Professional Expertise Disti

Oracle Hyperion Interactive
Reporting 11 Expert Guide

=

ed Dashboards, JavaScript and Compu
racle Hyperion Interactive Reporting 11
ch more

88
Edward J. Cody Emily M. Vose [PAEKT] e”f...‘.?LF?E'ﬁe

PUBLISHING

http://www.allitebooks.org

Oracle Hyperion Interactive
Reporting 11 Expert Guide

Master advanced Dashboards, JavaScript and
Computation features of Oracle Hyperion Interactive
Reporting 11 and much more

Edward J. Cody
Emily M. Vose

enterprise &8

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.packtpub.com/authors/profiles/edward-j-cody
http://www.packtpub.com/authors/profiles/emily-vose
http://www.allitebooks.org

Oracle Hyperion Interactive Reporting 11 Expert Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2011
Production Reference: 1011211

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-314-2
www . packtpub.com

Cover Image by Anvar Khodzhaev (cbetah@yahoo. com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors
Edward J. Cody

Emily M. Vose

Reviewers
Jake Vose

Amy K. Gartner
Taoheed Akin Laguda

Acquisition Editor
Rukhsana Khambatta

Development Editor
Rukshana Khambatta

Technical Editors
Joyslita Dsouza

Merwine Machado

Ajay Shanker

Project Coordinator
Jovita Pinto

Proofreader
Aaron Nash

Indexer
Monica Ajmera Mehta

Production Coordinator

Alwin Roy

Cover Work
Alwin Roy

[vww allitebooks.cond

http://www.packtpub.com/authors/profiles/edward-j-cody
http://www.packtpub.com/authors/profiles/emily-vose
http://www.allitebooks.org

About the Authors

Edward J. Cody is an accomplished data warehouse and business intelligence
consultant with over eight years of experience with Oracle Hyperion software. The
author of The Business Analyst’s Guide to Oracle Hyperion Interactive Reporting 11, Mr.
Cody’s experience with Interactive Reporting began with Brio v6 and has continued
through the most recent version. He was a speaker at Oracle OpenWorld 2008, and
he has extensive experience with Essbase and Financial Reporting.

Mr. Cody has consulted both private and Government organizations throughout
his career. He has a Bachelor of Science in Systems Engineering from the George
Washington University, School of Engineering and Applied Science, and he has a
Master of Science in Management of Information Technology from the University
of Virginia, Mclntire School of Commerce. His experience includes managing large
data warehouse and business intelligence implementations and providing data
warehousing and business intelligence consulting services.

Emily M. Vose is an experienced business process management consultant
specializing in Hyperion Interactive Reporting. Hailing from user-oriented graphics
design and frontend application development, Ms. Vose brings an unique vision to
the reporting process that is rare in the business intelligence world. This perspective
led Ms. Vose to construct a framework within Interactive Reporting facilitating
rapid report development and enterprise maintenance, even for users with minimal
technical expertise.

Ms. Vose has consulted with several organizations, including Hyperion Solutions
and Oracle Corporation, and is now the owner of Wagger Designs, LLC, a
technology services consulting group, based in the Washington, DC metro area. Ms.
Vose has a Bachelor of Science in Cinema and Photography from the Ithaca College
Roy H. Park School of Communications and currently resides in Northern Virginia
with her husband and two young sons.

[vww allitebooks.cond

http://www.allitebooks.org

Acknowledgments

Edward J. Cody would first like to start by thanking all of you who purchased this
book. I hope that you find it a good resource to aid you in your use of the product.
Heartfelt thanks to my parents (Ed and Cathy), brother (David), Caitlin, and all

of my family and friends for working around my schedule as I wrote this book. I
greatly appreciate your patience and understanding.

This book would be neither possible nor successful without the patience and
indefatigable work ethic of my co-author, Emily M. Vose. I would also like to thank
Jake Vose and Amy Gartner for their valuable input and content contributions.

I must thank all of my managers, peers, and employees that have supported me
throughout my career, and I must also thank Bob Griesemer, author of two books

on Oracle Warehouse Builder, for setting me up with the opportunity to work with
Packt Publishing. Bob is a great friend, colleague, and technical expert. His books are
great resources for all those interested in learning about data warehousing.

A number of people were key to the production of this book. James Lumsden,
Rukshana Khambatta, Zainab Bagasrawala, Merwin Machado, and all of those at
Packt Publishing, thank you for your efforts. The team has worked tirelessly with us
to produce a quality product and I thank them for their patience and hard work.

Emily M. Vose would like to thank my co-author, Edward Cody, for introducing
me to the Packt Publishing family and for his tireless efforts to make this book a
reality. I would also like to thank Jake Vose and Amy Gartner for their valuable
input and content contributions. Thank you to the managers, customers, peers, and
mentors who have supported me throughout my career. Special thanks are owed
to both Mark Ostroff for introducing me to Hyperion Interactive Reporting, and

to Stanley Quick for providing a supportive development environment rich with
creative freedom. Without their encouragement, guidance, and friendship, I would
not be where I am today.

Last, but certainly not least, I would like to thank my family for their love and
support, without you, I'd be lost.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Jake Vose is a web, desktop, server, and mobile application developer of over 12
years, specializing in problem solving and process automation. His wide base of
operating system, programming language, and framework knowledge attests his
natural curiosity and love of tinkering.

Mr. Vose attended the State University of New York at Oswego and graduated

in 1999 with a Bachelor of Arts in Computer Science, specializing in artificial
intelligence and is the Chief Technical Officer at Wagger Designs, LLC located in the
Washington DC metro area.

Amy K. Gartner is an intelligence analyst, who has worked for several Federal
Government agencies in support of a variety of law enforcement related missions.
Ms. Gartner has a Bachelor of Science in Justice Studies from James Madison
University and is currently working toward a Master of Criminal Justice from Boston
University.

Taoheed Akin Laguda is an accredited member of the British Computer Society
with over 15 years' Information Technology experience. He is an accomplished
and qualified Information and Knowledge Engineer, who understands the range
of techniques and principles that improve the management and processing of data,
which leads to the realisation of business goals and objectives.

He is an experienced consultant specializing in requirements analysis, design,
and development of management information, knowledge management, business
intelligence, and operational reporting solutions against data warehouses, ERP
systems, and business applications.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

This book is published by Packt Publishing. You might want to visit Packt's website
at www. PacktPub. com and take advantage of the following features and offers:

Discounts

Have you bought the print copy or Kindle version of this book? If so, you can get a
massive 85% off the price of the eBook version, available in PDF, ePub, and MOBI.

Simply goto http://www.packtpub.com/oracle-hyperion-interactive-
reporting-11-expert-guide/book, add it to your cart, and enter the following
discount code:

hirllegeb

Free eBooks

If you sign up to an account on www . PacktPub. com, you will have access to nine
free eBooks.

Newsletters

Sign up for Packt's newsletters, which will keep you up to date with offers,
discounts, books, and downloads.

You can set up your subscription at www. PacktPub.com/newsletters.

Code Downloads, Errata and Support

Packt supports all of its books with errata. While we work hard to eradicate
errors from our books, some do creep in. Meanwhile, many Packt books have
accompanying snippets of code to download.

You can find errata and code downloads at www . PacktPub. com/support.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following
@PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.

[vww allitebooks.cond

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.allitebooks.org

[@ PACKT

PacktLib.PacktPub.com

PacktLib offers instant solutions to your IT questions. It is Packt's fully searchable
online digital book library, accessible from any device with a web browser.

¢ Contains every Packt book ever published. That's over 100,000 pages of
content.
e Fully searchable. Find an immediate solution to your problem.
e Copy, paste, print, and bookmark content.
e Available on demand via your web browser.
If you have a Packt account, you might want to have a look at the nine free books

which you can access now on PacktLib. Head to packtLib.PacktPub.comand log in
or register.

[vww allitebooks.cond

http://PacktLib.PacktPub.com
http://PacktLib.PacktPub.com
http://www.allitebooks.org

Table of Contents

-_—

Preface

Chapter 1: Advanced Hyperion Interactive Reporting Techniques
Introduction to the Oracle Hyperion Interactive Reporting 11
Expert Guide

Review of Interactive Reporting concepts
An Introduction to JavaScript in Interactive Reporting
Building simple to advanced dashboards
Advanced computations
Briefing slides and batch exports
The Central Code Repository
Optimizing and Merging
The EPM Workspace
Interactive Reporting interface and components
Review of Interactive Reporting sections
Leveraging code
Query section Computed Items
Results section Computed ltems

Table section Computed Items
Pivot section Computed ltems
Pivot Settings: True Totals and Surface Values
Editing Pivot Computed Items
Chart section Computed ltems
Report section Computed Items
The Expression line

Document Scripts
Dashboards
The Scripting Interface
Summary

N

NDNNMNMDN LMD A, At D aa S aaA
O PA,BPBRAENOCOCOCOWOMOOOWWN=- =000 O WO o

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 2: Introduction to JavaScript and the

Interactive Reporting API 27
Introduction to objects and collections 28
The Script Editor 29
Introduction to JavaScript 31

Variables 31
Variable data types 32
Arrays 34
Associative Arrays 34
Functions 34
Decision logic 36
Comparison operators 36
Conditional statements 37
Logical operators 38
Loops 39
Regular expressions 40
Summary 41

Chapter 3: Creating a Simple Dashboard 43
Dashboard planning and preparation 43
The BMV USA Executive Dashboard Example 44
Creating data-driven dashboard objects 45

Creating a Vertical Stack Bar chart 46
Creating a Bar-Line chart 52
Displaying pivots 59
Creating a simple pivot 59
Ranking and Pivot Drill path configuration 62
Creating a simple dashboard 72
Adding dashboard objects 73
Adding graphics and controls 74
Adding custom images 74
Adding Hyperlinks 75
Basic interactivity 76
Gauges 77
Configuring gauges 77
Gauge properties and color ranges 78
Live Charts 79
Configuring Live Charts 79
Live Chart properties 82
Summary 83

Chapter 4: Introducing Dashboard Interactivity 85
Dashboard Section Objects 86

Graphics 86

Lii]

Table of Contents

Controls 87
Creating a Master Dashboard 89
Placing Objects 90
Implementing Custom Dashboard Navigation 92
Scripting Internal Navigation 92
External Navigation 93
Creating Supporting Dashboard Sections 94
Loading Dashboard Section 94
Home Dashboard Section 96
Detail Dashboard Sections 98
Toggling Between Objects 98
Modifying Element Facts 100
Document Start-up Scripts 106
Loading Screen Script 107
Understanding Toolbars and Menus 108
Application Toolbars 108
Application Menus 110
Section Catalog 111
Section Title Bar 111
Prompting the User to Save 112
Summary 13
Chapter 5: Building the Dashboard Framework 115
Understanding the Dashboard Framework 115
Framework Naming Conventions 116
Section Names 116
Variable Names 117
Function Names 117
Dashboard Shape Names 118
Understanding the JavaScript Workflow 119
Implementing the Dashboard Framework 119
Global Library Shapes 119
Global Variables 120
Framework Start-up Events 121
Activation Scripts 123
Setting the Document Scripts on Start-up 124
Understanding Document Save Options 124
Save Query Results With Document 124
Work Offline in Web Client 126
Compress Document 126
Setting Compression by Default 127
Password Protect Document 127
Password Protect Design Mode 128
Summary 128

[iii]

Table of Contents

Chapter 6: Advanced Dashboard Techniques 129
Populating Dashboard Controls with Database-Driven Values 129
Querying Available Values 130
Appending Queries 130
Staging the Results Set for Code 134
Scripting the Function 135
Determining the vDataName Variable 136
Removing All Values from a LOV 136
Adding a Custom LOV Value 137
Customizing Results Section Limits 138
Adding Values to the LOV Property 139
Scripting a Default LOV Selection 140
Completing the Function 140
Calling gfPopulateFilterLOV 143
Applying User-Selected Filters to Limit Data 144
Preparation for Dynamic Limits 145
Modify the Global Variables Shape 145
Modifying the Query and Results Sections 146
Applying Local Filters with JavaScript 146
Applying a Drop Down Control Selection to a Local Filter 147
Applying List Box Selections to a Local Filter 151
Calling Functions with a Function 157

Set the Function to the Dashboard Filter Object 158
Synchronizing User Selections across Multiple Dashboards 159
Synchronizing List Box Controls 159
Unselecting Values 160
Selecting Values 161
Synchronizing Selections 161
Calling the Functions 163
Summary 164
Chapter 7: Advanced Data Analysis 165
Building Queries for Analysis 166
Computed Items 166
Building Advanced Computed Items 167
Building the Definition using JavaScript 168
Referencing Columns 168
Functions 169
Function Formatting Arguments 171
Additional Help 172
Options 172
Deleting Computed Items 173
Report section Computed Items 174
Built-in Functions and Calculations 175
Conditional Functions 175

[iv]

Table of Contents

Date Manipulation
Current Date & Time
Adding Time
Identifying Specific Days
Date Conversion
Leveraging Mathematical Operations with Dates
Mathematical Operations
Numeric Operations
String Manipulation
Statistical and Trending Operations
Ranking
Using JavaScript
Variables and Functions in Computed ltems
Math Functions
Random Number Generation
Summary

176
176
176
176
177
177

177

178

180

182
182

182

182

183
183

184

Chapter 8: Creating Briefing Slides and Executing Batch Exports 185

Exporting document sections 186
Exporting natively 186
Exporting a single section (code) 189

Export examples 190
ExportToStream examples 191
Exporting multiple sections (JavaScript code) 192

Briefing slides 193

Building the report for a briefing slide export 194
Export code for briefing slides 198

Executing batches of reports 198

Batch processing example 199
Batch processing code 200
Refining the batch code to remove empty results sections 202

Summary 203

Chapter 9: The Central Code Repository 205

Understanding the Central Code Repository 206
Preparing the JavaScript code 206
Table structure 206

Configuring the CCR code table and query 207
Querying the Central Code Repository (CCR) 208

Creating the Query section 208
Renaming the Query and Results sections 208
Buidling the code DataModel 209
Building the code query 210

Building the Global Code Dashboard 210

Creating the Global Code Dashboard 211

[v]

Table of Contents

Applying the code to objects 214
Scripting the Document Startup Event 214
Advanced concepts 215
Report Type Grouping 216
Enterprise Object Library 216
Batch Report Creation 216
Summary 217
Chapter 10: Optimizing and Merging 219
The Dashboard Studio 220
Dashboard Studio: Merging sections 220
Merging sections example 220
Merging two documents into one 223
Merging many documents into one 230
Merging documents for users 233
Merging presentation sections for users 234
The Dashboard Studio Optimize Utility 234
Interactive Reporting Studio swap shortcuts 235
Filtering section types 237
Editing Interactive Reporting documents 238
Moving sections 239
Showing and Cap Hiding 241
Renaming and Deleting 241
Locking and Unlocking 242
Duplicatable and Unduplicatable 242
Packing section code 242
Moving objects and sections across Results 243
Moving sections across Results or Table sections 243
Modifying Report Dependencies 245
Moving Filters 246
Fixing corrupt files 247
Summary 247
Index 249

[vil

Preface

Oracle Hyperion Interactive Reporting is one of the many products in the Oracle
Business Intelligence Enterprise Edition Plus software suite, an industry-leading
business intelligence platform. The primary focus of the Interactive Reporting
product is to provide strong relational querying and data analysis capabilities,
where the software provides significant flexibility for creating custom dashboards,
interfaces, and data analysis templates through the use of custom JavaScript
programming and built-in software functionality. While Interactive Reporting is
extremely flexible, performing advanced operations in the software is complicated
and requires basic programming knowledge and an advanced understanding of
the software. This Expert Guide continues from where The Business Analyst's Guide
to Oracle Hyperion Interactive Reporting 11 left off, and provides the reader with
information to successfully leverage the advanced features of the product along with
examples and specific techniques applicable to everyday use.

The Oracle Hyperion Interactive Reporting 11 Expert Guide provides software users

and developers with many examples of techniques used by software experts. The
book begins with an introduction to leveraging advanced features of the product
along with an introduction to JavaScript. Dashboards are a major focus of this guide,
with four chapters focused on building an increasingly complex Dashboard with
functions, global objects, and syncing selections across Dashboards. The book places
an emphasis on learning methods for data analysis by using advanced programming
and built-in functions, and a unique approach to using code to generate batch
reports and briefing slides is provided. The Dashboard Studio Optimize Utility and
the Dashboard Studio Merge Utility are explained in detail, and the approach to
building a central code repository for use across multiple documents in an enterprise
is demonstrated.

Preface

This book provides the information necessary to evolve Interactive Reporting users
into experts, by providing the skills to understand, communicate, and perform
advanced level tasks. While this guide displays content and examples from version 11
of the software, the techniques and examples presented are also applicable to previous
versions of the software dating back to version 8.

What this book covers

Chapter 1, Advanced Hyperion Interactive Reporting Techniques provides an introduction
to the book, a brief review of the main features of Interactive Reporting, and

orients the user to the sections of Interactive Reporting where custom scripting and
advanced features are utilized.

Chapter 2, Introduction to JavaScript and the Interactive Reporting API provides the
background required to understand the developer concepts discussed throughout
the rest of the book, including a an in-depth explanation of the Interactive Reporting
API and an introduction to the JavaScript programming language.

Chapter 3, Creating a Simple Dashboard presents the procedural steps required to create
a simple Dashboard without the use of JavaScript, discusses built-in interactivity,
and provides an overview of Live Charts and Gauges.

Chapter 4, Introducing Dashboard Interactivity explores common dashboard
interactivity approaches using JavaScript as well as the building blocks for creating a
master dashboard layout with navigation, controls, and dynamic objects.

Chapter 5, Building the Dashboard Framework details the steps necessary to create
a customized Dashboard Framework within Interactive Reporting by extracting
JavaScript to a centralized library of global code objects.

Chapter 6, Advanced Dashboard Techniques provides information on creating and
maintaining custom dashboard filters and dashboard controls from a centralized
query of filter values, and it provides the steps to keep filter controls synchronized
between dashboards.

Chapter 7, Advanced Data Analysis provides an in-depth explanation of the options
available in Interactive Reporting for performing data maipulation throughout the
document.

Chapter 8, Creating Briefing Slides and Executing Batch Exports educates the user

on the methods and features most commonly used for exporting information

from Interactive Reporting, including native software export features, leveraging
custom programming to perform simple and complex exports, and simple steps for
configuring a Report section to produce briefing slide content.

[2]

Preface

Chapter 9, The Central Code Repository provides information for creating a Central
Code Repository to store and programmatically push code into Interactive Reporting
documents from a central relational database.

Chapter 10, Optimizing and Merging details the features of the Dashboard Studio and
Dashboard Studio Optimize Utility to merge, modify, and fix Interactive Reporting
documents.

What you need for this book

This book was written using a standard deployment of Oracle EPM 11.1.1.3. The
sections and techniques in this book are primarily version-independent, where
almost all of the functionality demonstrated will exist in previous versions of the
product. References are made to some of the new features in Interactive Reporting
11, especially in the area of charting and Dashboards as features have progressed
throughout the new versions. The Interactive Reporting Sample Database is used
throughout the examples in this book.

Who this book is for

The target audience of this book is any Oracle Hyperion Interactive Reporting

user looking to improve their skills in the product. The book focuses on the more
advanced features of the software, including an introduction to JavaScript, simple to
advanced dashboard concepts, advanced analysis, and additional special topics.

Permissions

Security can be set for documents in the Oracle Hyperion Workspace to prevent
the user from accessing certain features of the product, including creating custom
data models, editing queries, and saving and importing documents. This book is
written with full access to all of the features of the product. Contact your system
administration resources for more information on your deployment if you cannot
access certain features of the product in your environment.

[31]

Preface

Multidimensional queries

Oracle Hyperion Interactive Reporting provides the capability to query against a
multidimensional data source. As most environments leverage Interactive Reporting
against relational data sources, the focus of this book is on the relational querying
and analysis capabilities of the product. More information on multidimensional
queries can be found in the product documentation.

Additional resources

There are many helpful online resources to learn more about Interactive Reporting,
including three very common and useful references. The first is the Oracle Business
Intelligence 11¢ documentation, which contains the developer references for
Interactive Reporting. The second is the "Tips and Tricks Cookbook", by Mark
Ostroff, a useful guide containing many Interactive Reporting tips, tricks, and
advanced techniques. Both the Oracle documentation and the cookbook can be
found on the Oracle website or through a simple web search. Finally, Toolbox.com
(http://it.toolbox.com), a website commonly used by developers, contains
Hyperion and Brio knowledge groups and provides the ability to search for answers
and post questions to a large user community.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Within Interactive Reporting, declarations
with local scope are defined using the var keyword."

A block of code is set as follows:

var vMonth = 1;
var vDay = "06";
var vYear = 1999;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The Name
box is for specifying the name of the computed item."

[4]

Preface

% Warnings or important notes appear in a box like this.

Al

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggeste
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.PacktPub.com. If you purchased this book
elsewhere, you can visit http: //www.PacktPub.com/support and register to have
the files e-mailed directly to you.

[51]

[vww allitebooks.cond

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.allitebooks.org

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

mailto:copyright@packtpub.com

Advanced Hyperion
Interactive Reporting
Techniques

Welcome to the Oracle Hyperion Interactive Reporting 11 Expert Guide! Interactive
Reporting is an extremely robust and powerful business intelligence tool providing
ad-hoc querying and analysis, dashboards, and reporting capabilities. This Expert
Guide picks up where The Business Analyst's Guide to Oracle Hyperion Interactive
Reporting 11 left off, with a focus on providing knowledge of the expert features of the
product. While the Business Analyst's Guide was an introduction to using the product
for the novice to intermediate user, this guide focuses on evolving software users into
experts. Interactive Reporting provides many flexible and advanced features that are
commonly unknown to the typical business user. One of the most important lesser
known features of the software is that it exposes the developer features of the product
to the everyday user. These developer features allow the user to leverage scripting in
common exercises, to build custom interfaces, and to use code to drive automation.
While these features may seem complicated to a user of the product, these features can
easily be learned and implemented after reading this book.

This chapter will start with an introduction to the book, highlighting the different
groups of content that will be discussed. After the book introduction, the following
content is a brief review of some of the main features of Interactive Reporting. The
purpose of this review is to baseline terminology that will be used throughout the
book and to orient the user to the sections of Interactive Reporting where custom
scripting and advanced features are utilized.

Advanced Hyperion Interactive Reporting Techniques

This chapter covers the following topics:

e Anintroduction to the Expert Guide

e Areview of the EPM Workspace

e Areview of Interactive Reporting sections
e Leveraging code throughout the software

e An overview of the Scripting Interface

Introduction to the Oracle Hyperion
Interactive Reporting 11 Expert Guide

Interactive Reporting provides users with a significant amount of flexibility in creating
dashboards, reports, and analyzing data including the ability to leverage custom
programming throughout the document. With this custom programming functionality
comes complexity, where users need to understand the best practices in both the
software and using JavaScript to create dashboards or custom calculations. This book
focuses on providing the reader with an understanding and examples of where custom
coding and features of Interactive Reporting can be leveraged to enhance the use of the
product in daily activity. These features include introducing JavaScript programming
concepts, creating simple to complex dashboards, analyzing content using built-in and
JavaScript functions, creating briefing slides and batch exports, building a central code
repository for use in the enterprise, and using the developer tools for optimizing and
merging two or more Interactive Reporting documents together.

Review of Interactive Reporting concepts

The book begins with a review of the Interactive Reporting sections and highlights
the use of Computed Items across each of the sections of the document software. The
introduction provides a high-level understanding of the steps needed to perform
computations in each section and provides insight into the differences in the sections.
The Script Editor is also introduced, and an overview is provided on the features of
the editor and the steps to add JavaScript code to dashboard objects and the overall
document. This first chapter lays the framework for the book and provides a solid
understanding for the content presented across the rest the book.

[8]

Chapter 1

An Introduction to JavaScript in Interactive
Reporting

The book transitions from the overview of the different sections of the product to

an introduction to the syntax, methods, and features of JavaScript in Interactive
Reporting. JavaScript is an object-oriented scripting language that is commonly
used in web development to provide enhanced user interfaces. Within Interactive
Reporting, JavaScript is used across all sections of the document, except for the
Query section, to perform custom computations and to add interactivity. A solid
understanding of JavaScript is needed to become an advanced user of the Interactive
Reporting software. The fundamentals described in the second chapter and utilized
throughout the rest of the book will provide the user with the confidence needed to
build and leverage JavaScript in daily interaction with the software.

Building simple to advanced dashboards

Dashboard sections in Interactive Reporting are used for many purposes, from
creating dashboard views of information, to using controls and objects on a
dashboard to drive and orchestrate behaviour across multiple sections. This book
places a large emphasis on building simple to complex dashboards and provides

an understanding for managing code, filters, and interactivity across multiple
dashboard sections in a single document. These dashboard chapters provide
invaluable information for managing and reusing code inside a document, and

the chapters demonstrate best practices for interacting with Interactive Reporting
sections and components. Concepts learned in the dashboard chapters can be
applied to any business situation where code is needed to perform an operation from
processing queries to topics including creating custom programs that produce batch
processing, using data from one query to filter another, and exporting to files.

Advanced computations

One of the key aspects of business intelligence is the ability for the user to analyze
and manipulate content to answer a set of business questions. Many business

users typically prefer to use Microsoft Excel to perform data analysis rather than
Interactive Reporting due to their comfort with the software. While Microsoft Excel
provides many excellent tools for performing data analysis, Interactive Reporting
combines data analysis capabilities with the ability to filter, add computations,
leverage data sets, and manipulate data in the millions of records.

[o]

Advanced Hyperion Interactive Reporting Techniques

Briefing slides and batch exports

Interactive Reporting provides many options for exporting information and
formatted reports to different file formats. Users commonly struggle with the best
and most appropriate method for creating data or formatted exports, with most users
overlooking some of the most effective and efficient exporting methods. In addition
to searching for the best export format, many users express interest in exporting
information from Interactive Reporting into a Microsoft PowerPoint presentation.
While the Hyperion Smart View product can be used to refresh objects in Microsoft
documents, another option is available using a few tricks in Interactive Reporting
and does not require the use of an additional piece of software.

Another less commonly known feature in Interactive Reporting is the ability to add
custom code to generate batch exports of deliverables. Leveraging a few simple
programming statements allows the user to save significant time and effort when
exporting multiple slices of information from the same document.

The Central Code Repository

One challenge that advanced users encounter with Interactive Reporting's report-
centric model is the tracking and maintenance of heavily customized dashboard
reports, especially in enterprise-level implementations where the code is used
repetitively and transparently across multiple documents. Given the common and
straightforward practice of storing similar JavaScript code within each document in
an enterprise, it is incredibly difficult and infeasible to individually identify, track,
and edit changes across documents.

One simple and invaluable methodology is to store report customization scripts in

an accessible database table within the enterprise environment. The chapter on the
Central Code Repository (CCR) describes building an external code library that allows
code to be quickly pushed into some or all documents in an enterprise. This centralized
repository provides the capability for agile responses to ongoing business changes and
code maintenance without modifying the consuming reporting documents.

Optimizing and Merging

The Oracle Hyperion Interactive Reporting developer tool installation is packaged
with two developer tools that are extremely beneficial to users of the software. The
products are the Dashboard Studio and the Dashboard Studio Optimize Utility,
which allow developers to merge, modify, and fix Interactive Reporting documents
in addition to many other operations not included in the Studio developer utility or
Interactive Reporting Web Client.

[10]

Chapter 1

The EPM Workspace

The EPM Workspace, similar to a portal, is where all Oracle Hyperion objects,
reports, and files can be accessed and integrated using a shared security model. The
Workspace is accessible through the web browser and contains a file system and
other document management gadgets, including personal pages, job scheduling, and
content subscription.

Interactive Reporting interface and
components

Understanding the Interactive Reporting interface is crucial to being proficient in
the software. The different sections of the software contain a variety of different
options, but the location of where to find and utilize these options is the same across
the tool. Knowledge of the interface and how to leverage the features of each section
is essential to unlocking the full potential of the product. The terms displayed in the
next screenshot will be referenced throughout the book:

File Edit View Insert Fomat Query DatsModel Tools Help
Hodeh wemE A TP Hhprocess = w3 @
Tahoma ~|a v B I U E=5F 5 | A 4 % 2 a4
A g_sates - [7e Reguest) % Fitters) =1 Sortm) -
Sections X ||| Reauest | Drag Tanic Mems heve fo bulid a Quey
R_Sales
Hr a |
Prod Id ~
Erod Name [= [
Prod Desc Cust Id A
Prod Subcategory EUSE EIIS€ ma"re
Prod Subcategory Id Cust GGS # arme
Prod Subcategory Desc ust Len Erf)
Prod Category Cust Year Of Birth
Prod Category Id Cust Marital Status
Prod Category Desc = Cust Straet Address
Brad Wainht Class Cust Postal Code
Cust City
Cust City Id
Cust State Provinee [
= L] = r
Time 1d = Prod Id =
Day Name: = Cust 1d [by =l
Day Number In Week T Time Id Country Id
Day Nurmber Tn Morith Channel Id Country Iso Code
Calendar Week Nurmber Promo Id Country Name
Fiscal Week Number Quantity Sold Country Subregion
Bements VWeek Ending Day Amount Sold Cauntry Subregion Id
+ By Tables Wik Ending Day Id Eﬂuxv Eeg!nn o
a Calendar Month Nurnber - CEEI’W\\: Tlej?:?n
Fiscal Month Mumber = Coumtry Totdl Id
Country Name Hist
Promo Id
Proma Name -
Promo Subcategory a c’éﬁ:r?ﬁe‘ls[d =l
Promo Subcategory 1d h | Des
Promo Category hi“"nel lasE
Promo Category Td chamel class y
Promo Cost Channel Class 1
Promo Begin Date Channel Total
Proma Enﬂ Date Channel Total Id
Promo Total
Promo Total Id
Ho Resuls Vel Combined View. 7 lopics B

[11]

Advanced Hyperion Interactive Reporting Techniques

Nearly all features of the Interactive Reporting user interface can be controlled or
modified by report authors. Later chapters of the book will describe the methods
for controlling the display of the different Web Client Interface menus, toolbars and
sections.

Review of Interactive Reporting sections

Before identifying where the advanced features of the product can be leveraged in
the document, it is important to review the different sections of the software. The
following list provides an overview of each section of the Interactive

Reporting software:

The Data Model and Query sections are used to model database objects and
build queries from a data source.

Each Query section is accompanied by a Results section where data returned
from a query is displayed, filtered, and computed. There is only one Results
section per Query section, and each Results section displays data in a row by
column format.

Table sections are similar to Results sections and are used to manipulate and
split a set of results into different subsets for analysis. Each table section is
specific to a set of results and multiple table sections can be created.

A Pivot section is a common presentation section in Interactive Reporting
that aggregates data in a row by column format and the pivot functionality
is similar to Microsoft Excel pivots. The Pivot section can use any column of
data from the parent Results or Table section.

A Chart section is another presentation section of the document. The Chart
section is commonly used to display data in a graphical format. Different
chart formats exist, ranging from bar and pie charts to scatter and bubble
charts.

The Report section provides the ability to present charts and tables of data
in a printable report format. The Report section is the only section of the
document that allows for the addition of data from multiple queries in the
document into a single reporting object, and reports provide an additional
method of splitting out data by Report Groups.

Dashboards are used to create custom interfaces or interactive displays of key
metrics. The dashboard section provides the flexibility to leverage custom
scripting and interactivity to automate manual features of the product.

[12]

Chapter 1

Leveraging code

Many methods exist for adding custom code throughout the document. Interactive
Reporting provides the flexibility to manipulate data and build custom applications
through using a JavaScript programming language throughout all sections of the
document except the Query section, where custom fields are defined using database
specific SQL.

JavaScript is commonly used in two ways within the document, including -
building computations in presentation sections and building logic to force specific
behaviours across the document or on a dashboard. When building computations in
sections, JavaScript and native functions are used in Computed Items to modify and
enhance a set of results. When driving behaviour across the documents or adding
interactivity, JavaScript code is used in the Document Scripts or on a Dashboard
section. In either approach, Interactive Reporting provides significant flexibility and
interactivity to model and solve complex business problems.

Query section Computed Items

Many users require the ability to provide further analysis on data returned from a
query. Computed Items can be added to a query to create custom Request line items,
which allow the user to modify and enhance the data elements in the data model.

Building Computed Items in the Query section is very different than building
Computed Items throughout the rest of the document. The syntax for building
Computed Items in the Query section is database specific SQL, while Computed
Items throughout the rest of Interactive Reporting are created using JavaScript. The
differentiation in syntax is based on the design of the product, where the Query
section is the only section that builds a query string that is passed to the database.
The rest of the sections in an Interactive Reporting document contain and display
data that has already been returned from a data source.

The syntax of the Computed Item in a query is included as a column in the query
string that is passed to the database. The following steps are methods to add
Computed Items to the Request line:

Right-click method Query menu method

Right-click inside the Request line Open the Query menu

Select Add Computed Item Select Add Computed Item

[13]

Advanced Hyperion Interactive Reporting Techniques

Upon adding the Computed Item to a query, a window opens as shown in the
following screenshot:

Modify Item
MNarne |COIumn‘|
Deefinition
Functions...
L) 0]
o) (o

The logic for the blank Computed Item can be typed directly into the Computed Item
Definition box of the Properties window that appears. The Functions and Reference
buttons are included to aid the user in creating the Computed Item definition by
providing a selection option for referencing column names and a list of predefined
functions. The Options button is used to set the Datatype of the column, which is
important in order to accurately represent the data returned from the query for the
column.

In each Query Element, the Table or Topic name must be added
as a qualifier in front of the column name, that is, Table Name.
% Column_Name. This syntax is similar to qualifying a database table
s . — . .
with the table owner, where Interactive Reporting treats the Table
or Topic as the owner of the table.

Since the table needs to be qualified (referenced by table name), users commonly add
items to the Request line and then edit the item properties by double-clicking on the
item to view the Properties of the item. By adding an item to the Request line before
editing, the item definition is populated in the Definition section of the Properties
window. Upon the completion of editing the Computed Item, the item is added to
the Request line with the Name specified after pressing OK.

[14]

Chapter 1

Before completing the custom column definition, it is important to
review and adjust the Datatype of the column using the Options of
%“ the item. For example, converting a Date field to a string requires
g the Data type of the column to be set to a string to avoid incorrectly
formatted data after processing.

The following are examples of simple Query section Computed Items with Oracle as
a data source:

e Concatenation: Products.Prod Name||' - '||Products.Prod Desc

e String Manipulation: SUBSTR (Customers.Cust_Postal_Code,1,5)

e Value Replacement: NVL (Promotions.Promo_Name, 'No Product Name').
e Date/Time Functions: TO DATE ('2009-02-01"', 'YYYY-MM-DD')

When Computed Items are added to the Request line, the Computed Item element
will display at the end of the list of all of the elements in the Request line. Upon
processing, the computed column will appear in the data results in the order of the
columns in the Request line (if this is the first time the query is processed) or the field
will be added at the end of the data results (if the query was previously processed).
Computed Items are not differentiated in appearance from any other element in the
query, where the Computed Item elements appear similar to the elements mapped
from topics or tables. However, any Computed Item or data element containing a
function will display with the function notation surrounding the data element name
in the Request line. For example, adding a SUM function to a data element in the
Query section will display the function name, as shown in the following screenshot:

Fiequest | Advertizing Key | Wear Month Key | Country | Advertizing Media [RSIRIEHETs =GN § STtk

Fiter = !| Drag Topic or Compufed Regquest Nams here fo creale Filfers

Hame '.é\c.lvertising .Expenses

Definition
SUM [Advertising_E spenzes Advertising_Expenzes | Functions...
B = m

| Help [Ok | [Cancel]

[15]

vww allitebooks.conl

http://www.allitebooks.org

Advanced Hyperion Interactive Reporting Techniques

Results section Computed Items

Computed Items are added to the Results section to modify contents and add
calculations to data returned from a query. Since the results set is data that has
already been processed, the Computed Items in the Results section are based on
data stored in the document. While the syntax used in Computed Items in the Query
section is the SQL syntax of the database, the syntax used in the Results section to
create custom computations is JavaScript. The following steps are methods to add a
Computed Item to the Results section:

Right-click method Results menu method
Right-click inside the Results section Open the Results menu
Select Add Computed Item Select Add Computed Item

Once the Add Computed Item menu item has been selected, the Computed Item
window appears, as shown in the following figure:

Computed ltem
Mame Computed
Definition
|
L)L J e o))
(=] 0= (=) (o) [[eke]
Lmed] [< J [<=][>] (=] [[nat]
T

The Name box is for specifying the name of the Computed Item. The Definition text
box is used for entering the logic for the Computed Item.

[16]

Chapter 1

It is important to note that the column names are case sensitive. It
is also important to note that columns with a space in the column
_ name must contain underscores instead of spaces when referenced
% in Computed Items (that is, Day of Week is referenced as Day_

L of_Week in the definition window) and special characters are also
replaced with underscores. If adding computations to a column
with a special character, it is helpful to use the Reference feature to
select the column.

The buttons below the Definition text box are the different logic conditions and
operators that can be used in the Computed Item definition. These different
conditions and operators can be typed into the Definition box by the user or the
buttons on the screen can be used to populate the definition window with the
desired content. The buttons to the right of the text box are similar to the buttons
in the Query section, where predefined Functions can be used to transform data
elements in the section. These predefined functions are specific to Interactive
Reporting and provide the ability to manipulate string, date, and text data. The
Reference button provides the ability to accurately reference data elements in the
section without the need to type in the name of the column. The Options button is
used to set the Datatype of the column, which is important in order to accurately
represent the column of data after the computation.

Upon the completion of editing the Computed Item, the item is added to the Results
section with the Name specified after pressing OK. The column is added to the end
of the Results section and is displayed in the Data Layout window in blue text and
in italics. The column can be moved around to the desired location in the Results
section, and the column can be easily modified by following one of the two steps:

Right-click method Results menu method
Highlight the column of data in the Highlight the column of data in the Results
Results section section

Right-click and select Modify Column Open the Results menu and select Modify
Column

The following are a few simple examples of Results section computed items:

e Concatenation: Products.Prod Name+" - "+Products.Prod Desc
e String Manipulation: Substr (Customers.Cust_Postal_Code,1,5)

o Conditional Functions: Nv1 (Promotions.Promo Name, 'No Product
TTarName')

[17]

Advanced Hyperion Interactive Reporting Techniques

The examples provided are used to demonstrate simple programming operations
that can be performed in the Results section. Future chapters of this book will discuss
the different programming functionality and advanced operations that can be added
to Computed Items.

Table section Computed Items

Computed Items in a Table section are very similar to Computed Items in the Results
section. However, the main difference between the Table section and the Results
section is the ability to add multiple Table sections to a set of results. The ability

to add multiple Table sections to a set of results allows the user to split Computed
Items between the Tables and allows the user to filter on a Computed Item that is
created in a parent Results or Table section leveraging the Prior, Next, Cume or any
other aggregating function.

Filters cannot be placed on an aggregating function in the
I section it was created.

The following steps are methods to add a Computed Item to the Table section:

Right-click method Table menu method
Right-click inside the Table section Open the Table menu

Select Add Computed Item Select Add Computed Item

Once the Add Computed Item menu item has been selected, the Computed Item
window appears, as shown in the following figure:

Computed ltem
Mame Computed
Definition
|
L) Lo b
(=] =] L]
o

Chapter 1

The functionality of the Computed Item box is identical to the features provided
in the Results Computed Item section and no additional functionality exists that is
different from the Results section.

Pivot section Computed Items

Computed Items are common operations performed in the Pivot section, where
calculations are easily performed on aggregated sets of data. While items are added

to the Row and Column Labels, the Pivot section only provides the ability to add

a Computed Item to the pivot Facts. While computations can be completed in the
Results section, it is more effective to compute percentages and other division based
calculations in the Pivot than the Results or Table sections to accurately calculate totals.
A Computed Item is added to a Pivot section by following one of the two steps:

Right-click method Pivot menu method
Right-click in the main Pivot Open the Pivot menu
window.

Select Add Computed Item
Select Add Computed Item

The syntax for a Computed Item is the same as that found in the Results and Table
sections and the Computed Item is highlighted in italics in the Facts section of the
Data Layout. In the next example, a Computed Item has been created to show Total
Sales over Quantity Sold:

|2 sales Piwat = Data Layout Sort [
Sections x
= Prod Category Country TotalSales Quantity Sold Sales / Quantity
|24 Dashboard -
\57 Electronics, Americas 67,009,580 Computed Item
| Report Peripheralsand 53 11,991,803
A o_comparison Accessories Furope 33,168,132 Name | Sales / Quantiy
Arcompanion Middle East 1,258 Definiion
A _comparison_v2 Oceania 4,648,130 Tatal_Sales / Quantity_Sold
& R_Comparizon_v2 Total 116,818,911
B Cost Pivat :afrndwware & Americas 53,776,634
[us sates Table orware Jatic] 1.506.192
[s sates pivot Europe 29,434,880
il us sates chart Oreania 4,368,789
Total 33,086,454 RN
SoftwaresOther Americas 20,883,513 [=][*=] it]
Hements Asia 3,095,320
¥ R_Comparisor_v2 [@_Camparis Eurape 9,441,887
Fiscal Year
L Total Oceania 1,235,214
[l Tp= Tatal 34,657,367
|14 Quantity Sold
1] Prod Dese Tatal 250,563,372
L] Prod Subcategory
L] Prod Subcategory Desc
L] Prod Category
|1 Prod Category Desc
|14 County Name
{14 County Region Row {abels Prod Category * Country Region Column tabels
Factr Total Sales * Quantity Sold * Safes / Quanipe

[19]

Advanced Hyperion Interactive Reporting Techniques

Notice the computation of the values in the Total lines. Currently the Total lines
show the sum of the values displayed in the pivot and not the division of the Total
Sales value by the Quantity Sold total value.

Pivot Settings: True Totals and Surface Values

The Pivot section provides the flexibility of calculating the Computed Items and total
lines of the document by either the computation of the values shown on the screen
or by the values contained in the data results. The settings can be easily configured
in the Pivot Options menu, where the Use Surface Values or True Computed Item
Totals options checkboxes can be toggled.

When the True Computed Item Totals option is selected, the pivot total lines will
be calculated by totaling the individual values of the columns that make up the total
instead of performing the computation operation on the total column.

When the Surface Values option is selected, the pivot calculates the Computed Item
from values displayed on the pivot instead of the values in the parent Results or
Table section for all columns. The Surface Values setting is necessary when adding
one or more Computed Items together in the pivot where the values in the pivot
must be used in the calculation.

Editing Pivot Computed Items

Similar to the Results and Table sections, the Computed Item can be modified by one
of the following two steps:

Right-click method Pivot menu method

Highlight the column of data in the Highlight the column of data in the Pivot
Pivot section

Open the Pivot menu and select Modify
Right-click and select Modify

Chart section Computed Items

Computed Items can be leveraged in a Chart to display constants or other variations
of data elements not contained in the data results. Computed Items are added to a
Chart by one of the following two steps:

Right-click method Chart menu method
Right-click in the main Chart window. Open the Chart menu

Select Add Computed Item Select Add Computed Item

[20]

Chapter 1

The syntax for Computed Items in a Chart section is the same as found in the Results
and Table sections, where the Computed Item is highlighted in italics in the Facts
section of the Data Layout.

Computed Items cannot be used in the Scatter or
L Bubble charts.

The chart in the following screenshot is a Bar Line chart, with a Computed Item set
to a line and configured to use the scale on the left axis:

40.000.000

30.000.000 .I

20,000,000 T
B g dvertising Expenses
© Budget
10,000,000 .‘
i — [

Bulk kil Ernail Frint badia Fadio T Wikeb Advertiing

L

| !FaffAdvertising Expenzes * Sudges iDepﬁ‘J Orag cofumns Rere fo create depth

| iXAXR}'Adver‘tising hdedia

[21]

Advanced Hyperion Interactive Reporting Techniques

In this example, the Computed Item, Budget, is set to a constant value to display
a threshold. The following screenshot displays the syntax used to complete the
Computed Item. More advanced logic can be used as desired:

Hame F:!uu:iget
Definitian

PE000000

i
BiE

o=
=
(ed]

H
]

and
e

S

Computed ltem

L)
wn
25
[0k] [Cancel]

Computed Items in the Chart section are easily modified by one of the two

following steps:

Right-click method

Chart menu method

Highlight the data element in the Data
Layout window of the Chart.

Right-click and select Modify
Computed Item

Highlight the data element in the Data
Layout window of the Chart.

Open the Chart menu and select Modify
Computed Item

Report section Computed Items

The Report section provides the ability to add two types of computations in a report,
where computations can be performed in Field expressions as well as in the Facts of
Report Tables. Computed Items are added to Report Tables through one of the two

following methods:

Report menu method

Right-click method

Highlight a column of data inside the
table.

Open the Report menu and select Add
Computed Item.

Highlight a column of data inside the table.

Right-click and select Add Computed Item.

[22]

Chapter 1

When a Computed Item is added, the Computed Item window appears as shown in

the following screenshot:

Computed ltem

Column Mame:

Computed
Reference -
Cancel
T ables: Colurnmz: _
F_Sale=s Fizcal_Year s
Prod_M ame
Tatal_Sales
Type
(uantity_Sald
Prod_Desc
Prod_Subcategony o
Prod_Subcateqarny Desc
Forrmula

The text box at the top of the window is for adding the desired name for the column.
Below the Column Name field is the configuration for selecting a field from a table.
At the bottom of the window is the Formula section for adding the logic to the
Computed Item. The following screenshot shows an example of a Computed Item
leveraging fields from two Table sections:

Modified Item
Calurni M ame:
Puo
Reference _
Cancel
Tables: Calumniz: _
R_Sales Fizcal Year ~
Prod_Mame
Total_Sales
Type
Quantity_Sald
Prod_Desc
Prod_Subcategory w
Prod_Subcategory_Desc
Farmula
Tables"R_Sales"] Columns["S ales"). Sum[cunBreak] -
Tablez"R Cost"] Calumins"Cost"l.SumfcurBrealk]

[23]

Advanced Hyperion Interactive Reporting Techniques

Notice the difference in logic between the Report section Computed Items and
the logic for the other Computed Items in the document. Since the Report section
Computed Items can reference data from more than one section in the document,
Report section Computed Items require a reference back to the section where the
data element is contained. Additionally, a data function is referenced at the end of
each Computed Item. The function and the term currBreak are added because the
Report sections contain grouping that can enforce different levels of aggregation.
Each item in a Report section is aggregated based on the area that is placed in

a report, whether it is added to the Body, Header, Footer, or one of the Report
Groups. The currBreak defines the aggregation to apply, where variations of the
currBreak logic can be utilized to modify the aggregation performed.

The Expression line

In addition to editing Computed Items using the Computed Item window, the
Expression line in the Report section is also used to edit Computed Items as well as
Field items. The Expression line is a feature that is specific to the Report section and
logic is displayed in the Expression line when an item is clicked by the user in a report.

Document Scripts

Each Interactive Reporting document contains the ability to have a predefined
set of steps occur when the document opens, before the document closes, before
processing, after processing, and upon update of session values. These document
level actions are referred to as Document Scripts in Interactive Reporting.

Document Scripts are added to the document by clicking on the File menu and
selecting the Document Scripts menu item. Upon selecting the Document Scripts
item, the scripting interface window — called the Script Editor —is displayed

for adding the logic for the Document Scripts. Chapter 5, Building the Dashboard
Framework section, provides details on configuring Document Scripts to support
dashboards and global operations.

Dashboards

The term dashboard is typically used to describe an executive-level report displaying
key business indicators in an effort to capture the health of a business at a point in

time. The Dashboard section in Interactive Reporting provides users with the ability
to create simple to complex dashboards, as well as the flexibility to add controls and
custom JavaScript programming to add interactivity or to create a custom interfaces.

[24]

Chapter 1

The Scripting Interface

The Script Editor is the interface where code is written to perform an operation
through Document Scripts or the Dashboard section. The Script Editor is opened in
one of several ways including: selecting the Document Scripts menu item from the
File menu, selecting the Scripts menu item from the Dashboard menu, or by right-
clicking an object on a dashboard and selecting Scripts. The following image is an
example of the Script Editor open to an item on the Dashboard section:

Script Editor

= i Application | Object: Ewent Trigger:

+{_] Methods Dashboard [Section] w | | Onbctivate A
+_] Properties
+ =§3 Documents ﬁ ﬂ g ﬂ
= @ ActiveDocument
+-_7] Methods
+|_] Properties
= 63 Sections
+-_]) Methods
+-_7) Properties
+- i) O_Sales
+- i) F_Sales
+ l\)) Sales Pivot
+ l\)) U5 Sales Table
+- i) US Sales Pivat
+ l\)) Cost Pivot
+ l\)) U5 Sales Chart
+ l\)) ertical Bar
+- i) Vertical Bar - Stacked
+ l\)) Harizontal Bar
+ l\)) Harizontal B ar - Stacked
+ l\)) Yertical Stack Bar
+- i) Harizontal Stack Bar
+ l\)) Wertical Cluster Bar
+] l\)) Pie
+ '\)) Area

+- i) Stacked Area

ca I R

Description

Object A ebClientD ocument ActiveD ocument

Chapter 2, Introduction to JavaScript and the Interactive Reporting API, provides a

detailed introduction to JavaScript and provides a detailed explanation of the Script
Editor.

[25]

Advanced Hyperion Interactive Reporting Techniques

Summary

The goal of this chapter was to provide an introduction to the book and a review
of Interactive Reporting terminology, adding Computed Items to sections, and
the Scripting Interface. The chapter began with an introduction to the topics that
are discussed in future chapters, including JavaScript, Dashboards, Advanced
Computations, the Central Code Repository, Batching, and the Dashboard Studio
and Optimize Utility. The chapter transitions from an introduction to a review of
Interactive Reporting topics and terminology used throughout the book, including
the Interactive Reporting Interface and a review of Interactive Reporting sections.
The methods to create, build, and modify Computed Items in each section are
introduced, and an introduction to Document Scripts is presented. The chapter
concluded with a brief overview the Scripting Interface, setting the stage for the
following chapter on logical programming in JavaScript.

[26]

Introduction to JavaScript
and the Interactive
Reporting API

Building expertise in Interactive Reporting requires a solid working knowledge

of the use of the JavaScript programming language, Interactive Reporting built-in
functions, and the features of the Interactive Reporting Application Programming
Interface (API). The Application Programming Interface (API) in Interactive
Reporting provides the ability to access objects and events used by the core
application. The object properties and event behaviors are orchestrated using
JavaScript code to drive a desired application behavior typically in the form of an
end-user interface or business application.

The goal of this chapter is to provide users with an introduction to JavaScript and the
Application Programming Interface. The chapter will begin with an in-depth look at
the Interactive Reporting API and will conclude with an introduction to fundamental
concepts of JavaScript.

This chapter covers the following topics:

e Introduction to objects and collections
e The Script Editor

e Anintroduction to JavaScript

Introduction to JavaScript and the Interactive Reporting API

Introduction to objects and collections

The concepts described in this chapter introduce a new set of vocabulary that is
referenced through the rest of the book. The Interactive Reporting programming
terminology describes the different components of the application, the properties of
the components, and the actions that can be performed on each object. The following
are the primary definitions used when describing Interactive Reporting components:

¢ An object is defined as either a single entity or a collection of entities. The
term object is a fairly generic term used to reference any entity which can be
acted upon. These entities range from the Application object to Dashboard
Shape objects and control toolbars to Text Labels and beyond.

e Methods describe the relevant actions for a given object. The available
actions are defined by the object type within the application. For example,
the Activate method of a Dashboard section displays the Dashboard section
when used and is similar to clicking on the section with the mouse in the
Section Catalog.

e Properties are the attributes of an object, and may include formatting, data
values, or configuration settings. Examples of properties include the text
displayed in a Text Label or the operator used in a Query Filter.

e Collections are special groupings of objects that are related. A good example
of a collection is the Sections collection. This collection contains all of the
individual sections that are within a single Interactive Reporting document,
regardless of the section type.

¢ Constants are collections of read-only values that represent possible object
property states or values. The definition of a constant is determined by
Interactive Reporting and cannot be customized by the report author.
Interactive Reporting constants always begin with bq.

A real-world example of the concepts presented in this section can be conceptually
demonstrated by visualizing an apartment building. The building itself is an object.
The building object has properties such as the number of apartments, number of
floors within the building, and resident amenities. The individual apartments are
also distinct objects with properties, such as the number of rooms in each apartment
or the address of the apartment. However, the apartments themselves are also part
of the overall building object, making the apartments members, or children, of the
building.

[28]

Chapter 2

Continuing with the apartment example, envision that the building supervisor hires
painters to repaint apartments. If the painters are ordered to paint an individual
apartment at the object-level, the painter would require the address of the apartment.
The resulting request from the supervisor would be to paint apartment 1A. If the
painters were needed to paint all apartments within the building, one approach
(entailing more work for everyone) might be for the supervisor to give them each
apartment address between jobs. Alternatively, the painters could be ordered to
paint the collection of apartments and instead be given an order such as to paint all
apartments in the building.

The apartment example is a description of how collections work in Interactive
Reporting. Orders given to a collection are given to each member until all collection
members have received and completed the task. The order in which the members are
evaluated is automatically determined by Interactive Reporting when the object is
created. The practice of accessing an object by its collection is an incredibly powerful
technique that will be demonstrated throughout the code examples in this book.

The Script Editor

The Script Editor is the primary interface used to add JavaScript code within
different sections of the document. All the customizations in Interactive Reporting
are event-driven, meaning that code is executed by either a user-created event such
as the clicking of a mouse button, or a system-created event such as the opening

of a document. These events invoke JavaScript contained within the object's
corresponding Event Trigger.

The Interactive Reporting API categorizes events into three main types. Two of
these types, Dashboard-level Events and Dashboard Object-level Events, are tied
to Dashboard sections and are customized using the Dashboard Script Editor. A
Dashboard-level Event occurs when a dashboard is shown, or activated, to the user
and when it is deactivated as the user navigates away from it. This event type is
typically used to set and reset default properties of objects users can interact with
such as a default radio button selection. Dashboard Object-level events are events
that are trigged at the dashboard shape level and are related to actions typically
attributed to user interactivity such as a button click. The Dashboard Script Editor is
opened by selecting the Scripts menu item from the Dashboard menu (enabled only
on Dashboard sections in Edit mode) or through the use of the F§ hot key.

The third type of event, Document-level Events, customize events related either to
opening or closing a document or directly before or after a query is processed. An

example of using a Document-level Event is enabling or disabling the visibility of a
toolbar when a document is opened. The Document-level Events use the Document
Script Editor, which is accessed by selecting Document Scripts from the File menu.

[29]

Introduction to JavaScript and the Interactive Reporting API

The functionality and usage of both Script Editors is the same with the exception that
the Document Script Editor allows developers to specify different functionality for
different types of client software (that is, the Desktop Studio, Interactive Reporting
Web Client, or the HTML client). This feature is commonly used in environments
where multiple clients are used to access an Interactive Reporting document. The
following image is an example of the Document Script Editor:

k)) ActiveDocument ;I Object: Evert Trigger Enable For:
Kl) ActiveSection IDUcumerrt LI IOnStarlup ;I [+ Al Clients ;I
=34 Toolbars b2 Desktop Client
-] Methods A | —_1| IE-| ‘i—“| B4 Plugin Client hd
] Properties = Toolbars["Standard] Visible = false; =l
EIQ Standard oolbars["Standard] Visible = false;
EJ Properties
4 Name
" ﬁ»‘ Type
[Q Formatting LI
[g Secti
Q Sections 7
~Dn
Property Visible as Boolean o
Kl _'I_I
Help Check Syntax | Line rumber: |1 GoTo ok | cancal |

The most important components of the Script Editor are the Object Model and
Description, located on the left side of the interface, the Object and Event Trigger
drop-down boxes, located at the top of the interface, and the code pane, located
under the Object and Event Trigger boxes.

The Object Model is a visual representation of the contents of the Interactive
Reporting API. As shown in the following image, the Script Editor displays icons
denoting each of the Object Model component types:

= F

‘%‘9 Documents

Chject El- i ActiveDocument

(] Methods

--J Properties

Collection =3P Sections
1] Methods

& Add

Import DataFile

Q_-] ltem

[Properties

: ﬁ“ Count

4 QueryCount

=i Naskhaard

IMethod

Property

L= DY gL LguenneniLguon
E|j'=J BqChart Type
Constant " =) bgChard Typefrea

(Z1 bgChart Typefrealine
(21 holhad Tame Barl i,

[30]

Chapter 2

When a selection is made in the Object Model, the section directly under the Object
Model displays a description of that object. This description is an invaluable tool
when learning to script in Interactive Reporting as it gives an insight of how the API
expects the selection to be used. Additional help specific to the item selected in the
Object Model can be accessed using the Help button below the description box.

The Object drop-down list provides the list of available objects that can drive
behavior through JavaScript code. The Event Trigger drop-down list provides the
different events that can be enacted for each object. It is possible for an object to have
code on multiple event triggers to perform operations for different events.

The largest area of the Script Editor is a text box where customized code is entered,
called the code pane. Double-clicking on any item from the Object Model will add an
appropriate code snippet to the code pane referencing the desired item. Additionally,
code can also be manually entered or copied and pasted from other sources.

When the OK button is pressed, the code is checked for syntax errors. If no errors are
found, the Script Editor is then closed and the code is saved.

It is recommendable to occasionally use the OK button to validate
and save code when scripting large blocks so that progress is not lost
' should the Script Editor exit unexpectedly.

Introduction to JavaScript

JavaScript is a very popular scripting language and is commonly used in websites
to provide enhanced user interfaces. This section of the chapter is an introduction
to the fundamental concepts of the JavaScript language. The concepts introduced
will provide the programming building blocks demonstrated in the code examples
throughout this book. In addition to the content described in this chapter, there are
many other resources available on the Internet to continue learning JavaScript or to
obtain additional code examples.

Variables

Variables are temporary containers used to store information to be recalled at a later
point. Once created, the value in the variable can be accessed, or read, across the
document and can be manipulated or changed as desired. The following sections

of this chapter introduce the many kinds of variables that are demonstrated in the
upcoming dashboard and advanced analysis chapters.

[31]

Introduction to JavaScript and the Interactive Reporting API

Variables are custom names with values assigned to them using the = sign. While
most custom names can be used, some names are already defined components

of the JavaScript language itself and therefore cannot be used to denote a custom
variable. Attempts to use a predefined component, called a Reserved Word, will
result in a JavaScript error. Additionally, as JavaScript is a case-sensitive language,
all references to variable names must exactly match the combination of upper and
lowercase letters.

The visibility, or accessibility, of a variable to different objects across the document
is referred to as the variable's scope. Scope can be either global, meaning the variable
can be accessed from anywhere else in the document, or local, meaning the variable
has no presence outside of the object in which the declaration is made. In most cases,
local scope would refer to a variable being available only within a particular event or
on a particular document section.

Within Interactive Reporting, declarations with local scope are defined using the var
keyword. Declarations without the var keyword are automatically considered to
have global scope.

Variable data types

Variables contain a reference to the type of data that is stored in each variable. The
references are referred to as the data type of the variable, where the common data
types are boolean, string, number, and null. In many programming languages,

the data type of the variables must be specified at the time the variable is defined.
However, in JavaScript, the data type of a variable is associated directly with the
stored value instead of to the variable itself. This concept, called dynamic typing,
allows a single variable to have data with one type associated to it and then later be
re-used and have data with a different type assigned. This is useful when converting
the data type of a variable throughout the programming process, including from
number to string or vice versa.

Boolean variables

Boolean variables contain either a true or false value. This variable type can act as
a yes or no flag to signify the state of an object property. For example, the Visible
property of a Shape is boolean and can be either true of false. The statement Shape.
Visible=false would mean the shape is not visible and Shape.Visible=true
would mean the shape is visible.

[32]

Chapter 2

String variables

Sequences of characters, comprised of any combination of alpha-numeric characters,
special characters, and spaces, are stored as string variables. When declaring a string,
quotes are used to tell the software where the string begins and ends. There is no
syntax requirement for the use of one type of quotes. Either double or single quotes
can be used as long as the start and end quotes are the same type. For example:
myString = "Country" and myString = 'Country' would both declare the
variable named myString to be equal to the value Country.

Strings can be added end-to-end with other strings through a process called
concatenation. When a string is concatenated with a non-string value such as a
number, the result is also stored as a string.

The following example concatenates month, day, and year variables into a
single string:

var vMonth = 1;

var vDay = "06";

var vYear = 1999;

var stringDate = vMonth +"/"+ vDay +"/" + vYear;

Downloading the example code

purchased from your account at http: //www.PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www.PacktPub.
com/support and register to have the files e-mailed directly to you.

.\‘Q You can download the example code files for all Packt books you have

When evaluated, the preceding code defines the variable stringDate as equal to
1/06/1999.

Number variables

Data that is strictly numeric is stored as a number data type. Variables with the
number data type can be evaluated directly with other numbers using an arithmetic
operators such as + for addition or * for multiplication. The value resulting from
arithmetic operations is a number. In JavaScript the ++ and -- operators are used to
increment and decrement a numeric variable, referring to +1 and -1 respectively. For
example, x++ is short hand to mean x = x+1.

Null variables

Null variables are variables that are without a value or empty. Conceptually, null
is the lack of any value and is not the same thing as a blank string variable or the
number zero.

[33]

Introduction to JavaScript and the Interactive Reporting API

Arrays

An Array is an object used to store multiple related values within a single variable.
Since all of the values are in the same variable and are identified with a numeric
identifier called an index, loop statements (described later in the chapter) are used to
iterate through the array to quickly access the stored values.

The following code is an example of the initialization of a global array:

gMonthArray = [];
gMonthArray [0]= "Jan";
gMonthArray[1]= "Feb";
gMonthArray[2]= "Mar";

While conceptually similiar, it is important to note that an Array index - the starting
value stored within the brackets - starts at 0 where as Interactive Reporting objects
collections, such as the list of items in a drop-down box or the list of rows in a
Results section, start with an index values of 1.

Associative Arrays

Sometimes referred to as a map or dictionary, associative arrays are a type of array
indexed by a string, instead of a number. Associated arrays are most useful when the
relationship between two strings is strongly defined and they are commonly used to
create custom look-up references.

The following example declares an associative array with local scope:

var vMonthArray = [];

vMonthArray["Jan"] = "January";

vMonthArray ["Feb"] = "February";

vMonthArray ["Mar"] = "March";
Functions

Functions are reusable sets of code that are configured to perform a targeted set of
operations. A function must be declared before it can be invoked by an object, and a
function is only executed when a separate set of code referred to as a function call is
made.

The basic syntax for a function is:

function functionName ()

{

//code to be executed;

}

[34]

Chapter 2

Functions can have additional input values to be supplied when the function is
called to execute. The input values, called parameters, are special variables that are
passed into the function allowing the function to be dynamic. Functions accepting
parameters have values within the parentheses after the function name. The basic
syntax for a function accepting parameters is:

function functionName (paraml, param2, ...)

{

//code to be executed;

}

A function defaults to a local scope but assigning the function to a global variable
makes the function's scope global. A function with global scope can be accessed by
any object in the same document. The following example demonstrates the syntax to
declare a function with a global scope:

function functionName (paraml, param2)

{

//code to be executed;

}

//make the function globally accessible
gfFunctionName = functionName;

The syntax for accessing functions is to first call the function by name and then to
supply any expected parameters within parentheses immediately following the
name. Functions that are bound to a global variable are called by the using the global
variable name instead of the function name. The following is an example of the
syntax for accessing a function both locally and globally:

//Accessing a Local Function
functionName (paramVall, paramVal2) ;

//Accessing a Global Function
gfFunctionName (paramVall, paramVal2) ;

Functions can also return a value back to the user to be used further in the document.
For example, if a function was created to perform a mathematical calculation, the
user would want the function to produce the output of the calculation. The following
demonstrates the function notation and the function call for returning a value:

function functionName (paraml, param2)

{
//code to be executed;
//set output value to varl;

[35]

[vww allitebooks.cond

http://www.allitebooks.org

Introduction to JavaScript and the Interactive Reporting API

//return statement;
return vOutputl;

}

//make the function globally accessible
gfFunctionName = functionName;

//Call the Function and Receive Returned Value
var2 = gfFunctionName (paramVall, paramVal2) ;

Decision logic

By default, any custom code is executed line by line from the top down unless
otherwise directed. Using basic logic, objects and variables can be assessed allowing
a decision to be made between one or more execution paths. Depending on the type
of logical statement, code can be executed once, executed more than once, or
skipped entirely.

Comparison operators

Comparison operators are a type of operator used to create simple comparisons of the
relationship of two entities, such as variables or numbers, where the outcome of that
comparison always results in a true or false value. The true or false outcome, which
conceptually can be interpreted as a yes or no, is arguably the most important aspect of
any decision statement as it ultimately determines the execution path of the code.

Logically, the description of each individual comparison operator is similar to that of
its mathematical counterpart, as seen in the following chart:

Comparison Operator Description

== Equal (comparison)

I= Not equal

>= Greater than or equal to
> Greater than

<= Less than or equal to

< Less than

It is also important to note that the == sign for the equal comparison operator is
not the same as the = command. The = is used to define variable values whereas the
== is used to compare whether two values are the same. Using a = in a conditional
statement to compare values will produce an undesired result.

[36]

Chapter 2

Conditional statements

Conditional statements, also called choices, are the statements and syntax used to
build the comparison. There are two main components to a conditional statement,
the assessment logic and the code block. The assessment logic is typically the first
line the statement and provides the comparison, and the code block is the code to be
executed based on the true or false assessment. Opening and closing braces {} are
always used to denote a code block in a conditional statement.

The if (), else if (), and else conditional statements are the three statements used
to assess if the outcome of a comparative statement is true or false. When an if ()
statement is deemed false, additional statements can be assessed using else if ().
When it is necessary to define an action for all remaining cases, else is used to act
for all cases where the result of the if () or else if () comparison is false. The if ()
statement can stand alone, but else if () and else statements must be preceded by
at least one if () statement.

The following code demonstrates the syntax of the if (), else if () and else
conditional statements:

//Assess one conditional statement
if (conditional statement)

{
}

//Current Statement is true

//Assess additional conditional statements
else if (conditional statement)

//Prior Statement is false

//Current Statement is true

}

//Assess all other cases
else

{
}

Another type of conditional statement is the switch () statement. Similar to

if (), else if (), and else statements, switch statements evaluate the truth of an
argument. Switch statements are typically used to evaluate a single object against
known cases.

//All Prior Statements are false

[37]

Introduction to JavaScript and the Interactive Reporting API

The following code demonstrates the syntax of the switch statement:

switch (object)
{
case 1:
//code block;
break;
case 2:
//code block;
break;
default:
//code block;

}

The break statement is used to exit the current statement. It is used throughout
switch statements and can be used in loops and conditional statements to exit from
the given statement.

Logical operators

Logical operators are used to control the order in which code is executed. The &&
logical operator denotes AND, the| | logical operator denotes OR, and the ! denotes
NOT. When two statements are separated by the && operator, both statements must
render true to satisfy the condition. When two statements are separated by the | |
operator, only one of the two statements must be satisfied. When the ! operator is
used, it is used to test whether a condition is not true.

Since the &&, | |, and ! operators can be used together, parentheses () are
commonly used to segment items in a conditional statement. The following example
demonstrates the use of the AND and OR statements used with parentheses:

//Using AND, OR and Parentheses
if(A == B || (A==C && B==D))
{

//Statement is true

}

In the preceding code, the statement that is true is A is equal to B OR 2 is equal to

¢ AND B is equal to D. From a logical execution, the system would first attempt to
validate if A is equal to B. If it were, the statement would be deemed true and the
code within the {} would be executed. If A is not equal to B, the system would then
check to see if A is equal to c. If A is equal to ¢, it would then check if B is equal to D. If
A is not equal to C or B is not equal to D, the statement is false and code within the {}
would be skipped.

[38]

Chapter 2

Conditional logic is commonly used throughout Interactive Reporting in building
dashboards and Computed Items. The following chapters on dashboards and
advanced analysis will demonstrate examples of using conditional logic in daily use
with Interactive Reporting.

Loops

A loop is a programming concept created to run a set of code multiple times. In

a simple example, a loop can be used to display a count of 1 to 1000 with only a
few lines of code as compared to writing a line of code for each number which
would result in one thousand lines of code. Each loop has a condition that is tested
to determine if the loop should be executed or exited. Each time the conditional
statement is deemed true, the block of code begins again until the statement is
proven to be false.

It is important to note that if a loop statement is unable to be proven
% false, the loop will repeat infinitely. This error, called an infinite loop,
= cannot be stopped without exiting the program.

The most commonly used loop statement is the for () loop. The for() loop is used to
execute a block of code a specific number of times and allows developers to specify
the start, finish, and increment variables in the creation of the for statement.

The following example shows the simple syntax for the for loop:

for (var v=start; v<=end; v=v+increment)
// until vsend, statement is true
// code block;

}

The shorthand math operators to increment, ++, and decrement, - -, can be used
to replace the incrementing or decrementing value. With the assumption that the
increment is 1,in the preceding example, v = v + increment can be changed to v++
without changing the outcome of the code.

The following example shows an example of a for loop:

for (var i1=0; i<=gArray.length; i++)
// until i is greater than the number of objects in a custom
array, the statement is true

// code block;

[39]

Introduction to JavaScript and the Interactive Reporting API

The while () loop is used to repeatedly execute a code block for as long as the
conditional statement remains true. If the logical statement is false when the
conditional statement is first reviewed, the code never executes.

while (v<=end)

{
// while v<=end, statement is true
// code block;

}

The do.while () loop is a variant of the while loop that executes the code block once
and then repeats the code block for as long as the while () condition is true. This is
very useful when the code should be executed once even if the logical statement is
false.

The following example demonstrates the standard syntax for the do.while () loop:

do

{

// code to be executed;

}

while (v<=end) ;

There are two commands used to exit the current loop or to exit all remaining
loops throughout the loop process. These statements are typically used to save time
when searching for specific values or outcomes. The first statement, the continue
statement, is used to stop the current loop and will continue to run the next loop

(if existing). The second statement, the break statement, is used to force the

current loop to end and will not run any remaining loops. Loops are very common
operations in dashboard programming and many loop examples are demonstrated
in the following dashboard chapters.

Regular expressions

While not demonstrated in-depth in this guide, an introduction to JavaScript would
be incomplete without introducing the concept of regular expressions. At the most
basic levels, regular expressions are used to deconstruct individual characters
within string variables to perform pattern recognition and matching logic. Within
Interactive Reporting, the most common role of regular expressions is to assist with
data validation of entries made by users on a dashboard. As regular expression is a
very advanced programming topic that sometimes eludes even seasoned developers,
there are several well-written tutorials and guides that focus solely on regular
expressions that are readily available on the Internet.

[40]

Chapter 2

Summary

The goal of this chapter was to introduce the user to the scripting concepts necessary
to perform dashboard development and advanced computations. The chapter

began with an overview of the terminology used within the software, including
objects, methods, and properties. The chapter continued with an introduction to the
Scripting Interface and Interactive Reporting Object Model, providing knowledge
on the interface for adding customized code to a Dashboard section or the document
as well as the hierarchy/tree structure of objects that can be manipulated through
using code. The chapter concluded with a review of the different types of JavaScript
components that are utilized throughout the later chapters of the book, providing an
overview of the different sets of components that are available and commonly used
when building dashboards or performing advanced analysis. The next chapter of the
book begins the dashboard development set of chapters in the book, starting with the
steps used to build a simple dashboard.

[41]

Creating a Simple Dashboard

Dashboards are used to quickly and easily monitor the overall health of a business
area by providing executive-level insight into key business metrics. In Interactive
Reporting, dashboards are created by combining supporting presentation sections of
the software with interactivity usually through custom JavaScript programming. The
complexity of the dashboard development process can vary widely depending on
the number of interfaces and amount of custom interactivity desired.

This goal of this chapter is to present the procedural steps required to create a simple
dashboard without the use of JavaScript. The following three chapters will evolve
this simple dashboard example and will present methods to appropriately add
interactivity across multiple dashboard objects.

This chapter covers the following topics:

¢ Dashboard planning and preparation

e The BMV USA Executive Dashboard example
e Creating data driven dashboard objects

e Creating a simple dashboard

e Gauges

e Live Charts

Dashboard planning and preparation

The most challenging aspect of developing a dashboard is creating one that is
targeted enough to deliver meaningful information to its users while providing
quick navigation and clear methods to support further analysis. The most successful
dashboards display high-level information, typically in the form of charts and
gauges, with clear supporting metrics to either invoke or support business decisions.

Creating a Simple Dashboard

Even though the goal of creating a dashboard is to provide a view of the overall
health of a business, it is important to avoid the trap of a one-size-fits-all dashboard.
While Interactive Reporting provides the ability to store massive amounts of
content inside a single document with interactivity and drill-down operations, the
maintenance and processing speed will become a burden over time and document
usage will decrease.

A more appropriate approach is to create a series of dashboards that provide both a
high-level executive view of the organization and a view of individual business areas
that provide a more granular view into a subset of the organization. When creating
these dashboards, always ensure that the purpose of the dashboard is clearly

defined and that the business stakeholder using the dashboard is the driver for the
content displayed. Having involved stakeholders through the process will provide
governance, encourage dashboard usage, and will drive consistency throughout
other metrics created for the organization or organizational subset.

The BMV USA Executive Dashboard
Example

The suite of dashboard chapters introduces a number of dashboard specific
concepts for a successful dashboard implementation in Interactive Reporting. A
single example is used across these chapters to demonstrate different dashboard
objects, contents, and interactivity. The example, named the BMV USA Executive
Dashboard, displays sales and cost data across pivots, charts, tables, and other
sections of the document. The data for the example is supplied by the sample
database that accompanies the Interactive Reporting installation.

[44]

Chapter 3

% Hyperion Interactive Reporting Studio - BookExample.bgy
D) File Edit View Inset Format Dashboard Teols Window Help =8| x|
2| Dashboard ¥ o
.. B!
BMV USA Execuitive Dashboard -
Plan v Actual Company End of Year Statement
25, Regicnal Sales Report
Inventory Report
529, EMV Intranet
,
www.downtownbmy.com $4,460,115
s1000000 Super BMV New York $1.454,810
Super BMV Westwood $1,406,972
ss.000000 I I Super BMV Los Angeles $1,205.505
BMV Brooklyn $1,105,396
= 1559 1955 1859 1553 2000 2000 2000 2000 Unit COSt v Retail P[ice
= a2 Q3 o4 = Q2 i a4 52500000
¥ Revenue Actual + Revenue Plan
$20,000.00
1 | ‘ T
| roccrmy | vosie s |
_ Action and Adventure $281.543 $1.815.647 s10.00000
_|Alternative $174,211 $883,065
_Arts and Music $564,192 $3,993,251 ss00a e
_ Audiobooks $688,444 $2,506,433 .
| Biographies and Memaoirs $767,660 $5,004,953 1599 1995 1935 1289 2000
Blues $117,043 $623,760 Swz: m:;z @ SL;;E: cors QP' -
_ Business and Investing $554,254 $4,389,156
| Childrens Books $255,197 $1,257,702
_ | Classical $561,670 $3,381.266 pooks $506,522.54
_ Computers and Internet $1,185,798 $9.991.360 Music $100,597.27 =]
[[

Creating data-driven dashboard objects

The Dashboard and Report sections in Interactive Reporting are unique since these
two sections are not tied to a single Query section. Additionally, the Dashboard and
Report sections allow content to be combined and presented side-by-side from any
section in the document. The combination of content from other sections is the basis
for dashboard development using Interactive Reporting.

When a section is presented on a Dashboard section, it becomes an embedded
object on the dashboard, creating a presentation window from the dashboard to the
existing document section. This connection allows the data presentation, including

colors and formatting, to be shown on the dashboard section for analysis. Any effects
on the supporting document section, including formatting changes or data refreshes,
are reflected on the dashboard.

[45]

Creating a Simple Dashboard

Interactive Reporting 11 has introduced the Gauges and Live Chart features to
dashboard sections. Unlike embedded section objects, Gauges and Live Charts are
populated from Results and Table section content directly on the Dashboard section
and do not exist elsewhere in the document. The formatting for these objects is
performed directly on the dashboard. Gauges and Live Charts are also dynamically
refreshed when the supporting Results or Table section content is refreshed.

Although not the focus of this chapter, it is important to note that other dashboard
controls and graphics, such as text labels and list boxes, can be data driven

using JavaScript programming to control the object's values and properties. The
customization of dashboards using code will be explored in later chapters.

The following content of the chapter will provide a step-by-step guide to creating
the data driven dashboard objects required to support the BMV USA Executive
Dashboard example.

Creating a Vertical Stack Bar chart

This section discusses the methods for creating a Stack Bar chart to demonstrate a
quick comparison of the margin between Cost Per Unit and Suggested Retail Price.
Stacked bar charts are best suited for monitoring the relationship between two facts
and are most effective when the margin between the two facts remains relatively
consistent across data points. In the BMV USA Executive Dashboard example, the
Cost of Units sold to the Suggested Retail Price of the same units are compared.

Creating the Chart Query

The Query for the example Vertical Stack Bar chart is created by inserting a new
Query section connected to the Interactive Reporting sample database. Once added,
rename the Query section to q Cost v Price and the Results section to r Cost v Price.
Add the Periods Months and Costs And Prices Fact tables to the main window of
the Query section. Once completed and the table joins configured, add Standard
Unit Cost, Suggested Retail Price, Year, and Quarter to the Request line as shown
in the following screenshot:

[46]

Chapter 3

@ Hyperion Interactive Reporting Studio - BookExample.baqy

_]_Jldlj ‘“H\/’_‘\JJ"JAT‘—

3| File Edit View Insert Format Query DataModel Tools Window Help

27| Process v | | s

e}

[Tahoma A ZJaaan| B I U it

il A | g v O

E I

Jﬂ q Cost Price ™

[Requestey ¥ Filters@) =] Sort@ -

| Request | Standerd Lt Cost| Suggested Retail

Price | Year‘ Uuarterl

o ce J Filter j| Lrag Tapic or Computed Request Fems here fo creste Fiters
r Cost Price

_Year Month Key -
Year I
Quarter
Month Mame
Month Mame Abbreviated

Elements Fiscal Year

Fiscal Quarter
1K Tables = Month Humber
First Day Of Month

Ll

_Product Key
Standard Unit Cost
Suggested Retail Pri

T Costs And Prices Fact
_Year Month Key %i

(3

Product Line

Product Family
Product Category
Product Name
Product Sku

ice

Product Publisher

i

| [2634 Rows [Combined View: 3topies -

Aggregated data facts

If the data values stored in the data source are more detailed than required for the
dashboard, include aggregating functions within the Query section, unless there is

a business requirement for data drill capabilities. The inclusion of aggregate data
functions on facts will result in a faster query and improved dashboard performance
due to a smaller data set. The following image shows the addition of the sum function

to the Standard Unit Cost element:

| Request | EERETD—

rocess Query

@ ‘fear | Quarter

Fitter Yag Tt
ﬁﬂ”

Add Computed Itemn

Month I

_Year M Hide
Year Remove
Quarter

Month I Properties...

Fiscal QLraresr

Fiscal Y& Font...

Month Number

|

. R
None

HAverage

Minimum
Maxirmum
Count

Count Distinct
Weight...

Request line items with data functions applied will display the function name on the
object label in the query to denote the function, but the function does not impact the
column title in the Results section. The following figure shows the addition of the
sum function to the Standard Unit Cost and the Suggested Retail Price elements:

j Request \ SUM(Standard Unit Cost)

SUM({Suggested Retail Price) REEARENELES

[47]

Creating a Simple Dashboard

When a query with aggregated facts is processed, the data values are summed
by unique data dimension values, resulting in fewer rows than a query without

aggregated facts. The following screenshot displays the results from the summarized
q Cost v Price query:

@ Hyperion Interactive Reporting Studio - BookBxample.bqy

= File Edit View Insert Format Results Tools Window Help _|5|£|
i ot g B B st b ol Process o oo T D
I [Jesan| B 1 U]

\)ﬂ r Cost Price ™

S|l v A g% T |

.0

¥ Filters(@ =] Sort@ 3 Data Layout p——e

| Drag Report Columns here fo creste Afers
-Jﬂ q Cost Price | | |

Sections X|JF||ter

#% rCost Price |
1] 1339 Q1 15,442.40511 21,233
B 1999 Q2 15,543.74322 21,363
B 1999 Q3 15,488.50482 21,299
B 1999 Q4 15,476.03712 21275
5 2000 Q1 9,505.43829 13,068
Elements
-Eggq Cost Price -

’L.E Standard Unit Cos
L.E Suggested Retail |

e mil

Year Cuarter Standard Unit Cost. Suggested Retail Price

| |5 of 5 Rows [03/29/11 DD:44:42 L 1

Creating the Vertical Stack Bar chart

Once the Query section is processed, add a Chart section under the q Cost v Price
query. When the chart is initially created, it starts with the default Vertical Bar

chart. Modify the Chart properties and select the Vertical Stack Bar Chart format.
To populate the Vertical Stack Bar Chart for the example, drag the Standard Unit
Cost and Suggested Retail Price data elements to the Facts pane and the Year and

Quarter data elements to the X-Axis pane. The following image shows the Vertical
Stack Bar chart with items populated:

[48]

Chapter 3

25,000

20,000

15,000

10,000

5.000

1559
[=]] a2 a3 o4 Q1

1559 1595 1559 2000

Total Standard Unit Cost

Total Suggested Retail Price

B q000 1

1998, Q2
B 1900, Q3
B 1900, Q4
B 000, 1

Setting the legend

The legends for bar charts are set on the x-axis by default. As the focus of this
Vertical Stacked Bar chart is the Fact information, the legend property must be
changed from the x-axis to the y-axis. Use the Legend icon on the section toolbar to
change the legend on property to Legend on Y as shown in the following figure:

With the legend now applied to the chart facts, the relationship between the two fact

items is displayed clearly in the following screenshot:

25,000

20,000

15.000

10,000

5,000

(=) {EEE) (=)
Qi Q2 3 24 Qi

{E) 2000

¥ Standard Unit Cast
Suggested Retail Price

Total Suggested Retail Price

Total Standard Unit Cost

[49]

Creating a Simple Dashboard

Customizing a Vertical Stack Chart

While the default chart format nicely presents accurate data for analysis, the

default format is not well-suited for a dashboard, where objects must be smaller to
accommodate multiple objects on a screen. Modifications to chart formatting play

a large role in creating readable dashboard sections, where significant time is used

to modify formatting to align objects in viewable formats. This section discusses
setting the visual properties of the Vertical Stacked Bar chart to prepare it for use in a
Dashboard section.

Visually stack the bars

The first approach that should be used is to flatten the chart to give the illusion that
the values are physically stacked upon each other, where the flattening will better
display the difference between the two values. The chart is flattened by unselecting
the 3-D Objects option in the Chart Properties dialog.

Maximizing chart display space

It is challenging to quickly digest data presented by a chart on a Dashboard section
when the chart's display area is cluttered with extraneous label and value axis
information. While modifications to hide, display, or modify label and value axis
settings in the Chart Properties can help clear the area for the chart, the simplest way
to maximize space is to move the legend location from the default right side location
to the bottom of the chart.

To move the legend, select the legend object and drag it to below the X-axis. Resize
the legend as desired using the corner anchor points. With the legend out of the way,
select the chart and resize it to maximize it in the frame.

Detail-oriented formatting

Dashboard objects should be understood without a supporting explanation.
Attention to detail with minor formatting options is important to avoid confusion.
Add data masks to facts, title the chart, and label each axis to make fact value types
clear.

Color considerations

In situations where data points touch, it is especially important that the chart colors
contrast enough so that the values of the chart can be easily distinguished from one
another if the chart is printed in black and white.

[50]

Chapter 3

Properties...

To manually change the color of a data group, click and highlight the data group in
the chart or right-click on Legend and choose Properties (as shown in the previous
screenshot) to open the data group Properties dialog box. With the Patterns tab
selected, click on Foreground and choose a different color from the color picker or by
entering a custom RGB value:

Properties

D

[51]

Creating a Simple Dashboard

In addition to the Patterns options, the Data Label options provide the ability
to activate data labels on the chart groups and to apply custom formatting. The
following figure displays the final Vertical Stack Bar chart with all of the desired
formatting changes for importing into the example dashboard:

@ Hyperion Interactive Reporting Studio - BookExample.bqy
2] File Edit View Insert Format Chart Tools Window Help = ﬂﬂ

[l A TR et ot Bl Process o D |t e
Il s T e e

L] € Cost v Price 57 Datalayout =fSot o
Sections x
@ qCostvprice Unit Cost v Retail Price
r Cast v Price
[l t costv Price

$25,000.00

$20,000.00

$15.000.00

510.000.00

Elements
gt Cost v Price {3 Cost 1 $s.000.00

[Year
- [l Quarter

i+ [Standard Untt Cos:
- [Suggested Retail | s00n

1208 2000
@ @l

199
Q3
B Stancarc unit Cost Susgested RetsaPrce

Fact (Depth) Standard Unit Cost * Suggested Retail Price j‘srm_mg columns here to creafe stack

X AnsYear * Quarter

=

I K1 R

| [5rows used

Creating a Bar-Line chart

The Bar-Line chart is used to compare two related facts with the ability of using two
different axis scales to display information. It is especially well-suited to compare
forecasted values against actual values. In this section, a Bar-Line chart is created for
the dashboard example to display a comparison of actual and planned revenue for
the country USA.

Creating the chart query

The query for the example Bar-Line chart is created by inserting a new Query
section connected to the Interactive Reporting sample database. In the example, the
Query section is renamed to q Plan v Act and the Results section to r Plan v Act.
The Periods Months, Plan Vs Actual Fact, Stores, and Regions tables are added

to the main query window. The four tables are joined together using the data key
relationships as shown in the following figure:

[52]

Chapter 3

% Hyperion Interactive Reporting Studic Example.bgy
| File Edit View Inset Format Query DataModel Tools Window Help _|=lx|
o e A B ot o Bl e Processm i oz)|

[Wicrosoft Sans Serf <8 <]atd - dtn | B U | = = = vt v Ao o %3 TS
A qrianvact »

(1 Requesteay ¥ Fiters) =] Sortm o~

Sections X

Request SUM(Revenue Mualﬂ SUM(Revenue Plan) | Year| Quarter
@A qcostvprice T
Jﬂ r Cost v Price
[t Cost v Price

Drag Topic or Computed Request fems here fo creste fAiters

(B

M © Cost v Price Store Key - n
T Periods Months ¥ =1"- Region Key [« |~ _
- J—— = _Year Month Key ~ - ==
T araz ot Store Key Ragon ey -
A rplan v act Frst Day of Morth Costs Plan o Country
_ Fiscal Year Revenue Actual Oax d T gﬂ:
Revenue Plan pened Date erritory
Month Name Units Sold Actual Phone
E— Month Name Abbreviated Units Sold Plan Postal Code
0 Month Number Remodel Date
Eig Tables - guarter géfg .
ear e Province
- Store Code
Store Manager
Store Mame
Store Type
Street Address
|| LlJ

| [144 Rows |Combined View: 4topics =D

Once the tables are joined, the Revenue Actual, Revenue Plan, Year, and Quarter
data elements are added to the Request line and the Revenue Actual and Revenue
Plan data elements are configured to use the suM data function.

Limiting the Query data

In the example dashboard, the intent of the Bar-Line chart is to display the
comparison of actual and planned revenue for the USA and not the entire data set
contained in the database. Place a filter on the Country field from the Regions table
by adding a Filter to the query:

Name: I(Zourrtr:.r QK |
Nciude MNulls NCH
™ Include Mull Cancel |

™ Mot |= Equal ;I lgnore |
x| Hep |
Show Values -
| Custom Values
Custom SGL
Select Al -
Remaove 4 Advanced |

[53]

Creating a Simple Dashboard

In the preceding screenshot, the USA is transferred into the Custom Values setting.
The Show Values filter selection option queries the database to determine a list of
all available values before allowing selections to be made. Custom Values are not
connected to the data source and can be viewed and selected at any time. When
creating Filters for dashboards or preparing other filters, use the Transfer button

to move selections made from the Show Values list to the Custom Values list. The
Transfer mechanism will ensure the exact data format is retained and the filter can
be selected without needing to query the database each time the filter is opened for
the list of values. The following image shows the query configured with the filter:

B Hyperion Interactive Reporting Studio Example.bqy

9| File Edit View Insert Format Query DataModel Tools Window Help NEED]
Ukl A E Bt Tl process < <o 1| B
[Taroma =l =lesan| B I U|= va'A'\g'%V!"nsJE‘
HqPanvact *

[Fp Requestey ¥ Fitters() =] Sorttg) e

Sections x | | Request | SUM(Revenue Actus)| SUM(Revenue Plan) | Year | Quarter
o g Costv price | Pter] County

A reostvprice

[tcostvprice ¥ PlanVs Actual Fac = Stores O
Costvp n = stores [| m
Wl < costvpice T Periods Months —otore Key =. Region Key = . [llall el
a — - _Year Month Key ~J - Zh= .
#° g Plan v Act _Year Month Key = Costs Actual _Store Key Region Key | =
W rpPan v act First Day Of Month Costs Plan City
- Fiscal Quarter " Fax Region
s hy Revenue Actual
Fiscal Year Opened Date Territory
Revenue Plan
Month Name Units Sold Actual Phone
Month Name Abbrevited Units Sold Plan Postal Code
Elcwenis Month Number Remodel Date
¥ Tables - Quarker i

Year

State Province
Store Code
Store Manager
Store Name
Store Type
Street Address

N o

| [184 Faws [Combined View: 4topics B—10h

The following screenshot displays the processed data returned from the query,
where the data will be used to create the Bar-Line chart:

@ Hyperion Interactive Reporting Studio - Example.bqy

) File Edit View Inset Format Results Tools Window Help =] x|
oot A BB st B e Process w1 D)
| “[[F]t & BF U =S A%y

A rpianyact v P Filters@ =] Sort@ [JC Data Layout ———
Sections X J Filter | Drag Report Columns here fo create Fiters
Jﬂ rCost v Price = [[[=
[_a t Cost v Price | | [
I < Cost v Price | 10.015,125.21094 13,001,485 1999 Q1
o || 10172,483.23047 11,078,861 1999 Q2
J;l g Plan v Act | | 11748,368.82031 11,802,687 1999 Q3
|| 2087308262891 20,015,926 1999 04
— = 8,445 922 10938 11,261,208 2000 Q1
| 8,029,666 2000 Q2
Elomeniy B 10,283,297 2000 Q3
~Egga Plan v Act - 17,842 586 2000 Q4
- [Revenue Actual
i8] Revenue Plan ﬁ
- [l Year ﬂJ L
- [l Quarter Revenue Actual Revenue Plan Year Quarter ‘

| 8of 8 Rows 03/29/11 01:03:07 Qi

[54]

Chapter 3

Create the Bar-Line chart

A Bar-Line chart displays two facts simultaneously, where one fact is shown as a
traditional Bar chart and the other fact is displayed as a Line chart. The process for
creating a Bar-Line chart is similar to for creating a Vertical Stack Bar chart. Once

the Chart section is inserted underneath the r Plan v Act results, the chart format is
changed to the Bar-Line format, the Year and Quarter data elements are set to the
x-axis, and the Revenue Actual and Revenue Plan data elements are set to the Facts.
The following screenshot shows the Bar-Line chart configured with data elements:

25,000,000 25.,000.000

20.00:0.000 20.000.000

15,000,000 15,000,000

. Y B Revenue Plan
10,000,000 \ 10.000.000 Revenue Actual
S‘DDD‘DDD I‘ i I‘‘ I‘ I S‘DDD‘DDD
1] e e —— o
Switching bar and line facts

The Bar-Line chart configures the first fact value to display as a bar and the second
fact value to display as a line. In order to switch the bar and line facts on the chart,
right-click on a bar fact element in the Data Layout window and select Display As

Line as shown in the following screenshot:

Reven I
Fact Re

move
Hidden Item

Display As Line
Add Trend Line
Add Reference Line...

[55]

Creating a Simple Dashboard

Similarly, a line can be switched to a bar by right-clicking on a line fact element and
then selecting Display As Bar as shown in the following screenshot:

Fact Revenue Plan * [Eiagoarewe

Remove
Hidden Item

Display As Bar

Add Trend Line
MAdd Reference Line...

Customizing the Bar-Line Chart

Similar to the Stack Bar chart, the Bar-Line chart default settings are not particularly
well-suited to be displayed on a dashboard. The following content discusses the
configuration of the line properties on the chart. The properties of the bar object are
configured using the same steps as described in the Creating the Vertical Stack Bar
Chart section.

Ignoring Null Values

Hide null values on the line objects by checking the Ignore null values option on the
Data Labels tab of the line Properties dialog box:

Pattems | s | Data Labels |

Turning off right values

When facts are added to the Bar-Line chart, the default setting configures the lines

to use the right axis and the bars to use the left. Any underlined facts in the Data
Layout pane are using the right axis. Double-click an underlined fact to force the
Lines and Bars to both be measured on the left axis. If the right axis is needed for
chart formatting, but is not needed for display on the dashboard, the right axis labels
can be turned off by unselecting the Show values at right option to further maximize
the display space.

[56]

Chapter 3

General | Labels Axis Values ds | Bar Chart |

™ Show left ads label ITI:ItaI Rewvenue Flan
™ Show right zuds label |

¥ Show tickmarks at intervals
¥ Show values at intervals

vV Allow adjustable scaling for faster peformance

Line properties
Lines have additional options to modify the properties of both the line and the data
marker. Adjusting these settings makes the line more visible on the dashboard:

| Axs | Data Labels |

rLine r—Markcer
" Automatic ' Automatic
™ None ' None
& Custom (&) Custom

Color: I_ Style: I Diamaond hd I
Width: |2|:-t vl Size: IBpt vl

Style: ISnIid vl Border color: I_
Preview Zoom: 100% TELL I_

Help QK Cancel

[57]

Creating a Simple Dashboard

Customizing the grid

The default Bar-Line chart is configured to show only the Y-Axis grid lines, which

creates horizontal lines. Adding vertical grid lines will make the chart easier to read

when it is presented on the Dashboard section. Vertical grid lines are configured by
right-clicking with the chart highlighted and selecting Show X Axis Grid Lines to

toggle the display of vertical grid lines:

v Show X Axis Grid Lines

INes

Grid lines on the X-Axis are especially good at keeping the relationship between the

axis and the line data clear when no bar data entries exist. The following screenshot
shows the example Bar-Line chart ready to be imported on the example dashboard:

% Hyperion Interactive Reporting Stud okExample.bqy
o Fle Edit View Insenn Format Chart Tools Window Help NEES]
0 G ot st) b Process =l e T)| e 0B |
| | va’AAﬂBIH|§§§|/v£'A'\§J'%'!‘:.:4“5‘
1Ll e Plan v Act ~ 0 Datalayout =[sot o~
Sections x
@& qCostv Price Plan v Actual
@& rCost v Price s2s.000.000
[t Cost v Price
il < cost v price
@B qPinv At s20000000
@A relanvAct
[tPlanv Act
$15,000,000
$10,000,000
Elements
gt Plan v Act (q Plan v = $5.000000
[Revenue Actual
[l Revenue Plan
il Year
- [Quarter ©
2000 2000 2000
Q2 Q3 Qs
B gevenue Actuat + everve ian
Fact Revenue Actual * Revenue Plan d|uepm9rsg columns here to create depth il
|XAzi'STaar * Quarter =
= = =]
| [8rows used —0

[58]

Chapter 3

Displaying pivots

Pivot sections can be configured on the dashboard in an active and inactive state.
When inactive, Pivot sections are great for displaying static data and provide the
ability to have actions occur when clicked. When active, Pivot sections provide

interactivity allowing for powerful dashboard slice-and-dice functionality directly in
the dashboard.

This section will discuss the creation of three Pivot sections for the dashboard

from two Query sections, where both inactive and active pivots are demonstrated.
Additionally, this section will discuss how to limit Drill Anywhere paths using
Table sections and the methods for creating ranking pivots without using JavaScript.

Creating a simple pivot
Pivot sections are great for displaying data on a dashboard. This section will

discuss the steps to create a simple Advertising pivot showing year-to-date (YTD)
advertising costs across Product Lines for the sample dashboard:

ookExample.bay
2 Edit View Insert Format Dashboard Tools Window Help == x|
2| Dashboard = NE——
. =

BMV USA Execuitive Dashboard |

Company End of Year Statement
Reqgional Sales Report
Inventory Report

Plan v Actual

20 BMV Intranet
www.downtownbmvy.com $4,460,115
Super BMV New York $1.494,810
Super BMV Westwood $1,406,972
Super BMV Los Angeles $1,205,505
BMV Brooklyn $1,105,996

Unit Cost v Retail Price

- I
o I
1988 1388
a1 Qz

® Revenue Achiatl * Eevenue Pian

[E= AE=)

a3 Q4

2000

o0 2000
az oa.ca

= o 2500000

1 Product Family YTD Sales Total Sales sreoms

_ Action and Adventure $281,543 $1.815,647 s1000000

_ Alternative $17421 $883,065

_|Arts and Music $564,192 $3,993,251 $5.00000

_ Audiobooks $688.444 $2,506,433 -

| Biographies and Memoirs $767.660 $5.004,953 T s s oims s

 Blues $117.043 $623.760 M
_ Business and Investing $554,254 $4,389,156

| Childrens Books $255,197 $1,257, Product Line YTD Advertising Cost
| Classical $561,670 53,381,266 gooks $506,522.54

| Computers and Internet $1.185,798 $9,991) $100,597.27 =

[59]

Creating a Simple Dashboard

Creating the parent query

The first step in creating the Advertising pivot is to create a simple query to produce
the data set for the pivot. The example query to support the Advertising pivot uses
the Periods Months, Advertising Fact, and Product tables with joins on the table
keys. The example query uses the Advertising Cost and Product Line elements in
the Request line with the sum function applied to the Advertising Cost element.

Limiting by YTD and country

Best practice data warehouses contain a table typically referred to as a date
dimension that stores dates with related information, such as fiscal year, quarter,
calendar month, and other formats and custom values. With a date dimension,
complex date and time manipulation is avoided and system usability is increased. In
the sample database, the Periods Months table serves as a date dimension.

In the dashboard example, the Advertising query must be filtered to view only

the current year data. Since a date dimension table exists, logic for filtering for the
current year does not need to be developed. Instead, the Year field from the Periods
Months table is set to the current year. Additionally, the Country field filter is added
to filter the data to only records related to USA advertising.

Renaming Request line items

Similar to the way in which Request line items can have calculations applied to
them, Request line items can also be renamed. It is always a good idea to make sure
that column titles are representative of what the fact is reporting. As date filters are
applied to the query, the Advertising Cost field would be better represented with
the name YTD Advertising Cost to better describe the values returned from the
database. The name change is completed by double-clicking Advertising Cost in the
Request line to open the Item Properties dialog box and changing the item name to
YTD Advertising Cost:

J Request SUMMYTD Advertising Cost) Jiggels¥e g Kyt
J Filter ﬂ|@ Itern Properties

Mame IYTD Advertising Cost

Diefinition
’7 SUM { Advertising_Fact.Advertising_Cost) j Functi

Yoar [

The following screenshot displays the Advertising query ready for processing:

[60]

Chapter 3

@ Hyperion Interactive Reporting Stu

_ﬁ File Edit View Insert Format Query DataModel Tools Window Help
e L ol Rl e I g b Tl Prosess =l s T D)
s ~]wr s | B I U|= E\yvgvAv\gv%v’n:J%‘

|Tahoma

A q Advertising + [T Request@y P Filters(3) =0 Sort@)

Sections x J Request ‘ SUM(YTD Advertising Cost) | Product Line |

A qcostv price

o | Fiter 4| Year| AND 1| Guarter| AND 1| Courtry|
¥ r Cost v Price

[tcostvPrice
Wl < cost v Price

o qPianv act ™ Periods Months
@A relan v Act _Year Month Key =

Advertising Cost
Country
Media Type

[l tPian v Act First Day Of Month iy Pruguct Key =
Fiscal Quarter Product Categ ™

gl < Plan v Act Fiscal Year rodu eg

= Month Hame y = ngMt Famy

o P ct L
F— Month Mame Abbreviated B Advertising Fact p:ﬁdgct N‘Q,ie
= = Month Humber _Advertising Key - Product Publist
¥ Tables = guarter _Year Month Key - Product Sku
= Year

wil

| [24 Fows

[Combined View: 3 topics

(=D

After processing, the fact column title displays the updated name of the data element

renamed in the Request line. The following screenshot displays the Advertising
query after query processing is complete:

@ Hyperion Interactive Reporting Studio - BookExample.bqy

| File Edit View Inset Format Results Tools Window Help

L2t sl s A [P it s
| el

= x|
|31Pmcm' Ay J|®‘
| &« sl ~ & «| %~ %~ 3 % 8

A ¢ Advertising * @ Fitters() =] Sort@® 77 Data Layout

R
Sections X J Fitter | Drag Report Columns here fo create fters |
[tPlan v Act a | ;I
I < Planv Act IR [

[1] 506,522.53589 Books
12 | 100,597.27295 Music
2 64,1561.92578 Videos
Elements
----'I".gq Advertising -~
ﬂ YTD Advertising C P
ﬂ Product Line JJ

‘YTD Advertising Cost Product Line

| [30F 3 Fows

[03/2911

101:28:55

Following the completion of the query, the Product Line and YTD Advertising Cost
are easily placed in a Pivot section to create the Advertising Cost Pivot section for
the dashboard. The following content will highlight additional methods to use with
Pivot sections, including pivot formatting.

[61]

Creating a Simple Dashboard

Ranking and Pivot Drill path configuration

While previous examples have demonstrated separate Query sections for each
dashboard object, it is productive to produce dashboard objects from a single query
when the objects utilize a similar set of results. Since Table sections can be used to
segment content and enhance the data set through Computed Items, the reduction of

multiple Query sections allows for the same functionality with reduced data storage
and processing time.

To demonstrate this concept, the q Sales and the r Sales sections are utilized

to produce the Product Family and Store Sales reports. The q Sales query is
constructed from the Periods Days, Products, Sales Fact, Stores, and Regions tables.
The query contains the Store Name, Product Line, Product Family, Amount Sales,
Year, Quarter, and Month Name Abbreviated with a data filter on Country to
display only stores located in the USA. Within the Request line, the sum function is
applied to the Amount Sales element and the Month Name Abbreviated element

is renamed to display Month. The following screenshot displays the q Sales query
configured for processing:

% Hyperion Interactive Reporting Studio - BookBxample.bgy

| File Edit View Insert Format Query DataModel Tools Window Help —|=| x|
[t i T B Pt B ol Process o o D)
RS s s an| B T U|SE == d-a~|ig% 1 %3

o qsales ¥ [+ Requestn ¥ Fitters() =] Sort@® =
Sections X |

J Request | Store Namel Product Line‘ Product Familyl Amourt Sales | Yearl Quarle(‘ Munthl

Jﬂ qPlan v Act ﬂ J Fitter j'M

Jﬂ rPlan v Act

[tPlan v Act ¥ Periods Days - i
|l < pian v act Day Key - Region Ke
—_— Full Date I : Y E
Jﬂ q Advertising Year = = ?Z?IIEEW
A r advertising Suagﬂl b \ ¥ Sales Fact = = Country
— onth Nurmbel
. Day Key - Store Ke
Month Name | Poductkey —| =7 Regonkey
A rsales WU” k Ofg?;e Store Key Store Name —
i — vee : 9?1[Amount Sales Store Code
hd Day Of Month | _ Unit Sales Store Type
Elements Street Addres:
- Tables = gg'fte Province
Product Key - Postal Cod,
Product Line i 2 =
Product Famify

Product Category

Product Name
Product Sku
Product Publisher

| [Sorting 100% done [Combined View: 5topics D=0

[62]

Chapter 3

When this query is processed, the Amount Sales by Product Family is returned as
shown in the following screenshot:

2 File Edit Insert Format Results Tools Window Help LI
oL 2ot g A o st B el Brocess e e D)
| e T S Jea aw| BT U Fowd e A%y v .,’f=|
M rsates = ¥ Fitters@) 5] Sort@ {7 Data Layout -~
Sections X ||| Fitsr | Dveg Aepor Catumns hewe to create fiters
-
d? 9 Plan v Act Store Name Product Line Product Family Amount Sales Year]
d;l rPlan v Act 1 Super BMV Westwood Books Home and Garden 15.367.70313 2001 Q1
8 tpianvact 2 | Super BMV Westwood Books Home and Garden 9,970.52832 2001 Q1
m 3 |www.downtownbmv.com Books Home and Garden 45,275.19922 2001 Q1
H g Advertising 4 | Super BMV Westwood Books Arts and Music 10,999, 14844 2001 | Q1
@ radvertising 5 |Super BMV Westwood Videos Action and Adventure £,924.70557 2001 | Q1
& | Super BMV Westwood Books Biographies and Mem 15.367.70313 2001 Q1
7 | BMV Brooklyn Books Food and Wine 17,672.85838 2001 Q1
EMY Brooklyn Books Biographies and Mem £,205.5557 2001 Q1
9 |www.downtownbmv.com Books Computers and Intern 61.581.6756% 2001 Q1
Elements 10 |Super BMV Westwood Books Computers and Intern 13,835.55273 2001 Q1
fﬂu Sales = 11 | www.downtownbmv.com Books History 53,894.75 2001 Q1
& ﬂsture Name —
- [Product Line 12 |Super BMV Los Angeles Music Jazz 10,452.50195 2001 Q1
= ﬂ Product Family 12 |Super BMV Los Angeles Books Audiobooks 16,630.38086 2001 Q1
b ﬂAmnunt Sales 14 | 5Super BMV Los Angeles Music Jazz 7.372.80176 2001 Q1
e EYEET 15 |Super BMV Los Angeles Music Classical 7.372.80176 2001 Q1
- [Quarter 16 |Super BMV Los Angeles Videos Kids and Family 15,360.00391 2001 | Q1 |}=
i Morth | o
Store Name Product Line | Product Family, Amount Sales Year Quarter. Month

| [4273 of 4272 Rows [z 013123 T—

[63]

Creating a Simple Dashboard

From the data results, a table and pivot are created to support both the Top 5 Stores
view-only Pivot section and the Sales by Product active Pivot section on the BMV
USA Executive Dashboard.

BMV USA Executive Dashboard A

Store Name Amount Sales

FIkocance EMW Broakiyn §7.245.879.45
Super BV Los Angeles $6,315.561.82
hponRca Super BV New Yark $7.265.260.34
Super B Waestwood $5,353.954.04
Fnaho www.downtownbmy.com $32.713.875.41
= Unit Cost v Retail Price
o myepruy At * LEAaDe Fur 000000
T
Action and Adventure $1.815,647.25 s
Alternative $BE3DE5.35 $3,00600 l
ATty and Muic %$3.993.251.13 saiia
Audiobooks $2.506.433.21 Y MR TR TER
Biographsas and Memoirs $5.004,553.45 = ,_i'_,__ u_::,, ? k:m.:,..“
Bl ¥eaR.7Ae Product Line YT Advertising Cost
Busingss and imvesting 436015600 Bocks $506.572.54
Childrens Books $1.257,701.96 Music $100.557.27
Classical $1.381.265.34 Videas TR
1] | LEJ

Displaying ranked dimensions

Ranking is a powerful way to identify the most positive or negative contributions.
In the case of the BMV USA Executive Dashboard, a table is created that displays the
top 5 stores with the highest sales revenues.

[64]

Chapter 3

With the Computed Item dialog box open, select Functions and navigate to the sum
function in the Numeric Functions category. Set the sum function parameters to
aggregate Total Sales broken by Store Name:

Function Categories: Functions:

Condtional Functions - Count -
Date Functions J Count Distinct _I
IMath Functions CourtNonMull

CourtNull
Picture Functions

Statistical Functions
String Functions
Trend Functions
vI

Parameters]

Retums the total of a column of numbers

Column

IAmount_SaIes Reference...

Break Column {Optional)

IStore_Name

Break Value (Optional)

Pressing OK closes the Functions dialog box, which will display the code in the
computed item as shown in the following screenshot:

Computed ltemn

Name |[Total Sales
—Definition

Sum (Amount_Sales. Store_Mame) ;I Functions... |
Reference... |
Options |

Help ok | Cancel

[65]

Creating a Simple Dashboard

The code populated by the Functions window can be further modified or enhanced
as desired on this screen. Pressing OK to accept any code changes will create an
additional column within the Results section to apply this calculation.

Upon completion of the Sum function, a Rank function must be added to the Total
Sales column. The Rank function will rank the highest value at number 1. Insert

a new Computed Item called Sales Rank. Use the Functions dialog box to select
the Rank function under the Statistical functions category and rank the Total Sales
broken by Store Name.

@ Hyperion Interactive Reporting Studio - BookExample.bgy
Y File Edit View Insert Format Results Tools Window Help == ﬂ
oot A B o s B b Process ol e T D)
| [Bncale T Sfo ZJet an| B I U= S R I S B e I I
o rsales = ¥ Filtersq@) =] Sort®) (7 Data Layout 4
Sections X ||| Fiter | Drag Aspart Catumns fere to create Fiters
jjf aPlanvAct Year Quarter Month Total Sales Sales Rank [~
rPlan v Act ; 2001 Q1 Jan 6,353,054.03522 3
M tpanvact 2 2001 Q1 Jan £.353.954 03522 3
M 3 2001 Q1 Jan 32.713.875 40991 1
& q Advertising 4 001 @1 Jan £.353.954.03522 3
W r Advertising 5 2001 | Q1 Jan 6.353,954.03522 3
A qsales & 2001 | Q1 Jan 6,353,954.03522 3
7 2001 Q1 Jan 7,245,879.45132 5
- = 2001 | Q1 Jan 7,245,579 45132 5
— 9 2001 Q1 Jan 32,713,875.40091 1
Flements 10 2001 | Q1 Jan £.353.954.03522 3
~Ega 55;:5 N =l 2001 | Q1 Jan 32.713.875.40991 1
: gpédmumag:e 12 2001 Q1 lan €,315,561.82178 4
- |1l Product Famiy 12 2001 | Q1 Jan 6,315,561.82178 4
>"|_‘iAmOUI'ﬂ Sales 14 2001 Q1 Jan 6.315,561.82178 4
[Year 15 2001 | Q1 Jan £.315.561 82178 a
Ll Guarter ® 001 @1 Jan £.315,561.62175 4 =
- [Month 0 O =
‘ Store Mame . Product Line Product Family. Amount Sales Year Quarter Month Tofs/ Sales Sales Rank
| [4273 of 4273 Fiows [03/25/11 013123 T
_— -
When there is a need for a filter on an aggregated or ranked Computed
M Item, the filter must be performed in a child table. The order of operations
Q for the execution of Computed Items within Interactive Reporting does
not allow for the filtering of any comparative calculations, such as rank,
sum, next, or prior within the same table section.
- -

The first step in creating this object is to determine the Total Sales for each store.

A Computed Item must be created to summarize the total for each store. With the
addition of the Sales Rank column, the dataset is prepared to be filtered to determine
the top 5 performing stores by Total Sales. As filtering on the rank column must take
place in a dependent section, insert a new Table section. Add Store Name and Total
Sales to the Table section from the Elements pane and a filter on Sales Rank to
include only rows where the Sales Rank value is less than or equal to 5.

[66]

Chapter 3

Filter: Sales Rank

MName: ISaIes Rank OK |

I™ Include Nuls _ Cancel |

™ Mot I:: Less or Equal ;I lgnore |

x|v|] el
Show Values -
| SeeatAl |
Remave ;I
& QOptions |

Then, insert a Pivot section and add the Store Name to the Row Labels and the
Amount Sales to the Facts, as shown in the following screenshot:

@ Hyperion Interactive Reporting Studio - BookExample.bqy
3 File Edit View Inset Format Pivet Tools Window Help & x|

| B P S [[[I S o

| Andale w e ZJer | B T U|=E==| A ~|id~% 2 s
Data ut Sort =

| p Top 5 Stores *

Sections X —_—
- = — i Amount Sale
A qsales T | BMV Brookly ###n#s#
oA rsales Super BMV | st
(i £7op s stores : Super BMV I ###s# s

IE p1op s Stores
Super BMV \ ######RF
www.downic FRERRERR

Elements

-----I'at Top 5 Stores (g Sale) =
>Lj Store Name
[Amourt Sales

Row Labels: Store Name ﬂ Column Labels: Dra

Fhels ﬂ
=l
=

Facts Amount Sales

| [4132 rows used [1x5 —m

[67]

Creating a Simple Dashboard

Add Data Labels to the Row dimensions by choosing Row in the Corner Labels

right-click menu, as shown in the following figure:

OTNTY T I T o T I o T

BMW\ #fsttit
downtc #RsRHH

Add Computed tem...

Data Labels ’
abels,

Corner Labels

Use Surface Values

| 4132 rows u

Column

Both

The Row Labels provide a row title for the columns within the pivot. Set the
formatting of the pivot to change colors, fonts, numeric formatting, and any
miscellaneous visual properties. The following screenshot displays the modified font
and color of the Row Labels:

@ Hyperion Interactive Reporting Studio - BookExample.bgy
| File Edit View Insert Format Pivot Tools Window Help =] x|
oLn et o i i B B it st B M Process o s T 1D
| fndale wT o] da| B I U|=E==| vl A ~|id~% 2 %8
|l p Top 5 Stores Data Layout Sort R
Sections x| [|
WA qsales T | | BMV Brooklyn $7,245,879.45
ljﬂ rsales N Super BMV Los Angeles $6,315,561.82
(i £7op s stores * Super BMV New York $7,266,260.34
p Top > Stores * Super BMV Westwood $6,353,954.04
—] _www.downtownbmv.cnm $32,713,875.41
Elements -
I@t Top 5 Stores (g Sale) =
E::%i:zrrqda;?es Row Labels: Store Name ﬂ ??fy'r{?'_nlff‘f::ﬁ: tems here eate j‘
Facts Amount Sales LI
= E [~
| [4132 rows used (5 =

[68]

Chapter 3

Limiting Drill Anywhere paths

Drill Anywhere, or drill path, options can be limited by using only the desired
drillable data elements in the parent table of the section. Configuring a Table section
with a reduced number of columns allows for hiding data columns used by other
objects when the user of the report is utilizing the Drill Anywhere capability on a
chart or pivot.

To create a pivot with limited Drill Anywhere options, insert a new Table section.
Add only the columns needed to support the pivot and the desired Drill Anywhere
options and disregard any other data elements from this Table section. The
following Table section, t Store Sales, displays a subset of the r Sales columns:

% Hyperion Interactive Reporting Studio -

5| File Edt View Insert Format Table Tools Window Help _1s| x|
ot o e B o ot st il Processoe i o D)
| [andzie T B R R e B e O I L R B 1 .,“:‘

4t stare sales ¥ P Filters(@) =] Sort(@ (1] Data Layout E——
Sections % ||| Fiter | Lrag Repart Columns e to create Fiters
@2 q Advertising I=] =
¢ Advertising Store Name Product Line Product Family Amount Sales Year Quarter MontHe
dﬂ Sales Super BMV Westwooc Books Home and Garden 15.367.70313 2001 Q1 Jan
dﬂ qs Super BMV Westwooc Books Home and Garden 9.970.52832 2001 Q1 Jan
r Sales
wwrw.downtownbmyv.c Books Home and Garden 45,275.19822 20001 Q1 Jan
[tTop 5 Stores —
Super BMV Westwooc Books Arts and Music 10.999.14844 2000 Q1 Jan
| pTop 5 Stores —
- Super BMV Westwooc Videos Action and Adventure 6.924.70557 2000 Q1 Jan
= = = Super BMV Westwooc Books Biographies and Mem: 15.367.70313 2001 Q1 Jan
— BMV Brooklyn Books Food and Wine 17.672.85938 2001 Q1 Jan
e s BMV Brooklyn Books Biographies and Mem: 6.205.5957 2001 |Q1 Jan
T ﬂ Store Name - www.downtownbmv.c Books Computers and Intern 61,581.67962 2001 Q1 Jan
-l g'“:“ﬁ‘ :;'”E Super BMV Westwooc Books Computers and Intern 13.835.55273 0m |1 Jan
i '%N’:o:s: S:E!V || www.downtownbmy.c Books History 53.894.75 2001 | Q1 Jan
L vear || super BMV Los Angel Music Jazz 10,452.50195 2001 | Q1 Jan -
).ﬂguaner = s . e e A '
1 3
- [l Month s
! -ﬂTcrtal Sales Stere Name Product Line . Product Family. Amount Sales Year Quarter Month
- [Sales Rank =
| [4273 of 4273 Rows o—n

[69]

Creating a Simple Dashboard

Once the new Table section is created, populated, and highlighted, add a new

Pivot section so it indents under the t Store Sales Table section. Add and format
dimensions and facts to be displayed to the user by default as shown in the following
screenshot. Right-click on a dimension and choose Drill Anywhere to see the lateral
drill paths available to the user on the dashboard as shown:

Product Family Amount Sales
.... +a_nar o~ ?.29
. Drill Anywhere Store Mame
Alternative Product Line 5.35
Arts and Mugi #1dd Computed Item. . Year 51.13
F It
Audiobooks gets aniEms Quaster 3.21
Hide Items
Biographies ar Muonth 53.46
Blues ks $623,759.56
3
Business and | Styl? $4,389,156.31
Justify »
Childrens Boo $1,257,701.96
Classical e g $3,281,266.34
C Label 3
Computersan o os $9,991,359.65
Uze Surface Values
Country $1,549,145.99
Dance and D) $943,094.13

Setting the default pivot formatting

When end users drill through active pivots, items added to the pivot will follow
the default pivot options set within the document when the document was created.
To reduce the manual pivot formatting, the default pivot formatting should be
consistent with the display properties of the pivot, as items added to the pivot will
follow the default pivot options unless the options are overridden in the pivot.

To set the program's default formatting style, navigate to the Default Formats in the
Options submenu located in the Tools menu:

[70]

Chapter 3

RER

| B

uct L

Pivot | Tools Window Help

Process Query

Connection

Connections Manager... F11

Save Connection...

A L B L

Adrminister Repository

Connect to Interactive Reporting - System 9...

Launch Dashboard Studio...
Launch Dashboard Architect...

Customize...

Program Options...

Resource Manager...

Set the default values for Data Values and Labels on the Pivots table of the Options
dialog box as shown in the following screenshot:

Default Fonts and Styles

General | Query | Table

| OLAF | Repott | Chart | Dashboard | Mumbers |

Settings: Fort Name:
[Datovaies P
Labels

Size:

[

—Calor
Text: Background:
[Back x| fwhite =]
rJustification
Horizontal: Vertical:

, Bzl=-E-

Borders: ~Sample
Horizontal hd
|Hanzorta = sample Text
| Black |
Help Defaults QK Cancel

[71]

Creating a Simple Dashboard

Overriding the default pivot formatting

The default pivot formatting is overwritten by selecting Ctrl+A on a Pivot section
and then setting the formatting of the whole pivot to the formatting desired for the
Row Labels. This formatting will be the default format for any new value added to
a pivot. Once the default formatting is set, then the formatting of the Facts can be
changed to a different formatting to support color variation between Facts and Row
Labels. Even though the Fact formatting is changed, any new addition to the Row
Labels will retain the new formatting settings.

Creating a simple dashboard

Now that all of the preparation is complete, the Dashboard section is ready to be
created and populated. This section will discuss the methods for adding previously
created data-driven components to the dashboard as well as steps to introduce
adding graphics, controls, and basic user interactivity.

Dashboard sections have a Run Mode and a Design Mode. When a new Dashboard
section is inserted into Interactive Reporting, the section starts in Design Mode.
When the dashboard is in Design Mode, dashboard objects can be added and edited.
When the dashboard is set to Run Mode, the dashboard is fully operational for use
by the user community.

Run Mode and Design Mode are toggled by using the Ctrl+D keyboard method, by
using the Design Mode button on the Section toolbar, or by using the Design Mode
toggle under the Dashboard menu as shown in the following screenshot:

Format|Dashboard Tools Window Help

7 l_l Design Guides

]ﬁl - Grid

B T o

v Rulers

Insert Graphic

ﬂ v Insert Control

N Insert Gauge
Insert Live Chart

Rermave Selected Ierms Del

* ¥ T r
[

Scripts... F8
Properties...

Home Dialog...
v Desi Viode

[72]

Chapter 3

The rulers are displayed only in Design Mode.

Adding dashboard objects

Objects are added to the dashboard using the Elements window displayed in

the bottom left of the next screenshot. The Elements window has a tree structure
displaying content across the sections in the document as well as configurable objects
native to the dashboard such as Controls, Live Charts, and Gauges. To add objects

to the dashboard, navigate to the desired object in the Elements pane and drag-and-
drop the element to position it on the dashboard. Once the object is added, it can be
resized as needed. The following screenshot displays the sample dashboard with all
of the embedded sections added, resized, and positioned:

3 File Edit View Insert Format Dashboard Tools Window Help — = x|

Jolan ittt s A B Bt e |l Process |zt o D | | BT v E e
| J@Ral Uricode 15 <[5 <]t dta |y B d- U | = = = | o vt v v g v % v 9 %5

Sections Xﬂl"""'1""'"2"""'3"""'4"""'5"""'E|ﬁ

CEEET -
]

dﬂ q Costw Price

WA rcostvprice

@ t Cost v Price
M c Cost v Price

dﬂ q Planwv Act - 520

dﬂ rPlan v Act

[trlanvAct
_M c Plan v Act

Plan v Actual

EMV Brooklyn

Super BMV Los A
Super BMV New’
Super BMV Wesh
www.downtownb

WA q Advertising ~
dﬂ r Advertising

[t Advertising _
[I T

|4

Elements

E+i# g Cost v Price = (IR N
dﬂ r Cost v Price . 1232 e 1238 2000
[t Cost v Price @ @ Q¢ Q1

t-.7 q Plan v Act
]ll‘ﬂ q Advertising

]lél q Sales - Product Family Amount Sales 1500000
+-142 q Filter i o
1 £7) Graphics T | Action and Adventure $1,815,647.29 .
£ (g Controls - || Alternative $883,065.35
I Gauges 2| Arts and Music $3,993,251.13
#- g Live Charts -

g Audiobooks $2,506,433.21 s0.00

+-I5 Resources
" Biographies and Memoirs $5,004,953.46 o]

- | Blues $623,759.56 il 5
e | »

B Revenue Actust - Revenue Fian

ra == e =T = W = W = el

[73]

Creating a Simple Dashboard

Adding graphics and controls

In addition to adding sections of the document to the dashboard, objects such as
images, labels, and buttons can be added to enhance the dashboard display and

to add user interactivity. This section touches on the addition of graphics to a
Dashboard section and the following chapters will discuss the use of controls with
custom programming.

Graphics are added to the dashboard by dragging an object from the Elements pane
to the dashboard while in Design Mode. The most common graphic is the Text Label
object, which is used to provide titles and text descriptions. Lines and shapes are
also used to define borders and separate content. The effective use of graphics will
significantly enhance the dashboard display and visual appeal.

Adding custom images

Custom pictures, such as company logos, can be easily added to a Dashboard section
using the Picture graphic. Drag the Picture graphic to the dashboard and, when
prompted, choose the graphic from the file navigator. Use the Picture tab in the
Properties menu of the Picture object to modify display properties of the picture.

[74]

Chapter 3

Adding Hyperlinks

The Hyperlink dashboard control object creates hyperlinks from a dashboard

to either repository objects or external web pages. Hyperlinks are added to the
dashboard by dragging the Hyperlink object from the Control group in the Elements
pane to the dashboard. The Hyperlink name can be edited similar to a Text Label on
the dashboard, but the link properties must be configured by selecting the Properties
of the Hyperlink object. A URL can be supplied and the Display Method can be
configured to allow the link to open in either a new window or the current widow.
Future chapters will discuss advanced techniques regarding the methods for using
the Hyperlink control to create dashboard menus linking dashboards in different
Interactive Reporting documents.

The following screenshot shows the full configuration of the dashboard with an
image, title, and hyperlinks to outside documents:

Hypanon Imteractivie Reporting Studio - ChagtesIWorkBook by
2 Fde Edt View Ircemt Fofmat Dashbosrd Toch Windew Help e
- -
BMV USA Executive Dashboard o
Flan v Actual FAE A MR
621,000,000 E A ! ﬂll"'a _35 E'
\rreniony Repor
B intranst
BMY Broakhyn §7,245.879.45
Super BV Los Angebes $6.315.561.82
Super BLY Néw York $7.266.260.34
Super B Westwood $6,353.954.04
www.lowmtownbm.com 13271387541
Unit Cost v Retail Price
e 1 Rl e EI.-.' L':::.“". i.f:‘"I -_‘:‘: tamssnne
= " = e al o =)
B merrom At * et B R30.008 06
TS50
Action and Adventure $1.815,647.29 iy
Alternatine §883,065.35 11
Arts and Music $3.993,751.13 i
Audichooks 250643321 :" ':ﬂ ;:' ':" };N
Blographies and Memoirs $5.004.553.46 I T p———— S ek brca
Bluzs WIS Product Line YTD Advertising Cost
Business and imverting $4.355,156.31 Bodiks 4506.532.54
Childrens Books 41,257, 701.96 Music $100.557.27
Classical $3.381,766.34 - snalnian B
A L
[75]

vww allitebooks.conl

http://www.allitebooks.org

Creating a Simple Dashboard

Basic interactivity

Interactive Reporting provides dashboard interactivity for Chart and Pivot sections
without the need to use JavaScript customization. Chart and Pivot sections placed

on a dashboard by default have no interactivity. However, charts and pivots can

be made interactive by setting the embedded section property to either Active

or Hyperlink. The sections can be modified by selecting the desired object on the
dashboard and use the right-click menu to select the Properties of the object. Notice
the configuration change of the embedded section setting from View-only to Active:

Properties - P

Object | TabOrder | Accessbity | Commerts |

Object

MName: IPiVDTZ

Section: p Store Sales

—Settings
¥ \isible Make embedded section:
¥ | Enable " View-only
I™ Locked % Active
I=| Auto-Size ™ Hypedink
Show Scrollbar: Im
Help OKl — |

Active dashboard objects allow users to perform analytical operations, such as drill,
focus, and hide, within the embedded section object without leaving the dashboard:

Blues
Business and Investing
Childrens Books

Classical

Product Family Amount Sales

Action and Adventure $1,815,647.29
lternative . °°73,085.35 $5.000.00
—__ Drill Anywhere » Store Name :
_Ar‘ts and Music —F B Product Line £0.00
Audicbooks SIS Vear ,433.21 1933
i -) Hide Items Q1
Biographies and M. Quarter ,953.46 stangara U

Month

,251.13

,759.56
$4,389,156.31

Product Line

Books
$1,257,701.96 Music
$3,381,266.34 Videos

[76]

Chapter 3

The Hyperlink option invokes code in the onclick method of the object when a
user clicks on the object in Run Mode. The default code behind each object takes

the user from the Dashboard section to the section that was clicked, where the user
can perform analysis directly on the specific section. Future chapters will discuss
modifying the default hyperlink behavior to navigate to other dashboard sections for
further analysis.

Gauges

In addition to the items discussed on the sample dashboard, Gauges are a more
recent addition to Interactive Reporting and are used to display a quick view of a
key business indicator. The gauges in Interactive Reporting are limited to a Bullet,
Speedometer, Thermometer, and Traffic Light. Each gauge has a Configuration tab
in the gauge properties, allowing for the custom configuration of the thresholds of
each object when the dashboard is in Design Mode.

Configuring gauges
When a gauge is added to a dashboard, the gauge must be populated with data
elements produced from a query, and the properties of the gauge can be configured

to produce the desired view of interest. The following image is a sample of each of
the four gauges on a dashboard:

@ Hyperion Interactive Reporting Studio - Chapter3WorkBook.bagy

ﬂ File Edit View Insert Format Dashboard Tools Window Help - ELI
Jon ot gt [T B APt B (o Brocessow . e T B o T B

%] Gauges Example ¥ =

-
Sections x Bullet jl
a
2] Deshiboard — $175.000000 —
m Gauges Example P
g - $15 =
& qCostv Price I =
@ rcostv price $1zs.m000 —
| tCostw Price z
U ¢ Cost v Price Honmon =
A qranvact S0 =
WA rpanvact Ssoman —
[tranvact =
| c Pan v Act 525.000000 =
\Jﬂ q Advertising 0 =
O r Advertising 1,254,550 &1.25 (31000000
[t Aduertizing =
Elements Thermometer Traffic Light

17500000050

150.000.000.60

125.000.000.00

100.000.600.60

75,000,000 00

o i
o

50,000,000.00

25,000.000.00

000

4
i
b

(£l

[77]

Creating a Simple Dashboard

Each gauge contains a Fact element and all of the gauges besides the Traffic Light
contain a Target Fact element. When a gauge is clicked and highlighted on the
Dashboard during design, a Data Layout window appears at the bottom of the main
screen with areas to add data elements from Results or a Table section. Dragging-
and-dropping the desired elements from the Elements window into the Data Layout
area will configure and populate the object with data. After adding the elements to
the section, toggling the Dashboard to Run Mode will display the populated object.

When viewing the gauges (other than the Traffic Light), notice the gauges show

the Fact in either the black line or speedometer needle and the Target Fact is
displayed with the blue object. The Stoplight does not contain similar features, but is
configured to display a color status based on a range of values. All of the gauges are
dynamic and are updated based on the data contained in the referenced query.

Gauge properties and color ranges

Notice the color ranges specified on the gauge objects. Each of these ranges is
configured in the Properties menu of each gauge. The Properties menu of the
gauge is accessed by highlighting the gauge on the Dashboard, right-clicking, and
selecting the Properties menu item or by highlighting the gauge and then selecting
the Properties menu item from the Dashboard menu. The following image is an
example of the Bullet gauge Properties menu open to the Bullet tab:

Properties - Bullet

Object | Fort | Mumber | Tab<Order | Accesshbilty | Comments |{

Theme: Irealistic YI
Style: IVerticaI_BuIIet v[

~Scale Show
¥ Auto [~ Legend

Min: I: 00 Minor Interval: I 00 ¥ Tickmarks
¥ Value
Maoi: I':: D0

Major Interval: |- ¥ Scale

—Color Range
in: e Color: Tooltips:

| [5oooo00i [[Foor
[s0000001 000000 [[Average

XXX

{ 1000000(| [[eest
To extend range to start or end value, leave field blank. Add
Help QK Cancel

[78]

Chapter 3

Each gauge object contains a gauge-specific properties tab, where the tab provides
the same general settings as the previous screenshot where the Theme, Style, and
Color Range settings exist for each gauge type. In the example screenshot of the
Gauge Properties, the default configuration is used and Color Range has been
configured based on the data in the Sales sample to show the different color ranges
on the gauge. When configuring a Color Range, Min and Max values as well as the
desired color are required. However, the min of the first range and the max of the
final range can be left blank to specify no bound on the lower and upper ranges of
the gauge. In addition to the range and color, the Tooltip setting is used to add a text
label to the gauge. The tooltips are displayed when the mouse cursor is highlighted
over the Color Range in the gauge. Pressing the Add button allows for additional
ranges. The other tabs in the Properties menu are specific to setting the generic
object, number, and font formatting for the gauge.

Live Charts

Live Charts are also a more recent addition to Interactive Reporting and are similar
to a Chart section but can only be used in a Dashboard section. There are six types
of charts including Bar, Block, Funnel, Line, Pie, and Radar. The Live Charts are
limited in functionality compared to the Chart section, but Live Charts are more

graphically appealing and scale better than the Chart section when used on a
dashboard.

Configuring Live Charts

Configuring the Live Chart objects is similar to configuring Gauges. When a
Live Chart is added to a dashboard, the Live Chart must be populated with
data produced from a query. Additionally, the Properties of the Live Chart can
be modified to produce the desired Chart display of interest. The following two
screenshots are examples of the six types of Live Charts available for use in the
document.

[79]

Creating a Simple Dashboard

The next screenshot shows the Block, Pie, Funnel, and Radar Live Charts:

) n Inte g Studio - Chap)
ﬂ File Edit View Insert Format Dashboard Tools Window Help _|E|1|
oot A T B ot B e Processom i s e TN [v e
""" Live Charts Ex1 e
Sections x| Block Funnel =
@ Dashboard ;I _I
Q Gauges Example _I
W qcostvrrice
u
r Cost v Price wa @
Q2
[t cost v Price @2 Actual
W a3
1| © Cost v Price Wl
— mos Fas
dﬁ q Plan v Act
rPlan v Act
[tPian v Act
M c Plan v Act
dg q Advertising quaner
8 ¢ aduerticing 157
Elements Pie Radar
-
1
L L-1]
a2 .
N a3 o <
2]
e Q3 Ed

The following screenshot displays an example of a Bar and a Line Live Chart:

[80]

Chapter 3

| File Edit View Insert Format Dashboard Tools Window Help = Elﬂ

oo i T B s el Procsso o T D o o S e
2| Live Charts Ex2 ¥ ol
Sections x || Bar =
ﬂDashboard = _I
@ Gauges Example —

] Live Charts Ex1
B Live Charts Ex2
dﬂ q Costw Price
dﬂ rCostv Price sates
@ t Cost v Price

il © costvPrice

dﬂ qPlan v Act
dﬂ rPlan v Act

[tPian v Act

Wl cPlan v act Product Line

A8 acvertising =l

W Amount ssies

Elements Line

W Fevenue Fan

B Revenue Actial

1383 1383 1383 1883 2000 2000 2000 2000

= Q1 Q2 a3 Q4 Q1 g2 Q3 o4 =

When the dashboard is under design, clicking and highlighting the Live Chart will
bring up the Data Layout window. Each Live Chart contains a Fact area and chart
specific non-fact areas for adding data elements. Dragging-and-dropping the desired
elements from the Elements window into the Data Layout area will configure and
populate the object with data. After adding the elements to the section, making the
dashboard active will display the Chart populated with data. The Live Charts are
dynamic with the data contained in the related Results or Table section. Any changes
to the data will update the display of the Live Chart on the Dashboard.

[81]

Creating a Simple Dashboard

Live Chart properties

Similar to Charts and Gauges, Live Charts contain a chart-specific tab in the Properties
window for modifying the Live Chart display. The Properties menu of the Live

Chart is accessed by highlighting the Live Chart on the dashboard and right-clicking
and selecting the Properties menu item, or by highlighting the Live Chart and then
selecting the Properties menu item from the Dashboard menu. The following image is
an example of the Bar Live Chart Properties menu open to the Bar tab:

Properties - BarChart
Object | Font | Number | TabOrder | Accessbity | Comments | Bar |
Type: ICIuster vI —Category Axis
Effect: D = Title: IPn:-duct Line
[~ Show Labels
Orientation: I‘u"ertical 'I
¥ Show Legend Fact Ads
[~ Show Bar Values Tile: ISaIes
[¥ Show Labels
v Auto Scale
Mir: Mz
Help ok | Cancd |

The chart-specific properties tab provides all of the features that can be modified for
the Live Chart. This menu provides the ability to modify the chart display features,
axis scales, legend, and labels for each of the chart objects. The other tabs are used
for setting the formatting of the chart and the Object tab contains a text box for the
chart Title.

[82]

Chapter 3

Summary

The goal of this chapter was to present the steps to create content for a simple
dashboard and the steps to display the content on a Dashboard section. The chapter
begins with a discussion on dashboard planning and the steps used to produce
effective dashboards. The chapter continues with an introduction to the BMV USA
Dashboard example and then progresses to creating sample pivot and chart content
for the example dashboard. An overview of custom drill paths and methods for
creating a Top 5 pivot are discussed, and the methods for creating and formatting
Stacked Bar and Bar-Line charts for dashboards were presented. Then the methods
for configuring and displaying content on a Dashboard section was discussed with
an introduction to images, graphics, and hyperlinks, and adding interactivity on the
dashboard without custom programming through active pivot and chart features.
Finally, Live Charts and Gauges were discussed to provide an introduction to newer
dashboard specific objects to provide additional dashboard flexibility. The next three
chapters will explain methods for adding interactivity to the sample dashboard.

[83]

Introducing Dashboard
Interactivity

The next steps in building an advanced dashboard is expanding from the
introductory dashboard knowledge presented in the previous chapter to creating
custom interactive components, modifying presentations sections, and applying
filtering. This chapter will build upon the dashboard example in Chapter 3, Creating
a Simple Dashboard, to create a customized dashboard with interactive components,
including examples of several commonly-used Hyperion Interactive Reporting
dashboard components and approaches.

This chapter will present approaches using JavaScript as well as key controllers
and graphics tools, including the role the tools play in providing intuitive and
useful dashboard capabilities to end users. The goal of this chapter is to provide
the building blocks for creating a master dashboard layout with start-up scripts,
navigation, controls, and dynamic objects.

At the end of this chapter, the reader will have a better understanding of the
following concepts:

e Dashboard Section Objects

e Creating a Master Dashboard

e Implementing Custom Dashboard Navigation

e Toggling Object Visibility using Radio Buttons

e Modifying Pivot and Chart facts using a Drop-Down Control

Introducing Dashboard Interactivity

Dashboard Section Objects

Dashboard Graphics and Controls are objects authors use to customize Dashboard
sections beyond embedding presentation sections such as Charts and Pivots onto

the Dashboard. The Graphics and Controls objects can be combined allowing report
authors the option to provide custom tailored Dashboards that are consistent with
the visual presentation for the end user. This section introduces the different types of
Dashboard Graphics and Controls available to report writers for creating interactive
Dashboards that are functional and visually appealing.

Graphics

Dashboard Graphics are commonly used to enhance the look and feel of a
Dashboard section. When customized with JavaScript, Graphics can also be used to
provide button-click interactivity.

Elements

=) Graphics -
\.” Line
..._7 Hz Line
L” \ Line
.- Rectangle
(O Round Rectangle
() Oval
An Text Label
A Picture _I
& IE Controls
g Gauges v

Several shapes are made available to report authors to customize the visual
properties of a Dashboard section. These shapes, Rectangle, Rounded Rectangle,
Line, Hz Line, Vt Line, and Oval can be layered and customized to provide visual
characteristics that are consistent with an established image or branding.

Text Label Graphics can be dynamic data labels, such as a date to indicate when the
data was last refreshed, or static labels such as section headings. Text Labels are also
very well-suited for making custom buttons, since the Command Button Dashboard
Control has very few customization options.

[86]

Chapter 4

Picture Graphics display images. It is best to resize, crop, or perform modifications
to the image outside of Interactive Reporting, as the properties of the Picture Graphic
do not provide many options for modification.

Each time a Picture is placed on a Dashboard section, the image is saved as a
resource. Resources are custom dashboard objects, usually images, imported by
report authors. Images placed on the dashboard using the Picture Graphic are
automatically saved as resources even if the Picture is a duplicate. Use the Resource
Manager accessible from the Tools menu to remove unused or duplicate resources.

Controls

Controls are dashboard objects that provide interactivity to the end user. The most
effective dashboards use controls that are intuitive for the end user to understand
and are consistently applied across documents within the same application. In fact,
a key consideration when planning for user interactivity is ensuring that Controls
remain as consistent as possible across dashboards and applications, as this will
expedite user adoption of the dashboards. From a development perspective, the
combinations of functionality and overall look of dashboard Controls are practically
limitless with significant flexibility and customization allowed.

The following screenshot displays the Control objects available to customize a
Dashboard section:

Elements
£) Graphics 3
= 'l? Controls
. .1 Command Button
- (& Radio Button
- [¥] Check Box
»[=4 List Box
;- ;‘11 Drop Down
+fabl Text Box
-] Embedded Bruwse_l
‘53 HyperLink
- .} Slider
iy Gauges =

[87]

Introducing Dashboard Interactivity

The Command Button dashboard Control is an object that can be clicked by the user.
While other objects can also behave like Command Buttons, this is the only object
with an on-press visual event to give the user a clear indication that the object has
been clicked.

Radio Button dashboard Controls are used when the user is presented with a group
of options, only one of which may be selected. Radio Buttons are used in situations
where the options are well defined and a selection is required. The Group Name
property is the name of the group that a Radio Button belongs to. Users can select
only one option per radio group.

The Check Box dashboard Control object allows users to make more than one
selection from a defined list. This object is well suited for sections where the
responses are limited and where the user is allowed to make multiple selections. A
good example of using a Check Box would be to allow users to select the quarters a
chart covers, as the number of options represented are static.

List Box dashboard Control objects present users with the option to select one or
more values from a predefined list. The values available to the user, commonly
called the List of Values (LOV), can be either static, meaning they never change, or
dynamic, meaning they change automatically.

The Drop Down dashboard Control allows the user to select only one item from a
list of available values. Like List Box controls, Drop Down Controls can also contain
either static or dynamic LOVs.

Text Box Controls are text areas that can be edited by the user. Since the values
entered into the Text Box can be accessed using the Title property of the Text Box,
JavaScript can be used to read the value supplied by the user. Searches requiring the
user to supply a date filter are good examples of when to use this Control.

The Embedded Browser Control is very similar to an embedded section except

the content is rendered in a web browser object and referenced by an URL. The
reference URL can be an external webpage or image, such as a company portal, help
document, or another Interactive Reporting document.

Hyperlink Controls, introduced in Chapter 3, Creating a Simple Dashboard, create
traditional web links to external documents, web pages, or other Interactive
Reporting documents. The location of the linked content is defined by the report
author and can be set to in a new window or the current window.

The Slider Controls are used to control the indicator for one or more associated
Gauge within the same Dashboard. This Control can be tied only to existing Gauges.

[88]

Chapter 4

Creating a Master Dashboard

A Master Dashboard is a Dashboard section that acts as a template for the visual
properies and placement of objects repeated across one or more Dashboard sections
to easily enforce visual consistancy. During the development process, the Master
Dashboard is replicated each time a new dashboard is added and is either hidden or
removed when the document is prepared for production. While use of the Master
Dashboard is not compulsory when creating an Interactive Reporting document with
more than one Dashboard section, it can greatly decrease the hours spent during the
development phase as it eliminates the need to recreate the dashboard elements for
each Dashboard section.

In addition to the visual properties and placement of the objects, any repetitive
shape-specific code can also be included in the Master Dashboard template. Any
code included in this manner is duplicated across the Dashboard sections that use
those shapes.

This section discusses the specific concepts required to create the Master Dashboard
shown in the following screenshot:

BMV Executive Dashboard ariory torts Reos
| E
Optional Filters

LU

This Master Dashboard will be used to create a new BMV Executive Dashboard
from the example from Chapter 3, Creating a Simple Dashboard.

[89]

Introducing Dashboard Interactivity

Placing Objects

The sample Master Dashboard for the BMV Executive Dashboard uses Graphics and
Controls to define a customized visual style. This example uses Rectangle, Rounded
Rectangle, and Text Label Graphics as well as the Drop Down, List Box, Command
Button, and Hyperlink Controls.

When created, each dashboard object is automatically assigned to a layer. The first
item created is assigned to the first layer, also referred to as the background, and
the last object created in the top layer, also referred to as the foreground. The layer
feature allows report authors to modify the default layer an object is assigned to,
allowing objects to be stacked on top of each other to control the visibility of all or
part of an object.

The options available to report authors for moving object layers within a Dashboard
section are:

e Bring To Front: The selected object will be assigned to the front-most layer
and all other objects will appear behind it.

e Send To Back: The selected object will be assigned to the bottom layer and
all other objects will appear in front of it.

e Bring Forward: The option will move the selected object one step closer to
the front.

e Send Backward: This option will move the selected object one step
backward.

To change the layer of an object, first select the object to be moved. Using either the
Layers submenu in the Format menu or by using the Layers Tool icon located within
the Section toolbar, select an option to move the object. The following screenshot
shows a close-up view of the Layers Tool icon in the Section toolbar:

YR g
"_J; Bring To Front
“1 Send To Back

-5 Bring Forward
-1 Send Backward

oo

)

The Align feature is another useful formatting tool which allows report authors
to align two or more objects with each other. Report authors can choose to align
selected object both horizontally or vertically.

[90]

Chapter 4

The options available for aligning two or more selected objects are:

Left: This option will align all objects to the left-most point within the
selected objects.

Right: This option will align all objects to the right-most point within the
selected objects.

Center: This option will align all objects to the average center point within
the selected objects.

Top: This option will align all objects to the top-most point within the
selected objects.

Bottom: This option will align all objects to the bottom-most point within the
selected objects.

Middle: This option will align all objects to the average vertical midpoint
within the selected objects.

To align two or more objects, hold the Ctrl key and click on each object to be aligned.
With the objects selected, access the Align submenu in the Format menu or the
Align Tool icon in the Section toolbar and choose the desired alignment option. The
following screenshot shows a close-up view of the Align Tool icon in the Section
toolbar:

l MJ R

2] Left

2| Center

| 3| Right

1 Top

"5 | Middle
.| Bottom

The Make Same Size feature makes two or more objects of the same height and/
or width as the first object selected. Report authors can use this feature to make
multiple Dashboard objects exactly the same height or width automatically.

The Make Same Size options are:

Width: This option will make all selections the same width as the first object
selected in the group.

Height: This option will make all selections the same height as the first object
selected in the group.

[91]

Introducing Dashboard Interactivity

e Both: This option will make all selections the same width and height as the
first object selected in the group.

To use the Make Same Size feature, hold the Ctrl key and click each object to select
all of the objects to be resized. With the objects selected, access the Make Same Size
submenu in the Format menu or the Make Same Size tool in the Section toolbar, as
shown in the following screenshot:

|2¢ @]~ o
& Width
0¢| Height
Both

=17}
.0

-

Implementing Custom Dashboard Navigation

Dashboard navigation can be implemented to provide end users with links to both
internal and external document sections and to other websites. This provides report
authors the ability to create customized navigation structures beyond the options
supplied by default. In the sample Master Dashboard, there are two navigation
menus. One menu navigates the end user to other Dashboard sections within the
same document, and the other navigates the end user to links that are external to the
document.

Scripting Internal Navigation

To navigate between sections within the same document, the onclick () Event
Trigger of almost any Graphic or Control can be used. However, Graphic objects,
especially the Text Label, provides a wide range of visual customization options. The
BMYV Executive Dashboard example uses text labels to allow the end user to navigate
between Dashboard sections.

For example, the code required to display, or activate, the Home section is as follows:

ActiveDocument .Sections ["Home"] .Activate ()

Notice in the code, the Home section is referenced by name. If the name of the Home
section were to change, this code would also have to be adjusted since the section
name is directly referenced. While the Home section could be referenced instead

by its index in the Section collection, this would still require maintenance on all
supporting dashboards if the Dashboard designated as Home were to change.

[92]

Chapter 4

A Dbetter solution is to synchronize the names of the Dashboard sections with the
text displayed on the navigation link. For example, the Text Label representing the
link to the Home Dashboard section would also display the text Home through the
Text Label's Title property. This synchronization allows report authors to leverage
a concept called Reflection to access the properties of the text labels without
addressing the object by name or collection index. Consider the following code
statements:

//Statement 1:
ActiveDocument.Sections ["Home"] .Activate () ;

//Statement 2:
ActiveDocument .Sections [t1HomeNav.Text] .Activate () ;

//Statement 3:
ActiveDocument.Sections [this.Text] .Activate () ;

Assuming that the Text property of the t 1HomeNav object is equal to Home, meaning
the Text Label displays Home to the user, and this code is applied to the onclick ()
Event Trigger of the t 1HomeNav text label, all three statements will activate the
Home Dashboard section when t 1HomeNav is clicked by the user. Statement 1 is the
code required to activate the Home Dashboard section as described previously in
this section. Statement 2 accesses the Text property of t 1HomeNav, which is Home,
and then activates the Home Dashboard section. Statement 3 leverages Reflection to
access the Text property of this, which references the t 1HomeNav text label when
clicked, and then activates the Home section.

While each of these three statements will end with the same results, the third
statement can be reused because it does not reference the name of the section or the
name of the object directly. For report authors, this means that as long as the text
displayed to the user matches the section to be activated, the statement will work
without modification.

External Navigation

As introduced in Chapter 3, Creating a Simple Dashboard, Hyperlink Controls are used
to link to external documents from Interactive Reporting. The Hyperlink Control is
the only supported option for linking to external documents when the Interactive
Reporting document is presented in Interactive Reporting Studio or the Interactive
Reporting Web Client plug-in. However, when an Interactive Reporting document is
presented to the end user in HTML mode through the Hyperion Workspace, HTML
code can be used in sections. This means the @TML command and the JavaScript
link () method can be used to create HTML links in addition to using the Hyperlink
control.

[93]

Introducing Dashboard Interactivity

Since leveraging Hyperlink Controls to link to external URLs and document paths
was already discussed in Chapter 3, Creating a Simple Dashboard, this section focuses
on using Hyperlink Controls to link to other Interactive Reporting documents. The
use of the Hyperlink Control in this manner requires that the document be published
in, or have access to, an online Hyperion Workspace environment. When selected,

the option to link to a repository object steps the report author through the process

of creating a link to an object in the Workspace. This approach allows the user to add
additional parameters such as the displayed section and whether the document opens
in HTML or plug-in mode. Similar activities can be performed by using the Smart Cuts
path as the URL to the report, but as these Smart Cuts need to be updated if the main
URL of the site changes, this approach may require more maintenance than using the
repository object method.

Creating Supporting Dashboard Sections

With the Master Dashboard completed, additional supporting Dashboard sections
can be created by simply duplicating the Master Dashboard and then renaming it as
desired. This section of the chapter focuses on creating a loading Dashboard, a Home
(default), and a supporting details dashboards created from the Master Dashboard.

Loading Dashboard Section

Using a Dashboard section and JavaScript code, report authors can customize a
loading screen with a message, either static or dynamic, that can be displayed to
the end user. These screens are commonly used when the document is opened and
document processing commands are executed, most commonly the processing of
Query sections. The message is used to let the user know the application is still
running and did not freeze while opening.

[94]

Chapter 4

To build the loading message in Interactive Reporting, it is necessary to create a new
Dashboard section specifically for the loading message. There should not be any
interactive elements or any data driven objects on the Loading Dashboard, since this
section will be shown to the user before any other code is executed and then replaced
with the active Dashboard when all of the preprocessing is complete. The following
screenshot shows the Loading Dashboard section created for the BMV Executive
Dashboard example:

Dashboard Tools

Interstirie Repoting Sudic b
;\IF&! Edit View Insert Format

Vindow Help —1six|
BMV Executive Dashboard
|

The BMV Executive Dashboard is Loading
Please Walt...

[95]

Introducing Dashboard Interactivity

Home Dashboard Section

The Home Dashboard is the main dashboard. In the case of the BMV Executive
Dashboard example, it presents a top-level view of data presented across all
Dashboard sections. Since it will be the section the user sees first, the different data
views have been grouped together so the user can quickly assess the data presented
in a single screen. The following screenshot shows the expected final product of the
BMYV Executive Dashboard Home section:

& Hyperion Interactnie Reporting Studic 3

2 File Edt View lnsert Fermat Dashboard Tools

Hl=1 E3
Window Help

=i31x]
BMV Executive Dashboard

Plan v Act Product Advertising Costs
TG00
Product Line ¥TD Achreritising Cost
Toran Books 4506,522.54
1420405 Music $100,557.27
s Videos $64,151.93
500500
T ————— Unit Cost v Retail Price
o % 8F o 9 @) oa BT
¥ brearus cna et Pu
g 2000000
Top Five Stores by Sales
1312 8
W, et owWn BTy, E0m £4.450,115 LT
Super BV Mirw York $1.454.810 1 Ee s
Super BMV Westwood $1.406.972
Super BMV Los Angeles $1.305,505 b oo ik TN~ Yo
BMV Broakiyn 1,105,996 o B A e O
* oo untdiom S gpaned bk broe

By default, all of the Chart and Pivot embedded sections are inactive, meaning the
end user cannot click or drill on them. By opening an embedded section's properties,
and changing from the default View-only to Hyperlink, the shape can be used a
link. This activates the onclick () event trigger for the embedded section, allowing
the report author to customize the user's interaction with the object.

[96]

Chapter 4

An Embedded Section with the Hyperlink feature enabled will prepopulate the
Hyperlink code of the section to activate the respective section by default. In the case
of the example dashboard, the embedded section representing the Plan v Act data
should link to the Plan v Act Dashboard section when the end user clicks on it. The
following screenshot shows the system-generated JavaScript for the onClick () event
trigger of the chplanvact chart object in the BMV Executive Dashboard once the
Hyperlink option is set.

Object: Evert Thgger:
|chPIanvAa:t ;I |MCR li
| 4] al »

ActveDocument Sections["c Plan v Act] Actvate() _‘I

. o

Check Syntax | Line number- |1 GoTo | oK | cancal |

The section to be displayed, or activated, is the section referenced between the []
characters. Note that the default section in the code is the Chart section that was
embedded on the screen. The following code displays how the default script should
be modified to display the Plan v Act supporting dashboard instead of the ¢ Plan
v Act Chart section:

/* Activate the Plan v Act Dashboard section*/

ActiveDocument.Sections["Plan v Act"].Activate()

[97]

Introducing Dashboard Interactivity

Detail Dashboard Sections

The purpose of a detail Dashboard section is to provide the user with an opportunity
to perform a deeper level of analysis than that which is provided on the Home
Dashboard. The following screenshot shows the Plan v Act detail dashboard of the
BMYV Executive Dashboard sample, which allows end users to analyze revenue, cost,
and units plan versus actual data in either a Chart or Pivot.

This section will discuss the process of allowing users to toggle visibility between
a Chart or Pivot section using the Radio Button Controls, and how to dynamically
change the facts of a Pivot or Chart section based on a selection made with a Drop
Down Control.

Toggling Between Objects

The Plan v Act Dashboard in our example allows a user to choose between seeing a
Pivot or Chart view of the data. This is accomplished by using Radio Button Controls
to change the Visible property of identically-sized embedded sections that are
layered on top of each other. When a Radio Button is selected, the Visible property of
one of the embedded section is set to true and the other to false.

When applied to the onclick () event trigger of the Pivot Radio Button Control, the
following code will set the Visible property of the embedded Pivot section to true
and the Visible property of the embedded Chart section to false when selected by
the user.

// Show the pPlanvAct shape by setting visible to true

ActiveDocument.Sections ["Plan v Act"].Shapes["pPlanvAct"].
Visible=true;

// Hide the cPlanvAct shape by setting visible to false
ActiveDocument.Sections ["Plan v Act"].Shapes["cPlanvAct"].
Visible=false;

The first statement sets the Visible property of the pplanvact embedded Pivot
section to true, making it visible to an end user, and the second statement sets the
Visible property of the cPlanvact embedded Chart section to £alse, hiding it from
the user. Alternatively, report designers can leverage the relationship between the
Dashboard section and the Shapes collection to accomplish the same result. The
following code shows the revised statements using a direct reference to the Shapes
collection:

[98]

Chapter 4

// Show the pPlanvAct shape by setting visible to true
pPlanvAct.Visible=true;

// Hide the cPlanvAct shape by setting visible to false
cPlanvAct.Visible=false;

This code works because objects on a Dashboard section belong to a collection of
shapes accessible only by that Dashboard. This allows code that remains in the local
scope of the Dashboard to access shapes by name.

In order to toggle the Chart and Pivot visibility, the second Radio Button Control
must set the Visible properties of the two embedded sections to be the opposite
of the Visible properties from the first option. The following code sets the Visible
property of pplanvAct to false and cPlanvAct to true:

// Hide the pPlanvAct shape by setting visible to false
pPlanvAct.Visible=false;

// Show the cPlanvAct shape by setting visible to true
cPlanvAct.Visible=true;

With the code in place on both buttons, the end-user is now able to toggle between
related data in a Chart or Pivot section.

Modifying Element Facts

Presenting the end user the option to control the Plan v Actual fact displayed

using a Drop Down Control can be accomplished using a few different methods.

One approach would be to set up a Chart and Pivot for each of the three factual
views views, using the logic demonstrated to toggle the visibility of the embedded
sections. However, this method would result in both an increased document load
time and an increased dashboard load time. Another approach is to use JavaScript

to programmatically switch the data in both sections, requiring only one Chart
section and one Pivot section. Using this approach, the need for redundant document
sections is eliminated, since the same sections will be used for all three data displays.

From a functional standpoint, the facts displayed on the Chart and Pivot section are
determined by a Drop Down Control on the Dashboard. This is accomplished in the
code by first reading the selected value in the drop-down list, swapping the data on
both the Pivot and the Chart, and finally performing any formatting.

To begin, add a Drop Down Control to the dashboard. With the drop-down menu
selected, right-click and choose Properties. Click on the Values tab to view the list of
values displayed for the user to choose.

[99]

Introducing Dashboard Interactivity

To add a value, type the text which will be displayed to the user in the List Value
textbox, and click on the Add button to add it to the list of values to be displayed.

Properties - ddPlanvActFacts

Object | {Valligs’?] Font | TabOrder | Comments |

List Value:

[Add
Fevenue - Remove
Costs _I
Units Seld

Hep | ok | Cancdl |

By default, the values are presented in the order entered. Use Move Up and Move
Down to rearrange the List of Values as needed.

Once complete, click on OK to close the Properties dialog. When the Dashboard is in
the run mode, the LOV will be displayed as shown in the following screenshot:

[100]

Chapter 4

B Hypenon Interactnie Reporting Studio - Chapterd'Werkbook bay
3 File Edit View Insen Format Dashboard Tools Window Help IR
BMV Executive Dashboard O M (A
o ~ oo | Panvhc |
| 2 [Reverue = © Fwol & Chart
Optional Filters
ﬂ Plan v Act
zl
ﬂ 5200000
:I 20000
A| 6,000,006
E I I
ﬁ ===
= @ @ w w @ m m w
m | B pcatud AZILE Ebarad o9t

Next, with Design Mode active, select the Drop Down Control. Right-click and
select Scripts to open the Script Editor. Since this code needs to be run when the
user makes a selection, the code should be contained within the default Drop Down

OnSelection event trigger.

With the Script Editor open, first identify what selection the user made from the
Drop Down List of Values, so we can determine what facts should be shown on the

Pivot and Chart.

// Declare a local variable to represent the user selection
var ddSelection = ddPlanvActFacts.Item(ddPlanvActFacts.SelectedIndex) ;

The code interprets the user-selected value and stores that string as a local variable.

[101]

Introducing Dashboard Interactivity

The next step is to remove any Facts currently on the Chart or Pivot section that is to
be changed:

// Remove all existing chart facts
ActiveDocument.Sections["c Plan v Act"].Facts.RemoveAll () ;

// Remove all existing pivot facts
ActiveDocument.Sections["p Plan v Act"].Facts.RemoveAll () ;

The above code uses the Removalall () method of the Facts collection in both
the Pivot and Chart section to remove any Facts currently on the Chart and Pivot
sections respectively.

Add the new facts to both the Pivot and the Chart sections:

// Add the Actual Fact to the Chart
ActiveDocument.Sections["c Plan v Act"] .Facts.Add(ddSelection + "
Actual")

// Add the Actual Fact to the Pivot
ActiveDocument.Sections["p Plan v Act"].Facts.Add(ddSelection + "
Actual")

// Add the Plan Fact to the Chart
ActiveDocument.Sections["c Plan v Act"] .Facts.Add(ddSelection + "
Plan")

// Add the Plan Fact to the Pivot
ActiveDocument.Sections["p Plan v Act"].Facts.Add(ddSelection + "
Plan")

[102]

Chapter 4

After all of the code is added to the Drop Down, the script editor will appear as
shown in the following screenshot:

Object: Event Trigger:
|ddPianvActFacts =] [onSelection |

] o] 5] 9]

il Declare a local variable o represent the user selection
jvar ddSelection = ddPlanvActFacts ltem{ddPlanvAciF acts Selectedindex);

|»

[f.' Remove all exsing char facts
ActiveDocument Sections]'c Plan v Act’] Facts RemaoweAll(),

il Remove all existing pivol facts
Active Document Sections[p Plan v Act’] Facts RemoweAll(),

|/ Add the Actual Fact lo the chart
Active Document Sections e Plan v Act’] Facts Add{ddSelection + ~ Actual™)

Il Add the Actual Fact to the Prvot
Active Document Sections[p Plan v Act”] Facts Add{ddSelection + ~ Aclual™)

(1 Add the Plan Fact to the chart
Active Document Sections[s Plan v Act”] Facts Add{ddSelection + ~ Plan™)

i Add the Plan Fact to the Pival =i
Active Document Sections[p Plan v Act’] Facts Add{ddSelecthon + ™ PlanT)
-
_'lJ
Cancel |

<]
Check Syrtax | nenumber: 1 GoTo | ok |

Dynamic Section Formatting

While the code necessary to change the embedded section Facts has been added, any
custom formatting applied to the display properties of the Chart or Pivot Facts has
been reset to the program defaults. Any display properties that had been modified
from the section default values will have also reverted back to the default settings.

[103]

Introducing Dashboard Interactivity

First, the chart has the right-axis label visible which needs to be hidden:

a W Intersitrie Reporhing Stu Chapterd'Weaddbook bay Hmm
3 File Edit View Insert Format Dashboard Tools Window Help 1=l x|
BMV Executive Dashboard et it
| PlanvAct | [swores |
|umits Scu = O Pivol & Char
Plan v Act
750,000
500000
250.000)
g

To hide the right-axis label, set the ShowvaluesAtRight property to false.

// Hide right data labels on the chart

ActiveDocument.Sections["c Plan v Act"].ValuesAxis.
ShowValuesAtRight=false;

Second, the Pivot section number formatting needs to be set to Currency since the
displayed Fact represents dollars:

[104]

Chapter 4

& o

P [sow |

IFbe-mm j & Pwvot © Chart
' &

MY Anaheim 159,381 sEssnesER 301,576] 212,443.4375
B’-I'U' Erookiyn 1.345.343 sesgsasass 1584500 sFassssass
Super BMV Los Angeles 641,552 #aseneeses 804346 62140775
Super BMY New York 2078176 #EsemsEEEE 2154257 eesnspsaes
Super BMV Westwood 1290169 SRERENFERE 1,518,150 RENEREENTR
-m.ﬂovmmnbm-.r.mm TAIRTIA 440,115 4877 96T FEREREERER
'BMV Ananeim 196,950 #aersraEes 212,876
.BH'U' Brookiyn 1216835 sssssasass T52 B
'Super BMV Los Angeles 1005914 sesssgeses 596,400
Super BMY How York 1414308 sasendnnen 1,471,504
‘Super BMV Westwood 1.522.229 sEsNENEENE 1.251.79]
-M.MImmvxm 5715511 ARFFERRERE 3344051
‘BMAV Amaheim 342520 BEEHEEREEE 51,006 &

Number formatting needs to be applied to both Facts. Define the NumberFormat
variable to represent currency rounded to the nearest dollar.

// Set currency formatting on the pivot
ActiveDocument.Sections["p Plan v Act"].Facts[ddSelection + " Plan"].
NumberFormat = "S#,##0."

ActiveDocument.Sections["p Plan v Act"].Facts[ddSelection + "
Actual"] .NumberFormat = "S#,##0."

If there were a business requirement requesting the currency to be reported to the
penny, set the NumberFormat property to be equal to s#, ##0. 00 which would round
values to the nearest penny.

[105]

Introducing Dashboard Interactivity

When completed, the onselection event trigger of the Drop Down Control object
should appear as shown in the following screenshot:

Object: Event Trigger:
|ddPtanvAciFacts x| [onselection =]

<] 4 2| »

Il Declare a local variable to represent the user selection ;l
var ddSelection = ddPlanvAciFacts Item{ddPlamdctFacts Selectedindex):

i Remove all exising chart facts
ActiveDocument. Sections"c Plan v Act’] Facts. RemoveAll();

Il Remove all existing pivol facts
ActiveDocument Sections["p Plan v Act’] Facts RemoveAll():

i Add the Actual Fact to the chart
ActiveDocument Sections{"c Plan v Act”] Facts Add(ddSelection + * Actual?)

i Add the Actual Fact to the Pivol
ActiveDocument. Sections["p Plan v Act’] Facts Add{ddSelection + ° Actual™)

i Add the Plan Fact to the chart
ActiveDocument. Sections"c Plan v Act’] Facts Add(ddSelection + ~ Plan’)

i Add the Plan Fact to the Prvot
ActiveDocument Sections"p Plan v Act’] Facts Add{ddSelection + * Plan”)

[l Hide nght data labels on the chart
ActiveDocument. Sections["c Flan v Act”] ValuesAxis. ShowValuesAtRight=false;

I Set currency formatting on the pivol

ActiveDocument. Sections"p Plan v Act] Facts[ddSelection + * Plan.MumberFormat = “5&,#80.°

ActiveDocument. Sections{"p Plan v Act’] Facts{ddSelection + * Actual] NumberFormat = “58,2820 =
k |

]
Check Syntax | tnenumber: I GoTo | ok | conca |

Click on the OK button to close the Script Editor and save the scripts. Switch the
dashboard to run mode and use the Drop Down to begin testing the code. The Drop
Down will change the data Facts for both the Chart and Pivot sections, based on the
selection made by the user.

Document Start-up Scripts

Document Scripts, also known as Document Start-Up Scripts, describe the
OnStartup () event trigger of the Document Object. The API at the document level is
accessed from the Document Scripts selection in the File menu.

[106]

Chapter 4

File Edit View Inset Format Dashboard
Mew... Ctrl+N
Open... Ctrl+0O

I Close Ctrl+W

|

;| Save Ctrl+S

; Save As...

E Save Options r
Open from Repository L
Save to Repository (3
Import Data 2
Export 4
Docurment Scripts...

[Pagesetup,,

The Document Scripts API, while similar in appearance to the Object AP, allows the
report writer to create code specifically for each Interactive Reporting application
type that is accessing the interface.

Loading Screen Script

In this section, the steps needed to activate the Loading Dashboard section will be
displayed using the Document Start-Up Scripts. Activating the Loading Dashboard
section upon start-up makes the Dashboard section visible while the remainder of
the document is prepared for viewing. To set the Document Start-Up Scripts to make
the Loading section appear upon start-up:

//Display the Loading Dashboard section
ActiveDocument.Sections ["Loading"] .Activate () ;

Since the goal is to show the Home Dashboard section to the users as the primary
section once all of the preprocessing is complete, the Home section must be activated
once the Loading Dashboard section splash screen is no longer needed. Set the Home
section to active to display the Home screen after all of the processing is complete.

//Display the Home Section after all startup scripts have completed
ActiveDocument.Sections ["Home"] .Activate () ;

[107]

Introducing Dashboard Interactivity

The following screenshot shows the Script Editor open to the Document Scripts
onStartup event trigger. Notice that the Loading Dashboard section is activated
first, the preprocessing code is then executed, and finally the Home Dashboard
section is activated to display the Home section to the end user for use.

Object: Event Tngger: Enable For:
[Decument =] |onsiztue =l [A Clents -]
[Desktop Chent
=] wl s # % Pgmcen |
/T Display the Loading dashboard section ﬂ

ActrveDocument Sections[Loading] Activate();
if Enter all other document scripts herel

It Display the Home Section after all startup scripts have completed
ActveDocument Sections["Home) Activate();

" o
Cancel_ |

Check Syrtax | Line number: |1 GoTo | ok |

Understanding Toolbars and Menus

When Dashboard sections contain custom navigation, end users typically do not
need access to the default application menus and document toolbars. Controlling the
visibility of toolbars and menus is also a great way to increase the viewing area for

a dashboard. Executive-level Dashboards, which typically do not require advanced
ad-hoc data analysis, should always have toolbars and menus carefully controlled to
keep the dashboard clear of unnecessary distractions.

Application Toolbars

Toolbars provide quick access to a variety of application, section, and formatting
options using icons. In Interactive Reporting, there are five toolbars that are members
of the Application Toolbar collection. The toolbars are as follows:

e Standard: The Standard toolbar presents icons to represent application
level functions such as save, print, query process, insert new section and
connections. The Standard Toolbar, when active, is available on all sections.

e Formatting: The Formatting toolbar grants quick access to text properties
such as font, font size, font alighment, background colors, and number
formatting. When active, the Formatting toolbar is available on all sections.

[108]

Chapter 4

e Sections: When the Sections toolbar is active, it allows the user to quickly
access section specific formatting functions unique to the active section type.
For example, on Dashboard sections, the Section Toolbar displays the layout
tools discussed earlier in this chapter.

e Navigation: The Navigation toolbar presents icons to allow users to navigate
document sections. One of the Navigation toolbar icons is the Dashboard
Home button that sets the Dashboard section that has been defined as the
main Dashboard section of the document.

e Paging: The Paging toolbar is an abbreviated version of the Standard toolbar
accessible only when a document is opened in Intelligence iServer using a
direct URL. When code references to this toolbar are encountered by other
clients, the command is ignored and the script continues without error.

drJrtbiscbos it [o o o Bz ol o a3 Mo o

* [| - Bk | ol | e e e g el '.z.;:i

m Apphcation Toolbar Collection =
P B ikt e |
jﬂ i] b7 = T

I "o | tome | eanvas J eooes |
2l Flanwv Act - =
Aoceme B] o A Plan v Act Product Advertis
— Ol Pl Product Line | ¥TD
Elements | - LR

Books

S| o

khusic
—'-.-J SO0, D00 i Widead
.:J;«; | = “'-'*==III.; . :. Aui | ;["'!

Each of these Toolbar objects contains a Boolean visible property that can be set to
true (visible) or false (invisible) using JavaScript code.

To hide all five toolbars, one approach would be to turn each toolbar off individually
by using the following code:

// Hide the Standard Toolbar
Toolbars ["Standard"] .Visible=false;

// Hide the Formatting Toolbar
Toolbars ["Formatting"] .Visible=false;

// Hide the Sections Toolbar
Toolbars ["Sections"] .Visible=false;

[109]

Introducing Dashboard Interactivity

// Hide the Navigation Toolbar
Toolbars ["Navigation"] .Visible=false;

// Hide the Paging Toolbar
Toolbars ["Paging"] .Visible=false;

Alternatively, since all five toolbars reside in the Toolbars collection, a for loop can
be used to step through the collection and set the visible property to false as
demonstrated in the following code:

/* Hide all Toolbars in the Toolbar collection by using a for loop
statement to increment a value until it becomes equal to the number of
toolbars in the toolbar collection. */

// Use a for loop and cycle for each item in collection
for (var i=1; i<=Toolbars.Count; i++)
{
// Set the visible property of toolbar[index] to false.
Toolbars[i] .Visible=false;

}

The preceding code means for as many times as there are toolbars in the Toolbar
collection, referenced using the Count property of the Toolbars collection, set the
Visible property of each toolbar to false.

Application Menus

Hiding the Application Menu Bar makes it very difficult for users to interact with
the document in ways other than the report designer intended. Since the Menu Bar
is very small, it does not gain much in the terms of usable space. Therefore, hiding
the Menu Bar is more about controlling the user's access to sections of the document
than a space-saving methodology.

The showMenuBar property of the Application is a Boolean property that is set to
true by default. Unlike the members of the toolbar collection, the ShowMenuBar
property is displayed each time the document is opened. The code required to hide
the Menu Bar is shown in the following code snippet:

//Set the ShowMenuBar application property to false to hide the
MenuBar

Application.ShowMenuBar=false;

[110]

Chapter 4

Section Catalog

The Section Catalog provides users with a hierarchal view of all visible sections in a
document. When dashboards have custom navigation, the Section Catalog should be
hidden, so the user is not confused or lead astray from using the custom navigation
options. Hiding the Section Catalog also adds a significant amount of screen space
for the dashboard, which is always at a premium.

The showCatalog property of the document is also a Boolean property that is set
to true by default. The code required to hide the Section Catalogue is shown in the
following code snippet:

//Set the Show Catalogue document property to false to hide the
Section Catalogue
ActiveDocument.ShowCatalog=false;

Section Title Bar

The Section Title Bar provides two specific purposes: the bar contains a navigation

drop-down on the left, and the bar provides specific controls for each section on the

right. The SectionTitleBar property of the document is a Boolean property that is
set equal to true by default each time a document is opened.

With the Script Editor open for Document Scripts, add the following code to hide the
Section Title Bar from view.

//Set the SectionTitleBar property to false to hide the section Title
Bar

ActiveDocument .ShowSectionTitleBar= false;

The state of the SectionTitleBar property is not saved across document sections.
Each time the document is opened, the value of the sectionTitleBar document
property is set to true and must be hidden using JavaScript code.

Quickly show all menus

Create and hide a button on the Home Dashboard that enables all of the
Ny menus and toolbars when clicked. Then set the Visible property of the

Q button to £alse so it is hidden, forcing the user to have the permissions
to go into design mode to unhide the button. This feature allows report
writers quick access to the toolbars and menus at any time.

[111]

Introducing Dashboard Interactivity

Prompting the User to Save

Interactive Reporting prompts the user to save the document when exiting an
unsaved report for all client software versions. When creating or modifying reports
in the Interactive Reporting Studio, the prompt to save is a helpful feature to prevent
data loss by forgetting to save session changes before exiting. When end users are
accessing the document with the Interactive Reporting Web Client plug-in, however,
the additional prompt created by this feature maybe undesirable as it allows all users
to save the document to their local machine. The easiest way to disable the Prompt To
Save feature when the document is accessed using the Web Client plug-in is to set the
PromptToSave document property to false during the Document Start-up event.

The save prompt is disabled by first referencing the PromptToSave document
property, either by navigating through the Object Model to the PromptTosave
property of the ActiveDocument group, or manually entering ActiveDocument .
PromptToSave to reference the PromptToSave property. Once referenced, the
property is set to false by typing =false;. With the property set to false, the prompt
will not be displayed when the end user closes the document.

The following screenshot shows the Code Pane of the Document Script Editor with
the start-up scripts displayed:

Object: Event Trigger: Enable For:
| Document =] [onstatup =l [A Gerts =]
5 Deskiop Cliert
<] 2] o] # % Pugn Ol
il Display the Loading dashboard section ;I

ActveDocument Sections[Loading] Activate();

™ Hide all Toolbars in the Toolbar collection by using a for loop to increment a value until
it becomes more than the number of toolbars in the toolbar collection, */

il Open a for loop to be run once for each of the items in the toolbars collection.

for {var i=1; i<=Toolbars.Count; i++}

it
Il Access a loolbar by its Toolbar collection index value.
il Set the wisible propedy of the selected toolbar to false,
Toolbars(i] Visible=falze;

i

(ISet the ShowMenuBar application property to false 1o hide the MenuBar
Application ShowMenuBar=false;

iSet the Show Catalog document property to false to hide the Section Catalog
ActrveDocument ShowCatalog=false;

[/Set the SectionTitleBar property to false to hide the section Title Bar
ActveDocument ShowSectionTitleBar=false:

il Disable asking the user lo save when the document is closed
ActveDocument PromptToSave

il Display the Home Section after all startup scripts have completed
Actve Document Sechions["Home™] Activate();

0 o
Cancel |

Check Syntax Line rumber: [1 GoTo | ok |

[112]

Chapter 4

When the document is opened, the application will first activate the loading screen.
It will then set the visible property of each of the toolbars in the toolbar collection to
false. The Menu Bar, Section Catalog, Section Title Bar, and Prompt to Save dialog
will be disabled, and finally the Home Dashboard section will be displayed.

Summary

The goal of the chapter was to demonstrate the steps for evolving the simple
dashboard into a master dashboard with start-up scripts, navigation, controls, and
dynamic objects. The chapter began with an overview of the building blocks for
creating interactive and presentable Dashboard sections, including Graphics and
Controls. Dashboard development tools are described in detail with an overview of
the alignment, sizing, and layering toolbars. The concept of the master dashboard
was introduced and dashboard navigation was presented with the methods for
reducing code maintenance through the use of reflection. The chapter presented
the concept of start-up scripts and the use of the Loading screen and the Home
dashboard, and the chapter provided detail on embedded section linking and
visibility toggling. The methods for modifying section content (Facts) through

the use of controls and JavaScript was demonstrated and discussed at length, and
methods were presented for hiding the menus, the Section Catalogue, and various
toolbars. The chapter concluded with details on writing code for the different
Interactive Reporting client tools and the methods to preventing the user from saving
the document upon exiting the software.

[113]

Building the
Dashboard Framework

Dashboards evolve over time and a standard development best practice is to
construct dashboards with the ability for growth and modification without using
repetitive code through the document. An effective method to streamline dashboard
programming with areas for growth is to create and extract the standard code
statements of the document into a customized Dashboard Framework within
Interactive Reporting. While there are various approaches to constructing a
Dashboard Framework, the strategy detailed within this chapter demonstrates

one approach to achieve an optimal configuration. In addition to the information
provided for building the Dashboard Framework, this chapter provides information
on the options for managing document size, delivery, and document security.

This chapter covers the following concepts:

¢ Understanding the Dashboard Framework
¢ Implementing the Dashboard Framework
¢ Document Save Options

e Working Offline, File Compression, and Document Security

Understanding the Dashboard Framework

The previous chapter introduced the basic scripting concepts required to assign code
directly to the Script property of an object. However, as dashboards become more
complex, repetitive code across shapes should be extracted to create global functions
that can be used by all objects in the document. The process of creating a set of global
functions permits report authors to create and maintain a customized framework of
JavaScript code in a centralized location within the Interactive Reporting document.

Building the Dashboard Framework

The strategy used in this guide, called the Dashboard Framework, is simply an
organization of global code contained within reusable global functions invoked by
objects across the document.

Chapter 9, The Central Code Repository, goes one step further and demonstrates the
process for storing the global functions of a document in a database for use across
multiple documents.

Framework Naming Conventions

Interactive Reporting allows any name to be used as long as it conforms to the
requirements of the object type and is unique within the object's collection. For
example, the Section collection allows names to contain spaces, but the Shape
collection does not. The requirement that an object name be unique within a
collection can quickly escalate into an organizational challenge.

Naming conventions make code easier to write, understand, debug, and maintain.
Naming Conventions also ensures consistent standards when multiple report
authors are working in a collaborative environment, writing and maintaining
customized reports together. When operating within the Dashboard Framework,
using a naming convention is very important.

Section Names

Since all section names within a single document are a part of the same Section
collection and must be unique, it is recommended that the section names be prefixed
to denote the section type the name is referring to. For example, when a Query
section is inserted into a document, the Query section and the Results section

are created by default and named Query and Results respectively. Assuming the
purpose of the Query section is to return information related to sales figures, it is
recommended that the Query section be renamed to g Sales and the Results section
be renamed to r Sales. Should a table be subsequently added, that Table section
should be named t sales. Additional sections representing sales data should also
be prefixed with a single character representing the section type.

The addition of the prefix to denote the section type is extremely helpful as the
document grows to easily identify the objects that relate to each other and quickly
determine the type of those section objects.

[116]

Chapter 5

Variable Names

Variable names should always be descriptive. While it may seem unimportant,
having good variable names goes a long way when the code is being tested or
maintained by another report author. It is also recommended that variables be
prefixed to denote the scope of the variable. Global variables should be prefixed

with the letter g and local variables should be prefixed with the letter v. The use of g
and v is an immense help when documents move into testing or maintenance as the
variable's scope, and therefore the potential impact the variable has on other code, is
immediately known to report authors. The variable vLimitName is a good example of
a local variable with a descriptive name. The variable gLimitName is an example of
how the same variable would look if the variable's scope was global.

In a situation where a variable is representing an array of values, the name should
indicate the scope of the variable and that it is an array. For example, gMonthsArray
would be indicative of an array with global scope; vMonthsArray would represent
an array with local scope.

Function Names

As the declaration process for a global function and a local function differ, it is
recommended that only global functions are prefixed to denote that the function is
being referenced and that the function is global. Additionally, within the Dashboard
Framework, the use of local functions is very limited so the presence of a local
function would be immediately noticed. An example of the recommended prefix is
the name gfResetDashboardSelections to denote a global function that would
execute code to reset dashboard selections.

[117]

Building the Dashboard Framework

Dashboard Shape Names

The dashboard Shape naming convention is the most important aspect of the naming
convention, as the shape type can be very important when determining how to
respond to an end-user action. It is recommended that the shape name be preceded
by a two character prefix to denote the type of shape. The following chart displays
commonly used dashboard shape types, including the ones used in this guide and
their suggested prefixes:

Shape Type Shape Prefix Example Shape Name
Command Button bt btSubmit

Radio Button rb rbYes

Check Box cb cbCurrentYear
List Box 1b lbState

Drop Down dd ddRegion

Text Box tb tbUserName
Embedded Browser eb ebHelpPage
Embedded Pivot pv pvSales
Embedded Chart ch chSales
Embedded Table ta taSales
Embedded Report rp rpSales
Hyperlink 1k lkHomePage
Text Label tl tlRefreshDate

Any shapes accessed by JavaScript code that are not included in the chart displayed
above should be preceded with a unique two character prefix that clearly indicates
the type of shape the variable is representing. Generally speaking, shapes that are
not acted upon by code, for example, a static label or a background box do not need
to have a customized name as the impact the object would have, if modified, is easily
understood by a report author.

The concept of the Master Dashboard discussed in Chapter 4, Introducing Dashboard
Interactivity, is a key component of template design within the Dashboard
Framework. As one of the most powerful aspects of the framework is using

loop statements to step through related document sections to perform repetitive
operations, the synchronization of names and properties of related dashboard objects
is imperative. Any individual Controls shared between Dashboard sections must
have the same name in each Dashboard section. If the object names differ, attempts
to react to end-user selections using global JavaScript functions will results in an
error indicating that the object was not found.

[118]

Chapter 5

Understanding the JavaScript Workflow

The JavaScript used to define the Dashboard Framework contains three
primary components:

Global Library Shapes are the shapes that contain code used to customize
the Dashboard Framework. This includes code for declaring any variables or
arrays and defining JavaScript Functions.

Start-up Events refers to the scripts, which are run directly by the onstartup
event of the document. Actions processed during the Start-up Events

include the definition of any Global Library Shapes and the execution of the
Activation Scripts.

Activation Scripts It contains single-use code that prepares the document to
be shown to the end user after the Dashboard Framework has been defined.
Any document default selections, such as radio button selections, are defined
here before the script to display the home dashboard, also in this component,
is executed.

Implementing the Dashboard Framework

The use of a single Dashboard section to act as the code library for the document is

the basis of building out a framework within Interactive Reporting. The Dashboard
Framework refers to this section, which contains the necessary global support code,
as the Globals section.

Continuing with the BMV Executive Dashboard example, insert a new Dashboard
section called Globals into the document. Once the Globals Dashboard section

is created and named, shapes which will contain code used by the Dashboard
Framework are added, and scripts are written on their onclick () event triggers.
Although any Graphic or Control with an onclick () event trigger could be used to
contain global scripts, the Text Label Graphic is a convenient option as it provides
the flexibility for customizing the text and visual properties of the object, such as the
title, name, color, and border.

Global Library Shapes

Within the Dashboard Framework, Global Library Shapes are the individual

objects that contain the JavaScript code responsible for defining the behaviors of the
framework. Each shape in the library contains JavaScript that can define variables,
functions, or execute code. While the organization and structure of code across the
shapes within the library are defined by the report author, there are a few rules that
must be followed for the Dashboard Framework to recognize a shape as a member of
the Global Library.

[119]

Building the Dashboard Framework

Global Library Shapes must be named in the order they are to be executed starting
from the number 1. Additionally, the number must be prefixed with the letters gs to
denote their inclusion. For example, the first Global Library Shape must be named
gs1 and the second, gs2. This naming convention allows the Dashboard Framework
to use a loop statement to call the onclick () method of all shapes starting with the
prefix on the Dashboard section without requiring the report author to define the
number of shapes present.

Global Variables

It is recommended that the first shape in the Global Library be used to contain any
global variables in a document. While local and global variables can be defined at any
time, a best-practice is to group all of the global variables used across the document
into a single object to assist with testing and maintenance.

Continuing with the example, add a Text Label to the Globals dashboard. Set the
Name property of the newly created shape to gs1, as the code on this shape will be
executed first, and add a descriptive title, such as Global Variables, to be displayed
as the Title property.

Any global variables, including arrays, should be defined in the onclick () event
trigger of this shape. When defining the variables in the Global Variables section,

it is useful to create one array containing the Dashboard section names, as well as
other arrays for other sections that can be accessed instead of repeating the section
names in each block of code. These arrays will provide the ability to make identical
changes throughout related sections of the document as configured in the array. The
following code demonstrates a method for configuring the Dashboard section array
in the BMV Executive Dashboard example:

// ---Array of Dashboard Sections accessible by users
gDashboardArray = [];
gDashboardArray [0] ="Home";
gDashboardArray[1]="Plan v Act";
gDashboardArray [2] ="Products";
gDashboardArray [3]="Stores";

By using arrays, sections can easily be added or removed from the collection without
breaking any of the code in the document. Examples in the following chapter will
demonstrate the use of these arrays and discuss their benefits in further detail.

[120]

Chapter 5

Framework Start-up Events

The shape containing the Dashboard Framework Start-up Events will be directly called
during Document OnStartup event and will either directly contain or call any code to
be executed during the initialization of the document. While global functions and code
may be housed directly within the Document OnStartup event itself, it is important

to note the possibility of creating an infinite loop upon start-up. An infinite loop in

the start-up scripts of the document will crash Interactive Reporting and will prevent
the opening or recovery of the document. Use of the StartUp Events shape within the
Dashboard Framework prevents this from occurring by allowing the code to be tested
before being connected to the Document OnStartup event.

To create the StartUp Events shape, add a Text Label graphic to the Globals
dashboard. Name the newly created shape startUpEvents and set the Title object
property to StartUp Events. Once this is completed, the shape is ready for code.

The code to be contained within the onclick () event trigger of the startUpEvents
shape will first activate the Loading dashboard, then define the state of any
document-level properties such as the visibility of toolbars and menus, then execute
a for loop to declare any Global Library Shapes, and finally invoke the Activation
Scripts.

As an added benefit, this method allows the code to be executed without having to
invoke the document start-up code. Instead, report authors can test any document
start-up processes simply by clicking on the StartUp Events shape with the Globals
dashboard in Run mode.

Initializing the Loading Screen and Document Properties

In Chapter 4, Introducing Dashboard Interactivity, code used to activate the Loading
dashboard, hide the different application toolbars and menus, and disable the
PromptToSave document property was written directly within the OnStartup event
trigger of the document. This code should be moved to the onclick () event trigger
of the StartUp Events shape on the Globals dashboard. To do so, open the Document
Scripts editor using the Document Scripts item from the File menu, highlight the
code in the window, and use Ctrl+X or Cut from the right-click menu to cut all of the
code from the OnStartup event.

[121]

Building the Dashboard Framework

Navigate to the StartUp Events shape on the Globals dashboard, right-click, and
open the Script Editor. Paste the scripts into the OnClick event trigger as shown in
the following screenshot:

Chject:

Event Trigger:

IstartUp Events

<) 4l ol »]

=] |onCick

1

H
<
Check Syrtae I

Il Display the Loading dashboard section
ActiveDocument. Sections[Loading] Activate();

™ Hide all Toclbars in the Toclbar collection by using a for loop to increment a value until
it becomes more than the number of toolbars in the toolbar collection. */

il Open a for loop to be run once for each of the items in the toolbars collection.
for (var i=1; 1<=Toolbars. Count; i++)

Il Access a toolbar by its Toolbar collection index value.
Il Set the visible property of the selected toolbar to false.
Toolbarsi].Visible=false;

Line number: |1

Go To I

Declaring Global Library Shapes

Since the number of objects will vary depending on the customized requirements
of each framework, the Dashboard Framework uses a loop statement to ensure all
objects are appropriately defined. The code required to execute the JavaScript code
for each of the Global Library Shapes is shown in the following code snippet:

// ---- Make
for

{

sure

(var i 1; 1

var vGs

n gS n
ActiveDocument

}

required globals have been activated
< ActiveSection.Shapes.Count - 1; i++)
+ 1i;

.Sections["Globals"] .Shapes [vGs] .OnClick () ;

The value of the incrementing variable, i, is used to control which shape is being
accessed. Each time the loop runs, the onclick () method of the shape represented
by the vGs local variable is executed. The variable i then increments by one and, if the
conditional statement of the for loop is still true, the next shape is similarly accessed.

[122]

Chapter 5

Notice the conditions of the for loop statement. The incrementing value, defined as
i, starts at one and the loop continues until the value i is less than the number of
shapes on the Globals dashboard -1. The less than operator and the -1 are required
because there are two other shapes on the Globals Dashboard, StartUp Events and
Activation Scripts, besides any Global Library Shapes. This prevents the loop from
running too many times while providing report authors the flexibility to add or
remove shapes from the Global Library without requiring additional scripting to
support the StartUp Event scripts.

Calling Activation Events

The final statement included in the StartUp Event scripts is the code required to
execute the code contained within the Activation Scripts shape. The code, as shown
below, executes after the Global Library Shapes have been defined:

// --- Execute the Activation Events
ActiveDocument.Sections ["Globals"] .Shapes ["ActivationScripts"].
OonClick () ;

Activation Scripts

In the Dashboard Framework, code that is executed solely for the purpose of
preparing a document for end-user interaction is part of the Activation Scripts and
should be contained within a separate object. The reasoning behind the strategy

of separating this code is that functions defined within the framework are used in
conjunction with other scripts to set default state of the document. Because attempts
to call a function prior to it being defined results in an error that would terminate the
start-up sequence, the use of a separate object ensures any functions have already
been defined.

Create a shape to represent the Activation Scripts by adding another Text Label

to the Globals dashboard. Set the set the Name to ActivationScripts and the Title
property to Activation Scripts. This object will contain code specific to any initial
user interface objects, such as default filter selections or populating a last updated
date on the dashboard header, and end with the following code to activate the Home
dashboard object:

// Activate Home Section
ActiveDocument .Sections ["Home"] .Activate () ;

[123]

Building the Dashboard Framework

Setting the Document Scripts on Start-up

Test the code thoroughly by clicking the StartUp Events shape on the Globals
dashboard while in Run mode. If no errors are encountered and the code executes

as expected, the code is ready to be executed when the document opens. To execute
the code during the opening of the document, the OnStartup event of the Document
Scripts needs to be modified to call the onclick () method of the StartUp Events
shape on the Globals dashboard. Open the Document Script Editor using the
Document Scripts menu item in the File menu and add the following code:

// Click the Start-Up Events shape
ActiveDocument.Sections ["Globalg"] .Shapes["startUpEvents"] .OnClick () ;

When the Interactive Reporting document is opened, the script within the onclick ()
event trigger is executed and the Dashboard Framework is defined.

Understanding Document Save Options

Interactive Reporting offers various save options to give the report author additional
control over the visibility of the code contained in the document as well as options
that impact the size and performance of a document. The Save Query Results With
Document, Work Offline in Web Client, and Compress Document options allow
report author the ability to control document size and performance. The Password
Protect Document and Password Protect Design Mode options give report author
the ability to protect the coding and dashboard interface.

Save Query Results With Document

The Save Query Results With Document option provides the option to save the data
in a Results or Table section in the Interactive Reporting document. When the option
is active for a section, Interactive Reporting saves the data in the document for the
section. This setting is active by default and is very beneficial, since the document
can be saved with data for the user without requiring the user to reprocess the query.
Saving the data in the document increases the file size of the document, which will
impact the speed at which the dashboard opens. Deciding to save the results with the
document should depend on the purpose and use of the document. The following
steps demonstrate the methods for editing the Save Query Results With

Document settings:

[124]

Chapter 5

ﬂ File Edit View Inset Format Dashboard

Tools Window Help

J] Mew... Ctrl+M _r' 1 !—,---;, + _ﬂlprocess v| ﬂ
_SE Open... Ctrl+0
L=y Chrl+W i

S "W recutive Dashbq
i Save Ctrl+5

= Seveds., | _Home |

=

=

Save Options Save Query Results With Document...
Work offline in Web Client

v Compress Document

: |

m
.

Open from Repository

I

Save to Reposito
= = Password Protect Document...

Import Data L Password Protect Design Mede...

E{pﬂrt » Frooo oo -
- I b ommm e

After selecting the Save Query Results With Document menu item, the Save Query
Results With Document window appears as shown in the following screenshot:

B

Save Query Results With Document

Guery Results Computed Columns QK I
. b0 Ciost v Price & ﬂ Cancel
E} g Plan v Act —I
E} q Advertising j Help |
E} q Sales j o

Queries with an x are the queries where the Results section data will be saved when
the document is saved. Notice that there is also a setting for Computed Columns.
The report author may decide to save the data in a Computed Item by keeping the
column selected, or may instead force a recalculation of the Computed Item when
the document is opened by clicking to remove the x from any of the Computed
Columns.

Save Query Results With Document

Query Results Computed Columns oK |
- q Cost v Price - - r Sales Cancel |
B¢ g Flan v Act <t Top 5 Stores Parert

- q Advertising Help

N R

[

[125]

Building the Dashboard Framework

While this setting is used to remove data from the document, the report author may
also remove the data from a Results section by running the query with temporary
filters that produce no data. This method will produce an empty Results section and
will remove all of the data in the Results and dependent sections of the document
without having to modify this setting in the document.

Work Offline in Web Client

The Work Offline in Web Client setting allows the report developer to create an
Interactive Reporting document that does not require server authentication when
opened in the Web Client. The method is used commonly for dashboards or reports
that are passed around an organization to users without system accounts but with
the Interactive Reporting Web Client plugin software. While users cannot process the
queries in the document, the user will be able to view or export the data and utilize
any dashboards in the document.

Compress Document

The Compress Document setting compresses the Interactive Reporting document,
making the file size significantly smaller. The compression setting is one of the most
useful settings in the software and should be turned on, allowing easier distribution
and faster downloading from the Workspace. Document compression is set by
selecting the Compress Document menu item from the Save Options menu located
in the File menu as shown in the following screenshot:

<3| File Edit View Insert Format Dashboard Tools Window Help

J 1 New... Ctrl+M _(' I |31Process '| j|
Open... Ctrl+Q
«w recutive Dashb
Save Ctrl+S
Save As... m

Save Options Save Query Results With Document...
Work offline in Web Client

v Compress Document

Open from Repository
Save to Repository

Password Protect Document...
Import Data L Password Protect Design Mode...

Export 3 G l
. b Ot u """ N

When the check icon is shown to the left of the Compress Document menu item,
compression is enabled.

T

[126]

Chapter 5

Setting Compression by Default

Since document compression is a setting that is commonly used, the default settings
of the application can be modified to make sure the document compression setting is
enabled for each document created. The default settings for document compression
are set by selecting the Program Options from the Options menu located in the
Tools menu, as shown in the following screenshot:

Dashboard | Tools Window Help
A vl <4 Process Query 3 | (3}

Connection 3 I
1

V E) Connecticns Manager... 1 —
—————— Sawe Lonnectiomn.
— I
Administer Repository »
egions —))
Connect to Interactive Reporting - Systemn 9... PrOd uct Ad\,"ﬁ

| Filters Launch Dashboard Studio... Product Line | |
Launch Dashboard Architect... Books

Options Default Formats...

sles
kmerica | Program Options...

Customize...
fountries —

With the Program Options window open, check the Compress All Documents
option to compress all documents saved or check Create New Document
Compressed to only compress new documents created with the software.

Password Protect Document

The entire document can be password protected using the Password Protect
Document option. If a document is password protected, a password will be required
to open the document. To enable this feature, select the Password Protect Document
from the Save Options menu. When prompted by the Password Protect Document
window, enter and verify a password as shown in the following screenshot:

Password Protect Document

Password to open
oK |
Passward: I""""

Verify Password: Iotooo.o Cancel |

Once set, any user attempting to open the document will be prompted to enter
the password.

[127]

Building the Dashboard Framework

Password Protect Design Mode

The Password Protect Design Mode prevents users from accessing the design mode
within a Dashboard section without having the proper password. To prevent users
from modifying the Dashboard sections within a document, select the Password
Protect Design Mode setting from the Save Options. Provide and verify the
password as requested by the Password Protect Design Mode window, as shown in
the following screenshot:

Password Protect Design Mode

Paszword to open oK |
Password: I..oooo-..

Verify Passward: I.ooooooo. Cancel I

I Encrypt Scripts in BQY (with design mode passward)
‘Waming: Encrypted scripts will not be functional in releases priorto 8.1.

Notice the additional option to Encrypt Scripts in BQY. When enabled, this setting
encrypts any scripts within the document. When an authorized user enters the

proper password, any encrypted scripts are decrypted and the Design mode is
enabled.

Summary

The goal of this chapter was to introduce the Dashboard Framework and to
demonstrate one method to building an effective Dashboard Framework. The
chapter started with an introduction to Dashboard Frameworks and the steps for
defining a naming convention for sections, variables, functions, and shapes. The
chapter continues with the steps to implement the Dashboard Framework, starting
first with methods for defining a library of global shapes and global variables.
Next, the chapter introduces the steps for organizing all of the start-up code of the
document into individual components with specific naming conventions for growth
and ease of use. The methods for testing the start-up code are presented and finally
the method for the implementation of the Dashboard Framework concludes with
instructions for configuring the start-up code to execute during document opening.
The final section of the chapter discusses built-in features of the tool for optimizing,
securing, and saving Interactive Reporting documents, providing options for
improving document delivery and ensuring security where necessary.

[128]

Advanced Dashboard
Techniques

The previous three chapters set a solid foundation for dashboard development and
demonstrated a simple approach to building a framework for efficiency and growth.
With the framework in place and the dashboard layout determined, the final step in
building a dashboard is to add interactivity. Most interactive dashboards provide

a method to filter the objects shown on the screen, and advanced dashboards carry
that filtering across multiple screens of the dashboard. The goal of this chapter is to
introduce and demonstrate an approach to add filtering options to a dashboard, the
steps to filter data based on user selections, and the methods for populating filters
across dashboard pages. This chapter covers the following content:

e Populating Dashboard Controls with Database-Driven Values
e Applying User Selected Filters to Limit Data

e Synchronizing User Selections across Multiple Dashboards

Populating Dashboard Controls with
Database-Driven Values

The values available for selection by an end user in a Drop Down or List Box Control
can be populated with custom values by either editing the Values property of the
object or through the use of programming to dynamically populate a List of Values
(LOV) from a set of data contained within a Results or Table section in a document.
The use of programming allows the displayed LOV in the Drop Down or List Box
control to update as the values of the section change without the need to modify the
Interactive Reporting document. This section introduces the processes required to
use JavaScript code to generate a LOV for a Drop Down or List Box Control from
database values.

Advanced Dashboard Techniques

Querying Available Values

The concept of Available Values appears throughout the software when working
with filters. The term describes a distinct list of items available for selection, and

the distinct list generated is utilized by report authors to generate a custom LOV in
Drop Down or List Box Control on a Dashboard section. The list of distinct Available
Values is first selected from a data source and then is extracted with JavaScript

code to populate the values presented to an end user for selection using objects on a
Dashboard section.

When building a dashboard, the report author must decide the filters and filtering
methods to present to the users. The next step is to determine the method for
obtaining the Available Values for the filter criteria. Obtaining these values depends
on the number of queries and the approach used to gather data from the dashboard.
Dashboards can consist of one or more queries with small to large results, so the
approach to processing the queries and preparing filters plays into the approach

for populating and using the LOV to provide customized filters on the Dashboard
sections.

When multiple queries are required, best practice in generating the Available

Values to populate the LOV is the use of the Append Query feature. This feature
allows report authors to combine multiple queries in to a single Results section. In
addition to cutting down on the number of Query sections required, the single query
approach also simplifies the JavaScript code required to populate the dashboard
objects. The following sections of the chapter will demonstrate the use of a combined
query to generate the Available Values that will populate the LOV used by shapes on
a Dashboard section.

Appending Queries

The Append Query feature provides the ability to combine multiple queries to
produce a single Results section. Each query shares a single Data Model section,
where all of the tables for each query are brought and joined into one model. The
query strings are determined by the fields used for each query, so all of the tables do
not need to be joined together in the data model.

It is important to pay close attention to the fields selected for the
+ Request line for each Appended Query, especially if un-joined tables
exist in the data model. If unexpected query results appear, the fields
"~ used in the Request line should be examined to ensure they are from the
desired tables in the model.

[130]

Chapter 6

When using the Append Query feature, the following options are available for use:

e Union: The Union operator combines distinct rows across the joined queries
and will not produce duplicate rows if any exist.

e Union All: The Union All operator combines all results across all of the
joined queries, including duplicate lines.

¢ Intersection: The Intersection operator returns rows that match in both
queries.

e Minus: The Minus operator returns rows that appear in the first query but
not in the second.

A helpful tip when creating an Appended Query, where all of the data
M from each query is to return in the Results, is to create a custom data
Q identifier field in the Request line of the Query section. The custom
identifier field provides information on the query in the Query section
and provides the ability to troubleshoot issues in the query output.

The following example continues with the BMV Sales Dashboard example and
provides a demonstration of using a single Query section with Appended Queries to
generate the LOV for the List Box and Drop Down controls on the Dashboard. The
end result is a query with four unions, as shown in the following screenshot:

@ Hyperion Interactive Reporting Studio - WorkBook.bgy

;\J File Edit View Insert Format Query DataModel Tools Window Help ;Iﬁlﬂ
LB e N e o] [P = o e T
X ||| Request | FiterName| FiterVaiue

| Fiter 5| trag Topic or Computed equest fems fere to create fifers

7| 4 Process V‘._'J‘ = e g‘®|

Sections
LE t Advertising ;I

| p Advertising

A qsales J le Region & Union v Temtoy @ Union v County & Union v State & Union v Cty
o rsales 2 Region { &I Tertory /8 Country /2 State » /2 City
[pStore Sales =

LE t Top 5 Stores Parent
Li tTop 5 Stores

5 2om s seres
— _Region Key &« _Reqion Key &
Regor | = S key |
e Territory Store Name —
‘FL = Country Store Code
= Store Type
Street Addres
El nis
sme oy
[#-Eyg Tables = State Province

= Postal Code

-
1K | 3

| 69 Rows [Combined View: Ziopics @RI

[131]

Advanced Dashboard Techniques

The first step in creating the filter query is to add a new Query section to the
document. After adding the Query section to the example, it must be renamed to q
Filter and the associated Results section to r Filter for the purposes of accessing the
sections later in the chapter using the example code. The Regions and Stores tables
are used to create all of the appended queries required by this example. Since each
table will be used independently of each other in the appended queries, no join is
required between the two tables and the tables may be displayed un-joined in the
data model.

Each appended query is created using the Append Query menu option in the Query
menu to add an Append Query section, as shown in the following screenshot:

at|Query DataModel Tools Window k

El Bracess Result to Table,.,
| Estimate Query Size

™

est

Showy Bermarks.., Ltk +] 1
= Ald Request [term(s) =
£ Aol Eilter(s., Cirl+L |'|"1
lgic Add Sort(s) , E

Add Cormputed Item..

Data Functiomns r
Wariahle Filter

Custarnize Filter...

Append Query

Stared Procedures...

totnin i in IR

Query Options...

——

The use of the Append Query feature modifies the traditional Query section interface
to display a control at the top of the main window for configuring the behavior
between the queries. To rename an appended query, right-click on the query tab with
the Append Query name and choose Rename to modify the appended section name.
The Union query operator is set by default and should not be changed to ensure that
all distinct rows are retrieved without duplicates. In this example, an appended query
will exist for each Drop Down and List Box Control.

Query Request Items

Once the data model is configured and the appended queries are added, the Request
line items need to be added for each appended query. In order to process the query
without an error, the same number of Request items need to exist in each appended
query and the data type of each column must match.

[132]

Chapter 6

A simple method for generating the LOV for a control on the dashboard is to use

two items on the Request line, named FilterName and Filtervalue. The first field,
FilterName, is a custom Computed Item to represent the name of the filter and should
correspond to name of the dashboard Control that will contain the LOV from this
query. The second field, Filtervalue, is a field from the data model and contains

the values that will be populated into the LOV for the specific List Box or Drop Down
Control represented by the filter name.

Adding the FilterName Computed Item is completed by right-clicking on the Request
line and choosing Add Computed Item as shown in the following screenshot:

] Process Query
Filter i|| kems

Add Computed lkem

B 0 Properties... |W q

=l]

Once the Computed Item Properties dialog is opened, changing the Name property
to FilterName and entering the filter label name surrounded by single quotes (used
specifically to add text to an Oracle query) completes the addition of the custom
value. Pressing OK will close the dialog box and will add the computed column to
the Request line.

hempoperies |
Mame IFlHerName

— Definition

‘Region’ ;I Functions. .. |
Reference. .. |
COptions |

) = A

Help ok | Cancel

[133]

Advanced Dashboard Techniques

After the Computed Item is added for the filter name, the column containing the
filtering values is added to the Request line from the data model. After the column

is added to the Request line, the Name property of the column must be changed to
FilterValue to support the code for populating the dashboard Controls demonstrated
later in the chapter. Once completed, repeating the configuration steps for each filter
object will complete the Query section for the dynamic LOV.

Staging the Results Set for Code

The FilterName and FilterValue column from each of the appended queries

will provide the road map to dynamically populate the LOV within the desired
dashboard objects. Once the query with the filter values is processed, a filter is
created on the Results section to be accessed by code to allow the report author to
segment the results when building filters.

To build this filter, add a filter on FilterName by dragging the FilterName column
to the Filter line. Since the values of this filter are programmatically manipulated,
it does not matter what value is added. Use an arbitrary value such as 99999 to
populate the filter.

Filter: FilterfMame I
MName: |: terMams 0K |
™ Include Nulls Cancel |
Xx|v]] oo
Show Values -
| Custom Values
Select All
Remaove j
i Options |

Click on the OK button to close the Filter dialog box and to apply the filter. The filter
now limits the data to show rows where the FilterName column is equal to 99999.
Double click the FilterName object on the Filter line to open the properties dialog
and click on Ignore to disable the filter without deleting it.

[134]

Chapter 6

Scripting the Function

In this section, the code required to script the gfPopulateLoV function is discussed
in detail. The purpose of this function will be to add the Available Values from the
FilterValue column in the r Filters section to Drop Down and List Box Controls

on a Dashboard section. Since this function is a part of the Dashboard Framework
established in Chapter 5, Building the Dashboard Framework, the JavaScript must be
added to a Text Label on the Globals Dashboard. If the examples in this guide
have been followed in order, the Name property of the new Text Label should

be gf2.Otherwise, the Name property should be gf# where # represents the

next number available. The Title property of the Text Label should be set to
gfPopulateFilterLOV.

As functions are defined at the global scope and are invoked by objects, testing

the functions can be tricky. A handy trick to help facilitate the initial writing of a
function is to assign the code to an object that can be clicked, such as a Text Label.
To do this, script the function contents outside of the function declaration statement
and temporarily define any parameters that will be passed to the function. When the
object is clicked, the code will be directly executed using the predefined parameters.
Once the function is tested, the additional code used to define the function can be
added and the function can be globally declared.

When called, the gfPopulateFilterLoV function will expect parameters for the
Dashboard section name and for the name of the Control that will accept the filtering
values. Define a sectionName variable to represent the section on which the shape is
located and a shapeName variable to refer to the name of the shape calling the script,
as displayed below:

//---temporary variable for section name
var sectionName = "Home";

//---temporary variable for shape name
var shapeName = "ddRegion";

With these two variables defined, the code can be tested by clicking on the Text Label
shape during development. The last part of this section describes how to wrap the
code written into a function and the steps to supply sectionName and shapeName as
parameters, allowing the preceding code to be deleted from the final result.

[135]

[vww allitebooks.cond

http://www.allitebooks.org

Advanced Dashboard Techniques

Determining the vDataName Variable

If the naming suggestions have been followed, the data values in the FilterName
column of the r Filter section correspond to the Dashboard section shapes to be
populated dynamically, with the exception that the shape names have a two-
character prefix. When the function that populates the LOVs is called, the name

of the shape to be populated and the name of the section to be populated will be
supplied as parameters to the function. An additional variable that will equal a
value in the FilterName column needs to be declared. This is accomplished by
using the JavaScript substring () method to remove the two-character prefix on the
shapeName variable.

Substring is a JavaScript method that extracts the individual characters between
two values and returns the result as a string. In situations where only one value is
assigned, the value defined is the starting point and the ending point is assumed
to be the end of the string. The JavaScript below demonstrates using substring to
remove the first two characters of shapeName to define the vDataName variable:

//---Remove the prefix from the shape name to determine the value of
the FilterName filter on the r Filter section

var vDataName = shapeName.substring(2) ;

If it is assumed that the shapeName variable is equal to ddregion, the outcome of

the substring () method is all characters starting from the third character, r. The
reason for this is that the count begins at zero not one, so the number two actually
represents the third character. This defines the variable vDataName as the string
Region, allowing report authors to now directly reference the data to be populated in
referenced filter control.

Removing All Values from a LOV

Before any values are added to a filtering control object, the existing values must be
removed or the LOV presented to the end user will be inaccurate or contain duplicate
values. The Drop Down and List Box Controls have a Removeall () method that will
remove all existing values. The following scripting example demonstrates the syntax
to remove all values within the referenced shape:

//---Remove all existing values from the shape to be populated with
the available values

ActiveDocument.Sections [sectionName] . Shapes [shapeName] .RemoveAll () ;

[136]

Chapter 6

Adding a Custom LOV Value

Adding a custom selection item to an object's LOV is a good way to give the end
user an option to select all data values to be shown. From a usability standpoint, this
option also acts as a very convenient filter label that does not require an additional
Text Label graphic to be added for each filter. To ensure the custom 'select all'

value is displayed first, this step must occur after the values have been removed
from the control but before any other values are added to the LOV of the object.
Having standardized the FilterName value to be a non-plural value that represents
the name of the filter, the addition of an s to the vDataName value will display a
pluralized version of the filter.

The following code demonstrates how to simply add a custom label to a filtering
control using the vDataName variable to customize the label:

//---Add custom value to allow user to select to see all available
data

ActiveDocument.Sections [sectionName] . Shapes [shapeName] .Add ("--A11 "+
vDataName +"s---");

In situations where the name of the filter ends in the letter y, the pluralization
of the vDataName will be incorrect. Adding a logical statement to determine if
the vDataName ends in y will allow the report author to handle these situations
separately. The script for the statement to check for a vDataName ending isy is
shown in the following code snippet:

// Determine if last character of vDataName is a y to properly
pluralize
if (vDataName.substring(vDataName.length-1)=="y")

{

// Drop y value from vDataName string
var vDataNameTrim = vDataName.substring (0, vDataName.length-1) ;

// Add ies to end of vDataNameTrim variable

ActiveDocument.Sections [sectionName] . Shapes [shapeName] .Add ("--A11 "+
vDataNameTrim +"ies---");

}

The script uses JavaScript string commands to determine the last character of the
vDataName variable and then remove that character if it is y, allowing for ies to be
added instead of s to pluralize the data label.

[137]

Advanced Dashboard Techniques

The first string command, substring, is combined with a second command, 1ength,
to allow the if statement to evaluate the last character of the string. Length is a
JavaScript method that returns a number representative of the number of characters
in a string. For example, if the vDataName variable is assumed to be equal to
Country, the following statements would be true:

e The value for vDataName.length-1 would be 6;
e The value for vDataName. substring (6) would be y;

e The value for vDataName . substring (0, 6) would be Countr;

The addition of an else statement to handle all situations where the vDataName
variable does not end in y, completes the section of code that adds a select all option
to the list of available values as shown in the following code snippet:

//---Add custom value to select all available data

// Determine if last character of vDataNameis a y

if (vDataName.substring(vDataName.length-1)=="y")

// Drop y value from vDataName string

var vDataNameTrim = vDataName.substring (0, vDataName.length-1);

// Add ies to end of vDataNameTrim variable

ActiveDocument.Sections [sectionName] . Shapes [shapeName] .Add ("--A11 "+
vDataNameTrim +"ies---");

}

else

{

// vDataNamedoes not end with a y so add s

ActiveDocument .Sections [sectionName] .Shapes [shapeName] .Add ("--All
"+vDataName+"s---") ;

}

Customizing Results Section Limits

The remaining values to be populated to the filter control are determined by the
values available in the r Filter Results section of the g Filter Query section. To
ensure that only the appropriate values are populated in each filter control object, the
dummy FilterName filter created earlier in the chapter is modified using JavaScript
to limit the data shown in the r Filter section so it displays only one set of values
at a time. The following JavaScript code demonstrates the steps to customize the
value to be filtered:

//---Remove any existing values from the FilterName filter
ActiveDocument.Sections["r Filter"] .Limits["FilterName"].
SelectedValues.RemoveAll ()

[138]

Chapter 6

//---Add the vDataName variable value to the FilterName filter

ActiveDocument.Sections["r Filter"].Limits["FilterName"].
SelectedValues.Add (vDataName) ;

//---Set the Ignore property of the FilterName filter to false
ActiveDocument.Sections["r Filter"] .Limits["FilterName"] .Ignore =
false;

This JavaScript uses the Removalall () method of the FilterName limit's
Selectedvalues collection to disable any existing selections. The next statement
uses the Add () method of the Selectedvalues collection to select the vDataName
value. The final step is to activate the FilterName limit by setting the Ignore
property to false. The r Filter section now displays only the Filtervalues where
the FilterName column is equal to the vDataName variable.

Adding Values to the LOV Property

The customization of the FilterName limit allows a loop statement to be used to first
read the value in the Filtervalues column for each row of the r Filter section
and then write that value to the shape referenced by shapeName and sectionName.
As shown in the following code snippet, the JavaScript required uses the value of
RowCount to determine how many times the script included in the loop should be
run.

//---For each row of the r Filter section
for (var 1 = 1; 1 <= ActiveDocument.Sections["r Filter"] .RowCount;
i++)

{

//Store the current row's data in the FilterValue column
var vFilterText = ActiveDocument.Sections["r Filter"].
Columns ['FilterValue'] .GetCell (1) ;

//Add the vFilterText to the shape on the desired section

ActiveDocument.Sections [sectionName] . Shapes [shapeName] .
Add (vFilterText) ;

}

For each iteration of the loop, the Getcell () method of the Columns collection

is used to first access and then store the data added to the dashboard Control
referenced by sectionName and shapeName. Since the GetCell () method expects a
numeric value for the row number of the cell to be returned, the incrementing value
used in the loop, i, is also used to represent the row number.

[139]

Advanced Dashboard Techniques

Each time the loop is run, i will be incremented by 1 and the cell returned is

stored as vFilterText. Once vFilterText is populated with a value, the Add ()
method of the shape is used to add vFilterText to the filter control shape on the
Dashboard section represented by the sectionName parameter. When the last row is
encountered, as determined by the RowCount property, the loop will end.

Scripting a Default LOV Selection

While the first value in the list of a Drop Down Control is selected by default, the
List Box Controls have no default selection and one must be set if desired. In the case
of the BMV Executive Dashboard, the first item, 'select all', should be selected by
default for all filters. The following code example demonstrates the syntax required
to select the first item:

// Select the first value in the list as the default selection
ActiveDocument.Sections [sectionName] . Shapes [shapeName] .Select (1) ;

The select () method of the shape referenced by sectionName and shapeName
expects a numeric value that represents the index value of the item to be selected.
Since the item to be selected is the first item in the list of values, the number 1 is
supplied and the first item in the list is selected.

Completing the Function

After all of the code is complied and added, the function is tested by clicking on the
gfPopulateFilterLOV text label. If successful, the Console Window is free of errors
and the ddRegions shape should populate as displayed in the following image:

BMV Executive Dashboar
[Region | Home |

I—AJI Regions — j

Plan v Act

Americas o
Asia Pacific
Europe 000,000 ‘

[140]

Chapter 6

To complete the function, delete the temporary shapeName and sectionName
variable declarations and add the declaration for the function and the opening
brace at the top of the script. It is good practice to display the name of the function
and define its purpose in comment lines before the function call to assist with
maintenance. The comment shown below must be positioned at the top of the code
before any other scripts as it is the opening declaration for the function:

/)= function PopulateFilterLOV ------------
//--- This function will populate the filters on Start up
function populateFilterLOV (sectionName, shapeName)

{

All other scripts written as a part of this function are contained in the middle and the
close brace must be added to the end. The final statement reassigns the function to a
global variable making the function accessible throughout the Interactive Reporting
document. The following code, which closes the function and then globally defines it,
must be added to the end of the existing code:

}

gfPopulateFilterLOV = populateFilterLOV;

The entire JavaScript code to support the gfPopulateFilterLov global function is
displayed in the next code snippet:

VR function PopulateFilterLOV ------------
//--- This function will populate the filters on Start up
function populateFilterLOV (sectionName, shapeName)

{

//---Remove the prefix from the shape name to determine the value of
the FilterName filter on the r Filter section

var vDataName = shapeName.substring(2) ;

//---Remove all existing values from the shape to be populated with

the available values
ActiveDocument.Sections [sectionName] . Shapes [shapeName] .RemoveAll () ;

//---Add custom value to select all available data
// Determine if last character of vDataName is a y
if (vDataName.substring(vDataName.length-1)=="y")
// Drop y value from vDataName string
var vDataNameTrim = vDataName.substring (0, vDataName.length-1);

// Add ies to end of vDataNameTrim variable

ActiveDocument.Sections [sectionName] . Shapes [shapeName] .Add ("--All
"4+ vDataNameTrim +"ies---");

[141]

Advanced Dashboard Techniques

else

{
// vDataName does not end with a y so add s
ActiveDocument.Sections [sectionName] . Shapes [shapeName] .Add ("--All
"+ vDataName +"s---");

}

//---Remove any existing values from the FilterName filter

ActiveDocument.Sections["r Filter"] .Limits["FilterName"].
SelectedValues.RemoveAll ()

//---Add the vDataName variable value to the FilterName filter

ActiveDocument.Sections["r Filter"] .Limits["FilterName"].
SelectedValues.Add (vDataName) ;

//---Set the Ignore property of the FilterName filter to false

ActiveDocument.Sections["r Filter"] .Limits["FilterName"] .Ignore =
false;

//---For each row of the r Filter section

for (var i = 1; 1 <= ActiveDocument.Sections["r Filter"].

RowCount; i++)

//Store the current row's data in the FilterValue column

var vFilterText = ActiveDocument.Sections["r Filter"].
Columns ['FilterValue'] .GetCell (1) ;

//Add the datavalue to the shape on the desired section

ActiveDocument.Sections [sectionName] . Shapes [shapeName] .
Add (vFilterText) ;

}

// Select the first value in the list as the default selection
ActiveDocument.Sections [sectionName] . Shapes [shapeName] .Select (1) ;

}

gfPopulateFilterLOV = populateFilterLOV;

[142]

Chapter 6

Calling gfPopulateFilterLOV

When called, the gfPopulateFilterLOV function expects a sectionName and a
shapeName parameter. The syntax to invoke the gfPopulateFilterLOV function to
populate the ddregion object on the Home Dashboard section is displayed below:

//Call gfPopulateFilterLOV
gfPopulateFilterLOV ('Home', 'ddRegion') ;

In addition to referencing parameters as strings, parameters can also be referenced

as variable objects. With regard to the BMV Executive Dashboard example, the
ddRegion shape exists on more than one Dashboard section so the above call will not
work to populate ddregion on all sections. Leveraging a for loop statement and the
length property of the gDashboardArray object allows report authors to populate
the LOVs for all ddregions across the defined Dashboards. Modifying the Activation
shape on the Globals dashboard to include the array of multiple sections is displayed
as follows:

//Populate Dashboard filter controls

for (var i1=0; i<gDashboardArray.length; i++)

{
var sectionName=gDashboardArray[i];
gfPopulateFilterLOV (sectionName, 'ddRegion') ;

gfPopulateFilterLOV (sectionName, '1bTerritory') ;
gfPopulateFilterLOV (sectionName, '1bCountry') ;
gfPopulateFilterLOV (sectionName, '1bState’') ;

(

gfPopulateFilterLOV (sectionName, '1bCity"') ;

}

For each loop iteration, the string indexed at value i of gbashboardArray[i] is
stored as sectionName. The gfPopulateFilterLoV function is then called for each
of the dashboard shapes to populate the objects with values. With the abstraction
of the parameter representing sectionName, the addition or removal of Dashboard
sections to the dashboard array will not affect the effectiveness of this code.

[143]

Advanced Dashboard Techniques

When combined with the Dashboard Framework already in place, the example

code will populate the dashboard filters on all Dashboard sections defined in
gbhashboardArray each time the document is opened. Clicking on the startUpEvents
shape on the Globals Dashboard section will test the document's onStartupscript
activities. When completed, the list of values for the Region, Territory, Country,
State, and City filters are populated as shown in the following image:

BMV Executive Dashboard nton Mot fepert Help

Updated: Sun Aug 14 2011

I—AII Regions — j

______ Plan v Act Product Advertising Costs

Optional Filters | =% ProductLine | YTD Advertising Cost
— All Territories — ! -
Asia

=
r Books $506,522.54
L Music $100,597.27
I Videos $64,151.93
— All Countries — B Total 671,271.73
Argentina
Australia .

Eritish Isles
MNorth America LI

Brazil = leee Tmes Tmes 1eem 2000 Unit Cost v Retail Price
a1 Q2 Q3 Q4 $25,000.00
B costs Actusl

Eahia

Bayem Top Five Stores by Sales ’

M www.downtownbmv.com $4,460,115
Ananeim Super BMV New York $1,494,810

Barreiras
Berlin [=| ||| superBmv westwood $1,406,972
Super BMV Los Angeles $1.305.505 B sss s 1sss 1sss 2000
Apply | BNV Brooklyn $1,105,996 @ e @ W a

Stangard Unit Cost Suggested Retsl Price

Applying User-Selected Filters to
Limit Data

Once the filtering options are set on the dashboard, the next step is to configure the
application of the filter across all of the dashboard pages within the document. These
filters are applied locally to the data in the Results or Table sections or to the desired
Query section based on the data refresh strategy. The following sections discuss an
efficient approach for applying user-selected local filters in both Drop Down and List
Box Controls throughout dashboard pages in a document.

[144]

Chapter 6

Preparation for Dynamic Limits

The term Dynamic Limits refers to Query or Results filters that are controlled by
end user interactivity. These types of limits can be handled a couple of different
ways using JavaScript. The most straightforward option is to have any limits that the
user can control already positioned on the Results sections as filters, and then to use
JavaScript to modify the limit's properties. Another option, which would provide
more flexibility but involves considerably more JavaScript code, would be to create
the filter limits on the fly. This technique would be well suited for enterprise-level
solutions that leverage frameworks that extend beyond the Interactive

Reporting document.

In the BMV Executive Dashboard, the filters required are unlikely to change, so pre-
positing the limits and using JavaScript to modify the properties of the predefined
limits is well suited for this example. The process is similar to the process used to
modify the FilterName limit used on the r Filters section. The process requires
any Table or Results sections affected by the end user limits have the filters already
applied to the required columns, so the filter selections can then be added with
minimal JavaScript code.

Modify the Global Variables Shape

The first step in preparing the dashboard for dynamic filtering across sections is

to create an array containing the sections of the document that will be filtered. The
array approach is similar to the array created for accessing Dashboard sections and
cuts down on repetitive code that would have to be maintained throughout the
Dashboard if an array is not used. The following code, added to the Global Variables
shape of the Globals dashboard, demonstrates adding an array containing the names
of the Results sections for filtering:

//---Array of Results Sections to be limited by user selections
gResultsArray =[];

gResultsArray[0]="r Plan v Act";

gResultsArray[l]="r Advertising";

gResultsArray[2]="r Sales";

In the BMV Executive Dashboard example, the Cost v Price Results section is not
filtered based on location, since the data contained within the Cost v Price sections
are company-specific and not affected by region. Therefore, the r Cost v Price section
is not included in the above gresultsArray and is not filtered by user selections.

[145]

Advanced Dashboard Techniques

Modifying the Query and Results Sections

The next step after creating the global Results section array is to verify that all
columns that can be filtered are added to the Filter line in all of the sections
contained in gresultsArray. Additionally, to take advantage of the Dashboard
Framework, the names of the columns in each section must conform to the names
previously defined as FilterName and should be non-plural. In the BMV Executive
Dashboard example, q Plan v Act, q Advertising, and q Sales must all include
Region, Territory, Country, State, and City columns as shown in the

following screenshot:

@ Hyperion Interactive Reporting Studio - WorkBook.bqy
| File Edit View Insert Format Results Tools Window Help ;Iilil
Jn 2t e T B e st s s T D
Sections S J Fitter | Courtry | Region | MR Citv| State
V'—‘ qLDStVPI'IEE - a
[tcostvprice] 1999 Q1 BMV Brooklyn 674,797.687
il c Cost v price W 1999 Q1 BMV Brooklyn 276,212.12
A grlanvact N 1993 Q1 BMV Brooklyn 154,985,703
8% rplanvact W 1999 Q2 BM\V Brooklyn 263,379.2
LE t Plan v Act - | 1999 Q2 BMV Brooklyn 387,947 437
—{ || 1999 Q2 BMV Brooklyn 518,913.3437
Elements B 1999 Q3 BMV Brooklyn 402,486.6562
~Ega Plan v Act = 1999 Q3 BMV Srocklyn 374,311.0937
|_E Reverue Actual — A
.| Reveru Plan || 1999 Q3 BMV Brooklyn 398,950.906%
|1 Costs Plan 1999 Q4 BMV Brooklyn 190.552.923;1
|_E Costs Actual LI_I L
’I_E Units Sold Plan ‘fear Quarter Store Name Revenue Actual Revenue Plan Costs Actual Costs Plan ‘
|_E Units Sold Actual Units Sold Actual Units Seld Plan Country Region Territory City State
[Store Name =2

| [612 cf 612 Rows [05/15/11 11:47:49 @D

Applying Local Filters with JavaScript

The process for modifying the local filters with JavaScript, based on the user's
selections from the dashboard is very similar to the process used to manipulate the
FilterName local filter to load the dashboard objects. However, in this situation, the
user controls the limit values and interacts with the filter controls.

While the processes required to read user selections to manipulate local filters

from List Box and Drop Down Controls are similar, each Control must be handled
separately. If the framework naming standards are followed, the shape types are
easily differentiated using the two-character prefix, which denotes type of shape by
name. Shapes prefixed with dd are Drop Down Controls and shapes prefixed with 1b
are List Box Controls. While the code example assumes use of the framework naming
convention defined in Chapter 5, Building the Dashboard Framework, the shape type

can also be identified using the BqShapeType constant if defined standards are not
followed.

[146]

Chapter 6

While the logic required to apply the local filters could very easily be contained
within a single function, the next section will demonstrate the creation of multiple
functions to handle various tasks so each function can be accessed independently.
Since all of these functions are global, the declaration order is not important.

Applying a Drop Down Control Selection to a
Local Filter

The first of three functions will apply a value selected from a Drop Down Control to
a local filter on the Results section. Using the BMV Executive Dashboard example,
add a new Text Label Graphic shape to the Globals Dashboard and set the Name
property to g£3 and the Title to gfApplyDDFilters.

When the function is called, shapeName and sectionName will represent parameters
passed to the function. As demonstrated earlier, temporary variables can be defined
to make testing easier. Define shapeName and sectionName as shown below to create
temporary variables if desired:

//---Temporary Variables
var shapeName = "ddRegion";

var sectionName = "Home"

The code below demonstrates using the substring () function to remove the
prefixing value on the shapeName variable, dynamically defining vLimitName to
represent the name of the column to be filtered.

//Define the limit name from the shape name
var vLimitName = shapeName.substring(2) ;

Selecting All Values with a Drop Down

If the custom Select All Values item is chosen from the control, the end user is
requesting all values to be shown. Logically, the request to show everything is the
same as ignore, so the filter represented by vLimitName should be ignored. If the
user selects an item other than the first item, the selected item represents the value to
be added to the filter to show data only for that specific selection.

To accommodate the Select All Values selection, a conditional statement is used

to determine if the first item is selected. In the case of a Drop Down Control, the
SelectedIndex property is equal to the numeric value that indicates which item is
selected. If the first item is selected, the SelectedIndex property is equal to 1 and
the ignore property of the filter must be set to true to ensure all data is displayed.

[147]

Advanced Dashboard Techniques

The code required to ignore a filter upon the selection of the first item is shown in the
following code snippet:

// Is the selected the first item selected?
if (ActiveDocument.Sections [sectionName] . Shapes [shapeName] .
SelectedIndex == 1)

{

//Set the limit ignore property to true for all sections
for (var i1i=0; i<gResultsArray.length; i++)

{

//determine the vActiveResults from the Results Array
var vActiveResults = gResultsArrayl[i];

//set the ignore property of the limit collection to true
ActiveDocument.Sections [vVActiveResults] .Limits [vLimitName]
.Ignore=true;

} //close loop
}// close if

The addition of the for loop to cycle through the values defined in the
gResultsArray ensures that the filter represented by vLimitName is modified on all
of the sections defined in gresultsArray.

Selecting Filters with a Drop Down

If the first item is not selected, then the user has selected a value that must be added
to the filter for each of the required Results sections to limit the data displayed. Since
Drop Down Controls allow the selection of only one item at a time, the filter is set by
retrieving the value from the Drop Down control on the Dashboard section and then
applying that value to the items corresponding filter on each of the Results sections
in gresultsArray. The following code demonstrates the steps to apply the selected
Drop Down value to the Results section filters using JavaScript:

else //the selected item is not the first value

//Access and store selected value

var vLimitText = ActiveDocument.Sections[sectionName] .
Shapes [shapeName] .Item (ActiveDocument.Sections [sectionName] .
Shapes [shapeName] . SelectedIndex) ;

//For all table sections in the ResultsArray
for (var i1i=0; i<gResultsArray.length; i++)

{

//Store the results array reference to the active section

[148]

Chapter 6

var vActiveResults = gResultsArrayl[il];

//Remove all values from the custom values collection

ActiveDocument.Sections [VActiveResults] .Limits [vLimitName] .
CustomValues.RemoveAll () ;

//Add the user selected value stored as vLimitText from the
Dashboard section to the Custom Values collection

ActiveDocument.Sections [VActiveResults] .Limits [vLimitName] .
CustomValues.Add (vLimitText) ;

//Add all values in the Custom Values collection to the Selected
Values Collection

ActiveDocument .Sections [VActiveResults] .Limits [vLimitName] .
SelectedValues.AddAll () ;

//Set the Ignore property of the filter to false to activate the
filter

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
Ignore=false;

}// close the loop for results array
}// close the else conditional reaction

Since the check for the first value has already been completed, the else statement at
the beginning of the preceding code executes only when a user selects a value other
than the first value in the list. The selected value in a Drop Down Control is accessed
by passing the Item control to the Selected Index of the Drop Down Control. The
Selected Index is a numeric value that represents the item selected based on the
order the items are added to the Drop Down Control. For example, if the Drop Down
Control representing months has the first value, January, selected, the Selected Index
of the value is 1. If the tenth item, October, is selected, the value of Selected Index is
10. When the Items property of a Drop Down or List Box control receives a number
as a parameter, it returns a string that represents the value stored. In keeping with
the months comparison example, if the value 10 was provided to the Items property
of a Drop Down Control, the value october would be returned.

By leveraging the Selected Index and Items properties of the Drop Down Control,

the string value of the item selected by the end user is stored as vFilterText if the
selected item is not the first value in the list. The vFilterText value is then added

to the Custom Values collection of the appropriate limit on the currently active
Results section, represented by vActiveResults. The code then adds the custom value
to the Selected Values collection of the filter, and sets the Ignore property of the
limit to false, which activates the limit. This script executes once for each item in
gResultsArray.

[149]

Advanced Dashboard Techniques

Completing the Function

Upon completion of testing, replace the temporary shapeName and sectionName
variable declarations with the declaration for the function and the opening brace at
the top of the script as shown:

/)= - - function ApplyDDFilters ------------

//--- This function will apply user selections to local results
filters from drop down Dashboard objects

function applyDDFilters (sectionName, shapeName)

{

Add the close brace and globalization of the declared function at the bottom of
the script:

}

gfApplyDDFilters = applyDDFilters;
The code for the function in its entirety is displayed below:

[/ function ApplyDDFilters ------------

//--- This function will apply user selections to local results
filters from drop down Dashboard objects

function applyDDFilters (sectionName, shapeName)
{

//Define the limit name from the shape name
var vLimitName = shapeName.substring(2) ;

// Is the selected the first item which denotes all values?

if (ActiveDocument.Sections [sectionName] .Shapes [shapeName] .
SelectedIndex == 1)

{

//Set the limit ignore property to true to ignore the filter which
will show ALL values for all table sections

for (var i=0; i<gResultsArray.length; i++)

{

//determine the vActiveResults from the Results Array

var vActiveResults = gResultsArrayl[il];

//set the ignore property of the limit collection to true for the
active section

ActiveDocument.Sections [VActiveResults] .Limits [vLimitName]
.Ignore=true;

} //close loop for results array
}// close if statement reaction

else //the selected item is not the first value

{

[150]

Chapter 6

//Access and store selected value

var vLimitText = ActiveDocument.Sections[sectionName] .
Shapes [shapeName] . Item (ActiveDocument . Sections [sectionName] .
Shapes [shapeName] . SelectedIndex) ;

//For all table sections in the ResultsArray

for (var i=0; i<gResultsArray.length; i++)

{

//Store the results array reference to the active section
var vActiveResults = gResultsArrayl[il];

//Remove all values from the custom values collection

ActiveDocument .Sections [VActiveResults] .Limits [vLimitName] .
CustomValues.RemoveAll () ;

//Add the user selected value stored as vLimitText from the
Dashboard section to the Custom Values collection

ActiveDocument.Sections [VActiveResults] .Limits [vLimitName] .
CustomValues.Add (vLimitText) ;

//Add all values in the Custom Values collection to the Selected
Values Collection

ActiveDocument .Sections [VActiveResults] .Limits [vLimitName] .
SelectedValues.AddAll () ;

//Set the Ignore property of the filter to false to activate the
filter

ActiveDocument .Sections [VActiveResults] .Limits [vLimitName] .
Ignore=false;

}// close the loop for results array
}// close the else conditional reaction

}

gfApplyDDFilters = applyDDFilters;

Applying List Box Selections to a Local Filter

While the process for assigning user-input values for a List Box Control to a local
filter is a similar process to a Drop Down Control, the List Box Control object allows
the user to select more than one contiguous or non-contiguous value.

Continuing with the BMV Executive Dashboard, add a new Text Label Graphic
shape to the Globals Dashboard section and set the Name property to gf4 and the
Title to gfApplyLBFilters.

[151]

Advanced Dashboard Techniques

With the gfApplyLBFilters shape selected, open the Script Editor. If desired, add
temporary variables to reference a specific shape on a specific section to test the
function, as shown below:

//---Temporary Variables
var shapeName = "lbTerritories";
var sectionName = "Home"

Use the substring () method to define vLimitName from the shapeName variable, as
shown below:

//Define the limit name from the shape name
var vLimitName = shapeName.substring(2) ;

With the first two characters of shapeName removed, the resulting variable,
vLimitName now represents the name of the Results section limit to be modified.

Selecting All Values with a List Box

Similar to the Drop Down, the List Boxes in the example contain an option to Select
All Values. If selected, the filter must be ignored. To determine if an end user has
selected the Select All Values option, the code simply needs to check if the first item
in the list is selected. If the first item is selected, the Ignore property of the filter
represented by the £filterName variable on each of the results sections must be set to
true. By setting the property to true, the filter is ignored and all values are shown.

The following code demonstrates the conditional statement and steps to ignore the
filter if the first entry in the List Box is selected:

//is the first item in the list a selection?

if (ActiveDocument.Sections [sectionName] .Shapes [shapeName] .
SelectedList.Item(1l) ==ActiveDocument.Sections [sectionName] .
Shapes [shapeName] .Item(1))

{

//Set the limit ignore property to true to ignore the filter
which will show ALL values for all table sections

for (var i=0; i<gResultsArray.length; i++)
//Ignore filter for active results section
var vActiveResults = gResultsArray[i];

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
Ignore=true;

}

[152]

Chapter 6

The preceding code first determines if the first item is selected by comparing the
string value of the item, represented by selectedList.Item(1), to the string
value of the first item in the LOV, represented by rtem(1). If the values match,
the code recognizes that the end user has chosen the first item and steps through
gResultsArray to set the Ignore property of the filter to true.

Selecting Filters with a List Box

If the first item is not selected, then the user has selected one or more values to filter
the data. For each selection, the selected value must be added to the Results filter that
is represented by the £ilterName variable for each Results section represented in

the gresultsArray variable. The following code demonstrates the steps to apply the
selected List Box values to a Results section filter using JavaScript:

else
{
//for all table sections
for (var i1i=0; i<gResultsArray.length; i++)
{
//Store variable to denote active results section
var vActiveResults = gResultsArray[i];

//Remove all values from the custom values collection
ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
CustomValues.RemoveAll () ;

//for each selection up to the total number of selections

for (var k=1; k<=ActiveDocument.Sections[sectionName] .
Shapes [shapeName] . SelectedList.Count; k++)

{

//store the current selected value as filter text

var vLimitText = ActiveDocument.Sections[sectionName] .
Shapes [shapeName] .SelectedList.Item(k) ;

//Add the user selected value stored as vLimitText from the
Dashboard section to the Custom Values collection

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .

CustomValues.Add (vLimitText) ;

}

//Add all values in the Custom Values collection to the Selected

Values Collection

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
SelectedValues.AddAll () ;

//Set the Ignore property of the filter to false to activate the
filter

[153]

Advanced Dashboard Techniques

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
Ignore=false;

}
}

Since this code immediately follows the code used to determine if the user has
selected the first item, the first statement is an else statement. This means the
preceding code will be executed only when the first item is NOT selected. This
code executes two for loops: one to iterate through the gresultsarray to apply the
selections on all appropriate sections and the other to iterate through the items the
end user selected in the List Box and add the selections to the appropriate filter.

The first part of this statement is shown in the following code snippet:

//for all table sections

for (var i=0; i<gResultsArray.length; i++)
//Store variable to denote active results section
var vActiveSection = gResultsArray[i];

//Remove all values from the custom values collection
ActiveDocument .Sections [vActiveSection] .Limits [vLimitName
] .CustomValues.RemoveAll () ;

This section of the code first stores the active Results section, defined as
gResultsArray[i], to the vActiveResults variable. This code then removes any
existing custom values from the limit, represented by the vLimitName variable. The
CustomValues property of the filter represents values to be limited by the filter. The
user-selected values are written to the this property, so any existing values must be
cleared in the event a user is revising a previous selection.

The second for loop is shown in the next code snippet. This loop steps through every
value in the SelectedList collection of the List Box control and adds the string value
of each collection member to the Customvalues property of the filter represented

by filterName. Since the loop is contained, or nested, within the first loop, this for
loop will be executed for every item within the first for loop. More specifically, the
loop will run once for each section represented in gresultArray.

//for each selection up to the total number of selections
for (var k=1; k<=ActiveDocument.Sections [sectionName] .
Shapes [shapeName] .SelectedList.Count; k++)
//store the current selected value as filter text

var vLimitText = ActiveDocument.Sections[sectionName] .
Shapes [shapeName] .SelectedList.Item(k) ;

[154]

Chapter 6

//Add the user selected value stored as vLimitText from the
Dashboard section to the Custom Values collection

ActiveDocument.Sections [vActiveSection] .Limits [vLimitName] .
CustomValues.Add (vLimitText) ;

}

The above section section of the code uses k to increment through each of the values
in the selectedList collection one at a time. The value currently being assessed, as
represented by selectedList [k], is first stored as the vLimitText variable and then
added to the customvalues collection of the filter using the Add () method.

The final statements of the loop are as shown in the following code snippet:

//Add all values in the Custom Values collection to the Selected
Values Collection

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
SelectedValues.AddAll () ;
//Set the Ignore property of the filter to false to activate the
filter

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
Ignore=false;

These statements first use the Addal11 () method of the filter's selectedvalues
collection to select all of the values displayed in the Custom Values collection. Then,
the Ignore property of the filter is set to false, to activate the filter.

Finalizing the Function

Upon successful testing of the function, replace the temporary shapeName and
sectionName variable declarations with the declaration for the function as shown in
the following code snippet:

/)= - function ApplylBFilters ------------

//--- This function will apply user selections to local results
filters from drop down Dashboard objects

function applyLBFilters (sectionName, shapeName)

{

Add the close brace and globalization of the declared function at the bottom of
the script:

}

gfApplylBFilters = applyLBFilters;

[155]

Advanced Dashboard Techniques

The code for the function in its entirety is displayed below:

/)= -- function ApplylLBFilters ------------

//--- This function will apply user selections to local results
filters from drop down Dashboard objects

function applyLBFilters (sectionName, shapeName)

{

//is the first item in the list a selection?

if (ActiveDocument.Sections [sectionName] .Shapes [shapeName] .
SelectedList.Item(1l) ==ActiveDocument.Sections [sectionName] .
Shapes [shapeName] .Item(1))

{

//Set the limit ignore property to true to ignore the filter
which will show ALL values for all table sections

for (var i=0; i<gResultsArray.length; i++)
//Ignore filter for active results section
var vActiveResults = gResultsArray[i];

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
Ignore=true;
else
//for all table sections
for (var i=0; i<gResultsArray.length; i++)
//Ignore filter for active results section
var vActiveResults = gResultsArray[i];

//Remove all values from the custom values collection

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
CustomValues.RemovelAll () ;

//for each selection up to the total number of selections

for (var k=1; k<=ActiveDocument.Sections [sectionName] .
Shapes [shapeName] .SelectedList.Count; k++)

{

//store the current selected value as filter text

var vLimitText = ActiveDocument.Sections [sectionName] .
Shapes [shapeName] .SelectedList.Item(k) ;

//Add the user selected value stored as vLimitText from
the Dashboard section to the Custom Values collection

ActiveDocument .Sections [vActiveResults] .
Limits [vLimitName] .CustomValues.Add (vLimitText) ;

}

[156]

Chapter 6

//Add all values in the Custom Values collection to the
Selected Values Collection

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
SelectedValues.AddAll () ;

//Set the Ignore property of the filter to false to activate
the filter

ActiveDocument.Sections [vActiveResults] .Limits [vLimitName] .
Ignore=false;

}
}

gfApplyDDFilters = applyDDFilters;

Calling Functions with a Function

The final function used to apply filters from Drop Down and List Box Controls
on a dashboard is the function called directly by the Apply button from the
dashboard. This function simply determines the shape type of each filter being
assessed and determines whether to call the gfApplyDDFilters function or the
gfApplyLBFilters function.

To script this function, add a new Text Label Graphic to the Globals Dashboard
section. Set the Name property to gf5 and the Title to gfApplyFilters. The
JavaScript for this shape is shown in the following code snippet:

[/------------ function ApplyFilters ------------

//--- This function calls the ApplyFilters functions after the shape
type has been determined

function applyFilters (sectionName, shapeName)

{
//---Determine shape type by using 2 character shape prefix
var vShapeType = shapeName.substring(0,2) ;

// Is the shape a drop down object?

if (vShapeType == "dd")

{
// Call the gfApplyDDFilters function
gfApplyDDFilters (sectionName, shapeName)

}

// Is the shape a list box object?
else if (vShapeType == "lb")

{

// Call the gfApplyLBFilters function
gfApplyLBFilters (sectionName, shapeName)

[157]

Advanced Dashboard Techniques
}

// make the function globally accessible

gfApplyFilters = applyFilters;

This function first uses substring to determine the first two characters of the shape
name. If the recommended naming convention is used, the resulting value is either
dd or 1b. The function then uses conditional logic to determine if the resulting two
character value, represented as vShapeType, is dd or 1b. Depending on the result, the
gfApplyDDFilters or the gfApplyLBFilters function is called appropriately.

Set the Function to the Dashboard Filter Object

When a user has finished making selections, the user clicks on the Apply button to
set the event in motion, which applies the selections to the filters. The code required
to call the main function, the gfApplyFilters function, is placed in the onClick
event trigger of the Apply button. The call to the function must be made for each
filter to be applied and the sectionName and shapeName parameters must be
supplied. The following code demonstrates calling the gfApplyFitlers function
for each of the items to be filtered when the user clicks on the Apply button on a
Dashboard section:

// Call the Apply Filter global function for each of the filters to be
applied

// Add the Region Selection

gfApplyFilters (ActiveSection.Name, "ddRegion") ;

// Add the Territory Selection
gfApplyFilters (ActiveSection.Name, "lbTerritory");

// Add the Country Selection
gfApplyFilters (ActiveSection.Name, "lbCountry") ;

// Add the State Selection
gfApplyFilters (ActiveSection.Name, "lbState");

// Add the City Selection
gfApplyFilters (ActiveSection.Name, "lbCity");

The value ActiveSection.Name, which denotes the Name property of the current
section, and the string value of the Shape the user selections have made are passed as
the expected sectionName and shapeName parameters.

[158]

Chapter 6

Synchronizing User Selections across
Multiple Dashboards

Synchronizing user selections across Dashboard sections is completed by taking the
user selections on one section and applying the selections across all of the Dashboard
sections in the document. While the there are many approaches that can be used to
execute the synchronization, this section demonstrates one efficient and effective
procedure for keeping List Box object selections in sync across multiple dashboards.

The first step in executing the synchronization is to unselect any prior selections for
the control across all Dashboard sections. With this approach, of the Controls are
now consistent across the sections and are ready for the adding of filter selections.
The second step to keeping the filters consistent across the dashboard is to obtain
the selected values from one particular dashboard and propagate the selections to
consistent controls in the other dashboards.

Synchronizing List Box Controls

The List Box is one the most common Controls used for filtering on a dashboard. List
Boxes are more complicated than many other Controls, due to the need to keep track
of multiple selections that can be made inside the Control. This section of the chapter
provides an in-depth view of the code necessary to keep List Boxes synchronized
between Dashboard sections. While the chapter does not detail similar steps for
Drop Down Controls, the approach and code displayed in this chapter can be easily
modified to perform Drop Down Control synchronization.

The first step in synchronizing a List Box Control across multiple Dashboard sections
is to make sure that the number of available values and the order in which the
available values are stored is identical across the Dashboard sections. Any mismatch
in the number or order of the values displayed in the List Box Controls will display a
flawed result when the synchronizing functions are executed.

Similar to the other global JavaScript functions discussed in this chapter, the
functions used to synchronize List Box Control selections must be declared during
the document start-up processes to become globally available. Add a Text Label

to the Globals Dashboard section to leverage the Dashboard Framework staged in
Chapter 5, Building the Dashboard Framework. Set the name property to g£5 and the
title property to gfSyncLBFilters. The three functions, gfUnselect, gfSetBox, and
gfsyncLBFilters will all be tied to the onclick event trigger of this Text Label.

[159]

Advanced Dashboard Techniques

Unselecting Values

To ensure that the synchronization functions apply consistent values on execution,
unselect all of the values from any correlated List Box Controls across the Dashboard
sections. While selected values can be compared from one dashboard to another

for matches, it is far easier to program and more efficient to simply unselect all the
objects that are synced. This function will be called only when the filters change, so
it makes sense to baseline all of the values in the List Box Controls across dashboard
sections.

When working with List Box Controls, there is no method to remove all of the
selected values from the Selected collection in a single command. With this
limitation, a for loop must be used to step through all the values in the List Box and
unselect one value at a time. The following code demonstrates the removal of the
selected items from a List Box on a dashboard:

[/--------- function Unselect ---------
//--- This function unselects all shape selections
function unselect (sectionName, shapeName)

{

for (var i=1; i<=ActiveDocument.Sections [sectionName] .
Shapes [shapeName] . Count; i++)

{

ActiveDocument.Sections [sectionName] . Shapes [shapeName] .
Unselect (1)

}

}gfUnselect = unselect;

The first line of the unselect function uses a for loop, which steps through the full
list of values in the List Box Control. As each item is encountered, the unselect ()
method is used to unselect each item from the List Box where i is the index or
numeric value of the items in the List Box.

The unselect function also accepts the sectionName and shapeName parameters,
allowing report authors to use this function to unselect the values of any List Box
Control on any Dashboard section.

[160]

Chapter 6

Selecting Values

Once the values in the List Box are unselected, the new filters are ready to be added
to each Dashboard section. The approach used to setting the filters in the function
below is a bit different than the steps to set the selected values in a simple dashboard.
The following function takes two arguments, the first for the name of the shape on
the dashboard and the second for the position number or index of the item in the
selected list for the selection.

function setBox (shapeName,numList)

{

for (var k=0; k<gDashboardArray.length; k++)
{
var vSectionName = gDashboardArray [k];

ActiveDocument . Sections [vSectionName] . Shapes [shapeName] .
Select (numList)

}
}

gfSetBox=setBox;

While the function in the previous section looped through all of the values in a
single List Box and unselected each item, the select function loops through all of
the Dashboard sections and applies the selected values to each specified List Box

on each dashboard. The first line in the function is a loop that is used to enumerate
through all the Dashboard sections that are specified in the dashboard array. Notice
that the for loop in this function starts with a value of k=0. Also notice that the next
argument in the for loop for specifying the number of iterations has the syntax of
ghashboardArray . length, where the length syntax is a property of an array and is
used to provide the number of entries in the array.

Synchronizing Selections

The final step is building a synchronization function to serve as the single function
called to execute all of the processing for the synchronization, where all the
operations and other dependent functions are referenced and the items executed. The
following function references the previous functions for selecting and unselecting
values while providing the additional processing necessary to provide the arguments
to both functions:

function syncLBFilters (sectionName, shapeName)

{

var itemCount = ActiveDocument.Sections[sectionName] .
Shapes [shapeName] .SelectedList.Count;

for (var i1=0; i<gDashboardArray.length; i++)

[161]

Advanced Dashboard Techniques
{

var vSectionName = gDashboardArray[i];
|

if (vSectionName != sectionName)

{

gfUnselect (shapeName, vSectionName) ;

}

for (var i=1; i<= itemCount; i++)

{

var index = ActiveDocument.Sections [sectionName] .
Shapes [shapeName] .SelectedList.ItemIndex (1) ;

gfSetBox (index, shapeName)

}
}

gfSyncLBFilters=syncLBFilters;

The function above takes two arguments similar to the other two functions, where
the name of the shape or Control and the section name are passed in. The first

line of the function creates a variable itemCount and sets the value to the number

of selected items in the List Box of the Dashboard section. The names of the List
Boxes and Dashboard section are provided in the arguments of the function. This
itemCount variable now holds the total number of selections that need to be made
in each List Box for each dashboard. The second line of the function specifies a for
loop to unselect all of the selected items in every Dashboard section in the document,
taking into account logic to skip the section that was provided in the argument of
the function, to make sure that the filters made on a specific Dashboard sections

are retained after the unselect has occurred. The implementation of this logic is
demonstrated in the fourth and fifth line of the function, where a new variable
vSectionName is set to the name of the section currently selected by the loop through
the array, as demonstrated by the code var vSectionName = gDashboardArray[i].
The fifth line of the function then compares the section provided in the argument of
the function to the section that is currently set during the loop. If the section names
do not match, then the function is allowed to continue and the final step is to call

the Unselect function with the name of the control or shape and the section name

as arguments. Once all of the sections in the Dashboard array are looped through,

all list boxes in the document across all Dashboard sections will contain no selected
values, except for the one where the user made the filtering selections in the first
place.

[162]

Chapter 6

Once all of the List Boxes are unselected, the next step is to populate all of the List
Boxes throughout the document with the values selected by the user on the filtered
Dashboard section. Line 11 of the preceding function contains a for loop that loops
from one through the total number of selected items in the List Box. This loop does
not specify the actual index or number of the particular items that are selected, but
rather just specifies the total count of items. The next line of code begins with setting
the variable index to the numerical position of the selected item in the list box
where the user filtered. The statement is executed through using the SelectedList.
ItemIndex (i) code, which provides the numerical position of the selected item for a
value in the List Box. In the code, this is denoted by the variable i, which is assigned
its value from the for loop and is configured to iterate through the total selected
items in the List Box. The final step in the function is to call the selection function
and set the selected item from the filtered List Box to all of the other Dashboard
sections, where the index of the item to select in the List Box as well as the section
name is provided to the selection function as an argument. Once the loop has
completed iterating through the total selected items in the filtered List Box, the
function completes and the list boxes across Dashboard sections are synchronized.

Calling the Functions

With the supporting functions in place, the gfSyncLBFilters function must be
called using JavaScript. The function is called using gfSyncLBFilters (shapeName,
sectionName). This code is only called during a user-driven event, such as a button
click, and is always the last step of the filter application process.

With regards to the BMV Executive Dashboard example, this function is called from
within the gfApplyFilters global function located on the Globals Dashboard:

/)= -- function ApplyFilters ------------

//--- This function calls the ApplyFilters functions after the shape
type has been determined

function applyFilters (sectionName, shapeName)
{
//---Determine shape type by using 2 character shape prefix
var vShapeType = shapeName.substring(0,2) ;
// Is the shape a drop down object?
if (vShapeType == "dd")
{
// Call the gfApplyDDFilters function
gfApplyDDFilters (sectionName, shapeName) ;

[163]

Advanced Dashboard Techniques

}

// Is the shape a list box object?

else if (vShapeType == "lb")

{
// Call the gfApplyLBFilters function
gfApplyLBFilters (sectionName, shapeName) ;

// Call the gfSyncLBFilters function
gfSyncLBFilters (sectionName, shapeName) ;
}
}

// make the function globally accessible
gfApplyFilters = applyFilters;

In the preceding example, shapeName and sectionName are the same sectionName
and shapeName variables received by the gfApplyFilters global function. Since
the gfSyncLBFilters function is called only when the script has determined if the
shape is a List Box shape, this function is only executed for List Box objects.

Summary

The goal of this chapter was to introduce and demonstrate an approach to add
filtering options to a dashboard, the steps to filter data based on user selections,

and the methods for populating filters across dashboard pages. The chapter began
with the steps to populate Dashboard section Controls with values from a database.
The method of using available values is introduced and the approach to loading all
of the dashboard filters from a single Results section is demonstrated. The chapter
continues with an overview of the steps to add user-selected filters to the data
sections of an Interactive Reporting document to filter dashboard content from Drop
Down and List Box Controls. The method to select all filter values was presented

as was the positioning of code within the Dashboard section and Dashboard
Framework. The chapter concludes with the advanced steps to synchronize
dashboard filter selections across multiple dashboards. Each section of the chapter
included information to add the code to the Dashboard Framework, and the chapter
along with the previous three chapters provide a solid foundation for building
advanced dashboards.

[164]

Advanced Data Analysis

One of the key aspects of business intelligence is the ability to analyse and
manipulate content for reporting or to gain insight into data. Many business users
prefer to use Microsoft Excel to perform data analysis due to their comfort with

the software. While Microsoft Excel provides many excellent tools for performing
data analysis, Interactive Reporting provides very strong data analysis capabilities
including the ability to filter, add computations, leverage data sets, build functions,
leverage variables, and manipulate millions of records.

While many business intelligence products on the market today provide the ability
to perform analysis, some of these tools are limited in their ability to handle the
number of records that Interactive Reporting can handle, thanks to the browser-
based Interactive Reporting Web Client. While the Web Client plug-in introduces
additional overhead in managing the software throughout the enterprise, it provides
the ability to quickly perform analysis on a large set of information. The goal of this
chapter is to provide an in-depth explanation of the options available in Interactive
Reporting for manipulating data throughout the document.

This content in this chapter covers the following analysis topics:

e Building Queries for Analysis
e Computed Items
e Leveraging Built-in Functions and Calculations

e Using JavaScript

Advanced Data Analysis

Building Queries for Analysis

Data analysis in Interactive Reporting starts with the configuration of the

query. Since Interactive Reporting provides the user with flexibility to perform
manipulations on the data returned to the document, the user building the query
must determine the level of detail, filtering, and manipulation to apply before the
results are returned from the database. While this sounds trivial, there are reasons
for building a simpler query and retrieving more data into the Results section than
needed for analysis. When making decisions on building queries, query performance
as well as data volume must be taken into account when designing the query. The
best practice approach to determining the best query design is to find the most
efficient balance between the data volume (taking into account the level of detail
needed for analysis) and query speed. Since Interactive Reporting provides the
ability to effectively filter and perform computations on data after it is returned from
the query on the local machine, it is important to identify the filters needed on the
query and the filters that can be performed on the data results.

Interactive Reporting contains many presentation sections of the document where
data returned from the query is manipulated and presented to the user. In these
sections, sorting, filtering, and leveraging custom computations can be used in
concert along with other sections to transform and prepare reports. The following
sections of this chapter walk through the common data manipulation procedures
available in Interactive Reporting.

Computed Items

Once the query is configured and data is returned into the Results section, the

user has the ability to leverage the standard features of the Results section for
filtering, grouping, totalling, and sorting. The user can also leverage a feature called
Computed Items, introduced in Chapter 1, Advanced Hyperion Interactive Reporting
Techniques, to perform custom computations using the set of results. These custom
computations provide the ability to manipulate, calculate, enhance, and build filter
criteria into the data results. While the ability exists to leverage custom computations
in the Query section, Computed Items in the other Interactive Reporting sections
provide additional flexibility that is helpful when conducting analysis.

[166]

Chapter 7

Building Advanced Computed Iltems

When adding Computed Items to a document, the Computed Item window appears
as shown in the screenshot below. Note: The Computed Item window is used in every
section except for the Report section, which contains its own section specific Computed Item
window. Report section Computed Items are described later in this chapter.

Computed ltem]
Marme Computed
D efinition]
|
PR R) FRCE R ——
=) =) d) o)] ()
Lmed) [< J [e=] (>] [o=] (oot
e

The text box at the top of the window is used to set the name of the Computed Item,
which will become the name of the column in the section. The name of the Computed
Item must be unique to the section. If another Computed Item exists with the

same name, the name of the new item is automatically appended with a numerical
value to ensure uniqueness. For example, if a column named Total Sales exists and
a Computed Item is added to the section with the name Total Sales, Interactive
Reporting will use the name Total Sales2 as the column name. To overcome the
automatic addition to the name, blank spaces can be added after the name of the
column allowing more than one column to display the same name. While the names
will appear the same, it is important to note that the new column is referenced with
an _ for each space added. In this case, the Totals Sales column with one space after
the column name will appear as Total_Sales_ as the actual column reference.

[167]

Advanced Data Analysis

Building the Definition using JavaScript

The Definition text box is the location for entering the logic for the Computed

Item. All Computed Items leverage one or a combination of built-in functions,

data columns, and JavaScript to construct a Computed Item. Chapter 2, Introduction
to JavaScript and the Interactive Reporting API, provides an overview to logical
programming with JavaScript in Interactive Reporting. The concepts described in
Chapter 2, Introduction to JavaScript and the Interactive Reporting API, are heavily used
in creating Computed Items and these concepts are demonstrated in the following
sections of this chapter. It is important to note again that JavaScript is case sensitive
and specific attention to detail must be used throughout Interactive Reporting when
leveraging JavaScript.

The buttons below the Definition text box are resources to assist the user with the
logic that can be used in the column definition. It is important to first note that the
displayed JavaScript operators are not the only JavaScript operators that can be
used in the Computed Item. When an operator button is pressed in the window, the
appropriate JavaScript syntax is inserted into the Definition window at the cursor
location. For some of the buttons, the exact button label is added to the Definition
window (specifically any of the arithmetic operators). However, when the and
button is pressed, two ampersands (&&) are added to the Definition window. While
these JavaScript hints are helpful, it is important to fully understand the use of these
operators in common business examples in order to truly master Computed Items.

Referencing Columns

A column (data element) from the section can be typed into the Definition window
or the user can leverage the Reference button to the right of the Definition box. It is
important to note that the name of the column used in a definition may be different
than the name of the column in the section. The Definition window requires that a
column name not contain spaces or special characters when used in Computed Items
so an underscore (_) is used in the place of either a space or a special character when
referencing a column name. It is important to note that the column names are case-
sensitive and an error will occur if the data element name is not entered properly.

While the reference to a column name could be typed directly into the Definition
box, the Reference button is especially helpful when selecting a long column name
or when attempting to reference a column with special characters in the column
name. When the Reference button is pressed, a Reference window appears allowing
the user to select the item to insert into the Definition window. Upon selecting the
column and pressing the OK button, the column name will appear in the Definition
window at the point of the cursor location.

[168]

Chapter 7

Functions

Interactive Reporting comes with a number of built-in functions to support data
analysis and manipulation. These functions are similar to functions found in Excel
and databases and can be used in concert with JavaScript enhance content displayed
in the software. Functions are either typed into the Definition window or the user
can leverage the Functions button on the right of the Computed Item window. When
the Functions button is pressed, the Functions window appears as shown in the
following screenshot:

Function Cateqories; Functions;

Conditional Functions
Date Functionz

b ath Functions
Mumeric Functions
Ficture Functionz
Statiztical Functions
String Funchons
Trend Functions

Parameters

——

[169]

Advanced Data Analysis

Since a large number of functions exist, the functions are segmented into several
categories by function type. Upon pressing one of the Function Categories, the
Functions window is populated with the functions available in the selected category.
Upon selecting one of the functions, the parameter segment of the window becomes
populated with a brief description of the function and the required and optional
arguments. The following screenshot displays the Functions window open to the
Date Functions category with the ToChar function selected.

Function Cateqgaries: Functions:
Conditional Functions AddMonths ~
Draw0tkd onth =
b ath Functionz LaztDiay -
Murneric Functiohs MonthsBetween

Ficture Functions
Statistical Functions
String Functions
Trend Functions

T nbdninth

Parameters

Converts the date or number d/hinta a sting in the
zpecified format.

D ate or Mumber

i i Reference...

Farrnat ["'mrm.dd ey for date or 0" far
number,_guutes are lequirg_l:l]

—— T

[170]

Chapter 7

The required and optional parameters may allow for the use of data elements
(columns), text, or specific formatting information. When a data element is a possible
argument value, the Reference button is provided next to the input box to allow the
user to easily insert a column name into the specific argument. In the example above,
the ToChar function allows for a date or number as the primary argument and the
format to display the data as the second argument.

Function Formatting Arguments

Formatting functions and custom Computed Items in Interactive Reporting requires
the user to enter specific text to provide instructions for formatting a set of data.
These instructions are specific to Interactive Reporting and the instructions must

be accurately specified for the function to correctly translate the data. Format
instructions are predefined and the easiest place to locate many of these instructions
is the Number Format menu, which provides the syntax and many examples of
different formatting types. Right-clicking on a column in a section and selecting the
Number menu item will open a Properties menu, providing the Number formatting
options for the column. The Number Properties window is shown in the

following screenshot:

Properties

MHumber]

Select a Formatting Locale;

US4 v|

Categony: Format;

Currency
Fercentage
Date H# HH0.00
Time HEH0
Custom +H fH0
BHHO #HHs
.00 +00
Presiew:

12,692.4

[4] l Canicel J

[171]

Advanced Data Analysis

The formatting options are grouped into categories by formatting type, including
Number, Currency, Percentage, Date, and Time. Clicking on the category will
provide a list of standard formatting options available for each category. When
clicking on one of the formatting options, the Preview window will update to
demonstrate the formatting option selected. The syntax displayed in the Formatting
window can be used in the software where formatting is required. For example,
using the formatting #, ##0. 0 in a Computed Item provides a number with a
comma after every third character and one number after the decimal. Similarly,
using the formatting mmmm dd, yyyy in the ToChar function will convert a date into
a string with a full month name, two-digit day, a comma, and a four-digit year. The
formatting window only lists the common formatting types but custom combinations
of the formatting syntax can be utilized to create a desired format. Using custom
combinations is very common and provides the ability to transform data into a wide
variety of formats.

Additional Help

While the documentation provided in the parameter area of the Functions window
is brief, the Help button at the bottom left of the screen can be clicked to obtain
additional documentation on each function contained in the software. Upon pressing
the Help button, Interactive Reporting will open a web browser to a page on using
functions. From the Using Functions help page, pressing the Scalar Functions link
will open the Scalar Functions page, listing each of the function categories for all but
the Trend Functions (found by searching for Trend Functions in the Help material).
Upon pressing one of the function category links, a detailed description of each
function and appropriate examples are presented.

Options

In addition to the Functions and Reference buttons, the final button on the right-
hand side of the Computed Item window is the Options button. The Options button
provides the ability to select the specific datatype for the Computed Item. This option
allows the user to override the Automatic datatype selection, providing the ability

to select the desired data definition for the column from the Drop-Down menu. The
following screenshot displays the Computed Item window with the Options

feature open.

[172]

Chapter 7

-
Computed ltem

Mame i@puted I
Drefinition :
Functions. ..
Lot o W 0 Bl L
=] [a] [and] [o] [if] [else]
(mod] [« (x=] (2] (=] [net]
Datatype-
I.-’-'«uh:nmatic v
Automatic
Mumber
Lsins m
Doat
F'iitire[lﬂlob]

Deleting Computed Items

Computed Items are deleted from each section by highlighting the column and
pressing the DEL key or by selecting one of the Remove menu items from the section-

specific menus or right-click menu. If the column is not referenced by another

column or section in the document, the Computed Item will be removed without

a warning message. If the column is referenced in another section or if the column
contains a dependency with another column, an alert will appear alerting the user to
the section or other Computed Item dependency and will prompt the user to accept

the desired change.

[173]

Advanced Data Analysis

Report section Computed Iltems

Computed Items in Report sections are different from other sections of the
document. Report sections contain objects called Report Tables that display data
similar to a Results or Table section. Each Report Table is a separate object inside the
section and each Report Table may contain a unique set of Computer Items which
are not shared with any other Report Table in the report. The following screenshot
provides an example of a Computed Item inside a Report Table. In this example, the
Advertising Expenses Column is divided by 1000.

Wotied liar

Colurmn M ame;

:T-’-'-.dx:E:-:pense [I:I-I:Iljs] I
Feference m
T ables: Columnsz; _
Advertizing_Fey
Year_Month_Key
Country

Advertizing_Media
Advertizing_E #penses
Computed
Computed?
Computed3

Farrnula

ﬁ;l.:l_lé.s["l:i ezults"']. Columng"advertizing_Expenses"]. Sumlcur
|Break] /#1000

Computed Items in a Report section provide the ability to combine elements across
multiple Results and Table sections. Each expression references the section of the
document, the column, and finally the data function to use on the item of data.
Notice the final value assigned in the data function is the word currBreak. The
currBreak identifier is used by Interactive Reporting to identify the level of detail to
split out the data in the report, where the Break value is determined by the location
of the table within the section (whether the table is located within the Body or inside
a Report Group causing data aggregation).

[174]

Chapter 7

Built-in Functions and Calculations

While most users creating a Computed Items will choose to leverage the built-in
Interactive Reporting functions to write calculations, it is important to completely
understand the functionality provided within each built-in function. Once fully
understood, the functions provide the gateway for building computations, filtering
data, and preparing data for other presentation sections. The following content in
this section breaks down each built-in function and provides examples of commonly
used functions.

Conditional Functions

Conditional Functions in Interactive Reporting are specific to replacing content

of a field based on a set of conditions. There are only two functions that exist in

the Conditional Function grouping. The functions are Nvl and Decode. The Nvl
function is used to replace null values with a defined value. The first argument of the
function is the column of data and the second argument is the replacement string.
Nv1 (PRODUCTS, "No Product Name") will yield the result No Product Name in the
Products field of the results set for each null value.

The Decode function is used to replace a value in a field with a different value. The
Decode function takes a minimum of three arguments. The first argument in the
function is the data column, the second is the value identified for replacement, and
the third is the value to use for replacement. The second and third arguments may
be repeated for as many values as desired. A final argument may be included to
serve as the default value for all items that are not defined for replacement. If the
final column is omitted, the values in the column not identified for replacement
will be blank. To resolve the columns from showing blank, the field used in the
first argument can be specified as the final argument to populate all of the values
in the column not identified for replacement with the initial value. The example,
Decode (Calendar Month Number, '01', 'January', '02', 'February',6 '03',
'March', 'Other') will yield the result January for all instances of 01, February
for all instances of 02, March for all instances of 03 and Other for any other values
outside of 01, 02, or 03.

[175]

Advanced Data Analysis

Date Manipulation

Interactive Reporting provides a set of Date Functions that can be used to
manipulate date and time values. While Interactive Reporting provides a large
number of date manipulation functions, a number of commercial database products
provide a more robust set of tools for manipulating dates. Before attempting complex
date computations in Interactive Reporting, try to identify if the relational database
containing the data has functions to manipulate date and time values.

Current Date & Time

One of the most popular date functions is Sysdate. Ssysdate provides the current
date and time and is commonly used to obtain the days between a set date and the
current date and time.

Adding Time

The AddMonths function is used to add or subtract time from a date. This function
takes two arguments, where the first argument is the date to adjust and the second
argument is the number of months to add or subtract. This function is very useful
and is commonly used to convert calendar dates to fiscal dates. For example,
AddMonths ("01/01/2008", 3) yields the result 04/01/2008. Entering a negative
date subtracts time from the entered date. For example, AddMonths ("01/01/2008",
-3) yields the result 10/01/2007.

Identifying Specific Days

Three functions exist in Interactive Reporting for identifying a specific day from

a date. The DayOfMonth function takes a single argument and provides the day

of the month. For example, DayOfMonth ("01/15/2008") yields the result 15. The
LastDay function takes a single argument and provides the last day of the month for
the date provided, and the function also takes into account leap years. For example,
LastDay ("02/12/2008") yields the result 29. The NextDay function takes two
arguments and provides the next occurrence of the day of the week specified in the
second argument. For example, NextDay ("01/01/2008", "Monday") yields the
result 01/07/2008.

[176]

Chapter 7

Date Conversion

Dates are commonly converted to character strings in various formats for
presentation. The most common function for date conversion is the ToChar
function. This function takes two arguments, where the first argument is the date

to convert and the second argument is the format to display the date. For example,
ToChar ("01/01/2008", "mmm") yields the result Jan. The inverse of the ToChar
function is the ToDate function, which provides the user with the ability to convert a
character string into a date. The ToDate function in Interactive Reporting takes only
a single argument, which is the string to convert. After transformation, the character
string will display and behave as a date in the document.

Three other date conversion functions exist for converting a date. The functions
ToMonth, ToQtr, and ToYear take a single argument and convert the specified value
into a month, quarter, or year respectively.

Leveraging Mathematical Operations with Dates

Dates, similar to numbers, can be manipulated using math operators. Date fields are
commonly subtracted to determine the time between two dates and date fields are
commonly manipulated by adding or subtracting values from the date to obtain a
desired value. For example, the addition of 1 to a date field adds a single day to the
date. The subtraction of "01/15/2008" and "01/10/2008" yields the result 5, and
the function MonthsBetween calculates the number of months between two dates.
For example, MonthsBetween ("01/15/2008", "04/10/2008") yields the

result 2.83871.

Mathematical Operations

Interactive Reporting provides built-in Math Functions for performing
manipulations on numbers. Commonly used functions such as Abs, Ceil, Floor, Mod,
Max, Min, and Sign can be nested and leveraged inside other functions in order to
facilitate the appropriate manipulation of numbers into the document. The following
provides information on each of the common functions:

e The Abs function applies an absolute value calculation on the value in a
column, which is used to convert negative numbers into positive numbers.
The function takes a single argument and is commonly used in calculations
where a positive number difference between two numbers must be
calculated. For example, he 2bs (-1) will return the value 1.

[177]

Advanced Data Analysis

o The Ceil function takes a single argument and rounds the number up to the
nearest whole number. The function is commonly used in date calculations to
round fractions of a date to the next day. The ceil (2.781) returns the
value 3.

e The Floor function takes a single argument and rounds the number down
to the nearest whole number. This function is used to round fractions of any
value down. The Floor (2.781) returns the value 2.

e The Mod function takes two arguments and performs a modulus calculation,
returning the remainder produced when the first argument is divided by the
second. The modulus function is very powerful and can be used to segment
data and identify numbers that divide evenly, in addition to many other
operations. The Mod (10, 2) returns the value 0 and the Mod (10, 4) returns
the value 2.

e The Max function takes two arguments and returns the maximum of the two
values. The Max (2, 5) returns the value 5.

e The Min function takes two arguments and returns the minimum of the two
values. The Min (2.5) returns the value 2.

e The Round function takes two arguments and returns the first value rounded
to the decimal place specified in the second argument. The Round (5.63, 1)
returns the value 5.6 and Round (5.63, 0) returns the value 6.

o The Sign function takes a single argument and is used to determine whether
a value is positive, negative, or zero. The Sign function returns a -1 if the
value is less than zero, a 1 if the value is greater than zero, or a o if the value
is equal to zero. The Sign (-5) returns the value -1.

There are many other math functions in addition to the ones identified in the section
above. These math functions are very common to basic math operations and range
from leveraging exponents, logarithms, and trigonometric functions.

Numeric Operations

Interactive Reporting separates a number of functions from the math category into
a category called Numeric Functions. Unlike the math functions, which only allow
the user to look at one value at a time, the numeric functions provide the user with
the ability to perform a calculation across a set of data in the results. For example,
the Sum function can be used to calculate a total from the sum of numbers in a
column. Most functions in the Numeric Functions section also provide the user with
the ability to break on a column. The break feature allows the function to look at
subsets of the dataset, providing the user with the ability to calculate multiple sub-
computations across the set of results. The following provides an overview of each
Numeric function:

[178]

Chapter 7

The Avg and AvgNonNull functions are used to calculate the average across
a column of data, where the AvgNonNull function excludes the null values
in the column. The Avg and AvgNonNull functions allow for the addition of
a break column or value.

The ColMax and ColMin functions are used to select the maximum or
minimum value across a column of values. The ColMax and ColMin
functions allow for the addition of a break column or value.

The Count, CountDistinct, CountNonNull, and CountNull functions are
used to perform counting operations across a column of values. The counting
functions allow for the addition of a break column or value. The Count
function counts all of the values inside the column, including repeats and
null values. The CountDistinct counts each distinct value as only one item

in the count calculation. The CountNonNull function counts all of the values
in a column with the exception of the null values. The CountNull function
counts all of the null values in a column of data.

The Sum function provides the ability to create a summation of all of the
values in a column of data. The Sum function allows for the addition of a
break column or value.

The Cume function provides the ability to create a cumulative summation
across the values in the column. When creating a cumulative summation,
sorting is necessary to align the data in the order to perform the calculation.
The Cume function allows for the addition of a break column.

The Next and Prior functions provide the ability to grab the value of data
before (Prior) or after (Next) a value in a column. These functions are very
useful when determining whether or not there are duplicate values across
a column and are commonly used with section sorting. The Next and Prior
functions take a single argument and do not allow for any break columns
or values. These functions are commonly used with conditional logic to
flag repeats in a data set, such as a key identifier. When using the syntax
if (Prior (COL) == COL) {1} else {0} in a Computed Item, where COL is a
column of data and the data results are sorted by cor, a 1 will be displayed
for every repeating value in the column coL.

The Chr function is very different than the other functions in the section
where it takes an ASCII value for the argument and returns the character
value associated with the supplied ASCII value.

[179]

Advanced Data Analysis

It is important to note that Numeric functions, also referred to as aggregate
functions, produce a result based on a set of values within the section instead of

a single value. Since the calculation spans the entire set of data, Computed Item
columns containing Numeric functions cannot be filtered directly in the section
where the function is calculated. Attempting to filter on an aggregate function will
produce the error message shown in the following screenshot:

r

Interactive Reporting Studio

Cannot place limit on & column containing aggregate functions

To overcome the error, a Table section can be added to the document and the field
containing the aggregate calculation can be filtered in the new section. This feature is
especially important as Computed Item fields with aggregate functions are used to
create flags for filtering a set of results.

Note: The Next, Prior, and Cume functions are not
o available for use in the Pivot section.

String Manipulation

Interactive Reporting provides String Functions to perform string manipulations
and translations such as changing the case of a string or trimming characters from a
string. The following is an overview of the String Functions available in

Interactive Reporting:

¢ The Concat function takes two arguments and concatenates the two string
values provided together. The concat ("A", "BC") returns the result ABc.
Note: Strings in Computed Items can also be concatenated using the +
operator, which is also demonstrated in JavaScript in earlier chapters of the
book.

e The Initcap function takes a single argument and sets the first letter in
each word of the string to uppercase and all other letters in the word to
lowercase. This function is especially useful with name fields as the function
Initcap ("firstname lastname") returns the result Firstname Lastname.

e The Lower and Upper functions take a single argument and are used
to change a string to all lowercase letters or all uppercase letters. The
Lower ("Name") returns the result name and the Upper ("Name") yields the
result NAME.

[180]

Chapter 7

The Ltrim and Rtrim functions expect two arguments and are used to trim
off a set of characters from the left or right of the string. The functions are
commonly used to trim the white space from the left or right of a value.
When trimming the white space, the second argument in the function can
be omitted. The Rtrim("value ")returns the result of value without any
spaces.

The Substr function is used to create a subset of a string from a string value.
The function takes three arguments, where the first argument is for the

value of the whole string, the second argument is for the starting position

to begin the substring, and the third argument determines the length of the
substring. The substr ("First Last", 1, 5) returns the result First. String
properties, such as length, can also be combined with the substring function
to dynamically calculate the starting position and/or number of characters to
for the substring.

The Length function takes a single argument, which is the string to be
evaluated, and is used to identify the number of characters within the
supplied string. For example, the statement Length ("Test") yields the
result 4.

The Instr function expects four arguments and is used test for the existence
of a value within the supplied string. The Instr function returns the numeric
position of the value in the tested string. The first argument in the Instr
function is the string value, the second argument is for the value to identify,
the third argument is the starting position for where to start searching in the
string, and the fourth argument is used to select the occurrence of the value
in the string. A simple demonstration of the Instr function is Instr ("test",
"s", 1, 1) which returns the result 3. In the example, the Instr function is
looking for the first occurrence of the letter s in the string starting from the
first character of the string.

The Replace function is used to replace a set of characters in the string with a
new set of characters. This function takes three arguments: the first argument
is the string, the second argument is a set of characters to find in the string

to replace, and the third argument is the set of replacement characters to put
into the string. Replace ("string", "st", "b") returns the result bring.

Similar to the Replace function, the Translate function is used to replace

a single character with another character and, multiple characters can

be replaced inside one translation. The Translate function takes three
arguments: the first argument is the string to translate, the second argument
is the string of characters to replace, and the third argument is the set of
characters to use for the replacement. Translate ("143281", "12", "97")
returns a result of 943789, where every instance of the number 1 is replaced
with a 9 and every instance of the number 2 is replaced with a 7.

[181]

Advanced Data Analysis

Statistical and Trending Operations

Interactive Reporting provides a set of function to perform statistical and trending
calculations to address the more complicated needs of reporting users performing
statistical analysis and data trending using Interactive Reporting. With the exception
of the Rank and RankAsc functions, the functions contained within this section

serve a specific analytical purpose and are rarely used beyond the realm of statistical
analysis. As a whole, the Statistical and Trending group of functions behave similarly
to Numerical functions in that these functions aggregate values within the dataset
and allow users to define a break column.

Ranking

The Rank and RankAsc functions provide the rank of a value in a set of data. The
Rank function ranks the data with the largest value in the column set to the value
one of 1, the next largest to 2, and so on. The second function, RankAsc, provides
similar functionality but the smallest number in the dataset is set to the value of one,
the second smallest is set to 2, and so on. Ranking functions are especially useful to
generate rank based data groupings, such as Top 5 Sales reports.

Using JavaScript

Computed Items support the use of JavaScript which allows users to leverage
functions beyond those supplied by Interactive Reporting to include the use of
conditional logic, variables, and functions. Additionally, Computed Items can access
globally defined variables or functions already declared within the document.

These features provide users with enhanced flexibility to dynamically modify data
presented to the user in a set of results.

Variables and Functions in Computed Items

One very useful feature in Interactive Reporting is the ability to use both functions
and variables defined with global scope in Computed Items. The functionality allows
a user to write a custom code to apply modifications to data returned from a query.
For example, the following simple code can be specified to run when the document is
opened:

function STRFUNC (vall)

{

return vall + 10;

} strfunc = STRFUNC;

[182]

Chapter 7

The function above expects a single value and then increases the value specified

by 10. The return statement returns the value with the increase to the place that it

is used in the code. Once the function is initialized by opening the document, the
function can be used in a Computed Item. For example, strfunc (Col2) where Col2
is a numerical column of data from a Results section will return each numerical value
in the results col2 increased by 10 in the new column. Similarly, a variable can be
defined and then added to a Computed Item in the same manner to provide

similar flexability.

Math Functions

One JavaScript component key to Computed Items is the Math object. The

Math object has a number of functions assigned to it that allow users to perform
complicated arithmetic. For any supported calculations, the Math object is supplied
the required parameters, performs the desired calculation, and returns the resulting
value. For example, the Math object can determine the absolute value of a number
using the Math. abs () function. If the value -3 is supplied to the function, the result
of the statement Math.abs (-3) is 3. Additional code samples of other Math object
functions are found using a simple web search for JavaScript Math functions.

Random Number Generation

Generating random numbers is very useful for randomly splitting a data set into
subsets. Since Interactive Reporting does not contain a random function, the Math.
random () object function is very useful for generating a random number for

each row in a column. This function can be used together with the Rank and Ceil
functions to create random buckets of data. For example, creating a Computed Item
called Rand with the Math.random () will create a random number for each row

in the column. Then creating the Computed Item named Grouping with the logic
Ceil (Rank (Computed2) /10) will create random buckets of 10 rows in the data
results. Creating a Table section under this section will allow for the filtering and
additional calculations on the Grouping column.

[183]

Advanced Data Analysis

Summary

The goal of this chapter was to provide an in-depth explanation of the options
available in Interactive Reporting for manipulating data throughout the document.
The chapter starts with an overview of structuring a query for data analysis, where
the concept of data volume versus query performance is presented. The chapter
continues with an overview of the Computed Item interface and the interface
specifically for Report sections. The chapter continues with an in-depth view into a
majority of the functions that exist in Interactive Reporting. The chapter details both
an explanation and examples of functions from each function group and provides
information on obtaining additional material from the system documentation.

The chapter concludes with material on using JavaScript in Computed Items

with information on adding functions and variables. The content presented in the
JavaScript section provides a brief guide into the vast functionality that can be
performed using custom JavaScript programming. Leveraging knowledge from
this chapter and other chapters of the book should serve as a solid foundation for
creating custom computations for advanced analysis.

[184]

Creating Briefing Slides and
Executing Batch Exports

Interactive Reporting provides many options for exporting information and
deliverables to different file formats. Users commonly struggle with the best and
most appropriate method for creating a data or formatted export, with most users
overlooking some of the most effective and efficient exporting methods. In addition
to searching for the best export format, many users express interest in exporting
information from Interactive Reporting into a Microsoft PowerPoint presentation.
While the Hyperion SmartView product can be used to refresh objects in Microsoft
Office documents, another exporting technique can be executed using the native
functionality of Interactive Reporting and does not require the use of an additional
piece of software.

Another less commonly known feature in Interactive Reporting is the ability to
add custom code to generate batch exports of deliverables. The use of a simple
programming approach to exporting allows the user to save significant time and
effort when exporting multiple slices of information from the same document.

The goal of this chapter is to educate the advanced user on the methods and
features most commonly used for exporting information from Interactive Reporting.
The chapter will focus on the native software export features, leveraging custom
programming to perform simple and complex exports, and simple steps for
configuring a Report section to produce briefing slide content.

This chapter covers the following topics:

e Exporting Interactive Reporting sections
e Exporting sections with custom code
e Creating briefing slides from a report section

¢ Creating and executing batch exports

Creating Briefing Slides and Executing Batch Exports

Exporting document sections

Interactive Reporting provides many formats for exporting information to Adobe
PDF, Microsoft Excel, images, HTML, and text formats. Each section of the document
allows for different export options, and some sections provide more export flexibility
than others. While there are many options, three formats are commonly used to
produce deliverables from objects in the document. These three options are the PDF,
JPEG, and MHTML formats.

Many users of the product are not familiar with and do not commonly use the
MHTML (Microsoft Office Web Archive) export option. The MHTML export option
provides users with the best method for exporting a section for use in Microsoft Excel,
where the formatting of the section is retained and the export is not limited at 65
thousand rows allowing for a larger export to the newer version of the Excel software.
When exporting a section to the MHTML format, the MHTML document is created
as a single page, unlike the regular HTML option, which provides a page and a folder
of objects referenced in the HTML document. Once exported, the MHTML document
can be opened in Internet Explorer by default or in Microsoft Excel through opening
the file through the application or by changing the file extension from .mhtml to .x1sx.

Exporting natively

A section is exported natively from the document by accessing the section and
selecting one of the export options from the File menu. The File menu includes three
options available for exporting sections, including Section, Document as Web Page,
and HTML Wizard. The following screenshot depicts the export options from the
File menu:

Section, ..
Document As Web Page, .,
HTML Wizard...

Scripks To Texk File. .,

[186]

Chapter 8

The first and most frequently used export option, Section, allows the user to export
one section of information into one of the default file types. The export is executed
by selecting the Section menu item from the File | Export menu. Upon selecting the
option, a dialog box appears to allow the user to set the filename, export location,
and export file type of interest. Upon completion, the system writes the file in the
desired export format to the specified location.

Some sections in Interactive Reporting will not export into every
available file type. These sections show a smaller subset of file types in
the file type drop-down of the Export window.

The second option, Document as Web Page, provides the user the ability to export
multiple sections of the document into a web page. When this export option is
selected, a window appears allowing for the selection of the sections in the document
to export, as shown in the following image:

=
Export Document As Web Page

Pleaze select the sections you want to expart.

= l,_-ﬂ Reports]
Actual vz Planned Revenue Report -
Planned vz Actual Cost Report

=113 Plan vs Acutal Query

@ Plan s Actual Results
[Actual vz Planned Revenue Fivat
[Plan vz Actual Cost Pivot
=1 13‘| Advertizing Expenze Query
@ Advertizing Expense Results
[Advertizing Expense by Country Pivat
[Advertizing Expenze by Media Type Pivat
I3 Sales Query
[Sales Results

| Selectall | [Deselect Al

[187]

Creating Briefing Slides and Executing Batch Exports

After selecting sections and pressing the OK button, a dialog box appears to
configure the name of the document. Only two file types can be selected as the
export file type with the Document as Web Page export method. The first option
is the default HTML option, and the section option is MHTML file type. When the
document is exported to HTML or MHTML, the user is provided with a formatted
result where each exported section is displayed as a page with tabs at the bottom
of the document to allow user to navigate between the different pages or sections.
While both of these documents provide the same output, the MHTML format of
the document is stored in a single page and is more manageable to distribute. The
following screenshot displays the exported document open in the web browser:

! A '|J1L PL~eX | = mhtmlfile/\\na-mE132:3... | | SRALCH
Q-
-
Franchise
Store Name Actual Planned Betual vs Planned
Revenue Revenue Revenue
BMV Ansheim 1,359,485 2,200,343 541,478
BM\V Barreiras TI.5T6 -471,281
BMV Brooklyn 7,245,879 -4.268.101
BMV Buenos Aires. 652,300 2,053,513
BMV Cologne 1,016,927 -T44 655
BMV Dublin 3,153,783 5 -1,878,872
BMV Hiroshima 442,373 525,754 483,375 =
BMV Lyon 4,674,077 7,740,850 -3,086,573
BMV Osaka g
BMV Osle
BMY Perth
BMV Santes
Total
Superstore
Store Name Betual vs Planned
Revenue
Super BMV London 1,002,848
Super BMY Los Angeles -4,810,258
Super BMV Munich 102, 9,873 -EBT.440
Super BMV New York 7,266,250 15,502,870
Super BMV Paris 1,202,044 2,388,175
Super BMV Stockholm 2,774,068 [l
Super BMY Sydney 1,582,242 3,483 483
Super BMV Tokyo 226, 4,623,284 2,357,041
Super BMV Vancouver 5,711,432 10,520,731 5,108,355
« < = =»|Actual vs Planned Revenue Repor|Planned vs Actual Cost Repori]Plan Vs Actual ResullActual vs Planned Revel

A key benefit of this feature is that both the HTML and MHTML objects can be
opened in Microsoft Excel for viewing and editing. Each tab on the web page

is converted into sheets in the Microsoft Excel document. Content can be easily
modified, formatting can be easily changed, and the document can be saved into a
native Microsoft Excel file type. The following screenshot provides an example of the
document open in Excel:

[188]

Chapter 8

A B C D E F G H
1 Franchise
£

Store Name Actual Revenue Planned Hevenue Actual vs Planned Revenue

3

4 BV Anaheim 1353455 2200343 841479
5 |BMVBareiras TIITE 1203267 471291
5 BV Brooklyn 7,245,879 514,980 -4,269,101
7 | BMVBuenos Aires £32.300 2745513 20551
g BMY Cologne 1015327 1760616, 744,689
g | BV Dublin 3159783 7033655 3878372
10 B 442379 925,754 483,375
11 BMVLyon 4ET4TT 7740550, 3,086,573
12 B 2593312 4,135,801 536,369
13 BMVDsio 1527359 2,541,301 104,042
14 RIS 641,350 17382702 830,742
15 BMVSantos 385,131 738,354 -371.223
16 |moral 24.606.649 H.027.522. 19,420,873

17 Superstore

Store Name Actual Revenue Planned Revenue Actual vs Planned Revenue
19 |

20 Super BMYLondon 1,605,230 2,608,136 1,002,346
21 Super BMYLos Angeles 6315562 11125360, 4,510,398
22 Super BMY Munich 102,433 1669873 -5ET.440
23 [Super BMY New Yark 72EE260 15,502,370 523610
4 4 » M| Actual vs Planned Revenue Repor Planned vs Actual Cost Report Plan Vs Actual Resul Actual vs Planned Revenue Pivot Plan vs

The final export option is the HTML Wizard. This feature is specifically used for
exporting the document into an HTML layout. Used less frequently than the other
features, the HTML Wizard is primarily focused on publishing content for the Web.

Exporting a single section (code)

While Interactive Reporting provides the ability to easily export sections of the
document natively in the interface, the software also provides the ability to export
sections of the document using simple JavaScript code statements. Two features
exist for exporting a single section of the document. The first method, Export, is
commonly used to export a single section of the document from the Interactive
Reporting Web Client. The second export method, ExportToStream, is used with the
iHTML client or to improve exporting performance.

The following is the Oracle documented syntax of the Export method:

Export ([optional] Filename As String, [optional] FileFormat As
BgExportFileFormat, [optional] IncludeHeaders As Boolean, [optionall
Boolean Prompt, [optional] BgEncoding Encoding)

The following is the Oracle documented syntax of the ExportToStream method:

ExportToStream([optional] String Filename, [optional]lBgExportFileFormat
FileFormat, [optionallBoolean IncludeHeaders, [optional]Boolean
DataStreaming, [optional]lBoolean Prompt, [optionallBgEncoding
Encoding)

[189]

Creating Briefing Slides and Executing Batch Exports

The syntax of these methods may appear odd compared to other JavaScript code
methods described in this book, since all of the arguments of the method are
optional. If the methods are used without setting any arguments, a dialog box will
appear prompting the user to set a filename, file type, and encoding when the export
methods are executed. While the dialogue box allows the user to customize the
export settings at the time of export, the developer configuring the document may
want to preset some of the settings. The following is a breakdown of the arguments
for both methods:

o The Filename [optional] argument allows the user to set the filename and/or
path for the export.

o The FileFormat [optional] argument sets the file type of the document and
accepts an Interactive Reporting constant from the BqExportFileFormat set
of constants.

e The IncludeHeaders [optional] argument set the export to include section
headers (specific to sections that allow page headers and page footers from
the Insert menu).

e The DataStreaming [optional] argument is specific to the ExportToStream
method and is used to toggle data streaming on and off.

e The Prompt [optional] argument sets the dialog box to display when the
method is executed.

e The Encoding [optional] argument is used to specify the document encoding
for the export and accepts a constant from the BqEncoding set of constants.

TheBgExportFileFormat, BgEncoding, and entire set of
@’@‘\ constants with descriptions are found in the Script Editor by
’ expanding the Constants list of values.

Export examples

The following examples demonstrate the use of the Export method to export a Report
section of a sample Interactive Reporting document. The first example, Export Example
1, exports the Planned vs. Actual Cost Report section without any arguments providing
the user the ability to specify the file path, filename, file type, and file encoding at
runtime. The second example, Export Example 2, prompts the user to export the
Planned vs. Actual Cost Report section into a PDF file format in the c: directory.

[190]

Chapter 8

Export Example 1:
/* Prompts the user to set the file name, file type, and encoding at
Runtime */

ActiveDocument.Sections ["Planned vs Actual Cost Report"] .Export ()

Export Example 2:
// Predefines all of the arguments for the user

ActiveDocument .Sections ["Planned vs Actual Cost Report"].
Export ("C:\\Cost Report.pdf", bgExportFormatPDF, false, true, bgEnc_
WesternEuropean Windows)

Note the use of two backslashes (\\) in Export Example 2 when

specifying the location C: \\. Two slashes are required when specifying a
V. ; : : .
file path in Interactive Reporting.

ExportToStream examples

The following examples demonstrate the use of the ExportTostream method to
export a Pivot section of a sample Interactive Reporting document. The first example,
ExportToStream Example 1, exports the Advertising Expense by Country Pivot section
without any arguments, which allows the user to specify the file path, filename, file
type, and file encoding at runtime. The second example, ExportToStream Example
2, prompts the user to export the Advertising Expense by Country Pivot section into a
MHTML file format in the c: directory.

ExportToStream Example 1:

/* Prompts the user to set the file name, file type, and encoding
at Runtime */

ActiveDocument.Sections ["Advertising Expense by Country Pivot"].
ExportToStream()

ExportToStream Example 2:

// Predefines all of the arguments for the user
ActiveDocument.Sections ["Advertising Expense by Country
Pivot"] .ExportToStream("C:\\Advertising Pivot.mhtml",
bgExportFormatOfficeMHTML, false, true, true, bgEnc_
WesternEuropean Windows)

[191]

Creating Briefing Slides and Executing Batch Exports

Exporting multiple sections (JavaScript code)

In addition to exporting a single section of the document through custom
programming, Interactive Reporting provides the ability to export multiple sections
of the document together in one HTML or MHTML file. This export is not completed
at the section level but rather at the document level, using an Export method of the
ActiveDocument object. This custom programming export functionality mimics

the native Documents as Web Page export feature, and these HTML or MHTML
documents can be opened and edited with Microsoft Excel, similar to other exports.

While Interactive Reporting appears to allow the user to set a file in any of
- the export formats, setting the file format to a value other than HTML or
MHTML would generate the following error when the code is executed:
s
Error Code: Script(x):uncaught exception: Export
format not supported

While the exporting of multiple sections functionality is limited in export

format, it is extremely important when leveraging the batch feature, described
later in this chapter. If there is an interest in exporting multiple sections of an
Interactive Reporting document into one export format while running a batch
process, the Export method of the ActiveDocument object must be utilized. The
ActiveDocument object contains three different methods utilized when exporting
multiple sections:

e The AddExportSection method is used to add sections of the document into
the export queue. This method accepts one argument, which is the name of
the section to export.

e The RemoveExportSections method is used to clear out all sections from the
export queue.

e The Export method is used to generate the multi-section export. While the
Export method appears to be similar to the method described in exporting a
single section, the ActiveDocument version of the Export method is limited
to the HTML and MHTML file types. Additionally, the path of the file must
be specified, as this specific Export method will not prompt the user to save
the file, but will write the file directly to the specified file path.

The following example highlights the use of the ActiveDocument Export method to
export two Report sections to the C: \Temp directory:

/* The AddExportSection statement must be unique for each
Section */
ActiveDocument .AddExportSection ("Planned vs Actual Cost Report");

[192]

Chapter 8

ActiveDocument .AddExportSection ("Actual vs Planned Revenue
Report") ;

/* Code use to generate the export to the specified file location
on the drive as an MHTML file type. */
ActiveDocument .Export ("C:\\Temp\\Revenue and Cost Report.mhtml", bg
ExportFormatOfficeMHTML) ;

// Removes all sections from the export queue.
ActiveDocument .RemoveExportSections () ;

_ If the Temp file folder does not exist on the machine running the export,
% the following error message will be written to the Console window:
K

Error Code 2: Script(x):uncaught exception: Unable to open output file:
'Revenue and Cost Report.mhtml'

Briefing slides

Many users are interested in using Interactive Reporting to create briefing slides

for Microsoft PowerPoint documents. While there is no native export feature in
Interactive Reporting to export a section to Microsoft PowerPoint, Hyperion created
a tool called SmartView to integrate the different products of Microsoft Office with
Interactive Reporting. While this product fills the void of integrating the Microsoft
Office suite with Hyperion Interactive Reporting, there are additional custom
methods that can be used to generate briefing slide content.

Report sections in Interactive Reporting can be exported to a JPEG file type, where
each page of the Report section is saved as an individual image file. This image
export feature from a Report section provides a convenient and easy to use approach
for generating slide content for Microsoft PowerPoint presentations, where the
content of the Interactive Reporting document can be segmented and arranged on a
report with Report Groups with defined page breaks to create quality slide content.

Microsoft PowerPoint contains two different methods for importing files. The first
method is used to import image files into a document. When the image files are
imported into the document, the file is copied into the document and any changes to
the original file do not impact the file displayed in the slide deck. This method can
be used to import images from an Interactive Reporting document, but the images in
the PowerPoint document must be exported from Interactive Reporting re-imported
and reconfigured each time the data in Interactive Reporting is refreshed.

[193]

Creating Briefing Slides and Executing Batch Exports

A second option exists for linking images into a PowerPoint document through the
addition of an object to the PowerPoint document. Microsoft PowerPoint recognizes
the bitmap file type as one of the default objects in the software, where bitmap
images can be linked into PowerPoint documents from a specified file location.
When the source bitmap image is updated, the image in the PowerPoint document is
updated when the document links are refreshed (the update setting is configurable
in Microsoft PowerPoint). This feature is very effective and can be used together
with the exported images from Hyperion Interactive Reporting to create updatable
PowerPoint slideshows. However, there is a manual step that is necessary when
using this feature. Interactive Reporting only exports files into the JPEG file type and
Microsoft PowerPoint does not recognize the JPEG file type as one of the default
object formats. Therefore, the files exported from Interactive Reporting will have to
be renamed from the .jpg extension to the .bmp extension. Once the file extensions
have been adjusted, the source bitmap files can be overwritten with the newly
renamed files from the Interactive Reporting export. The next time the linked objects
from the Microsoft PowerPoint document are updated, the new image files will
automatically appear in the document.

Building the report for a briefing slide export

A Report section created for an image export should differ significantly from a
Report used as a static report. Since each Interactive Reporting Report section page
will be exported to a single image when the image export is utilized, each page of the
Report section should be designed to support a single slide of the slideshow. Since
the Report Groups feature of the Report section splits the content into subsections

of data, the Report section provides an easy method to segment pivots and charts
into grouped content for briefing slides. Once the content of the report is configured,
a few Report section options are available to help prepare the report for export to
image files. The following screenshot displays a Report section configured to display
two Charts sections and one Report Group:

[194]

Chapter 8

| DstsFunction ~
R R R S AR SR BT RA SO 5 S5 . b &

Franchise
- Revenue

5,000,000 Cost
2,500,000

- 4,000,000 2,000,000
. 3,000,000 1,500,000
~
- 2,000,000 1,000,000
- 1,000,000 500,000 I
, Al] :
- Jan Feb Apr Mar May Jun Jul Aug Sep Oct Mow Dec
. Jan Feb Apr Mar May Jun Jul Aug Sep Oct MNov Dec P v 2 ep

Superstore
. Revenue
. Cost

4,000,000

o
- 5,000,000
. 3,000,000
. 2,000,000
N 2,500,000
"
. 1,000,000
: y | | [|)
. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Now Dec

- v

Report Group] (Plan U Actuat Resuits): Stare Tupe |rame Dimensons: Jo see tabie ainension cokmns ik on & fable i your report
Report Group? frsg columns fere fo create 8 category
|fame factr; Jo see fabte fact columns. click on a fable in your report
| 11 Pagels) [Zoom; 120%

In the screenshot above, notice that the groups of information are listed on the same
page of each report, which makes the document difficult to segment into multiple
pages. However, the default Report Group display settings can be modified to split
each Report Group heading onto a separate page.

[195]

Creating Briefing Slides and Executing Batch Exports

The page break step is accomplished by clicking inside the Report Group on the
report, right-clicking, and selecting the Page Break Before menu item as shown in
the following figure:

DataFunction * |

in R T - T T T T S T - B - R B S - R

| i

Franchise
\ Revenue
- 5,000,000 Cost
500,000
- 4,000,000 2,000,000
) 3,000,000 1.500.000
~
N 2,000,000 1,000,000
- 1,000,000 500,000 I‘
: . L[] N o
- Jan Feb Apr Mar May Jun Jul Aug Sep Oct Nov Dec
l Jan Feb Apr Mar May Jun Jul Aug Sep Oct Now Dec P ¥ g 2ep
Superstore Insert Table

ags Bresk Before
Fage Break After

; Cost
- Repeat Header 4,000,000
5,000,000 + Keep Together

Keep wfith Next 3,000 000

. Paste

: Properties 2,000,000

. 2,500,000

N

v I‘ 1,000,000
JHm | .

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mov Dec

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Mov Dec

—~ v
Report Group? (Plan Vi Actual fesults): Store Type Table Dimensions

Report Group2

Table facts

1 Pagels) Zoom: 120%

Since each Report Group is now on a separate page, the briefing content for each
content area appears in a single image. However, when the images are exported from
the report with the default report page size, the images contain a large portion of
white space at the bottom of each image.

The second important feature of the Report section is the ability to change the report
page size to better fit the information on each page of the report. The report page
size is adjusted by selecting the Report Setup menu item from the Report menu. The
Report Page Setup window opens to the Page Size tab with the default setting to
use the dimensions of the printer (configured by the Page Setup options of the File
menu). The report can be set to a custom page size by switching the Page Size radio
button to use custom dimensions. Setting the custom dimensions is completed by
clicking on the Custom Dimensions radio button and entering the width and height
of the desired page size in the Report section.

[196]

Chapter 8

To identify the best dimensions for the Report section size, the rulers

a may be turned on by selecting the Rulers menu item from the Report
L= menu. In the same Report Page Setup window, the margins tab may
also be utilized to adjust the margin sizing as desired.

Once the page sizing has been modified, the report will appear as shown in the
following screenshot and will export to image sizes that are appropriate for the size
of the report pages. The following screenshot shows the initial example with the
Page Break setting of the Report Group configured and the report page resized:

Dalafuncion ~ | |
|‘..H.‘H‘....2”..“‘3.‘..”.4.”...‘5.”..”.5.."..7..‘..‘.B‘..‘;
Franchise
Revenue
5,000,000 Cost
2,500,000
4,000,000 2,000,000
3,000,000 1,500,000
2,000,000 1,000,000
o I‘ I‘ I I‘ I‘ o I
AN n :
Jan Feb Apr Mar May Jun Jul Aug Sep Oct Mov Dec Jan Feb Apr Mar May Jun Jul Aug Sep Oct hNoy Dec
Superstore
Revenue
Cost
4,000,000
5,000,000
3,000,000
| H Ennnllls v
oot Groyp Fiflan V¥ Actual Restl &) Store Type |)’ao{e Dimensions: To see fable dimenson columng ciick on 3 fable i pour report
eport Groupd Doz columng fece o creste o catezons
|)'ab{f Factr Jo see table fact columis, cfik on @ fable i your report
| |3 Pagels) |Zoom: 120%

[197]

Creating Briefing Slides and Executing Batch Exports

Export code for briefing slides

The majority of work in creating briefing slides for the image export is completed in
the formatting of the Report section and the setup and configuration of the Microsoft
PowerPoint document. While the Report section is easily exported natively in the
product by exporting the section to JPEG format, the Report section can also be
exported using custom code. The following code example showcases the ability to
export the PowerPoint example Report section into JPEG format:

ActiveDocument.Sections ["PowerPoint Example"] .Export ("C:\\Cost
Report", bgExportFormatJPEG, false, true)

Executing batches of reports

Users frequently express interest in creating an Interactive Reporting document that
processes one or more queries and exports one or more reports for a set of input
criteria. Interactive Reporting has a job scheduler utility allowing the user to perform
batch processing features. However, many environments do not allow users to access
the job scheduler feature. The Interactive Reporting Web Client does not natively
contain the ability to batch process in the software. However, custom programming
can be used to create similar functionality to the job scheduler by running a query
and producing an export multiple times. This feature is extremely effective and can
be easily leveraged to save a significant amount of time and effort.

While there are many different methods for creating batches in Interactive Reporting,
the most common approach is to create a set of code to loop through input criteria,
process the required queries of the document, and produce the export for each input
criteria value. The following diagram depicts a high-level process flow for the

batch approach:

Clt}pu'.c Feads Query Process C;gﬂate

riteria ———» _ - -

Valus Filterz Q'L'I.Et':..' Elpl}ﬂ
ry

Leop to Next Input Criteria Value

[198]

Chapter 8

Batch processing example

The following example is a demonstration of the methods for creating a PDF report of
Actual Revenue vs. Plan Revenue by store type and store name for each month of each
year from the sample data model. The input criteria are all of the month and date
combinations stored in the month dimension. The following screenshot displays the
different sections of the sample Interactive Reporting document:

Sections X

] chapter 9 - Batch

@ Actualws Planned Revenue Repart

\Jﬂ Plam ws Acutal Query
\Jﬂ Plan Ws Actual Results
|_] Actualvs Planned Revenue Pivot

\Jﬂ Input Criteria

!,_' Input Criteria Results

Notice that a Dashboard section, a Report, and two Query sections with Results and
one Pivot section exists in the document. The Dashboard section contains a button
for executing the batch process and, upon pressing the button, the program will
execute the batch process and will start producing exports.

The input criteria in the example are derived from the Input Criteria Query, which
selects all of the distinct year and month combinations from the Month Dimension.
Each record from the input criteria Results section will result in one PDF document
created for the specified criteria. When executed, the program will start with the
tirst record of the input criteria and will loop sequentially to the last record. At
each iteration of the process, the year and month number from input criteria will

be applied to the year and month number filters of the Planned vs. Actual Query.
The Planned vs. Actual Query will be processed and a PDF export will be written
to the c:\ directory with the year and month criteria included in the file name to
distinguish each file.

Sorting the Results section of the input criteria query will present an
/— ordered output of the batch and may assist with troubleshooting errors.

[199]

Creating Briefing Slides and Executing Batch Exports

Batch processing code

/* Process the Input Criteria Query to obtain the distinct list of
input criteria values. The query properties are configured to
return unique rows and the Results section is sorted by row and column

*/

ActiveDocument.Sections ["Input Criteria"] .Process();

/* For loop iterating through all of the values in the input criteria
Results section. The loop starts with the first value and

continues through each record up to the total values of the results
section (denoted by the row count). */

for(var i=1; i<=ActiveDocument.Sections["Input Criteria Results"].
RowCount; i++)

{

/* Variable Set to reduce the need to repeat the query string
definition multiple times */

MainQry = ActiveDocument.Sections["Plan vs Acutal Query"];

/* Remove all of the values selected in the Year and Month
Number filters of the Plan vs Actual Query */

MainQry.Limits["Year"] .SelectedValues.RemoveAll () ;
MainQry.Limits ["Month Number"] .SelectedValues.RemoveAll () ;

/* Grab and set the input criteria Year and Month number
results to a variable. */

InputYear = ActiveDocument.Sections["Input Criteria
Results"] .Columns ["Year"] .GetCell (1) ;

InputMonth = ActiveDocument.Sections ["Input Criteria
Results"] .Columns ["Month Number"] .GetCell (i) ;

/* Sets the input criteria value for the month and year into
the month and year filters of the Plan vs Actual Query */

MainQry.Limits ["Year"] .SelectedValues.Add (InputYear) ;
MainQry.Limits ["Month Number"] .SelectedValues.Add (InputMonth) ;

// Process the Plan vs Actual Query for the specified values

[200]

Chapter 8

MainQry.Process () ;

/* Allows the processor to complete the processing of the

events in the statement. The addition of this method prevents
the application from failing during the export by requiring the
application to complete events before moving onto the next step. */

Application.DoEvents () ;

/* Specifies the path and creates a unique filename for each
file. Leverages the InputYear and InputMonth variables declared in
the previous statement to mark the file name with the appropriate year
and month combination. */

FileName = "C:\\Revenue Report " + InputYear + "-" + InputMonth;

/* Exports the document to the specified file path with dynamic
file name. Notice the prompt export setting is

set to the off position so the program runs seamlessly
without interruption. */

ActiveDocument.Sections ["Actual vs Planned Revenue Report"].
Export (FileName, bgExportFormatPDF, false, false, bgEnc_
WesternEuropean Windows)

/* Repeated to make sure the program completes the export
before moving forward with processing the next set
of input criteria. */

Application.DoEvents () ;

/* Once the file export is completed, the program moves to the
next set of input criteria until all of the documents
are completed. */

}

After the batch processing script completes, the directory configured to contain all of
the export of files will be populated with a PDF document for each set of
input criteria.

[201]

Creating Briefing Slides and Executing Batch Exports

Refining the batch code to remove empty results
sections

Many times, situations arise where specific input criteria values do not yield a result
when processed in the main query. Since users are typically interested in ignoring
empty reports of information, adding a conditional statement to the export statement
to ignore exporting empty reports is an efficient way of handling this situation.
Replacing the export script statement in the batch export example above with the
following statement (shown below), provides the specific logic to not export a Report
section in instances when the main query has an empty results section:

/* Exports the document to the specified file path with the
name specified above provided the results section of the
document contains information. Notice the prompt export setting
is set to the off position so the program runs seamlessly without
interruption. */

if (ActiveDocument.Sections["Plan vs Acutal Results"]) {

ActiveDocument.Sections["Actual vs Planned Revenue Report"].
Export (FileName, bgExportFormatPDF, false, false, bgEnc
WesternEuropean_ Windows)

}

After the refined batch processing script completes, the directory specified to receive
the export of files will display the list of files where data existed for the input criteria.

[202]

Chapter 8

Summary

The goal of this chapter was to demonstrate new and innovative approaches for
using Interactive Reporting to generate deliverables and briefings as well as the
methods and features most commonly used for exporting information from the
software. The chapter began with an introduction to the native export functionality
provided by Interactive Reporting, including exporting an individual section to
different file formats and exporting multiple sections of the document to a web

page at one time. Once an explanation of the native tool features was discussed, an
in-depth view of the code used to generate an export of information using custom
programming was presented, which included basic section exporting and the process
to export multiple sections at a time. The chapter continued with an innovative
approach to using the Interactive Reporting Report section as a means of generating
content for a Microsoft PowerPoint slideshow through the use of image files. The
chapter then concluded with an approach to creating multiple custom deliverables
by creating a custom process and using the export functionality to run multiple
queries without manual intervention. At the end of this chapter, the advanced user
should have a solid understanding of the export functionality provided in Interactive
Reporting, and the user should have the knowledge needed to begin using the
briefing slide and batch approaches to support daily efforts.

[203]

The Central Code Repository

One challenge that advanced users encounter with Interactive Reporting's report-
centric model is the tracking and maintenance of heavily customized dashboard
reports, especially in enterprise-level implementations where code is used
repetitively and transparently across multiple documents. Given the common and
straightforward practice of storing similar JavaScript code within each document in
an enterprise, it is incredibly difficult and infeasible to individually identify, track,
and edit changes across documents.

One simple and invaluable methodology is to store report customization scripts in
an accessible database table within the enterprise environment. This script table,
referred to as the Central Code Repository (CCR), is an external reporting library
that allows code to be quickly pushed into some or all documents in an enterprise.
This centralized repository provides the capability for agile responses to ongoing
business changes and code maintenance without modifying the consuming reporting
documents. In addition to providing an efficient code update capability, the CCR
drastically reduces development and testing man-hours since the code can be tested
and vetted independently from the reporting document.

The goal of this chapter is to educate advanced users on both the theory and
processes for creating a CCR. This chapter covers the following topics:

e Understanding the CCR

e Preparing code statements and implementing the CCR

¢ Querying and executing the CCR

e Creating the CCR Global Code Dashboard

e Scripting the Document Startup Event

e Advanced application concepts

The Central Code Repository

Understanding the Central Code Repository

The Central Code Repository (CCR) is a database model created for Hyperion
Interactive Reporting that allows the storage, management, and implementation of

a centralized code base. The repository is purely a custom developed database table
or set of database tables created by development and business users to effectively
leverage and maintain JavaScript code statements and variables across multiple
Interactive Reporting documents. The tables are maintained by the development and
user community, and the table must exist in a centralized location that is accessible
by the Interactive Reporting documents using code from the developed solution.
Below is a conceptual diagram of the use of the CCR across multiple Interactive
Reporting documents:

Code Database Table
located in centralized
database

l l

BQY Document 1 BQY Document 2 BQY Document 3

Changes made to the code database tables are efficiently managed within the CCR,
and when changes are enacted the code updates globally across BQY documents.
As business requirements evolve or even drastically change, the CCR will provide
developers, managers, and advanced users with tremendous flexibility for global or
partial report code management.

Preparing the JavaScript code

In order for the CCR to work properly in all database environments, the JavaScript
code must be stripped of all comments and carriage returns. The removal of carriage
returns from the code requires that the JavaScript deployed in the CCR adhere

to strict coding standards including using semi-colons at the end of statements.
These single lines of code are stored in the CCR code database table to be queried,
evaluated, and then utilized by the individual BQY documents.

Table structure

Since the CCR is a custom-developed solution, the repository can be flexible to
accommodate many needs of the user community. The rest of the chapter discusses
using a single table as the CCR for simplicity in demonstrating the capabilities of
the feature. When building the CCR with a single table, the CCR table should be
structured with at least the three columns as shown in the following table:

[206]

Chapter 9

A B C
1 [Number Name Code

2 1 Debug Messages function debugMessage (vMes
3 2 Execute Batch Process function batchProcess (glnput
a 3 Execute Refined Batch Process function refinedBatchProcess(

e Number: The Number field will determine the order in which the function
is executed, which is especially useful for functions that perform document
actions that have a hierarchy to them, such as Document Startup scripts

¢ Name: The Name field is used to provide a title for the code provided

e Code: The Code field stores the formatted JavaScript code used in the
Interactive Reporting documents

As specified in the previous sections, additional columns or tables to manage content
including report names, categories, or groupings, can be added to enhance the
organization and management of Interactive Reporting documents in the enterprise.
Using these additional components will allow developers and advanced users to
minimize the amount of JavaScript coding declared as a part of the start-up process
through the use of modifying the code query to obtain only the specific functions for
each Interactive Reporting document.

Configuring the CCR code table and query

With the report code now stored in the CCR code table in the database, BQY
documents can query the table and then evaluate the code that is stored in the
table. The image below shows the CCR workflow within the Interactive Reporting

document.
Evaluate the code Invoke the code
Suterg thetCk())IR column returned using object event
Slapasclane from the query triggers

When the document is first opened, the query to retrieve the code from the CCR
code database is processed during the document start-up process. Once the query
results are retrieved, the results from the code column are then looped through the
JavaScript eval () function to declare the functions and variables or to execute code
statements.

[207]

The Central Code Repository

M Store any code statements commonly used in user interface
modifications, including hiding or unhiding toolbars, menus, and
other interface components in the CCR.

Querying the Central Code Repository (CCR)

Each Interactive Reporting document using code from the CCR requires a Query
section to return the contents of the CCR database table into the specific document.
The results of the code query will be read during the document start-up process
using code described in the section above and demonstrated throughout the rest of
this chapter.

Creating the Query section

The first step in using the CCR is to add a new Query section to the document. The
new query must have access to the CCR database table. There is no harm in storing
the database table with the other tables in a common production database, nor is
there harm in allowing the table to be accessed by the OCE connection containing
the production data set utilized by the user community. However, there are
implementations where development teams like to separate the code tables along
with other metadata, remarks, and other reference materials used by Interactive
Reporting. This is also perfectly acceptable and requires the selection of the proper
OCE connection with access to the CCR table.

Renaming the Query and Results sections

The names of the Query and Results sections are important because these sections
are directly referenced by the code to read the contents of the table. The naming

of the Query and Results sections should be consistently applied throughout the
document and code. While any names could be used, using the naming convention
described in Chapter 5, Building the Dashboard Framework, allows section types to be
easily determined when referenced in code. The example outlined in this chapter
specifies that the Query section must be named q Code and the Results section must
be named r Code.

[208]

Chapter 9

Buidling the code DataModel

Once the new Query section is added to the database and renamed, expand the
tables in the Elements Section by right clicking on the + sign to access the database

and locate the CCR table. Bring the CCR table into the main window of the Query
section to begin building the code query:

Y FRile Edt View Inset Format Query DataModel

@ Hyperion Interactive Reporting Studio - Chapter 10 Create Code Table.bqy

=g Tables

Window Help ;lilﬂ
JoLin oS s AT Bt P ® |l Brocess = |t s T D)
J Wicrosoft Sans Sef] [&] /atddar | Brodo Un| S0 =e = o owitlor w1 g v 9w it
A qCode ~ [Request@ ¥ fittes =f son@ o~ —
Sections x | | Requsst | Drmg Topic tems here o buid 2 Guery
[£#] pashboard J Sort |D@g.ﬁ?eque§,&mshefefo sort them
=
g)ﬂ r Code |

Central Code Repository

Elements

| | Mo Results Yat

|Combined View: 0 topics

[209]

The Central Code Repository

Building the code query

Once the table is moved into the main window of the document, add all columns of
the CCR code table to the Request line to bring in all of the data from the table into
the Interactive Reporting document. Additionally, add the Number field to the Sort

line to sort the query in ascending order. Sorting the document will ensure that the
code is read in the proper order.

@ Hyperion Interactive Reporting Studio - Chapter 10 Create Code Table.bgy
3 File Edit View Insert Format Query DataModel Tools Window Help == x|
Jon St ol e A B Bt st Bl |l Process o | s 1D
JITahoma L||5L|ﬁ&A*A|BIH|E:'§':E|/v‘;vAv|Av%'!"-»|
A code ~ [Request@ ¥ Fiters@ =] Sort@ =
Sections x | J Request | Mumber | Name | Code
J Sort |5_\'ng8th Fems here fo sort them
\)ﬂ rCode N
® Central Code Repository

Number

Name

Code
Elements
[#-F' g Tables =

-
= I§ I »

| |No Resuts Yet |Combined View: 0 topics Q=

Building the Global Code Dashboard

In order for any section of the Interactive Reporting document to access functions
stored in the CCR, the functions need to be globally declared as part of the document
start-up process. If the necessary code was directly assigned to the document object's
onStartup event, the code would be run when the document was opened before any
other actions were performed by the client. While this would ensure the functions
are declared before any report object attempts to call them, code errors, such as

an infinite for loop, will cause the document to become unstable and irrevocably
corrupt. To avoid this hazard, use the techniques explained in Chapter 5, Building the
Dashboard Framework to alternatively mange the document start-up processes.

[210]

Chapter 9

Creating the Global Code Dashboard

Once the query is configured, the next step in the process is to create a Global
Code Dashboard to prepare all of the code for use in the document. Add a New
Dashboard to the document using the Insert menu.

In the Sections window, click and activate the newly created Dashboard section.
Rename the section and change the section label from Dashboard to Global Code
Dashboard.

Once a new dashboard is added, renamed, and active, set the dashboard in Design
Mode to begin adding controls and JavaScript code to the dashboard. While in
Design Mode, add a Command Button Control to the dashboard. Click to select
the command button and then right-click to open the menu. Choose the Properties
option to view the object properties. Change the Name of the command button from
CommandButtonl to cbDocumentStartupScripts and change the Title of the button
from CommandButtonl to Document Start up Scripts. Once complete, click OK
to close the dialog box.

a1

~ Any dashboard control or dashboard graphic with an OnClick ()
event method can be used in place of the command button control.

Select the command button again and right-click to open the right-click menu.
Choose the Scripts menu option to open the Script Editor. Add the following code to
process the code table and then loop through and evaluate each line of code returned
to the Results section:

/* Process the Code Query to retrieve the records in the Central Code
Repository table */

ActiveDocument.Sections ["q Code"] .Process () ;

/* Store the row count from the query results. */
var vVRowCount = ActiveDocument.Sections["r Code"] .RowCount;

/* For each row in the r Code section, perform the enclosed code and
increment the i variable by 1 until the i variable is more than the
row count in the r Code Section */

for (var i=1;i<= vRowCount; i++)

{

[211]

The Central Code Repository

/* The GetCell method returns the value of row number i in

the code text column of the r code section. The eval() function
executes the contents of that cell as JavaScript statements. */

eval (ActiveDocument.Sections["r Code"] .Columns["code"] .GetCell (i))

Application

Constarts

(] Global Code Dashboard Objects
-] Parameters

El

ANl

 Descrigtion

Description text

Help

Object: Event Trigger:
chDocumerrtStanupScnuts ;I IOnC!lck ;I

<] 2| o] »

™ Process the Code Query to retrieve the records in the Central Code Repository table™ ;I
iActiveDocument. Sections["q Code™].Process(

I’ Store the row count from the query results ™/
var vRowCount = ActiveDocument Sections[r Code’] RowCount:

" For each row in the r Code section, perform the enclosed code and increment the i
variable by 1 until the i variable is more than the row count in the r Code Section */
ifor (var i=1;i<=vRowCount, i++)

* The GetCell method returns the value of row number i in the code text column of
the r code section. The Eval() function executes the contents of that cell as JavaScript

statements.*/
eval(ActiveDocument Sections[r Code™]. Columns["code text”]. GetCell(i)):

i

o o

Check Syrax | Line number. [T GoTo oK | Cancel |

Click OK to close the Script Editor and return to the Global Code Dashboard
section. The following image shows the dashboard after the command button
modifications and code steps are complete:

B Hyperion Interactive Reporting Studio - Chapter 10 Create Code Table.bgy
| Fle Edit View Inset Format

Joan ok A B B

Dashboard Tools Window Help _|= x|

T b |_ﬂ‘Procss'|._'J‘ - g|®|

i
=
il

| [andde wT “|[iz=]ea & | B £ U |

=| v - A g%y ||

i#| Global Code Dashboard ~

Elements
(i) Graphics -
EH E Controls

Gnl[g g s

O Iml a
Document Startup
Scripts
o 0 m}

| [|Zoom: 100%

1

[212]

Chapter 9

By assigning code to the onclick event trigger of the button, the code can be
invoked by either manually clicking the command button or programmatically
clicking it by calling the execution of the onclick event through using code.
Manually clicking the button allows the code to be tested without risking document
corruption before the button is programmatically executed by the Document
OnStartup event.

Now with the dashboard configured, switch the dashboard to Run Mode. With the
dashboard now active and actionable, monitor the Console Window for any errors.

The Console Window is very helpful for debugging sections of code or for testing
conditional statements. The Console Window is opened by selecting Console
Window from the View menu as shown in the following image:

| View Inset Format D
v Section/Catalog
v Section Title Bar
Toolbars J
v Status Bar

Console Window

Execution Window

Go To Section »
Hide Section
Unhide Section...

Query Log
Zoatm 2
=

Use the code statement Console.Writeln ("<message>"); in any block of code to
display a message in the Console Window, where <message> is the message to be
displayed. For example, Console.Writeln("Hello World!"); would display Hello
World!.

The following screenshot shows the dashboard ready to be executed. Click the
Document Startup Scripts command button to test the code and to check for errors:

[213]

The Central Code Repository

B Hyperion Interactive Reporting Studio - Chapter 10 Create Code Table.bqy
| File Edit View Insert Format Dashboard Tools Window Help _|ﬁ||1|

oSl A m Bt Pzt s | Proces s e D

| [Freae Tt B I U[SE== (S A gy || M
27| Global Code Dashboard ¥ p—
Sections x

L Code Dashboard
\)ﬂ q Code
i Document Startup
Scripts

Elements

Once the button is clicked, the Console Window should appear blank without errors,
as shown in the screenshot above.

Applying the code to objects

Once the code is processed using the eval () statement, the functions become
globally available to objects within the document. Accessing functions from the
Central Code Repository is no different than accessing functions centrally contained
within the document. If the eval () statements have not occurred or the function is
no longer in the CCR code table, any objects referencing the unavailable function
will output a scripting error to the Console Window as the function will not be
recognized by Interactive Reporting.

Scripting the Document Startup Event

The final automation of the dashboard requires that the Document Startup Scripts
command button be executed when the document opens. Now that the Document
Startup Scripts are tested and ready for implementation, the final step is to invoke
the onclick () method of the Document Startup Scripts button on the Global Code
Dashboard during the document's onStartup event process.

[214]

Chapter 9

In the File menu, click Document Scripts to open the document level Scripts

Editor window:

|Fi|e Edit View Insert Format Dashboar

Save Options

Mew... Crl+MN
Open... Ctrl+ 0
Close Ctrl+W
Save Ctrl+5

Save As...

Open from Repository
Save to Repository

Import Data
Export

Document Scripts...

4

Add the following code to the main section of the Document Script Editor to invoke
the onclick () method of the cbDocumentStartupScripts shape on the Global

Code Dashboard section:

/*Invoke the OnClick () Method of the cdDocumentStartupScripts shape on

the Global Code Dashboard section */

ActiveDocument.Sections ["Global Code Dashboard"] .Shapes ["cbDocumentSta

rtupScripts"] .OnClick ()

Click OK to close the Document Script Editor and use save the document. The next
time the document is opened, the document onstartup () event trigger will be called

and the code will be executed.

Advanced concepts

With an understanding of the concepts discussed and the demonstration of the
simple example, the following topics are ideas for how the Centralized Code
Repository can be enhanced in an enterprise implementation.

[215]

The Central Code Repository

Report Type Grouping

Different report types such as ad-hoc, dashboard, or canned typically have vastly
different business requirements that are addressed with code unique to the report
type. The addition of a Report Type column in the CCR code table and a Report Type
filter on the CCR Query section allows management of code within a subsection

of reports. This concept also lends well to creating sub-libraries by a business unit

to address differing functional requirements across user groups in an enterprise
implementation.

Enterprise Object Library

The idea behind an Enterprise Object Library is to prepare code and training for
users outside the developer and power user community. This implementation would
allow even beginner business users to create customized dashboards easily. Creating
an Enterprise Object Library can be achieved by storing a series of standardized
dashboard functions in the CCR code table. Business users can then be trained to
attach simplistic function calls that resolve to code stored and maintained by the
development team in the code table.

Batch Report Creation

Adding an additional column to the code table that denotes one-time use functions
and code blocks to be accessed by blank documents is the bridge between combining
the concepts described in Chapter 8, Creating Briefing Slides and Executing Batch
Exports to automate the process of creating BQY documents. This is especially useful
when creating multiple integrations of an existing Interactive Reporting document
with minimal variances between the documents.

[216]

Chapter 9

Summary

The goal of this chapter was to provide the developers and users of Interactive
Reporting with an approach to creating a Central Code Repository to
programmatically push code into Interactive Reporting documents. The chapter
began with an introduction to the concepts of the CCR, where the approach and
configuration of the repository and database tables were discussed. The chapter
continued with a simple example implementation, where the configuration of the
query, dashboard, and code was demonstrated to provide the steps to implement the
repository in an environment. Topics including best practices in code placement and
error checking through the Console Window were discussed to assist with reducing
failures and troubleshooting the implementation. Finally, advanced concepts for
enhancing the CCR were introduced to describe other more advanced techniques and
applications in the enterprise. An effective implementation of the CCR will provide
both users and developers a stable environment with a significant reduction in
document maintenance.

[217]

10

Optimizing and Merging

The Interactive Reporting Web Client or Studio developer utility provide the
user significant flexibility in using software, but these products do not allow two
critical functions commonly needed by users and developers. The first function is
the ability to merge sections of two or more documents together, and the second
function is the ability to reorder sections in the document. While many users
believe this functionality does not exist in the software, the Interactive Reporting
Studio developer utility is bundled two developer tools that are essential to

the environment. The two software products are the Dashboard Studio and the
Dashboard Studio Optimize software. These products complement the Studio
developer software and allow developers to merge, modify, and fix Interactive
Reporting documents.

The goal of this chapter is to educate the developer and user on additional software
products that provide benefits outside the normal development tools. This chapter
details the features of the Dashboard Studio and Dashboard Studio Optimize Utility
for managing document content.

This chapter covers the following topics:

e An overview of the Dashboard Studio Merge Utility

e Merging two or more Interactive Reporting documents
e An overview of the Dashboard Studio Optimize Utility
e Changing the parent section of a Pivot, Chart, or Table

¢ Fixing corrupt Interactive Reporting documents

Optimizing and Merging

The Dashboard Studio

The Dashboard Studio is an Interactive Reporting product packaged with the
Interactive Reporting Studio developer software installation for developers. The
software was created and is commonly used as a utility for developers to quickly
implement dashboards from a well-defined template. While this book is focused

on creating dashboards using a customized programming approach, developers

can use this product to create dashboards in a more automated fashion. While

the Dashboard Studio provides the functionality for creating dashboards, these
dashboards must follow a rigid set of requirements, and customizing these objects is
often more complicated than programming the dashboards from a blank document.
Additionally, the dashboard developer must have the Dashboard Studio utility on
their local machine to create a dashboard. It is easier and just as effective for the user
to use the Interactive Reporting Web Client program to create a simple customized
dashboard.

Dashboard Studio: Merging sections

While the Dashboard Studio provides the ability to create custom dashboards,
another lesser-known feature of the product allows the user to merge sections from
one or more documents into a new document. The merge document feature is
extremely useful for merging and sharing preconfigured sections from one document
to another. This merging cannot be achieved through the Interactive Reporting
Studio or Interactive Reporting Web Client and is specific to the Dashboard Studio
product. As this product is a developer-specific product, users will need to contact
a member in their organization with the Dashboard Studio to execute the merging
of the documents into a single document. While this feature is not available to the
general user community, it is important for users to understand that this feature
exists and that this feature can be easily leveraged to merge content from multiple
Interactive Reporting BQY documents into a single document.

Merging sections example

The Interactive Reporting Dashboard Studio Merge Utility is a very simple and easy-
to-use software feature. The Merge Utility is accessed from inside the Interactive
Reporting Dashboard Studio client tool, which is opened from the Reporting and
Analysis folder of the oracle EPM system folder in the Start Menu. The following
screenshot displays the shortcut for the product:

[220]

Chapter 10

dj Inkteractive Reporting 4

ﬁ Lkilities and Administration .4 Dashboard Architect Update Ukilicy
A Dashboard Architect :# Dashboard Studio Inspector Lklicy
. J Dashboard Studio .3 Dashboard Studio Optimize Lkiliy
2% Financial Reporting Studio . Dashboard Studio Update Uitility

When the Dashboard Studio is opened, a splash screen is displayed and then the
product progress to the main window of the Dashboard Studio. This main window
does not contain the title Dashboard Studio, but rather denotes the first step in
building a dashboard with the title of the window as Select a Framework Template,
as displayed in the following screenshot:

4 Select a Framework Template E“El@

* Cieate a Document From Template

Basze Template

@ Start Drop-dowin Panel Template
Express_Template

Found T ab Panel Template

Square Tab Panel Template
‘“Webdaszh_Template

" Connect to open dashboard

Full File Path

3 = 0| %) k(3]

Notice that there is no reference to the Merge Utility on this screen. However, many
buttons are displayed at the bottom of the window which are used for executing
features and setting options in the product. While many of the buttons are focused
on options and utilities for the Dashboard Studio, the button at the bottom right-
hand side of the screen is used to execute the Merge Utility.

[221]

Optimizing and Merging

The following image shows the Merge Utility execution button:

- |

When the Merge Utility button is pressed, the Dashboard Studio product opens a
new window with the title Dashboard Studio Merge Utility in the product header.
The following screenshot displays the Dashboard Studio Merge Utility main
window:

Dashboard Studio Merge Utility =13
Import] Merge]
Irmport Methad

* Ore ToOne
" Marw Tao One

" Marw Takdany

™ Select Sections

[Femove duplicate images from the final document

Template

|C: \HyperionsproductzbiplushD D54 T emplates\B aze T emplate. bgy

Diocument to lmport

Sawe Path

® Import | ‘ Cloge |

The Merge Utility contains two tabs at the top of screen. The first tab is for importing
and the second tab is for merging. The Import option is used to import sections of a
document into a standard Dashboard Development Studio Template. This feature
is not used to merge sections of two or more custom documents together, but is
specific to importing documents into a Dashboard Studio dashboard template.

[222]

Chapter 10

The second tab at the top of the screen is the Merge tab. It is used for merging
sections of Interactive Reporting documents together into a single document. The
following screenshot displays the Merge Utility screen open to the Merge tab:

&% Dashboard Studio Merge Utility

Imipart Merge l
Merge Method

¢ TwoToOne
" Marw To One

[Select and Re-order Sections

[Remove duplicate images from the final document

Erimary Document [Section names take precedence]

Secondary Document

Save Path

b b e

Merge ‘ | Cloge

Merging two documents into one

The default Merge Method is set to the Two To One option. This option is the

most common merge method as most requests are for merging the sections of

two documents together. The Two To One option requires the user to define a
Primary Document and a Secondary Document for the merge process. The Primary
Document is defined as the document that accepts the new sections, and the
Secondary Document is the document supplying the new sections. Both the primary
and secondary documents, as well as the output for the merge (denoted by the label
Save Path), are configured at the bottom of the Merge window. These features are
executed by clicking on the folder icons to the right of the text boxes to bring up a file
browser window, allowing the user to navigate to the document of interest.

[223]

Optimizing and Merging

After selecting the primary and secondary documents, the final merged document,
referred to as the Save Path, is automatically populated with the location and
filename of the primary document, but with the text _merged appended to the end
of the filename. The following screenshot displays the Merge Utility configured with
two files selected:

Dashboard Studio Merge Utility =S
Import tMerge]
Merge Method

&+ Two ToOne
" Mary To One

[Select and Re-order Sections

[Remove duplicate images from the final document

Primamy Document [Section names take precedence]

|C:\Documents and SettingstEd\D eskiop'taster Document - Chapter 9.bay

Secondary Document

|C: SDocumentz and SettingshEdyDesktoptB atch Example - Chapter 3.bgy

Save Path

e

|C: SDocuments and SettingshEd'DesktopiMaster Document - Chapter 9_merged.bgy

@ Merge | | Close |

The textboxes displayed in the previous screenshot containing the file path names
are read-only. The filenames must be selected using the file browsing window
and cannot be edited by typing. Similar to selecting the Primary and Secondary
documents, the filename and path of the final merged document in the Save Path
textbox is edited by pressing the folder button to the right of the textbox and by
specifying the filename in the file browser window.

[224]

Chapter 10

In addition to the configuration of the path and filename for the primary, secondary,
and final merged document, the user is presented with two other features to enable
through checkboxes on the main screen. The first checkbox is the Select and Re-
order Sections option. When the Select and Re-order Sections option is checked,
the Merge Utility displays a window allowing the user to select the sections of
interest from the secondary document to import into the primary document. If the
Select and Re-order Sections option is not checked, the Merge Utility will import
all of the sections from the Secondary Document into the Primary Document. The
second checkbox on the screen is named Remove duplicate images from the final
document. When this feature is checked, all consistent images that match between
the primary and secondary documents are set to the image in the primary document
to reduce the size of the file. The following screenshot displays the Merge Utility
configured to run a merge between two documents with the Select and Re-order
Sections and Remove duplicate images from the final document options selected:

4" Dashboard Studio Merge Utility

Import Merge]
Merge Method

® TwaoTolOne
" Many To One

[¥ Select and Re-order Sections

[V Remove duplicate images from the: final document

Brirmary Docurment [Section names take precedence]

|E:\Documents and SettingstE d\DesktopiMaster Document - Chapter 9.bay =

Secondary Document

|E:\Documents and SettingshE d\DesktopiBatch Example - Chapter 9.bagy

Save Path

|E:\Documents ahd SettingshE d\DesktopiMaster Document - Chapter 9_merged.bay =

@ Menge Cloge

[225]

Optimizing and Merging

The final step in executing the merge is to press the Merge button at the bottom of
the Merge Utility window. Upon pressing the Merge button, the Select and Re-
order Sections window appears, providing the ability to select the sections of the
secondary document for merging into the final document. The following screenshot
displays the Select and Re-order Sections window:

r =

& Select and Re-order Sections E]

Select the sections to merge from the zecondary document. Selected sechons can be re-ardered
uzing the up or dawn arrow buttans.

Avallable Sections Selected Sections

|| Planned vz Actual Cost Repart A
| Advertizing Expenze by Country P
= Advertizing Expenze by Media Ty...
|2#] Chapter 9 - Batch

J PowerPaint Exarnple

| PowerPairt Example T able

Llj Revenue

M Cost

J PowerPaint Exarmple - Pre Configu...
lJE-I Input Criteria

LEQ Input Criteria B esults

AlM

(6] ok | [Eaneel

The Select and Re-order Sections window has two lists used for selecting the
content to merge. The list on the left contains all of the available sections in the
secondary document and the list on the right contains all of the sections selected

for merging into the final document. There are four buttons in the middle of the
window. The top two buttons in the window are for moving content from the
Available Sections list into the Selected Sections list and the bottom two buttons
are used to remove sections from the Selected Sections list back into the Available
Sections list. In both cases, the buttons with the double carets are used to move all of
the sections into or out of the Selected Sections list and the single caret buttons are
used to move a single item at a time.

[226]

Chapter 10

It is important to note the order of the sections in the Available Sections window.
The order of the Available Sections is not the order that the sections are displayed
in the Interactive Reporting document, but rather the order that the sections are
assigned by the Interactive Reporting software product. The ordering of the sections
is discussed further in the Dashboard Studio Optimize Utility section of this chapter.

As items are added into the Selected Sections list, these items are reordered by
selecting a single section and pressing the up and down buttons at the bottom of the
Selected Sections list to move the selected section up or down in the list order. The
following screenshot shows items moved from the Available Sections list into the
Selected Sections list:

i

=
4 Select and Re-order Sections @

Select the zections to merge from the secondary document. Selected sections can be re-ordered
uzing the up or down arrow buttons.

Ayailable Sectiohs Selected Sectiohs
Jﬂ.&dvertising Expense Query A x| Actual vs Planned Revenue Pivat
L‘@Advertising Expenze Results \)ﬂ Plan vs Acutal Query

\JﬂSaIes (uery L@Plan W Actual Results
4 Sales Results

Actual vz Planned Revenue Report
1 Actual vs Planned Revenue Fivot
|Z Plan ws Actual Cost Prvat

_] Flanned vz Actual Cost Report

[Advertising Expense by Country Pi...
Ljﬁdvertising Euxpenze by Media Ty
:_.-J Chapter 9 - Batch

S - .- .

EIRRE

<L

| ¥
@ Ok | Cancel ‘

In the previous screenshot, the Planned vs Actual Query and the Planned vs Actual
Results were automaticity selected when the Actual vs. Planned Revenue Pivot section
was moved into the Selected Sections list. The reason these additional sections
moved with the pivot is because the Pivot section is dependent on the Query and
Results sections to supply the pivot with data. These dependent sections are referred
to as Parent sections. Parent sections will be discussed later in the Dashboard Studio
Optimize Utility section of this chapter.

[227]

Optimizing and Merging

After all of the desired sections are added to the Selected Sections list, the next step
in executing the Merge Ultility is to press the OK button at the bottom of the Select
and Re-order Sections window. Upon pressing the OK button, the screen reverts

to the Dashboard Studio Merge Utility window with two status bars shown at the
bottom of the screen, providing information on the status and progress of the merge
process. The following screenshot shows the two status bars and related information
at the bottom of the Dashboard Studio Merge Utility window:

& Dashboard Studio Merge Utility

Import Merge
Merge Method

* TwoTo One
" Many To One

¥ Select and Re-order Sections

Iv Remove duplicate images from the final document

FPrimary Document [Section names take precedence]

|E: \Documents and Settingsh\Ed\Desktopi aster Document - Chapter 9.bay J

Secondary Document

|E: SDocuments and Settingsh\EdsDesktophB atch Example - Chapter 9.bagy J

Save Path

|E: \Documents and Settingsh\EdsDesktopih aster Document - Chapter 3 merged. bay J
Merging File 1 of 1

Fenaming...

@ Lancel | | |

During the Merge Utility process, the Interactive Reporting Studio developer utility
is active and performing operations. The Interactive Reporting Studio is used by the
Dashboard Studio Merge Utility to perform the section merging and manipulation.
When the Merge Utility completes the merge process, the Report window appears
and displays a full log of the activities that took place during the merge process. Any
change that took place in the document is highlighted in blue text and a full text
description provides an explanation of the changes. The Report is closed by pressing
the OK button. The Report can also be saved into an HTML file by pressing the Save
button. The following screenshot shows the Report window that appears when the
Merge Utility has completed (the Report window in this example has been scrolled
to the bottom to display the merge changes):

[228]

Chapter 10

Dashboard Studio Merge Utility

|>

PowerPoint Example - Pre Configuration was imported from Master

 Maf | Document - Chapter 9 bgv (No changes)

Advertising Expense by Country Pivot was imported from Batch

Example - Chapter 9 bqy . Renamed to Advertising Expense by

¥ Seld | Country Pivot2

[Ref | Advertising Expense Results was imported from Batch Example -

Chapter 9 bgv . Renamed to Advertising Expense Results2

Primary Dof | Advertising Expense Query was imported from Batch Example -
Chapter 9 bgy . Renamed to Advertising Expense Query2

IE:\D "M DataModel? was imported from Batch Example - Chapter 9 bqgy . B,_l

Secondar Renamed to DataModeld

C:AD
I i duplicate images found and removed. & |

Save Path ¥

IE:\D ocun

terging File 1 of 1

Merging Complate

o

After the merge process is complete, the final document may be opened and

the sections merged into the document will be displayed at the bottom of the list of
documents sections.

[229]

Optimizing and Merging

Merging many documents into one

In addition to merging two documents into one, the Dashboard Studio Merge
Utility allows for the merging of multiple documents together into one document.
When the Many To One merge method option is selected, the flexibility that existed
in the Two To One merge method is now replaced with a more generic merge
interface. The following screenshot displays the Dashboard Studio Merge Utility set
to the Many To One merge method:

4% Dashboard Studio Merge Utility

Impart Merge
Merge Method

" TwoToOne

* Many To One

[Remove duplicate images fromn the final document

Source Document Folder

Save Path

& |

® Merge ‘ Wiew ‘ Cloze |

The Many To One interface does not provide the ability to select and reorder
sections, and the ability to select a primary and secondary document is removed and
replaced with a Source Document Folder. The Source Document Folder option is
used to select a folder containing multiple Interactive Reporting documents and not
individual files. Upon selecting the folder icon to the right of the Source Document
Folder option, the Browse for Folder window appears for selecting the desired
folder. After a folder is selected, the Save Path for the document must be manually
specified. The Save Path is set by clicking the folder icon to the right of the Save
Path textbox and by browsing to a folder and providing a filename for the final
merged document.

[230]

Chapter 10

The following screenshot shows the Many To One merge method window
populated and ready for merging:

-

4 Dashboard Studio Merge Utility

Impart Merge
Merge Methad

" Twa TaOne

& Mary Ta One

[v Remove duplicate images from the final document

Source Document Folder

|C:\Documents and Settings\Ed\DesklophTest =
Sawve Path
|E:\Documents and SettingshEd\Deskiop\Mew'kazter Docurent - Chapter 9_merged. bay =)

Close

Q|

[231]

Optimizing and Merging

Once the merge process is executed, the software merges all of the documents
together into the final file. The following screenshot shows the Merge Utility during
the Many To One merge execution:

4% Dashboard Studic Merge Utility

| mport Merge

terge bethod

" TwoTaOne

+ Many To One

¥ Remove duplicate images from the final document

Source Document Falder

|C:'\D ocuments and Settings\Ed\D egktoph T est @
Save Path
|C:'\D ocuments and Settings\Ed\D esktoptMewihaster Document - Chapter 9_merged. bgy @

Merging File 1 of 2 CTTTTITTTTTT
Verifying Source. .. lllllll

Cancel | | |

Similar to the Two To One merge method, the Merge Utility creates a merge report
after the Merge Utility completes. The following screenshot shows the Report:

[232]

Chapter 10

| pashboard Studio Merge m‘

EEX

|

“ 4| Master Document - Chapter
9 _merged.bqy

¥ A | DataModel was part of the base document so did not change.

Plan vs Acutal Query was part of the base document so did not
change.

Plan Vs Actual Results was part of the base document so did not
change.

Advertising Expense Query was part of the base document so did not
| change. =
cave pd | DataModell was part of the base document so did not change. b

’— Save | Ok | B ‘

Merging File 2 of 2

Source [

Merging Complete

o | |

Merging documents for users

As Interactive Reporting allows users to save documents locally with a saved
connection to the server, it is important to note the impact of using the Merge Utility
on documents saved locally and run by users from their desktops. When the Merge
Utility is executed on a set of documents, the final document produced will allow the
queries from the primary document to continue to be processed against the server.
However, any query that is merged from the secondary document into the final
document will not have a connection for processing. When users attempt to run a
query merged in from a secondary document, the query will fail. To re-establish a
connection between the document and the server for processing, the final document
from the merge process must be posted to the Oracle EPM Workspace and the query
connections made.

[233]

Optimizing and Merging

Merging presentation sections for users

In many environments, the interest to share formatted presentations sections across
Interactive Reporting files exists. As detailed Pivot, Chart, Dashboard, and Report
sections are time-consuming to produce, the ability to merge the formatted sections
into another document and then switch the objects to use a different Query section
would save significant time in the development process. The Dashboard Studio
Merge Utility in concert with the Dashboard Studio Optimize Utility can be used

to execute the sharing of presentation sections across documents. The first step in
executing this process is to use the Merge Utility to merge the presentation sections
of the document with the primary document that will be accepting the new sections.
When the Merge Utility is utilized, the dependent Query and Results sections of
the secondary document will also be imported into the primary document. The
Dashboard Studio Optimize Utility can then be used to move the sections from one
Query section to another based on a few rules that are required to be met before the
move can be executed. The Dashboard Studio Optimize Utility section will discuss the
steps and rules for switching a section between queries.

The Dashboard Studio Optimize Utility

The Dashboard Studio Optimize Utility contains features to make rapid changes
to the composition, ordering, and formatting of the document. The software allows
users to make sections read-only, contains the ability to run documents faster by
compressing JavaScript, provides the ability to move sections across queries, and
fixes corrupt Interactive Reporting documents.

The first step in working with the Dashboard Studio Optimize Utility is to access the
software from the Utilities and Administration folder of the oracle EpM system folder
in the Start Menu. The following screenshot displays the shortcut for the product:

1j Interactive Reporting 3

& Utiities and Administratian # Dashboard Architect Update Utliky
A Dashboard Architect # Dashboard Studio Inspeckar Utiliky
Dashboard Studio 3 Dashboard Studio Optimize Ukility
2 Financial Reporting Studio J Dashboard Studio Update Ukiliby

When the software is opened, the Dashboard Studio Optimize Utility product will
display as shown in the following screenshot and the Interactive Reporting Studio
developer utility will also open:

[234]

Chapter 10

& Hyperion Dashboard Studio Optimize Utility

File: Tool: Help
B a» W D - 3 4 & 4 §]
Section Name | Wisible | Parent | Locked | Duplicatable |

< AT TARE]

The Dashboard Studio Optimize Utility begins with a blank screen ready for the
user to open a document into the product. A file is opened in the Dashboard Studio
Optimize Utility in one of four options: the first method is to use the open shortcut
from the File menu, the second method is to use the open file button on the toolbar,
the third method is by dragging and dropping the file on the local machine into the
window, and the final method is to use the Interactive Reporting Studio toolbar
button to bring a file open in the Interactive Reporting Studio into the Dashboard
Studio Optimize Utility.

Interactive Reporting Studio swap shortcuts

The Dashboard Studio Optimize Utility swap buttons are displayed in the
Dashboard Studio Optimize Utility toolbar. The following screenshot highlights the
three buttons and a drop-down list used to swap documents between the Interactive
Reporting Studio and the Dashboard Studio Optimize Utility:

S H | ® e d AV | B2 s oa @ = ? | u

[235]

Optimizing and Merging

The first swap button in the toolbar is displayed with an arrow facing to the

right. It opens the active document from the Interactive Reporting Studio into the
Dashboard Studio Optimize Utility. Instead of opening the file from the machine, the
Dashboard Studio Optimize Utility grabs the latest modifications from the file open
in the Interactive Reporting Studio. The file loaded does not need to be saved to be
imported and modifications made to a live file in the Interactive Reporting Studio
can be quickly moved into the Dashboard Studio Optimize Utility for modification.

The second swap button in the toolbar is displayed with an arrow facing to the left.

It publishes the changes made in the Dashboard Studio Optimize Utility back to the
Interactive Reporting Studio. The publish back functionality allows the user to quickly
publish a document back to the Interactive Reporting Studio for further editing.

The last swap button in the toolbar, displayed with the Interactive Reporting Studio
icon, makes the Interactive Reporting Studio the active window. Finally, the drop-
down button displays a list of all of the files open in the Interactive Reporting Studio
with the active window shown at the top of the list. Selecting one of the documents
from the list of available documents will open the selected document into the
Dashboard Studio Optimize Utility. The following screenshot shows the drop-down
button pressed:

= Hyperion Dashboard Studio Optimize Utility

File TJool: Help
= - o D |- & & | F |

S ection Name Ci\Documents and SettingsiEd\DesktopiMaster Document, bigy m

< AR

[236]

Chapter 10

Filtering section types

When an Interactive Reporting document is opened into the Dashboard Studio
Optimize Utility, the list of sections is displayed in the main window with a few
of the file properties that can be edited using the Optimize Utility. The following
screenshot displays a file open in the Dashboard Studio Optimize Utility:

& Hyperion Dashboard Studio Optimize Utility: C:\Documents and Settings\Ed\Desktop\Master Docu... E|§|gj
File Edit Tool: Help

= E I ST - v = 4 a3] y v
Section Mame | Wisible | Parent | Locked | Duplicatable
\)ﬂ Plan vs Acutal Query True Datatodel Falze True
|_E| Flan s Actual Results True Plan vz Acutal Query False False
\)ﬂAdvertising E=pense Query True D atatdodel2 Falze True
|_E|Advertising Expenze Rez... Tre Advertising Expenze Query False Falzse
\)ﬂ Sales Query True D atatdodel3 Falze True
|_E| Sales Results True Sales Query Falze Falze
|| Actual vs Planned Reven.. Tiue Plan ¥s Actual Results Falze True
| Actual vs Planned Reven.. Tiue Plan ¥s Actual Results Falze True
|2 Plan vs Actual Cost Pivat — True Plan ¥s Actual Results Falze True
5] Planned vs Actual Cost R True Plan ¥s Actual Results Falze True
= Advertizsing Expense by C... True Advertising Expense Results False True
(= Advertizsing Expenze by M., True Advertising Expense Results False True
_ﬂ Chapter 3 - Exporting True Falze True
|| PowerPoint Example True Plan ¥s Actual Results Falze True
|| PowerPoint Example Table True Plan ¥s Actual Results Falze True
Ld Revenue True PowerPoint Example Table Falze True Show Section Types
Cost True PowerPoint Example T able Falze True v Data Models
_] PowerPaoint Example - Pre... True Flan 'z Actual Results Falze True v Dueries
¥ Resultz and Tables
¥ Charts
v Pivats
v Reports
¥ Dashboards
¥ Hidden Sections

Interactive Reporting documents can contain a large number of sections making the
documents hard to edit in the Interactive Reporting Studio. The Dashboard Studio
Optimize Utility provides the functionality to filter the list of sections displayed in
the main window by checking and un-checking section types from the show section
type options in the bottom right hand corner of the Dashboard Studio Optimize
Utility window. The Optimize Utility allows the user to filter to display only a
particular type of section or a combination of different sections, including Data
Models, Queries, Results, and Tables, Charts, Pivots, Reports, Dashboards, as well
as the ability to display or hide the hidden sections of the document regardless of
section type.

[237]

Optimizing and Merging

The following screenshot shows the example from the previous screenshot filtered to
display only the Query sections of the document:

& Hyperion Dashboard Studio Optimize Utility: C:\Documents and Settings\Ed\Desktop\Master Docu... g|§|@
File Edit Toolz Help

= IR IS T H OE | a a | & F | R
Section MName | Visible | Parert | Locked | Duplicatable |
\)ﬂ Plan vz Acutal Query True D atatd odel Falze True
\)ﬂAdvertising Expense Query True Datatd odel2 Falze True
\)ﬂ Sales Query True Databodel3 Falze True

Show Section Types
™ DataModels

V' Queries

™ Results and Tablex
™ Charts

[Pivots

-

v Hidden Sections

. Only one file can be opened in the Dashboard Studio Optimize Utility
% at a time. Any attempt to open a second file after editing the first file
s will result in this software prompting to save progress before closing
the initial file and opening the new file.

Editing Interactive Reporting documents

The Dashboard Studio Optimize Utility provides the user with the ability to make
quick changes across sections of the document that are difficult to complete in the
Interactive Reporting Studio. The Edit menu, shown in the following screenshot,
displays the full list of options that can be executed inside the Dashboard Studio
Optimize Utility:

[238]

Chapter 10

4% Hyperion Dashboard Studio Optimize Utility - Master Document. bgy.

File | Edit Tools Help
= = s 4 | @ v |
| Move Section Down Chl+D
Duplicatable
Show Sections il
k)g Hide Sections Ctri+H
|_E| Eiename Section F2 Ltal Query False False
\)ﬂ Delete Sections Del 2 IFelke e
|_E| Expense Query Falze Falze
\)ﬂ 13 False True
|_E| 'y False False
\)ﬂ 14 False True
|_E| . Expenze Queny2 False False
LE Lock sections L+ tual Results False True
5 Unlock sections Chil+E bl Fesults False True
I Make sections duplicatable tual Results False True
= Make sections unduplicatable tual Fesults False True
_] tual Results False True
=] Pack selected sections Shift+FEB Expense Results False True
| Pack all sections Shift+Cirl+FE Ewperize Result: Falze True Shaw Section Types
+#| Chapter 3 - Exporting Tl Falze True ¥ DataMaodels
_] PowerPoint Example True Plan s Actual Results Falze True v Queries
Revenue True PowerPaint Example Table Falze True [+ Results and Tables
M Cast True PawerPaint Example Table Falze True IV Charts
| PawerPaint Example - Pre... True Plan s Actual Results False True v Pivots
=) Advertizing Expenze by C... Falze Advertizing Expense Results2 False True v Reports
:_;J Chapter 9 - Exporting2 True Falze True I Dashboards
v Hidden Sections
| |

The Edit menu options can also be accessed by selecting a section in the main
window of the document and right-clicking on it. As the options contained in the
Edit menu and right-click menu are consistent across the product, the following
subsections will discuss editing the sections by using the Edit menu or by using the
shortcuts displayed on the toolbar.

Moving sections

Moving sections in the Interactive Reporting Studio and Interactive Reporting Web
Client product requires the user to duplicate and delete sections to achieve a desired
section order. The Dashboard Studio Optimize Utility provides a much easier
method for moving sections.

Notice the listing of the sections shown in the Dashboard Studio Optimize Utility
in the next screenshot. The order of the sections is set by the tool and depends on
when the section was introduced into the document. While the section order does
not mimic the grouping displayed in the Web Client or Studio product, the ordering
of the sections displayed in the Dashboard Studio Optimize Utility will impact the
ordering of the objects inside the software.

[239]

Optimizing and Merging

A best practice when working with the Dashboard Studio Optimize Utility is to
order the sections in the order the section should be displayed in the document. This
ordering will ensure the document is easily readable and maintainable.

Sections in the Interactive Reporting document are moved in the Dashboard Studio
Optimize Utility by selecting the section and either accessing the Edit menu and
selecting the Move Section Up or Move Section Down options, or by using the up
and down arrows displayed on the Dashboard Studio Optimize Utility toolbar as
shown in the following image:

Sd»ws -[Av 2= a a @ = ? | w

The example in the following screenshot displays the Sales Query and the Sales
Results sections of the document moved above the Planned vs Actual Query and
Planned vs Actual Results sections. Upon opening the document in Interactive
Reporting, the Sales Query and the Sales Results sections are now listed as the first
Query and Results section pair in the document.

& Hyperion Dashboard Studio Optimize Utility - Master Document. bqy
File Edit Toolz Help

I 2 @D AV =S & a @ v | w
Section Mame | Wisible | Parent | Locked | Duplicatable |
g] [ratabdodel True Falzse Falze
\)ﬂ Sales Query True D atakdodeld
; True Sales Query ww
\)J Plan vs Acutal Query True D atatdodel Falze True
LE| Plan s Actual Results True Plan vs Acutal Query Falze False
\)ﬂAdvertising Expense Query True Dratabd odel2 Falze True
L@Advertising Expensze Res.. True Advertising Expense Query Falze Falze
\)ﬂAdvertising Expenze Quer... False D atakdodeld Falzse True
L@Advertising Expenze Res.. Fale Advertising Expense Query2 Falze Falze
LE FowerPaoint Example Table True Flan %z Actual Results Falze True
|5 Actual vs Planned Reven... True Plan Vs Actual Results False True
| Actual vs Planned Reven.. True Plan Vs Actual Results False True
| Plan vs Actual Cost Pivat - True Plan Vs Actual Results False True
_] Planned vz Actual Cost R True Plan ¥z Actual Results Falze True
(= Advertizing Expenze by C... True Advertising Expense Results False True
(= Advertizing Expenze by M. True Advertising Expense Results False True Show Section Types
hapter 3 - Exporting True False True v Data Models
_] PowerPoint Example True Flan 'z Actual Results Falzse True v Dueries
_M Revenue True PowerPaint Exarmple Table Falze True ¥ Results and Tables
Cost True PowerPaint Example Table Falzse True Iv Charts
_] PawerPaoint Example - Pre... True Plan 'z Actual Results Falzse True v Pivats
(= Advertizing Expenze by C... False Advertising Expense Results2 Falze True v Reports
v Dashboards
¥ Hidden Sections

[240]

Chapter 10

Showing and Cap Hiding

The Interactive Reporting Web Client and Studio product provide the ability to

hide and unhide sections of the document. While multiple sections of the document
can be shown that were once previously hidden, each section must be hidden
individually. The Dashboard Studio Optimize Utility provides the ability to view the
visible status of the section in the document and it provides the ability to show or
hide multiple sections of the document at one time.

Showing or hiding multiple sections in the document is easily achieved by
highlighting multiple sections in the main window and selecting the Show Sections
or Hide Sections menu item, or by using the Show Sections or Hide Sections button
in the toolbar as shown in the following screenshot:

S d|=m wld A v @A a a @ = ? |

After a section is shown or hidden, the visible column in the main window updates
to true or false, where true indicates visible and false indicates hidden.

Renaming and Deleting

The Interactive Reporting Web Client and Studio provide the ability to rename and
delete sections from the document on an individual basis. The Dashboard Studio
Optimize Utility provides the same functionality, but also allows the user to delete
multiple sections from the document at one time.

Renaming or deleting sections in the document is easily achieved by highlighting
the section or multiple sections (if deleting) in the main window and selecting the
Rename Section or Delete Section menu item or toolbar button, as shown in the
following screenshot:

S d s e D A v [E]l= s i Légj = Y

When a section is deleted, an alert box will appear to confirm deletion if the section
is used in dependent sections. Canceling the deletion will prevent the deletion from
completing.

[241]

Optimizing and Merging

Locking and Unlocking

The locking and unlocking features of the Dashboard Studio Optimize Utility are
unique in that these features allow the developer to put a section into read-only
mode by simply locking the section. The locking and unlocking features are specific
to only the Interactive Reporting Web Client, where objects that are locked are not
editable by the Web Client user.

Sections in the document are easily locked and unlocked in the Dashboard Studio
Optimize Utility by highlighting the section(s) in the main window and selecting
the Lock sections or Unlock sections menu items or by using the Lock and Unlock
buttons in the toolbar, as shown in the following screenshot:

o H | e D A v E = s oa @ = L A

After a section has been locked or unlocked, the locked column in the main window
of the Dashboard Studio Optimize Utility will display true if the section is locked or
false if the section is unlocked.

Duplicatable and Unduplicatable

Similar to locking and unlocking, a section can be put in a duplicatable and
unduplicatable state preventing Web Client users of the product from duplicating a
section. While this property can be set in the Interactive Reporting Studio through
the Edit menu, the Dashboard Studio Optimize Utility allows the user to make
multiple sections duplicatable or unduplicatable at one time.

Sections in the document are put in a duplicatable or unduplicatable state by
highlighting the section(s) in the main window and selecting the Make Sections
Duplicatable or Make Sections Unduplicatable menu items. After a section is

set to a duplicatable or unduplicatable state, the Duplicatable column in the main
window of the Dashboard Studio Optimize Utility will display true if the section is
duplicatable or false if the section is unduplicatable.

Packing section code

Packing the code of a section is used to optimize the speed of the JavaScript
processing in the document. Some documents, including documents built by the
Dashboard Studio product, contain significant amounts of code that increase the file
size and slow down the execution of the document. The Pack Section Code feature
provides an automated method to optimize the code execution in the document.

[242]

Chapter 10

The packaging of code in the documents can be done on a section-by-section basis or
across an entire document by highlighting the desired sections and selecting the Pack
Selected Sections Edit menu item or by merely selecting the Pack All Sections Edit
menu item. Upon selecting either option, the Pack JavaScript window appears and
prompts the user to remove specific sections of code native to the Dashboard Studio
in addition to the other packaging features provided by the software as shown in the
following screenshot:

-
& Optimize: Pack JavaScript

Thiz operation removes all leading and trailing spaces, blank g g
lines, and commentz from the JavaScript code in the BAY. b :
If you check "Remove Dashboard Studio trace statements", Canicel

all callz to Qig_enter, Qig_trace, and Cig_exit will be

removed.

[Remove D'azhboard Studio trace statements

After selecting the OK button on the Pack JavaScript window displayed in the
previous screenshot, the software will condense the JavaScript code inside the
document.

Moving objects and sections across Results

One of the most unique and beneficial features of the Dashboard Studio Optimize
Utility is the ability to move sections from one set of results to another as well as
similar functionality with filters and objects in Report sections. The functionality
allows users to share features created for one specific task across many tasks, which
drastically reduces development efforts.

Moving sections across Results or Table sections

The Dashboard Studio Optimize Utility is the only product that provides the ability
to move a section of the document from one set of results to a completely separate set
of results. The software requires the section receiving the moved object to contain the
same column names as leveraged in the current object. In the case of moving a Pivot
section between two Results sections, the receiving Results section must contain

the same column names used in the Pivot section. In addition to Pivots, Tables and
Charts may also be moved under any Results and Table section that contains the
same column names.

[243]

Optimizing and Merging

Initiating the changing of the parent section begins by highlighting the section in
the main window and selecting the Change Parent Section Edit menu item or by
selecting the Change Parent Section button in the toolbar as shown in the
following screenshot:

S H|wwud - Av B[F] s a @@= ? | w

The Edit menu item will appear disabled if the section does not have another
section that can be used as a parent section in the document. If another section in the
document qualifies as a parent section, the Optimize: Select New Parent window
will appear upon selecting the Change Parent Section menu item, as shown in the
following screenshot:

File Edit Toolz Help
__3 I T ?D T AW = _E| o ﬂ .El .E' 4 :}
Section Mame | Wisible | Parent | Locked | Duplicatable |
g] [atatd odel True Falze Falze
Jﬂ Sales Query True D atatd odels False True
LE| Sales Results True Sales Query Falze False
\)ﬂ Plan ws Acutal Guery True Databadel Falze True
LE| Plan %'z Actual Results True Plar vs Acutal Query Falze False
JﬂAdvertising E=pense Query True D atatdodel2 Falze True
L@Advertising Espense Res.. True Advertizsing Expense Query False Falze
JﬂAdvertising Expense Quer... False D atatdodeld Falze True
L@Advertising Expense Fes.. Falze Advertizing Expense Query2 Falze Falze
|| PowerPaint Example Table True Plans Actual Results Falze True
|55 Actual vs Planned Reven... True Plan s Actual Results False True
[Actual vs Planned Reven... True — I
[Plan vs Actual Cost Pivat True o WPl SIS S e EI
|| Planned vs Actual Cost R, True
=] Advertizing Expense by C... True
=] Advertising Expense by M... True Ceriee] Show Section Types
2] Chapter 9 - Exporting True v DataModels
_] FowerPoint Example True v Queries
M Revenue True ¥ Results and T ables
I Cast True ¥ Charts
|:i| PawerPaint Example - Pre... True v Pivats
=] Advertising Expenze by C... False v Reports
¥ Dashboards
¥ Hidden Sections
| |

After the parent section of the document is changed, the Parent column in the main
window of the Dashboard Studio Optimize Utility will display the name of the new
parent section. The new parent section can be switched back to the original parent
section as desired by following the same instructions for changing the parent section.

[244]

Chapter 10

Modifying Report Dependencies

Another beneficial feature of the Dashboard Studio Optimize Utility is its ability

to take a Report section and change the referenced objects contained within the
report across Query, Results, and Table sections. As significant effort is expended in
creating Report section templates, the Change Report Dependency feature allows
the software user to take a report and easily swap out the existing presentation
sections in the document to a different section. Once the Report section is modified,
the report retains the existing report features and Report Groups, but now displays
the new objects in the report.

The Change Report Dependency feature is specific to Report sections. The feature
is executed by highlighting a Report section in the main window of the Dashboard
Studio Optimize Utility and selecting the Change Report Dependency Edit menu
item or the Change Report Dependency shortcut on the toolbar, as shown in the
following screenshot:

S d s« D A v B @ [|ald @ = T

When the Change Report Dependency menu item is executed, the Optimize:
Change Report Dependency window appears providing the user with the ability to
change the report references in the document as shown in the following screenshot:

i AEG)
File Edit Toolz Help
S H|® & D A v =2 3| a a & = S

Section Mame | “izible | Parent | Locked | Diuplicatable

g] D atabdadel True False False

\)ﬂ Sales Query True Datatdodeld False True

2 Sales Aesults True Sales Query False False
\)ﬂ Plan vz &cutal Guery True Datatdodel False Tiue
L@ Plan'/s &ctual Fesults True Flan vs Acutal Query Falze False
\)ﬂAdverliswng Expense Query True D atatdodel2 Falze Tiue
L‘af-\dverliswng Expense Fes... Tue Adverlising Expense Queny False False
\)ﬂAdverliswng Expense Quer.. False D atatdodeld Falze Tiue
L@Adveniswng Expense Fes... False Advertizing Expense Quen2 False False
LE PowerPoint Example Table True Plan s &ctual Results False True

ctual vs Planned Reven.. True Plan'/s Actual FResults Falze True

[Actual vs Pla
| Plan vs Actu E Optimize: Change Report Dependency

=] F'Ianne.d vsh Change references from section To section
[Advertising E| - prymsrmr=rm—s verue Pivo
. Actual vs Planned Revenue Pivot
[Advertising £ Plans Actual Results Sales Results Show Section Types
2] Chapter 3- € E:an \\;s .;c:utalI E‘ueui ¥ Data Models
i lan Vs Achual Results 5
#| PowerPoint B Adverlising E spense Query Iv Queries
LIJ Revenue Adverlizing Expense Results IV Results and Tables
Ld Cost Advertising Expense Query? ¥ Charts
_] PowePoint B Adverlising Expense Results2 ¥ Pivots
i v
[Advertising £ PowerPaint Example Table ¥ Fepats
oK. ¥ Dashboads
¥ Hidden Sections
i LCancel

[245]

Optimizing and Merging

Upon opening the saved document, the modified Report section will display the
newly referenced sections in the same place as the section that was replaced in
the report.

Moving Filters

The Dashboard Studio Optimize Utility allows users to take filters created on one
section and move those filters to another section of the document. The Move Filters
option is very beneficial as sections of the document may be created with custom
filter selections and recreating the filters across sections may require significant
effort. Interactive Reporting contains rules for moving filters across the document,
where the receiving section must have the same definition for the column as the
section providing the column.

Filters are moved to another section of the document by executing the Move Filters
Edit menu option or by selecting the Move Filters button on the toolbar as shown in
the following example:

o

The Move Filters Edit menu item will appear disabled if the filters in the section
cannot be received by any other document section. When the Move Filters menu
item is executed, the Optimize: Move Filters window appears, providing the user
with the ability to change the filters as shown in the following screenshot:

QﬂP\an ws Acutal Query True
L,E| Plan Vs Actual Results
QﬁAdvartising Expense Query
L&Advartising Expense Res.
\JﬂAdVE[lISII’]Q Erpense Quer...
@Advsrllslng Expenze Res...
L} PowerPoint Exampls Table
2] Actual vs Planned Reven...
| Actual vs Planned Reven..
| Plan vs Actual Cost Pivot
2] Planmed vs Actual Cost R
(Advertising Expense by C.
(Advertising Expense by M...
:_1] Chapter 9 - Exporting

J PowerPaoint Exampls

U Revenue

M Cost

] PawerPoint Example - Pre
(Advertising Expense by C.

True
True

Fals
Fals
True|
True|
True|
True|
True|
True|
True|
True|
True|
True|
True|
True|
Fals

WLIC % Optimize: Move Filters

= AEE)|
File Edit Tools Help
S Hd % WD - A v B A s d @ = . AN)

Section Name | Visible: | Parent | Locked | Dupl\catab\el

ﬂ Databodel Tiue False False

\)ﬂ Sales Query True D atakodel3 False True

L‘é Sales Results True Sales Query False False

Datatodel
Plar ws Acutal Quem

Falsz
Falsz

Move Filters to Section

[Plan s Actual Results

El

True
False

0K
Cancel

Shaw Section Types
¥ Data Models

v Queries

¥ Resulls and Tables
v Charts

¥ Pivots

Iv Reports

¥ Dashboards
¥ Hidden Sections

[246]

Chapter 10

The Optimize: Move Filters window allows the user to select the receiving section
from the drop-down box and then to select the filters to move into the receiving
section. Upon pressing OK, the filters moved are displayed in the

receiving section.

Fixing corrupt files

Interactive Reporting documents can become corrupted as changes are made to

the document over time. When a corrupt document is opened in the Interactive
Reporting Studio or Web Client Utility, the report will freeze upon opening or it
will display an error window stating Unknown Error. When the document will not
open appropriately in Interactive Reporting, the Dashboard Studio Optimize Utility
may be used to open the document and in some cases will allow the document

to be resaved. The resaving of the document may fix the file corruption that was
experienced when opening the document. The file fixing feature is an invaluable
resource for users with corrupt files. Users experiencing these issues with a file
should send the files to users with the Dashboard Studio Optimize Utility to attempt
to fix corrupt files. Additionally, users should save multiple versions of a document
to ensure the ability to revert back to an earlier version if the files are corrupt.

Summary

The goal of this chapter was to provide the user and developer insight into tools and
technologies that are available for use outside the standard Interactive Reporting
Studio and Web Client products. The chapter focused on two specific products:

the Dashboard Studio and Dashboard Studio Optimize Utility. The chapter began
with an introduction to the Dashboard Studio and Dashboard Studio Merge Utility
product. All of the available features of the Dashboard Studio Merge Utility were
discussed in-depth, including merging two documents together to merging multiple
documents into a single document. After the merge features were presented, the
chapter presented a complete guide to the Dashboard Studio Optimize Utility.
Quickly editing the document sections and section properties were discussed in
addition to details on modifying parent sections, section filters, and report referenced
objects. The chapter concluded with the steps to corrupt Interactive Reporting
documents using the Dashboard Studio Optimize utility.

[247]

Symbols
&& logical operator 38

A

abs function 177
activation scripts 123
AddAll() method 155
AddMonths function 176
AddExportSection method 192
Add() method 139, 140
aggregated data facts 47
Append Query feature

about 130

Intersection operator 131

Minus operator 131

Union All operator 131

Union operator 131
application menus

about 110

ShowMenuBar property 110
Application Programming Interface (API)

27

application toolbar

formatting toolbar 108

navigation toolbar 109

paging toolbar 109

sections toolbar 109

standard toolbar 108
arrays

about 34

functions 34, 35
associative arrays 34
available values

append query function 130-132

Index

query request items 132-134
Avg function 179
AvgNonNull function 179

B

bar chart
legend, setting 49
bar-line chart
bar-line chart, creating 55, 56
chart query, creating 52, 53
creating 52
customizing 56
grid, customizing 58
line properties 57
null values, ignoring 56
query data, limiting 53, 54
right values, turning off 56
switching 55, 56
bars
stacking, virtually 50
batch processing
code 200, 201
example 199
Batch Report Creation 216
BMYV USA Executive Dashboard, example
44
boolean variables 32
both option, Make Same Size option 92
bottom option, object alignment option 91
break statement 40
briefing slides
about 193
export code 198
report, building for 194, 196
Bring Forward option 90

Bring To Front option 90

C

CCR
about 205, 206
code table, configuring 207
JavaScript code, preparing 206
query, configuring 207
table structure 206, 207
CCR, querying
about 208
Code DataModel, building 209
code query, building 210
query section, creating 208
query section, renaming 208
results section, renaming 208
ceil function 178
center option, object alignment option 91
Central Code Repository. See CCR
chart display space
maximising 50
chart query
creating 46, 52, 53
chart section computed items 20
check box dashboard control 88
Chr function 179
code
leveraging, through document 13
code pane 31
code table, CCR
configuring 207
collections 28
ColMax function 179
ColMin function 179
columns
referencing 168
command button dashboard control 88
comparison operators, decision logic 36
Compress Document setting 126
computed items
about 166
adding 167
deleting 173
functions 182
variables 182
concatenation 33

concat function 180
conditional functions 175
conditional statements, decision logic 37, 38
continue statement 40
controls, dashboard section objects
about 87
check box dashboard control 88
command button dashboard control 88
drop box dashboard control 88
embedded browser control 88
hyperlink control 88
list box dashboard control 88
radio button dashboard control 88
slider control 88
text box control 88
CountDistinct function 179
Count function 179
CountNonNull function 179
CountNull function 179
cPlanvAct embedded chart section 98
cume function 179
custom dashboard navigation
implementing 92
internal navigation, scripting 92-94
custom dashboard navigation, implement-
ing
external navigation 93, 94
internal navigation, scripting 92, 93
custom images, adding 74
Custom Values property 154

D

dashboard

about 24

BMYV USA Executive Dashboard, example
44

controls, adding 74

creating 72

custom images, adding 74

data driven dashboard objects, creating 45,
46

graphics, adding 74

hyperlinks, adding 75

interactivity 76, 77

objects, adding 73

planning 43, 44

[250]

preparing 43, 44
dashboard framework
about 115
implementing 119
naming conventions 116
dashboard framework, implementing
about 119
activation scripts 123
document scripts, setting on start-up 124
framework start-up events 121
global libarary shapes 119
Dashboard-level Events 29
Dashboard menu 29
Dashboard Object-level Events 29
Dashboard Script Editor 29
dashboard section objects
about 86
controls 87, 88
graphics 86, 87
dashboard sections
about 94
detail dashboard section 98
Document start-up scripts 107
dynamic section formatting 103-106
element facts, modifying 99-102
home dashboard section 96, 97
loading 94
objects, toggling between 98, 99
dashboard shape names 118
Dashboard Studio
about 220
documents, merging for users 233
documents, merging in one 230-232
interactive reporting documents, hiding
241
merging sections 220
merging sections, example 220-222
presentation sections, merging for users
234
studio swap shortcuts 235, 236
two documents, merging into one 223-228
Dashboard Studio Optimize Utility
about 234
corrupt files, fixing 247
filtering section types 237, 238
filters, moving 246, 247
interactive reporting documents, deleting

241

interactive reporting documents, duplicat-
able 242

interactive reporting documents,
editing 238, 239

interactive reporting documents,
hiding 241

interactive reporting documents,
locking 242

interactive reporting documents,
packing section code 242, 243

interactive reporting documents,
renaming 241

interactive reporting documents,
showing 241

interactive reporting documents,
unduplicatable 242

interactive reporting documents,
unlocking 242

interactive reporting studio 235, 236

objects, moving accross 243

optimize utility 235

report dependencies, modifying 245, 246

sections, moving 239, 240

sections, moving across results 243, 244

sections, moving across table sections 243,
244

data driven dashboard objects

chart display space, maximising 50
chart query, creating 46

color, considerations 50, 52

creating 45, 46

data facts, aggregated 47
detail-oriented formatting 50

legend, setting 49

vertical stack bar chart, creating 46-48
vertical stack chart, cutomizing 50

DataStreaming [optional] argument 190
date, manipulating

about 176

current date 176

current time 176

date conversion 177

mathematical operations, leveraging with
dates 177

specific days, identifying 176

time, adding 176

DayOfMonth function 176
decision logic
about 36
comparision operators 36
conditional statements 37, 38
logical operators 38, 39
loops 39, 40
decode function 175
default pivot formatting
overriding 72
setting 70, 71
definition
building, JavaScript used 168
DEL key 173
detail dashboard section
about 98
cPlanvAct embedded chart section 98
dynamic section, formatting 103-106
element facts, modifying 99-102
objects, toggling between 98
detailed-oriented formatting 50
Document-level Events 29
document save options
about 124
compress document setting 126
design mode, password protect 128
document, password protect 127
query results, saving 124, 125
Work Offline in Web Client setting 126
Document Script Editor 29
document scripts 24
document sections
export, examples 190
exporting 186, 187, 188
ExportToStream, examples 191

multiple sections (JavaScript code), export-

ing 192,193

single section (code), exporting 189, 190

document start-up scripts
menus 108
screen script, loading 107, 108
toolbars 108
Document Startup Scripts button 214
do.while() loop 40
drill anywhere paths, limiting 69
drop box dashboard control 88
drop-down control selection

all values, selecting 147

filters, selecting 148, 149

function, completing 150
dynamic limits

about 145

global variables shape, modifying 145

query sections, modifying 146
dynamic typing 32

E

Edit mode 29

element facts, detail dashboard section
dynamic section, formatting 103-106

else conditional statements 37

embedded browser control 88

Encoding [optional] argument 190

Enterprise Object Library 216

EPM Workspace 11

eval() function 207

eval() statement 214

Event Trigger drop-down list 31

Export method 192

ExportToStream, examples 191

F

FileFormat [optional] argument 190
Filename [optional] argument 190
FilterName column 136
FilterName filter 138
filterName variable 153
FilterValues column 139
floor function 178
for loop 110
for() loop 39
formatting toolbar 108
for statement 39
framework start-up events
about 121
activation events, calling 123
document properties, initializing 121
global libraray shapes, declaring 122
loading screen, initializing 121
functions
about 34, 169-171
formatting, arguments 171, 172
help button 172

[252]

in computed items 182
names 117
function, scripting
about 135
results section limit, customizing 138, 139
values, adding to LOV property 139

G

gauges

about 77

color ranges 78,79

configuring 77,78

properties 78,79
gDashboard Array object 143
GetCell() method 139
gfApplyDDFilters function 157
gfApplyFilters global function 163
gf ApplyLBFilters function 157
gfApplyLBFilters shape 152
gfPopulateFilterLOV

calling 143, 144
gfPopulateFilterLOV function 135,143
global code dashboard

applying, to objects 214

building 210

creating 211-214

document startup event, scripting 214, 215
global library shapes

about 119

global variables 120
graphics, dashboard section objects

about 86, 87

picture graphics 87

text label graphics 86
grid

customizing 58

H

height option, Make Same Size option 91
help button 172
home dashboard section
about 96, 97
chPlanvAct chart object 97
OnClick() Event Trigger 96
hyperlink
adding 75

control 88

Ignore property 155
IncludeHeaders [optional] arguement 190
infinite loop 39
initcap function 180
instr function 181
interactive reporting documents
duplicatable 242
editing 238, 239
hiding 241
locking 242
renaming 241
section code, packing 242
sections, moving 239
showing 241
unduplicatable 242
unlocking 242
Intersection operator 131

J

JavaScript
about 31
code, preparing 206
local filters, applying with 146
using 182
variables 31
JavaScript workflow
components 119
global library shapes 119

L

LastDay function 176
left option, object alignment option 91
length function 181
line properties 57
list box controls, synchronizing
about 159
selections, synchronizing 161-163
values, selecting 161
values, unselecting 160
list box dashboard control 88
list box selections
applying, to local filters 151, 152

[253]

filters, selecting with list box 153-155
function, finalizing 155
values, selecting 152, 153
List of Values (LOV)
about 88
custom LOV value, adding 137, 138
default LOV selection, scripting 140
gfPopulateFilterLOV, calling 143, 144
removing 136
values, adding to property 139, 140
live charts
configuring 79-81
properties 82
local filters
applying, with JavaScript 146
drop-down control selection, applying 147
functions, calling with function 157
function, setting to dashboard filter object
158
list box selections, applying 151, 152
logical operators, decision logic 38, 39
loops, decision logic 39, 40
lower function 180
lItrim function 181

Make Same Size option

both option 92

height option 91

width option 91
master dashboard

creating 89

custom dashboard navigation, implement-

ing 92

objects, placing 90, 91
Math.abs()function 183
mathematical operations

about 177,178

abs function 177

ceil function 178

floor function 178

max function 178

min function 178

mod function 178

round function 178

sign function 178

math functions 183

math object 183

Math.random() function 183

Math.random() object function 183

max function 178

merging sections, Dashboard Studio
about 220
example 220-222

methods 28

middle option, object alignment option 91

min function 178

Minus operator 131

mod function 178

multiple sections (JavaScript code)
AddExportSection method 192
exporting 192
Export method 192
RemoveExportSections method 192

N

naming conventions, dashboard framework
dashboard shape names 118
function names 117
variable names 117
navigation toolbar 109
NextDay function 176
Next function 179
null values
ignoring 56
null variables 33
NumberFormat property 105
number variables 33
numeric functions 178
numeric operations
about 178
Avg function 179
AvgNonNull function 179
chr function 179
ColMax function 179
ColMin function 179
CountDistinct function 179
Count function 179
CountNonNull function 179
CountNull function 179
cume function 179
next function 179

[254]

prior function 179
sum function 179
Nvl function 175

o)

object 28
Object drop-down list 31
object model 29, 30
objects, Dashboard Studio Optimize Utility
moving 243
objects, master dashboard
align feature 90
aligning, options 91
both, Make Same Size option 92
bottom, aligning option 91
Bring Forward option 90
Bring To Front option 90
center, aligning option 91
height, Make Same Size option 91
layer, changing 90
left, aligning option 91
Make Same Size feature 91
Make Same Size option 91
middle, aligning option 91
placing 90
right, aligning option 91
Send Backward option 90
Send To Back option 90
top, aligning option 91
width, Make Same Size option 91
OK button 168
OnClick event trigger 92,119, 120, 121, 213
OnClick() method 120,122,124, 214
OnSelection event trigger 106
OnStartup event 119, 210
OnStartup() event trigger 106, 213, 215
options button 172
Oracle Hyperion Interactive Reporting
about 8
advanced computations 9
batch exports 10
briefing slides 10
central code repository 10
components 12
concepts, review 8
interface 12

JavaScript 9

merging 10

optimizing 10

review 12

simple to advanced dashboards, building 9

P

paging toolbar 109
parameters 35
Password Protect
Design Mode option 128
Document option 127
picture graphics 87
pivots
country, limiting 60
default pivot formatting, overriding 72
default pivot formatting, setting 70, 71
displaying 59
drill anywhere paths, limiting 69
parent query, creating 60
pivot drill path configuration, ranking 62,
64
ranked dimensions, displaying 64-67
request items, renaming 60, 61
simple pivot, creating 59
YTD, limiting 60
pivot section computed items 19, 20
Plan v Act dashboard section 97
pPlanvAct 98
Prompt [optional] argument 190
Prior function 179
PromptToSave property 112
properties 28

Q

queries
building, for analysis 166
configuring 207
data, limiting 53, 54
request items 132-134
query section computed items 13-15

R

radio button dashboard control 88
Rand 183

[255]

RankAsc function 182
ranked dimensions, displaying 64-67
rank function 182
Reference... button 168
reflection 93
regular expressions 40
RemovalAll() method 102,139
RemoveAll() method 136
RemoveExportSections method 192
replace function 181
reports
batch code, refining to remove empty re-
sults sections 202
batch processing, code 200, 201
batch processing, example 199
branches, executing 198
report section computed items 22, 23, 24, 174
report type grouping 216
reserved words 32
resources 87
results section computed items 16,17
results section limit
customizing 138, 139
right option, object alignment option 91
right values
turning off 56
round function 178
rtrim function 181

S

Save Query Results With Document option
124,125
scope 32
script editor 29
scripting interface 25
Scripts menu item 29
section dialog
about 111
ShowCatalog property 111
sectionName variable 135
sections, Dashboard Studio Optimize
Utility
moving 243
moving, accross results 243, 244
moving, accross table sections 243, 244
sections toolbar 109

section title bar
about 111
SectionTitleBar property 111
SectionTitleBar property 111
SelectedIndex property 147
selections, list box controls
synchronizing 161, 163
Select() method 140
Send Backward option 90
Send To Back option 90
shapeName parameter 158
shapeName variable 135,136
ShowCatalog property 111
ShowMenuBar property 110
ShowValuesAtRight property 104
sign function 178
single section (code), exporting
about 189, 190
DataStreaming [optional] argument 190
Encoding [optional] argument 190
export, examples 190
ExportToStream examples 191
FileFormat [optional] argument 190
Filename [optional] argument 190
IncludeHeaders [optional] argument 190
Prompt [optional] argument 190
slider control 88
standard toolbar 108
statistical and trending operations
about 182
RankAsc functions 182
rank function 182
stringDate 33
string functions
Concat function 180
initcap function 180
instr function 181
length function 181
lower function 180
Itrim function 181
replace function 181
rtrim function 181
substr function 181
translate function 181
upper function 180
string variables 33
substr function 181

[256]

substring() method 136,152 V
Sum function 179

Switch() statement 37 vActiveResults variable 154
values, list box controls
T selecting 161
unselecting 160
table section computed items variables
about 18,19 about 31
chart section computed items 20 boolean variables 32
expression line 24 data types 32
pivot section computed items 19, 20 in computed items 182
report section computed items 22-24 names 117
table structure, CCR null variables 33
preparing 206, 207 number variables 33
text box control 88 string variables 33
text label graphics 86 variable data types 32
tIHomeNav object 93 var keyword 32
ToChar function 177 vDataName value 139
ToDate function 177 vDataName variable 137
toolbars about 138
about 108 determining 136
application toolbar 108-110 vertical stack bar chart
top option, object alignment option 91 creating 46-48
translate function 181 vertical stack chart
trend functions 172 customizing 50

visible property 110

w

U

Union All operator 131

Union operator 131 while() loop 40
unselect fuIECﬁOIl 160 width option, Make Same Size option 91
upper function 180 Work Offline in Web Client setting 126

user selections, synchronizing
accross multiple dashboards 159
functions, calling 163, 164

[257]

. (I
enterprise
professional expertise distilled

PUBLISHING

Thank you for buying
Oracle Hyperion Interactive Reporting 11 Expert Guide

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise

PUBLISHING

The Business Analyst's Guide

to Oracle Hyperion Interactive
Reporting 11

ISBN: 978-1-84968-036-3 Paperback: 232 pages

Quickly master this powerful business intelligence
product

1. Get to grips with the most important,
frequently used, and advanced features of
Oracle Hyperion Interactive Reporting 11

The Business Analyst’s
Guide to Oracle Hyperion
Interactive Reporting 11

2. A step-by-step Oracle Hyperion training guide

packed with screenshots and clear explanations
Edward J. Cody

3. Explore the features of Hyperion dashboards,
reports, pivots, and charts

Getting Started with Oracle

Hyperion Planning 11
ISBN: 978-1-84968-138-4 Paperback: 620 pages
Design, configure, and implement a robust planning,

budgeting, and forecasting solution in your
organization using Oracle Hyperion Planning

1. Successfully implement Hyperion Planning —
Getting Started with Oracle one of the leading planning and budgeting
Hyperion Planning 11 solutions — to manage and coordinate all your
business needs

2. Step-by-step instructions taking you from the
very basics of installing Hyperion Planning to
implementing it in an enterprise environment

Entl Sandesp Reddy [PACKT]e--.-.arpnze'i’l

3. Test and optimize Hyperion Planning to
perfection with essential tips and tricks

Please check www.PacktPub.com for information on our titles

enterprise 8

professional expertise distilled

PUBLISHING

Oracle SOA Suite

Developer's Guide

Oracle SOA Suite Developer's

Guide
ISBN: 978-1-847193-55-1 Paperback: 652 pages

Design and build Service-Oriented Architecture
Solutions with the Oracle SOA Suite 10gR3

1. A hands-on guide to using and applying the
Oracle SOA Suite in the delivery of real-world
SOA applications

2. Detailed coverage of the Oracle Service Bus,
BPEL Process Manager, Web Service Manager,
Rules, Human Workflow, and Business Activity
Monitoring

3. Master the best way to combine / use
each of these different components in the
implementation of a SOA solution

Oracle Business Intelligence:
The Condensed Guide to
Analysis and Reporting

Yuli Vasiliev

Oracle Business Intelligence: The
Condensed Guide to Analysis and
Reporting

ISBN: 978-1-84968-118-6 Paperback: 184 pages

A fast track Oracle book and eBook guide to
uncovering the analytical power of Oracle Business
Intelligence: Analytic SQL, Oracle Discoverer, Oracle
Reports, and Oracle Warehouse Builder

1. Install, configure, and deploy the components
included in Oracle Business Intelligence Suite
(SE)

2. Gain a comprehensive overview of components
and features of the Oracle Business Intelligence
package

3. Leverage the computational power of Oracle
Database

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	PacktLib.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Advanced Hyperion Interactive Reporting Techniques
	Introduction to the Oracle Hyperion Interactive Reporting 11 Expert Guide
	Review of Interactive Reporting concepts
	An Introduction to JavaScript in Interactive Reporting
	Building simple to advanced dashboards
	Advanced computations
	Briefing slides and batch exports
	The Central Code Repository
	Optimizing and Merging

	The EPM Workspace
	Interactive Reporting interface and components
	Review of Interactive Reporting sections
	Leveraging code
	Query section Computed Items
	Results section Computed Items
	Table section Computed Items
	Pivot section Computed Items
	Pivot Settings: True Totals and Surface Values
	Editing Pivot Computed Items
	Chart section Computed Items
	Report section Computed Items
	The Expression line

	Document Scripts
	Dashboards

	The Scripting Interface
	Summary

	Chapter 2: Introduction to JavaScript and the Interactive Reporting API
	Introduction to objects and collections
	The Script Editor
	Introduction to JavaScript
	Variables
	Variable data types

	Arrays
	Associative Arrays
	Functions

	Decision logic
	Comparison operators
	Conditional statements
	Logical operators
	Loops

	Regular expressions

	Summary

	Chapter 3: Creating a Simple Dashboard
	Dashboard planning and preparation
	The BMV USA Executive Dashboard Example
	Creating data driven dashboard objects
	Creating a Vertical Stack Bar chart
	Creating a Bar-Line chart
	Displaying pivots
	Creating a simple pivot
	Ranking and Pivot Drill path configuration

	Creating a simple dashboard
	Adding dashboard objects
	Adding graphics and controls
	Adding custom images
	Adding Hyperlinks

	Basic interactivity

	Gauges
	Configuring gauges
	Gauge properties and color ranges

	Live Charts
	Configuring Live Charts
	Live Chart properties

	Summary

	Chapter 4: Introducing Dashboard Interactivity
	Dashboard Section Objects
	Graphics
	Controls

	Creating a Master Dashboard
	Placing Objects
	Implementing Custom Dashboard Navigation
	Scripting Internal Navigation
	External Navigation

	Creating Supporting Dashboard Sections
	Loading Dashboard Section
	Home Dashboard Section
	Detail Dashboard Sections
	Toggling Between Objects
	Modifying Element Facts

	Document Start-up Scripts
	Loading Screen Script
	Understanding Toolbars and Menus
	Application Toolbars
	Application Menus
	Section Catalog
	Section Title Bar

	Prompting the User to Save

	Summary

	Chapter 5: Building the
Dashboard Framework
	Understanding the Dashboard Framework
	Framework Naming Conventions
	Section Names
	Variable Names
	Function Names
	Dashboard Shape Names

	Understanding the JavaScript Workflow

	Implementing the Dashboard Framework
	Global Library Shapes
	Global Variables

	Framework Start-up Events
	Activation Scripts
	Setting the Document Scripts on Start-up

	Understanding Document Save Options
	Save Query Results With Document
	Work Offline in Web Client
	Compress Document
	Setting Compression by Default

	Password Protect Document
	Password Protect Design Mode

	Summary

	Chapter 6: Advanced Dashboard Techniques
	Populating Dashboard Controls with Database-Driven Values
	Querying Available Values
	Appending Queries

	Staging the Results Set for Code
	Scripting the Function
	Determining the vDataName Variable
	Removing All Values from a LOV
	Adding a Custom LOV Value
	Customizing Results Section Limits
	Adding Values to the LOV Property
	Scripting a Default LOV Selection
	Completing the Function
	Calling gfPopulateFilterLOV

	Applying User-Selected Filters to
Limit Data
	Preparation for Dynamic Limits
	Modify the Global Variables Shape
	Modifying the Query and Results Sections

	Applying Local Filters with JavaScript
	Applying a Drop Down Control Selection to a
Local Filter
	Applying List Box Selections to a Local Filter
	Calling Functions with a Function
	Set the Function to the Dashboard Filter Object

	Synchronizing User Selections across Multiple Dashboards
	Synchronizing List Box Controls
	Unselecting Values
	Selecting Values
	Synchronizing Selections

	Calling the Functions

	Summary

	Chapter 7: Advanced Data Analysis
	Building Queries for Analysis
	Computed Items
	Building Advanced Computed Items
	Building the Definition using JavaScript
	Referencing Columns
	Functions
	Function Formatting Arguments
	Additional Help

	Options
	Deleting Computed Items
	Report section Computed Items

	Built-in Functions and Calculations
	Conditional Functions
	Date Manipulation
	Current Date & Time
	Adding Time
	Identifying Specific Days
	Date Conversion
	Leveraging Mathematical Operations with Dates

	Mathematical Operations
	Numeric Operations
	String Manipulation
	Statistical and Trending Operations
	Ranking

	Using JavaScript
	Variables and Functions in Computed Items
	Math Functions
	Random Number Generation

	Summary

	Chapter 8: Creating Briefing Slides and Executing Batch Exports
	Exporting document sections
	Exporting natively
	Exporting a single section (code)
	Export examples
	ExportToStream examples

	Exporting multiple sections (JavaScript code)

	Briefing slides
	Building the report for a briefing slide export
	Export code for briefing slides

	Executing batches of reports
	Batch processing example
	Batch processing code
	Refining the batch code to remove empty results sections

	Summary

	Chapter 9: The Central Code Repository
	Understanding the Central Code Repository
	Preparing the JavaScript code
	Table structure

	Configuring the CCR code table and query
	Querying the Central Code Repository (CCR)
	Creating the Query section
	Renaming the Query and Results sections
	Buidling the code DataModel
	Building the code query

	Building the Global Code Dashboard
	Creating the Global Code Dashboard
	Applying the code to objects
	Scripting the Document Startup Event

	Advanced concepts
	Report Type Grouping
	Enterprise Object Library
	Batch Report Creation

	Summary

	Chapter 10: Optimizing and Merging
	The Dashboard Studio
	Dashboard Studio: Merging sections
	Merging sections example
	Merging two documents into one
	Merging many documents into one
	Merging documents for users
	Merging presentation sections for users

	The Dashboard Studio Optimize Utility
	Interactive Reporting Studio swap shortcuts
	Filtering section types
	Editing Interactive Reporting documents
	Moving sections
	Showing and Cap Hiding
	Renaming and Deleting
	Locking and Unlocking
	Duplicatable and Unduplicatable
	Packing section code

	Moving objects and sections across results
	Moving sections across Results or Table sections
	Modifying Report Dependencies
	Moving Filters

	Fixing corrupt files

	Summary

	Index

