
www.allitebooks.com

http://www.allitebooks.org

Oracle Database XE 11gR2
Jump Start Guide

Build and manage your Oracle Database 11g XE
environment with this fast paced, practical guide

Asif Momen

P U B L I S H I N G

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Oracle Database XE 11gR2 Jump Start Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2012

Production Reference: 1290612

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-674-7

www.packtpub.com

Cover Image by Mark Holland (MJH767@bham.ac.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Asif Momen

Reviewers
Satishbabu Gunukula

Edgar Lanting

Marcin Przepiórowski

Carol A. Pena

Acquisition Editor
Dhwani Devater

Lead Technical Editor
Dayan Hyames

Technical Editors
Vrinda Amberkar

Devdutt Kulkarni

Prashant Salvi

Project Coordinator
Yashodhan Dere

Proofreader
Aaron Nash

Indexer
Rekha Nair

Graphics
Manu Joseph

Production Coordinators
Prachali Bhiwandkar

Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Asif Momen has been working with Oracle Technologies for over 12 years and has
expertise in Database Architecture, Performance Tuning, and High Availability. He
has a Master's degree in Software Systems from Birla Institute of Technology and
Science (BITS), Pilani.

Asif has been honored with the prestigious Oracle ACE award from Oracle
Technology Network. He has the OCP 11g DBA and OCP 9i Forms Developer
certifications and is an Oracle Certified Expert in RAC 10g.

Asif is a presenter for conferences such as Oracle OpenWorld-2010, All India Oracle
User Group (AIOUG), and Brain Surface. In addition to this, he is a member of the
Editorial Board for "Oracle Connect", the quarterly publication of AIOUG and the
"Select" magazine of the United Kingdom Oracle User Group (UKOUG)

His articles have also appeared in Oracle Support – Customer Knowledge Exchange.
His particular interests are Database and SQL tuning, Oracle RAC, and Backup and
Recovery. He posts his ideas and opinions on "The Momen Blog" (http://momendba.
blogspot.com). Asif can be reached at asif.momen@gmail.com.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

First and foremost, I would like to thank God for giving me the power to believe in
my passion and pursue my dreams. I could never have done this without the faith I
have in you, the Almighty.

To my parents, Masood and Naseem, for what I am today. I can barely find the right
words to express all the wisdom, love, and support you have given me. I cannot
forget the sacrifices and hardships you both have gone through just to see me
smiling. You are the best parents one could wish for.

To my wonderful wife, Nazia. Your patient love enabled me to complete this work.
You have always been supportive and motivating in continuing me to improve my
knowledge and move ahead in my career.

To my daughters, Maria, Nida, and Zoha. You are the best children any dad could
hope for—sweet, loving, and fun to be with. It's wonderful to watch you grow.

To my friends. You guys have given me the best support when I really needed it.
Your silly jokes made me cheerful when I was down. Thanks for staying in touch
even when I ignored you guys for a while and for listening to my boring topics for
hours together.

Last but not least, the Packt team, thanks a bunch for all of you involved in the
production and printing of this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Satishbabu Gunukula is an Oracle ACE. He has extensive experience in the
Oracle and Microsoft SQL Server database technologies, has held various roles
such as Tech Lead, Project Lead, and Project Manager, and specialized in High
Availability. He has implemented many business critical RAC and MAA systems for
fortune 500, 1000 companies. He has experience on a wide range of products such as
Oracle Hyperion, SAP Basis, MySQL, Linux, and Business Apps administration.

Satishbabu has done his Master's degree and he is an Oracle Certified DBA in
8i/9i/10g and Oracle Certified Expert in 10g RAC. He has written several articles
in technical journals and blogs in the US, and spoken at Oracle-related conferences.
He shares his knowledge on his websites—www.oracleracexpert.com and www.
sqlserver-expert.com.

Edgar Lanting has been an IT pro for over 18 years, starting out as a System
Administrator on AS/400, Windows, and Unix. After this he made the move to being
a DBA. Edgar is versatile and a very skilled Oracle, Microsoft SQL Server, and MySQL
Server DBA, and in combination with his past as a System Administrator this has
proven to help him see things from more than one perspective when working in the
field. Edgar is also a certified Oracle specialist.

Edgar is currently working as a Database Consultant for Ciber in the Netherlands
where he assists companies in managing their database environments. In his spare
time he likes to go out photographing birds and nature, and enjoys hiking with his
wife and dog.

He is currently reviewing the iWork for Mac OSX Cookbook for Packt.

www.allitebooks.com

http://www.allitebooks.org

Marcin Przepiórowski started his Oracle DBA activities in 2000. For the last nine
years he has been working as a Senior Oracle DBA and Consultant for many various
customers in Poland and Ireland. He is interested in performance bottlenecks (using
end-to-end approaches and all available monitoring possibilities), High Availability
solutions (such as Oracle Real Application Cluster and Oracle DataGuard) and
Backup and Recovery technology.

Marcin is an Oracle ACE and maintainer of the open source Simulated Active Session
History (S-ASH) project. He used to publish posts about Oracle technologies on his
blog at http://oracleprof.blogspot.com/ and speaks at conferences in Europe.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Database Editions and Oracle Database XE	 5

About Oracle	 5
Available database editions	 6

Oracle Database Express Edition (XE)	 7
Summary	 8
References	 8

Chapter 2: Installing and Uninstalling Oracle Database XE	 9
Downloading Oracle Database 11g XE	 10
Installing Oracle Database 11g XE on Windows XP (32-bit)	 10

Starting and stopping Oracle Database XE in Windows	 15
Uninstalling Oracle Database 11g XE on Windows XP (32-bit)	 15
Installing Oracle Database 11g XE on Oracle Enterprise Linux (64-bit)	 15

Starting and stopping Oracle Database XE in Linux	 18
Uninstalling Oracle Database 11g XE on
Oracle Enterprise Linux (64-bit)	 18
Summary	 19

Chapter 3: Connecting and Configuring Oracle Database 11g XE	 21
Local database connections	 21

Oracle Net Listener	 22
Configuring Oracle Net Listener	 23
Viewing the status of Oracle Net Listener	 24
Starting and stopping the listener	 25
Configuring the tnsnames.ora file	 25

Remote database connections	 26
Changing SGA and PGA sizes	 27
Summary	 28

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 4: Accessing Table Data, DML Statements,
and Transactions	 29

Unlocking sample user accounts	 29
Installing SQL Developer	 30
Connecting SQL Developer to Oracle Database 11g XE	 30
About TAB and DUAL	 31
Writing simple queries	 31
Selecting data from multiple tables	 32
Exploring common functions	 33
What are Transaction Control Statements?	 36
Understanding DML statements	 36
Summary	 37
References	 37

Chapter 5: Creating and Managing Schema Objects 	 39
Data Definition Language	 40
Creating and managing tables	 40
Creating and managing indexes	 42
Integrity constraints	 43
Creating and managing views	 44
Creating and managing synonyms	 45
Creating and managing sequences	 46
Gathering statistics	 46
Summary	 47
References	 47

Chapter 6: Developing Stored Subprograms and Triggers	 49
PL/SQL data types	 50
Stored subprograms	 50
Creating stored subprograms	 50
About packages	 53

Creating packages	 53
Exception handling	 55
Wrapping up the PL/SQL stored programs	 56
PL/SQL triggers	 57
Summary	 60
References	 60

Chapter 7: Building a Sample Application with
Oracle Application Express	 61

What is Oracle Application Express (APEX)?	 62
Getting started with Oracle Application Express	 62
Application Express components	 63

Table of Contents

[iii]

Prerequisites for a sample application	 63
Creating a sample application	 66
Adding a page to the existing application	 68

Creating application users	 70
Loading and unloading data to a text file	 70

Unloading the EMP table to a text file	 71
Loading text file to the EMP_LOAD table	 71

Application Express Dashboard	 72
Summary	 73
References	 73

Chapter 8: Managing Database and Database Storage	 75
Memory structure	 76

System Global Area	 76
Process Global Area	 77

Automatic Memory Management	 77
Important background processes	 78
Physical and logical database structures	 79

Creating a tablespace	 80
Adding datafiles to a tablespace	 80

Dropping a tablespace	 81
Viewing the tablespace usage	 81

Managing the Flash Recovery Area	 83
Summary	 84

Chapter 9: Moving Data between Oracle Databases	 85
Exporting and importing data	 85

Traditional Export and Import (exp/imp) utilities	 86
Data Pump Export/Import (expdp/impdp) utilities	 87

Moving data between Oracle Database 10g XE
and Oracle Database 11g XE	 88
Exporting data using SQL Developer	 89
Summary	 89

Chapter 10: Upgrading Oracle Database 11g XE
to Other Database Editions 	 91

Upgrading Oracle Database 11g XE to Oracle Database 11g
Enterprise Edition	 91
Summary	 95

Chapter 11: Backup and Recovery	 97
Introduction to backup and recovery	 98
Recovery Manager	 98
Connecting to Oracle Database XE using RMAN	 98

Table of Contents

[iv]

The ARCHIVELOG mode	 99
Placing a database in the ARCHIVELOG mode	 99

Backing up a database (the NOARCHIVELOG mode)	 100
Simulating a database failure (the NOARCHIVELOG mode)	 101
Restoring the NOARCHIVELOG database	 102
Configuring the RMAN environment	 103
Backing up the ARCHIVELOG database	 104
Simulating a database failure (the ARCHIVELOG mode)	 106
Restoring the ARCHIVELOG database	 107
Summary	 109
References	 109

Chapter 12: Tuning Oracle Database 11g XE	 111
Performance tuning	 111
Performance tuning approach	 112
Avoiding common pitfalls	 112

Database connection management	 112
Cursors and the shared pool	 112
Suboptimal SQL	 113
Incorrect redo log sizing	 113

Autotrace utility	 113
Explain Plan	 115
Using indexes	 117

Index monitoring	 118
Dynamic performance views 	 119
Statspack	 119

Installing Statspack	 119
Gathering statistics	 120
Running the statistics report	 120
Recommended blogs	 121

Summary	 121
References	 121

Appendix: Features Available with Oracle Database 11g XE	 123
Features available	 123
Features not available	 124

Index	 125

Preface
Oracle Database XE 11gR2 Jump Start Guide helps you to install, administer, maintain,
tune, back up, and upgrade your Oracle Database Express Edition. The book also
helps you to build custom database applications using Oracle Application Express.

This book is a fast paced, practical guide including clear examples and screenshots to
help you better understand the concepts, and details for building and managing your
Oracle Database XE environment.

What this book covers
Chapter 1, Database Editions and Oracle Database XE, provides a brief introduction to
the various editions of Oracle database and in particular, Oracle Database 11gR2
Express Edition.

Chapter 2, Installing and Uninstalling Oracle Database XE, is about installing and
uninstalling Oracle Database XE on Windows and Linux environments.

Chapter 3, Connecting and Configuring Oracle Database 11g XE, focuses on Oracle
Listener configuration and establishing client connections to the database, followed
by Oracle memory management.

Chapter 4, Accessing Table Data, DML Statements, and Transactions, talks about SQL
Developer, accessing table data, modifying table data, understanding transaction
control statements, and the most commonly used SQL functions.

Chapter 5, Creating and Managing Schema Objects, deals with creating and managing
database objects such as tables, indexes, constraints, views, sequences, and synonyms.

Chapter 6, Developing Stored Subprograms and Triggers, brings you the power of PL/SQL.
In this chapter, you will learn to build stored procedures, functions, and triggers.

Preface

[2]

Chapter 7, Building a Sample Application with Oracle Application Express, provides a
brief introduction to Oracle Application Express (APEX). You will learn how to
create rich and responsive applications using Oracle Application Express.

Chapter 8, Managing Database and Database Storage, provides background information
on Oracle memory management, and explains physical database structure and the
Flash Recovery Area.

Chapter 9, Moving Data between Oracle Databases, explains how to move data between
different Oracle Database XE versions using Oracle's export/import utilities.

Chapter 10, Upgrading Oracle Database 11g XE to Other Database Editions, explains
in detail how to upgrade Oracle Database Express Edition to other Oracle
Database Editions.

Chapter 11, Backup and Recovery, provides an insight to Oracle's backup and recovery
procedures. Backups are to a database what fire fighters are to a city. In this chapter,
you will learn how to protect and recover your database.

Chapter 12, Tuning Oracle Database 11g XE, provides a systematic approach to
performance tuning, avoiding many of the most common application design and
development mistakes and tracing of SQL statements.

Appendix, Features Available with Oracle Database 11g XE, lists all the features that are
available with Oracle Database 11g Express Edition.

What you need for this book
The hardware requirements are:

•	 A laptop/desktop with at least 2 GB memory; 4 GB is recommended

The software requirements are:

•	 Oracle Database 11g Release 2 Express Edition
•	 Microsoft Windows 7/XP or Oracle Enterprise Linux

(or any other version of Linux)
•	 A web browser on your host OS

Who this book is for
This book is intended for beginners who wish to learn Oracle Database administration,
without the benefit of formal training.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: " Navigate to the Disk1 folder under
c:\temp and double-click on setup.exe. A new window pops up."

A block of code is set as follows:

groupadd oinstall
groupadd dba
useradd -g oinstall -G dba,oper,asmadmin oracle
passwd oracle

Any command-line input or output is written as follows:

/etc/init.d/oracle-xe start

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
the Install button to continue installing Oracle Database XE".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Database Editions and
Oracle Database XE

Obstacles are those frightful things you see when you take your eyes off your goal.
- Henry Ford

This chapter briefly introduces various database editions offered by Oracle Database
11g, and then introduces Oracle Database XE. We will dive into a list of features
supported by Oracle Database XE and also discuss the limitations imposed on
Oracle Database XE. The topics that will be covered in this chapter are as follows:

•	 Available database editions
•	 Oracle Database Express Edition

About Oracle
Oracle Corporation is a computer technology company established in 1977. Oracle
specializes in developing enterprise software products. Oracle provides database
management systems (such as Oracle Database, MySQL, and TimesTen), database
development tools (such as Oracle Developer Suite and JDeveloper), Enterprise
Resource Planning (ERP) software, Customer Relationship Management (CRM)
software, and so on. With the acquisition of Sun Microsystems, Oracle has emerged
as a hardware vendor offering Sun hardware under its umbrella.

In the words of Larry Ellison, the CEO of Oracle, "Oracle will be the only company
that can engineer an integrated system—applications to disk—where all the pieces
fit and work together so customers do not have to do it themselves. Our customers
benefit as their systems integration costs go down while system performance,
reliability, and security go up." Read the complete story about "Oracle Buys Sun"
at http://www.oracle.com/us/corporate/press/018363.

Database Editions and Oracle Database XE

[6]

Available database editions
Oracle Database 11g is available in five editions, namely Enterprise Edition, Standard
Edition, Standard Edition One, Express Edition (XE), and Personal Edition. All
editions are built on the same code base. This means we can easily scale up Oracle
Express Edition to Standard Edition One to Standard Edition to Enterprise Edition.

To scale up to a higher edition, we would install the new software, open the database
in the new edition, run the catalog.sql and catproc.sql scripts, and recompile
the stored procedures. This topic is covered in greater detail later in the book.

•	 Personal Edition: Personal Edition is available on the Windows platform and
it supports single-user development environments.

•	 Express Edition (XE): XE is a small footprint database. It does not require
license from Oracle to develop applications on XE. You can deploy and
distribute XE freely without paying a penny as a license fee to Oracle.
Database features such as Automatic Memory Management (AMM),
Advanced Queuing (AQ), Flashback query, and Data Encryption are
supported with XE. There are a few limitations on XE, which we will
explore later in the chapter. Support is provided through a free Oracle
Discussion Forum (https://forums.oracle.com/forums/forum.
jspa?forumID=251&start=0).

•	 Standard Edition One (SEO): SEO is a low cost and full featured database
for servers. It provides all database features available with XE and adds a few
more to its list. SEO is available on Windows, Linux, and UNIX platforms. As
a license fee you pay $900 to Oracle (for five users) and start using SEO. You
pay an additional $180 per user if required. The pricing information provided
here is subject to change; refer to Oracle's Global Pricing and Licensing for
more details (http://www.oracle.com/us/corporate/pricing/index.
html). Database features such as Java Support, Enterprise Manager and
Automatic Storage Management (ASM) are included in SEO.

•	 Standard Edition (SE): SE is an affordable edition of Oracle database. It is
a full-featured database for servers up to four sockets. It can easily scale
to Enterprise Edition as demand grows. Database features supported by
Standard Edition One are supported by SE and it adds few more to its list.
Real Application Clusters (RAC) and Automatic Workload Management
(AWM) are two additional database features supported by Standard Edition.

https://forums.oracle.com/forums/forum.jspa?forumID=251&start=0
https://forums.oracle.com/forums/forum.jspa?forumID=251&start=0
http://www.oracle.com/us/corporate/pricing/index.html

Chapter 1

[7]

You pay $1,750 to Oracle towards a license fee, which includes a license for
five users. You pay an additional $350 per user if required. It is also compatible
with Enterprise Edition and can easily grow with demand. Refer to the Oracle's
Global Pricing and Licensing document for more details.

•	 Enterprise Edition (EE): This edition of Oracle database comes with a range
of database options. EE provides industry leading performance, scalability,
and security to your database. With Enterprise Edition you get database
features such as Total Recall, Active Data Guard, Flashback Database, Real
Application Clusters One-Node, Database Vault, Virtual Private Database,
and many other that are not found in other database editions. An additional
licensing cost is associated with these database features refer to Oracle's
Global Pricing and Licensing for more details.

Oracle Database Express Edition (XE)
Oracle Database XE is an entry level database available on Windows and Linux
operating systems. XE is built with the same code base as Oracle Database 11g
Release 2, so scaling XE to other editions can be easily achieved.

Oracle Database XE is a good starter database for DBAs and developers who need a
free database for training and deployment. Independent Software Vendors (ISVs)
and hardware vendors can freely distribute Oracle Database XE along with their
products, thus adding value to their own products.

Educational institutions can freely use Oracle Database XE for their curriculum.
The following are the features of Oracle Database 11g Express Edition:

•	 Available on Linux (64-bit) and Windows (32-bit)
•	 Installs using native installers
•	 Fully upgradeable to other Oracle Database 11g editions
•	 Supports Oracle SQL Developer, Oracle Application Express, Java,

.NET and Visual Studio, and PHP development environments

Oracle Database 11g Express Edition comes with the following licensing restrictions:

•	 Executes on one processor in any size server
•	 Supports up to 11GB of user data
•	 Uses up to 1GB RAM of available memory in any size server
•	 Supports one database per machine
•	 HTTPS is not supported natively with the HTTP listener built into

Oracle Database XE

www.allitebooks.com

http://www.allitebooks.org

Database Editions and Oracle Database XE

[8]

Summary
At the end of this chapter, you will have a sound understanding of the various
database editions available with Oracle Database 11g. You will also have a
good understanding of the database features available with each database edition.

By now, you will also have an understanding of the features offered by Oracle
Database 11g XE and also its limitations.

References
•	 Oracle Database 11g Features comparison by Database Editions

(http://www.oracle.com/us/products/database/product-
editions-066501.html)

•	 For complete licensing information go to http://www.oracle.com/us/
corporate/pricing/technology-price-list-070617.pdf

http://www.oracle.com/us/products/database/product-editions-066501.html
http://www.oracle.com/us/products/database/product-editions-066501.html
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf

Installing and Uninstalling
Oracle Database XE

Though no one can go back and make a brand new start, anyone can start from now
and make a brand new ending. - Unknown

In this chapter we will explore the installation/un-installation of Oracle Database 11g
XE and starting/stopping the database. Before beginning with the installation, we
will look at the system requirements. We will also learn how to start and stop Oracle
Database 11g XE and finally uninstall it. We will cover both the Windows and Linux
environments. This chapter will guide you with the help of screenshots for easy
understanding. The topics that will be covered in this chapter are as follows:

•	 Downloading Oracle Database 11g XE
•	 Installing Oracle Database 11g XE on Windows XP (32-bit)
•	 Starting and stopping Oracle Database XE in Windows
•	 Uninstalling Oracle Database 11g XE on Windows XP (32-bit)
•	 Installing Oracle Database 11g XE on Oracle Enterprise Linux (64-bit)
•	 Starting and stopping Oracle Database XE in Linux
•	 Uninstalling Oracle Database 11g XE on Oracle Enterprise Linux (64-bit)

Installing and Uninstalling Oracle Database XE

[10]

Downloading Oracle Database 11g XE
You can download Oracle Database 11g XE from Oracle's website (http://www.
oracle.com/technetwork/database/express-edition/downloads/index.
html). To download the software you must sign in to the Oracle website and agree
to the license agreement. At the time of writing this book, Oracle Database 11g XE is
available on the Windows 32-bit and Linux 64-bit platforms. Oracle Database 11g XE
software is 301 MB and 312 MB in size for Linux and Windows operating systems,
respectively. As mentioned earlier, Oracle Database 11g XE is a free software.

Installing Oracle Database 11g XE on
Windows XP (32-bit)
The installation of Oracle Database 11g XE in a Windows environment is pretty
straightforward. You can install Oracle Database XE on Microsoft Windows 7,
Microsoft Windows Server 2003, and Microsoft Windows Server 2008.

The recommended RAM for running Oracle Database XE is 512 MB;
however, nowadays most computers are equipped with at least 1 GB of
memory. To continue with the database installation make sure you have
administrative privilege.

The following Oracle Database XE installation procedure is for the Windows XP
operating system. Make the necessary navigational changes if you are using other
versions of Microsoft Windows' operating system.

1.	 Unzip the downloaded Oracle Database XE software into a temporary folder,
say c:\temp.

2.	 Navigate to the Disk1 folder under c:\temp and double-click on setup.exe.
A new window pops up, as shown in the following screenshot:

http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html

Chapter 2

[11]

3.	 Oracle Database XE prepares the install shield wizard and once the
preparation completes, the following screen is displayed:

Installing and Uninstalling Oracle Database XE

[12]

4.	 Click on the Next button to start the installation. Accept the license
agreement on the following screen and click on the Next button:

5.	 On the next screen, you may choose an alternative location for your Oracle
Database XE installation. However, it is recommended to continue with the
default directory. Click on Next after choosing the destination directory, as
shown in the following screenshot:

Chapter 2

[13]

6.	 The next screen is shown in the following screenshot; enter the password for
SYS and SYSTEM users and click on Next to continue:

7.	 The next screen provides a summary of installation settings, as shown in
the following screenshot. Click on the Install button to continue installing
Oracle Database XE:

Installing and Uninstalling Oracle Database XE

[14]

8.	 The installation begins after you click on the Install button and once the
installation completes, the following screen appears; this marks the end
of installation:

9.	 Click on Finish to complete the installation.

We have successfully installed Oracle Database 11g XE. To access the database's
home page (shown in the following screenshot) go to Start | All Programs | Oracle
Database 11g Express Edition | Get Started:

Chapter 2

[15]

Starting and stopping Oracle Database XE in
Windows
After you have installed Oracle Database XE, the installer creates a Windows service
that can be used to start and stop the database.

To stop the running database, go to Start | All Programs | Oracle Database 11g
Express Edition | Stop Database.

Similarly to start the database, go to Start | All Programs | Oracle Database 11g
Express Edition | Start Database.

Uninstalling Oracle Database 11g XE on
Windows XP (32-bit)
Uninstalling Oracle Database 11g XE is the process of removing Oracle Database XE
software and the database from the machine. To remove the software and database,
navigate to Start | Control Panel | Add or Remove Programs . Right-click on
Oracle Database 11g Express Edition and click on Remove.

A confirmation window pops up, as shown in the following screenshot. Click on Yes
to continue uninstalling:

If Oracle Database 11g XE is already running, the uninstallation process first stops
the database and then proceeds with removing the database and software.

Installing Oracle Database 11g XE on
Oracle Enterprise Linux (64-bit)
Before we begin installing Oracle Database XE in Linux, we need to prepare
the environment by installing the required packages, setting kernel parameters,
and so on.

Installing and Uninstalling Oracle Database XE

[16]

To begin, make sure that the following Linux packages are installed. To verify that the
following Linux packages are installed use the rpm –qa <package name> command:

•	 kernel-headers-2.6.18-194.el5.x86_64.rpm

•	 glibc-2.5-49.x86_64.rpm

•	 make-3.81-3.el5.x86_64.rpm

•	 binutils-2.17.50.0.6-14.el5.x86_64.rpm

•	 glibc-devel-2.5-49.x86_64.rpm

•	 glibc-headers-2.5-49.x86_64.rpm

•	 libgomp-4.4.0-6.el5.x86_64.rpm

•	 gcc-4.1.2-48.el5.x86_64.rpm

•	 libaio-0.3.106-5.x86_64.rpm

The parameters that need to be included in the sysctl.conf file under /etc are as
follows. These changes are to be made by logging in as the root user:

kernel.semmsl=250
kernel.semmns=32000
kernel.semopm=100
kernel.semmni=128
kernel.shmmax=4294967295
kernel.shmmni=4096
kernel.shmall=2097152
kernel.sem= 250 32000 100 128
fs.file-max= 6815744
net.ipv4.ip_local_port_range=9000 65500

We are now ready to start the Oracle Database XE installation. However, it is
recommended to complete the following steps for creating a Linux user oracle:

1.	 Create new groups and the oracle user as shown in the following code
snippet, by logging in as the root user:
groupadd oinstall
groupadd dba
useradd -g oinstall -G dba,oper,asmadmin oracle
passwd oracle

2.	 Log in as the oracle user and add the following lines at the end of the
.bash_profile file:
Oracle instance name
ORACLE_SID=XE; export ORACLE_SID;
Oracle home directory
ORACLE_HOME=/u01/app/oracle/product/11.2.0/xe; export ORACLE_HOME;
Search path for executable

Chapter 2

[17]

PATH=$ORACLE_HOME/bin:$PATH; export PATH;
Search path for shared libraries
LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH; export LD_
LIBRARY_PATH

3.	 Copy the downloaded software to a temporary folder, say /u01/software,
and run the following command as the root user to install Oracle Database
XE, as shown in the following screenshot:

4.	 Run /etc/init.d/oracle-xe configure as the root user to configure
the database. You will be prompted to select the HTTP port for Oracle
Application Express, database listener port, SYS and SYSTEM user
password, and the boot option. It is recommended to accept the default
values and continue with the configuration of the database as shown in the
following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Installing and Uninstalling Oracle Database XE

[18]

To access the database's home page go to Applications menu | Oracle Database 11g
Express Edition | Get Started.

Starting and stopping Oracle Database XE in
Linux
After you have installed Oracle Database XE, the database is up and running and
you can begin using it right away.

To stop the running database, go to Applications menu | Oracle Database 11g
Express Edition | Stop Database.

Similarly to start the database, go to Applications menu | Oracle Database 11g
Express Edition | Start Database.

Alternatively, we can start the database manually by running the following
command as the root user:

/etc/init.d/oracle-xe start

To manually stop the database, run the following command as the root user:

/etc/init.d/oracle-xe stop

Uninstalling Oracle Database 11g XE on
Oracle Enterprise Linux (64-bit)
When you uninstall Oracle Database XE, all components, including datafiles, control
files, redo logfiles, and software are removed.

Log on with the root privilege and run the command shown in the following
screenshot to uninstall Oracle Database XE:

Chapter 2

[19]

Summary
After completing this chapter, you should be able to install and uninstall Oracle
Database 11g XE on both Linux and Windows operating systems. You should be
familiar with starting and stopping the database on both the Linux and Windows
environments using the respective services/commands. We also had a first look
at the Oracle Database 11g XE home page.

In the next chapter, we will configure our database for local and remote
database connections.

Connecting and Configuring
Oracle Database 11g XE

Motivation is what gets you started. Habit is what keeps you going. - Unknown

This chapter focuses on establishing a connection to Oracle Database 11g XE from
client machines. There are different ways in which you can establish a connection
to the database; for example, local and remote connections. We will explore these
in detail. Also, we will learn to configure the database listener. Oracle memory
management is another topic that will be covered in this chapter. The following
topics will be covered in this chapter:

•	 Local database connections
•	 Oracle Net Listener

°° Configuring Oracle Net Listener
°° Viewing the status of Oracle Net Listener
°° Starting and stopping the listener
°° Configuring the tnsnames.ora file

•	 Remote database connections
•	 Changing the SGA and PGA sizes

Local database connections
Establishing a connection locally means running the SQL command-line utility
on the same computer where Oracle Database 11g XE is installed, and initiating
a database connection command using the valid database credentials.

Connecting and Configuring Oracle Database 11g XE

[22]

The following screenshot is taken from Oracle Database 11g XE on Windows, and
demonstrates establishing a local database connection to the database:

Navigate to the Oracle Database 11g XE database home and start the sqlplus session
with the /nolog option. Using the connect statement establish a connection to the
database by supplying the valid database username and password. As shown in the
preceding screenshot, connect as SYSTEM user with the password entered while
installing Oracle Database 11g XE.

ORA_DBA is a local Windows group that gets automatically created when you
install Oracle Database XE and your Windows username automatically gets added to
this group. Members of ORA_DBA can connect to the Oracle Database XE without a
password, as shown in the following screenshot:

Oracle Net Listener
To connect to the database remotely, we should have Oracle Net Listener running
on the host where Oracle Database 11g XE is installed. When a remote client initiates
a database connection request, this connection request is received by Oracle Net
Listener. The job of the listener is to listen to these incoming database connection
requests and hand over the connection requests to the appropriate databases.

Chapter 3

[23]

Thereafter the remote-client connection directly communicates with the database
without the need of the listener. Without the listener service running we cannot
connect to the database remotely. There may be more than one database running on
the host server; however, you will only have one database listener for all incoming
requests. Based on the incoming request, Oracle Net Listener will hand over the
connection request to the appropriate database.

Oracle Net Listener and the tnsnames.ora files are configured by default when
we install Oracle Database 11g XE. The listener's configuration file is located under
$ORACLE_HOME\network\admin\listener.ora. Oracle Database XE automatically
creates a Windows service for Oracle Net Listener (OracleXETNSListener).

Configuring Oracle Net Listener
listener.ora is the name of the Oracle Net Listener configuration file and it resides
under $ORACLE_HOME\network\admin.

The content of a sample listener.ora file in its simplest form is as follows:

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = XE)
 (ORACLE_HOME = C:\oraclexe\app\oracle\product\11.2.0\server)
)
)

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = amomen-PC)(PORT = 1521))
)
)

The description of the parameters is as follows:

•	 LISTENER: The name of the listener
•	 SID_NAME: The Oracle Database name
•	 ORACLE_HOME: The Oracle software installation home directory
•	 HOST: The name of the host where Oracle Net Listener is running
•	 PORT: The port on which Oracle Net Listener is listening to the

incoming requests

Connecting and Configuring Oracle Database 11g XE

[24]

Make the necessary changes to the preceding parameters, save the file, and restart
the Windows Oracle Listener service OracleXETNSListener.

Viewing the status of Oracle Net Listener
Navigate to Oracle home ($ORACLE_HOME\bin), start the listener utility (lsnrctl),
enter status as shown in the following screenshot, and hit Enter.

If the listener is not started, the command displays an error message, as shown in the
following screenshot:

If the listener is running, the command displays detailed listener information as
shown in the following screenshot:

Chapter 3

[25]

Starting and stopping the listener
The listener is automatically configured when we install Oracle Database 11g XE.

•	 To stop the listener on Windows, launch the Services window by navigating
to Start | Control Panel | Administrative Tools | Services and stop the
OracleXETNSListener service, or launch the listener utility (lsnrctl) and
enter the LSNRCTL> stop command. To stop the listener on Linux, within
the listener utility (lsnrctl) enter the stop command as we did in the
Windows environment.

•	 To start the listener on Windows, launch the Services window by navigating
to Start | Control Panel | Administrative Tools | Services and start the
OracleXETNSListener service, or launch the listener utility (lsnrctl)
and enter the LSNRCTL> start command. To start the listener on Linux,
within the listener utility (lsnrctl) enter the start command as we did in
Windows environment.

Configuring the tnsnames.ora file
Transparent Network Susbstrate (TNS) handles all remote database connections.
Oracle software reads the TNS connection string to understand how to connect to the
remote databases. Every Oracle database and the Oracle Client software will have
this file. By default the tnsnames.ora file is located under $ORACLE_HOME\network\
admin. A sample alias entry from the tnsnames.ora file is as follows:

MY_XE =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = amomen-PC)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SID = XE)
)
)

In the preceding code:

•	 MY_XE is an alias name. You can name it anything you like.
•	 HOST is the hostname or IP-Address where database is running.
•	 PORT is the port number on which Oracle Net Listener is listening.
•	 SID is the Oracle database name.

When connecting to the remote database, we will use my_xe as a connect string.

Connecting and Configuring Oracle Database 11g XE

[26]

Remote database connections
Establishing a connection remotely means running the SQL command-line utility
on a different host other than the Oracle Database 11g XE machine and initiating a
database connection command using the valid database credentials over the network
using a connect string.

The following screenshot is taken from Oracle Database 11g XE on Windows, and
demonstrates establishing a remote database connection to the database:

As discussed earlier, a connect string defines which database server to connect to,
on what port, and using what protocol. In the preceding example, xe is the name of
the connect string.

Alternatively, we can connect to the database by providing the database host name
and port as shown in the following screenshot:

The database hostname name and port information is basically encapsulated in the
connect string.

Using the local sqlplus utility we can connect to the database via listener; thus,
simulating remote client connections. To achieve this, we need to configure the
tnsnames.ora file and make sure that the listener is running.

The remote host initiating database connection should have Oracle Client software
installed. It is through this client software that the Oracle command-line utilities
connect to the database.

Chapter 3

[27]

You can download Oracle Database 11g R2 Client software for Windows from
http://www.oracle.com/technetwork/database/enterprise-edition/
downloads/112010-win32soft-098987.html. To download the software you
have to log in and accept the license agreement.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Changing SGA and PGA sizes
Oracle instance is made up of background processes and the shared memory
(SGA). The background processes perform the maintenance tasks that are required
to keep the database running. These background processes operate on the
allocated shared memory. For example, one of the background process (PMON)
is responsible for cleaning up (releasing locks and resources) after abnormally
terminated database connections.

There are two types of memory that Oracle instance allocates:

•	 System Global Area (SGA): This is a shared memory area that contains
database buffers, shared SQL and PL/SQL, and other control information
for the instance.

•	 Process Global Area (PGA): This memory is private to a single process. PGA
keeps process-specific information such as Oracle shared resources being
used by a process, operating system resources used by the process, and other
database session related information.

Oracle Database XE uses Automatic Memory Management (AMM). This means
Oracle Database XE dynamically manages SGA and PGA memories. AMM uses
the MAX_TARGET initialization parameters to manage the instance memory. Oracle
instance dynamically redistributes the memory between SGA and PGA based on the
memory requirements when operating in the AMM mode.

Individual sizes of SGA and PGA can be set using the SGA_TARGET and PGA_
AGGREGATE_TARGET parameters respectively. The maximum amount of memory that
Oracle Database 11g XE allows for MEMORY_TARGET (SGA and PGA together) is 1 GB.

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/112010-win32soft-098987.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/112010-win32soft-098987.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/112010-win32soft-098987.html

Connecting and Configuring Oracle Database 11g XE

[28]

To change AMM memory, and SGA and PGA parameters, set MEMORY_TARGET to 1 GB
as shown in the following command:

SQL> ALTER SYSTEM SET memory_target = 1G SCOPE=spfile;

System altered.

SQL>

1.	 Set the SGA_TARGET value using the ALTER SYSTEM command as shown in the
following screenshot.

2.	 Set the PGA_AGGREGATE_TARGET value as shown in the following screenshot.
3.	 Restart the database so that the new values of AMM, SGA, and PGA

take effect.

Summary
In this chapter we learned how to establish a database connection on the local host
as well as from the remote host. You should now be familiar with the Oracle Net
Listener concepts and configuration. In this chapter, we have also learned about
Oracle memory management and the procedure to change memory settings.

In the next chapter we will interact with the database by writing SQL queries. Some
of the most commonly used SQL functions will also be discussed. We will create a
sample table in the next chapter and learn to insert, modify, and delete records from
this table.

Accessing Table Data, DML
Statements, and Transactions

Always desire to learn something useful. - Sophocles

In this chapter, we will install Oracle's free graphical tool, SQL Developer and use
it to communicate with Oracle Database XE. You use SQL Developer to browse
database objects and execute SQL statements. Querying the database is the most
common job and this chapter focuses on writing simple and multi-table queries. We
will also see some of the common database functions that are used in a daily routine.
The following are the topics that are covered in this chapter:

•	 Unlocking sample user accounts
•	 Installing SQL Developer
•	 Connecting SQL Developer to Oracle Database 11g XE
•	 About TAB and DUAL
•	 Writing simple queries
•	 Selecting data from multiple tables
•	 Exploring common functions
•	 What are Transaction Control Statements?
•	 Commit Understanding DML statements

Unlocking sample user accounts
Oracle Database 11g XE comes with sample database users such as HR, MDSYS, and
others. Some of the user accounts are by default locked. In the rest of the chapters,
we will use HR schema objects for our testing and building applications.

Accessing Table Data, DML Statements, and Transactions

[30]

Log on to SQL*Plus as SYSDBA, query account status for all users, and unlock the
HR account as shown below:

SQL> connect /as sysdba
SQL> select username, account_status from dba_users;
SQL> alter user hr account unlock; # Unlock the locked account
SQL> alter user hr identified by hr; # Open the expired account

Or:

SQL> alter user hr identified by hr account unlock; #Unlock and open
in a single statement
SQL> connect hr/hr

Installing SQL Developer
SQL Developer is a graphical tool that enables us to interact with an Oracle database.
Using SQL Developer we can query, create/modify/drop database objects, run SQL
statements, write PL/SQL stored procedures, and more.

SQL Developer is a separate tool not bundled with Oracle Database 11g XE. SQL
Developer is free to download. You can download SQL Developer by following this
link: http://www.oracle.com/technetwork/developer-tools/sql-developer/.

Installing SQL Developer on Windows and Linux is very straightforward and
effortless. The following is the procedure to install in a Windows environment:

1.	 Unzip the sqldeveloper-3.1.06.82.zip to a folder.
2.	 Navigate to the new folder sqldeveloper created by the ZIP file and

double-click on the sqldeveloper.exe file. That's it, we are done.

Connecting SQL Developer to Oracle
Database 11g XE
Start SQL Developer and select Connections in the pane on the left-hand side and
click on the plus symbol to create a new database connection. Now, in the following
window that pops up, fill Connection Name, Username, Password, select the
checkbox next to Save Password, and click on the Test button.

Resolve any errors. You should see Status: Success above the Help button. Save the
connection information by clicking on the Save button and proceed by clicking on
the Connect button.

Chapter 4

[31]

About TAB and DUAL
DUAL is a SYS owned table. It is normally used to return values from stored
functions, sequence values, and so on. It is recommended not to drop or perform
any DML operations against a DUAL table. The following is an example of fetching
the current date using the DUAL table:

SQL> SELECT sysdate FROM dual;

SYSDATE

10-MAY-12

SQL>

TAB is a SYS owned view which is used to list tables and views in a table. The
following is a sample query to list all tables/views in the current schema:

SQL> SELECT * FROM tab;

Writing simple queries
In general, a "query" means a "question". Within the realm of databases, a query
fetches information from the database objects such as tables and views. We can
combine one or more tables/views in a single query. In this chapter, we will execute
queries using the SQL*Plus environment. However, you may prefer to use either
SQL Developer or SQL*Plus.

Accessing Table Data, DML Statements, and Transactions

[32]

To list columns of a table we use the DESC command in SQL*Plus:

SQL> DESC employees

Now, let us execute a simple query against the employees table and fetch a
few columns:

SQL> SELECT employee_id, first_name, last_name, job_id FROM employees;

We can restrict the results returned by the query using the WHERE clause as
shown below:

SQL> SELECT employee_id, first_name, last_name, job_id FROM employees
WHERE salary < 2500;

Selecting data from multiple tables
In the above query, we queried data of the job_id column from the employees
table; however, the column values are codes. The actual job description is in the
job_title column in the jobs table. The following is a pictorial view of the jobs
and employees tables with a pointer to the join columns:

EMPLOYEES

Employee_Id

First_Name

Last_Name

Email

Phone_Number

Hire_Date

Job_Id

Salary

Commission_PCT

Manager_Id

Department_Id

JOBS

Job_Id

Job_Title

Min_Salary

Max_Salary

Let us write a query by joining these two tables on the common column job_id to
fetch information from both the tables. The query is shown as follows:

SELECT e.employee_id, e.first_name, e.last_name, j.job_title
 FROM employees e, jobs j
 WHERE e.job_id = j.job_id;

Chapter 4

[33]

Exploring common functions
We can use Oracle Supplied functions in our queries. Alternatively, we can create
our own functions and later use them in queries. We will learn about functions in the
following chapters. In this section, we will explore a few commonly used functions.
A complete list of Oracle Supplied functions is out of the scope of this book. You can
refer to the Oracle documentation for more details.

Functions in Oracle can be of type scalar or aggregate. Scalar functions operate on a
single row whereas the aggregate functions work on multiple rows. In this book we
will cover the following Oracle Supplied functions:

UPPER RPAD MAX TO_NUMBER

LOWER LPAD MIN TO_DATE

CONCAT or ("||") SUBSTR AVG

LTRIM COUNT ADD_MONTHS

RTRIM SUM TO_CHAR

The UPPER function converts the character string to uppercase. Similarly, the LOWER
function converts a given string to lowercase. The following is a sample query from
an HR schema:

SQL> SELECT UPPER(first_name), LOWER(first_name) FROM employees WHERE
employee_id = 127;

UPPER(FIRST_NAME) LOWER(FIRST_NAME)
-------------------- --------------------
JAMES james

SQL>

The CONCAT (or "||") function is used to concatenate two character strings into one.
The following is an example where the first_name and last_name columns from
the employees table are concatenated into one:

SQL> SELECT first_name || last_name fullname FROM employees WHERE
employee_id = 127;

FULLNAME

JamesLandry

SQL>

Accessing Table Data, DML Statements, and Transactions

[34]

The LTRIM function removes blank spaces from the left-hand side of the given string:

SQL> SELECT ' ' || first_name without_trim,
 2 ltrim(' ' || first_name) with_trim
 3 FROM employees
 4 WHERE employee_id = 127;

WITHOUT_TRIM WITH_TRIM
-------------------------- --------------------------
 James James

SQL>

We can also use the LTRIM function to remove all specified characters from the left-
hand side of a string. In the following example, we remove J from the first_name:

SQL> SELECT ltrim(first_name, 'J') FROM employees WHERE employee_id =
127;

LTRIM(FIRST_NAME,'J'

ames

SQL>

Similarly, the RTRIM removes specified characters from the right-hand side of a
given string.

The LPAD function pads with a specific set of characters to the left-hand side of a
string and RPAD does the same but on the right-hand side. With these functions,
you specify the number of characters and the string to pad. An example query is
as follows:

SQL> SELECT LPAD(first_name, 10, 'x') lpad_ex, RPAD(first_name, 10,
'x') rpad_ex
 2 FROM employees
 3 WHERE employee_id = 127;

LPAD_EX RPAD_EX
------------ ------------
xxxxxJames Jamesxxxxx

SQL>

Chapter 4

[35]

The SUBSTR function is used to extract a portion of the string. We specify how many
characters to extract and the starting position. In the following example, we extract
3 characters starting at position 2. So, J and s are not reported in the output. This is
done as follows:

SQL> SELECT SUBSTR(first_name, 2, 3) FROM employees WHERE employee_id
= 127;

SUBSTR(FIRST

ame

SQL>

The COUNT function returns the number of rows in a query and the MAX function
returns the maximum value of an expression. Similarly, the MIN and AVG functions
return the minimum and average value of the expression respectively. The COUNT,
MAX, MIN, and AVG are all aggregated functions as they operate on multiple rows. The
following is an example:

SQL> SELECT COUNT(*), MIN(salary), MAX(salary), AVG(salary)
 2 FROM employees;

 COUNT(*) MIN(SALARY) MAX(SALARY) AVG(SALARY)
---------- ----------- ----------- -----------
 107 2100 24000 6461.83178

SQL>

The ADD_MONTHS function adds the given number of months to the date value and
returns a new date, shown as follows:

SQL> SELECT hire_date, ADD_MONTHS(hire_date, 2) FROM employees WHERE
employee_id = 127;

HIRE_DATE ADD_MONTH
--------- ---------
14-JAN-07 14-MAR-07

SQL>

Accessing Table Data, DML Statements, and Transactions

[36]

The TO_CHAR function is used to convert a non character value to a character string.
TO_NUMBER is used to convert a string into a number. However, it raises an error
when you try to convert an invalid number. The TO_DATE function is used to convert
a character string to a date. Again, it raises an error when you try to convert an
invalid date. The following is an example:

SQL> SELECT TO_NUMBER('11') tonum,
 2 TO_CHAR('test') tochar,
 3 TO_DATE('01-01-2012', 'dd-mm-yyyy') todate
 4 FROM dual;

 TONUM TOCH TODATE
---------- ---- ---------
 11 test 01-JAN-12

SQL>

What are Transaction Control
Statements?
A transaction is a sequence of one or more SQL statements treated as one unit. Either
all of the statements are performed or none of them are performed. There are two
main Transaction Control Statements (TCS) , namely COMMIT and ROLLBACK:

•	 COMMIT: When we COMMIT a transaction it means that Oracle has made the
change permanent in the database

•	 ROLLBACK: When we ROLLBACK a transaction, all the changes performed since
the previous COMMIT/ROLLBACK are all erased

Understanding DML statements
Data Manipulation Language (DML) statements are used to manipulate data in
existing tables. INSERT, UPDATE, and DELETE are examples of DML statements. We
use INSERT to add a new record to the table, UPDATE to modify one or more columns
of a table, and DELETE to remove a record from the table.

The following is an example of an INSERT statement. We insert a new record in the
regions table of the HR schema:

SQL> INSERT INTO regions VALUES (5, 'Australia');

1 row created.

Chapter 4

[37]

SQL> COMMIT;
Commit complete.
SQL>

An example of the UPDATE statement is shown next, where we modify the value of
region_name from Australia to Aus and NZ. This is done as follows:

SQL> UPDATE regions SET region_name = 'Aus and NZ' Where region_id =
5;

1 row updated.

SQL> COMMIT;
Commit complete.
SQL>

The following is an example of the DELETE statement. We remove the newly added
record from the regions table as follows:

SQL> DELETE FROM regions Where region_id = 5;

1 row deleted.

SQL> COMMIT;
Commit complete.
SQL>

Remember that to make the changes permanent we have to commit the transaction.

Summary
In this chapter we have learned how to interact with Oracle database using SQL*Plus
and SQL Developer. This chapter also exposed you to a few commonly used Oracle
Supplied functions. We also learned what TCS and DML statements do.

Now that we are familiar with performing DML operations against tables, the next
chapter discusses creating and managing tables and indexes. We will also learn
about other database objects such as views, sequences, and synonyms.

References
•	 Oracle Database SQL Language Reference 11g Release 2 (11.2)

www.allitebooks.com

http://www.allitebooks.org

Creating and Managing
Schema Objects

Only undertake what you can do in an excellent fashion. There are no prizes for
average performance. - Brian Tracy

In this chapter we will discuss various schema objects such as tables, indexes, and
views. We will also learn how to create, modify, and drop schema objects using the
CREATE, ALTER, and DROP statements. At the end of this chapter, we will discuss the
importance of object statistics and how to gather statistics. The topics that will be
covered in this chapter are as follows:

•	 Data Definition Language
•	 Creating and managing tables
•	 Creating and managing indexes
•	 Integrity constraints
•	 Creating and managing views
•	 Creating and managing synonyms
•	 Creating and managing sequences
•	 Gathering statistics

Creating and Managing Schema Objects

[40]

Data Definition Language
Statements that create, modify, or change schema objects are termed as Data
Definition Language (DDL) statements. The CREATE, ALTER, and DROP statements
are examples of DDL statements. We create a new schema object using the CREATE
statement, modify existing schema objects using the ALTER statement, and remove
the schema object from the schema using the DROP statement. We will explore more
on DDL statements in the following topics.

The DDL statements can be executed either using SQL*Plus command line or using
SQL Developer.

Creating and managing tables
Tables are the basic unit that store actual user data. Individual data records are
referred to as rows, and fields are referred to as columns. Each table consists of one
or more columns and rows.

Connect to example HR schema to execute the examples discussed in this chapter.
The following is an example of the CREATE statement to create a new table:

-- Create a new table
CREATE TABLE emp (
emp_no NUMBER, -- Field that will store employee number
emp_name VARCHAR2(50), -- Field that will store employee' name
date_of_birth DATE, -- This will store employee's date of birth
salary NUMBER(10,2) -- Field that will store employee'
salary
);

In the preceding code snippet, we have created a new table consisting of four
columns. Each column is assigned a data type with respect to the values that it will
store. The emp_no column will store only number values, hence the NUMBER data
type is assigned. If we have to store an alpha-numeric value, we may consider using
VARCHAR2 instead. The VARCHAR2 data type stores variable length alpha-numeric
values. The DATE data type stores both date and time.

The NUMBER data type stores positive and negative fixed and floating point numbers.
We can optionally specify a precision and scale to the NUMBER data type. The syntax
is NUMBER (precision, scale), where "precision" is the total number of digits and
"scale" is the number of digits to the right of the decimal point.

Chapter 5

[41]

As an exercise, you can create other tables to familiarize yourself with the CREATE
command.

We will now modify the previously created table to add two new columns. This
is achieved by using the ALTER TABLE command. Let us add the nationality and
place_of_birth columns to the emp table:

-- Modify table to add new columns
ALTER TABLE emp ADD (
nationality VARCHAR2(30),
place_of_birth VARCHAR2(30)
);

Similarly, we can remove columns from the existing table, as shown in the following
code snippet:

-- Remove a column from the table
ALTER TABLE emp DROP COLUMN place_of_birth;

We will use the DROP TABLE command to remove a table from the schema, as shown
in the following code snippet:

-- Remove a table
DROP TABLE emp;

This command removes the table from the current schema.

Starting with Oracle Database 10g, Oracle has implemented a new feature called
the recycle bin. All the dropped objects by default move into the recycle bin. This
feature is similar to the recycle bin in Microsoft Windows. We can recover dropped
tables from recycle bin as we recover deleted files in Microsoft Windows OS, or
permanently remove the objects from the recycle bin.

Let us check our recycle bin for any dropped objects:

-- Check recyclebin for any dropped objects
SQL> SELECT * FROM recyclebin;

You will see our dropped table is now in the recycle bin. To recover the emp table
from the recycle bin, we will execute the following command:

-- Recover the dropped table
SQL> FLASHBACK TABLE emp TO BEFORE DROP;
Flashback complete.
SQL>

Creating and Managing Schema Objects

[42]

The table is recovered from the recycle bin. Querying the recyclebin view again
returns no records:

SQL> select * from recyclebin ;

Use the PURGE clause with the DROP TABLE command to permanently delete a table
from the current schema, bypassing the recycle bin:

-- Permanently remove a table from the database
SQL> DROP TABLE emp PURGE;

Creating and managing indexes
Indexes are created in a database to quickly locate relevant information. When
properly used, indexes will speed SQL execution while reducing disk I/O and
memory access. To better understand what an index is, think of the index of words
at the back of any book. If you want to quickly locate information, you would refer
to the index of words and navigate to that page.

A rowid is a pseudo-column that uniquely identifies a row. Each rowid contains the
following information:

•	 Object number of the object that the row belongs to
•	 Data block of the datafile
•	 Position of the row in the data block
•	 Datafile number (it resides in)

This information helps an Oracle database to uniquely identify a record.

Indexes in Oracle are schema objects that are stored separately. Each index contains
specified values from the indexed column along with the ROWID values for the rows
that match them.

When accessing a small percentage of the rows of a large table, you would want to
use an index. DML statements will become expensive if we have too many indexes,
and if we have too few indexes, then queries become expensive. So, the right match
has to be established between the two to achieve better performance.

The following is an example to create an index:

-- Create a new index
CREATE INDEX salary_idx ON emp(salary);

Where salary_idx is the name of the index, emp is the table name, and salary is the
column in which the index is created.

Chapter 5

[43]

Use the ALTER INDEX statement to change or rebuild an existing index. Using the
ALTER INDEX statement, we can rename the index, change storage parameters, and
change index visibility and usability. You normally rebuild an index when moving
it to a different tablespace or when it becomes invalid as the table relocates to a
different tablespace. Rebuilding indexes on a regular basis is not required and
should not be practiced.

-- Rebuild an index
ALTER INDEX salary_idx REBUILD;

To drop an index, use the DROP INDEX command, as shown in the following
screenshot:

-- Permanently remove the index from the database
DROP INDEX salary_idx;

Integrity constraints
Data stored in the database must adhere to certain business rules. An integrity
constraint defines a business rule for a table column. When the integrity constraint is
enabled, Oracle will enforce the business rule. Integrity constraints are stored as part
of table definition within the database.

The following are the integrity constraints:

•	 NOT NULL: The NOT NULL constraint enforces a column to not accept
null values.

•	 CHECK: The CHECK constraint is used to limit the values that are accepted
by a column.

•	 UNIQUE: The UNIQUE constraint is used to make sure that no duplicate values
are entered in the column.

•	 PRIMARY KEY: The PRIMARY KEY constraint is used to uniquely identify a
row in a table. PRIMARY KEY can be thought of as a combination of the
UNIQUE key and NOT NULL constraints. Furthermore, a table can have only
one primary key.

•	 FOREIGN KEY: A foreign key column is used to establish link between two
tables. The FOREIGN KEY constraint on a column ensures that the value in
that column is found in the primary key of another table.

Creating and Managing Schema Objects

[44]

The following is an example of the NOT NULL, CHECK, UNIQUE key, and PRIMARY KEY
constraints:

-- Create an orders table with different integrity constraints
included
CREATE TABLE orders (
order_no NUMBER PRIMARY KEY,
order_date DATE NOT NULL,
description VARCHAR2(30) UNIQUE,
loc VARCHAR2(30) CHECK (loc IN ('LONDON', 'DUBAI',
'DELHI')));

Let us create a detailed order table (order_details), which records all the items
purchased in a single order. We will then connect the order_details table with the
orders table using the FOREIGN KEY constraint:

-- Create order details table
CREATE TABLE order_details (
order_no NUMBER REFERENCES orders(order_no),
line_no NUMBER,
item_no NUMBER,
quantity NUMBER);

In the preceding example, the order_no column of the order_details table refers
to the order_no column of the orders table. If we try to insert an order number in
order_details, which does not exist in the orders table, the Oracle database will
raise an error—ORA-02291integrity constraint (xx.xxxxx) violated - parent key
not found.

As mentioned earlier in this chapter, there can be only one primary key for a table.
However, we can have multiple columns within a primary key. When we define
more than one column as our primary key, it is called a composite primary key. The
following is an example of a composite primary key on the order_details table:

-- create composite primary key
ALTER TABLE order_details ADD CONSTRAINT ord_det_pk PRIMARY KEY
(order_no, line_no);

Creating and managing views
A view is a stored query. You write a SQL query and save it in the database as a
view. A view can reference a single table/view, or multiple tables/views.

Chapter 5

[45]

The following is an example of the CREATE VIEW statement:

-- Create a new view
CREATE [OR REPLACE] VIEW salary_gr_1000 AS
select emp_no, emp_name, salary
FROM emp
WHERE salary > 1000;

In the preceding statement, we created a salary_gr_1000 view, which fetches data
from the emp table for all employees whose salary is greater than 1000. We can use
the OR REPLACE clause to change the query in the view.

We will use the ALTER VIEW statement to compile and modify/drop constraints. The
following is an example:

-- Compiling view
ALTER VIEW salary_gr_1000 COMPILE;

To change the query of a view, we use the CREATE or REPLACE VIEW statement.

Removing a view from the database is achieved using the DROP VIEW statement, as
shown in the following code snippet:

-- Permanently remove the view from the schema
DROP VIEW salary_gr_1000;

Creating and managing synonyms
A synonym is an alternative name for the table or view. A synonym provides data
independence and location transparency. The following is an example of the CREATE
SYNONYM statement:

-- Create a new synonym
CREATE SYNONYM emp_syn FOR emp;

Now we can query the emp table directly or using the new emp_syn synonym.

To remove the synonym from the schema, we use the DROP SYNONYM command
as follows:

-- Permanently remove the synonym from the database
DROP SYNONYM emp_syn;

Creating and Managing Schema Objects

[46]

Creating and managing sequences
A sequence is a database object in Oracle that is used to generate a number sequence.
Sequences are mostly used for primary key values.

We will create a sequence using the CREATE SEQUENCE statement as follows:

-- Create a new sequence
CREATE SEQUENCE emp_seq;

After creating a sequence, we can access its values in SQL statements using the
CURRVAL and NEXTVAL pseudo-columns. CURRVAL returns the current value of a
sequence and NEXTVAL increments the sequence and returns the new value:

-- Fetch a new value from emp_seq
SELECT emp_seq.NEXTVAL FROM dual;
-- Query the current value of emp_seq
SELECT emp_seq.CURRVAL FROM dual;

Sequences in their simplest form increment by one; however, we can create a
sequence to increment/decrement by any value.

We can modify a sequence using the ALTER SEQUENCE statement to change the
increment and other sequence properties. This statement affects only future sequence
numbers. The following is an example of the ALTER SEQUENCE statement to change
the sequence increment from default 1 to 2:

-- Modify sequence to increment by "2"
ALTER SEQUENCE emp_seq INCREMENT BY 2;

The new values fetched from emp_seq will get incremented by 2.

To drop a sequence from the schema, we use the DROP SEQUENCE statement as follows:

-- Permanently remove the sequence from the database
DROP SEQUENCE emp_seq;

Gathering statistics
Statistics are the primary source of information for Oracle Optimizer. It is through
the use of statistics that the optimizer attempts to determine the most efficient way to
use resources to satisfy our query. The more accurate our statistics are, the better the
optimizer's plan choice will be, and thus, the better our query performance will be.

To gather object statistics, we would use the DBMS_STATS package. The following is
an example of gathering table statistics:

Chapter 5

[47]

-- Collect table statistics and all indexes that are created on that
table
SQL> EXEC DBMS_STATS.GATHER_TABLE_STATS('hr', 'emp', estimate_percent
=> 100, cascade => TRUE);

The estimate_percent parameter tells Oracle to estimate statistics based on a
sample. In this example, we are directing Oracle to use 100 percent of the table data
to collect statistics. cascade tells Oracle to collect table statistics as well as statistics
on the dependent objects, for example, indexes. TRUE means to collect fresh statistics
for all indexes of this table.

The following is an example to gather index statistics:

-- Collect statistics on an index
SQL> EXEC DBMS_STATS.GATHER_INDEX_STATS('hr', 'emp_pk');

The following is an example to gather statistics for all the schema objects:

SQL> EXEC DBMS_STATS.GATHER_SCHEMA_STATS('hr');

Similarly, to gather statistics for all the objects in the database, you would use the
following line of code:

SQL> EXEC DBMS_STATS.GATHER_DATABASE_STATS;

There are many ways to gather statistics, some of which are out of the scope of this
book. Refer to Managing Statistics for Optimal Query Performance by Karen Morton.

Summary
In this chapter we have learned about DDL statements: creating, modifying, and
dropping database objects such as tables, indexes, views, synonyms, and sequences.
We also learned the importance of statistics gathering and saw a few techniques to
collect statistics.

The next chapter is all about PL/SQL coding. It will introduce you to the basics
of PL/SQL programming. You will learn about the stored procedure, functions,
and packages. You will also be able to write triggers on the tables by the end of the
chapter. Exception handling is one of the most important components of PL/SQL
programming and will be covered in the next chapter.

References
•	 Managing Statistics for Optimal Query Performance by Karen Morton

(http://method-r.com/downloads/cat_view/38-papers)

Developing Stored
Subprograms and Triggers

The way you give your name to others is a measure of how much you like and
respect yourself. -Brian Tracy

This chapter brings you the power of PL/SQL within your database. Stored
subprograms offer distinct advantages over embedding queries in your applications
as stored subprograms are more modular and tuneable. We will learn about stored
procedures, functions, and packages in this chapter. Error handling is a very critical
part of a program and hence is of greater importance. The following topics are
discussed in this chapter:

•	 PL/SQL data types
•	 Stored subprograms
•	 Creating stored subprograms
•	 About packages
•	 Creating packages
•	 Wrapping the PL/SQL code
•	 Exception handling
•	 PL/SQL triggers

Developing Stored Subprograms and Triggers

[50]

PL/SQL data types
PL/SQL provides many predefined data types. The most commonly used PL/SQL
data types include NUMBER, INTEGER, VARCHAR2, DATE, and BOOLEAN. You assign
values to variables using ":=". An example PL/SQL block, that declares variables
and assigns some values, is as follows:

DECLARE
 l_hire_date	 DATE;
 l_ssn		 NUMBER;
 l_marital_flag	BOOLEAN; 	 -- True -> Married, False -> Unmarried
 l_name	 VARCHAR2(30);		
BEGIN
 l_hire_date := TO_DATE('02-03-2001', 'dd-mm-yyyy');
 l_ssn := 12345678;
 l_marital_flag := TRUE;
 l_name := 'Tom';
END;
/

Stored subprograms
Subprograms are named PL/SQL blocks that can take parameters and be invoked.
Subprograms are either functions or procedures and can be compiled and stored in
an Oracle database, ready to be executed. Once compiled it is a schema object known
as a stored procedure or stored function. Generally, you use a function to compute a
value and a procedure to perform a business action.

Creating stored subprograms
You create a stored subprogram using the CREATE PROCEDURE command. In this
section, let us create a sample stored procedure in the HR schema and name it
salary_increment. The stored procedure does the following:

1.	 Accepts EMP_NO as input.
2.	 Fetches the current salary of the employee.
3.	 Calculates the increment on the salary.
4.	 If the salary is greater than 1000 then raise it by 2 percent. If the salary is

between 501 and 999, increment it by 5 percent, and if the salary is less
than or equal to 500, increment it by 10 percent.

5.	 Increment the salary of the given employee in the EMP table.
6.	 Commits the changes.

Chapter 6

[51]

The following is a screenshot of a PL/SQL stored procedure:

At this point you should be able to successfully create the salary_increment
procedure. Before we execute this procedure, let us make a note of the salary of
"Tom Green" by querying the EMP table. The following screenshot shows the query:

From the query shown in the preceding screenshot, we know that the salary of Tom
Green is 80. After executing the salary_increment procedure, the salary should get
incremented to "88". We will execute the procedure in SQL*Plus using the EXECUTE
command (in short EXEC), as shown in the following screenshot:

Developing Stored Subprograms and Triggers

[52]

The salary_increment procedure has successfully completed, meaning the salary of
Tom Green should now reflect the incremented salary. Use the SELECT statement to
confirm the change, as shown in the following screenshot:

Note that while creating the procedure I have used CREATE OR REPLACE instead of
CREATE. By specifying OR REPLACE while creating the procedure, you ask Oracle to
overwrite any already existing procedures. You can use this clause to change the
definition of the existing procedure without dropping, recreating, and re-granting
object privileges.

Now, let's create a stored function. As mentioned earlier, a stored function is
normally used to compute a value. A stored function must include a RETURN
statement to return the computed value. The following screenshot shows a sample
stored function which returns the name of the given department:

Unlike stored procedures, you execute a function within a SQL statement or in an
expression. A screenshot of executing the stored function within the SQL statement
is as follows:

To list stored subprograms in your schema query the USER_PROCEDURES view, shown
as follows:

-- Query to list all objects in a schema ordered by object_type

SQL> SELECT object_name, object_type FROM user_procedures;

Chapter 6

[53]

You can also fetch this information by querying the USER_OBJECTS view.

Query USER_SOURCE to retrieve the source code from the database, shown as follows:

-- Query body of stored procedure/function/package/package body

SQL> SELECT text FROM user_source WHERE name = 'GET_DEPT_NAME' ORDER BY
line;

Dropping a procedure is a process which will permanently remove a procedure
from an Oracle database. The commands to drop stored procedures and functions
are as follows:

-- Drop stored procedure "salary_increment"

SQL> DROP PROCEDURE salary_increment;

-- Drop stored function "get_dept_name"

SQL> DROP FUNCTION get_dept_name;

About packages
A package is a group of logically related procedures, functions, variables, and SQL
statements created as a single unit. A package is a schema object just like a table and
a sequence. A package has two parts, package specification and package body.

A package specification does not contain any code. You typically declare variables,
constants, cursors, procedures, and functions in a package. A package body is used
to provide the implementation details. All the program logic is coded in the body.
Within the package specification, we can specify which subprograms are visible to
the public and which are not (private). By hiding implementation details from users,
you can protect the integrity of the package.

Stored subprograms defined within a package are known as packaged subprograms.

Creating packages
You create a package specification using the CREATE PACKAGE or CREATE OR REPLACE
PACKAGE command. As mentioned earlier, a package is a group of related procedures
and functions, so let us create a database package by combining the previously
created stored procedure (salary_update) and the stored function (get_dept_name),
shown as follows:

-- Create package specification

SQL> CREATE OR REPLACE PACKAGE emp_pack IS

 2 -- Function to retrieve department name

Developing Stored Subprograms and Triggers

[54]

 3 FUNCTION get_dept_name(p_department_id IN departments.department_
id%TYPE) RETURN VARCHAR2;

 4 -- Increment salary

 5 PROCEDURE salary_increment (p_emp_no IN emp.emp_no%TYPE);

 6

7 ENDemp_pack;

8 /

You can code and compile a package specification without its body.

Use the CREATE PACKAGE BODY or CREATE OR REPLACE PACKAGE BODY statement to
create the package body. The following SQL statement creates the body of the
emp_pack package:

-- Create package body

SQL> CREATE OR REPLACE PACKAGE BODY emp_pack IS

 2

 3 FUNCTION get_dept_name(p_department_id IN departments.department_
id%TYPE)

 4 RETURN VARCHAR2 IS

 5 l_department_namedepartments.department_name%TYPE;

 6 BEGIN

:

:

12 END get_dept_name;

13

 14 PROCEDURE salary_increment (p_emp_no IN emp.emp_no%TYPE) IS

 15 l_salaryemp.salary%TYPE;

 16 BEGIN

:

:

41 ENDsalary_increment;

 42

43 ENDemp_pack;

44 /

Dropping the package and its body is achieved using the DROP PACKAGE and DROP
PACKAGE BODY statements respectively. These SQL statements will remove the
package/package body permanently from the user schema.

Chapter 6

[55]

Exception handling
An exception is an error which arises during the program execution. When an
exception is raised, the normal program execution stops and the control transfers
to the exception handling section if it exists; otherwise the program stops abruptly.
There are two types of exceptions found in Oracle: predefined exceptions and user
defined exception.

The predefined exceptions are raised automatically whenever there is a violation of
Oracle coding rules, such as NO_DATA_FOUND being raised if a SELECT INTO statement
returns no rows. For a complete list of predefined exceptions refer to Oracle Database
PL/SQL Language Reference 11g Release 2.

Apart from the predefined exceptions, we can explicitly define exceptions based
on business rules. These are known as user-defined exceptions. For example, an
employee should be at least 18 years old; if he/she is less than 18 then the application
should raise an error.

The stored procedure and function created in the previous sections do not include an
exception handling section. If you happen to execute the procedure for a non-existent
employee then the program fails abruptly with the ORA-01403 no data found error.

Let us re-create the stored procedure by including an exception block as shown in
the following screenshot:

Developing Stored Subprograms and Triggers

[56]

Now when you try to execute the stored procedure with a non-existent employee
number, you get a message Employee does not exist !!! as shown in the following
screenshot:

Wrapping up the PL/SQL stored
programs
You do not always want your code to be displayed in clear text to the outside world.
The code may contain proprietary information which needs to be guarded from
external sources. Or you may simply want your code to be hidden from the end
users to avoid any unofficial code modifications. Oracle provides a PL/SQL wrapper
utility for hiding your code. The following steps are required to wrap your code:

1.	 Save your code (procedure, function, or package) in a text file.
2.	 Wrap the code using the PL/SQL wrapper utility. A wrapped PL/SQL code

file is created by the utility.
Save the salary_increment procedure in a text file (say, c:\salary_increment)
and invoke the PL/SQL wrapper utility in the operating system as shown in the
following screenshot:

You can run the output file (c:\temp\salary_increment_wrapped.sql) as a script
in SQL*Plus. For example:

-- Execute the wrapped SQL code

SQL> @c:\temp\salary_increment_wrapped.sql

Chapter 6

[57]

PL/SQL triggers
Triggers are SQL and PL/SQL blocks which are implicitly executed by Oracle when
a INSERT, UPDATE, or DELETE statement is issued against the associated table. You
cannot explicitly invoke a trigger; however, you can enable and disable a trigger.

A trigger has three basic parts:

•	 Triggering event or statement: This can be a INSERT, UPDATE, or DELETE
statement on a table

•	 Timing point: Determines whether the trigger fires before or after the
triggering statement and whether it fires for each row that the triggering
statement affects

•	 Trigger action: This is the procedure that contains the SQL & PL/SQL
statements and code to be run

There are two ways of firing a trigger. Firstly, fire the trigger once for the triggering
statement irrespective of how many rows it affects and secondly, once for every row
affected. A row trigger is fired for each row while a statement trigger is fired once
on behalf of the triggering statement. For example, if the UPDATE statement modifies
five rows of a given table, the row trigger fires once for each row (five times) and the
statement trigger fires only once.

PL/SQL triggers have four basic timing points:

•	 Before the statement: A trigger can be defined using the BEFORE keyword.
Fires only once before the statement.

•	 Before each row: A trigger can be defined using both the BEFORE keyword
and the FOR EACH ROW clause. Fires once for each row before it is affected.

•	 After each row: A trigger can be defined using both the AFTER keyword and
the FOR EACH ROW clause. Fires once for each row after it is affected.

•	 After the statement: After executing the triggering statement and applying
any deferred integrity constraints, the trigger action is executed.

We can combine multiple triggering events (INSERT, UPDATE, and DELETE) in a single
trigger and using the conditional predicates we can identify which event has fired
the trigger. The conditional predicates are as follows:

•	 INSERTING: Indicates a INSERT statement fired the trigger
•	 UPDATING: Indicates a UPDATE statement fired the trigger
•	 DELETING: Indicates a DELETE statement fired the trigger

Developing Stored Subprograms and Triggers

[58]

A trigger that fires at row level can access the data in the row that it is processing by
using correlation names. The default correlation names are OLD and NEW, also called
psuedorecords.

The OLD and NEW fields for the row that the triggering statement is processing, are
as follows:

•	 INSERT: The OLD value is NULL and NEW contains the post-insert value
•	 UPDATE: The OLD value contains the pre-update value and NEW contains

the post-update value
•	 DELETE: The OLD value contains the pre-delete value and NEW is NULL

Triggers are commonly used to:

•	 Log events
•	 Maintain synchronous table replicas
•	 Provide auditing
•	 Prevent invalid transactions
•	 Enforce complex business rules

Let us create a trigger on the EMP table to log all DML activities performed against
it. To achieve this we have to first create a log table, EMP_LOG, as shown in the
following screenshot:

-- Create a log table

SQL>CREATE TABLE emp_log(emp_no NUMBER, Action VARCHAR2(10), date_
created DATE);

This table will record all the actions performed against each and every employee
record, along with the date.

Now is the time to create the trigger. You create a trigger using the CREATE TRIGGER
statement. The following screenshot shows the SQL statement to create the trigger:

Chapter 6

[59]

The trigger is now ready. Let us test the trigger by inserting a new employee
(INSERT), modifying the salary of the newly added employee (UPDATE), and then
removing the newly added record (DELETE). The SQL statements for these triggers
are as follows:

-- Add a new employee to the EMP table

SQL>INSERT INTO emp VALUES (99, 'test', SYSDATE, 100, 10);

SQL>COMMIT;

-- Modify the salary of newly added employee

SQL>UPDATE emp SET salary = 800 WHERE emp_no = 99;

SQL>COMMIT;

-- Remove the newly added employee from the EMP table

SQL>DELETE FROM emp WHERE emp_no = 99;

SQL>COMMIT;

As mentioned earlier, triggers are fired automatically by Oracle when the triggering
event occurs. Our EMP_LOG table should now contain three records—one for the
INSERT statement, one for the UPDATE statement, and one for the DELETE statement.
The following screenshot illustrates this scenario:

The source code of the database triggers can be retrieved from the USER_TRIGGERS
view or from the USER_SOURCE view.

Developing Stored Subprograms and Triggers

[60]

Like stored procedures, we use the CREATE OR REPLACE statement to modify
trigger definition. However, we can enable and disable the triggers using the
following statement:

-- Disable the trigger

SQL> ALTER TRIGGER emp_log_after_row DISABLE;

-- Enable the trigger

SQL> ALTER TRIGGER emp_log_after_row ENABLE;

By default, the CREATE TRIGGER creates the trigger in an enabled state. A trigger
will not fire when it is in a disabled state. You may want to disable a trigger when
performing a large data load.

Dropping the trigger will remove it permanently from the database and is achieved
using the DROP TRIGGER statement, shown as follows:

-- Dropping the trigger

SQL> DROP TRIGGER emp_log_after_row;

You can also create triggers at schema and database level. These triggers are called
system triggers. A database trigger can be used to alter session parameters, to audit
user logons, and other such tasks. An example usage of a schema trigger is to code
a triggering event preventing users from dropping any objects within the schema.
More information system triggers can be accessed from Oracle documentation.

Summary
In this chapter, we have learned about stored procedures, functions, and packages.
We know how to create, modify, and drop the stored procedures. Also, in this
chapter you were exposed to error handling techniques. Wrapping your code is
another great feature of the Oracle database to protect your hard work from getting
copied by unauthorized users. We have also seen database triggers in action.

The next chapter will introduce you to Oracle's free development tool—Oracle
Application Express (APEX). In this chapter, we will understand APEX components.
We will use APEX to browse and manage schema objects. We will also develop a
small application using APEX.

References
•	 Oracle Database PL/SQL Language Reference 11g Release 2

Building a Sample
Application with Oracle

Application Express
It is better for a leader to make a mistake in forgiving than to make a mistake in
punishing. - Prophet Muhammad

This chapter provides a brief introduction to Oracle Application Express (APEX) and
its components. We will also learn how to create a workspace followed by a sample
application. Step-by-step instructions will show how to load/unload data to/from
the database using APEX. At the end of the chapter you should be able to develop
small applications using APEX and get familiar with all the APEX components. The
topics that will be covered in this chapter are as follows:

•	 What is Oracle Application Express (APEX)?
•	 Getting started with Oracle Application Express
•	 Application Express components
•	 Prerequisites of a sample application
•	 Creating a sample application
•	 Adding a page to an existing application
•	 Creating application users
•	 Loading and unloading data to a text file
•	 Application Express Dashboard

Building a Sample Application with Oracle Application Express

[62]

What is Oracle Application Express
(APEX)?
APEX is a browser-based Rapid Application Development (RAD) tool that helps
you to create rich, interactive Oracle-based web applications. APEX is installed with
Oracle Database 11g XE by default. APEX is a no-cost option for the Oracle database.
Instead of downloading APEX you can sign up for an account on Oracle's hosted
version of APEX at http://apex.oracle.com.

Getting started with Oracle Application
Express
To start using APEX, we must create a workspace. Each workspace represents a
private container in which developers create and deploy their APEX applications.
A workplace is a group of applications, each containing one or more pages.

The first step in building an application using APEX is to create a workspace. To
create a workspace in a freshly installed Oracle Database 11g XE, follow these steps:

1.	 Launch the Get Started page.
2.	 Click on Application Express.
3.	 Create a new application express user apex_hr for the existing HR database

user as shown in the following screenshot:

4.	 Click on Create Workspace.
5.	 On the next page that appears, click on the Click Here button to log in to

the workspace.

Chapter 7

[63]

Application Express components
The application express consists of the following four components:

•	 Application Builder: Using this component, you can build database and
websheet applications. Application Developers build applications using
database applications. Using websheet applications, end users can manage
structured and unstructured data without developer assistance.

•	 SQL Workshop: This component provides the following tools that enable
you to view and manage database objects:

°° Object Browser: This tool allows you to browse database objects.
You can also create database objects such as tables, sequences,
and triggers.

°° SQL Commands: You can run ad-hoc SQL commands using this tool.
The SQL Scripts tool enables you to store and run SQL scripts.

°° Query Builder: Using this tool, you can create SQL queries using
drag-and-drop.

°° Utilities: This tool enables you to load and unload data, generate
DDLs for the database objects, and supports schema comparison.

•	 Team Development: This component helps to manage the lifecycle of
an application's development. It is tightly integrated with the APEX
Application Builder.

•	 Administration: This component provides service management, user
management, and workspace activity.

Prerequisites for a sample application
In this section, we will discuss the prerequisites for creating the sample application.
We will base our application on the HR.EMP table created in Chapter 5, Creating and
Managing Schema Objects. Add a primary key constraint to the EMP table. We will
create a database sequence; this will be used to autogenerate unique numbers for
the EMP_NO column. We will then create a database trigger on the EMP table, which
will assign the unique number generated by the sequence to the EMP_NO column. The
process to be followed is:

1.	 Create a table emp using the CREATE TABLE command:
-- Create a new table
CREATE TABLE emp (
emp_no NUMBER, -- Field that will store employee number
emp_name VARCHAR2(50), -- Field that will store employee's name

Building a Sample Application with Oracle Application Express

[64]

date_of_birth DATE, -- Field that will store employee's date of
birth
salary NUMBER(10,2) -- Field that will store employee' salary
);

2.	 Now, create a primary key constraint:
-- Create a Primary Key Constraint
ALTER TABLE emp ADD CONSTRAINT emp_pk PRIMARY KEY (emp_no);

3.	 The next step is to create a database sequence; we will use the autogenerated
unique numbers for EMP_NO:
CREATE SEQUENCE emp_seq;

You can also create the above sequence using Object Builder. Navigate to
Object Builder (Application Express Home | SQL Workshop | Object
Browser). Click on the Create button and select Sequence. The following
screen appears; enter the sequence name leaving other columns at their
default values:

4.	 Click on Next to continue. The following screen appears with the SQL
statement. Click on the Create button and we are done creating the
sequence (EMP_SEQ).

Chapter 7

[65]

5.	 The last step is to create a database trigger on the EMP table. Select Tables
from the dropdown list on the left-hand pane. Click on the EMP table and
then click on the Triggers link. Now click on the Create button. A new screen
appears. Select insert for the Options column from the dropdown list. In
the Trigger Body section assign the next sequence number to the emp_no
column, as shown in the following screenshot:

Building a Sample Application with Oracle Application Express

[66]

6.	 Click on the Next button to complete the creation process.

Now we are ready to start building our application.

Creating a sample application
Now that the prerequisites are taken care of, we are ready to start developing our
first application:

1.	 Click on Application Builder and select Create. The following screenshot
shows what you will see:

2.	 Select Database and click on the Next button.
3.	 On the next screen, select From Scratch and click on Next.
4.	 You can change the application name and application ID (this is optional).

Click on Next.
5.	 Choose Tabular Form and select EMP for the table name as shown in the

following screenshot; click on Add Page:

Chapter 7

[67]

6.	 A new page gets added to the application. Click on the Create button.
7.	 The next screen displays the selections made. Click on the Create button to

create the application.

We have now completed creating the application and it is time to run the application.
Click on the Run Application button and log in to the application using your Apex
credentials. Click on the Add Row button to add a new record to the EMP table and
click on the Submit button. I have added two records to the EMP table as shown in
the following screenshot:

You can add a few more records using the same screen. Also try to modify and
delete a few records.

Building a Sample Application with Oracle Application Express

[68]

Adding a page to the existing application
Let us take our application a step further by adding a new page. To create a new
page, follow these steps:

1.	 Click on Application Builder. Now click on the application we created in the
previous section.

2.	 Click on the Create Page button displayed at the top-right side as shown in
the following screenshot:

3.	 On the next screen that appears select Chart and click on Next. Select HTML
Chart on the next screen and click on Next.

4.	 Accept the default values on the Chart details screen and click on Next.
5.	 You will see the following screen. Select the Use an existing tab set and

create a new tab within the existing tab set option and name the tab Salary
Chart. Click on Next.

6.	 On the next screen, change the default SQL query as shown in the following
screenshot and click on Next:

Chapter 7

[69]

7.	 Click on the Finish button to add the new page to the application. You will
receive a message confirming successful creation of the new page. Click on
the Run Page button.

8.	 When the application runs, you will notice two tabs—Emp and Salary Chart.
Navigate between the two tabs by clicking on the tab name. This chart is
shown in the following screenshot:

There are many options to explore while creating an application which are out
of the scope of this book. Refer to the Oracle Application Express documentation for
more details.

Building a Sample Application with Oracle Application Express

[70]

Creating application users
As an administrator you manage workspace administrators, application developers,
and end users.

A workspace administrator can create and modify applications and database objects.
The administrator also manages users and groups. A developer can create and modify
applications and database objects, while the end user can only access applications.

An example of creating an application user is as follows:

1.	 Navigate to Application Express Home | Administration | Manage Users
and Groups.

2.	 Click on the Create User button.
3.	 Enter the User identification details.
4.	 Select No for the User is a workspace administrator option and Yes for User

is a developer, as shown in the following screenshot. Click on the Create
User button:

Similarly, you can create workspace administrators and end users.

Loading and unloading data to a text file
This section describes how to use Oracle Application Express utilities to load and
unload data from Oracle Database. Unloading is a process of copying table data
to external files while loading is a process of copying data from external files to a
database table.

Chapter 7

[71]

Unloading the EMP table to a text file
You can use the Unload page to export table data as a text file. To unload the EMP
table to a text file, follow this process:

1.	 Navigate to the Unload page (Workspace home page | SQL Workshop |
Utilities | Data workshop | Data Unload | To Text)

2.	 Select the HR schema and click on the Next button.
3.	 Select the EMP table from the dropdown list and click on the Next button.
4.	 Select all the columns.
5.	 Choose the default values for Separator, select Include Column Names and

other columns, and click on the Unload Data button.
6.	 The file download window appears. Click on Save to download the file.

Loading text file to the EMP_LOAD table
You can use the Load page to import data from a text file into a table. Let us create a
test table (EMP_TEST) to load the data exported in the preceding section:

CREATE TABLE emp_test AS SELECT * FROM emp WHERE 1=2;

To load data from the EMP table to a text file, follow these steps:

1.	 Navigate to the Load page (Workspace home page | SQL Workshop |
Utilities | Data workshop | Data Load |Text Data).

2.	 Select Existing table for Load Data and Upload file for Load from. Click on
the Next button.

3.	 Select the HR schema and click on the Next button.
4.	 Select the EMP_TEST table from the dropdown list and click on the

Next button.
5.	 Locate the exported text file by clicking on the Browse button and check the

First row contains column names checkbox. Click on the Next button.
6.	 Verify the column names and data then click on the Load data button to start

loading into the EMP_TEST table.
7.	 APEX starts loading the data in the background. After completing the load

process, APEX displays the status of loaded text data. Verify the Succeeded
and Failed columns.

For this simple test, all the records should successfully get loaded into our test table.
Verify the load by querying the EMP_TEST table using SQL*Plus/SQL Developer/
APEX Object Browser.

Building a Sample Application with Oracle Application Express

[72]

Application Express Dashboard
The Application Express Dashboard presents a summary view of various APEX
activities. Using the Dashboard, you can view the summary of a following:

•	 Workspace applications
•	 Workspace attributes and statistics
•	 Workspace users
•	 Workspace user activity
•	 Developer application and page changes
•	 Page performance
•	 Database objects by schema

To navigate to the dashboard go to Application Express Home | Administration |
Dashboard. A pictorial view of the dashboard is shown in the following screenshot:

Chapter 7

[73]

Summary
In this chapter we used Object Browser to create database objects, the Administration
component to manage Application Express users, and Application Builder to create a
sample application. We have covered all the major Application Builder topics in this
chapter and I hope you are now geared up to dive deeper and explore more features
of Application Express.

In the next chapter, we will talk about Oracle's memory and database structure. We
will discuss the types of memory available in Oracle such as System Global Area
(SGA) and Process Global Area (PGA). A database is made up of a set of files.
The next chapter will guide you to understand the various types of physical files
available in an Oracle database.

References
Refer to the following Oracle documentation to learn more about Oracle
Application Express:

•	 Application Express Administration Guide
•	 Application Builder User's Guide
•	 Application Express SQL Workshop Guide

Managing Database and
Database Storage

A man is but the product of his thoughts what he thinks, he becomes.
- Mahatma Gandhi

This chapter provides background information on memory management in Oracle
Database 11g XE and managing physical files related to the database. Oracle memory
is of two types, namely System Global Area (SGA) and Process Global Area (PGA).
SGA is a memory that is shared by all Oracle processes, while PGA is a private
memory allocated to individual processes. These topics will be covered in this chapter
in more detail. We will also explore the physical database structure along with the
logical database structure. The topics covered in this chapter are as follows:

•	 Memory structure
°° System Global Area
°° Process Global Area

•	 Automatic Memory Management
•	 Important background processes
•	 Physical and logical database structures

°° Creating a tablespace
°° Adding datafiles to a tablespace
°° Dropping a tablespace
°° Viewing tablespace usage

•	 Managing Flash Recovery Area

Managing Database and Database Storage

[76]

Memory structure
Oracle is available on almost every platform. For this reason, the physical
architecture of Oracle is different on different operating systems. For example, on
a Linux operating system, Oracle is implemented as multiple operating system
processes whereas on Windows, Oracle is implemented as a single-threaded process.

Oracle uses memory to store information such as cached data, shared SQL and
PL/SQL code, information about a session, and cursor pointers.

As mentioned earlier, Oracle memory structure is composed of two types of
memory—System Global Area and Process Global Area. The following sections
will cover more on these topics.

System Global Area
System Global Area (SGA) is a large shared memory area that all server and
background processes access. The SGA is broken into various pools as shown
in the following diagram:

Shared Global Area (SGA)

Database Buffer

Cache
Shared Pool

Redo Log Buffer Other Misc Info

Large Pool Java Pool
Streams

Pool

These pools are explained as follows:

•	 Database buffer cache: This is where Oracle stores database blocks before
writing them to the disk and after reading them from the disk. The blocks
are managed using two lists—the Least Recently Used (LRU) list and the
write list. The write lists holds dirty buffers (modified buffers) that need to
be written by the Database Block Writer process. The blocks in the LRU list
are listed in order of use. Frequently used blocks are ranked higher than the
blocks that are less frequently used. The size of the cache can be controlled
using the DB_CACHE_SIZE initialization parameter.

Chapter 8

[77]

•	 Redo log buffer: This is a circular buffer in SGA where data that needs to
be written to the online redo logs is cached before it is written to the disk.
The caching of redo information improves performance of the database. The
LOG_BUFFER initialization parameter specifies the number of bytes allocated
for the redo log buffer.

•	 Shared pool: This is one of the most critical memory structures in the SGA.
It is further divided into two components—library cache and dictionary
cache. The library cache stores shared SQL areas, and PL/SQL procedures
and packages. The dictionary cache also known as row cache is used for
storing the most recently used database objects (such as tables and indexes).
The SHARED_POOL_SIZE initialization parameter is used to manually size the
shared pool in the SGA.

•	 Large pool: This is an optional memory area that is configured to provide
large memory allocations.

•	 Java pool: This is an optional memory area used to serve memory for all
session-specific Java code and data.

•	 Streams pool: This is used to cache Oracle Streams objects. If a Streams pool
is not defined, one is created automatically when Streams is first used.

The LARGE_POOL_SIZE, JAVA_POOL_SIZE, and STREAMS_POOL_SIZE initialization
parameters are used to size large pool, java pool, and streams pool respectively.

Process Global Area
Process Global Area (PGA) is a memory that is private to a single process and
is not shared with other Oracle processes. Generally, PGA memory consists of the
private SQL area, cursors, session information, and sorting area. By setting the
PGA_AGGREGATE_TARGET initialization parameter, you can automatically manage
the size of various work areas associated with PGA. Statistics on allocation and use
of work area memory can be obtained by querying the V$PGASTAT, V$SESSTAT, and
V$SQL_WORKAREA views.

Automatic Memory Management
Oracle Database 11g XE uses the Automatic Memory Management (AMM) feature
that simplifies SGA and PGA memory management significantly. The MEMORY_
TARGET initialization parameter is used to automatically manage memory needs.
When the MEMORY_TARGET parameter is set, Oracle Database 11g XE automatically
sizes various memory components such as database buffer cache, Java pool, shared
pool, streams pool, large pool, and process global area.

www.allitebooks.com

http://www.allitebooks.org

Managing Database and Database Storage

[78]

You cannot disable AMM in Oracle Database XE configuration. The MEMORY_
TARGET parameter by default is set to 1 GB when you install Oracle Database XE.
Oracle Database 11g XE includes four new views to support automatic memory
management:

•	 V$MEMORY_CURRENT_RESIZE_OPS

•	 V$MEMORY_DYNAMIC_COMPONENTS

•	 V$MEMORY_RESIZE_OPS
•	 V$MEMORY_TARGET_ADVICE

The amount of memory allocated to each dynamic component is displayed using the
V$MEMORY_DYNAMIC_COMPONENTS view, as shown in the following command:

SQL> SELECT * FROM v$memory_dynamic_components;

Important background processes
There are three types of process in Oracle Database 11g XE:

•	 Background processes: These are the processes that start and stop
the database. They are also responsible for writing blocks to the disk,
maintaining the online redo log, and performing other background jobs.

•	 Server processes: These processes perform work based on the client's
request. Tasks performed by these processes include loading data from the
disk to SGA, modifying blocks in memory, and so on.

•	 Slave processes: These processes perform jobs on behalf of background or
server processes.

We will look at the important background processes:

•	 Database Block Writer (DBWn): This is responsible for writing dirty
(modified) blocks to the disk, thus making buffer space available. More than
one DBWn process can be configured to enhance the writing of dirty blocks
to the disk.

•	 Log Writer (LGWR): This is responsible for flushing the contents of the redo
log buffer to online redo logfiles. It flushes:

°° Every three seconds
°° Whenever a COMMIT is issued
°° When the redo log buffer is one-third filled or it contains 1 MB of data

•	 System Monitor (SMON): This is responsible for performing crash recovery.

Chapter 8

[79]

•	 Process Monitor (PMON): This is responsible for cleaning up after
abnormally terminated connections, rollback uncommitted transactions,
and release locks held.

•	 Checkpoint Process (CKPT): This is responsible for updating the
datafile header.

•	 Archiver Process (ARCn): This is responsible for copying an online redo
logfile to another location when LGWR fills up the online redo logfile. The
archived redo logfiles are required to perform media recovery.

Physical and logical database structures
A database is a collection of physical operating system files. The files that make up
a database are redo logfiles, datafiles, control files, and temporary files. A logical
database structure consists of tablespaces.

A tablespace is a logical storage unit within Oracle Database 11g XE. It is considered
logical because a tablespace is not visible in the filesystem. A tablespace is a collection
of one or more datafiles. A datafile belongs to one and only one tablespace. There
are three types of tablespace in Oracle Database 11g XE—permanent, temporary,
and undo. All our tables, indexes, and stored subprograms reside in a permanent
tablespace. A temporary tablespace is used to process temporary data such as storing
intermediate sorting results. All information related to undo (roll back) is stored in the
undo tablespace. Undo records are used to roll back transactions when a ROLLBACK
statement is issued or during recovery of the database.

Datafiles are the files that hold our tables, indexes, sequences, and other objects.
Redo logfiles are transaction journals. All the transactions are recorded in these
logfiles. They are used only for recovery purposes. If the database is shut down
abnormally (via a shutdown abort command or due to a power failure), Oracle will
use the online redo logs in order to restore the database exactly to the point where it
was prior to the failure. All uncommitted transactions are rolled back.

Temporary datafiles are used to store intermediate results such as large sort
operations. Temporary datafiles are not backed up by Oracle as the data residing in
them is temporary.

Archived redo logfiles are copies of online redo logfiles. As online redo logfiles
are reused in a circular fashion, a copy of an online redo logfile is made before it is
reused. Archived redo logfiles are very crucial in recovering a database in the event
of media loss and other database recovery scenarios.

•	 Password file: Oracle uses a password file to authenticate users logging in
remotely as a SYS user. The password file contains the SYS password in
encrypted form. The password file is automatically created when Oracle
Database 11g XE is installed.

Managing Database and Database Storage

[80]

•	 Parameter file: There are two types of parameter files, namely PFILE and
SPFILE. A PFILE is a static and editable parameter file whereas the SPFILE
is a persistent binary file that can only be modified with the ALTER SYSTEM
statement. The parameter file for a database is commonly known as the
init.ora file. The parameter file tells the instance where the control file
is and also defines other critical parameters such as SGA and PGA size,
database name, and database block size.

•	 Control file: The control file is very critical to a database. It tells the instance
where the datafiles and redo logfiles are residing. It also records information
on checkpoints, archive logfiles. Oracle recommends multiplexing the control
file on separate disks to avoid losing them in case of disk failure.

Creating a tablespace
You can create a tablespace using the CREATE TABLESPACE command as shown in the
following command:

SQL> CREATE TABLESPACE test_ts DATAFILE 'c:\oraclexe\app\oracle\oradata\
xe\test_ts01.dbf'

 2 SIZE 200M

 3 AUTOEXTEND ON NEXT 20M;

Tablespace created.

SQL>

The preceding CREATE statement creates a new tablespace called test_ts with
one datafile of size 200 MB. The AUTOEXTEND ON clause specifies that the datafile is
extensible when it gets full and each extension of the datafile will be of 20 MB.

Adding datafiles to a tablespace
Datafiles can be added to a tablespace at any time. You normally add a new datafile
to a tablespace when the tablespace is running out of space. You can add a datafile
using the ALTER TABLESPACE command as shown in the following command:

SQL> ALTER TABLESPACE test_ts

 2 ADD DATAFILE 'c:\oraclexe\app\oracle\oradata\xe\test_ts02.dbf' SIZE
100M;

Tablespace altered.

SQL>

Chapter 8

[81]

Dropping a tablespace
Removing a tablespace is achieved using the DROP TABLESPACE command, shown
as follows:

SQL> DROP TABLESPACE test_ts;

Tablespace dropped.

SQL>

The preceding command removes tablespace- and datafile-related information
from the control file; however, the datafiles are not cleaned from the OS. To delete
datafiles from the OS while you drop the tablespace run the following command:

SQL> DROP TABLESPACE test_ts INCLUDING CONTENTS AND DATAFILES;

Tablespace dropped.

SQL>

You cannot roll back the DROP TABLESPACE command so make sure that you are
dropping the correct tablespace.

Viewing the tablespace usage
The DBA_TABLESPACES, DBA_DATA_FILES, DBA_FREE_SPACE, DBA_SEGMENTS,
DBA_EXTENTS, and DBA_TABLES data dictionary views are very helpful in
identifying which data segment resides in what tablespace.

A query that reports the tablespace name and its usage is as follows:

SQL> SELECT ddf.tablespace_name,

 2 ROUND(SUM(ddf.bytes)/1024/1024) Total_mb,

 3 ROUND(SUM(ddf.bytes)/1024/1024) - dfs.Free_mb Used_mb,

 4 dfs.Free_mb

 5 FROM dba_data_files ddf,

 6 (SELECT tablespace_name,

 7 ROUND(SUM(bytes)/1024/1024) Free_mb

 8 FROM dba_free_space

 9 GROUP BY tablespace_name) dfs

 10 WHERE dfs.tablespace_name = ddf.tablespace_name

Managing Database and Database Storage

[82]

 11 GROUP BY ddf.tablespace_name, dfs.Free_mb

 12 UNION ALL

 13 SELECT tablespace_name,

 14 ROUND(SUM(bytes_used + bytes_free)/1024/1024) Total_mb,

 15 ROUND(SUM(bytes_used)/1024/1024) Used_mb,

 16 ROUND(SUM(bytes_free)/1024/1024) Free_mb

 17 FROM V$temp_space_header

 18 GROUP BY tablespace_name;

TABLESPACE_NAME TOTAL_MB USED_MB FREE_MB

------------------------------ ---------- ---------- ----------

SYSAUX 670 635 35

SYSTEM 390 360 30

TEST_TS 200 1 199

USERS 100 5 95

UNDOTBS1 25 10 15

TEMP 20 15 5

6 rows selected.

SQL>

You can also use Oracle Database XE GUI to monitor the storage usage. On
Windows, you can navigate to Start | All Programs | Oracle Database 11g Express
Edition | Get Started. Click on the Storage link and enter the SYS user credentials
and you will be presented with the following screen:

Chapter 8

[83]

Managing the Flash Recovery Area
Oracle Database 11g XE stores database backups, redo logfiles, and archive redo
logfiles in Flash Recovery Area (FRA). Optionally you can place a member of the
multiplexed control file in FRA. The V$RECOVERY_FILE_DEST view provides details
of FRA location and usage. Run the following query to determine the FRA details:

SQL> set line 100

SQL> column name format a45

SQL>

SQL> SELECT name,

 2 ROUND(space_limit/1024/1024) space_limit,

 3 ROUND(space_used/1024/1024) space_used,

 4 ROUND(space_reclaimable/1024/1024) space_reclaimable

 5 FROM v$recovery_file_dest;

NAME SPACE_LIMIT SPACE_USED SPACE_RECLAIMABLE

--- ----------- ---------- ----

C:\oraclexe\app\oracle\
fast_recovery_area 10240 100 0

SQL>

Using the DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE
initialization parameters we can define the FRA location and size. To set the flash
recovery area to 50 GB, enter the following commands:

SQL> ALTER SYSTEM SET db_recovery_file_dest_size=50G SCOPE=both;

System altered.

SQL>

While configuring FRA, make sure that you set the size (db_recovery_file_
dest_size) first and then the location (db_recovery_file_dest).

V$FLASH_RECOVERY_AREA_USAGE is another useful view that provides space
usage information based on file types (control files, redo logfiles etc)

To disable the flash recovery area, set the DB_RECOVERY_FILE_DEST initialization
parameter to a null string as shown below:

SQL> ALTER SYSTEM SET db_recovery_file_dest= '' SCOPE=both;

Managing Database and Database Storage

[84]

Summary
In this chapter we explored all the components that make up an SGA. Also, we
learned about the PGA. We also explored the important types of files that make an
Oracle database such as the parameter file, password file, control file, datafile, and
redo logfiles. We reviewed how to create and manage tablespaces and control the
Flash Recovery Area.

The next chapter is dedicated to data loading and unloading. In this chapter, we will
discuss different methods and options available within Oracle Database to load and
unload the data using the Oracle proprietary tools.

Moving Data between
Oracle Databases

Pleasure in the job puts perfection in the work. - Aristotle

This chapter describes how to move data from Oracle Database 10g Express Edition
to Oracle Database 11g Edition using Oracle's Export/Import utilities. Oracle
Database XE supports traditional Export/Import utilities and Data Pump Export/
Import utilities. This chapter discusses these approaches in more detail, covering
the following topics:

•	 Exporting and importing data
•	 Traditional Export/Import (exp/imp) utilities
•	 Data Pump Export/Import (expdp/impdp) utilities
•	 Moving data between Oracle Database 10g XE and Oracle Database 11g XE

Exporting and importing data
Oracle's Export and Import utilities are used to move the data between different
machines, databases, and schema. When exporting, database objects are dumped
into a proprietary binary file. This binary file is then used to import database objects
into another Oracle database.

Oracle's Export and Import utilities are also used to perform logical database backup
and recovery.

Moving Data between Oracle Databases

[86]

Traditional Export and Import (exp/imp)
utilities
The traditional Export and Import utilities provide a simple way to move your data
between Oracle databases. The Export utility extracts data from the database and
generates a binary file as the output file. We can then import data into the destination
database using this binary file.

The Export and Import utilities are invoked using the exp and imp commands
respectively. These utilities can be used to move data between Oracle databases
even if they reside on different platforms (hardware and software configurations).

The Export and Import utilities support the following modes:

•	 Full mode: Exports and imports a full database.
•	 Tablespace mode: Using this mode we can move one or more tablespaces from

one Oracle database to another. The transportable tablespaces can be exported
in Oracle Database XE but can only be imported in an Enterprise Edition.

•	 User mode: In this mode, we can export and import all objects owned by a
particular user.

•	 Table mode: In this mode, we can export and import specific tables.

Examples of using the Export utility in different modes are as follows:

-- Export full database
exp system/******** FULL=y FILE=c:\fulldb_exp.dmp LOG= c:\fulldb_exp.
log
-- Export a User by connecting to the database with DBA privilege
exp system/******** OWNER=hr FILE=c:\hr_exp.dmp LOG=c:\hr_exp.log
-- Export a User itself
exp hr/******** file=c:\hr_exp.dmp log=c:\hr_exp.log
-- Export a table
exp hr/******** TABLES=employees FILE=c:\hr_employees_exp.dmp LOG= c:\
hr_employees_exp.log

Examples of using the Import utility in different modes are as follows:

-- Import Full database
imp system/sys1234 FULL=Y FILE=c:\fulldb_exp.dmp LOG=c:\fulldb_imp.log"
-- Import schema
imp system/sys1234 FROMUSER=hr TOUSER=test FILE=c:\hr_exp.dmp LOG=c:\
hr_imp.log
-- Import a table
imp hr/******** FROMUSER=hr TOUSER=test FILE=c:\hr_employees_exp.dmp
LOG=c:\hr_employees_imp.log

Chapter 9

[87]

Data Pump Export/Import (expdp/impdp)
utilities
The Data Pump Export and Import utilities were first introduced in Oracle Database
10g. Data Pump enables high speed data and metadata transfers. The Data Pump
Export and Import utilities are invoked using the expdp and impdp commands
respectively. Data Pump is similar to traditional export and import utilities but it has
many advantages, some of which are as follows:

•	 Ability to estimate job times
•	 Ability to estimate the space required by the export dump file without

actually exporting the data
•	 Remapping capabilities
•	 Ability to restart failed jobs
•	 Monitor running jobs

Data Pump is server-based, meaning dump files and logfiles are accessed relative
to the database server-based directory paths. We need to create a directory object
specifying to the OS directory path before using data pump utilities. An Oracle
directory object maps a name to a directory on the OS filesystem. Once the directory
is created, the user creating the directory object needs to grant the READ or WRITE
privilege on the directory object to other database users.

For example, the following SQL statement creates a database directory object
(exp_dir) that is mapped to an OS directory (c:\oraclexe\exp_dumps):

SQL> CREATE OR REPLACE DIRECTORY exp_dir AS 'c:\oraclexe\exp_dumps';

SQL> GRANT READ, WRITE ON DIRECTORY exp_dir TO hr;

Examples of using Data Pump Export/Import utilities in different modes are
as follows:

-- Export full database
expdp system/******** FULL=y DIRECTORY=exp_dir DUMPFILE=fulldb_exp.dmp
LOGFILE=fulldb_exp.log
-- Export a schema
expdp hr/******** SCHEMAS=hr DIRECTORY=exp_dir DUMPFILE=hr_expdp.dmp
LOGFILE=hr_expdp.log
-- Export a table
expdp hr/******** TABLES=employees DIRECTORY=exp_dir DUMPFILE=emp_
expdp.dmp LOGFILE=emp_expdp.log

-- Import Full database
impdp system/******** FULL=y DIRECTORY=exp_dir DUMPFILE=fulldb_exp.dmp
LOGFILE=fulldb_imp.log

Moving Data between Oracle Databases

[88]

-- Import schema
impdp hr/******** SCHEMAS=hr DIRECTORY=exp_dir DUMPFILE=hr_expdp.dmp
LOGFILE=hr_impdp.log
-- Import a table
impdp hr/******** TABLES=employees DIRECTORY=exp_dir DUMPFILE=emp_
expdp.dmp LOGFILE=emp_impdp.log

The EXCLUDE and INCLUDE parameters available in Data Pump export/import are
used as metadata filters. Using these parameters you can Exclude/Include database
objects. Using the EXCLUDE parameter, you can specify database objects and object
types that you want to exclude from the export operation. Similarly, using the
INCLUDE parameter, you specify database objects and object types for the current
export mode.

An example of exporting all objects belonging to the HR schema excluding the
DEPARTMENTS table is as follows:

expdp system/sys SCHEMAS=hr EXCLUDE=TABLE:\'IN (\'DEPARTMENTS\')\'
DIRECTORY= exp_dir DUMPFILE=hr_no_dept_expdp.dmp LOGFILE= hr_no_dept_
expdp.log

Moving data between Oracle Database
10g XE and Oracle Database 11g XE
Follow the guidelines presented in this section if you want to do either of the
following:

•	 Move data between Oracle Database 10g XE and Oracle Database 11g XE
•	 Upgrade your Oracle Database 10g XE to Oracle Database 11g XE

The steps are as follows:

1.	 Create a database directory object by connecting to Oracle Database 10g
XE as SYS user:
SQL> CREATE OR REPLACE DIRECTORY dump_dir AS 'c:\xetest';

SQL> GRANT READ,WRITE ON DIRECTORY dump_dir TO system;

2.	 Export the data from Oracle Database 10g XE:
expdp system/******** full=Y EXCLUDE=SCHEMA:\'LIKE
\'APEX_%\'\',SCHEMA:\'LIKE \'FLOWS_%\'\' directory=DUMP_DIR
dumpfile=DB10G.dmp logfile=DB10G_expdp.log
expdp system/******** TABLES=FLOWS_FILES.WWV_FLOW_FILE_OBJECTS$
directory=DUMP_DIR dumpfile=DB10G2.dmp logfile=DB10G_expdp.log

Chapter 9

[89]

3.	 Uninstall Oracle Database 10g XE.
4.	 Install Oracle Database 11g XE.
5.	 Create a database directory object by connecting as SYS user:

SQL> CREATE OR REPLACE DIRECTORY dump_dir AS 'c:\xetest';

SQL> GRANT READ, WRITE ON DIRECTORY dump_dir TO system;

6.	 Import data exported from Oracle Database 10g XE into Oracle Database
11g XE:
impdp system/sys1234 full=Y directory=DUMP_DIR dumpfile=DB10G.dmp
logfile=DB10G_impdp.log
impdp system/sys1234 directory=DUMP_DIR TABLE_EXISTS_ACTION=APPEND
TABLES=FLOWS_FILES.WWV_FLOW_FILE_OBJECTS$ dumpfile=DB10G2.dmp
logfile=DB10G_impdp.log

Exporting data using SQL Developer
Exporting data and metadata using SQL Developer is very simple. From the menu
go to Tools | Data Export. This launches the Data Export wizard. You may choose
to export both the metadata and data, or either of the two. It's pretty straightforward
from the interface.

You should choose an appropriate method to import metadata or data depending on
how the object was exported.

Summary
In this chapter we explored Oracle database utilities such as traditional Export/
Import and Data Pump Export/Import to load and unload data from an Oracle
database. We also learned to move data between Oracle Database 10g Express
Edition and Oracle Database 11g Express Edition.

The next chapter will talk about database migration. We will learn to migrate our XE
database to other database editions. The chapter provides step-by-step instructions
on migrating from XE to Enterprise Edition.

Upgrading Oracle
Database 11g XE to

Other Database Editions
Indeed, an ignorant man who is generous is dearer to God than a worshipper who
is miserly. - Prophet Muhammed

In this chapter we will learn how to upgrade Oracle Database 11g XE to other
database editions. Oracle Database 11g XE offers upgrade as you go. Oracle grows
with your needs, offering a smooth upgrade path.

Upgrading Oracle Database 11g XE to
Oracle Database 11g Enterprise Edition
This section provides a step-by-step guide on upgrading Oracle Database 11g XE to
Oracle Database 11g Enterprise Edition. Ensure that the release number and patch
level of Enterprise Edition server software are the same as the original Express
Edition server software. For example, if the Express Edition is 11.2.0.2, then your
Enterprise Edition should also be 11.2.0.2.

The following are the steps to upgrade Oracle Database 11g XE (11.2.0.2) to Oracle
Database 11g Enterprise Edition on a Windows environment:

1.	 Shut down the database.
2.	 Stop Windows service (this step is not required under Linux).

Upgrading Oracle Database 11g XE to Other Database Editions

[92]

3.	 Back up the database. You may use one of the following three backup
methods to safeguard your database before starting the upgrade process:

°° Oracle's export utility (discussed in the previous chapter). If you
choose to use this method, it should be performed before shutting
down the database.

°° RMAN Backup (discussed in the next chapter). This step should also
be performed before shutting down the database.

°° Shut down the database and use the OS copy command to copy
database files to a backup location.

4.	 Create a new parent folder—C:\app\oracle. This directory will host our
new database-related files (control files, data files, redo log files, and so on).

5.	 Copy all the directories from C:\oraclexe\app\oracle to the C:\app\
oracle location except the product folder. This will copy our database-
related files and diagnostic files to the new location.

6.	 Copy the following configuration files to a temporary folder (C:\database):
°° Backup files—initXE.ora and PWDXE.ora found under the C:\

oraclexe\app\oracle\product\11.2.0\server\database
directory.

°° Backup file—SPFILEXE.ora located in C:\oraclexe\app\oracle\
product\11.2.0\server\dbs.

7.	 Create a pfile using the following command. This is required as we would
make changes to important initialization parameters:
SQL> create pfile='c:\xe.ora' from spfile;
File created.
SQL>

8.	 Uninstall Oracle Database 11g XE from your machine.
9.	 Install Oracle Database 11g Enterprise Edition software only.
10.	 Copy the password file from the backup location (C:\database) to the new

Oracle home—$ORACLE_HOME\dbs.
11.	 Open C:\XE.ora in Notepad, and replace C:\oraclexe\app\oracle with

C:\app\oracle and save the initialization parameter file.
12.	 Create a new spfile as follows:

SQL> create spfile from pfile='c:\xe.ora';
File created.
SQL>

Chapter 10

[93]

13.	 Start the database in mount mode:
SQL> startup nomount
ORACLE instance started.

Total System Global Area 644468736 bytes
Fixed Size 1385480 bytes
Variable Size 255855608 bytes
Database Buffers 381681664 bytes
Redo Buffers 5545984 bytes
Database mounted.
SQL>

14.	 Make a note of the data file, temporary file, and redo log file's location by
querying the V$DATAFILE, V$TEMPFILE, and V$LOGFILE views respectively:
SQL> select name from v$datafile;

NAME

C:\ORACLEXE\APP\ORACLE\ORADATA\XE\SYSTEM.DBF
C:\ORACLEXE\APP\ORACLE\ORADATA\XE\UNDOTBS1.DBF
C:\ORACLEXE\APP\ORACLE\ORADATA\XE\SYSAUX.DBF
C:\ORACLEXE\APP\ORACLE\ORADATA\XE\USERS.DBF

SQL>

SQL> select member from v$logfile;

MEMBER

C:\ORACLEXE\APP\ORACLE\FAST_RECOVERY_AREA\XE\ONLINELOG\O1_
MF_2_7K7QDGXN_.
 LOG
C:\ORACLEXE\APP\ORACLE\FAST_RECOVERY_AREA\XE\ONLINELOG\O1_
MF_1_7K7QDCYN_.
 LOG

SQL>

SQL> select name from v$tempfile;

NAME

C:\ORACLEXE\APP\ORACLE\ORADATA\XE\TEMP.DBF

SQL>

Upgrading Oracle Database 11g XE to Other Database Editions

[94]

15.	 Rename the data file locations using the ALTER DATABASE RENAME FILE
statement:
SQL> alter database rename file
 'C:\ORACLEXE\APP\ORACLE\ORADATA\XE\SYSTEM.DBF' to
 2 'C:\app\oracle\oradata\XE\SYSTEM.DBF';

Database altered.

SQL>
SQL> alter database rename file
 'C:\ORACLEXE\APP\ORACLE\ORADATA\XE\UNDOTBS1.DBF' to
 2 'C:\app\oracle\oradata\XE\UNDOTBS1.DBF';

Database altered.

SQL>
SQL> alter database rename file
 'C:\ORACLEXE\APP\ORACLE\ORADATA\XE\SYSAUX.DBF' to
 2 'C:\app\oracle\oradata\XE\SYSAUX.DBF';

Database altered.

SQL>
SQL> alter database rename file
 'C:\ORACLEXE\APP\ORACLE\ORADATA\XE\USERS.DBF' to
 2 'C:\app\oracle\oradata\XE\USERS.DBF';

Database altered.

SQL>

16.	 Rename the temporary files:
SQL> alter database rename file
 'C:\ORACLEXE\APP\ORACLE\ORADATA\XE\TEMP.DBF' to
 2 'C:\app\oracle\oradata\XE\TEMP.DBF';

Database altered.

SQL>

17.	 Similarly, rename the redo log files:
SQL> alter database rename file
 2 'C:\ORACLEXE\APP\ORACLE\FAST_RECOVERY_AREA
 \XE\ONLINELOG\O1_MF_2_7K7QDGXN_.LOG' to
 3 'C:\app\oracle\fast_recovery_area
 \XE\ONLINELOG\O1_MF_2_7K7QDGXN_.LOG';

Chapter 10

[95]

Database altered.

SQL> alter database rename file
 2 'C:\ORACLEXE\APP\ORACLE\FAST_RECOVERY_AREA
 \XE\ONLINELOG\O1_MF_1_7K7QDCYN_.LOG' to
 3 'C:\app\oracle\fast_recovery_area
 \XE\ONLINELOG\O1_MF_1_7K7QDCYN_.LOG';

Database altered.

SQL>

18.	 Open the database:
SQL> alter database open;

Database altered.

SQL>

19.	 Optionally, run the catalog.sql and catproc.sql scripts as follows:

SQL> @?\rdbms\admin\catalog.sql

SQL> @?\rdbms\admin\catproc.sql

It's better to execute the preceding two scripts because of the complexity of data
dictionary and to be sure that all the Enterprise Edition objects are created.

Your database is now using the Oracle Database 11g Enterprise Edition version of
the software. Using the preceding procedure, you can upgrade Express Edition to
Standard Edition or Standard Edition One.

Summary
In this chapter we have taken a detailed step-by-step approach for upgrading
Express Edition to Enterprise Edition.

The next chapter is dedicated to backup and recovery. Backup and recovery are of
high significance, as we should always protect our databases from data loss caused
by a variety of failures. We will discuss various backup and recovery techniques in
the next chapter.

Backup and Recovery
There are a thousand excuses for failure but never a good reason. - Mark Twain

In this chapter we will discuss the basics of Oracle Database XE backup and
recovery. This chapter introduces Oracle's backup and recovery tool, Recovery
Manager (RMAN). We will also discuss a few backup and recovery scenarios. The
following are the topics covered in this chapter:

•	 A brief introduction to backup and recovery
•	 Recovery Manager
•	 Connecting to Oracle Database XE using RMAN
•	 The ARCHIVELOG mode
•	 Placing a database in the ARCHIVELOG mode
•	 Backing up a database (the NOARCHIVELOG mode)
•	 Simulating a database failure (the NOARCHIVELOG mode)
•	 Restoring the NOARCHIVELOG database
•	 Configuring the RMAN environment
•	 Backing up the ARCHIVELOG database
•	 Simulating a database failure (the ARCHIVELOG mode)
•	 Restoring ARCHIVELOG database

The full range of backup and recovery techniques is out of the scope of this book.
Refer to Oracle documentation for more details.

Backup and Recovery

[98]

Introduction to backup and recovery
In information technology, a backup or the process of backing up is making copies
of data, which may be used to restore the original after a data loss event (refer to the
Backup definition at Wikipedia). Recovering of database is a process a reconstructing
the database after data loss.

Recovery Manager
Recovery Manager (RMAN) is Oracle's command-line utility for backing up and
recovering an Oracle database. RMAN is fully integrated with Oracle database and is
Oracle's recommended tool for backing up and recovering Oracle databases. RMAN
is installed automatically with the database.

Connecting to Oracle Database XE using
RMAN
Start the RMAN executable (RMAN.exe) in the command prompt of your operating
system. A RMAN prompt will appear on your screen. Now you can connect to your
database using the SYSDBA privilege account as follows:

-- connect to the database
RMAN> connect target /

connected to target database: XE (DBID=2655045848)

RMAN> exit

Alternatively, you can connect to the database when you start the RMAN client
session as follows:

-- start RMAN client and connect to the target database

C:\oraclexe\app\oracle\product\11.2.0\server\bin>rman target /

Recovery Manager: Release 11.2.0.2.0 - Production on Wed Apr 4
14:38:53 2012

Copyright (c) 1982, 2009, Oracle and/or its affiliates. All rights
reserved.

connected to target database: XE (DBID=2655045848)

RMAN>

Chapter 11

[99]

The ARCHIVELOG mode
Databases can be run in one of two modes—the ARCHIVELOG mode or the
NOARCHIVELOG mode. In NOARCHVIELOG mode, the redo log files are reused by the
Oracle database engine without being copied to an offline location. In ARCHIVELOG
mode, Oracle copies the filled online redo log files to one or more offline locations
before they are reused. These redo log files, which are saved offline, are called
archived redo log files. The ARCH process is responsible for archiving when
automatic archiving is enabled. You use the archived redo log files to recover a
database and update a standby database.

The ARCHIVELOG mode is very important for mission-critical production databases.
Databases can be backed up in the open mode when running in the ARCHIVELOG
mode. Also, the ARCHIVELOG mode provides point-in-time recovery. It is generally
not necessary for test and development databases.

Placing a database in the ARCHIVELOG mode
To place a database in the ARCHIVELOG mode, perform the following steps:

1.	 Create a directory to store archived redo log files.
2.	 Update the log_archive_dest_1 initialization parameter to point to the

archived redo log file location:
SQL> ALTER SYSTEM SET log_archive_dest_1='LOCATION=C:\oraclexe\
app\oracle\fast_recovery_area\XE\ARCHIVELOG' SCOPE=both;

3.	 Start the database in MOUNT mode:
SQL> STARTUP MOUNT

4.	 Place the database in ARCHIVELOG mode:
SQL> ALTER DATABASE ARCHIVELOG;

5.	 Open the database:
SQL> ALTER DATABASE OPEN;

6.	 To disable the ARCHIVELOG mode of the database, you would do the following:
°° Start the database in MOUNT mode.
°° Disable the ARCHIVELOG mode:

SQL> alter database noarchivelog;

°° Start the database in open mode:
SQL> alter database open;

Backup and Recovery

[100]

Backing up a database (the
NOARCHIVELOG mode)
You can manually take a backup using the BACKUP command in RMAN or use the
Oracle Database XE-supplied script. In this section we will use the Oracle Database
XE-supplied script to perform a full database backup. Remember, RMAN by default
creates backups to disk.

Backing up a database in the NOARCHIVELOG mode requires the database to be in a
MOUNT state. This backup is called a consistent backup. When a consistent backup
is restored, there is no need to perform any recovery.

Start the backup by running the Oracle Database XE-supplied backup script, located
under Startup | Oracle Database 11g Express Edition | Backup Database on a
Windows machine, and by executing $ORACLE_HOME/config/scripts/backup.sh
on a Linux environment. The backup script does the following:

•	 Shuts down the database
•	 Starts the database in MOUNT mode
•	 Performs backup
•	 Opens the database for read/write operations

The following screenshot shows RMAN backup in progress on a Windows
environment:

Chapter 11

[101]

Now let us check our backup pieces within RMAN, as shown in the following
screenshot:

In the preceding screenshot, you can see that all the database files that belong to
our database have been backed up. RMAN groups one or more datafiles into a
backup piece, and one or more backup pieces are grouped together and are called
a backup set.

Simulating a database failure (the
NOARCHIVELOG mode)
Now that we have a valid backup in place, let us simulate a database failure. Let us
use the hr_test table created earlier in this book for our test. We have five records in
the hr_test table, as shown in the following screenshot:

Backup and Recovery

[102]

For this test, we will perform the following steps to simulate a database failure:

1.	 Take a full database backup.
2.	 Insert a record in the hr_test table. (Any changes to the database after the

backup will be lost once we restore the database. So, we will lose this record
in the recovery process.)

3.	 Insert the following line of code into hr_test:
VALUES (6, 'test record', sysdate, 100);
Shutdown database

4.	 Rename datafiles folder—ORADATA/XE to ORADATA/XE-BACKUP.
5.	 Create a new empty folder—XE.
6.	 Start the database now. (Oracle instance starts up in NOMOUNT mode and fails

to mount the database, as Oracle is not able to find the control file while
mounting the database.)

Restoring the NOARCHIVELOG database
Restoring a backup is a process of bringing the database back to a state before crash.
As our database is in the NOARCHIVELOG mode, all changes made after the backup
will be lost. We will be able to restore the database to the last backup.

We can restore the database either by using the Oracle Database XE-supplied restore
script or by manually entering the restore commands in RMAN command prompt. In
this section we will use the Oracle Database XE-supplied script to restore the database.

Start the restore by running the Oracle Database XE-supplied restore script,
located under Startup | Oracle Database 11g Express Edition | Restore Database
on the Window environment, and by executing $ORACLE_HOME/config/scripts/
restore.sh on Linux. The restore script does the following:

•	 Restores spfile and controlfile from autobackup
•	 Restarts the database in MOUNT mode
•	 Restores the database
•	 Opens the database with the RESETLOGS option

Chapter 11

[103]

The following screenshot shows the RMAN restore process in progress:

Once the RMAN restore procedure completes, our database is ready to use. Log in
to the database and query the hr_test table for the number of records. You will not
find the last inserted test record in the table, because this record did not exist when
the backup was taken.

Configuring the RMAN environment
We can use the SHOW ALL command to display the current values of RMAN-configured
settings for our target database. The following are a few of the values we can configure:

•	 Database retention policy
•	 Default device type for backup
•	 Control file automatic backup
•	 Enable/disable database encryption

Let us configure automatic backup of controlfile as follows:

Backup and Recovery

[104]

This setting will enable the database to take an autobackup of controlfile whenever
a database backup occurs or the database structure metadata (add/drop of datafiles/
tablespaces) in controlfile changes.

For more information on other parameters, refer to Oracle Database Backup and
Recovery User's Guide.

Backing up the ARCHIVELOG database
Let us first place the database in the ARCHIVELOG mode before backing up the
database. We have already gone through the procedure of placing the database
in the ARCHIVELOG mode earlier in this chapter.

Switch a few log files after opening the database using ALTER SYSTEM SWITCH
LOGFILE and look for new archived redo log files in the C:\oraclexe\app\oracle\
fast_recovery_area\XE\ARCHIVELOG\ folder.

Now our database is ready for the backup. Let us now take a manual backup instead
of using the Oracle Database XE-supplied backup script. Log in to the RMAN
session, connect to the target database, and run the backup command.

The following is the simple backup command that we will use to back up our database:

-- RMAN back command to backup database and archive logs
RMAN> backup database plus archivelog;

Chapter 11

[105]

Alternatively, you can specify the backup location using the FORMAT clause. %U
generates unique filenames for the backup pieces as follows:

RMAN> backup database plus archivelog format 'c:\xe\backup_%U';

The preceding command does the following:

•	 Creates a folder under the flash recovery area
•	 Automatically backs up spfile and controlfile
•	 Backs up the entire database
•	 Finally, backs up all the archive log files

The following screenshot shows the backup process:

Backup and Recovery

[106]

Now that we have successfully backed up our database, let us query RMAN to get the
backup details. I am listing the backups in summary mode as the verbose mode would
generate too much output. However, you may check the verbose on your computers.

Simulating a database failure (the
ARCHIVELOG mode)
Now it's time to start playing with our database. We have recovered our database
(NOARCHIVELOG) from a simulated database failure earlier in this chapter. We will
repeat a similar approach with our database in the ARCHIVELOG mode.

For this test we will be performing the following steps to simulate a database failure:

1.	 Take a full database backup.
2.	 Insert a record in the hr_test table:

SQL>INSERT into hr_test VALUES (6, 'test record', sysdate, 100);
SQL> COMMIT;

3.	 Switch the archive logs:
SQL> ALTER SYSTEM SWITCH LOGFILE;

4.	 Back up the archive logs:
RMAN> backup archivelog all;

5.	 Shut down the database.
6.	 Rename the datafiles folder—ORADATA/XE to ORADATA/XE-ARCH-BACKUP.
7.	 Create a new empty folder—XE.
8.	 Start the database now. (Oracle instance starts up in NOMOUNT mode and

fails to mount the database, as Oracle is not able to find controlfile while
mounting the database.)

Chapter 11

[107]

Restoring the ARCHIVELOG database
The steps involved in recovering an ARCHIVELOG mode database differ from that of
the NOARCHIVELOG mode database. The steps involved are as follows:

1.	 Start the database instance in the NOMOUNT mode.
2.	 Restore the controlfile.
3.	 Mount the database.
4.	 Restore the database.
5.	 Recover the database.
6.	 Open the database.
7.	 Query the hr_test table to confirm the change.

Start the database instance in the NOMOUNT mode using either SQL*Plus or the RMAN
client. The next step in the process is to restore controlfile and mount the database.
Restore controlfile from the autobackup, as shown in the following screenshot:

RMAN searches for a backup of controlfile in the default location, and once
located, RMAN restores controlfile to its default location. Now mount the
database using the ALTER DATABASE MOUNT command.

The database is now mounted and it is the time to restore the database. The control
file has all the information of the backup and when we restore the database, it will
read the appropriate backup file and restore the datafiles to their default locations.
Restore is a process of copying datafiles from backup location to disk.

Backup and Recovery

[108]

The following screenshot shows the restore database command:

The next step after restoring the database is to perform database recovery. Recovery
is the process of applying redo logs to the database to roll it forward. The following
screenshot shows the recover database command:

Chapter 11

[109]

The recover database command applies all archived redo log files and brings the
database to the last consistent state. After successfully recovering the database, it's
time to open the database. We open the database with the resetlogs option, as shown
in the following screenshot:

Now that we have successfully restored and recovered the database, it's time to
query the hr_test table and check for our test record:

Our test record with employee number 6 can be seen in the preceding screenshot.

Summary
After completing this chapter, the reader should be able to perform basic Oracle
database backups, configure the RMAN environment, change the ARCHIVELOG
mode of a database, and recover the database from any media failures.

In this chapter we have used both manual RMAN commands and Oracle-supplied
scripts for backup and recovery. At this point, we strongly suggest the reader of
this book to refer to Oracle documentation for more details on database backup
and recovery.

The next chapter will focus on the performance tuning of the database and
database applications. It will cover the best practices in designing efficient
database applications and more.

References
•	 Oracle Database Backup and Recovery User's Guide

(http://docs.oracle.com/cd/E11882_01/backup.112/e10642/toc.htm)

Tuning Oracle
Database 11g XE

People with clear, written goals, accomplish far more in a shorter period of time
than people without them could ever imagine. - Brian Tracy

This chapter is dedicated to database tuning. We will discuss various best
practices in designing database applications and different techniques of tuning the
overall database. The objective of this chapter is to provide a basic foundation in
performance tuning. A complete tuning solution is out of the scope of this book.
We will briefly discuss the following topics in this chapter:

•	 Performance tuning
•	 Performance tuning approach
•	 Avoiding common pitfalls
•	 Autotrace utility
•	 Explain Plan
•	 Using indexes
•	 Dynamic performance views
•	 Statspack

Performance tuning
Tuning is a process of identifying and resolving the cause of slow performing piece
of program code. One of the important duties of a database administrator is to ensure
that the Oracle database is tuned properly. Tuning is an iterative process. Resolving the
first bottleneck may not lead to immediate performance improvement because another
bottleneck might be identified which could have bigger a impact on performance.

Tuning Oracle Database 11g XE

[112]

Performance tuning approach
Cary Millsap, in his book Optimizing Oracle Performance, describes a performance
tuning methodology called "Method R". The following are the steps that Method
R proposes:

1.	 Select the user actions for which the business needs improved performance.
2.	 Collect diagnostic data that will identify the cause of performance degradation.
3.	 Implement the change and measure the impact. If there is no performance

gain then suspend performance improvement activity.
4.	 Go to step 1.

Performance improvement activity is not only related to the database but could be
related to any of these areas—application tuning, operating system tuning, network
tuning, I/O tuning, SQL tuning, and database tuning.

Avoiding common pitfalls
It is commonly considered that performance tuning is a secondary task or a
post-production task, but performance tuning should start with the database
design phase. Unfortunately, performance tuning is often not considered until
there is actually a problem to be fixed.

The following are a few of the commonly misconfigured areas that should be
carefully addressed.

Database connection management
A poor connection management may lead to scalability issues. The applications
connect and disconnect very frequently for each database interaction. This is
considered bad because establishing a database connection is a resource-expensive
task as it involves allocating resources at OS level, negotiating a database
connection with Oracle Listener, as well as connecting and allocating memory to
database session.

Cursors and the shared pool
Reusing SQL statements is a key to efficient cursor management. Bind variables
should be used whenever possible to avoid hard parsing of SQL statements. To
understand bind variables, consider an application that generates hundreds of
SELECT statements against a table, as shown next:

Chapter 12

[113]

SQL> SELECT emp_name, salary FROM emp WHERE emp_no = 101;
SQL> SELECT emp_name, salary FROM emp WHERE emp_no = 102;
SQL> SELECT emp_name, salary FROM emp WHERE emp_no = 103;

When a SQL query is submitted to an Oracle database, it checks in the shared pool
to see whether this statement has already been submitted before. If it has, then the
previously submitted statement is retrieved and executed. If the statement is not found
in the shared pool, Oracle parses the statement and generates an execution plan. This
process is known as a hard parse. Instead, write our queries as shown below:

SQL> SELECT emp_name, salary FROM emp WHERE emp_no = :p_emp_no;

Executing this query hundreds of times will reuse the existing execution plan from
the shared pool, thereby avoiding hard parses.

Suboptimal SQL
A suboptimal SQL uses significant system resources to achieve a task which could
have otherwise been achieved using fewer system resources. Read Analytic Functions:
A Savior on my blog for an example of a suboptimal SQL.

Incorrect redo log sizing
Often redo log files are left at their default size and with too few online redo log
files in production environments. Allocating the right number of redo log files and
correctly sizing the redo log files is essential to database performance. If the redo
log files are too small in size then the database will spend more time in switching
redo log files than doing the real work, and when too few redo log files are allocated
then Log Writer Process most likely has to wait for the Archiver process to complete
archiving. These waits would then contribute to the degraded performance of the
database. Read Redo Log Switches at their Peak on my blog for an example of incorrect
redo log file sizing.

Autotrace utility
The autotrace is an SQL*Plus utility used in tuning SQL statements. The autotrace
utility offers SQL statement tracing. The PLUSTRACE role is required by the database
user enabling trace. The PLUSTRACE role is created by executing the $ORACLE_HOME/
sqlplus/admin/plustrce.sql script as SYSDBA.

Tuning Oracle Database 11g XE

[114]

Tracing is enabled/disabled using the set autotrace command in SQL*Plus,
shown as follows:

SQL> set autotrace on
SQL> set autotrace off

The autotrace utility does not generate any trace files; instead the trace output is
displayed on the screen. The following are the autotrace supported options:

•	 on: This enables all options
•	 off: This disables tracing
•	 on explain: This displays returned rows and the execution plan
•	 on statistics: This displays returned rows and statistics
•	 trace explain: This displays the execution plan without actually

executing it
•	 traceonly: This displays the execution plan and statistics without

returning the rows

The following is an example usage of the autotrace utility:

TKPROF is an Oracle database utility used to format SQL trace output into a human
readable format.

Chapter 12

[115]

Explain Plan
The execution plan of a query is the sequence of operations that Oracle performs to
execute a given statement. It is nothing but a tree which contains the order of steps
and relationship between them. The Explain Plan statement displays the execution
plan chosen by the Oracle Optimizer.

The Explain Plan generates an execution plan and saves it in the PLAN_TABLE. To
create a PLAN_TABLE in your schema execute the ORACLE_HOME\rdbms\admin\
utlxplan.sql script.

The following are the basic rules of the execution plan tree:

1.	 An execution plan will contain a root, which has no parent.
2.	 A parent can have one or more children.
3.	 A child has only one parent.

Let us create a dept table in our HR schema, add a foreign key to the emp table
pointing to the dept table, and generate an execution plan for an SQL statement
joining these two tables. This is done as follows:

-- Create DEPT table
SQL> CREATE TABLE dept (dept_no NUMBER(3) PRIMARY KEY, dept_name
VARCHAR2(30));

-- Alter EMP table to add DEPT_NO column & foreign key
SQL> ALTER TABLE emp ADD (dept_no NUMBER(3) REFERENCES dept(dept_no));

The following screenshot shows the EXPLAIN PLAN command:

Tuning Oracle Database 11g XE

[116]

The previous command will create an execution plan in the PLAN_TABLE. Run the
following SELECT statement to retrieve the execution plan in a readable format:

The following is a graphical representation of the execution plan:

SELECT

Statement

Operation - 0

HASH JOIN

Operation - 1

FULL TABLE ACCESS

DEPT

Operation - 2

FULL TABLE ACCESS

EMP

Operation - 3

•	 Operation – 2 is performed first (a full table access to the DEPT table)
•	 Operation – 3 is performed next(a full table access to the EMP table)
•	 A HASH JOIN Operation is performed on the result sets produced by

Operations 2 and 3 (HASH JOIN Operation).
•	 Operation – 1 returns the results to Operation – 0

Another approach of retrieving the actual execution plan is to query the
V$SQL_PLAN view. This view was introduced in Oracle 9i and contains
the execution plan information.

Chapter 12

[117]

Using indexes
Indexes are crucial database objects of your database. Indexes help queries in
fetching data using fewer system resources thereby speeding the queries. However,
care should be taken when creating new indexes. Too many indexes will lead to
negative database performance for DML statements and too few indexes would
increase the response time of the queries. Read the How much expensive are indexes?
post on my blog to understand the impact of having too many indexes for a table.

There are different types of indexes that you may find in Oracle. Below are a few of
the index types.

B*Tree indexes: These are the most commonly used indexes in the Oracle database.
They are named after a computer science construct of the same name. B*Tree indexes
provide a faster access to an individual row or range of rows normally requiring few
system resources. In a B*Tree, every new table record with a not null indexed column
will have an entry in the index. The indexes created earlier in this book are examples
of B*Tree indexes.

Reverse key indexes: The reverse key indexes are internally implemented as B*Tree
indexes. However, the bytes of each index columns are reversed. These indexes are
useful for columns which are populated with increasing values. Entries are reversed
to distribute the rows more evenly across the index.

For example, if we are using a sequence to generate employee numbers (EMP_NO)
in our EMP table with values such as 100, 101, 102, and 103. In a normal B*Tree
index these values may go to the same index block, increasing contention for that
block. With a reverse key index, these values will be stored as 001, 101, 201, and 301
respectively. This way the values are spread across the index. The following is an
example of creating a reverse key index:

-- Create reverse key index
SQL>CREATE INDEX emp_rki_idx ON emp(salary) REVERSE;

Function-based Indexes (FBI):These are special indexes which store the computed
result of a function on a rows column(s). Defining a function based index on the
transformed column allows that data to be returned using the index when that
function is used in the WHERE/ORDER BY clause of a query.

Let us create a function-based index by transforming the emp_name column of the
emp table into UPPER case:

-- Create function-based index
SQL> CREATE INDEX emp_name_fbi ON emp(UPPER(emp_name));

Tuning Oracle Database 11g XE

[118]

As the value of UPPER (emp_name) has already been computed and stored in the
index, queries of the following form will use this index to fetch the result set faster
using fewer resources. The following screenshot demonstrates how queries could
benefit from function-based indexes:

Index monitoring
To maintain optimal database performance drop indexes that your application is not
using. Follow these steps to find out whether an index is being used or not:

1.	 Enable index monitoring:
SQL> ALTER INDEX hr.emp_department_ix MONITORING USAGE;

2.	 Leave the index in monitoring state for a brief period.
3.	 Disable index monitoring:

SQL> ALTER INDEX emp_department_ix NOMONITORING USAGE;

4.	 Query the V$OBJECT_USAGE view to find out whether the index was
used or not:
SQL> SELECT monitoring, used
 2 FROM v$object_usage
 3 WHERE index_name = 'EMP_DEPARTMENT_IX';

5.	 Based on the output of USED column, you may decide whether to drop or
leave the index. You have to be careful that a particular index may not be
used during normal database operations but may be used during monthly/
quarter processing. Make sure that you have chosen a good period to
monitor the index.

Chapter 12

[119]

Dynamic performance views
Dynamic performance views (V$) are owned by SYS. The dynamic performance
views maintained by the Oracle database instance reflect various database metrics
since the time when the instance was started. There are three categories of V$ views:
current state views, accumulated views, and information views.

The following is a list of a few important V$ views with a short description of each:

•	 V$VERSION: displays database version details
•	 V$LOCK: lists details of currently held locks in the database
•	 V$PROCESS: displays information about currently active processes
•	 V$SESSION: sessions currently connected to the database
•	 V$SESSION_EVENT: provides information about the event that each session is

waiting for
•	 V$SESSION_WAIT: displays information about wait events for which active

sessions are currently waiting
•	 V$SESSTAT: displays statistics for all the sessions connected to the database
•	 V$SQL: displays statistics on each shared SQL cursor
•	 V$SQLTEXT: displays the actual SQL text for each shared SQL cursor in the SGA
•	 V$TRANSACTION: displays active transactions in the database

Statspack
The Statspack utility has been available since Oracle 8i (8.1.6) to monitor database
performance. Statspack stores the performance statistics in Oracle tables. The data
collected can later be used for reporting and performance analysis.

Installing Statspack
When you run the Statspack installation script, it automatically creates a PERFSTAT
user. PERFSTAT owns all the objects needed by the Statspack. The installation steps
are as follows:

1.	 Log into SQL*Plus with the SYSDBA privilege.
2.	 Create a tablespace to hold STATSPACK data (for example, PERFSTAT_TBS).
3.	 Execute the spcreate.sql file which resides in the ORACLE_HOME/rdbms/

admin folder:
-- script to create STATSPACK package
SQL> @?\rdbms\admin\spcreate.sql

Tuning Oracle Database 11g XE

[120]

When the above script is run, it will prompt for the following information:

1.	 Enter a password for the PERFSTAT user.
2.	 Choose a tablespace (PERFSTAT_TS).
3.	 Choose a temporary tablespace.
4.	 Check the spcpkg.lis file for any errors.

If spcpkg.lis reports any errors then correct them and rerun the spcreate.sql script.

Gathering statistics
Each collection of statistics is called a snapshot. You generate a Statspack report
between any two snapshots. The following is the procedure for capturing snapshots:

1.	 Log in to SQL*Plus as the PERFSTAT user.
2.	 Execute the snap procedure of the STATSPACK package to capture the

statistics as follows. When you execute the snap procedure, Oracle populates
your PERFSTAT tables with the current statistics:
SQL> exec statspack.snap;

3.	 Run your procedure.
4.	 Execute the snap procedure of the STATSPACK package as follows:

SQL> exec statspack.snap;

Apart from the preceding manual procedure of capturing the snapshots, we can
automate the snapshot capture process using the spauto.sql script. I leave this as
an exercise for the readers of this book.

Running the statistics report
You generate statistics report for the period between two snapshots using the
spreport.sql script located in the ORACLE_HOME\rdbms\admin folder as follows:

SQL> @?\rdbms\admin\spreport

Choose the starting and ending snap IDs and optionally choose a name for the
STATSPACK report.

Chapter 12

[121]

Recommended blogs
I would recommend the readers of this book to religiously follow the following blogs:

•	 Jonathan Lewis (http://jonathanlewis.wordpress.com)
•	 Tom Kyte (http://tkyte.blogspot.com)
•	 Riyaj Shamsudeen (http://orainternals.wordpress.com/)
•	 Christian Antognini (http://antognini.ch/blog/)
•	 Tanel Poder (http://blog.tanelpoder.com/)
•	 Richard Foote (http://richardfoote.wordpress.com/)

They all are very well known Oracle Experts.

Summary
This chapter has introduced you to the world of performance tuning. Performance
tuning is such a huge topic that it requires a book for itself. In this chapter we have
learned basic SQL tracing using the autotrace utility. When you are requested to
investigate a poorly performing SQL statement, you will find Explain Plan to be
very helpful and it is one of the starting points in the tuning process. We have also
explored different types of indexes in this chapter. STATSPACK reports the overall
health of the database. If used correctly it helps solve many of the performance
tuning issues related to database memory configuration, I/O configuration, bad
performing SQL statements, and so on.

References
•	 Oracle Database Performance Tuning Guide 11g Release 2
•	 The Method R tuning methodology is a work of Cary Millsap. For more

details I recommend reading his book Optimizing Oracle Performance
•	 Expert Oracle Database Architecture: Oracle Database 9i, 10g, and 11g

Programming Techniques and Solution by Thomas Kyte
•	 Oracle Core: Essential Internals for DBAs and Developers by Jonathan Lewis
•	 Oracle Wait Interface: A Practical Guide to Performance Diagnostics and Tuning

by Gopalakrishnan and Richmond Shee

Tuning Oracle Database 11g XE

[122]

•	 Analytic Functions: A Savior (http://momendba.blogspot.com/2008/11/
analytic-funcions-savior.html)

•	 Redo Log Switches at their Peak (http://momendba.blogspot.com/2011/02/
redo-log-switches-at-their-peak.html)

•	 How much expensive are Indexes? (http://momendba.blogspot.
com/2008/03/how-much-expensive-are-indexes.html)

•	 Oracle's whitepaper—The Oracle Optimizer - Explain the Explain Plan
(http://www.oracle.com/technetwork/database/focus-areas/bi-
datawarehousing/twp-explain-the-explain-plan-052011-393674.pdf)

Features Available with
Oracle Database 11g XE

This appendix lists all the features that are available with Oracle Database 11g
Express Edition.

Features available
This section lists all the features available in Oracle Database 11g Express Edition.
These features are as follows:

•	 Automatic Datafile Management
•	 Automatic Memory Management (AMM)
•	 Automatic Undo Management (AUM)
•	 Automatic Optimizer Statistics Management
•	 PL/SQL stored procedures and triggers
•	 Index Organized Tables (IOT)
•	 Temporary tables
•	 External tables
•	 Large Objects (LOB) support
•	 Oracle Text
•	 Native XML support
•	 Function-based Indexes (FBI)

Features Available with Oracle Database 11g XE

[124]

•	 SQL Analytical Functions
•	 Multiple block size support
•	 Renaming and dropping of column
•	 Flashback query
•	 RMAN Online Backup
•	 Incremental backup and recovery without block change tracking
•	 Encryption toolkit
•	 Advanced Queuing

Features not available
A short list of options and features that are not included with Oracle Database 11g XE:

•	 Block change tracking
•	 Flashback database
•	 Online index rebuild
•	 Online table redefinition
•	 Oracle RAC One Node
•	 Tablespace point-in-time recovery
•	 Oracle Real Application Clusters (RAC)
•	 PL/SQL Function Result Cache
•	 Database resource manager
•	 Advanced compression
•	 Oracle Real Application Testing
•	 Oracle Partitioning

Index
Symbols
/nolog option 22
/nolog optionstop command 25

A
ADD_MONTHS function 35
Advanced Queuing (AQ) 6
ALTER TABLE command 41
ALTER TABLESPACE command 80
AMM 6, 27, 77
APEX

about 61
components 63
getting started with 62
page adding, to existing application 68
sample application, creating 66, 67
sample application, prerequisites 63-66

Application Express Dashboard 72
Application Users

creating 70
archived redo logfiles

about 79, 99
control file 80
parameter file 80
password file 79

ARCHIVELOG database
backing up 104-106
restoring 107-109

ARCHIVELOG Mode
about 99
database failure, simulating 106
database, placing 99
disabling 99

Archiver Process (ARCn) 79

ASM 6
Automatic Memory Management.

See AMM
Automatic Storage Management. See ASM
Automatic Undo Management (AUM) 123
Automatic Workload Management.

See AWM
autotrace supported options 114
autotrace utility 113
AWM 6

B
background process

about 78
Archiver Process (ARCn) 79
Checkpoint Process (CKPT) 79
Database Block Writer (DBWn) 78
Log Writer (LGWR) 78
Process Monitor (PMON) 79
System Monitor (SMON) 78

backup 98
backup set 101
blog

references 121
B*Tree Indexes 117

C
Checkpoint Process (CKPT) 79
common functions

exploring 33-36
common pitfalls

about 112
cursor management 112
database connection management 112

[126]

incorrect redo log sizing 113
suboptimal SQL 113

components, APEX
Administration 63
Application Builder 63
SQL Workshop 63
Team Development 63

composite primary key 44
CONCAT (or "||") 33
consistent backup 100
COUNT function 35
CRM 5
Customer Relationship Management.

See CRM

D
data

selecting, from multiple tables 32
exporting 85
exporting, SQL Developer used 89
importing 85
moving, from Oracle Database 10g XE

to 11g XE 88
database

ARCHIVELOG database,
backing up 104, 105

backing up 100, 101
failure, simulating 101
NOARCHIVELOG database, restoring 102
placing, in ARCHIVELOG mode 99

Database Block Writer (DBWn) 78
database editions, Oracle

Enterprise Edition 7
Express Edition (XE) 6
personal edition 6
Standard Edition 6
Standard Edition One (SEO) 6

databases 79
database tuning 111
Data Definition Language. See DDL
Data Export wizard 89
datafiles 79
data moving, from Oracle Database 10g

XE to 11g XE
SQL Developer, using 89
steps 88, 89

Data Pump
export and import utilities, advantages 87
export and import utilities, using 87

data, to text file
EMP table, loading 71
EMP table, unloading 70, 71

DDL
about 40
executing 40

DESC command 32
dictionary cache 77
DML statements 36, 37
DROP TABLESPACE command 81
DUAL 31
Dynamic performance views. See V$

E
Enterprise Edition (EE) 7
Enterprise Resource Planning. See ERP
ERP 5
estimate_percent parameter 47
exception

handling 55, 56
predefined exceptions 55

Explain Plan
about 115
graphical representation 116

EXPLAIN PLAN command 115
Export and Import utilities

full mode 86
Table mode 86
Tablespace mode 86
User mode 86

Export utility
using, examples 86

Express Edition (XE) 6

F
Flash Recovery Area. See FRA
FRA

about 83
managing 83

Function-based Indexes (FBI) 117, 123

[127]

H
hard parse 113

I
Import utility

using, examples 86
INCLUDE parameter

using 88
Independent Software Vendors. See ISVSs
indexes

about 42, 117
B*Tree Indexes 117
creating 42, 43
Function-based Indexes (FBI) 117
managing 42, 43
monitoring 118
Reverse Key Indexes 117

Index Organized Tables (IOT) 123
installation

SQL Developer 30
Install button 13, 14
integrity constraints

about 43, 44
Check 43
Foreign Key 43
Not Null 43
Primary Key 43
Unique Key 43

ISVs 7

L
Least Recently Used. See LRU
library cache 77
local database connections

about 21, 22
Oracle Net Listener 22, 23

Log Writer (LGWR) 78
LPAD function 34
LRU 76
LSNRCTL> start command 25
LSNRCTL> stop command 25
LTRIM function 34

M
memory structure

about 76
PGA 77
SGA 76

Method R
steps 112

N
Next button 12
NOARCHIVELOG database

restoring 102, 103
NOARCHIVELOG mode

database, backing up 100
database failure, simulating 101

O
Oracle

about 5
database editions 6
memory structure 76

Oracle Application Express. See APEX
Oracle Database 11g Express Edition

features 123
non available features 124

Oracle Database 11g XE
background processes 78
configuring 21
connecting 21
downloading 10
installing, on Windows XP (32-bit) 10-14
on Windows XP (32-bit), uninstalling 15
SQL Developer, connecting to 30
upgrading, to Oracle Database Enterprise

Edition 91-94
uninstalling, on Oracle Enterprise Linux

(64-bit) 18
Oracle Database 11g XE installation

on Oracle Enterprise Linux (64-bit) 16
on Windows XP (32-bit), uninstalling 15-18

Oracle Database 11g XE installation, on
Windows XP (32-bit)

about 10-14
starting 15
stopping 15

[128]

Oracle Database Enterprise Edition
Oracle Database 11g XE,

upgrading to 91-94
Oracle Database Express Edition. See XE
Oracle Database XE

connecting to, RMAN used 98
starting, in Linux 18
stopping, in Linux 18

Oracle Enterprise Linux (64-bit)
Oracle Database 11g XE, installing 15-17
Oracle Database 11g XE, uninstalling 18

Oracle Net Listener
configuring 23, 24
HOST parameter 23
LISTENER parameter 23
listener, starting 25
listener, stopping 25
ORACLE_HOME parameter 23
PORT parameter 23
SID_NAME parameter 23
status, viewing 24
tnsnames.ora file, configuring 25

P
package

about 53
creating 53, 55

package body 53
package specification 53
performance tuning

about 112
personal edition 6
PGA 27, 75, 77
PL/SQL datatypes 50
PL/SQL stored procedure screenshot 51
PL/SQL Stored Programs

wrapping 56
PL/SQL triggers

about 57-60
timing points 57

processes
about 78
background process 78
server process 78
slave process 78

Process Global Area. See PGA
Process Monitor (PMON) 79
psuedorecords 58

R
RAC 6
RAD 62
Rapid Application Development. See RAD
Real Application Clusters See RAC
recover database command 108, 109
recovery 98
Recovery Manager. See RMAN
remote database connections 26
resetlogs option 109
Reverse Key Indexes 117
RMAN

about 97, 98
Oracle Database XE, connecting to 98

RMAN Environment
configuring 103

rpm -qa <package name> command 16

S
sample user accounts

unlocking 29
SE 6
SEO 6
sequences

about 46
creating 46
managing 46

set autotrace command 114
SGA

about 27, 75, 76
database buffer cache 76
diagram 76
Java pool 77
large pool 77
redo log buffer 77
shared pool 77
Streams pool 77

shutdown abort command 79
simple queries

writing 31

[129]

snapshot 120
spauto.sql script 120
SQL Developer

connecting, to Oracle Database 11g XE 30
downloading 30
installing 30

sqlplus utility 26
Standard Edition. See SE
Standard Edition One. See SEO
start command 25
statistics

about 46
index statistics, gathering 47
object statistics, gathering 46

Statspack
about 119
gathering 120
installing 119, 120
report, running 120

stored subprograms
about 50
advantage 49
creating 50-52

SUBSTR function 35
synonyms

about 45
creating 45
managing 45

System Global Area. See SGA
System Monitor (SMON) 78
system triggers 60

T
TAB 31
tables

about 40
creating 41
managing 41

tablespace
about 79
creating 80
datafiles, adding 80
dropping 81
usage, viewing 81, 82

TCS
about 36
COMMIT 36
ROLLBACK 36

temporary datafiles 79
TO_CHAR function 36
TO_DATE function 36
TO_NUMBER 36
Transaction Control Statements. See TCS
triggers

conditional predicates 57
firing, ways 57
parts 57
PL/SQL triggers 57
uses 58

tuning 111

U
unloading 70
UPPER function 33

V
V$

about 119
V$LOCK 119
V$PROCESS 119
V$SESSION 119
V$SESSION_EVENT 119
V$SESSION_WAI 119
V$SESSTAT 119
V$SQL 119
V$SQLTEXT 119
V$TRANSACTION 119
V$VERSION 119

V$LOCK 119
V$PROCESS 119
V$SESSION 119
V$SESSION_EVENT 119
V$SESSION_WAIT 119
V$SESSTAT 119
V$SQL 119
V$SQLTEXT 119
V$TRANSACTION 119
V$VERSION 119

[130]

X
XE

about 6, 7
features 7
licensing restrictions 7

views
about 44
creating 45
managing 45

W
workplace 62

P U B L I S H I N G

professional expert ise dist i l led

Thank you for buying
Oracle Database XE 11gR2 Jump Start Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

P U B L I S H I N G

professional expert ise dist i l led

Getting Started with Oracle Data
Integrator 11g: A Hands-On
Tutorial
ISBN: 978-1-84968-068-4 Paperback: 384 pages

Develop and manage robust Java applications with
Oracle's high-performance Java Virtual Machine

1.	 Discover the comprehensive and sophisticated
orchestration of data integration tasks made
possible with ODI, including monitoring and
error-management

2.	 Get to grips with the product architecture
and building data integration processes with
technologies including Oracle, Microsoft SQL
Server and XML files

3.	 A comprehensive tutorial packed with tips,
images and best practices

Oracle Database 11g –
Underground Advice for Database
Administrators
ISBN: 978-1-84968-000-4 Paperback: 348 pages

A Practical Guide for developers and architects to the
Enterprise Java Beans Standard

1.	 A comprehensive handbook aimed at reducing
the day-to-day struggle of Oracle 11g Database
newcomers

2.	 Real-world reflections from an experienced
DBA—what novice DBAs should really know

3.	 Implement Oracle's Maximum Availability
Architecture with expert guidance

Please check www.PacktPub.com for information on our titles

P U B L I S H I N G

professional expert ise dist i l led

OCA Oracle Database 11g: SQL
Fundamentals I: A Real World
Certification Guide (1ZO-051)
ISBN: 978-1-84968-364-7 Paperback: 460 pages

Creating, validating, and transforming XML
documents with Oracle's IDE

1.	 Successfully clear the first stepping stone
towards attaining the Oracle Certified Associate
Certification on Oracle Database 11g

2.	 This book uses a real world example-driven
approach that is easy to understand and makes
engaging

3.	 Complete coverage of the prescribed syllabus

Business Intelligence: A Project
Lifecycle Approach Using Oracle
Technology Cookbook
ISBN: 978-1-84968-548-1 Paperback: 400 pages

Over 80 quick and advanced recipes that focus on real
world techniques and solutions to manage, design,
and build data warehouse and business intelligence
projects

1.	 Full of illustrations, diagrams, and tips with
clear step-by-step instructions and real time
examples to perform key steps and functions
on your project

2.	 Practical ways to estimate the effort of a data
warehouse solution based on a standard work
breakdown structure

3.	 Learn to effectively turn the project from
development to a live solution

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Database Editions and Oracle Database XE
	About Oracle
	Available database editions

	Oracle Database Express Edition (XE)
	Summary
	References

	Chapter 2: Installing and Uninstalling Oracle Database XE
	Downloading Oracle Database 11g XE
	Installing Oracle Database 11g XE on Windows XP (32-bit)
	Starting and stopping Oracle Database XE in Windows

	Uninstalling Oracle Database 11g XE on Windows XP (32-bit)
	Installing Oracle Database 11g XE on Oracle Enterprise Linux (64-bit)
	Starting and stopping Oracle Database XE in Linux

	Uninstalling Oracle Database 11g XE on Oracle Enterprise Linux (64-bit)
	Summary

	Chapter 3: Connecting and Configuring Oracle Database 11g XE
	Local database connections
	Oracle Net Listener
	Configuring Oracle Net Listener
	Viewing the status of Oracle Net Listener
	Starting and stopping the listener
	Configuring the tnsnames.ora file

	Remote database connections
	Changing SGA and PGA sizes
	Summary

	Chapter 4: Accessing Table Data, DML Statements, and Transactions
	Unlocking sample user accounts
	Installing SQL Developer
	Connecting SQL Developer to Oracle Database 11g XE
	About TAB and DUAL
	Writing simple queries
	Selecting data from multiple tables
	Exploring common functions
	What are Transaction Control Statements?
	Understanding DML statements
	Summary
	References

	Chapter 5: Creating and Managing Schema Objects
	Data Definition Language
	Creating and managing tables
	Creating and managing indexes
	Integrity constraints
	Creating and managing views
	Creating and managing synonyms
	Creating and managing sequences
	Gathering statistics
	Summary
	References

	Chapter 6: Developing Stored Subprograms and Triggers
	PL/SQL data types
	Stored subprograms
	Creating stored subprograms
	About packages
	Creating packages

	Exception handling
	Wrapping up the PL/SQL stored programs
	PL/SQL triggers
	Summary
	References

	Chapter 7: Building a Sample Application with Oracle Application Express
	What is Oracle Application Express (APEX)?
	Getting started with Oracle Application Express
	Application Express components
	Prerequisites for a sample application
	Creating a sample application
	Adding a page to the existing application

	Creating application users
	Loading and unloading data to a text file
	Unloading the EMP table to a text file
	Loading text file to the EMP_LOAD table

	Application Express Dashboard
	Summary
	References

	Chapter 8: Managing Database and Database Storage
	Memory structure
	System Global Area
	Process Global Area

	Automatic Memory Management
	Important background processes
	Physical and logical database structures
	Creating a tablespace
	Adding datafiles to a tablespace

	Dropping a tablespace
	Viewing the tablespace usage

	Managing the Flash Recovery Area
	Summary

	Chapter 9: Moving Data between
Oracle Databases
	Exporting and importing data
	Traditional Export and Import (exp/imp) utilities
	Data Pump Export/Import (expdp/impdp) utilities

	Moving data between Oracle Database 10g XE and Oracle Database 11g XE
	Exporting data using SQL Developer
	Summary

	Chapter 10: Upgrading Oracle
Database XE to Other Database Editions
	Upgrading Oracle Database 11g XE to Oracle Database 11g Enterprise Edition
	Summary

	Chapter 11: Backup and Recovery
	Introduction to backup and recovery
	Recovery Manager
	Connecting to Oracle Database XE using RMAN
	The ARCHIVELOG mode
	Placing a database in the ARCHIVELOG mode

	Backing up a database (the NOARCHIVELOG mode)
	Simulating a database failure (the NOARCHIVELOG mode)
	Restoring the NOARCHIVELOG database
	Configuring the RMAN environment
	Backing up the ARCHIVELOG database
	Simulating a database failure (the ARCHIVELOG mode)
	Restoring the ARCHIVELOG database
	Summary
	References

	Chapter 12: Tuning Oracle Database XE
	Performance tuning
	Performance tuning approach
	Avoiding common pitfalls
	Database connection management
	Cursors and the shared pool
	Suboptimal SQL
	Incorrect redo log sizing

	Autotrace utility
	Explain Plan
	Using indexes
	Index monitoring

	Dynamic performance views
	Statspack
	Installing Statspack
	Gathering statistics
	Running the statistics report
	Recommended blogs

	Summary
	References

	Appendix: Features Available with Oracle Database 11g XE
	Features available
	Features not available

	Index

