
www.allitebooks.com

http://www.allitebooks.org

Oracle Database 11g–
Underground Advice for
Database Administrators
Beyond the basics

A real-world DBA survival guide for Oracle 11g
database implementations

April C. Sims

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle Database 11g—Underground Advice for
Database Administrators
Beyond the basics

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2010

Production Reference: 1010410

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-00-4

www.packtpub.com

Cover Image by Tina Negus (tina_manthorpe@sky.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
April C. Sims

Reviewers
Philip Rice

Charles Schultz

Lei Zeng

Acquisition Editor
James Lumsden

Development Editor
Dhwani Devater

Technical Editors
Akash Johari

Pallavi Kachare

Ajay Shanker

Copy Editor
Lakshmi Menon

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Jovita Pinto

Indexer
Hemangini Bari

Graphics
Geetanjali Sawant

Proofreader
Aaron Nash

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the author

April C. Sims, after many career changes, has finally found a field that inspires,
frustrates, and enthralls her at the same time—administering Oracle Databases. A
previous career as a teacher lead her to continue teaching others about Oracle, as she
considers the first year as a DBA to be the most critical. April is an Oracle Certified
Professional 8i, 9i, and 10g with an MBA from the University of Texas at Dallas. She
is an active technical presenter at regional Oracle Events, IOUG COLLABORATE,
and Oracle OpenWorld.

She is a lead DBA at Southern Utah University, a 4 year regional university based
in Cedar City, UT. Also known as Festival City, USA, it is home to 17 major events,
including the Utah Summer Games and the Utah Shakespearean Festival. It is a
beautiful place surrounded by National Parks.

April is also a Contributing Editor for IOUG "SELECT" Journal, which is a quarterly
technical magazine for the Independent Oracle Users Group. She is also a contributor
to ORACLE SECURITY Step-by-Step A Survival Guide for Oracle Security Version 1.0 by
SANS Press, 2003.

I want to thank the most inspiring person that I have ever met
during my Oracle career—my boss Jeanette Ormond. A big thanks
to John Kanagaraj and IOUG SELECT for getting me started on
my publishing career. Thanks to my Mom, Dad, and the rest of the
huge family as part of my upbringing. They were responsible for the
competitive spirit and stick-to-it nature that allowed me to finish this
book. Thanks to my husband Loyd for the nights spent in front of
the computer instead of cooking dinner. Thanks to everyone at Packt
Publishing and especially the team of technical reviewers who did
their best to keep me from making a fool out of myself.

www.allitebooks.com

http://www.allitebooks.org

About the reviewers

Philip Rice has been in the computer field since 1980 and began working
with Oracle in 1991. He is now an Oracle DBA for campus enterprise systems
at the University of California Santa Cruz, where the school mascot is a banana
slug. Philip has done presentations on the RMAN topic for User Groups at regional
and national levels.

Charles Schultz has worked at the University of Illinois since 1998 as an
Oracle Database Administrator supporting various central administration services,
including the University-wide ERP, where he specializes in rooting out performance
issues. While Charles's main focus is on Oracle, he has dabbled in Sybase, MySQL,
and MS SQL Server. Charles values the rich resources of the user community and
teaches Oracle classes at a community college.

When not logged into a server, Charles can be found on a volleyball court, eating up
a Sci-fi book, playing with his family, or engaging the community on social issues,
and he has been known to be up in the wee hours playing video games.

www.allitebooks.com

http://www.allitebooks.org

Lei Zeng is a seasoned DBA with over ten years of hands-on experience in Oracle
database management and administration on various platforms. She has worked
with many mission-critical databases, including both OLTP databases and data
warehouses up to terabytes. She is an OCP in Oracle 8i, 9i, 10g, 11g, and also a
certified system administrator on HP-UX, Sun Solaris platforms. She has special
interests in areas such as RAC, Data Guard, Stream, database upgrade, migration,
and performance tuning. For the recent years, Lei has become an active contributor
to IOUG's SELECT journal. Currently, she works for Yahoo! and can be reached at
aleizeng2003@yahoo.com.

I would like to thank the author, April C. Sims, who worked
diligently on this book to present it to the Oracle DBA community.
This book provides wonderful guidance which will ensure a more
successful DBA career.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: When to Step Away from the Keyboard	 9

Protecting and defending	 9
Choosing your tools	 11

Graphic-based, command-line Oracle tools and usage	 12
Staying away from dinosaurs	 14
Insisting on help	 14
What does a DBA do all day?	 15

Prioritizing tasks—daily, weekly, monthly, quarterly, or yearly	 16
SLAs: Why isn't the database down anymore?	 18
Avoiding major blunders	 19
Summary	 21

Chapter 2: Maintaining Oracle Standards	 23
Adapting to constant change	 23

Database concepts	 24
Multiple ORACLE_HOME(s)	 24

Keeping the environment clean	 25
Oracle's Optimal Flexible Architecture (OFA)	 26

11g differences in the OFA standard	 27
XWINDOWS and GUI displays	 28

Automating day-to-day tasks	 28
DBMS_SCHEDULER	 29
OS cron utility executing a scheduled task on a Unix server	 30
OEM Console plus the Intelligent Agent	 31

11g Diagnosability Framework 	 32
Advisors and checkers	 33

Missing temp file resolution 	 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Environmental variables and scripting	 39
Guidelines for scripting	 40

Separating the configuration file	 40
Separating the variable part of the script into its own configuration file	 44
Don't hardcode values; reference a configuration file and password file at runtime	 45
Putting variables at the top of the script with curly braces 	 47
Moving functions to a centralized file to be reused	 47
Validating the use of the script 	 48
Using SQL to generate code	 48
Helpful Unix commands	 51

Reducing operating system differences with common tools	 52
Configuration management, release management, and change control	 53

Configuration management	 53
Using OCM in disconnected mode with masking	 54
Mass deployment utility	 55

Release management	 56
DBA issues with patching	 58
Applying a patch without integrating MOS with OCM	 60
Using the new patch plan functionality with OCM installed and uploaded to MOS	 60
Change control	 61

Where, when, and who to call for help	 62
My Oracle Support	 63
Documentation library	 64

Summary	 67
Chapter 3: Tracking the Bits and Bytes	 69

Dump block	 70
Demonstration of data travel path	 73

Location of trace files 	 74
Running dump block SQL statements	 75
Identifying files and blocks	 78
Tracking the SCN through trace files	 80

Oracle's RDBMS Log Miner utility	 84
Turn on archivelog mode 	 86
Add supplemental logging	 89

Identification key logging	 89
Table-level supplemental logging	 89

Flash(back) Recovery Area (FRA)	 90
Automatic Undo Management (AUM)	 92

Identifying data in undo segments by flashing back to timestamp	 92
When to use Log Miner	 94

Identifying the data needed to restore	 95
SCN, timestamp, or log sequence number	 95
Pseudo column ORA_ROWSCN	 96
Flashback Transaction Query and Backout	 96

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Enabling flashback logs	 97
Flashback Table	 98
Flashback Transaction Query with pseudo columns	 100
Flashback Transaction Backout	 100

Using strings to remove binary components	 101
Summary	 103

Chapter 4: Achieving Maximum Uptime 	 105
Maximum Availability Architecture (MAA)	 106

Downtime—planned or unplanned	 107
MAA with commodity hardware: Case study	 109

Optimizing Oracle Database High Availability	 111
To archive or not to archive, you pick the mode	 112

Multiple archive destinations	 113
Moving the archive destination in an emergency	 114
Using a different disk device or disk mount	 114
Monitoring all hard drive space and Archivelog space	 114

Database compatibility parameter with spfile, pfile management	 115
Dealing with storage—RAID, SAME, ASM, and OMF	 118

RAID—Redundant Arrays of Inexpensive Disks	 119
SAME—Stripe and Mirror Everything	 119
ASM—Automatic Storage Management	 120

Mirrored files—control files and online redo logs	 122
Autoextending data files	 124
Auditing, log files, and max dump file size	 125

What is currently being audited?	 126
Auditing Session Activity	 128
Other logs to monitor	 130

Data dictionary healthcheck	 131
SQL*Net hardening, tuning, and troubleshooting	 132

Troubleshooting	 135
What can go wrong?	 136

Grid Control High Availability and Disaster Recovery	 137
Recommended installation for GC 10.2.0.5+	 138

Why should I install a separate database?	 139
Cookbook for silent install and configuring later	 139
Migrating GC repositories	 142
Transportable tablespace migrations	 142

Keeping the repository highly available	 143
Repository backups, restores, or imports	 144
MAA—repository on a physical standby database	 145
OMS and agents' high availability	 146

Cloning Management agents	 146
GC at a very large site	 147

Summary	 148

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 5: Data Guard and Flashback 	 149
Physical, snapshot, and logical standbys	 151

Physical standby database	 152
Snapshot standby database 	 152
Logical standby database	 153
Commodity hardware and mixed environments	 154
What is Data Guard broker?	 155

What controls the Data Guard broker?	 155
Which tool is best?	 156

Start with the default configuration—maximum performance	 158
Utilizing multiple standby sites	 159
Protection modes and real-time apply	 160

Maximum performance (default)	 161
Maximum performance recommendations	 161
Maximum availability	 163
Maximum availability recommendations	 163
Maximum protection and recommendations	 164

Database states	 164
Manual failover with physical standby	 165
Manual failover with DGMGRL	 167
Flashback and guaranteed restore points	 167
Possible testing/recovery scenarios for Flashback and Data Guard	 168
Lost-write detection using a physical standby database 	 169

Corruption, patch reversal, upgrades, or testing scenarios 	 170
Reinstate failed primary scenario	 173
Troubleshooting the logical standby	 174
Options for resolving errors that stop the SQL Apply process	 176
How to skip a single transaction	 177

Active Data Guard and RMAN	 178
Other Data Guard notes and features	 179

Summary	 180
Chapter 6: Extended RMAN	 183

Recovery goals determine backup configuration	 184
Backup types and the default configuration	 186

Backup incremental levels	 186
Full backup	 187
Logical backup	 188
Oracle's suggested backup: What is missing?	 188

Controlfiles—an important part of backup and recovery	 191
How often should backups occur?	 191

Default configuration details	 192
Oracle's recommended backup strategy	 196

Issues with incremental merge backups	 196

Table of Contents

[�]

Restore and recovery comparison	 197
Recommendations for Incremental Merge backup	 197
Calculating the FRA disk space needed	 198

Catalog versus controlfile RMAN recordkeeping and retention policies	 199
RMAN stored script and substitution variables	 199

Retention policies: Recovery window or redundancy?	 201
Not needed (OBSOLETE) versus not found (EXPIRED)	 202
What if I want to keep certain backups?	 204

Corruption detection	 204
Physical corruption	 204
Logical corruption	 206

Commands and utilities that detect corruption	 206
Which utility should be used?	 208
What should I do if corruption is detected?	 209

Data Recovery Adviser	 210
What does RMAN backup, restore, and recover?	 212

Possible interruptions to the recovery process	 214
What doesn't RMAN backup, restore, and recover?	 214

Online redo: Key to consistency	 215
User-managed backups	 217

What do I do before starting a restore and recovery?	 218
Find the most recent controlfile backup	 220

Simplified recovery through resetlogs	 225
RMAN cloning and standbys—physical, snapshot, or logical	 226

Clones, DBIDs, and incarnations	 227
Creating a cloned database	 227
Post-cloning tasks	 229
Creating a standby database	 229

Physical standby	 230
Scheduled maintenance/cataloging of archivelogs	 231
Rolling forward a standby using incremental	 231
Rolling incremental for monthly updates to data warehouses	 232

The DBMS_BACKUP_RESTORE package	 232
Summary	 232

Chapter 7: Migrating to 11g: A Step-Ordered Approach	 235
Oracle net services	 238
Client compatibility (SQL*Net, JDBC, ODBC)	 239
RMAN binary, virtual/catalog, and database	 240
Grid Control—database repository and agents	 241
ASM, CFS, and RDBMS within an Oracle Grid infrastructure	 242
Recommended order of migration	 243

Table of Contents

[vi]

Installation of major versions, maintenance releases, and patches 	 244
Release installation	 245
PatchSet installation—cloned ORACLE_HOME	 246

Database upgrade methods	 248
How long does the database upgrade take?	 249
Database Upgrade Assistant (DBUA)	 250

RMAN	 251
Using RMAN as part of a manual upgrade process	 251

Downgrading with RMAN	 256
Transportable Tablespaces (TTS)	 257

Preparatory steps for TTS migrations	 257
Using TTS for upgrades	 259
TTS cookbook	 259
Recreating an unrecoverable database with TTS	 261
Using TTS to add skipped read-only tablespaces during duplication	 261
Using TTS to merge two ASM databases into one	 262
Sharing read-only tablespaces between different databases with TTS	 264
Cross-platform migrations with a transportable database	 267
Physical and/or snapshot standbys	 268

Failing back to original version	 269
Transient logical standby: Rolling upgrades with minimal downtime	 270
Export/import or data pump migration	 272
Character set selection—UTF8	 278

Post-11g upgrade tasks	 280
Summary	 282

Chapter 8: 11g Tuning Tools	 283
Hardware load testing and forecasting	 284

Orion—Oracle I/O numbers calibration tool	 287
Calibrate I/O	 289
jMeter	 290

Monitoring hidden or underlying problems	 290
Proactive monitoring	 291
Automatic Diagnostic Database Monitor (ADDM)	 292
Automatic Workload Repository	 295
Active Session History (ASH)	 296
SQL Advisors	 297
STATSPACK 	 298

Reactive diagnostic and tracing tools	 299

Table of Contents

[vii]

Bind peeking and Adaptive Cursor Sharing	 300
Gathering statistics	 301

Comparing statistics	 304
Restoring statistics history	 304
Knowing what needs to be tuned	 305
Tuning a single query	 306

SQL Plan Management (SPM)	 307
SQL Management Base	 308
Tracing and diagnostic events	 308

What is an event ?	 308
When should I set an event?	 309
What are the different event levels?	 309

Specific Trace events for performance problems	 309
Interpreting the resulting Event Trace file	 310

Upgrading the Optimizer	 311
Capturing and backing up execution plans and statistics	 312
SQL Tuning Sets	 312
Stored Outlines	 313
Capturing and backing up Optimizer Statistics	 313
Upgrade the database to 11g	 315
Capturing new execution plans and new statistics	 318
Evolving or verifying new plans that execute better than the 10g versions	 318

Summary	 319
Index	 321

Preface
Oracle Corporation has become one of the largest software companies in the world
with its premier Relational Database Management System known as Oracle. Larry
Ellison, the current CEO, founded the company back in the 1970s. The growth
of technology over the last twenty years also fueled the implementation of large
databases to maintain control of the explosive growth of data. Through many
technical advances and superior design, Oracle rose to the top when companies
were choosing the database technology for their enterprise systems.

The role of the Database Administrator (DBA) includes certain key
responsibilities—disaster recovery, database architecture and design, as well
as performance tuning. Specific tasks also include new installations, security
administration, and proactively monitoring all systems at several levels. Because of
the great responsibility associated with being a DBA, a concerted effort is required
to integrate a constant stream of new knowledge within a locally customized
environment. While the documentation and training classes provide some
benefit for the basics, it is the advice that comes from experience that lays the
real foundation for a career.

DBAs must work closely with other IT members to maintain a high level of
dependability for enterprise applications that run on Oracle, often outlined in an
official Service Level Agreement. That is what this book is all about—integrating
old knowledge with new ideas, while interacting with all levels of expertise within
the Oracle Enterprise.

Preface

[�]

What this book covers
Chapter 1, When to Step Away from the Keyboard, answers the question "What does
a DBA do all day?" It contains a comprehensive list of prioritized tasks that the
average DBA is responsible for. A common theme throughout the book is introduced
in this chapter: Tools should be extensible, flexible, and ubiquitous. Included in this
chapter is a list of commonly seen mistakes that can be easily avoided by adopting
recommended practices. Emphasis is placed on the attitude and philosophy that a
DBA should have while doing their job as a valuable team member.

Chapter 2, Maintaining Oracle Standards, discusses "standards" such as Oracle's
Optimal Flexible Architecture, Unix shell scripting, code and configuration basics.
This is meant to provide a solid foundation designed to reduce future maintenance.
This is where your dedication to detail comes into play, as it takes work to enforce
standards, especially when the personnel in your department change. A DBA
should be comfortable with the fact that a migration to the next patch set, version,
or hardware replacement will always be in progress. This requires multiple Oracle
Homes with completely separate environments that can be easily switched; this
chapter outlines how to accomplish this goal. The new 11g Automatic Diagnostic
Repository features, for diagnosing and repairing certain types of failures, will be
outlined in the chapter as well.

Chapter 3, Tracking the Bits and Bytes, covers how data moves from one database
component to the next; the mechanics or essential architectural infrastructure at
the block level; what the data in a datafile, redo, undo, or archivelog actually looks
like; and how the database keeps up with SCN changes. Dumping database blocks
provides the raw hexadecimal values that convert to the characters that the end
user sees at the application level. Other utilities such as LogMiner can be used to
access information from certain database components, as well as the very basic Unix
command strings. These essential concepts will provide you with the confidence that
you can survive any disaster that you may have to tackle. Corruption prevention and
detection is covered because this is one of the real tests for excelling at your job. No
one really wants to have to fix corruption when it happens, because the data
becomes unrecoverable fast.

Chapter 4, Achieving Maximum Uptime, covers redundancy at all levels: hardware,
software, databases, ASM, SAN(s), and load balancers. Databases become
redundant with Data Guard and RAC. This chapter offers an introduction to
network and SQL*Net tuning for all types of implementations. Achieve the smallest
outage windows by moving to rolling upgrades, ensuring there is some sort of
backup plan for important personnel as well as documenting configurations with
Oracle Configuration Manager. There are always single points of failure in every
organization; identifying them is the first step on the path to a fully documented
disaster recovery plan.

Preface

[�]

Chapter 5, Data Guard and Flashback, explains that the combination of Oracle's
Flashback and Data Guard makes recovery scenarios, stress testing, and hot fix
patching on a physical standby possible by making the database read and write
temporarily. Using both Data Guard and Flashback in tandem can reduce or
eliminate downtime for the primary database in certain types of recovery situations.
It may reduce or eliminate the need for duplication of hardware for testing
purposes. Several scenarios are outlined in detail, along with recommendations
for implementations that fulfill disaster recovery goals.

Chapter 6, Extended RMAN, covers the essential tool for DBAs—RMAN, which is just
complicated enough to warrant its own chapter. In this chapter, we will provide the
foundations for writing your own scripts to get you started using this utility today.
While the previous standard backups consisted of either a basic cold or hot version,
RMAN does that and also adds even more flexibility when automating backup (and
even recovery) routines. RMAN is the basic utility behind several types of disaster
recovery and migration tasks such as: Creating Physical and Logical Standby(s).
You can restore between different versions and migrate to new hardware using
Transportable Tablespaces. RMAN is also involved with 11g's ADR Detected
Failure Repairs, as well as duplication across the network (both local and remote).

Chapter 7, Migrating to 11g: A Step-Ordered Approach, talks about how migrating to a
newer Oracle Database version doesn't have to be confined to a single outage period.
Several interim steps can be done ahead of time to certain compatible components,
saving valuable time. In a general sense, Oracle is backwards compatible for making
that transition from an earlier version to a later one. The following components can
be upgraded while still remaining compatible with earlier versions of Oracle:

•	 Oracle Net Services
•	 Clients
•	 RMAN binary, Virtual Private, and Normal Catalog Database
•	 Grid Control Repository Database
•	 Grid Control Management Agents
•	 Automatic Storage Management and Clusterware

This is an essential guide for upgrading to 11g using a multiple home environment:
Cloning Oracle homes, Oracle Universal Installer (interactive, silent, and suppressed
modes), RMAN catalog, and SQL Net. All of the options for performing upgrades are
touched on in this book: DBUA, Manual Method, Export/Import, Data pump, TTS,
RMAN, Physical Standbys, and the newer Transient Logical Standby.

Preface

[�]

Chapter 8, 11g Tuning Tools, covers ORION,������� ����������������������������� TRCANLZR,�������������������������� and Statspack utilities.
While it is easy to show someone how to use a tool, it takes experience to correctly
interpret the results you get. This chapter will also cover different free-source,
load-testing tools for forecasting trends of CPU utilization and I/O; in other words
predicting the approximate time to purchase new hardware before the end user
experiences degraded performance. 11g features such as SQL Plan Management
will be covered along with Oracle's own Enterprise Manager tuning tools. A large
portion of this chapter is dedicated to the migration path for upgrading the query
optimizer using SQL Plan Management from 10g to 11g. Start a new paragraph from
here, you might still be overwhelmed with all of the work set before you, and that's
is why you've bought this book in the first place. This is a book you will keep for a
long time, referring back again and again for each new project. It will be especially
handy to show management when they start altering your job description. It is our
hope that this is only a starting place for your career as a DBA and that by reading
this book, you will share the knowledge with your peers as an active participant in
Oracle User Groups.

What you need for this book
It would be helpful if you have some knowledge of SQL and are comfortable with
the Unix operating system, but this is not absolutely essential. For those new to these
technologies, keep the documentation nearby to use as a reference. This book is
written for the Unix operating system, but you may only have access to a Windows
operating system such as a desktop for testing purposes. There are tools, such
as Cygwin (for Windows), which enable many of the same operating system
commands to work on both Unix and Windows.

This book focuses on 11g Release 2 version with a reference to general Unix operating
system commands. Previous versions of Oracle are also referenced when it applies to
migration or upgrading to 11g as the topic. The Oracle Database Installation Guide for
the version you are installing will have the prerequisite hardware requirements. The
best place to start for the latest documentation and Oracle software downloads is the
Oracle Technology Network (OTN) website: http://otn.oracle.com.

Who this book is for
This is for you if you find yourself in charge of an Oracle Database (understanding
the full responsibility that goes with such a position), but are unsure of what
tasks you need to perform. It can be easy to feel overwhelmed, so this reference is
designed as a sanity check, whether you are a single employee or the DBA manager
of several employees, or whether you are taking over an existing position or taking
up a newly created one.

Preface

[�]

You are a person that wants to be proactively preventing disasters instead of simply
keeping ahead of the next problem. In doing so, you'll help counter one of the major
causes of professional burnout. This book is meant to make your technical transition
to a DBA career easier and more efficient while educating you on how to reduce
some of the most common mistakes.

You may be someone who needs guidance for migrating to 11g or implementing
Oracle's Maximum Availability Architecture. This book is also meant to map out
the migration options available when purchasing new hardware, giving you the
opportunity to change the way your Oracle software is implemented, and to make
it more Optimal Flexible Architecture compliant. This book will be useful when
you are assigned the responsibility of making any sort of change in your Oracle
environment—installations, migrations, upgrades, as well as patching. Take a few
moments to read through the recommendations and suggestions for automating the
maintenance tasks required for your applications to make them more redundant,
flexible, and tolerant of future changes.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

run {

SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO ‘/
backuplocation/%F';

restore controlfile from autobackup;

alter database mount;

}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

www.allitebooks.com

http://www.allitebooks.org

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail to suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/0004_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

When to Step Away from
the Keyboard

Once, while attending an Oracle conference, I overheard a heated cell phone
conversation with the phrase "Step away from the keyboard!" Things were not
going well back at their office: the backup Database Administrator (DBA) was
attempting to fix a problem and there was a debate about what to do next. The
database was down and the less-experienced DBA was attempting to bring it up
without investigating why it was down in the first place. Just taking an extra minute
to look at the database alert log before attempting to bring up the database might
prevent the need to do a time-intensive restore process from a backup. In this
chapter, we shall take on the philosophy as well as the motivation behind the
DBA's role in the Enterprise, which can make or break a technical career.

A DBA will not know exactly how to fix every problem or issue that arises, but they
should be well-versed in the tools available for diagnosing and eventual resolution.
Attention to detail while not losing sight of the big picture is an important attribute
to have. Focusing too much on the smaller, less essential items would be a waste
of valuable time. All tasks and accomplishments should be centered on improving
service to the client, so it makes sense that maximizing availability is a primary
objective for a DBA. This chapter also includes a list of tips to avoid making a
major blunder or a possible career-ending mistake such as the example above.

Protecting and defending
The story above shows that protecting the database is considered one of the ongoing
responsibilities of a DBA. So, how does one accomplish this goal? You do it with the
right knowledge and tools. At the same time you can't make everyone else an enemy
while staunchly protecting the database. There are security decisions that you will
have to stick to, but you should try not to stand in the way of getting the work done.
It is a position of respect that you are striving for, not a position based on fear.

When to Step Away from the Keyboard

[10]

How does one gain this knowledge? Obviously, one of the first answers is to
read the supplied documentation, but that isn't enough. Other less obvious
ways are interacting with your peers at conferences, joining Oracle User Groups,
conversations with other DBAs, office meetings with IT personnel, writing papers
and giving presentations, interacting with technical support sites, and e-mailing lists.
Try gathering information about a particular issue or problem from as many sources
as possible before implementing a possible solution. Always take advice with a pinch
of salt (including this book). You will be able to make a better and more informed
decision by doing as much research and using as many resources as possible.

With that being said, acquiring information is only one of the initial steps to
resolving a problem. These investigate different scenarios, as there will usually be
more than one approach to fix a complex issue or problem. It is only by working
through an issue with hands-on experience that a DBA gains the confidence along
with the ability to survive a production-crisis situation. To accomplish this,
you need adequate resources, such as the correct hardware, software, and most
importantly, scheduled time to do a practice run through various scenarios.

A DBA needs a box that no one else is dependent on so that they can create and
destroy databases at will. Adequate hardware for testing purposes is almost as
important as the production hardware for database administration. The software
side is significant as well and requires much more work to keep up with all the
technological and security updates. Change is constant in the software industry. You
will always be migrating to the next software version (Oracle software or operating
system), patch set, Critical Patch Update (CPU), Patch Set Updates (PSU), one-off
patch, or hardware replacements.

One of the questions most frequently asked by DBA managers is: what type
of person should I hire to be the DBA? This usually means they weren't happy
with the previous candidates. To be good at the job takes a tough but not mean
attitude, getting it just right, and paying careful attention to the smallest of details
without losing sight of the big picture. You must know everything about the Oracle
software and if you are not able to find someone who does, step out of the office,
communicate with other IT professionals, and pass on the information you learn to
others who need help as well. Teaching someone else is the best test to see if you
really know it well. Above all, don't be afraid to do the right thing when it comes to
database security and privacy issues—in most situations, a DBA is all powerful, but
needs a certain amount of self-restraint.

Chapter 1

[11]

This book assumes that you could be any type of DBA, working on a single, small
database, right up to many large databases. A Very Large Database (known as
VLDB) will take several DBAs to run, so teamwork is important. Don't be surprised,
as the newcomer, if you are relegated to minor duties for several years. Also, don't
assume that if your database is not large, its tuning isn't as important: Oracle
Maximum Availability Architecture (MAA) and Optimal Flexible Architecture
(OFA) standards will apply to all Oracle customers, not just VLDBs. Both MAA
and OFA are discussed later in this book.

There are general practitioners (GPs) who perform routine health exams and
treat common, everyday problems such as the flu or a muscle strain. You go to a
specialist when the GP has reached his or her limit of expertise. If your organization
is large, then there will be an opportunity for you to become a specialist as you gain
experience. For now you should become familiar with all aspects of the database as
a generalist DBA. Don't ignore or discount certain areas of database administration
as being unimportant; if you are responsible for this database, then all areas will be
important. Your customers will often see their requirements as more important than
yours, so adapting to meet everyone's needs will require flexibility on your part.

Choosing your tools
Your tools should be extensible, flexible, and ubiquitous. Now that you have
some knowledge, what tools are needed? As you go through these chapters, there
will be mention of what tools are available time and again. Reasons for choosing
a certain tool will be provided: make your decisions based on availability, cost,
and adaptation to your particular need or environment, and personal preferences.
Be open and willing to change to a new tool because it may just make you more
efficient. Don't let the flashy software with high price tags and marketing hype
influence purchasing decisions. There are a lot of great open source tools that are
available, which may require a little more investment in time to configure, install, or
maintain, but which are well worth it. You will only be as good as the tools you pick
for this job. It is time to pick the programs you will become best at—command line or
GUI-based or command line-based Unix scripting in combination with SQL*Plus are
excellent for manipulating both the database and operating system for almost any
task that needs to be done. Graphic-based tools have their place, but there will be
times that you will need to revert to command-line versions of those tools, especially
for troubleshooting. Proficiency will be the only way to be effective, efficient (across
the enterprise) and ubiquitous—common among all of the systems or databases you
will have to administer.

When to Step Away from the Keyboard

[12]

Graphic-based, command-line Oracle tools
and usage
Oracle Enterprise Manager (OEM—database control) is for a single database,
and the Grid Control version of OEM is for the enterprise-deployed tool. The
browser-based GUI tool has links to almost all of the other tools in this section of the
chapter, and OEM database control has command-line equivalent emca and emctl
with limited functionality for specific tasks. You can migrate from database control
to grid control with the db2gc command-line utility.

These are all of the graphic-based, command-line Oracle tools:

Database Configuration Assistant (DBCA): This is used for database
creation, templates, and installing/uninstalling database options. It can use a
utility to create scripts that can be saved to the OS, edited, and run manually
for database creation. It has no real command-line equivalent.
Oracle Universal Installer (OUI): This is used for the installation of Oracle
software and options. Its command-line equivalent would be to use the
installer in silent mode with a text-based input file.
Oracle Wallet Manager (OWM): This stores SSL credentials for database
access and also for the Oracle Advanced Security Option. The command-line
equivalent is orapki.
Network Configuration Assistant (NETCA): There isn't a command-line
version of all the features of this utility. Most often the DBA edits the resulting
network configuration files directly. The command-line equivalent to the
Listener subcomponent of this utility is lsnrctl.
Recovery Manager (RMAN): This is the backup and recovery tool for Oracle
databases. The GUI-based version is found in OEM. The command-line
equivalent is rman.
DATA GUARD: This is the utility for configuring standby databases. The
command-line equivalent is dgmgrl. SQL*Plus can also be used to configure
standbys without the GUI screens found in OEM.
Database Upgrade Assistant (DBUA): This is the utility for changing a
database from one version to another; it will have specific compatibility
requirements, and can do all commands manually using SQL*Plus and
OS commands.
Database NEWID command-line utility (nid): This has no GUI equivalent,
and functionality can be duplicated (with more work) using SQL*Plus
commands, orapwd, and OS commands.

•

•

•

•

•

•

•

•

Chapter 1

[13]

EXPORT/IMPORT and DATA PUMP (exp, imp, expdp, impdp):
This is the logical backup of all database objects, and command-line tools
with no graphic-based equivalent.
SQL*Plus, OEM GUI-based SQL worksheet: sqlplus is the command-line
equivalent. This is the workhorse of the DBA. Most commands within the
GUI OEM console can also be done using SQL*Plus.
SQL*Loader (sqlldr): This is just a command-line utility for inputting
correctly-formatted data into a database.
Automatic Storage Management (ASM): This is tightly coupled and
managed with specific OS commands. It depends on the deployment
method, and is controlled by the asmcmd command-line utility.
Oracle Environment (oraenv and coraenv depending on Unix shell):
These are the command-line utilities for configuring Oracle Environmental
variables, and they work on entries located in the oratab file.
Character Set Scanner (csscan): This is the command-line utility for
character set conversions.
Oracle Internet Directory Configuration Assistant (oidca): This is the
command-line utility for Oracle's version of the LDAP directory. There are
several LDAP-specific command-line utilities for use with Oracle that all
start with ldap.
TKProf: This is a command-line executable (tkprof) that parses Oracle trace
files to produce a human-readable output.
Workload Replay and Capture (wrc): This is the command-line utility as an
extra-option license for extensive application testing.
Automatic Diagnostic Repository Control Interface (adrci): This is the
command-line utility for tracing, diagnostic packaging, and logging output
for most of the utilities in this list. It is meant to be run in a single location for
all Oracle products installed on a single server.
Trace Route Utility (trcroute): This is for checking network connectivity
between servers.

How to enable Java code tracing for DBUA, DBCA, and
NETCA. [ID 428118.1]

For Unix shell scripting, install the open source terminal emulator Cygwin on the
Windows systems, otherwise you will have to learn Windows scripting. But why
learn two languages? Standardize across the enterprise because it is only a matter of
time before you will be taking on new applications and databases, as the business
needs change for your organization.

•

•

•

•

•

•

•

•

•

•

•

When to Step Away from the Keyboard

[14]

Staying away from dinosaurs
What is a dinosaur? It is someone who is stuck in their ways and too comfortable
where they are to move (change things). You can spot a dinosaur if the answers to
the following questions are positive.

Do they only stay in their office, cubicle, or work area and rarely show up to
meetings with other human beings?
Are their questions and answers short, curt, and rarely reveal what really
happened when things went awry?
Do people wonder what they do all day?
Do they go to conferences without any business cards to pass around?
Do they just linger on technical e-mails, discussion lists, or forums?

Now that you know how to spot a dinosaur, the reasons for avoiding them may not
be obvious. It is the sign of an insecure, cloistered individual who refuses to change
because of fear of the unknown. Realize that there is no real way to know everything
about Oracle and that you will need to be open and willing to change in order to
keep ahead of the steep learning curve ahead of you.

Insisting on help
It is normal that you might be a bit overwhelmed as a new DBA for your first year.
If this situation extends for much longer than that, then something is wrong and it
is obviously time to ask for long-term help. This situation is especially true if you
are the only DBA or the first Oracle DBA in your organization. Help can come in the
form of changing your phone number to non-published within your organization,
changing who you directly answer to, or adding another DBA (on-site, remote,
or temporary consultant). Compare and evaluate the regular tasks you perform
with other DBAs. It doesn't matter if you are only a backup or junior DBA at this
point, it is the best time to learn these valuable concepts and still be protected from
disrupting the production environment. Everyone wants you to succeed as a DBA
because it is a position with a huge amount of responsibility, long hours, and it
requires ongoing training to stay competent.

Are you barely able to answer requests as they pour in? Ask that those requests
be filtered or first reviewed by a front-line tech support personnel. The exception
would be if that is your job—a front-line DBA to serve as part of a tech support
organization. On a side note, third-party vendors will put tech people in support
positions who give DBA-like advice, but be very wary as they often have little to no
actual experience. Remember, a lot of technical helpers only play with databases all
day. They don't actually have to manage a live production one with your critical data
in it. Learn to say no to these individuals.

•

•

•

•

•

Chapter 1

[15]

A DBA is most often placed underneath the head of IT (most often the CIO) because
the database is often central to the entire IT department. If you are one of the many
DBAs, your organization will most often have an immediate DBA supervisor that
you will answer to first, before the head of IT.

The DBA is not the sole source for any issue related to Oracle, especially if your
entire IT department is new to Oracle. Their job is not to train everyone on the
basics of Oracle—they don't have the time and probably aren't the best people for
that job. Most DBAs don't have the experience of teaching others; they are usually
best in a one-on-one situation training a backup or junior DBA. They also shouldn't
be subjected to the whims of upper management when there is a technical issue that
can't be resolved by the standard front-line personnel, or when the perception is that
the issue won't be handled quickly enough.

After a year on the job, you should be proficient enough with My Oracle Support
(MOS, Oracle's support site renamed from Metalink) to find out most of the answers
on your own and be comfortable enough to implement the solution without help.
Using an Internet search engine may be another source of information (beware that
the information may not be timely, complete, or even accurate), but it is a source you
turn to when other more dependable ones aren't productive.

When you create a MOS Service Request, don't expect an answer that day unless
the severity level and contract agreement dictates that level of support. Oracle
Engineer support help may be hours or even days from now. Reach out to the Oracle
community for help at the same time you enter a Service Request, which often will
get a quicker if not better answer than Oracle support, because these people will
have encountered the same problem at some point. Not everyone will give reliable
advice; learn to recognize those that do. Most often a test case with reproducible
results is the best indicator of expertise, or at least a well-thought-out process. E-mail
lists and forums have been known in the past for shooting down people who don't
read the documentation first. The exception would be if you are at a total loss on
how to fix a problem or are experiencing a disaster at a particular moment.

What does a DBA do all day?
Responsibilities include installing, configuring, and managing the database, and
these responsibilities can be divided into tasks scheduled to occur at certain intervals.
This is a generalized list and, depending on your environment, may or may not be
applicable. Most of the outlined tasks will be investigated further in later chapters
in the book.

Monitoring and Log Rotation tasks can be done with Enterprise Manager, Grid
Control, Unix shell scripting, DBMS_Scheduler, Perl, third-party database tools,
or a combination of any of these.

www.allitebooks.com

http://www.allitebooks.org

When to Step Away from the Keyboard

[16]

Prioritizing tasks—daily, weekly, monthly,
quarterly, or yearly
Let's run through the priority tasks you need to cover. Scheduling will depend on
your environment, application needs, and overall job priorities.

Daily
Backups—these are usually incremental or cumulative, weekly fulls, and logs
are archived and e-mailed to DBA upon failure
Database Alert Logs—such as ORA-errors, automatic notifications through
e-mail, pagers
ADRCI—Automatic Repository Utility and Log Rotation
Operating System File space, CPU and I/O statistics—depends on system
admin support
SQL Tuning Sets—Top 5 to 10 SQL statements
Corruption—RMAN logs, export and/or datapump logs, dbverify,
v$database_block_corruption

Tablespace growth—Extension, Partition Management, Temporary
Tablespace, Undo
Data Guard—Log Shipping/Application in Synch
SQL*NET Listener Logs—intrusion detection
Audit trails and logs—intrusion detection, removal of unused accounts
Core Dumps and User Dumps—file space, Oracle bugs
New account creation—should be at least partially automated
Personnel security changes—At least 24 hours notice
Migrate schema and code changes or ad hoc SQL updates
Large table growth, coalescing tablespace
Keeping a log of daily changes to the database—publishing it for certain
IT staff

Weekly
Backups—usually full
Cloning for non-production databases—automated or scripted
Tablespace growth—daily rolled up to weekly
Oracle upgrade or patch set Migration Projects—Milestone updates
Data Guard site testing

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•
•
•

Chapter 1

[17]

Check for updates from My Oracle Support—new patches, updates,
or news releases
Local Intranet updates on operational procedures

Monthly
Cloning for non-production databases—automated or scripted
Monitoring tablespace growth—weekly rolled up to monthly
Trends and forecasts—CPU utilization, I/O stats, logons
Password changes on production—sys, system, wallet, schema, grid
control, OAS
Oracle licensing usage and high water marks
Practicing recovery scenarios

Quarterly
Applying CPUs and PSUs into production with planned downtime.
Applying CPUs, PSUs, one-offs into non-production instances
Monitoring tablespace growth—monthly rolled up to yearly
Oracle training updates—Oracle University (online or in-class), books,
informal meetings
Trends and forecast rollups

Yearly
Tablespace growth—yearly report
Trends and forecast rollups
Attend Oracle-oriented conferences—regional or national Oracle
user groups
Oracle upgrades with planned downtime—version + patch sets + PSUs +
one-offs
Software licensing and warranty renewals
Hardware evaluation and replacement
SSL Certificate renewals, Oracle Wallets

•

•

•
•

•

•

•

•

•

•
•

•

•
•
•

•

•
•

•

When to Step Away from the Keyboard

[18]

Yes, these look like a daunting number of tasks that need to be accomplished, but
you will have help in the form of tools such as OEM, Grid Control, third-party
monitoring, or home-grown scripts. That is why I will reiterate that automating
these tasks is of paramount importance.

SLAs: Why isn't the database down
anymore?
A few years ago having the database down on a regular basis was normal and
considered necessary just for backups. But it is no longer needed in these days
of 24x7 IT operations and expanded Service Level Agreements (SLAs).

The database most often will only have to be down for patches or upgrades, which
can be either Oracle or application-specific. You should no longer need to have the
database down to do backups. If cold backups are a norm at your workplace, then
this is a sign of a dinosaur. Little to no downtime applies to production instances,
but non-production should be mostly up during working hours with only
intermittent outages.

Each organization has its own Outage Handling Procedures—depending on whether
it is planned or unplanned downtime. Most DBAs are assigned a database to be
the primary contact when there is an outage issue on call. Outage handling usually
includes something similar to the following:

Initial troubleshooting to determine the type of outage: Evaluate any
automatic failover procedures to check for success.
Forecasting the amount of time before resolution: This is the point for
making the decision if a manual fail over is needed.
Bringing the application or database back online: Not all failures are due to
the database being down, even when that is what first appears to be the case.
Root cause analysis: What was the real reason for the outage? This is not
always evident at first glance.
Future preventive actions: Evaluating and rewriting the outage procedures,
reassigning team members for outage coverage.

Outage handling is an important process and includes quite a few non-DBA team
members who must coordinate efforts, and not just point fingers to get this issue
resolved. These types of procedures should be well documented (in both print and
online form for disasters) with a definite line of authority as to who can execute the
procedures with administrative approval.

•

•

•

•

•

Chapter 1

[19]

There are many things that could cause the database to crash or become unavailable
to end users:

Hardware failure
Corruption
Operating system issues
ASM or RAC specific problems
Critical Oracle processes dying
Certain ORA-600 errors
Certain Oracle bugs
Listener not running
Human error

Speaking of the human side of things, the following list details how to avoid the
really bad things that can happen to even experienced DBAs. Remember if you
are a novice or new DBA, you shouldn't have access to certain servers or databases
because your superior understands how easy it is to do the wrong thing at the
wrong time. The following list may seem harsh, full of should and don't statements,
but I felt it was important to state exactly what others have experienced or witnessed
personally. Think of it as an experienced DBA giving someone under them some
good advice about what to avoid.

Avoiding major blunders
Don't use rm -rf *.* for any reason at anytime, do rm *.log or *.lis or
*.trc: It is safer to back up a directory and use rmdir instead. It would be
even better if you renamed the entire directory and left it in place renamed
for a day or two.
Assuming that all of the datafiles in a certain directory only pertain to one
database is a recipe for disaster, those files can be created anywhere on the
filesystem as long as Oracle has write access.
Modifying access for a production instance at the SQL*Plus level is unusual
and generally not granted to programming staff unless there is a single point
of accountability, such as a lead programmer.
It is best to use the Unix utility called fuser against a database file before
using an rm or mv command because it checks if the file is actively being
used. Another way would be to force a database checkpoint and check the
timestamp before removing. If it is an active datafile, the timestamp would
be current.

•

•

•

•

•

•

•

•

•

•

•

•

•

When to Step Away from the Keyboard

[20]

Add the ORACLE_SID and user into the SQL prompt. This will prevent many
a disaster by visually checking the prompt before running a script in what
you think is a non-production database. Instructions on how to do this
come later in the book.
Use the extended Unix prompt that puts in the hostname, user, and
ORACLE_SID. This will add more visual clues to ensure that you know
exactly what you are modifying.
Copying and pasting directly into a SQL*Plus or other command-line
utility window can lead to the wrong code being executed. Copy and paste
into a text file and run it instead. This double checks exactly what is in the
copy/paste buffer.
Type the word production into the command-line window after you finish
using it. This will prevent disasters if you accidentally switch windows and
run something you shouldn't have. It will only produce an error because
there is no command called production.
It is best to run recovery scenarios on a different server from any running
production. Also, test operating system restores. Disaster recovery sites
should also be located on a different server for true failover capabilities.
Make sure you know how to use the command line for all of the
Oracle utilities and Unix vi editor just in case you have nothing else
at your disposal.
It is suggested to make your production windows, application, or
command-line utility like PuTTY a completely different color for production
versus non-production, and the scrolling history as large as possible. Unix
has a history capture utility called script.
Tell someone else you are modifying something… just in case. Saying it
aloud may give someone else time to stop you or at least give you a mental
check on what you are doing.
Log rotating scripts can play havoc with naming the online redo logs with a
file extension of log. Using the letters rdo would be safer.
Unknown outside consultants won't necessarily give the best advice. Be wary
until you are sure of their expertise and ability. If at all possible, ask to do the
work under their guidance so that you know what is actually occurring.
Using the number 8 in any type of scripting, ORACLE_SID name, or the
like can play havoc with scripting or command-line executions because
the all-inclusive wild card character * is above the eight—it's too easy to
type it accidentally.
Double check by tracking the operating system's performance on a server,
especially running out of file space.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 1

[21]

Beware the reuse clause when adding or altering a database file.
This command can overwrite an existing datafile, which destroys any
existing data.
Be wary of scripts generated by third-party tools, they can be too powerful.
A script to recreate an object usually drops it in the first line. This can be
disastrous if the data has not been saved.
You are responsible for backups. It is not wise to delegate this in any way.
Be sure to investigate the addition of resource limits for any users that have
ad hoc SQL access in production. Those types of users can easily hog CPU or
I/O, which is needed more by the OLTP application.
Make sure the system administrators know not to modify, move, or delete
anything that belongs to the Oracle accounts.
The Unix root account is not intended for everyday use and especially
not suited for Oracle tasks. Investigate the use of sudo for tracking root-
authorized activities.
This is the most important blunder-avoiding tip—it is wisest not to do
anything that you can't undo, reverse, or fix.

Thanks to the Oracle-L e-mail list for their contributions.

Summary
As a new DBA, one of the hardest things to figure out is the philosophy behind the
position. The best DBAs in the business seem to have an underlying sense or gut
feeling when something is wrong, and when to speak up and say no.

Treat others as you would like to be treated with a certain amount of respect. There
should be lines drawn based on your position in the organization. Those boundaries
are there for a reason—responsibilities and duties are attributed to the team player
based on those boundaries. You will be working closely with the team and you will
depend on them doing their job. A database is dependent on a reliable framework of
underlying software and hardware, which most often is not your responsibility; this
makes your job very dependent on your fellow team members' expertise.

This chapter helped to show what a DBA does all day. All rules may need to be
bent or modified to suit your organization's needs. Only experience and testing will
allow your team to decide how best to proceed on any single rule or suggestion in
this chapter.

•

•

•

•

•

•

•

Maintaining Oracle Standards
As a DBA you will be expected to draft and control different standards, as they
pertain to an Oracle database. Some of the best standards are the ones that have
a wide adoption rate, and which are easily understood and well-documented.
Standards are intended to grease the various gears of a team so that they work
together with less friction. Standards will also make a DBA's life easier in the
long run, safer for all those involved, and more efficient, because time isn't spent
reinventing or rewriting a process that wasn't based on a standard in the first place.

This chapter outlines several standards for the major tasks that most DBAs are
expected to perform: installation, configuration, and the maintenance of Oracle
software. Expect the standards that you adopt to change gradually over time as
technology improves and to reflect changes within your organization.

Adapting to constant change
You can have more than one ORACLE_HOME for every node, primarily for migration
projects that will be spread over an extended period of time. There is an inherent risk
in running multiple ORACLE_HOMES, in that you may mistakenly use the wrong ones.
It is my personal recommendation that the ongoing risk is worth it when using the
Step-Ordered Approach to Migrating, because it reduces the overall downtime
(see Chapter 7).

An ORACLE_HOME consists of installed binary files along with Oracle-supplied scripts.
The database comprises memory structures, background processes, control files,
parameter files, data files, and temporary and undo files. There are other types of
ORACLE_HOME(s) that contain ORACLE installed software, as each of them is only an
environmental variable pointing to a specific disk location. Other types will have
other names like: CRS_HOME or AGENT_HOME that may be identified as an ORACLE_HOME
in the Oracle documentation. This means you can have multiple ORACLE_HOMES on
the same node running different versions of a database and/or different versions of
other Oracle software.

Maintaining Oracle Standards

[24]

Database concepts
You can have multiple instances of a single database. An instance consists of
multiple background OS processes that are executed by the Oracle binary located
in $ORACLE_HOME/bin/oracle. Multiple instances are known as Real Application
Clusters (RAC) that can be deployed on a single server or distributed on multiple
servers, but are associated with a single shared set of data files.

Refer to the installation guide for your operating system as well as the
recommendations found on My Oracle Support. MOS also contains a Certifications
Area, which you can use to determine if the operating system is compatible with the
version you are installing, as well as to determine compatibility with other Oracle
software that will be used with an Oracle database.

Database startup initialization Parameter files (pfile), as well as the new Server
Parameter file (spfile), control each database instance, providing adjustable
instructions. This flexibility allows for different instance parameters that are based
on an application's need for distributing the available resources across multiple
servers (also known as nodes).

A database control file connects all of the physical components found on a storage
device with the correct database, tracking and synchronizing all changes. Since a
database has its own controls, called a Relational Database Management System
(RDBMS), making changes to the physical files at the operating system level can't be
done when the database is open without incurring some sort of damage or data loss.
Changes such as moving data files, renaming, or copying the physical components at
an OS level may corrupt or make them otherwise unrecoverable.

Multiple ORACLE_HOME(s)
In this book, an ORACLE_HOME is the home that is currently in use. This may or may
not be the production home. There is usually a different ORACLE_HOME that you are
migrating to at any one point in time. This migration can happen on a production,
test, or development server depending on which one you are working on at the time.

Oracle releases Patch Set Updates (PSU) and Critical Patch Updates (CPU)
quarterly. CPU is the quarterly security release. Oracle recommends that clients
use PSUs since a PSU is a superset of a CPU. There is continued ongoing debate on
whether Oracle's recommendation should be followed because there are problems if
you need to revert to applying CPUs. This is where it would be best to ask the Oracle
community for feedback on this important decision.

Chapter 2

[25]

When it is time to upgrade the Oracle database software, it is recommended not to
upgrade the home that is currently in use, because that leaves you with a longer
downtime should the upgrade process fail. It would be much faster as part of the
downgrade process to shutdown the database and bring it back up in the previous
ORACLE_HOME. This means you are only reversing any database changes rather than
trying to reverse both software and database changes, which increases the length
of downtime.

Keeping the environment clean
Multiple ORACLE_HOME(s) accessing different memory structures and background
processes can cause the environment to become cloudy. Confusion as to which
executables or scripts should be run can cause outages, core dumps, and human
errors. There are some procedures and practices to adopt in order to keep the
switching process as clean as possible.

How do you keep multiple installations independent of each other while reducing
contention at all levels? Multiple operating system accounts are the cleanest way if
implemented along with the Optimal Flexible Architecture (OFA) standards. Check
out the installation guide as part of the documentation for your OS, which has quite
a bit of information on how to run Oracle products with multiple accounts.

Here are a few notes about variations on the multi-user system of installing Oracle
software on a single server:

One OS user account per database, which would result in an increased
complexity when shell scripting tasks run against a particular database.
The script would need to verify the ORACLE_HOME and the correct database
combination, as there is the possibility of several combinations. Each
database would require their own ORACLE_HOME instead of sharing the
same home between multiple databases. Setting environmental variables
can be done with local customizations instead of using the Oracle-supplied
oraenv file.
One OS user per Oracle release, which would result in less ORACLE_HOME
installs than one OS user account/database type. Running OS shell scripts
against this type of database would more than likely be a combination of
oraenv and custom environmental variables. It is easy to modify oraenv
to source a custom variable, as shown later in this chapter.

While that may be the cleanest, most secure way to implement Oracle software
installs, it is not necessarily the easiest method. There is more administrative overhead
involved with configuring the operating system user and group accounts as well as
the appropriate file permissions so that each is independent on a single server.

•

•

Maintaining Oracle Standards

[26]

Oracle's Optimal Flexible Architecture
(OFA)
In the following section, you will find a small summary of the OFA standard(s)
that were written by Cary Millsap. His article titled Oracle for Open Systems was
first published in 1995. It is still used today and is widely adopted on Unix systems
by DBAs, no matter the database size. This standard that has been expanded and
revised to embrace the newer hardware technologies, and the Automatic Diagnostic
Repository found in 11g is in the installation guide of every operating system.

You can find the original 1995 version at the following location:
http://method-r.com/downloads/doc_details/13-the-
ofa-standardoracle-for-open-systems-cary-millsap.

1.	 Name the Unix mount points with this pattern /mountpoint+numbered
string and start numbering with a left-padded zero to keep the list in
numerical order. For example, /u01, /u02, /u03.

2.	 The Oracle operating system account that owns ORACLE_HOME with a home
directory of /mountpoint/directory/user. For example, /u01/app/oracle.

3.	 Remove all hardcoded references in shell scripts to exact path names except
for the few key Unix files that require such an entry. Use environmental
variables instead.

4.	 Each ORACLE_HOME is recommended to be installed with a pattern
matching /oracle_user_home_directory/product/version.
For example, /u01/app/oracle/product/11.2.0/dbhome_1.

5.	 In 11g, the Diagnosability Framework changes the older default location
for cdump, udump, and bdump database parameters (see the next section
11g differences in the OFA standard). It would be a recommended location for
each of the following directories that are not part of the 11g Diagnosability
Framework—adump, create, logbook, pfile, and scripts. There are other
files related to archivelogs, data pump, or export files that are now Oracle-
recommended to be put in the FLASH_RECOVERY_AREA (FRA). For
example, /u01/app/oracle/admin/newdb.

6.	 Use the Unix profile and the Oracle-supplied files that set the
environment—oraenv, coraenv, and dbhome. See later in this chapter
for specific recommendations for these files, ORACLE_SID or just
SID (System Identifier).

Chapter 2

[27]

7.	 Identify an instance with the combination of $ORACLE_HOME,$ORACLE_SID
and $HOSTNAME, which makes it unique and usually defaults to the
database name.

8.	 Name data files with /mount point/specific_to_data/ORACLE_SID/control.
ctl (control files), redo+number.log (redo logs, change .log to .rdo, see
Major Blunder list) and tablespace_name+number.dbf (data files). A personal
recommendation includes adding the ORACLE_SID to a data filename.
For example, /u01/oradata/newdb/contrl01_newdb.ctl.

9.	 Database objects that are backed up at the same time or that have a similar
purpose or lifespan should be grouped in the same tablespace. For example,
temporary segments should be in a temporary tablespace, read only objects
should be in their own tablespace, system objects in the system tablespace,
and so forth.

10.	 Limit tablespace names to eight characters with a matching data filename to
simplify administrative tasks. For example, USERS tablespace with the data
file: /u01/oradata/newdb/users01_newdb.dbf.

Steps 8, 9, and 10 will not be covered here (a lot has changed in data storage), as the
original document refers to the obsolete Oracle Parallel Server and one data file per
disk implementation.

11g differences in the OFA standard
The 10g release of the Oracle Database introduced the use of the new $ORACLE_
BASE directory as the primary starting point for installations. ORACLE_BASE will be
required in future installations, but it currently brings up a warning box during
the GUI install if it is not set in 11g. It is highly recommended to go ahead and
set ORACLE_BASE before installation in order to control the location of the new
Diagnosability Framework components.

These details can be found in the Oracle Database Pre-installation Requirements section
of the installation guide for your operating system. Oracle also recommends locating
the Flash Recovery Area (FRA) and database files under $ORACLE_BASE. The FRA
is meant for the storage of any type of backup, recovery, or flashback technologies
when used in conjunction with an Oracle database. This type of implementation
puts the majority of the files on a single originating mount point, such as /u01.

If you implement Oracle's Automatic Storage Management (ASM), then it would
make sense to install all of the components in a single disk location or any other
storage method for using multiple disks as a single unit of space. ASM is a logical
volume manager on top of the physical disks; it presents those logical volumes as
disk groups.

Maintaining Oracle Standards

[28]

ASM is a volume management tool in that it simplifies data storage for a growing
system. It gives you the ability to add additional storage, as the database needs it,
without interruptions. While it provides additional flexibility in adding storage,
most often it requires additional resources (time, personnel expertise) to install,
configure, and maintain. There are also ASM-related changes to account for in
most of the database maintenance tasks, backup and recovery routines,
and Data Guard, among others.

XWINDOWS and GUI displays
Nowadays Unix hardware is more often headless in racks, and because of the
missing components, there is no need to sit at the server anymore to run any type of
GUI display such as the OUI, NETCA, or DBCA utilities. Simply run an XWindows
display on your desktop or another server that has a GUI display. You must export
the $DISPLAY variable to your desktop IP address to start Oracle's Universal Installer
(OUI) or any other GUI Oracle utility. See your system administrator for assistance
with XWindows issues.

Most Unix desktops such as the widely adopted Ubuntu will have XWindows built
in, or packages are available for installation. XWindows software is needed for
any GUI sessions if your desktop is Windows-based, because it will not have the X
support built in. Other open source versions for Windows that are available include
Cygwin/X, Xming, and WeirdX, and products that will require the purchase of a
license include Xmanager, Exceed, MKS X/Server, Reflection X, and X-Win32.

System administrators will most often require the use of a secure shell (ssh)
encrypted command-line utility to connect remotely to a server. PUTTY is a
freeware telnet/ssh client and does this job very well; it can be downloaded
from http://www.chiark.greenend.org.uk/~sgtatham/putty/.

Automating day-to-day tasks
Options to automate the DBA tasks mentioned in the previous chapter include some
of the following:

DBMS_SCHEDULER: Oracle-supplied PL/SQL package that comes
preinstalled
OS scheduling commands: Certain tasks such as monitoring file space usage
and removing old trace/log files are often scheduled using something like
Unix cron or the Windows at command. The best options include tasks that
need to run no matter the database state—down, up, or mounted.

•

•

Chapter 2

[29]

OEM Grid Control Intelligent Agent: Requires installation and configuring to
run OS type commands. A very useful Enterprise-wide monitoring tool but
quite an investment in time to configure and maintain for multiple servers.

Let's look at an example task and apply it to each of the three types of automation
mentioned above: Monitoring the Database Alert Log.

DBMS_SCHEDULER
DBMS_SCHEDULER, along with the power of PL/SQL, provides a mechanism for
automating some of the daily tasks mentioned earlier in this chapter. Using a
scheduler from within the database instead of an external scripting has some
advantages as well as disadvantages.

Advantages of using DBMS_SCHEDULER:

It is another tool to make your environment the same across the enterprise.
Runs on any operating system that the database can.
Capable to run a program, anonymous PL/SQL blocks, stored procedure,
executables or even a chain of commands.
It will execute operating system commands along with shell scripts, which can
run external Oracle utilities, such as RMAN, export, adrci, or datapump.
All of your tasks and PL/SQL (called metadata) associated with these
scheduled jobs are backed up along with the database.
Jobs run only when the database is up. There are many times when you
have to disable certain jobs when the database is down if scheduled at the
operating system level.
It is relatively easy to grant or revoke access for each specific job to other users.
It removes the need to store a password for job execution, as you have to do
with scripting at the operating system level.

Disadvantages of DBMS_SCHEDULER:

The fact that jobs only run when the database is open may be considered a
disadvantage as well as an advantage of DBMS_SCHEDULER.
It can be harder to manage due to the PL/SQL nature of the interface.
Third-party interfaces to other applications, schedulers, assorted operating
systems, or even databases can be challenging and hard to troubleshoot
when things aren't working as expected.
The OEM console is one GUI method of monitoring DBMS_SCHEDULER
jobs, which takes quite a few clicks to determine status, failure, past runs,
among others.

•

•
•
•

•

•

•

•
•

•

•
•

•

Maintaining Oracle Standards

[30]

The following DBMS_SCHEDULER task will give you a critical piece of information
for certain recovery situations (see Chapter 6, Extended RMAN for more information).
See the downloaded code for this chapter for more examples of DBMS_SCHEDULER
commands for certain DBA tasks.

Note how this job will be repeated on a daily basis. The following is an example of a
recommended daily task, writing the database ID to the alert log:

BEGIN
sys.dbms_scheduler.create_job (
job_name => '"SYS"."DBID_TOALERT"',
job_type => 'PLSQL_BLOCK',
job_action => 'declare l_dbid number;
begin
select dbid into l_dbid from v$database;
dbms_system.ksdwrt (2, ''DBID='' || l_dbid);
end;
',
repeat_interval => 'FREQ=DAILY;BYHOUR=14',
start_date => to_timestamp_tz('2007-12-20 America/Denver', 'YYYY-MM-DD
TZR'),
job_class => '"DEFAULT_JOB_CLASS"',
comments => 'Write DBID to Alert Log for Recovery',
auto_drop => FALSE,
enabled => FALSE);
sys.dbms_scheduler.set_attribute(name => '"SYS"."DBID_TOALERT"',
attribute => 'job_weight', value => 1);
sys.dbms_scheduler.set_attribute(name => '"SYS"."DBID_TOALERT"',
attribute => 'restartable', value => TRUE);
sys.dbms_scheduler.enable('"SYS"."DBID_TOALERT"');
END;
/

OS cron utility executing a scheduled task on
a Unix server
See the code provided for this chapter dbid_toalert_os.ksh Unix file for a
complete script. The script includes the appropriate shell script commands to be able
to run SQL code. The script also contains example code that contains suggestions on
writing Unix shell scripting for DBAs found later in this chapter.

Chapter 2

[31]

OEM Console plus the Intelligent Agent
To schedule the same job of writing the database ID to the alert log, see the following
screenshot for details. This particular job is scheduled to run once daily with no
expiration date.

If this job was resource intensive, it would be wise to use the following method: How
to Incorporate Pre-Defined jobs into your Resource Manager Plan [ID 971991.1]. Resource
Manager Plans would allow the DBA to control database jobs that need to run with
certain priorities for allocating resources appropriately.

This basically takes the exact information as using the DBMS_SCHEDULER in the
preceding section for utilizing a GUI screen to input the job information.

Maintaining Oracle Standards

[32]

11g Diagnosability Framework
The Oracle 11g Database includes a full suite of diagnostic tools and advisors that
are at least partially integrated with My Oracle Support (MOS), automatically
uploading metrics via the Oracle Configuration Manager. This new diagnosability
infrastructure includes the monitoring of the RDBMS, Automatic Storage
Management (ASM), Oracle Call Interface (OCI), SQL*Net, and Oracle
Application Server 11.1 products.

This new version of Oracle introduces the Automatic Diagnostic Repository (ADR),
which is a flat file structure containing all alert logs, core files, trace files, and incident
information. The ADR_BASE = $ORACLE_BASE, which is controlled by the database
diagnostic_dest parameter, replaces background_dump_dest, core_dump_dest,
and user_dump_dest. The entire ADR repository can be moved to a different
location than the initial install, at the same time resetting $ORACLE_BASE. Just
removing or moving the directories will not disable the ADR. The TNS components
can be disabled by following this document from MOS: Using and Disabling the
Automatic Diagnostic Repository (ADR) with Oracle Net for 11g [ID 454927.1].

A database parameter is used from the time a database is started. This parameter
can be changed manually with what is known as a pfile or dynamically with an
spfile. A database parameter is found by the following example query:

Notice how it finds all parameters that contain the word base and also why
$ORACLE_BASE is not here. It is an OS environmental variable, which is controlled
outside the SQL*Plus prompt. The outside environment can be queried or
manipulated by using host (use ! or the keyword host) commands within SQL*Plus.
See the following query that uses the Unix echo command to determine where
$ORACLE_BASE is set:

Chapter 2

[33]

You will also see in the documentation that the combination of the following features
is known as the Fault Diagnosability Infrastructure:

ADR plus ADRCI (ADR Command Interpreter) command-line utility
Alert Log
Trace Files, Dumps, and Core Files
Enterprise Manager Support Workbench

It is also important to evaluate the default database jobs and tasks that are created
and enabled as of 11g. They are tightly coupled with the new Diagnosability
Framework. See the MOS documents: New 11g Default Jobs [ID 755838.1] and 11g:
Scheduler Maintenance Tasks or Autotasks [ID 756734.1]. Become familiar with the new
11g Weekday Windows versus the 10g Weekend/Weeknight method of scheduling.
This new method gives the DBA more flexibility in determining which day of the
week is best for scheduling database maintenance tasks. Adjust the Resource Plan of
each Window to allocate hardware and database resources as needed for prioritizing
maintenance tasks.

Advisors and checkers
Tools within OEM (Oracle Enterprise Manager) known as advisors and checkers
monitor and troubleshoot within the Diagnosability Framework. These tools include
the Incident Packaging and Reporting, Support Workbench, and Health Monitor.
There is a Trace Assistant for Oracle Net Services. Repair Advisors include the SQL
Test Case Builder, SQL Repair, and one for Data Recovery used with RMAN.

While this entire new framework is a start towards diagnosing issues, will it really
change the way in which Oracle supports and their customers interact? Oracle
Configuration Manager, the software piece that uploads your local information to
MOS, has been promised to make Service Requests (SR) easier to enter at the same
time, resulting in Oracle's support personnel responding faster.

There are database packages that correspond to the diagnosability utilities available
on the OEM dashboard. More information on the OEM GUI monitoring console can
be found in Chapter 4, Achieving Maximum Uptime of this book. These are health check
monitor and policies—DBMS_HM, V$HM_CHECK and Diagnostics—DBMS_SQLDIAG.

•

•

•

•

Maintaining Oracle Standards

[34]

The screenshot below will only show a few components as part of the Diagnosability
Framework, as each one is found on a different OEM tab. Several of these checkers
were run in the example below to search for problems related to a missing temp file.

Out of the box OEM monitoring an 11.2.0.1 database could only partially detect what
a DBA would consider a major error—missing temp files. A missing temp file would
affect queries that need sort space. Initially, nothing in the OEM dashboard indicated
anything was wrong; no alert log error entries appeared.

I knew there was a problem because I intentionally caused it by manually removing
the actual temp file from the disk. Only after doing one of the workarounds
mentioned in the following MOS document did the alert log error entries become
viewable using OEM: Monitoring 11g Database Alert Log Errors in Enterprise Manager
[ID 949858.1]. The step that was done was to copy (or create a softlink) the ojdl.jar
file from <AGENT_HOME>/diagnostics/lib to the <AGENT_HOME>/sysman/jlib. See
the document if this fix doesn't work for your environment.

Missing temp file resolution
Since Oracle Database Version 10g, temp files are automatically created on database
startup and opened when they cannot be found. I verified that this behavior still
exists in 11g by inspecting the alert log after opening the database (where I had
removed the temp file), as seen in the following entry:

This probably explains why the advisors and checkers didn't detect the missing files,
as there is an automatic method of recreation. This makes me wonder: What else
does Oracle consider not to be critical?

Chapter 2

[35]

There were two possible solutions to this issue: recreate the missing temp files while
the database was still open, or shut it down and have them automatically recreated
on opening. I chose the latter in order to verify the automatic recreate functionality.
In this case, the newer diagnosability features inserted an event in the Oracle
database spfile, which prevented the database from even mounting, as seen
in the following screenshot:

I entered a Support Request on MOS because the database would not open (or even
mount). This problem was caused by the automatic insertion of an event into the
corresponding spfile for the database. Once the following event was removed
from the spfile (by creating a pfile and then editing to comment out the event),
the database would then open normally:

*.event='1110 incident(missing file)'

When monitoring an 11g+ database with OEM Server and Agent Version 10.2.0.5+,
the mechanism/metrics for monitoring the alert log have changed significantly.
There are two different classes of error—incidents and operational errors:

Operational errors include Data Block Corruption, Archiver Hung,
or Media Failure.
Incidents include Access Violation, Session Terminated, Out of Memory,
Redo Log Corruption, Inconsistent DB State, Deadlock, File Access Error,
and Internal SQL Error.

Be aware of these monitoring changes and how they might affect your current
processes. At this point I would recommend holding on to any user-created
monitoring (such as shell scripting or DBMS_SCHEDULER) that you currently
have running.

An alert_[ORACLE_SID].log file and a log.xml file are written
to the ADR location, but the alert_[ORACLE_SID].log file is now
deprecated as of 11g. This means that there are plans to remove it in
future releases.
See Monitoring 11g Database Alert Log Errors in Enterprise Manager Doc
[ID 949858.1]

•

•

www.allitebooks.com

http://www.allitebooks.org

Maintaining Oracle Standards

[36]

The following screenshot shows the alert log entries indicating the missing file, but
running several of the checkers didn't cause alarms or create an incident (the missing
file error ORA-01110 is a generic incident). I expected an incident to be automatically
created and viewable by the Support Workbench. At this writing, an open SR had
not been resolved to understand why no incident was produced.

The MOS document 949858.1, which was mentioned earlier in this section, has more
information on this problem and a couple of workarounds for non-detected events.
You can create what is known as a User-Defined Metric for OEM monitoring or set
a system-wide event to make sure incidents are created for specific errors raised in
the alert log. Both of these workarounds add up to more work for you, but think of
them as a change to the baseline functionality. Changing baseline functionality is a
configuration change that you will have to track and maintain
over time.

The Diagnosability Framework is meant to make the interactions with MOS and
entering Service Requests for critical errors easier. For incidents to be tracked
automatically, you must configure OEM using Oracle Configuration Manager
(OCM) to package and upload the results to Oracle support. Incidents can be
manually packaged and uploaded using OEM's Support Workbench or the
adrci command-line utility.

Chapter 2

[37]

In the past, MOS depended on customers running an RDA (Remote Diagnostic
Agent) to upload system information for each Service Request. Now MOS is
moving towards the model of daily updated configurations from a locally
installed collector, so it is purported that RDAs won't be used as often.

Oracle service personnel will still ask for the output from an RDA for
troubleshooting complex problems. Its basic job is to gather extensive environment
information. Running an RDA before entering an SR would give insight into what
information the Service Engineer from MOS would be looking at, and might even
allow you to solve the problem without entering an SR. See the following MOS
document: Subject: Remote Diagnostic Agent (RDA) 4—Getting Started [Doc ID:
314422.1 and Doc ID: 330760.1]. Most DBAs don't know about the more
advanced features of the RDA utility.

Anytime in this book that you see a Doc ID it is a document
only found on the MOS website and available to customers who
have a current licensing and/or support agreement from Oracle:
http://support.oracle.com

Some of the most underused features of RDA include:
1.	 RDA report files are viewable by using a browser on the following file:

<rda_directory>output_directory>/report_group>__start.htm

2.	 Security filtering is available to remove sensitive information such as IP
addresses, domain names, and user names. This information is not really
needed for most Service Requests.

3.	 Oracle Configuration Manager and RDA can be installed together at the
same time.

4.	 There is a Testing Option (-T) available for certain modules. See the Remote
Diagnostic Agent (RDA) 4—Content Modules Man Page [ID 330760.1] document
for specifics.

5.	 RDA profiles are provided, which may or may not fit your needs. It basically
keeps you from having to answer the long list of yes/no questions. A more
viable option would be to customize an RDA profile for future use, which
can be transferred from one server to another.

6.	 User Defined Collection is available and it will collect custom files that you
can add.

7.	 An RAC Cluster Guide is available for collecting multi-instance RDAs.

Don't forget to occasionally check for the newest release, as MOS constantly
improves this utility.

Maintaining Oracle Standards

[38]

If you use any of the 11g products, including the client, be sure to set the
environment variable $ORACLE_BASE. This will control where the alert, trace, and log
files are located. Utilize the built-in environmental variable within your own scripts
and maintenance routines to become used to the new adrci command-line utility.
If you don't set the variable, the log files will appear in $ORACLE_HOME/log even
for client installations.

The default editor for adrci is vi and since a standard Windows install won't
have the editor vi, make a copy of notepad.exe or wordpad.exe. Move that copy
to a location in the Windows $PATH renaming that exe file to vi.exe. The adrci
command-line utility has a set editor command but may yield unexpected
results in Windows.

To script an automatic purging of date-aged logs, use adrci in a shell script with
a text file that contains the commands as below. You will need to substitute the
ORACLE_SID for all of the sid entries in the following parameter file:

#adrci_commands.par
#Change the nodename and listener_sid for your environment
set echo on
set homepath diag/tnslsnr/nodename/listener_sid
purge -age 10080 -type alert
purge -age 10080 -type incident
purge -age 10080 -type trace
purge -age 10080 -type cdump
set homepath diag/rdbms/sid/SID
purge -age 10080 -type alert
purge -age 10080 -type incident
purge -age 10080 -type trace
purge -age 10080 -type cdump
quit

See the file adrci_maint.ksh in the code provided for this chapter on the shell script
that calls the adrci_commands.par found earlier.

As a side note, since the ADRCI interface (adrci command-line utility) will only
change the XML-formatted alert file (log.xml), you will need to manually schedule
log rotation, archiving, and eventual removal of the text-based alert logs. This
behavior is similar to the older, manual method where files are put according to
the database parameters *dump directories as mentioned earlier.

Chapter 2

[39]

Environmental variables and scripting
Unix scripting will be one of the most powerful tools in your arsenal and only
with constant use will you become proficient. Your standards for scripting need
to produce code that is robust, modular, consistent, and scalable. This book won't
cover everything you need to know about scripting. There are many excellent lessons
available from your operating system vendor. See the following documents for more
information specific to how Oracle products behave in a Unix environment:

Note: 131207.1 Subject: How to Set Unix Environment Variables
Note: 1011994.6 Subject: How do Applications Act in Different Unix Shells.
How to Integrate the Shell, SQL*Plus Scripts and PL/SQL in any Permutation? [ID
400195.1] (Excellent document)

Usually cron is used for scheduling in Unix and the AT command with Windows.

For Oracle utilities that run outside the database (or which must only run when
the database is down), Unix shell scripting is best used. A well-written script would
parse /etc/oratab for a list of ORACLE_SIDs on a single server for tasks such as
parsing log files, consistent backups, exports, dbverify, and RMAN. If you have a
solitary database, then DBMS_SCHEDULER can be used with a combination of SQL
and PL/SQL integrated with OS commands.

Occasionally, DBAs rename the oraenv located in $ORACLE_HOME/bin when they
have added custom code to the /usr/local/bin/oraenv (default location on Linux),
so that they can make sure they know exactly which one is executed at run time. If
you have any problems related to running a modified oraenv file, check which one
is being executed and adjust the $PATH variable as needed.

The following is a list of some of the Oracle-provided Unix commands with a quick
synopsis of their purpose. Most of them are located in $ORACLE_HOME/bin:

wrap—encrypts stored procedures for advanced use
oerr—displays oracle errors. Syntax: oerr ora 12154
Sysresv—instance and shared memory segments
Tkprof—formats output trace file into readable format
Dbshut—shell script to shut down all instances
dbstart—shell script to start up all instances at boot
Dbhome—sets ORACLE_HOME
Oraenv—sets environmental variables for ORACLE_SID
trcasst—trace assistant

•

•

•

•

•

•

•

•

•

•

•

•

Maintaining Oracle Standards

[40]

Guidelines for scripting
These are general suggestions for someone with some experience with a Unix
operating system. You will need more background information than what is
covered in this book to understand this section. The best sources of information will
be the software vendor of your operating system, because there are small differences
between the different versions and flavors of Unix. As with any code, you must test
on a non-production system first, as inexperience may lead to unexpected results.

Separating the configuration file
Use the OS-provided default profile for environmental variables, but use a
separate configuration file to set the $ORACLE_SID variable. There are several
key environmental variables that are commonly used with Oracle software, all of
which are found in the documentation specific to the operating system. Optimal
Flexible Architecture (OFA) mentions setting the ORACLE_SID in the profile, but
if you have more than one database or Oracle product installed on a system, it is
best done interactively. A default profile is loaded when you first log in to Unix.
So if the ORACLE_SID is loaded when you log on, what happens when you want to
change ORACLE_SID(s)? This is when the environment becomes mixed. It just keeps
appending the $PATH variable each time you execute the oraenv script. Which set of
executables will you find first? It will be those executables for which you ran oraenv
the first time.

At this point I wanted to execute SQL*Plus out of the 11g directory, but was able to
determine that the 10gR2 client was first in the $PATH. How did I know that? Use the
which Unix command to find out.

It is also a good practice to use a separate terminal window for each ORACLE_HOME.
Normally, you will operate with multiple windows open, one for each ORACLE_HOME
or ORACLE_SID in different colors to visually remind you which one is production.

Chapter 2

[41]

The example profile is provided in the code section for this chapter:
example_profile.txt. The profile sets the entire user environment at first
logon. This one is specific to the ksh or korn shell on the Linux operating system
and will also work for bash. Differences in bash include that the line history is
scrollable with the up and down arrows instead of vi commands.

To set the ORACLE_SID and activate all of the variables located in profile, source
the file oraenv (bash, Bourne, or korn shell) or coraenv (C shell). Source means the
variables will be in effect for the entire session and not just the current line in the
command window. You indicate source by putting a '.' (dot) in front of the file. As
the oraenv file is located in /usr/local/bin (on Linux) and this location is in the
$PATH, typing it at the command line works. Putting key Oracle files, such as oraenv,
oratab, and oraInst.loc, in locations that will not be affected by standard Oracle
installations is also part of the OFA. The oraenv script is installed into /usr/local/
bin/ automatically when running .runInstaller for the first time. Notice the
prompt that you will see if you use the command as in the profile listed above:

A note about prompts: Every person will want to customize their own prompt so;
look around for various versions that tickle your fancy. This one is better than
most examples to compare to. Notice the small difference in the prompt before
and after? ORACLE_SID is now defined because oraenv is executed, which also runs
dbhome (also located in /usr/local/bin), but these scripts require a valid entry
in /etc/oratab. If you type the ORACLE_SID incorrectly on Unix, this will be case
sensitive. It will ask where the ORACLE_HOME is if there is no entry in oratab. Making
an ORACLE_SID lowercase conforms to the OFA standard (see the install guide for
your OS for more information). Some DBAs use an uppercase ORACLE_SID because it
makes it more prominent for any type of naming convention and is meant to reduce
human error.

Maintaining Oracle Standards

[42]

You can use an ORACLE_SID entry in the oratab file to reference other Oracle
products such as the Grid Control Intelligent Agent. The ea, which is an ORACLE_SID
in the following oratab example, is what I use to indicate the Enterprise Manager
Agent. The third letter after the ORACLE_HOME (N) indicates when Oracle-supplied
utilities (like db_shut and db_start) are not to execute against this ORACLE_HOME. I
personally use the N for my own scripting to indicate which utilities shouldn't run
against this ORACLE_HOME. What this does is take advantage of Oracle-provided
files—oratab and oraenv—to accomplish other types of tasks. This is only a
suggested use. There are other ways of setting environmental variables for
non-database products.

You will need to create a test database to work through all of the examples and
practice scenarios in this book. How should you create the test database? Use the
Oracle-provided Database Configuration Assistant (DBCA) utility to create a test
database. There are default templates provided that will work for most of the tasks
outlined in this book. If you are interested in duplicating some of the advanced
tasks (like Data Guard), then it will require the installation of the Enterprise Edition
of Oracle Database. All tasks in this book were done with 11.1.0.7 version of Oracle
Database with some references to 11.2.0.1, which had just been released.

Host commands relative location
This will be important as you begin scripting. Host commands are relative to the
location of the executable. As a general rule, you should execute database-specific
utilities (imp, exp, datapump, RMAN, and so forth) on the server where the database
is located in the correct ORACLE_HOME. This reduces the amount of issues such as core
dumps and version compatibilities. This is different from what is usually thought of
as a client utilities such as SQL*Plus.

Chapter 2

[43]

There are exceptions to this rule, for it is recommended to run a compiled code (C,
C++, Cobol) on a separate server rather than a database. See the following document
for setting the TWO_TASK variable when using a separate node for compiled
programs. TWO_TASK is an environmental variable. Subject: How to Customize Pro*C
and Pro*Cobol Makefiles demo_proc.mk And demo_procob.mk On Linux/Unix [Doc ID:
602936.1].

Another exception to running a utility on a different node is when you are
performing migration to a different version or patchset, or running the
DATAGUARD broker. Both of these situations are discussed later in this
book in the Chapter 7, and Chapter 5.

Notice the WARNING! message that is set using the new 11g sqlnet.ora
parameter SEC_USER_UNAUTHORIZED_ACCESS_BANNER. The sqlnet.ora file
is part of the SQL*Net components of Oracle RDBMS, which handle the
communication between clients and the database.

oracle@nodename:/u01/app/oracle/admin/newdb[newdb]
> sqlplus /nolog
SQL*Plus: Release 11.1.0.7.0 - Production on Thu Nov 5 19:00:29
2009
Copyright (c) 1982, 2008, Oracle. All rights reserved.
@> connect / as sysdba
###
###
WARNING! This computer system is the property of YOUR
ORGANIZATION
and may be accessed only by authorized users.
Unauthorized use of this system is strictly prohibited and may be
subject to criminal prosecution.
Connected.
SYS@newdb>

If you wanted to execute something that is available on the operating system level,
then you would use a host command (either Windows or Unix), or on Unix the !
symbol. The output below shows that I am logged into the newdb as sys and lists
(ls command) the files located in the $ORACLE_HOME/sqlplus/admin directory:

Maintaining Oracle Standards

[44]

Notice how the SQL prompt is populated with the ORACLE_SID and the username
that is connected to the database. This is done by adding a line to the glogin.sql
file, which can be done within SQL*Plus as shown below (I used the text editor vi):

Host commands work based on the location of SQL*Plus. If you want to execute
these same commands from a Windows desktop connecting to a remote Unix
database, then it would require a Windows equivalent command like Notepad
or another editor. If you have Cygwin installed and configured on the Windows
desktop, then it would allow you to run Unix-equivalent commands like vi.

Separating the variable part of the script into its
own configuration file
There are scripts that will need some variables set, but you don't necessarily want
to use the profile to set a variable at every login. The variables may need to
contain commands specific to applications such as RMAN, SQL*Plus or specific to
certain tasks. This is where a configuration file comes in handy, which is a personal
preference as to what you call them. Be sure not to use reserved keywords for
variables, as that leads to unexpected results. In the example below, we use
emal instead of the word email.

To call this configuration file, you source it starting with the prerequisite
. (dot) within a script. This file can also be used in the custom code section
of the oraenv file.

Chapter 2

[45]

Don't hardcode values; reference a configuration
file and password file at runtime
Values include items such as a directory path, ORACLE_SID, e-mail, or file locations
as shown in the above newdb.conf file. Passwords should be in a separate hidden
file-protected location (chmod 400, which is only readable by Oracle) to be read at
runtime by simply inserting a small piece of code and an appropriate variable in
each script:

 #.oracle.passwd
 system/password

PASS=`grep system /u01/app/oracle/.oracle.passwd | cut -f 2`;
 export PASS
$ORACLE_HOME/bin/exp userid=$PASS parfile=$HOME/export$db.par

The following line actually pulls the ORACLE_SID out of the oratab file. This is
useful for executing against multiple databases on a single node. See the script
labeled coalesce_tablespace.ksh for a complete example.

cat /etc/oratab | while read LINE
do
 case $LINE in
 \#*) ;; #comment-line in oratab
 *)
 # Proceed only if third field is 'Y'.
 if ["`echo $LINE | awk -F: '{print $3}' -`" = "Y"] ; then
 ORACLE_SID=`echo $LINE | awk -F: '{print $1}' -`
 export ORACLE_SID
 ORACLE_HOME=`echo $LINE | awk -F: '{print $2}' -`
 export ORACLE_HOME

Maintaining Oracle Standards

[46]

This small script shows how a local script on a database node can be run without
a password, as the database has a password file and the startup initialization
parameter remote_login_passwordfile=EXCLUSIVE . A password file is created for
a specific database with a default file name format usually found in $ORACLE_HOME/
dbs/orapw<SID>.

#!/bin/ksh
#Source the configuration file as follows.
. $OTILS/newdb.conf
$ORACLE_HOME/bin/sqlplus -s <<EOF
connect / as sysdba
 set pagesize 0 feedback off termout off linesize 200
 spool output.txtselect tablespace_name from dba_tablespaces;
 spool off
EOF
exit

Using a hidden password file for scripting is more secure than embedding clear
text passwords in the script itself. There is also a relatively new feature in Oracle
Database 10gR2 and above called the External Password Store. This component is
also part of the Advanced Networking Option (options are always an additional
license cost) and is another way to store passwords. If used for password
functionality only, the External Password Store is free of charge.

http://download.oracle.com/docs/cd/E11882_01/
license.112/e10594/editions.htm#CJACGHEB: This document
details the differences between the different editions of Oracle. Search for
Secure External Password Store; it is included with the Enterprise Edition
of Oracle.

It requires the creation of an Oracle Wallet that stores encrypted username and
password combinations for batch jobs, scripts, and even application code. This is
one of the most secure ways to connect to the database while providing a single
location for changing passwords on a regular basis. See the Oracle Documentation,
Oracle Database, and Security Guide for your release for instructions on creating and
maintaining a password store. See the following white paper for instructions that
don't require a MOS account:

http://www.oracle.com/technology/deploy/security/database-security/
pdf/twp_db_security_secure_ext_pwd_store.pdf

Chapter 2

[47]

Putting variables at the top of the script with curly
braces
This makes it easier to spot for editing and troubleshooting. Mixed case would make
them stand out even more. Curly braces will resolve to the value of a variable that
had already been defined at the top of a particular script.

$ORACLE_HOME # variable at the top of a script
${ORACLE_HOME} # Refers back to the variable

Moving functions to a centralized file to be reused
All scripts can use any of the functions within by referencing the function name.
The example below illustrates this:

#!/bin/ksh
otils.fnc
 function verify_directories {
if [! -d ${MY_BASEDIR}];then
 		 mkdir ${MY_BASEDIR}
fi

if [! -d ${MY_BASEDIR}/scripts];then
 		 mkdir ${MY_BASEDIR}/scripts
fi

if [! -d ${MY_BASEDIR}/archive];then
 		 mkdir ${MY_BASEDIR}/archive
fi
}

And an example shell script that will call the separate function is simply run and
sourced by putting a dot in front of the filename. In this case, the otils.fnc file can
be found in the $PATH environmental variable.

#! /bin/ksh

. otils.fnc

Maintaining Oracle Standards

[48]

Validating the use of the script
To validate a script that should only be run by a certain user ID or on a certain host,
only use whoami and uname. See the Move functions to a centralized file to be reused
section for the idea of a centralized function file, as this would be a good candidate.

 if [`whoami` != "oracle"]; then
 echo "error. Must be oracle to run this script"
 exit 1
 fi

if [`uname -a | awk '{print $1}'` != "databasenode"]; then
 echo "error. This script only to run on databasenode server"
 exit 1
 fi

The if-fi part of this code is used to evaluate something. If it is true, then do the
next step. The fi indicates where the end of this section of code should stop.

Using SQL to generate code
The script provided for this chapter called cleanout.sql generates a file that is then
run by SQL*Plus, which demonstrates the capability to run certain host commands
from within the database. This is done by using the keyword host within the script,
and on Unix you can also use the exclamation point (!) to indicate host commands.
The Oracle user will be limited to executables that are in the $PATH and have the
appropriate file permissions.

This ability to use SQL*Plus to generate SQL commands as well as execute OS
commands by embedding SQL syntax in a script is a powerful tool for a DBA.
This type of execution will dynamically generate spooled SQL commands. The
resulting spooled SQL file can then run in the same script or edit it as needed
before running manually.

The following scripts are especially handy for one-time mass updates, such as
switching users to a new profile or expiring passwords. The single ampersand
symbol (&) will substitute the value for that variable you provide a single time;
two ampersands will substitute every time that variable is found in a script.

Chapter 2

[49]

The first script, grant_table_role.sql, grants all privileges for a list of tables to
a role that belongs to a certain schema. The second script inserts a username into
a table generated by pulling the first part of an e-mail address, that is, everything
before the @ symbol. The chr(10) puts in a newline and the pipe symbols
|| append each item.

--grant_table_role.sql
set echo off
set feedback off
set heading off
set pagesize 0
set timing off
set trimspool on
set verify off
spool grant_table_&USERROLE.&TABLEOWNER..sql
select 'grant select,insert,update,delete,references on ' ||table_name
|| ' to &&USERROLE; '
from dba_tables where owner = '&&TABLEOWNER';
spool off
exit

--update_email.sql
set echo off
set feedback off
set heading off
set pagesize 0
set timing off
set trimspool on
set verify off
spool update_email_users.sql
select 'update table_name set table_name_pidm =' ||EMAIL_PIDM || ', '
||'table_name_username' ||' = ' || chr (10) ||
(select substr(email_address,1, instr(email_address,'@')-1) from
email_table)|| 'table_name_user_id= BATCH, table_name_activity_date
=sysdate;'
 from general_emal;
spool off
@ update_email_users.sql
exit

Maintaining Oracle Standards

[50]

In the e-mail example above, the script that was created in the first step is
automatically called after the spool-off command.

--This script is a generic create user script.
--create_users.sql
set echo off
set feedback off
set heading off
set pagesize 0
set timing off
set trimspool on
set verify off
spool create_mass_users.sql
select 'create user ' ||username || ' identified by '
||'"'||TO_CHAR(BIRTH_DATE,'MMDDYY')||'"'||' ;'|| chr(10)||
 'alter user ' || username || chr (10) ||
 ' default tablespace USERS;' || chr(10) ||
 'alter user ' || username ||
 ' temporary tablespace TEMP;' ||chr(10)||
 ' grant CONNECT to ' ||username || ';' ||chr (10)||
 'grant USR_ROLE to '||username|| ';' ||chr (10)||
 'grant USR_QUERY to '||username|| ';' ||chr (10)||
 'grant USR_STAFF to ' ||username|| ';' ||chr (10) ||
' alter user '||username||' default role CONNECT, USR_STAFF ;'
 from table_name, person_table
 where table_name_pidm=person_table_pidm;
spool off
-- commented out the last statement to double check before running.
-- @ create_mass_users.sql
exit

The only difficult part about this process is that the number of quotes needed
depends on the data retrieved. If it is a literal string (data that has to have quotes to
do the insert), then you will need a corresponding set of two single quotes to do this.
See the example create_users.sql.

All of the queries used in these examples may not work for you, depending on the
data you are trying to retrieve. They are intended to provide examples of how to
use the embedded SQL technique for different types of DBA tasks.

It takes some practice, but this is a tool that will make your job easier. The various
set commands are specific to SQL*Plus. These settings remove extra characters
that end up in the final script. Removing those extra characters from the final
script allows it to be run in SQL*Plus without editing the file first.

Chapter 2

[51]

Unix "ps" Command Exposes Password When Using Export/Import, SQL*Plus,
Tkprof [ID 372964.1] provides important information about concealing
passwords, which is easily found with the Unix ps command when
running scripts.

Helpful Unix commands
The following table lists some helpful Unix commands:

Tasks Unix commands
Show files greater than (>) 2 GB	 find /u02/oradata -size +200000000c -ls

Show files less than (<) 2 GB find /u02/oradata -size -200000000c -ls

Remove trace files not modified in
the last 30 days

find /u01/app/oracle -name "*.trc" -
mtime +30 -exec rm {} \;

Find scripts where new users are
created

find $ORACLE_HOME –type f –exec grep
–il "identified by" {} \;

Find sqlplus scripts that might
have passwords in them

find /u01/app/oracle/admin –type f –
exec grep –il "sqlplus" {} \;

Find all files that are owned by
Oracle

find /u01 /u02 /u03 –user oracle -print

Remove all export files that are
larger than 1 MB and older than
30 days

find $ADMIN -name "*.dmp" -size
+1048576c -mtime +30 -exec rm {} \;

Find linked files find /u01/app/oracle /u*/oradata -type
l -ls

Find files modified in the last 24
hours

find /u01/app/oracle/admin/orcl -type f
-mtime -1 -print

Show total size of all
subdirectories with Disk Usage
command on a disk (sorted in
reverse order)

cd /u02/oradata

du -s * | sort –nr

du –sh will provide a shortened readout
in gigabytes

Show total size of all data files in
directory

cd /u02/oradata/orcl

du -k * | sort –nr

Run more than one command on
a single line by using a semicolon
between the commands

date; who

Maintaining Oracle Standards

[52]

Tasks Unix commands
To debug a script with sh or bash
and display the environmental
variables

sh –vx script.sh or bash -vx script.bash

Bash shell debugging set
command, a negative in front
turns it on, a plus sign turns it off

set-x: Display commands and their arguments as
they are executed. set–x set+x

set-v: Display shell input lines as they are read
.#!/bin/bash -xv

There is more on SQL Toolkit Free Command Line Utilities for
Oracle SQL*Plus at: http://www.runner technologies.
com/downloads.html.

Reducing operating system differences
with common tools
When your enterprise environment contains several different operating systems
and database versions, it is best to have tools that work across scopes. We have
already mentioned scripting as well as using DBMS_SCHEDULER and PL/SQL.
There are also several software packages that offer GUI interfaces for real-time
monitoring capability.

Oracle has a product called Grid Control (GC); it is the Enterprise Manager for
the Enterprise. You can install a standalone version of Enterprise Manager in each
database (called Database Control) or use GC with a centralized repository for all of
your Oracle products. Grid Control is a free product from Oracle, the Management
Packs have an additional license cost. Most customers purchase the DIAGNOSTICS
& TUNING to take advantage of the extensive performance tuning features found in
the Automatic Workload Repository, and not just for the OEM Interface.

The trade-off is a superb enterprise-wide tool, but one that requires an additional
repository database for the infrastructure components of GC. The database or
repository is not completely self-managed, but has not shown itself to be a large
burden in terms of overhead. GC is a complex product that is now maturing in
terms of scalability and flexibility. Challenges include limited migration paths when
moving the different components to new hardware and/or hardware platforms.

GC version 10.2.0.5 has some of the best features so far: mass deployment of the
agent, and installing the software and configuring later options for several of
the components. Both of these new features directly address past migration and
deployment issues.

Chapter 2

[53]

Other third-party vendors with widely adopted database monitoring tools include
Veritas, Quest, EMC, Embarcadero, and CA. Each of them have their own positive
and negative features. Each one should be available for a full trial testing period
before investing.

Configuration management, release
management, and change control
One of the largest changes to Oracle is the recent acquisition of several other software
lines and technologies. Oracle has combined all of these technologies and customers
under a single support site called My Oracle Support at http://support.oracle.
com, effective from Fall 2009. Along the way, Oracle also completely redesigned the
interface, making it flash-based in order to provide a personalized GUI.

To take full advantage of the personalization features, you will need to install a
free utility on each node and each ORACLE_HOME you would like to monitor. The
following paragraphs outline several reasons for use and suggestions for getting
started. Please review and discuss with the management the security implications
of uploading critical information to a support website before proceeding.

Configuration management
Are you the only Oracle DBA in your company? How do you provide disaster
recovery and redundancy for personnel in that situation?

MOS has a tool that provides an Automatic Document Repository (my words) called
Oracle Configuration Manager (OCM). This tool has been mentioned several times
in this chapter, but its real purpose is to manage all of your configurations (different
systems, servers, databases, application servers) when dealing with Oracle support.

It is automatic in the sense that if you are out of the office, temporarily or
permanently, the system configurations are available for viewing by anyone with
the same Oracle Customer Support Identifier (CSI) number. The information is
also available to Oracle support personnel. The repository is located on My Oracle
Support. The systems are for you to choose, whether you want to only include
production and/or non-production systems.

Maintaining Oracle Standards

[54]

What information does OCM collect and upload? It contains extensive hardware
details, software installs (not just Oracle products), databases, and Oracle application
servers. There is enough information to help in recreating your site if there is a
complete disaster. The GUI interface allows managers and other IT personnel to
see how nodes and applications are related and how they fit into your architectural
framework. The information can only be updated by the upload process.

Using OCM in disconnected mode with masking
There is sensitive information being collected from the OCM tool. If you are
employed by an organization that doesn't allow you to reveal such information
or allow direct access by the servers to the Internet, there are steps to improve the
security of this upload process. This section is highly recommended to be reviewed
before enabling OCM. You must know what types of information are there and how
that information is used before enabling uploading capabilities to a support website.

To disable the collection of IP and MAC addresses, you add the following entries to
the $ORACLE_HOME/ccr/config/collector.properties file.
To disable the collection of network addresses, add the following entry:

 ccr.metric.host.ecm_hw_nic.inet_address=false

To disable the collection of the MAC address, add the following entry:

 ccr.metric.host.ecm_hw_nic.mac_address=false

The OCM collector collects the schema usernames for databases configured for
configuration collections. The collection of this information is filtered or masked
when ccr.metric.oracle_database.db_users.username is assigned the value of
'mask' in the $ORACLE_HOME/ccr/config/collector.properties file. The default
behavior of the collector is to not mask this data.

MOS customers may request deletion of their configuration information by logging
a Service Request (SR) indicating the specific configuration information and scope of
the deletion request.

Disconnected mode is carried out with something called Oracle Support Hub, which
is installed at your site. This hub is configured as a local secure site for direct uploads
from your nodes, which the hub can then upload to MOS through the Internet. This
protects each of your nodes from any type of direct Internet access.

Chapter 2

[55]

Finally, there is a way to do a manual upload of a single node using the
method outlined in the MOS document 763142.1: How to upload the collection file
ocmconfig.jar to My Oracle Support for Oracle Configuration Manager (OCM)
running in Disconnected Mode. This is probably the safest method to use for OCM.
Run it for a specific purpose with appropriate masking built-in and then request
the information to be deleted by entering a SR request.

These tips came from these locations as well as the OCM licensing
agreement found on MOS:
http://www.oracle.com/support/collateral/customer-
support-security-practices.pdf

http://download.oracle.com/docs/html/E12881_01/toc.htm

The Oracle Support Hub can by found on the OCM Companion
Distribution Disk at: http://www.oracle.com/technology/
documentation/ocm.html.

Each node with an installed OCM collector can be automated to upload any changes
on a daily basis or interval of your choice. OCM is now an optional part of any of the
10.2.0.4+ Oracle Product GUI installs. The OCM collector is also found by logging
into MOS and selecting the collector tab. It is recommended to use at least the 3.2
version for ease of installation across the enterprise.

Be aware! The collector install actually creates the Unix cron entry to
automatically schedule the uploads.

Mass deployment utility
The OCM collector utility has been out for over a year, but a recent enhancement
makes installation easier with a mass deployment utility. On the MOS collector tab,
find Configuration Manager Repeater & Mass Deployment Tools and the OCM
Companion Distribution Guide.

The template file required to install the collector on multiple servers is in csv format,
which you may find difficult to edit using vi or vim. The template doesn't have an
initial entry and the length is wider than the average session window. Once the first
entry is filled out (try using desktop spreadsheet software), editing this file with a
command-line tool is easier. It has a secure password feature so that no password is
stored in clear text. You can enter a password at the prompt or allow the password
utility to encrypt the open text passwords in the template file during the install run.

Maintaining Oracle Standards

[56]

Running the utility runs very quickly from a single node that has SSH access to all
entries in the template. It auto detects if OCM was already installed and bypasses
any of those entries. You may encounter an issue where the required JAVA version is
higher than what is installed. Other prerequisites include SSH on Linux or CYGWIN
for Windows.

A downside is that all configuration information is available to everyone with the
same CSI number. In a small IT shop, this isn't a problem as long as MOS access is
maintained properly when personnel changes. Providing granular group access
within a CSI number to your uploaded configurations is a highly anticipated feature.

Release management
As a DBA you must be consistent in the different aspects of administration. This
takes dedication to keep all of your installed Oracle products up-to-date on critical
patches. Most DBAs keep up-to-date with production down issues that require a
patch install. But what about the quarterly security fixes? The operating systems
that your system admin is in charge of will probably be patched more regularly
than Oracle. Why is that the case? It seems to take an inordinate amount of effort
to accomplish what appears to be a small task.

Newer versions of Oracle are associated with major enhancements—as shown
by the differences between versions 11.1 and 11.2. Patch sets contain at least all
the cumulative bug fixes for a particular version of Oracle and an occasional
enhancement as shown in the version difference between 11.1.0.6 and 11.1.0.7.
Oracle will stop supporting certain versions, indicating which is the most stable
version (labeling it as the terminal release). For example, the terminal release of
Oracle 10.1.x is 10.1.0.5, as that was the last patch set released. See the following
document on MOS for further information on releases—Oracle Server (RDBMS)
Releases Support Status Summary [Doc ID: 161818.1].

In addition to applying patch sets on a regular basis (usually an annual event)
to keep current with bug fixes, there are other types of patches released on a
regular basis. Consider these to be post-patch set patches. There is some confusing
information from MOS, with two different methods of patching on a quarterly basis
(Jan, April, July, Oct.)—Patch Set Updates and Critical Patch Updates. CPUs only
contain security bug fixes. The newer method of patching—PSU—includes not only
the security fixes but other major bugs. These are tested as a single unit and contain
bug fixes that have been applied in customers' production environments.

Chapter 2

[57]

See the following for help in identifying a database version in relationship to PSUs:

MOS Doc ID 850471.1
1st digit—Major release number
2nd digit—Maintenance release
3rd digit—Application server release
4th digit—Release component specific
5th digit—Platform specific release
First PSU for Oracle Database Version—10.2.0.4.1
Second PSU for Oracle Database Version—10.2.0.4.2

While either PSUs or CPUs can be applied to a new or existing system, Oracle
recommends that you stick to one type. If you have applied CPUs in the past and
want to continue—that is one path. If you have applied CPUs in the past and now
want to apply a PSU, you must now only apply PSUs from this point to prevent
conflicts. Switching back and forth will cause problems and ongoing issues with
further installs, and it requires significant effort to start down this path. You may
need a merge patch when migrating from a current CPU environment, called a
Merge Request on MOS.

Important information on differences between CPUs and PSUs can be
found in the following locations. If there is a document number, then that
is found on the MOS support site:
http://blogs.oracle.com/gridautomation/

http://www.oracle/technology/deploy/security/alerts.
htm

Doc 864316.1 Application of PSU can be automated through Deployment
Procedures
Doc 854428.1 Intro to Patch Set Updates
Doc 756388.1 Recommended Patches
Upgrade Companions 466181.1, 601807.1
Error Correction Policy 209768.1

Maintaining Oracle Standards

[58]

Now to make things even more complicated for someone new to Oracle; let's
discuss recommended patches. These are released between the quarterly PSUs
and CPUs with common issues for targeted configurations. The following are
targeted configurations:

Generic—General database use
Real Application Clusters and CRS—For running multiple instances on a
single database with accompanying Oracle Clusterware software
DataGuard (and/or Streams)—Oracle Redo Apply technology for moving
data to a standby database or another read/write database
Exadata—Vendor-specific HP hardware storage solution for Oracle
Ebusiness Suite Certification—Oracle's version of Business Applications,
which runs on an Oracle Database

Recommended patches are tested as a single combined unit, reducing some of
the risk involved with multiple patches. They are meant to stabilize production
environments, hopefully saving time and cost with known issues starting with
Oracle Database Release 10.2.0.3—see Doc ID: 756671.1.

DBA issues with patching
Here is a list of the most frequently experienced issues with the patching process for
Oracle products:

What patches should be applied?
No advance notification if there is a conflict.
Patch conflicts that cause rollbacks.
Merge requests for patch conflicts.
Troubleshooting patch application failure.
Conflicting and resolving differences in CPUs and PSUs.
Should I apply the recommended patches?
Am I the first person to deploy this patch?
Documenting versions and patches across all systems.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[59]

Oracle recently added a new functionality to their support website called Patch
Plans. It requires the 3.2+ version of the MOS Configuration Manager Collector
(which is the collector component of OCM). It was just mentioned a few sections
earlier and is available for download from the My Oracle Support website. Once the
collector is installed and your system configuration information is uploaded to MOS,
you can create a patch plan.

The following screenshot contains my list of patch recommendations for all of
the ORACLE_HOME(s) that have a collector installed and configured for uploading
to Metalink.

There is an alternate login page for non-flash users—
http://supporthtml.oracle.com, but this will not include
any of the personalization features such as Patch Plans or uploaded
configuration details.

There is one patch plan associated with the patch number 8534378, as shown by the
folder icon. I purposely moved the sliding components of this dashboard so that the
sensitive information is covered. You can also right-click to select a patch to add to a
new plan or existing plan, download, or suppress this patch. The existence of a patch
plan is indicated by the folder icon next to a certain patch, as seen in the very first
entry of the list of patch recommendations. If you don't have any configurations,
you will not see a list of patch recommendations.

Maintaining Oracle Standards

[60]

The next screenshot is the full screen of a selected patch 8534378, which is the CPU
for July 2009. Notice on the right the Coming Soon! banner, which is reserved for the
community functionality that wasn't available at the time this book was written. This
area of MOS will include end users' feedback on this particular patch and will also
list the number of times it was downloaded over the past few months.

Applying a patch without integrating MOS with OCM
Here are generic instructions for applying a patch without MOS and OCM:

1.	 Download the patch, PSU, CPU, or patch set.
2.	 Create a new ORACLE_HOME for testing if alternating between different

ORACLE_HOMES. Otherwise, all Oracle software running in the home to be
patched will have to be shut down.

3.	 Install if there aren't any conflicts. If there is a conflict, then the patch is
rolled back.

4.	 Check if any key patches are also rolled back.
5.	 Submit a merge request on MOS for key patches.
6.	 Download the merge request to start the patch process again.

Using the new patch plan functionality with OCM
installed and uploaded to MOS

1.	 Patch Plan automatically checks for missing prerequisites. This functionality
has not been shown to be consistent across the board yet.

2.	 It checks any conflicts before downloading.
3.	 It request a merge if required before downloading.
4.	 It will also check recommended patches for your configuration.

Chapter 2

[61]

The following documents from MOS contain the manual methods for determining
whether a patch will conflict using the Oracle supplied opatch utility. More details
about opatch use are outlined in Chapter 7. If your organization doesn't want to
install or configure the OCM collector for security reasons, then the following is
a viable option for determining patch conflicts.

Refer to How to find whether the one of the patches will conflict or not? [Doc ID: 458485.1].
Here are a couple of examples of how to use this command-line utility outlined in
the document:

opatch prereq CheckConflictAmongPatchesWithDetail -phBaseDir $ORACLE_
HOME/patches

opatch prereq CheckConflictAgainstOHWithDetail –phBaseDir $ORACLE_
HOME/patches

Change control
To keep from constantly writing the same pieces of code over and over again and
reconciling differences between servers, a common storage area for DBA code needs
to be established. It is most likely that your programming staff already has access to a
code repository. The two largest open source versions are CVS (Open Source Version
Control) and Subversion (SVN). They are both equally efficient and powerful tools
with slightly different features. If version control software is already deployed in
your enterprise, then ask for a repository for database administration and limit the
access to that repository.

Do not store passwords in a repository that means 'currently in use'
or 'previously used'. Find an enterprise-wide password utility such as
KeePass that will store encrypted passwords for all of the servers and
databases. Integrate SSH PUTTY with KeePass so that it launches a
terminal window without having to type the password. See the following
blog for additional information on other password utilities like KeePass:
http://princessleia.com/journal/?p=1235.

One way to use version control software is to check out the repository on each node
and use the command-line version on that node. While you can check out code
on your desktop, you will still have to shuttle any code changes via SSH or SFTP
between your desktop and the servers, which adds another step to the process. There
are also issues when editing the files with a Windows utility; it inserts the carriage
return character that has to be removed to run on a Unix box. The Unix utility that
removes special Windows characters is called dos2unix.

Maintaining Oracle Standards

[62]

dos2unix removes any links (symbolic or hard) that a file currently has.
This will affect how the file is referenced in the $PATH, so the links must
be recreated. See the Unix help pages for ln, which is done by issuing
a man ln. This command opens up the OS documentation for the ln
command on Unix.

There is a way to eliminate the extra shuttling of code while keeping the GUI
interface by using the open source ECLIPSE on the server. It is most closely
associated with Java programming as an Independent Development Environment
(IDE). There are additional plugins, software extensions, and code additions for
almost any programming you would need to accomplish. Check out the Data
Tools Platform Project for downloads specific to database development.

Version Control Software will take some time to learn to use safely. It can easily
overwrite or remove critical pieces of code. So work closely with the code repository
system admin to make sure there are backups! A safer way to use the repository
might be to check it out in a temporary staging area and migrate the code safely
to a protected code tree.

Where, when, and who to call for help
Okay, now that you know the major responsibilities as a DBA, when should you ask
for help? When would you know something is wrong? One issue that every DBA
dreads is when end users complain that the database is slow. It doesn't matter if you
are sitting in your office and the database seems to be running perfectly well. Every
script you run reveals no issues or distinguishable slowness. So what are those end
users talking about? If the end users have an issue, then you now have a problem.
And that particular problem is called response time; this subject will be explored
further in Chapter 8.

Components (at several levels of the technology stack) that slow things down for
the database can include the network, operating system, application servers, and of
course hardware-specific problems. Start an SQL trace to help come up with an error
message that will give more clues to the problem. Please don't assume it is someone
else's problem.

If you encounter corruption at any level, automatically open a Service Request,
even if you solve it completely yourself. Unless you know exactly how extensive the
corruption is, it is best to take the database offline while it is being fixed because you
may have to restore from previous backups, possibly losing the current transactions
being entered.

Chapter 2

[63]

The best defense against corruption is preventing it in the first place. 11g has a
new startup initialization parameter DB_ULTRA_SAFE. Certain types of database
corruption can also be prevented by implementing DATAGUARD for failing over
when something disastrous occurs to the primary production database. In earlier
versions of Oracle, the two database parameters db_block_checksum and/or
db_block_checking were used to help in corruption detection and prevention.

Now is the time to point you to Oracle's website for the Maximum Availability
Architecture (MAA). They have worked extensively with vendors and Very Large
Database (VLDB) customers to improve performance at every level of the technology
stack. Most of the concepts, techniques, and tips will apply to any company that runs
Oracle. You need to download all of the white papers from the Oracle Technology
website, print them out, and go over all of the details thoroughly. There is additional
information available on MOS about MAA. Only by testing with your data can you
be assured that true performance improvement or failover capabilities from these
recommendations are suitable for your environment.

Critical tuning information presented in Chapter 8 will come from the practices
outlined in the MAA white papers. The following URL comes from the Oracle
Technology Network site, which contains extensive forums, white papers, online
documentation, and software downloads for Oracle products.

http://www.oracle.com/technology/deploy/availability/htdocs/maa.htm

My Oracle Support
As a new DBA, I would recommend starting a search for a problem or issue on the
My Oracle Support website. As you gain experience in researching issues that other
DBAs have helped with, then you may decide to start with an Internet search first.
On MOS there are database administration scripts, documentation, customer-written
articles as well as complete checklists for any migration project. Look for FAQs on
most subjects as they often have the complete list of all current documents that are
related. The new Upgrade Companion found on MOS should be shown to your
DBA manager so that they can see the complex process needed just to upgrade the
database—it will help and scare you at the same time.

Double check whether the licenses listed on your MOS profile are correct; contact
your Oracle account representative if they aren't.

Maintaining Oracle Standards

[64]

If there is an error message involved, even if it isn't a specific Oracle message, MOS
also has answers to errors related to the operating system, desktop, network, client
browsers, compilers, and even common programming issues. The trick is learning to
do advanced searching within MOS and to find the information you need. If you use
an Internet software search site they will strip any non-alphanumerical characters,
but not MOS. It will do exact, error code type of searches like "ORA-00600".

Check out the code download for this chapter. It contains a small plugin for Mozilla
and information on downloading a Microsoft Deskbar, making searches on MOS
easier. MOS_search_mozilla.txt and MOS_search_msdeskbar.txt each contain
the code source and credit to the author. It will ask for your MOS username and
password to complete the search.

Remember that if you have an emergency, MOS may take hours (if not several days)
to respond, depending on the level of support purchased. There is a phone number
to call MOS, but that will result in waiting until there is someone available to help
you at the time you call. In the past, fairly good results came from telephoning
Oracle support but these days you are summarily directed back to the MOS
website to enter a Service Request. If you have system configurations uploaded
to MOS (see Change Control, Release, and Configuration Management section) that
makes it easier to enter a Service Request, as it automatically preloads a lot of
the required information.

Documentation library
Of course, the first place you should start when you have a question on migrating
to a new release is the documentation. Be sure to match the version of the
documentation to the database version! Download the entire library found on the
Oracle Technology Network website—http://otn.oracle.com. You will notice
that even the downloaded local copy will have the search box returning to the
Oracle website. There are occasions when the website is not available.

If you only want to search using desktop search indexing capabilities (see
information in the preceding paragraphs), then open up the index.htm and
comment out the following lines that reference the Oracle website. This will
disable the feature completely and will show it has already commented out by
adding ! in front and in the last line of the code just inside the > signs;

<!--div class="simple_search_form_container" style="margin-bottom:
5px;">
<div>
<form class="simple_search_form" action="http://www.oracle.com/pls/
db112/search" method="get">
<input type="hidden" name="remark" value="quick_search" />

Chapter 2

[65]

<input type="text" id="s_word" name="word" value="" class="search_
field" />

<label for="s_word">
Search:
</label>
<input type="submit" value="Search" class="text" />

</div>
<div class="shortcut_links">
<a href="http://www.oracle.com/pls/db112/ranked?advanced=1" target="_
top">Advanced Search •
Master Book List •
Master Index •
Master Glossary
•
Error Messages
</div--!>

The Oracle community is world-wide and most people are willing to help even
novice DBAs. One of the best ways to get a question answered is by knowing how
to ask the question in the first place. See the following for a few pointers:

Searching the forum archives first before asking a question—most often
novices are asking a question someone else has asked.
If forum searching is not successful then use your favorite Internet search
engine. Be careful that the information found may not actually apply to
your situation, as Oracle problems are time-sensitive and/or version specific.
There is the old standby—Oracle documentation or searching MOS.
Frequently asked questions or FAQ's on MOS (use both forms of the words
FAQ to search with) will be more specific and up-to-date as compared to
the documentation.
Once you have some preliminary information, try to figure out the answer on
your own in a test environment.
Ask someone you know for the answer, but try not too overwhelm them with
too many questions, they may stop responding.

•

•

•

•

•

•

Maintaining Oracle Standards

[66]

The Oracle code (PL/SQL and executables) is wrapped, making the source
non-viewable by any utility. Look within the Oracle-supplied DBA views
for information. Search on the Internet for a free utility to learn these views.
Descriptions for the columns for the data dictionary are included from the
dba_col_comments view, but using a utility makes it easier to read.
You should really make an effort to figure this out for yourself. Take an
Oracle University class to get started. Every certified Oracle instructor that
I have had the chance to meet has been excellent and the group as a whole
comes highly recommended.
Check out your local community college or university for Oracle classes.
Taking any type of instruction will give you a pool of people to ask for
help when you need it.

The following recommended URL list is not comprehensive. It is a jumping-off
place to get you started. What it does is eliminate a lot of the bad websites that
have incorrect information or are just strictly commercial:

http://asktom.oracle.com

http://www.orafaq.com

Oracle-L email lists, part of ORAFAQ

http://www.freelists.org/archive/oracle-l

http://www.eclipse.org

Usenet Groups

http://groups.google.com/groups/dir?sel=33583151&expand=1

http://support.oracle.com

http://forums.oracle.com

OraNA :: Oracle News Aggregator

http://orana.info

Google Directories

http://directory.google.com/Top/Computers/Software/Databases/Oracle/

http://www.oracletips.info/

•

•

•

Chapter 2

[67]

Summary
We looked at many things related to implementing standards across the enterprise in
this chapter. Let's take a moment to run through them.

Multiple ORACLE_HOME(s) and multiple databases on multiple servers can be kept
under control by maintaining consistent standards across the enterprise. These
standards include both OFA and the methods used to automate DBA tasks. Don't let
small mistakes keep you squirreled away in your office manually fixing problems
that can be avoided in the first place.

Start off by writing your own scripts. Feel free to search on My Oracle Support or the
Internet when you need some inspiration. But don't just implement what someone
else has written; change it slightly to make it yours. Keep working on scripting as
and when you have time.

This chapter contained an introduction to all of the latest manageability features
found in 11g Diagnosability Framework. Several of the newer features are an
additional licensed option, which are available as a link on the OEM console,
as a database package, or as a command-line utility.

Installing the Oracle Configuration Manager allows uploading configurations, which
will open up an entire new world on the My Oracle Support website. Be aware that it
does reveal information about your site to support personnel and to anyone else with
the same CSI number.

Ask everyone when an issue can't be resolved quickly. Compare answers from
different sources. Looking for similarity between the responses is one way to gauge
credibility. Test several different scenarios before implementing the best solution.
There are so many tools on the Internet to keep you connected with the large DBA
community: user groups, Twitter, blogs, IT conferences, e-mail lists, and forums.
Remember everyone is a novice at some point.

The next chapter takes us into the most detailed level of the database: the data
block. You will see how to use special commands to dump the data in its
hexadecimal format and convert back to a character. Understanding how data
travels from one database structure to the next will give you a solid background of
technical information to build on as a DBA. It will also give you more confidence in
your troubleshooting abilities.

Tracking the Bits and Bytes
As a DBA it is essential to know how data moves from one database component to
the next; that is, the essential architectural infrastructure at the transaction level.
Before continuing with this chapter, you should read the Oracle Database Concepts
11g Release 2 (11.2) of the documentation, the book every DBA should start with.
There is a large amount of material in the concepts guide you need to be familiar
with, and you should refer back to Sections I-IV as you read through this chapter.

The following list is a recommended shorter version the items in the concepts
manual that you need to start with. If a topic isn't listed (for example, Table Clusters),
it isn't as essential for understanding as the rest of this book. Come back to advanced
topics as you have time or develop a need for that technology in the future.

Part I Relational Data Structures: Tables, Indexes, Views, Data Integrity, and
the Data Dictionary
Part II Data Access: SQL
Part III Transaction Management: Transactions, Data Concurrency,
and Consistency
Part IV Database Storage Structures: Physical and Logical
Part V Instance Architecture: Database, Memory, Process, Networking
Part VI Database Administration: Concepts for Database Administrators

While the information in this chapter is considered advanced by most DBAs, I
consider it essential for understanding Oracle at the very core. This information
should reveal to you the importance of restricting all access at the operating system
to the database files. It is just too easy to strip the binary components, revealing the
actual data without a database username and password. So if someone can get to
your data files, backups, exports, or archive logs and they aren't encrypted, you
have been compromised.

•

•

•

•

•

•

Tracking the Bits and Bytes

[70]

Instead of just reading this chapter, work through the samples as you go along and
also open up the Concepts Documentation Manual to clarify any details you have
forgotten or don't really understand. It will solidify these important concepts that are
essential to your success as a DBA. After carefully going through the information in
this chapter, you will know the direct relationship between the physical components
and the logical structures of the database. There will be critical times where you have
to make quick decisions to minimize data loss and this information will help you
make the best decision.

The use of four different utilities will be covered in this chapter:

Oracle's RDBMS SQL command dump block
Oracle's RDBMS Log Miner utility
Flashback Transaction Query and Backout
Unix strings command

Dump block
Dump block gives you the view of the data at the block level, the smallest piece of
storage for the data. Working through this chapter allows you to apply concepts of
how data moves, block by block, through the physical structures of the database,
really solidifying how transaction integrity is maintained. You would only use
dump block on a production system with an Oracle Support Engineer, which is
usually done during advanced recovery situations. The dump block is often used to
determine the level and extent of corruption and what data can be recovered. It can
also be used to resolve some tuning and performance issues.

Do not do this in a production database.

Our examination of data blocks starts in Section 12-6 of the Concepts Manual.

Data block format: "Every Oracle data block has a format or internal structure that enables
the database to track the data and free space in the block. This format is similar whether
the data block contains table, index, or table cluster data." A block is the smallest unit of
logical storage that the Relational Database Management System (RDBMS) can
manipulate. Block size is determined by the database parameter DB_BLOCK_SIZE.
The logical storage of data blocks, extents, segments, and table spaces (from smallest
to largest) map to the data files, which are stored in operating system blocks.

•

•

•

•

Chapter 3

[71]

An undo block will store the undo transaction that is the actual SQL command needed
to reverse the original SQL transaction statement. This undo is needed for read
consistency for all read-only queries until you commit or rollback that transaction.

Read consistency within a changed block (transaction) is maintained for any of the
following commands: insert, update, delete, merge, select for update, or
lock table. Any of the previous changes are tracked until the command is issued
to either commit or rollback a particular transaction. This consistency keeps the
data view to each user the same, whether they are just doing queries or actually
changing any other data.

A point in time or what is called the System Change Number (SCN) identifies each
transaction, and transaction flags show the state of the transaction. The only end user
that can see any changed data will be the one making the changes, no matter the
application used until they commit that change.

The SCN advances for every change to the database as a sequential counter, which
identifies a certain point in time. The SCN tracks more than just single transactions
by end users. These transactions will be in Data Definition Language (DDL)
or Data Manipulation Language (DML). DDL statements are associated with
creating objects (create table) or what is also called metadata. DML are the other
commands mentioned earlier (insert, update, delete, among others) that manipulate
the data in some way. The RDBMS advances the SCN if another person logs in,
reconnects, or alters their session as well as when Oracle background processes
(which constantly check the state of activity inside of the database) take place.

It is undo that gives everyone a point-in-time consistent view of the data, which is
called Read Consistency. There are controls created from business rules within the
application called triggers and integrity constraints that validate the data entered by
the user. Database locks control access to data during changes for exclusive access by
the end user changing it.

During a delete or update statement:

The data block is read, loading it into a memory structure called a
buffer cache
The redo log buffer will contain the corresponding delete or
update statement
An entry in the undo segment header block is created for this transaction
It also copies the delete or update row into an undo block
For a delete, the row is removed from the data block and that block is
marked as dirty
Locks keep exclusive use of that block until a commit or rollback occurs

•

•

•

•

•

•

Tracking the Bits and Bytes

[72]

Dirty is an internal designation where the block is identified as having changed data
that has not been written to disk. The RDBMS needs to track this information for
transactional integrity and consistency. The underlying dynamic performance view
v$bh indicates when a particular block is dirty, as seen by the following query:

SYS@ORCL11>select file#, block# from v$bh where dirty='Y';

When a transaction is committed by the end user:

The transaction SCN is updated in the data block and the undo segment
header marks that statement as committed in the header section of the
undo block.
The logwriter process (LGWR) will flush the log buffer to the appropriate
online redo log file.
SCN is changed on the data block if it is still in the buffer cache (fast commit).

Delayed block cleanout can happen when all of the changed blocks don't have the
updated SCN indicating the commit has occurred. This can cause problems with
a transaction that is updating large numbers of rows if a rollback needs to occur.
Symptoms include hanging onto an exclusive lock until that rollback is finished,
and causing end users to wait.

The delayed block cleanout process does occasionally cause problems that
would require opening an Oracle Support Request. Delayed block cleanout was
implemented to save time by reducing the number of disk reads to update the SCN
until the RDBMS needs to access data from that same block again. If the changed
block has already been written to the physical disk and the Oracle background
process encounters this same block (for any other query, DML, or DDL), it will
also record the committed change at the same time. It does this by checking the
transaction entry by SCN in the undo header, which indicates the changes that have
been committed. That transaction entry is located in the transaction table, which
keeps track of all active transactions for that undo segment.

Each transaction is uniquely identified by the assignment of a transaction ID (XID),
which is found in the v$transaction view. This XID is written in the undo header
block along with the Undo Byte Address (Uba), which consists of the file and
block numbers UBAFIL data file and UBABLK data block, and columns found in
the v$transaction view, respectively.

Please take the time to go through the following demonstration; it will solidify the
complex concepts in this chapter.

•

•

•

Chapter 3

[73]

Demonstration of data travel path
Dumping a block is one of the methods to show how data is stored. It will show
the actual contents of the block, whether it is a Table or Index Block, and an actual
address that includes the data file number and block number. Remember from the
concepts manual that several blocks together make up an extent, and extents then
make up segments. A single segment maps to a particular table or index. It is easy
to see from the following simplified diagram how different extents can be stored
in different physical locations in different data files but the same logical tablespace:

Extent=24KB
of 2KB

contiguous
data blocks

Table
Segment=96KB

Extent=72KB
of 2KB

contiguous
data block

The data in the test case comes from creating a small table (segment) with minimum
data in a tablespace with a single data file created just for this demonstration.
Automatic Segment Space Management (ASSM) is the default in 11g. If you create
a tablespace in 11g with none of the optional storage parameters, the RDBMS by
default creates an ASSM segment with locally managed autoallocated extents.

It is possible to define the size of the extents at tablespace creation time that depends
on the type of data to be stored. If all of the data is uniform and you need to maintain
strict control over the amount of space used, then uniform extents are desirable.

Allowing the RDBMS to autoallocate extents is typical in situations where the data
is not the same size for each extent, reducing the amount of time spent in allocating
and maintaining space for database segments. Discussing the details, options, and
differences for all of the ways to manage segment space in Oracle Database 11g is
beyond the scope of this book.

For this example, we will be using race car track information as the sample data.
For this demonstration, you will create a specific user with the minimum amount of
privileges needed to complete this exercise; SQL is provided for that step in the script.

Tracking the Bits and Bytes

[74]

There are several key files in the zipped code for this chapter that you will need for
this exercise, listed as follows:

dumpblock_sys.sql

dumpblock_ttracker.sql

dumpblocksys.lst

dumpblockttracker.lst

NEWDB_ora_8582_SYSDUMP1.rtf

NEWDB_ora_8582_SYSDUMP1.txt

NEWDB_ora_8621_SYSDUMP2.rtf

NEWDB_ora_8621_SYSDUMP2.txt

NEWDB_ora_8628_SYSDUMP3.rtf

NEWDB_ora_8628_SYSDUMP3.txt

NEWDB_ora_8635_SYSDUMP4.rtf

NEWDB_ora_8635_SYSDUMP4.txt

You will also need access to a conversion calculator to translate the
hexadecimal to a number that is the first listing below—use hexadecimal
input and decimal output. The second will allow you to look up Hex
(Hexadecimal) equivalents for characters.
http://calculators.mathwarehouse.com/binary-
hexadecimal-calculator.php#hexadecimalBinaryCalculator

http://www.asciitable.com/

Location of trace files
The dump block statement will create a trace file in the user dump (udump) directory
on any version prior to 11gR1, which can be viewed by a text editor. Using 11gR1
and above, you will find it in the diag directory location. This example will
demonstrate how to use the adrci command-line utility to view trace files. First
we set the home path where the utility will find the files, then search with the most
recent listed first—in this case, it is the NEWDB_ora_9980.trc file.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 3

[75]

Now that you know the location for the trace files, how do you determine which
trace file was produced? The naming convention for trace files includes the actual
process number associated with that session. Use the following command to produce
trace files with a specific name, making it easier to identify a separate task:

SYS@NEWDB>ALTER SESSION SET TRACEFILE_IDENTIFIER = SYSDUMP_SESSION;

The topic of generating and formatting trace files will be covered again when we get
to the Chapter 8, 11g Tuning Tools.

Running dump block SQL statements
Let's run through the test case demonstrating how transaction data moves from one
component to the next. The first script dumpblock_sys.sql creates the tablespace
and a user called TTRACKER with the minimum database privileges needed to
perform this exercise. Please edit the script dumpblock_sys.sql to change the
location of your data file in the test database. You could also leave it blank if the
startup initialization database parameter db_create_file_dest is populated with a
valid operating system location that Oracle has read and writes privileges to. Then,
the database would create the data files in the db_create_file_dest and assign a
system-generated name to them.

In this dump block exercise, you are going to need two different SQL*PLUS
windows or sessions. You start by logging into the database as someone with
sysdba privileges, which is usually the user sys on a small test database. In a
production database, more often sysdba privileges are assigned to a DBA account,
which can be more accurately tracked for auditing purposes. The SYS account is only
used in this scenario to create the TTRACKER user and dump some of the blocks.

Run the dumpblock_sys.sql script first logged in as SYS, it will create the tablespace
and table. Then pause and you'll see the following screenshots for the output:

SYS@NEWDB>@dumpblock_sys.sql

www.allitebooks.com

http://www.allitebooks.org

Tracking the Bits and Bytes

[76]

After the pause, log on as ttracker in the second window, as shown by the output
below, and run the second script:

TTRACKER@NEWDB>@dumpblock_ttracker.sql

The second script will pause at a point and request that you run the first script again,
but the first script needs some information from the ttracker session—the data
file number and block number, in this example 8 and 135. Your data file and block
numbers will be different from any provided in the sample code. Return to the first
window (sys), put in the correct numbers and press the Enter key until it says to
CONTINUE DUMPBLOCK_TTRACKER.SQL IN PREVIOUS SESSION.

Chapter 3

[77]

When it pauses, return to the second window (ttracker) and hit the Enter key.
There will be another pause where a request for the undo file number and undo
block number is found by the select statement just above it on the SQL*PLUS
command line. Go back and forth between the different windows at each pause
until both scripts are done.

What is happening is that you are dumping blocks with the sys login and
manipulating data with the ttracker login (that is, insert, update, commit). At
the same time, you are looking at how the SCN advances through the different
transaction steps as well as matching the transaction with the corresponding undo
SQL statement in the undo segment. We could have done this entire demonstration
with a single logon, but I wanted you to visualize the read consistency view of
a transaction.

What you should have when the script is finished is something similar to the
following list in the trace directory. What will be different for your environment
is the session number and ORACLE_SID. Notice that there are rtf versions of the
following text files in the code section for this book, which are the highlighted
sections mentioned in this chapter:

NEWDB_ora_8582_SYSDUMP1.rtf

NEWDB_ora_8621_SYSDUMP2.rtf

NEWDB_ora_8628_SYSDUMP3.rtf

NEWDB_ora_8635_SYSDUMP4.rtf

•

•

•

•

Tracking the Bits and Bytes

[78]

You should also have a couple of lst files in the directory you executed SQL*PLUS
from, to review in case of an error. I have provided the same lst files from my
session for you to review as well:

dumpblocksys.lst
dumpblockttracker.lst

If you choose to rerun these scripts on the same database, you will get an error on the
create sections if you do not drop the user ttracker, tablespace, and the table named
tracks. The easiest way to drop both the tablespace and table is:

sys@NEWDB> drop tablespace track including contents and datafiles;

and then follow this by dropping the user ttracker:

sys@NEWDB> drop user ttracker;

Identifying files and blocks
There is more than one way to identify the file number and block number of a
particular segment. One way is with the dbms_rowid package. The Oracle-supplied
package dbms_rowid will show the absolute block number and relative file number
of a table extent. That information comes from both the data file header and the
block header.

sys@NEWDB> select dbms_rowid.rowid_relative_fno(rowid) as filenumber,
 dbms_rowid.rowid_block_number(rowid) as blocknumber
 from tracks;

The next query will search for the data file where those segments or extents are
stored. A tablespace is only a logical structure that actually maps to the data file. It is
important to understand that only certain objects (extents) are mapped to a physical
data file.

sys@NEWDB> select d.file_name, e.segment_name, d.tablespace_name from
dba_data_files d, dba_extents e
 where d.tablespace_name=e.tablespace_name and owner ='TTRACKER';

And finally, the following query will verify the file number for the tablespace TRACK
data file. We are interested in manipulating the data in the TRACKS table only,
which in this test database is file number 8 and block number 135. 135 is actually
the starting block number for this table segment.

sys@NEWDB>select name, file# from v$datafile;

Chapter 3

[79]

Each time you use the dump block command, it will create a trace file in order to
track a single transaction across the database structures. This trace contains the
following information that we are interested in for this demonstration:

Contents of the block for a certain file number and block number
List of the actual rows
SCN of a particular block
Transaction ID for a data block and the corresponding undo block
Any locks being held for that transaction
Flags indicating the state of the transaction
Read Consistency, Fast Commit, and Delayed Block Cleanout behavior

The dump block command can be used in several different ways to extract
information. See the following for a few examples as they apply in this test case:

sys@NEWDB> alter system dump datafile '/u01/oradata/NEWDB/track01_
NEWDB.dbf' block 135; -- one block at a time
sys@NEWDB> alter system dump datafile 8 block 135; -- one block at a
time
sys@NEWDB> alter system dump datafile 8 block min 135 block max 142;
--this dumps multiple blocks

There is much more information in these trace files than what we can cover in this
book. For more information look for reference materials that refer to Oracle Internals.
Refer to the following legend for the trace files.

Legend for Trace Files:
Xid—Transaction ID
Uba—Undo Byte Address
Flag—Transaction flag

C--- Committed,
 ---- Uncommitted
--U- Fast commit, delayed block cleanout has not happened

Lck—Number of Rows locked
Scn—System Change Number

Not all of the transaction flags have been listed here and
further research may be required.

•

•

•

•

•

•

•

•

•

•

°

°

°

•

•

Tracking the Bits and Bytes

[80]

Tracking the SCN through trace files
We will be going through four different trace files showing the transaction
state at different points. It will be easier to switch from one to the other if you
go ahead and open each one in its own window. Start with the output file called
dumpblocksys.lst as that contains the starting database SCN number. That comes
from the following query:

SYS@NEWDB>SELECT CURRENT_SCN FROM V$DATABASE;

The database SCN will always be ahead of a transaction SCN because the transaction
event has already occurred. The transaction SCN is recorded in the accompanying
trace file, while the database SCN is recorded in the lst output files.

Farther down in the file dumpblocksys.lst, there are no active transactions as
shown by no rows returned when selecting from v$transaction the first time.
At the first pause is the point where ttracker starts modifying the table, allowing
us to actively track that transaction by dumping the block.

In the next section, different transaction types will be covered, actively
demonstrating what is known as Oracle Internals, the undocumented internal
structure of Oracle data.

Single Row Insert
Open up the first trace file called NEWDB_ora_8582_SYSDUMP1_SESSION.rtf, as
this contains additional comments. The text version of this file (trc) is provided
and contains the original trace data with any identifying or sensitive information
removed. Note this transaction SCN number, which is then linked to the data from
the insert statement as follows:

INSERT INTO TRACKS VALUES (1, 'ATLANTA'); --from dumpblock_ttracker.
sql

The hexadecimal number is converted to decimal format by using the calculator
mentioned earlier.

SCN of block insert statement = hex scn: 0x0000.001827be = 1,583,038

Switch to the dumpblockttracker.lst output file. Note that the database scn has
advanced past the original starting database value and past the first transaction scn
(to 1583039) due to the changes made; the tracks table was created and a single row
has been inserted.

Chapter 3

[81]

Switching back to the file NEWDB_ora_8582_SYSDUMP1_SESSION.rtf, farther down
the Flag there are dash marks with a 1 in the Lck column. By referring back to the
legend earlier in this chapter, this indicates that the transaction state is uncommitted
and there is a single lock. This single lock is important, as the ttracker user can
exclusively use this data block until a commit or rollback statement is issued.

Itl Xid Uba Flag Lck
0x01 0x0007.002.0000040c 0x00c000e6.015d.04 ---- 1
0x02 0x0000.000.00000000 0x00000000.0000.00 ---- 0

Notice the Uba (Undo Byte Address) that ties this transaction to the matching SQL
undo statement in an undo segment should the end user need to rollback this
transaction. Also notice the Itl heading in the above list that stands for Interested
Transaction List, which consists of all transactions currently active for that block. In
this case, there is only the current single transaction.

The Xid found in NEWDB_ora_8582_SYSDUMP1_SESSION.rtf should match the query
from the v$transaction table, as seen in the dumpblockttracker.lst file. The
start_scn also matches the SCN found in the trace file NEWDB_ora_8582_SYSDUMP1_
SESSION.rtf. Labeling the columns clearly specifies what each one represents. If the
column labeled NOUNDO equals YES, then there would be no undo available. See the
query as follows:

SYS@NEWDB>SELECT UBAFIL AS UNDOFILENUMBER,UBABLK AS UNDOBLOCKNUMBER,ST
ATUS,NOUNDO,XID AS TRANSACTIONID,START_SCN FROM V$TRANSACTION;

Farther down in the trace file is the section that contains the actual data. Look for
the key words block row dump. The data found in the trackname column is in
hexadecimal format, which is converted by referring to http://www.asciitable.
com. Look up the Hex (hexadecimal) to find the Char (character) equivalent.

block_row_dump:
tab 0, row 0, @0x1f8a
tl: 14 fb: --H-FL-- lb: 0x1 cc: 2
col 0: [2] c1 02
col 1: [7] 41 54 4c 41 4e 54 41 = A T L A N T A

Commit of a single row insert
What happens when we finally issue a commit statement? Looking at the
NEWDB_ora_8621_SYSDUMP2_SESSION.rtf file, there are several items of interest.
Notice the advancement of the SCN after the commit statement was issued from
the previous insert statement:

scn: 0x0000.001827c3 --001827c3 = 1,583,043

Tracking the Bits and Bytes

[82]

The flag shown below is now showing as committed by fast commit process, which
causes delayed block cleanout until this block is visited by another query, DDL,
or DML statement.

Also see that the Uba is the same address as before the commit
statement in the previous section (above), as excerpted from
NEWDB_ora_8582_SYSDUMP1_SESSION.rtf:

Itl Xid Uba Flag Lck
0x01 0x0007.002.0000040c 0x00c000e6.015d.04 --U- 1
0x02 0x0000.000.00000000 0x00000000.0000.00 ---- 0

The fast commit process is fast because it makes the minimal changes needed to
indicate that a commit has occurred. This leaves the lock (see the Lck Flag of 1)
even after the commit has finished! Delayed block cleanout happens when the next
operation visits this block and refers back to the transaction table to find the details
for finishing the cleanup process.

Single row update and corresponding undo block
Continuing with the demonstration, we are modifying the existing Atlanta entry
in the tracks table to Daytona by issuing an update statement. In this case, we are
dumping both the data block and the undo block in order to compare information
across those two database structures. Taken from dumpblocksys.lst, the following
information tells us several things.

The sys user only sees the previous data of Atlanta showing read consistency for
everyone else; that information is coming from the undo segments. Ttracker sees the
entry as Daytona, which has a lock (exclusive view) on the changed data. The select
statement below returns the row ATLANTA:

SYS@NEWDB>SELECT * FROM TTRACKER.TRACKS;

There is an active transaction that shows how the undo file number, and undo block
number can be determined. Just as we need the file number and block number of
a table segment to explore the internals, we will need the file number and block
number of the undo segment.

SYS@NEWDB>SELECT UBAFIL AS UNDOFILENUMBER,UBABLK AS UNDOBLOCKNUMBER,ST
ATUS,NOUNDO,XID AS TRANSACTIONID,START_SCN FROM V$TRANSACTION;

The SCN for this update statement is located in the file
NEWDB_ora_8628_SYSDUMP3.rtf.

scn: 0x0000.001827cb -- 001827cb = 1,583,051

Chapter 3

[83]

Now that we have accessed the same block by issuing an update, the flag now
shows as committed in the corresponding trace file. Also notice the lock (Lck) has
been removed:

Itl Xid Uba Flag Lck
0x01 0x0007.002.0000040c 0x00c000e6.015d.04 C--- 0
0x02 0x0000.000.00000000 0x00000000.0000.00 ---- 0

col 0: [2] c1 02
col 1: [7] 44 41 59 54 4f 4e 41 = D A Y T O N A

Comments in the file NEWDB_ora_8628_SYSDUMP3.rtf indicate where the data block
dump stops and the undo block dump starts. Farther down in the same file, find the
data section labeled as follows. This undo block dump contains the entry for Atlanta.
Now, if the end user (ttracker in this case) rolled back the Daytona update, then the
ATLANTA row would be restored as shown in the undo block dump:

col 1: [7] 41 54 4c 41 4e 54 41 = ATLANTA

frmt: 0x02 chkval: 0xa058 type: 0x02=KTU UNDO BLOCK

Let's continue with the demonstration to show the internal changes when the commit
of an updated row in the tracks table occurs.

Commit of a single row update
The associated SCN for this transaction is listed in the trace file and converted
as follows:

scn: 0x0000.001827d1 -- 001827d1 = 1,583,057

Note that both transactions in the Itl are listed for this data block: first the commit
and then the following update statement. Each statement is uniquely identified by
its respective Uba and SCN. Just as before in Commit of a single row insert, the flag U
indicates delayed block cleanout until this block is accessed again, and the lock is
still at least partially present.

Itl Xid Uba Flag Lck Scn/Fsc
0x01 0x0007.002.0000040c 0x00c000e6.015d.04 C--- 0 scn
0x0000.001827c3
0x02 0x0008.010.000004cf 0x00c0056a.0112.14 --U- 1 fsc
0x0000.001827d1

col 0: [2] c1 02
col 1: [7] 44 41 59 54 4f 4e 41 = D A Y T O N A

Tracking the Bits and Bytes

[84]

There is usually more than one way to accomplish a task, such as converting
hexadecimal information to a readable character string. Earlier, this conversion task
was outlined with reference to an online hex to ASCII calculator to do the work for
you. There is an Oracle supplied package called utl_raw that can also do the same
conversion with the word DAYTONA returned, as follows:

TTRACKER@NEWDB> SELECT utl_raw.cast_to_varchar2(HEXTORAW('444159544f4e
41')) FROM dual;

The last database SCN recorded in this exercise from the dumpblocksys.lst
file is 1583062.

We have traveled the SCN, changing from the initial value of 1583007 to the end
value mentioned above as 1583062. By altering a small amount of data and looking
at the associated changes within the trace files, we can clearly demonstrate database
read consistency, locking mechanisms, and delayed block cleanout. While the
concepts manual is a good place to start, a DBA needs to be able to prove what they
have read (or heard) with an actual test case. The next section continues with other
means of evaluating transactions within the database, for different reasons and with
different utilities.

After accomplishing this task successfully, you should be more comfortable with the
internal structures of the database. More advanced scenarios would be to work with
more data, add indexes (index segments can be dumped), or multiple schemas. If this
type of work really intrigues you, start asking around at conferences. There are lots
of people that are used to working with Oracle at the block level. Truly geeky!

Take this exercise a step further and create a database package to make
dump blocks more readable. See: http://dioncho.wordpress.
com/2009/07/14/decoding-block-dump-using-utl_raw/.

Oracle's RDBMS Log Miner utility
Log Miner can help when questions such as the following come up: What was
changed? Who changed it? And in what order?

When unauthorized people change data, they may assume that the record does
not retain all changes if that information isn't viewable at the application level.
There is a record of all changes that are logged, but it takes time and trouble to
find that information.

Chapter 3

[85]

The tool most often used is the PL/SQL package DBMS_LOGMNR, but the GUI
Interface called Log Miner Viewer has been added to the OEM. There are quite a
few examples in the Oracle Database Utilities Guide of how to use this utility for both
the browser-based and PL/SQL versions. We will concentrate on when and how to
find the data to restore.

You already should have a good understanding of the database structures that
include the undo and redo logs: undo is generated when an end user starts changing
data and redo is generated after the commit. Each is written to their own set of files.
While undo and redo are both online (database is open), archived redo is offline and
written to a disk.

Archived redo logs are no longer needed for the transactions inside the database
because they have been committed and written to disk. Archive logs are still
important in order to restore the previously committed transactions in a recovery
situation. Making an archive log offline allows backup procedures (RMAN,
third-party backup software or OS utilities) to manipulate the files at the
operating system level.

Recovery is a database process that will:

Roll forward changes from redo logs and then rollback statements any end
user used the rollback command for.
Roll back any uncommitted changes found in the UNDO segments.

Look at Chapter 6, Extended RMAN for more information on how undo
and redo is involved with transactional consistency for backups and
recovery scenarios.

There are specific Oracle processes such as LGWR that write the redo to the online
logs and then an archiver process (ARC) writes to the archived logs. The only way to
ensure every transaction in a database has been logged for recovery purposes is to
operate in ARCHIVELOG mode. There are special situations that will call for running
in noarchivelog mode. It is assumed that any transactions lost between backups
can be recreated. Archived redo logs can be used to restore transactions that
occurred between regular backups. From the last exercise, you also have a
good understanding of read consistency available from undo segments,
which also contribute to redo entries.

•

•

Tracking the Bits and Bytes

[86]

The DBMS_LOGMNR package is used to find data in both the undo and redo
database structures. It is also useful for analyzing patterns over time for specific
tuning needs, schema changes, and forecasting the time for hardware upgrades.
With the DBMS_LOGMNR package, you can extract data that populates the
V$LOGMNR_CONTENTS view with the actual transactions that have been
executed. These entries contain both the REDO and UNDO statements.

You can operate Log Miner on the original database that created the log entries
or almost any other Oracle database of a higher version that is running the same
character set, database block size, and operating system. This is why it is critical
that you protect the online redo, undo, and archive logs—they can be mined for
information. Most often a DBA will actually use a different database to do the mining
so that it doesn't consume additional resources in a production database. If you use
a different database than where the original transactions were created, you will have
to rebuild the Log Miner data dictionary (online, offline, or a standalone flat file).
The dictionary translates the internal object identifiers and types to table and column
names that can be queried, but those object IDs will vary between databases, making
the rebuild a requirement.

The Log Miner example task requires several preparatory steps to be completed
first, with some additional discussion along the way. Discussion includes archiving,
supplemental logging, and Flashback technologies. You won't get to an actual
logminer example for quite a few pages. Since logminer has extensive documentation
detailing all of the steps for various scenarios, it was decided to only include a lesser
known method of using logminer in this book called Flashback Transaction Backout.

Turn on archivelog mode
Before we delve into the mining exercise, we will cover more information about
SCNs, as they relate to checkpoints and log switches while turning on archiving for
the database. Transactions in a database produce redo entries in the redo log buffer
(in memory), but that is always being written to the online redo logs. That occurs
according to different triggering events that can happen in the redo stream—a
certain amount of data, commits, 3 seconds or 1/3 full redo log buffer. Whether these
triggering events occur or not depends on the type and frequency of transactions.

A checkpoint synchronizes modified data blocks in the redo log buffer with the
actual data files, keeping the data consistent. In the case of a database crash, this
identifies the point where all outstanding data (transactions) have been written to
disk. This checkpoint isn't synchronized with the SCN of a transaction commit and it
does not behave like a log switch.

Chapter 3

[87]

The files you will need as you work through this exercise are included in the code for
this chapter as follows:

sys_archive.sql
sysarchive.lst

Open up the file sysarchive.lst. One of the most important views (anything
labeled v$ is called a dynamic view) in the database is v$database.

SYS@NEWDB> SELECT LOG_MODE, NAME, CURRENT_SCN, ARCHIVE_CHANGE#, OPEN_
MODE FROM V$DATABASE;

Find this section for the statement from v$log_history farther down in
sysarchive.lst. What are all these entries if we aren't in archivelog mode? These
are the log switches to the online redo logs. They are overwritten once that section
of the redo log is no longer needed by a transaction to maintain consistency. This is
where a checkpoint comes into play. It ensures that data is written to the disk and is
independent of the ARC log switch process.

Once we switch to archivelog mode, the online redo will still be overwritten, but
the ARC process will write a copy of that log to an archive destination. Below you
will see that each log contains a range of database SCNs. This log contains database
changes from the first SCN number to the next.

We have already covered what the current_scn means in the first section of this
chapter, as it relates to transactions. Now we try to correlate archive_change# and
checkpoint_change#. Also notice that the checkpoint_change# for each data file is
consistent for normal database operations. I am showing only the partial output from
the following command for the single data file created earlier in the chapter:

Tracking the Bits and Bytes

[88]

At this point, we have started the database in mount mode (the controlfile needs
to be accessed, but the database is not opened for full use), turned on the archiving
process, and verified that archiving has started and also verified the location of the
archived logs. Making a log switch from one online redo to another doesn't sync the
checkpoint_change# with what the controlfile has (controlfile_change#
is what is also called a thread checkpoint).

Only when we do a manual checkpoint (instead of a database-activated checkpoint)
do those numbers coincide. They can be verified with the dynamic view v$datafile
as shown below:

Additional information for troubleshooting archiving issues comes from another
dynamic view, V$INSTANCE:

The archiver column can also indicate when the ARC process failed to switch logs
with an automatic retry in another five minutes. The log_switch_wait will indicate
the wait event the log switching process is waiting on—ARCHIVE LOG, CLEAR LOG,
or CHECKPOINT.

Chapter 3

[89]

All of the activity associated with log switches and checkpoints will influence
database performance (which will be taken up in the last chapter of this book). We
shall continue now with the further required setup steps to complete all of the tasks
in this chapter.

Add supplemental logging
All undo and redo buffer entries are logged along with archiving redo log entries
to disk. When would additional supplemental type logging be required? There are
additional details needed that are not ordinarily included with undo or redo entries.
The additional details make the transactions usable (identify the rows in the redo
logs) by Log Miner. These are added to the redo stream by the following commands:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA; -- minimal
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (ALL, PRIMARY KEY, UNIQUE,
FOREIGN KEY) COLUMNS; --Identification key logging

Identification key logging
Both the before and after images of the specified type of columns are captured in
the redo log files. Both the Foreign Key (FK) logging and of course ALL would be
very resource intensive, depending on the number of FK constraints involved with
the transaction(s).

Table-level supplemental logging
Unconditional or Conditional Logging is tracked through log groups: Unconditional
tracking would capture the before and after column images no matter what.
Conditional tracking captures the before image only when the columns are updated;
it always captures the after images. Table level logging would be involved with
streams replication scenarios.

ALTER TABLE TABLENAME ADD SUPPLEMENTAL LOG DATA (PRIMARY
KEY,UNIQUE,FOREIGN,ALL) columns;

Tracking the Bits and Bytes

[90]

The following query can be used to check the table level log groups defined in
the database:

SYS@NEWDB> select * from DBA_LOG_GROUPS;

Since logging can be resource intensive, DBAs will need to turn it back off after
certain tasks are finished. Turning off logging is done by stepping backwards,
dropping the most restrictive logging first (key related), and then the generalized
drop supplemental commands as shown below:

SYS@NEWDB> alter database drop SUPPLEMENTAL LOG DATA (PRIMARY KEY,
UNIQUE INDEX, FOREIGN KEY, ALL) COLUMNS;
SYS@NEWDB> ALTER DATABASE DROP SUPPLEMENTAL LOG DATA;

Flash(back) Recovery Area (FRA)
You will see the FRA referred to as either the Flash Recovery Area (newer form)
versus the older version called Flashback Recovery Area. They are the same thing,
though Oracle decided to shift the emphasis so that the FRA should be used for all
files associated with backup and recovery and not just Flashback logs.

If a mandatory archivelog destination becomes full at the disk level, it can cause the
database to hang, as there is no room to write the archived log. FRA as an archivelog
or flashback log destination can hang if you fail to accurately predict the amount of
space needed to implement it. There are several recommendations from Oracle as
what to store in this area, because it is primarily meant for backup and recovery files:

Current control file
Online redo logs
Archived redo logs
Control file autobackups
Data file and control file copies
Backup pieces
Foreign archived redo log (logical standby database in continuous Log Miner
mode. See MAA, Chapter 4)

•

•

•

•

•

•

•

Chapter 3

[91]

Space issues with the type of files in the list above are mostly easily regulated
by a competent RMAN backup policy. If you decide to implement the Flashback
Database Feature, which requires Flashback logs, then running out of space due to
a miscalculation or even a runaway process is a definite possibility. The number of
logs produced is regulated by the startup database initialization parameter
DB_FLASHBACK_RETENTION_TARGET. It is recommended that you start with an FRA at
least three times the size of the database.

The MOS document "What is a Flash Recovery Area and how to configure it?" (Doc
ID 305648.1) has a formula for estimating the size specific to your environment, as
well as actively monitoring changes in the following query:

SYS@NEWDB> SELECT ESTIMATED_FLASHBACK_SIZE FROM V$FLASHBACK_DATABASE_
LOG;

Normal database processes ensure that the flashback recovery area is kept
within certain space limits by deleting the logs under space pressure in two
different situations:

When archive logs are deleted, the associated flashback logs are removed
When the startup initialization parameter DB_RECOVERY_FILE_DEST_SIZE is
shrunk, the logs will be removed as needed

Several different steps can be used to resolve database hanging when it runs out of
physical space in the FRA:

Temporarily increase the size (DB_RECOVERY_FILE_DEST_SIZE).
Relocate it to a different directory (DB_RECOVERY_FILE_DEST) with
more room.
Turn it off completely. Turning it off will require a database restart
disconnecting all users.

We will return to investigate this feature. In the next section, flashback will be turned
off in order to demonstrate finding data in undo segments. This is just meant to
illustrate that the data is coming from the undo segments and not by any enabled
Flashback technology. Several of the features have the word Flashback as part of
their name but use undo data to perform the actual work.

•

•

•

•

•

Tracking the Bits and Bytes

[92]

Automatic Undo Management (AUM)
If you have installed an 11g database for this exercise, then AUM is the default
method of Undo Management. With earlier versions of Oracle, Manual Undo
Management was the only method available. DBAs needed to be good at the
balancing act of managing rollback segments for different tasks in the
database—batch jobs, data loads, smaller online transactions, and so on.

Identifying data in undo segments by flashing
back to timestamp
There is a small trick in identifying data that may still exist in the undo segments.
This won't work if the undo has already been overwritten, so it is best used when
you are alerted to the mistake quickly. I have eliminated the possibility of flashback
technology being involved by disabling it with the following commands (flashback is
not required for this exercise):

SYS@NEWDB> SHUTDOWN IMMEDIATE;
SYS@NEWDB> STARTUP MOUNT;
SYS@NEWDB> ALTER DATABASE FLASHBACK OFF;
SYS@NEWDB> ALTER DATABASE OPEN;
SYS@NEWDB> show parameter recovery

1.	 Connect as a TTRACKER user, verify the existing data (you should get two
rows—DAYTONA and Memphis), and update the tracks table but don't commit.
TTRACKER@NEWDB> select * from ttracker.tracks;

TTRACKER@NEWDB> update tracks set trackname='Dallas' where
 trackname ='Memphis';

2.	 Any other session with the appropriate privileges can query the past, but
only TTRACKER can see the changed (non-committed) data. Choose six
minutes because internally Oracle stores the SCN value every five minutes,
so rounding may occur if you use less than five minutes. The following
queries will select data from the current time and six minutes ago. In this
case study, there should be a difference in the data seen.
TTRACKER@NEWDB> select * from ttracker.tracks;

TTRACKER@NEWDB> select * from ttracker.tracks as of timestamp
systimestamp - interval '6' minute ; --6 minutes ago

Chapter 3

[93]

3.	 Now using a different window, connect as sysdba and select using
timestamp query syntax. The output demonstrates read consistency again
because SYS can only see the DAYTONA and Memphis entries. But you have
already seen read consistency demonstrated from the first exercise in
this chapter.
SYS@NEWDB>SELECT * FROM TTRACKER.TRACKS AS OF TIMESTAMP
SYSTIMESTAMP – INTERVAL '1' MINUTE; --1 minute ago

4.	 Switch back to the TTRACKER session and commit the transaction.
TTRACKER@NEWDB> COMMIT;

5.	 Now switch back to the sysdba session. Query the current data found in the
tracks table (DAYTONA and Dallas should be returned) as well as the previous
data. Six minutes ago the data would be DAYTONA and Memphis.
SYS@NEWDB> select * from ttracker.tracks;

SYS@NEWDB>SELECT * FROM TTRACKER.TRACKS AS OF TIMESTAMP
SYSTIMESTAMP – INTERVAL '6' MINUTE; --6 minutes ago

This method can also restore an object such as a package or procedure by
querying the table dba_source in order to retrieve the version from an earlier
time. Spool the output, edit as needed, and run as a SQL statement to restore.
See the following example:

SYS@NEWDB> SELECT TEXT FROM DBA_SOURCE AS OF TIMESTAMP SYSTIMESTAMP
– INTERVAL '6 MINUTE WHERE NAME ='PACKAGENAME' ORDER BY LINE;

All queries done with the syntax (SELECT AS OF) are considered flashback queries,
even though it is accomplished with the undo segments. Oracle has marketed
everything with a step back in time as Flashback, but there are really several different
major technologies involved, depending on the task. Here is a list of the flashback
technologies and the underlying technology involved:

Flashback Drop—Recycle Bin
Flashback Database—Flashback Logs and RMAN
Flashback Transaction Query—Flashback Logs
Flashback Queries—Undo Segments
Flashback Table—Rowid Changes and Undo Segments
Flashback Transaction Backout—Log Miner and Flashback Logs

Flashback Query does not work through DDL operations that modify columns,
or drop or truncate tables, and it will not work through a database restart.

•

•

•

•

•

•

Tracking the Bits and Bytes

[94]

We will take this a step further later on in the chapter and reverse more complex
data sets that are linked by a single transaction ID (Xid); this requires flashback to be
turned on. This is known as Flashback Transaction Query. You could extend this case
study by dumping the actual undo block involved in the transaction to verify the
data as you did in the first dump block exercise.

When to use Log Miner
Log Miner has both a GUI interface in OEM as well as the database package,
DBMS_LOGMNR. When this utility is used by the DBA, its primary focus is to mine
data from the online and archived redo logs. Internally Oracle uses the Log Miner
technology for several other features, such as Flashback Transaction Backout,
Streams, and Logical Standby Databases. This section is not on how to run Log
Miner, but looks at the task of identifying the information to restore.

The Log Miner utility comes into play when you need to retrieve an older version
of selected pieces of data without completely recovering the entire database. A
complete recovery is usually a drastic measure that means downtime for all users
and the possibility of lost transactions. Most often Log Miner is used for recovery
purposes when the data consists of just a few tables or a single code change. Other
purposes for Log Miner will be touched upon in the Tuning chapter.

Make sure supplemental logging is turned on (see the Add Supplemental Logging
section). In this case, you discover that one or more of the following conditions
apply when trying to recover a small amount of data that was recently changed:

Flashback is not enabled
Flashback logs that are needed are no longer available
Data that is needed is not available in the online redo logs
Data that is needed has been overwritten in the undo segments

Go to the last place available: archived redo logs. This requires the database to be
in archivelog mode and for all archive logs that are needed to still be available
or recoverable.

•

•

•

•

Chapter 3

[95]

Identifying the data needed to restore
One of the hardest parts of restoring data is determining what to restore, the basic
question being when did the bad data become part of the collective? Think the Borg from
Star Trek! When you need to execute Log Miner to retrieve data from a production
database, you will need to act fast. The older the transactions the longer it will take
to recover and traverse with Log Miner. The newest (committed) transactions are
processed first, proceeding backwards. The first question to ask is when do you think
the bad event happened? Searching for data can be done in several different ways:

SCN, timestamp, or log sequence number
Pseudo column ORA_ROWSCN

SCN, timestamp, or log sequence number
If you are lucky, the application also writes a timestamp of when the data was last
changed. If that is the case, then you determine the archive log to mine by using the
following queries. It is important to set the session NLS_DATE_FORMAT so that the
time element is displayed along with the date, otherwise you will just get the
default date format of DD-MMM-RR. The data format comes from the database
startup parameters— the NLS_TERRITORY setting. Find the time when a log
was archived and match that to the archive log needed.

•

•

Tracking the Bits and Bytes

[96]

Pseudo column ORA_ROWSCN
While this method seems very elegant, it does not work perfectly, meaning it won't
always return the correct answer. As it may not work every time or accurately, it
is generally not recommended for Flashback Transaction Queries. It is definitely
worth trying to narrow the window that you will have to search. It uses the
SCN information that was stored for the associated transaction in the Interested
Transaction List.

As with our first task in this chapter, you know that delayed block cleanout is
involved. The pseudo column ORA_ROWSCN contains information for the approximate
time this table was updated for each row. In the following example the table has
three rows, with the last row being the one that was most recently updated.
It gives me the time window to search the archive logs with Log Miner.

Log Miner is the basic technology behind several of the database Maximum
Availability Architecture capabilities—Logical Standby, Streams, and the
following Flashback Transaction Backout exercise.

Flashback Transaction Query and Backout
Flashback technology was first introduced in Oracle9i Database. This feature allows
you to view data at different points in time and with more recent timestamps
(versions), and thus provides the capability to recover previous versions of data.
In this chapter, we are dealing with Flashback Transaction Query (FTQ) and
Flashback Transaction Backout (FTB), because they both deal with transaction IDs
and integrate with the Log Miner utility. See the MOS document: "What Do All 10g
Flashback Features Rely on and what are their Limitations?" (Doc ID 435998.1).

Chapter 3

[97]

The other components in the Flashback suite will be explained in the next chapter
as part of the Maximum Availability Architecture. Look for information on FTQ
and FTB in the Advanced Application Developer's Guide documentation. It should
give you a clue on how to use this feature at its best in your organization—as
an advanced troubleshooting tool for complex transaction debugging in a
non-production database by programming staff.

Flashback Transaction Query uses the transaction ID (Xid) that is stored with each
row version in a Flashback Versions Query to display every transaction that changed
the row. Currently, the only Flashback technology that can be used when the
object(s) in question have been changed by DDL is Flashback Data Archive. There
are other restrictions to using FTB with certain data types (VARRAYs, BFILES),
which match the data type restrictions for Log Miner. This basically means if data
types aren't supported, then you can't use Log Miner to find the undo and redo
log entries.

When would you use FTQ or FTB instead of the previously described methods?
The answer is when the data involves several tables with multiple constraints or
extensive amounts of information. Similar to Log Miner, the database can be up
and running while people are working online in other schemas of the database to
accomplish this restore task.

An example of using FTB or FTQ would be to reverse a payroll batch job that was
run with the wrong parameters. Most often a batch job is a compiled code (like C or
Cobol) run against the database, with parameters built in by the application vendor.
A wrong parameter could be the wrong payroll period, wrong set of employees,
wrong tax calculations, or payroll deductions.

Enabling flashback logs
First off all flashback needs to be enabled in the database. Oracle Flashback is
the database technology intended for a point-in-time recovery (PITR) by saving
transactions in flashback logs. A flashback log is a temporary Oracle file and is
required to be stored in the FRA, as it cannot be backed up to any other media.
Extensive information on all of the ramifications of enabling flashback is found in
the documentation labeled: Oracle Database Backup and Recovery User's Guide.

Tracking the Bits and Bytes

[98]

See the following section for an example of how to enable flashback:

SYS@NEWDB>ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/backup/flash_
recovery_area/NEWDB' SCOPE=BOTH;
SYS@NEWDB>ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=100M SCOPE=BOTH;
--this is sized for a small test database
SYS@NEWDB> SHUTDOWN IMMEDIATE;
SYS@NEWDB> STARTUP MOUNT EXCLUSIVE;

 SYS@NEWDB> ALTER DATABASE FLASHBACK ON;
SYS@NEWDB> ALTER DATABASE OPEN;
SYS@NEWDB> SHOW PARAMETER RECOVERY;

The following query would then verify that FLASHBACK had been turned on:

SYS@NEWDB>SELECT FLASHBACK_ON FROM V$DATABASE;

Flashback Table
The Flashback Table command will restore a table before a designated event occurs
(this is often referred to as logical corruption) by restore points, SCN, or timestamp.
Restore points will be covered in a later chapter when discussing flashback with
Physical Standby databases. There is another Oracle pseudo column associated with
a table called a rowid, which is involved with the Flashback Table feature. This rowid
consists of four components:

The object number
The data file the row exists in
The data block of the data file
The position of the row in the data block

The underlying mechanism moves the table back in time by changing the rowids.
To allow a table to change rowids, the following statement must be run for each one
involved in the flashback session:

SYS@NEWDB>ALTER TABLE TTRACKER.TRACKS ENABLE ROW MOVEMENT;
SYS@NEWDB>DELETE FROM TTRACKER.TRACKS; COMMIT;

•

•

•

•

Chapter 3

[99]

Since flashback is enabled, there will be an entry in FLASHBACK_TRANSACTION_
QUERY for the above delete statement. Also notice it is identified by rowid. A
corresponding query and full output has been moved to the code directory for this
chapter (see flashback_tq.txt). The screenshot below is a small snippet of all the
rows returned:

Choosing the correct SCN in the above query, enables you to flashback the data to
being as it was before the delete statement.

SYS@NEWDB>SYS@NEWDB> FLASHBACK TABLE TTRACKER.TRACKS TO SCN 3616561;

SYS@NEWDB>SELECT * FROM TTRACKER.TRACKS;

After flashing back the table, the view DBA_FLASHBACK_TXN_STATE is populated.
This view will contain other completed flashback activity in this database, reflecting
the consistent state of the database when queried. This means other flashback events
may back out other dependent or compensating Xid(s), so they no longer appear in
this view.

Tracking the Bits and Bytes

[100]

As an alternative, you could refer back in this chapter to the sections about Log
Miner (Identifying the data needed to restore and SCN, Timestamp, or Log Sequence
Number). This will identify the log needed for extracting the data using Log Miner.
Finish the task below for Log Miner by identifying the UNDO statements that can be
manually run in order to restore the deleted data.

For more information on decoding the rowid into a readable format visit
http://www.experts-exchange.com/articles/Database/
Oracle/Decoding-the-Oracle-ROWID-and-some-Base64-for-
fun.html.

Flashback Transaction Query with pseudo columns
With Flashback Transaction Query, you can see all transactions that changed a row
within a certain time period. It is based on the Xid providing not only the change, as
seen in a Flashback Versions Query, but also who made the change.

The view FLASHBACK_TRANSACTION_QUERY actually provides SQL statements that
you can use to undo the changes made by a particular transaction. In the example
above, it contains the original delete statement that was actually executed plus the
insert statements to undo the logical corruption.

Flashback Transaction Backout
Looking at the MOS document flashback transactions using dbms_flashback.
transaction_backout procedure (Doc ID 737332.1), Log Miner is what actually
extracts the information whereupon the package DBMS_FLASHBACK then rolls back
the transactions. In 11gR2 the Flashback Transaction Backout process can track
foreign key dependencies as compared to earlier versions of Oracle, but this
requires resource-intensive foreign key supplemental logging.

Chapter 3

[101]

Enabling flashback (using the command ALTER DATABASE FLASHBACK ON) records
all of the critical pieces of information for recovery purposes into a flashback log for
any particular row in the database. That information includes the physical rowid,
Xid of a committed transaction, SCN, and timestamp. Once flashback is enabled for
database use, the appropriate technology to extract the data is needed (Log Miner,
Transaction Query, Transaction Backout) to resolve logical corruption issues.

There are exceptions and certain conditions that apply to using flashback and its
associated technologies, as well as the limitations of creating additional flashback
logs that use resources. As a DBA you will need to decide if the tradeoff in resource
consumption is worth the benefit it provides. Oracle has reports from customers
that the overhead may be from a low 2 percent increase (OLTP type) in the end
user response time to over 30 percent (for a direct load Data Warehouse database).
This overhead is partly due to the increased amount of redo being generated
(an increased amount of information is captured), also there's more CPU and
I/O to write the flashback logs to disk.

Using strings to remove binary components
An even easier way than dump block is to use the Unix strings command to find
data in a binary file. This strings command can also strip the binary components
from a spfile, which is helpful in situations when you don't have access to a
working instance and want to see what is actually in the spfile.

In 11g you can create a pfile from an existing spfile even without a database
instance. In the following example, a correctly formatted pfile would be created
from $ORACLE_HOME/dbs/spfileNEWDB.ora (Unix example):

SYS@NEWDB>create pfile from spfile;

Using strings comes in handy for previous versions of Oracle databases, or if you
don't have an installed $ORACLE_HOME to work with, just a standalone spfile.
When using the strings command on an spfile, the 11g version will split long
lines, so you will need to rejoin them with a text editor. The stripped spfile can be
edited as needed and then copied to the appropriate directory (see OFA). It can also
be renamed to be used as an init<ORACLE_SID>.ora file to start up a database. It
is recommended to use the spfile for normal database startup. Using the pfile
version is for testing or for circumstances that require its temporary use.

Tracking the Bits and Bytes

[102]

Strings can also pull out data from an export file, datapump, redo, or archive log.
Several examples of using the strings command are as follows:

As an example, I exported the table TTRACKER.TRACKS that contains a single row to
show the data inside, and then used the strings command. Here is an excerpt from
the export file after running the strings command:

Occasionally, you have to extract the data from a database for various reasons. Both
of the utilities export and datapump allow you to do that effectively. They can also
be used to recreate missing objects or even the entire database. Datapump is much
more efficient for large amounts of data and gives more functionality than the older
export utility, which will eventually become obsolete. Both import and export still
exist in 11g for migrating databases from older versions of Oracle, and it was used
for this demonstration for readability purposes.

Using strings on the actual data file reveals the data within, showing DAYTONA as
the last committed entry from the first exercise in this chapter using dump block.

Chapter 3

[103]

Summary
In this chapter, we broke down an Oracle database into its smallest pieces—both
logically and physically. We examined common threads on how to track transactions
by Xid, SCN, and Timestamps. The physical components should be very clear to
you as well—undo segments, redo logs, archived logs, and database files. And most
important of all: how transactions travel through the physical parts of the database,
from when the end user types in a change, to a row in a table identified by a rowid
on a particular data block on a physical data file.

Several utilities were covered along with appropriate scenarios and suggested uses:

Oracle's RDBMS SQL command dump block
Oracle's RDBMS Log Miner utility
Flashback Transaction Query and Backout
Unix strings command

This chapter is a building block on which you keep adding as you continue through
the book. The information in the next chapter (Chapter 4, Achieving Maximum Uptime)
is based on the Maximum Availability Architecture standard created by Oracle: it
starts at the big picture level, covering the enterprise as a whole. The enterprise IT
structure is made up of many smaller components that can all fail at unexpected
times. The information in this chapter is meant to help with some of the decisions
and tradeoffs that occur when designing for 24/7 uptime.

I would like to thank several people in the Oracle community for their
research on Oracle Internals that were included in this chapter: Tanel
Poder, Tom Kyte, Graham Thornton, Sandip Patel, Julian Dyke, and
Uwe Hesse.

•

•

•

•

Achieving Maximum Uptime
The previous chapter was a view of the database at the most granular level. In this
chapter, we will zoom out to the overall view of the database and its place within
the enterprise. DBAs must know how the multiple components interact and be able
to trace the data flow between the different nodes that comprise an application.
It doesn't matter whether you or your organization aren't strictly governed by a
formalized Service Level Agreement. Here you will be provided information on
achieving high levels of service and data protection while eliminating single points
of failure.

This chapter will be divided into four major sections, with each focusing on how to
accomplish what everyone wants—maximum uptime:

An overview of the Maximum Availability Architecture
Optimizing Oracle Database Availability
SQL*Net Hardening, Tuning, and Troubleshooting
Grid Control High Availability and Disaster Recovery

You might think that a DBA should only concentrate on the administration of the
database, but that is not true in the real world. Dinosaurs would only see what is in
front of them, but it is time to shift thinking that you are at least partially responsible
for the entire application. Data associated with any application travels across the
network from the end user to an application server, which then talks to the database
and back again. This complete trip is known as end-user response time. As a team
player, you must test and test again, making sure that the components you are
responsible for are functioning correctly and help out even when it is someone
else's problem.

•

•

•

•

Achieving Maximum Uptime

[106]

Maximum Availability Architecture (MAA)
The MAA methodology was designed by a dedicated team at Oracle with extensive
input from the user community. It expounds the use of:

Methods applicable to any-sized organization
Inexpensive commodity hardware
Multiple redundant components

The MAA recommendations include the following Oracle Products: Database,
Application Server, Applications, and Grid Control. Be aware that there are
additional licensed options for some features, such as the Advanced Security
Option, that are part of the MAA recommendations.

Details about the different editions of Oracle and the licensed options
can be found at: http://download.oracle.com/docs/cd/
E11882_01/license.112/e10594/editions.htm#CJACGHEB.

It is safe to assume that these recommendations from the MAA website will work in
a general sense for most installations, but not without testing and verification. You
will have to read each white paper published on the MAA website for your Oracle
Database version to find the nuggets of wisdom contained within; keep checking
back for updated material.

Find the MAA website here: http://www.oracle.com/technology/
deploy/availability/htdocs/maa.htm

The designers of MAA expound the use of smaller nodes in a scalable and redundant
configuration. RAC (multiple instances that add memory and CPU), Multiple
Middle Tiers, Load Balancers (SSL-enabled hardware version preferred), Failover
Instances (Data Guard), and multiple data storage paths all provide redundancy
and robustness to a large part of the plan. While failures can occur within any of the
layers—hardware��� , software, network, or database—there can be multiple reasons for
those failures, such as human error, corruption, natural disasters, or even the most
common-planned outages.

•

•

•

Chapter 4

[107]

Downtime—planned or unplanned
Oracle has surveyed customers with surprising results. 80% of downtime is planned
most often for the following reasons (they are listed from the largest amount of time
down to the smallest):

Systems/hardware testing
Routine systems maintenance/testing
Database upgrade
Application upgrade
Systems/hardware migration
Application migration
Network upgrade

Planned downtime is still downtime, so don't get caught in the mental trap that you
are implementing MAA for events that may never happen! MAA is intended for
day-to-day standard operating procedures.

Newer features of 11g Oracle RDBMS should be researched for their applicability
for your organization in minimizing planned downtime. Several of these require
additional Oracle licenses, adequate testing facilities, and personnel comfortable
with thinking outside the box:

Rolling Upgrades (both ASM and database) for system changes—minimizes
downtime to the smallest window possible, requiring large amounts of
advance preparation, practice, and additional hardware
Edition-based Redefinition—a method of migrating application code; it
provides versioning as well as the ability to quickly back out changes
Online Table Redefinition—allows DDL changes while the actual data is
being used
Online Reconfiguration—system changes while the database is online that
include adding or removing CPUs, RAC nodes, or ASM disks.

High Availability with Oracle Database 11g Release 2 (white paper):
http://www.oracle.com/technology/deploy/
availability/pdf/twp_databaseha_11gr2.pdf

•

•

•

•

•

•

•

•

•

•

•

Achieving Maximum Uptime

[108]

There are other architectural components that are often forgotten, easily neglected,
and can be a show-stopping single point of failure for a critical application. These
items aren't necessarily Oracle, but are often used as part of the architecture
deployment. If the loss of an item in the following list would make a critical
application unavailable, then it is time to re-architect to prevent future outages:

Expiration or incorrect SSL certificates and intermediate certificates as part of
the chain (Oracle products are not compatible with all cert types)
Single load balancer instead of two
Single key network router and/or switch
Single network card or power supply in a node
Undetected multiple drive failures in a standalone RAID configuration
ChipSet failures or Cumulative Memory failures
Battery-backed Write Back Cache failure
Misconfigured multiple I/O paths
No redundant LDAP or SSO server

As you probably surmised from the above list, most of these items are not usually
considered to be under the direct responsibility of a DBA. Their inclusion in this
book means that you are often asked to become well-versed in topics such as
hardware, SSL certificates, and load balancers.

Most often the DBA is responsible for recommending hardware purchases and
giving architectural deployment advice to the IT team at their organization. How
can you give advice if you know nothing about them? You should at least be able
to discuss the pros and cons of different hardware configurations for optimal MAA
deployment. It is also time to gain some knowledge in diagnosing bottlenecks that
may exist between the database and the end user, whether it is hardware, software,
or network-based.

In order to achieve maximum availability, there are organizational practices and
policies that need to be formalized within your IT organization as a commitment
to high levels of service:

Determine the cost of downtime for critical applications
Define, test, and document Recovery Time Objective (RTO), and Recovery
Point Objective (RPO) goals
Service Level Agreements (SLA) documentation and maintenance
Strict change control and security practices
Test environment that mimics production as closely as possible

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[109]

Top-level monitoring software to auto-detect outages
In-use crisis decision tree and practice scenarios
Implementation of automatic failure detection and repairs

Once these policies have been formally outlined, then a migration to an MAA can
be fleshed out with goals, personnel needs, and timelines. Consider this an ongoing
project that is never finished, as most IT organizations can improve their uptime on
critical applications.

While MAA is about deploying Oracle products in a grid-like fashion with
reconfigurable components, it is not about improving performance with a quick fix.
While performance may improve with some of the changes in the following list,
these are not considered cure-alls for when end users complain that the database
is slow:

Adding another RAC node, disk spindle, more RAM, or CPU
Converting a long-running query into parallel
Upgrading to the latest Oracle version

MAA goals will always have a cost associated with them—hardware, software,
network, personnel, or possibly even reduced performance from the database.
MAA is within the reach of every customer, but it requires dedicated personnel to
implement advanced features. Outsourcing is tempting for deploying advanced
features when your personnel are stretched to the maximum with their daily job
duties. But who do you call to fix things when that outsourced deployment breaks?
The compromise seems to be outsourcing, but allow your personnel to work
alongside the consultants learning as the deployment progresses.

MAA with commodity hardware: Case study
What would the MAA look like at a small site with a limited budget? Most
universities have small IT budgets (compared to commercial organizations)
and are used to having to do more with less. This type of situation tends to
encourage creativity!

For example, at one institution, a remote disaster recovery site was implemented
using commodity hardware and cooperatively-shared disaster sites within a state
university system. Each site was co-located at a different university with appropriate
firewall access using the Oracle Data Guard. This type of setup required trust from
all the personnel and management involved. In this case, all of the participants
worked under the same CSI number within MOS and were used to working with
each other. This proof of concept project eventually evolved into a state-funded
remote disaster site for all universities, each with their own dedicated network line.

•

•

•

•

•

•

Achieving Maximum Uptime

[110]

While this remote site is excellent for protecting the data for extended outages or
from a complete disaster for this institution, it isn't suitable for planned shorter
outages due to the restricted bandwidth; it makes end user access slow and
cumbersome. Shorter outages (the majority of which are planned) are generally
only a few hours and fall under this institution's defined Recovery Time Objective
(the longest amount of time you can take to recover) and Recovery Point Objective
(how far back you can lose transactions). A local disaster site was designed and
implemented for outages of less than 24 hours for planned database switchovers.
See Chapter 6, Extended RMAN for more information about switchovers and how
to extend the use of a disaster site for testing.

Creating this robust disaster site also required a complete hardware migration:
from several databases on a single large node to the deployment of a single database
on a smaller node. Having all of the databases on a single node was definitely the
largest single point of failure in the existing architecture. A failover to the same
node or server would only cover a database failure, not any hardware, software
(both Oracle and OS), corruption, or human error for that server.

Going from a full rack node to a 2U footprint in terms of physical size, it was also
decided to start migrating to a faster replacement cycle for the hardware in the
future. Instead of extending the hardware and software proprietary licensing for up
to a decade before replacement, it was decided to replace the hardware at the end
of its normal warranty cycle, plus a one-year extension. This was coupled with the
decision to use Linux (open source software) as the operating system, which is less
expensive to license and maintain.

In the long run, using a larger number of smaller nodes distributed to three different
physical sites running on commodity hardware and open source Linux Red Hat
OS added up to large savings and resulted in a more robust disaster recovery plan.
That is the heart and soul of the MAA: distributed grid computing, and it's scalable
and robust along with the ability to redeploy or re-architect components when the
business needs change.

Implementing a local disaster site for a database is certainly within the reach of
most organizations, as it requires only a few components: the extra database node
comparable in size to production, network access between the two sites, and a
separate room (preferably a separate building, at least a different electrical
system) for the node.

Chapter 4

[111]

Data Guard controls the shipment of data from the primary site to the standby site
in a controlled and efficient manner. The network must be protected at the alternate
site due to the vulnerability of archive logs (as you learned in the previous chapter).
There are licensing concerns when using Data Guard that only your Oracle sales
account representative can address. Licensing costs can vary depending on your
current Oracle licensing and how you utilize Data Guard (only for failover or
extended testing).

This chapter will cover both Oracle Database and Grid Control as part of the MAA.
It is out of the scope of this book to cover Oracle Application Server. While it is a
key piece in the MAA infrastructure, your organization may use other web software
(Tomcat, Apache, GlassFish, and so on) to deploy applications that use a backend
Oracle database. Oracle has just released the 11g Fusion Middleware software, which
requires WebCenter to be the application server dictating the future direction of
the application server for Oracle applications or technologies that require an
application server. The next section expands on details for optimizing the
database for high availability.

Further information on MAA customer case studies can be found at the
following URL:� http://www.oracle.com/technology/deploy/
availability/htdocs/ha_casestudies.html.

Optimizing Oracle Database High
Availability
This section deals with the choices a DBA (as part of a team) must make to provide
as much uptime as possible for an Oracle database. Consider this section to be
essential in providing quality service and data protection for your customers. Each
new version of Oracle provides an ever-deepening pool of features to maximize the
availability of the database that comes as standard with the Enterprise License. These
are the items that will be covered in the following section:

Archivelog mode
Database compatibility parameter and apfile, pfile management
Storage—RAID, SAME, ASM, OMF
Mirrored files—control files, redo logs
Autoextending data files with MaxSize

•

•

•

•

•

Achieving Maximum Uptime

[112]

Auditing, log files, and Max Dump File Size
Data Dictionary Healthcheck
SQL*Net hardening, tuning, and troubleshooting

At this point, it is time to remind you about documenting changes to the
database—start a formal logging procedure whether it is a spreadsheet, Wiki log,
or Word document. Start a system where you can track changes, as they are applied
in a non-production environment and their eventual migration to production; it will
keep you from guessing when or how something was done.

Utilize a code management software such as the programming staff would use.
You can copy and paste the commands that were run as part of the documentation
procedure. There is a Unix program called script that can be used to capture all
session activities executed at the command line. Executing RDAs during each major
database change, while keeping them as a snapshot historical reference, would be
very thorough and worth the time.

Other recommendations as part of the MAA will be covered in subsequent chapters.
Data Guard plus Flashback Database is covered on its own in Chapter 5. We will be
examining how the Data Recovery Advisor, Flash Recovery Area, and corruption
detection and prevention relate to the Oracle RMAN utility in Chapter 6. Oracle Real
Application Clusters (RAC) and Streams will not be covered in this book due to their
complexity in design and implementation.

To archive or not to archive, you pick
the mode
There have been cases of production databases operating in noarchivelog mode with
no backups! If you are subscribed to an Oracle e-mail list or forum, this situation
comes up regularly in the discussions or pleas for help.

Some database implementations require archivelog mode for functionality, such
as Oracle Streams, Standby Databases, and Data Guard. Archivelog mode is also
required for what is known as complete recovery, where all transactions up to a
certain desired point are restored and recovered.

There are a few circumstances where a DBA might temporarily turn it off to speed
up a particular process, such as using data pump to recreate the database, but these
are exceptions to the rule. If this is a production instance and the data is considered
irreplaceable or you can't recreate the transactions (usually, a data warehouse or
reporting database), run it in archivelog mode. The previous chapter went through
the actual process of turning on archivelog mode so that the redo logs are archived
to disk.

•

•

•

Chapter 4

[113]

While archivelog mode is the norm, making all of the processes involved work
well takes testing and practice. Some of the most common issues encountered
with archivelog mode are as follows:

Running out of disk or backup tape space—hanging database or failed
backups, alternate local archive destination on a different file system.
Running out of Flash Recovery Area—no reclaimable space causes hanging
due to unavailable archive destination.
Archive destinations unavailable—SAN, NAS or other types of shared or
network deployed storage become unavailable.
Standby archiving destinations unavailable (see Chapter 5)—the degree of
slowness or delay will be a combination of Data Guard Protection mode and
the network bandwidth between the servers.

Some general rules apply to these situations, as each can be disastrous and cause
database slowdowns or outages depending on what actually occurred. There are
several features that Oracle introduced that complicate the archivelog methodology.
Each of these features are complex enough (Data Guard is the best example) to have
their own set of problems associated with deploying in a production database.

Multiple archive destinations
Even if you deploy standby archive destinations for failover reasons, it is critical that
a locally defined archive destination (locally accessible storage device) be defined
as well. There will be times a standby archive destination (if you use Data Guard)
becomes unavailable due to network-related issues, and if a local destination is not
defined, you will be left with no archive destination. Not having a valid archive
destination with a database in archivelog mode means it will hang until you add one,
which is done by altering startup initialization parameters—log_archive_dest_n.

At this point, I recommend a local archive destination outside the flash recovery area
(FRA) until you are thoroughly comfortable with implementing both archivelog and
FRA at the same time. It also takes some advanced knowledge and testing experience
in using the RMAN database backup utility to maintain archivelogs in multiple
destinations (see Chapter 6, Extended RMAN).

•

•

•

•

Achieving Maximum Uptime

[114]

Moving the archive destination in an emergency
Be ready with an alternate destination if you need to move the archive destination.
Occasionally, you may lose a local disk or other attached storage device. It can be
done easily with the following command when the database has been started with
an spfile. In this case, the third archive destination was chosen so as not to overwrite
other destinations (for testing or troubleshooting reasons). You may choose a
different destination number as needed:

SYS@NEWDB>ALTER SYSTEM set log_archive_dest_3='LOCATION=/new/path'
scope=both sid=*;

Archivelogs or their backups may end up in the $ORACLE_HOME/dbs file location,
because that is the default backup location and is usually caused by misconfigured
archive destinations or RMAN procedures. Check if the archive destinations are
successful with the following command:

SYS@NEWDB>select dest_id,destination,status,target,
 schedule,process from v$archive_dest;

Using a different disk device or disk mount
Archivelogs saved to disk are typically not on the same physical disk device as data
files. This may be due to performance differences in storage between the devices,
as well as having a redundant device for recovery reasons. This is part of the OFA
standard and can be implemented using Automatic Storage Management (ASM).
Later in this chapter, ASM implementation will be mentioned, as it relates to
high availability.

Monitoring all hard drive space and Archivelog
space
It would be a mistake to assume someone else is keeping track of drive space usage
on the database boxes. So run a script (DBMS_SCHEDULER with or without the use
of the OEM console is a great tool for this) to check disk space to e-mail (or page) you
when the disk device has reached percentage full threshold. This is also an excellent
opportunity when automating an archivelog backup to free up disk space when the
archive destination has reached a certain threshold. Once archivelogs are backed up,
they can be removed from the disk to free up space.

If you are constantly fighting for hard drive space, then there may be something else
wrong. Start looking for audit files (*.aud), trace files (*.trc), core dumps (directory
labelled core_xxxx), large SQL*Net logs, and backups in the wrong location, as well
as double checking your RMAN backup policies.

Chapter 4

[115]

See the following list for suggestions to follow when disk space issues arise in
reference to archivelogs:

Merge incremental backups into fulls
Compress or zip archivelogs, backup, data pump exports
Run the archivelog maintenance routine as needed
Monitor the Flash Recovery Area

All of the above items will be covered in more detail when we get to Chapter 6,
Extended RMAN.

Database compatibility parameter with spfile,
pfile management
Parts of this chapter are tips and suggestions for increasing uptime; some of these
practices are directly related to preventing database outages, a primary concern for
DBAs. The information is a combination of the MAA recommendations, personal
experience, and knowledge gathered from a variety of sources, including My Oracle
Support, Oracle-l, Oracle User Conferences as well as Oracle OpenWorld.

http://www.oracle.com/openworld: Oracle Conference hosted by
Oracle Corporation and held yearly in San Francisco, CA.

Attending conferences and reading books exposes you to new concepts and the next
best thing in Oracle stuff. Don't come home and immediately turn that feature on!
There is a lot of hard selling going on at those conferences and you aren't necessarily
exposed to all of the details needed to implement that new feature.

How do you deploy features gradually? There might be quite a few features tied to
the init<ORACLE_SID>.ora database startup initialization parameter (pfile) or the
spfile<ORACLE_SID>.ora (spfile) parameter named compatible. We have already
discussed that the spfile is a binary file that cannot be edited directly. The pfile is
a text file that is edited manually, with changes that take effect the next time the
database is started.

•

•

•

•

Achieving Maximum Uptime

[116]

If you are migrating to 11g, it is recommended to keep compatible set at 10.0.0.0
until you have been live for at least a week. Then start advancing the appropriate
parameter after a stabilization period. There is another critical reason to keep the
older compatible parameter during a database migration; this will allow you to
downgrade the database (without doing a complete restore and recovery) if an
unforeseen snag or untested result occurs. The only exception to migrating to 11g
and starting with the compatible set at 11.x would be if you had to have an 11g
feature for the application to perform as tested.

It is important to learn to use an spfile instead of just a pfile for controlling database
parameters. This allows you to adjust most parameters while the database is up, and
write to the spfile at the same time, saving it for the next time the database recycles.
To find out what type of parameter file is actually being used by a running database,
use the show parameter command:

SYS@NEWDB> SHOW PARAMETER SPFILE;

This will show which spfile is in use. If that value is only the word string, then a
pfile is in use. Take a look at all the non-default database parameters that are enabled
from the startup (like the parameter spfile) at the alert<ORACLE_SID>.log or use
the adrci command-line utility as shown in the following example:

The example above shows how to search by use of a specific string while
using the adrci utility in Unix, in this case the equals (=) sign. Also, notice
the various diagnostic directories that relate to Oracle software such as the
tnslsnr, the Unix user account named oracle, and rdbms, which is the
database diagnostic directory.

Chapter 4

[117]

Notice that the above view of the alert log lists all the non-default database
startup initialization parameter settings at every database startup. You can
also use the following query:

SYS@NEWDB>SELECT NAME, VALUE FROM V$PARAMETER
 WHERE ISDEFAULT = 'FALSE';

In 11g, you can recreate a missing spfile or pfile from memory, but this requires the
database compatible parameter to be set at 11.0.0.0 or above. The following example
will recreate the pfile in the default location of $ORACLE_HOME/dbs, which can be
edited as needed:

In the previous chapter, the Unix strings command was used to demonstrate how
to strip off the binary components to create a pfile from an spfile. Since non-default
parameters are written to the alert log, you can also recreate a pfile from the lines
that come after the words System parameters with non-default values, by copying
and pasting with a text editor. That is basically what a pfile or spfile contains,
everything that isn't default.

You will also see the character * (star) inside an init<ORACLE_SID>.ora file. This
means that the parameter applies to all instances. If you see a ? mark in a pfile,
it stands for $ORACLE_HOME, which is also a substitute command in SQL*Plus for
$ORACLE_HOME.

Also, something else that many DBAs don't know about is how to reset a database
parameter back to its default setting. This particular example would execute in
memory and also write to the spfile for all instances (see the documentation on
Real Application Clusters for more information on managing multiple instances
of a database).

SYS@NEWDB>��� �� alter system reset optimizer_features_enable scope=both
sid=*;

Achieving Maximum Uptime

[118]

Take a look at MOS documents: 166601.1 and 249664.1 for differences
between spfile and pfiles, migrating between them, and lessons on
using them correctly.

Dealing with storage—RAID, SAME, ASM, and
OMF
Data storage implementations will be one of the most important decisions in
achieving high availability, and most often take the form of one of the following
hardware types:

Storage Area Network (SAN)
Network Attached Storage (NAS)
iSCSI—directly attached SCSI across Network, which is usually Ethernet
Directly attached disk drives—internal or Just Bunch of Disks (JBOD)
external storage
Emerging disk technologies—Solid State, High Capacity, High Performance

Each of the above hardware types come in a wide selection from many hardware
vendors. How would you know which one to select? Most customers obtain test
hardware from several different vendors and run a calibration tool (Oracle's own
ORION tool will be introduced in Chapter 8) to create a proof-of-concept. You are
trying to prove the vendor claims about their hardware performance and reliability
with your data and personnel.

This would also be the time to let your system administrator(s) produce failures
on that hardware for HA reasons. Failures can run the gamut of unplugging a live
system, pulling a network cable, pulling hot-swappable hard drives (more than one),
pulling out a power supply, pulling out the end of a fiber-attached external storage
device, and misconfiguring storage device parameters—there is no limit to the
atrocities that can be dreamed up. It wouldn't do much good to be destructive just
to see what happens; it must be done with planning, with the proper testing tools in
place, and careful documentation on what actually happens.

•

•

•

•

•

Chapter 4

[119]

There are some general recommendations on how to slice and dice that storage,
as it relates to database use. �� Different system administrators will have different
philosophies or attitudes towards storage architecture and deployment practices. It
is critical that you and your system administrators trust each other as you will work
closely together on the storage details of your databases. The following are general
recommendations and they may not fit with what your organization plans to do
for any particular implementation. Often, it is the budget that decides how storage
implementations play out.

RAID—Redundant Arrays of Inexpensive Disks
Implementing hardware RAID is very commonplace and considered the first step
in preventing outages, whether there is a database or not. Disk drives have been
around for over four decades, and because they contain moving parts, they are still
vulnerable to mechanical, electric, magnetic, and even vendor-specific firmware
problems. This makes them the number-one failing mechanical component in a
computer even with huge advances in hard drive technology. It is not a question
of if a hard drive will fail but when!

Software RAID is another option, but is generally considered harder to implement
and prone to issues simply because it adds another layer of complexity that really
isn't needed. Oracle has its own version of software RAID (ASM) that is more reliable
and should be considered first, before any vendor-supplied software RAID.

There are different RAID levels with different combinations of mirroring, parity, and
striping hard drive disks. See the next section for the recommended RAID level of 10
using the SAME methodology from Oracle.

See the following URL for a great discussion on different RAID levels:
http://www.baarf.com (Battle Against Any Raid Five, also includes
RAID level 3 and 4). There are also lists of valuable references to
accompanying materials from the United Kingdom Oracle User Group.

SAME—Stripe and Mirror Everything
Oracle defined a best practice for RAID levels back in 2000 called SAME: it is an
attempt to level out all of the differences between Oracle operation types (scan, lookup,
load, insert, create index, join, LOB, sort, hash, backup, recovery, batch write) as well
as operating system file types. Different file types associated with a database (data, log,
temp, archive, undo, system, control, backup) perform differently at the I/O level with
different storage configurations, depending on the actual operation. The exception to
this may be the online redo logs that are written sequentially by the database, with any
parallelism occurring at the operating system level.

Achieving Maximum Uptime

[120]

Adding more disks requires a restripe of all RAID disks involved. This requires
extensive planning and the ability to correctly forecast storage needs. As part of the
SAME philosophy, it is recommended to stripe all files in a 1MB width across all of
the disks and then mirror those disks for high availability (this combination of stripe
and mirror is RAID 10).

The physical part of a disk drive where it's best to put the more frequently accessed
data is the outside edge, which reduces the natural latency issues seen with disk
drives. That being said, you will gain more performance improvements by dividing
large tables using Oracle partition technology before trying to improve performance
by placing them on specific disk drive locations or spindles.

A configuration using SAME is easily done when you know the total disk space and
the I/O throughput, which determines the number of disks involved. This method is
a balance of high availability with a mirrored copy, but efficient in striping the data
across multiple disks or spindles. The hot-swappable features of hard drives, with
automatic failure detection and notification, makes spreading data across multiple
drives extremely resilient.

See the following URL for the complete Oracle White Paper on the SAME
methodology: http://www.oracle.com/technology/deploy/
availability/pdf/oow2000_same.pdf

ASM—Automatic Storage Management
ASM is gaining momentum across the industry, even with a database that won't be
using RAC technology. Its basic function is to present the storage as a logical volume;
this gives the ability to add storage as needed without completely reconfiguring
all of the disk drives or moving data files to new storage, providing scalability
without downtime.

In the earlier versions of ASM, implementations became complicated due to
the third-party or vendor technologies required to integrate all of the needed file
systems, clustering, volume managers, and hardware platforms. With the 11gR2
version of ASM, you can now use Oracle to manage other third-party file systems
with Dynamic Volumes—ASM files + ASM volume type.

Chapter 4

[121]

With 11gR2, extensive improvements to ASM were released:

Extended administration commands (such as the asmcmd copy command)
Increased performance with the fast mirror resync feature
ASM Dynamic Volume Manager—with the asmvol attribute and its own
striping and extent algorithm
Rolling Upgrades of ASM Cluster File System now provide cluster-wide
access to additional file types besides just data files and ASM spfiles:

File Oracle binaries application executables
Trace file alert logs
BFILEs, audio, video, and image file types

While ASM sounds like a great deal, it is an advanced feature that adds another
layer of technology for the DBA to master. It is meant for larger databases, RAC, or
one that is quickly growing, like a data warehouse. Some DBAs see ASM as a single
point of failure—if the ASM instance goes down, the data files are unavailable.

It is a tool to add storage as needed and makes your job easier when large numbers
of data files are involved. It is a technology that a novice DBA should gradually
implement, starting with non-production instances to gain expertise.

That is one of the best arguments for a full complement of testing equipment
(hardware, software, personnel)—it's comparable to production. Non-production
instances can be just as important as production for this reason. You should be
echoing the same implementation details for certain test databases—backups,
archivelog mode, and SQL*Net tuning, so that problems encountered within
these complex environments are tested as staff utilize these accessory databases.

Recommendations for implementing ASM
Oracle software binaries are installed in separate ORACLE_HOMES by version; ASM
should be installed in its own home as well. An upper-level ASM home can service
a down-level ORACLE_HOME, making a transition to the next version a gradual,
controlled process (see Chapter 7 for more detailed information).

Start with a Simple Disk and Disk Group Configuration—two ASM groups, one for
data files and one for FRA. Use the redundancy of ASM plus hardware RAID. ASM
redundancy is mirroring at the storage extent level, which is an advanced feature
that can be added as your expertise and knowledge increase.

•

•

•

•

°

°

°

Achieving Maximum Uptime

[122]

One of the keys to a successful ASM implementation is making sure the disk repair
time is correct (this is adjustable) for your combination of disks and I/O throughput
capacity. The disk repair timer attribute on your disk group is used to specify how
long disks remain offline before being dropped. When a disk is dropped, extensive
resources are consumed at the hardware level to migrate all of the ASM extents
to new positions from the failed drive. You wouldn't want those resources to be
used, as it would cause performance issues at the database level if the failure
was a planned outage, simply temporary, or just transient.

Monitoring is important for disk failures at the hardware RAID level and allocation
failures (disk group out of balance) at the ASM level. See the following URLs for
more information on ASM deployment practices:

http://www.oracle.com/technology/products/database/asm/index.html

http://www.oracle.com/technology/products/database/asm/pdf/Extending%
20ASM%20to%20Manage%20All%20Data%20-%20Final%209-10-09_0.pdf

Oracle Managed Files (OMF) is a feature where the RDBMS takes over the control of
the placement of data files while assigning a system-generated name.

These technologies such as OMF and ASM that simplify data file management are
most often used with larger implementations with a disk storage device, such as a
SAN. If your environment is using ASM, you are in fact already using OMF. The
only difference in administration would be that you can now see your data files at
the OS level with OMF.

Mirrored files—control files and online
redo logs
There is always a chance of files becoming unusable when they are stored on a
physical disk: they are vulnerable to human error or certain types of corruption. If
data files are deleted, then a restore and recovery operation is usually in order to
replace the missing data—if a temp file is deleted just recreate it. If a control file or
online redo log is removed or unusable, then it is easier and faster to use the extra
copy (or mirror) that you have on hand. It won't keep you from making a mistake,
but keeps downtime to a minimum if an online redo log or control file is accidentally
removed or becomes corrupt. This is especially important if you are using local file
disks to store the data files among different mount points.

Online redo group—this contains one or more identical copies of an online redo log
member with an identical log sequence number that are exactly the same size. The
current log sequence number (refer to the last chapter) is written in the control file
and header of each data file.

Chapter 4

[123]

Two online redo groups—this is the minimum needed for normal operations;
the optimal number depends on database activity. What do we mirror? Alternate
members of each online redo group on different disks.

You will not be able to change a controlfile location while the database is up and
open for use, as shown by the example below. After verifying on the operating
system, level the correct location of a valid controlfile. You can then change the
controlfile location and recycle the database for that change to take effect, as seen
in the following example:

Now shut down and start up the database and you are back in business.

If the database is down, you can manipulate the locations of a controlfile and also
make an OS copy of a valid controlfile. ASM implementations would have a different
procedure (see Chapter 6, Extended RMAN,����������������������� for more information).

See the following MOS document for more information related to moving
redo log groups:
Maintenance of Online Redo Log Groups and Members [Doc ID 102995.1]

Achieving Maximum Uptime

[124]

Autoextending data files
Allowing a data file to autoextend (grow in size by allowing the RDBMS to add
more extents) is becoming the standard. There is a setting called UNLIMITED ��������� but that
is a misnomer since there are obvious limits to objects that can exist in a database.
The actual limit is equal to 4 million OS blocks, which depends on the database
parameter DB_BLOCK_SIZE. If the database DB_BLOCK_SIZE is equal to 8KB, then
the maximum file size for that database is 32GB.

Database Limits [ID 336186.1]: This information comes from an
important reference document found on MOS.

There is a tablespace feature called BIGFILE, which is intended to contain a single
large data file. It is intended for VLDB in conjunction with ASM, Oracle-managed
files (OMF), or other third-party volume managers. BIGFILE tablespaces can co-exist
with the normal smallfile tablespaces, which makes it obvious that wisdom lies in
grouping objects in the same tablespace that have similar life cycles and applications.
BIGFILE(s) are only supported for locally managed tablespaces with ASSM.

A few years ago, it was standard practice to limit datafile sizes to 2GB because of
certain operating system limits that prevented the use of anything larger. You can
check with your system administrator or research on MOS if you are unsure. Now
you can turn autoextend on and let it grow until the unlimited size for your OS is
reached, but that is probably not a good thing. This will hang whatever process
is trying to autoextend if the file space is exhausted. There are occasions when a
process will spin out of control and create a huge datafile, tempfile, or undo segment
unless there is some sort of limit imposed; this is where the MAXSIZE piece of
storage attribute comes into play. Turning autoextend on is generally considered a
way of allowing Oracle to manage extents as long as there is a maxsize limit.

What is also important about autoextending datafiles is what is called the NEXT size
(the chunk of storage that the RDBMS allocates) and it depends on whether you are
using OMF. With OMF, the default autoextend size is equal to the size of the datafile
with a limit of 100MB. Without OMF, the default is 1 data block of the tablespace
that the datafile belongs to. There is a new RDBMS background process called
Space Management Coordinator (SMCO) in 11g, which gives some credence to the
observation that the autoextension of datafiles is becoming more prevalent. In order
for SMCO to autoextend a data file, the setting for AUTOEXTEND has to be ON, as
is found in the following query:

SYS@NEWDB>�� ��� SELECT TABLESPACE_NAME,FILE_NAME,AUTOEXTENSIBLE FROM DBA_
DATA_FILES;

Chapter 4

[125]

SMCO coordinates and spawn slave processes are identifiable at the operating
system with the following pattern (wnnn). An insert statement or loading a statement
such as sql loader, import, or data pump needs another segment that doesn't have
enough contiguous, sufficiently large, single chunk space in the tablespace. It will
autoextend according to the NEXT storage parameter. The SCMO process performs
the extension evenly across all the datafiles in that particular tablespace that haven't
reached their maximum extension.

The above command-line query returns the active background process that starts
with the pattern ora_w*. SCMO is also responsible for temporary segment space
reclamation. That is the main reason you should only add tempfiles to a temporary
tablespace (never permanent). The RDBMS is designed to release those temp
segments automatically for other users in the database when queries no longer
need those segments.

Auditing, log files, and max dump file size
There is nothing worse than a file system filling up unnecessarily, which can cause
a database to crash or hang depending on which files are involved. Anything that
can cause a database to hang or otherwise become unavailable is part of the MAA
recommendations. This also includes protecting the data by standardizing database
auditing procedures suitable for your organization. Several changes in the newer
version of Oracle as well as standard logging and tracing utilities can cause the
filesystem to fill up. This means that you, the DBA, have some ongoing maintenance to
perform to monitor, rotate, and control the inherent logging with an Oracle database.

For example, there is a dramatic increase in auditing in 11g that will occur with a
database that is created with the default settings. See the next section for the actual
database privilege statements being audited. Notice that the default parameter settings
write the files to the same location as previous versions of the RDBMS, as auditing
output is not a part of the ADR. Most often the DBA manipulates the location and
auditing levels depending on the security requirements of their organization.

Achieving Maximum Uptime

[126]

Using an OS command to view the current size of the audit logs for this small
non-production database produced 2MB+ over a month.

This is with no other major users or applications connecting other than sys, sysdba,
dbsnmp, and the test cases for this book. Expect large amounts of files to be written
with a full production instance, depending on the database parameter settings for
audit_trail—DB, OS, DB, or DB EXTENDED. Extended captures the actual
SQL involved.

Default settings for audit_trail insert entries in the base table SYS.AUD$ (query the
DBA_AUDIT_TRAIL view) as shown below:

The majority of the entries for this test database are from the multiple logon/logoffs
for the user DBSNMP, which is the Grid Control Management agent monitoring
database user. Monitoring logons/logoffs is the easiest way to start auditing activity
and will give you the most benefit for the amount of resources consumed. If a
database is created using the Database Creation Assistant (DBCA), then the auditing
of additional statements besides logon/logoff activity has already been enabled.

What is currently being audited?
Oracle provides several scripts on MOS. The following script lets you see what the
current audit settings are as well as generate a script to turn them off and back on
as well. It is just as important to know how to turn off these settings for emergency
reasons as enabling them in the first place, and this is also an excellent way to
document the current settings.

SCRIPT: Generate AUDIT and NOAUDIT Statements for Current Audit Settings
[Document ID 287436.1]. The script located in $ORACLE_HOME/rdbms/admin/
undoaud.sql will reset the audit features back to 10gR2 defaults, which is
NO auditing. This script is the one called when using the DBCA utility to
remove auditing.

Chapter 4

[127]

There are three database auditing types: objects, statements, and privileges. We will
cover the privilege type, as it has to do with overall database activity and not specific
objects that vary depending on the application and the organization's security
policies. The default security settings when you use DBCA to create an 11g
database enables the auditing of all of the following privilege statements:

ALTER ANY PROCEDURE
ALTER ANY TABLE
ALTER DATABASE
ALTER PROFILE
ALTER SYSTEM
ALTER USER
AUDIT SYSTEM
CREATE ANY JOB
CREATE ANY LIBRARY
CREATE ANY PROCEDURE
CREATE ANY TABLE
CREATE EXTERNAL JOB
CREATE PUBLIC DATABASE LINK
CREATE SESSION
CREATE USER
DROP ANY PROCEDURE
DROP ANY TABLE
DROP PROFILE
DROP USER
EXEMPT ACCESS POLICY
GRANT ANY OBJECT PRIVILEGE
GRANT ANY PRIVILEGE
GRANT ANY ROLE
ROLE
SYSTEM AUDIT

Why would this particular list of items be installed by default by Oracle? In an
organization, there is often more than one person with advanced system privileges
in a database. It would be helpful to know who was responsible when a particular
event happened; it can also be looked at as a way of documenting what was done
and by whom for external auditing purposes.

Achieving Maximum Uptime

[128]

Auditing Session Activity
The very minimum a production database should audit when logons are
unsuccessful will indicate patterns of abuse such as password cracking:

SYS@NEWDB>AUDIT ALL BY ACCESS WHENEVER NOT SUCCESSFUL;

Or the more broad statement of:

SYS@NEWDB>AUDIT SESSION;

Auditing statements are either:

BY SESSION: One audit record is inserted for one session, regardless of the
number of times the statement is executed, this is default if not specified. The
second statement above would audit all logon and logoffs and not just bad
password attempts.

BY ACCESS: One audit record is inserted each time the statement is executed.

The query below shows all logon/logoffs for every user with audit session
enabled. Note that the comment$text will contain the IP and port number of
the client.

SYS@NEWDB>select timestamp#, userid, userhost, action#, returncode,
logoff$time, comment$text from aud$ where action# in (100,101);

A return code 1017 means ORA-1017 "invalid username/password; logon denied". It
is easy to determine what the code means using the Oracle error utility called oerr on
Unix, as seen in the following example:

Connections to the database by SYSDBA, SYSASM, or SYSOPER along
with their actions (these include database startup/shutdown) are always
logged. It doesn't matter: the audit_trail settings with the files
showing up in the directory $ORACLE_HOME/rdbms/audit unless the
audit_file_dest has been set to another directory location.

Before turning on any sort of auditing features, a DBA should design the
accompanying archive/purge process of the SYS.AUD$ table (or OS directory
depending on how auditing was enabled) to properly maintain historical records,
making it a scheduled task.

Chapter 4

[129]

The table SYS.AUD$ is stored in the system tablespace and allowing that to fill
would cause the database to hang. It is generally recommended that you copy the
entries from the original AUD$ table into a historical table, and export data to the
operating system for long-term retention. The following lists other recommendations
for an archive/purge process:

Create a dedicated user for owning all of the custom archive/purge objects
Create a dedicated tablespace
Research the 11g compression features to save storage space
Run a routine quarterly to exported archived data, truncate that table, and
then load SYS.AUD$ table to the archived table and truncate SYS.AUD$
Run a daily task to monitor the number of rows in SYS.AUD$ with alerts
automated to notify DBA
Write events to the alert log using sys.dbms_system.ksdwrt for every
quarterly run of the audit procedure (see Chapter 2, Maintaining Oracle
Standards, for the writing the DBID to the alert log example).

The new Oracle 11g option, called Audit Vault, automates the collection and purging
of auditing data with a database package, but doing this would require an additional
license. Here are some other important MOS documents for additional information
on the archival of the auditing information:

How To Set the AUDIT_SYSLOG _LEVEL Parameter [Doc ID 553225.1]
Moving AUD$ to Another Tablespace and Adding Triggers to AUD$ [Doc ID
72460.1]

Windows NT does not use the AUDIT_FILE_DEST parameter. Operating
System auditing changes are recorded in the Security Event Viewer.

There is at least one other way of monitoring login activity without enabling
auditing. For example, the following query finds the failed logins for any user since
the last one that was successful. This wouldn't work for someone without a database
account who might be trying to attempt a brute force type of attack.

SYS@NEWDB>select name, ltime, lcount from user$ where lcount > 1;

Note that if you implement a separate ORACLE_HOME for ASM, there will
be additional audit files (for SYSDBA and SYSASM access) produced that
will need to be monitored and purged as needed.

•

•

•

•

•

•

•

•

Achieving Maximum Uptime

[130]

Other logs to monitor
There is something that every DBA needs to be aware of: the location of logs and
trace files produced with both normal and unusual database activity. You should
also know how to rotate these logs while automating the process. Refer back to
Chapter 2 for the three major methods of scheduling: OS, DBMS_SCHEDULER, or
OEM. The following list assumes you are using the default database initialization
parameters for 11g:

SQL*Net logs—located in ADR client location for any SQL*Net connection
Listener log—located in the database ADR
Audit logs—database parameter audit_file_dest
Trace files—located in ADR unless redefined within a script or
SQL*Plus session
Install logs—located in the orainventory location
Automatic Diagnostic Repository—holds the bulk of the database logging,
incident packages, and workbench files
Grid Control Management agent—$ORACLE_HOME/sysman

MOS configuration manager—$ORACLE_HOME/ccr

Other installation logs—$ORACLE_HOME/cfgtoollogs/

RDA output—user-defined location
Opatch—Oracle's one-off patching utility output, user-defined location

Out of the files above, the ones that could possibly cause the most problems will be
the text versions of all the ADR logging located in the trace directories. There is an
archiving and purging function component of the ADR, but that doesn't touch any
of the files found in each of the trace directories. There are multiple trace directories
within the ADR location that will be populated with data, depending on which
Oracle components and features are implemented.

Don't forget the audit log location mentioned earlier. These will require a scripting
mechanism (DBMS_SCHEDULER comes to mind) to rotate, remove the oldest versions
on a regular basis, and keep a certain amount of history. The *xml versions of the
logs mentioned above are automatically rotated along with the other ADR files, so
growth is usually not something to worry about, along with the purge and archive
functions. The Max Dump File Size database parameter has a default setting, as
shown below. It is the only option used to limit the size of trace files that doesn't
include the alert log:

max_dump_file_size string unlimited

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[131]

At this point in the book, you can probably recognize the need to change this as soon
as possible. The only time it would need to be unlimited is when there is a known
event occurring and you don't want to prevent the trace file from being produced if
the setting is too small.

For more information see: What is the unit of measurement for OS block size?
and the purpose of MAX_DUMP_FILE_SIZE initialization parameter? [Doc ID
886806.1]

Data dictionary healthcheck
As a DBA, you should never insert, update, delete, or otherwise manipulate any
of the SYS-owned objects, collectively known as the data dictionary. It also goes
without saying that the SYS user is the exclusive owner of the data dictionary and
that SYS should not be used as a schema to own application objects. What happens if
you modify the underlying objects? It invalidates your support contract with Oracle,
which means there's no help to get you out of the pickle you just put yourself into.

It is a worthwhile exercise, especially when you inherit databases from someone
else to run a data dictionary health check just like running an RDA process as
outlined in Chapter 2. It allows you to objectively judge the state of things. See the
following documents for information on running a database health check and an
interesting package that Oracle provides to help format the output called H* Helper
scripts. Please use any new testing utility, packages, procedures, or scripts in a non-
production database first.

"hcheck.sql" script to check for known problems in Oracle8i, Oracle9i, Oracle10g and Oracle
11g [Doc ID 136697.1]

Note:101468.1 "hout.sql" script to install the "hOut" helper package

Note:101466.1 Introduction to the "H*" Helper Scripts

122669.1 Healthcheck

250262.1 Healthcheck/Validation Engine Guide

Achieving Maximum Uptime

[132]

SQL*Net hardening, tuning, and
troubleshooting
Think of this section as the glue or string that ties all of the disparate components
together; all applications travel on the network layer of the enterprise structure.
You will become an expert at troubleshooting Oracle's network protocols over time.
There will be plenty of opportunities, so to speak. Also, it is time to discuss some
of the security implications of network traffic, as the default is clear text with only
the logon password encrypted, unless the Advanced Security/Networking Option
(AS/NO) is purchased and implemented. Browser-based, server-based application
hosting, or VPN applications can utilize SSL technology for encryption, but the traffic
between servers is definitely easily sniffed! Security tips as it relates to SQL*Net will
be scattered throughout this section.

In a hardened environment where strict control is needed, SQL*Net is often
configured with guidelines similar to the following:

Give each database a different listener port.
Don't use port 1521 for any listener; this keeps databases from
autoregistering, which keeps the DBA in control.
Disable database parameter *.dispatchers='(PROTOCOL=TCP)
(SERVICE=sidXDB)'.
Put the ORACLE_HOME of the database in the appropriate listener.ora entry
if you're using the Listener in a different ORACLE_HOME.
Define local_listener parameter in spfile.
Database parameter _TRACE_FILES_PUBLIC=FALSE—limits access to trace
files that can contain sensitive data.
Create two Oracle TNS Listeners: one for the Oracle database and one for
PL/SQL EXTPROC if the external procedure feature needs to be used.

One of the first questions for a novice DBA seems to be how to create multiple
database entries in the listener.ora file, as the default file contains only a single
one. Here is an example to follow that implements some of the hardening guidelines:

listener_NEWDB9 =
 (ADDRESS = (PROTOCOL = TCP)(HOST = SERVER)(PORT = 1522))
SID_LIST_listener_NEWDB9 =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = NEWDB9)
 (ORACLE_HOME = /u01/app/oracle/product/10204)
)

•

•

•

•

•

•

•

Chapter 4

[133]

)
listener_NEWDB=
 (ADDRESS = (PROTOCOL = TCP)(HOST = SERVER)(PORT = 1523))
SID_LIST_listener_NEWDB =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = NEWDB)
 (ORACLE_HOME = /u01/app/oracle/product/11107)
)
)
ADMIN_RESTRICTIONS_listener_NEWDB=ON
LOG_FILE_listener_NEWDB=listener_newdb.log
INBOUND_CONNECT_TIMEOUT_listener_NEWDB = 120
ADMIN_RESTRICTIONS_listener_NEWDB9=ON
LOG_FILE_listener_NEWDB=listener_newdb9.log
INBOUND_CONNECT_TIMEOUT_listener_NEWDB9 = 120

Notice how each database is listening on its own port number and resides in
different Oracle homes. In this case, listener_NEWDB9 is listening on port 1522 and
listener_NEWDB is listening on port 1523. All of the entries line up correctly with no
guessing on the number or location of ellipses. This listener.ora uses SID_NAME
instead of SERVICE_NAME. For more information on the differences and how best
to use them, consult the following MOS document: SERVICE_NAME Parameter -
Resolving The ORA-12514 Error [Doc ID 77640.1].

While you can service multiple databases with a single listener, there may be
reasons that you want to control SQL*Net access by taking down the listener.
Keeping separate listeners on separate ports allows you to independently
control them on a single server.

There are additional parameters in the listener.ora related to securing the
listener. See the preceding entries related to ADMIN_RESTRICTIONS, LOG_FILE, and
INBOUND_CONNECT. Like the MOS document details above, you may have to set the
database parameter local_listener. See the following example:

local_listener="(address=(protocol=tcp)(host=server.
domain)(port=1533))"

As of 11gR2, setting a listener password is deprecated (the capability will be
removed in future releases) due to the default security mechanism of only
allowing the OS user account who owns the files any access without a password.

Achieving Maximum Uptime

[134]

Control is the name of the game when following the above suggestions; it allows
multiple ORACLE_HOME(s) to use a single listener or even a listener from a different
version. Just like ASM, a higher-versioned listener can be used for a lower-level
database—there is a built-in compatibility (see Chapter 7 for a more detailed
discussion). Keeping listeners off the default autoregister port 1521 allows you
to turn off various listeners for various reasons; end users can be prevented from
certain applications when there is a planned outage for example.

Manipulating SQL*Net parameters and resolutions is done most commonly with
listener.ora, sqlnet.ora, and tnsnames.ora files. There are other files associated
with different naming methods like LDAP or Advanced Networking or Security
Options that won't be covered in this book.

The tnsnames.ora file is the one that is distributed to the applications that need to
connect to the database. If you make a query from within one database to another
database (called a database link), then the local host copy of tnsnames.ora for the
database is the one used.

Data Guard implementations also use a local tnsnames.ora file to find the location
of the standby databases in a configuration. Database entries in a tnsnames.ora
files are simply an alias name (this can be anything you want) and should be used to
disguise the real name of the database. This adds a layer of anonymity and security
between the end users and the database.

The sqlnet.ora file is responsible for tuning and controlling SQL*Net behavior
as well as the order of naming the resolution—tnsnames.ora file, Oracle Internet
Directory (OID-LDAP), or using the Host Naming Adapter (DNS-resolution on the
host). SQL*Net resolution order dictates that it first looks in the local tnsnames.ora,
then Oracle Names servers, and then the Host Naming Adapter. The parameter that
influences this lookup order is the NAMES.DIRECTORY_PATH parameter in the
sqlnet.ora file. Research each of the following entries, setting them appropriately
for your environment, as some can be set at several different connection points—
database, application server, and/or client:

SQLNET.EXPIRE_TIME Dead Connection Detection (DCD) Explained [ID
151972.1]
DEFAULT_SDU_SIZE- Packet Sizing
NAMES.DIRECTORY_PATH
TCP.NODELAY – Flushes all data across network
RECV_BUF_SIZE – large data transfers
SEND_BUF_SIZE – accompanying buffer for large transfers
SQLNET.INBOUND_CONNECT_TIMEOUT – Time to receive authentication
TCP.VALIDNODE_CHECKING – Limits connections by node
TCP.INVITED_NODES
TCP.EXCLUDED_NODES

Chapter 4

[135]

The only way to prove without a doubt that these parameters are set correctly is
to produce a SQL*Net trace file as verification. This resulting verification trace
file should be kept with other hard-copy documentation for your organization.
Additional information on how to start tracing is included in the following
section, called What can go wrong?

There is a �� Data Guard Redo Transport and Network Best Practices white paper on
the MAA website, but it applies to Oracle version 10g and below. As of 11g, the
RDBMS has been rewritten for data transfers of bulk operations such as the redo
transport services, so reconfiguring the SEND or RECV_BUF_SIZE is no longer
recommended for Data Guard implementations. There is also the MOS document
Oracle Net "Connect Time" Performance Tuning [Doc ID 214022.1] for general
guidelines in tuning different types of naming resolutions.

Troubleshooting
There are some common rules as to how SQL*Net acts, depending on where the
application that uses SQL*Net is executed. There are lots of different types of
applications that use SQL*Net, not just the utility SQL*Plus.

If the connection is made from a PC, the connect string (what SQL*Net uses to
identify the database) is found as the entry in the locally defined tnsnames.ora. By
the way, it would be easier to administer a network-available copy of tnsnames.ora
by defining a TNS_ADMIN system variable on each PC that provides staff with a
common read-only file. This keeps you from having to troubleshoot staff
desktop issues. As stated earlier, if a connection is done by a database link to
another database, this resolution will be done by the local SQL*Net files on the
database node.

Here is the TNS_ADMIN resolution list, as to which SQL*Net files are queried first
and then in what order. It's great for troubleshooting complex issues:

TNS_ADMIN defined as a locally global environment variable
TNS_ADMIN set within the session or within a script
SQL*Net files in /var/opt/oracle or /etc depending on Unix OS
SQL*Net files in $ORACLE_HOME/network/admin

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Achieving Maximum Uptime

[136]

What can go wrong?
If the database was started with a different TNS_ADMIN set, then that is currently in
effect, no matter how hard you try to reset it. The following ps command will show
what variables are in effect for a process. It is a great troubleshooting tool! Some of
the output was shortened for brevity.

Tracing is�� the primary method of troubleshooting a SQL*Net connection. You will
need some practice to get the resulting trace files in the location desired: MOS Note
219968.1: SQL*Net, Net8, Oracle Net Services - Tracing and Logging at a Glance.

A recommendation is to keep a copy of appropriately-edited sqlnet.ora files
for tracing, handy, to put into service when a connectivity issue comes up. And,
as a side note, you must always be wary turning on full tracing for any type of
troubleshooting in production: it may completely fill up the hard drive space! Use at
first with caution until you are familiar with normal behaviour and then ramp up the
tracing level as needed. Most DBAs would direct tracing to a filesystem not used for
the database, such as /tmp. Another method on Unix systems is to use an operating
system utility (strace in Linux, struss in BSD UNIX types) that can attach to a
specific process being investigated. This is an advanced troubleshooting tool that can
be used for any type of connection to the database that has a specific process ID that
can be found by the following query:

SYS@NEWDB> select SPID from v$process where ADDR in
(select PADDR from v$session where username='<username of client>');

Then you can run the command with that specific server process ID; there are both
strace and struss examples depending on your operating system.

struss -r all -w all -aefd -o <output filename> -p <server process id>
strace -p <server process id> -o <output filename>

For a free, highly recommended, open source utility called
TNSMANAGER that resolves SQL*Net connections by LDAP protocols
visit http://www.shutdownabort.com/tnsmanager/

Chapter 4

[137]

Grid Control High Availability and
Disaster Recovery
The Grid Control (GC) version of OEM is free, but its functionality is limited without
the additional purchase of the Management Packs. It also includes two licenses not
ordinarily included in the Enterprise Version of the database—Partitioning and RAC.
Note that you are only allowed to use these free optional components on a repository
(which is an Oracle database) dedicated to EM use. If you have a single database to
administer, it is most likely you will use the Database Control Utility instead of the
fully-fledged GC application; there is a difference in the features and functionality
between the two versions. This section will deal with GC only. When GC 10.2.0.5
is mentioned in this chapter, it is referring to the OEM Server version and not a
database version.

The Management Packs and Enhancements in GC 10.2.0.5 are:

11gR1+ Database Features—real-time SQL monitoring, Partition Advisor,
Automatic SQL Tuning, Database Replay, and ADDM for RAC
Diagnostics and Tuning Packs—highly recommended
Data Masking Pack—condition-based, compound (multiple columns)
masking, masking during cloning
Provisioning Pack
Database Change Pack—data dictionary synchronization
Configuration Pack—new console, auditing features
New- HA Console, MAA Config Advisor, Streams, and Oracle Backup
Oracle Application Server—configuration, diagnostics, provisioning
Host—configuration, audit, provisioning, system plugin
Unbreakable Linux RPM management, bare-metal provisioning
Virtualization Management Console – both physical and virtual
Forms and Service Level Monitoring

The features and full functionality of GC is overwhelming to a novice DBA. It is
assumed that the size of the organization and the number of servers you have to
administer dictates the need for an enterprise-wide monitoring tool. GC doesn't
install and run by itself and has a history of being difficult to install and administer.

•

•

•

•

•

•

•

•

•

•

•

•

Achieving Maximum Uptime

[138]

Migrations to a different operating system and even standard GC upgrades have
been nightmarish, causing a few of us very experienced DBAs to throw up our hands
and trash an existing install and start completely over losing the valuable historical
data. By the end of this section, you will see that the newest version of GC (10.2.0.5
at this writing) is finally able to be made highly available. This section contains quite
a bit of advanced material that you may want to come back to later when you are
actually involved with a GC install or migration project.

Recommended installation for GC 10.2.0.5+
With the release of GC 10.2.0.5, there are several more tools, utilities, and command-
line options available for installing, migrating, or upgrading the repository. It is
highly recommended to use the processes in the GC Advanced Configuration
documentation called:

Enterprise Manager 10g Grid Control Install Using an Existing Database

Silent Install Scenario—Installing Software Only and Configuring Later

Both of these methods can be used for any 10.2.0.4+ version of Oracle Management
Server. GC consists of three components—an Oracle database repository (repository),
Oracle Management Server (OMS), and Oracle Management agents (agents). The
repository contains all of the information that each of the individual agents upload
by way of the OMS server processes.

The procedure recommended above has the repository and OMS install separated,
not the default, if you run the GUI install for GC. The recommended installation is
considered to be a complete custom installation.

A custom installation includes the different components installed in a particular
order: install an Oracle Database configured with the prerequisities for a GC
repository, install OMS server, and finally, the agents on any servers you want
to monitor with GC.

•

•

Chapter 4

[139]

Why should I install a separate database?
Because you tend to get caught (a painful migration) when a major change is
required—such as the required time zone updates, CPUs, database and/or OMS
patch sets, migrations to different nodes or operating systems, and so on. "If
your Enterprise Manager Grid Control Release is 10.1.0.2, you cannot move your
Repository (from the native 9.0.1.5 to) a 10.1.0.3 database." is a direct quote from the
document on how to uncouple the native database installation: How to Move a Grid
Control Repository to a 10.1.0.3 Database [Note: 285087.1].

Separating the installation allows the database install to be at 64-bit (64-bit OS) and
keep the OMS install on 32-bit on a different node (32-bit OS). It also allows the use
of 10.2.0.3+ for the database version. If you prefer, start with 11g, which will allow
you to perform the install during Daylight Savings Time (patch set contains the
required DST fixes); the caveat is that this method can't be used to migrate any
OMS installation less than 10.2.0.4.

The silent install of the Linux 32-bit GC 10.2.0.1 lets you install the
32-bit version onto a 64-bit OS (not good!). The 10.2.0.5 patch set
halts the installation in this situation.

Install the Enterprise Edition database 10.1.0.4+ (see MOS Document ID 412431.1
for compatibility). I would recommend using, at the least, Oracle RDBMS version
10.2.0.3+. See How to Pre-configure a 10g Database to Become the EM 10g Management
Repository [Note: 285209.1] for more information.

If you're using the GUI installation, specify full installation type (doesn't matter what
version because you are upgrading to GC 10.2.0.4 or 10.2.0.5 immediately), using
an Existing Database Option (note that if database spfile parameters are not at the
recommended minimums, this install will fail).

Cookbook for silent install and configuring later
Before starting the install of the Base 10.2.0.1 or 10.2.0.2 OMS, the repository has
already been created (see the MOS note in the preceding paragraph for exact details).
Unzip the installation directories and create the response files (em_using_existing_
db.rsp and patchset_oms.rsp, patchset_agent.rsp) in advance by using the
documentation and MOS notes as a guide.

Achieving Maximum Uptime

[140]

Double check the variables in the response files as shown in the following example,
because there is no feedback on its success or failure until you run the configure
script. Make a copy of the response files before starting. You will need two different
sets of a response files for patching both the OMS and agent. The following is an
example install on Unix using this method with notes scattered within.

Note.763314.1: How to Install Enterprise Manager Grid Control 10.2.0.5.0 Using a
New Database with the Software Only Method
Note.763347.1: How to Install Enterprise Manager Grid Control 10.2.0.5.0 Using an
Existing Database with the Software Only Method
Note.793870.1: How to Install Grid Control 10.2.0.5.0 on Enterprise Linux 4 Using
the Existing Database (11g) Option
Note.784963.1: How to Install Grid Control 10.2.0.5.0 on Enterprise Linux 5 Using
the Existing Database (11g) Option

Chapter 4

[141]

As a couple of side notes, there is an MAA advisor in the GC console and
depending on the Oracle Database version as to whether it is a checklist or actual
links. There also seems to be a concerted effort by Oracle to get you to install the
Oracle Configuration Manager utility (as discussed in Chapter 2, Maintaining Oracle
Standards). The Oracle Universal Installer (OUI), as part of the GC 10.2.0.5 install,
hints that you are a bad DBA for staying uninformed about critical security issues!
Do not buy into this, you are in control here. Say no until you are ready because
information will be uploaded to MOS that can't be removed. The first screenshot
shows part of the OUI for GC 10.2.0.5 where OCM is part of the install, you can
always install this later.

The second smaller screenshot happens if you don't choose to install OCM during
this install with a smaller reminder.

Achieving Maximum Uptime

[142]

Migrating GC repositories
Grid Control (GC) Repository Database migrations such as moving to a new node,
changing operating systems, character sets, or bit size are more daunting than
working with the typical database.

For example, when moving an Oracle Management System (OMS) database
repository version from 10.2.0.4 to 11.1.0.6 and changing the database character set
to UTF8, there is no migration path. At the time of this migration: OMS 10.2.0.4 was
only available as a patch set and not available as a full download. This was coupled
with the fact that the OMS 10.2.0.1 base install didn't work with an existing 11.1.0.6
database, and also that the character set change prohibited a migration utilizing
transportable tablespaces (see Chapter 6, Extended RMAN for more information on
transportable tablespaces).

As you can probably tell, I was personally affected by this tragic series of events.
This was the main impetus behind the research for this section. It wasn't going to get
the best of me! Oracle has since provided a migration path for those clients wanting
to install a 11g database for GC repository using the following instructions: How to
Install Grid Control 10.2.0.5.0 on OEL/RHEL5/SLES10 Using the Existing Database (11g)
Option [ID 784963.1] or GC 10.2.0.4.0 [ID 467677.1].

Here are a few additional MOS documents and articles related to migrations:

Article-ID: Note 388090.1; Circulation: UNDER_EDIT (LIMITED); Title: Cross
Platform EM Grid Control Repository/OMS Migration

	 http://kr.forums.oracle.com/forums/thread.jspa?threadID=
	 517164&tstart=-6

The Grid Control Repository upgrade fails when upgrading the Grid Control
[Note: 457877.1]
Installation Checklist for EM 10g Grid Control 10.2.0.x to 10.2.0.3 OMS and
Repository Upgrades [Note: 422061.1]
Invalid Sysman Objects After Upgrading The Db Via
Export/Import Note: 604129.1

Transportable tablespace migrations
Transportable tablespaces (TT) are the recommended method for migrating GC
repositories across platforms and they can even be utilized for upgrading the
database version. We will be looking at the coolest tool a DBA has in their
arsenal of weapons for migrating databases and TT in Chapter 6, Extended RMAN.

•

•

•

•

Chapter 4

[143]

Limitations and requirements for using TT for GC:

The source and target database must use the same character set
If the source and target database are NOT on 10g—only Export/Import can
be used for cross-platform migration
If source and target database are on 10g—transportable tablespaces
migration, data pump, or Export/Import can be used for cross-platform
repository migration
GC tablespace(s) cannot already exist
Both databases must have compatibility set to at least 10.0
Query the V$TRANSPORTABLE_PLATFORM to determine their platform
IDs and their endian format (byte ordering) compatibility
Source and destination host should both have an EM agent running and
configured to the database that is to be migrated
If target database has EM repository installed, it should be first dropped
using the GC utility RepManager before the target database-related steps
are carried out

There is another way to migrate across platforms or versions for both the OMS and
repository components. It is quick, but you will lose historical information as follows:
default purging policies—7 days raw data, 31 days of the one-hour aggregated
metric data, 365 days of the one-day aggregated metric data, custom UDM, custom
reports, and custom jobs. See the following list for the generalized steps:

1.	 Install the grid control/repository on the new server(s), then fully patch.
2.	 Configure host agents to talk to new OMS server-stop agent, edit emoms.

properties for correct URL. Restart the agent.
3.	 Configure OMS manually to point to the new repository—this is done by

stopping all services, editing targets.xml and emoms.properties, and
restarting.

4.	 Will have to redefine all custom items: jobs/reports, preferred credentials,
notifications, and pack access agreement.

5.	 Can fallback to previous version or even use them concurrently with
different agents communicating between the two OMS servers.

Keeping the repository highly available
Just as with any other Oracle database, there are several recommended practices to
keep it highly available: RAC, archivelog mode, RMAN backups full + incremental,
the flashback database, block change tracking, and/or the use of physical standbys.

•

•

•

•

•

•

•

•

Achieving Maximum Uptime

[144]

For advanced users, there is an Enterprise Manager Diagnostics Kit available
from Metalink with an example: EMDiagkit—How to Use the Repository Diagnostics
[Note: 421563.1]

./repvfy -usr SYSMAN -pwd password -tns nodename:port:SID

See "Maintaining and Troubleshooting the Management Repository" at:
http://download.oracle.com/docs/cd/B16240_01/doc/
em.102/e10954/repository.htm

Repository backups, restores, or imports
When you use RMAN database backup and recovery, there may be issues that are
specific to GC, depending on the type of recovery used.

Full recovery same host—no issues except for blackout targets during restore
Partial or point-in-time—agent will resynch correct information—emctl
resync repos
Target nodes need to be in Blackout because agents keep collecting data
and may overrun certain disk thresholds set in <AGENT10G_HOME>/sysman/
config/emd.properties

From the following URL, there are steps that are important to run following a
migration or restore using the import method:

http://download.oracle.com/docs/cd/B16240_01/doc/em.102/e10954/
repository.htm

Post-repository import EM steps:

1.	 Recompile invalid objects.
2.	 Create missing public synonyms.
3.	 Create other users needed for GC functionality.
4.	 Enable VPD.
5.	 Re-pin certain sysman packages.
6.	 Recreate partitions—this improves performance and free license with GC.
7.	 DBMS_JOBS reset to remove invalid entries.
8.	emoms.properties needs to be adjusted for the correct entries.

•

•

•

Chapter 4

[145]

OMS patch sets have no de-installation: this means you need to fully
restore the OMS home, repository, and inventory with a backup copy.
Note 733848.1: How to backup and restore Grid Control
Enterprise Manager 10gR2/R3 Backup, Recovery and Disaster Recovery
Considerations
http://www.oracle.com/technology/deploy/availability/
pdf/EM10gR2_BR_WP.pdf

Doc ID 733530.1: How to Move Grid Control Repository Using DBCA
Doc ID 602955.1: How To Move the Grid Control Repository Using an
Inconsistent (Hot) Database Backup

MAA—repository on a physical standby
database
How do you duplicate a GC repository for failing over when there is an outage on
the primary database? This is where Data Guard comes into play, where you will be
installing a physical standby (see the next chapter on Data Guard) with special steps
taken in order to provide a useable GC repository when outages occur. These are
the general steps for providing a GC repository standby that can be failed over if the
primary is down:

1.	 Create a physical standby repository.
2.	 Install and configure additional standby OMS linked to primary database.
3.	 Edit standby OMS emoms.properties to point to the standby database

repository.
4.	 Replicate data upload directory on standby OMS node to limit transaction

loss. This is an optional step.
5.	 Configure Fast Start Failover for the standby repository if desired.
6.	 Use custom-written triggers to start OMS at standby.
7.	 Configure standby Load Balancer at a remote site for multiple OMS if

installed, for complete redundancy.

This simplified method is quick, works well, and is much easier to implement than
the Active/Active or Active/Passive methods that Oracle invented. Investigate all of
the methods yourself to decide which is best for your environment.

Achieving Maximum Uptime

[146]

Oracle's Method – Active/Active or Active/Passive - How To Configure Grid
Control Components for High Availability [ID 330072.1]

OMS and agents' high availability
While the standard database procedures are used to keep the repository highly
available, there are other tactics for the Agent and OMS components of GC. Scaling
GC upward is mostly done by adding OMS servers, architecturally speaking in a
horizontal fashion. Multiple OMS servers, each installe��������������������������� d�������������������������� on their own server, are
all configured to communicate with a single repository database. Agents can be
configured to talk to different OMS servers for load balancing in a large environment.

Keeping the Agents highly available is best achieved with multiple installed OMS
with a Hardware Load Balancer front end. That would mean the agent would
only communicate the uploaded data to a single SSL-enabled URL, with multiple
OMS installed behind the load balancer in a pool. In theory, this would result in no
downtime for monitoring activities for any active agent and also provides a pool
of OMS boxes that can be taken offline for outages without affecting normal
GC functionality.

If you can't afford all of the hardware to replicate the repository, at the very least
you should install a redundant OMS, as it is the easiest task to accomplish. The
additional OMS can reside on a small node and take over if the primary OMS
becomes unavailable. You can configure agents to talk to multiple OMS (called
an upload pool), which will provide a poor-man's load balancing, but the agents
would have to be reconfigured if one of the OMS servers is not available.

Cloning Management agents
Finally, Oracle has done something truly useful for installing agents. They tried over
the years with push and pull technologies that didn't always work, required too
much effort or required additional utilities.

See the following URL for the documentation on cloning an agent:
http://download.oracle.com/docs/cd/B16240_01/doc/
install.102/e10953/cloning_agent.htm#CIHFGEEE

In the following example, $AGENT_HOME is the directory where the agent is installed,
and making it unique from any other Oracle install requires an ORACLE_HOME_NAME.
This name is a short description of your choosing, it doesn't have to match the
previously installed ORACLE_HOME_NAME.

Chapter 4

[147]

Now it is so simple! First install a 10.2.0.5 Management agent on the appropriate OS
that you want to clone, then:

1.	Z ip and transfer the entire previously installed agent directory $AGENT_HOME.
2.	 If upgrading, put in the same location as before (not in instructions).

Otherwise pick an appropriate directory that is part of the OFA standards.

$AGENT_HOME/oui/bin/runInstaller -clone -forceClone
ORACLE_HOME= ORACLE_HOME_NAME= -noconfig –silent

$AGENT_HOME/bin/agentca –f

$AGENT_HOME/root.sh (as root)

Since you cloned an existing install, it automatically configures the same settings
(OMS and upload port) to configure the agent for this node.

This is a list of ports and associated configuration files for agents:
Secure Upload Port—1159—httpd_em.conf, emoms.properties, portlist.ini
Agent Registration Port—4889—httpd_em.conf, emoms.properties,
portlist.ini
Secure Console Port—4444—ssl.conf (See MOS Note: 353736.1)

GC at a very large site
There are certain recommendations from the MAA website if your GC is larger
than most, but there seems to be conflicting information on what actually defines a
large site. Oracle defines one as having ��� more than 100 targets (database, application
servers, listeners, or applications) to monitor. If your site is smaller than that, then
the following list is probably overkill.

Multiple OMS servers
Hardware load balancer
Dual repositories in an active/passive configuration (see MAA website)
Upload pools for multiple OMS
Large repository—true in emoms.properties

A couple of parting tips for this section:

One of the best ideas for GC is to create groups of target databases and configure
backup jobs on the entire group. Using GC to backup databases is a personal
choice and some DBAs choose to control each one carefully using their own tools
(see Chapter 6, Extended RMAN). It depends on the database size and complexity of
the architecture within your enterprise.

•

•

•

•

•

•

•

•

Achieving Maximum Uptime

[148]

How to obtain the Job details—Parameters / Scripts from the Grid Control Repository
[Note: 601554.1], which outlines a simple method for extracting the actual scripts,
runs as part of the reporting feature within the GC console.

Taking more time in the beginning with the Grid Control install will allow for fewer
interruptions in service when the next migration, upgrade, patch, or patch set is
required. Don't do the default install of all components on the same box. If GC is to
be your enterprise-wide monitoring tool, then a certain amount of time and effort
will be required to keep it robust and available when it is needed most.

Summary
This is an advanced chapter that you will need to refer back to when major changes
happen within your enterprise, such as when any piece of hardware is due for
replacement. There may be a way of using the older hardware (if the budget is
tight) to redeploy for redundancy reasons or it may be a great way of getting
your hands on a DBA-only test box.

Maximum Availability Architecture is a methodology, best practiced for maximizing
the amount of uptime for your critical applications. Committing to maximizing
uptime not only takes physical components but several key organizational practices
to be in place. This is where the managers in your IT department need to become
involved. If the organizational practices are not present in your organization, maybe
it is time to speak up about their validity and importance in today's IT-centric
organizations. As an Oracle DBA, you will have some pull in matters such as these.
So you can take a stand for improving your situation.

This chapter covered some of the topics on the MAA website with some additional
information researched when the documentation was found lacking. It wasn't a
rehash of the MAA website, but an integration of real-world implementations
and practices as they apply to the following components of HA organizations:

Overview of Maximum Availability Architecture
Optimizing Oracle Database Availability
SQL*Net hardening, tuning and troubleshooting
Grid Control High Availability and Disaster Recovery

MAA is all about redundancy, and that includes you the DBA. You will be
responsible most often for your own redundancy in a smaller IT organization,
which means documenting what you do carefully with both an electronic and
hard paper copy for your backup to be able to carry on if you are unavailable.
Sorry, there is nothing like a physical standby for a person, yet. What a great
lead in for the next chapter!

•

•

•

•

Data Guard and Flashback
There are three types of standby database available in the Enterprise edition of 11g
Oracle: Logical, Snapshot, and Physical. This chapter will cover the differences
between the standby types, implementation details, and testing/recovery scenarios
using both Data Guard and Flashback technologies in tandem for stress testing, hot
fixes, and data recovery. Oracle has made further improvements to Data Guard to
facilitate the use of standbys for testing purposes—one of these is called Database
States. It is a simplified method of turning off the data flow from one standby to
another, giving the DBA total control over the process.

Oracle Standard Edition, which doesn't include the automatically
managed recovery capabilities found in Data Guard, can be used for
some of the steps outlined in this chapter. The basic concepts are the
same, all commands will be carried out with SQL*Plus and shell scripting
to transport the archivelogs used for recovery. See the following MOS
document for more details: Alternative for standby/dataguard in standard
edition [ID 333749.1]

A Data Guard configuration consists of all databases that are involved: the primary
that contains the original data and any copy of that data in separate databases (on
different servers) that are kept in synch with the primary. In 11gR2, a configuration
can consist of up to 30 databases—any combination of RAC, non-RAC, physical,
logical, or snapshot.

In this chapter, we will describe different scenarios for utilizing the standby database
technology in Oracle for something other than just failover for the primary database
or a copy of production data for reporting purposes. Look for interesting features
and implementation details as they apply in the different situations, providing
answers to the long-standing problem: How do you reduce downtime? You learned
in the last chapter that 80% of downtime was most often caused by known, planned
outages, making this chapter a logical extension to the last chapter about Maximum
Availability Architecture.

Data Guard and Flashback

[150]

Transitions from one database role to another are called switchovers (planned
events) or failovers (unplanned events), where Data Guard can actually execute all
of the tasks of the transition with just a few commands. All of the specialized tasks
in this chapter in the scenario section are being illustrated with SQL*Plus, allowing
the reader to see all the operations that are being executed versus using the GUI
Enterprise Manager console or the dgmgrl command-line utility.

To fully address all issues related to using Data Guard for disaster recovery, your
organization must first define time limits to keep from overusing the physical
standby for tasks outlined in this chapter that are other than a full switchover
or failover from the primary. Balancing the primary objective of being able to
switchover with the least amount of downtime with the ability to more fully utilize
the failover hardware in a testing configuration should be in measurable limits.
These limits can be simply defined in the following terms: Recovery Point Objective
(how far back you can lose transactions) and Recovery Time Objective (the longest
amount of time you can take to recover) will be the basis to gauge the point of
no return.

The combination of Flashback and Data Guard for recovery scenarios and hot
fix patching (installing a patch on a database while it is open) on a physical standby
are possible because it is making the standby read/write temporarily. This can
reduce or eliminate downtime for the primary database for certain types of recovery
situations and may reduce or eliminate the need for duplication of hardware for
testing purposes.

These are the database connection descriptors and ORACLE_SID designations for the
remainder of this chapter as well as the book:

PRIMARY>
STANDBY>
LOGICAL>

ORACLE_SID
ORCL (primary),STANDBY (physical standby),LOGL (logical standby)

In Chapter 3, Tracking the Bits and Bytes, you learned that redo logs are vulnerable to
anyone with the Oracle standard utility LogMiner. Now in 11g, the standby redo
stream is encrypted by an SSL Authenticated Redo Session between the databases in
a configuration.

Chapter 5

[151]

Physical, snapshot, and logical standbys
A physical standby is a block-for-block copy of the primary using Redo Apply with
different levels of protection against data loss, depending on desired performance
and resource restrictions. A snapshot standby is almost identical to a standard
physical standby except that it is a snapshot of the data at a point in time. This type
of database was designed for performing various testing scenarios without affecting
the production database.

A logical standby is a read-only copy of the primary (production database) where
redo data from the primary is applied while the database is open, via a process called
SQL Apply. Additional read/write schemas can be added to the logical standby
while still protecting the primary information in read-only mode. Certain data
types are not supported and some DDL is skipped during the SQL Apply process.
Logical standbys can also be used for Rolling Upgrades, which is purported to be
the smallest amount of downtime achievable. That topic will be further discussed
in Chapter 7.

As a DBA, there are usually more than one ways to administer an Oracle product. In
this case, you have a choice between the High Availability Console of Grid Control
to administer standbys, Data Guard's command-line utility called dgmgrl, or even
just SQL commands within SQL*Plus for configuring and administering all of
the components.

This chapter utilizes several of Oracle's advanced features, which may require your
organization to purchase additional licenses. Your IT staff will need to consult with
your Oracle Sales Representative to determine the extent of testing that can occur
before violating any licensing agreements. In a general sense, Oracle trusts their
customers because the software is free to download and beta test, provided that
none of your production data is involved with the testing environment.

There are plenty of examples on the Internet for creating huge amounts
of fake data for testing new features or versions of Oracle:
Large data examples on Ask Tom: http://asktom.oracle.com.
OTN forum post also has some examples for creating large amounts
of data:
http://forums.oracle.com/forums/thread.
jspa?threadID=964611.

Data Guard and Flashback

[152]

Physical standby database
This is the beginning point for creating any type of standby; it is most easily
accomplished using Oracle's RMAN utility (see Chapter 6, Extended RMAN for more
details). A physical standby is primarily meant as a failover (or switchover) in case
there is a production down issue on the primary database. A physical standby is
sitting idly waiting for something disastrous to happen in production. Why not
use this same hardware for testing?

Here are some areas that are the same or similar for failover and testing:

Similar hardware as production, in most cases an exact duplicate
Same Oracle products, same version as production as part of
standby requirement
Same data as production

It is easy to see that all of the work the DBA has done to get the standby ready
for failover can also be used towards creating a valid testing environment. Oracle
has several optional products (Active Data Guard, Real Application Testing, and
SQL Performance Analyzer) that are meant for testing in a Data Guard standby
environment. These options are not required for utilizing the framework of the
Data Guard for your own testing; the basic Oracle license required for standbys is
the Enterprise Edition. The difference is that your organization will have to come
up with your own testing suite of tools (see Oracle's free Orion tool in Chapter 8).

Snapshot standby database
There is the introduction of a third version of a standby database in 11g called a
snapshot database. A snapshot database is converted from a physical standby with
a snapshot, designating that all data has been frozen at a certain point of time. Redo
from the primary is received and archived, but it is not applied.

This makes using a physical standby for the scenarios in the previous sections
easier, as the steps are now combined into a single feature known as snapshot
standby, receiving redo while functioning as a reporting database (read-only) or a
testing environment (read/write). Enhancements in 11g also reduce the number of
steps (SQL commands) executed.

•
•

•

Chapter 5

[153]

Logs can still be shipped from the primary while running the scenarios. This
reduces the standby recovery time after testing is finished. Flashback database must
be enabled with a flash recovery area on the standby. It takes a guaranteed restore
point and opens it up in read/write mode while still receiving redo with a single
command (actually more because you may have to cancel any managed recovery
in progress, shut down after conversion, and bring it back up).

STANDBY> ALTER DATABASE CONVERT TO SNAPSHOT STANDBY;

Then a single command returns it back to a physical standby, flashing it back to the
guaranteed restore point (after shutting it down and mounting).

STANDBY> ALTER DATABASE CONVERT TO PHYSICAL STANDBY;

The database will have to be shut down and mounted again, with managed recovery
restarted, before it will resume its full functionality of a physical standby database.

Logical standby database
In 11g, there are two options when creating a logical standby database. The first
option allows a read-only copy of the primary in addition to any read/write
schemas that might be created. This would be very useful for a reporting database
that not only keeps all of the primary read-only data but also the addition of
indexes, materialized views, and other database objects typically only found
in a data warehouse environment—the best of both worlds in one database.

The command to use the logical standby for reporting only (run during creation
steps) and never use it for failing over from a primary database is:

 LOGICAL> ALTER DATABASE RECOVER TO LOGICAL STANDBY db_name;

The second option is to use the logical standby for disaster recovery (for failover
and be able to switch back and forth with primary) as well as reporting needs,
so the following command is issued instead:

LOGICAL> ALTER DATABASE RECOVER TO LOGICAL STANDBY KEEP IDENTITY;

This keeps the same DBID and DB_NAME identical as the primary. The main reason
for the new KEEP IDENTITY clause option is that a physical standby database can
be temporarily converted into a logical standby database for what Oracle calls a
rolling upgrade. This temporary conversion step allows for very short outages
during an Oracle upgrade or patch set application. It is used to convert this
database back into a primary and physical standby when the upgrade is over.
More information on using a logical standby for rolling upgrades will be
covered in Chapter 7, Migrating to 11g: Step-Ordered Approach.

Data Guard and Flashback

[154]

A logical standby is not a guaranteed copy and there may be any combination
of missing data (due to incompatible data types), additional R/W schemas,
materialized views, and/or indexes in the logical standby. That is why there are
two different commands available, as shown above in the code lines in this section.
If your logical standby database doesn't contain any unsupported data types, then
you can use it for both purposes: failover and reporting.

A logical standby can guard all objects in the reporting instance from being modified
or only those objects that have the transactions being transferred from the primary
database (standby). This behavior is regulated by the following commands and is
run during the creation steps:

LOGICAL>alter database guard standby;
LOGICAL>alter database guard all;

Commodity hardware and mixed
environments
Our organization utilizes inexpensive commodity hardware, where the trade-off for
less durability is compensated by running more standbys. This reduces our costs
overall while ensuring a more robust testing and disaster recovery environment.

Certain Data Guard configurations can also run in a mixed Oracle binary
environment—64-bit and 32-bit, while part of the same operating system family
(Linux, Solaris, AIX, among others), making physical standbys adaptable to more
environments. You can mix hardware from different manufacturers; the number
of CPU's, RAM, storage differences, processor, operating systems versions, and
distributions will provide even more flexibility in designing the architecture (see
MOS Note: 413484.1 for exact details). While this sounds good, it will have tradeoffs,
which may include reduced performance due to the differences in capacity as well as
increased complexity that may interfere with a smooth transition from primary to
the standby site.

There are some major issues with working in a mixed environment—lack of good
documentation, reverting to older technology for backups and restores (not RMAN)
and the possibility of more errors or problems during switchover and/or failovers.

Data Guard cannot be used, only the SQL*Plus command-line for mixed
environments in 10gR2; this limitation is removed as of 11g. Also, note
that in a mixture of 32- and 64-bit environments that an extra step has
to be done before switching over (see MOS Note: 62290.1 Changing
between 32-bit and 64-bit Word Sizes).

Chapter 5

[155]

An example of an issue found in a heterogeneous environment with a mixture of
32-bit Linux and Windows 11.1.0.7 Physical Standbys is as follows: ORA-16191:
Primary log shipping client not logged on standby. The password file was
interpreted with a different case than what it was created with. This was fixed by
turning off the case-sensitivity option by changing the spfile parameter SEC_CASE_
SENSITIVE_LOGON=FALSE, creating the password files on both servers using the same
password, and passing ignorecase=Y to the orapwd utility.

What is Data Guard broker?
Data Guard broker is itself a background Oracle monitor process (DMON) that
provides a complex set of role management services governing all of the databases
in a configuration; it can be executed at the command line (either SQL*Plus or
dgmgrl) or with the GUI GC High Availability console. This broker controls
the redo transport services component of Data Guard and is accountable for
transmitting defect-free archive logs from any possible archive location, thereby
automatically resolving any gaps due to network failures or database unavailability.
The Log Apply Services within Data Guard are responsible for maintaining the
synchronization of transactions between the primary and standbys.

What controls the Data Guard broker?
The Data Guard broker process can be configured in two different ways. One is at
the database level with a parameter. The default setting is shown below and if you
run a query from the operating system a new background process has been started:

The other way is that the Data Guard broker is controlled by configuration files
located at the operating system level for access by the dgmgrl utility. The location
is defined by the database parameters, as seen in the example below. These files are
binary and not directly edited.

Data Guard and Flashback

[156]

There are occasions when the properties of the Data Guard broker viewed and
edited using the command-line utility dgmgrl are not in sync with what the database
parameters are. These situations usually occur during the initial standby creation
steps or after a manual adjustment using SQL*Plus. Use of the GC HA console
automatically checks for synchronization issues, asks you which one to use and
makes the correct adjustments as needed.

In a testing environment, you may want to remove all traces of a configuration.
I would recommend removing the dr*.dat files found in $ORACLE_HOME/dbs,
but doing so only after the Data Guard broker process has been stopped on all
databases and the configuration has been removed. A configuration can be removed
using either the dgmgrl or the GC HA console. For additional troubleshooting, log
monitoring as well as rotation tasks, also check the Data Guard log located in the
ADR home trace directory with a pattern of drc<ORACLE_SID>.log.

Which tool is best?
There are DBAs who want more control over all of the configuration details for
physical standbys without the use of the Data Guard broker. That would dictate
using only the SQL*Plus commands and may be fully scripted with extensive testing.
More commands are required but you maintain strict control over every step during
creation, any transition, and monitoring processes.

If you want to monitor and change the configuration using the GC HA console, then
the Data Guard broker is required to be running. It is up to you to decide on how
best to implement the different details of standby databases accomplished, by testing
different scenarios on the hardware available in your situation.

Even in 11gR2 you will not be able to accomplish everything using only one method
or utility, so familiarity with all of the available methods is a good idea. Reliance on
one might leave your site vulnerable to outages if the utility you tested isn't available
in a disaster situation. The foolproof method would be the reason for SQL*Plus
changing the database parameters.

Over the years in using the standby technology (since version 8i), there were
times I used all three methods of access with standbys. SQL*Plus is the one that is
fundamental and universal for changing a Data Guard configuration. Some of the
reasoning is included as follows:

Chapter 5

[157]

SQL*Plus (both interactively and through shell scripting):

Initial standby database creation along with RMAN
LOG_ARCHIVE_DEST_n initialization parameter—initial redo transport setup
Troubleshooting and adjusting database parameter settings
Implementing advanced features not available through the console
Monitoring when the GC console is not available

You can find SQL*Plus instructions in the Oracle documentation titled Data Guard
Concepts and Administration.

DGMGRL (interactive on the primary database):

Initial setup of the configuration with existing databases
Failover and switchover commands
Changing the protection mode
Viewing diagnostic information
Checking SQL Apply and Redo Apply rates

Information on the command-line tool dgmgrl is found in the document labeled Data
Guard Broker.

GC High Availability (HA) console:

Adding existing standby databases
Changing protection mode (except for Maximum Protection)
Monitoring the diagnostic and redo rates
Creating standby redo logs

I would recommend the use of the GC HA console for becoming familiar with
the entire process and the initial testing with smaller amounts of data. The
console is most useful for learning the correct formatting of the database
parameters (log_archive_dest_state_x) that can become quite long and
convoluted when using standby databases in a complicated multisite
configuration. These long strings are seen in the next section.

To use the GC HA console requires a working network connection between the
servers with a properly configured /etc/hosts file that has entries for all the hosts
involved. To use GC, Intelligent Agent is also required to be up and running on all
of the same hosts. If there are connection issues with GC HA, try logging out of all
databases and the console itself and try again.

•

•

•

•

•

•
•
•
•
•

•
•
•
•

Data Guard and Flashback

[158]

It may also require a restart of the listeners on several of the nodes to recognize
certain changes that have occurred—the least disruptive way to accomplish this is
with a reload command in a production environment. It rereads the listener.ora
and sqlnet.ora keeping currently connected sessions while any new sessions can
connect with the updated configuration.

Start with the default configuration—maximum
performance
To begin using physical standbys, I would recommend starting off with the
simplest of features and ramping up as your experience and expertise improves.
The minimum database parameters will be listed in this section. These are the
implementation details for a single primary and physical standby configuration.

These are the default settings for a single database parameter archive destination
when creating a standby using an HA console in GC:

log_archive_dest_2 string service="(DESCRIPTION=(ADDRESS
 =(PROTOCOL=tcp)(HOST=servername)(PORT=numb
er))(CONNECT_DATA =(SERVICE_
NAME=ORCL1)(SERVER=DEDICATED)))",
LGWR
ASYNC
NOAFFIRM
delay=0
optional
compression=disable
max_failure=0
max_connections=1
reopen=300 ----try again every 300 seconds
db_unique_name="ORCL1"
net_timeout=30,
valid_for=(all_logfiles,primary_role)

Chapter 5

[159]

Put all of these parameters into a SQL file, which can be edited and run within
SQL*Plus instead of trying to type this long database parameter! Worth noting is
that Oracle reserves the log_archive_dest_1 for your local archive destination.
This is where I state (you will hear this again in the Chapter 6) that you need a local
operating system location in addition to a flash recovery area and/or a standby
archive destination for your archived redo logs.

The GC console is lacking when it comes to adjusting or fine tuning Data Guard
specific initialization parameters. Tweaking some of these parameters can only be
done by SQL*Plus by editing the database initialization parameters or dgmgrl.

View the same default configuration created by GC using the dgmgrl utility:

Utilizing multiple standby sites
Our IT organization has two standby sites. One is located in a different building
within the same city block, and is labeled as a Local Disaster Recovery Site. The other
is located 80 miles away in a datacenter facility and is known as the Remote Disaster
Recovery Site. All of the stress testing, hot fixing, and flashback occurs on the remote
site that has a larger Recovery Time Objective window than the local site. That
allows me up to 24 hours to use the Remote Standby Database for testing until
the Recovery Time Objective is exhausted.

Data Guard and Flashback

[160]

In our production environment, the time it took to switchover for a planned outage
on the primary instance was less than two minutes, but failing all clients beforehand
lengthened the actual process to 15. To ensure that no data loss would occur, we
decided to shut down all clients/sessions before switching over as stated in the
Switchover and Failover Best Practices: Oracle Data Guard 10g Release 2. This white
paper is available at the MAA website. Further reduction in time can be gained by
scripting the event to run concurrently on the various server applications involved
in automating the shutdown of clients, switching over, and then bringing the client
applications backup.

For Maximum Availability Architecture go to
http://www.oracle.com/technology/deploy/availability/
htdocs/maa.htm.

Making a failover or switchover to the standbys transparent to the end users is
a worthwhile objective but hard to achieve. In our case, the major desktop ERP
application utilizes Oracle Forms, which cannot survive this transition without a
disconnect to the client. Failover transparency is easier to achieve with web-based
and/or read-only client connections.

There are several factors that determine whether the client has to completely restart
the application or just log on again with the presentation of a dialog box for the
username and password:

How long the connection is down
A read-only versus a read-write application
Network and router configuration—timeout or automatic disconnect settings
SQL*Net settings (such as Dead Connection Detection)

Protection modes and real-time apply
Performance and data protection for a standby database are tied to what is called the
protection mode, each of which is implemented with slightly different processes and
procedures. Each of these modes are tied to a combination of database parameters
and the data dictionary, as seen in the v$database view.

SYS@PRIMARY>select protection_mode from v$database;

You will see a maximum performance setting on all databases even if they aren't
involved in a Data Guard configuration, as it is the default setting. In 11g, there is
also another setting related to standbys that is called a database state. Look for that
discussion further down in this chapter.

•

•

•

•

Chapter 5

[161]

Maximum performance (default)
This data protection mode has the least performance impact on a primary database
and has to wait only for the local transaction to be written to the database's online
redo logs. ASYNC means asynchronous or that each is an independent action
because the writes to the standby are done after the commit. The other settings
are as follows:

Redo Archival Process: LGWR or ARCH
Network Transmission mode: ASYNC when using LGWR only
Disk Write Option: NOAFFIRM
Standby Redo Logs: Not required

As long as the LNS process is able to empty this buffer faster than the LGWR can
fill it, the LGWR will never stall. If the LNS cannot keep up, then the buffer will
become full and the LGWR will stall until either sufficient buffer space is freed up
by a successful network transmission or a timeout occurs. For further information
on the buffer, see the Data Guard Concepts and Administration guide regarding
LOG_ARCHIVE_DEST_N and the SYNC/ASYNC attributes.

When remotely archiving using the ARCH attribute, redo logs are transmitted to
the destination during an archival operation. The archiver processes (ARCH) serve
as the redo log transport service. Using ARCH to remotely archive does not impact
the primary database throughput as long as enough sufficiently sized redo log
groups exist, so that the most recently used group can be archived before that
group is reopened.

Maximum performance recommendations
There is a good reason why this protection mode is the default—it keeps
performance degradation on the primary to a minimum. The wait event (where the
database is waiting on a particular resource) most often encountered is LNS wait on
SENDREQ by the LGWR process and is defined as follows:

This wait event monitors the amount of time spent by all LNS processes to write the
received redo to disk as well as open and close the remote archived redo logs.

•

•

•

•

Data Guard and Flashback

[162]

There is a tunable buffer in 512 byte blocks in the ASYNC attribute. In the example
below, an ASYNC buffer size of 2048 * 512 byte = 1MB:

log_archive_dest_2 string service="(DESCRIPTION=(ADDRESS
 =(PROTOCOL=tcp)(HOST=servername)(PORT=numb
er))(CONNECT_DATA =(SERVICE_
NAME=ORCL1)(SERVER=DEDICATED)))",
LGWR
ASYNC=2048
NOAFFIRM
delay=0
optional
compression=disable
max_failure=0
max_connections=1
reopen=300
db_unique_name="ORCL1"
net_timeout=30,
valid_for=(all_logfiles,primary_role)

If the LNS process can keep this buffer empty, LGWR will have no problem keeping
up, but if there is a network outage that is longer than the reopen setting then the
waits will occur as described above.

Fast Start Failover for maximum performance mode: As of 11g, there is more
control and more configurable options to determine specific conditions for the more
transient or temporary outages before the automatic failover occurs. Look in the
Data Guard broker documentation for the DBMS_DG PL/SQL package details.

These are the health conditions that can be automatically detected for Automatic
Fast Start Failover: Datafile Offline, Corrupted Dictionary, Corrupted Controlfile,
Inaccessible Logfile, or Stuck Archiver. This is an essential list for a DBA of some of
the most common problems encountered on a primary database that would cause
downtime. We have already covered the prevention of several of these items in
the last chapter, and we will cover how to resolve the remaining items when you
don't have a standby to fail over in Chapter 6. Several of these can be fixed quickly
if you have the proper procedure in place to detect and notify you when the alert
log records these errors, but you must have practiced the fix in a non-production
database and documented the exact procedure.

Chapter 5

[163]

Maximum availability
Transactions on the primary do not commit until written to both the primary's
online redo log and to at least one standby redo log, but falls back to maximum
performance mode if the remote redo task fails a second time:

Redo Archival Process: LGWR
Network Transmission mode: SYNC
Disk Write Option: AFFIRM
Standby Redo Logs: Yes

Maximum availability recommendations
With this protection mode, there will be a database wait for transactions that are
considered writes (basically anything that is not a select statement). While having
more than one physical standby will ensure the likelihood that at least one of them
will always be written to, there are no guarantees that a network event won't take
all standbys offline. Even transient network events (depending on other parameters
associated with the archive destinations) can be disruptive to the standby processes.

This protection mode translates into the need for more horsepower (faster CPU,
more memory, faster I/O bandwidth) for this database to keep those waits as short
as possible. There is no hard-and-fast formula for calculating how well a database
will perform under these circumstances. As a DBA, you will have to run through full
production tests with a valid measuring tool. This is what a physical standby would
be best used for—testing a full production load. Stay tuned for more of these details
later in this chapter.

There are other features that are usually recommended to be implemented at
the same time if you decide on this mode, such as using the fast-start failover
procedure to fail over all clients automatically when the primary database is no
longer available. This requires the use of the Data Guard broker process and a
separate server install of an Observer process.

The Observer monitors all members of a Data Guard configuration (via a heartbeat
ping), updating all of the Data Guard process(es) as to everyone's status. It is the DG
broker that will implement that automatic failover process, so this type of protection
mode requires the use of the DG broker and is most often implemented using the
dgmgrl utility.

•

•

•

•

Data Guard and Flashback

[164]

Maximum protection and recommendations
This mode is difficult to implement and should only be tested for the first time with
small databases of just a few GBs. The protection mode is meant to preserve all
transactions by ensuring that the redo information is written to the primary online
redo log and to at least one standby redo log. If both writes are not successfully
communicated back to the primary database, then the primary database just
shuts down to prevent any further possible data loss:

Redo Archival Process: LGWR
Network Transmission mode: SYNC (Synchronous—dependent commit)
Disk Write Option: AFFIRM
Standby Redo Logs Required: Yes

If you have a Data Guard configuration running either in maximum availability or
maximum protection mode and need to remove your Data Guard environment for
any reason, there are certain steps to follow. Start by removing the standby database,
delete all configuration files ($ORACLE_HOME/dbs/*dr.dat) and unset all of the
LOG_ARCHIVE_DEST_x parameters. If you want to restart the primary database, the
startup may fail in mount state with one or more errors: ORA-16072: a minimum
of one standby database destination is required and/or ORA-03113: End-of-file on
Communication Channel.

The problem is that the protection mode is actually part of the data dictionary and
not set with database parameters. This is one of the times you must start up the
database in mount state (this state opens the control file but not the database)
and set the protection mode back to the default Maximum Performance:

PRIMARY> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

Shut down the primary database and restart it to complete the changeover.

Database states
11g version of Oracle Database gives us different states that are tied to a database's
role in a Data Guard configuration that control the log transport services. This is
basically a switch that governs whether data is being transferred from one database
to another and/or being applied depending on the database role of primary,
physical, or logical.

•

•

•

•

Chapter 5

[165]

States of log services are as follows:

Primary TRANSPORT-ON TRANSPORT-OFF
Physical standby (REDO APPLY) APPLY-ON APPLY-OFF
Snapshot standby (REDO APPLY) APPLY-OFF
Logical standby (SQL APPLY) APPLY-ON APPLY-OFF

There is no APPLY-ON available for snapshot because it would no longer be a
snapshot of the data at a point in time. This ability to turn off the transport and/
or the application of redo logs gives you the flexibility in using the standbys for
multiple tasks temporarily and then changing the state back on.

Manual failover with physical standby
To help you visualize the difference between a primary and physical standby,
the following steps have been detailed for a manual failover of a primary to a
physical standby. All of the specialized tasks in this first section are done via
SQL*Plus to see all operations that are executed, and then we will repeat these
steps with dgmgrl.

The following figure shows the starting role for each Server and the direction of
Redo Apply before any transition event occurs. This is the interaction between a
primary and a physical standby database, with the arrow showing the direction of
data transfer:

Data Guard and Flashback

[166]

A failover transition event means that the database on Node A is unavailable for
some reason. There may be data loss depending on the Data Guard protection mode
and whether you have implemented the real-time apply option, which is highly
recommended. The following figure shows the actual steps and which server they
are executed on:

At this point (see the following figure) Node B has the PRIMARY role as
the production database, with the original database and the server still out
of commission:

Chapter 5

[167]

Manual failover with DGMGRL
If you were to do a manual failover on the Data Guard Management Utility on the
standby server, then it would go something like this:

DGMGRL>connect sys/password;
DGMGRL> FAILOVER TO STANDBY IMMEDIATE;

The use of the keyword IMMEDIATE means no remaining outstanding redo would be
applied; the database would be made active at that point, taking over the primary
database role.

Flashback and guaranteed restore points
Flashback technology allows you to roll back or undo queries, changed data in
tables, dropped tables, or even the entire database. A Flashback database can be used
to revert logical corruption, patch, or a hot fix, but it rolls back all transactions that
can be disruptive in a production instance, depending on when and how the original
transactions were created.

This reversion of all the transactions is the same behavior as when you would
perform a complete restore of the entire database from a backup. It is easier and less
disruptive to use Flashback on a physical standby rolling it back to a time before the
issue occurred. Use SQL*Plus, export, or data pump to move the missing or changed
data back into production. The production instance is still up and running during all
of this time, with minimal disruption to the few affected users.

To enable Flashback on a physical standby, the database should already be
mounted but not open (normal operation for a physical standby during Redo Apply).
Note that all SQL> designations indicate which database they are executed on, the
STANDBY>, PRIMARY>, LOGICAL>, or SNAPSHOT>:

STANDBY> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
STANDBY> ALTER DATABASE Flashback ON;
STANDBY> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE=50G; # 2X
Database size
STANDBY> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/YOURFILEDEST/';
STANDBY> ALTER SYSTEM SET DB_Flashback_RETENTION_TARGET=1440; # 1440
minutes
STANDBY> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING CURRENT
LOGFILE DISCONNECT; # using current logfile starts real-time apply

Data Guard and Flashback

[168]

To fully utilize the Flashback technology for stress testing, implementing hot fixes,
or patching Oracle, I would recommend saving a Guaranteed Restore Point before
opening the standby for read/write. This makes it easy to convert the physical
standby back to its original state after testing is over, returning it to the correct
SCN to resume its role as a physical standby.

Flashback web resources:
http://www.oracle.com/technology/deploy/availability/
htdocs/Flashback_Overview.htm

Possible testing/recovery scenarios for
Flashback and Data Guard
The following is a list of different reasons to use a physical standby, other than just to
failover when the primary database is not available:

Preventing or fixing physical corruption
Fixing logical corruption
Reversing an application vendor upgrade
Batch job reversal
Untested hot fix
Untested Oracle patch
Stress testing
Testing Oracle upgrades
Testing ASM, OMF, SAME, or OFA changes
Testing hardware updates or changes
Testing OS upgrades, patches, or changes
Testing Network or SQL*Net parameter changes
Real application testing
SQL performance analyzing

Physical corruption on a primary database can't be transmitted to the standby
if the data files exist on a separate file system and the members in a configuration
don't participate in hardware-level mirroring. With db_block_checking and
db_block_checksum enabled on the primary and db_block_checksum on the
physical standby, it can detect any physical corruption before applying redo.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 5

[169]

There is always a warning when enabling db_block_checking and/or
db_block_checksum, as it may overload an already CPU-intensive environment.
Be careful to monitor before putting these settings into a production environment.
If the physical corruption is extensive enough to prevent the primary database from
being open, then failing over to the physical standby would be the best option.

To use a physical standby to fix logical corruption, the corruption needs to be
widespread enough to warrant the time and trouble it takes to extract the data from
the physical standby and import it back into production—multiple tables, multiple
schemas, and so on. Any application vendor upgrade or batch job (such as an
incorrect payroll run) could be dealt with using the physical standby to manually
reverse SQL changes to data. This is also an excellent time to use the Flashback
Transaction process discussed in Chapter 3, easily done on a snapshot standby
frozen at the point just before the bad event occurred.

Any kind of testing could be done using the physical standby with the latest copy
of production data that may not be available in the testing environment. Testing an
Oracle upgrade and/or change in something as simple as database initialization
parameters using a physical standby would give you the least amount of downtime.
There is always a certain amount of unpredictability with hardware and operating
system changes, or when migrating to an RAC or ASM instance. You should
make the change to the physical standby first, open it in read/write mode,
test for functionality, and revert to the physical standby using Flashback
before attempting the same changes on the primary instance.

Lost-write detection using a physical standby
database
Lost-write database corruption happens when the I/O subsystem has acknowledged
the completion of a block write but in actuality the write did not make it to disk. This
type of corruption is detected by Data Guard comparing SCNs of blocks in the redo
stream on the primary to the SCNs of blocks on the physical standby.

If the block SCN on primary is lower than standby—ORA-752—the lost-write
happens on the primary. If the SCN on the primary is higher than the standby—ORA-
600 [3020], then it is a lost-write on the standby. If the lost-write is on the standby it is
unusable and the standby database will have to be removed and recreated.

Data Guard and Flashback

[170]

Detection of a lost-write on the primary halts the managed recovery process on the
standby and recovers to the consistent SCN. At that point it is recommended to
failover because the physical standby is currently the most consistent as compared
to the primary database. Any further transactions that happened on the primary
after the SCN are assumed to be lost or in other words unrecoverable. Refer to the
documentation for Steps to Failover to a Physical Standby After Lost-Writes Are Detected
on the Primary.

This capability is controlled by the database parameter DB_LOST_WRITE_PROTECT
and has different settings with FULL, NONE, or TYPICAL. The default is NONE.

The TYPICAL setting logs the buffer cache block reads in the redo stream for only the
read/write tablespaces. It is this redo stream that is transmitted to the Data Guard
database. You can expect a performance hit of at least 5% on both the primary and
standbys because there is additional work being done and this setting needs to be
done in both locations.

The FULL also records the same as TYPICAL and adds in the read-only tablespaces.
TYPICAL settings will most often fulfill the most environments, because DBAs are
used to having to recreate a read-only tablespace with other methods such as export/
import or data pump.

The most important thing to know at this point is that if corruption happens on the
primary, it can no longer be used in its present state for anything! All data files must
be removed and a new database should be created because this type of corruption is
permanent. At this point, you are safe to assume that the standby you failed over to
has no corruption because it is located on a different server on a different hardware
(most often the reason for this type of corruption will be hardware-based).

There are other methods for fixing corruption at several different levels (block,
tablespace, data file), as a physical standby is an exact block-for-block copy of the
primary. Several methods are covered in Chapter 6.

Corruption, patch reversal, upgrades, or testing
scenarios
The only disturbance to the primary during this scenario would be the lack of
protection against data loss on the primary during the testing. This limitation is
removed with 11g (see Snapshot Standby in a later section). With the physical
standby being actively used for testing, it would have to be flashed back to the
restore point. A delay might occur depending on the amount of archivelogs
produced on the primary during testing.

Chapter 5

[171]

A delay in shipping might occur if you temporarily disable the Data Guard broker
unless there is an additional log_archive_dest on this same node to receive the
logs. See MOS Note: 434164.1 Data Guard Redo Log Repository Example to create
what is known as an archivelog repository.

Since 11g, there is a new feature for standbys known as the database state (see the
previous section). This is where changing the state comes into play—turning the
transport off or on depending on the current need, the logs are still being transported
to the physical standby, but they just aren't being applied. Once your testing is
finished and you restart the APPLY process, it applies to all of the outstanding
archived logs.

Start the process by canceling Redo Apply on the physical standby and taking a
guaranteed restore point:

STANDBY> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
STANDBY> CREATE RESTORE POINT HOTFIX1 GUARANTEE Flashback DATABASE;

The above command sends all current data from the production instance and then
stops the Redo Apply process temporarily to the physical standby where testing
will occur. All redo shipping to other archive destinations from the primary in the
same configuration is not affected by this interruption. Oracle Support recommends
turning off the Data Guard when using SQL commands to make changes to the
configuration, otherwise it will enable the archive destination automatically.

PRIMARY> ALTER SYSTEM ARCHIVE LOG CURRENT;
PRIMARY> ALTER SYSTEM SET DG_BROKER_START=FALSE;
PRIMARY> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER;

There is an option of changing the database state instead of deferring the archive
destination and turning off the broker, but this can only be done with dgmgrl.

oracle@primaryservername:/u01/app/oracle[PRMY]
DGMGRL>connect sys/password;
DGMGRL> EDIT DATABASE 'PRMY' SET STATE='TRANSPORT-OFF';

Also, at this point, I would recommend changing the database state for the standby:

oracle@standbyservername:/u01/app/oracle[STBY]
DGMGRL>connect sys/password;
DGMGRL> EDIT DATABASE 'STBY' SET STATE='APPLY-OFF';

Activating the physical standby into read/write mode allows us to run the testing
on an actual working copy of the primary database where we can change data, run
batch jobs, and change init.ora parameters.

STANDBY> ALTER DATABASE ACTIVATE STANDBY DATABASE;

Data Guard and Flashback

[172]

At this point, the database thinks it is now the PRIMARY. Be sure to defer any
cascading archive destinations (or change database states as needed) that receive
transactions from this database, so that the testing DML is not propagated to other
standbys or back to the primary:

From this point on the physical standby, execute any testing DML, export the wanted
data from the standby to import into production, and apply hot fix, patch, or stress
testing on the physical standby. There isn't any current protection against data loss
on the primary database at this point, unless you have a second physical standby. In
case a switchover is required or failover occurs, you need to flash back the standby
to the initial restore point (HOTFIX1). Then convert it back to a physical standby and
recover any logs that were generated during the testing. Drop the restore point when
you are sure it is no longer needed. These steps are outlined below:

Enable the LOG_ARCHIVE_DEST_STATE_2 on the primary database (or whichever is
appropriate to restart the Redo Apply on the standby):

PRIMARY> ALTER SYSTEM SET DG_BROKER_START=TRUE;
PRIMARY> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Chapter 5

[173]

Reinstate failed primary scenario
Anytime the primary instance has been switched over to a standby database, it is
easiest to reinstate the failed database back into the primary role by making it a
physical standby, until all of the logs that were generated while it was unavailable
have been applied. In the previous versions, you would have to restore/recover the
entire database before being able to switch back to the original primary instance.
With this scenario, you only have to apply changes (archivelogs) that have occurred
after the transition event.

On the new primary instance (which used to be the standby) query, find the
correct SCN:

ORIG_PRIMARY> SELECT TO_CHAR(STANDY_BECAME_PRIMARY_SCN) FROM
V$DATABASE;

This scenario assumes that the data files on the original primary are recoverable.
These are the steps to run to convert the old primary into a new physical standby.
This allows all redo since the failover for eventual transition of this standby to be
applied back into the production instance.

ORIG_STANDBY>SHUTDOWN IMMEDIATE;
ORIG_STANDBY>STARTUP MOUNT;
ORIG_STANDBY>Flashback DATABASE TO SCN <STANDBY_BECAME_PRIMARY_SCN>;

ORIG_STANDBY>ALTER DATABASE CONVERT TO PHYSICAL STANDBY;
ORIG_STANDBY>SHUTDOWN IMMEDIATE;
ORIG_STANDBY>STARTUP MOUNT;
ORIG_STANDBY>ALTER DATABASE RECOVER MANAGED STANDBY DATABASE USING
CURRENT CONTROLFILE DISCONNECT;

Once you have determined that all outstanding redo has been applied, switch back
to the original primary. This would be considered a switchover, which is a planned
event with no data loss as the desired result. First, stop all job processing and client
sessions. You can make sure there is no gap in the amount of redo applied from the
NEW_primary database to the NEW_standby by issuing the following statement on
both databases:

SQL> SELECT THREAD#, MAX(SEQUENCE#)
FROM V$LOG_HISTORY GROUP BY THREAD#;

Data Guard and Flashback

[174]

The following statement executed on the standby database indicates the number of
redo blocks applied for a specific log sequence (see block#). Run it several times to
show the progress:

Start the switchover process by issuing the following statement, waiting until it
completes to continue on to the next step:

PRIMARY> ALTER DATABASE COMMIT TO SWITCHOVER TO STANDBY WITH SESSION
SHUTDOWN;

Redo Apply is currently not running.

STANDBY> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;
PRIMARY> ALTER DATABASE OPEN;

At this point the situation is where we first started. Redo Apply is now traveling
the other direction, with the original primary back as the primary database and the
standby in its original role as well.

All testing outlined above was done on several versions—10.2.0.4 and 11.1.0.7
Enterprise Edition of Oracle Database with a single primary, single physical
standby, and single logical standby in the Data Guard configuration in maximum
performance mode using real-time apply.

The section above was very detailed, helping to illustrate the steps involved with a
Data Guard transition. While it is great that the 11g version of Oracle has condensed
most of these steps into just a few Data Guard commands, it is important for the
DBA to understand what is happening behind the scenes.

Troubleshooting the logical standby
The major issue with a logical standby is that certain events will cause the SQL
Apply process to halt, requiring manual intervention to resolve the issue. Most
of the monitoring is done on the logical standby database to make sure that the
transactions are in sync with the primary.

Chapter 5

[175]

It would be best to have a script that executes every few minutes, scanning the alert
log of the logical standby for any errors that occur, and notifying you when the apply
process is halted. You can also configure a job using GC to notify the DBA when the
standbys are no longer synchronized with the primary.

Monitoring the logical apply process to see if all changes have been applied is a task
that should be run multiple times a day, as there may be something that doesn't stop
the process but causes the process to hang. The following SQL command will let you
know the status between the primary and logical database, which is executed on
the logical:

What you are looking for is the APPLIED_SCN and NEWEST_SCN to match.
The READ_SCN is the next log that has not been archived on the primary yet. So
according to the above output the two databases are in sync.

The following SQL statement executed on the logical standby lets you know if
the SQL APPLY process is running; it was shortened for brevity. If it has no rows
returned, then the SQL Apply process has been halted. Notice that there are
multiple processes working to apply any outstanding transactions for normal apply
activity. The message no work available can be ignored if the SCNs match in the
query above.

Data Guard and Flashback

[176]

The next step, if you receive the no rows returned from the above query, is to run
the following to see what the problem is:

The above output shows normal apply activity for unsupported data types that have
been skipped, and depend on the Oracle version.

Options for resolving errors that stop the SQL
Apply process
You should know in advance that having a logical standby database will require
dedication and several months of close attention in a production environment
before you can declare it production ready. That means you will need to run it in
production with your site-specific data changes before allowing anyone to use it
for reporting reasons. That is because there may be something specific about the
data or processes that run regularly in your environment that may cause excessive
downtime on the logical standby.

Before the 10.2.0.4 version of Oracle RDBMS, logical standbys were a day-to-day
battle keeping it current with production. Outages would be normal, as large
transactions hung the SQL Apply process. The SQL Apply process actually strips
out the SQL statements that it executes one at a time (serialized) on the logical
standby. This pulling of the SQL statements is actually done by the Log Miner
process that you investigated earlier in this book.

Even with tuning suggestions, it was almost a monthly task to rebuild the entire
logical standby database with a new backup from the primary. It was faster to
rebuild this logical standby than entering a service request for Oracle to resolve
the issue, as they didn't consider the loss of a logical standby to not be a
production down issue since it wasn't the primary!

Chapter 5

[177]

Since 10.2.0.4 and higher Oracle database versions, the logical standby is rebuilt
only when a major change like an Oracle upgrade is scheduled. Now that I have
scared you into not using it, what the logical standby was designed to do is offload
reporting from the primary to another server. Moving end users to their own
separate reporting database will help solve some of the common performance
problems a DBA encounters for a heavily used OLTP primary database.

How to skip a single transaction
Research on what the original problem statement was that the SQL Apply process
was halted as shown in the above section. Statements executed on the primary that
are typically not an issue might include dropping a non-existent database object like
a synonym.

The following SQL query will show what transactions were being executed when the
SQL Apply process stopped:

LOGICAL>select to_char(event_time, 'MM/DD HH24:MI:SS') time,
 commit_scn, current_scn, event, status
from dba_logstdby_events
order by event_time, commit_scn, current_scn;

After researching a problem SQL statement and determining that a single transaction
is not critical, use the following query to skip that transaction. The second line
contains an actual transaction number, identified by its unique combination of
transaction identifiers—XIDUSN, XIDSLT and XIDSQN. Your transaction numbers
will be different:

Both Oracle and I recommend skipping certain types of transactions that cause
problems if they aren't needed for reporting reasons and if you aren't using this
logical standby for failover purposes. To accomplish this, the logical standby
process needs to be stopped:

LOGICAL>alter database stop logical standby apply;

Skip certain users who have the ability to create their own objects in the primary
database, such as programmers or what DBAs often call power users for both DDL
and DML SQL statements. See the following example:

exec dbms_logstdby.skip('SCHEMA_DDL','SCHEMAOWNERORPROGRAMMER','%');
exec dbms_logstdby.skip('DML','SCHEMAOWNERORPROGRAMMER','%');

Data Guard and Flashback

[178]

These are the commands used to start the logical standby database to change some of
the default settings, which are related to improving performance. The actual settings
used are for our environment and may not be applicable in your situation. One note
about preserve_commit_order: if this is turned to false, then the transactions are
applied on the logical database in a different order than on the primary. While this
would speed up the slower serialized process of SQL Apply, reporting applications
will experience errors related to transaction inconsistency on the logical standby:

LOGICAL>alter database stop logical standby apply;
alter system set parallel_max_servers =28 scope=both;
exec DBMS_LOGSTDBY.APPLY_SET('PRESERVE_COMMIT_ORDER','TRUE');
execute dbms_logstdby.apply_set('MAX_SERVERS',28);
execute dbms_logstdby.apply_set('MAX_SGA',2045);
exec dbms_logstdby.apply_set('APPLY_SERVERS',7);
alter database guard standby;
alter database start logical standby apply immediate;

Skip those tables that have certain data types not supported and aren't needed for any
type of reporting, because they often cause the SQL Apply process to halt.

See the following documents for more information on how to
accomplish the skipping of bulk transactions as well as other tuning and
troubleshooting tips: How To Skip A Complete Schema From Application on
Logical Standby Database [MOS Document ID 741325.1] and Troubleshooting
Logical Standby [MOS Document ID 215020.1].
http://www.oracle.com/technology/deploy/availability/
pdf/proactively_optimize_sqlapply.pdf Oracle White Paper
"Developer and DBA Tips for Pro-Actively Optimizing SQL Apply
Performance", this is still applicable to 10gR2 as well as 11g logical
standby databases.

Active Data Guard and RMAN
Now you can have your cake and eat it too! Active Data Guard, an optional license,
is a physical standby that is open for reporting and current with the primary
database; this functionality was not available until 11g. To enable Active Data Guard,
entail opening the database for read/write operations before starting the managed
recovery, which also keeps it in sync with the primary. If you try to update data in a
physical standby in managed recovery mode, in previous Oracle versions you would
get ORA-16000: database open for read-only access.

Chapter 5

[179]

This is a completely different reporting standby database type than a logical
standby database, as you cannot add additional objects such as materialized
views, additional schemas, or other read-only tablespaces. The Active Data
Guard option will only contain the data and transactions, as they originate
from the primary database.

In 10gR2, there were several issues associated with using RMAN in a Data Guard
environment due to the DBID being identical on the primary and any physical
standbys. In the previous versions, it was recommended to label backups with
a tag command appending the node name, because RMAN couldn't distinguish
between the different databases.

Backing up a physical standby is useful for offloading the performance hit on the
primary instance during backup operations. RMAN tracks all filenames within
the RMAN repository catalog. This allows you to backup a tablespace, data file,
archivelog, or controlfile on a physical standby and restore to a primary or vice
versa with every file or backup labeled with a DB_UNIQUE_NAME in 11g. It also
provides faster incremental backups on the physical standby with Block
Change Tracking enabled (licensed option). In 10gR2, there were also performance
problems, depending on the apply mode when using the physical standby to
offload RMAN backups.

See Chapter 11, Using RMAN to Back Up and Restore Files of the Data Guard
Concepts and Administration Manual.
Check out MOS Note: 331924.1 RMAN backups in Max Performance/Max
Availability Data Guard Environment for the init.ora parameter _log_
deletion_policy='ALL' (recommended for 10g)

Other Data Guard notes and features
All of this failing or switching over needs to be taken seriously, even though the
Data Guard broker makes it a very easy task. It is my personal opinion that this can
be very dangerous when something is too easy to do, because it makes mistakes just
as easy to accomplish!

A database is automatically disabled by Data Guard after a transition event (failover
or switchover), because it is assumed there was a good reason you committed to that
change. These discarded databases have to be either reinstated (an actual command)
or recreated, depending on the circumstances that led to their demise.

Data Guard and Flashback

[180]

Data Guard will let you know the current status of a database and whether it can be
easily reinstated with either dgmgrl or GC HA console. Reinstatement is most often
done after being used for a testing scenario, as listed earlier in this chapter. Note that
reinstatement capability requires the use of Flashback to be able to restore to the SCN
at the time of role transition.

ORA-16661: the standby database needs to be reinstated
ORA-16795: the standby database needs to be re-created

11g has made it easier to recreate a physical standby. This assumes that the data files
on the server are still available and free from corruption.

Real Application Testing, an optional license, consists of two major components:
Database Replay and SQL Performance Analyzer (SPA). Using these utilities in a
Data Guard implementation makes sense because there is a requirement when using
Database Replay that the database must be restored to the correct SCN. There are
other methods such as point-in-time recovery, flashback, and/or import/export
utilities, but it is easier to accomplish using the snapshot database feature.

Summary
As a DBA that has been investigating time and effort in the standby technology since
Oracle Database version 8i, it has been interesting to see the improvements along
the way. Physical standbys have proven standard from the very first version, but
the older implementation required the DBA to create their own script to manually
transfer the archived redo logs from the primary database to the standby. Since
10gR2, all standby technology has improved dramatically from the early versions.
Redo Apply is now fully automated, resilient, and SSL-encrypted. SQL Apply has
matured enough that a logical standby can be depended on if a DBA takes the time
to follow the Oracle-recommended tuning steps.

In 10gR2, most of the scenarios that were previously highly detailed manual steps
have been shortened to a single command using the Data Guard command-line
utility in 11g. Oracle has extended the functionality of using Data Guard for other
reasons than just disaster recovery with several optional licensed components—
Active Data Guard and Real Application Testing. You can take advantage of the
added extensions to Data Guard features (in the Enterprise Edition of Oracle
Database) without having to use the licensed options by carefully manipulating
the Database States and database parameters as needed.

Chapter 5

[181]

Using Flashback on the entire database was hard to justify on the primary
production database, making this feature mostly unusable, except for the direst
of circumstances. Using this on a physical standby is easily done with little to no
impact on production. Several scenarios were outlined as creative solutions to some
of the most often encountered technical obstacles for testing: large databases, small
downtime windows, or limited testing hardware.

Even in 11g, SQL*Plus is still the definitive utility for all of the implementation steps
from creation, deployment, configuration, and ongoing maintenance. Both the HA
Console of OEM and the dgmgrl utility are able to make transitions (switchover or
failover) faster with fewer typed commands than SQL*Plus. There are still certain
issues that can only be resolved with SQL*Plus.

The new Data Recovery Adviser, in conjunction with RMAN, now uses Data Guard
as a viable repair option for a primary database that cannot be repaired in a timely
manner. This is my segue for the next chapter—Extended RMAN.

These scripts are invaluable for troubleshooting an issue with a
standby—check with the latest version on MOS to keep current:
Script to Collect Data Guard Logical Standby Diagnostic Information [MOS
Document ID 241512.1]
Script to Collect Data Guard Primary Site Diagnostic Information [MOS
Document ID 241374.1]
Script to Collect Data Guard Logical Standby Table Information [MOS
Document ID 269954.1]

Extended RMAN
The acronym RMAN stands for Oracle's Recovery Manager, with an emphasis
on the word Recovery. Backups are worthless if you can't use them to restore lost
data! RMAN is Oracle's recommended standard for database backups for any sized
organization. There are other storage-based technologies that are also available for
database backup—each one is vendor-specific. If your environment is still using the
old-fashioned hot or cold backups (also known as user-managed), it is time to come
out of the dinosaur age. The RMAN utility is easy to automate by scripting with the
command-line version, which the provided example code for this chapter utilizes.

RMAN is used for many different tasks as part of the DBA to-do list presented back
in Chapter 1 of this book. That importance deserves its own section in the book. This
chapter will touch only briefly on some of the basics, with the understanding that
you have gained some knowledge from previous chapters in this book, have read
through the Oracle Concepts Manual, and are becoming familiar with the RMAN
User's Guide. All of the following items will be touched upon in this chapter with
scripts, comments, tips, and techniques scattered throughout:

Recovery goals determine backup configuration
Backup types and the default configuration
Oracle's recommended backup strategy
Catalog versus control file RMAN recordkeeping and retention policies
Corruption detection and the Data Recovery Adviser
What does RMAN backup, restore, and recover?
What doesn't RMAN backup, restore, and recover?
What do I do before starting a restore and recovery?
RMAN cloning and standbys—physical, snapshot, or logical

•

•

•

•

•

•

•

•

•

Extended RMAN

[184]

The RMAN utility is an executable file found in all Oracle Database Installation
types. To prevent problems due to version mismatches, feature, and compatibility
issues, the best one to use is the local RMAN utility that is installed as part of the
database's own $ORACLE_HOME.

We won't be covering the technical details related to the following items, as each is
unique to the hardware and security implementation details of your organization:
Virtual Private Catalogs, Tape Settings, Removable Media (CD or DVD), Media
Management Settings, and Oracle Secure Backup. Due to length constraints, data
pump as a logical backup will only be touched upon briefly.

See the RMAN Restore Performance [ID 740911.1] document for
extensive information on allocating channels, especially tape
types known as SBT.

It is assumed for this entire chapter that all RMAN backups are done with SYSDBA
privileges, as that is a prerequisite. It should also be noted that backups should never
be delegated to someone who is not a DBA. Implementation details in this chapter
assume you are not using OMF or ASM to start with, because it complicates certain
types of backup and recovery scenarios. As a beginner, start with normal disk copies
and migrate to ASM or OMF as you gain experience.

It would be worth your while to read through the RMAN Concepts section of the
Recovery Managers User's Guide for additional background information for this topic.
This chapter will start with the default configuration for the Enterprise Edition of the
11.2.0.1 version of Oracle RDBMS.

Oracle Documentation for 11gR2 Database contains the term Fast
Recovery Area, which is the same as an earlier term known as Flashback
Recovery Area. Oracle recommends the overall use of this area for any
type of backup and recovery and not just for Flashback.

Recovery goals determine backup
configuration
A successful RMAN implementation will include the formal definition of both
backup and recovery goals. You could refer back to Chapter 5 for RTO and RPO as
a starting point. Mean Time to Recover (MTTR) is another objective that will be
touched on in this chapter.

Chapter 6

[185]

MTTR (also known as fast-start checkpointing) is not enabled in 11g by default.
It allows the database to recover (apply committed transactions, rollback
uncommitted), which automatically occurs while bringing up a database after
a crash or during an actual restore and recovery session. To enable this feature,
the following database parameter is set to a non-zero number.

fast_start_mttr_target integer 0

At the same time, reset the following database parameters back to zero:

LOG_CHECKPOINT_INTERVAL
LOG_CHECKPOINT_TIMEOUT
FAST_START_IO_TARGET

You should know from the previous chapters that faster checkpoints (synchronizing
all the datafile headers, flushes data written to disk) provide a faster recovery
time. MTTR affects several different components and can have a large impact
on performance, either good or bad. The MTTR is also tied with what is known
as OPTIMAL_LOGFILE_SIZE (online redo log size), which comes from the view
V$INSTANCE_RECOVERY. This view is graphically represented as the MTTR
Advisor in OEM.

Higher MTTR goals can be accomplished by using the Oracle recommended
backup—Incrementally Updated Full. These are image copies, which are an
exact bit-for-bit duplicate of the original datafile. Oracle also recommends saving
these to the Flash Recovery Area (FRA), which is often implemented as cheaper
(most often slower) disk storage. The fastest way to restore using the Incrementally
Updated Method would be to use the restore command—SWITCH DATABASE TO
COPY—which switches the datafiles to the copy in the FRA.

The larger the database, the less time is needed to recover versus other methods
of recovery, as no restore (which is the process of copying backups to the restore
location) is actually done. Less than 24 hours of archivelogs would need to be
applied during the recovery process if the incremental backup and archivelog
was done on a daily basis.

It is the recovery goals that will define the method, mode, location, and frequency
of your backups. Once the recovery goals are formally outlined for each application,
you can start designing a backup strategy for the database:

How often do we backup? (Daily, weekly).
Which backup type? (Incremental and/or full backup sets or image copies).
Where do we backup? (FRA, disk, and/or tape).
Should we skip any part of the database during backups? (Read-only).

•

•

•

•

Extended RMAN

[186]

Should we use compression? (Recovery slower, more CPU, backups faster
and less space).
Do we have a retention strategy for tablespaces, image copies, and archived
redo logs?

Backup types and the default
configuration
This section lists a few definitions that will need to be referred to for understanding
the recommended backup strategy:

Backup sets: Default type of RMAN backup that contains what you want
backed up, which can be datafiles, controlfiles, archived redo logs, or spfiles.
Each backup set consists of pieces, which can be subsets (a backup of a large
datafile cut up into small chunks) of the item you want backed up. You
cannot cut up a large datafile across different backup sets or mix different
types of files into the same backup set, but you can multiplex several
database files into a single backup piece.
Image copy: Type of backup that is a bit-for-bit copy of the original—the
same as creating a copy at the OS level (with Unix cp or dd commands�������), but
is known to the RMAN utility. Making it known to RMAN means that the
location and header file information has been recorded in either the control
file or, optionally, the RMAN catalog. Archived redo logs that are copied
by the archiver process to the operating system are also considered image
copies. An image copy will be larger in actual file size than an RMAN backup
set because an RMAN backup will have the content of only the used extents
for locally managed tablespaces.

Backup incremental levels
There are two incremental levels as part of a recommended backup strategy and it is
important to understand the differences:

Level 0 incremental: Backs up all data blocks; equal to full backup as part of
incremental backup strategy.
Level 1 incremental: Only backs up changed blocks; can be differential
(different since last 0 or 1) or cumulative (updates since last 0).

•

•

•

•

•

•

Chapter 6

[187]

There are quite a few combinations of the different incremental, cumulative, and
differential levels. Unless you have disk or tape storage concerns, start with the
simplest combination—full weekly plus a daily cumulative (either normal backup
or merged incremental). Both of these types of backups will result in a shorter length
of recovery time. An incremental backup strategy can be started with a simple
command as follows:

RMAN> backup incremental level 1 cumulative with tag 'LEVEL1_INC'
database;

If there is no existing full backup with this tag, then a full level 0 (required as part
of an incremental backup strategy) will be created automatically by RMAN. The
difference between a normal incremental and the merge method is the recover
command that comes before the backup and the for recover of keywords
in the backup command:

RMAN>recover copy of database with tag 'ORA$OEM_LEVEL_0';
RMAN>backup incremental level 1 cumulative copies=1 for recover of
copy with tag 'ORA$OEM_LEVEL_0' database;

Incremental backups usually take less time than a full backup, but not always. This
is due to the fact that every block SCN number is being checked during the process.
This comparison SCN checking may make the read slower, but writing to disk will
be faster due to having fewer used blocks. Block Change Tracking (extra license cost
of Active Data Guard if used on a physical standby) can improve the performance
because it reduces the number of scans needed for SCN comparing; it keeps a
running count of previously scanned blocks. A different feature known as Unused
block compression in backups (default with the Enterprise Edition of 10gR2+) is
where RMAN excludes blocks that have never been used. There are several other
RMAN compression enhancements, but they won't be covered in this book.

Incremental backups will only be used for recovery; restoring datafiles will come
from the last full backup or Level 0 backup. Comparison SCN checking as part of
Block Change Tracking is why the incremental merge backup and restore method
saves both backup and recovery time.

Full backup
All database blocks that contain used extents in locally managed tablespaces will
result in a smaller-sized backup as compared to an image copy. If tablespaces are not
locally managed, RMAN reads and backs up all blocks. This fact is important enough
to mention because it is a common misconception.

Extended RMAN

[188]

Logical backup
A logical backup contains both the metadata of database objects as well as the actual
data. It is important to briefly mention logical backups because they are part of the
complete backup strategy used in conjunction with RMAN. There are two different
utilities used to extract or input data in this format—Export/Import and Data Pump.
Data Pump is the more recent utility and should be the one you generally use.
Export/Import is used for backwards compatibility with older versions of Oracle.

These types of backups were mentioned in an earlier chapter, as the output files need
protection from unauthorized access. I recommend doing both a logical backup and
a physical backup on a regular basis for a database, most often daily. A full logical
backup can be your last method of restoring the complete database if other recovery
methods are unsuccessful. A logical backup is also an easy method to recover
structures, such as table or index creation statements, as well as transfer a smaller
subset of data from one database to another.

Oracle's suggested backup: What is missing?
Listed below is the default recommended backup script from Oracle when using
OEM. It is minimal at first glance, but contains the recommended method called an
incremental merge backup. The critical part of this is that the configure commands
are run separately and only need to be run once to control the behavior of what
happens during the backup. You don't know the contents of the configuration by
looking at just the following script:

run {
allocate channel oem_disk_backup device type disk;
recover copy of database with tag 'ORA$OEM_LEVEL_0';
backup incremental level 1 cumulative copies=1 for recover of copy
with tag 'ORA$OEM_LEVEL_0' database;
}

All of the backup types (database, archivelog, spfile) are different commands.
This single line will only backup the datafiles—backup database. The spfile and
controlfile may or may not be backed up together according to the persistent (stored)
configure command—CONFIGURE CONTROLFILE AUTOBACKUP. See the following
section for what happens between two different commands; the first one is the spfile:

Chapter 6

[189]

Notice in the following command the word current, meaning what is currently
in use by the database. RMAN can manipulate previous copies or backups of
the controlfile, which is important for different types of recovery scenarios.
Remember from earlier chapters that the controlfile tracks all of the datafile
headers, synchronizing them with the database SCN for consistency and
transaction integrity.

Extended RMAN

[190]

The following will show all available backups. In order to get the full date
timestamp, a Unix environmental variable is set and should be included in all of
your RMAN scripts. Notice the Ckp SCN (Checkpoint System Change Number).

A simple backup can be done using the following command, with the configuration
set as the defaults and a flash recovery area defined for this database. This is only the
start of database backup and recovery strategy, but this is not enough to keep you
protected against data loss. This backup is missing the controlfile, spfile, and any
archived logs, which will all be required for a complete recovery.

All backups are recorded in the control file, which can be seen in the data dictionary
view v$controlfile_record_section. See the following code for some of the
different types as they relate to backups:

Chapter 6

[191]

Controlfiles—an important part of backup and
recovery
Another important database parameter is the following, as it relates to how long the
controlfile keeps records before overwriting them to save space. Make this number
larger than your recovery window that is mentioned in the following paragraph:

control_file_record_keep_time integer 7

This setting would need to relate to your recovery strategy, which really should be
a 6-to-13 or 20-day window. Why 6, 13, or 20? A 7-day window would include three
full backups (or Level 0), assuming you do a weekly full backup. If you take a 6-day
window, it would be all inclusive—two fulls (or Level 0) plus all of the differential
or cumulative backups for that week, a simple way of compartmentalizing a robust
backup and recovery strategy. Thirteen days would cover two weeks and 20 days,
would cover a 3-week strategy.

When CONFIGURE CONTROLFILE AUTOBACKUP is ON, then RMAN will backup the
controlfile and spfile. In the following situations, the BACKUP or COPY command is
issued at the RMAN prompt:

BACKUP or COPY is followed by a command that is neither BACKUP
nor COPY
The last command of a run block was BACKUP or COPY
Adding a new tablespace
Altering a tablespace or datafile
Adding a new online redo log or redo thread
Renaming a file

How often should backups occur?
I recommend backing up everything (controlfile, spfile, archived logs, datafiles, and
files that are backed up at the OS level) at least once daily for production databases.
Files that are backed up using OS backup software include Oracle binaries,
diagnostic destination, trace files, logical backups, and any custom files for your
implementation. An OS backup can also be used to backup any disk-based backups
that RMAN produces.

The type of backup (full, incremental, cumulative, and/or logical) will depend on a
combination of your backup and recovery strategy (how much time to restore and
recover) and the amount of resources (I/O, CPU, disk, and/or tape) available.

•

•

•

•

•

•

Extended RMAN

[192]

The default backup script assumes that you have enabled a flash_recovery_area
as a database parameter, so all backups are automatically written in that location. If
you don't have an FRA, then look for the backups to show up in $ORACLE_HOME/dbs,
which has the unintended result of filling up disk space for your Oracle binaries.

RMAN has more than one way to accomplish the same task, as you can define the
location for the datafile backups with the configure command or within the actual
backup command, as shown in these two different examples:

RMAN> CONFIGURE CHANNEL DEVICE TYPE DISK FORMAT '/backup/rm_%d_0_%t_
%U.df';

RMAN> BACKUP FORMAT '/backup/rm_%d_0_%t_%U.df' DATABASE;

Look for a later section where a more complete backup and recovery strategy is
implemented using some of the more advanced commands.

Default configuration details
The actual configuration can be determined by looking at an OEM page, but that
doesn't produce the concise output from simply running the show all command
within RMAN. This connection was done without a catalog connection, so I am
using the RMAN utility to query what backup information the database controlfile
contains. A catalog is an Oracle database repository used for multiple databases as
well as multiple DBAs. It can retain backup and recovery information longer than
the controlfile and is a requirement when using advanced database features such as
Data Guard.

The following code shows the RMAN utility version, the database ORACLE_SID, and
DBID, along with the default configuration settings. The target is the database that
I am connecting to perform RMAN commands against, in this case querying the
configure settings.

Chapter 6

[193]

You can also find the non-default parameters with SQL*Plus. That isn't of much help
in this situation (a newly created database) because none of them has been changed.
That leaves you with no rows returned when querying v$rman_configuration:

SYS@ORCL> select * from v$rman_configuration;

Once you attach to this target database using RMAN and run the configure
commands (it doesn't matter if you don't change the actual setting), it populates
the v$rman_configuration view, making these settings persistent. Persistent
configuration settings will control what happens during all subsequent backups
until the configure command is run again. In the following code listing from the
database view, I indicated the three that were actually changed:

Most of the default settings will work for smaller databases configured with a
Flash Recovery Area and a Redundancy setting of 1. This makes all incremental
backups obsolete as soon as they are applied to the original full copy. See the RMAN
OBSOLETE and EXPIRED section for more details on these maintenance tasks.

The default setting that most DBAs have an issue with is:

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP OFF; # default

Extended RMAN

[194]

Personal experience has taught me that this setting should be turned on and left
ON (persistent). By default the controlfile autobackup will go to the $ORACLE_
HOME/dbs directory in case of Unix and the $ORACLE_HOME/database directory for
Windows, unless you specify a location with the configure command CONTROLFILE
AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'. That behaviour is
demonstrated in the following code section. If a Flash Recovery Area is in use,
then the controlfile autobackup will go to the FRA, unless you specify an alternate
location using the configure command.

Notice from the following listing how the spfile is also backed up with the
controlfile. This is because the persistent setting autobackup is on. The file labelled
snapcf_orcl.f is mentioned later in the chapter. As the spfileorcl.ora has a
specific name, it will be overwritten unless you use an FRA, because FRA writes
each daily backups in dated directories.

The following backup �� commands�� are more complicated, but contain most if not all of
what is recommended for a robust backup and recovery strategy. Note how you can
integrate Unix environmental variables identified by ${} within a backup script. You
shouldn't implement all of these steps without extensive testing from several weeks
to months before you can understand what the commands actually accomplish.
Comments are scattered throughout the code in the following command window:

Chapter 6

[195]

There are specific recommendations that allow you to have dependable backups,
which you can rely on to be there when doing a restore. Tagging backups with the
intended purpose, backing up items multiple times over several days, and user-
defined locations are all points of control for you as the DBA. This is not a script
for everyone's taste or environment, only you can decide what works for you by
testing and comparing the results. As you can see there is a little more to it than
just backup database.

Do ������������ not��������� specify delete all input when backing up archivelogs.

It is important to draw attention to this small change (delete all input)
because it is very important and this command is found again and again in Oracle's
documentation. If you use the delete all input as part of the command, any
backups done from one destination will delete all copies of the archivelog in all
the locations you have defined as an archive destination database parameter.

I recommend simply using delete input so that backups from one location will
only delete what has been backed up from that single archive destination. As you
learned from Chapter 4, you should have more than one archivelog destination;
what good would that additional location be if your RMAN backups deleted
them unexpectedly?

Extended RMAN

[196]

Included in the code section for this chapter of the book is a folder called
Windows_rman, which contains a complete set of backup scripts utilizing RMAN
on Windows. It will work with versions as far back as 8i, but requires changes
needed to define the location of your backups: ORACLE_HOME and ORACLE_SID.
Consider installing the open source software called blat, ������������������������ which will e-mail files
on a Windows box, excellent for sending backup logs to the DBA.

Oracle's recommended backup strategy
A rolling updated full backup strategy has its place in a production environment.
Here is a short list of the best reasons and features:

It reduces the number of repeated full backups
It can reduce the restore time if switch to copy is used
It reduces network bandwidth to transport backups offsite and
incremental(s) take up less space
Improved Tape bandwidth due to less reads
Option for restoring objects changed with NOLOGGING option because
changed data blocks are captured
It synchronizes the physical standby with incremental merge changes
There is no need to modify CONTROL_FILE_RECORD_KEEP_TIME
It's useful for merging monthly datawarehouse backups with
transportable tablespaces

Issues with incremental merge backups
Just as there are positives to Oracle's recommended method of backups and
recovery, there are also some downsides that need to be covered:

The amount of disk storage needed is higher for the image copy backup
versus a single full RMAN backup. That would be the current size of the
database plus incremental backups plus archivelogs.
It limits point in time recovery, all previously applied incrementals
become obsolete.
It requires RMAN catalog for Point-In-Time Restores.
Issues with retention policies other than redundancy=1, [Refer Note:351455.1].
Performance issues may require a block change tracking feature.
OMF-style format for datafiles may not be used to merge backups or for the
use of transportable tablespaces from one database to another.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6

[197]

A note on the point about OMF (Oracle Managed Files): several of the
implementation details will change if you use OMF and/or ASM. There just isn't
room in this chapter to cover all of those changes. I suggest starting to use RMAN
with normal datafiles that aren't OMF or ASM-based. Once you have gained
expertise, add the OMF or ASM features for further testing. Issues will appear when
trying to use RMAN to implement the more advanced features, such as standbys and
transportable tablespaces, or restoring files between different databases when one
has ASM and/or OMF and the other doesn't.

Restore and recovery comparison
Here is a simplified restore and recovery, comparing the method to an Incremental
Merge restore.

Traditional Backup Restore:

1.	 Restore database: Restore the last full or level 0 incremental backup.
2.	 Recover database: Apply all incremental backups since last full.
3.	 Media recovery: ��� Apply all archivelogs since incremental backup.

Incremental Merge Restore:

1.	 Restore database: Eliminated if switch database to copy.
2.	 Recover database: Also eliminated database is switched to copy.
3.	 Media recovery: ��� Apply all archivelogs since incremental backup.

As you can see an Incremental Merge is the fastest recovery method for recovering,
but it would only be helpful in certain situations. This is the same for any recovery
session, only certain methods or procedures will work in one particular situation.
It depends on what happened, how much you have left to work with, and which
backup is needed. This fast recovery wouldn't help when the server is no longer
available (won't boot) or the hard drives that contain important files other than
just the database files or backups are lost.

Recommendations for Incremental Merge backup
Think of the daily update of an Incremental Merge as being like a database—it is
a changing entity (more so for OLTP than a data warehouse) and there are only
certain situations where you want to reverse or go back much farther than the
most recent backups.

Extended RMAN

[198]

In situations where you want to recover a database farther back than just the most
recent backup, there is a variation of the default RMAN command to use for your
backups. ��� To implement the retention policy based on recovery window for the
incremental merge, do not use the CONFIGURE command. Instead use the UNTIL
CLAUSE in the RECOVER COMMAND.

RMAN>RECOVER COPY OF DATABASE WITH TAG <tagname> UNTIL TIME "SYSDATE-
7";

The until time syntax changes the backup as follows:

First��� time executed image copy backup with tag
Two to seven times executed a level 1 differential backup with tag
Executed more than eight times, the level 1 are applied to the image copy
made 7 days ago, and a new level 1 backup is produced

This would keep the copy of the database to satisfy a retention strategy of six days.
Notice the with tag clause of the above command. That is a recommended method
of marking a particular backup with an easily identified purpose.

Calculating the FRA disk space needed
If you choose to use Oracle's Incremental Merged Backups, then determining the
amount of disk space is necessary before implementing that strategy in conjunction
with FRA; if you run out of disk space during a backup that leaves you very
vulnerable. Most DBAs plan on using a lower-cost storage for FRA as a backup area.
Recovering the database by switching to the copy in the FRA may hinder database
performance. A compromise would be to keep the database performance items like
the incrementally updated backups on faster, higher cost storage, with others less
dependent on disk performance in the FRA.

The following formula is Oracle's recommended backup strategy—Incrementally
Merged backups with everything located in the FRA:

Disk space needed in FRA = copy of database + incremental backup + (n+1)
days of archived redo logs + controlfile + online redo log member * number
of log groups + flashback logs (DB_FLASHBACK_RETENTION_TARGET)

You can simply calculate the space required using the du –h command. You can use
this command for any amount of backups you would want to keep on disk for any
type of file backed up by RMAN. Don't forget to provide more disk space for growth,
with at least 10 to 20% additional space in addition to what has been allocated for
the FRA.

•

•

•

Chapter 6

[199]

You can have a look at the following:
Note. 262853.1 RMAN Fast Incremental Backups
Note. 303861.1 Incrementally Updated Backup In 10G

Catalog versus controlfile RMAN
recordkeeping and retention policies
There aren't any licensing concerns, as Oracle doesn't charge extra for maintaining a
separate database for hosting the catalogs for all your licensed databases. This same
database is also a good candidate for the Grid Control Repository because they are
both similar in functionality and for exclusive DBA use. You may want to connect
directly to the controlfile to obtain information, complete backups as well as restore
and recovery sessions to begin with. Add in the RMAN repository catalog when
you expand your backup and recovery across multiple databases or start using Data
Guard technology. It is now time to flesh out reasons to use a catalog as part of a
complete backup and recovery strategy.

The RMAN catalog repository is most often used for an MAA with multiple
standby databases. It is a requirement for several of the RMAN-related Data Guard
features—creating standbys with RMAN, live network duplication as well as backing
up and restoring files between the primary and standbys. Think of the catalog as
a way of keeping all the information about multiple Oracle database backups in a
single location. The RMAN repository can keep all backup information or only the
bare minimum (a few weeks worth), depending on your business needs. Some IT
departments have a security or auditing requirement to keep backups and even
test restore capability for a certain amount of time before destroying backups.

RMAN stored script and substitution variables
What the RMAN catalog does best is help you to manage the complex task of
administering many different types of databases. One of its best features is the
ability to store scripts, but in the past DBAs shied away from this practice because
the scripts were not flexible or changeable when executed on different servers or
database types.

Extended RMAN

[200]

Use the RMAN command REPLACE SCRIPT to create a backup script that includes
substitution variables that are adjustable depending on the input values. RMAN will
prompt you for the inputs when it is run to store the script in the catalog repository.

At runtime, you can use the backup_inc script with the inputs specific to that
backup—in this case input &1 = 1, &2 = dailybackup. This allows you to use
a single script for multiple databases in a centralized repository, another way of
automating your world.

RMAN> RUN { EXECUTE SCRIPT backup_inc USING 1 dailybackup inc1; }

The actual script that is run after the appropriate substitutions is:

RMAN> BACKUP DATA FILE 1 TAG dailybackup.1 FORMAT '/backup/1_%U';

The RMAN: How to Query the RMAN Recovery Catalog [ID 98342.1] MOS document
will help you understand the actual tables behind the RMAN respository catalog,
and is invaluable for diagnosing, �� tuning,������������������������������������� and advanced troubleshooting issues.

Both the current controlfile (or previous incarnations of a controlfile) and the catalog
have mechanisms to maintain the length of time for which circular records are
kept in the controlfile. Recreating the controlfile will remove all existing records
for backups, which is another reason to create an RMAN repository. The following
database parameter controls how long to keep reusable records such as the RMAN
backups (and archivelog records) before overwriting to save space (this is the
default setting):

control_file_record_keep_time integer 7

Oracle recommends the following formula for calculating this database
parameter: CONTROL_FILE_RECORD_KEEP_TIME = retention period + level 0
backup interval + 1. This means that, for a level 0 (full) backup each week with a
retention policy of 6 days, this parameter would calculate to be 14 = 6+7+1. When
setting CONTROL_FILE_RECORD_KEEP_TIME, keep in mind that level 0 backups can
go beyond the recovery window period, which is why I recommend it.

Chapter 6

[201]

If you use the Oracle-recommended backup strategy of an updated (incrementally)
full backup, then the control_file_record_keep_time setting doesn't play as big a
role. Each time the datafile copy is updated, the older datafile records automatically
age out. The records containing the backups won't be removed (or age out) until they
are deleted from the FRA.

Since Oracle 10.2, all sections of the controlfile are auto extended for
MAXLOGFILE, MAXLOGMEMBERS, MAXLOGHISTORY, MAXDATAFILES,
and MAXINSTANCES parameters. This is important, as they used to be hard set
limits that required a controlfile recreation to go above the current settings; this
step would require a database restart. There are other records in the controlfile,
datafile, tablespace, and redo thread records, which are never reused unless the
corresponding object is dropped from the appropriate tablespace.

Please don't set CONTROL_FILE_RECORD_KEEP_TIME = 0, as that
would actually keep the controlfile from expanding temporarily, in
order to delete obsolete records when using RMAN.

Retention policies: Recovery window or
redundancy?
A retention policy describes which backups will be kept and for how long. This
policy can be changed by running the CONFIGURE RETENTION POLICY command,
whether you are using a catalog or connecting directly to the current controlfile.

RMAN>CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF x DAYS;

While a recovery window policy is generally considered the better method,
the number of backups can and will vary according to the backup schedule. The
number of backups is calculated using the time from now and going back by X
many days. Now you may think that a reasonable recovery window should be
based on seven days, but that may not be optimal, depending on your resources
and recovery strategies.

RMAN>CONFIGURE RETENTION POLICY TO REDUNDANCY x;

Redundancy is the number of backups kept on disk for the datafile in question.

RMAN>CONFIGURE RETENTION POLICY TO NONE;

If the retention policy is configured to NONE, then REPORT OBSOLETE and
DELETE OBSOLETE will no longer work to remove older backups no longer
needed for recovery.

Extended RMAN

[202]

The following configure command works in conjunction with a window retention
period to minimize disk usage.

RMAN>����������������������������� c���������������������������� onfigure optimize backup on;

Not needed (OBSOLETE) versus not found
(EXPIRED)
The term "obsolete" does not mean the same as an "expired" backup. A backup is
obsolete when REPORT OBSOLETE or DELETE OBSOLETE is run and is based on the
user-defined retention policy to determine which backups are no longer needed for
recovery. A backup is considered "expired" only when RMAN performs a crosscheck
and cannot find the file.

From the perspective of a retention policy, a datafile backup is a full or level 0
backup of an individual file. It does not matter whether the backup is an image
copy or part of a backup set. For file backups that are part of a backup set, RMAN
will not remove the backup set until all of the individual backups within the
backup set are obsolete.

RMAN considers as obsolete all archived logs and incremental level 1 backups that
are not needed to recover the oldest datafile or controlfile backup. KEEP UNTIL TIME
LOGS command specifies to keep all logs required to recover that database backup. If
you specify NOLOGS, the logs required to recover the backup are not kept. This is only
used for consistent, closed backups. There is an UNTIL clause for a certain time to
mark a backup as obsolete or the FOREVER command to never remove it.

Use the crosscheck command within RMAN to search for any backups that it may
know about. This verifies their current existence on the actual device (tape, disk,
CD), and the original location they were backed up to.

The following are examples of crosscheck commands:

CROSSCHECK BACKUP; # checks backup sets and image copies
CROSSCHECK COPY OF DATABASE;
CROSSCHECK BACKUPSET 1338, 1339, 1340;
CROSSCHECK BACKUPPIECE TAG 'nightly_fullbackup';
CROSSCHECK BACKUP OF ARCHIVELOG ALL SPFILE;
CROSSCHECK BACKUP OF DATA FILE "?/oradata/orcl/system01.dbf"
COMPLETED AFTER 'SYSDATE-14';
CROSSCHECK CONTROLFILECOPY '/tmp/control01.ctl';
CROSSCHECK DATA FILECOPY 113, 114, 115;

Chapter 6

[203]

Once a crosscheck command is run against a backup, copy, archivelog, and so on,
and it doesn't exist on disk, then RMAN marks that file as expired. The following
section will check for the existence of known backups and delete the ones it doesn't
find. The noprompt command allows you to run it as a script. Otherwise it will wait
for you to answer yes or no to the question: Do you really, really want to do this?

crosscheck backup of database;
crosscheck backup of controlfile;
crosscheck backup of archivelog all;
crosscheck backup of archivelog all spfile;
delete noprompt expired backup of database;
delete noprompt expired backup of archivelog all;
delete noprompt expired backup of controlfile;
report need backup;
report obsolete orphan;
delete noprompt obsolete;

However, beware that if you are backing up to tape using SBT commands, you will
have problems if you remove backups from the catalog or controlfile and need to
restore in the future. Carefully review all crosscheck and delete obsolete commands
before implementing them in your environment. ���������������������������������� You will have problems retrieving
backups that reside on tape and are marked expired or obsolete. I recommend
entering an Oracle Service Request, as there are undocumented commands that
can retrieve these types of backups.

Refer to a recent blog post on undocumented commands for cataloging
tape backups: http://erpondb.blogspot.com/2008/09/catalog-
rman-backuppieces.html.

Why would you want to expire backups? This is for manually controlling all of the
backups and archivelog destinations in a location outside the FRA. It is also done to
reduce the number of entries in the repository catalog, keeping RMAN running at
peak performance. At the OS level, you can remove these files based on a date/time
stamp. Then, use the crosscheck and delete expired commands so that RMAN
can remove them from the disk as well as the repository catalog when they are no
longer needed for recovery.

It may be the case that backups are on disk, but are showing up as obsolete or
expired when doing the list backup RMAN command. More than likely the
information about these backups have been overwritten or removed from the
controlfile. Make sure the control_file_record_keep_time parameter value
is set to a value higher than the retention policy of the recovery window or
consider using a repository for the RMAN catalog.

Extended RMAN

[204]

What if I want to keep certain backups?
The backup command changes slightly for archival type of backups at any point
of retention you want. These are most often done at weekly, monthly, and/or
yearly intervals. The purpose of the keep command is to exempt a backup from the
retention policy. I didn't include all of the other backup commands demonstrated
earlier just for brevity. It would be easier to maintain backups without changing
scripts by using the syntax in the second command listed below. In this case the date
is not hard coded, but it is recalculated at every run:

Rman > BACKUP DATABASE KEEP UNTIL TIME "TO_DATE('31-DEC-2009' 'dd-mon-
yyyy')" NOLOGS;
Rman > BACKUP DATABASE KEEP UNTIL TIME 'sysdate +365' NOLOGS;

Corruption detection
There are several types of database corruptions that can cause extensive data loss if
due diligence is not taken to prevent it from happening in the first place:

Datafile block corruption—physical or logical
Table/index inconsistency
Extents inconsistencies
Data dictionary inconsistencies

Physical corruption
Physical corruption is most often caused by defective memory boards, power
disruption, I/O controller problems, or broken sectors on a hard disk drive. A
defective physical component prevents the complete write to the data block, which
also includes the accompanying update to the header block. You may have block
corruption, but the database will appear to operate normally because reads usually
don't have an issue but writes will report the corruption error as something similar
to the following:

ORA-01578:
ORACLE data block corrupted (file # string, block # string)

Don't always expect issues such as corruption to show up in an obvious way. While
doing testing for this chapter, a corrupted datafile first showed an error that could
have been caused by something other than corruption. After intentionally corrupting
a specific datafile created for this purpose, I attempted to create a new table and this
was the resulting error:

ORA-01658: unable to create INITIAL extent for segment in tablespace

•

•

•

•

Chapter 6

[205]

This error usually means some sort of storage problem—there are not enough
segments with manual segment management or the datafile is unable to extend to
accommodate the new table segment. If I didn't know better, corruption would be
the last thing I would have thought of. So what is the important thing to take away
from this? Check the alert logs first, even on minor errors, in order to double check.
See the following listing for the corresponding entry in the alert log while I was
trying to create a new table segment in a corrupt datafile:

The information is repeated in the trace file mentioned, and from our work in
Chapter 3, Tracking the Bits and Bytes, you know what most of the information refers
to. From the alert log, you know the file number and block number. That identifies
the segment to find the location of the corruption. Don't think this may be the only
corruption that exists in this database—it is the one encountered due to a create
table as select (CTAS) command. Read-only SQL statements won't necessarily
find corruption. At this point, I would remove all access to this database and use the
scripts mentioned on MOS to determine exactly the objects involved. At the same
time, enter a Service Request on MOS and start to work on fixing things. Begin with
this document on MOS: Frequently Encountered Corruption Errors, Diagnostics and
Resolution, [ID 463479.1].

Extended RMAN

[206]

Logical corruption
Logical corruption is some sort of inconsistency between the structures (both logical
and physical) within the RDBMS, and is most often associated with software bugs.
The following list contains some examples:

Differences between the table row count and the corresponding index
row count
A table row is locked with a non-existent transaction
The actual space used doesn't equal what the RDBMS has for the blocks

Extensive corruption information is written to the alert log once the database is
aware of the issue. This happens during write access to the block or by certain
Oracle utilities mentioned.

There are several Oracle database utilities that record any intrablock corruption by
populating the views, V$DATABASE_BLOCK_CORRUPTION, V$COPY_CORRUPTION, or
V$BACKUP_CORRUPTION.

The entries in these views are also automatically updated if the block corruption
is repaired by the different methods of repair available—block media recovery,
restoration of the datafile, recovery by an incremental backup, or block newing.
Block newing occurs when the data block has no data associated with it. When there
are deleted rows or a dropped table, Oracle will reuse that block by reformatting it.

Commands and utilities that detect corruption
The following SQL command identifies table and/or index consistencies (logical
corruption) within a database. When the inconsistency is found, a trace file will be
produced with detailed information.

SYS@SQL>Analyze table tablename validate structure cascade ;

Logical corruption or inconsistencies found in Locally Managed Tablespace are
extents that may have overlapped using the same block or free extents that are
reported as used. There are different methods, depending on whether the tablespace
uses automatic or manual segment space management (MSSM). Check the
SEGMENT_SPACE_MANAGEMENT and EXTENT_MANAGEMENT columns in the view
dba_tablespaces to determine if you are using auto or manual SSM.

dbms_space_admin.tablespace_verify

dbms_space_admin.assm_tablespace_verify

hcheck.sql

•

•

•

•

•

•

Chapter 6

[207]

Both of the dbms_space_admin SQL commands produce a trace file, which can be
easily identified by giving the trace file a unique name like the following examples:

SYS@ORCL>execute dbms_space_admin.tablespace_verify('&tablespace_
name'); --Manual
oradebug setmypid
oradebug tracefile_name_for_Manual

SYS@ORCL>execute dbms_space_admin.assm_tablespace_verify('&tablespace_
name',dbms_space_admin.TS_VERIFY_BITMAPS) – Automatic
oradebug setmypid
oradebug tracefile_name_for_automatic

The Oracle-supplied Data Dictionary Health Check utility from Chapter 4 is used for
checking dictionary-managed extents or data dictionary inconsistencies, another type
of logical corruption.

DBVERIFY
dbv is an external command-line utility that is most often used to determine if
a backup database (or datafile) is valid. This utility can be used to validate any
Oracle datafile, backup, or even user-managed backups. It is always best to use
the command-line utility from the correct $ORACLE_HOME for a particular database.
Dbverify can also be used to verify a table or index segment—it logs into the
database to retrieve the segment location information within a datafile.

RMAN VALIDATE or BACKUP VALIDATE command
You can even validate individual blocks with the VALIDATE DATA FILE ... BLOCK
command along with individual files, archivelogs, or the entire database, as
shown below:

RMAN > Validate database ;
RMAN > Validate data file <file no>,<file no> ;
RMAN > Validate data file <file no> block <Block no> ;
RMAN > backup check logical validate database;
RMAN > BACKUP VALIDATE DATABASE ARCHIVELOG ALL;
RMAN > BACKUP VALIDATE CHECK LOGICAL DATABASE ARCHIVELOG ALL;
RMAN > restore database validate ;
RMAN > restore controlfile to '/u01/app/oracle/logs/' validate;
RMAN > restore archivelog from time 'SYSDATE-3' validate;

CTAS
The simple command to create table as select statement will show
corruption issues. This is the statement I issued in the corruption example that
gave an error about being unable to create the initial extent.

Extended RMAN

[208]

Export utility or Data Pump
Both of these utilities will populate the v$block_corruption view. I recommend
checking the output from the periodic run of these utilities—shell scripting can scan
for certain corruption related errors. When the script finds a certain error message,
e-mail the entire output log to the DBA(s). It would also be good practice to keep
these logs for historical reference, as it would be helpful to pinpoint when the
corruption first appeared.

Which utility should be used?
It would not be overkill to use more than one corruption detection utility. That
means scripting or scheduling the execution of RMAN validates commands as well
as using the dbverify utility plus the a������������������������������� nalyze table validate structure SQL
command. Every Level 0 RMAN backup would scan all blocks. But since a full
backup only happens on a weekly basis, there would be gaps in corruption detection.

Setting the startup initialization parameter (the new DB_ULTRA_SAFE parameter can
control several of these previously single parameters) DB_BLOCK_CHECKSUM=TRUE
will prevent corrupt blocks from being read from disk. The RDBMS calculates
a checksum for a block every time it is read or written to. The parameter
LOG_BLOCK_CHECKSUM will calculate a checksum for redo log entries. This would
prevent problems when trying to recover a database and encountering corruption.
Another corruption-prevention database parameter is DB_BLOCK_CHECKING. This
is always enabled for the system tablespace, no matter the setting (FULL, MEDIUM,
LOW, OFF). All of these corruption-prevention parameters will use more CPU, due
to the additional calculations. The amount of additional CPU can be substantial and
would depend on the application workload. It is always recommended to prevent
corruption in the first place instead of trying to restore or recover lost data.

Dbverify doesn't require a database login to scan the datafiles, but
be aware that dbverify runs slower than RMAN due to the lack of a
parallelism feature. The following query will spool a dbv command, and
scripting this query and executing the resulting output will allow you to
run dbverify simultaneously for all files. This is a viable workaround to
the lack of a parallel feature for dbverify.
SYS@ORCL> select 'dbv file=' || name || ' blocksize='|| block_size || '
logfile=' || substr(name, instr(name, '/', -1, 1) +1) || '.' || file# || '.log'
from v$datafile;

Chapter 6

[209]

When you see an error about corrupted blocks, what should you do? The first
thing would be to run one of the utilities or commands to identify the extent of the
corruption. The alert log will have information about trace files that were produced
when the database detected the corruption.

See the following documents for scripts to identify corruption by object as
well as by blocks:
How to identify all the Corrupted Objects in the Database reported by RMAN
[ID 472231.1]: Script to help identify those corrupt objects.
DBMS_REPAIR SCRIPT [ID 556733.1]: Check out this MOS document for
the latest information on repairing corrupted data blocks.

What should I do if corruption is detected?
If you can, stop all current processing that would create transactions. I know this
is bad, but it is better than losing data permanently. This means kicking off the
end users. Once you know the type, extent of the corruption, and how to recover,
then you can decide whether it is appropriate for them to proceed. Also, be aware
that physical corruption is usually a sign of something very bad happening in
the physical components, usually failing parts. The exception would be in a data
warehouse environment with the standard method of loading data with NOLOGGING
enabled to boost performance. Most often the data can be reproduced (or reloaded)
from the original source. If failing parts aren't replaced, then the physical
corruption will continue. Talk with your SA about OS testing of the hardware
subsystem immediately.

If it is a physical corruption, then your best bet is to failover to a standby database,
as advised in Chapter 5, Data Guard and Flashback on corruption prevention measures.
Logical corruption may not require the end users to log off, as it may mean
rebuilding an index, moving a table, or something less destructive.

Extended RMAN

[210]

Data Recovery Adviser
Oracle has the ability to create the script to repair the database. This is known as the
Data Recovery Adviser (DRA). If you need to introduce your own corruption for
testing purposes, you could research on the Internet for examples. The following
example is how the DRA was used to restore a corrupted datafile.

I removed all backups before starting this scenario. This means that the recovery
came from the redo and any archived logs. Cool! See the restoration from the redo
section for more about this.

1.	 RMAN backup command detects a problem and it doesn't mention the
word "corrupt".

Notice that the alert log has the same date time stamp as the RMAN session,
which detected the problem.

2.	 Using RMAN, I start investigating to see what RMAN knows about
the problem.

Chapter 6

[211]

3.	 Using RMAN, I ask the DRA what I should do about this problem—this is
known as the advise failure command.

The contents of the repair script are included below:
RMAN>

 # restore and recover datafile
 sql 'alter database datafile 6 offline';
 restore datafile 6;
 recover datafile 6;
 sql 'alter database datafile 6 online';

The Diagnostic Tool Set with 11g will create incidents automatically when a critical
issue is detected (such as corruption in this case). There are files that are meant to
be uploaded to Oracle Support personnel to help with an issue. They are located
in the diagnostic directories—incident ����and incpkg. Check the Oracle Database
Administrator's Guide for more information on how to package an incident,
specially-formatted trace files, and attaching them to a service request.

Extended RMAN

[212]

What does RMAN backup, restore,
and recover?
Did you notice the addition of the word "restore" in the title of this section?
Hopefully you did, as there is an important difference between restore and recover
when it comes to Oracle. Restore is putting back the copy of the object (datafile,
controlfile, spfile, archivelog) to a specific location. Recover is applying all of
the transactions located in the online or offline (archived) redo and online undo
segments to bring the database to a consistent state.

Consistency is where the checkpoint change numbers, for all datafiles agree with
the checkpoint SCN of the database. That is your basic goal when doing database
recovery. It is important to remember because anything that interrupts this process
may result in lost transactions. Consistency is also important for the controlfile (it
has its own checkpoint SCN), as Oracle takes a snapshot (read-consistent) of the
controlfile if you back up the database when it is either mounted or open. The query
below determines if the checkpoint change of the datafiles matches the checkpoint
change of the database. If no row is returned, then everything is consistent:

SYS@ORCL>select name, file#, status, error, creation_change#, to_
char(creation_time, 'DD-MON-YYYY HH24:MI:SS') as creation_time,
to_char(checkpoint_change#, '999999999999999') as checkpoint_change#,
to_char(checkpoint_time, 'DD-MON-YYYY HH24:MI:SS') as checkpoint_time,
to_char(resetlogs_change#, '999999999999999') as resetlogs_change#,
to_char(resetlogs_time, 'DD-MON-YYYY HH24:MI:SS') as resetlogs_time,
to_char(bytes, '9,999,999,999,990') as bytes
 from v$data file_header
where status <> 'ONLINE'
or checkpoint_change# <> (select checkpoint_change# from v$database);

That is another key aspect of being in archivelog mode—you can use inconsistent
backups, which means the database can still be open for read/write access by end
users. Does this mean you can do backups anytime? No, backups generate redo
activity while utilizing operating system resources to write the backup pieces.
Backups should be done when the activity level is at its lowest. It is important to note
that when a database is in noarchivelog mode, the only valid backup type is when
that database has been taken down in a consistent manner—shutdown immediate is
the one most often used.

Chapter 6

[213]

While the commands shutdown transactional or shutdown normal are
applicable, they aren't normally used, because it would require the database to wait
until some or all of the transactions are completed (committed or rolled back) before
shutting down. If your users are anything like mine, they probably won't log off
unless they are forced to. There may also be certain processes that have something
similar to a queue, like DBMS_PIPES, waiting for transactions to occur for processing.
That type of database activity would also prevent the database from shutting down
with the plain shutdown command.

So we are back to talking about what was covered in Chapter 3. As this is how Oracle
tracks transact, it makes sense that point of recovery is actually the SCN. Even if you
recover the database to a specific point in time, it is still SCN-driven. The following
list is what RMAN can backup as well as restore to a device such as a local disk,
optical drive, network-attached storage, or tape drive:

Primary database
Standby database
Tablespace
Datafile (current or image copy)
Controlfile (current or image copy)
Server parameter file (spfile)—another good reason to use them!
Archived redo log file
Backup sets

Don't assume that all backups are recoverable, as the media the backups are stored
on can be temperamental. If you have the disk space, it would make sense to backup
to a local disk, because that would make recovery faster. That backup to disk can
then be migrated to tape for long-term offline storage.

There is an unwritten rule that DBAs keep at least three days of backups on local
disks before migrating them to offline or near-line storage. Oracle 11g offers a few
advanced features that can help with the lack of local disk storage for backups. For
example, keeping the latest full incremental merge backup (combination of image
copy but changed blocks) on disk along with duplexed archivelogs is a simplistic
yet robust backup and recovery strategy.

•

•

•

•

•

•

•

•

Extended RMAN

[214]

Possible interruptions to the recovery
process
Well, the first in the following list is self-explanatory but is worth mentioning. Make
sure backups are occurring on a regular basis. The rest of the list will show you what
may or may not prevent the recovery of lost data:

No backups.
No RMAN catalog: Controlfile will contain the most recent
backup information.
Commands such as Resetlogs, Inconsistent Database startup, and/or
shutdown as well as using No Logging data loading procedures.
No DBID available: This is required for certain types of restores. Look
at the filename of controlfile autobackup; write a procedure to write this
information to the alert log.
Missing online REDO or UNDO: Depends on how database was shut down
if recoverable.
Missing temp: No issues with this one; just recreate or restart database.
Missing read-only tablespaces: Restore from older backups or can use logical
backups to recreate.
Missing archivelogs: Can't recover any gap in transactions; possibly use
LogMiner if not corrupt.
Missing controlfile: Restore, recreation may result in lost transactions or
longer restore time.
Missing password file: Restore or recreate; if changed, this will require a
database recycle; must match database sys password.
Missing spfile: Restore or recreate by making a pfile first.

What doesn't RMAN backup, restore, and
recover?
The following files are still considered critical, so here are a few comments on what
their role is in the overall backup and recovery strategy for your organization.

Online redo: Redo is archived for recovery
Online undo: Usually not needed for recovery
Temporary tablespaces: No need to backup; only used during queries

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6

[215]

Binaries: Multiple $ORACLE_HOMES and standbys provide some redundancy
Password files: Can be recreated; requires database cycle if password
is changed
Parameter files (pfiles): Can be recreated or a temporary one put into place
Diagnostic destination: Restore from OS backups
SQL*Net files: Can be recreated; may need to recycle database
Block change tracking file: File recreated the next time RMAN is run
User-initiated RMAN backup logs: E-mail to DBA; retain on disk for
historical comparisons

Online redo: Key to consistency
One of the biggest misunderstandings for a new DBA is assuming that it is safe or
reasonable to backup the online redo logs; this is usually attempted with a user-
managed backup command. If your database is in noarchivelog mode, then the
only type of backups that you should perform are closed, consistent, whole database
backups. The files in this type of backup are all consistent and do not need recovery,
so the online logs are not needed. You may accidentally restore backups of online
redo logs while not intending to, thereby corrupting the database.����������������� As a side note:
RMAN won't let you back up online redo logs.

The online redo can even recover datafiles that have never been backed up. See the
following simplified scenario for a database in archivelog mode. Some of the output
was shortened to save space. This illustrates the importance and role of online redo
in the recovery process, as in the following example. I started by verifying that a full
backup was available.

I created a new table segment in a new tablespace and switched log files to
make sure data was flushed to disk. These steps are shown in the following
output window:

•

•

•

•

•

•

•

Extended RMAN

[216]

The new tablespace was taken offline and verified the offline status. Next, the actual
datafile was removed from the operating system.

An RMAN connection was started to the target controlfile to start a restore and
recovery session. As there wasn't a recent backup to this new datafile, RMAN
has no record of this datafile but the controlfile does.

If you go and look at the operating system level, after the restore command but
before the recovery, the datafile will not exist.

Chapter 6

[217]

I made the tablespace accessible again to the end users by bringing it online. I also
verified that the table segment existed as well as the status of the datafiles.

This recovery came completely from the transactions located in the online redo logs,
as no backup was taken after the point where the tablespace was created, and no
archivelogs were applied during the recovery process.

User-managed backups
There are quite a few third-party backup GUI-based utilities that use the RMAN
utility API to backup databases (including OEM); they aren't in this category but are
something to be aware of. If backups are done with SQL*Plus that is known as the
user-managed type. Backups (RMAN or user-managed) can be done in two different
ways: hot (inconsistent, open, archivelog mode) or cold (consistent, closed). If you
have a reason to track these types of backups, RMAN can scan the file headers and
catalog their existence, but RMAN cannot validate or verify that these backups are
valid for recovery purposes.

The RMAN CATALOG command can be used to:

Add user-managed backup pieces and image copies
Record a datafile copy as a level 0 incremental backup, which can be used as
the starting point for an incrementally updated strategy

To backup a binary copy of the controlfile without using RMAN:

SYS@ORCL> alter database backup controlfile to '/disk/control01.ctl';

•

•

Extended RMAN

[218]

To catalog that same copy of the controlfile, you can connect to either the controlfile
or RMAN repository catalog for the same database:

RMAN> catalog controlfilecopy '/disk/control01.ctl';

To utilize RMAN in conjunction with user-managed backups, there are a few issues
to be aware of:

The target database has to be open or mounted during RMAN commands
It can only be a datafile copy, controlfile copy, archived log, or backup piece
It must be accessible on disk storage
It can't be used to catalog backups between different databases like physical
standbys and a primary

That is as much as you are going to find in this book about user-managed backups,
just enough to make you aware of their existence. You may find a viable business
need for such a procedure, but don't depend on this for your day-to-day backup and
recovery strategy.

Using a Hot User-Managed backup to copy a database to a different Server—
How To Make A Copy Of An Open Database For Duplication To A Different
Machine [ID 224274.1]

What do I do before starting a restore
and recovery?
Hopefully, you have taken the time to practice several different types of recovery
scenarios before having to do this for real in a production situation. This can be
extremely nerve wracking. So take some time to settle down before starting, as you
will need to think clearly. Don't leave the scene of the crime until things are normal,
even if it turns out badly. Here are some generalized steps on how to proceed when
the database goes down:

Determine what is �������������������������������� actually������������������������ wrong before continuing
Error messages don't always point to exactly what is wrong. They can be
vague or general unless some sort of tracing is enabled. First, start with the
database alert log and check for the existence of core dumps. Oracle has
designed an RMAN-directed Failure Adviser that can be used in conjunction
with manual procedures, but the adviser won't replace any of the steps in
this list.

•

•

•

•

•

Chapter 6

[219]

Run the recovery_status.sql script provided for this chapter. That might
help to figure out the level of restorability you are working with. There is
an example output file for what a normal database should look like (see
recovery_status.lst).
Backup current database
This may or may not be possible depending on how extensive (is the server
still up and running?) and actual type of data loss. Understand that taking a
backup at this point may take longer than the actual recovery process. Also,
make a copy of the controlfile (both binary and text-based) and the parameter
files if they are still available.
Check that you have archivelogs available. You may need more disk space
than usual in a recovery situation, as this may require several backups at key
points to minimize data loss. Keep the special backups in a different location
than normal to keep confusion to a minimum.
Put in an Oracle Support Request
You may not need this help, but it is worth it even for a debriefing session on
what you could have done differently. There is usually more than one way to
fix a problem, which is why the next point is important.
Research different scenarios
DBAs constantly disagree on the best way to accomplish a task. There may
be multiple approaches to the same problem. This may be the time to ask
for advice.
Practice the restore/recovery in a test database first
This goes hand in hand with taking a deep breath before changing anything.
It will give you some confidence that you can fix this problem correctly the
first time and not cause additional unnecessary outages. Yes, things can
become worse than they currently are!
Document all of the actual steps
This is really important, especially if you can't fix the problem yourself.
Executing an RDA might be a great starting point to document the state
of things before you start changing anything.
When using RMAN set echo on, set debug I/O on as well.

	 RMAN> set echo on;
	 RMAN> run {
 allocate channel t1 type disk;
 debug io;
 backup database;
 debug off;
 }

•

•

•

•

•

•

Extended RMAN

[220]

Log RMAN at the command line and save all of the output
The example command below starts RMAN, which connects to the target
database controlfile using the RMAN-specific commands found in the
file restoresomething.rcv and logs all output to restoreout.txt by
appending to the existing log file.
rman target / cmdfile backupsomething.rcv log /u01/app/oracle/
logs/backupout.txt append

All of the logging can help when��������������������������������������� diagnosing errors and double-checking
what was actually typed during RMAN sessions: the output can scroll past
quickly. If needed, run RMAN sessions in debug trace mode (rman target /
catalog trace rman.trc debug). Normal backup activity should have the
set echo on command as well as using the log command for historical and
auditing activities.
Use RMAN to test the backup validity before restoring with the
following command:
RMAN> restore validate database;

Monitor the RMAN job by running the following query every two
minutes to check that the % Complete column is increasing. Then query
V$SESSION_WAIT to see what event the database might be waiting on if
there is no change.

	 SYS@ORCL>SELECT sid, serial#, context, sofar, totalwork,
 round(sofar/totalwork*100,2) "% Complete"
 FROM v$session_longops
 WHERE opname LIKE 'RMAN%'
 AND opname NOT LIKE '%aggregate%'
 AND totalwork != 0
 AND sofar <> totalwork;

Find the most recent controlfile backup
This might be a challenge. Where was the latest one backed up to? This information
isn't written to the diagnostic destination, but is located in the controlfile itself.
As we aren't using a catalog, there isn't any other way to find out which one
was the latest than to look at the operating system file date (if it is located on a
locally-accessible filesystem). We can cheat a little by taking a look inside the
snapshot controlfile created automatically when using RMAN, as it contains
some backup information—date timestamp, configure commands, backup types,
and locations.

•

Chapter 6

[221]

Simply run the strings command; the default location for this file is $ORACLE_
HOME/dbs and the default name is snapcf_ORACLE_SID��.f. Remember, there is a
configure command that can change both the name and location of this file. If you
run the strings command on the controlfile backup file, it will contain most of the
information found in the snapshot controlfile, but none of the configure commands.
I would highly recommend setting both the controlfile backup and snapshot backup
to a local file destination (not the FRA), as neither takes up a lot of room. If you want
to keep the snapshot version, you would need to rename the file, preferably with a
date timestamp, or it will be overwritten by any configure commands.

This is the information found in the text version of the snapshot controlfile:

$ORACLE_SID

TAG20100113T170027—time stamp
List of datafiles
List of tablespaces
Any configure commands run
List of archivelogs
Datafile backup location
Controlfile backup name and location

Find the backup you want to restore
How do you find this information? RMAN backup logs or peeking inside the
snapshot controlfile will have the backup location. This is one of the items not
automatically dealt with by Oracle, the valuable output when running the actual
RMAN backup.

The RMAN log will have both the location of the controlfile backup as well as the
spfile, datafiles, and any archivelogs you backed up.

Online redo logs and temp files are recreated automatically by RMAN when a
resetlog is issued because online redo is not backed up.

RMAN>SET DBID 320066378;
RUN
{
SET CONTROLFILE AUTOBACKUP FORMAT
FOR DEVICE TYPE DISK TO '/disklocation/autobackup_format';
RESTORE SPFILE FROM AUTOBACKUP;
}

•

•

•

•

•

•

•

•

Extended RMAN

[222]

RMAN syntax has changed over the different versions of Oracle, which includes
enclosing commands in the RUN { } block.�� You will see this older syntax used in a
lot of the RMAN documentation and example scripts. It was included in this chapter
for that reason. In current versions of Oracle, the RUN {} is more associated with
a stored RMAN script, either user-created or Oracle-provided. For example, the
RMAN duplicate command is a stored script that works in conjunction with
your inputs.

Within the RMAN backup log, you will see that the controlfile is backed up last.

If you do not have an RMAN backup log, simply locate the last file RMAN backed
up. This should contain the controlfile backup if you have the auto controlfile backup
turned on.

Restoring the controlfile
If there is no spfile then start a RMAN session to restore. RMAN is already aware,
due to the stored configuration, of the file naming format for the autobackup
command. This allows RMAN to search for it without connecting to the catalog
repository in order to restore the spfile, as shown in the following output:

At this point, you can restore the spfile from a user-specified location or the
autobackup location:

RMAN> restore spfile from '/recovery_area/orcl/2009_05_05/o1_mf_ncsnf_
TAG20_501tr0h7_.bkp';

RMAN> shutdown immediate;

Chapter 6

[223]

If spfile exists or has been restored, restore controlfile it's time to restore the
controlfile: this command restores it from a specified location. If desired, the
autobackup location would work as well—restore controlfile from
autobackup. After you have started the database (startup nomount command)
with the restored spfile, RMAN can restore the controlfile from an autobackup.

In the example above the controlfile has been restored to the location, as shown by
the output log: '/oradata/orcl/control01.ctl'.

Restoring the database
Mount the database now that the parameter files and controlfile have been restored:

RMAN> alter database mount;

After you mount the controlfile, the RMAN repository is available and RMAN can
restore the datafiles and find the archived redo logs. There are two different basic
methods, depending on the time period of data you want recovered.

The assumption is that you have all of the archivelogs needed for either type of
operation: full or point-in-time recovery.

Full recovery
Perform a full restore and recovery. This works if all of the datafile and archivelog
backups are in the same location as when you used RMAN to backup.

RMAN> run {
restore database;
recover database;
alter database open resetlogs;
}

Extended RMAN

[224]

Point-in-Time Recovery
A Point-in-Time Recovery (PITR) would be used to restore a database to a
particular point in time. It is often used for some sort of logical or physical database
corruption that has occurred at a certain identifiable date and time, or by SCN.

RMAN> run {
set until time "to_date('Jan 10 2010 12:00:00','Mon DD YYYY HH24:MI:
SS')";
restore database;
recover database;
sql 'alter database open resetlogs';
}

The resetlogs command recreates the redo logs, overwriting whatever files that may
currently exist. The information for the location, name, and size of the online redo
logs comes from the combination of the restored controlfile and database parameters.

Verifying that the recovery is complete
Check to see that all of the datafiles, tempfiles, and logfiles exist:

SYS@ORCL>select name from v$datafile;
SYS@ORCL>select name from v$tempfile;
SYS@ORCL>select member from v$logfile;

Do you have the same number of objects you started with?

SYS@ORCL>select count(*) from dba_objects;

You can also run the recovery_status.sql script provided in the code section for
this chapter to verify that the database recovery is complete.

That is as basic as it gets for restoring and recovering a database. There are all
sorts of problems that can arise when advanced scenarios come into play. Several
scenarios that are worth practicing:

No RMAN catalog
Spfile and controlfile not restorable
Uncataloged backups that have been crosschecked and expired
Recovering from a user-specified location
Recovering from online redo loss
Recovering from temp tablespace loss
Recovering loss of a tablespace
Recovering loss of a read-only tablespace
Recovering through a resetlogs operation (incarnations)

•
•
•
•
•
•
•
•
•

Chapter 6

[225]

Remember the simplified steps: restore the parameter file, restore the controlfile,
restore the database, and recover the database. Practice will help you keep a cool
head when disaster strikes because some of the RMAN commands are complicated
and can become quite convoluted. Start simple and add changes to your RMAN
backup and recovery scripts gradually. It will take more time, but you will have
more success in the long run.

Simplified recovery through resetlogs
During the resetlogs operation, the information in v$log_history and v$offline_
rang�e records is no longer cleared as in earlier versions of Oracle. There are two
new columns in both of the views (v$log_history and v$offline_range), which
indicate the database incarnation. The archivelog records belong to resetlogs_
change# and resetlogs_time. The incarnation number of a database can be
changed with several different methods—original database creation, NID operation,
and a resetlogs operation. See the following SQL command to identify which set of
archivelogs belongs to which incarnation of a database. If resetlogs or NID operation
is not executed, then only the original incarnation DBID will show up in the results:

SYS@ORCL> select recid, thread#, sequence#, resetlogs_
change#,resetlogs_time from v$log_history;

In previous versions of Oracle DBAs, we often had bad experiences when trying
to restore a database after a resetlogs operation. It was like a point of no return;
there wasn't an easy way to recover transactions from archivelogs from a previous
incarnation of a particular database. Once you passed that resetlogs point, your
database was very vulnerable, because all previous backups were now obsolete.
The latest method has the following advantages over the earlier one:

There's need to perform a full backup after an incomplete recovery, as you
can recover again.
There's need to recreate a new standby database after a failover operation,
which does a resetlogs operation to open the standby.
Functionality is built into the newer version; there's no new
RMAN command.
It doesn't make any previous incarnation of an image-type backup obsolete
for an incrementally merged strategy.
Block media recovery can recover the corrupted blocks through a resetlogs
operation on a parent incarnation.
Newly generated archivelogs are usable with an earlier incarnation of
the database.

•

•

•

•

•

•

Extended RMAN

[226]

Oracle 10g introduces a new format specification for archived log files. This new
format avoids overwriting archived redo log files with the same sequence number
across incarnations as in previous versions. One of the best features built into the 11g
RMAN is that it automatically searches for archivelogs to apply during a recovery
operation, looking into the known archive destinations. In the past, DBAs had to
rerun commands multiple times a day to catalog the archivelogs being produced, in
case they were needed for recovery. See the section on recovering using REDO only
for examples on how to test this automatic retrieval of the archivelogs.

RMAN cloning and standbys—physical,
snapshot, or logical
In 11g, all databases are now identified uniquely by DBIDs. In earlier versions, every
database copy made by a method other than the duplicate command had the same
DBID. In previous versions of Oracle, you would use the NID utility to change the
DBID and ORACLE_SID for certain cloning procedures to a test database. You couldn't
do this for standby databases because changing the DBID or ORACLE_SID would
invalidate the configuration and the Data Guard process would not work. This is no
longer needed—RMAN can now duplicate a production database for any reason.
There is just a small difference in the commands run for the different types.

It is very easy to create a copy of a production instance with RMAN using the
duplicate command. Most often this is to refresh a database for testing environments.
Duplicating a database for a standby is slightly different, but the basic concepts
are the same. What is great about doing this process on a regular basis is that it is a
reproducible test of your backup and recovery strategies. It will tell you exactly how
long it takes to recover a full database backup; apply the archivelogs to restore a
copy of the production database to a consistent state.

There are two different types of duplicates—live database duplication and backup
duplication. Live database duplication is producing an exact copy of a production
database without taking a backup. This shouldn't be done during heavy production
database use, as the process will consume resources to accomplish these steps. The
backup duplication process uses existing backups to create the database. You might
need a clone or a standby—physical, snapshot, or logical. A clone is just a copy
of production, with no more updating of the information from the primary to the
new copy until you recreate it. Most often DBAs set a schedule for cloning from the
primary database to refresh the testing environments and keep the data fresh for the
programming staff to test against.

Chapter 6

[227]

Clones, DBIDs, and incarnations
You can clone a database with the older method of user-managed backups, but
it is easier to do this with RMAN. That is because RMAN changes the DBID and
ORACLE_SID (using the utility NID). This is another step you would have to do
manually if you used the user-managed type of cloning a database. The following
RMAN query will show the current DBID as well as any incarnations:

RMAN> list incarnation;

The following query will also find the current DBID:

SYS@ORCL> select to_char(dbid) from v$database;

DBID is also a part of the controlfile autobackup filename with the format of
%F = c-<dbid>-<yyyymmdd>-<sequence number> like the following file:

c-3416182518-20100115-01

A script is provided as the code section for this chapter that gives you a quick way
to duplicate a database to another server using RMAN. This script would result in
exactly the same ORACLE_SID and DBID—called rman_diff_server.sql. If you
want a different ORACLE_SID and DBID, then investigate the use of the NID utility.
Also, be aware that if you backup both databases with the same DBID using an
RMAN catalog repository, then the information in the repository is going to get
replaced each time the catalog does a resync command. A way around these types
of issues is to give each database a different tag as part of the backup and recovery
commands, making each backup identifiable.

Creating a cloned database
This is what needs to be in place to accomplish the following task:

Backups exist in the same location as taken on primary
All directories for the datafiles already exist
Either a pfile or spfile exists for CloneDB

•

•

•

Extended RMAN

[228]

CloneDB has already been started with no mount command

There is a text file in the code for this chapter that contains the normal errors
(cloning_errors.txt) that occur during a cloning procedure. These errors
are seen during the recovery phase, as the database is mounted, but before the
resetlogs command. This is normal because the alert log entries are informing us
that something is wrong (missing online redo logs) at this point that we are already
aware of. These errors are okay to ignore. But if they continue past this particular
time, then something else is wrong.

There is also a text file (clone_output.txt) that shows what should happen during
a normal successful cloning operation. If the cloning process seems to be hanging
near the end (see the following code section), turn off the GC Intelligent Agent
temporarily because this has been an issue for my environment, especially
before GC 10.2.0.5.

Now where do the datafiles, redo, undo, and temp files get created during a
clone? They are put in exactly the same place as the production database, which is
considered the target in a cloning operation. There is more than one way to put all
of the assorted files in a different location—database parameters or using the set
newname as part of the cloning script. A line for each data and temp file would need
to be included as part of the script if using the set newname method:

set newname for datafile 23 to '/u01/oradata/CLONEDB/work01_CLONEDB.
dbf';

•

Chapter 6

[229]

Using the database parameters to change the location of the database files on a
different server is easier to maintain over time. Be careful cloning multiple databases
on a single server—you could accidentally overwrite database files.

db_create_file_dest --creates everything in one location
db_file_name_convert –converts location for data,temp,redo to another
log_file_name_convert –converts location for archivelogs to another

Post-cloning tasks
Here is a list of suggested housekeeping tasks for a newly cloned database. This is
to clean up after a previous copy of the database has been removed. These steps are
intended for a copy of production for testing use, not for a standby:

Remove old trace, dump, audit files, alert logs
Obsolete and expire old backups, exports, data pump files
Remap database directories
Adjust database links
Revisit auditing, programmer access
Register the database with RMAN catalog
Rerun RMAN configure commands
Turn off archiving if not needed

Creating a standby database
This section covers the use of RMAN when creating standby databases, whether
it is a physical snapshot or logical type. There are other methods of creating
standbys, but using RMAN is easier because several tasks are consolidated
into a single command.

•

•

•

•

•

•

•

•

Extended RMAN

[230]

Physical standby
The following script is the simplest method of creating a physical standby. It is
assumed that all of the primary database backups and all of the archivelogs since
those backups are stored in the same location on the standby server. That is where
the restored controlfile and RMAN catalog repository expects them to be. There are
several steps that are needed to get to the point where you actually run the script:

Physical standby spfile required
Physical standby has started in nomount mode

To create a snapshot or logical standby, refer to the Oracle Data Guard Concepts
and Administration guide, as all of the standbys start out as physical and are
then converted.

There is a script in the code section for this chapter that illustrates a live duplicate
of a standby, that is with no existing backups of the primary. See the file named
live_duplicate_standby.sql.

There is a formula for calculating the correct number of Standby Redo Logs (SRL).
SRL is for improving the performance of a physical standby using the feature
known as REAL-TIME APPLY, with little to no impact on the primary database. The
transactions are transferred to the standby's online redo logs and applied to the
standby instead of waiting for the archive process to write to primary online redo
and then transfer. This reduces the number of transactions that could be lost to
a bare minimum, especially for the MAXIMUM_PERFORMANCE mode. There is an
Oracle-provided formula for the number of standby redo logs, as that is an
important part of performance to discuss in the next chapter:

•
•

Chapter 6

[231]

SRL = (maximum number of log files for each thread + 1) * maximum number
of threads

For example, if the primary database has three log files for each thread and two
threads, then eight standby redo log file groups are needed on the standby database.

Scheduled maintenance/cataloging of archivelogs
In earlier releases of Oracle, there were problems using RMAN to backup standbys
or standby archive destinations, as stated in Chapter 5. More of the issues related
to backing up standbys have been resolved in 11g, with unique DBIDs for all
databases—no matter the type.

If there is a delay in writing an archived log to the standby site, it would show up
as a wait on the primary database. If the FRA on the standby is full, waits labelled
LNS wait on SENDREQ begin to register on the primary database. Each wait has a
length of 10 ms. That may seem like a very short time to wait (milliseconds), but with
an intensive OLTP database, multiple waits can add up affecting end user response
time. The following output will show the errors from the standby alert log when the
FRA is full on a standby.

The problem may result from using the FRA for a standby archivelog destination.
There are some techniques to configure Oracle for this type of situations. The one
that most DBAs aren't aware of is that the FRA needs to be sized so that space
pressure to remove obsolete backups is triggered when space_used is greater than
or equal to the space_limit. The space_limit must be less than actual disk space
available. If you consistently run out of room on a standby with FRA and it is very
close in size to the actual disk space, try reducing the size of the FRA.

Rolling forward a standby using incremental
The RMAN command BACKUP INCREMENTAL FROM SCN will allow you to create a
backup that begins with the current SCN of the standby. This incremental is posed at
the right place to then roll forward the standby so that the standby and the primary
are now in sync. This takes much less time than recreating the entire standby from
a full backup again. See the following document for more details: Rolling a Standby
Forward using an RMAN Incremental Backup in 10g [ID 290814.1].

Extended RMAN

[232]

Rolling incremental for monthly updates to data
warehouses
RMAN default backup strategy of rolling incremental updates into full backups
can be used for updating a read-only data warehouse. Often a DBA needs to
add last month's data that is much smaller in size than the entire database. This
means there is no need to recreate the entire database just to add another month's
work. The utilities data pump or the older export/import may take longer than
expected for this monthly task. See the following document for updating an existing
Transportable Tablespace Set with Incremental Backups: Using RMAN Incremental
backups To Update Transportable Tablespaces [ID 831223.1].

The DBMS_BA�������������������� CKUP_RESTORE package
The DBMS_BACKUP_RESTORE package is the system package created by dbmsbkrs.sql
and prvtbkrs.plb. This package, along with the package DBMS_RCVMAN, is installed
during the catproc.sql run. This is the interface between database server and the
OS that provides the I/O services for backup and restore operations, as directed
by RMAN.

In the package header, you can see the versions that this database version will
support using RMAN—8.0.4.0 is the minimum for Oracle Database Version 11.1.0.7.

How to extract controlfiles, datafiles, and archived logs from SMR backupsets
without using RMAN [Note:60545.1]: This article is for using the
DBMS_BACKUP_RESTORE package directly without the RMAN
utility; it's useful for restoring from uncataloged tape backups.

Summary
You should have figured out by now that RMAN is a highly advanced tool in your
arsenal of weapons against things that may attack the database. It even helps protect
the database against the DBA, the most powerful being that it is sworn to protect but
is also the greatest threat.

One of the most important things you should take away from this chapter is to
maintain a constant vigilant eye on the database alert log. Errors may occur within
SQL*Plus or other clients that actually mask a much larger issue such as corruption.

Chapter 6

[233]

In order to provide the best possible service to your customers while keeping
outages to a minimum, RMAN is one of the best tools for database backups and
recovery. Remember the following list because these are important to backup
and recovery as part of the MAA in addition to using RMAN:

Running in archivelog mode—gives the ability to recover more transactions.
Multiple copies of the controlfile—redundancy on different mount points.
Multiple copies of online redo logs.
Multiple archive destinations—can include standbys.
Backups are happening on a regular basis—both physical and logical.
Testing restores—by cloning or duplicating as well as creating standbys.
Turn on block checking—worth the performance hit.
Check password policy for data pump and/or export user—it may
expire unexpectedly.
RMAN—used for corruption detection and validating backups.
One datafile to one backup piece—saves time during partial, small,
or tape restores.
No RMAN repository—make sure controlfile keep time is correctly timed for
your retention policy. Catalog is required for Data Guard implementations.
RMAN catalog maintenance—remove obsolete backups outside your
retention policy; recatalog backups if needed.
Make autobackup of controlfile persistent.
Keep historical records of backup logs in case of complete loss.
Record incarnations with the corresponding DBID—write to alert log,
keep logs.
Rethink the policy of delete all input for archivelog backups.

Testing for this chapter was done with the 11g versions 11.1.0.6.0 and 11.2.0.1.0 on
several different servers: Linux 64-bit Red Hat 4 and 5, Linux 32-bit Red Hat 4 and 5,
Windows Server 2003 32-bit.

While RMAN is great, it is only a tool that will be used, sharpened, dulled with
use, and then sharpened again. Even DBAs that have been using it for a while
need to reorient themselves with the newest features that will allow their
applications to achieve even higher levels of uptime. That brings us to the next
chapter on Migrating to 11g, as we introduce you to the shortest amount of
downtime for upgrades—Rolling Upgrades with a Transient Logical Standby.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Migrating to 11g:
A Step-Ordered Approach

How do you upgrade to the next release of Oracle without incurring extended
periods of downtime and at the same time minimize possible disruptions? The
information on how to accomplish this started back at the beginning of this book in
Chapter 2, and was expanded further in Chapter 4. From using multiple Oracle Homes
to using Data Guard standbys, all of the previous information is applicable and a
buildup of knowledge for accomplishing large migration projects is required.

As a new DBA, it is important to realize that the binary upgrade and the database
upgrade are two different events, most often executed at different times. A binary
upgrade is the ORACLE_HOME software that is installed, upgraded, and maintained
using Oracle-provided tools. A database upgrade is basically updating the data
dictionary from one version to another. There are a myriad different ways (or
migration paths) to accomplish both tasks, which is what this chapter is about.

Breaking up a large task into smaller chunks gives you multiple safe fall back
positions for each shorter outage window. If something in one of the smaller
steps doesn't work, back it out, reengineer, and redeploy. This will allow you
to accomplish more in the long run, with less chance of failure and all the while
installing confidence in your abilities. You will see how this approach works with
each of these topics:

What Oracle components are backwards compatible?
Recommended order of migration.
Patching, upgrades, and migrations—tips and techniques.

•

•

•

A Migrating to 11g: Step-Ordered Approach

[236]

There are several migration paths available that can utilize the different
technologies available in Oracle. There isn't a right answer as to which one to
choose, I can't make that choice for you. Only the DBA in charge of a database
should make the final decision on how to proceed. Most often it is the physical or
application-specific limitations that dictate the path taken—hardware, software,
outage window restrictions, and of course the most important one, the budget!

Most Oracle shops also look into replacing the hardware at major Oracle upgrades.
This makes some of the transition easier, as the preparation steps take place on
a server that isn't in production yet. Look at upgrading the operating system to
the next release at the same time as migrating onto new hardware. That will save
you downtime later to do the second migration. The basic limit to this type of
migration—migrating to new hardware—is based on the size of the database. For
a larger database it may take longer, depending on the method used, more upfront
prep work, and even some creative thinking to accomplish with limited downtime.

Here is a list of the database upgrade technologies that will be covered in this
chapter. An in-place upgrade will most often be performed on an existing database,
as compared to migrating to 11g with a new database. You can expect to see tips
scattered throughout.

Manual upgrades—in-place
Database Upgrade Assistant (DBUA)—in-place
RMAN restore of backups for a manual database upgrade—in-place
Transportable Tablespaces (TTS)—new
Physical and/or Snapshot standbys—new
Transient logical standby; rolling upgrades with minimal downtime—new
Export/import or data pump—new

In the past, there were only manual upgrades and then the DBUA utility came along.
RMAN gained more functionality for upgrades and then Data Guard standbys were
introduced. The final lone method of migration—export/import or data pump, is
really a last method of migration, which should only be chosen when the database is
small or all other migration paths have been ruled out.

Migrating to a newer Oracle Database version doesn't have to be confined to a single
outage period. Several interim steps can be done ahead to some of the compatible
components, saving valuable time. Some of the components detailed in this chapter
are parts of any Oracle Database edition—some are licensed requiring the Enterprise
Edition of Oracle and others are completely separately installed Oracle software.

•

•

•

•

•

•

•

Chapter 7

[237]

In a general sense, Oracle is backwards compatible for making that transition from
an earlier version to a later one. The following components can be upgraded to
11g Release 2 (11.2.0.1 current patchset at the time of this writing) while still being
compatible with earlier versions of Oracle Database:

Oracle Net Services: LISTENER.ORA, SQLNET.ORA
Clients (SQL*Net, JDBC, ODBC)
RMAN Binary, Catalog, and Database
Grid Control Repository Database
Grid Control Management Agents
ASM (Automatic Storage Management) and CRS (Clusterware)

The utilities that will have specific compatibility issues between Oracle versions
include both export/import and data pump. See the following support documents
for the latest up-to-date information:

Compatibility Matrix for Export And Import Between Different Oracle Versions
[Doc ID: 132904.1]
Export/import data pump parameter version—Compatibility of Data Pump
Between Different Oracle Versions [Doc ID: 553337.1]

As stated in Chapter 2, design your environment to be adaptable to change. This
means that you should be comfortable with multiple Oracle Homes keeping each
environment cleanly separated from the others. Install the 11g version in a different
Oracle Home. Use the tools that Oracle provides, such as the oratab and oraenv file,
to dynamically set environmental variables based on the ORACLE_SID as stated in
Chapter 2, Maintaining Oracle Standards. See the section later on in this chapter on
how to manually clone an existing ORACLE_HOME to apply patchsets.

Helpful troubleshooting and tracing for several of the utilities used in
this chapter.
MOS Note 577775.1, "DBUA or Migration Is Hanging What to do?" and
MOS Note 428118.1 "How to enable Java code tracing for DBUA, DBCA
and NETCA?"

•

•

•

•

•

•

•

•

A Migrating to 11g: Step-Ordered Approach

[238]

Oracle net services
As a DBA, controlling the environment is key to preventing disruptive events
during migrations. Using the database parameter, LOCAL_LISTENER for each
ORACLE_SID on a separate port allows the DBA to turn off or on access to that
database without affecting other ports and/or ORACLE_SID(s). If you use port 1521,
dynamic registration will happen for each instance on that node, and hence that port
is avoided to maintain control.

Oracle recommends having multiple listeners running in multiple Oracle Homes
(see Note: 429074.1), but experience has taught me that the highest version listener
executable will work for any single-version, down-level database installed on a
single node while preventing conflicts. You can use any combination of multiple
ports and multiple listeners, but the executable comes out of only a single
ORACLE_HOME location, as shown in the following listing of Unix processes:

The key to using a higher level listener is the variable TNS_ADMIN, which overrides
the default Oracle net services location for the LISTENER.ORA, TNSNAMES.ORA, and
SQLNET.ORA configuration files. Refer back to Chapter 4 for more detailed information
on modifying the *.ora files.

Cancel out the Oracle software installation when it starts to configure Net Manager
(refer to the following screenshot). Cancelling out the step just stops any sort of
listener starting in the new ORACLE_HOME. After the installation session is over,
manually edit the *.ora files in preparation for switching to a new listener
during off-peak hours. Switching to a new listener is basically turning off the old
version and starting the new one. Manually configuring all listeners out of a single
ORACLE_HOME would also prevent any possible conflicts such as hanging or the auto
registration of port 1521.

Chapter 7

[239]

Client compatibility (SQL*Net, JDBC,
ODBC)
In a general sense, client compatibility is supported on a minimum release (usually
what is known as the terminal or last release for older products). In other words,
a higher-level client can work with a lower-level database. This configuration will
most often see a performance boost as well as other known client-specific issues
resolved by upgrading the client before the database. The clients in the following list
that have an asterisk (*) will have little to no issues with a single version down-level
database, others have a comment related to the support:

ODBC *
SQL*Plus, Instant Client, SQL Developer *
JDBC, JDK—Application specific
Precompilers—Application specific
Export/import or data pump—MOS article, very strict guidelines
Database links*
32/bit to 64/bit—SQL*Plus, C, Cobol, database link
PL/SQL features compatibility—New release features will be associated with
the lowest version client

•

•

•

•

•

•

•

•

A Migrating to 11g: Step-Ordered Approach

[240]

Features availability—New release features will be associated with the lowest
version client
BEQUEATH connections are not supported between different
releases—Unix-specific Oracle protocol that connects without a listener.

Oracle ODBC version compatibility mirrors compatibility for Oracle client software,
as it is part of the client installation and tested as a bundle.

If you start with Oracle Database 10.x, there will be fewer issues than starting with
any of the older versions. There are also few compatibility issues when dealing with
a terminal (or final) release of an Oracle Database. See the following MOS and OTN
documents for the latest updated information on client compatibility between
all versions:

Client / Server / Interoperability Support Between Different Oracle Versions [ID
207303.1] http://www.oracle.com/technology/tech/java/sqlj_jdbc/
htdocs/jdbc_faq.htm#02_02

JDBC, JDK and Oracle Database Certification [Note 401934. 1]

RMAN binary, virtual/catalog, and
database
The RMAN executable version (binary) should be the same as the target database.
This dictates using the same ORACLE_HOME to run RMAN scripts. Most sites with
multiple databases connect to a remote RMAN repository catalog database. The
RMAN repository catalog schema version must be greater than or equal to the
RMAN executable with the built-in backward compatibility for earlier releases.
Upgrade the catalog using RMAN commands as follows:

This will not upgrade the database that houses the RMAN catalog to 11g. This
upgrades the RMAN schema to be compatible with the higher release of RMAN.
Upgrading the catalog allows you to backup any other 11g databases as well as
previous versions. You can go ahead and also upgrade the RMAN catalog repository
database to 11g at this point, using any of the standard methods: DBUA, EXP/IMP,
EXPDP/IMPDP, Transportable Tablespaces, or a Manual Upgrade.

•

•

•

•

Chapter 7

[241]

The RMAN catalog database should not be housed in the same place as your
production database. It should be a separate database on a different server. It would
be wise to test upgrading the catalog on a test copy of your RMAN repository. It is
also customary to backup the RMAN catalog database on a regular basis, in case you
need to restore backups or controlfiles from tape. Chapter 6 indicated that there are
limits when restoring from tape once they are removed from the RMAN repository
(controlfile or catalog).

The RMAN catalog repository database is critical enough for an enterprise-wide
utility for those organizations that have multiple databases and multiple DBAs.
Some organizations use multiple RMAN schemas (catalog owners) for different
Oracle releases and/or databases. 11g RMAN brings new functionality for handling
different DBAs using multiple databases called the Virtual Private Catalog. It
provides a fine-grained control mechanism for giving certain DBAs access to a subset
of databases. This provides more flexibility than the previous method of multiple
schemas for managing DBA backups.

See MOS Note 73431.1 RMAN Compatibility Matrix for information on
RMAN compatibility between releases.

Grid Control—database repository and
agents
Many DBAs keep their RMAN Catalog and Grid Control repository in the same
database because of their related DBA functionality. Grid Control 10.2.0.4+ is
compatible with 11.1.0.6 version of the database, but I would recommend
GC 10.2.0.5 with 11g as the repository database due to migration issues.

Migrating the Grid Control repository database to 11g was mentioned earlier in the
book in Chapter 4. There is quite a bit of information on several migration methods
included in that chapter.

Grid Control management agents are compatible with upper level Oracle Enterprise
Management servers.

A Migrating to 11g: Step-Ordered Approach

[242]

ASM, CFS, and RDBMS within an Oracle
Grid infrastructure
Oracle Grid Infrastructure 11g Release 2 is a packaged software installation type that
integrates ASM, ASM Cluster File System, Oracle Database, and Oracle Restart. It is
designed to push the deployment of the different components of a highly available
database into two different operating system accounts—ASM+ CFS and RDBMS. At
the same time this allows multiple people to administer their respective components—
the system administrator configures hardware and storage, the network administrator
configures all network components, and the DBA is in charge of the database.

SYSASM and SYSDBA are privileged accounts associated with an ORACLE_HOME. The
SYSASM account has privileges (for performing specific tasks) granted to an ASM
ORACLE_HOME with a SYSDBA account with privileges to a Database ORACLE_HOME.
Currently, both ORACLE_HOME types (ASM and Database) can exist in the same
ORACLE_HOME installation directory.

See the following link in the Oracle forums for more specific information
on current implementations and to find out how recent migrations have
progressed:
http://forums.oracle.com/forums/forum.jspa?forumID=62
(RAC, ASM, and CRS forum).

Oracle is proposing that in future releases there will be no SYSDBA privileges in an
ASM instance. This is where Oracle is really pushing the separation of duties, but as
DBAs know, in most shops there is not a clear separation of duties. These are some
of the features that are meant to facilitate the separation of the ASM home from
an ORACLE_HOME. These features in the following list are included in this chapter
because the implementation details facilitate Advanced Migration Paths:

Oracle Clusterware has a requirement to be installed in its own ORACLE_HOME
ASM can be installed separately as of 10gR2. Features will be available on the
lowest release in the combination of ASM home and Database home
The ability to separate SYSASM and SYSDBA at the OS level by using
different Unix accounts
One-off patches have two components—one for Clusterware and another for
the RDBMS
As of 11gR2, ASM has the ability to perform a rolling upgrade while leaving
the database still available

•

•

•

•

•

Chapter 7

[243]

Often the DBA makes the judgment calls about the RDBMS as well as ASM, while
CRS on CFS is more easily handed off to a system administrator who happens
to know all the details of storage implementations. Here is Oracle's proposed
separation of accounts and privileges. There are slight differences depending on
which document is referenced:

OS Group Oracle group Privilege
OINSTALL (group only) OraInventory
OSASM GRID SYSASM All ASM
OSOPER OPER SYSOPER Startup, shutdown
OSDBA ORACLE SYSDBA All RDBMS

Different operating system accounts provide a clear separation of file system
privileges, which also delineates the ability to perform certain tasks. Along with
different operating system accounts, it makes sense to have different ORACLE_HOME(s)
for the Grid Infrastructure—both ASM and CFS in one home, RDBMS in the other.
The Grid Infrastructure install can support either RAC or a standalone database.

Oracle ASM+CFS is always considered an out-of-place upgrade (a similar concept
to the out-of-place patchset instructions later in this chapter). The older version of
the software is installed at the same time as the newer version in different ORACLE_
HOME(s), but only one home is being used. One-off cluster patches will have two
components—Clusterware and RDBMS. There is also the promised capability for
ASM to accomplish a rolling upgrade while still allowing full database access.

See the following documents for more information:
Oracle Clusterware (formerly CRS) Rolling Upgrades [ID 338706.1]
How to Change ASM Home on a Node in RAC [ID 558508.1]
Applying one-off Oracle Clusterware patches in a mixed version
home environment [ID: 363254.1

Recommended order of migration
It is assumed that you, the DBA, would attempt multiple variations of a migration
project in a non-production or standby environment first (See Chapter 5 for testing
scenarios) for several weeks to months before even attempting any changes to
production. As you should notice, the database is not the very last thing to migrate;
it is the optimizer. You aren't really migrating the optimizer, as you will be
enabling the newest features of the optimizer by manipulating the related database
parameters. In reality, you are migrating the statistics (see Chapter 8 for more details).

A Migrating to 11g: Step-Ordered Approach

[244]

Changes that survive testing are migrated to production gradually so that
disruptions are kept to a minimum. The entire migration process should begin when
a new version is first released, even while in beta. That would give a long period of
time to test a new major release of Oracle. Often a year or more will pass before it
is fully tested for production use. The following is a personal recommended listing
of the order of implementation. By all means adjust it for your needs. I would
recommend waiting until the product is out of beta testing before applying any
of the following components in a production environment:

1.	 Listener
2.	 RMAN version as part of a Catalog Repository
3.	 RMAN Catalog Repository Database
4.	 Grid Control Database
5.	 Grid Control Agents
6.	 Clients—SQL*Plus, Instant client, ODBC, JDBC, among others
7.	 ASM and/or CRS
8.	 Database
9.	 Optimizer

The next section deals with the actual tasks that are done first, installing the newer
version of Oracle Database software with some tips on how to automate this task.

Installation of major versions,
maintenance releases, and patches
There is a difference when installing Oracle software, depending on whether it is a
major release, maintenance release, or some sort of patchset. A new major release,
for example, will go from 10.x to 11.x. A maintenance release is the second set
of numbers, for example, going from 11.1 to 11.2. Review Chapter 2, Maintaining
Oracle Standards, for the numbering convention for Oracle releases and some
recommendations related to installing patchsets.

Chapter 7

[245]

Release installation
If you are planning to do a release upgrade, either major or maintenance, then install
the newer version in a new ORACLE_HOME. Remember to set the environmental
variable ORACLE_BASE. Which version should you install? Find the most current
one even if it has just been released, since you are installing this first in a test
environment. Don't forget to patch this new ORACLE_HOME with the latest CPU or
PSU patch if it is available. Check back on MOS for patchset availability for this
newer version of Oracle Database on a regular basis. This section contains some
of the tips you might need to install a newer release of Oracle Software.

There are three different modes when installing Oracle Software—interactive,
suppressed, and silent. I recommend doing at least one interactive installation of
a new major or maintenance release for a trial run. This trial run can also be used
to record the installation routine, as shown by the following code. This recording
can then be used as the response file for doing the subsequent installations silently
(without human intervention). The resulting response file can easily be edited for
any desired changes. The suppressed mode is a combination of interactive and silent.

When interactively installing for the first time, do a custom install of the binaries
only. I recommend not creating or upgrading a database at this time. The creation
and upgrading tasks can be easily done later with a command-line utility on their
own. Database Creation Assistant (DBCA) allows you to interactively create a
database or save a set of scripts to edit and run manually for database creation.
This chapter contains all of the different methods for actually upgrading an
existing database to a newer release besides just using the DBUA.

ASM as well requires some prerequisites before it can be fully configured and
utilized. As mentioned in the SQL*Net Services section of this chapter, a custom
install also allows you to cancel out of the NET Configuration Assistant utility.

Oracle Universal Installer (OUI) FAQ [ID 458893.1] will give great
information that is not found in the standard Oracle Documentation.

A Migrating to 11g: Step-Ordered Approach

[246]

A custom install will also allow you to monitor what is installed by default,
particularly what optional components will be installed. Remember, optional means
the additional licensing required. Review what licenses your organization actually
owns because the database now monitors when an optional component is actually
used, as shown by the example query below:

SYS@ORCL>select name from dba_feature_usage_statistics where detected_
usages > 0;

It is easy to determine what is an option when looking at the following URL for the
different editions. It would not be an easy task to determine the different licensing
options by using a query. http://download.oracle.com/docs/cd/E11882_01/
license.112/e10594/editions.htm#CJACGHEB

The default installation of certain optional components are shown in the next
screenshot; this comes from the 11.2 Oracle Universal Installer (OUI):

PatchSet installation—cloned ORACLE_HOME
Cloning is the easiest method for creating a copy of an ORACLE_HOME in order to
apply further patchsets.

It is recommended to have at least two $ORACLE_HOMEs—one for production and
another for testing patches at all times. The database can only be opened and used in
a single ORACLE_HOME. The other homes not currently being used are upgraded and
configured in advance of any database changes required in a new release. That is the
last step in migration to a new release applying the database changes. Often I will
have at least three ORACLE_HOMEs on a server at any one time—current production,
patchset of production, and the new major or maintenance release home. Cloning
or creating another new ORACLE_HOME for patching is called an out-of-place patchset
apply in the Oracle documentation.

Chapter 7

[247]

Follow these steps to clone an existing ORACLE_HOME:

1.	 As the root user, copy the existing lower-level ORACLE_HOME to the new
upper-level ORACLE_HOME location.

2.	 Make sure the only differences between the ORACLE_HOME(s) are
log-type files.

3.	 Now that the new location has been copied, register the new ORACLE_HOME
in the appropriate Oracle Inventory by using the clone.pl script provided
by Oracle. The Unix tee command is a handy method for collecting large
outputs to a file while still allowing you to see the output in the command
window at the same time. Notice how I set the ORACLE_HOME by exporting
the environmental variable. This makes sure the clone.pl script can find all
other scripts needed for this process to complete successfully.

4.	 Log in as the root user to run the newly created $ORACLE_HOME/root.sh.
5.	 Install the patchset, in this case 11.2.0.2, to the newly cloned ORACLE_HOME

(/u01/app/oracle/product/11.2.0/db_home2). This upgrades the
binaries only, not any databases that you want to upgrade to 11.2.0.2. After
the binaries are upgraded, you may upgrade the database using any of the
procedures described in the Database upgrade methods section of this chapter.

A Migrating to 11g: Step-Ordered Approach

[248]

At this writing, the patchset 11.2.0.2 was not actually available. It is
only used as an example in this case.
See the How To Clone An Existing RDBMS Installation Using
OUI [ID 300062.1] document for more information about cloning
ORACLE_HOME(s).

Now you have the higher-versioned Oracle Software (called binaries) installed with
the separately upgradeable components. Higher-versioned components (such as
the listener, clients, ASM + CRS) that exist on the same server as the database are
intended to be installed, configured, and working in a separate ORACLE_HOME than
the lower-level database home. The other components that are a separate install on
a different server are assumed to have already been installed by this point as well:
RMAN repository catalog, GC repository, and agents.

See the compatible components as listed in the Recommended order of migration
section. We are now at upgrading the database. Making the database a completely
separate step allows this whole process to be a step-ordered migration. There are
several methods for upgrading the database—DBUA, manual, RMAN, TT, standbys,
EXP/IMP, or data pump. The one you choose depends on several different things:
size of database, amount of the downtime allowed, co-migration to new hardware,
application-specific concerns, or technical obstacles.

Database upgrade methods
As stated earlier in Chapter 2, there is a MOS document called Oracle 11gR2 Upgrade
Companion [see ID 785351.1], which I personally think is a misleading title. It implies
that this is a utility of sorts, but it is only a very long document on everything you
would ever want to know about upgrading. It applies to every installation type
(see the following list of configurations, this is the same list mentioned in Chapter 2
in the Recommended Patches section) and can be very confusing to new DBAs.

Targeted configurations in the upgrade companion:

Generic
Real Application Clusters and CRS
Data Guard (and/or Streams)
Exadata
Oracle e-business suite

•

•

•

•

•

Chapter 7

[249]

The upgrade companion seems to be a document taking all of the possible things that
could go wrong with an upgrade all bundled up in one place. I would recommend
downloading the companion, and copying all of the text in a document to which you
can then add comments or amend as needed. Take out the information that doesn't
apply to your environment or is intended for other targeted configurations.

How long does the database upgrade take?
Technical considerations are usually the most important concern when the DBA is
weighing the different options for upgrading the database itself. End users will be
more concerned with the downtime due to this upgrade. There is only one way to
determine how long a process will take. Run it in a test environment that mimics
production as close as possible.

Whether you use the DBUA or the manual method, there really isn't much
difference, as both will result in about the same amount of downtime. That is because
the step that takes the longest time to complete is the actual conversion of the data
dictionary from one version to another. Here are some things to keep in mind for
keeping an upgrade window as small as possible:

1.	 It takes less time to migrate the data dictionary from a 10.x database to 11.x
than it would take to start with an older version; there are just fewer data
dictionary changes.

2.	 All PL/SQL becomes invalidated, so databases that contain more objects that
require compiling would take longer. Compile using the parallel compile
package utlrcmp.sql instead of the standard utlrp.sql. For a server with
multiple CPUs, the degree of parallelism is recommended to be set to the
number of CPUs plus two. Remember to account for multi-core CPUs.

3.	 Collect statistics (or import desired statistics) on all objects prior to
performing the upgrade. See the next chapter for more information on
collecting and importing statistics.

4.	 Make all other tablespaces other than SYSTEM, SYSAUX, UNDO,
ROLLBACK SEGMENTS, and SYSAUX offline. Two different commands
would work for this task, OFFLINE NORMAL or even READ ONLY, as
the data in application-specific tablespaces isn't changed during an Oracle
upgrade. Any ordinary READ ONLY tablespace will need to be made
READ WRITE temporarily after the upgrade, so the data file headers can be
updated and then restored to READ ONLY status. See the MOS document
Increasing Migration Performance and Recovery time using offline Tablespaces [ID
780318.1] for more details. It would be necessary to check that there are no
SYS-owned objects in any off-lined tablespaces.
	These same steps would also save time if you need to downgrade or restore
the database from a failed upgrade attempt.

A Migrating to 11g: Step-Ordered Approach

[250]

Database Upgrade Assistant (DBUA)
This is the new kid on the block—it used to be widely avoided, but is now
dependable enough to be used by even the most hardcore command-line DBA.
Useful for saving time and avoiding some of the mistakes most often encountered
with the manual method. This method would be worthwhile attempting, first in a
test environment to see what steps are required for a particular upgrade that would
otherwise be done manually. The DBUA can let you know if the required database
parameters are correct and whether there is enough room in the system tablespace,
as well as enable version-specific features that are all assorted housekeeping tasks.

The following upgrade options page indicates some of the recommendations for
speeding up the database upgrade itself—parallel compiling (see comments about
utlrcmp.sql later in this chapter) and turning off the archive process.

Chapter 7

[251]

RMAN
Did you think the previous chapter was finished? Nope, I just ran out of room in
that chapter, so here we go again. RMAN can be used as part of a manual migration
strategy, either by restoring a copy of an older database to a new server or using the
transportable tablespace method of upgrading. At the end of this section, some tips
on using RMAN catalog repository with multiple Oracle Database versions are
also included.

Using RMAN as part of a manual upgrade
process
RMAN is configured so that a higher release is able to restore a lower release
(upgrade) or vice versa (downgrade). Think of the following exercise in two
parts—using RMAN to restore and recover a database, and then upgrading
the database manually to 11g. This method will work for a database either in a
noarchivelog mode with a consistent RMAN backup, or an archivelog mode with
an inconsistent RMAN backup. You will also need additional archivelogs for the
recover until time command. Because both topics (using RMAN for the database
migration and manual upgrades) are being covered, I won't reiterate the manual
upgrade steps later in this chapter, as they are well documented in Oracle's
Upgrade Companion.

The overall steps for this example of upgrading a database from 10.2.x.x to 11.2.x.x are
slightly different from the cloning section of Chapter 6 in this book because it doesn't
involve the duplicate command. You will find more information on this process in
the book Oracle Database Backup and Recovery User's Guide 11g (Chapter 19, Performing
RMAN Recovery: Advanced Scenarios). Look for the section labeled, Restoring a
Database on a New Host. Also, follow the instructions in the Oracle Database
Upgrade Guide as well. Here, in the chapter titled Upgrading a Database to the New
Oracle Database 10g Release, see the section labeled Upgrade the Database Manually.

I recommend not connecting to the RMAN catalog repository for this
type of recovery because it will change the information about the original
database while executing the restore and recovery commands. These
changes may include the automatic deletion of flashback logs, filenames
and location changes, and the new incarnation due to the resetlogs
command. It is assumed that all of the steps are being executed on a
different server than the one that hosts the original database being copied.

A Migrating to 11g: Step-Ordered Approach

[252]

1. 	 Install the required 11g software along with the appropriate PSUs or CPUs
on a different server. Create an entry for the database to be restored in /etc/
oratab on the new server (see the following example entry). The ORACLE_SID
has to be the same as the original. You can use the utility NID to change both
the ORACLE_SID and DBID after the last step.
ORCL:/u01/app/oracle/product/11.2.0/dbhome_1:N

You can always come back later to change the N to a Y in the oratab for this
entry to enable Oracle's method of auto startup and shutdown routines. See
the Oracle documentation for your operating system.

2. 	 Create any required directories for data file locations, diag_dest, audit
destinations, and so forth on the new server. At this point, you can change
the datafile locations, but that has to be accounted for in the RMAN restore
command by SET NEWNAME.

3. 	 Run the Pre-Upgrade Information Tool on the existing database to see what
may need to be changed for this upgrade to be completely successful. This
tool also does some housekeeping chores for this upgrade, as the following
output demonstrates—timezone fixes—and may completely fail the entire
backup if not run in advance, as shown by the error below:

Chapter 7

[253]

If you happen to skip this step creating the error file above, I would
recommend going back to the original database and starting over. Run the
Pre-Upgrade Information Tool, then run another RMAN backup on the
original server and a restore/recovery session on the new server. Reverting
to an older timezone file on a new ORACLE_HOME gives me an uncomfortable
feeling that this step may somehow impact the ability to successfully
complete patching and upgrades in the future.

4. 	 Any backups must be available on the new server. If migrating to 11g on the
same server, look into using transportable tablespaces instead. The backup
files may be copied to the same disk location made available on tape, or use
an alternate location. See the catalogfilecopy command for how to catalog
existing backups in a different location.

 5.	 Set the DBID and start the database instance in nomount mode. The DBID
can be retrieved from the controlfile autobackup filename as well as the
RMAN backup log itself (you should be logging the commands and saving
the output)

 RMAN> CONNECT TARGET /
 RMAN>SET DBID 3417997090;
 RMAN>STARTUP NOMOUNT

 6.	 Recover the spfile or create a new pfile. Most often you don't want exactly the
same parameter file as the original database, so creating a new pfile just for
this recovery session makes sense. After the recovery is complete, adjust the
pfile and create an spfile for permanent use. In this case, I would recommend
setting the database parameter DB_UNIQUE_NAME for the restored database
as something different from the original. In your 10.2.0.4 backup, there is no
inclusion of the spfile when the controlfile is automatically backed up. So you
can't restore both automatically in this migration from 10g to 11g exercise.

 7.	 Recover the controlfile and mount the database.
run {

SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '/
backuplocation/%F';

restore controlfile from autobackup;

alter database mount;

}

A Migrating to 11g: Step-Ordered Approach

[254]

8. 	 Restore the datafiles and recover the database. In this case, I recovered to a
certain point in time.
RUN

{

set until time = "to_date('02/05/10:16:00:00','MM/DD/YY:HH24:MI:
SS')";

 # restore the database and switch the datafile names

RESTORE DATABASE;

SWITCH DATAFILE ALL;

RECOVER DATABASE;

}

In the example above, I did not include the use of NEWNAME to change
the location of the datafiles. This is well documented and easy to add to
the script.

9. 	 Open the recovered database with resetlogs along with the special parameter
meant for upgrading. This does several housekeeping chores so that the
process can complete successfully.
SYS@ORCL> alter database open resetlogs upgrade;

10. 	Upgrade the database manually—this consists of running several scripts
to complete the version-changing process. This process changes the data
dictionary to the new version, replacing any changed system packages and
procedures. Some features will not require any database parameter changes;
these are enabled by default. Other database parameters become obsolete
(no longer used) or deprecated (scheduled to be removed in a later release).
SYS@ORCL> SPOOL upgrade_to_11gR2.log

SYS@ORCL> @catupgrd.sql

In earlier releases of Oracle, there was a shutdown command that has now
been moved to the end of the catupgrd.sql script. A clean shutdown flushes
all cache, clears out buffers to make sure the database is consistent for the
next startup command. You will have to exit the closed SQL*Plus session
and start a new one for the startup command to be successful.
SYS@ORCL> STARTUP

Chapter 7

[255]

11. 	Use the Post-Upgrade Status Tool to make sure all the installed components
were successfully upgraded. This script (tool) changes name according to
the exact release you are upgrading to, this example is the 11.2.x version. I
provided some of the output, which is confusing because it says everything
is valid, yet also contains errors. It's time for some research on My Oracle
Support. Usually, you will encounter the same errors in a test environment
for an upgrade. That is the time to enter an Oracle Service Request, as in this
case only the Oracle XML error was a known issue at the time of this writing.

12. 	There is a new post-11g database upgrade script called catuppst.sql, which
performs several tasks that don't require the special upgrade mode. This
keeps downtime to a minimum because the upgrade mode prohibits any
connections other than the SYS as SYSDBA account.
SYS@ORCL> @?/rdbms/admin/catuppst.sql

13. 	Run utlrp.sql or utlrcmp.sql to recompile any remaining packages that
are invalid.

SYS@ORCL> @?/rdbms/admin/utlrp.sql
SYS@ORCL>SELECT count(*) FROM dba_invalid_objects;
SYS@ORCL>SELECT distinct object_name FROM dba_invalid_objects;

A Migrating to 11g: Step-Ordered Approach

[256]

Several scripts and output files are provided in the code package for this section.
See Restore_to_newHost1.rco and Restore_to_newHost2.rco that are the
RMAN scripts used for this exercise. You will have to change them as noted
inside the files for your environment. There are the accompanying *.lst files to
show a successful run. There is also the output from the Pre-Upgrade Tool for this
database—predupgradetool.lst.

Downgrading with RMAN
While the process is similar to doing a manual upgrade, this chapter doesn't fully
cover everything you need to know about stepping back to an earlier version of
Oracle Database. Use the Oracle Documentation and the detailed documents listed
below for more information. It would be worth your while learning about and
practicing in a test environment how to downgrade the database. This makes sure
there aren't any unknown technical obstacles. Think of it as one of the many possible
backup and recovery exercises that need to be practiced—just another part of the
Maximum Availability Architecture.

See the following documents for more information on downgrading:
How To Downgrade From Database 11.2 To Previous Release [ID 883335.1]
Complete Checklist For Downgrading The Database From 11g To Lower Releases
[ID 443890.1]

When might using the RMAN manual method for upgrades/downgrades be useful?

Migrating between one-off operating system levels.
Migrating a database to new hardware that is not eligible for TT method.
Changing the database word size (32-bit versus 64-bit).
In saving some work in having to install the older ORACLE_HOME on a new
server as well as a few of the manual migration steps.
For a trial restore of production in a test environment.
The downgrade option is usually done after a failed database upgrade.
This is usually due to an unanticipated technical limitation.

Refer to Answers To FAQ For Restoring Or Duplicating Between
Different Versions And Platforms [ID 369644.1].

•

•

•

•

•

•

Chapter 7

[257]

Transportable Tablespaces (TTS)
There are several different Oracle-provided utilities or packages that a DBA can use
with transportable tablespace(s). What TTS brings to an Oracle database is a method
of compartmentalizing the physical database objects (tables and index segments) into
a moveable entity. Export/import, data pump, DBMS_FILE_TRANSFER, and RMAN
can all move a TTS by changing all of the datafile headers associated with the logical
entity known as a tablespace.

Since Oracle10g database, a tablespace can be transported to another database with
the same or higher database parameter compatibility setting, and the databases can
be on the same or different platforms as well.

Segments that are in the system tablespace and any objects owned by SYS will not
be transported. This includes all of the users, privileges, PL/SQL stored procedures,
Java classes, callouts, views, synonyms, dimensions, DBA directories, and sequences
as part of the data dictionary, plus any objects you have created that are owned by
SYS. This also means that anything SYS-owned should not reside in the application
data tablespaces to be transported.

Several different migration scenarios that can utilize TTS include:

Restoring an unrecoverable database
Upgrading a database
Migrating to a different operating system
Migrating or consolidating ASM datafiles

While you may not have a good use for TTS today, there is always the possibility
of needing to use TTS in the future. I would highly recommend pre-certifying your
database(s), making sure they can be used before you actually have to use the TTS
procedure. It also makes sense to keep the physical objects in a database that have
similar use and lifespan in an appropriately grouped tablespace, keeping things
neat and tidy.

Preparatory steps for TTS migrations
If a database has multiple end user applications using the records contained
within, it is recommended to keep the schemas or application owners in different
tablespaces separate from each other. This separation provides more control over
any housekeeping or maintenance tasks like TTS so that you can take down a single
application while still providing access to others.

•

•

•

•

A Migrating to 11g: Step-Ordered Approach

[258]

The tablespace name in the target database cannot have the same name as a
tablespace in the source database. Since the 10g release, you can use the rename
tablespace procedure to solve this problem, which can be performed either on the
target or the source database.

SYS@ORCL>ALTER TABLESPACE USERS RENAME TO USERSQUERY;

However, there are a few limitations to this procedure that need to be understood:

OMF created datafile names have to include their tablespace name; even if
renamed they will retain the original tablespace name.
Put read-only tablespaces into read-write mode temporarily after the
rename or TTS procedure so that the datafile headers are updated to
reflect the changes.
Remember that there is a database parameter UNDO_TABLESPACE that will
have to be changed if that tablespace name is changed. After altering the
parameter and if you are using a static parameter file, it will have to be
updated manually for the next database restart.
Any recovery process with the old tablespace name won't cause issues: old
recovery—old tablespace name; newer recovery—new tablespace name.
You cannot rename the SYSTEM, SYSAUX, or any offline tablespaces.

There are several scripts included in the code section for this chapter that have to
do with qualifying a database for TTS. See a script called transport_violation_
check.sql, which identifies tablespaces that aren't self-contained. You will need
to provide a list of tablespaces, which identify objects from the transport_set_
violations view that reference objects in the tablespace to be transported. There is
another view pluggable_set_check that checks from the other direction—objects
that will no longer be able to reference objects from the tablespace you want to
transport. See the provided script named tts_reference_violations.sql.

If objects don't currently qualify as transportable, then it is time for some homework,
which may include:

Moving SYS-OWNED objects to the SYSTEM or SYSAUX tablespace
Moving application segments to be self-contained

TTS violations that occur aren't always just physical segments. There often will be
constraints or views that will normally cross tablespaces due to application needs
or business rules. These items will be easy to recreate on the new database with an
export or data pump dump file after the tablespaces have been transported.

•

•

•

•

•

•

•

Chapter 7

[259]

Using TTS for upgrades
What an elegant solution to upgrading for larger databases—keeping the datafiles in
the same location and running an imp or impdp command to change the appropriate
metadata for the datafiles. This would reduce the amount of downtime because the
application datafiles are not moved.

If the upgraded database is on a different server (or platform), then the datafiles
need to be copied over after they are made part of a transport set. If the actual
datafiles exist on a storage device that is accessible from either the source or target
server as a local device, then that would decrease the amount of downtime incurred
when copying datafiles as part of the TTS procedure.

TTS cookbook
The TTS procedure really just uncouples the datafiles from the older database,
modifies the datafile headers, and reconnects them to the other database. ORCL is the
source database of ORACLE_SID whereas NEW is the target database of ORACLE_SID.

The following is a simplified checklist for moving the data in the users' tablespace:

1.	 Double check the platform on the source database.
	 SYS@ORCL>SELECT platform_name FROM v$database;

2.	 Check endian compatibility for both source and target. This will be of the
lowest level database compatibility setting:

	 SYS@ORCL> show database compatible.
	 SYS@ORCL>SELECT endian_format FROM v$transportable_platform where

	 PLATFORM_NAME like '%&your_server%';

 3.	 If the endian format is not compatible, then RMAN will need to be used for
the conversion process. The files that need to be converted will be any that
have application data; add your additional tablespaces to this query:

	 SYS@ORCL>SELECT file_name FROM dba_data_files
	 WHERE tablespace_name IN ('USERS');

A Migrating to 11g: Step-Ordered Approach

[260]

4. 	 Check to see if the tablespaces are self-contained. Fix any that are moveable;
plan migrating any unmoveable objects by other means, usually data pump
or export.

	 SYS@ORCL>EXECUTE DBMS_TTS.TRANSPORT_SET_CHECK('USERS''user',TRUE);
	 SYS@ORCL>SELECT * FROM transport_set_violations;
	 SYS@ORCL> SELECT * from PLUGGABLE_SET_CHECK where TS1_NAME='USERS'
	 or TS2_NAME='USERS';

5. 	 Pre-create the target database (NEW) (it can be an existing database) along
with any users that own objects in the TTS being migrated.

6.	 Make the source TTS tablespaces read only.
	 SYS@ORCL>ALTER TABLESPACE users READ ONLY;

7. 	 Export the self-contained transportable tablespace as a transport set.
	 > expdp system/password DIRECTORY=TTS_DUMP DUMPFILE=exptts.dmp
	 LOGFILE=expTTS.log TRANSPORT_TABLESPACES=users
	 TRANSPORT_FULL_CHECK=Y

8. 	 Convert using RMAN from one platform to another on the source database.
If on the same platform, this conversion step is not necessary. Yours may be a
different platform conversion.

	 rman> CONVERT TABLESPACE users TO PLATFORM 'AIX-Based Systems
	 (64-bit)' FORMAT '/tmp/%U';

9. 	 Transfer the data pump dump file and all of the copied or converted datafiles
in binary mode to the target server.

10.	 Plug in the tablespaces by running the appropriate data pump on the target
database (you can use the older version of import if you used the older
export on the source database):

	 > impdp system/password DIRECTORY=TARGETTTS DUMPFILE=expTTS.dmp
	 LOGFILE=impTTS.log TRANSPORT_DATAFILES=('/=(/u01/oradata/new/
	 users01.dbf')

11.	 Change the newly transported tablespaces back to read write.

	 SYS@ORCL>ALTER TABLESPACE users READ WRITE;

Some special limitations to TTS are as follows:

The source and target database must use the same database character set and
national character set
In Oracle9i and Oracle8i, the source and target database must be on the same
hardware platform

•

•

Chapter 7

[261]

Recreating an unrecoverable database
with TTS
This is a great way to recreate a database that can't be recovered or recreated with
any other method than the export/import or data pump utilities. It is assumed that
this database can be opened, as that is part of the TTS procedure. A certain type of
data dictionary corruption that is unrecoverable is an example that would qualify
for this procedure. While this discussion is more suited for the RMAN chapter, it is
included here because the information is specific to the TTS process. This process is
worth mentioning because it drastically reduces the amount of downtime due to two
different reasons:

It only exports the metadata for the objects in a particular tablespace and not
the physical data (rows)
Indexes don't have to be recreated

A few technical limitations would exclude certain types of migrations:

Both the source database and target database are required to be on the same
operating system and Oracle Database version
The database and national character sets must be the same on both databases

Some additional steps may be required for using this procedure across the network
or changing filenames or locations of datafiles.

Using TTS to add skipped read-only
tablespaces during duplication
Usually read-only tablespaces are skipped during a RMAN duplicate database
procedure to save time. The duplicate procedure changes the DBID of the target
database to be different than the source, which in turn changes the datafile headers
and prevents the use of a read-only or normal offline tablespace. The following three
different alternatives can be used to add a read-only tablespace during the RMAN
duplicate procedure:

Export or data pump dump file can be used with TTS to move the objects by
following the TTS procedure for the read-only tablespace by itself. The same
steps should be followed as in the TTS cookbook section.
DBMS_FILE_TRANSFER procedure can move the read-only data from one
database to another. This procedure is discussed in the next section.

•

•

•

•

•

•

A Migrating to 11g: Step-Ordered Approach

[262]

Clone the database rather than doing duplicate database. This creates a
new incarnation but the same DBID. This makes it easy to add back a
read-only or offline normal tablespace. This cloning process was discussed
in the previous chapter.

Using TTS to merge two ASM databases into
one
Another method of migrating data between databases is by using the procedure
DBMS_FILE_TRANSFER package for anything that can be stored in ASM groups.
DBMS_FILE_TRANSFER can be used for moving archivelogs, RMAN backups, datafile
copies, spfiles, Data Guard configuration files, change tracking file, flashback logs,
cross platform transportable tablespaces, and data pump files.

In this example, we are looking at creating a transport set (TTS) to merge ASM
datafiles from one database to another. DBMS_FILE_TRANSFER transfers the metadata
across a database link, so the necessary SQL*Net resolution would need to be in
place for this process to be successful. The following are the generalized steps that
are different than the cookbook provided earlier. Step 5 is where the two processes
start to become different. Steps 1 through 4, which are preparation steps, can stay
the same.

1. 	 A new database doesn't have to be created unless that is your situation; this
can work for existing databases or a combination of new and existing ones.

2. 	 This step of making the tablespaces read-only is moved farther down on
this list.

3. 	 Create a database link between the source and target database.
	 SYS@ORCL> create database link FTLINK connect to system identified
	 by password using 'NEW';

4.	 Create an ASM-based directory in the source database (ORCL) to hold the
metadata dump file, logfile, and current datafiles slated for transport.

	 SYS@ORCL> create directory ttsdump as '+DATA/';
	 SYS@ORCL> create directory ttsdumplog as '/exportlogs/tts_log/';

	 SYS@ORCL> create directory ttsdumpdatafile as '+DATA/datafile/';

5. 	 Grant read/write access to the directories created.
	 SYS@ORCL> grant read, write on directory ttsdump to system;
	 SYS@ORCL> grant read, write on directory ttsdumplog to system;
	 SYS@ORCL> grant read, write on directory ttsdumpdatafile
	 to system;

•

Chapter 7

[263]

6. 	 Repeat steps 7, 8, and 9 on the target database. It is assumed for this example
they will have the same ASM names.

7. 	 Make the source tablespaces read only for transporting.
	 SYS@ORCL> ALTER TABLESPACE TRANSPORT1 READ ONLY;
	 SYS@ORCL> ALTER TABLESPACE TRANSPORT2 READ ONLY;

8.	 Export the metadata for the tablespaces slated for transport on the
source server.

	 > expdp system/password directory=ttsdump dumpfile=transport1.dmp
	 logfile=ttsdumplog:transport1.log transport_tablespaces=transport1
	 ,transport2 transport_full_check=y

9.	 Use DBMS_FILE_TRANSFER to send the metadata dump file and datafiles
to the target server. Notice how we can change the data filenames in
the process.

	 SYS@ORCL> begin
	 dbms_file_transfer.put_file
	 (source_directory_object => 'ttsdump',
	 source_file_name => 'transport1.dmp',
	 destination_directory_object => 'ttsdump',
	 destination_file_name => 'transport1.dmp', destination_database =>
	 'NEW');
	 end;
	 /
	 SYS@ORCL> begin
	 dbms_file_transfer.put_file
	 (source_directory_object => 'tts_datafile',
	 source_file_name => 'transport1.29.570721319',
	 destination_directory_object => ' ttsdatafile',
	 destination_file_name => 'tts1_db1.dbf',
	 destination_database => 'db2');
	 end;
	 /
	 SYS@ORCL> begin
	 dbms_file_transfer.put_file
	 (source_directory_object => 'tts_datafile',
	 source_file_name => 'transport2.29.586721335',
	 destination_directory_object => 'ttsdatafile',
	 destination_file_name => 'tts2_db1.dbf',
	 destination_database => 'db2');
	 end;
	 /

A Migrating to 11g: Step-Ordered Approach

[264]

If the endian formats are different, then you must use the RMAN convert
after transferring the datafiles to the target server.
Example code:

	 RMAN> CONVERT DATAFILE
	 '/u01/oradata/tts1_db1.dbf',
	 '/u01/oradata/tts1_db1.dbf'
	 TO PLATFORM="Solaris[tm] OE (32-bit)"
	 FROM PLATFORM="HP TRu64 UNIX"
	 DB_FILE_NAME_CONVERT=
	 "/u01/oradata/", "+DATA"
	 PARALLELISM=5;

10. 	On the target server, it is time to import the metadata using data pump:
	 >impdp directory=ttsdump dumpfile=transport1.dmp
	 logfile=ttsdumplog:transport1.log TRANSPORT_DATAFILES='+DATA1/
	 tts1_db1.dbf','+DATA1/tts2_db1.dbf'
	 keep_master=y

11. 	Turn the tablespaces back to read-write mode:

	 SYS@ORCL> ALTER TABLESPACE TRANSPORT1 READ WRITE;
	 SYS@ORCL> ALTER TABLESPACE TRANSPORT2 READ WRITE;

This is only an introduction to the DBMS_FILE_TRANSFER procedure. There are many
other ways of using this package for migrating ASM objects.

Here is another migration scenario utilizing TTS: How to Avoid Long
Refresh Time Required to Initialize Materialized View Data? [ID 734596.1]

Sharing read-only tablespaces between
different databases with TTS
There is an interesting article that mentions a scenario to share a single
tablespace between two databases, but both databases would be using the
tablespace in read-only mode. A reasonable use for this tactic would be to
offload read-only queries to another database for tuning and performance
reasons. The single-most limiting factor is that the tablespaces would have
to be read-only in both databases. There are some other limitations
(same block size) and requirements for accomplishing this task.

Chapter 7

[265]

For more details, see How to Share Tablespace Between Different Databases on
Same Machine [ID 90926.1].

Now consider the case study that used the USERS tablespace between two databases
on a single server—source ORACLE_SID (ORCL) and target ORACLE_SID (NEW). Both
databases used the same block size and ran the same Oracle version.

It was made sure that there were no tablespaces of the same name in NEW, and
the existing USERS tablespace was renamed to USERS1. That still left the same
username in the NEW database, SCOTT. A new user named SCOTT2 in the NEW
database was created.

In the source database ORCL, the USERS tablespace was made read-only and it was
double checked that it was transportable.

SYS@ORCL>EXECUTE DBMS_TTS.TRANSPORT_SET_CHECK('USERS',TRUE);
SYS@ORCL>SELECT * FROM transport_set_violations;
SYS@ORCL> alter tablespace users read only;

Then the USERS tablespace was exported as a transport set.

A Migrating to 11g: Step-Ordered Approach

[266]

Because this was on the same server, I kept the staging directory in the same location
as the dump location. Notice the location of the dump file and the datafile in the
output of the expdp command above.

Now import the transport set into the target database NEW—the REMAP_SCHEMA
command was used to make SCOTT2 the owner of the imported objects.

Finally, I verified that the tablespace USERS (transported in), and the renamed
USERS1 tablespace existed and the datafiles were accessible.

Chapter 7

[267]

Think of this sharing tablespaces as a poor-man's version of the logical standby
database or Active Data Guard, which are both methods of offloading read-only
queries to standby databases. This shared database environment would be a little
more difficult to handle technically and with very little documentation, but may
be worth some investigation to see if it works for you. Reasons to use this offbeat
method may include both the ability to utilize the often-underused CPU power of a
single server while at the same time minimizing Oracle licensing costs required for
running Oracle Databases on multiple servers.

Cross-platform migrations with a
transportable database
The TTS section above is one example of using RMAN for converting datafiles when
migrating across different endian platforms by the convert datafile command.
This section deals with converting the entire database from one platform to another
(cross-platform migrations). There are two major types of cross-platform migrations
using what is called Transportable Database with RMAN—source host conversion
and target host conversion.

For the transportable database (RMAN CONVERT DATABASE command), the
documentation will tell you to convert all datafiles. Actually this type of migration
is only required for datafiles that contain undo data. This includes all SYSTEM
tablespace datafiles, any datafiles that contain ROLLBACK segments, and of course
all data files that are part of any UNDO tablespaces. Eliminating the application data
from this conversion process would reduce the amount of downtime considerably.

Starting with 10gR2, skipping the conversion process on application data is only
possible with the target platform conversion, not the source type. Target platform
conversion happens on the server you are migrating to, not the one you are
migrating from. This would be using the RMAN CONVERT DATABASE ON
TARGET PLATFORM command.

Usually during a target platform conversion, datafiles are copied to a temporary
staging directory. Then a convert script is run, which places the datafiles in their
final location. In this modified procedure, only the data files that contain undo data
are copied to the staging area. The application data files that are not run through the
conversion process will need to be copied (by SCP or FTP) or made accessible on the
target server by NFS or SAN storage devices.

A Migrating to 11g: Step-Ordered Approach

[268]

The following are some general steps:

Identify data files that contain undo data on the source database:
	 SYS@SOURCE>select distinct(file_name)
	 from dba_data_files a, dba_rollback_segs b
	 where a.tablespace_name=b.tablespace_name;

Use the transportable database procedure as documented in the Oracle Database
Backup and Recovery User's Guide:

Start up nomount target database
Run the modified convert script after removing the application datafiles and
fixing any path changes
Run the transport script that creates the target controlfile, open the target
database, and recompile all PL/SQL

Please refer to the documentation for complete details. The MOS note mentioned
in the box below has a case study for cross-platform migration. Be aware that this
note doesn't contain the instructions for skipping application datafiles for reducing
conversion downtime.

MOS note: Cross-Platform Migration on Destination Host Using RMAN
Convert Database [ID 414878.1]

Physical and/or snapshot standbys
Starting with10gR2, standbys are a very dependable solution from Oracle for
accomplishing upgrades. There is a downside to using a physical or snapshot
standby: what happens to all of the redo data (transactions) occurring in the
production database? That redo stream will no longer work across different
versions of Oracle. Once the standby is upgraded, no more transactions can be
applied from the primary database. So that means if you use a physical standby for
your migration, then the primary would need to be made unavailable or read-only
during the upgrade. Once the upgrade on the physical standby is finished, then you
would fail over the clients.

The hardest part of this process is moving the clients; it's completely different at
individual organizations, depending on all of the applications and third-party
products involved. Downtime can be kept to a minimum by scripting or
automating the failover steps as much as possible.

•

•

•

•

Chapter 7

[269]

Why would you use this method? Well, if there was a problem with the upgrade due
to some untested or unforeseen problem, there is the possibility of failing the clients
back to the earlier version of Oracle. Any transactions that occurred while on the
new version would have to be accounted for and migrated separately. And because
you migrated the client components of Oracle 11g before the database (as outlined
in this chapter), then you have a certain comfort level knowing they will work for
all versions involved in this migration. Now you can see some of the reasoning for
doing a step-ordered approach—it gives you a back out plan.

Failing back to original version
There are several save points in this entire process at which you could revert to the
previous version if there is an unrecoverable failure:

Backups: This would be to restore the older ORACLE_HOME. But since you
are following the advice in this book, older ORACLE_HOME still exists on
your server. This would simply mean that at the appropriate time in the
Downgrade or Flashback procedures, you would switch back to the older
ORACLE_HOME.
Flashback database: Using Flashback + Guaranteed Restore Point on the
logical standby to revert to the earlier version of Oracle is the fastest method,
albeit also taking a lot of resources (flashback log storage) at the disk level.
Downgrade procedure: If you didn't use Flashback, then you would have
to downgrade the database to get it back to the original version you started
with. If you have also let normal production use occur creating transactions
during the upgrade window, then the downgrade procedure is the only
option for you.

If you plan on using a physical standby, then you would leave the original version
of Oracle untouched, shut down the database, or keep it idly waiting and removed
from the Data Guard configuration. You would wait to upgrade the old primary
to the newer version and restart the redo stream once it has been determined that
the newer version is stable for production use. The next section deals with using
standbys for upgrades without stopping the redo stream during the migration.

•

•

•

A Migrating to 11g: Step-Ordered Approach

[270]

Transient logical standby: Rolling upgrades
with minimal downtime
Oracle promises the least amount of application downtime of any database upgrade
or migration method—it's reported to reduce to a bare minimum of two minutes
required for the switchover from the logical back to the primary. This is a process
that promises the world, but it requires something in return—extensive testing and
practice, two databases (different servers), and a gutsy DBA.

Transient is the operative word for this procedure—the logical standby can't
already exist; it must be a new logical standby created just for this upgrade. The
commands are done without Data Guard. In fact, you will need to remove all Data
Guard configurations.

There are a couple of differences in the process depending on the Oracle version
you are starting with and the ending version. The basic difference is that the 10g
to 11g Migration is easier to accomplish with less commands, which is similar
in the functionality changes for Data Guard from 10gR2 to 11g. This section will
concentrate on the rolling upgrade example from 10gR2 to 11g, as that would help
more DBAs who are not on 11g in production yet. Executing a rolling upgrade from
10.2.x to another higher 10.2 version would also be done using the same steps. There
is a difference in the white paper that you would follow, in this case Database Rolling
Upgrade Using Transient Logical Standby-Oracle Database 10g Release 2 from the MAA
website. The basic conversion steps are as follows:

Convert an existing physical standby to a logical standby
Perform a rolling upgrade of the logical standby from a lower version to a
higher one
Revert the logical back into the physical
Switch over the clients to the new primary

What seems to be a simple process actually details many different subtasks that
take advantage of all of the features of an MAA environment for disaster recovery
to accomplish the least amount of downtime for upgrading a database. This graphic
assumes these databases are on different servers that may or may not be the case
in your setup. The databases are color-coded according to the role they play at any
particular point in the process.

•

•

•

•

Chapter 7

[271]

I recommend running this conversion using two different servers for performance
reasons, as the conversion process on a logical standby needs all of the horsepower
that is ordinarily reserved for standard production use. Having your production
database and the in-process logical standby on the same server would be competing
for the same CPU, memory, and I/O, causing contention.

There are quite a few preliminary steps required to pull this off and you have already
surmised additional resources. There are several limiting factors that will help you
decide if this approach will work in your situation. As you learned from the chapter
on MAA, the logical standby doesn't support all data types. The following queries
will help you determine which database objects (DDL and DML) are supported or
not supported.

This first one determines which schema (object owner) is skipped and the second
ascertains which individual objects are unsupported:

SYS@ORCL>SELECT OWNER FROM DBA_LOGSTDBY_SKIP WHERE STATEMENT_OPT =
'INTERNAL SCHEMA';
SYS@ORCL>SELECT DISTINCT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_
UNSUPPORTED;

A Migrating to 11g: Step-Ordered Approach

[272]

Why would particular objects or schemas be skipped? Remember the upgrade's
primary purpose is to change the data dictionary and these internal schemas are part
of that dictionary. If these weren't skipped, any changes on the primary side would
overwrite the version being upgraded on the transient logical side. Unsupported
objects are just a version-specific feature—each new Oracle Database version that is
released has provided additional datatypes that are supported. How might you work
around the issue of unsupported data types?

Temporarily suspend any DDL or DML changes to the unsupported tables
for the upgrade window.
Perform the upgrade at a time when users will not be making changes to the
unsupported tables. You could limit access to the database by only allowing
SYS or SYSTEM to connect. The first command is done before starting the
upgrade, the second after the upgrade is finished:
SYS@ORCL>alter system quiesce restricted;
SYS@ORCL>alter system unquiesce;

Capture unsupported transactions by executing the following on the primary
database before starting the upgrade:

EXEC_DBMS_LOGSTDBY.APPLY_SET('MAX_EVENTS_RECORDED',DBMS_LOGSTDBY.
MAX_EVENTS);
EXEC DBMS_LOGSTDBY.APPLY_SET('RECORD_UNSUPPORTED_
OPERATIONS','TRUE');

Once the upgrade is over there are several different ways to make sure the
unsupported transactions are applied. See the MAA documentation for how to
use the DBMS_LOGSTDBY.INSTANTIATE_TABLE procedure to bring the entire table
from the primary to the logical standby. This step would need to be done after the
upgrade, but before you switch the logical standby back into a physical standby
database. See the image provided in this section. There is also the standard method
of moving data besides the dbms_logstdby procedure—across a database link,
export/import, and/or data pump.

Export/import or data pump migration
This is a good exercise for any DBA, but a tedious method of migrating a database
from one version to another. Usually, it's the last resort with a difficult or unusual
migration path such as different operating systems with incompatible and
unconvertible endian(s) types or a characterset conversion. The larger the
database, the longer the amount of time it takes to complete, and it requires the
database to be down (or provide the end users with a read-only copy) during
the conversion process.

•

•

•

Chapter 7

[273]

Now who should have the exp_full_database privilege, which is required for
performing exports and import tasks? The system user has the DBA role by default,
which contains the export privilege among other advanced privileges. Most DBAs
use the system account for executing dump tasks, but you may want to create a
dedicated user account for these types of tasks. This change most often comes from
a security requirement to lock down the standard accounts like system. Don't get
caught in the trap of using the DBA's personal username and password to schedule
tasks at any point in time; this is not a good practice.

Choosing which Oracle Database user account to run dump file tasks was mentioned
due to the lesser-known fact that you will not get a consistent dump file of the
database when executing the task as SYS as SYSDBA. Exceptions to this rule
include the following situations:

Exporting a transportable tablespace set with export (Oracle9i and Oracle8i)
Importing a transportable tablespace set with import utility (Oracle10g,
Oracle9i, and Oracle8i)

The SYS user cannot do a transaction level consistent read (read-only transaction).
Any queries by SYS will show all changes made during the transaction even if SYS
has set the transaction to be READ ONLY. This inconsistency is the technical, detailed
reason why you shouldn't use the SYS account to create dump files. Well you could,
but they wouldn't be consistent.

You cannot use data pump on any files created by the export or import process or
vice versa because they are incompatible. The export utility is deprecated, but import
will be kept around so that older versions of Oracle Database can be imported into
a newer version. You should be using data pump for much more than just a logical
(DDL) backup utility, it provides advanced functionality not available in the
older utilities.

Be aware that there will be redo created during a data pump job due to the creation
of the job table that gives you the ability to monitor, change priority, resume a
stopped job, and so on. The resulting data pump file will be larger than the older
export file for the same database and versions of the utilities involved. See the
following listing for a comparison:

•

•

A Migrating to 11g: Step-Ordered Approach

[274]

The compatibility level of the data pump dump file set is determined by the
compatibility level of the source database and that information is stored in the
header of the dump file. Use the Export Data Pump parameter version in case the
target database has a lower compatibility level than the source database, for example,
version=10.2.

If you need more information about a particular dump (either export or data pump)
file, there is more than one way to get the information from the header part. One way
is to run the impdp command with a non-existent table name with tracing (100300)
enabled, as shown below:

It does return an error, but the resulting trace file with all of the same information
will be located in 11g in diagnostic destination ../rdbms/trace directory.
In earlier versions of Oracle Database that trace file would show up in the
BACKGROUND_DUMP_DEST.

It requires creating a procedure (supplied by Oracle) that makes a user-friendly
output instead of using the DBMS_DATAPUMP and GET_DUMPFILE_INFO directly. See
create_showdump.sql for the code supplied for this chapter to create the package
show_dumpfile_info. The following output was executed on an 11.1.0.6 32-bit
Oracle Database to view the header of a 64-bit 10.2.0.4 Oracle data pump file.
Note how the compatibility setting of the database is included, highlighted by
an arrow below:

Chapter 7

[275]

Compatibility settings decide which features are available and which objects can be
imported without error between versions, and is considered the dump file version.
In the case above, version 10.1.0.1.0 is highlighted. This version 10.1 comes from the
database initialization parameter known as compatible.

A Migrating to 11g: Step-Ordered Approach

[276]

Here is the output from the same database for the older type export dump file.
Sorry it may be confusing, but I simply put an export file in the same directory as
the earlier data pump example. That was due to the show_dumpfile_info requiring
a directory name. I know it is the older export type because the Filetype line in
the example below refers to it as Original. This is not as much information as the
header from data pump, but this informs me that an environmental variable is not
what I expected. It should show a character set of AL32UTF8 and not the one listed
below (WE8MSWIN1252):

It is possible to extract all of the DDL statements from a data pump file with a
matching and higher level data pump client version. While it is also possible to use
a single maintenance release lower-level data pump client, it is not recommended.
The following example will extract all of the DDL statements, but the resulting file
(impdp11g.sql in this case) is not usable exactly as is. That's usable in the sense
that you could run the SQL statements in the file, successfully creating the
database objects.

You will need to edit the file directly (back up the original first) and replace the lines
with ALTER SESSION SET CURRENT_SCHEMA ... and any lines with -- CONNECT
... with a correct CONNECT statement. Also place two dash characters (which
comments out the line) in front of the anonymous PL/SQL blocks that may
appear within the logfile for any database options that are installed.

Chapter 7

[277]

Data pump can be executed over a database link with two different release levels
between the source and the target database with a single major release difference
being supported. Network transfers with data pump can be used to facilitate the
migration of data to new hardware or remote sites. This may be used more for
convenience rather than performance because the speed of the network between
sites is usually slower.

Most often database objects are migrated separately using data pump or export/
import to speed up the process for larger databases. These objects are usually
imported into the new database in this order:

Creating datafiles and/or tablespaces.
Importing DDL (this includes user accounts but not indexes or constraints).
Importing actual data, recreating indexes, recreating and
enabling constraints.

The process usually starts with extracting the DDL statements as shown earlier in
this section. Don't edit the resulting file from the single full SQL extract file. Extract
each set of DDL separately in different runs—tables, indexes, constraints, data,
among others.

If you need to change the physical location or storage parameters of certain
objects, see the following data pump parameters. Be aware that if you have
REUSE_DATAFILES as Y, then there is the possibility of overwriting a data
file inadvertently.

TRANSFORM: Metadata transform to apply to applicable objects
REMAP_DATAFILE: Redefine datafile references in all DDL statements
REMAP_TABLESPACE: Tablespace objects are remapped to another tablespace
REUSE_DATAFILES: Tablespace will be initialized if it already exists
(default is N)

When upgrading a database with this method, it is normal to have quite a few errors
on the actual import process, as well as objects that won't compile afterwards. There
is no one list on what errors you will encounter, as they are often specific to your
application deployment methods, migration path, versions involved, and so on. The
following are some of the few error types with a recommended fix or preventive tip:

Missing grants from the SYS user: There are grants from SYS that will
not be imported as they might overwrite or be invalid for the newer version
of Oracle.
Fix: Grant execute on DBMS packages to the appropriate application owner
as well as the appropriate users.

•

•

•

•

•

•

•

•

A Migrating to 11g: Step-Ordered Approach

[278]

Import errors related to Plan tables like DBMS_XPLAN.
Fix: Drop and recreate the newer version of Explain Plan. See the next
chapter on Tuning for more information. An upgrade would also affect the
STATSPACK schema—most often the user named PERFSTAT (see Chapter 8
on the newer Automatic Workload Respository, which requires an additional
Management Pack license).

There will be specific grants and privileges missing if the SYS or SYSTEM accounts
were used instead of the application owner (schema) for their database object. Make
it a practice to use the schema owners for grants to their objects and not the SYS or
SYSTEM accounts. See the script from the code section for this chapter—grants_
from_sys.sql. This script is meant to be run on the source database before the
export process to capture any grants that might be needed. It is an all-inclusive
script, which will need to be edited to eliminate database object types that you
aren't interested in preserving.

If you are stuck with export/import as your only migration path, check
out the following free GNU-licensed software that can parallelize the
process (much faster migration) using Unix named pipes.
http://pepi.sourceforge.net/

Character set selection—UTF8
Whenever it is time to migrate to a newer version of Oracle, it is also time to rethink
the character set��� selection. As more and more businesses declare an international
presence on the Internet, the storage of multiple languages is becoming even more
important. Many DBAs simply use the default character ������������������������������ set for the particular Oracle
Database version they are installing. It's better not to follow what everyone else
does blindly!

Unicode (UTF8) is a universal character-encoding scheme that allows the storage
information from any major language using a single character set. Unicode is a
definition that controls the code points, properties, standard scripting behaviors,
and algorithms for use with other coding software standards.

Do you occasionally see upside-down question marks or other tics or offhand
characters on printed material or data displayed within an application? That
can come from different sources, but they most often point to problems with the
storage of extended characters (not 7-bit ASCII) within the database, or conversion
issues that have happened somewhere between the application (browser, software,
SQl*Plus, and so on) and the database.

•

Chapter 7

[279]

If at all possible, migrate to a superset of your current character set that will add
several extended characters that your application can choose to store data with.
Migrating to a superset will most often causes little to no issues, but it does add
downtime to the database to ensure consistency and integrity during the conversion
process, if you are looking to choose a character set in the following list. Oracle
recommends choosing the superset that comes after that character set in this list,
with a longer term recommendation to move to UTF8:

US7ASCII: Better to migrate to WE8MSWIN1252 or WE8ISO8859P15
WE8ISO8859P1: WE8MSWIN1252 is a superset
UTF8: Better to migrate to AL32UTF8
ZHS16CGB231280: ZHS16GBK is a superset
ZHS32GB18030: Better to migrate to AL32UTF8
KO16KSC5601: KO16MSWIN949 is a superset
ZHT16BIG5: ZHT16MSWIN950 solves various problems of ZHT16BIG5

This is how to check what current character set your database has:

SYS@ORCL> select nls_characterset from nls_database_parameters;

Converting a database from one character set to another can be a daunting process,
so it is time to become familiar with NLS basics, Oracle's character scan utility called
CSSCAN, and the CSALTER procedure. What's just as important is determining
what character conversion is happening between the client application and
the database.

For extensive information on this huge topic, more than you wanted to
know about character sets, see AL32UTF8 / UTF8 (Unicode) Database
Character Set Implications [ID 788156.1].

To gain familiarity with migrating issues as well as the day-to-day functionality of
a Unicode database, it might be worth your while to migrate some of the accessory
databases to an AL32UTF8 character set. Both Grid Control and RMAN catalog
repositories can be AL32UTF8, and they have no issues working as designed with
other databases of different character sets.

•

•

•

•

•

•

•

A Migrating to 11g: Step-Ordered Approach

[280]

Post-11g upgrade tasks
There is the standard post-upgrade task list as part of the version-specific Oracle
Database Upgrade Guide documentation. The difference between the documentation
and the step-ordered approach is that some of these steps can be done in advance.
See the following partial list from the Upgrade Guide along with comments:

Update environment variables (Linux and Unix systems only)—from
Chapter 2, Maintaining Oracle Standards, only need to edit a configuration
file instead of a multitude of scripts.
Upgrade the recovery catalog—already done earlier according to
step-ordered approach.
Upgrade Automatic Storage Management (ASM)—step-ordered approach
is to upgrade ASM instance (different home) before any databases, keeping
it at the same compatible level. After all databases serviced by this ASM
are migrated to 11g, then advance the ASM compatible parameter to 11g to
enable the new features.
Add new features as appropriate—wait at least a week before changing any
database parameters; add changes gradually.
Set threshold values for tablespace alerts in the OEM console—important as
these start out as a null value.
Configure Oracle Data Guard broker—a major change that affects all redo
traffic; broker property InitialConnectIdentifier is being changed to
DGConnectIdentifier.
Don't forget to apply any post-upgrade one-off patches, patchsets, CPUs, or
PSUs changes to the database. These patches may or may not have multiple
parts that require installation—software updates, manual operating system
changes, and database changes in the form of a SQL script to run. Following
the step-ordered approach the software updates would have already been
installed in an ORACLE_HOME. The database changes have to be done to all
databases that were upgraded, no matter the method used.
Cost-based optimizer upgrade and statistics—see the next chapter.

There is an Oracle-supplied script to show up some issues related to upgrades that
aren't covered in any of the upgrade documentation supplied by Oracle—duplicate
objects owned between SYS and SYSTEM accounts, JVM installation verification,
and various errors that may occur depending on your migration path.

•

•

•

•

•

•

•

•

Chapter 7

[281]

Migration path refers to the starting version for a particular database and all data
dictionary versions applied since. It will show which option was installed at a
particular version as well. This may not seem important right now, but there have
been bugs associated with the migration path which may present a technical obstacle
for certain types of database upgrades.

I would recommend running this script on a test copy of the database before you
upgrade, and then search MOS for any bugs related to the migration path indicated.
See Script to Collect DB Upgrade/Migrate Diagnostic Information (dbupgdiag.sql) [ID
556610.1]. There is output from a run labeled db_upg_diag_ORCL.log in the code
section for this chapter.

One of the biggest changes in 11g is the default profile and hardened security
features. Passwords are now case sensitive by default; that is something to plan for:

Migrating current end user passwords—as they expire, the new ones will be
case sensitive.
Expiring current passwords to change to new case sensitive format when
they log on to 11g for the first time.
Changing everyone's password will need a mechanism to inform end users
of the newly reset passwords. Its different than pre-expiring.

The SYSTEM password expires with the default profile, which may be a problem if
this account is used for any scripting or scheduled database maintenance tasks.

Password failure can occur between the primary and physical standbys
as well as streams because of the new security features in 11gR1. The fix for
the resulting ORA-16191 error is to set the case sensitivity database parameter
SEC_CASE_SENSITIVE_LOGON=FALSE. It also requires you to recreate the password
file on all servers with ignorecase=Y to orapwd utility. Also, remember that if you
recreate the password file, you will have to recycle (restart) each database involved
to reread the newly created password.

•

•

•

A Migrating to 11g: Step-Ordered Approach

[282]

Summary
For using 11g on a daily basis for accessory databases such as Grid Control and
RMAN, listeners for databases and clients will require regular exposure to the new
version. This should increase your skill level and confidence in the new release while
reducing the possibility of disruptions.

As a new DBA, it is important to realize that the binary upgrade and the database
upgrade are two different events that most often executed at different times. Taking
apart a large project and cutting it up into more manageable components brings
stability to what can be an overwhelming process to someone new to Oracle.

Hopefully, this chapter opened up the possibility of a creative migration path that
you hadn't considered before. Oracle expands the features of each version while still
including compatible components to earlier as well as later versions, providing you
with multiple paths for upgrades.

It is interesting that the final point for our migration path in this chapter is about
migrating or upgrading the optimizer. We will cover that in the next chapter.

11g Tuning Tools
Here we are, at the last chapter of this book. It is intended to be the culmination of
all the knowledge from the previous chapters. What this chapter provides is details
on how to start tuning as a DBA—what is most important to know, how to find
that information, and what tools are provided in 11g for preventing and resolving
performance issues. The new SQL Plan Management features are covered, along
with a recommended migration path for upgrading the query optimizer while
keeping performance disruptions to a minimum.

There are two components to tuning: proactive and reactive. Proactive tuning
includes an assessment of the current conditions—end user response time, server
resources, automatic or manual tuning jobs, and startup initialization parameters.
Reactive tuning includes continued assessment after adjusting resources, whether
they are server, network, or database-based. Expect this chapter to just be a quick
introduction to tuning, as entire books are dedicated to just this one topic.

The topics covered in this chapter include the following:

Hardware load testing and forecasting
Proactive monitoring tools
Reactive diagnostic and tracing utilities
Automatic Database Diagnostic Monitor
Automatic Workload Repository
Active Session History
SQL Advisors
Adaptive Cursor Sharing and Bind Peeking
Statistics Gathering
SQL Plan Management
Upgrading the Optimizer in 11g

•

•

•

•

•

•

•

•

•

•

•

11g Tuning Tools

[284]

Unless your database is tiny (something close to the default install size of 4 GB), it is
easy to state that all databases will benefit from tuning. And that chore of tuning the
database will never go away. Why? Because:

Data changes over time (more rapidly in an OLTP environment)—such as
inserts, updates, deletes. Changing data affects the way the data is stored
in a block, extent allocation, index leaf splits, and so on.
Applications will change with client upgrades, new or revised queries,
business needs, or even the adoption of new technology.
Oracle upgrades change the data dictionary—new features, statistics
gathering, Optimizer changes, Oracle kernel changes.

First in the order of business is identifying what needs to be tuned. Then you can
use different methods of tuning to speed things up—whether it is system-wide
or a single, specific query. �� It is imperative that you go over any concepts that you
don't understand as you read through this chapter. I recommend starting with the
Oracle Database 2 Day + Performance Tuning Guide of the Oracle documentation for
the version you are interested in. Move on to the Oracle Database Performance Tuning
Guide as part of the Oracle documentation when you are well-versed in the basic
terminology of tuning.

Hardware load testing and forecasting
There are several open source (free) utilities that help in predicting when the
current operating system and database resources will eventually run out—known
as forecasting. It is a worthwhile exercise whether you are testing new hardware,
determining the amount of time left on the existing servers, or trying to test different
I/O configurations. You will need to find a tool that provides different load
simulators for different database types—OLTP, a web-based application, or a data
warehouse. These tools are designed to put extreme loads on a system; be sure to test
during off-times or on non-production systems.

I recommend using all of the free resources found on http://www.orapub.com.
While it is a commercial company, they have a good reputation in the Oracle
community. On their website, look for the link called Tools / Products. Using
several of their free tools, I was able to determine that the new commodity hardware
selected to replace an older proprietary server was suitable for our workload. Refer
to Chapter 4 of this book for more details. See the following screenshots for a graphic
representation of the testing results; the first screenshot is the older server we were
trying to replace and the second is the newer commodity hardware.

•

•

•

Chapter 8

[285]

The basic numbers in the graphs came from measurements inside the database
(v$sysstat view) while running a huge web load simulation test. I surmised that the
second server using commodity hardware would perform as well or better than the
older server. The values indicate a user calls/second rate. Now that the commodity
hardware is in production, I can say that the prediction was correct.

I recommend running several tests and comparing the output by type—OLTP, data
warehouse, and application-specific. Only using a single test or benchmark won't
give enough evidence. For example, a popular test is to create a table and insert a
million rows; this one test is not adequate to simulate all the different workloads for
a typical database application.

11g Tuning Tools

[286]

Using standard benchmarks (like creating a million row table) is important
when talking about testing scenarios. There should be an assortment of different
benchmarks when testing. One benchmark should be a simple query. This is a
non-complex SQL query (that is, no partitioning, not a parallel query), which takes
approximately 1 minute to complete when running properly. As part of the testing,
compare the execution plan of the benchmark query for all runs.

There should be a representative benchmark for each of the varied tasks that a
typical end user performs against the Oracle database being tested. Benchmarks
allow you to compare the actual performance of one system or database against
another. The benchmarks need to be easily reproducible, testable, and provide
measureable results. ��� One of the best tests for our OLTP application is a particular
C program that generates large numbers of archivelogs.

Using a hardware testing suite that uses database statistics will also help test
database-specific configurations. I ran the same set of tests for each startup
initialization parameter change in a testing environment, until our heavy archivelog
generator ran as quick as production. Database workload testing is particularly
important when migrating to a new Oracle version.

The following screenshot is the graph output from the �������������������������� Oracle Enterprise Manager
(OEM)��� console during the testing run from the earlier test between the two servers.
Notice the extremely high amounts of Disk I/O being executed: its a combination of
disk read and write operations. While the graph below seems to indicate high Instance
I/O the entire time, it is due to the narrowness of the display area in the graph.

Chapter 8

[287]

Orion—Oracle I/O numbers calibration tool
This is a tool most often used when there are large changes planned—new hardware,
the filesystem configuration, or migrating to ASM. Check out the Oracle Database
Performance Tuning Guide for the Top ten mistakes found in Oracle Systems list—I/
O setup is on the list. Proper I/O configuration makes these types of tests critical for
proactively or reactively tuning a database. The key features for Orion include
the following:

There is no need to create and run an Oracle database
It uses the Oracle database's I/O libraries
It simulates several different workload scenarios—OLTP and data warehouse

A simple test can be set up and executed quickly. I recommend creating a
specific directory for all testing. Organize before you get started on what tests you
want to perform with a directory for each—Small Random I/O, Large Sequential
I/O, Large Random I/O, and Mixed Workload. The Orion tool is now included in
the following location as part of the database installation on Linux, as shown in the
following screenshot:

The following example is for Linux:

Orion doesn't require the use of the dd command for creating files,
there is an example in the user's guide that uses dd to double check that
a file is accessible. The one in the user's guide is a different version of
the command. The command listed below is a quick way of creating a
formatted file of a specific size on UNIX; you can also use actual database
files to test with. You might want to test with data file sizes that are
comparable to your production database.

•

•

•

11g Tuning Tools

[288]

1.	 Create a file that is a multiple of DB_BLOCK_SIZE with dd (a standard Unix
command). There are two examples below; look for the difference in file size
with both being a multiple of 8k:
dd if=/dev/zero of=/u01/oradata/TEST_ORION.dbf bs=8k count=1024

dd if=/dev/zero of=/u01/oradata/TEST_ORION02.dbf bs=8k
count=531072

2.	 Create a file with the full path of the file you want to test with. Most often
you would use multiple files for testing I/O. In this simple example, we are
using two files. Below, I have shown using the editor vi to create the file
TEST_SmIO.lun with the required entries for this test:
oracle@nodename:/u01/app/oracle/test[]

>vi TEST_SmIO.lun

3.	 Run orion with the file that you just created as part of the input—num_disks
is the number of spindles; check with your system administrator on how the
spindles are mapped to actual volumes.
orion -run simple -testname TEST_smIO -num_disks 1

Chapter 8

[289]

4.	 Check the output in the same directory that the executable was run; here is a
listing of the files produced for this particular test run:

5.	 The following screenshot is part of the file *summary.txt that was located
in the directory above. Notice how all of the matching output files have a
matching date timestamp. There are csv files produced so that you can view
the results with the spreadsheet software. If you receive zero for the columns
as shown in the screenshot, check the OS library configuration.

Here is the website for the User Guide and downloadable operation-specific
executables. It is not required to install Oracle software and/or a database to use
Orion: http://www.oracle.com/technology/software/tech/orion/index.html

Calibrate I/O
Oracle provides an I/O Calibration test, which requires a working Oracle
Database using the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure. This
test is to narrow down a performance problem to determine whether it is the
database or storage sub-system.

I recommend using this testing on your standby as suggested in �������������� Chapter 5����� . If
you have a logical standby, that would also be excellent for testing, because the
serialized SQL Apply process will perform differently depending on the I/O
subsystem configuration.

11g Tuning Tools

[290]

Asynchronous I/O is required to be installed: it is native to Windows systems, so
no additional work is necessary. Unix servers will need to be checked by the system
administrator for the existence of specific libraries required for using ASYNCH I/O.

The following documents are specific to Linux: Enterprise Linux: Linux,
Filesystem & I/O Type Supportability [ID 279069.1] and How To Check if
Asynchronous I/O is Working On Linux [ID 237299.1].

jMeter
This is another piece of free testing software that I have personally used. As with
any of the free tools, there is a certain amount of work involved with installing,
configuring, and interpreting the results. Once you have the GUI Interface running,
most of your time will be spent designing the actual tests. There are a few test
examples provided to help get you started, but they will be limited in scope.

What is nice about this tool is that you can remotely run tests using JAVA (OS
independent) on multiple servers. Its primary focus is for testing web applications,
but it can be used for other types. The software's main page can be found at
http://jakarta.apache.org/jmeter/.

There is a specific section in the documentation that is meant to help design
a Database Test Plan Module. Go to http://jakarta.apache.org/jmeter/
usermanual/build-db-test-plan.html. I see this tool as being more suited to
testing applications that run on databases but not the actual database or
hardware subsystem.

Monitoring hidden or underlying
problems
It may not always be the database that is the bottleneck or slowest component of all
the collective pieces that exist between the client and the application. If testing shows
the database to be operating within normal benchmark limits (properly tuned),
then it is time to take a look at other most-encountered performance issues. Note
that some of these are Oracle components, some of them are not. Get your system
administrator involved early on whenever there is a system-wide slowness problem,
such as:

Chapter 8

[291]

Slow or busy server
Underlying network
TNS Listener hanging (see MOS document in the box)
Shared server (also known as Multi-threaded server)—related issues
Properly functioning application
Advanced networking option—encryption
Transparent gateways
Connection manager

Refer to TNSListener Hanging - Information to Get For Resolving or
Troubleshooting [MOS Doc ID 230156.1].

Proactive monitoring
Here is where the proactive part of the DBA in regards to tuning begins. In the
newest versions of Oracle, most of the background work is already done for
you, including automatic statistics gathering and managing execution plans.
The automatic tuning features should be used first to see if they work for your
applications; most DBAs will adjust tuning based on what approximately 90% of the
database performs best with. The other 10% (just an estimate) will consist of targeted
problem queries or vendor-application SQL code that can't be changed to make it run
more efficiently during execution.

•

•

•

•

•

•

•

•

11g Tuning Tools

[292]

Automatic Diagnostic Database Monitor
(ADDM)
The ADDM report comes from the DBMS_ADVISOR package, whether generated
by the OEM console as seen in the picture below, or by running the $ORACLE_HOME/
rdbms/admin/addmrpt.sql script. There is an additional license cost to use the
ADDM report, which will be discussed in the next section.

An ADDM report may produce a wrong recommendation as in this case. This
report comes from a Logical Standby Database during the period of heavy activity
on the production database. The fact that SQL APPLY serializes the application of
the transactions, means it consumes large amounts of CPU. Adding hardware is not
the answer in this situation, and neither is the use of a resource manager to throttle
back the SQL APPLY process. This would only slow down the transactions that
need to be applied on the standby. As the DBA, you will need to determine what
recommendations are valid and applicable in a particular situation. In this example,
I understand that SQL APPLY needs all of the CPU until the large transaction has
been applied. The following screenshot is what the text version of the same report
would look like:

Chapter 8

[293]

Hourly snapshots are stored in the Automatic Workload Repository (discussed in the
next section). The ADDM report is generated hourly after each Automatic Repository
Workload snapshot. The results are calculated by comparing the performance
between snapshots. The ADDM report link will not show up in the OEM console if
there are no findings (problems), but it can still be manually run as needed within
the console.

You may want to generate snapshots outside the 60 minutes for troubleshooting a
specific SQL statement. Take a snapshot before the SQL statement starts and after it
ends using the following code:

 SYS@ORCL>DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT('TYPICAL');

11g Tuning Tools

[294]

If you want to see the latest ADDM report, which is stored in the Automatic
Workload Repository (AWR), use the following code. This returns a text version with
all detailed findings (find this script latest_adm.sql in the code for this chapter):

set long 1000000
set pagesize 50000
column get_clob format a80
select dbms_advisor.get_task_report(
task_name, 'TEXT', 'ALL')
as ADDM_report
from dba_advisor_tasks
where task_id=(
select max(t.task_id)
from dba_advisor_tasks t, dba_advisor_log l
where t.task_id = l.task_id
and t.advisor_name='ADDM'
and l.status= 'COMPLETED');

There is a tunable parameter to ADDM—DBIO_EXPECTED. It is changed using the
DBMS_ADVISOR package and is specific to your hardware. The default works unless
you have either old hardware or the faster RAM hard drives.

It is time to talk about Oracle Licensing in this section, as several of the tuning
features are enabled by default yet require an additional license for use. If your
organization has not purchased the Diagnostics and Tuning Pack as part of the
OEM, then the following steps need to be followed to adjust the default Control
Management Pack Access.

In any of the 10.x database versions, the ADDM is enabled by default, running
automatically after every AWR snapshot. There are different ways to disable this
depending on the Oracle Version.

In Oracle 10g, set database parameter statistics_level=BASIC. This completely
disables ADDM, but it also disables many of the other free tuning components. It
is better to set the hidden database parameter (a hidden parameter starts with an
underscore) as follows:

ALTER SYSTEM set "_addm_auto_enable"=false scope=both;

In Oracle Database 11g, the database parameter called control_management_pack_
access is used to specify which of the OEM management packs should be active.
There is a default value that is set to "DIAGNOSTIC+TUNING". To disable ADDM, you
can set the database parameter as follows:

alter system set control_management_pack_access = "NONE" scope=both;

Chapter 8

[295]

There may be a situation where your organization owns the licensing for
the Diagnostics and Tuning packs but has to keep the database parameter
STATISTICS=BASIC, which turns off the tuning features as mentioned above.
You can still utilize the features taking a snapshot manually like this:

1.	 Take a starting snapshot:
	 SYS@ORCL> EXECUTE dbms_workload_repository.create_snapshot();

2.	 Take an ending snapshot, after the problem has occurred or been recreated:
	 SYS@ORCL> EXECUTE dbms_workload_repository.create_snapshot();

3.	 Run the SQL scripts found in $ORACLE_HOME/rdbms/admin for the
final reports:

	 SYS@ORCL>@awrrpt.sql
	 SYS@ORCL>@addmrpt.sql

	 SYS@ORCL>awrddrpi.sql (compare periods report)

The running of these two scripts will ask for the snapshot IDs, which are
conveniently listed for you after giving answers to several of the prompts.

If you are using OEM without purchasing any of the additional packs, there won't be
as much functionality available. To view functionality, with and without the packs,
go to the GC Setup Link, Management Pack Access. Adjust the access by clicking or
removing a check mark and apply the changes. What happens is that the clickable
links for that management pack are no longer accessible in the console.

Take the time to remove any that you don't have a license for and check the box
agreeing to the pack access. Testing for a new functionality is fine with Oracle
products, but it needs to be on a database with none of your production data. So if
you need to test GG management packs, this will require a new install on a testing
box with none of your production servers, databases, or application servers being
monitored. Talk to your Oracle licensing representative for the exact details.

Automatic Workload Repository
Automatic Workload Repository (AWR) consists of the SGA-based in-memory
statistics collection process (MMON), with snapshots taken at regular intervals.
Depending on the Oracle Version and the appropriate database parameters, the
RDBMS will schedule AWR snapshots automatically every 60 minutes. These
snapshots will include the results of the last executed ADDM; these ADDM
results are from the hourly snapshots of data.

11g Tuning Tools

[296]

The snapshot output is recorded in the data dictionary, which can be retrieved
(using SQL or by the GC OEM console) for historical comparison over the
retention period.

SYS@ORCL>SELECT * FROM dba_hist_snapshot ORDER BY snap_id;

Another useful search is identifying which execution plan (out of several) was
executed at a certain time. This information comes from the AWR. The first query
will find the SQL_ID needed for the subsequent queries.

SELECT tf.* FROM DBA_HIST_SQLTEXT ht, table
(DBMS_XPLAN.DISPLAY_AWR(ht.sql_id,null, null, 'ALL')) tf
WHERE ht.sql_text like '%&PIECEOFSQL%';

select sql_id, PLAN_HASH_VALUE, to_char(timestamp,'DD-MON-YYYY HH24:
MI:SS') from DBA_HIST_SQL_PLAN where sql_id= '&SQLID';

For diagnosing issues or abnormalities in the AWR repository itself, see
$ORACLE_HOME/rdbms/admin/awrinfo.sql. This script reports the total
amount of database space that AWR occupies, estimated AWR growth, and
Advisor Tasks information.

Active Session History (ASH)
Active Session History, an automated task, will identify currently running SQL for
all connected and active sessions. While AWR and Statspack are important tools for
diagnosing issues, they don't have the level of detail for individual SQL statements
that ASH does. Here are the highlights of ASH:

It retains seven days of history by default
Statistical analysis of events, session, and waits
It can dump to trace file
SYS@ORCL11>alter session set events 'immediate trace name
ashdump level 10';—gives 10 minutes of history
Sample every 10 seconds
V$ACTIVE_SESSION_HISTORY or DBA_HIST_ACTIVE_SESS_HISTORY

ASH report ($ORACLE_HOME/rdbms/admin/ashrpt.sql) or through
EM console.

See the code for this chapter—ash_top_min.sql (Top SQL from the last minute) and
ash_top_ios.sql (identified SQL that uses the most I/O).

•

•

•
•

•
•

•

Chapter 8

[297]

If you don't own the management packs required for this utility, check
out the following location for a freeware version called S-ASH: http://
ashmasters.com/ash-simulation/. There are a couple of versions
of S-ASH depending on your edition of Oracle installed.

SQL Advisors
In 11g, one of the automatic tuning tasks is what is known as Automatic SQL Tuning
(SYS_AUTO_SQL_TUNING_TASK). By default, the task is configured and running in all
of the maintenance windows that include the SQL Tuning Advisor (STA) and SQL
Access Advisor (SAA). ADDM results may include the recommendation to run STA
to improve a SQL statement.

Remember that whenever you run an advisor, the results are Oracle
recommendations. The DBA needs to manually decide which recommendations
are suitable for their application. I would compare the explain plans (easy to do
with the OEM console) to see the actual differences in the costs associated with
a recommendation.

The advisor may suggest collecting statistics, missing indexes, as well as an improved
execution plan. The STA will collect statistics (for evaluation only) as well as account
for any missing indexes to come up with a better plan. The improvements are saved as
a SQL profile. A SQL profile is not an actual saved execution plan; it is a stored fix to
any incorrect estimates due to index or statistics issues. The regular execution plan is
used along with the SQL profile, resulting in an improved performance.

The default behaviour is not to automatically accept SQL profiles when they are
generated by the automatic tuning task. In 11g, I recommend starting with SQL Plan
Management and only using SQL profiles as a temporary fix for plan stability issues.

The SQL Access Advisor (SAA) suggests alternate access paths to the data using
indexes or materialized views to improve performance. SAA can use a workload
that comes from memory (V$SQL) or user-defined workloads (a particular schema(s)
or SQL Transport Set). Evaluation includes any combination of new indexes, new
materialized views, storage creation parameters, dropping unused indexes, or
modifying existing indexes.

The SAA is not as useful as the STA—it may recommend dropping an important
index that is not being used during the time you ran the advisor. To monitor which
indexes are being used requires a longer process where you turn on monitoring for
certain indexes, run a workload, and then stop monitoring. The complete steps are
found in the MOS document: Identifying Unused Indexes [ID 144070.1].

11g Tuning Tools

[298]

Monitoring Tools are one of the most important components for proactively tuning
an Oracle Database. In this book, the overall monitoring GUI tool used is the OEM
console. It provides a Graph Interface with real-time monitoring capabilities. In this
chapter, the console is used with the Diagnostics and Tuning Management Pack.
Everything in regards to tuning can be done without the Diagnostics and Tuning
Optional License. This brings us to the next section, STATSPACK, the free version.

STATSPACK
The Statspack utility is a set of PL/SQL and SQL scripts that come included with an
Oracle license. It is similar in functionality to AWR, in that it takes snapshots over
a period of time, which can be compared to evaluate performance. The information
in the snapshot comes from the dynamic performance tables as part of the data
dictionary. The code itself can be modified or customized since it is not encrypted. It
has to be installed, configured, and scheduled to be run by the DBA. While the actual
install, scheduling, and maintenance of the Statspack utility is not difficult, it takes
dedication and work to maintain over time.

Each Statspack version can be upgraded to keep existing snapshot data, but there is
no downgrade available. The only way to restore is to de-install, and do a schema-
level import of the data, usually the PERFSTAT schema. The original Statspack
Documentation is found in the older 9i Oracle documentation at the following
location: http://download.oracle.com/docs/cd/B10501_01/server.920/
a96533/statspac.htm#PFGRF019

Updated information for the version you are interested in is located in $ORACLE_
HOME/rdbms/admin/spdoc.txt. There are changes from 10.2 and 11.1, but no
changes appear in the document to Statspack between 11.1 and 11.2.0.1.

While Oracle provides some diagnostic information when generating a report, it still
requires some DBA experience to use Statspack successfully. The Oracle database has
hundreds of wait events, statistics, and metrics that are used to report the time spent
by a transaction and are dependent on the individualized workload for any one
system. There are free or low-cost analyzers and viewers available for the standard
text Statspack report. One that has been around for a long time and is still used can
be found at: http://www.oraperf.com.

If you are migrating from Statspack to using AWR, beware that collecting both types
of snapshots may interfere with each other. Since AWR is collected on the hour, if the
database startup initialization parameter is statistics_level = typical (or all),
move the Statspack collection to the half-hour to prevent conflicts.

Chapter 8

[299]

There is more information on using Statspack with 11g at:
http://kerryosborne.oracle-guy.com/2008/11/statspack-
still-works-in-10g-and-11g/ http://wiki.oracle.com/
page/Oracle+Tuning+with+STATSPACK+and+AWR

Reactive diagnostic and tracing tools
The utilities listed below may or may not be applicable, depending on your database
version, operating system, Oracle support agreement, and/or management packs
licensed. While several of these were listed in the proactive section above, they are
still applicable for use when diagnosing a performance problem. The GUI OEM
console has both real-time and historical charting capabilities that are valuable for
both proactive and reactive activities.

The utilities native to Oracle Database or located in $ORACLE_HOME are as follows:

PL/SQL Profiler: Discovering which PL/SQL line takes the most
time—DBMS_PROFILER

STATSPACK: Snapshots (spreport.sql)—check out the Statspack section in
this chapter
Events and Tracing: See the Tracing and Diagnostic Events Section
Error/Crash Issues: Automatic Diagnostic Repository, Support Workbench,
Advisors, and Checkers

The Diagnostic and Tuning management packs are only available for
the Enterprise Edition of Oracle. The features of the Tuning pack are
dependent on the Diagnostic pack being installed.

Database—additional management packs required:

SQL Tuning Advisor: Ranked improvement recommendations—DBMS_

SQLTUNE or $ORACLE_HOME/rdbms/admin/sqltrpt.sql
AWR (Automatic Workload Repository): Saves snapshots, benchmarking—
report ($ORACLE_HOME/rdbms/admin/awrrpt.sql)
ADDM (Automatic Diagnostic Database Monitor): Report ($ORACLE_HOME/
rdbms/admin/addmrpt.sql)
ASH (Active Session History): $ORACLE_HOME/rdbms/admin/ashrpt.sql
SQL Incident Analysis: Severe enough for uploading to MOS for an SR
SQL Failure Analysis: SQL failures that don't produce an incident

•

•

•
•

•

•

•

•
•
•

11g Tuning Tools

[300]

Database—available on MOS website:

SQLTXPLAIN: extensive explain plan—sqlt.zip [ID 215187.1]
TRCANLZR: analyzing raw SQL trace data—trca.zip [ID 224270.1]
OPDG: Oracle Performance Diagnostic Guide
Troubleshoot an ORA-600 or ORA-7445 Error Using the Error Lookup Tool [ID
153788.1]
RDA: Remote Diagnostic Agent used with the DBPERF Profile

Operating System Utilities—available on MOS website:

OS_Watcher: Collect/Archive OS, Network Metrics, Windows version available [ID
301137.1]
LTOM: Comprehensive Integrated Real-time Collector for OS and Database (Hang
Detector, Data Recorder, Session Trace Collector) [ID 352363.1]
Procwatcher: Script to Monitor and Examine Oracle and CRS Processes [ID
459694.1]
Stackx: shell script UNIX, extracting Core/Stack Trace Files [ID 362791.1]
HangFG: Hang File Generator—Unix scripts [ID 362094.1]

Bind peeking and Adaptive Cursor
Sharing
This section requires some basic knowledge of tuning, as it pertains to bind peeking
and Adaptive Cursor Sharing. Before the 10g Version of Oracle Database, there were
performance issues related to bind peeking. The query optimizer takes a quick look
(peek) at user-defined bind variables the first time they appear in a cursor. A bind
variable is a substitution variable instead of a literal—in this example as A: instead
of the literal 100. That peek may or may not be the best value to base the execution
plan of a query on. The next time the optimizer encounters that same cursor, no more
peeking takes place no matter the bind value, because the cursor is shared among all
the queries for the same information.

Why wouldn't the first peek be the best one to use? It depends on the mathematical
distribution of the data. For example, a table with three column values—1, 10, 100,
contains 245 rows, 2 rows and 6 rows of each value respectively. There is a larger
number of rows that contain the value 1 for the same column. The query optimizer
may choose a particular execution plan based on whether a Full Table Scan or an
Indexed lookup is more efficient. When that plan choice is based on the wrong
peek, then a bad execution plan is the usual result.

•

•

•

•

•

•

•

•

•

•

Chapter 8

[301]

Oracle Database11g introduced SQL Plan Management in order to control when an
execution plan changes, whether it is due to bind peeking or any other reason for an
execution plan to change. It is based on the ability to store multiple execution plans
for a SQL_ID, comparing plans, and executing the top performing plan.

11g has also introduced Adaptive Cursor Sharing, which doesn't always take the first
peek and shares the resulting execution plan for a particular cursor. There will be
different execution plans generated for different bind variables of a cursor with the
cursor marked as bind sensitive if a histogram is used. Adaptive Cursor Sharing may
produce multiple cursors that result in multiple plans, with the optimizer choosing
the best plan for the bind variables being used.

See later in the next section for more on histograms. For an example
case study on bind peeking in 11g, look up the following blog:
http://oracletoday.blogspot.com/2007/08/bind-
variable-peeking-in-11g.html.

The next section is about gathering statistics, which is important when as changes
occur (data, system, or dictionary-related) to maintain an accurate count of the
changing values as well as their distribution.

Gathering statistics
There is the Oracle-supplied package DBMS_STATS that will calculate statistics for a
table (entire schema or the entire database), which is considered the replacement for
the older (legacy) compute statistics command for calculating the cost of a query.
Using the DBMS_STATS package will be your primary method for regulating statistics
gathering on any database 10g and above, along with the startup initialization
parameters of TIMED_STATISTICS and STATISTICS_LEVEL.

11g puts statistics gathering under the larger umbrella of Automatic������������� Maintenance
Tasks Management or AutoTask, w�� hich is used in conjunction with the resource
manager so that jobs (like statistics gathering) are sure to complete successfully
within the resource windows. These are the tasks automatically implemented:

Optimizer statistics gathering
Automatic Segment Advisor
SQL Tuning Advisor

•

•

•

11g Tuning Tools

[302]

The first set of automatic tasks is where we will start in this section-Optimizer
Statistics Gathering, which calls the DBMS_STATS.GATHER_DATABASE_STATS_
JOB_PROC package. This task determines which objects (tables, column, index,
or system) have missing or stale (data has changed beyond a certain threshold
percentage) statistics. The monitoring for stale statistics comes from the *_tab_
modifications view.

From the OEM Console, there are several tasks associated with statistics as seen in
the screenshot below. All of the statistics tasks listed use the DBMS_STATS package:

If you need to change statistics, the place to start is with the Global Statistics
Gathering Options. Think of this as top-down tuning 90% of the database by making
a few adjustments to the automatic statistics gathering job. The window that comes
up when choosing that link is shown in the following screenshot:

Chapter 8

[303]

The field that most DBAs need to adjust (as it varies from application to application)
is the Histograms box. This adjusts what is known as the METHOD_OPT argument of
DBMS_STATS. Histograms are also known as column statistics; this is the statistic type
that is important to gather when the data is not evenly distributed (known as skewed
data) as mentioned earlier in this chapter.

METHOD_OPT has a default of FOR ALL COLUMNS SIZE 1 on Oracle 9i, which
really means no histograms. The 10g and 11g versions default to AUTO, which
means that the execution of the DBMS_STATS package is what decides in which
columns a histogram may help to produce a better plan. When migrating an
existing 10g database to 11g it is important to note that non-default values
(such as METHOD_OPT) are not changed during the upgrade process.

Here are some general recommendations for gathering statistics by object type:

Application schema objects—statistics gathered when stale as defined by
the auto stats job.
Data dictionary objects—gather full statistics once, unless there are large
schema changes to the database or an Oracle upgrade.
Fixed objects—dynamic performance tables, gather once during normal
production workload.
System performance stats—gather once with normal production workload.
This needs to change if the workload, hardware, or system configuration
changes drastically.

For the last two items in this list, if your workload varies widely, then stick to the
defaults that Oracle provides.

What might need to be exempt from the automatic statistics gathering job
are volatile, large bulk loads. These are dealt with by setting the values to a
predetermined normal value and then locking the statistics. External tables
statistics are also usually exempt from statistics gathering. If you completely
turn off statistic gathering for all application schemas, Oracle recommends leaving
statistics gathering active for the data dictionary. This also assumes that the system
statistics and fixed object statistics have already been gathered.

For more information on histograms and METHOD_OPT, take a look at
work done by Wolfgang Breitling at http://www.centrexcc.com/.

•

•

•

•

11g Tuning Tools

[304]

Comparing statistics
Use the Oracle-supplied package DBMS_STATS.DIFF_TABLE_STATS_* to compare
statistics from any combination of the following possible sources:

User-created statistics table
Current statistics in the data dictionary
Point in history
Pending statistics

Comparing statistics would be very useful in your database upgrade from 10g to 11g
and eventual migration to SQL Plan Management. For migration purposes you are
looking for the SQL statements where the statistics are the same from one database
to another while the execution plan is different. Comparing the statistics would
verify that they aren't the reason for the change in plans.

Restoring statistics history
There is a way to restore the statistics when performance degrades from the
historical record of the statistics saved by default since Oracle Database Version 10g.

SYS@ORCL>select DBMS_STATS.GET_STATS_HISTORY_RETENTION from dual; --
default of 31 days for 11g

SYS@ORCL>select DBMS_STATS.GET_STATS_HISTORY_AVAILABILITY from dual;
--the oldest statistics that can be restored

 SYS@ORCL> select TABLE_NAME, STATS_UPDATE_TIME from dba_tab_stats_
history; --indicates when statistics were gathered for each table.

There are several different ways to restore a particular set of statistics:

execute DBMS_STATS.RESTORE_TABLE_STATS ('owner','table',date);
execute DBMS_STATS.RESTORE_DATABASE_STATS(date);
execute DBMS_STATS.RESTORE_DICTIONARY_STATS(date);
execute DBMS_STATS.RESTORE_FIXED_OBJECTS_STATS(date);
execute DBMS_STATS.RESTORE_SCHEMA_STATS('owner',date);
execute DBMS_STATS.RESTORE_SYSTEM_STATS(date);

Here is an example showing how to restore the entire database statistics to a
certain timestamp:

execute dbms_stats.restore_database_stats(as_of_timestamp => to_
timestamp_tz('2010-03-19 11:05:00 -6:00', 'YYYY-MM-DD HH24:MI:SS TZH:
TZM'));

•

•

•

•

Chapter 8

[305]

There will be a difference in execution plans for the same SQL statements in different
databases, due to a different set of gathered statistics.

See the following note for how to transport statistics from one database to
another for testing: How to Use DBMS_STATS to Move Statistics to a
Different Database [Note: 117203.1].

Knowing what needs to be tuned
You are looking for what is doing more work than required (Full Table Scans instead
of index lookups) or waiting for some sort of resource (latches, locks or I/O).

Find the database process(es) that is (are):

Using the most CPU
Performing the most disk I/O operations
Executing the most number of times
Taking the longest time to execute (which is known as elapsed time)

You need to fix the really bad performing SQL statements first, which is why it
is most often deemed the TOP N SQL. These TOP statements will bring the most
benefit from the time spent in tuning or optimizing. The TOP N SQL designation
comes from what is listed in a STATSPACK and/or ADDM report output from the
AWR for an Oracle database.

There are specific thresholds that the RDBMS uses to determine the top 10 most
resource-intensive statements (see the script top10.sql provided for this chapter):

Buffer Gets: 10,000
Physical Reads: 1,000
Executions: 100
Parse Calls: 1,000
Sharable Memory: 1,048,576
Version Count: 20

Extensive information is gathered from the database, which shows in detail the time
being spent on various activities. Overall end-user response time is a combination of
CPU time and any waits that may be occurring.

Response Time = Service Time (CPU) + Wait Time (sum of all waits)

•

•

•

•

•

•

•

•

•

•

11g Tuning Tools

[306]

At different points in this chapter, it was mentioned what changes might cause a
SQL statement to start performing badly—object statistics, schema, and/or data
changes. Don't forget about bindpeek(ing) when talking about performance issues.
Refer to Chapter 10 of the Oracle Database Performance Tuning Guide for "Instance
Tuning Using Performance Views" for help in interpreting the ASH, ADDM, or
Statspack reports.

Tuning a single query
Recommendations on what to change first should be based on doing the least
amount of harm. Remember that you could possibly make changes that would
affect database performance system-wide for the worse. The following are some
suggestions for adjusting:

11g SQL Plan Management—in earlier Oracle versions, use Stored Outlines.
Dynamic Sampling—different from normal statistics gathering.
System Statistics—lets the optimizer know specifics about your hardware.
Database Startup Initialization Parameters—system-wide change that may
cause bad performance and can be specific to a vendor application.
Hints—provides the optimizer with more information to pick a certain
execution plan. See the OPT_PARAM type suggested below.

It is important to note that changing database parameters is one of the top
ten mistakes in the Oracle Database Performance Tuning Guide. Adjusting
database parameters are most often used when the entire database is
performing badly for all SQL queries or when the application vendor
recommends a specific parameter change. See the MOS Document:
Tuning Queries: 'Quick and Dirty' Solutions [ID 207434.1].����� OPT_
PARAM Hint [ID 377333.1]: Introduced in 10g. Using a Hint to change
optimizer settings; is especially useful for migrating from one Oracle
version to another by either advancing or downgrading the compatibility
version for specific SQL statements.

•

•

•

•

•

Chapter 8

[307]

SQL Plan Management (SPM)
Making executions plans more stable plus adaptable to changes (system, dictionary,
data) as they occur is the reasoning behind the SPM components of 11g. It is a major
improvement to the stored outlines that have been a part of Oracle Database since
version 8i. While stored outlines provided stability for a fixed optimized execution
plan, it didn't have the features for storing, comparing, and verifying multiple plans.
Hints, which are added to the actual SQL, are intended to provide guidance to the
query optimizer for picking a certain execution plan. Hints will also require ongoing
maintenance to prevent query regression as data changes.

This is the default SPM behavior:

SQL Plan Baseline Capture (Automatic)
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES = true

First plan automatically accepted, new plans non-accepted
If Stored Outline exists, are enabled, and USE_STORED_
OUTLINES=true, then manually migrate new plans. Disable
stored outlines to use newer plans.

SQL Plan Baseline Selection (DBA run)
OPTIMIZER_USE_SQL_PLAN_BASELINES = true
Plan must have ENABLED=YES and ACCEPTED=YES

SQL Plan Baseline Evolution (Scheduled or DBA run)
Scheduled and run by DBA with procedure
Bad plan stays non-accepted, better becomes accepted as part
of plan baseline

The query optimizer chooses from accepted plans that are part of the SQL Plan
Baseline. Creating the baseline can happen by either scheduling DBMS_SPM to verify
all non-accepted plans or the DBA can manually designate which plan is the best.
The following query will indicate which plans are accepted:

SYS@ORCL11> select sql_text, plan_name, enabled, accepted from
dba_sql_plan_baselines;

A particular plan is identified by the column SQL_HANDLE in
dba_sql_plan_baselines view and is used for managing the plan
history with the DBMS_SPM package.

•
°

°

°

•

°

°

•

°

°

11g Tuning Tools

[308]

SQL Tuning Advisor can also evolve plans and insert a newly tuned plan that is not
in the plan history. See the section Upgrading the Optimizer for recommendations on
migrating to 11g and using the SPM functionality for the first time.

All of the SPM features can be accessed by using either the OEM console or the
DBMS_SPM package. Any end user who needs access to administer plan history
will need the new 11g privilege ADMINISTER SQL MANAGEMENT OBJECT privilege
assigned to them.

SQL Management Base
There is a repository (part of the data dictionary) containing all of the components
of SPM for maintaining plans: statement logs, plan histories, SQL plan baselines,
and SQL profiles. The repository is called SQL Management Base (SMB) and it is
self-managing, with the default maxsize of 10% of the SYSAUX tablespace. There is a
weekly scheduled purging task that removes plans not used for the last 53 weeks. If
you exceed the default percentage maxsize, then only alerts are generated. It is up to
you to do something about it by increasing the threshold, increasing the tablespace
size, or manually purging SPM objects.

Tracing and diagnostic events
While researching SPM, I came across new tracing capabilities for SPM by
setting an event. This is called the Universal Tracing Service, and it was mentioned
in a single document—Sql Plan Baseline Not always created [ID 788853.1]—with
the following code:

alter session set events 'trace [sql_planmanagement.*]';

Also, check out the document SQL PLAN MANAGEMENT TRACING [ID 789520.1]
for tracing any SPM changes using the DBMS_SPM package.

What is an event ?
An event is an Oracle-supplied internal mechanism to signal (most often trace or
debug sessions) when a certain change in database behaviour occurs. It also enables
the collection of trace or debug information and starts certain error checking features.

Chapter 8

[309]

When should I set an event?
An event should be set only������������������������������������ after you understand the following:

Exactly what the event will change
It may or may not be applicable to the database version in use
Oracle Support has requested you set an event
Recommend setting in a test database first

What are the different event levels?
There are different event levels. That vary according to the event number and the
Oracle version you are using�.

For example, event Number 10046 has four tracing levels and is commonly used for
researching specific SQL tuning cases:

Level 1 is default and traces all activities until the trace session is terminated
Level 4 = level 1 tracing + bind variables
Level 8 = level 1 tracing + wait events
Level 12 = level 1 tracing + bind variable + wait events

While other events will look more like the following, this example will be seen in the
database initialization file (pfile):

event="10235 trace name context forever, level 65536"

A bad situation can get worse by setting events randomly without the exact level,
causing core dumps or a database crash. This means you need to research carefully
before setting any type of event. It may appear that setting an event is an ordinary
thing because they are found in many Oracle-related technical sources, but it should
not really be done unless you have a valid reason for doing so.

Specific Trace events for performance
problems
Oracle diagnostic events and ORA errors share the same range of numbers from 0 to
65535 for their codes. The following are some examples of Trace events:

10046 Trace: Studying the performance specific to a certain SQL statement
10053 Trace: How the CBO operates for a hard parse situation
10032 and 10033 Trace: Tracing for Sort Conditions
10104 Trace: Trace Events for hash join problems.

•
•
•
•

•
•
•
•

•
•
•
•

11g Tuning Tools

[310]

For a listing of these error numbers, check out the following file: $ORACLE_HOME/
rdbms/mesg/oraus.msg

Also, look up Setup & Usage (Tracing) ������������� [ID 117736.1].

Events vary by version. Use the following query for comparing databases; this
is a common method used by DBAs for this type of task. You will need to create
a database link between the databases for this to work. This will also require the
appropriate TNSNAMES.ORA entry for the query to work. See the EventDiff.sql
file in the code section for this book that contains additional formatting commands to
make the output easier to read:

SYS@DB11>select event#,event_id,name from v$event_name
 where event_id not in (select event_id
 from v$event_name@DB10g);

Interpreting the resulting Event Trace file
The Trace Analyzer, TRCANLZR, is a tool provided by Oracle, downloadable on
MOS, that parses through a RAW SQL Trace generated by setting EVENT 10046. It
processes the large trace file and places the analysis report into a staging repository
area. It connects to a single database at a time but can be used for multiple databases
for the single trace file analysis. Just be aware that data dictionary differences will
result in a different analysis than where the trace file was first generated. The scripts
in the tra/dict area can be copied from system to system to simulate the same
data dictionary for multiple databases when used for a single badly-performing
SQL analysis.

The report generated will include a huge amount of information that includes:

Response time
Summary of the database calls
List of the top SQL by response time
SQL with associated dependencies
I/O wait summaries
Most used or hot blocks
Time gaps when no tracing activity occurred
Transaction summary
Any non-default database initialization parameters
Row counts involved
Explain plans

•

•

•

•

•

•

•

•

•

•

•

Chapter 8

[311]

Tables, indexes, partitions, sub-partitions, and indexed columns referenced
by explain plans
CBO statistics for tables, indexes, columns as well as histograms
Bind variables involved
The time analysis for the SQL statement

TRCANLZR analyzes more than TKPROF or TRCSUMMARY while providing
additional report details, which makes it a more advanced tool for tuning a specific
SQL statement. See the following for more information: Note: 39817.1 and Note:
224270.1 Interpreting Raw SQL Trace Files and TRCANLZR TKProf Interpretation
(9i and above) [ID 760786.1].

Here are two blogs that have more information on the newer diagnostic
events in 11g:
http://blog.tanelpoder.com/2009/03/03/the-full-power-
of-oracles-diagnostic-events-part-1-syntax-for-ksd-
debug-event-handling/

http://oraclue.com/?s=diagnostic+events

Upgrading the Optimizer
This section deals with the general steps of upgrading and enabling the features of
the Optimizer from 10g to 11g. Upgrading also includes a migration of existing 10g
versions of execution plans and statistics to the new SPM method. There are many
different ways of accomplishing this task, depending on your current method of
gathering statistics, automatic tuning tasks, and execution plan maintenance.

Here is a basic plan of attack:

Capture and back up existing 10g Execution Plans and Statistics
Upgrade the database to 11g
Start the applications and allow the end users to log on to the 11g database
Adjust the database startup initialization parameters once the new version
has been stable for at least a week
Capture new execution plans and new statistics
Evolve or verify new plans that execute better than the 10g versions

•

•

•

•

•

•

•

•

•

•

11g Tuning Tools

[312]

Capturing and backing up execution plans
and statistics
It is assumed in this section that your existing 10g database is successfully tuned
with well-performing execution plans and updated statistics are available. If you
don't have a well-performing 10g database, try testing an 11g upgrade using all of
the new auto-tuning features, including SQL Plan Management. That can be simply
done by adjusting the optimizer startup initialization parameters as first outlined in
the SPM section in this chapter.

Center of Excellence (COE) on MOS has a set of scripts to capture
statistics from an Oracle database in preparation for an upgrade from
9i or 10g. Refer Managing CBO Stats during an upgrade to 10g or 11g
[MOS Doc ID 465787.1].

SQL Tuning Sets
As a part of the Diagnostics Pack, SQL Tuning Sets (STS) is the recommended
method of capturing execution plans for migrating to 11g. An STS includes the
SQL statements, and execution plan, along with execution statistics (different than
optimizer statistics). ��� Oracle Version 10gR2 will capture the execution plan as part
of an STS, but any version before that will not. If that is the case, then look to using
stored outlines as in the next section.

To create an STS, use OEM or by the DBMS_SQLTUNE package as in the
following example:

execute sys.dbms_sqltune.create_sqlset (sqlset_name => 'SPM_
STS',description => '10gPlan');

After creating an STS, load in the execution plans for use as an SPM baseline plan.
The plans can come from the AWR, another STS set, or by what is currently in
memory (known as cursor cache). It is recommended to skip the SYS schema, as
there are data dictionary changes in 11g and the older execution plans migrated
from a 10g database would no longer be valid.

Chapter 8

[313]

Stored Outlines
Stored Outlines are a method of locking in execution plans. They are now deprecated
but are another tool that can be used for migrating your current execution plans to
11g, even if you don't have any current outlines in use. They are good for testing
because a stored outline can be disabled or re-enabled as needed. They can be done
manually for specific SQL statements using the create outline command or bulk
capture for all SQL statements as in the following case. It is assumed that you would
only want certain schemas that are application data-specific.

To create and capture existing Stored Outlines, enable stored outlines with a
valid description:

SYS@ORCL10> alter system set create_stored_outlines=10gPLAN;

Grant any schema owner the create any outline privilege:

SYS@ORCL10> grant create any outline to <schema_owner>;

Run a standardized workload by running the actual application in production or in a
testing database.

Turn off the stored outlines capture after the workload is complete:

SYS@ORCL10> alter system set create_stored_outlines=false;

Double check the existence of Stored Outlines captured with the category of 10g
PLAN for each application schema owner:

SYS@ORCL10> select name, sql_text, category from user_outlines;

These stored outlines are contained in the OUTLN schema, which can be exported as
needed (use data pump or the Export/Import utility). This export file is an excellent
form of backing up execution plans and can as well be imported into another
database for testing.

Capturing and backing up Optimizer Statistics
Statistics have the greatest impact on the execution plan that the query optimizer
chooses. It is assumed that an upgrade will be performed on an existing database
with existing statistics. Making sure the statistics are gathered and backed up is
paramount for the migration process.

11g Tuning Tools

[314]

Statistic gathering in the 10g database for the migration should be taken during what
is known as peak load (greatest amount of database activity). In my OLTP database,
this is usually around 3:00 pm when people are hurrying to complete tasks before
leaving for the day. There may be other periods of time that are just as important to
a particular application. Look for the Top N SQL statement(s) identified as critical,
month-end processes as well as the usual SQL queries run as part of the normal
reporting workload.

There are several methods to capture and back up statistics:

1.	 Maintain at l��� east seven days of AWR snapshots history. Default settings
retain the last eight days. Double check your current settings for
STATISTICS_LEVEL, which may affect the length of retention. Use the
$ORACLE_HOME/rdbms/admin/awrextr.sql to extract a designated number
of days into a valid data pump directory as backup or to use in a testing
situation. See the MOS Doc: Transport AWR Data [ID 872733.1].

2.	 While using Statspack, run it at Level 7, which generates execution plans.
Since Statspack is a schema (usually Perfstat), it is easy to back up and export
the execution plans using standard Oracle Export/Import utilities.

3.	 Export the complete set for a particular schema into a stats table.
That is done by first creating the table and then loading the statistics
for a particular schema:
EXECUTE DBMS_STATS.CREATE_STATS_TABLE('SYSTEM','10g_STATS_TAB');

EXECUTE DBMS_STATS.EXPORT_SCHEMA_STATS('SCHEMA_NAME','10g_STATS_
TAB','10gSTATS');

It is easy to back up the stats table created above by using an export utility, as it is
now a database table object. This is also a method of importing these same statistics
into another database.

Just as in the execution plan example, you don't want the current SYS statistics,
system statistics, or fixed object statistics, as all of these are no longer applicable
when you upgrade. The new 11g Oracle version needs to calculate these statistics
based on the new Oracle kernel and Optimizer.

Chapter 8

[315]

Upgrade the database to 11g
Keep optimizer_features_enable in your older 10.x version for at least a week.
Move the backed up execution plans into the SPM so that they start out as the SQL
Plan baseline. Each plan, bulk loaded, will automatically be accepted or added to an
existing baseline plan. Load execution plans by:

SQL Tuning Sets
SYS@ORCL11> DBMS_SPM.LOAD_PLANS_FROM_SQLSET(-

sqlset_name => 'SPM_STS');

Stored Outlines—the following code loads all previously captured stored
outlines (see the earlier section on how to do the capture):
SYS@ORCL11> variable report clob;

SYS@ORCL11>execute :report:=DBMS_SPM.MIGRATE_STORED_OUTLINE(
attribute_name=>'ALL');

Cursor Cache—meant for those statements not captured before the upgrade

SYS@ORCL11> DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE;

See the following document for more details on loading plans from a
staging table: How to move 10gr2 Execution Plans and load into 11g
spm [ID 801033.1].

The most important thing is that you need to keep the existing 10g statistics; no
automatic gathering should be in place. In the following diagram, there is a picture
of the OEM screen used to disable the optimizer statistics gathering job.

•

•

•

11g Tuning Tools

[316]

The following is the SQL method of disabling the optimizer statistics collection job. I
recommend running this SQL as soon as the database upgrade is finished:

SYS@ORCL11>EXEC DBMS_AUTO_TASK_ADMIN.DISABLE('auto optimizer stats
collection', NULL, NULL);

The query below verifies that the auto optimizer stats collection has been disabled:

SYS@ORCL11> select client_name,status from Dba_Autotask_Client;

The following is a step to make gathering statistics safer. This allows testing to occur
before the newly gathered statistics are used against the loaded execution plans as part
of the baseline. Since the following doesn't change any additional global preferences, it
will gather statistics using the 11g version but store as pending, not in effect.

SYS@ORCL11>DBMS_STATS.SET_GLOBAL_PREFS('PENDING','TRUE');

It's time to gather the 11g Dictionary Stats, fixed objects, and system statistics! See the
recommendations for gathering statistics by object type in this chapter:

SYS@ORCL11>DBMS_STATS.GATHER_DICTIONARY_STATS (
 comp_id => NULL,
 estimate_percent => 100,
 method_opt => 'FOR ALL COLUMNS SIZE 1',
 cascade => TRUE,
 statid => NULL,
 options => 'GATHER');

Gather Fixed Object Stats:
SYS@ORCL11>��������������������������������������� ��������������������������������������DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;

Gather System Stats—First use standard noworkload to gather statistics for
baseline hardware measurements and then gather system stats with a start/
stop predetermined workload over a period of several hours. This system-
gathering step can be rerun after major hardware or workload changes.
SYS@ORCL11>DBMS_STATS.GATHER_SYSTEM_STATS (gathering_mode =>
'NOWORKLOAD');

SYS@ORCL11>DBMS_STATS.GATHER_SYSTEM_STATS (

 gathering_mode => 'START');

SYS@ORCL11> DBMS_STATS.GATHER_SYSTEM_STATS (

 gathering_mode => 'STOP');

•

•

Chapter 8

[317]

Gather 11g Application Statistics according to application party software
recommendations. Application in this case means the particular schemas that
have been installed in an Oracle database to support an application. There
may be a recommendation to use different parameters than the defaults as in
the following command:

SYS@ORCL11> execute dbms_stats.gather_schema_stats ('SCHEMANAME');

Test each individual SQL statement by changing the OPTIMIZER_USE_PENDING_
STATISTICS at the session level. This allows you to control the new statistics with
existing loaded SQL Plan Baselines. See the following code:

alter session set optimizer_use_pending_statistics=TRUE;

Use the previously mentioned method of comparing statistics to eliminate
changed statistics as the reason for an execution plan change. After investigating
the differences in statistics, there are a couple of options to try to improve a bad
execution plan:

Try SPM to evolve and verify an execution plan instead of using the 10g
loaded plan
Keep the older 10g statistics by locking them in, preventing any new
stats gathering
Add a Hint (suggestion: use the new OPT_PARAM mentioned earlier)
Change the SQL statement to perform better with the new statistics

Once all previously identified (and any newly identified) badly performing SQL
statements have passed testing, it is time to implement the stable baseline execution
plans with new 11g statistics for the entire database, as in the next section.

An excellent method of extracting a SQL statement for moving a
single reproducible test case to another database is using the package
DBMS_SQLDIAG. The data pump extract contains DDL information
plus statistics and an explain plan. Actual data rows are optional. See
the following MOS Document: How to create a SQL-testcase using the
DBMS_SQLDIAG package [ID 727863.1]. This package has only been
available since Oracle 10.2.0.4.

•

•

•

•

•

11g Tuning Tools

[318]

Capturing new execution plans and new
statistics
Turn on Pending Statistics and publish them using the following commands and
SQL Plan Management will be in effect:

SYS@ORCL11>execute DBMS_STATS.SET_GLOBAL_PREFS('PENDING','FALSE');

SYS@ORCL11>execute dbms_stats.publish_pending _stats ();

It is time to re-enable the autotask job of gathering statistics, as shown below:

DBMS_AUTO_TASK_ADMIN.ENABLE(
client_name => 'auto optimizer stats collection',
operation => NULL,
window_name => NULL);

Evolving or verifying new plans that execute
better than the 10g versions
While using Statspack, follow the instructions for upgrading if you haven't already
done so. They can be found in $ORACLE_HOME/rdbms/admin/spdoc.txt. Be sure
to set the snapshot levels to seven for the execution plans to be generated and
scheduled for hourly executions. If AWR is being used, it is already running and
executed hourly.

Compare the Top N SQL statements from before the upgrade and after. They should
be similar; if not, the changes should be introduced one at a time to try and eliminate
any bad execution plans.

Run the SQL Tuning Advisor—it may recommend a SQL profile, index changes, or
statistics gathering. Research on MOS for any known bugs, issues, or configuration
changes that might be relevant. Research and test Optimizer Hints. Create an
Oracle Service Request and generate a complete, reproducible test case by using
the DBMS_SQLDIAG package as mentioned earlier.

Visit http://optimizermagic.blogspot.com, Oracle's own
Optimizer Blog, which is great for checking out the latest, newly released
features and tips on upgrading the optimizer. Look here for information
on migrating from different versions to 11g.

Chapter 8

[319]

Summary
This final chapter was meant to condense a lot of information into an easy-to-
understand format, prioritizing the different elements along the way. This chapter
will only get you started on the quest for the ever-elusive tuned database. It doesn't
contain everything because the topic is vast and has to be customized to fit your
environment—a unique mix of operating systems, application software, Oracle
versions, and personnel expertise. A few tips were included for where to look
when something else may be wrong; it isn't always the database (or the DBA)
that is to blame.

This chapter was meant to get you started learning about how to set events, wading
through trace output, collecting statistics, and analyzing explain plans with the
different tools and utilities from Oracle. ������������������������������������� SQL Plan Management is a new feature
intended to help with tuning issues both during an Oracle upgrade and afterwards.

Most of the research for this book came from the official Oracle documentation and
My Oracle Support website. �� Participating in Oracle conferences, training sessions,
e-mail lists, Oracle User Groups, and volunteer activities over the years all played
a hand in forming the total collective knowledge. Start sharing the knowledge you
have gained over the years with others. Don't worry about giving away what you
consider to be prized information. It's only by opening up to others that you will
receive something in return.

Index
Symbols
$ORACLE_SID variable 40

activating 41
setting 41

11g diagnosability framework
about 32
advisors 33
checkers 33
missing temp files, recreating 35, 36

A
Active Data Guard

and RMAN 179
Active Session History. See ASH
Adaptive Cursor Sharing 301
ADDM 292-295
adrci 13
advise failure command 211
Advisors 33
agents, GC

keeping, highliy available 146
ASH 296
ASM

about 120, 121, 280
implementing 121
recommendations, for implementing

121, 122
asmcmd 13
ASSM 73
AT command 39
auditing 125, 126
audit settings 126
AUM

about 92

data, identifying in undo segments 92, 93
Automatic Diagnostic Database Monitor.

See ADDM
Automatic Segment Space Management. See

ASSM
Automatic Storage Management. See ASM
Automatic Undo Management. See AUM
Automatic Workload Repository. See AWR
AutoTask 301
AWR 295, 296

B
background_dump_dest parameter 32
backup

backup sets 186
default configuration details 192-195
full backup 187
image copy 186
incremental backups 187
incremental levels 186, 187
incremental merge backup 188, 190
incremental merge backup, controlfile 191
logical backup 188
need for 191
types 191
unused block compression 187

backup strategy, Oracle
downsides 196
features 196
rentention policy 201
restore and recovery comparison 197
RMAN catalog, versus controlfile 199
RMA stored scripts 200
Traditional Backup Restore 197

BACKUP VALIDATE command 207

[322]

BIGFILE 124
binary components

removing, strings used 101, 102
Bind Peeking 300

C
catalogfilecopy command 253
Checkers 33
Checkpoint System Change Number. See

Ckp SCN
Ckp SCN 190
client compatibility

JDBC 239
Oracle ODBC 240
SQL 239

command-line Oracle tools
adrci 13
ASM 13
character set scanner 13
database NEWID command-line utility 12
DATA GUARD 12
DATA PUMP 13
DBCA 12
DBUA 12
EXPORT/IMPORT 13
NETCA 12
OEM GUI-based SQL worksheet 13
oidca 13
Oracle Environment 13
OUI 12
OWM 12
RMAN 12
SQL*LOADER 13
SQL*PLUS 13
tkprof 13
trcroute 13
wrc 13

commodity hardware
and mixed environments 154

configuration management, DBA
about 53
mass deployment utility 55
OCM, using in disconnected mode 54, 55

CONFIGURE command 194, 198
CONFIGURE RETENTION POLICY

command 201

control_management_pack_access
parameter 294

control files 122
convert datafile command 267
coraenv 13
core_dump_dest parameter 32
Critical Patch Update (CPU) 10, 24
csscan 13
CTAS command 207
Customer Support Identifier (CSI) number

53

D
Database Administrator. See DBA
database auditing types

objects 127
privileges 127
statements 127

database concepts 24
database corruption

detecting 204, 206
logical corruption 206
physical corruption 204, 205

Database Creation Assistant. See DBCA
database states

Log Services states 165
Database Upgrade Assistant. See DBUA
database upgrade methods

DBUA 250
process time, determining 249
targeted configuration 249

data block format 70
Data Definition Language. See DDL
data dictionary ehalthcheck 131
data files

autoextending 124, 125
DATA GUARD 12
Data Guard broker

about 155
configuring 155, 156

Data Guard configuration 149, 150
Data Manipulation Language. See DML
Data Recovery Advisor. See DRA
data storage implementation

about 118
direct attached disk drives 118

[323]

disk technologies 118
iSCSI 118
NAS 118
SAN 118

data travel path
block number, identifying 78, 79
demonstration 73
dump block SQL statements, running 75-78
file number, identifying 78, 79
key files 74
location, of trace files 74, 75
SCN, tracking through trace files 80

DB_BLOCK_SIZE 70
db2gc 12
DBA

about 9
ADDM 292
ASH 296
AWR 295
configuration management 53
database, defending 9-11
database, protecting 9-11
functions 15
help 62, 63
help, insisting on 14
major blunder list 19, 20
priority tasks 16
proactive monitoring 291
release management 56
SQL Advisors 297
Statspack utility 298
tools, selecting 11

DBA tasks
DBMS_SCHEDULER 28
OEM Grid Control Intelligent Agent 29
OS scheduling commands 28

DBCA 12, 245
DBID 227
DBMS_ADVISOR package 294
DBMS_BACKUP_RESTORE 232
DBMS_LOGMNR package 86
DBMS_SCHEDULER

about 29
advantages 29
disadvantages 29

DBUA 236, 250
dbv command 208

DBVERIFY command 207
DDL 71
default database initialization parameters

audit logs 130
Automatic Diagnostic Repository 130
Grid Control Intelligent agent 130
install logs 130
listener log 130
MOS configuration manager 130
Opatch 130
RDA output 130
SQL*Net logs 130
trace files 130

delayed block cleanout process 72
delete expired command 203
DGMGRL

features 157
manual failover 167

dgmgrl 12
dgmgrl utility 151, 159
diagnosability infrastructure

AMS 32
Automatic Diagnostic Repository (ADR) 32
OCI 32
Oracle Application Server 11.1 products 32
RDBMS, monitoring 32
SQL*Net 32

diagnostic_dest parameter 32
dirty 72
DML 71
documentation library 64, 65
DRA

about 210
corrupted datafile, restoring 210, 211

du -h command 198
dump block 70
duplicate command 222, 226

E
echo command 32
emca 12
emctl 12
environmental variables 40
error/crash issues, utilities 299
event

about 308

[324]

levels 309
setting 309

events and tracing, utilities 299

F
fault diagnosability infrastructure 33
Flashback

enabling, on physical standby 167, 168
using 167
web resources 168

Flashback Logs
Flashback Table 98, 99
Flashback Transaction Backout 100, 101
Flashback Transaction Query 100

Flashback Recovery Area 184
Flashback Table 98-100
Flashback Transaction Backout 96, 100
Flashback Transaction Query

about 96
with Pseudo columns 100

Flash Recovery Area. See FRA
forecasting 284-286
FOREVER command 202
FRA

about 90, 91, 185
disk space, calculating 198

G
GC

about 137
features 137
GC repositories, migrating 142
intelligent agents, cloning 146
OMS 146
physical standby repository 145
recommendations, from MAA website 147
recommended installation, for GC 10.2.0.5+

138
repository, keeping highly available 143
repository backups 144
repository database, migrating 241
repository imports 144
repository resotres 144
separate database, installing 139
TT migrations 142

GC 10.2.0.5
about 137
management packs and enhancements 137

GC 10.2.0.5+
recommended installation for 138

GC High Availability (HA) console
features 157
using 157

GC repositories
backups 144
imports 144
keeping, highly available 143
migrating 142
post-repository import EM steps 144
restores 144

GC repositories database migration
about 142
MOS documents 142

Graphic-based tools 11
Grid Control. See GC
GUI-based command line-based Unix

scripting, with SQL*PLUS 11
guidelines, scripting

configuration file, referencing 45
configuration file, separating 40-42
functions, moving to centralized file 47
hidden password file, using 46
script, validating 48
SQL, used for generating code 48-50
Unix commands 51
variable part, separating 44
variables, putting at top 47

H
HangFG 300
hardware testing 284-286
host commands 42, 43

I
I/O Calibration test 289
impdp command 274
incarnations 227
Incremental Merge backup

recommendations 197
issues

monitoring 290

[325]

J
jMeter 290

L
local_listener parameter 132
log files 126, 130
logical corruption

about 206
BACKUP VALIDATE command 207
CTAS command 207
Data Pump 208
DBVERIFY command 207
detecting 206
export utility 208
RMAN VALIDATE command 207
utility, choosing 208

logical standby database
about 151
creating 153
limitations 154
using 153

Log Miner
about 84, 86
archivelog mode, enabling 86-89
binary components, removing 101
Flashback Logs, enabling 97
Identification key logging 89
Log Sequence Number, restoring 95
Pseudo column ORA_ROWSCN 96
restoring data, determining 95
SCN, restoring 95
supplemental logging, adding 89
table-level supplemental logging 89
timestamp, restoring 95
using 94

lost write corruption, detecting
database state 171, 172
failed primary scenario, reinstating 173, 174
logical standby, troubleshooting 174, 175
scenarious, testing 172
single transaction, skipping 177
SQL Apply process errors, resolving 176

lsnrctl 12
LTOM 300

M
MAA

about 109
policies, IT organization 108

major blunder list, DBA 19, 20
Manual Segement Space Management. See

MSSM
mass deployment utility 55
Maximum Availability Architecture. See

MAA
Maximum Availability Architecture (MAA)

11
Mean Time Recovery. See MTTR
Merge Request 57
migration

recommended order 243
mixed environment

major issues 154
MMA

about 106
planned downtime 107
with, commodity hardware 109, 110

MMA recommendations
Applications 106
Application Server 106
Database 106
Grid Control 106

MOS Service Request 15
most recent controlfile backup, restore and

recovery
controlfile, restoring 222
database, full recovery 223
database, PITR 224
database, restoring 223
finding 220, 222
verifying 224, 225

MSSM 206
MTTR

about 184
enabling 185
goals, accomplishing 185

multiple operating system accounts
implementing, with OFA standards 25

multiple ORACLE_HOME(s) 24
multiple standby sites

using 159, 160

[326]

My Oracle Support (MOS) 15
My Oracle Support website 63, 64

N
NETCA 12
nid 12
no mount command 228
noprompt command

about 203
expired backups, need for 203

O
OEM 12
OEM database control 12
OEM Grid Control Intelligent Agent 29, 31
OFA

about 11
11g differences 27
about 26, 27
GUI displays 28
XWindows software 28

oidca 13
OME 197
OMF 122
OMS, GC

keeping, highliy available 146
online redo logs 123
OPDG 300
operating system differences

reducing, with common tools 52
Optimal Felxible Architecture. See OFA
Optimal Flexible Architecture (OFA) 11
Optimizer upgradation

about 311
database, upgrading to 11g 315-317
execution plans and statistics, backing up

312
execution plans and statistics, capturing

312
new execution plans, capturing 318
new statistics, capturing 318
Optimizer Statistics, backing up 313
Optimizer Statistics, capturing 313
SQL Tuning Sets 312
stored outlines 313
verifying 318

Oracle
backup strategy 196
DRA 210
incremental merge backup 188, 190
incremental merge backup, controlfile 191
net services 238
Standard Edition 149

Oracle-provided Unix commands
about 39
Dbhome 39
Dbshut 39
dbstart 39
oerr 39
Oraenv 39
Sysresv 39
Tkprof 39
trcasst 39
wrap 39

ORACLE_HOME 23
Oracle Database 11g version

database states 164
Oracle Database High Availability

optimizing 111
Oracle Database High Availability

optimization
about 112, 113
alternate archive destination 114
archivelog mode 112
archivelog space, monitoring 114, 115
auditing 125
control files 122
database compatibility parameter, with

pfile 115-117
database compatibility parameter, with

spfile 115-117
data dictionary healthcheck 131
data files, autoextending 124
data storage, implementing 118
different disk device, using for archivelogs

114
hard drive space, monitoring 114, 115
multiple archive destinations 113
storage, dealing with 118

Oracle Enterprise Manager. See OEM
Oracle Grid Infrastructure 11g

about 242
ASM 242, 243

[327]

ASM+CFS 243
CFS 242, 243
RDBMS 242, 243

Oracle I/O numbers calibration tool 287
Oracle Managed Files. See OMF
Oracle net services

about 238
Net Manager, configuring 238, 239

Oracle software
interactive mode 245
patchset, installing 246-248
realease, installing 245, 246
silent mode 245
suppressed mode 245

Oracle software installs
implementing 25

Oracle Universal Installer (OUI) 141
oraenv 13
orapki 12
oratab 13
Orion

about 287
features 287
Linux example 287, 288

OS_Watcher 300
OS scheduling commands 28, 30
OUI 12
outage handling 18
outage handling procedures 18
OWM 12

P
Patch Set Updates (PSU) 10, 24
pfile 24
physical standby database

about 151, 152
lost write corruption, detecting 169
manual failover 165, 166
testing 169
using 152, 168

physical standby repository, GC
about 145
creating 145

PITR 224
PL/SQL Profiler, utilities 299
Point-in-Time Recovery. See PITR

Post 11g upgrade
tasks 280, 281

priority tasks, DBA
daily 16
monthly 17
quarterly 17
weekly 16
yearly 17

proactive monitoring 291
Procwatcher 300
Protection Mode

about 160
maximum availability 163
maximum availability recommendations

163
maximum performance 161
maximum performance recommendations

161, 163
maximum protection 164

Pseudo column ORA_ROWSCN 96

R
RAID

about 119
implementing 119

RDA
about 37, 300
features 37

RDBMS 70
reactive diagnostic and tracing utilities

about 299
in $ORACLE_HOM 299
management packs 299
on MOS website 300
operating system utilities, on MOS website

300
Real Application Clusters (RAC) 24
Rebundant Arrays of Inexpensive Disks.

See RAID
recover

do's 212, 213
dont's 214
interruptions 214

RECOVER command 198
recover until time command 251

[328]

recovery goals
using, for backup configuration 185

Recovery Manager. See RMAN
release management

about 56
issues, with patching process 58, 60
new patch plan functionality, using with

OCM 60, 61
patch, applying without integrating MOS

with OCM 60
REMAP_SCHEMA command 266
Remote Diagnostic Agent. See RDA
rentention policy

certain backups, retaining 204
obsolete backup versus expired backup

202, 203
Recovery Window policy 201
Redundancy 201

restore
do's 212, 213
dont's 214

restore and recovery
FRA disk space, calculating 198
Incremental Merge backup 197
most recent controlfile backup, finding 220
resetlogs, using 225, 226
starting, requirements 218-220

RMAN
about 183, 251
and Active Data Guard 179
backups 184
binary 240
catalog database 241
downgrading 256
duplicate command 222
scripts, storing 200, 201
substitution variables 200, 201
using, as part of upgrade process 251-256
variables, substituting 200

rman 12
RMAN backup

do's 212, 213
dont's 214
online redo 215, 216
user-managed backups 217

RMAN CATALOG command 217

RMAN cloning
database, creating 227, 228
DBMS_BACKUP_RESTORE 232
post-cloning tasks 229

RMAN VALIDATE command 207

S
SAA 297
SAME 119, 120
SCMO 125
SCN 71
SCN, tracking through trace files

about 80
commit process, single row insert 81
commit process, single row update 83, 84
single row insert 80, 81
single row update 82, 83

scripting
guidelines 40

Service Level Agreements. See SLAs
Service Requests (SR) 33
session activity

auditing 128, 129
set newname method 228
shutdown command 213
SLAs 18
snapshot standby database 151, 152
Space Management Coordinator. See

SMCO
spfile 24
SPM

about 307
default behavior 307
event trace file, interpreting 310
SMB 308
trace events 309
tracing and diagnostic events 308

SQL*Net
about 132
configuring 132
hardening guidelines, implementing 132
parameters, manipulating 134
troubleshooting 135, 136
troubleshooting rules 135
tuning 133

[329]

SQL*Plus
features 157

SQL Access Advisor. See SAA
SQL Advisors

about 297
SAA 297
STA 297

SQL Failure Analysis 299
SQL Incident Analysis 299
sqlldr 13
SQL Management Base. See SMB
sqlnet.ora file 134
SQL Plan Management. See SPM
sqlplus 13
SQL Tuning Advisor. See STA
SQLTXPLAIN 300
SRL 230
STA 297
Stackx 300
standby database

active Data Guard 178
archive logs 231
backup duplication 226
clone 226
commodity hardware 154
creating 229-232
Data Guard broker 155
duplicating 226
live database duplication 226
logical 151, 153
mixed environments 154
multiple standby sites, using 159
other Data Guard features 179
physical 151, 152
physical standby 230
Protection Mode 160
rolling forward, incremental backup used

231
rolling incremental updates,

to datawarehouse 232
snapshot 151, 152
states 165
tools, selecting 156

Standby Redo Logs. See SRL
statistics

comparing 304
gathering 301-303

single query, tuning 306
statistics history, restoring 304, 305

Statspack, utilities 299
Statspack utility 298
strings command

using 101, 102
Stripe and Mirror Everything. See SAME
System Change Number. See SCN

T
targeted configurations 58
tkprof 13
tnsnames.ora file 134
tool

default settings 158
DGMGRL 157
SQL*Plus 157

trace events 309
Transport Tablespaces. See TTS
TRCANLZR 300, 310
trcroute 13
troubleshooting

SQL*Net 135, 136
TT migrations

about 142
limitations 143
requisites 143

TTS
about 236, 257
ASM databases, merging to one 262-264
backups 269
character set, selecting 278
cookbook 259, 260
cross-platform migration, transportable

database used 267
downgrade procedure 269
error types 277
exporting, export used 273-277
flashback database 269
importing, import utility used 273-277
limitations 258, 260
migrations, preparing for 257, 258
migration scenarios 257
physical standby, using 268
read-only tablespaces, adding 261

[330]

read-only tablespaces, sharing between
different databases 264-267

snapshot standby, using 268
transient logical standby 270-272
unrecoverable database, recreating 261
using, for upgrades 259

U
Unix commands 51
Unix environment 39
Unix scripting 39
unused block compression 187
user_dump_dest parameter 32
UTF8

about 278
superset, choosing 279

V
version control software 61, 62
Very Large Database (VLDB) 11

W
wrc 13

Thank you for buying
Oracle Database 11g—Underground
Advice for Database Administrators

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle 10g/11g Data and
Database Management Utilities
ISBN: 978-1-847196-28-6 Paperback: 432 pages

Master twelve must-use utilities to optimize the
efficiency, management, and performance of your
daily database tasks

1.	 Optimize time-consuming tasks efficiently
using the Oracle database utilities

2.	 Perform data loads on the fly and replace the
functionality of the old export and import
utilities using Data Pump or SQL*Loader

3.	 Boost database defenses with Oracle Wallet
Manager and Security

4.	 A handbook with lots of practical content with
real-life scenarios

Getting Started With Oracle
SOA Suite 11g R1 – A Hands-On
Tutorial
ISBN: 978-1-847199-78-2 Paperback: 482 pages

Fast track your SOA adoption – Build a
service-oriented composite application in just hours!

1.	 Offers an accelerated learning path for the
much anticipated Oracle SOA Suite 11g release

2.	 Beginning with a discussion of the evolution
of SOA, this book sets the stage for your SOA
learning experience

3.	 Includes a comprehensive overview of the
Oracle SOA Suite 11g Product Architecture

Please check www.PacktPub.com for information on our titles

Mastering Oracle Scheduler in
Oracle 11g Databases
ISBN: 978-1-847195-98-2 Paperback: 240 pages

Schedule, manage, and execute jobs that automate
your business processes

1.	 Automate jobs from within the Oracle database
with the built-in Scheduler

2.	 Boost database performance by managing,
monitoring, and controlling jobs more
effectively

3.	 Contains easy-to-understand explanations,
simple examples, debugging tips, and real-life
scenarios

Oracle Warehouse Builder 11g:
Getting Started
ISBN: 978-1-847195-74-6 Paperback: 368 pages

Extract, Transform, and Load data to build a
dynamic, operational data warehouse

1.	 Build a working data warehouse from scratch
with Oracle Warehouse Builder.

2.	 Cover techniques in Extracting, Transforming,
and Loading data into your data warehouse.

3.	 Learn about the design of a data warehouse
by using a multi-dimensional design with an
underlying relational star schema

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the author
	About the reviewers
	Table of Contents
	Preface
	Chapter 1: When to Step Away from the Keyboard
	Protecting and defending
	Choosing your tools
	Graphic-based, command-line Oracle tools and usage

	Staying away from dinosaurs
	Insisting on help
	What does a DBA do all day?
	Prioritizing tasks—daily, weekly, monthly, quarterly, or yearly

	SLAs: Why isn't the database down anymore?
	Avoiding major blunders
	Summary

	Chapter 2: Maintaining Oracle Standards
	Adapting to constant change
	Database concepts
	Multiple ORACLE_HOME(s)

	Keeping the environment clean

	Oracle's Optimal Flexible Architecture (OFA)
	11g differences in the OFA standard
	XWINDOWS and GUI displays

	Automating day-to-day tasks
	DBMS_SCHEDULER
	OS cron utility executing a scheduled task on a Unix server
	OEM Console plus the Intelligent Agent

	11g Diagnosability Framework
	Advisors and checkers
	Missing temp file resolution

	Environmental variables and scripting
	Guidelines for scripting
	Separating the configuration file
	Separate the variable part of the script into its own configuration file
	Don't hardcode values; reference a configuration file and password file at runtime
	Putting variables at the top of the script with curly braces
	Moving functions to a centralized file to be reused
	Validate the use of the script
	Using SQL to generate code
	Helpful Unix commands

	Reducing operating system differences with common tools
	Configuration management, release management, and change control
	Configuration management
	Using OCM in disconnected mode with masking
	Mass deployment utility

	Release management
	DBA issues with patching
	Applying a patch without integrating MOS with OCM
	Using the new patch plan functionality with OCM installed and uploaded to MOS
	Change control

	Where, when, and who to call for help
	My Oracle Support
	Documentation library

	Summary

	Chapter 3: Tracking the Bits and Bytes
	Dump block
	Demonstration of data travel path
	Location of trace files
	Running dump block SQL statements
	Identifying files and blocks
	Tracking the SCN through trace files

	Oracle's RDBMS Log Miner utility
	Turn on archivelog mode
	Add supplemental logging
	Identification key logging
	Table-level supplemental logging

	Flash(back) Recovery Area (FRA)
	Automatic Undo Management (AUM)
	Identifying data in undo segments by flashing back to timestamp

	When to use Log Miner
	Identifying the data needed to restore
	SCN, timestamp, or log sequence number
	Pseudo column ORA_ROWSCN
	Flashback Transaction Query and Backout

	Enabling flashback logs
	Flashback Table
	Flashback Transaction Query with pseudo columns
	Flashback Transaction Backout

	Using strings to remove binary components

	Summary

	Chapter 4: Achieving Maximum Uptime
	Maximum Availability Architecture (MAA)
	Downtime—planned or unplanned
	MAA with commodity hardware: Case study

	Optimizing Oracle Database High Availability
	To archive or not to archive, you pick the mode
	Multiple archive destinations
	Moving the archive destination in an emergency
	Using a different disk device or disk mount
	Monitoring all hard drive space and Archivelog space

	Database compatibility parameter with spfile, pfile management
	Dealing with storage—RAID, SAME, ASM, and OMF
	RAID—Redundant Arrays of Inexpensive Disks
	SAME—Stripe and Mirror Everything
	ASM—Automatic Storage Management

	Mirrored files—control files and online redo logs
	Autoextending data files
	Auditing, log files, and max dump file size
	What is currently being audited?
	Auditing Session Activity
	Other logs to monitor

	Data dictionary healthcheck
	SQL*Net hardening, tuning, and troubleshooting
	Troubleshooting
	What can go wrong?

	Grid Control High Availability and Disaster Recovery
	Recommended installation for GC 10.2.0.5+
	Why should I install a separate database?
	Cookbook for silent install and configuring later
	Migrating GC repositories
	Transportable tablespace migrations

	Keeping the repository highly available
	Repository backups, restores, or imports
	MAA—repository on a physical standby database
	OMS and agents' high availability
	Cloning Management agents

	GC at a very large site

	Summary

	Chapter 5: Data Guard and Flashback
	Physical, snapshot, and logical standbys
	Physical standby database
	Snapshot standby database
	Logical standby database
	Commodity hardware and mixed environments
	What is Data Guard broker?
	What controls the Data Guard broker?

	Which tool is best?
	Start with the default configuration—maximum performance

	Utilizing multiple standby sites
	Protection modes and real-time apply
	Maximum performance (default)
	Maximum performance recommendations
	Maximum availability
	Maximum availability recommendations
	Maximum protection and recommendations

	Database states
	Manual failover with physical standby
	Manual failover with DGMGRL
	Flashback and guaranteed restore points
	Possible testing/recovery scenarios for Flashback and Data Guard
	Lost-write detection using a physical standby database
	Corruption, patch reversal, upgrades, or testing scenarios
	Reinstate failed primary scenario
	Troubleshooting the logical standby
	Options for resolving errors that stop the SQL Apply process
	How to skip a single transaction

	Active Data Guard and RMAN
	Other Data Guard notes and features

	Summary

	Chapter 6: Extended RMAN
	Recovery goals determine backup configuration
	Backup types and the default configuration
	Backup incremental levels
	Full backup
	Logical backup
	Oracle's suggested backup: What is missing?
	Controlfiles—an important part of backup and recovery

	How often should backups occur?
	Default configuration details

	Oracle's recommended backup strategy
	Issues with incremental merge backups
	Restore and recovery comparison
	Recommendations for Incremental Merge backup
	Calculating the FRA disk space needed

	Catalog versus controlfile RMAN recordkeeping and retention policies
	RMAN stored script and substitution variables

	Retention policies: Recovery window or redundancy?
	Not needed (OBSOLETE) versus not found (EXPIRED)
	What if I want to keep certain backups?

	Corruption detection
	Physical corruption
	Logical corruption
	Commands and utilities that detect corruption
	Which utility should be used?
	What should I do if corruption is detected?

	Data Recovery Adviser
	What does RMAN backup, restore, and recover?
	Possible interruptions to the recovery process

	What doesn't RMAN backup, restore, and recover?
	Online redo: Key to consistency
	User-managed backups

	What do I do before starting a restore and recovery?
	Find the most recent controlfile backup
	Simplified recovery through resetlogs

	RMAN cloning and standbys—physical, snapshot, or logical
	Clones, DBIDs, and incarnations
	Creating a cloned database
	Post-cloning tasks
	Creating a standby database
	Physical standby
	Scheduled maintenance/cataloging of archivelogs
	Rolling forward a standby using incremental
	Rolling incremental for monthly updates to data warehouses

	The DBMS_BACKUP_RESTORE package

	Summary

	Chapter 7: Migrating to 11g: A Step-Ordered Approach
	Oracle net services
	Client compatibility (SQL*Net, JDBC, ODBC)
	RMAN binary, virtual/catalog, and database
	Grid Control—database repository and agents
	ASM, CFS, and RDBMS within an Oracle Grid infrastructure
	Recommended order of migration
	Installation of major versions, maintenance releases, and patches
	Release installation
	PatchSet installation—cloned ORACLE_HOME

	Database upgrade methods
	How long does the database upgrade take?
	Database Upgrade Assistant (DBUA)

	RMAN
	Using RMAN as part of a manual upgrade process
	Downgrading with RMAN

	Transportable Tablespaces (TTS)
	Preparatory steps for TTS migrations
	Using TTS for upgrades
	TTS cookbook
	Recreating an unrecoverable database with TTS
	Using TTS to add skipped read-only tablespaces during duplication
	Using TTS to merge two ASM databases into one
	Sharing read-only tablespaces between different databases with TTS
	Cross-platform migrations with a transportable database
	Physical and/or snapshot standbys
	Failing back to original version

	Transient logical standby: Rolling upgrades with minimal downtime
	Export/import or data pump migration
	Character set selection—UTF8

	Post-11g upgrade tasks
	Summary

	Chapter 8: 11g Tuning Tools
	Hardware load testing and forecasting
	Orion—Oracle I/O numbers calibration tool
	Calibrate I/O
	jMeter

	Monitoring hidden or underlying problems
	Proactive monitoring
	Automatic Diagnostic Database Monitor (ADDM)
	Automatic Workload Repository
	Active Session History (ASH)
	SQL Advisors
	STATSPACK

	Reactive diagnostic and tracing tools
	Bind peeking and Adaptive Cursor Sharing
	Gathering statistics
	Comparing statistics
	Restoring statistics history
	Knowing what needs to be tuned
	Tuning a single query

	SQL Plan Management (SPM)
	SQL Management Base
	Tracing and diagnostic events
	What is an event ?
	When should I set an event?
	What are the different event levels?

	Specific Trace events for performance problems
	Interpreting the resulting Event Trace file

	Upgrading the Optimizer
	Capture and back up execution plans and statistics
	SQL Tuning Sets
	Stored Outlines
	Capturing and backing up Optimizer Statistics
	Upgrade the database to 11g
	Capturing new execution plans and new statistics
	Evolving or verifying new plans that execute better than the 10g versions

	Summary

	Index

