work
If you are using a task management system integrated into JDeveloper (for example,
Jira), the first thing to do when starting work on a new part of the application is to
set the active task. Go to the Team Navigator as described in Chapter 4, Productive
Teamwork, and run a query against your task repository. Find the task that specifies
business components for the Task Overview and Edit use case, right-click it and
choose Make Active.

Depending on the way you use task management, you might also open the task
(listed at the top under the Work Items header in the Team Navigator), and change
status to Start Progress or similar.

Building the main view object
To build the main view object, choose the UC008Model project in your subsystem
workspace and choose File | New and then Business Components, View Object.
Give your view object a name (for example, TaskVO), leave Updatable access
through entity objects selected and click Next. In Step 2 of the wizard, all of the
entity objects from the Common Model workspace should be available in the left-
hand box.

No entity objects?
If you do not see any entity objects available, you might have
forgotten to include Common Model ADF library in the model
project of your subsystem workspace.

Chapter 6

[181]

Select the Task entity object and in Step 3, select all the necessary attributes:

In Step 5, select an Order By condition (start_date), and in Step 6 define the
bind variables like you did in Chapter 1, The ADF Proof of Concept, (pResponsible,
pProgramme, and pText). Go back to Step 5 of the wizard and add the following
Where clause:

(:pResponsible is null or PERS_ID = :pResponsible)
and (:pProgramme is null or PROG_ID = :pProgramme)
and (:pText is null or upper(TEXT) like '%' || upper(:pText) || '%')

Then click Finish to create the TaskVO view object.

Building the Enterprise Application

[182]

As in Chapter 1, The ADF Proof of Concept, you must also define a list of values for the
service (ElemKey). Open the newly created TaskVO view object, go to the Attributes
sub-tab and choose the ElemKey attribute. Create a new list of values with data
source ServiceLOV (from the com.dmcsol.xdm.view.lov package):

Use ElemKey as List Attribute and on the UI Hints tab choose to display the
Description attribute and uncheck the Include No Selection checkbox.

Like in Chapter 1, The ADF Proof of Concept, set the format for the StartDate and
EndDate attributes to Simple Date and format mask dd-MMM-yy HH:mm.

Building the application module
In order to make the TaskVO view object available to the UI developers, it must be
part of an application module. Create an application module with the same name
as the subsystem workspace, for example, XdmUC008Service, and include the view
object in the data model.

When you have created the application module, right-click on it and
choose Configurations. In the Manage Configurations dialog, select the
UC008ServiceLocal configuration and click Edit. The Edit Business Components
Configuration dialog opens:

Chapter 6

[183]

Check that Connection Type is set to JDBC Datasource. This means that your
application will only deploy with the name of a datasource it requires – so it will run
on any application server as long as the application server administrator has defined
a datasource with the right name. This dialog also allows you to set many ADF
tuning parameters to optimize your ADF application, but these are outside the scope
of this book.

Testing your business components
To test your view object, right-click on the application module and run the Business
Components tester application to check that the correct data is shown, sorted as
desired, and that you see value lists with the right values. In an enterprise project,
you might decide to automate this testing with JUnit test cases. We will get back to
testing in Chapter 7, Testing Your Application.

Building the Enterprise Application

[184]

Checking in your code
When you have tested your business components, it is time to check them into
Subversion. If you set up a connection to Subversion as described in Chapter 4,
Productive Teamwork, you can now just choose Versioning | Version Application to
start the Subversion import wizard.

In Step 2 of the wizard, remember to create a new folder in the trunk for your project
with the same name as your workspace (for example, XdmUC008). Step through the
wizard and remember to leave the Perform Checkout checkbox checked in order
to immediately check out the application and continue working. You will see your
import running in the SVN Console Log window.

All of the object in the Application Navigator should now have the little round
Subversion "unmodified" marker on the icon:

Finishing the tasks
Once the code is successfully checked in to your source code repository, click on the
Active Work Item (at the top of the Work Items list in the Team Navigator) to open
the issue in JDeveloper. Provide a comment and mark the issue closed.

Creating the task flow
With the business components complete, we can consider the task flow – which
pages will the user see. In the proof of concept in Chapter 1, The ADF Proof of Concept,
we illustrated the concept of task flows by creating a task flow containing both
UC008 and UC104. As discussed in Chapter 2, Estimating the Effort, a real enterprise
application uses many separate bounded task flows – a simple use cases might have
only one, while a complex use case can have a dozen or more.

Chapter 6

[185]

Our screen layout for this use case does not call for more than one screen – but we
will still be building the bounded task flow to serve as a container for this use case.
This gives us a uniform structure and the flexibility to add more screens later. In a
web application, a use case will often include separate search screens, but in this
case, the search capability is included directly on the page.

Starting work
Just like when you started working on the business components, first set the active
task in the Team Navigator, and change status if your process calls for it.

Building the task flow
To build the task flow, select the UC008View project in the XdmUC008 workspace
and choose File | New, Web Tier, JSF, ADF Task Flow. Give your task flow a name,
for example task-edit-overview-flow. Make sure that Create with Page Fragments
is checked, and check Base on Template. If the list of templates does not contain the
template you defined in the common UI workspace, you probably forgot to include
the common UI library in the project:

Task flows can either copy the content of the template, or refer to it. This is controlled
by the Update the Task Flow when the Template Changes checkbox. It is
recommended to leave this checkbox checked.

Building the Enterprise Application

[186]

In the task flow editor, simply drop in a single View component from the
Component Palette and call it taskOverviewEdit. Remember to check in your code
and mark the task complete.

Creating the page fragments
To create the tasks page fragment, double-click on the taskOverviewEdit icon in the
page flow to call up the Create New JSF Page Fragment dialog.

You will normally not base your page fragments on a template, so start from a blank
page. The page fragments that make up the application will be used in regions on
pages, and these pages will be based on page templates.

Layout
Your page will need three parts: The search panel at the top, the results table in the
middle, and the OK/Cancel buttons at the bottom. Start by dragging in a Panel
Stretch Layout from the Component Palette (in the Layout section).

A stretch target
Panel Stretch Layout and Panel Splitter are stretchable contain-
ers that also stretch the components they contain. These work
well as outer containers, because they ensure that all space on
the screen is used.

Data table
From the Data Controls panel in the left-hand side of the JDeveloper window, open
the data control for your application module. Drag in the Tasks view object and drop
it onto the center of the page (the center facet) as Table | ADF Table.

In the Edit Table Columns dialog, the ServiceElemKey attribute should be shown
with an ADF Select One Choice component – this is because a list of values has been
defined for this attribute in the view object. Allow the user to sort data in the table by
checking the Enable Sorting checkbox.

The Panel Stretch Layout component is stretchable – that is, it will automatically
stretch itself to fill all available space and will attempt to stretch the table as well.
However, the table will not stretch unless you set the ColumnStretching property.
Click in the Text column and make a note of its ID (in the Property Inspector – it will
be something like c7). Then select the table (it is easiest to do this in the Structure
Panel at the lower left) and set the ColumnStretching property to the ID of the Text
column (for example, column:c7).

Chapter 6

[187]

Search panel
The next part to build is the search panel above the data table. Since the fields and
buttons we will be using for the search panel do not work well if you try to stretch
them, we need to place them into a container that does not stretch its contents.

The non-stretch adapter
To convert between the stretchable layout containers that make up
the outer part of your layout and the non-stretchable components
that show your data, you use a Panel Group Layout. This component
is special in that it will itself stretch (so it fits into a component
that stretches its content), but it does not stretch its contents. You
can consider the Panel Group Layout to be an "adapter" between
stretchable and non-stretchable.

Drag a Panel Group Layout in from the Component Palette (Layout section) and
drop it onto the top facet of the panel stretch layout (marked top). Set the Layout
property to Horizontal to make the fields and buttons appear on the same line.

Then build the search panel like you did in Chapter 1, The ADF Proof of Concept:

•	 Expand the Operations node under the Tasks view object in the Data
Controls panel. Open the operation ExecuteWithParams fully. Drag the
pResponsible parameter onto the Panel Group Layout and drop it as a
Single Selection, ADF Select One Choice. In the Edit List Binding dialog,
leave Base Data Source at variables and add a new List Data Source based
on ProgrammeManagerLOV in the XdmLovServiceDataControl. Choose
Initials in the Display Attribute drop-down and set "No Selection Item" to
Blank Item (First of List). Then click OK. Use the Property Inspector to set
the Label property to Responsible.

	° If you do not see the "…LOV" data sources, maybe you forgot to
include the Common Model library in your view project?

•	 Next, drag the pProgramme parameter onto the Panel Group Layout next
to the pResponsible drop-down as a Single Selection, ADF Select One
Choice. Again leave the Base Data Source unchanged and add a new List
Data Source based on the ProgrammeLOV data source. Use ProgId as List
Attribute and set Display Attribute to Name. Set "No Selection" Item to
Blank Item (First of List) and click OK. Finally, set the Label property
to Programme.

•	 From the list of parameters, drop the pName parameter next to the
pProgramme parameter and as Text, ADF Input Text w/ Label. Set the Label
property to Text.

Building the Enterprise Application

[188]

•	 Finally, drag the ExecuteWithParams operation (the node with the little
green gearwheel icon) onto the page inside the Panel Group Layout, next
to the three search criteria, as Operation, ADF Button. In the Property
Inspector, change the Text property to Search.

Translatable applications
For simplicity, we're defining user interface texts directly in the components
here. If there is the slightest chance that your enterprise application
will ever need to be translated into another language, you should use
Resource Bundles to define your user interface texts. Refer to Appendix A,
Internationalization A for more on creating translatable applications.

Running the page
Because your task flow is now based on page fragments, it cannot be run directly—
you need to create a test page to run it.

Choose File | New, Web Tier, JSF, JSF Page and give the page a name like
TestTaskEditOverview. In the Directory field, add \testpages at the end in order
to place your test page in a directory separate from the rest of the application. You
can base this test page on your page template to get a feel for how your final page
will look:

Chapter 6

[189]

When the page opens in the editor, open the Page Flows node to see your task-edit-
overview-flow page flow. Drag it onto the content facet on the page and drop it as a
Region. You will see a ghost image of your page – you cannot interact with it on this
page. But you can right-click on the page and choose Run to see your task flow and
page fragment in action.

Regions and dynamic regions
There are two ways to include a page flow using page fragments in a
page: As a static region (just called Region on the context menu) or
as a dynamic region. If you use a static region, your page will always
include exactly the bounded task flow you dropped onto the page. If you
use a dynamic region, the ADF framework decides at runtime which task
flow should be shown in the region. This allows you to swap out parts
of the screen without the rest of the page refreshing, so your application
feels more like a desktop application than a web site.

Now you should be able to filter data based on the drop-down lists and what you
enter in the search field. Every time you click on the search button, the table should
update to show only the records that satisfy the criteria.

OK and Cancel
The final elements you need to put on the page are the OK and Cancel buttons at the
bottom, below the table. (We won't be adding the "Timeline" button that was used as
an illustration of page flow navigation in Chapter 1, The ADF Proof of Concept.) These
buttons will execute the Commit and Rollback actions that ADF provides at the
application module level:

Before you drag these operations onto the page fragment, drop in a Panel Group
Layout onto the bottom facet of the Panel Stretch Layout. Set the Layout property
to horizontal.

Then drag the Commit and Rollback operations from the data control palette onto
the Panel Group Layout as ADF Buttons. For both buttons, change the Text property
(to OK and Cancel), and clear the Disabled property to ensure that both buttons are
always active.

Building the Enterprise Application

[190]

You can now run the page again and check that your buttons are placed correctly.
Make some changes to the data, and click OK. Use the Database Navigator panel or
a database tool to verify that your changes are committed to the database.

Checking in your code
When you look at the Application Navigator, you will see the nodes are marked with
different subversion markers, not just the round "Unmodified":

Some files are modified (marked with an *) and others are new and as yet
unversioned (marked with a T).

Versioning new files
Remember that unless you have checked the checkbox Automatically
Add New Files on Committing Working Copy (under Tools |
Preferences, Versioning, General), Subversion will not automatically
version new files. If you do not check this checkbox, you need to
explicitly add them to Subversion to place them under version control.

If the Pending Changes panel is not shown (by default it appears below the main
editing window), choose Versioning | Pending Changes:

Chapter 6

[191]

If you are not automatically adding new files, you will see a number of files listed as
Candidates. These have not been placed under version control yet. Select them all
and click on the green + to add them to Subversion. The Candidates tab empties, and
the files are added to the Outgoing tab – you'll see the number of changes increase.
Then choose Versioning | Commit Working Copy to commit your new and
changed files to Subversion.

When you have checked in the UI code, you can mark the task complete (you did
select an Active Work Item, didn't you?).

And remember that enterprise development also includes creating a test script:

•	 A manual test script for a human to execute, or
•	 An automated test script using a tool like Selenium

We will discuss testing in more detail in the next chapter.

Deploying your UC008 subsystem
The final task is to deploy your subsystem as an ADF Library like you have done
several times earlier. The library for a subsystem is created from the View project
– JDeveloper automatically registers that the View project depends on the Model
project, so all necessary objects from the Model project are included automatically.

Building the Enterprise Application

[192]

Select the UC008View project and create a new Deployment Profile of type ADF
Library JAR File. Give the deployment profile a name that includes your project
abbreviation and the subsystem name, for example, adflibXdmUC008. In the Edit
ADF Library JAR Deployment Profile Properties, choose to deploy Connection
Name Only:

This setting ensures that the individual subsystems don't include connection details
but will use the connection defined in the master application.

Then right-click on the UC008View project and deploy to this profile.

Implementing person task timeline
(UC104)
As an example of another subsystem, we will implement the second use case you
saw in Chapter 1, The ADF Proof of Concept – the timeline showing the allocation of
persons to tasks. In a real-life application, this would go into the same subsystem
as UC008, but in order to demonstrate how to combine several subsystems into
one master application at the end of this chapter, we will build a separate subsystem
for UC104.

Setting up a new workspace
Again, we set up a separate subsystem workspace using File | New and then
Applications, Fusion Web Application (ADF). Each subsystem is implemented in
a separate workspace, allowing you to divide the application between many team
members without the implementation of one subsystem getting in the way of another.

Chapter 6

[193]

Give your workspace a name that starts with the abbreviation for your enterprise
application, following by the subsystem name. For the UC104 in the XDM
application, use XdmUC104 and the package name com.dmcsol.xdm.uc104. Name
the model project UC104Model and the view/controller project UC104View.

Getting the libraries
Select the UC104Model project and add the ADF Libraries adflibXdmCommonCode
and adflibXdmCommonModel, and select the UC104View project and add
adflibXdmCommonCode, adflibXdmCommonModel, and adflibXdmCommonUI.

Creating business components
Before you start working, find the task you need to work on from the Team
Navigator and make it active.

Creating view objects for scheduling
To determine the view objects you need, you look at the screen for the person
task timeline:

It is not immediately obvious which view objects we need for a component like this.
One useful way of looking at the data is to think of iterators – what are the data sets
that we must be looping through in order to build the screen.

For the screen above, it is clear that we must be looping over persons as we go down
the left-hand column. That means we will need a Person view object. Additionally,
we must be looping over tasks as we go across to build up the sequence of tasks for
each person: We therefore need a Task view object as well.

Building the Enterprise Application

[194]

Building the persons view object
We can see that we will need a view object showing persons – just the first and last
name is necessary, and since we will not be changing data from this screen, the view
object can be read-only.

Tell the framework what you know
When you know that you will not have to update data through
a view object, tell the ADF framework by deselecting the Up-
datable checkbox. The more information you give ADF, the
better it can manage performance for you.

In the UC104Model project, choose File | New and then Business Tier, ADF
Business Components, View Object. Give a name like PersonVO and leave data
source at Updatable access through entity objects.

Read-only or updatable?
The options for data source type are not well named in the version of
JDeveloper that was current at the time of writing: One says "updatable"
and the other says "read-only". In fact, you should always use Updatable
access through entity objects even if you do not plan on updating
anything. You can deselect the Updatable checkbox later in the wizard.

Add the Persons entity object and deselect the Updatable checkbox. Add the
FirstName and LastName attributes (the PersonId is automatically included) and
order by last_name, first_name.

Building the tasks view object
Create another view object, giving it the name TaskVO. Base it on the Tasks entity
object, and again deselect Updatable. You just need the StartDate and EndDate
attributes (the TaskId is automatically included). Add a where clause so that
the view object will only show tasks with both a start and an end date, using
the following:

start_date is not null and end_date is not null

Building the master-detail link
Because tasks and persons are related, you also need to define the relationship in
the form of a view link. Select File | New and then Business Tier, ADF Business
Components, View Link. Give your view link the name PersonTaskLink.

Chapter 6

[195]

In step two of the wizard, expand the PersonVO node on the left and choose
PersTaskFkAssoc as the left-hand side of the link. On the right, expand the TaskVO
node and again choose PersTaskFkAssoc, this time as the right-hand side of the link.
Then click Add, Next, and Finish.

Building the MinMaxDate view object
As you might remember from Chapter 1, The ADF Proof of Concept, the Gantt chart
component does not automatically scale to the time data it presents, so you have to
set startTime and endTime attributes. To retrieve these values, we will create an
SQL Query view object.

Create a view object, giving it the name MinMaxDateVO and select Read-only
access through SQL Query. In step 2, enter the following query:

Select min(start_date) - 1 as min_start_date,
max(end_date) + 1 as max_end_date

from xdm_tasks

Click the Test button to ensure that the query is valid and then Next several times
and Finish. This creates a view object with one row, containing a MinStartDate
attribute one day before the earliest start date in the table, and a MaxEndDate
attribute one day after the latest end date.

Because the Gantt chart component requires the start and end dates to be instances of
java.util.Date (and not the default oracle.jbo.domain.Date), we need to create
a Java class for this view object to perform this conversion. Choose the Java sub-
tab and click the pencil icon to generate a Java class for this view object. Check the
checkbox Generate View Row Class and leave Include accessors checked:

Building the Enterprise Application

[196]

When you click OK, the class MinMaxDateVORowImpl.java is created. Open this
class and change the getMinStartDate() and getMaxEndDate() methods to look
like this:

…
/**
* Gets the attribute value for the calculated attribute
* MinStartDate.
* @return the MinStartDate
*/
public java.util.Date getMinStartDate() {

return ((Date)getAttributeInternal(MINSTARTDATE)).getValue();
}
…
/**
* Gets the attribute value for the calculated attribute
* MaxEndDate.
* @return the MaxEndDate
*/
public java.util.Date getMaxEndDate() {

return ((Date)getAttributeInternal(MAXENDDATE)).getValue();
}
…

In the code above, the signature of these two methods has been changed to return
a java.util.Date instead of the default oracle.jbo.domain.Date, and a
getValue() call has been added to convert the oracle.jbo.domain.Date attribute
value to a java.util.Date.

Building the application module
Create an application module called XdmUC104Service to collect the data model for
the timeline screen.

In Step 2 of the wizard, first select the PersonVO view object on the left. Correct
the New View Instance field to Person and click the > button to add a view object
instance to the application module. Then select the new Person view instance on
the right and the node TaskVO via PersonTaskLink on the left. In the New View
Instance field, change the value to Task and click the > button to create a new view
instance as a child of Person. Remember that you need to point to TaskVO via a link
to get a detail view – if you just choose the TaskVO without using the link, there
would be no relationship between persons and tasks, and the Gantt chart component
would not work. Click Finish to close the wizard. Finally, add the MinMaxDateVO
view object.

Once you have created the application module, verify that Connection Type is set to
JDBC Datasource (right-click Configurations, Edit).

Chapter 6

[197]

Testing your business components
To test your application module, you can right-click on the XdmUC104Service
application module node in the application navigator and choose Run from the
context menu. Double-click on the view link to see master and detail records together
and verify that data looks as expected:

Finishing the tasks
The final step after your own test is as always to check the code in to your source code
repository, select the Active Work Item and mark the corresponding issue closed.

Building the Task Flow
The UC104 Person Task Timeline use case also uses only one screen, but you should
still create a one-page bounded task flow for it.

Set the active work item, go to the UC104View project in the XdmUC104 workspace
and create a new ADF Task Flow. Give it a name, for example, person-timeline-flow.
Create with Page Fragments should be checked and the task flow should be based
on xdm-task-flow-template.

Building the Enterprise Application

[198]

In the task flow editor, simple drop in a single View component from the
Component Palette and call it personTimeline.

Then check in your code and mark the task complete.

Building the page
To create the scheduled tasks page fragment, double-click on the personTimeline in the
task flow. Again, the page fragment does not have to be based on a template because it
will be used on a page that has all the common elements (logos, menu bar, and so on)

As in most cases, this page starts with a stretchable outer component. Drag a Panel
Stretch Layout onto the page from the Component Palette.

Adding a Gantt chart component
As you might remember from Chapter 1, The ADF Proof of Concept, the component
that implements the graphic representation of tasks assigned to persons is a Gantt
chart of type Scheduling.

To create the page, open the UC104ServiceDataControl node and drag the Persons
view instance onto the center facet and drop it as Gantt, Scheduling. The Create
Scheduling Gantt dialog appears:

Chapter 6

[199]

Set the fields in this dialog as follows:

•	 Resource Id: PersId
•	 Tasks Accessor: Task
•	 Task Id: TaskId
•	 Start Time: StartDate
•	 End Time: EndDate

Under Table Columns, remove the extra PersId column, leaving only FirstName
and LastName. Then click OK to see a graphical representation of a scheduling
Gantt chart.

Defining start and end time
The MinStartDate and MaxEndDate attributes can be found in the Data Control
Panel under the MinMaxDate view instance, but you cannot simply drag them onto
the attribute we need. We will have to create a binding manually. To do this, change
to the Bindings tab:

Building the Enterprise Application

[200]

Click on the green plus sign next to Bindings and choose to create an
attributeValues binding. In the Create Attribute Binding dialog, click the green plus
sign to create a new Data Source and select the MinMaxDate view instance. Then
select the MinStartDate attribute:

Add another attributeValues binding with MinMaxDate as Data Source and
MaxEndDate as Attribute.

With the bindings for start and end date created, click on the Design tab to return to
the person timeline page fragment and select the dvt:schedulingGantt component
in the Structure Panel. Then click on the triangle next to the StartDate attribute and
choose the expression builder. Open ADF Bindings and then bindings. Select the
MinStartDate attribute and then inputValue:

Chapter 6

[201]

Set the EndTime property to #{bindings.MaxEndDate.inputValue} in similar way.

At runtime, the Gantt chart component will retrieve the start and end date from the
binding, which connects the component to the MinMaxDate view object.

Running the page
Just like the Task Overview and Edit task flow, this task flow is based on page
fragments and cannot be run directly. Create a new JSF Page with a title like
TestPersonTimeline and place it in the testpages subdirectory of public_html.

When the page opens in the editor, drop the person-timeline-flow page flow onto
the content facet on the page as a region. You can then right-click on the page and
choose Run to see your task flow and page fragment in action.

Checking in your code
If the Pending Changes panel is not shown, choose Versioning | Pending Changes
to call it up. Go to the Candidates tab and add all the new files to Subversion, and
then choose Versioning | Commit Working Copy to commit your new and changed
files to Subversion.

Now you can mark the task complete, and all that remains is to write a test script.

Deploying your UC104 subsystem
Like you did for the UC008 subsystem, you need to deploy the UC104 subsystem as
an ADF Library, this time called adflibXdmUC104. Remember to choose Connection
Name Only when defining the ADF Library deployment profile.

Building the master application
In this chapter, we have built two very small subsystems and deployed them as ADF
libraries – now we will create the master application that brings the subsystems to-
gether to the final application. A real-life enterprise application will have a number
of subsystems, and these will be much larger, but the same principle applies.

In addition to the task flows from the subsystems, the master application will contain:

1. The master application page
2. A dynamic region for the task flows
3. A menu for selecting task flows
4. A bit of user interface code to tie everything together

Building the Enterprise Application

[202]

Setting up the master workspace
Create a new workspace of type Generic Application, naming it XdmMaster and
assigning an application package prefix of com.dmcsol.xdm. Also name the project
XdmMaster and include the following technologies:

1. ADF Business Components
2. ADF Faces
3. HTML
4. XML
5. Ant

In the project properties dialog, choose the Java EE Application node and shorten
the content of the Java EE Web Application Name and Java EE Web Context Root
fields to just Xdm.

Getting the Libraries
As described in the section on ADF Library workflow at the beginning of this
chapter, the Build/Deployment manager collects the subsystem workspaces, has
them tested and releases them for use. For the purposes of the example in this
chapter, take the role of Build/Deployment manager and copy C:\JDeveloper\
mywork\XdmUC008\UC008View\deploy\adflibXdmUC008.jar to C:\JDeveloper\
XdmLib. Also copy C:\JDeveloper\mywork\XdmUC104\UC104View\deploy\
adflibXdmUC104.jar to C:\JDeveloper\XdmLib.

You should now have five ADF Libraries in your in the Resource Palette under
XdmLib:

Chapter 6

[203]

Add them all to the XdmMaster project in the XdmMaster workspace.

Now open the Application Resources heading in the Application Navigator. You will
see that it contains a database connection called XDM, but it is marked with a red x.

This is because the ADF Libraries you have added contain an XDM connection, but
you only included the name when creating the ADF Library. Here, in the master
application, you must define the connection properties. You do this by right-clicking
the connection, choosing Properties and filling in the dialog box.

Create the master page
An ADF enterprise application will contain many bounded task flows, each
containing many page fragments – but it will have few pages, possibly only one.
You need one page for every direct access point your application needs – if you want
three different entry points to the application with three different URLs, you need
three pages.

In the example in this chapter, we will create only one page. To create the page,
choose File | New and then Web Tier, JSF Page. Give it the name Xdm and choose
to base it on the XdmPageTemplate:

Building the Enterprise Application

[204]

In the Structure Panel, select the af:pageTemplate node. Among the properties in
the Property Palette, you now see the pageTitle variable you defined in the page
template. Set the value to Next Generation Destination Management.

Create the layout
Drop a Panel Stretch Layout component on the main facet of the page. This
component has five facets, but we only need the top and center facets. To
remove the unnecessary facets from view, right-click on the component and
choose Facets – Panel Stretch Layout and deselect the start facet. Repeat to
deselect end and bottom facets.

Adding the menu
To build the menu, first drop a Panel Menu Bar component on the top facet. Then
drop a Menu component on the menu bar, setting the Text property to Tasks.
Finally, drop two Menu Item components onto the Tasks menu, setting the Text
property to Overview/Edit and Timeline, respectively.

Creating a dynamic region
To create a dynamic region on the master application page, open the Resource
Palette and then the adflibXdmUC008 library. Expand the ADF Task Flows node
and drag the task-overview-edit-flow onto the center facet of the Panel Stretch
Layout on the page:

Chapter 6

[205]

You will be prompted to select or create a managed bean that will provide the URL
to the task flow to be displayed in the dynamic region. Click the green plus sign
to create a new managed bean and fill in the Create Managed Bean dialog as
shown next:

Click OK twice to create and select the bean. You can also just click OK in the Edit
Task Flow Binding dialog – if your task flow had taken parameters, this dialog
would be where you'd define values for these.

Building the Enterprise Application

[206]

These steps do four things:

1. Create a new Java class with the package and name you specify.
2. Define the Java class as a managed bean in the unbounded task flow (in the

adfc-config.xml file).
3. Create a task flow binding in the data bindings for the page

(XdmPageDef.xml).
4. Set the Value attribute of the dynamic region to point to the task

flow binding.

Managed beans
Managed beans are Java classes that are instantiated by the JSF
framework as needed. JSF enforces separation between user
interface components and user interface logic—the JSF page
contains the components, and the managed beans contain the
user interface logic.

Understanding the dynamic region
If you run the page now, you'll see the Task Overview and Edit task flow. Let us
follow the execution flow to understand how these pieces fit together.

1. Whenever the ADF framework has to show the page containing the dynamic
region, it will execute the task flow binding indicated by the Value attribute
of the dynamic region. In the XDM example, this value is #{bindings.
dynamicRegion1.regionModel}.

2. If you click the Bindings tab on the Xdm.jspx page, you will see the task
flow binding called dynamicRegion1. In the Property Palette, you can read
the taskFlowId attribute to see where the task flow for the binding comes
from. In the XDM example, this is ${backingBeanScope.PageSwitcherBean.
dynamicTaskFlowId}.

3. This is a reference to a managed bean defined on the unbounded task flow.
If you open the adfc-config.xml file, go to the Overview tab and then the
Managed Beans sub-tab, you will find a bean with a scope of BackingBean
and the name PageSwitcherBean. On this screen, you can also see the actual
class implementing the managed bean. In the XDM example, this is com.
dmcsol.xdm.beans.PageSwitcher.

4. If you open this class, you will see that it has a method getDynamicTaskFlowId,
corresponding to the binding you found in step 2 above. Whatever this
method returns is used to look up the task flow to be displayed in the
dynamic region.

Chapter 6

[207]

Additional code for task flow switching
To switch between different task flows inside the dynamic region, we need some
way of making the getDynamicTaskFlowId() method return different values, and
some way of setting these values. The solution we will implement consists of 4 parts:

1. Another managed bean to store the value across page requests.
2. A way to access this second bean from the first.
3. A way to set values in this second bean from the user interface.
4. A way to make the region redraw itself when needed.

Storing the selected task flow value
The existing managed bean has a scope of backingBean. This is a short scope, only
valid for the duration of one request from the browser to the server – so it cannot
store the selected task flow as the user is working with the application. Instead, we
need a managed bean with a session scope. Values in a session-scoped managed
bean endure until the user closes his browser, so such a bean can store the selected
task flow.

To store the selected task flow, create a new Java class called UiState in package
com.dmcsol.xdm.beans. At the most basic, this bean only needs to store a reference
to the currently selected task flow; this can be done with the following code:

package com.dmcsol.xdm.beans;

public class UiState {
private String currentTF = "/WEB-INF/task-overview-edit-flow.
xml#task-overview-edit-flow";
public void setCurrentTF(String s) {
currentTF = s;
}
public String getCurrentTF() {
return currentTF;
} }

This class must be added to the unbounded task flow as a managed bean. To do this,
open the adfc-config.xml file (under Web Content / WEB-INF), choose the Overview
tab and then the Managed Beans sub-tab. Click the green plus sign at the top and
add a new managed bean with the name UiStateBean, class com.dmcsol.xdm.beans.
UiState and scope session.

Building the Enterprise Application

[208]

This chapter uses the simplest possible example to illustrate the use of dynamic
regions, and the UiState class simply stores a Java String value. Obviously, this is
not a robust solution, breaking as soon as a string is misspelled. In a real enterprise
application, all task flows should be stored in a data structure, and a key should be
used to look up the task flow.

Accessing the session bean from the backing bean
We can use the JSF functionality of Managed Properties to make the UiState
session bean available to the PageSwitcher backing bean. To do this, change the
PageSwitcher class to look like this:

package com.dmcsol.xdm.beans;

import oracle.adf.controller.TaskFlowId;

public class PageSwitcher {
private UiState currentUiState;
public TaskFlowId getDynamicTaskFlowId() {
return TaskFlowId.parse(
currentUiState.getCurrentTF());
}
public void setUiState(UiState state) {
currentUiState = state;
} }

This class now has a private variable of class UiState, and a corresponding
setUiState method. We can ask JSF to automatically set UiState whenever the
PageSwitcherBean is instantiated by defining a Managed Property. In the
adfcconfig.xml file on the Managed Beans sub-tab, first select the
PageSwitcherBean at the top and then click the lower green plus sign. The managed
property name should be uiState (matching the setUiState() method), the class
should be com.dmcsol. xdm.beans.UiState and the value should be #{UiStateBean}.

Chapter 6

[209]

Setting the task flow values
The final thing we need is to set the UiState value to select one or the other task
flow. This can be done with a Set Property Listener operation that you can drag in
from the Component Palette. In the XDM user interface, the switching of task flows
is done with af:commandMenuItem elements, but other command elements like
buttons and links can also be used.

To set the value, open the menu in the Structure Panel and expand the Operations
node in the Component Palette. Then simply drag a Set Property Listener operation
onto the af:commandMenuItem:

Building the Enterprise Application

[210]

In the Insert Set Property Listener dialog, set the From property to #{'/WEB-
INF/task-overview-edit-flow.xml#task-overview-edit-flow'}, the To property to
#{sessionScope.UiStateBean.currentTF} and Type to action:

Repeat this for the Timeline command menu item, only set From to #{'/WEB-INF/
person-timeline-flow.xml#person-timeline-flow'}.

These two property listener components will assign literal values (in the From
fields) to the currentTF attribute in the UiStateBean. Again, this only serves as
the simplest possible example of how to use a dynamic region—a real enterprise
application would store the actual task flow URLs in some central repository (for
example, a database table).

Making the region re-draw itself
The final part of the solution is a way to make the region redraw itself as needed.
The ADF framework makes this very simple – all you need to do is to set the
PartialTriggers property on the region component. The PartialTriggers property
on a component is a list of all the other components that can trigger a refresh of
that component.

Select the region and click on the little triangle next to the PartialTriggers property
and choose Edit. This opens a dialog box where you can define the components
that should trigger re-drawing of the region. Select the two commandMenuItem
elements and move them to the right-hand side:

Chapter 6

[211]

In this way, whenever a user selects either of the menu items, the dynamic region
component will re-draw itself, reflecting any change to the current task flow in the
UiState bean.

Summary
In this chapter, you have built a Common Model workspace to supplement the
Common Code and Common UI workspaces you built in Chapter 5, Prepare to
Build. Using the ADF Libraries created from these three base workspaces, you
have developed two subsystems, implementing the two use cases you first saw
in Chapter 1, The ADF Proof of Concept.

You have used bounded task flows with page fragments to build well-defined,
re-usable blocks of functionality that can easily be combined into a larger master
application. You have seen how to use proper enterprise methodology, including
task tracking to focus your work, and a central source repository.

Building the Enterprise Application

[212]

You have deployed your subsystems as ADF Libraries and combined them in a
master application, including both a menu and a dynamic region with all necessary
supporting code to make your enterprise application look like a desktop application
and not just a series of web pages. With this knowledge, you can build additional
subsystems and add them to your master application until you have implemented
all requirements.

One thing that we skipped over in this chapter, though, is the testing. That will be
the subject of the next chapter.

Testing your Application
When a scientist after years of study finally discovers a promising chemical compound
with the potential to cure cancer, does he crank up the pill-making machine right
away? Of course not! He has already tested on cell cultures and lab animals for years,
and an approved drug is still years away. Potential new drugs go through a rigorous
and strictly regulated testing program starting with just a few humans, and leading up
to large-scale Phase III clinical trials with hundreds of patients.

Your enterprise application is not likely to be subject to the same regulatory re-
quirements, but that is no excuse for you to go from in vitro testing to full-scale
deployment. You also need to test your application thoroughly through several
phases and not simply dump it untested on your unsuspecting users.

The Holy Grail of software testing
The purpose of software testing is to ensure that the software meets
requirements. Manual software testing can achieve this, but a manual
test introduces a degree of variability into a process that should be
strictly uniform; the tester might forget a test step, or might miss an
answer deviating from the correct one.
That's why you should aim for as high a degree of automated test-
ing as possible. If your test is run by a computer, it will be run the
same way every time, and the computer won't miss small errors.

Initial tests
In the pharmaceutical business, a new drug candidate is first subjected to Phase I
testing on a small number of healthy patients to test that the drug is safe for humans
and works in the human body the way the models predict.

Testing your Application

[214]

In your enterprise project, you similarly subject your code to initial, simple tests in
order to ensure that each part of your code works the way you intend it to. These tests
are often called unit tests, because they test the smallest possible unit of work. Good
tools for this are JUnit (http://junit.org) and TestNG (http://testng.org).

Keep testing
Your unit tests must be stored together with the application source
code so they can be run again after each change to the application. If
requirements change, you should update the unit tests accordingly, and
you should add additional unit tests when new functionality is added.

Working with JUnit
JUnit is a unit testing framework for Java, which means:

•	 It is used to test Java code
•	 The test cases are written in Java

Your test cases use annotations and some classes that are part of the JUnit
framework, and you use other classes in the JUnit framework to actually run
your tests.

With JUnit, you create test classes containing test methods. Inside these test
methods, you place assertions—statements that assert what should happen. If your
assertion is correct, the test is considered passed, otherwise it is considered failed.

There is a JUnit extension for JDeveloper to help you writing and running unit tests.
For licensing reasons, JUnit is not delivered with JDeveloper, but you can easily
install it using Help | Check for Updates. You find the JUnit extension under Official
Oracle Extensions and Updates—choose both BC4J JUnit Integration and JUnit
Integration (BC4J—Business Components for Java is the old name for ADF Business
Components). You have to accept the JUnit license when installing this extension.

What to test with JUnit
JUnit excels at testing code—the classic example in the JUnit Cookbook (http://
junit.sourceforge.net/doc/cookbook/cookbook.htm) tests a Java class for
adding monetary amounts in multiple currencies.

If you have a class that does something simple like this, it is easy to write unit tests.
But an ADF application is much more complicated, so it can be harder to identify
what to test.

Chapter 7

[215]

A good unit test
If you google "good unit tests", you will find many people offering ideas about what
constitutes a good unit test. A good unit test probably has following characteristics:

•	 It tests one thing
•	 It can run in isolation
•	 It is easy to run
•	 It runs quickly

Your unit tests should test one unit of work—the smallest bit of code that it makes
sense to test in isolation. A small unit tests points out exactly where the error is,
while the failure of a big unit test just leads to more debugging.

Your unit tests should be able to run in isolation, in any order. To a unit testing
purist, a unit test should not depend on external resources such as databases that is
probably a bit unrealistic for an enterprise ADF application. Nevertheless, your unit
tests should preferably set up their own test data so they can be run and re-run at
any time and not depend on someone remembering to run a test-data-building script
beforehand. That also allows the test to run as part of an automated build process.

Your unit tests should be easy to run; this is achieved by using the JUnit framework
in JDeveloper, where you can simply run your test class and get feedback directly in
JDeveloper by the JUnit Test Runner.

Your unit tests should run fast so you will actually run them and not be tempted to
skip testing because it will hold up your work.

Unit testing ADF applications
It follows from these criteria that it is not easy to write a good unit test for your user
interface. But that does not matter, we will leave user interface testing for later.

The functionality you should test during this phase is all the Java code you have written:

•	 If your framework extension classes have any content (we built them empty
in Chapter 5, Prepare to Build, remember?), you need test cases to verify that
they work as intended

•	 If your view objects or entity objects contain custom methods, you must
test these

•	 If you have written and published custom methods in your application
modules, you need to test these

Testing your Application

[216]

Don't test ADF itself
You do not need to test the ADF framework itself; Oracle has already
done that. This means that if you have defined an entity object on a
table, and a view object on the entity object, you do not need to test
that the view object actually retrieves the rows in the underlying
table. This is a standard ADF functionality, and while testing it does
not hurt, it does squander resources that could be used better.

If you structure your code in a common model workspace and a number of subsystem
workspaces, you will probably find that most of your unit tests are in the common
model workspace, and some specialized view objects and application modules in the
individual task flow workspaces are also unit tested.

Preparing for unit testing
As an example of how to set up unit testing, we will implement unit testing of the
common model (in the XdmCommonModel workspace). We will keep our unit testing
in a separate project in the workspace to avoid cluttering up the real common model
workspace with test artifacts.

Setting up a test project
Open the workspace and choose File | New and then Generic Project (under
General). Give the project the name TestModel and click Finish to create the project.
You should define the default package name for Java code created in this project. To
do this, right-click on the TestModel project and choose Project Properties, and then
select Project Source Paths in the tree to the left. At the bottom-right of the dialog,
set Default Package to something like com.dmcsol.xdm.model:

Chapter 7

[217]

Adding default testing
Now select the TestModel project and choose File | New and then General | Unit
Tests | Business Components Test Suite:

Testing your Application

[218]

If you do not see the Unit Tests option, you probably did not install the JUnit
Integration extension. If you see the Unit Tests option, but not Business Components
Test Suite, you probably did not install the BC4J JUnit Integration extension.

The JUnit ADF Business Components Test Suite Wizard allows you to choose the
business components project you wish to test, as well as the application module.
Verify that the settings point to the application module you wish to test:

Click Finish to complete the wizard. The Application Navigator panel will now
show many new files:

Chapter 7

[219]

The wizard has created three kinds of objects for you:

•	 A Test Fixture
•	 A Test Suite
•	 A number of Test Classes

The Test Fixture takes care of creating an instance of the application module you
wish to test. As this is an expensive operation, it makes sense to do this only once
in your test run. You can open the CommonModelTestServiceAMFixture.java
file to see what it does—it's standard code for programmatically accessing ADF
application modules.

The Test Suite collects all the individual tests that make up your test suite. This class
makes heavy use of Java annotations—the keywords prefixed with @. Annotations
are a way to make metadata available for frameworks such as JUnit to use. For
example, the @Suite.SuiteClasses annotation lists all the test classes that the suite
must run.

@Suite.SuiteClasses({ XdmTasksDefaultVOTest.class,
XdmProgrammesDefaultVOTest.class,
XdmPersonsDefaultVOTest.class,
XdmElementsDefaultVOTest.class })

Testing your Application

[220]

Finally, the framework has built a number of test classes—by default one for every
view object included in the application module under test. These classes also use
annotations to tell JUnit what each method does, and contain test methods to actually
perform the test. The default test class generated for the XdmTasksDefaultVO view
object looks like the following:

package com.dmcsol.xdm.model.am.view.XdmTasksDefaultVO;

import com.dmcsol.xdm.model.am.applicationModule.
XdmCommonModelTestServiceAMFixture;

import oracle.jbo.ViewObject;

import org.junit.*;
import static org.junit.Assert.*;

public class XdmTasksDefaultVOTest {
private XdmCommonModelTestServiceAMFixture fixture1 =

XdmCommonModelTestServiceAMFixture.getInstance();

public XdmTasksDefaultVOTest() {
}

@Test
public void testAccess() {
ViewObject view = fixture1.getApplicationModule().findViewObject

("XdmTasksDefault");
assertNotNull(view);

}

@Before
public void setUp() {
}

@After
public void tearDown() {
}

}

The real testing work happens in the test method or methods—those annotated with
@Test. Each test method will do something and then assert that something is true. The
preceding default test will get the application module under test (from the fixture1
object that is retrieved from the test fixture class) and then find a specific view object
(XdmTasksDefaultVO). It then asserts that the view object reference is not null, that
is, the application module under test does indeed contain a XdmTasksDefaultVO
view object instance. If this is the case, the test has succeeded. If this is not the case,
the test fails.

Chapter 7

[221]

To see the testing in action, right-click on the test suite class
(AllXdmCommonModelTestServiceTests.java) and choose Run.

In the log window, you will see a new tab called JUnit Test Runner open. In this tab,
you see the tests being executed and the results summarized:

You will see that four tests were executed (the default one test for each view object
used in the application module), and they all succeeded (as expected). The progress
bar is green to indicate that all tests passed.

Real unit testing example
Writing a test and watching it complete correctly does not really count—you might
have an error in your test, which means you will always get a test success. You have
not really proven that your test works until you have seen it change state.

This is the thinking behind the test-driven development where you write your tests
first. As an example, we will implement the requirement that tasks are never actually
deleted, but only marked cancelled. In the database, this is indicated by setting the
CXL_YN column to the value Y.

Adding a test case
Because it must be possible to run the test in isolation, your test method cannot
depend on data already in the database. In this case, we will let the test method
itself add the record itself, but you might also create a set of test data in the test
fixture class.

Testing your Application

[222]

Keeping test data separate
If you insert dummy data into your tables, you should make sure
that it is easily recognized so you can clean up any test data left
over from a failed test method execution. One way of doing this is
by using negative numbers for primary keys. Use large values such
as -1001, -1002, and so on to avoid conflicts with the temporary keys
ADF generates for DBDomain attribute values.

Your test method must do the following:

1. Add a new TASKS record (with a -1001 ID).
2. Find the record through the view object, and call the remove method.
3. Verify that the record still exists, and that the CxlYn attribute now has the

value Y.
4. Clean up: remove the TASKS record.

With a bit of cleanup, your XdmTasksDefaultVO class might look like the following:

package com.dmcsol.xdm.model.am.view.XdmTasksDefaultVO;
import …
public class XdmTasksDefaultVOTest {
private static CommonModelTestServiceAMFixture fixture1 =
CommonModelTestServiceAMFixture.getInstance();
private static ApplicationModule am =
fixture1.getApplicationModule();
public Tasks1VOTest() {
}
@Test
public void testAccess() {
ViewObject view = am.findViewObject("Tasks1");
assertNotNull(view);
}
@Test
public void testDelete() {
// add a test record directly to the table
Transaction tr = am.getTransaction();
tr.executeCommand("INSERT INTO tasks (task_id, start_date,
text) VALUES (-1, sysdate, 'Test Task')");)");
tr.commit();
// find the row with ID -1 and remove it

Chapter 7

[223]

ViewObject v = am.findViewObject("("Tasks1");
Key k = new Key(new Object[] { -1 });
Row r1 = v.getRow(k);
assertNotNull("Test row (-1) found", r1);
v.setCurrentRow(r1);
v.removeCurrentRow();
tr.commit();
// look for the row
v.executeQuery();
Row r2 = v.getRow(k);
assertNotNull("Test row (-1) found again", r2);
// test that CxlYn attribute is now Y, indicating deletion
assertEquals("Test row CxlYn value is Y", "Y",

r2.getAttribute("CxlYn"));
}

@Before
public void setUp() {
}

@After
public void tearDown() {
}

@AfterClass
public static void deleteTestData() {
Transaction tr = am.getTransaction();
tr.executeCommand("DELETE FROM tasks " +

"WHERE task_id = -1");
tr.commit();

}
}

The testDelete() method is new and performs the test precedingly described. It
is annotated with @Test so that the JUnit framework knows to run it as a test case.
The method uses executeCommand() to issue SQL directly to the connection the
application module is using, and then uses findViewObject() to get a reference
to the XdmTasksDefaultVO view object. An assertion checks that we did find
the test row, and then we remove this row from the view object row set with
removeCurrentRow(). It commits the transaction (to force execution of the logic in
the entity object) and then re-executes the view object query to find the row again.
The method asserts that the row is found, and that the CxlYn attribute has now been
set to Y, indicating a logical delete.

Testing your Application

[224]

An extra cleanup method deleteTestData() has also been added and given the
annotation @AfterClass. This means that it will run as cleanup after all test methods
in the class has been executed.

Finally, the fixture and the application module have been moved up as private static
variables to simplify the code.

When you run the test suite, you will see the testDelete method fail with an
AssertionError showing the text Test row (-1001) found again. This was the text
we put into the AssertNotNull statement and is to be expected—after all, we have
not implemented the logical delete functionality yet:

Implementing the logical delete
Implementing the logical delete—setting a marker on a record instead of actually
deleting it requires two changes to the entity object:

•	 Changing the remove method to set the marker
•	 Changing the SQL statement from a DELETE to an UPDATE

This is not something that can be done in metadata, you need a Java class
implementing your entity object.

Open the XdmTasks entity object and choose the Java sub-tab on the right. Then click
on the little pencil icon at the top-right to generate Java code for this entity object.
The Select Java Options dialog appears:

Chapter 7

[225]

Choose to generate methods for Accessors, Data Manipulation Methods, and
Remove Method. It does not hurt to select the Create Method as well, or you can
override this method later if you need it. When you click OK, an XdmTasksImpl.
java file is created and can be seen in the Application Navigator under the
XdmTasks entity object node.

In this class, first find the remove() method. It is probably easiest to find the
method in the Structure Panel at the bottom-left, where all the methods are listed in
alphabetical order. Double-click on the remove() method to jump to that method in
the main editing window. Add a setCxlYn() instruction so your remove() method
looks like the following:

public void remove() {
// set cancel flag. doDML() will change DELETE to UPDATE
setCxlYn("Y");
super.remove();

}

This means the CxlYn attribute (corresponding to the CXL_YN column in the database)
must be set to Y, and then the normal remove() processing should continue.

Testing your Application

[226]

Then jump to the doDML() method. This method is invoked whenever the framework
needs to execute a Data Manipulation Language (DML) SQL statement against the
database—INSERT, UPDATE, or DELETE. This means that it is invoked after the
preceding remove() method to actually perform the operation against the database.
Change this method to look like the following:

protected void doDML(int operation, TransactionEvent e) {
if (operation == DML_DELETE) {

super.doDML(DML_UPDATE, e);
} else {

super.doDML(operation, e);
}

}

This code will simply intercept a DELETE and do the normal processing associated
with UPDATE. As the remove() method already sets the marker to Y, this is all
we need.

Re-testing
Now you can go back to the TestModel project and run the test suite
(AllXdmCommonModelTestServiceTests) again. You should now see the progress
bar turn green, indicating that all five tests passed:

Automating unit testing
It is, of course, great that the developer has a test suite that he or she can run against
the code at all times but the full value of having a collection of unit tests comes if you
integrate them with an automated build process. We will discuss automated build in
Chapter 11, Package and Deliver.

Chapter 7

[227]

User interface tests
After Phase I testing of a drug candidate has successfully established that it is safe
to use, Phase II testing commences. This is performed on larger groups of patients to
test that the drug is actually effective against the ailment that it is supposed to cure.

In your enterprise project, your next testing phase is a test of the user interface,
testing that your application actually meets the user requirements. One tool for
verifying this is Selenium.

Working with Selenium
Selenium is an open source tool for testing web applications, even web application
that make heavy use of JavaScript, which ADF does. It works by:

•	 Recording a user session in a browser, including assertions about what is
expected to happen

•	 Exporting the recorded session to a programming language (we will
use Java)

•	 Playing back the recorded session and comparing the results to the
recorded assertions

Selenium consists of two parts:

•	 The Selenium IDE is a Firefox plug-in where you record your test session.
From the IDE, you can play back your session to quickly check that it works,
and export it as a Java JUnit test case

•	 Selenium Remote Control Server is a Java-based command line server that
will execute your recorded test using a browser

Between the recording and the playback, you can modify the test in JDeveloper. This
allows you to add parameters and move beyond simple record/playback testing.

Testing your Application

[228]

What to test with Selenium
Selenium tests web pages, so you should have at least one test for every non-trivial
page in your application. If your requirements are formulated as use cases, they will
typically contain all the steps you need to go through in your user interface test. If
not, you will have to start by writing out a list of the steps the user would go through
when using your application, so you know what to record.

A Selenium test will compare the content of the web page to the recorded assertions.
For example, you could assert that a specific text is part of the page, or that a field has
a specific value. Generally, a Selenium test does not test the look of the application—if
you change the look of the application, for example through skinning as explained in
Chapter 8, Look and Feel, a Selenium test case will still give the same result.

Again, do not test the ADF framework itself—if you have built a simple view
object on a single entity object, and dropped it onto a page as an ADF table without
modifying it, you can trust ADF to take care of the details.

Installing Selenium
The Selenium IDE only exists as a Firefox plug-in, so you need the Firefox browser.
If you do not already have it, you can download it from http://www.firefox.com.
The Selenium IDE can be downloaded from within Firefox under Tools | Add-ons
or you can go to http://seleniumhq.org to download. When you have accepted to
install the Selenium add-on and restarted Firefox, you'll see the Selenium IDE menu
item on the Tools menu in Firefox:

Chapter 7

[229]

A simple test with Selenium
To record a test session with Selenium, you first need to start the application. For this
example, we will test the Task Overview and Edit page task flow from the XdmUC008
workspace. Open this workspace and then the UC008View project. Right-click on the
TestTaskOverviewEdit.jspx page (under Web Content, testpages) and choose Run.
The application starts and shows up your web browser.

Then choose the Selenium IDE menu item from the Tools menu in Firefox. The
Selenium IDE window appears:

By default, it is already recording, shown by the light gray box around the red
recording button in the right side of the Selenium IDE window toolbar.

Go back to the browser address line and copy the page URL without parameters. You
will probably have noticed that ADF applications have fairly long URLs—everything
to the left of the question mark sign is the real URL of the page, and everything to
the right are session-specific parameters that the ADF framework has added. You
just want the real URL, something like http://127.0.0.1:7101/XdmUC008/faces/
TestTaskOverviewEdit.jspx.

Testing your Application

[230]

Shortening the URL
To shorten the long default JDeveloper URL, go to the project
properties of the UC008View project and choose the Java EE
Application node. Change both the Java EE Web Application
Name and Java EE Web Context Root fields to just the name
of your workspace, for example, XdmUC008.

Clear the browser address bar and paste in the application URL. The page loads
in the browser, but there is nothing to see in the Selenium IDE window. However,
if you right-click anywhere on the page, you will see that the context menu in the
browser has acquired a number of new options. The options will depend on where
you click—if you click on the page background (outside any texts or fields), you will
see something like the following:

Choose the assertTitle… option (for example, assertTitle Next Generation Des-
tination Management). This is a testing step, requiring that the title of the web
page has a specific value.

The title of the web page is set through the Title
property of the af:document tag on a page.

You should now see two commands registered in Selenium: An open command and
the assertTitle you just selected:

Chapter 7

[231]

You can continue to use the application and let Selenium record your actions.
If for example you make a selection from the Responsible drop-down box and
click on the Search button, you will see Selenium register a select command and
two click commands.

If you right-click on a specific field, you will see a number of options related to that
specific field:

Normally, you will use assertValue to assert that the field has a specific value (we'll
get back to these options later).

When you are happy with your test, click the red recording button in the Selenium
IDE window to stop recording. For now, move the speed slider in the left side of the
Selenium IDE toolbar to the middle to avoid running your test faster than ADF can
handle—we will address a few of the challenges in a later section. Then click one of
the green Play buttons to run your test:

Testing your Application

[232]

Automating user interface tests
It is fine to be able to run your user interface tests automatically from a browser,
which greatly reduces the risk of faulty testing due to human error. But we
would like more: we want to be able to run the test automatically as part of
our build process.

Fortunately, Selenium allows us to export our test cases as JUnit tests written in
Java—just like the JUnit tests we write ourselves for our business components.

Before you export your test case in JUnit format, choose Options | Options, the
Formats tab and JUnit 4 (Remote Control) in the left-hand box. In the right-hand
side, set the package name to a test package in your project, for example com.
dmcsol.xdm.uc008.test:

Chapter 7

[233]

Then choose File | Export Test Case As … | JUnit 4 (Remote Control):

Give your test case a name (including a .java extension, for example,
UC008InitialData.java) and save it. Do not use spaces in the name, because the
name will be used as class name inside the file. If you open the Java file, you will
see that it is normal Java with annotations just like your JUnit classes. It might look
something like the following:

package com.dmcsol.xdm.uc008.test;

import com.thoughtworks.selenium.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import java.util.regex.Pattern;

public class UC008InitialData
extends SeleneseTestCase {
@Before
public void setUp() throws Exception {
selenium = new DefaultSelenium("localhost", 4444,
"*chrome", "http://127.0.0.1:7101/");
selenium.start();
}

Testing your Application

[234]

@Test
public void testUC008InitialData() throws Exception {

selenium.open("/XdmUC008/faces/testpages/TestTaskOverviewEdit.
jspx?_afrLoop=190056271618434&_afrWindowMode=0&_adf.ctrl-
state=i8wr97r92_31");

assertEquals("Next Generation Destination Management", selenium.
getTitle());

assertEquals("5456", selenium.getValue("pt1:r1:0:t1:0:it6::conte
nt"));

assertEquals("18-Oct-11 08:30", selenium.getValue("pt1:r1:0:t1:0:i
d1::content"));

assertEquals("Hilton", selenium.getValue("pt1:r1:0:t1:0:it5::cont
ent"));

}
}

@After
public void tearDown() throws Exception {

selenium.stop();
}

}

Setting up to run Selenium JUnit tests
As you can see from the preceding code example, the Selenium JUnit tests make use
of some com.thoughtworks.selenium classes that you need to make available. Your
build/configuration manager should download the Selenium server from http://
seleniumhq.org/download, place it in the common library directory, add it to your
source control system, and commit.

Each developer should then get the file from the source control system. For
the purpose of the example in this chapter, you can assume the role of build/
configuration manager and place the JAR file (at the time of writing, it was called
selenium-server-standalone-2.0b3.jar) in your common library directory, for
example, C:\JDeveloper\XdmLib.

Then create a new project in your task workspace to hold your tests—just like you
created a separate project for the JUnit tests for the business components. Choose
File | New and then Generic Project. Give your project a name (for example,
UC008Test) and click Finish to create the project. Under project properties, set
the Default Package to the same as the base name for the task flow (for example,
com.dmcsol.xdm.uc008). Also under project properties, go to the Libraries and
Classpath node, click Add JAR/Directory and point to the Selenium RC JAR file in
your common library directory. Additionally, click Add Library and add the JUnit 4
Runtime library.

Chapter 7

[235]

Now, you need to place the actual Selenium test class into the project. It is easier to
simply create a new class with the right name and package inside the project and
then cut and paste the actual java code in. Use File | New, Java Class, give the same
class name as you used when you exported it (UC008InitialData) and the same
package (com.dmcsol.xdm.uc008.test). Then cut and paste in the content of the
.java file you created from the Selenium IDE.

You are actually able to run your test now by right-clicking on the class and choosing
Run. Because the code is a valid JUnit test case, JDeveloper recognizes it and tries to
run it with the JUnit Test Runner:

The reason it fails is of course that we have not yet started the Selenium Server that
actually executes the test cases and invoke the browser.

Starting the Selenium server
As you might remember from the introduction to Selenium, the Selenium IDE
records the test cases inside a browser, and the Selenium Remote Control Server
plays them back, using an external browser. When you run your JUnit Selenium test
cases, they contact the Selenium server with instructions, and the server invokes a
browser.

To start the Selenium server, open a command prompt and go to the directory where
you placed the Selenium server JAR file (for example, C:\JDeveloper\XdmLib).
Issue the following command:

java –jar selenium-server-standalone-2.0b3.jar

Run the JAR file you downloaded—the preceding name was valid at the time of writing,
but there is probably another version of the Selenium server out by the time you read this.

The server will start on the default port of 4444, and your JUnit test case initializes
the selenium object with this port, so you are ready to run.

Testing your Application

[236]

Running the test
You can simply right-click on your test case and run it again. You should see
Selenium start up the browser, run through the test, close the browser and report the
result back to JDeveloper:

You might have noticed that the DefaultSelenium() call by default uses *chrome
as browser (third parameter). If you do not have Google Chrome installed, it will
run your default browser. You can also change this to, for example, *firefox or
*iexplore to run the test in a different browser. In general, it is enough to test your
application in one browser—you are using ADF components supplied by Oracle,
and Oracle continually works to make sure these components work correctly
across browsers.

Because the tests are JUnit tests, it is possible to integrate them into your build
process like the business component JUnit tests. If you want to include Selenium
tests in your automated process, you must change to generated code to take the URL
of the application to test as an input parameter, and you need to make sure your
process starts the application and the Selenium Remote Control Server before the UI
test is run.

Using Selenium effectively
While a simple test like the one previously shown is fairly easy to run, Selenium is
a powerful tool with many options and ADF pushes the web browser to the limit,
using massive amounts of JavaScript. You will need to read at least some of the
Selenium documentation at http://seleniumhq.org/docs if you want to use
Selenium to test your enterprise project.

Value checking options
Much of your application testing will concern values inside components, for
example, input fields. When you right-click on a field while recording, you get
four options:

•	 assertValue: It will record an absolute demand that the value is correct. If the
field in the browser does not have the right value when you run the test, the
test will be aborted.

Chapter 7

[237]

•	 verifyValue: It will record a requirement for a specific value. If the field in
the browser does not have the right value when the test is played back, it will
be registered as a failure, but the test will still continue to next test step.

•	 waitForValue: It will record a requirement for a specific value to appear
before a configurable timeout. If you know the application might take several
seconds to respond, you use a waitForValue. If the value appears in the field
before timeout, the test continues. If the timeout appears, the test is a failure.
You can configure a timeout in the IDE under Options | Options. The
default is very high (30 seconds).

•	 assertElementPresent: It will record a requirement for the existence of a
specific element, but does not check the value in the field. As long as a field
with the recorded ID exists on the screen, the test is considered passed.

Lazy content delivery
When you navigate between records and assert values in an ADF application, you
might experience that your Selenium test fails for no good reason. This is because
ADF issues a request for new data asynchronously (without refreshing the whole
page), and Selenium does not know that it must wait a fraction of a second for
the data.

Additionally, some ADF components (such as, af:table) have a ContentDelivery
property that can be set to Lazy. This means that the page will render quickly, and
the table data will be delivered in a second request to the application server. This
causes the same kind of confusion where Selenium notices that the page is loaded
and starts running the assertions, while table data is still coming in.

You can mitigate these problems somewhat by using waitForValue (for navigation
between records) and waitForElementPresent (for lazy-loading components). Of
course, you also need to set your timeout to a reasonable value so you will not be
waiting 30 seconds before detecting a failure.

Testing context menus
The Selenium IDE uses the right-click (context) menu to record test steps but if your
application also uses a context menu, the browser context menu will never be shown.
This means that you have to manually enter the test steps for context menus in the
Selenium IDE window.

To test the context menu of your application itself, you use the contextMenuAt
command in Selenium—you can look up the details in the Selenium documentation.

Testing your Application

[238]

Verifying item ID
If your application is going to be customized (now or sometime in the future),
you should use assertElementPresent to verify the presence of all user interface
elements. This command takes an element ID as parameter and testing for ID will
catch the situation where an inputText has changed ID from it11 to it12.

The application will work with different component IDs, but if anybody has
customized the application, the customization is tied to the component ID. Therefore,
if you change the ID of a component, you break any customization made of that
component. We will return to customization in Chapter 9, Customizing Functionality.

Testing passivation and activation
The user interface tests you have recorded and played back have only been
simulating one user, and in the following section, we will simulate many. But
there is one part of ADF testing that requires a bit of extra care: application module
passivation and activation.

For performance reasons, ADF keeps a pool of application modules in memory. It
tries to give each session the same application module as the session used during
the last request; however, this might not be possible during peak load of your
application. In this case, ADF saves the application modules state in a database table
so the application module can be used by another session. This is called passivation.
When the first session needs the application module again, its state is retrieved from
the database—a process know as activation.

If you have made an error in your code and depend on some variable that is not
persisted correctly when your application module state is stored, you will experience
mysterious errors under high load.

To make sure you do not hit this problem, right-click on your application module,
choose Configurations. By default, each application module has two configurations.
Ensure that the one ending in …Local is selected and then click Edit. Then choose
the Pooling and Scalability tab and deselect the checkbox Enable Application
Module Pooling:

Chapter 7

[239]

This forces the ADF framework to always store application module state in the
database between requests. Run your user interface tests again to make sure none
of these tricky persistence bugs lurk in your code. They will typically show up as
NullPointerExceptions when an object you believed had a value is suddenly
empty, because the application module has been passivated and re-activated.

Remember to enable application module pooling again before deploying the
application for stress/performance testing.

ADF tuning
There are many ways of tuning the application module pool and other
aspects of the ADF framework. Refer to the Oracle Fusion Middleware
Performance and Tuning Guide, which has a chapter on tuning ADF.
There is also a chapter on tuning application module pools in the Fusion
Developers Guide for Oracle Application Development Framework.

Testing your Application

[240]

Stress/performance tests
When a new drug candidate has successfully completed Phase II testing and has
proven that it works, it moves on to Phase III testing with even more people to verify
that it works on a larger scale.

In your enterprise project, successfully completing user interface testing proves
that the application works for an individual user—now you need to prove that it is
robust enough to handle real-life load. To do this, you can use another open source
tool: JMeter.

Working with JMeter
JMeter is a tool for load testing web applications. Like Selenium, it records a user
session and plays it back, but it does not attempt to really run the user session in the
browser (like Selenium does)—it simply sends off the requests that a browser would
make to the application server and measures the time it takes for the application
server to respond.

Because it does not invoke a browser, but simply sends requests and receives
responses, one workstation with JMeter can simulate the load of dozens or even
hundreds of real-time users.

What to test with JMeter
At this point in your testing, you already know that your application works the way
it's supposed to. What remains is:

•	 To test that the application works with multiple concurrent users
•	 To test how many users your system can handle

The majority of the errors you will find during this phase of testing will be
concurrency issues—strange things that happen when more than one user is using
your application. These can slip through both the programmer's own initial tests,
unit tests, and user interface tests, because all of these only run one session.

Your initial stress/performance tests should be run with just a small number of
simulated concurrent users—five concurrent sessions are normally enough to tease
out any concurrency issues in your application.

Once you are sure your application works with multiple users, you can scale up the
load to ensure that your application meets the performance requirements.

Chapter 7

[241]

Installing and running JMeter
You can download JMeter from http://jakarta.apache.org/jmeter. It is a Java
application and requires Java 1.5 or later installed on your workstation.

To start JMeter, you simply execute the jmeter.bat file (on Windows) or jmeter
(on Linux). The JMeter main window appears:

A simple test with JMeter
A JMeter test plan starts with a Thread Group, which defines the number of
concurrent processes you will let loose on your application. To add a thread group,
right-click the Test Plan node and choose Add | Threads (Users) | Thread Group:

Testing your Application

[242]

Here you can define the number of users, how many repetitions of your test, and so
on. While defining and testing your JMeter test script, you should use only one user.

Once you have defined the thread group, you can start adding test elements
manually by right-clicking on your thread group and choosing Add. However, like
in Selenium, there is an easier way: recording the test.

Setting up JMeter as a proxy
To record a test, you set up JMeter as a proxy—a kind of gateway that all your web
requests go through. If you work in a large corporation behind a firewall, your
Internet access is likely to go through a proxy that will filter out some sites, protect
against viruses, and so on. The JMeter proxy doesn't do any of this—what it does is
to record every request for later playback.

To set up JMeter as a proxy, right-click the Workbench node and choose Add |
Non-Test Elements | HTTP Proxy Server. Enter a port that is not already in use (for
example, 8080) and set the Target Controller to your thread group. If you wish, you
can exclude certain URL patterns from the capture that JMeter does. This is useful,
for example, if you have browser plug-ins that might contact some server in the
middle of your recording:

Chapter 7

[243]

When you are done, set up your web browser to use the JMeter proxy you just
configured. In Firefox 3.6.x, this hides under Tools | Options | Advanced | Network
| Settings. Choose localhost as the server and the port you defined in JMeter:

Testing your Application

[244]

Recording a session
To start recording, click Start at the bottom of the HTTP Proxy Server window in
JMeter. Then go to your browser and enter the URL of the page you wish to test. You
will see the page as normal in the browser. At the same time, everything is being
recorded by JMeter—if you expand your thread group in JMeter, you will see that
even a very simple page request might lead to multiple requests from the browser to
the server:

When you have recorded what you want, you can stop the JMeter proxy again.
Remember to also reconfigure your browser—you cannot access anything if the
browser is pointing to a JMeter proxy that no longer runs.

Post-processing a recorded session
The recording shows the entire communication between the browser and the
application server. If you examine the individual requests, you will see that after the
initial request, the subsequent requests include one or more parameters—either with
the request or as part of the URL.

Chapter 7

[245]

In order to replay a session, you need to modify it so that JMeter can retrieve pa-
rameter values from one request and send them as part of the next request. The
whole procedure involves:

•	 Adding a Cookie Manager
•	 Defining JMeter variables to hold the values from request to request
•	 Extracting values from requests into the variables
•	 Replacing the recorded values with references to the variables

Search for updated information
Using JMeter with ADF is based on reverse engineering the way ADF
works—this is not officially documented or supported by Oracle. These
instructions are based on work done by Oracle ACE Director Chris
Muir and published on his blog at http://one-size-doesnt-
fit-all.blogspot.com. They were valid at the time of writing,
in JDeveloper 11.1.1.4, but since ADF internals might change without
notice, you might need to search the Internet for updated instructions.

Adding a Cookie Manager
The Cookie Manager will receive cookies from the application server and provide the
cookie values subsequent requests on demand. This is the easy part—just right-click
on the Thread Group and choose Add | Config Element | HTTP Cookie Manager.

Defining variables
If you look at the URL of an ADF application, you will notice that it contains a number
of name/value pairs after the question mark. These are used by ADF to ensure that
each browser running the application will be connected to the right session on the
server. In order for JMeter to be able to simulate a browser, it needs to retrieve some
values from each server response in order to present the following request.

ADF uses the following variables that you need to define in JMeter by right-clicking on
the Thread Group and choosing Add | Config Element | User Defined Variables:

•	 afrLoop

•	 afrWindowId

•	 jsessionId

•	 adf.ctrl-state

•	 javax.faces.ViewState

Testing your Application

[246]

Extracting values
To get values from the requests and into your variables, you need to define five
regular expression extractors by right-clicking on the Thread Group and choosing
Add | Post Processors | Regular Expression Extractor:

•	 afrLoop extractor, retrieving _afrLoop=([-_0-9A-Za-z]{13,16}) into the
afrLoop variable

•	 afrWindowId extractor, retrieving window.name='([-_0-9A-Za-z!]
{10,13})' into the afrWindowId variable

•	 jsessionId extractor, retrieving ;jsessionid=([-_0-9A-Za-z!]{63}) into
the jsessionId variable

•	 adf.ctrl-state extractor, retrieving _adf.ctrl-state=([-_0-9A-Za-z!]
{10,13}) into the adf.ctrl-state variable

•	 javax.faces.ViewState extractor, retrieving <input type="hidden"
name="javax\.faces\.ViewState" value="!(.+?)"> into the javax.
faces.ViewState variable

Fixing the path and the parameters
Now you have variables for all the values ADF passes back and forth—the final step
is to go through every step in your JMeter test plan to check the following:

•	 The specific value in all references to jsessionId in the Path field must be
changed to ${jsessionId}.

•	 The specific value in all references to _adf.ctrl-state in the Path field
must be changed to ${adf.ctrl-state}.

•	 The specific value in all references to _adf.ctrl-state, _afrLoop, and _
afrWindowId in the Parameters table must be changed to the corresponding
variables. Note that _afrWindowId will have the literal value null in the first
request—do not replace this value.

•	 The specific value in all references to javax.faces.ViewState in the
Parameters table must be changed to !${javax.faces.ViewState}. Note
the exclamation mark before this value. You also need to deselect the Encode
checkbox for this parameter.

•	 The value for the parameter called unique must be replaced with the
following expression: ${__javaScript(new Date().getTime(),DUMMY)}.

Chapter 7

[247]

Running a recorded session
To see what actually happens during the execution, you will add one or more
Listeners. Right-click on the Thread Group and choose Add | Listener and choose
one or more of the available listeners, for example:

•	 The View Results in Table listener shows an overview with response time
and status

•	 The View Results Tree listener shows the detailed responses from the
web server—normally, this should show HTTP/1.1 200 OK to indicate a
successful HTTP request

•	 The Graph Results listener shows your response time graphically

It is possible to add JMeter assertions to verify that you are getting the right
information back, but if you use Selenium or similar, this is not necessary.

When you have done this, you can run your recorded session by choosing Run |
Start and watch the results roll in.

If you run an automated build and test process, JMeter testing is normally not
included in the daily build, because application performance does not change
from day-to-day. Instead, JMeter tests are normally run through the JMeter
application once a large part of the application is complete. Preferably, your
stress/performance tests should be executed on a dedicated test environment
similar to the production environment.

The Oracle alternative
If you would rather purchase an integrated testing solution than putting together
these open source tools, Oracle offers Oracle Application Test Suite.

The product consists of:

•	 Oracle Functional Testing for testing your application functionality (like
Selenium does)

•	 Oracle Load Testing for testing how your application performs under load
(like JMeter does)

•	 Oracle Test Manager for managing the test process (there is no equivalent
open source tool)

You can find more information about Oracle Application Test Suite at http://www.
oracle.com/technetwork/oem/app-test/index.html.

Testing your Application

[248]

Summary
Together with the test team in DMC solutions, you have created unit tests for
your business components and user interface tests that exercise the whole XDM
application. Once the application passed these tests, you recorded a stress test and ran
it to be sure that the application performs as you expect it to, also under heavy load.

Functionally, the XDM application is ready to deploy but your boss would like you
to tweak the user interface just a little before releasing the application. That is the
topic of the next chapter.

Look and Feel
Henry Ford famously said: Any customer can have a car painted any color that he
wants so long as it is black. He actually had a good reason: Black paint dried quicker,
allowing him to operate the assembly line at a higher speed.

Today, you can have your car in a large number of standard colors. And, you can
have your web browser in any color you want—Firefox now offers more than 35,000
personas with different colors and images.

You probably do not want to offer your enterprise application in thousands of color
schemes, but you do want to build a visually attractive application that matches
the graphical identity used by your organization. And if your application is going
to be used by several different groups of users, for example, if it is going to be
deployed to multiple customers—you want it to be easy to change the look and feel
of the application.

Controlling the appearance
An ADF Faces application is a modern web application, so the technology used for
controlling the look of the application is Cascading Style Sheets (CSS).

The idea behind CSS is that the web page (in HTML) should contain only structure
and not information about the appearance. All of the visual definitions must be kept
in the style sheet, and the HTML file must refer to the style sheet. It follows that the
same web page can be made to look completely different by applying a different
style sheet to it.

Look and Feel

[250]

Cascading Style Sheets basics
In order to be able to change the appearance of your application, you need to
understand some CSS basics. If you have never worked with CSS before, you should
start by reading one of the many CSS tutorials available on the Internet.

To establish the basis for the following discussion, let us repeat some of the basics
of CSS.

The CSS layout instructions are written in the form of rules. Each rule is of the form:

selector { property: value; }

The selector identifies which part of the web page the rule applies to, and the
property/value pairs define the styling to be applied to the selected parts.

For example, the rule:

h1 { color: red; }

defines that all <h1> elements should be shown in red font.

One rule can include multiple selectors, separated by commas, and multiple property
values, separated by semicolons. Therefore, it is also valid CSS to write:

h1, h2, h3 { color: red; font-size: x-large; }

to get all the <h1>, <h2>, and <h3> tags shown in large, red font.

If you want to apply a style with more precision than just every level 1 header, you
define a style class, which is just a selector starting with a period:

.important { color: red; font-weight: bold }

To use this selector in your HTML code, you use the keyword class inside an
HTML tag. There are three ways of using a style class:

•	 Inside an existing tag such as <h1>
•	 Inside the special tag for styling text within a paragraph
•	 Inside a <div> tag to style a whole paragraph of text

Chapter 8

[251]

Here are the examples of all three ways:

<h1 class="important">Important topic</h1>
You must remember this.
<div class="important">Important tip</div>

In theory, you can place your styling information directly in your HTML document
using the <style> tag. In practice, however, you usually place your CSS instructions
in a separate .css file and refer to it from your HTML file with a <link> tag, as
follows:

<link href="mystyle.css" rel="stylesheet" type="text/css">

Styling individual components
The preceding examples are applied to the HTML elements, but styling can also be
applied to JSF components. A plain JSF component could look like the following
with inline styling:

<h:outputFormat value="hello" style="color:red;"/>

Or like the following using a style class:

<h:outputFormat value="hello" styleClass="important"/>

The ADF components use the attribute inlineStyle instead of just style:

<af:outputFormat value="hello" inlineStyle="color:red;"/>

The styleClass attribute is the same:

<af:outputFormat value="hello" styleClass="important"/>

Of course, you normally will not be setting these attributes in the source code,
but instead will be using the StyleClass and InlineStyle properties in the
Property Inspector.

In both HTML and JSF, you should only use StyleClass so that multiple components
can refer to the same style class and will all reflect any change made to the style.
InlineStyle is rarely used in real-life ADF applications; it adds to the page size (same
styling is sent for every styled element) and it is almost impossible to ensure that
every occurrence is changed when the styling requirements change—as they will.

Look and Feel

[252]

Building a Style
While you are working out the styles you need in your application, you can use the
Style section in the JDeveloper Property Inspector to define the look of your page.
This section shows four small sub-tabs with icons for Text, Background, Box, and
Classification. If you enter or select a value in any of these fields, this value will be
placed into the InlineStyle field as correctly formatted CSS:

When your items look the way you want, copy the value from the InlineStyle field
to a style class in your CSS file and set the StyleClass property to point to that class.
If the preceding is the styling you want for a highlighted label, create a section in
your CSS file as follows:

.highlight {background-color:blue;}

Then clear the InlineStyle property and set the StyleClass property to highlight.
From now on, you can style other components in exactly the same way by just
setting the StyleClass property.

We will be building the actual CSS file where you define these style classes in the
section on skinning later in this chapter.

InlineStyle and ContentStyle
Some JSF components (for example, outputText) are easy to style. If you set
the font color, you will see it take effect in the JDeveloper design view and in
your application:

Chapter 8

[253]

Other elements (for example, inputText) are harder to style. For example, if you
want to change the background color of the input field, you might try setting the
background color:

You see that this did not work the way you probably expected—there is a green
background behind both the label and the actual input field. The reason for this is
that an inputText component actually consists of several HTML elements, and an
inline style applies to the outermost element. In this case, the outermost element is an
HTML <tr> (table row) tag, so the green background color applies to the entire row.

Look and Feel

[254]

To help mitigate this problem, ADF offers another styling option for some
components: ContentStyle. If you set this property, ADF tries to apply the style to
the content of a component—in the case of an inputText, ContentStyle applies to the
actual input field:

This will help in some cases, but for instance, if you want to apply styling to the label
for an inputText, you will have to use a skin as discussed later in this chapter.

Why does it look like that?
As you saw in the preceding inputText example, ADF components can be quite
complex and it is not always easy to figure out which element to style to achieve the
desired result. To be able to see into the complex HTML that ADF builds for you,
you need a support tool such as Firebug. Firebug is a Firefox extension that you can
download with Tools | Add-ons from within Firefox, or you can go to http://
getfirebug.com.

When you have installed Firebug, you see a new Firebug sub-menu on your Tools
menu in Firefox:

Chapter 8

[255]

When you start Firebug, you will see it take up the lower half of your Firefox
browser window.

Only run Firebug when you need it
It probably does not surprise you that Firebug's detailed analysis
of every page costs processing power and slows your browser
down. Only run Firebug when you need it.

If you click on the Inspect button (with a little blue arrow, second from left in the
Firebug toolbar), you place Firebug in inspect mode. You can now point to any
element on a page and see both the HTML element and the style applied to
this element:

In the preceding example, the pointer is placed on the label for an inputText, and the
Firebug panels show that this element is styled with color: #534741, has font-size:
11px, and so on.

Look and Feel

[256]

In order to keep the size of the HTML page down so that it loads faster, ADF has
abbreviated all the style class names to cryptic short names such as .x4z. While you
are styling your application, you do not want this abbreviation to happen. To turn
it off, you need to open the web.xml file (in your View project under Web Content,
WEB-INF), change to the Overview tab if it is not already shown, and select the
Application sub-tab:

Under Context Initialization Parameters, add a new parameter:

•	 Name: org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION
•	 Value: true

Chapter 8

[257]

When you do this, you will see the full human-readable style names in Firebug:

You will notice that the cryptic .x4z style class is really the .af_panelFormLayout_
label-cell style class. You might need this information when developing your
custom skin.

Getting back up to speed
If you want this compression enabled in your production
application for best performance, remember to remove
this initialization parameter again before deploying your
application to production.

Conditional formatting
Like many other properties, the style properties do not have to be set to a fixed
value—you can also set them to any valid language expression. This can be used to
create conditional formatting.

In the simplest form, you can use an expression language ternary operator, which
has the form <boolean expression> ? <value if true > : <value if false>.
For example, you could set StyleClass to:

#{bindings.Job.inputValue eq 'MANAGER' ? 'managerStyle' :
'nonManagerStyle'}

This expression means that if the value of the Job attribute is equal to MANAGER, use
the managerStyle style class, if not, use the nonManagerStyle style class. Of course,
this only works if these two styles exist in your CSS style sheet.

Look and Feel

[258]

Skinning
An ADF skin is a collection of files that together define the look and feel of the
application. To a hunter, skinning is the process of removing the skin from an animal,
but to an ADF developer, it is the process of putting a skin onto an application.

All applications have a skin—if you do not change it, an application built with
JDeveloper 11g uses some variation of the fusion skin, which is also used for Oracle
Fusion Applications.

When you define a custom skin, you must also choose a parent skin among the
skins JDeveloper offers. This parent skin will define the look for all components not
explicitly defined in your skin.

What should I skin?
If your graphics designer has produced sample screens showing what the application
must look like, you need to find out which components you will use to implement
the required look, and define the look of these components in your skin.

If you do not have a detailed guideline from a graphics designer, look for some
guidelines in your organization; you probably have web design guidelines for your
public-facing website and/or intranet.

If you do not have any graphics guidelines, create a skin as described later in this
section and choose to inherit from the latest fusion skin provided by Oracle. But do
not change anything—leave the CSS file empty. If you are a programmer like me,
you are unlikely to be able to improve on the look that the professional graphics
designers in Redwood Shores have created.

Always wear your own skin
Creating an empty skin is similar to creating an empty framework
extension classes as you did in Chapter 5, Prepare to Build. It provides
a placeholder that you can fill with content later if you need it.

Chapter 8

[259]

What can I skin?
The section on styling components mentioned that some aspects of the application
could not be changed using the style properties, for example, the font used for labels
inside a PanelFormLayout. With a custom skin, however, you can change every
aspect of your application.

To see skinning in action, you can go to http://jdevadf.oracle.com/adf-
richclient-demo. This site is a demonstration of lots of ADF features and
components, and if you choose the Skinning tab, you are presented with a long list
of skinnable components:

You can click on each component to see a page where you can experiment with
various ways of skinning the component.

Look and Feel

[260]

For example, you can select the very common inputText component to see a page
with various representations of the inputText components. On the left, you see a
number of selectors that are relevant for that component. For each selector, you
can check the checkbox to see an example of what the component looks like if you
change that selector. In the following example, the af|inputText:disabled::content
selector is checked, setting the style for this selector to color: #0000C0:

As you might be able to deduce from the af|inputText:disabled::content style selector,
this controls what the content field of the input text component looks like when it is set
to disabled—in the demo application, it is set to a bluish green color with the color code
#0000C0. The example application shows various values for the selectors, but does not
really explain them. The full documentation of all selectors can be found online—at the
time of writing at http://jdevadf.oracle.com/adf-richclient-demo/docs/skin-
selectors.html. If it is not there, search for ADF skinning selectors.

In the top-left corner, you will also find a Skin drop-down that you can use to
select and test all the built-in skins. This application can also be downloaded and
run on your own server—at the time of writing, it could be found on the ADF
download page at http://www.oracle.com/technetwork/developer-tools/adf/
downloads/index.html:

Chapter 8

[261]

Skinning overview
The skinning process in ADF consists of the following steps:

1. Creating a skin CSS file.
2. Optionally providing images for your skin.
3. Optionally changing the color scheme for your skin.
4. Optionally creating a resource bundle for your skin.
5. Packaging the skin in an ADF Library.
6. Importing and using the skin in the application.

Up to and including the 11g Release 1 versions of JDeveloper (with a 11.1.1.x version
number), this was very much a manual process. Fortunately, JDeveloper 11g Release
2 has a skin editor built in.

Look and Feel

[262]

Stand-alone skinning
If you are running JDeveloper 11g Release 1, do not despair. Oracle
is making a stand-alone skin editor available, containing the same
functionality as JDeveloper 11g Release 2. You can give this tool to
your graphics designers and let them build the skin ADF Library
without having to give them the full JDeveloper product. The screens
shown in this chapter are captured from a pre-release version of the
stand-alone skin editor.

Starting a skin
This description assumes the stand-alone skin editor. If you are running JDeveloper
11g Release 2, you can simply open the Common UI project inside your Common
UI workspace and skip to the start of the next section. In the stand-alone skin editor,
you start by creating a new application workspace by selecting File | New | ADF
Skin Application. Give your application a name, choose a directory and provide an
application package prefix:

In step 2 of the Create ADF Skin Application wizard, you can just click Finish.

Chapter 8

[263]

Creating a skin CSS file
The most important part of your skin is the special ADF CSS file that defines the look
of all the components you use in your application.

Creating the CSS file
To create this CSS file, choose File | New | ADF Skin File. In the Create ADF
Skin File dialog, give your CSS file a filename that includes –skin (for example
xdm-skin.css). You can leave the location at the default, and you do not have to
change the value for Family either:

Skin families
Skins come in families—a collection of related skins. All skins in a
family share the same family name, and each skin in the family has a
unique Skin Id consisting of the family name and a platform suffix.
Start with the .desktop member of the family—this is the version of
the skin that will be used for normal browser access to your application.
You can also define other family members such as .mobile for
controlling how the application will look on a mobile device.

Look and Feel

[264]

Choose to extend fusionFx-simple-v1.desktop (the default). If you have another
version than v1 available, simply choose the latest and click OK.

Keeping it simple
The fusionFx-v1 skin family has been developed explicitly for
Oracle Fusion Applications. It contains a lot of features, but Oracle
has realized that most enterprise applications are significantly
simpler than Oracle Fusion Applications. That is why Oracle rec-
ommends you should inherit from the fusionFx-simple-v1
skin, which has been optimized for normal enterprise applications
and does not contain everything and the kitchen sink.

JDeveloper or the standalone skin editor automatically recognizes your ADF skin
CSS file as a special kind of CSS and shows it in a special skin editor tab:

This dialog has four top-level nodes in the tree to the left:

•	 Style Classes
•	 Global Selector Aliases
•	 Faces Component Selectors
•	 Data Visualizations Component Selectors

Chapter 8

[265]

Style Classes
The Style Classes are built-in styles intended for your use in the StyleClass
attribute—these do no affect any components.

If you need to define your own styles classes, you can click on the green plus sign
and choose New Style Class to define a new class. It will be added to your CSS file
and will show up under the Style Classes node. You can define the visual properties
of the class using the Property Inspector or directly in the CSS source code by
selecting the Source tab at the bottom of the skin editor panel.

Global Selector Aliases
The Global Selector Aliases are selectors that control many different components.
For example, if you wanted to change the font throughout your entire application,
you would open the Font node and select the .AFDefaultFont:alias selector. The
right-hand side of the ADF CSS tab shows an example of how this global selector
would affect various components. You can choose which components you want to
examine from the View as drop-down list. In the Property Inspector, you can set the
styling attributes for the global selector:

In the preceding example, we have selected .AFDefaultFont:alias and set Font
Family to 'Comic MS Sans', Font Size to 14, and Font Weight to bold (the changed
attributes are marked with a green dot). The box in the middle shows how an Input
Date would look with this setting. You can choose another component in the View
as drop-down to see how this global setting would affect other types of components.

Look and Feel

[266]

Faces Component Selectors
Under the Faces Component Selectors node, you find all the individual ADF Faces
components that you can change the visual appearance of. To change a component,
expand the node corresponding to the component to see the different selectors you
can control.

You can click on the component itself to set the general attributes for the component,
or you can expand the Pseudo-Elements node to change the specific aspects. For
example, if you want to change the actual field where the user enters data, you can
select the content pseudo-element. In the right-hand side of the ADF Skin dialog,
you see the various sub-types of content styling that can apply to the component. As
you select these sub-types, the Property Inspector shows the styling of that sub-type:

The preceding example shows the default styling of the entry field for an input
text component. The label is shown in Comic Sans MS font, because we set that as
a global setting previously. Notice the blue arrows that indicate a setting that is
inherited from somewhere else—you can point to the arrow to see a popup showing
you where that setting inherits from.

For example, if you want to change the border for a text field that contains a
warning, scroll down among the examples of inputText content to find the
af|inputText:warning::content example and select it. In the Property Inspector,
change the Border property, for example to 4px #FFFF00 solid to use a wider border
in bright yellow color:

Chapter 8

[267]

Similarly, if you want to change a disabled input text field to display as dark gray
with black text, you'd select the af|inputText:disabled::content example, change the
Background Color property to #777777 and Color (which indicates the font color) to
#111111:

Data Visualizations Component Selectors
Finally, the Data Visualizations Component Selectors define the look of the various
data visualization components (Gantt charts, graphs, maps, and so on):

Finding the selector at runtime
If you cannot find the selector you want in the skin editor, you can create a simple
JSF page in JDeveloper and drop an instance of the component you want to skin onto
this page and run the page in Firefox. Then start the Firebug add-on and inspect the
element you want to skin.

Look and Feel

[268]

The right-hand panel in Firebug shows the styling that is applied to that element—if
you set DISABLE_CONTENT_COMPRESSION to true as described earlier in this chapter,
you will see a style class name such as .af_panelFormLayout_label-cell. This
translates into the af|panelFormLayout component and the label-cell pseudo-
element. You can then look this up in the skin editor and define the appearance
you want.

Providing images for your skin
One of the things people often ask when they see their first ADF demo is: Can I
change the page loading image? It seems that the blue spinning oval is not to
everyone's liking.

Fortunately, you can change it. Unfortunately, the documentation does not list the
images separately so you can see what you might want to override. However, in the
skin selectors documentation (http://jdevadf.oracle.com/adf-richclient-
demo/docs/skin-selectors.html or Google ADF skinning selectors), you will
find subheadings Icon Selectors under the individual components, and these list the
pseudo-element you need to style.

The page shown while the application loads (where you see the big spinning "O") is
called the splash page and is styled under af:document. The icon is controlled by
pseudo-element ::splash-screen-icon:

If you cannot find an image in the documentation, you can create a page containing
the image, run it in Firefox and use Firebug to point to the image. The Firebug style
window will show you the style that causes the image to be displayed.

Once you know which component and pseudo-element you want to style, select it
in the skin editor, click on the little triangle next to the Content attribute and choose
Copy Image:

Chapter 8

[269]

This places a copy of the image in your project—you can copy your own image
into the same directory and change the Content attribute, or simply overwrite the
standard image with your own:

Changing the color scheme
Changing the color scheme for a skin used to be a major undertaking, because
ADF uses images everywhere a component has a rounded corner or a gradient
background. If you needed to change the color scheme, you would have to change
all of these files. But with the skin editor, this has become much easier.

Look and Feel

[270]

To change the color scheme for your application, you click on the Images tab at the
bottom of the skin editor panel. This tab allows you to change about a dozen base
colors and generate all the necessary images to change your color scheme:

You simply select other colors for the various global selectors by clicking on the
color chooser button. As you change the colors, you will see the skin editor briefly
displaying a message Generating images. When the new images have been
generated, you can see the original skin and your modified skin side by side:

When you are happy with your color changes, you can click Apply To Skin to cause
the skin editor to save all the generated images and refer to them in your ADF CSS
file. In the Application Navigator, you can see all your newly generated image files
under the generated node:

Chapter 8

[271]

Creating a resource bundle for your skin
You might have noticed that many ADF components display texts that you cannot
set through properties, for example, the pop-up help that appears if you allow
sorting in an af:table component and point to the table header:

If you want to change these standard strings, you first need to go to the
documentation and find the resource string you want to override. For table sorting,
you need af_column.TIP_SORT_ASCENDING and af_column.TIP_SORT_DESCENDING.

Then you need to open the resource bundle file that the skin editor has built for you;
by default, it is called skinBundle.properties:

Look and Feel

[272]

The default file contains a couple of examples, and you need to add your own
resource strings to this file. It might look like the following:

This file may be used to define alternative text
for resource strings that appear in the user
interface of ADF Components.
Example: To change the text that appears on the
buttons of the af:dialog component from Ok and
Cancel to Continue and Go Back, add the following
to this file:
AF_DIALOG.LABEL_OK = Continue
AF_DIALOG.LABEL_CANCEL = Go Back
AF_COLUMN.TIP_SORT_ASCENDING = First things first
AF_COLUMN.TIP_SORT_DESCENDING = The last shall be first

Packaging the skin
Once you are done with your skin, you need to package it into an ADF Library. To
do this, you right-click on your Skin project and choose Deploy | New Deployment
Profile. Choose ADF Library JAR File and give your deployment profile a name (for
example, adflibXdmSkin):

Chapter 8

[273]

In the Edit ADF Library JAR Deployment Profile Properties dialog that appears
next, simply click OK.

Then right-click on your Skin project again and choose the name of your deployment
profile (for example, adflibXdmSkin), click Next and then Finish. Like for other ADF
libraries, this creates a JAR file in the deploy directory under your project. You, as
developer, should add it to your version control system, and your build/deployment
manager will pick it up, have it tested, and distributed to the various subsystem
teams. If you are using a skin based on fusionFx-simple in JDeveloper 11g Rel. 1,
you need to add adf-richclient-fusion-simple_ps3.jar (from the skin editor)
to projects using your skin.

Using the skin
To use the skin, you simply need to add the ADF Library to your project from the
Component Palette and change the trinidad-config.xml file in the project using
the skin to refer to the skin in the library.

In the trinidad-config.xml file under Web Content/WEB-INF in your project, you
need to change the <skin-family> tag to refer to the skin family you defined:

<skin-family>xdm-skin</skin-family>

If you now run your application, you should see your skinning take effect:

Look and Feel

[274]

Summary
In this chapter, you have seen how ADF uses Cascading Style Sheets (CSS) for
defining the appearance of components without affecting their functionality. For
changing the look of an individual component, you can use inline styles, content
styles, and style classes.

If you want to customize the look of the entire application, you define a skin. This
used to be difficult and complex, but with the skin editor available both integrated
in JDeveloper and as a stand-alone product, this has become much easier. You have
a tree navigator for selecting components, you can use the Property Inspector to
change settings and immediately see what your component will look like. Your final
skin can include both global changes affecting the whole application, including the
color scheme, and visual changes that affect only one specific component or even just
one aspect of it.

When you are done with your application skin, you can deploy it as an ADF library
using the normal procedures for working with ADF libraries to use it in your
subsystems and master application.

Your manager is impressed with the way you can easily customize the look of the
application and asks you if you can also customize the functionality. Yes, you say,
using the ADF customization features. These will be the topic of the next chapter.

Customizing the Functionality
You have seen that you can change the way your application looks—and that you
can deploy the same application to different users with different visual appearance.
But your boss at DMC Solutions would like to be able to sell the XDM application to
different customers, offering each of them a slightly different functionality.

Fortunately, ADF makes that easy through a feature known as customization.

Why customization?
The reason ADF has customization features built-in is because Oracle Fusion
Applications need them. Oracle Fusion Applications is a suite of programs capable
of handling every aspect of a large organization—personnel, finance, project
management, manufacturing, logistics, and much more. Because organizations
are different, Oracle has to offer a way for each customer organization to fit Oracle
Fusion Applications to their requirements.

This customization functionality can also be very useful for organizations that do
not use Oracle Fusion Applications. If you have two screens that work with the same
data, but one of the screens must show more fields than the other, you can create one
screen with all the fields and use customization to create another version of the same
screen with fewer fields for other users.

Customizing the Functionality

[276]

For example, the destination management application that we are using as an
example in this book might have a data entry screen showing all details of a task to a
dispatcher, but only the relevant details to an airport transfer guide:

Companies such as DMC Solutions that produce software for sale realize an
additional benefit from the customization features in ADF. DMC Solutions can build
a base application, sell it to different customers and customize each instance of the
application to that customer without changing the base application.

How does an ADF customization work?
More and more Oracle products are using something called Meta Data Services to
store metadata. Metadata is data that describes other pieces of information—where it
came from, what it means, or how it is intended to be used. An image captured by a
digital camera might include metadata about where and when the picture was taken,
which camera settings were used, and so on. In the case of an ADF application, the
metadata describes how the application is intended to be used.

There are three kinds of customizations in ADF:

•	 Seeded customizations: They are customizations defined in advance (before
the user runs the application) by customization developers.

•	 User customizations (sometimes called personalizations): They are changes to
aspects of the user interface by application end users. The ADF framework
offers a few user customization features, but you need additional software
such as Oracle WebCenter for most user customizations. User customizations
are outside the scope of this book.

Chapter 9

[277]

•	 Design time at runtime: They are advanced customization of the application
by application administrators and/or properly authorized end users.
This requires that application developers have prepared the possible
customizations as part of application development—it is complicated
to program using only ADF, but Oracle WebCenter provides advanced
components that make this easier. This is outside the scope of this book.

Your customization metadata is stored in either files or a database repository. If
you are only planning to use seeded customizations, a file-based repository is fine.
However, if you plan to allow user customizations or design time at runtime, you
should set up your production server to store customizations in a metadata database.
Refer to the Fusion Middleware Administrator's Guide for information about setting up
a metadata database.

Applying the customization layers
When an ADF application is customized, the ADF framework applies one or more
customization layers on top of the base application. Each layer has a value, and
customizations are assigned to a specific customization layer and value.

The concept of multiple layers makes it possible to apply, for example:

•	 Industry customization (customizing the application for example, the travel
industry: industry=travel)

•	 Organization customization (customizing the application for a specific travel
company: org=xyztravel)

•	 Site customization (customizing the application for the Berlin office)
•	 Role-based customization (customizing the application for casual, normal,

and advanced users)

The XDM application that DMC Solution is building could be customized in one way
for ABC Travel and in another way for XYZ Travel, and XYZ Travel might decide to
further customize the application for different types of users:

Customizing the Functionality

[278]

You can have as many layers as you need—Oracle Fusion Applications is reported to
use 12 layers, but your applications are not likely to be that complex.

For each customization layer, the developer of the base application must provide
a customization class that will be executed at runtime, returning a value for each
customization layer. The ADF framework will then apply the customizations that the
customization developer has specified for that layer/value combination. This means
that the same application can look in many different ways, depending on the values
returned by the customization classes and the customizations registered:

Org layer value Role layer value Result
qrstravel any Base application, because there are no

customizations defined for QRS Travel
abctravel any The application customized for ABC Travel,

because there are no role layer customizations
for ABC Travel, the value of the role layer does
not change the application

xyztravel normal The application customized for XYZ Travel and
further customized for normal users in XYZ
Travel

xyztravel superuser The application customized for XYZ Travel and
further customized for super users in XYZ Travel

Making an application customizable
To make an application customizable, you need to do three things:

1. Develop a customization class for each layer of customization.
2. Enable seeded customization in the application.
3. Link the customization class to the application.

The customization developer, who will be developing the customizations, will ad-
ditionally have to set up JDeveloper correctly so that all customization levels can
be accessed. This setup is described later in the chapter.

Developing the customization classes
For each layer of customization, you need to develop a customization class with
a specific format—technically, it has to extend the Oracle-supplied abstract class
oracle.mds.cust.CustomizationClass.

Chapter 9

[279]

A customization class has a name (returned by the getName() method) and a value
(returned by the getValue() method). At runtime, the ADF framework will execute
the customization classes for all layers to determine the customization value at each
level. Additionally, the customization class has to return a short unique prefix to
use for all customized items, and a cache hint telling ADF if this is a static or
dynamic customization.

Building the classes
Your customization classes should go in your Common Code workspace. A
customization class is a normal Java class, that is, it is created with File | New
| General | Java Class. In the Create Java Class dialog, give your class a name
(OrgLayerCC) and place it into a customization package (for example, com.dmcsol.
xdm.customization). Choose to extend oracle.mds.cust.CustomizationClass and
check the Implement Abstract Methods checkbox:

Create a similar class called RoleLayerCC.

Customizing the Functionality

[280]

Implementing the methods
Because you asked the JDeveloper to implement the abstract methods, your classes
already contain three methods:

•	 getCacheHint()

•	 getName()

•	 getValue(RestrictedSession, MetadataObject)

The getCacheHint() method must return an oracle.mds.cust.CacheHint
constant that tells ADF if the value of this layer is static (common for all users) or
dynamic (depending on the user). The normal values here are ALL_USERS for static
customizations or MULTI_USER for customizations that apply to multiple users. In the
XDM application, you will use:

•	 ALL_USERS for OrgLevelCC, because this customization layer will apply to all
users in the organization

•	 MULTI_USER for RoleLevelCC, because the role-based customization will
apply to multiple users, but not necessarily to all

Refer to the chapter on customization with MDS in Fusion Developer's Guide for Oracle
Application Development Framework for information on other possible values.

The getName() method simply returns the the name of the customization layer.

The getValue() method must return an array of String objects. It will normally
make most sense to return just one value—the application is running for exactly one
organization, you are either a normal user or a super user. For advanced scenarios,
it is possible to return multiple values, in such a case multiple customizations will
be applied at the same layer. Each customization that a customization developer
defines will be tied to a specific layer and value—there might be a customization that
happens when org has the value xyztravel.

For the OrgLayerCC class, the value is static and is defined when DMC Solutions
installs the application for XYZ Travel—for example, in a property file. For the
RoleLayerCC class, the value is dynamic, depending on the current user, and can
be retrieved from the ADF security context. The OrgLayerCC class could look like
the following:

package com.dmcsol.xdm.customization;

import …

public class RoleLayerCC extends CustomizationClass {
public CacheHint getCacheHint() {

Chapter 9

[281]

return CacheHint.MULTI_USER;
}

public String getName() {
return "role";

}

public String[] getValue(RestrictedSession restrictedSession,
MetadataObject metadataObject) {

String[] roleValue = new String[1];
SecurityContext sec = ADFContext.getCurrent().

getSecurityContext();
if (sec.isUserInRole("superuser")) {

roleValue[0] = "superuser";
} else {

roleValue[0] = "normal";
}
return roleValue;

}
}

The GetCacheHint() method returns MULTI_USER because this is a dynamic
customization—it will return different values for different users.

The GetName() method simply returns the name of the layer.

The GetValue() method uses oracle.adf.share.security.SecurityContext
to look up if the user has the super user role and returns the value superuser
or normal.

Deploying the customization classes
Because you place your customization class in the Common Code project, you
need to deploy the Common Code project to an ADF library and have the build/
configuration manager copy it to your common library directory.

Enabling seeded customization
In order to be able to customize pages, you need to tell JDeveloper to prepare
for customization as you add components to the page flows and pages in your
ViewController project.

Customizing the Functionality

[282]

In this chapter, we will customize the UC008 subsystem. Open the XdmUC008
workspace and choose the Project Properties dialog for the View project
(UC008View) in the workspace for each task flow you want to customize. Choose
ADF View and then check the checkbox Enable Seeded Customizations:

Linking the customization class to the
application
The last step in preparing an application for customization is to define which
customization levels you will use, and in which order they will be applied. This is
done in the adf-config.xml file that is found under the Application Resources
panel in the Application Navigator. Expand the Descriptors node and then ADF
META-INF to find the adf-config.xml file:

Chapter 9

[283]

Open this file and choose the MDS Configuration sub-tab. On this tab, you can add
all of your customization classes and define the order in which they are applied (the
top-most class in this dialog is applied first):

Your customization classes defined in the Common Code
workspace are not available until you have deployed the Common
Code workspace to an ADF library and have made this library
available to the project where you want to perform customization.

Configuring the customization layers
When developing customizations, the customization developer must choose a
layer and a value to work in—for example, developing customizations for org =
xyztravel. But as the layer values are returned by code at runtime, there is no
way for JDeveloper to figure out which layer values are available. That is why
you need to define the available customization layers and the possible values in a
CustomizationLayerValues.xml file.

When you are developing customizations, JDeveloper will read the adf-
config.xml file to determine which customization classes to use, and the
CustomizationLayerValues.xml file to determine which layer values
should be made available for the developer to select from. The static
CustomizationLayerValues.xml file must contain all the layers defined in
adf-config.xml, and should contain all the possible values your customization
class can return.

Customizing the Functionality

[284]

Match the XML file with the customization class
The CustomizationLayerValues.xml values are used at design
time, and the customization class is called at run time. If you leave out
a value from the XML file, you will not be able to define customizations
for that value. If you add a value to the XML file that will never be
returned by the customization class, you might accidentally define a
customization that will never be applied at run time.

To edit the CustomizationLayerValues.xml file, click on the Configure Design
Time Customization Layer Values link at the bottom of the MDS Configuration tab
in the adf-config.xml file. The first time you edit the file, you get a warning about
overriding the global CustomizationLayerValues.xml file. Simply acknowledge
this warning and continue to your file.

You are presented with an example file containing some customization layer values
and descriptive comments. For the XDM application using two customization layers
of org and role, change the file to look like the following:

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
<cust-layer name="org" id-prefix="o" value-set-size="small">

<cust-layer-value value="abctravel" display-name="ABC Travel"
id-prefix="a"/>

<cust-layer-value value="xyztravel" display-name="XYZ Travel"
id-prefix="x"/>

</cust-layer>
<cust-layer name="role" id-prefix="r" value-set-size="small">

<cust-layer-value value="normal" display-name="Normal user"
id-prefix="n"/>

<cust-layer-value value="superuser" display-name="Superuser"
id-prefix="s"/>

</cust-layer>
</cust-layers>

The name attribute of the cust-layer element must match the values returned from
the getName() methods in your customization class. Similarly, the value attribute of
the cust-layer-value element must match the values returned by the getValue()
method in the corresponding customization class.

Chapter 9

[285]

The id-prefix values for both layer and layer value are used to ensure that each
component is given a globally unique name. All components in an ADF Faces
application are given a component ID—for example, an inputText element might
get an ID such as it3 in the base application. With customization, however, that
same element might exists in many different variations—customized in one way for
one organization and in another way for another organization. To ensure that ADF
can tell all of these components apart, it adds prefixes for all layers to the ID of the
component as specified in this file, for example:

•	 The input component in the base application would be it3
•	 The same component customized in the org layer for the value abctravel

would be oait3 (the o from the org ID-prefix and the a from the abctravel
ID-prefix)

•	 The same component customized in the org layer for the value xyztravel
and in the role layer for the value superuser would be oxrsit3 (o from org
layer, x from xyztravel value, r from role layer, s from superuser value)

The display-name is shown to the customization developer to help select the right
layer, and the value-set-size parameter should normally be set to small (this
causes JDeveloper to show a drop-down box for selecting layer value).

Setting up JDeveloper for customization
To perform the actual customization of an application, you need to set up JDeveloper
to understand the available customization layers and classes, and you need to run
JDeveloper in the special Customization Developer role.

Making the customization class available to
JDeveloper
First, the customization class must be placed so that JDeveloper can always find it
(technically, the customization class has to be on JDeveloper's classpath). This is
necessary because while you are developing, your application is not necessarily
running. This means that there might not be an instance of the customization class
available for JDeveloper to call.

Customizing the Functionality

[286]

To make your customization class available to JDeveloper at all times, you need
to copy the JAR file containing it to a directory that is on the JDeveloper classpath.
For the XDM project, copy the adflibCommonCode.jar file from C:\JDeveloper\
XdmLib to the …\jdeveloper\jdev\lib\patches directory.

Selecting the customization role
The first time you started JDeveloper, you were greeted with a role selection dialog.
You have probably deselected it by now, but you can re-enable it by choosing Tools
| Preferences | Roles and check the checkbox Always prompt for role selection
on startup:

The next time you start JDeveloper, you
will be prompted for role selection again.

Chapter 9

[287]

Performing the customization
With your application prepared for customization and JDeveloper set up correctly,
you are ready to perform the actual customization. Because you cannot change
developer role while JDeveloper is running, you need to exit JDeveloper and start it
again. You will be prompted to select a role—choose Customization Developer:

When JDeveloper is running in customization mode, you will notice the new
Customization Context panel shown at the bottom of the screen, next to the usual
Log window:

Customizing the Functionality

[288]

The values shown in this window come from the CustomizationLayerValues.xml file
you created—the values in the Name column corresponds to the cust-layer elements
and the values in the Value column correspond to the cust-layer-value elements.

When developing customizations, you are always working on a specific layer,
called the tip layer. You select the tip layer with the radio buttons in the Tip layer
column in the Customization Context panel as shown previously. In the preceding
illustration, the org layer is selected as the tip layer and the Value is XYZ Travel.
This means that the customizations you make will be registered to the customization
context org/xyztravel.

You see that the role layer value is grayed out when org is the tip layer. Because the
org layer is below the role layer, it does not matter what the value of role is when
you are customizing for the organization. When you select role as tip layer, the
Value column becomes active:

Any customizations that you register with the preceding settings will be registered in
the role layer in the customization context org/xyztravel, role/normal.

If you want to see the base application, select View without Customizations.

Customizing business components
You can customize some aspects of business components—for example, it is possible
to add or change validation rules on entity objects. This can be useful for example if
XYZ Travel wants to change a validation rule in the base application, but ABC Travel
is happy with the base application functionality.

Chapter 9

[289]

In this case, you select org as the tip layer and select XYZ Travel as Value, and
change the validation rule as XYZ Travel requires. The base application remains
unchanged, but JDeveloper has now stored a customization in the context org/
xyztravel. When XYZ Travel is running the application, the GetValue() method
in the OrgLayerCC class will return xyztravel, the customization is applied and the
modified business rule applies. When ABC Travel is running the application, the
GetValue() method will return abctravel, and the unmodified validation rule from
the base application is applied.

You can also customize UI hints (for example, default labels) by assigning new
resource strings to them as described in a later section in this chapter.

Customizing the pages
You can customize your pages and page fragments in many ways:

•	 You can add new fields, buttons, and layout components
•	 You can remove fields
•	 You can reorder existing items—reorder fields, move fields to other layout

components, and so on
•	 You can assign new resource strings to components

In order to make a change, you have to work in the Design view and the Property
Palette. You can change to the Source view of your page, but the source is read-only
when running JDeveloper in the Customization Developer mode.

As a simple example, imagine that ABC Travel does not require the Flight No.
column and want the StartWhere column before the Text column. Additionally,
normal users should not be shown the Comment column.

To perform this customization, first choose org as the Tip layer and ABC Travel
as the Value. Then open the taskOverviewEdit.jsff page fragment and delete the
FlightNo column and move the StartWhere column. Then you choose role as the
Tip layer, leave ABC Travel selected as Value for org and select Normal user as
Value for role. The JDeveloper will show a message that it has to close customizable
files. Click OK, re-open the taskOverviewEdit.jsff page fragment and delete the
Comment column.

Customizing the Functionality

[290]

While you were performing this customization, JDeveloper was storing your
customizations as XML files with the same name as the base object. After the
preceding customization, your application navigator will now show a couple
of new files:

The taskOverviewEditPage.jsff.xml file shown under mdssys/cust/org/abctravel
contains the customizations that you defined for ABC Travel, and file under mdssys/
cust/role/normal contains the the customizations that you defined for normal users.
These files record the changes you have made in a compact XML format, as follows:

<mds:customization version="11.1.1.59.23"
xmlns:mds="http://xmlns.oracle.com/mds">

<mds:replace node="c8"/>
<mds:move node="c4" after="c2"/>

</mds:customization>

If you want to see your unmodified base application, you can select View without
Customizations in the Customization Context panel.

Chapter 9

[291]

Customizing strings
When customizing an application, you will find that the attributes defining the text
displayed to the users are grayed out—you cannot change the Text property of a
button or the Label property of a field. What you can do, however, is to assign new
resource strings to items.

Instead of just setting the Text property for a button to a literal value like Cancel,
you can click on the little down triangle to the right of the property field and choose
Select Text Resource to bring up the Select Text Resource dialog:

Alternatively, you can invoke the Select Text Resource dialog by right-clicking on a
field and choosing Select Text Resource for | Label:

Customizing the Functionality

[292]

In this dialog, you can write a new text in the Display Value field or select an
existing UI string from the Matching Text Resources box.

If you add a new string while in Customization Developer mode, JDeveloper
will ask you to confirm that you want to add a new key to the override bundle.
Your base application already has a resource bundle, but the changes you make
while customizing is stored in a separate resource bundle that the JDeveloper
automatically creates.

Your customizations are stored just like other customizations. If you are
customizing for ABC Travel and change the Search button Text attribute on the the
taskOverviewEditPage.jsff page fragment, the taskOverviewEditPage.jsff.xml
file under mdssys/cust/org/abctravel will be updated to include something like the
following:

<mds:modify element="cb1">
<mds:attribute name="text" value="#{uc008viewBundle.FIND}"/>

</mds:modify>

The actual override bundle containing your custom strings and their keys is not
displayed in the JDeveloper. You can find it in the file system in the subdirectory
resourcebundles\xliffBundles under the root directory of your application. For
example, the override bundle for XdmUC008 might be found in C:\JDeveloper\
mywork\XdmUC008\resourcebundles\xliffBundles\XdmUC008OverrideBundle.
xlf.

This file is a normal XLIFF file like you might be using in your base application. If
you only defined one new string Find, it would look like the following:

<?xml version="1.0" encoding="windows-1252" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">

<file source-language="en" original="this" datatype="x-oracle-adf">
<body>
<trans-unit id="FIND">

<source>Find</source>
<target/>
<note>Button to execute search</note>

</trans-unit>
</body>

</file>
</xliff>

There is more information on using resource bundles in Appendix A,
Internationalization.

Chapter 9

[293]

What cannot be customized?
The ADF customization works by registering changes to the XML files in other
XML files.

This means that you cannot customize Java code—you have to develop all your Java
code in the base application. But as you can customize the attributes, it is possible
to customize your application to select among different methods from the base
application. For example, a button has an ActionListener property that can point
to a method binding. If you have implemented two different methods in the base
application and have created action bindings for them, you can use customization to
choose one or the other.

You also cannot customize certain configuration files, resource bundles or security-
related files. When you are running JDeveloper in the Customization Developer
mode, the Application Navigator will show all of these with a small padlock icon
in the top-left corner of the item icon. In the following example, you can see that
the faces-config.xml, trinidad-config.xml, and web.xml files cannot be customized:

Summary
The ADF customization features are just what an independent software vendor such
as DMC Solutions need. The development team can build one base application, and
implementation teams can customize the application for different customers in a
controlled manner without affecting the base application.

You have seen how to prepare an application for customization and how to perform
customization. You have also seen that your customizations are stored separately
from the application so they can be re-used even if you provide a new version of the
base application.

Even if your enterprise application is not intended to be implemented for different
customers, you can still use customization features to offer different versions of screens
to different users. The next chapter will explain how to secure your application.

Securing your
ADF Application

Back in 2004, someone found out that you could open a high-security bicycle lock
made out of hardened steel—with a ballpoint pen! (Google bike lock ballpoint pen
for more information). This was an excellent product that would resist bolt cutters,
hacksaws, and crowbars—but the circular lock had a glaring weakness.

Security is like that: Only as strong as the weakest link. To make certain that your
enterprise ADF application is secure, you need security at many levels—your servers
must be secure, your network must be secure, your application must be secure, and
your data must be secure.

This chapter is only concerned with securing your enterprise ADF application using
the many easy-to-use security features built into ADF. However, remember to
consider the other aspects of security as well.

Security basics
Two important parts of security are authentication (determining who the user
is) and authorization (determining what the user is allowed to do). As an ADF
application is a standard Java EE application and runs inside a Java EE application
server, it can make use of the security features of Java EE and does not have to
implement everything itself.

Securing your ADF Application

[296]

Authentication
A JAVA EE application server offers to handle security for the applications that run
inside it—so-called container-managed security. This approach offers several types
of authentication—for an enterprise ADF application, you will always choose form-
based authentication. This allows the application to point to a web page (a login
form) where the user can enter her username and password. You can design this
login page as part of your application so that it looks like the rest of the application.

Alternatives are Basic or Digest authentication; both of these depend on
the browser to present a login screen. Basic even sends your password
unencrypted, unless you use SSL. You might have seen this in use on
basic websites. You will simply get a dialog box with two fields for
username and password in whatever look the browser has decided
to give it. You do not want this for your beautiful enterprise ADF appli-
cation. Additionally, there is no way to log out of an application using
Basic or Digest authentication short of closing the browser.

The actual verification of the username and password is handled by the Oracle
WebLogic application server using an authentication provider. The authentication
provider connects WebLogic with some identity store—WebLogic comes with pre-
built providers for the built-in LDAP server, Oracle Internet Directory, Microsoft
Active Directory, and relational databases. If none of these meet your needs, you
can even program your own authentication provider. Setting up authentication
providers is the responsibility of the application server administrator.

Authorization
While container-managed security works fine for authentication, the authorization
features are a bit too basic for enterprise ADF applications. Container-managed
authorization only protects specific URL patterns, but this is not enough for a
modern, dynamic modern web application. JavaServer Faces uses server-side
navigation, so the same URL can represent many different parts of the application.
You saw an example of this in Chapter 6, Building the Enterprise Application, where we
used a dynamic region to swap task flows within the same page. It is obvious that a
simple protection of URLs is not enough to secure our ADF application.

To achieve a more fine-grained authorization control, we therefore turn to the Java
Authentication and Authorization Service (JAAS). This technology offers to protect
different resource objects—not just URL patterns. Unfortunately, JAAS-based web
application authorization is not standardized across application servers, so an
application using JAAS security is not portable across application servers.

Chapter 10

[297]

The Oracle security solution
Because of these integration challenges, Oracle offers Oracle Platform Security
Services (OPSS) as part of Oracle Fusion Middleware.

OPSS provides a common interface to authentication and authorization and handles
the intricacies of the integration, and is used for ADF security as well as in many
other Oracle products.

So, even though the underlying technology can be quite complex, the application
developer is presented with a simple, secure solution: ADF Security.

But wait, there is more!
ADF Security makes it easy to build a secure application,
but this one chapter cannot address every security issue.
Every organization should appoint a security officer with the
responsibility to ensure the correct level of security, considering
your data, users, and threat environment.

Security decisions
The first security decision is whether you need to secure the application at all. As
the focus of this book is enterprise applications, we assume that you do need to
secure it. If you do not need security, feel free to skip to the next and final chapter on
packaging and deploying your application.

Authentication
In an enterprise setting, you will normally already have an identity management
infrastructure of some kind in place—Microsoft Active Directory, an LDAP-server
such as Oracle Internet Directory, or some other solution. We do not want each
application handling its own users, but want to integrate with the existing identity
infrastructure. This means that all applications should delegate the authentication
to the application server, and the application server must be integrated with the
existing authentication mechanism.

Securing your ADF Application

[298]

Authorization
However, you cannot delegate the authorization. Only you, the application developer,
knows what pages, task flows, and data elements need to be accessible to different
categories of users. So as part of your application design, you must identify the
application roles—logic groupings of users that you can give detailed access rights.
You should be able to identify these roles from your application requirements; if not,
you need to go back to your end users to determine the roles the application needs.
For example, the destination management application we use in this book needs the
roles OperationsStaff, AdminStaff, EventResponsible, Finance, and Manager.

Where to implement security
If you are structuring your enterprise application development as recommended
in Chapter 3, Getting Organized, you will be keeping all of your entity objects in a
Common Model workspace, using one task flow workspace per use case in your
requirements, and collecting all of this in one master workspace. Because you only
want to define your application roles once in the application, you apply security in
the master workspace to cover the whole application.

Implementing ADF security
If you were to set up ADF security by hand, you would be editing a half-dozen
complex XML files with complex interdependencies. Fortunately, JDeveloper offers
to do all the hard work for you through the Configure ADF Security wizard.

To secure your ADF application, simply choose Application | Secure | Configure
ADF Security. This wizard will take you through four steps to secure your application:

•	 Selecting a security model
•	 Selecting an authentication type
•	 Selecting how to grant access
•	 Select any common welcome page

Chapter 10

[299]

Security model
In the first step of the wizard, you are asked to select a security model:

Normally, you will always select ADF Authentication and Authorization. Even if
your application does not distinguish between authenticated users, you still want to
use ADF authorization to define which parts are accessible to anonymous users and
which part to authenticated users.

Securing your ADF Application

[300]

Authentication type
Next, you are asked to choose the authentication type. You have several options, but
as described previously, you would normally select Form-based Authentication in
order to be able to control the login form displayed to the user:

To demonstrate how form-based login works, you can ask JDeveloper to produce
a default login page (and an error page if the authentication fails). In a real-life
enterprise application, you would not use these default HTML pages, but instead
build .jspx login and error pages as part of your application. Once you have
examined the simple HTML pages and read the help topics about using your own
.jspx pages as login and error pages, you can build the proper .jspx login and
error pages and run the wizard again to set your application to use these pages.

For the purposes of the example in this chapter, select Generate Default Pages.

Chapter 10

[301]

Access grants
In the third step of the wizard, you can decide how much access you want to grant
to your task flows and pages. By default, securing your ADF application will secure
all task flows and pages. This means that after you are done with the ADF Security
wizard, you do not have access to any pages until you create test users and roles:

The most secure option is No Automatic Grants, which means that you will have
to explicitly grant access to all task flows and pages. The other two alternatives will
grant access to a special test-all role, either for all existing task flows and pages
or for all existing and future task flows and pages. These two options are useful
if you add security late in the project when your testers are already testing the
application—by granting your testers the test-all role, you are not locking them
out while you configure security for your application. If you choose this approach,
be sure to check that you have removed grants to the test-all role before your
application goes into production—there is a checkbox Show … with test-all grants
only in the security dialog to help you find these grants.

Securing your ADF Application

[302]

Welcome page
The last decision you need to make is whether you will automatically direct your
users to a common welcome page after successful login:

This matters because the ADF security framework will automatically intercept
attempts to access a protected page and send the user to a login page. If you do not
check this checkbox, your user will go back to the page he requested after successful
login. If you do check this checkbox, your user will be sent to the common welcome
page after login.

If you decide to redirect to a common start page, you should use the looking glass
icon to select an existing page in your application.

When you click Next on this page, you are shown a summary of all the security XML
files that will be changed. You do not have to worry about these, because JDeveloper
will configure them all correctly based on your choices in the wizard.

Chapter 10

[303]

Application roles
You, the application developer, are the person who understands the requirements
and the pages, task flows, and entity objects that will be needed in the application.
Therefore, you must determine the different roles that will be using the application.

The whole XDM application will make use of five roles:

•	 Admin Staff
•	 Operations Staff
•	 Finance
•	 Event Responsible
•	 Manager

As we have not built the whole application in this book, we will only define Event
Responsible and Operations Staff here. Choose Application | Secure | Application
Roles to open the application security configuration, stored in the jazn-data.xml
file. The JDeveloper recognizes this file as part of the security configuration, and
presents you with a nice overview tab—but you can click on the Source tab to see the
raw XML data if you want to.

Click on the green plus sign next to Roles to create a new role, and fill in the Name,
Display Name, and Description to the right:

Repeat to create the operations-staff role with Display Name Operations Staff.

Securing your ADF Application

[304]

Implementing user interface security
In the user interface, you can apply security to either pages or task flows. Remember
that the ADF Security wizard by default locks down everything, so you will not have
access to any part of your application until you have explicitly granted access.

To apply security, choose Application | Secure | Resource Grants. If you already
have the jazn-data.xml file open, you can also just select the Resource Grants tab
in the left-hand side. Make sure you check the checkbox Show task flows imported
from ADF libraries in order to see the task flows defined in the task flow workspaces.

On this page, select the resource type (Web Page or Task Flow), choose the resource
and click the green plus sign to grant access to an application role. While securing
the user interface for a normal ADF application, the only element under Actions you
need to select is view. The other options are relevant if you deploy your application
as a portlet to Oracle WebCenter, where it can be customized and personalized in
different ways.

For the example in this chapter, assign the person-timeline-flow to the event-
responsible-role and assign task-overview-edit-flow to both event-responsible-role
and operations-staff-role.

All of your task flows should be shown with a key icon as shown previously—this
indicates that access has been granted to at least one application role. If any of your
task flows have the padlock icon, this means that nobody has been granted the right
to execute them—in effect, they are locked and inaccessible.

Chapter 10

[305]

Remember that your task flows are normally implemented with page fragments, and
placed inside a dynamic region on a page. You must grant view privilege on both the
page (often simply to the built-in role authenticated-users) and then more specific
grants on the individual task flows.

New and improved: entitlements
In JDeveloper 11.1.1.4, a new feature was added: Entitlement Grants. If
you have many resources, you can create entitlements to group resources
together and then grant the whole entitlement to a role in one operation.

Implementing data security
In addition to the user interface security, it is also possible to apply security rules at
the data level—to the entity objects.

Applying data security is an additional security layer that you can use to protect
especially important or sensitive data. Your page fragments should, of course, only
display the information that each user is entitled to see, but if you add data security
at the entity level, you have an additional layer of protection. In an enterprise ap-
plication that might be changed by a maintenance programmer five years after the
project was initially built, this helps ensure that someone does not accidentally make
data available to users who should not be able to view or change it.

Unfortunately, JDeveloper will only really help you implement data security if you
place everything in the same workspace (which is not really a valid option for an
enterprise application). There is no checkbox called Show entity objects imported
from ADF libraries, so if you want to implement data security, you will have to do
more work yourself.

The following describes how to implement data security in an en-
terprise setting, where your entity objects are imported from an
ADF library. If you keep everything in one workspace, there are
simpler options. Refer to the online help in JDeveloper.

Implementing entity object security is a two-step process:

1. Define the operations you want to secure (read, update, delete)
2. Grant these operations to specific application roles

Securing your ADF Application

[306]

Defining protected operations
You define the operations you want to protect in the CommonModel project (or
wherever you keep your entity objects). Data security is different from user interface
security in that the data in an entity object is by default accessible, unless you decide
otherwise. Only if you select to apply read, update, or delete security to an entity
object is any checking performed.

Protecting an entity object
To protect a whole entity object (all attributes), you open it in JDeveloper, choose
the General sub-tab and scroll down to the Security section. Here, you define which
operations you want to secure. The operations that you do not select here are not
secured, that is, if you leave read unchecked, all users can read the data presented by
this entity object (if they have access to a task flow that uses it, of course):

Chapter 10

[307]

Protecting an attribute
In addition to protecting a whole entity object, you can also protect the update
operation for an individual attribute. To do this, go to the Attributes sub-tab and
choose the attribute you want to protect. Scroll down to the Security section, open it
and check the update checkbox.

Securing attributes secures the data, but does not change the user interface. If you
remove the update privilege from an entity object, a user will not be able to change
the value, but the user interface element does not automatically get disabled. For
a good user experience, you should set the ReadOnly attribute with expression
language so it is displayed as read-only if the user cannot change it. You can access
user authorization in expression language using #{securityContext…} – this
is documented in the Fusion Developer's Guide for Oracle Application Development
Framework in the chapter on ADF Security.

Granting operations to roles
Now that you have defined which entity objects to protect, you can grant specific
operations to specific application roles. This is done in the master application.

Go to the Resource Grants sub-tab in the jazn-data.xml dialog by choosing
Application | Secure | Resource Grants. Your Resource Type drop-down will only
contain Task Flow and Web Page, but you need to add another resource: an entity
object. Click the green plus sign next to the Resource Type drop-down to bring up
the Create Resource Type dialog:

Securing your ADF Application

[308]

Set the Name and Display Name fields to EntityPermission and set Matcher Class
to oracle.adf.share.security.authorization.EntityPermission. Click the green plus
sign to define the actions update and delete and click OK. If you wish the ability to
protect read access as well, also add read. You only need to create one resource type
for the entity objects with these two or three actions—you do not have to define each
possible combination.

Select your new EntityPermission resource type and click the green plus sign under
Resources to bring up the Create Resource dialog.:

In the Create Resource dialog, fill in the Name field with the full name of the entity
object you wish to grant operations on, for example, com.dmcsol.xdm.model.entity.
Task. Then click OK.

Now your resource should appear in the left-hand column. As for web pages and
task flows, you can now click the green plus next to Granted To to select application
roles and choose the operations allowed on this entity object for this role in the
Actions column:

Chapter 10

[309]

Even more data security
If you require even more sophisticated data security, you can use
Virtual Private Database (VPD), which is a feature of the Enterprise
Edition Oracle database. This technology allows you to associate
policies with individual database tables and execute advanced PL/
SQL to calculate additional restrictions on data access at runtime. In
order to do this, you perform some VPD setup in the database and
then override the prepareSession() method on the application
module to send the actual logged-in user to the database before any
data operations are executed.
Google oracle adf vpd for more information.

Users and groups
As a developer, you can define the application roles, but you do not know which
users and groups are available in the organization that will be running the completed
application. Therefore, your application roles must be mapped to the groups of users
defined in the organization.

Enterprise roles or groups?
Same thing. Some identity management systems use the terminology
that users are members of groups and others use the terminology that
users are assigned enterprise roles. Even JDeveloper uses both terms—in
version 11.1.1.4, the menu item is called Groups, but the tab it opens is
called Enterprise Roles.

Mapping the application to the organization
Integrating your application server with your identity management system
(Microsoft Active Directory, Oracle Internet Directory, or some other system) is
the task of your application server administrator. This procedure is outside the
scope of this book, but is well documented in the Oracle Fusion Middleware
documentation—start with the Oracle Fusion Middleware Security Overview manual
and follow the references it provides.

When this task is done, the application server knows the enterprise roles (or groups)
that are used in your organization. This allows the person deploying your ADF
application to the application server to perform the mapping of application roles
(defined by the application developer) to enterprise roles (defined by the organization).

Securing your ADF Application

[310]

This approach means that the application developer is free to define the application
roles that make sense in the application, and the organization is free to define groups
that correspond to their organization.

Example users and enterprise roles
You do not normally integrate the built-in WebLogic server that comes with
JDeveloper with your identity management system, but you will still need to test
the security of your application. You normally do this by using a simple file-based
identity management system that you can set up using dialog boxes in JDeveloper.
Because the users you set up here only exist in your own system, you are free to
create and delete users as needed.

With the simple, local solution, you can:

•	 Define test users
•	 Define test enterprise roles
•	 Assign members to your enterprise roles
•	 Assign application roles to enterprise roles

The first three steps establish an identity infrastructure like you might have
in Microsoft Active Directory or Oracle Internet Directory in your production
environment, and the last step mimics the task the application deployer performs
when putting your application in production.

To create your example users, you choose Application | Secure | Users to bring
up the jazn-data.xml file. This file represents a simple user repository and can be
used for testing your security. JDeveloper recognizes this file as part of the security
configuration, and presents you with a nice overview tab—but you can click on the
Source tab to see the raw XML data if you want to. Click on the green plus sign to
add a user and provide a name and a password.

Password policy
The password must satisfy the security policy of the built-in
WebLogic application server—in JDeveloper 11.1.1.4, which was
current at the time of writing, the requirement is simply that the
password must be at least eight characters. Some versions require
both letters and numbers.

For the purposes of this chapter, create users SR (Steven Robertson) and JF
(Jennifer Fisher):

Chapter 10

[311]

Note the little padlock icon next to these users—it indicates that they do not have
access to anything yet.

Then change to the Enterprise Roles tab (or choose Application | Secure |
Groups) to define the groups that your users will be members of. If you are building
an application for in-house use where you already know the groups that the
organization uses, you should define all or some of the real user groups. If you are
working for an independent software vendor such as DMC Solutions, and you do
not know the organization where your application will be deployed, create some
example user groups.

For the XDM application, create the enterprise roles OperationsManagerGroup
and TourGuideGroup. In the Members sub-tab, add SR as member of operations
managers and JF as member of tour guides:

Securing your ADF Application

[312]

Again, note the padlock icon indicating that these enterprise roles do not have access
to anything yet—they have not been assigned any application roles.

Assigning application roles
To assign the application roles you have defined to your enterprise roles/user
groups, switch back to the Application Roles sub-tab where you defined the
application roles. Here, you use the Mappings sub-tab to assign enterprise roles to
each application role.

Select the event-responsible-role and click the green plus next to Mapped Users and
Roles. Select Add Enterprise Role and check the checkbox for the enterprise role
OperationsManagerGroup:

Similarly, map the enterprise role TourGuideGroup to the application role
operations-staff-role.

Chapter 10

[313]

Anonymous and authenticated
Note that you have two application roles available in addition to those
you defined yourself: anonymous-role and authenticated-role. If you
want some pages or task flows to be accessible to everyone without
requiring a login, you can grant access to these pages or task flows to
anonymous-role. If there are pages or task flows that you want every
authenticated user to be able to see, irrespective of the enterprise role
or group membership, grant access to these pages and task flows to
authenticated-role.

Running the application
When you have saved your jazn-data.xml file, you can run the application as usual
(by right-clicking on the Xdm.jspx page and choosing Run). You will be met with a
very simple username/password page—this is the auto-generated login.html page
that JDeveloper built for you.

If you log in with the user SR, you will see the application working as before,
because user SR is a member of the Operations Manager group, which has the Event
Responsible role assigned, which gives access to the whole application.

If you log in with user JF, on the other hand, you will see a blank page if you select
the Timeline menu item. This is because JF is only a member of the Tour Guide
group, which has the Operations Staff application role, which does not give access to
the person timeline task flow.

Removing inaccessible items
For the best user experience, users should not be able to select menu items that will
not show them anything. You can handle this in two ways:

•	 You can hide the menu item completely by setting the Rendered attribute to
false. Use this if you do not want to confuse your users with menu items that
are not relevant to them

•	 You can show the menu item disabled (grayed out) by setting the Disabled
attribute to true. Use this if you want to show your users that additional
functionality exists but is not accessible to them

You can use expression language to set attributes on menu items that are not
accessible to a user. As mentioned previously, you have access to the current security
context in Expression Language using #{securityContext…} functions.

Securing your ADF Application

[314]

To disable the Timeline menu item for users who do not have access to the timeline
task flow, you can set Disabled to !#{securityContext.taskflowViewable['/WEB-INF/
person-timeline-flow.xml#person-timeline-flow']}.

Refer to the ADF Security chapter in Fusion Developer's Guide for Oracle Application
Development Framework for details on accessing the security context using
expression language.

Summary
In this chapter, you have applied ADF security to your master application so that
users would be prompted to log in when starting the application. We just used the
default login page, but you can easily build your own login page and integrate this
with the application. You defined application roles and implemented security on
pages, task flows, and entity objects, specifying which application roles can do what.
Finally, you used the built-in user and group repository to test your application.

You can tell your manager that the XDM application is secure and implements
all required logic to ensure that only properly authenticated and authorized users
can access functionality and data. He is happy to hear that and asks you to package
the application for deployment to the test server. That is the subject of the next
(and last) chapter.

Package and Deliver
When a tailor has taken all the measurements of his customer, he cuts pieces of cloth
according to the agreed style. However, 36 pieces of cloth do not make a jacket—just
like 36 individual ADF Libraries do not make up an application.

What remains is to sew all the parts together into one deliverable package
for installation—first on your test environment and then on your production
environment. This package should include your executable code, any database
scripts, and the necessary documentation.

After each cycle of test and rework, you need to create a new deliverable package
until it passes all the tests. Then the same package goes to the operations staff to
install in the pre-production or production environment. In case your package does
not install cleanly on this environment, you go back to the drawing board, fix the
code or the documentation and create a new package.

This deployment happens from the master application that includes all the common
ADF Libraries as well as all the task flow libraries containing your business
components, web pages, and task flows.

What is in the package?
When the development team is done and hands the application over to production,
the package should include:

•	 The runnable application
•	 Any database code
•	 Installation and operation instructions

Package and Deliver

[316]

The runnable application
The enterprise ADF application you and your team have built is a Java Enterprise
Edition (JEE) application. Therefore, it is delivered in the standard JEE application
form as a Java Enterprise Archive (.ear) file.

An .ear file is just a compressed file containing application code and a bit of
metadata. You can open the file with an unzip utility to see what is inside, normally,
the .ear file contains a Web Archive (.war) file that you can again unzip to see inside.

Your EAR file will contain the application roles and other security features you
configured in Chapter 10, Securing your ADF Application.

Database code
If your application contains new or changed database objects, you will, of course,
need to supply SQL scripts for your database administrator to run. If you are using
advanced security such as Virtual Private Database, there will also be database
scripts to run to implement this. As this is the same for all database applications, we
will not discuss SQL scripts much in this chapter.

Installation and operation instructions
Finally, your installation package needs to include the necessary instructions for
your database and application server administrators to install the application.

Your instructions must include exactly which version of WebLogic you need—there
is a WebLogic version matching each version of JDeveloper. You also need to point
your application server administrator to the Oracle Fusion Middleware Administrator's
Guide for Oracle Application Development Framework for instructions on how to prepare
the WebLogic environment for ADF.

In addition to the basic instructions ("deploy this file", "run this script"), your
installation instructions must include the name of any database connections the
application uses, so that the application server administrator can make sure this
connection name is available. You will also have to provide the name and intended
usage for each of the application roles your application defines, so the application
server administrator or security administrator can map these roles to the user groups
or enterprise roles already defined in the organization.

Finally, you need to tell your system administrators where your system writes its
log files. If you are using ADFLogger (which is recommended), instruct your system
administrators how to configure the logging.xml file.

Chapter 11

[317]

Preparing for deployment
Preparing your application for deployment involves cleaning up the code and setting
application parameters for production use.

Cleaning up your code
Just as the tailor should not leave pins in your finished jacket, you should not
leave development artifacts in your installation package. Some things that might
accidentally slip into the deployment package include:

•	 Database connections
•	 Test users and groups
•	 Print statements
•	 Debug settings in web.xml

Additionally, JDeveloper contains a code audit tool. To see what JDeveloper thinks
about your code, select a project and choose Build | Audit. In the Audit dialog box,
you can click Edit to select which rules you want to check in your project.

Database connections
Remember that when you created your entity objects, you also created a database
connection. By default, this connection includes the server, port, and database name.
That is OK while you are running your code against a development database, but of
course, not OK when you are done and want to deploy to the test or production server.

The solution is to use a named DataSource instead. With DataSources, your appli-
cation just contains the name of a DataSource, and it is up to the application server
administrator to create a DataSource with that name on the application server. This
approach gives the server administrator the freedom he needs to administrate the
production environment, and even move the application and database around
between servers if necessary.

Using DataSources from the beginning
As described in Chapter 6, Building the Enterprise Application, you
should set your application modules to a DataSource instead of a
JDBC URL as soon as your create the application module.

Package and Deliver

[318]

If you are not certain that you have used DataSources everywhere, you can
right-click on each application module and choose Configurations. The Manage
Configurations dialog appears. Select the configuration that ends with …Local
and click Edit to open the Edit Business Components Configuration dialog. Under
Connection Type, check that you have selected JDBC DataSource (and not JDBC
URL) and make a note of the DataSource name for your installation documentation:

The reason that you can use either a URL or a DataSource while developing is that
by default, JDeveloper will automatically create a DataSource for you when you
deploy your application to the built-in server or an external WebLogic server.
That is not what you want when delivering your application, so you need to
change this setting.

Chapter 11

[319]

This is done in the application deployment profile that you can access by choosing
Application | Application Properties to bring up the Application Properties dialog
and then choose Deployment:

Deselect the checkbox Auto Generate and Synchronize weblogic-jdbc.
xml Descriptors During Deployment in order to ask the JDeveloper to stop
automatically creating DataSources for you.

Test users and groups
You might remember from Chapter 10, Securing your ADF Application that we created
test users and groups in order to test our security settings. A WebLogic server
running in development mode (such as your stand-alone development server) will
accept any users and groups deployed as part of the application, so you need to tell
the JDeveloper not to package these into your final application. To do this, choose
Application | Application Properties to bring up the Application Properties dialog
and then choose Deployment:

Package and Deliver

[320]

Under Security Deployment Options, deselect the Users and Groups checkbox.
Then click OK to close the dialog.

Depending on the choices you made in the ADF security wizard, you might also
have a test-all role with access to all screens and task flows in your application.
If you allowed a test-all role, you should use the security dialogs as described in
Chapter 10, Securing your ADF Application, to make sure that your final application
does not contain any grants to the test-all role.

Other development artifacts
Of course, you have used the logging method you all agreed on in the project team
and did not write any simple System.out.println() statements in your code.
However, somebody else might have done so. To check for this kind of impurities
in your project code, you can use JDeveloper's global file search capability. Choose
Search | Find in Files to search through your active project or application (or any
user-defined path in the file system).

In Chapter 8, Look and Feel, we set org.apache.myfaces.trinidad.DISABLE_
CONTENT_COMPRESSION in the web.xml file to true in order to see full names of CSS
styles. This setting should be set back to false before you deploy your application to
production. If you changed other settings for development or debug purposes, you
should also set these back to the default.

Setting the application parameters for
production use
In addition to making sure you do not have development and debugging stuff in
your application, you want to make sure that your application has the right stuff—
the configuration settings necessary for good performance.

Application module tuning
In the Edit Business Components Configuration dialog, you can also optimize the
performance of your ADF application on the Pooling and Scalability tab.

Chapter 11

[321]

The most important parameter on this tab is the Referenced Pool Size parameter.
The ADF framework will keep this number of application module instances
in memory (default 10), ready to serve your users. As long as you have fewer
concurrent users than this value, each user will get the same application module each
time his browser communicates with the application server. Once you have more
users than this number, users will have to share application modules. To allow this
sharing, ADF has to store all of the internal state of the application module in the
database in order to free it up for another user. This is called passivation and is an
expensive operation; so as long as your application is running on one server, you
want to avoid it as much as possible.

To minimize passivation, set Referenced Pool Size as close to the maximum number
of concurrent users you expect as possible. Of course, if you set this value very high
and run out of memory on your application server, your application server will
start swapping memory to disk, which is even more expensive. You need to work
with your application server administrator to find the sweet spot where application
modules are not passivated too often, and your application server machine does not
run out of memory.

There are many ADF tuning settings, and they can be set for each application module
individually to match how that application module is expected to be used. The
online help describes each setting, and the Oracle Fusion Middleware Performance and
Tuning Guide gives tuning guidelines.

Controlling database locking
When several people are using a database application at the same time, they might
attempt to change the same record in the database at the same time. This situation
can be resolved in two ways:

•	 With pessimistic locking
•	 With optimistic locking

Pessimistic locking assumes that this conflict is likely (hence "pessimistic") and locks
the record as soon as the first user tries to change it. This has the advantage that the
second user will not be allowed to change the value at all. On the other hand, this
has the disadvantage that if the first user goes away without changing the record,
the lock remains and the second user is barred from changing the record. The server
cannot tell if his browser crashed or if he has left for a three-week vacation, so it has
to perform cleanup of locked records on some schedule. In an ADF web application,
this happens when your web session times out.

Package and Deliver

[322]

Optimistic locking assumes that this conflict is not likely (hence "optimistic"). The
first user is allowed to change his copy of the record, and the second user is allowed
to change her copy. This has the advantage that the application server does not have
to perform regular unlocking of stuck records, and nobody has to wait for these locks
to be released. The disadvantage to this approach is that if the second user commits
her change to the database first, the first user will be turned away—in effect, he will
be told that his change cannot be stored in the database, because another user has
already changed the value.

Oracle recommends the default setting Optimistic for web applications like the
one we build in this book (web applications make up 95 percent or more of all ADF
applications). You can change the global default in the adf-config.xml file that you
find under Application Resources, Descriptors, ADF META-INF. On the Business
Components sub-tab of the Overview tab, you can set the default locking mode for
the whole application:

Tuning your ADF application
A whole book could be written on ADF tuning—but this book is not that book. There
is a lot of good ADF tuning advice in the chapter on Oracle Application Development
Framework Performance Tuning in Oracle Fusion Middleware Performance and Tuning
Guide. Additionally, a lot of material on ADF tuning is available on the Oracle
Technology Network and elsewhere on the internet—google oracle adf tuning for more.

Setting up the application server
While developing, you were probably just clicking Run to run your application. As
you have noticed, this means that your application runs in the built-in WebLogic
server on your local machine. This instance of WebLogic is pre-integrated with
JDeveloper, so it contains all necessary libraries and settings for running the
ADF applications.

Chapter 11

[323]

In addition to these built-in WebLogic instances, your development server ad-
ministrator must set up at least a test/integration server where you can collect all
the components of the application for integration testing. Your environment might
also include pre-production or other WebLogic server instances before the final
production environment.

A minimum environment would use:

•	 The WebLogic server integrated with JDeveloper for development on each
developer's workstation

•	 A stand-alone server for integration and test
•	 The production environment

In an enterprise setting, you should use:

•	 The WebLogic server integrated with JDeveloper for development on each
developer's workstation

•	 A stand-alone development server for integrating the code
•	 A stand-alone test server that your test team will work on
•	 A pre-production server that your operations people can use to test the final

deployment and where stress/performance tests on be run
•	 The production server
•	 Depending on how much training you plan to give your users, you might

also need an education system

As there are licensing costs involved, your IT manager is also likely to have an
opinion on how many environments you need.

Who is in charge?
You need one stand-alone server that the development team has full
root/Administrator access to. During your project, there are always
going to be times when you need to make some code available for a
demo or a discussion of possible solutions without having to involve
people and procedures outside the team.
In an enterprise setting, the operations group manages all the
other servers, following the systems management procedures and
guidelines of your organization.

Package and Deliver

[324]

Installing the ADF Libraries
When your server administrator prepares one of your WebLogic servers, he will
download the production software from http://edelivery.oracle.com and
install the necessary ADF Libraries as documented in the Oracle Fusion Middleware
Administrator's Guide for Oracle Application Development Framework.

However, for the stand-alone server you manage in the development team, you can
simply install a WebLogic server downloaded from the Oracle Technology Network
and use the JDeveloper installer to install the ADF runtime libraries on it. To do
this, copy the JDeveloper installer to the server where you have already installed
WebLogic, and start it. When prompted to select a Middleware home directory,
choose the directory where your existing WebLogic installation can be found.

In the next step of the wizard, choose to install Application Development
Framework Runtime. You should also install JDeveloper Studio on the application
server as well to get access to some additional tools and libraries that you will need if
you decide to run automatic builds on your application server:

Click Next through the rest of the installation to install the ADF libraries.

Chapter 11

[325]

Setting up your domain
Your operations people will also set up the domain on their servers—but on your
own server, you need to extend the existing WebLogic domain with the ADF
Libraries yourself. This is done through the Configuration Wizard—on Windows,
this can be found under All Programs with a path something like Oracle WebLogic
(BEAHOME 1) | WebLogic Server 11gR1 | Tools | Configuration Wizard:

In this wizard, first choose to extend an existing domain and then choose your
WebLogic domain directory. In a default install on Windows, this can be found
under C:\oracle\Middleware\user_projects\domains.

In the next step of the wizard, choose to extend the domain with Oracle JRF (Java
Required Files):

Package and Deliver

[326]

In following the steps in the wizard, you might be prompted to configure your JDBC
data source—if so, give the name you used in your application development and
point to the database you wish to run the test instance of your application against.

Creating a DataSource on the server
If the configuration tool did not prompt you to create a DataSource on the server,
you can use the console (a web-based administration interface that comes with the
Oracle WebLogic application server).

To start the console, open a web browser and enter the URL to your application
installation, including the port, followed by /console (for example, http://test.
dmcsol.com:7001/console). The WebLogic console then appears (it takes a bit of
time for the application to load the first time you use the console):

Click Services and then Data Sources to bring up the Summary of JDBC Data
Sources page. Click New | Generic Data Source to define a new data source:

Chapter 11

[327]

Give your DataSource a name matching the one you used in your application
module (for example, XdmDS) and a JNDI name also matching your application
module (for example, jdbc/XdmDS). Leave database at Oracle and click Next. As
your development database is unlikely to use Real Application Clusters (RAC),
you can leave Database Driver at the default and click Next. Provide connection
information (database, server, port, username, and password) and click Next. In the
final step of the wizard, be sure to click the Test Configuration button. You should
see a message that the connection test succeeded:

Package and Deliver

[328]

If there is something wrong with your connection information, you get an error
message instead:

Click Finish to close the wizard. You'll see your new data source on the
Summary page:

Chapter 11

[329]

Note that your connection does not automatically acquire a target—the Targets
column is blank. You need to click on your connection, choose the Targets tab and
check the checkbox next to your server name:

On the simple development server you are managing in the development team, you
only need the AdminServer. On the servers that your operations people manage,
there is going to be one AdminServer, managing multiple managed servers inside
the same WebLogic instance.

When you have saved your configuration, you should see your JDBC connection
being associated with your server:

Package and Deliver

[330]

Deploying the application
With all of the development scaffolding removed from your application, and the
application server prepared, it is time to deploy the application. Initially, you will
do this directly from JDeveloper to the stand-alone development server, but the end
goal is to deploy your application to an EAR file you can hand over to an application
server administrator to install.

If you are building a new database or have
made any changes to an existing one, you also
need to deliver matching database scripts.

Direct deployment
For the first test of your deployment procedure, you should deploy your application
directly from JDeveloper to the application server. This approach gives you more
feedback and makes it easier to fix any deployment errors. This is also the approach
you normally use to deploy to the stand-alone development server that the
development team owns.

Creating an application server connection
To deploy your application directly from JDeveloper, you first need to create an
application server connection to your test/integration server. Choose File | New and
then General | Connections | Application Server Connection to start the Create
Application Server Connection wizard. In step 1, give your connection a name (my
development server is called Montblanc, so I use MontblancDev), leave Connection
Type at WebLogic 10.3 and click Next. In step 2, provide a username and password
for an administrator account on the server (the default username is weblogic and
the default password is weblogic1). In step 3, fill in the host name of your server and
the name of the WebLogic domain where you want to deploy your application. You
created this domain when you installed the server:

Chapter 11

[331]

In step 4, test that your connection works. All eight tests should pass:

Package and Deliver

[332]

When you click Finish, your connection should show up under IDE connections in
the Resource Palette in the upper-right part of the JDeveloper window (where the
Component Palette also lives):

Deploying your application directly
You have already seen the deployment profile window earlier in this chapter when
we deselected the checkbox to automatically create DataSources. This window is
also where you create the deployment profile that controls how the application
is deployed.

Choose Application | Application Properties and choose Deployment to bring up
this dialog again. Delete any default application deployment profile you might find
and click New to create a new deployment profile. Set Archive Type to EAR File and
give your deployment profile a name (typically the same as your master workspace
name—for the XDM application, this would be XdmMaster). In the Edit EAR
Deployment Profile Properties dialog, choose the Application Assembly node and
check the checkbox for your MasterView project:

You do not need to change any other settings in this dialog and can click OK to
return to your application.

Chapter 11

[333]

Now, you can choose Application | Deploy and choose the name of your
application deployment profile (XdmMaster). You get a dialog box where you can
choose a Deployment Action—choose Deploy to Application Server and click Next.
In the next step, choose the application server connection you just created:

Click Next through the rest of the deployment wizard to start your deployment. This
process first builds a Web Archive (WAR file) and then packages it into an Enterprise
Archive (EAR file). It then calls the application server using the connection
information you defined and installs your application on the application server.

You should see a new Deployment tab appear at the bottom of the screen, containing
a series of deployment messages as follows:

[09:28:28 AM] ---- Deployment started. ----
[09:28:28 AM] Target platform is (Weblogic 10.3).
[09:28:28 AM] Retrieving existing application information
[09:28:28 AM] Running dependency analysis...
[09:28:28 AM] Building...
[09:28:29 AM] Deploying 2 profiles...
[09:28:29 AM] Wrote Web Application Module to C:\JDev …

Package and Deliver

[334]

[09:28:29 AM] Wrote Enterprise Application Module to …
[09:28:29 AM] Redeploying Application...
[09:28:39 AM] [Deployer:149194]Operation 'deploy' on …
[09:28:39 AM] Application Redeployed Successfully.
[09:28:39 AM] The following URL context root(s) were …
[09:28:39 AM] http://192.168.138.44:7001/NgdmMasterApp
[09:28:39 AM] Elapsed time for deployment: 10 seconds
[09:28:39 AM] ---- Deployment finished. ----

If you do not get any error messages, you should now be able to start your
application from your test server with a URL such as the one you see when running
it locally. If you deploy the XDM application to a stand-alone development server
called montblanc in the default managed server running on port 7001, the URL to
start the application would be http://montblanc:7001/xdm/faces/Xdm.jspx.

Remember that xdm is the context root of your application, set under Project
Properties | Java EE Application. Xdm.jspx is the name of the jspx page you created
in the master application as the starting point for your application.

File deployment through the console
Direct deployment is fine for testing your deployment procedure and deploying to
the development server, but the package that you need to deliver to the operations
people to install is an EAR file.

Creating the EAR file
To do this, again choose Application | Deploy and the name of your application
deployment profile. In the deployment action dialog, choose Deploy to EAR and
click Next and then Finish.

In the Deployment tab at the bottom of the screen, you will see a shorter series of
deployment messages as follows:

[11:38:37 AM] ---- Deployment started. ----
[11:38:37 AM] Target platform is (Weblogic 10.3).
[11:38:37 AM] Running dependency analysis...
[11:38:37 AM] Building...
[11:38:40 AM] Deploying 2 profiles...
[11:38:41 AM] Wrote Web Application Module to C:\JDev …
[11:38:41 AM] Wrote Enterprise Application Module to …
[11:38:41 AM] Elapsed time for deployment: 4 seconds
[11:38:41 AM] ---- Deployment finished. ----

Chapter 11

[335]

In the line Wrote Enterprise Application Module…, you can see where
JDeveloper wrote the .ear file. If your master application workspace is stored in
C:\JDeveloper\mywork\XdmMaster, you can find the XdmMaster.ear file in C:\
JDeveloper\mywork\XdmMaster\deploy.

What is in the file?
As mentioned earlier, an .ear file produced by JDeveloper
is a normal compressed file that you can open with your
decompression program of choice to peek into the file.

Deploying the EAR file
To deploy the EAR file you just created to your stand-alone development server,
bring up the WebLogic console in your web browser again (the URL is your test/in-
tegration server name and port, followed by /console). The deployment procedure
uploads your EAR file from your local file system to the server file system and then
installs the application.

Production deployment
The procedure in this section can be used by your operations department
to deploy the application to test, pre-production, and production servers
if your organization is not using Oracle Enterprise Manager. If they are
using Oracle Enterprise Manager, this software also has functionality to
deploy and manage ADF applications.

Click Deployments in the Domain Structure box to the left. You will see quite a few
deployments already; this is all the infrastructure that you do not need to worry
about. You will also see the application you deployed directly from JDeveloper—in
order to test deployment through the EAR file, you will need to select this and click
Delete. Then click Install to start installing your application from the EAR file.

In the first step of the Install Application Assistant, you need to point to your EAR
file. Remember that you just built your EAR file on your local machine, and you are
now running the console application on your test/integration server. This means
that you have to click the upload your file(s) link to copy your EAR file from your
development machine to the server.

Separate file systems
Your EAR file is generated on your local machine, but the content of the
Path field in the WebLogic console refers to file locations on the test/
integration server. Unless you generated your EAR file to a network drive
accessible to the test/integration server, you have to upload your EAR file.

Package and Deliver

[336]

In the next step of the wizard, click the Browse button to select your local EAR file:

You should get a message that your EAR file was successfully uploaded. This means
that the file is now present in the file system on the application server:

It should also be listed at the bottom of the screen for you to select:

If you have uploaded several files for different applications, the console web page
might list multiple files. Select the one you just uploaded and click Next to start the
actual deployment. Choose to install this deployment as an application and click
Next. Then give your application a name and click Next. In the final step of the
installation assistant, you are presented with a number of optional settings—you can
leave these at the default settings for a simple deployment to your test/integration
server. Click Finish to start the deployment. After a little while, you should receive a
message saying your deployment has been successfully installed:

As when deploying directly, your application should now be available on the test/
integration server with the same URL.

Chapter 11

[337]

Scripting the build process
During the project, you will be building and deploying many times, so makes good
sense to create scripts that handle this whole process. A good tool for handling this
scripting is Apache Ant (http://ant.apache.org).

Creating a build task
When working with Ant, you create a buildfile (traditionally called build.xml) to
specify how to build a project. This XML file consists of a number of targets that
define the different goals you might want your build process to achieve, for example
clean, init, compile, test, or deploy. Within each target are a number of steps
called tasks. Ant comes with a large number of pre-built tasks, and many tools that
integrate with Ant supply their own tasks. If you are not already familiar with Ant,
there are several books and many online resources available, for example, the online
manual at http://ant.apache.org/manual/index.html.

JDeveloper offers to help you create the Ant build files for your project. To do this,
you first need to add Ant to the technologies in the project. Right-click your master
view project (for example, MasterView) and Project Properties. Under Technology
Scope, select Ant and move it to the right-hand Selected box. Then click OK to
return to your project. Now choose File | New and then Ant (under General).
Choose Buildfile from Project and click OK. The Create Buildfile from Project
dialog is shown:

Package and Deliver

[338]

It is important that you check the checkbox Include Packaging Tasks (uses ojde-
ploy)—this tells JDeveloper to also generate targets and tasks for packaging and
deploying your application.

JDeveloper deployment without the User Interface
The ojdeploy referred to by the dialog box is a command-line java program
that can do anything JDeveloper can do with regards to deployment. This
program is included with JDeveloper so that you can automate your build
process as described in this section. It uses some JDeveloper libraries,
so you need JDeveloper or a special JDeveloper library installed on the
machine where you run it. Refer to the documentation for a thorough
explanation of the many options with ojdeploy.

When you click OK, you will see in the Application Navigator that two new files
were created for you: the build.xml file defining how to build the project, and the
build.properties file containing some constants such as, directory names, and so on.
You will need to modify the properties file to match your local environment. The
little insect icon on the build.xml file shows that JDeveloper has recognized the file
as an Ant build file:

Chapter 11

[339]

The Structure panel at the bottom-left of the JDeveloper window will also show
targets and tasks in your build file.

You can right-click on an Ant build file and run individual targets from within
the JDeveloper.

Moving your task to the test/integration server
When you have tested your Ant script, you need to move it to your own stand-alone
development server in order to enable the automatic build on this server. You will
also have to install the Ant software on the server. Additionally, you will need the
ojdeploy runtime code.

JDeveloper provides the necessary libraries to run ojdeploy, so that is the easiest
option. However, it is also possible to install the libraries without placing JDeveloper
itself on your server. At the time of writing, an explanation of how to achieve this
was documented in the Oracle ADF Essentials series of articles by John Stegeman. You
can find these on the Oracle Technology Network (http://otn.oracle.com, search
for adf essentials).

Once you have Ant and the ojdeploy libraries on your stand-alone development
server, copy the build.xml and build.properties files to the server. After copying,
you need to open the build.properties file and change it to match your server
environment. This file is a simple collection of keys and values, as follows:

oracle.jdeveloper.ant.library=
C\:\\oracle\\Middleware11.1.1.4\\jdeveloper\\jdev\\
/lib/ant-jdeveloper.jar

output.dir=classes
oracle.home=../../../../oracle/Middleware11.1.1.4/jdeveloper/
javac.deprecation=off
oracle.jdeveloper.workspace.path=

C\:\\JDeveloper\\mywork\\NgdmMasterApp\\NgdmMasterApp.jws

All of the path values need to be changed to match your test/integration
server environment.

Adding a Checkout
Now we are able to run the build process on the test/integration server, but we do not
have any code to build on the server yet. That is where the Ant <svn> task comes in.

We do not want our build process to be based on what some developer happens to
have on his development workstation—we want to build from the checked-in code
in the Subversion repository.

Package and Deliver

[340]

Ant does not come with Subversion integration built in, but as mentioned
previously, it is easy for other projects to program and deliver Ant tasks. For
integrating Subversion with Ant, you can use the SvnAnt task available from
http://subclipse.tigris.org/svnant.html. This task depends on having access
to a Subversion command-line client; if your Subversion installation did not include
this, there are several options available (for example, the CollabNet client from
http://www.collab.net or the Slik SVN client from http://www.sliksvn.com).

With this software installed on your test/integration server, you can add an
additional target to your build.xml file for checking out the source code, using a
<svn> task. Your code might look something like the following:

<svn username="${username}" password="${password}">
<checkout url="http://montblanc:8088/svn/repos/xdm/trunk"

revision="HEAD" destPath="build" />
</svn>

If you add your checkout task to the depends= property of your deploy target, Ant
will automatically check out the latest code before running ojdeploy to package and
deploy your application to the WebLogic server.

Adding the database
If your enterprise ADF application includes any changes to the database (new or
modified objects), you can use Ant <sql> tasks to run these scripts as part of your
build process.

More scripting
Once you have your basic build script, you can add many other things:

•	 You can tag each nightly build in Subversion by using the <copy> operation
to copy the revision you check out to your subversion /tags directory

•	 You can run your JUnit unit tests as part of the build with <antunit>
•	 You can run your Selenium user interface tests as part of the build with

<selenese>

Chapter 11

[341]

Automation
Your build script ensures that a developer only has to issue one command to build
the whole application, and that nothing is left out or forgotten.

However, scripting is only the first step towards true automation. Because all of
your tasks can now be started by another program, you can begin using continuous
integration tools such as Hudson (http://hudson-ci.org) to automatically run
nightly builds, or even start a new build every time a developer checks code in.

Summary
The XDM application has been cleaned up and the parameters checked for
deployment. You have set up your stand-alone development server and checked
that you can package, deploy and run the XDM application. Together with database
scripts and installation instructions, you are now ready to deliver a deployment
package to the operations team to install on the test environment. You have also seen
how you can use Apache Ant to script this process.

When your test team has completed testing, and you have corrected any issues the
test has uncovered, you use the same procedure to create a new final deployment
package that your operations team will install on the production server.

Your ADF enterprise application is ready for business.

Internationalization
In his book "The Hitchhiker's Guide to the Galaxy", Douglas Adams describes a world
where people can place a "Babel fish" in their ears to instantly understand any
language. And while the real-life "Babel fish" at http://babelfish.yahoo.com
or http://translate.google.com does a fair job of automatic translations, an
enterprise application intended for people speaking different languages still has to
be translated, at least, in part by humans.

Even if you are only planning to run your application in one language, please read
this appendix to see how easy it is to internationalize your application. If you do the
internationalization while you develop the application, it is easy; if you have to do it
later, it is hard.

Localization lingo
Internationalization means building your application so it can be adapted
to different languages and countries. People who work in this area often
shorten this very long word to just i18n (eighteen characters in the mid-
dle of the word removed).
Localization means actually preparing your application for a specific lan-
guage and country. This will involve translating the user interface text,
but also changing date formats and making other changes for the specific
country. This is sometimes abbreviated L10n.

Internationalization

[344]

Automatic internationalization
JDeveloper is built for enterprise applications, so it automatically prepares your
application for localization. Let's take the XDM Common Model as an example:

Now watch what happens when we go into the Task entity object and define a
Control Hints for an attribute:

Because the PersId is something that might be shown to the application end user—
for example as a prompt for a drop-down list—JDeveloper does not just hardwire
the literal string into the application. Instead, JDeveloper automatically creates a
Resource Bundle for you. You can see this new file in the Application Navigator:

Appendix

[345]

Notice the new file CommonModelBundle.properties. If you open this file, you'll
see something like this:

JDeveloper has automatically:

•	 Extracted the value you defined as the label control hint for the attribute
•	 Created a Resource Bundle file
•	 Placed the text you entered into the Resource Bundle and assigned a key to it
•	 Inserted a reference to the resource key into the entity object

Internationalization

[346]

If you click the Source tab for the entity object, you can see that the ResId attribute
for the label points to com.dmcsol.xdm.model.entity.Task.PersId_LABEL—the key
that JDeveloper automatically created in the resource bundle:

How localizable strings are stored
There are three ways to store localizable strings in an ADF application:

•	 In a simple .properties file
•	 In an XLIFF file (an XML file format)
•	 In a Java ListResourceBundle class

The example you just saw uses a simple .properties file, which is easiest to
work with.

Appendix

[347]

If you will be using a professional translation service to translate the user-visible
text strings, they are likely to ask you for an XLIFF file. XLIFF stands for XML
Localization Interface File Format, and professional translation software will be able
to read and write XLIFF files. Oracle MetaData Services also uses XLIFF files to store
customized strings as we saw in Chapter 9, Customizing the Functionality.

The last option is to define all your strings in a Java class that extends java.util.
ListResourceBundle. This class must implement a method to return all the
localizable strings in an Object[][] as follows:

package com.dmcsol.xdm.model;
import java.util.ListResourceBundle;
public class ModelBundle extends ListResourceBundle {

private static final Object[][]contents =
{

{ "com.dmcsol.xdm.model.entity.Task.PersId_LABEL",
"Person" },

{ "com.dmcsol.xdm.model.entity.Task.StartDate_LABEL",
"Start time" }

{ "com.dmcsol.xdm.model.entity.Task.StartWhere_LABEL",
"Start location" }

}

public Object[][]getContents() {
return contents;

}

The class has to define an array with an element for each of your localizable strings.
This element is again an array containing exactly two values: the key and the
localized value. Because the ListResourceBundle is much more difficult to read and
write, you typically do not use this if you are only using static strings. If you try to
deliver a file like this to your localization team, you can be sure that the commas and
curly brackets will not all be correct in the file you get back. However, it does make
sense to use a ListResourceBundle if you plan to keep all your localizable strings in
a database. In this case, your resource bundle class can access the database to retrieve
the values.

Internationalization

[348]

You choose which way you want to store your localizable strings on a project-by-
project basis under Project Properties. In this dialog, choose the Resource Bundle
node on the left, and choose the desired Resource Bundle Type on the right. For the
XDM application, we choose the XLIFF format because we expect the application
to become an international success - and we expect to send out the application UI
strings to a translation agency when that happens.

A binding choice
Once you have selected the resource bundle type, your project
will use that type onward. If you go back into the properties
dialog and change the resource bundle type after you have
started using another type, you will need to delete the re-
source bundle JDeveloper has started for you in order to start
over with the new type.

It is a good idea to check the checkbox Warn About Hard-coded Translatable
Strings—this tells JDeveloper to present you with a warning if you hard-code a
string into a translatable field such as the Label. This will be shown with an orange
border around the properties that should come from a resource bundle:

Appendix

[349]

The warning will also be shown in the source view for a page or a business component.

Defining localizable strings
Every string the user sees can be localized - labels for fields, mouseover texts,
validation messages, and so on.

In some cases (such as the entity attribute above), JDeveloper can automatically
register a new string and create an associated key in a resource bundle. However,
you will normally work in the Select Text Resource dialog to define your strings,
because this dialog provides the option to select an already defined string for a new
purpose. You can invoke this dialog from many places:

•	 To set a business component attribute (for example, Label), you click on the
looking glass icon to the right of the field in the Control Hints dialog

•	 To set a text for a user interface element from the Property Palette, you can
click on the little triangle to the right of the field and choose Select Text
Resource from the pop-up menu

•	 To set a text for a user interface element from the visual page designer,
right-click on the element and choose Select Text Resource for and then the
element you want to define (for example, Label):

Internationalization

[350]

All of these bring up the Select Text Resource dialog, where you can define new
strings or choose among the existing ones:

As you start typing in the Display Value field, JDeveloper automatically fills in the
Key field with a suggested key. At the same time, the Matching Text Resources box
is automatically reduced to the elements matching the display text you are entering.
If an already defined text resource contains the text you want, you can select it in
this box and click Select. Otherwise, type the display value, accept or change the
suggested key, and click Save and Select to store your new key/value pair in the
resource bundle.

The Description field is optional unless you checked the checkbox Always Prompt
for Description under the Resource Bundle in the Project Properties dialog.

Appendix

[351]

Give us a clue
It is very hard for a translator to translate an individual word
without any indication of the context where it is used. If you do not
provide good descriptions, you will either be spending a lot of time
answering questions from your translator, or a lot of time correcting
language errors once you show your enterprise application to native
speakers of your target language.

Performing the translation
Now that you have your strings nicely separated out from business components and
user interface, it is time to translate them. You have a resource bundle (.properties
file, XLIFF file, or Java class) with your default text—but you have not really told
the ADF framework what that language is. To add this information, you add a suffix
to the file, using a two-character ISO 639 language code. If, for example, your
default language is English, you add _en to the file name, making a file such as
ModelBundle_en.properties.

If you wish to specify a specific country version of the language, you can add an
additional suffix using a two-character ISO 3166 country code. For example, French
as spoken in France would be ModelBundle_fr_FR while French as spoken in
Canada would be ModelBundle_fr_CA.

To start your translation process, you create copies of your default file or class with
different suffixes for all your target languages. You can then send out your property
or XLIFF file to be translated.

Do not send a Java ListResourceBundle class to be
translated unless your translator happens to be a Java
programmer in his spare time.

When you get your translation back, you need to place all of your translated resource
files in the file system next to the original default resource files in your project:

Internationalization

[352]

Additionally, you will have to define the languages your application will offer in
the faces-config.xml file. You can find this file in your View project under Web
Content / WEB-INF. On the Application sub-tab, scroll down to the Locale Config
section, set Default Locale and add all the languages your application supports:

Running your localized application
With the translated files back and integrated into the application, it is time to test the
localized versions.

Testing the localized business components
When you right-click on an application module to run it through the Business
Component Browser, it will by default run in the language selected in your operating
system. If you are running Microsoft Windows, the Business Component Browser
will show the label control hint in the language you have selected in the Windows
Control Panel (under Region and Language).

Appendix

[353]

You can override this setting by setting the default language of your application
module. This is done by right-clicking the application module, choosing
Configurations and then Edit. On the Properties tab, scroll down to the jbo.default.
language property and set a value to force the business component tester to show
your application module in that language:

Testing the localized user interface
When you are running the application as the user will see it, you will be running
web pages in a browser. It is part of the HTTP protocol that the browser will send
an ordered list of the languages it would like to see content in, so the web server
can serve up this content if available. You can set the language preferences in the
browser—in Firefox 3.6, this setting is found under Tools, Options, Content. On this
tab, you find a Languages section with a Choose button that opens the dialog to set
language preferences:

Internationalization

[354]

In Internet Explorer, this setting is found under Tools | Internet Options. On the
General tab, click the Languages button to change your language preferences.

Note that the browser language settings determine a priority—so the previous
setting means: "First ask for a German version of the page, then a Danish one." If
your ADF application does not support any of the requested languages, it will revert
to the default language defined in the faces-config.xml file.

To test your application in different languages, it is enough to change the order of
the languages in your web browser and refresh the page—the page will re-draw in
the first language your application supports.

Localizing formats
When you change language in your browser, you will see date and number formats
change automatically as well. When for example running the application in Danish,
Christmas Eve is displayed as 24.12.2011, while when running it in English, the same
date is shown as 12/24/2011. Note that both the day/month order and the separator
character have changed. If you have chosen a date format that includes month
names, these will be localized as well.

ADF will also automatically change the decimal character between a period and a
comma, matching the locale your browser is set to.

Do not use the currency format
You have the option to select Currency as Format Type. Don't use this
format (or use it with extreme care)—ADF does not know exchange
rates. This means that if you format something with a currency symbol
and change your browser setting, the same amount might suddenly be
displayed as Euros instead of U.S. Dollars. Use a normal number field
and place the currency symbol in a label or prompt next to it.

More internationalization
The error messages you define for the business rules in your entity objects should
also point to a string in a resource bundle instead of containing hard-wired error or
warning messages.

Appendix

[355]

If you have data in several languages in your tables and want to present it, for
example, a list of values in a user language, you need a managed bean and a bind
variable in your view object. The managed bean has access to the browser session
variables, can retrieve the UI language, and store it in a variable. The view object
can then use a bind variable assigned a value using the built-in adf.context object
to refer to the bean value. Therefore, if you have a LocaleHelperBean with Session
scope and a userLanguage parameter, you would assign your bind variable to the
expression adf.context.sessionScope.LocaleHelperBean.userLanguage.

You will notice that the standard texts that ADF supplies (for example, "Sort
Ascending" when pointing to table column header) will also be localized. ADF comes
in all the languages Oracle normally localize their end user software to—several
dozen at the last count. As we discussed in Chapter 9, Customizing the Functionality,
these strings are part of the skin; if you are not happy with Oracle's standard texts in
a language, you can create a skin that overrides them with your own.

If you need to change the language programmatically, this is possible as well. It
is a bit of an advanced topic and falls outside the scope of this book, as it involves
creating and registering a phase listener to ensure that the chosen language is always
set before the page is rendered.

Summary
You have seen how to use resource bundles to ensure that your application can
easily be localized into different languages to match the user's environment. You are
ready to build ADF enterprise applications for the world!

Index
Symbols
@AfterClass annotation 224
<af:pageTemplate> tag 150
<div> tag 250
<link> tag 251
<skin-family> tag 273
<style> tag 251
<svn> task 340
.war file 316
.ear file 316
.x4z style class 257
#{securityContext} functions 313
continuous integration tools 99

A
ActionListener property 293
additional classes, ADF Framework

ApplicationModuleDefImpl 150
EntityCache 150
EntityDefImpl 150
ViewDefImpl 150

ADF
application, securing 295
architecture 13
customization 275
enterprise architecture 12
Oracle Fusion Applications 13
overview 12
skinning 261

ADF binding layer (ADFm) 13
ADF Business Components, Proof of

Concept
about 14, 29

application module, building for scheduling
43, 44

associations, building 33
Database Connection 29, 30
Entity Objects, building 31-33
task application module, building 39
view links, building 34
view object, building 34
view object for tasks, creating 36-39
view objects, creating for scheduling 40-42
view objects, creating for value lists 35, 36

ADF Controller (ADFc) 13
ADF Faces Rich Client (ADFv) 13, 17
ADF Framework

additional classes 150
base classes 150
framework extension classes 152, 153
framework extension classes, creating 153,

155
Java classes, using 151
multi-layer framework extension 153

ADF Libraries, application server setup
DataSource, creating on server 326-329
domain, setting up 325, 326
installing 324

ADF Library
using 163
workflow, viewing 162
working with 162

ADF security, implementing
access, granting 301
authentication type, selecting 300
security model, selecting 299
steps 298
welcome page 302

[358]

ADF Task Flows
about 17
bounded task flows 17
unbounded task flow 17

ADF user interface, Proof of Concept
about 45
ADF task flows 45, 46
navigation 58, 59
scheduled tasks page 57
task page 46

administration tasks
about 119, 120
chat server, connecting to 122
disconnecting 123
Jira repository, connecting to 120, 121
Repositories tab 120
Subversion repository, connecting to 121,

122
teams, adding 120
users, adding 120

af:document tag 230
Agile ADF programming 176
ALM 95
Alt+Tab or Cmd+Tab 112
annotations, Java

@Suite.SuiteClasses 219
Ant <sql> tasks 340
Apache Ant

URL 99, 337
Apache Maven

URL 99
application, customizing

classes, linking to application 282, 283
customization classes, developing 278
customization layers, configuring 283, 284
seeded customization, enabling 281
steps 278

application, deploying
about 330
code, cleaning up 317
deployment through console 334
direct deployment 330
production use parameters, setting up 320

Application Lifecycle Management. See
ALM

application modules, ADF
about 16

for Oracle Forms 16
Application Properties dialog 319
application roles

AdminStaff 298
anonymous-role 313
authenticated-role 313
EventResponsible 298
Finance 298
Manager 298
OperationsStaff 298

application server setup
ADF Libraries, installing 324
enterprise setting, using 323
environment, requirements 323

application testing
initial tests 213
Oracle Application Test Suite 247
stress/performance tests 240
user interface tests 227

architecture, ADF
about 13
ADF Task Flows 17
application modules 16
associations 15
Entity Objects (EOs) 14
fragments 18
pages 18
user interface 17
View Links 15
View Objects 15

assertions 214
authentication 295
authorization 295
automated testing 213
automatic internationalization

about 344, 345
JDeveloper 345

B
Babel fish

URL 343
Balsamiq 65
base classes, ADF Framework

ApplicationModuleImpl 150
EntityImpl 150
ViewObjectImpl 150

[359]

ViewRowImpl 150
basics, CSS

property/value pairs 250
selector 250
style class, using 250

basics, security
about 295
authentication 296
authorization 296
OPSS 297

Boss Key 128
bottom-up estimate

about 70
from Work Breakdown Structure 72, 73
grouping 71, 72
three-point estimates 70

Bugzilla
URL 96

buildfile 337
build process

automation 341
build task, creating 337
Checkout, adding 339, 340
database, adding 340
scripting 337-340
task, moving to test/integration server 339

business components, person task timeline
(UC104) implementation

application module, building 196
MinMaxDate view object, building 195, 196
persons view object, building 194
tasks, finishing 197
tasks view object, building 194
testing 197
view objects, creating 193

business components, Task Overview and
Edit (UC008) implementation

creating 179, 180
business components, work organization

application module, building 173, 174
business logic, implementing 174
testing 175
view links, building 173, 174
view objects, building 173, 174

C
calender time 76
Cascading Style Sheets. See CSS
checkout task 340
Classes Extend button 157
code cleanup, application deployment

database connections 317-319
development artifacts 320
groups 319, 320
steps 317
test users 319, 320

code structuring
about 159
ADF libraries, working with 162
workspaces 160

collaboration
build tool 99
discussion forums 97, 98
online chat 98
requirement, managing 98
shared documents 97

com.dmcsol.xdm.framework.EntityImpl
class 153

CommonCode
ADF libraries, controlling 158
packaging 157, 158

Common Model Workspace
about 161, 164
ADF Library, exporting 170, 171
Common Model, testing 170
creating 164
entity objects 165
framework extension classes, using 165

Complete Merge button 137
components, package

database code 316
installation instructions 316
operation instructions 316
runnable application 316

container-managed security 296
Content attribute 269
ContentDelivery property 237
contextMenuAt command 237
context root 334

[360]

context switch 111
Create Attribute Binding dialog 200
Create JSF Page Template dialog 148
Create Scheduling Gantt dialog 57
CruiseControl

URL 99
CSS

about 249
appearance, controlling 249
basics 250
selector 250

CSS appearance
basics 250
conditional formatting 257
controlling 249
Firebug, using 254-257
individual components, styling 251

currency format
using 354

currentTF attribute 210
customization

about 275
business components, customizing 289
classes, developing 279
JDeveloper, setting up 285
need for 275, 276
non-customizable files 293
page fragments, customizing 289, 290
pages, customizing 289, 290
performing 287-292
strings, customizing 291, 292
uses 275

customization, ADF
design time at runtime 277
layers, applying 277
seeded customizations 276
user customizations 276
working 276, 277

customization classes
about 278
building 279
deploying 281
methods, implementing 280, 281

customization layers
applying, in ADF 277, 278
customization class 278
values, returning 278

CustomizationLayerValues.xml values
using 284

CxlYn attribute 225

D
database locking

controlling 321
optimistic locking 322
pessimistic locking 321

Data Manipulation Language (DML) 226
data security, implementing

about 305
entity object security, implementing 305
operations to roles, granting 307-309
protected operations, defining 306

DataSource
need for 318
using 317

depends= property 340
Destination Management Companies. See

DMC
direct application deployment

application server connection, creating
330-332

context root, xdm 334
steps 332-334

Disabled property 189
DMC

about 21
running 22

doDML() method 20, 155, 226
dynamic region 189

E
EAR file

about 334
creating 334, 335
deploying 335, 336
Deployment tab 334

Edit Business Components Configuration
dialog 320

Edit EAR Deployment Profile Properties
dialog 332

enterprise architecture, ADF
back end 13
Controller layer 12

[361]

front end 12
Model layer 12
View layer 12

enterprise roles
about 309
example 310

entity objects, Common Model Workspace
about 165
business rules 167
creating 166, 167
PL/SQL business rules, handling 168
primary key, generating 167
user interface strings 168

executeCommand() 223

F
faces-config.xml file 354
facet 48, 147
final estimate

about 73
roundabouts 73
swings 73

Firebug
about 254
installing 254
running 255

FogBugz
URL 96

formats
localizing 354

framework extension classes
base classes 150, 151
creating 153, 155
Java classes 151, 153
using 156, 157

G
getDynamicTaskFlowId() method 207
getMaxEndDate() method 196
getMinStartDate() method 196
GetValue() method 289
goSchedule option 58
groups. See users

H
Hudson

about 341
URL 99

I
i18n 343
i18n L10n 343
importing 131
individual components, CSS appearance

ContentStyle 252-254
InlineStyle 252-254
style, building 252
styling 251

Insert Set Property Listener dialog 210
Inspect button 255
installing

ADF Libraries, application server setup 324
JMeter 241
Selenium tool 228

internationalization
about 343, 354
automatic internationalization 344

J
JavaServer Faces See JSF
Java Enterprise Edition. See JEE
jazn-data.xml dialog 307
jbo.default.language property 353
JDeveloper

automatic internationalization 345
classpath 285
getting started 25, 26
panels 26, 27
preferences, setting 27, 28
windows 26, 27

JDeveloper 11.1.1.4
Entitlement Grants 305

JDeveloper setup, for customization
about 285
class, making available 285
role, selecting 286

JEE 316

[362]

Jira
URL 96

JMeter
installing 241
recorded session, post-processing 244
running 241
session, recording 244
setting up, as proxy 242, 243
simple test, performing 241, 242
testing with 240
updated information, searching 245
working with 240

JSF 17
JUnit

ADF applications, unit testing 215, 216
cookbook 214
good unit test 215
test classes 214
testing, need for 214
test methods 214
URL 214
working with 214

JUnit ADF Business Components Test Suite
Wizard

about 218
Application Navigator panel 218
test classes 220
Test Fixture 219
Test Suite 219

L
L10n 343
ListResourceBundle class 346, 351
list of values (LOVs) 17
localizable strings

defining 349-351
storing, ways 346-349
translating 351

localizable strings translation
performing 351, 352

localization 343
localized application

business components, testing 352
testing 352
user interface, testing 353, 354

M
Managed Beans 177
managed servers 329
master application

components 201
libraries, getting up 202, 203
master page, creating 203
master workspace, setting up 202

master page, master application
creating 203, 204
dynamic region, creating 204-206
execution flow 206
layout, creating 204
managed beans 206
menu, adding 204
task flow switching, code solution 207

master workspace 298
MaxEndDate attribute 199
Meta Data Services 276
method

doDML() 20, 226
getDynamicTaskFlowId() 207
remove() 226
testDelete() 223

methods, customization classes
getCacheHint() 280
getName() 280, 281
getValue() 280, 281

MinStartDate attribute 195, 199
Model-View-Controller. See MVC
montblanc 334
MVC 12

N
naming conventions

about 104
for ADF elements 107
for database objects 106
for file locations 108
for java packages 105
for project base package 105
for test code 109
general 104
list 105

[363]

naming conventions, for ADF elements
application modules 108
entity objects 107
task flows 108
view links 107
view objects 107

naming conventions, for database objects
columns 106
foreign key constraints 106
primary key constraints 106
sequences 106
table names 106
views 106

naming conventions, for file locations
page flows 109
page fragments 108
pages 108
page templates 109

nesting 17
non-customizable files

faces-config.xml 293
trinidad-config.xml 293
web.xml files 293

nonManagerStyle style class 257
non-stretch adapter 187
normal distribution curve 74

O
ojdeploy 338
open command 230
OPSS 297
Oracle Application Test Suite

components 247
Oracle Platform Security Services. See OPSS
Oracle Team Productivity Center (OTPC)

about 112, 114
administration tasks 119
Chat item 114
client, installing 116, 117
client, installing manually 117, 118
components 112, 113
context, restoring 127
context, saving 127
JDeveloper TPC Client 113
merging, with Subversion 138, 139
server, installing 114, 115

team members, chatting with 127
Team Navigator 113
Team Productivity Center Connectors 113
Team Productivity Center Server 113
work item, creating 124
work item repository, connecting to 123
work items 123

OrgLayerCC class 280
override bundle 292
Overview tab 256

P
package

components 315
page, person task timeline (UC104)

implementation
building 198
end time, defining 199-201
Gantt chart component, adding 198, 199
running 201
start time, defining 199-201

page template
about 145
attributes 149
creating 146
facet 147-149
layout, starting with 147
using 150

PartialTriggers property 210
passivation 321

minimizing 321
person task timeline (UC104)

implementation
about 192
code, checking 201
Libraries, obtaining 193
new workspace, setting up 192, 193
page, building 198
subsystem, deploying 201
task flow, building 197

pName parameter 187
pProgramme parameter 187
prepareSession() method 309
pResponsible parameter 187
production use parameters, setting

ADF application, tuning 322

[364]

application model, tuning 321
database locking, controlling 321, 322

productivity
advantages 111
context switch 111
Oracle solution 112
reason 111
tools, integrating 112

project base package 105
project room 159
projects

model project 104
test project 104
View/controller project 104

Proof of Concept
about 11
ADF Business Components 29
ADF user interface 45
case study 21, 22
components 19
Data model 23, 24
deliverables 21
duration 20
purposes 18
UC008 task 22
UC104 Person Task timeline 23
use cases 22
working 19

R
RAC 327
ReadOnly attribute 307
Real Application Clusters. See RAC
recorded session, post-processing

Cookie Manager, adding 245
parameters, fixing 246
path, fixing 246
running 247
steps 245
values, extracting 246
variables, defining 245

Referenced Pool Size parameter 321
regular programmers

business components, building 87
database stored procedures, building 90
data validation, defining 89

skinning 88, 89
support classes, building 90
tasks 87
templates 89
user interface, building 88

remove() method 151, 226
Rendered attribute 313
requirements

gathering, steps 61
listing 65
non-functional requirements 64
problems 66
screen design 65
use cases 62, 63
user stories 64

ResId attribute 346
Resource Bundle 318, 344
resource string 271, 291
RoleLayerCC class 280

S
scheduled tasks page

creating 57
Gantt component, adding 57, 58

security, ADF application
basics 295
benefits 297
data security, implementing 305
decisions 297
implementing 298-302
roles 303
user interface security, implementing 304,

305
security decisions, ADF application

authentication 297
authorization 298

selectors 260
Select Text Resource dialog 291
Selenium

advantages 228
components, IDE 227
components, Remote Control Server 227
context menus, testing 237
installing 228
item ID, verifying 238
lazy content delivery 237

[365]

test, performing 229-231
URL, shortening 230
using effectively 236
value checking, options 236
working with 227

skills
ADF framework knowledge 80, 81
database design 82
graphics design 83, 84
java programming 81
list 79, 80
object-oriented programming 81
programming 82
regular expressions 83
testing 85
usability 84, 85
web technologies 83
XML 82

skin
CSS file, creating 263
images, providing 268, 269
packaging 272, 273
resource bundle, creating 271
using 273

skinBundle.properties 271
skin CSS file

Data Visualizations Component Selectors
267

Faces Component Selectors 266, 267
fusionFx-simple-v1 skin 264
fusionFx-v1 skin family 264
Global Selector Aliases 265
in families 263
runtime selector, finding 267
steps 263, 264
Style Classes 265

skinning
about 88
ADF skin 258
color scheme modification, optionally 269-

271
components 259-261
components, selecting 258
in action 259
in ADF 261
options 259
skin images, providing optionally 268

skin, packaging 272, 273
skin resource bundle, creating optionally

271, 272
skin, starting 262

skinning, in ADF
steps 261

solution, estimating
bottom-up estimate 70
small tasks, using 69
top-down estimate 69

splash page 268
stand-alone skinning

steps 262
standard deviation

about 74
project standard deviation, calculating 75
task standard deviation, calculating 74

static region 189
stress/performance tests

JMeter, installing 241
JMeter, running 241
JMeter, testing with 241
JMeter, working with 240
recorded session, post-processing 244
recorded session, running 247

style class 250
styleClass attribute 251
Subversion

automatic merge 135
Comment Templates 134
conflicts, avoiding 137
conflicts, handling 135-137
effective Subversion 129
files, obtaining 134
initial load 131, 132
logging on 130
merging, with FishEye 139
merging, with Jira 139
merging, with Oracle Team Productivity

Center 138, 139
new copy, obtaining 134
storage 130
unmergeable files 137
URL 129
using 129
working with 132-134

super.remove() method 151

[366]

T
targets 337
Targets column 329
task flow switching, master page

region, redrawing 210, 211
selected task flow value, storing 207
Session Bean, accessing from Backing Bean

208
values, setting up 209, 210

task flow templates
about 141
About pages 144
Common Help 144
creating 142, 143
exception handling page 144
finalizers 144
initializers 144
multiple levels, creating 145
nesting 142
top-level elements 143
using 145

Task Overview and Edit (UC008)
implementation

about 178
code, checking 190
Libraries, obtaining 178
new files, versioning 190, 191
New Workspace, setting up 178
page fragments, creating 186
task flow, creating 184
UC008 subsystem, deploying 191, 192

taskOverviewEdit icon 186
task page

ADF components, placing on JSF page 47-
50

creating 46
database operations, adding 55, 56
Initial Tasks Page, running 50
refining 51-54
running, with database operations 56
running, with parameters 54

tasks 337
TasksImpl

about 153
EntityImpl class, superclass 151

Team Navigator pane
Team Members 113
Versioning 114
Work Items 114
Work Items, Active Work Item 114

team organization
application, building 91
application server administrator 91, 92
database 91, 92
data modelers 94
graphics designers 92
lead programmer 86, 87
Project manager 86
quality assurance 93
regular programmers 87
roles 85
software architect 86, 87
tester 93
test manager 93
usability experts 93
users 94

ternary operator 257
Test Configuration button 327
testDelete() method 223
TestNG

URL 214
Text property 291
tip layer 288
tools, gathering

about 95
collaboration 97
issue, tracking 96
source control 95, 96

TortoiseSVN
URL 129

trinidad-config.xml file 273

U
UiState bean 211
unit testing

ADF applications 215, 216
automating 226
example 221-224
logical delete, implementing 224
preparing for 216
re-testing 226

[367]

test case, adding 221
test data, separating 222
test methods 222-224

unit testing, preparing for
default testing, adding 217-220
test project, setting up 216, 217

unit tests
about 214
tools 214

use cases
Brief use case 62
Casual use case 62
Fully dressed use case 62

user interface test
about 227
activation, testing 238, 239
ADF tuning 239
automating 232-234
passivation, testing 238, 239
running 236
Selenium JUnit tests run, setting up 234,

235
Selenium server, starting 235
Selenium, using 227

users
application, mapping to organization 309-

312
application roles, assigning 312
application, running 313
inaccessible items, removing 313

V
value checking options, Selenium

assertElementPresent 237
assertValue 236
context menus, testing 237
verifyValue 237
waitForValue 237

value-set-size parameter 285
variables, JMeter

adf.ctrl-state 245
afrLoop 245
afrWindowId 245
javax.faces.ViewState 245
jsessionId 245

version control
about 128
Subversion software 129

View Links, ADF 15
View Objects, ADF

about 15
using 15

Virtual Private Database. See VPD
VisualSVN

URL 129
VPD 309

W
WBS 66
WBS, structure

automated build procedure 68
Business Logic packages 68
Coordination and project management 69
data model 67
development handbook 67
development workstation setup 67
entity objects for all tables 67
framework extension classes 67
graphical design 67
Integration packages 68
main application 68
prototyping 67
server setup 66
skinning and templates 68
System Integration Testing 68
technical design 66
Usability Testing 68

WEB-INF directory 109
WebLogic console 326
Wildcard Control Flow Rule 144
Work Breakdown Structure. See WBS
Working Sets 100
work items

active work item, setting 126
connecting, to repository 123
creating 124
finding 124, 125
linking 126
tagging 127
working with 124

[368]

database workspace 103
deploying 101
history 160
master workspace 103
subsystem workspaces 103
task names, determining 161

X
XDM application roles

Admin Staff 303
Event Responsible 303
Finance 303
Manager 303
Operations Staff 303

XdmTasksDefaultVO class 222
XdmTasks entity object 224
XLIFF 347
XML Localization Interface File Format. See

XLIFF

work organization
about 171
bounded task flows, creating 175
business components, creating 173
development sub-tasks 173
development tasks 172, 173
page fragments, creating 176
preconditions 171
preconditions, user requirements 171
task flows, reviewing 176
UI logic, implementing 177
UI test, defining 177
UI test, reviewing 177

workspaces
about 100, 160
application, partioning 100
common code workspace 101
common model workspace 102
Common UI Workspace 160
common user interface workspace 102
creating 161

Thank you for buying
Oracle ADF Enterprise Application

Development—Made Simple

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle SOA Suite 11g R1
Developer's Guide
ISBN: 978-1-849680-18-9 Paperback: 720 pages

Develop Service-Oriented Architecture Solutions with
the Oracle SOA Suite

1. A hands-on, best-practice guide to using and
applying the Oracle SOA Suite in the delivery
of real-world SOA applications

2. Detailed coverage of the Oracle Service Bus,
BPEL PM, Rules, Human Workflow, Event
Delivery Network, and Business Activity
Monitoring

3. Master the best way to use and combine
each of these different components in the
implementation of a SOA solution

Oracle Siebel CRM 8 Developer's
Handbook
ISBN: 978-1-84968-186-5 Paperback: 500 pages

A practical guide to configuring, automating, and
extending Siebel CRM applications

1. Use Siebel Tools to configure and automate
Siebel CRM applications

2. Understand the Siebel Repository and its object
types

3. Configure the Siebel CRM user interface –
applets, views, and screens

4. Configure the Siebel business layer – business
components and business objects

Please check www.PacktPub.com for information on our titles

Oracle Siebel CRM 8 Installation
and Management
ISBN: 978-1-849680-56-1 Paperback: 572 pages

Install, configure, and manage a robust Customer
Relationship Management system using Siebel CRM

1. Install and configure the Siebel CRM server
and client software on Microsoft Windows and
Linux

2. Support development environments and migrate
configurations with Application Deployment
Manager

3. Understand data security and manage user
accounts with LDAP

4. Manage multi-server and multi-language
environments

Getting Started with Oracle
BPM Suite 11gR1 – A Hands-On
Tutorial
ISBN: 978-1-849681-68-1 Paperback: 536 pages

Learn from the experts – teach yourself Oracle BPM
Suite 11g with an accelerated and hands-on learning
path brought to you by Oracle BPM Suite Product
Management team members

1. Offers an accelerated learning path for the
much-anticipated Oracle BPM Suite 11g release

2. Set the stage for your BPM learning experience
with a discussion into the evolution of BPM,
and a comprehensive overview of the Oracle
BPM Suite 11g Product Architecture

3. Discover BPMN 2.0 modeling, simulation, and
implementation

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:The ADF Proof of Concept
	The very brief ADF primer
	Enterprise architecture
	Front end
	Back end

	ADF architecture
	Entity Objects and associations
	View Objects and View Links
	Application modules
	The ADF user interface
	ADF Task Flows
	ADF pages and fragments

	The Proof of Concept
	What goes into a Proof of Concept?
	Does the technology work?
	How long does it take?
	The Proof of Concept deliverables

	Proof of Concept case study
	Use cases
	UC008 task overview and edit
	UC104 Person Task timeline

	Data model

	Getting started with JDeveloper
	The JDeveloper window and panels
	Setting JDeveloper preferences

	Proof of Concept ADF Business Components
	Database Connection
	Building Entity Objects for the Proof of Concept
	Building associations for the Proof of Concept
	Building view objects and view links for the Proof of Concept
	Creating view objects for value lists
	Creating a view object for tasks
	Building an application module for tasks
	Creating view objects for scheduling
	Building an application module for scheduling

	Proof of Concept ADF user interface
	Creating ADF task flows
	The tasks page
	Creating the tasks page
	Running the Initial Tasks Page
	Refining the Tasks Page
	Running the Tasks Page with parameters
	Adding database operations
	Running the tasks page with database operations

	Creating the scheduled tasks page
	Adding the Gantt component

	Navigation

	Summary

	Chapter 2:Estimating the Effort
	Gathering requirements
	Use cases
	User stories
	Non-functional requirements
	Requirements list
	Screen design

	Application architecture
	The Work Breakdown Structure

	Estimating the solution
	Top-down estimate
	Bottom-up estimate
	Three-point estimates
	Grouping: simple, normal, hard
	More input, better estimates

	Adding it all up: the final estimate
	Swings and roundabouts
	Calculating standard deviation for a task
	Calculating standard deviation for a project

	Sanity check
	From effort to calendar time
	Summary

	Chapter 3:Getting Organized
	Skills required
	ADF framework knowledge
	Object-oriented programming
	Java programming
	Database design and programming
	XML
	Web technologies
	Regular expressions
	Graphics design
	Usability
	Testing

	Organizing the team
	Project manager
	Software architect and lead programmer
	Regular programmers
	Building business components
	Building the user interface
	Skinning
	Templates
	Defining data validation
	Building support classes
	Building database stored procedures

	Build/configuration manager
	Database and application server administrator
	Graphics designers
	Usability experts
	Quality assurance, test manager, and tester
	Data modelers
	Users

	Gathering the tools
	Source control
	Bug/issue tracking
	Collaboration
	Shared documents
	Discussion forums
	Online chat

	Test and requirement management
	Automated build system

	Structuring workspaces, projects, and code
	Workspaces
	Common code workspace
	Common user interface workspace
	Common model workspace
	Database workspace
	Subsystem workspaces
	Master workspace

	Using projects
	Naming conventions
	General
	Java packages
	Database objects
	ADF elements
	File locations
	Test code

	Summary

	Chapter 4:Productive Teamwork
	The secret of productivity
	Integrate your tools
	The Oracle solution
	Team Navigator
	Chat

	Oracle Team Productivity Center
	Installing the server
	Installing the client
	Administration tasks
	Adding users and teams
	Connecting to a Jira repository
	Connecting to a Subversion repository
	Connecting to a chat server
	Disconnecting

	Getting started with work items
	Connecting to your work item repository
	Creating a work item

	Daily work with work items
	Finding work items
	Setting the active work item
	Linking work items
	Tagging work items

	Chatting with team members
	Saving and restoring context

	Version control
	The Subversion software
	Effective Subversion
	Logging on
	Initial load
	Working with Subversion
	Teamwork with Subversion
	Getting a new copy
	Getting other people's changes
	Automatic merge
	Handling conflicts
	Avoiding conflicts

	Subversion and Oracle Team Productivity Center together
	Summary

	Chapter 5:Prepare to Build
	Task flow templates
	Creating a task flow template
	Contents of your master task flow template
	Exception handling page
	Common Help or About pages
	Initializers and finalizers

	Creating several levels of templates

	Page templates
	Creating a page template
	Using layout containers
	Facet definitions
	Attributes

	Framework extension classes
	How Java classes are used in ADF
	Some Java required
	The place for framework extension classes
	Creating framework extension classes
	Using framework extension classes

	Packaging your Common Code
	Summary

	Chapter 6:Building the Enterprise Application
	Structuring your code
	Workspaces
	The workspace hierarchy
	Creating a workspace
	Working with ADF Libraries
	ADF Library workflow
	Using ADF Libraries

	Building the Common Model
	Creating the workspace
	Using framework extension classes
	Entity objects
	Generating primary keys
	Business rules
	User interface strings

	Common view objects
	Testing the Common Model
	Exporting an ADF Library

	Organizing the work
	Preconditions
	Development tasks
	Creating business components
	Building view objects, view links, and application module
	Implementing business logic
	Testing your business components

	Creating task flows
	Reviewing the task flows
	Creating the page fragments
	Implementing UI logic
	Defining the UI test
	Reviewing the UI test

	Implementing Task Overview and Edit (UC008)
	Setting up a new workspace
	Getting the libraries
	Creating business components
	Starting work
	Building the main view object
	Building the application module
	Testing your business components
	Checking in your code
	Finishing the tasks

	Creating the task flow
	Starting work
	Building the task flow

	Creating the page fragments
	Layout
	Data table
	Search panel
	Running the page
	OK and Cancel

	Checking in your code
	Deploying your UC008 subsystem

	Implementing person task timeline (UC104)
	Setting up a new workspace
	Getting the libraries
	Creating business components
	Creating view objects for scheduling
	Building the persons view object
	Building the tasks view object
	Building the master-detail link
	Building the MinMaxDate view object
	Building the application module
	Testing your business components
	Finishing the tasks

	Building the Task Flow
	Building the page
	Adding a Gantt chart component
	Defining start and end time
	Running the page

	Checking in your code
	Deploying your UC104 subsystem

	Building the master application
	Setting up the master workspace
	Getting the Libraries
	Create the master page
	Create the layout
	Adding the menu

	Creating a dynamic region
	Understanding the dynamic region
	Additional code for task flow switching
	Storing the selected task flow value
	Accessing the session bean from the backing bean
	Setting the task flow values
	Making the region re-draw itself

	Summary

	Chapter 7:Testing your Application
	Initial tests
	Working with JUnit
	What to test with JUnit
	A good unit test
	Unit testing ADF applications
	Preparing for unit testing
	Setting up a test project
	Adding default testing

	Real unit testing example
	Adding a test case
	Implementing the logical delete
	Re-testing

	Automating unit testing

	User interface tests
	Working with Selenium
	What to test with Selenium
	Installing Selenium
	A simple test with Selenium
	Automating user interface tests
	Setting up to run Selenium JUnit tests
	Starting the Selenium server
	Running the test

	Using Selenium effectively
	Value checking options
	Lazy content delivery
	Testing context menus
	Verifying item ID

	Testing passivation and activation

	Stress/performance tests
	Working with JMeter
	What to test with JMeter
	Installing and running JMeter
	A simple test with JMeter
	Setting up JMeter as a proxy
	Recording a session

	Post-processing a recorded session
	Adding a Cookie Manager
	Defining variables
	Extracting values
	Fixing the path and the parameters

	Running a recorded session

	The Oracle alternative
	Summary

	Chapter 8:Look and Feel
	Controlling the appearance
	Cascading Style Sheets basics
	Styling individual components
	Building a Style
	InlineStyle and ContentStyle

	Why does it look like that?
	Conditional formatting

	Skinning
	What should I skin?
	What can I skin?
	Skinning overview
	Starting a skin
	Creating a skin CSS file
	Creating the CSS file
	Style Classes
	Global Selector Aliases
	Faces Component Selectors
	Data Visualizations Component Selectors
	Finding the selector at runtime

	Providing images for your skin
	Changing the color scheme
	Creating a resource bundle for your skin
	Packaging the skin
	Using the skin

	Summary

	Chapter 9:Customizing the Functionality
	Why customization?
	How does an ADF customization work?
	Applying the customization layers
	Making an application customizable
	Developing the customization classes
	Building the classes
	Implementing the methods
	Deploying the customization classes

	Enabling seeded customization
	Linking the customization class to the application
	Configuring the customization layers

	Setting up JDeveloper for customization
	Making the customization class available to JDeveloper
	Selecting the customization role

	Performing the customization
	Customizing business components
	Customizing the pages
	Customizing strings
	What cannot be customized?

	Summary

	Chapter 10:Securing your ADF Application
	Security basics
	Authentication
	Authorization
	The Oracle security solution

	Security decisions
	Authentication
	Authorization
	Where to implement security

	Implementing ADF security
	Security model
	Authentication type
	Access grants
	Welcome page

	Application roles
	Implementing user interface security
	Implementing data security
	Defining protected operations
	Protecting an entity object
	Protecting an attribute

	Granting operations to roles

	Users and groups
	Mapping the application to the organization
	Example users and enterprise roles
	Assigning application roles
	Running the application
	Removing inaccessible items

	Summary

	Chapter 11:Package and Deliver
	What is in the package?
	The runnable application
	Database code
	Installation and operation instructions

	Preparing for deployment
	Cleaning up your code
	Database connections
	Test users and groups
	Other development artifacts

	Setting the application parameters for production use
	Application module tuning
	Controlling database locking
	Tuning your ADF application

	Setting up the application server
	Installing the ADF Libraries
	Setting up your domain
	Creating a DataSource on the server

	Deploying the application
	Direct deployment
	Creating an application server connection
	Deploying your application directly

	File deployment through the console
	Creating the EAR file
	Deploying the EAR file

	Scripting the build process
	Creating a build task
	Moving your task to the test/integration server
	Adding a Checkout
	Adding the database
	More scripting
	Automation

	Summary

	Appendix:Internationalization
	Automatic internationalization
	How localizable strings are stored
	Defining localizable strings
	Performing the translation
	Running your localized application
	Testing the localized business components
	Testing the localized user interface

	Localizing formats
	More internationalization
	Summary

	Index

