
www.allitebooks.com

http://www.allitebooks.org


Oracle Hyperion Interactive 
Reporting 11 Expert Guide

Master advanced Dashboards, JavaScript and 
Computation features of Oracle Hyperion Interactive 
Reporting 11 and much more

Edward J. Cody

Emily M. Vose

P U B L I S H I N G

professional expert ise dist i l led

   BIRMINGHAM - MUMBAI

 

www.allitebooks.com

http://www.packtpub.com/authors/profiles/edward-j-cody
http://www.packtpub.com/authors/profiles/emily-vose
http://www.allitebooks.org


Oracle Hyperion Interactive Reporting 11 Expert Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Production Reference: 1011211

Published by Packt Publishing Ltd. 
Livery Place 
35 Livery Street 
Birmingham B3 2PB, UK.

ISBN 978-1-84968-314-2

www.packtpub.com

Cover Image by Anvar Khodzhaev (cbetah@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org


Credits

Authors
Edward J. Cody

Emily M. Vose

Reviewers
Jake Vose 

Amy K. Gartner

Taoheed Akin Laguda

Acquisition Editor
Rukhsana Khambatta

Development Editor
Rukshana Khambatta

Technical Editors
Joyslita Dsouza

Merwine Machado

Ajay Shanker

Project Coordinator
Jovita Pinto

Proofreader
Aaron Nash

Indexer
Monica Ajmera Mehta

Production Coordinator 
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.packtpub.com/authors/profiles/edward-j-cody
http://www.packtpub.com/authors/profiles/emily-vose
http://www.allitebooks.org


About the Authors

Edward J. Cody is an accomplished data warehouse and business intelligence 
consultant with over eight years of experience with Oracle Hyperion software. The 
author of The Business Analyst’s Guide to Oracle Hyperion Interactive Reporting 11, Mr. 
Cody’s experience with Interactive Reporting began with Brio v6 and has continued 
through the most recent version. He was a speaker at Oracle OpenWorld 2008, and 
he has extensive experience with Essbase and Financial Reporting. 

Mr. Cody has consulted both private and Government organizations throughout 
his career. He has a Bachelor of Science in Systems Engineering from the George 
Washington University, School of Engineering and Applied Science, and he has a 
Master of Science in Management of Information Technology from the University 
of Virginia, McIntire School of Commerce. His experience includes managing large 
data warehouse and business intelligence implementations and providing data 
warehousing and business intelligence consulting services.

Emily M. Vose is an experienced business process management consultant 
specializing in Hyperion Interactive Reporting. Hailing from user-oriented graphics 
design and frontend application development, Ms. Vose brings an unique vision to 
the reporting process that is rare in the business intelligence world. This perspective 
led Ms. Vose to construct a framework within Interactive Reporting facilitating 
rapid report development and enterprise maintenance, even for users with minimal 
technical expertise.

Ms. Vose has consulted with several organizations, including Hyperion Solutions 
and Oracle Corporation, and is now the owner of Wagger Designs, LLC, a 
technology services consulting group, based in the Washington, DC metro area. Ms. 
Vose has a Bachelor of Science in Cinema and Photography from the Ithaca College 
Roy H. Park School of Communications and currently resides in Northern Virginia 
with her husband and two young sons.

www.allitebooks.com

http://www.allitebooks.org


Acknowledgments
Edward J. Cody would first like to start by thanking all of you who purchased this 
book. I hope that you find it a good resource to aid you in your use of the product. 
Heartfelt thanks to my parents (Ed and Cathy), brother (David), Caitlin, and all 
of my family and friends for working around my schedule as I wrote this book. I 
greatly appreciate your patience and understanding.

This book would be neither possible nor successful without the patience and 
indefatigable work ethic of my co-author, Emily M. Vose. I would also like to thank 
Jake Vose and Amy Gartner for their valuable input and content contributions. 
I must thank all of my managers, peers, and employees that have supported me 
throughout my career, and I must also thank Bob Griesemer, author of two books 
on Oracle Warehouse Builder, for setting me up with the opportunity to work with 
Packt Publishing. Bob is a great friend, colleague, and technical expert. His books are 
great resources for all those interested in learning about data warehousing.  

A number of people were key to the production of this book. James Lumsden, 
Rukshana Khambatta, Zainab Bagasrawala, Merwin Machado, and all of those at 
Packt Publishing, thank you for your efforts. The team has worked tirelessly with us 
to produce a quality product and I thank them for their patience and hard work.

Emily M. Vose would like to thank my co-author, Edward Cody, for introducing 
me to the Packt Publishing family and for his tireless efforts to make this book a 
reality. I would also like to thank Jake Vose and Amy Gartner for their valuable 
input and content contributions. Thank you to the managers, customers, peers, and 
mentors who have supported me throughout my career. Special thanks are owed 
to both Mark Ostroff for introducing me to Hyperion Interactive Reporting, and 
to Stanley Quick for providing a supportive development environment rich with 
creative freedom. Without their encouragement, guidance, and friendship, I would 
not be where I am today. 

Last, but certainly not least, I would like to thank my family for their love and 
support, without you, I'd be lost.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Jake Vose is a web, desktop, server, and mobile application developer of over 12 
years, specializing in problem solving and process automation. His wide base of 
operating system, programming language, and framework knowledge attests his 
natural curiosity and love of tinkering.

Mr. Vose attended the State University of New York at Oswego and graduated 
in 1999 with a Bachelor of Arts in Computer Science, specializing in artificial 
intelligence and is the Chief Technical Officer at Wagger Designs, LLC located in the 
Washington DC metro area.

Amy K. Gartner is an intelligence analyst, who has worked for several Federal 
Government agencies in support of a variety of law enforcement related missions. 
Ms. Gartner has a Bachelor of Science in Justice Studies from James Madison 
University and is currently working toward a Master of Criminal Justice from Boston 
University.

Taoheed Akin Laguda is an accredited member of the British Computer Society 
with over 15 years' Information Technology experience. He is an accomplished 
and qualified Information and Knowledge Engineer, who understands the range 
of techniques and principles that improve the management and processing of data, 
which leads to the realisation of business goals and objectives.

He is an experienced consultant specializing in requirements analysis, design, 
and development of management information, knowledge management, business 
intelligence, and operational reporting solutions against data warehouses, ERP 
systems, and business applications.

 

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com 
This book is published by Packt Publishing. You might want to visit Packt's website 
at www.PacktPub.com and take advantage of the following features and offers:

Discounts
Have you bought the print copy or Kindle version of this book? If so, you can get a 
massive 85% off the price of the eBook version, available in PDF, ePub, and MOBI. 

Simply go to http://www.packtpub.com/oracle-hyperion-interactive-
reporting-11-expert-guide/book, add it to your cart, and enter the following 
discount code:

hir11egeb

Free eBooks
If you sign up to an account on www.PacktPub.com, you will have access to nine  
free eBooks. 

Newsletters
Sign up for Packt's newsletters, which will keep you up to date with offers, 
discounts, books, and downloads. 

You can set up your subscription at www.PacktPub.com/newsletters.

Code Downloads, Errata and Support
Packt supports all of its books with errata. While we work hard to eradicate 
errors from our books, some do creep in. Meanwhile, many Packt books have 
accompanying snippets of code to download.

You can find errata and code downloads at www.PacktPub.com/support.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following  
@PacktEnterprise on Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.allitebooks.org


PacktLib.PacktPub.com 

PacktLib offers instant solutions to your IT questions. It is Packt's fully searchable 
online digital book library, accessible from any device with a web browser.

•	 Contains every Packt book ever published. That's over 100,000 pages of 
content.

•	 Fully searchable. Find an immediate solution to your problem.
•	 Copy, paste, print, and bookmark content.
•	 Available on demand via your web browser.

If you have a Packt account, you might want to have a look at the nine free books 
which you can access now on PacktLib. Head to PacktLib.PacktPub.com and log in 
or register.

www.allitebooks.com

http://PacktLib.PacktPub.com
http://PacktLib.PacktPub.com
http://www.allitebooks.org


Table of Contents
Preface	 1
Chapter 1: Advanced Hyperion Interactive Reporting Techniques	 7

Introduction to the Oracle Hyperion Interactive Reporting 11  
Expert Guide	 8

Review of Interactive Reporting concepts 	 8
An Introduction to JavaScript in Interactive Reporting	 9
Building simple to advanced dashboards	 9
Advanced computations	 9
Briefing slides and batch exports	 10
The Central Code Repository 	 10
Optimizing and Merging	 10

The EPM Workspace	 11
Interactive Reporting interface and components	 11
Review of Interactive Reporting sections	 12
Leveraging code	 13

Query section Computed Items	 13
Results section Computed Items	 16
Table section Computed Items	 18

Pivot section Computed Items	 19
Pivot Settings: True Totals and Surface Values	 20
Editing Pivot Computed Items	 20
Chart section Computed Items	 20
Report section Computed Items	 22
The Expression line	 24

Document Scripts	 24
Dashboards	 24

The Scripting Interface	 25
Summary	 26

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Chapter 2: Introduction to JavaScript and the  
Interactive Reporting API	 27

Introduction to objects and collections	 28
The Script Editor	 29
Introduction to JavaScript	 31

Variables	 31
Variable data types	 32

Arrays	 34
Associative Arrays	 34
Functions	 34

Decision logic	 36
Comparison operators	 36
Conditional statements	 37
Logical operators	 38
Loops	 39

Regular expressions	 40
Summary	 41

Chapter 3: Creating a Simple Dashboard	 43
Dashboard planning and preparation	 43
The BMV USA Executive Dashboard Example	 44
Creating data-driven dashboard objects	 45

Creating a Vertical Stack Bar chart	 46
Creating a Bar-Line chart	 52
Displaying pivots	 59

Creating a simple pivot	 59
Ranking and Pivot Drill path configuration 	 62

Creating a simple dashboard	 72
Adding dashboard objects	 73
Adding graphics and controls	 74

Adding custom images	 74
Adding Hyperlinks	 75

Basic interactivity	 76
Gauges	 77

Configuring gauges	 77
Gauge properties and color ranges	 78

Live Charts	 79
Configuring Live Charts	 79
Live Chart properties	 82

Summary	 83
Chapter 4: Introducing Dashboard Interactivity	 85

Dashboard Section Objects	 86
Graphics	 86



Table of Contents

[ iii ]

Controls	 87
Creating a Master Dashboard	 89

Placing Objects	 90
Implementing Custom Dashboard Navigation	 92

Scripting Internal Navigation 	 92
External Navigation	 93

Creating Supporting Dashboard Sections	 94
Loading Dashboard Section	 94
Home Dashboard Section	 96
Detail Dashboard Sections	 98

Toggling Between Objects	 98
Modifying Element Facts	 100

Document Start-up Scripts	 106
Loading Screen Script	 107
Understanding Toolbars and Menus	 108

Application Toolbars	 108
Application Menus 	 110
Section Catalog	 111
Section Title Bar	 111

Prompting the User to Save	 112
Summary	 113

Chapter 5: Building the Dashboard Framework	 115
Understanding the Dashboard Framework	 115

Framework Naming Conventions	 116
Section Names	 116
Variable Names	 117
Function Names	 117
Dashboard Shape Names	 118

Understanding the JavaScript Workflow	 119
Implementing the Dashboard Framework	 119

Global Library Shapes	 119
Global Variables	 120

Framework Start-up Events	 121
Activation Scripts	 123
Setting the Document Scripts on Start-up 	 124

Understanding Document Save Options	 124
Save Query Results With Document	 124
Work Offline in Web Client	 126
Compress Document	 126

Setting Compression by Default	 127
Password Protect Document	 127
Password Protect Design Mode	 128

Summary	 128



Table of Contents

[ iv ]

Chapter 6: Advanced Dashboard Techniques	 129
Populating Dashboard Controls with Database-Driven Values	 129

Querying Available Values	 130
Appending Queries	 130

Staging the Results Set for Code	 134
Scripting the Function	 135

Determining the vDataName Variable	 136
Removing All Values from a LOV	 136
Adding a Custom LOV Value	 137
Customizing Results Section Limits	 138
Adding Values to the LOV Property	 139
Scripting a Default LOV Selection	 140
Completing the Function	 140
Calling gfPopulateFilterLOV	 143

Applying User-Selected Filters to Limit Data	 144
Preparation for Dynamic Limits	 145

Modify the Global Variables Shape	 145
Modifying the Query and Results Sections	 146

Applying Local Filters with JavaScript	 146
Applying a Drop Down Control Selection to a Local Filter	 147
Applying List Box Selections to a Local Filter	 151
Calling Functions with a Function	 157
Set the Function to the Dashboard Filter Object	 158

Synchronizing User Selections across Multiple Dashboards	 159
Synchronizing List Box Controls	 159

Unselecting Values	 160
Selecting Values	 161
Synchronizing Selections	 161

Calling the Functions	 163
Summary	 164

Chapter 7: Advanced Data Analysis	 165
Building Queries for Analysis	 166
Computed Items	 166

Building Advanced Computed Items 	 167
Building the Definition using JavaScript	 168
Referencing Columns	 168
Functions	 169

Function Formatting Arguments	 171
Additional Help	 172

Options	 172
Deleting Computed Items	 173
Report section Computed Items	 174

Built-in Functions and Calculations	 175
Conditional Functions	 175



Table of Contents

[ v ]

Date Manipulation	 176
Current Date & Time	 176
Adding Time	 176
Identifying Specific Days	 176
Date Conversion	 177
Leveraging Mathematical Operations with Dates	 177

Mathematical Operations 	 177
Numeric Operations	 178
String Manipulation	 180
Statistical and Trending Operations 	 182

Ranking	 182
Using JavaScript	 182

Variables and Functions in Computed Items	 182
Math Functions	 183

Random Number Generation	 183
Summary	 184

Chapter 8: Creating Briefing Slides and Executing Batch Exports	 185
Exporting document sections	 186

Exporting natively	 186
Exporting a single section (code)	 189

Export examples	 190
ExportToStream examples	 191

Exporting multiple sections (JavaScript code)	 192
Briefing slides	 193

Building the report for a briefing slide export	 194
Export code for briefing slides	 198

Executing batches of reports	 198
Batch processing example	 199

Batch processing code	 200
Refining the batch code to remove empty results sections	 202

Summary	 203
Chapter 9: The Central Code Repository	 205

Understanding the Central Code Repository	 206
Preparing the JavaScript code	 206
Table structure	 206

Configuring the CCR code table and query	 207
Querying the Central Code Repository (CCR)	 208

Creating the Query section	 208
Renaming the Query and Results sections	 208
Buidling the code DataModel	 209
Building the code query	 210

Building the Global Code Dashboard	 210
Creating the Global Code Dashboard	 211



Table of Contents

[ vi ]

Applying the code to objects	 214
Scripting the Document Startup Event	 214

Advanced concepts	 215
Report Type Grouping	 216
Enterprise Object Library	 216
Batch Report Creation	 216

Summary	 217
Chapter 10: Optimizing and Merging	 219

The Dashboard Studio	 220
Dashboard Studio: Merging sections 	 220

Merging sections example	 220
Merging two documents into one	 223
Merging many documents into one	 230
Merging documents for users	 233

Merging presentation sections for users 	 234
The Dashboard Studio Optimize Utility	 234

Interactive Reporting Studio swap shortcuts	 235
Filtering section types	 237
Editing Interactive Reporting documents	 238

Moving sections	 239
Showing and Cap Hiding	 241
Renaming and Deleting	 241
Locking and Unlocking	 242
Duplicatable and Unduplicatable	 242
Packing section code	 242

Moving objects and sections across Results 	 243
Moving sections across Results or Table sections	 243
Modifying Report Dependencies	 245
Moving Filters	 246

Fixing corrupt files	 247
Summary	 247

Index	 249



Preface
Oracle Hyperion Interactive Reporting is one of the many products in the Oracle 
Business Intelligence Enterprise Edition Plus software suite, an industry-leading 
business intelligence platform. The primary focus of the Interactive Reporting 
product is to provide strong relational querying and data analysis capabilities, 
where the software provides significant flexibility for creating custom dashboards, 
interfaces, and data analysis templates through the use of custom JavaScript 
programming and built-in software functionality. While Interactive Reporting is 
extremely flexible, performing advanced operations in the software is complicated 
and requires basic programming knowledge and an advanced understanding of 
the software. This Expert Guide continues from where The Business Analyst's Guide 
to Oracle Hyperion Interactive Reporting 11 left off, and provides the reader with 
information to successfully leverage the advanced features of the product along with 
examples and specific techniques applicable to everyday use.

The Oracle Hyperion Interactive Reporting 11 Expert Guide provides software users 
and developers with many examples of techniques used by software experts. The 
book begins with an introduction to leveraging advanced features of the product 
along with an introduction to JavaScript. Dashboards are a major focus of this guide, 
with four chapters focused on building an increasingly complex Dashboard with 
functions, global objects, and syncing selections across Dashboards. The book places 
an emphasis on learning methods for data analysis by using advanced programming 
and built-in functions, and a unique approach to using code to generate batch 
reports and briefing slides is provided. The Dashboard Studio Optimize Utility and 
the Dashboard Studio Merge Utility are explained in detail, and the approach to 
building a central code repository for use across multiple documents in an enterprise 
is demonstrated.

 



Preface

[ 2 ]

This book provides the information necessary to evolve Interactive Reporting users 
into experts, by providing the skills to understand, communicate, and perform 
advanced level tasks. While this guide displays content and examples from version 11 
of the software, the techniques and examples presented are also applicable to previous 
versions of the software dating back to version 8. 

What this book covers
Chapter 1, Advanced Hyperion Interactive Reporting Techniques provides an introduction 
to the book, a brief review of the main features of Interactive Reporting, and 
orients the user to the sections of Interactive Reporting where custom scripting and 
advanced features are utilized.

Chapter 2, Introduction to JavaScript and the Interactive Reporting API provides the 
background required to understand the developer concepts discussed throughout 
the rest of the book, including a an in-depth explanation of the Interactive Reporting 
API and an introduction to the JavaScript programming language.

Chapter 3, Creating a Simple Dashboard presents the procedural steps required to create 
a simple Dashboard without the use of JavaScript, discusses built-in interactivity, 
and provides an overview of Live Charts and Gauges.

Chapter 4, Introducing Dashboard Interactivity explores common dashboard 
interactivity approaches using JavaScript as well as the building blocks for creating a 
master dashboard layout with navigation, controls, and dynamic objects.

Chapter 5, Building the Dashboard Framework details the steps necessary to create 
a customized Dashboard Framework within Interactive Reporting by extracting 
JavaScript to a centralized library of global code objects.

Chapter 6, Advanced Dashboard Techniques provides information on creating and 
maintaining custom dashboard filters and dashboard controls from a centralized 
query of filter values, and it provides the steps to keep filter controls synchronized 
between dashboards.

Chapter 7, Advanced Data Analysis provides an in-depth explanation of the options 
available in Interactive Reporting for performing data maipulation throughout the 
document.

Chapter 8, Creating Briefing Slides and Executing Batch Exports educates the user 
on the methods and features most commonly used for exporting information 
from Interactive Reporting, including native software export features, leveraging 
custom programming to perform simple and complex exports, and simple steps for 
configuring a Report section to produce briefing slide content.



Preface

[ 3 ]

Chapter 9, The Central Code Repository provides information for creating a Central 
Code Repository to store and programmatically push code into Interactive Reporting 
documents from a central relational database.

Chapter 10, Optimizing and Merging details the features of the Dashboard Studio and 
Dashboard Studio Optimize Utility to merge, modify, and fix Interactive Reporting 
documents.

What you need for this book
This book was written using a standard deployment of Oracle EPM 11.1.1.3. The 
sections and techniques in this book are primarily version-independent, where 
almost all of the functionality demonstrated will exist in previous versions of the 
product. References are made to some of the new features in Interactive Reporting 
11, especially in the area of charting and Dashboards as features have progressed 
throughout the new versions. The Interactive Reporting Sample Database is used 
throughout the examples in this book.

Who this book is for
The target audience of this book is any Oracle Hyperion Interactive Reporting 
user looking to improve their skills in the product. The book focuses on the more 
advanced features of the software, including an introduction to JavaScript, simple to 
advanced dashboard concepts, advanced analysis, and additional special topics.

Permissions
Security can be set for documents in the Oracle Hyperion Workspace to prevent 
the user from accessing certain features of the product, including creating custom 
data models, editing queries, and saving and importing documents. This book is 
written with full access to all of the features of the product. Contact your system 
administration resources for more information on your deployment if you cannot 
access certain features of the product in your environment.



Preface

[ 4 ]

Multidimensional queries
Oracle Hyperion Interactive Reporting provides the capability to query against a 
multidimensional data source. As most environments leverage Interactive Reporting 
against relational data sources, the focus of this book is on the relational querying 
and analysis capabilities of the product. More information on multidimensional 
queries can be found in the product documentation.

Additional resources
There are many helpful online resources to learn more about Interactive Reporting, 
including three very common and useful references. The first is the Oracle Business 
Intelligence 11g documentation, which contains the developer references for 
Interactive Reporting. The second is the "Tips and Tricks Cookbook", by Mark 
Ostroff, a useful guide containing many Interactive Reporting tips, tricks, and 
advanced techniques. Both the Oracle documentation and the cookbook can be 
found on the Oracle website or through a simple web search. Finally, Toolbox.com 
(http://it.toolbox.com), a website commonly used by developers, contains 
Hyperion and Brio knowledge groups and provides the ability to search for answers 
and post questions to a large user community.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "Within Interactive Reporting, declarations 
with local scope are defined using the var keyword."

A block of code is set as follows:

var vMonth = 1;
var vDay = "06";
var vYear = 1999;

New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "The Name 
box is for specifying the name of the computed item."



Preface

[ 5 ]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a 
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.PacktPub.com. If you purchased this book 
elsewhere, you can visit http://www.PacktPub.com/support and register to have 
the files e-mailed directly to you.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.allitebooks.org


Preface

[ 6 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com


Advanced Hyperion 
Interactive Reporting 

Techniques
Welcome to the Oracle Hyperion Interactive Reporting 11 Expert Guide! Interactive 
Reporting is an extremely robust and powerful business intelligence tool providing 
ad-hoc querying and analysis, dashboards, and reporting capabilities. This Expert 
Guide picks up where The Business Analyst's Guide to Oracle Hyperion Interactive 
Reporting 11 left off, with a focus on providing knowledge of the expert features of the 
product. While the Business Analyst's Guide was an introduction to using the product 
for the novice to intermediate user, this guide focuses on evolving software users into 
experts. Interactive Reporting provides many flexible and advanced features that are 
commonly unknown to the typical business user. One of the most important lesser 
known features of the software is that it exposes the developer features of the product 
to the everyday user. These developer features allow the user to leverage scripting in 
common exercises, to build custom interfaces, and to use code to drive automation. 
While these features may seem complicated to a user of the product, these features can 
easily be learned and implemented after reading this book.

This chapter will start with an introduction to the book, highlighting the different 
groups of content that will be discussed. After the book introduction, the following 
content is a brief review of some of the main features of Interactive Reporting. The 
purpose of this review is to baseline terminology that will be used throughout the 
book and to orient the user to the sections of Interactive Reporting where custom 
scripting and advanced features are utilized. 



Advanced Hyperion Interactive Reporting Techniques

[ 8 ]

This chapter covers the following topics:

•	 An introduction to the Expert Guide
•	 A review of the EPM Workspace
•	 A review of Interactive Reporting sections
•	 Leveraging code throughout the software
•	 An overview of the Scripting Interface

Introduction to the Oracle Hyperion 
Interactive Reporting 11 Expert Guide
Interactive Reporting provides users with a significant amount of flexibility in creating 
dashboards, reports, and analyzing data including the ability to leverage custom 
programming throughout the document. With this custom programming functionality 
comes complexity, where users need to understand the best practices in both the 
software and using JavaScript to create dashboards or custom calculations. This book 
focuses on providing the reader with an understanding and examples of where custom 
coding and features of Interactive Reporting can be leveraged to enhance the use of the 
product in daily activity. These features include introducing JavaScript programming 
concepts, creating simple to complex dashboards, analyzing content using built-in and 
JavaScript functions, creating briefing slides and batch exports, building a central code 
repository for use in the enterprise, and using the developer tools for optimizing and 
merging two or more Interactive Reporting documents together.

Review of Interactive Reporting concepts 
The book begins with a review of the Interactive Reporting sections and highlights 
the use of Computed Items across each of the sections of the document software. The 
introduction provides a high-level understanding of the steps needed to perform 
computations in each section and provides insight into the differences in the sections. 
The Script Editor is also introduced, and an overview is provided on the features of 
the editor and the steps to add JavaScript code to dashboard objects and the overall 
document. This first chapter lays the framework for the book and provides a solid 
understanding for the content presented across the rest the book.

 



Chapter 1

[ 9 ]

An Introduction to JavaScript in Interactive 
Reporting
The book transitions from the overview of the different sections of the product to 
an introduction to the syntax, methods, and features of JavaScript in Interactive 
Reporting. JavaScript is an object-oriented scripting language that is commonly 
used in web development to provide enhanced user interfaces. Within Interactive 
Reporting, JavaScript is used across all sections of the document, except for the 
Query section, to perform custom computations and to add interactivity. A solid 
understanding of JavaScript is needed to become an advanced user of the Interactive 
Reporting software. The fundamentals described in the second chapter and utilized 
throughout the rest of the book will provide the user with the confidence needed to 
build and leverage JavaScript in daily interaction with the software.

Building simple to advanced dashboards
Dashboard sections in Interactive Reporting are used for many purposes, from 
creating dashboard views of information, to using controls and objects on a 
dashboard to drive and orchestrate behaviour across multiple sections. This book 
places a large emphasis on building simple to complex dashboards and provides 
an understanding for managing code, filters, and interactivity across multiple 
dashboard sections in a single document. These dashboard chapters provide 
invaluable information for managing and reusing code inside a document, and 
the chapters demonstrate best practices for interacting with Interactive Reporting 
sections and components. Concepts learned in the dashboard chapters can be 
applied to any business situation where code is needed to perform an operation from 
processing queries to topics including creating custom programs that produce batch 
processing, using data from one query to filter another, and exporting to files.

Advanced computations
One of the key aspects of business intelligence is the ability for the user to analyze 
and manipulate content to answer a set of business questions. Many business 
users typically prefer to use Microsoft Excel to perform data analysis rather than 
Interactive Reporting due to their comfort with the software. While Microsoft Excel 
provides many excellent tools for performing data analysis, Interactive Reporting 
combines data analysis capabilities with the ability to filter, add computations, 
leverage data sets, and manipulate data in the millions of records.



Advanced Hyperion Interactive Reporting Techniques

[ 10 ]

Briefing slides and batch exports
Interactive Reporting provides many options for exporting information and 
formatted reports to different file formats. Users commonly struggle with the best 
and most appropriate method for creating data or formatted exports, with most users 
overlooking some of the most effective and efficient exporting methods. In addition 
to searching for the best export format, many users express interest in exporting 
information from Interactive Reporting into a Microsoft PowerPoint presentation. 
While the Hyperion Smart View product can be used to refresh objects in Microsoft 
documents, another option is available using a few tricks in Interactive Reporting 
and does not require the use of an additional piece of software.

Another less commonly known feature in Interactive Reporting is the ability to add 
custom code to generate batch exports of deliverables. Leveraging a few simple 
programming statements allows the user to save significant time and effort when 
exporting multiple slices of information from the same document.

The Central Code Repository 
One challenge that advanced users encounter with Interactive Reporting's report-
centric model is the tracking and maintenance of heavily customized dashboard 
reports, especially in enterprise-level implementations where the code is used 
repetitively and transparently across multiple documents. Given the common and 
straightforward practice of storing similar JavaScript code within each document in 
an enterprise, it is incredibly difficult and infeasible to individually identify, track, 
and edit changes across documents.

One simple and invaluable methodology is to store report customization scripts in 
an accessible database table within the enterprise environment. The chapter on the 
Central Code Repository (CCR) describes building an external code library that allows 
code to be quickly pushed into some or all documents in an enterprise. This centralized 
repository provides the capability for agile responses to ongoing business changes and 
code maintenance without modifying the consuming reporting documents.

Optimizing and Merging
The Oracle Hyperion Interactive Reporting developer tool installation is packaged 
with two developer tools that are extremely beneficial to users of the software. The 
products are the Dashboard Studio and the Dashboard Studio Optimize Utility, 
which allow developers to merge, modify, and fix Interactive Reporting documents 
in addition to many other operations not included in the Studio developer utility or 
Interactive Reporting Web Client. 



Chapter 1

[ 11 ]

The EPM Workspace
The EPM Workspace, similar to a portal, is where all Oracle Hyperion objects, 
reports, and files can be accessed and integrated using a shared security model. The 
Workspace is accessible through the web browser and contains a file system and 
other document management gadgets, including personal pages, job scheduling, and 
content subscription.

Interactive Reporting interface and 
components
Understanding the Interactive Reporting interface is crucial to being proficient in 
the software. The different sections of the software contain a variety of different 
options, but the location of where to find and utilize these options is the same across 
the tool. Knowledge of the interface and how to leverage the features of each section 
is essential to unlocking the full potential of the product. The terms displayed in the 
next screenshot will be referenced throughout the book:



Advanced Hyperion Interactive Reporting Techniques

[ 12 ]

Nearly all features of the Interactive Reporting user interface can be controlled or 
modified by report authors. Later chapters of the book will describe the methods 
for controlling the display of the different Web Client Interface menus, toolbars and 
sections.

Review of Interactive Reporting sections
Before identifying where the advanced features of the product can be leveraged in 
the document, it is important to review the different sections of the software.  The 
following list provides an overview of each section of the Interactive  
Reporting software:

•	 The Data Model and Query sections are used to model database objects and 
build queries from a data source.

•	 Each Query section is accompanied by a Results section where data returned 
from a query is displayed, filtered, and computed. There is only one Results 
section per Query section, and each Results section displays data in a row by 
column format.

•	 Table sections are similar to Results sections and are used to manipulate and 
split a set of results into different subsets for analysis. Each table section is 
specific to a set of results and multiple table sections can be created.

•	 A Pivot section is a common presentation section in Interactive Reporting 
that aggregates data in a row by column format and the pivot functionality 
is similar to Microsoft Excel pivots. The Pivot section can use any column of 
data from the parent Results or Table section.

•	 A Chart section is another presentation section of the document. The Chart 
section is commonly used to display data in a graphical format. Different 
chart formats exist, ranging from bar and pie charts to scatter and bubble 
charts.

•	 The Report section provides the ability to present charts and tables of data 
in a printable report format. The Report section is the only section of the 
document that allows for the addition of data from multiple queries in the 
document into a single reporting object, and reports provide an additional 
method of splitting out data by Report Groups.

•	 Dashboards are used to create custom interfaces or interactive displays of key 
metrics. The dashboard section provides the flexibility to leverage custom 
scripting and interactivity to automate manual features of the product.



Chapter 1

[ 13 ]

Leveraging code
Many methods exist for adding custom code throughout the document. Interactive 
Reporting provides the flexibility to manipulate data and build custom applications 
through using a JavaScript programming language throughout all sections of the 
document except the Query section, where custom fields are defined using database 
specific SQL.

JavaScript is commonly used in two ways within the document, including - 
building computations in presentation sections and building logic to force specific 
behaviours across the document or on a dashboard. When building computations in 
sections, JavaScript and native functions are used in Computed Items to modify and 
enhance a set of results. When driving behaviour across the documents or adding 
interactivity, JavaScript code is used in the Document Scripts or on a Dashboard 
section. In either approach, Interactive Reporting provides significant flexibility and 
interactivity to model and solve complex business problems.

Query section Computed Items
Many users require the ability to provide further analysis on data returned from a 
query. Computed Items can be added to a query to create custom Request line items, 
which allow the user to modify and enhance the data elements in the data model.

Building Computed Items in the Query section is very different than building 
Computed Items throughout the rest of the document. The syntax for building 
Computed Items in the Query section is database specific SQL, while Computed 
Items throughout the rest of Interactive Reporting are created using JavaScript. The 
differentiation in syntax is based on the design of the product, where the Query 
section is the only section that builds a query string that is passed to the database. 
The rest of the sections in an Interactive Reporting document contain and display 
data that has already been returned from a data source.

The syntax of the Computed Item in a query is included as a column in the query 
string that is passed to the database. The following steps are methods to add 
Computed Items to the Request line:

Right-click method Query menu method
Right-click inside the Request line

Select Add Computed Item

Open the Query menu 

Select Add Computed Item



Advanced Hyperion Interactive Reporting Techniques

[ 14 ]

Upon adding the Computed Item to a query, a window opens as shown in the 
following screenshot:

The logic for the blank Computed Item can be typed directly into the Computed Item 
Definition box of the Properties window that appears. The Functions and Reference 
buttons are included to aid the user in creating the Computed Item definition by 
providing a selection option for referencing column names and a list of predefined 
functions. The Options button is used to set the Datatype of the column, which is 
important in order to accurately represent the data returned from the query for the 
column.

In each Query Element, the Table or Topic name must be added 
as a qualifier in front of the column name, that is, Table_Name.
Column_Name. This syntax is similar to qualifying a database table 
with the table owner, where Interactive Reporting treats the Table 
or Topic as the owner of the table.

Since the table needs to be qualified (referenced by table name), users commonly add 
items to the Request line and then edit the item properties by double-clicking on the 
item to view the Properties of the item. By adding an item to the Request line before 
editing, the item definition is populated in the Definition section of the Properties 
window. Upon the completion of editing the Computed Item, the item is added to 
the Request line with the Name specified after pressing OK.

 



Chapter 1

[ 15 ]

Before completing the custom column definition, it is important to 
review and adjust the Datatype of the column using the Options of 
the item. For example, converting a Date field to a string requires 
the Data type of the column to be set to a string to avoid incorrectly 
formatted data after processing.

The following are examples of simple Query section Computed Items with Oracle as 
a data source: 

•	 Concatenation: Products.Prod_Name||' – '||Products.Prod_Desc
•	 String Manipulation: SUBSTR(Customers.Cust_Postal_Code,1,5)
•	 Value Replacement: NVL(Promotions.Promo_Name, 'No Product Name'). 
•	 Date/Time Functions: TO_DATE('2009-02-01','YYYY-MM-DD')  	

When Computed Items are added to the Request line, the Computed Item element 
will display at the end of the list of all of the elements in the Request line. Upon 
processing, the computed column will appear in the data results in the order of the 
columns in the Request line (if this is the first time the query is processed) or the field 
will be added at the end of the data results (if the query was previously processed). 
Computed Items are not differentiated in appearance from any other element in the 
query, where the Computed Item elements appear similar to the elements mapped 
from topics or tables. However, any Computed Item or data element containing a 
function will display with the function notation surrounding the data element name 
in the Request line. For example, adding a SUM function to a data element in the 
Query section will display the function name, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org


Advanced Hyperion Interactive Reporting Techniques

[ 16 ]

Results section Computed Items
Computed Items are added to the Results section to modify contents and add 
calculations to data returned from a query. Since the results set is data that has 
already been processed, the Computed Items in the Results section are based on 
data stored in the document. While the syntax used in Computed Items in the Query 
section is the SQL syntax of the database, the syntax used in the Results section to 
create custom computations is JavaScript. The following steps are methods to add a 
Computed Item to the Results section:

Right-click method Results menu method
Right-click inside the Results section

Select Add Computed Item

Open the Results menu 

Select Add Computed Item

Once the Add Computed Item menu item has been selected, the Computed Item 
window appears, as shown in the following figure:

The Name box is for specifying the name of the Computed Item. The Definition text 
box is used for entering the logic for the Computed Item.



Chapter 1

[ 17 ]

It is important to note that the column names are case sensitive. It 
is also important to note that columns with a space in the column 
name must contain underscores instead of spaces when referenced 
in Computed Items (that is, Day of Week is referenced as Day_
of_Week in the definition window) and special characters are also 
replaced with underscores. If adding computations to a column 
with a special character, it is helpful to use the Reference feature to 
select the column.

The buttons below the Definition text box are the different logic conditions and 
operators that can be used in the Computed Item definition. These different 
conditions and operators can be typed into the Definition box by the user or the 
buttons on the screen can be used to populate the definition window with the 
desired content. The buttons to the right of the text box are similar to the buttons 
in the Query section, where predefined Functions can be used to transform data 
elements in the section. These predefined functions are specific to Interactive 
Reporting and provide the ability to manipulate string, date, and text data. The 
Reference button provides the ability to accurately reference data elements in the 
section without the need to type in the name of the column. The Options button is 
used to set the Datatype of the column, which is important in order to accurately 
represent the column of data after the computation.

Upon the completion of editing the Computed Item, the item is added to the Results 
section with the Name specified after pressing OK. The column is added to the end 
of the Results section and is displayed in the Data Layout window in blue text and 
in italics. The column can be moved around to the desired location in the Results 
section, and the column can be easily modified by following one of the two steps:

Right-click method Results menu method
Highlight the column of data in the 
Results section

Right-click and select Modify Column

Highlight the column of data in the Results 
section

Open the Results menu and select Modify 
Column

The following are a few simple examples of Results section computed items:

•	 Concatenation: Products.Prod_Name+" – "+Products.Prod_Desc
•	 String Manipulation: Substr(Customers.Cust_Postal_Code,1,5)
•	 Conditional Functions: Nvl(Promotions.Promo_Name, 'No Product 

TTarName')



Advanced Hyperion Interactive Reporting Techniques

[ 18 ]

The examples provided are used to demonstrate simple programming operations 
that can be performed in the Results section. Future chapters of this book will discuss 
the different programming functionality and advanced operations that can be added 
to Computed Items.

Table section Computed Items
Computed Items in a Table section are very similar to Computed Items in the Results 
section. However, the main difference between the Table section and the Results 
section is the ability to add multiple Table sections  to a set of results. The ability 
to add multiple Table sections  to a set of results allows the user to split Computed 
Items between the Tables and allows the user to filter on a Computed Item that is 
created in a parent Results or Table section leveraging the Prior, Next, Cume or any 
other aggregating function.

Filters cannot be placed on an aggregating function in the 
section it was created.

The following steps are methods to add a Computed Item to the Table section:

Right-click method Table menu method
Right-click inside the Table section

Select Add Computed Item

Open the Table menu 

Select Add Computed Item

Once the Add Computed Item menu item has been selected, the Computed Item 
window appears, as shown in the following figure:



Chapter 1

[ 19 ]

The functionality of the Computed Item box is identical to the features provided 
in the Results Computed Item section and no additional functionality exists that is 
different from the Results section.

Pivot section Computed Items
Computed Items are common operations performed in the Pivot section, where 
calculations are easily performed on aggregated sets of data. While items are added 
to the Row and Column Labels, the Pivot section only provides the ability to add 
a Computed Item to the pivot Facts. While computations can be completed in the 
Results section, it is more effective to compute percentages and other division based 
calculations in the Pivot than the Results or Table sections to accurately calculate totals. 
A Computed Item is added to a Pivot section by following one of the two steps:

Right-click method Pivot menu method
Right-click in the main Pivot 
window.

Select Add Computed Item

Open the Pivot menu

Select Add Computed Item 

The syntax for a Computed Item is the same as that found in the Results and Table 
sections and the Computed Item is highlighted in italics in the Facts section of the 
Data Layout. In the next example, a Computed Item has been created to show Total 
Sales over Quantity Sold:



Advanced Hyperion Interactive Reporting Techniques

[ 20 ]

Notice the computation of the values in the Total lines. Currently the Total lines 
show the sum of the values displayed in the pivot and not the division of the Total 
Sales value by the Quantity Sold total value.

Pivot Settings: True Totals and Surface Values
The Pivot section provides the flexibility of calculating the Computed Items and total 
lines of the document by either the computation of the values shown on the screen 
or by the values contained in the data results. The settings can be easily configured 
in the Pivot Options menu, where the Use Surface Values or True Computed Item 
Totals options checkboxes can be toggled.

When the True Computed Item Totals option is selected, the pivot total lines will 
be calculated by totaling the individual values of the columns that make up the total 
instead of performing the computation operation on the total column. 

When the Surface Values option is selected, the pivot calculates the Computed Item 
from values displayed on the pivot instead of the values in the parent Results or 
Table section for all columns. The Surface Values setting is necessary when adding 
one or more Computed Items together in the pivot where the values in the pivot 
must be used in the calculation.

Editing Pivot Computed Items
Similar to the Results and Table sections, the Computed Item can be modified by one 
of the following two steps:

Right-click method Pivot menu method
Highlight the column of data in the 
Pivot section

Right-click and select Modify

Highlight the column of data in the Pivot 

Open the Pivot menu and select Modify

Chart section Computed Items
Computed Items can be leveraged in a Chart to display constants or other variations 
of data elements not contained in the data results. Computed Items are added to a 
Chart by one of the following two steps:

Right-click method Chart menu method
Right-click in the main Chart window.

Select Add Computed Item

Open the Chart menu

Select Add Computed Item 



Chapter 1

[ 21 ]

The syntax for Computed Items in a Chart section is the same as found in the Results 
and Table sections, where the Computed Item is highlighted in italics in the Facts 
section of the Data Layout.

Computed Items cannot be used in the Scatter or 
Bubble charts.

The chart in the following screenshot is a Bar Line chart, with a Computed Item set 
to a line and configured to use the scale on the left axis:



Advanced Hyperion Interactive Reporting Techniques

[ 22 ]

In this example, the Computed Item, Budget, is set to a constant value to display 
a threshold. The following screenshot displays the syntax used to complete the 
Computed Item. More advanced logic can be used as desired:

Computed Items in the Chart section are easily modified by one of the two  
following steps:

Right-click method Chart menu method
Highlight the data element in the Data 
Layout window of the Chart.

Right-click and select Modify 
Computed Item

Highlight the data element in the Data 
Layout window of the Chart.

Open the Chart menu and select Modify 
Computed Item

Report section Computed Items
The Report section provides the ability to add two types of computations in a report, 
where computations can be performed in Field expressions as well as in the Facts of 
Report Tables. Computed Items are added to Report Tables through one of the two 
following methods:

Report menu method Right-click method
Highlight a column of data inside the 
table.

Open the Report menu and select Add 
Computed Item.

Highlight a column of data inside the table.

Right-click and select Add Computed Item. 



Chapter 1

[ 23 ]

When a Computed Item is added, the Computed Item window appears as shown in 
the following screenshot:

The text box at the top of the window is for adding the desired name for the column. 
Below the Column Name field is the configuration for selecting a field from a table. 
At the bottom of the window is the Formula section for adding the logic to the 
Computed Item. The following screenshot shows an example of a Computed Item 
leveraging fields from two Table sections:

 



Advanced Hyperion Interactive Reporting Techniques

[ 24 ]

Notice the difference in logic between the Report section Computed Items and 
the logic for the other Computed Items in the document. Since the Report section 
Computed Items can reference data from more than one section in the document, 
Report section Computed Items require a reference back to the section where the 
data element is contained. Additionally, a data function is referenced at the end of 
each Computed Item. The function and the term currBreak are added because the 
Report sections contain grouping that can enforce different levels of aggregation. 
Each item in a Report section is aggregated based on the area that is placed in 
a report, whether it is added to the Body, Header, Footer, or one of the Report 
Groups. The currBreak defines the aggregation to apply, where variations of the 
currBreak logic can be utilized to modify the aggregation performed. 

The Expression line
In addition to editing Computed Items using the Computed Item window, the 
Expression line in the Report section is also used to edit Computed Items as well as 
Field items.  The Expression line is a feature that is specific to the Report section and 
logic is displayed in the Expression line when an item is clicked by the user in a report.

Document Scripts
Each Interactive Reporting document contains the ability to have a predefined 
set of steps occur when the document opens, before the document closes, before 
processing, after processing, and upon update of session values. These document 
level actions are referred to as Document Scripts in Interactive Reporting.

Document Scripts are added to the document by clicking on the File menu and 
selecting the Document Scripts menu item. Upon selecting the Document Scripts 
item, the scripting interface window—called the Script Editor—is displayed 
for adding the logic for the Document Scripts. Chapter 5, Building the Dashboard 
Framework section, provides details on configuring Document Scripts to support 
dashboards and global operations.

Dashboards
The term dashboard is typically used to describe an executive-level report displaying 
key business indicators in an effort to capture the health of a business at a point in 
time. The Dashboard section in Interactive Reporting provides users with the ability 
to create simple to complex dashboards, as well as the flexibility to add controls and 
custom JavaScript programming to add interactivity or to create a custom interfaces.



Chapter 1

[ 25 ]

The Scripting Interface
The Script Editor is the interface where code is written to perform an operation 
through Document Scripts or the Dashboard section. The Script Editor is opened in 
one of several ways including: selecting the Document Scripts menu item from the 
File menu, selecting the Scripts menu item from the Dashboard menu, or by right-
clicking an object on a dashboard and selecting Scripts. The following image is an 
example of the Script Editor open to an item on the Dashboard section:

Chapter 2, Introduction to JavaScript and the Interactive Reporting API, provides a 
detailed introduction to JavaScript and provides a detailed explanation of the Script 
Editor.



Advanced Hyperion Interactive Reporting Techniques

[ 26 ]

Summary
The goal of this chapter was to provide an introduction to the book and a review 
of Interactive Reporting terminology, adding Computed Items to sections, and 
the Scripting Interface.  The chapter began with an introduction to the topics that 
are discussed in future chapters, including JavaScript, Dashboards, Advanced 
Computations, the Central Code Repository, Batching, and the Dashboard Studio 
and Optimize Utility.  The chapter transitions from an introduction to a review of 
Interactive Reporting topics and terminology used throughout the book, including 
the Interactive Reporting Interface and a review of Interactive Reporting sections.  
The methods to create, build, and modify Computed Items in each section are 
introduced, and an introduction to Document Scripts is presented.  The chapter 
concluded with a brief overview the Scripting Interface, setting the stage for the 
following chapter on logical programming in JavaScript.



Introduction to JavaScript 
and the Interactive  

Reporting API
Building expertise in Interactive Reporting requires a solid working knowledge 
of the use of the JavaScript programming language, Interactive Reporting built-in 
functions, and the features of the Interactive Reporting Application Programming 
Interface (API). The Application Programming Interface (API) in Interactive 
Reporting provides the ability to access objects and events used by the core 
application. The object properties and event behaviors are orchestrated using 
JavaScript code to drive a desired application behavior typically in the form of an 
end-user interface or business application.

The goal of this chapter is to provide users with an introduction to JavaScript and the 
Application Programming Interface. The chapter will begin with an in-depth look at 
the Interactive Reporting API and will conclude with an introduction to fundamental 
concepts of JavaScript.

This chapter covers the following topics:

•	 Introduction to objects and collections
•	 The Script Editor
•	 An introduction to JavaScript



Introduction to JavaScript and the Interactive Reporting API

[ 28 ]

Introduction to objects and collections
The concepts described in this chapter introduce a new set of vocabulary that is 
referenced through the rest of the book. The Interactive Reporting programming 
terminology describes the different components of the application, the properties of 
the components, and the actions that can be performed on each object. The following 
are the primary definitions used when describing Interactive Reporting components:

•	 An object is defined as either a single entity or a collection of entities. The 
term object is a fairly generic term used to reference any entity which can be 
acted upon. These entities range from the Application object to Dashboard 
Shape objects and control toolbars to Text Labels and beyond.

•	 Methods describe the relevant actions for a given object. The available 
actions are defined by the object type within the application. For example, 
the Activate method of a Dashboard section displays the Dashboard section 
when used and is similar to clicking on the section with the mouse in the 
Section Catalog.

•	 Properties are the attributes of an object, and may include formatting, data 
values, or configuration settings. Examples of properties include the text 
displayed in a Text Label or the operator used in a Query Filter.

•	 Collections are special groupings of objects that are related. A good example 
of a collection is the Sections collection. This collection contains all of the 
individual sections that are within a single Interactive Reporting document, 
regardless of the section type.

•	 Constants are collections of read-only values that represent possible object 
property states or values. The definition of a constant is determined by 
Interactive Reporting and cannot be customized by the report author. 
Interactive Reporting constants always begin with bq.

A real-world example of the concepts presented in this section can be conceptually 
demonstrated by visualizing an apartment building. The building itself is an object. 
The building object has properties such as the number of apartments, number of 
floors within the building, and resident amenities. The individual apartments are 
also distinct objects with properties, such as the number of rooms in each apartment 
or the address of the apartment. However, the apartments themselves are also part 
of the overall building object, making the apartments members, or children, of the 
building.



Chapter 2

[ 29 ]

Continuing with the apartment example, envision that the building supervisor hires 
painters to repaint apartments. If the painters are ordered to paint an individual 
apartment at the object-level, the painter would require the address of the apartment. 
The resulting request from the supervisor would be to paint apartment 1A. If the 
painters were needed to paint all apartments within the building, one approach 
(entailing more work for everyone) might be for the supervisor to give them each 
apartment address between jobs. Alternatively, the painters could be ordered to 
paint the collection of apartments and instead be given an order such as to paint all 
apartments in the building.

The apartment example is a description of how collections work in Interactive 
Reporting. Orders given to a collection are given to each member until all collection 
members have received and completed the task. The order in which the members are 
evaluated is automatically determined by Interactive Reporting when the object is 
created. The practice of accessing an object by its collection is an incredibly powerful 
technique that will be demonstrated throughout the code examples in this book.

The Script Editor
The Script Editor is the primary interface used to add JavaScript code within 
different sections of the document. All the customizations in Interactive Reporting 
are event-driven, meaning that code is executed by either a user-created event such 
as the clicking of a mouse button, or a system-created event such as the opening 
of a document. These events invoke JavaScript contained within the object's 
corresponding Event Trigger.

The Interactive Reporting API categorizes events into three main types. Two of 
these types, Dashboard-level Events and Dashboard Object-level Events, are tied 
to Dashboard sections and are customized using the Dashboard Script Editor. A 
Dashboard-level Event occurs when a dashboard is shown, or activated, to the user 
and when it is deactivated as the user navigates away from it. This event type is 
typically used to set and reset default properties of objects users can interact with 
such as a default radio button selection. Dashboard Object-level events are events 
that are trigged at the dashboard shape level and are related to actions typically 
attributed to user interactivity such as a button click. The Dashboard Script Editor is 
opened by selecting the Scripts menu item from the Dashboard menu (enabled only 
on Dashboard sections in Edit mode) or through the use of the F8 hot key.

The third type of event, Document-level Events, customize events related either to 
opening or closing a document or directly before or after a query is processed. An 
example of using a Document-level Event is enabling or disabling the visibility of a 
toolbar when a document is opened. The Document-level Events use the Document 
Script Editor, which is accessed by selecting Document Scripts from the File menu.



Introduction to JavaScript and the Interactive Reporting API

[ 30 ]

The functionality and usage of both Script Editors is the same with the exception that 
the Document Script Editor allows developers to specify different functionality for 
different types of client software (that is, the Desktop Studio, Interactive Reporting 
Web Client, or the HTML client). This feature is commonly used in environments 
where multiple clients are used to access an Interactive Reporting document. The 
following image is an example of the Document Script Editor:

The most important components of the Script Editor are the Object Model and 
Description, located on the left side of the interface, the Object and Event Trigger 
drop-down boxes, located at the top of the interface, and the code pane, located 
under the Object and Event Trigger boxes.

The Object Model is a visual representation of the contents of the Interactive 
Reporting API. As shown in the following image, the Script Editor displays icons 
denoting each of the Object Model component types:

 



Chapter 2

[ 31 ]

When a selection is made in the Object Model, the section directly under the Object 
Model displays a description of that object. This description is an invaluable tool 
when learning to script in Interactive Reporting as it gives an insight of how the API 
expects the selection to be used. Additional help specific to the item selected in the 
Object Model can be accessed using the Help button below the description box.

The Object drop-down list provides the list of available objects that can drive 
behavior through JavaScript code. The Event Trigger drop-down list provides the 
different events that can be enacted for each object. It is possible for an object to have 
code on multiple event triggers to perform operations for different events.

The largest area of the Script Editor is a text box where customized code is entered, 
called the code pane. Double-clicking on any item from the Object Model will add an 
appropriate code snippet to the code pane referencing the desired item. Additionally, 
code can also be manually entered or copied and pasted from other sources.

When the OK button is pressed, the code is checked for syntax errors. If no errors are 
found, the Script Editor is then closed and the code is saved. 

It is recommendable to occasionally use the OK button to validate 
and save code when scripting large blocks so that progress is not lost 
should the Script Editor exit unexpectedly. 

Introduction to JavaScript
JavaScript is a very popular scripting language and is commonly used in websites 
to provide enhanced user interfaces. This section of the chapter is an introduction 
to the fundamental concepts of the JavaScript language. The concepts introduced 
will provide the programming building blocks demonstrated in the code examples 
throughout this book. In addition to the content described in this chapter, there are 
many other resources available on the Internet to continue learning JavaScript or to 
obtain additional code examples.

Variables
Variables are temporary containers used to store information to be recalled at a later 
point. Once created, the value in the variable can be accessed, or read, across the 
document and can be manipulated or changed as desired. The following sections 
of this chapter introduce the many kinds of variables that are demonstrated in the 
upcoming dashboard and advanced analysis chapters.



Introduction to JavaScript and the Interactive Reporting API

[ 32 ]

Variables are custom names with values assigned to them using the = sign. While 
most custom names can be used, some names are already defined components 
of the JavaScript language itself and therefore cannot be used to denote a custom 
variable. Attempts to use a  predefined component, called a Reserved Word, will 
result in a JavaScript error. Additionally, as JavaScript is a case-sensitive language, 
all references to variable names must exactly match the combination of upper and 
lowercase letters. 

The visibility, or accessibility, of a variable to different objects across the document 
is referred to as the variable's scope. Scope can be either global, meaning the variable 
can be accessed from anywhere else in the document, or local, meaning the variable 
has no presence outside of the object in which the declaration is made. In most cases, 
local scope would refer to a variable being available only within a particular event or 
on a particular document section.

Within Interactive Reporting, declarations with local scope are defined using the var 
keyword. Declarations without the var keyword are automatically considered to 
have global scope.

Variable data types
Variables contain a reference to the type of data that is stored in each variable. The 
references are referred to as the data type of the variable, where the common data 
types are boolean, string, number, and null. In many programming languages, 
the data type of the variables must be specified at the time the variable is defined. 
However, in JavaScript, the data type of a variable is associated directly with the 
stored value instead of to the variable itself. This concept, called dynamic typing, 
allows a single variable to have data with one type associated to it and then later be 
re-used and have data with a different type assigned. This is useful when converting 
the data type of a variable throughout the programming process, including from 
number to string or vice versa.

Boolean variables
Boolean variables contain either a true or false value. This variable type can act as 
a yes or no flag to signify the state of an object property. For example, the Visible 
property of a Shape is boolean and can be either true of false. The statement Shape.
Visible=false would mean the shape is not visible and Shape.Visible=true 
would mean the shape is visible.



Chapter 2

[ 33 ]

String variables
Sequences of characters, comprised of any combination of alpha-numeric characters, 
special characters, and spaces, are stored as string variables. When declaring a string, 
quotes are used to tell the software where the string begins and ends. There is no 
syntax requirement for the use of one type of quotes. Either double or single quotes 
can be used as long as the start and end quotes are the same type. For example: 
myString = "Country" and myString = 'Country' would both declare the 
variable named myString to be equal to the value Country.

Strings can be added end-to-end with other strings through a process called 
concatenation. When a string is concatenated with a non-string value such as a 
number, the result is also stored as a string.

The following example concatenates month, day, and year variables into a  
single string:

var vMonth = 1;
var vDay = "06";
var vYear = 1999;
var stringDate = vMonth +"/"+ vDay +"/" + vYear;

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.PacktPub.com. If you 
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

When evaluated, the preceding code defines the variable stringDate as equal to 
1/06/1999.

Number variables
Data that is strictly numeric is stored as a number data type. Variables with the 
number data type can be evaluated directly with other numbers using an arithmetic 
operators such as + for addition or * for multiplication. The value resulting from 
arithmetic operations is a number. In JavaScript the ++ and -- operators are used to 
increment and decrement a numeric variable, referring to +1 and -1 respectively. For 
example, x++ is short hand to mean x = x+1.

Null variables
Null variables are variables that are without a value or empty. Conceptually, null 
is the lack of any value and is not the same thing as a blank string variable or the 
number zero.



Introduction to JavaScript and the Interactive Reporting API

[ 34 ]

Arrays
An Array is an object used to store multiple related values within a single variable. 
Since all of the values are in the same variable and are identified with a numeric 
identifier called an index, loop statements (described later in the chapter) are used to 
iterate through the array to quickly access the stored values.

The following code is an example of the initialization of a global array: 

gMonthArray = [];
   gMonthArray[0]= "Jan";
   gMonthArray[1]= "Feb";
   gMonthArray[2]= "Mar";

While conceptually similiar, it is important to note that an Array index - the starting 
value stored within the brackets - starts at 0 where as Interactive Reporting objects 
collections, such as the list of items in a drop-down box or the list of rows in a 
Results section, start with an index values of 1.

Associative Arrays
Sometimes referred to as a map or dictionary, associative arrays are a type of array 
indexed by a string, instead of a number. Associated arrays are most useful when the 
relationship between two strings is strongly defined and they are commonly used to 
create custom look-up references.

The following example declares an associative array with local scope:

var vMonthArray = [];
   vMonthArray["Jan"] = "January";
   vMonthArray["Feb"] = "February";
   vMonthArray["Mar"] = "March";

Functions
Functions are reusable sets of code that are configured to perform a targeted set of 
operations. A function must be declared before it can be invoked by an object, and a 
function is only executed when a separate set of code referred to as a function call is 
made.

The basic syntax for a function is:

function functionName()
{
  //code to be executed;
}



Chapter 2

[ 35 ]

Functions can have additional input values to be supplied when the function is 
called to execute. The input values, called parameters, are special variables that are 
passed into the function allowing the function to be dynamic. Functions accepting 
parameters have values within the parentheses after the function name. The basic 
syntax for a function accepting parameters is:

function functionName(param1, param2, ...)
{
   //code to be executed;
}

A function defaults to a local scope but assigning the function to a global variable 
makes the function's scope global. A function with global scope can be accessed by 
any object in the same document. The following example demonstrates the syntax to 
declare a function with a global scope: 

function functionName(param1, param2)
{

   //code to be executed;
}

//make the function globally accessible
gfFunctionName = functionName;

The syntax for accessing functions is to first call the function by name and then to 
supply any expected parameters within parentheses immediately following the 
name. Functions that are bound to a global variable are called by the using the global 
variable name instead of the function name. The following is an example of the 
syntax for accessing a function both locally and globally:

//Accessing a Local Function
functionName(paramVal1, paramVal2);

//Accessing a Global Function
gfFunctionName(paramVal1, paramVal2);

Functions can also return a value back to the user to be used further in the document. 
For example, if a function was created to perform a mathematical calculation, the 
user would want the function to produce the output of the calculation. The following 
demonstrates the function notation and the function call for returning a value:

function functionName(param1, param2)
{
	 //code to be executed; 
   //set output value to var1;

www.allitebooks.com

http://www.allitebooks.org


Introduction to JavaScript and the Interactive Reporting API

[ 36 ]

   //return statement;
   return vOutput1;

}

//make the function globally accessible
gfFunctionName = functionName;

//Call the Function and Receive Returned Value
var2 = gfFunctionName(paramVal1, paramVal2);

Decision logic
By default, any custom code is executed line by line from the top down unless 
otherwise directed. Using basic logic, objects and variables can be assessed allowing 
a decision to be made between one or more execution paths. Depending on the type 
of logical statement, code can be executed once, executed more than once, or  
skipped entirely. 

Comparison operators
Comparison operators are a type of operator used to create simple comparisons of the 
relationship of two entities, such as variables or numbers, where the outcome of that 
comparison always results in a true or false value. The true or false outcome, which 
conceptually can be interpreted as a yes or no, is arguably the most important aspect of 
any decision statement as it ultimately determines the execution path of the code.

Logically, the description of each individual comparison operator is similar to that of 
its mathematical counterpart, as seen in the following chart:

Comparison Operator Description
== Equal (comparison)
!= Not equal
>= Greater than or equal to
> Greater than
<= Less than or equal to
< Less than

It is also important to note that the == sign for the equal comparison operator is 
not the same as the = command. The = is used to define variable values whereas the 
== is used to compare whether two values are the same. Using a = in a conditional 
statement to compare values will produce an undesired result.



Chapter 2

[ 37 ]

Conditional statements
Conditional statements, also called choices, are the statements and syntax used to 
build the comparison. There are two main components to a conditional statement, 
the assessment logic and the code block.  The assessment logic is typically the first 
line the statement and provides the comparison, and the code block is the code to be 
executed based on the true or false assessment. Opening and closing braces {} are 
always used to denote a code block in a conditional statement. 

The if(), else if(), and else conditional statements are the three statements used 
to assess if the outcome of a comparative statement is true or false. When an if() 
statement is deemed false, additional statements can be assessed using else if(). 
When it is necessary to define an action for all remaining cases, else is used to act 
for all cases where the result of the if() or else if() comparison is false. The if() 
statement can stand alone, but else if() and else statements must be preceded by 
at least one if() statement. 

The following code demonstrates the syntax of the if(), else if() and else 
conditional statements:

//Assess one conditional statement
if(conditional statement)
{
   //Current Statement is true
}

//Assess additional conditional statements
else if(conditional statement)
{
   //Prior Statement is false
   //Current Statement is true
}

//Assess all other cases
else
{
   //All Prior Statements are false
}

Another type of conditional statement is the Switch() statement. Similar to 
if(), else if(), and else statements, switch statements evaluate the truth of an 
argument. Switch statements are typically used to evaluate a single object against 
known cases. 



Introduction to JavaScript and the Interactive Reporting API

[ 38 ]

The following code demonstrates the syntax of the switch statement:

switch(object)
{
   case 1:
      //code block;
      break;
   case 2:
      //code block;
      break;
   default:
      //code block;
}

The break statement is used to exit the current statement. It is used throughout 
switch statements and can be used in loops and conditional statements to exit from 
the given statement. 

Logical operators
Logical operators are used to control the order in which code is executed. The && 
logical operator denotes AND, the|| logical operator denotes OR, and the ! denotes 
NOT. When two statements are separated by the && operator, both statements must 
render true to satisfy the condition. When two statements are separated by the || 
operator, only one of the two statements must be satisfied. When the ! operator is 
used, it is used to test whether a condition is not true.

Since the &&, ||, and ! operators can be used together, parentheses () are 
commonly used to segment items in a conditional statement. The following example 
demonstrates the use of the AND and OR statements used with parentheses:

//Using AND, OR and Parentheses
if(A == B || (A==C && B==D) )
{
	 //Statement is true
}

In the preceding code, the statement that is true is A is equal to B OR A is equal to 
C AND B is equal to D. From a logical execution, the system would first attempt to 
validate if A is equal to B. If it were, the statement would be deemed true and the 
code within the {} would be executed. If A is not equal to B, the system would then 
check to see if A is equal to C. If A is equal to C, it would then check if B is equal to D. If 
A is not equal to C or B is not equal to D, the statement is false and code within the {} 
would be skipped. 



Chapter 2

[ 39 ]

Conditional logic is commonly used throughout Interactive Reporting in building 
dashboards and Computed Items. The following chapters on dashboards and 
advanced analysis will demonstrate examples of using conditional logic in daily use 
with Interactive Reporting.

Loops
A loop is a programming concept created to run a set of code multiple times. In 
a simple example, a loop can be used to display a count of 1 to 1000 with only a 
few lines of code as compared to writing a line of code for each number which 
would result in one thousand lines of code. Each loop has a condition that is tested 
to determine if the loop should be executed or exited. Each time the conditional 
statement is deemed true, the block of code begins again until the statement is 
proven to be false.

It is important to note that if a loop statement is unable to be proven 
false, the loop will repeat infinitely. This error, called an infinite loop, 
cannot be stopped without exiting the program.

The most commonly used loop statement is the for() loop. The for() loop is used to 
execute a block of code a specific number of times and allows developers to specify 
the start, finish, and increment variables in the creation of the for statement.

The following example shows the simple syntax for the for loop:

for (var v=start; v<=end; v=v+increment)
{
   // until v>end, statement is true
   // code block; 
}

The shorthand math operators to increment, ++, and decrement, --, can be used 
to replace the incrementing or decrementing value. With the assumption that the 
increment is 1,in the preceding example, v = v + increment can be changed to v++ 
without changing the outcome of the code.

The following example shows an example of a for loop:

for (var i=0; i<=gArray.length; i++)
{
   // until i is greater than the number of objects in a custom 
          array, the statement is true
   // code block; 
}

 



Introduction to JavaScript and the Interactive Reporting API

[ 40 ]

The while() loop is used to repeatedly execute a code block for as long as the 
conditional statement remains true. If the logical statement is false when the 
conditional statement is first reviewed, the code never executes. 

while (v<=end)
{
   // while v<=end, statement is true
   // code block;
}

The do.while() loop is a variant of the while loop that executes the code block once 
and then repeats the code block for as long as the while() condition is true. This is 
very useful when the code should be executed once even if the logical statement is 
false.

The following example demonstrates the standard syntax for the do.while() loop:

do
{
   // code to be executed;
}
while (v<=end);

There are two commands used to exit the current loop or to exit all remaining 
loops throughout the loop process. These statements are typically used to save time 
when searching for specific values or outcomes. The first statement, the continue 
statement, is used to stop the current loop and will continue to run the next loop 
(if existing). The second statement, the break statement, is used to force the 
current loop to end and will not run any remaining loops. Loops are very common 
operations in dashboard programming and many loop examples are demonstrated 
in the following dashboard chapters.

Regular expressions
While not demonstrated in-depth in this guide, an introduction to JavaScript would 
be incomplete without introducing the concept of regular expressions. At the most 
basic levels, regular expressions are used to deconstruct individual characters 
within string variables to perform pattern recognition and matching logic. Within 
Interactive Reporting, the most common role of regular expressions is to assist with 
data validation of entries made by users on a dashboard. As regular expression is a 
very advanced programming topic that sometimes eludes even seasoned developers, 
there are several well-written tutorials and guides that focus solely on regular 
expressions that are readily available on the Internet. 



Chapter 2

[ 41 ]

Summary
The goal of this chapter was to introduce the user to the scripting concepts necessary 
to perform dashboard development and advanced computations. The chapter 
began with an overview of the terminology used within the software, including 
objects, methods, and properties. The chapter continued with an introduction to the 
Scripting Interface and Interactive Reporting Object Model, providing knowledge 
on the interface for adding customized code to a Dashboard section or the document 
as well as the hierarchy/tree structure of objects that can be manipulated through 
using code. The chapter concluded with a review of the different types of JavaScript 
components that are utilized throughout the later chapters of the book, providing an 
overview of the different sets of components that are available and commonly used 
when building dashboards or performing advanced analysis. The next chapter of the 
book begins the dashboard development set of chapters in the book, starting with the 
steps used to build a simple dashboard.





Creating a Simple Dashboard
Dashboards are used to quickly and easily monitor the overall health of a business 
area by providing executive-level insight into key business metrics. In Interactive 
Reporting, dashboards are created by combining supporting presentation sections of 
the software with interactivity usually through custom JavaScript programming. The 
complexity of the dashboard development process can vary widely depending on 
the number of interfaces and amount of custom interactivity desired.

This goal of this chapter is to present the procedural steps required to create a simple 
dashboard without the use of JavaScript. The following three chapters will evolve 
this simple dashboard example and will present methods to appropriately add 
interactivity across multiple dashboard objects.

This chapter covers the following topics:

•	 Dashboard planning and preparation
•	 The BMV USA Executive Dashboard example
•	 Creating data driven dashboard objects
•	 Creating a simple dashboard
•	 Gauges
•	 Live Charts

Dashboard planning and preparation
The most challenging aspect of developing a dashboard is creating one that is 
targeted enough to deliver meaningful information to its users while providing 
quick navigation and clear methods to support further analysis. The most successful 
dashboards display high-level information, typically in the form of charts and 
gauges, with clear supporting metrics to either invoke or support business decisions.



Creating a Simple Dashboard

[ 44 ]

Even though the goal of creating a dashboard is to provide a view of the overall 
health of a business, it is important to avoid the trap of a one-size-fits-all dashboard. 
While Interactive Reporting provides the ability to store massive amounts of 
content inside a single document with interactivity and drill-down operations, the 
maintenance and processing speed will become a burden over time and document 
usage will decrease.

A more appropriate approach is to create a series of dashboards that provide both a 
high-level executive view of the organization and a view of individual business areas 
that provide a more granular view into a subset of the organization. When creating 
these dashboards, always ensure that the purpose of the dashboard is clearly 
defined and that the business stakeholder using the dashboard is the driver for the 
content displayed. Having involved stakeholders through the process will provide 
governance, encourage dashboard usage, and will drive consistency throughout 
other metrics created for the organization or organizational subset.

The BMV USA Executive Dashboard 
Example
The suite of dashboard chapters introduces a number of dashboard specific 
concepts for a successful dashboard implementation in Interactive Reporting. A 
single example is used across these chapters to demonstrate different dashboard 
objects, contents, and interactivity. The example, named the BMV USA Executive 
Dashboard, displays sales and cost data across pivots, charts, tables, and other 
sections of the document. The data for the example is supplied by the sample 
database that accompanies the Interactive Reporting installation.



Chapter 3

[ 45 ]

Creating data-driven dashboard objects
The Dashboard and Report sections in Interactive Reporting are unique since these 
two sections are not tied to a single Query section. Additionally, the Dashboard and 
Report sections allow content to be combined and presented side-by-side from any 
section in the document. The combination of content from other sections is the basis 
for dashboard development using Interactive Reporting.

When a section is presented on a Dashboard section, it becomes an embedded 
object on the dashboard, creating a presentation window from the dashboard to the 
existing document section. This connection allows the data presentation, including 
colors and formatting, to be shown on the dashboard section for analysis. Any effects 
on the supporting document section, including formatting changes or data refreshes, 
are reflected on the dashboard.



Creating a Simple Dashboard

[ 46 ]

Interactive Reporting 11 has introduced the Gauges and Live Chart features to 
dashboard sections. Unlike embedded section objects, Gauges and Live Charts are 
populated from Results and Table section content directly on the Dashboard section 
and do not exist elsewhere in the document. The formatting for these objects is 
performed directly on the dashboard. Gauges and Live Charts are also dynamically 
refreshed when the supporting Results or Table section content is refreshed.

Although not the focus of this chapter, it is important to note that other dashboard 
controls and graphics, such as text labels and list boxes, can be data driven 
using JavaScript programming to control the object's values and properties. The 
customization of dashboards using code will be explored in later chapters.

The following content of the chapter will provide a step-by-step guide to creating 
the data driven dashboard objects required to support the BMV USA Executive 
Dashboard example.

Creating a Vertical Stack Bar chart
This section discusses the methods for creating a Stack Bar chart to demonstrate a 
quick comparison of the margin between Cost Per Unit and Suggested Retail Price. 
Stacked bar charts are best suited for monitoring the relationship between two facts 
and are most effective when the margin between the two facts remains relatively 
consistent across data points. In the BMV USA Executive Dashboard example, the 
Cost of Units sold to the Suggested Retail Price of the same units are compared.

Creating the Chart Query
The Query for the example Vertical Stack Bar chart is created by inserting a new 
Query section connected to the Interactive Reporting sample database. Once added, 
rename the Query section to q Cost v Price and the Results section to r Cost v Price. 
Add the Periods Months and Costs And Prices Fact tables to the main window of 
the Query section. Once completed and the table joins configured, add Standard 
Unit Cost, Suggested Retail Price, Year, and Quarter to the Request line as shown 
in the following screenshot:



Chapter 3

[ 47 ]

Aggregated data facts
If the data values stored in the data source are more detailed than required for the 
dashboard, include aggregating functions within the Query section, unless there is 
a business requirement for data drill capabilities. The inclusion of aggregate data 
functions on facts will result in a faster query and improved dashboard performance 
due to a smaller data set. The following image shows the addition of the Sum function 
to the Standard Unit Cost element:

Request line items with data functions applied will display the function name on the 
object label in the query to denote the function, but the function does not impact the 
column title in the Results section. The following figure shows the addition of the 
Sum function to the Standard Unit Cost and the Suggested Retail Price elements:



Creating a Simple Dashboard

[ 48 ]

When a query with aggregated facts is processed, the data values are summed 
by unique data dimension values, resulting in fewer rows than a query without 
aggregated facts. The following screenshot displays the results from the summarized 
q Cost v Price query:

Creating the Vertical Stack Bar chart
Once the Query section is processed, add a Chart section under the q Cost v Price 
query. When the chart is initially created, it starts with the default Vertical Bar 
chart. Modify the Chart properties and select the Vertical Stack Bar Chart format. 
To populate the Vertical Stack Bar Chart for the example, drag the Standard Unit 
Cost and Suggested Retail Price data elements to the Facts pane and the Year and 
Quarter data elements to the X-Axis pane. The following image shows the Vertical 
Stack Bar chart with items populated:



Chapter 3

[ 49 ]

Setting the legend 
The legends for bar charts are set on the x-axis by default. As the focus of this 
Vertical Stacked Bar chart is the Fact information, the legend property must be 
changed from the x-axis to the y-axis. Use the Legend icon on the section toolbar to 
change the legend on property to Legend on Y as shown in the following figure:

With the legend now applied to the chart facts, the relationship between the two fact 
items is displayed clearly in the following screenshot:



Creating a Simple Dashboard

[ 50 ]

Customizing a Vertical Stack Chart
While the default chart format nicely presents accurate data for analysis, the 
default format is not well-suited for a dashboard, where objects must be smaller to 
accommodate multiple objects on a screen. Modifications to chart formatting play 
a large role in creating readable dashboard sections, where significant time is used 
to modify formatting to align objects in viewable formats.  This section discusses 
setting the visual properties of the Vertical Stacked Bar chart to prepare it for use in a 
Dashboard section.

Visually stack the bars
The first approach that should be used is to flatten the chart to give the illusion that 
the values are physically stacked upon each other, where the flattening will better 
display the difference between the two values. The chart is flattened by unselecting 
the 3-D Objects option in the Chart Properties dialog.

Maximizing chart display space
It is challenging to quickly digest data presented by a chart on a Dashboard section 
when the chart's display area is cluttered with extraneous label and value axis 
information. While modifications to hide, display, or modify label and value axis 
settings in the Chart Properties can help clear the area for the chart, the simplest way 
to maximize space is to move the legend location from the default right side location 
to the bottom of the chart.

To move the legend, select the legend object and drag it to below the X-axis. Resize 
the legend as desired using the corner anchor points. With the legend out of the way, 
select the chart and resize it to maximize it in the frame.

Detail-oriented formatting
Dashboard objects should be understood without a supporting explanation. 
Attention to detail with minor formatting options is important to avoid confusion. 
Add data masks to facts, title the chart, and label each axis to make fact value types 
clear.

Color considerations
In situations where data points touch, it is especially important that the chart colors 
contrast enough so that the values of the chart can be easily distinguished from one 
another if the chart is printed in black and white.

 



Chapter 3

[ 51 ]

To manually change the color of a data group, click and highlight the data group in 
the chart or right-click on Legend and choose Properties (as shown in the previous 
screenshot) to open the data group Properties dialog box. With the Patterns tab 
selected, click on Foreground and choose a different color from the color picker or by 
entering a custom RGB value:



Creating a Simple Dashboard

[ 52 ]

In addition to the Patterns options, the Data Label options provide the ability 
to activate data labels on the chart groups and to apply custom formatting. The 
following figure displays the final Vertical Stack Bar chart with all of the desired 
formatting changes for importing into the example dashboard:

Creating a Bar-Line chart
The Bar-Line chart is used to compare two related facts with the ability of using two 
different axis scales to display information. It is especially well-suited to compare 
forecasted values against actual values. In this section, a Bar-Line chart is created for 
the dashboard example to display a comparison of actual and planned revenue for 
the country USA.

Creating the chart query
The query for the example Bar-Line chart is created by inserting a new Query 
section connected to the Interactive Reporting sample database. In the example, the 
Query section is renamed to q Plan v Act and the Results section to r Plan v Act. 
The Periods Months, Plan Vs Actual Fact, Stores, and Regions tables are added 
to the main query window. The four tables are joined together using the data key 
relationships as shown in the following figure:



Chapter 3

[ 53 ]

Once the tables are joined, the Revenue Actual, Revenue Plan, Year, and Quarter 
data elements are added to the Request line and the Revenue Actual and Revenue 
Plan data elements are configured to use the SUM data function.

Limiting the Query data
In the example dashboard, the intent of the Bar-Line chart is to display the 
comparison of actual and planned revenue for the USA and not the entire data set 
contained in the database. Place a filter on the Country field from the Regions table 
by adding a Filter to the query:



Creating a Simple Dashboard

[ 54 ]

In the preceding screenshot, the USA is transferred into the Custom Values setting. 
The Show Values filter selection option queries the database to determine a list of 
all available values before allowing selections to be made. Custom Values are not 
connected to the data source and can be viewed and selected at any time. When 
creating Filters for dashboards or preparing other filters, use the Transfer button 
to move selections made from the Show Values list to the Custom Values list. The 
Transfer mechanism will ensure the exact data format is retained and the filter can 
be selected without needing to query the database each time the filter is opened for 
the list of values.  The following image shows the query configured with the filter:

The following screenshot displays the processed data returned from the query, 
where the data will be used to create the Bar-Line chart:



Chapter 3

[ 55 ]

Create the Bar-Line chart
A Bar-Line chart displays two facts simultaneously, where one fact is shown as a 
traditional Bar chart and the other fact is displayed as a Line chart.  The process for 
creating a Bar-Line chart is similar to for creating a Vertical Stack Bar chart. Once 
the Chart section is inserted underneath the r Plan v Act results, the chart format is 
changed to the Bar-Line format, the Year and Quarter data elements are set to the 
x-axis, and the Revenue Actual and Revenue Plan data elements are set to the Facts. 
The following screenshot shows the Bar-Line chart configured with data elements:

Switching bar and line facts
The Bar-Line chart configures the first fact value to display as a bar and the second 
fact value to display as a line. In order to switch the bar and line facts on the chart, 
right-click on a bar fact element in the Data Layout window and select Display As 
Line as shown in the following screenshot:



Creating a Simple Dashboard

[ 56 ]

Similarly, a line can be switched to a bar by right-clicking on a line fact element and 
then selecting Display As Bar as shown in the following screenshot:

Customizing the Bar-Line Chart
Similar to the Stack Bar chart, the Bar-Line chart default settings are not particularly 
well-suited to be displayed on a dashboard. The following content discusses the 
configuration of the line properties on the chart. The properties of the bar object are 
configured using the same steps as described in the Creating the Vertical Stack Bar  
Chart section.

Ignoring Null Values
Hide null values on the line objects by checking the Ignore null values option on the 
Data Labels tab of the line Properties dialog box:

Turning off right values
When facts are added to the Bar-Line chart, the default setting configures the lines 
to use the right axis and the bars to use the left.  Any underlined facts in the Data 
Layout pane are using the right axis. Double-click an underlined fact to force the 
Lines and Bars to both be measured on the left axis. If the right axis is needed for 
chart formatting, but is not needed for display on the dashboard, the right axis labels 
can be turned off by unselecting the Show values at right option to further maximize 
the display space.



Chapter 3

[ 57 ]

Line properties
Lines have additional options to modify the properties of both the line and the data 
marker. Adjusting these settings makes the line more visible on the dashboard:

 



Creating a Simple Dashboard

[ 58 ]

Customizing the grid
The default Bar-Line chart is configured to show only the Y-Axis grid lines, which 
creates horizontal lines. Adding vertical grid lines will make the chart easier to read 
when it is presented on the Dashboard section. Vertical grid lines are configured by 
right-clicking with the chart highlighted and selecting Show X Axis Grid Lines to 
toggle the display of vertical grid lines:

Grid lines on the X-Axis are especially good at keeping the relationship between the 
axis and the line data clear when no bar data entries exist. The following screenshot 
shows the example Bar-Line chart ready to be imported on the example dashboard:



Chapter 3

[ 59 ]

Displaying pivots
Pivot sections can be configured on the dashboard in an active and inactive state. 
When inactive, Pivot sections are great for displaying static data and provide the 
ability to have actions occur when clicked. When active, Pivot sections provide 
interactivity allowing for powerful dashboard slice-and-dice functionality directly in 
the dashboard.

This section will discuss the creation of three Pivot sections for the dashboard 
from two Query sections, where both inactive and active pivots are demonstrated. 
Additionally, this section will discuss how to limit Drill Anywhere paths using 
Table sections and the methods for creating ranking pivots without using JavaScript.

Creating a simple pivot
Pivot sections are great for displaying data on a dashboard. This section will 
discuss the steps to create a simple Advertising pivot showing year-to-date (YTD) 
advertising costs across Product Lines for the sample dashboard:



Creating a Simple Dashboard

[ 60 ]

Creating the parent query
The first step in creating the Advertising pivot is to create a simple query to produce 
the data set for the pivot. The example query to support the Advertising pivot uses 
the Periods Months, Advertising Fact, and Product tables with joins on the table 
keys. The example query uses the Advertising Cost and Product Line elements in 
the Request line with the Sum function applied to the Advertising Cost element.

Limiting by YTD and country
Best practice data warehouses contain a table typically referred to as a date 
dimension that stores dates with related information, such as fiscal year, quarter, 
calendar month, and other formats and custom values. With a date dimension, 
complex date and time manipulation is avoided and system usability is increased. In 
the sample database, the Periods Months table serves as a date dimension.

In the dashboard example, the Advertising query must be filtered to view only 
the current year data. Since a date dimension table exists, logic for filtering for the 
current year does not need to be developed. Instead, the Year field from the Periods 
Months table is set to the current year. Additionally, the Country field filter is added 
to filter the data to only records related to USA advertising.

Renaming Request line items
Similar to the way in which Request line items can have calculations applied to 
them, Request line items can also be renamed. It is always a good idea to make sure 
that column titles are representative of what the fact is reporting. As date filters are 
applied to the query, the Advertising Cost field would be better represented with 
the name YTD Advertising Cost to better describe the values returned from the 
database. The name change is completed by double-clicking Advertising Cost in the 
Request line to open the Item Properties dialog box and changing the item name to 
YTD Advertising Cost:

 

The following screenshot displays the Advertising query ready for processing:



Chapter 3

[ 61 ]

After processing, the fact column title displays the updated name of the data element 
renamed in the Request line. The following screenshot displays the Advertising 
query after query processing is complete:

Following the completion of the query, the Product Line and YTD Advertising Cost 
are easily placed in a Pivot section to create the Advertising Cost Pivot section for 
the dashboard. The following content will highlight additional methods to use with 
Pivot sections, including pivot formatting.



Creating a Simple Dashboard

[ 62 ]

Ranking and Pivot Drill path configuration 
While previous examples have demonstrated separate Query sections for each 
dashboard object, it is productive to produce dashboard objects from a single query 
when the objects utilize a similar set of results. Since Table sections can be used to 
segment content and enhance the data set through Computed Items, the reduction of 
multiple Query sections allows for the same functionality with reduced data storage 
and processing time.

To demonstrate this concept, the q Sales and the r Sales sections are utilized 
to produce the Product Family and Store Sales reports. The q Sales query is 
constructed from the Periods Days, Products, Sales Fact, Stores, and Regions tables. 
The query contains the Store Name, Product Line, Product Family, Amount Sales, 
Year, Quarter, and Month Name Abbreviated with a data filter on Country to 
display only stores located in the USA. Within the Request line, the Sum function is 
applied to the Amount Sales element and the Month Name Abbreviated element 
is renamed to display Month. The following screenshot displays the q Sales query 
configured for processing:



Chapter 3

[ 63 ]

When this query is processed, the Amount Sales by Product Family is returned as 
shown in the following screenshot:



Creating a Simple Dashboard

[ 64 ]

From the data results, a table and pivot are created to support both the Top 5 Stores 
view-only Pivot section and the Sales by Product active Pivot section on the BMV 
USA Executive Dashboard.

Displaying ranked dimensions
Ranking is a powerful way to identify the most positive or negative contributions. 
In the case of the BMV USA Executive Dashboard, a table is created that displays the 
top 5 stores with the highest sales revenues.



Chapter 3

[ 65 ]

With the Computed Item dialog box open, select Functions and navigate to the Sum 
function in the Numeric Functions category. Set the Sum function parameters to 
aggregate Total Sales broken by Store Name:

 

Pressing OK closes the Functions dialog box, which will display the code in the 
computed item as shown in the following screenshot:



Creating a Simple Dashboard

[ 66 ]

The code populated by the Functions window can be further modified or enhanced 
as desired on this screen. Pressing OK to accept any code changes will create an 
additional column within the Results section to apply this calculation.

Upon completion of the Sum function, a Rank function must be added to the Total 
Sales column. The Rank function will rank the highest value at number 1.  Insert 
a new Computed Item called Sales Rank. Use the Functions dialog box to select 
the Rank function under the Statistical functions category and rank the Total Sales 
broken by Store Name.

When there is a need for a filter on an aggregated or ranked Computed 
Item, the filter must be performed in a child table. The order of operations 
for the execution of Computed Items within Interactive Reporting does 
not allow for the filtering of any comparative calculations, such as rank, 
sum, next, or prior within the same table section.

The first step in creating this object is to determine the Total Sales for each store. 
A Computed Item must be created to summarize the total for each store. With the 
addition of the Sales Rank column, the dataset is prepared to be filtered to determine 
the top 5 performing stores by Total Sales. As filtering on the rank column must take 
place in a dependent section, insert a new Table section. Add Store Name and Total 
Sales to the Table section from the Elements pane and a filter on Sales Rank to 
include only rows where the Sales Rank value is less than or equal to 5.



Chapter 3

[ 67 ]

Then, insert a Pivot section and add the Store Name to the Row Labels and the 
Amount Sales to the Facts, as shown in the following screenshot:



Creating a Simple Dashboard

[ 68 ]

Add Data Labels to the Row dimensions by choosing Row in the Corner Labels 
right-click menu, as shown in the following figure:

The Row Labels provide a row title for the columns within the pivot. Set the 
formatting of the pivot to change colors, fonts, numeric formatting, and any 
miscellaneous visual properties. The following screenshot displays the modified font 
and color of the Row Labels:



Chapter 3

[ 69 ]

Limiting Drill Anywhere paths
Drill Anywhere, or drill path, options can be limited by using only the desired 
drillable data elements in the parent table of the section. Configuring a Table section 
with a reduced number of columns allows for hiding data columns used by other 
objects when the user of the report is utilizing the Drill Anywhere capability on a 
chart or pivot.

To create a pivot with limited Drill Anywhere options, insert a new Table section. 
Add only the columns needed to support the pivot and the desired Drill Anywhere 
options and disregard any other data elements from this Table section. The 
following Table section, t Store Sales, displays a subset of the r Sales columns:

 



Creating a Simple Dashboard

[ 70 ]

Once the new Table section is created, populated, and highlighted, add a new 
Pivot section so it indents under the t Store Sales Table section. Add and format 
dimensions and facts to be displayed to the user by default as shown in the following 
screenshot. Right-click on a dimension and choose Drill Anywhere to see the lateral 
drill paths available to the user on the dashboard as shown:

Setting the default pivot formatting
When end users drill through active pivots, items added to the pivot will follow 
the default pivot options set within the document when the document was created. 
To reduce the manual pivot formatting, the default pivot formatting should be 
consistent with the display properties of the pivot, as items added to the pivot will 
follow the default pivot options unless the options are overridden in the pivot.

To set the program's default formatting style, navigate to the Default Formats in the 
Options submenu located in the Tools menu:



Chapter 3

[ 71 ]

Set the default values for Data Values and Labels on the Pivots table of the Options 
dialog box as shown in the following screenshot:



Creating a Simple Dashboard

[ 72 ]

Overriding the default pivot formatting
The default pivot formatting is overwritten by selecting Ctrl+A on a Pivot section 
and then setting the formatting of the whole pivot to the formatting desired for the 
Row Labels. This formatting will be the default format for any new value added to 
a pivot. Once the default formatting is set, then the formatting of the Facts can be 
changed to a different formatting to support color variation between Facts and Row 
Labels. Even though the Fact formatting is changed, any new addition to the Row 
Labels will retain the new formatting settings. 

Creating a simple dashboard
Now that all of the preparation is complete, the Dashboard section is ready to be 
created and populated. This section will discuss the methods for adding previously 
created data-driven components to the dashboard as well as steps to introduce 
adding graphics, controls, and basic user interactivity.

Dashboard sections have a Run Mode and a Design Mode. When a new Dashboard 
section is inserted into Interactive Reporting, the section starts in Design Mode. 
When the dashboard is in Design Mode, dashboard objects can be added and edited. 
When the dashboard is set to Run Mode, the dashboard is fully operational for use 
by the user community.

Run Mode and Design Mode are toggled by using the Ctrl+D keyboard method, by 
using the Design Mode button on the Section toolbar, or by using the Design Mode 
toggle under the Dashboard menu as shown in the following screenshot:



Chapter 3

[ 73 ]

The rulers are displayed only in Design Mode.

Adding dashboard objects
Objects are added to the dashboard using the Elements window displayed in 
the bottom left of the next screenshot. The Elements window has a tree structure 
displaying content across the sections in the document as well as configurable objects 
native to the dashboard such as Controls, Live Charts, and Gauges. To add objects 
to the dashboard, navigate to the desired object in the Elements pane and drag-and-
drop the element to position it on the dashboard. Once the object is added, it can be 
resized as needed. The following screenshot displays the sample dashboard with all 
of the embedded sections added, resized, and positioned:



Creating a Simple Dashboard

[ 74 ]

Adding graphics and controls
In addition to adding sections of the document to the dashboard, objects such as 
images, labels, and buttons can be added to enhance the dashboard display and 
to add user interactivity. This section touches on the addition of graphics to a 
Dashboard section and the following chapters will discuss the use of controls with 
custom programming.

Graphics are added to the dashboard by dragging an object from the Elements pane 
to the dashboard while in Design Mode. The most common graphic is the Text Label 
object, which is used to provide titles and text descriptions. Lines and shapes are 
also used to define borders and separate content. The effective use of graphics will 
significantly enhance the dashboard display and visual appeal.

Adding custom images
Custom pictures, such as company logos, can be easily added to a Dashboard section 
using the Picture graphic. Drag the Picture graphic to the dashboard and, when 
prompted, choose the graphic from the file navigator. Use the Picture tab in the 
Properties menu of the Picture object to modify display properties of the picture.



Chapter 3

[ 75 ]

Adding Hyperlinks
The Hyperlink dashboard control object creates hyperlinks from a dashboard 
to either repository objects or external web pages. Hyperlinks are added to the 
dashboard by dragging the Hyperlink object from the Control group in the Elements 
pane to the dashboard. The Hyperlink name can be edited similar to a Text Label on 
the dashboard, but the link properties must be configured by selecting the Properties 
of the Hyperlink object. A URL can be supplied and the Display Method can be 
configured to allow the link to open in either a new window or the current widow. 
Future chapters will discuss advanced techniques regarding the methods for using 
the Hyperlink control to create dashboard menus linking dashboards in different 
Interactive Reporting documents.

The following screenshot shows the full configuration of the dashboard with an 
image, title, and hyperlinks to outside documents:

www.allitebooks.com

http://www.allitebooks.org


Creating a Simple Dashboard

[ 76 ]

Basic interactivity
Interactive Reporting provides dashboard interactivity for Chart and Pivot sections 
without the need to use JavaScript customization. Chart and Pivot sections placed 
on a dashboard by default have no interactivity. However, charts and pivots can 
be made interactive by setting the embedded section property to either Active 
or Hyperlink. The sections can be modified by selecting the desired object on the 
dashboard and use the right-click menu to select the Properties of the object. Notice 
the configuration change of the embedded section setting from View-only to Active:

Active dashboard objects allow users to perform analytical operations, such as drill, 
focus, and hide, within the embedded section object without leaving the dashboard:



Chapter 3

[ 77 ]

The Hyperlink option invokes code in the onClick method of the object when a 
user clicks on the object in Run Mode. The default code behind each object takes 
the user from the Dashboard section to the section that was clicked, where the user 
can perform analysis directly on the specific section. Future chapters will discuss 
modifying the default hyperlink behavior to navigate to other dashboard sections for 
further analysis.

Gauges
In addition to the items discussed on the sample dashboard, Gauges are a more 
recent addition to Interactive Reporting and are used to display a quick view of a 
key business indicator. The gauges in Interactive Reporting are limited to a Bullet, 
Speedometer, Thermometer, and Traffic Light. Each gauge has a Configuration tab 
in the gauge properties, allowing for the custom configuration of the thresholds of 
each object when the dashboard is in Design Mode.

Configuring gauges
When a gauge is added to a dashboard, the gauge must be populated with data 
elements produced from a query, and the properties of the gauge can be configured 
to produce the desired view of interest. The following image is a sample of each of 
the four gauges on a dashboard:



Creating a Simple Dashboard

[ 78 ]

Each gauge contains a Fact element and all of the gauges besides the Traffic Light 
contain a Target Fact element. When a gauge is clicked and highlighted on the 
Dashboard during design, a Data Layout window appears at the bottom of the main 
screen with areas to add data elements from Results or a Table section. Dragging-
and-dropping the desired elements from the Elements window into the Data Layout 
area will configure and populate the object with data. After adding the elements to 
the section, toggling the Dashboard to Run Mode will display the populated object.

When viewing the gauges (other than the Traffic Light), notice the gauges show 
the Fact in either the black line or speedometer needle and the Target Fact is 
displayed with the blue object. The Stoplight does not contain similar features, but is 
configured to display a color status based on a range of values. All of the gauges are 
dynamic and are updated based on the data contained in the referenced query.

Gauge properties and color ranges
Notice the color ranges specified on the gauge objects. Each of these ranges is 
configured in the Properties menu of each gauge. The Properties menu of the 
gauge is accessed by highlighting the gauge on the Dashboard, right-clicking, and 
selecting the Properties menu item or by highlighting the gauge and then selecting 
the Properties menu item from the Dashboard menu. The following image is an 
example of the Bullet gauge Properties menu open to the Bullet tab:



Chapter 3

[ 79 ]

Each gauge object contains a gauge-specific properties tab, where the tab provides 
the same general settings as the previous screenshot where the Theme, Style, and 
Color Range settings exist for each gauge type. In the example screenshot of the 
Gauge Properties, the default configuration is used and Color Range has been 
configured based on the data in the Sales sample to show the different color ranges 
on the gauge. When configuring a Color Range, Min and Max values as well as the 
desired color are required. However, the min of the first range and the max of the 
final range can be left blank to specify no bound on the lower and upper ranges of 
the gauge. In addition to the range and color, the Tooltip setting is used to add a text 
label to the gauge. The tooltips are displayed when the mouse cursor is highlighted 
over the Color Range in the gauge. Pressing the Add button allows for additional 
ranges. The other tabs in the Properties menu are specific to setting the generic 
object, number, and font formatting for the gauge.

Live Charts
Live Charts are also a more recent addition to Interactive Reporting and are similar 
to a Chart section but can only be used in a Dashboard section. There are six types 
of charts including Bar, Block, Funnel, Line, Pie, and Radar. The Live Charts are 
limited in functionality compared to the Chart section, but Live Charts are more 
graphically appealing and scale better than the Chart section when used on a 
dashboard.

Configuring Live Charts
Configuring the Live Chart objects is similar to configuring Gauges. When a 
Live Chart is added to a dashboard, the Live Chart must be populated with 
data  produced from a query. Additionally, the Properties of the Live Chart can 
be modified to produce the desired Chart display of interest. The following two 
screenshots are examples of the six types of Live Charts available for use in the 
document.



Creating a Simple Dashboard

[ 80 ]

The next screenshot shows the Block, Pie, Funnel, and Radar Live Charts:

The following screenshot displays an example of a Bar and a Line Live Chart:



Chapter 3

[ 81 ]

When the dashboard is under design, clicking and highlighting the Live Chart will 
bring up the Data Layout window. Each Live Chart contains a Fact area and chart 
specific non-fact areas for adding data elements. Dragging-and-dropping the desired 
elements from the Elements window into the Data Layout area will configure and 
populate the object with data. After adding the elements to the section, making the 
dashboard active will display the Chart populated with data. The Live Charts are 
dynamic with the data contained in the related Results or Table section. Any changes 
to the data will update the display of the Live Chart on the Dashboard. 



Creating a Simple Dashboard

[ 82 ]

Live Chart properties
Similar to Charts and Gauges, Live Charts contain a chart-specific tab in the Properties 
window for modifying the Live Chart display. The Properties menu of the Live 
Chart is accessed by highlighting the Live Chart on the dashboard and right-clicking 
and selecting the Properties menu item, or by highlighting the Live Chart and then 
selecting the Properties menu item from the Dashboard menu. The following image is 
an example of the Bar Live Chart Properties menu open to the Bar tab:

The chart-specific properties tab provides all of the features that can be modified for 
the Live Chart. This menu provides the ability to modify the chart display features, 
axis scales, legend, and labels for each of the chart objects. The other tabs are used 
for setting the formatting of the chart and the Object tab contains a text box for the 
chart Title.

 



Chapter 3

[ 83 ]

Summary
The goal of this chapter was to present the steps to create content for a simple 
dashboard and the steps to display the content on a Dashboard section. The chapter 
begins with a discussion on dashboard planning and the steps used to produce 
effective dashboards. The chapter continues with an introduction to the BMV USA 
Dashboard example and then progresses to creating sample pivot and chart content 
for the example dashboard. An overview of custom drill paths and methods for 
creating a Top 5 pivot are discussed, and the methods for creating and formatting 
Stacked Bar and Bar-Line charts for dashboards were presented. Then the methods 
for configuring and displaying content on a Dashboard section was discussed with 
an introduction to images, graphics, and hyperlinks, and adding interactivity on the 
dashboard without custom programming through active pivot and chart features. 
Finally, Live Charts and Gauges were discussed to provide an introduction to newer 
dashboard specific objects to provide additional dashboard flexibility. The next three 
chapters will explain methods for adding interactivity to the sample dashboard.





Introducing Dashboard 
Interactivity

The next steps in building an advanced dashboard is expanding from the 
introductory dashboard knowledge presented in the previous chapter to creating 
custom interactive components, modifying presentations sections, and applying 
filtering. This chapter will build upon the dashboard example in Chapter 3, Creating 
a Simple Dashboard, to create a customized dashboard with interactive components, 
including examples of several commonly-used Hyperion Interactive Reporting 
dashboard components and approaches.  

This chapter will present approaches using JavaScript as well as key controllers 
and graphics tools, including the role the tools play in providing intuitive and 
useful dashboard capabilities to end users. The goal of this chapter is to provide 
the building blocks for creating a master dashboard layout with start-up scripts, 
navigation, controls, and dynamic objects.

At the end of this chapter, the reader will have a better understanding of the 
following concepts:

•	 Dashboard Section Objects
•	 Creating a Master Dashboard
•	 Implementing Custom Dashboard Navigation
•	 Toggling Object Visibility using Radio Buttons
•	 Modifying Pivot and Chart facts using a Drop-Down Control



Introducing Dashboard Interactivity

[ 86 ]

Dashboard Section Objects
Dashboard Graphics and Controls are objects authors use to customize Dashboard 
sections beyond embedding presentation sections such as Charts and Pivots onto 
the Dashboard. The Graphics and Controls objects can be combined allowing report 
authors the option to provide custom tailored Dashboards that are consistent with 
the visual presentation for the end user. This section introduces the different types of 
Dashboard Graphics and Controls available to report writers for creating interactive 
Dashboards that are functional and visually appealing.

Graphics
Dashboard Graphics are commonly used to enhance the look and feel of a 
Dashboard section. When customized with JavaScript, Graphics can also be used to 
provide button-click interactivity.

Several shapes are made available to report authors to customize the visual 
properties of a Dashboard section. These shapes, Rectangle, Rounded Rectangle, 
Line, Hz Line, Vt Line, and Oval can be layered and customized to provide visual 
characteristics that are consistent with an established image or branding.

Text Label Graphics can be dynamic data labels, such as a date to indicate when the 
data was last refreshed, or static labels such as section headings. Text Labels are also 
very well-suited for making custom buttons, since the Command Button Dashboard 
Control has very few customization options.



Chapter 4

[ 87 ]

Picture Graphics display images. It is best to resize, crop, or perform modifications 
to the image outside of Interactive Reporting, as the properties of the Picture Graphic 
do not provide many options for modification.

Each time a Picture is placed on a Dashboard section, the image is saved as a 
resource. Resources are custom dashboard objects, usually images, imported by 
report authors. Images placed on the dashboard using the Picture Graphic are 
automatically saved as resources even if the Picture is a duplicate. Use the Resource 
Manager accessible from the Tools menu to remove unused or duplicate resources.

Controls
Controls are dashboard objects that provide interactivity to the end user. The most 
effective dashboards use controls that are intuitive for the end user to understand 
and are consistently applied across documents within the same application. In fact, 
a key consideration when planning for user interactivity is ensuring that Controls 
remain as consistent as possible across dashboards and applications, as this will 
expedite user adoption of the dashboards. From a development perspective, the 
combinations of functionality and overall look of dashboard Controls are practically 
limitless with significant flexibility and customization allowed.

The following screenshot displays the Control objects available to customize a 
Dashboard section:



Introducing Dashboard Interactivity

[ 88 ]

The Command Button dashboard Control is an object that can be clicked by the user. 
While other objects can also behave like Command Buttons, this is the only object 
with an on-press visual event to give the user a clear indication that the object has 
been clicked. 

Radio Button dashboard Controls are used when the user is presented with a group 
of options, only one of which may be selected. Radio Buttons are used in situations 
where the options are well defined and a selection is required. The Group Name 
property is the name of the group that a Radio Button belongs to. Users can select 
only one option per radio group.

The Check Box dashboard Control object allows users to make more than one 
selection from a defined list. This object is well suited for sections where the 
responses are limited and where the user is allowed to make multiple selections. A 
good example of using a Check Box would be to allow users to select the quarters a 
chart covers, as the number of options represented are static. 

List Box dashboard Control objects present users with the option to select one or 
more values from a predefined list. The values available to the user, commonly 
called the List of Values (LOV), can be either static, meaning they never change, or 
dynamic, meaning they change automatically.

The Drop Down dashboard Control allows the user to select only one item from a 
list of available values. Like List Box controls, Drop Down Controls can also contain 
either static or dynamic LOVs.

Text Box Controls are text areas that can be edited by the user. Since the values 
entered into the Text Box can be accessed using the Title property of the Text Box, 
JavaScript can be used to read the value supplied by the user. Searches requiring the 
user to supply a date filter are good examples of when to use this Control.

The Embedded Browser Control is very similar to an embedded section except 
the content is rendered in a web browser object and referenced by an URL. The 
reference URL can be an external webpage or image, such as a company portal, help 
document, or another Interactive Reporting document.

Hyperlink Controls, introduced in Chapter 3, Creating a Simple Dashboard, create 
traditional web links to external documents, web pages, or other Interactive 
Reporting documents. The location of the linked content is defined by the report 
author and can be set to in a new window or the current window.

The Slider Controls are used to control the indicator for one or more associated 
Gauge within the same Dashboard. This Control can be tied only to existing Gauges.



Chapter 4

[ 89 ]

Creating a Master Dashboard
A Master Dashboard is a Dashboard section that acts as a template for the visual 
properies and placement of objects repeated across one or more Dashboard sections 
to easily enforce visual consistancy. During the development process, the Master 
Dashboard is replicated each time a new dashboard is added and is either hidden or 
removed when the document is prepared for production. While use of the Master 
Dashboard is not compulsory when creating an Interactive Reporting document with 
more than one Dashboard section, it can greatly decrease the hours spent during the 
development phase as it eliminates the need to recreate the dashboard elements for 
each Dashboard section.  

In addition to the visual properties and placement of the objects, any repetitive 
shape-specific code can also be included in the Master Dashboard template. Any 
code included in this manner is duplicated across the Dashboard sections that use 
those shapes.

This section discusses the specific concepts required to create the Master Dashboard 
shown in the following screenshot:

This Master Dashboard will be used to create a new BMV Executive Dashboard 
from the example from Chapter 3, Creating a Simple Dashboard. 



Introducing Dashboard Interactivity

[ 90 ]

Placing Objects
The sample Master Dashboard for the BMV Executive Dashboard uses Graphics and 
Controls to define a customized visual style. This example uses Rectangle, Rounded 
Rectangle, and Text Label Graphics as well as the Drop Down, List Box, Command 
Button, and Hyperlink Controls.

When created, each dashboard object is automatically assigned to a layer. The first 
item created is assigned to the first layer, also referred to as the background, and 
the last object created in the top layer, also referred to as the foreground. The layer 
feature allows report authors to modify the default layer an object is assigned to, 
allowing objects to be stacked on top of each other to control the visibility of all or 
part of an object.

The options available to report authors for moving object layers within a Dashboard 
section are: 

•	 Bring To Front: The selected object will be assigned to the front-most layer 
and all other objects will appear behind it.

•	 Send To Back: The selected object will be assigned to the bottom layer and 
all other objects will appear in front of it. 

•	 Bring Forward: The option will move the selected object one step closer to 
the front. 

•	 Send Backward: This option will move the selected object one step 
backward. 

To change the layer of an object, first select the object to be moved. Using either the 
Layers submenu in the Format menu or by using the Layers Tool icon located within 
the Section toolbar, select an option to move the object. The following screenshot 
shows a close-up view of the Layers Tool icon in the Section toolbar:

 

The Align feature is another useful formatting tool which allows report authors 
to align two or more objects with each other. Report authors can choose to align 
selected object both horizontally or vertically.



Chapter 4

[ 91 ]

The options available for aligning two or more selected objects are: 

•	 Left: This option will align all objects to the left-most point within the 
selected objects.

•	 Right: This option will align all objects to the right-most point within the 
selected objects.

•	 Center: This option will align all objects to the average center point within 
the selected objects. 

•	 Top: This option will align all objects to the top-most point within the 
selected objects.

•	 Bottom: This option will align all objects to the bottom-most point within the 
selected objects.

•	 Middle: This option will align all objects to the average vertical midpoint 
within the selected objects.

To align two or more objects, hold the Ctrl key and click on each object to be aligned. 
With the objects selected, access the Align submenu in the Format menu or the 
Align Tool icon in the Section toolbar and choose the desired alignment option. The 
following screenshot shows a close-up view of the Align Tool icon in the Section 
toolbar:

 

The Make Same Size feature makes two or more objects of the same height and/
or width as the first object selected. Report authors can use this feature to make 
multiple Dashboard objects exactly the same height or width automatically. 

The Make Same Size options are:

•	 Width: This option will make all selections the same width as the first object 
selected in the group.

•	 Height: This option will make all selections the same height as the first object 
selected in the group.



Introducing Dashboard Interactivity

[ 92 ]

•	 Both: This option will make all selections the same width and height as the 
first object selected in the group.

To use the Make Same Size feature, hold the Ctrl key and click each object to select 
all of the objects to be resized. With the objects selected, access the Make Same Size 
submenu in the Format menu or the Make Same Size tool in the Section toolbar, as 
shown in the following screenshot:

 

Implementing Custom Dashboard Navigation
Dashboard navigation can be implemented to provide end users with links to both 
internal and external document sections and to other websites. This provides report 
authors the ability to create customized navigation structures beyond the options 
supplied by default. In the sample Master Dashboard, there are two navigation 
menus. One menu navigates the end user to other Dashboard sections within the 
same document, and the other navigates the end user to links that are external to the 
document.

Scripting Internal Navigation 
To navigate between sections within the same document, the OnClick() Event 
Trigger of almost any Graphic or Control can be used. However, Graphic objects, 
especially the Text Label, provides a wide range of visual customization options. The 
BMV Executive Dashboard example uses text labels to allow the end user to navigate 
between Dashboard sections.

For example, the code required to display, or activate, the Home section is as follows: 

ActiveDocument.Sections["Home"].Activate()

Notice in the code, the Home section is referenced by name. If the name of the Home 
section were to change, this code would also have to be adjusted since the section 
name is directly referenced. While the Home section could be referenced instead 
by its index in the Section collection, this would still require maintenance on all 
supporting dashboards if the Dashboard designated as Home were to change.



Chapter 4

[ 93 ]

A better solution is to synchronize the names of the Dashboard sections with the 
text displayed on the navigation link. For example, the Text Label representing the 
link to the Home Dashboard section would also display the text Home through the 
Text Label's Title property. This synchronization allows report authors to leverage 
a concept called Reflection to access the properties of the text labels without 
addressing the object by name or collection index. Consider the following code 
statements:

//Statement 1: 
ActiveDocument.Sections["Home"].Activate();

//Statement 2:
ActiveDocument.Sections[tlHomeNav.Text].Activate();

//Statement 3:
ActiveDocument.Sections[this.Text].Activate();

Assuming that the Text property of the tlHomeNav object is equal to Home, meaning 
the Text Label displays Home to the user, and this code is applied to the OnClick() 
Event Trigger of the tlHomeNav text label, all three statements will activate the 
Home Dashboard section when tlHomeNav is clicked by the user. Statement 1 is the 
code required to activate the Home Dashboard section as described previously in 
this section. Statement 2 accesses the Text property of tlHomeNav, which is Home, 
and then activates the Home Dashboard section. Statement 3 leverages Reflection to 
access the Text property of this, which references the tlHomeNav text label when 
clicked, and then activates the Home section.

While each of these three statements will end with the same results, the third 
statement can be reused because it does not reference the name of the section or the 
name of the object directly. For report authors, this means that as long as the text 
displayed to the user matches the section to be activated, the statement will work 
without modification.

External Navigation
As introduced in Chapter 3, Creating a Simple Dashboard, Hyperlink Controls are used 
to link to external documents from Interactive Reporting. The Hyperlink Control is 
the only supported option for linking to external documents when the Interactive 
Reporting document is presented in Interactive Reporting Studio or the Interactive 
Reporting Web Client plug-in. However, when an Interactive Reporting document is 
presented to the end user in HTML mode through the Hyperion Workspace, HTML 
code can be used in sections. This means the @HTML command and the JavaScript 
link() method can be used to create HTML links in addition to using the Hyperlink 
control.



Introducing Dashboard Interactivity

[ 94 ]

Since leveraging Hyperlink Controls to link to external URLs and document paths 
was already discussed in Chapter 3, Creating a Simple Dashboard, this section focuses 
on using Hyperlink Controls to link to other Interactive Reporting documents. The 
use of the Hyperlink Control in this manner requires that the document be published 
in, or have access to, an online Hyperion Workspace environment. When selected, 
the option to link to a repository object steps the report author through the process 
of creating a link to an object in the Workspace. This approach allows the user to add 
additional parameters such as the displayed section and whether the document opens 
in HTML or plug-in mode. Similar activities can be performed by using the Smart Cuts 
path as the URL to the report, but as these Smart Cuts need to be updated if the main 
URL of the site changes, this approach may require more maintenance than using the 
repository object method.

Creating Supporting Dashboard Sections
With the Master Dashboard completed, additional supporting Dashboard sections 
can be created by simply duplicating the Master Dashboard and then renaming it as 
desired. This section of the chapter focuses on creating a loading Dashboard, a Home 
(default), and a supporting details dashboards created from the Master Dashboard.

Loading Dashboard Section
Using a Dashboard section and JavaScript code, report authors can customize a 
loading screen with a message, either static or dynamic, that can be displayed to 
the end user. These screens are commonly used when the document is opened and 
document processing commands are executed, most commonly the processing of 
Query sections. The message is used to let the user know the application is still 
running and did not freeze while opening.

 



Chapter 4

[ 95 ]

To build the loading message in Interactive Reporting, it is necessary to create a new 
Dashboard section specifically for the loading message. There should not be any 
interactive elements or any data driven objects on the Loading Dashboard, since this 
section will be shown to the user before any other code is executed and then replaced 
with the active Dashboard when all of the preprocessing is complete. The following 
screenshot shows the Loading Dashboard section created for the BMV Executive 
Dashboard example:



Introducing Dashboard Interactivity

[ 96 ]

Home Dashboard Section
The Home Dashboard is the main dashboard. In the case of the BMV Executive 
Dashboard example, it presents a top-level view of data presented across all 
Dashboard sections. Since it will be the section the user sees first, the different data 
views have been grouped together so the user can quickly assess the data presented 
in a single screen. The following screenshot shows the expected final product of the 
BMV Executive Dashboard Home section:

By default, all of the Chart and Pivot embedded sections are inactive, meaning the 
end user cannot click or drill on them. By opening an embedded section's properties, 
and changing from the default View-only to Hyperlink, the shape can be used a 
link. This activates the OnClick() event trigger for the embedded section, allowing 
the report author to customize the user's interaction with the object.



Chapter 4

[ 97 ]

An Embedded Section with the Hyperlink feature enabled will prepopulate the 
Hyperlink code of the section to activate the respective section by default. In the case 
of the example dashboard, the embedded section representing the Plan v Act data 
should link to the Plan v Act Dashboard section when the end user clicks on it. The 
following screenshot shows the system-generated JavaScript for the OnClick() event 
trigger of the chPlanvAct chart object in the BMV Executive Dashboard once the 
Hyperlink option is set.

The section to be displayed, or activated, is the section referenced between the [ ] 
characters. Note that the default section in the code is the Chart section that was 
embedded on the screen. The following code displays how the default script should 
be modified to display the Plan v Act supporting dashboard instead of the c Plan 
v Act Chart section:

/* Activate the Plan v Act Dashboard section*/
ActiveDocument.Sections["Plan v Act"].Activate()



Introducing Dashboard Interactivity

[ 98 ]

Detail Dashboard Sections
The purpose of a detail Dashboard section is to provide the user with an opportunity 
to perform a deeper level of analysis than that which is provided on the Home 
Dashboard. The following screenshot shows the Plan v Act detail dashboard of the 
BMV Executive Dashboard sample, which allows end users to analyze revenue, cost, 
and units plan versus actual data in either a Chart or Pivot.

This section will discuss the process of allowing users to toggle visibility between 
a Chart or Pivot section using the Radio Button Controls, and how to dynamically 
change the facts of a Pivot or Chart section based on a selection made with a Drop 
Down Control. 

Toggling Between Objects
The Plan v Act Dashboard in our example allows a user to choose between seeing a 
Pivot or Chart view of the data. This is accomplished by using Radio Button Controls 
to change the Visible property of identically-sized embedded sections that are 
layered on top of each other. When a Radio Button is selected, the Visible property of 
one of the embedded section is set to true and the other to false.

When applied to the OnClick() event trigger of the Pivot Radio Button Control, the 
following code will set the Visible property of the embedded Pivot section to true 
and the Visible property of the embedded Chart section to false when selected by 
the user.

// Show the pPlanvAct shape by setting visible to true
ActiveDocument.Sections["Plan v Act"].Shapes["pPlanvAct"].
Visible=true;

// Hide the cPlanvAct shape by setting visible to false 
ActiveDocument.Sections["Plan v Act"].Shapes["cPlanvAct"].
Visible=false;

The first statement sets the Visible property of the pPlanvAct embedded Pivot 
section to true, making it visible to an end user, and the second statement sets the 
Visible property of the cPlanvAct embedded Chart section to false, hiding it from 
the user. Alternatively, report designers can leverage the relationship between the 
Dashboard section and the Shapes collection to accomplish the same result. The 
following code shows the revised statements using a direct reference to the Shapes 
collection:



Chapter 4

[ 99 ]

// Show the pPlanvAct shape by setting visible to true
pPlanvAct.Visible=true;

// Hide the cPlanvAct shape by setting visible to false
cPlanvAct.Visible=false;

This code works because objects on a Dashboard section belong to a collection of 
shapes accessible only by that Dashboard. This allows code that remains in the local 
scope of the Dashboard to access shapes by name.

In order to toggle the Chart and Pivot visibility, the second Radio Button Control 
must set the Visible properties of the two embedded sections to be the opposite 
of the Visible properties from the first option. The following code sets the Visible 
property of pPlanvAct to false and cPlanvAct to true:

// Hide the pPlanvAct shape by setting visible to false
pPlanvAct.Visible=false;

// Show the cPlanvAct shape by setting visible to true
cPlanvAct.Visible=true;

With the code in place on both buttons, the end-user is now able to toggle between 
related data in a Chart or Pivot section.

Modifying Element Facts
Presenting the end user the option to control the Plan v Actual fact displayed 
using a Drop Down Control can be accomplished using a few different methods. 
One approach would be to set up a Chart and Pivot for each of the three factual 
views views, using the logic demonstrated to toggle the visibility of the embedded 
sections. However, this method would result in both an increased document load 
time and an increased dashboard load time. Another approach is to use JavaScript 
to programmatically switch the data in both sections, requiring only one Chart 
section and one Pivot section. Using this approach, the need for redundant document 
sections is eliminated, since the same sections will be used for all three data displays.

From a functional standpoint, the facts displayed on the Chart and Pivot section are 
determined by a Drop Down Control on the Dashboard. This is accomplished in the 
code by first reading the selected value in the drop-down list, swapping the data on 
both the Pivot and the Chart, and finally performing any formatting.

To begin, add a Drop Down Control to the dashboard. With the drop-down menu 
selected, right-click and choose Properties. Click on the Values tab to view the list of 
values displayed for the user to choose.



Introducing Dashboard Interactivity

[ 100 ]

To add a value, type the text which will be displayed to the user in the List Value 
textbox, and click on the Add button to add it to the list of values to be displayed.

 

By default, the values are presented in the order entered. Use Move Up and Move 
Down to rearrange the List of Values as needed.

Once complete, click on OK to close the Properties dialog. When the Dashboard is in 
the run mode, the LOV will be displayed as shown in the following screenshot:



Chapter 4

[ 101 ]

Next, with Design Mode active, select the Drop Down Control. Right-click and 
select Scripts to open the Script Editor. Since this code needs to be run when the 
user makes a selection, the code should be contained within the default Drop Down 
OnSelection event trigger. 

With the Script Editor open, first identify what selection the user made from the 
Drop Down List of Values, so we can determine what facts should be shown on the 
Pivot and Chart. 

// Declare a local variable to represent the user selection
var ddSelection = ddPlanvActFacts.Item(ddPlanvActFacts.SelectedIndex);

The code interprets the user-selected value and stores that string as a local variable. 



Introducing Dashboard Interactivity

[ 102 ]

The next step is to remove any Facts currently on the Chart or Pivot section that is to 
be changed:

// Remove all existing chart facts
ActiveDocument.Sections["c Plan v Act"].Facts.RemoveAll();

// Remove all existing pivot facts
ActiveDocument.Sections["p Plan v Act"].Facts.RemoveAll();

The above code uses the RemovalAll() method of the Facts collection in both 
the Pivot and Chart section to remove any Facts currently on the Chart and Pivot 
sections respectively. 

Add the new facts to both the Pivot and the Chart sections:

// Add the Actual Fact to the Chart
ActiveDocument.Sections["c Plan v Act"].Facts.Add(ddSelection + " 
Actual")

// Add the Actual Fact to the Pivot
ActiveDocument.Sections["p Plan v Act"].Facts.Add(ddSelection + " 
Actual")

// Add the Plan Fact to the Chart
ActiveDocument.Sections["c Plan v Act"].Facts.Add(ddSelection + " 
Plan")

// Add the Plan Fact to the Pivot
ActiveDocument.Sections["p Plan v Act"].Facts.Add(ddSelection + " 
Plan")



Chapter 4

[ 103 ]

After all of the code is added to the Drop Down, the script editor will appear as 
shown in the following screenshot:

Dynamic Section Formatting
While the code necessary to change the embedded section Facts has been added, any 
custom formatting applied to the display properties of the Chart or Pivot Facts has 
been reset to the program defaults. Any display properties that had been modified 
from the section default values will have also reverted back to the default settings.



Introducing Dashboard Interactivity

[ 104 ]

First, the chart has the right-axis label visible which needs to be hidden:

To hide the right-axis label, set the ShowValuesAtRight property to false. 

// Hide right data labels on the chart
ActiveDocument.Sections["c Plan v Act"].ValuesAxis.
ShowValuesAtRight=false;

Second, the Pivot section number formatting needs to be set to Currency since the 
displayed Fact represents dollars:



Chapter 4

[ 105 ]

Number formatting needs to be applied to both Facts. Define the NumberFormat 
variable to represent currency rounded to the nearest dollar.

// Set currency formatting on the pivot
ActiveDocument.Sections["p Plan v Act"].Facts[ddSelection + " Plan"].
NumberFormat = "$#,##0."

ActiveDocument.Sections["p Plan v Act"].Facts[ddSelection + " 
Actual"].NumberFormat = "$#,##0."

If there were a business requirement requesting the currency to be reported to the 
penny, set the NumberFormat property to be equal to S#,##0.00 which would round 
values to the nearest penny.

 



Introducing Dashboard Interactivity

[ 106 ]

When completed, the OnSelection event trigger of the Drop Down Control object 
should appear as shown in the following screenshot:

Click on the OK button to close the Script Editor and save the scripts. Switch the 
dashboard to run mode and use the Drop Down to begin testing the code. The Drop 
Down will change the data Facts for both the Chart and Pivot sections, based on the 
selection made by the user.

Document Start-up Scripts
Document Scripts, also known as Document Start-Up Scripts, describe the 
OnStartup() event trigger of the Document Object. The API at the document level is 
accessed from the Document Scripts selection in the File menu.



Chapter 4

[ 107 ]

The Document Scripts API, while similar in appearance to the Object API, allows the 
report writer to create code specifically for each Interactive Reporting application 
type that is accessing the interface. 

Loading Screen Script
In this section, the steps needed to activate the Loading Dashboard section will be 
displayed using the Document Start-Up Scripts. Activating the Loading Dashboard 
section upon start-up makes the Dashboard section visible while the remainder of 
the document is prepared for viewing. To set the Document Start-Up Scripts to make 
the Loading section appear upon start-up:

//Display the Loading Dashboard section
ActiveDocument.Sections["Loading"].Activate();

Since the goal is to show the Home Dashboard section to the users as the primary 
section once all of the preprocessing is complete, the Home section must be activated 
once the Loading Dashboard section splash screen is no longer needed. Set the Home 
section to active to display the Home screen after all of the processing is complete.

//Display the Home Section after all startup scripts have completed
ActiveDocument.Sections["Home"].Activate();



Introducing Dashboard Interactivity

[ 108 ]

The following screenshot shows the Script Editor open to the Document Scripts 
OnStartup event trigger. Notice that the Loading Dashboard section is activated 
first, the preprocessing code is then executed, and finally the Home Dashboard 
section is activated to display the Home section to the end user for use.

Understanding Toolbars and Menus
When Dashboard sections contain custom navigation, end users typically do not 
need access to the default application menus and document toolbars. Controlling the 
visibility of toolbars and menus is also a great way to increase the viewing area for 
a dashboard. Executive-level Dashboards, which typically do not require advanced 
ad-hoc data analysis, should always have toolbars and menus carefully controlled to 
keep the dashboard clear of unnecessary distractions.

Application Toolbars
Toolbars provide quick access to a variety of application, section, and formatting 
options using icons. In Interactive Reporting, there are five toolbars that are members 
of the Application Toolbar collection. The toolbars are as follows:

•	 Standard: The Standard toolbar presents icons to represent application 
level functions such as save, print, query process, insert new section and 
connections. The Standard Toolbar, when active, is available on all sections.

•	 Formatting: The Formatting toolbar grants quick access to text properties 
such as font, font size, font alignment, background colors, and number 
formatting. When active, the Formatting toolbar is available on all sections.



Chapter 4

[ 109 ]

•	 Sections: When the Sections toolbar is active, it allows the user to quickly 
access section specific formatting functions unique to the active section type. 
For example, on Dashboard sections, the Section Toolbar displays the layout 
tools discussed earlier in this chapter.

•	 Navigation: The Navigation toolbar presents icons to allow users to navigate 
document sections. One of the Navigation toolbar icons is the Dashboard 
Home button that sets the Dashboard section that has been defined as the 
main Dashboard section of the document.

•	 Paging: The Paging toolbar is an abbreviated version of the Standard toolbar 
accessible only when a document is opened in Intelligence iServer using a 
direct URL. When code references to this toolbar are encountered by other 
clients, the command is ignored and the script continues without error.

Each of these Toolbar objects contains a Boolean Visible property that can be set to 
true (visible) or false (invisible) using JavaScript code. 

To hide all five toolbars, one approach would be to turn each toolbar off individually 
by using the following code: 

// Hide the Standard Toolbar
Toolbars["Standard"].Visible=false;

// Hide the Formatting Toolbar
Toolbars["Formatting"].Visible=false;

// Hide the Sections Toolbar
Toolbars["Sections"].Visible=false;



Introducing Dashboard Interactivity

[ 110 ]

// Hide the Navigation Toolbar
Toolbars["Navigation"].Visible=false;

// Hide the Paging Toolbar
Toolbars["Paging"].Visible=false;

Alternatively, since all five toolbars reside in the Toolbars collection, a for loop can 
be used to step through the collection and set the Visible property to false as 
demonstrated in the following code:

/* Hide all Toolbars in the Toolbar collection by using a for loop 
statement to increment a value until it becomes equal to the number of 
toolbars in the toolbar collection. */

// Use a for loop and cycle for each item in collection     
for (var i=1; i<=Toolbars.Count; i++)
{
   // Set the visible property of toolbar[index] to false.
   Toolbars[i].Visible=false;  
}  

The preceding code means for as many times as there are toolbars in the Toolbar 
collection, referenced using the Count property of the Toolbars collection, set the 
Visible property of each toolbar to false.

Application Menus 
Hiding the Application Menu Bar makes it very difficult for users to interact with 
the document in ways other than the report designer intended. Since the Menu Bar 
is very small, it does not gain much in the terms of usable space. Therefore, hiding 
the Menu Bar is more about controlling the user's access to sections of the document 
than a space-saving methodology.

The ShowMenuBar property of the Application is a Boolean property that is set to 
true by default. Unlike the members of the toolbar collection, the ShowMenuBar 
property is displayed each time the document is opened. The code required to hide 
the Menu Bar is shown in the following code snippet:

//Set the ShowMenuBar application property to false to hide the 
MenuBar
Application.ShowMenuBar=false;



Chapter 4

[ 111 ]

Section Catalog
The Section Catalog provides users with a hierarchal view of all visible sections in a 
document. When dashboards have custom navigation, the Section Catalog should be 
hidden, so the user is not confused or lead astray from using the custom navigation 
options. Hiding the Section Catalog also adds a significant amount of screen space 
for the dashboard, which is always at a premium.

The ShowCatalog property of the document is also a Boolean property that is set 
to true by default. The code required to hide the Section Catalogue is shown in the 
following code snippet:

//Set the Show Catalogue document property to false to hide the 
Section Catalogue
ActiveDocument.ShowCatalog=false;

Section Title Bar
The Section Title Bar provides two specific purposes: the bar contains a navigation 
drop-down on the left, and the bar provides specific controls for each section on the 
right.  The SectionTitleBar property of the document is a Boolean property that is 
set equal to true by default each time a document is opened. 

With the Script Editor open for Document Scripts, add the following code to hide the 
Section Title Bar from view. 

//Set the SectionTitleBar property to false to hide the section Title 
Bar
ActiveDocument.ShowSectionTitleBar= false;

The state of the SectionTitleBar property is not saved across document sections. 
Each time the document is opened, the value of the SectionTitleBar document 
property is set to true and must be hidden using JavaScript code.

Quickly show all menus
Create and hide a button on the Home Dashboard that enables all of the 
menus and toolbars when clicked. Then set the Visible property of the 
button to false so it is hidden, forcing the user to have the permissions 
to go into design mode to unhide the button. This feature allows report 
writers quick access to the toolbars and menus at any time.



Introducing Dashboard Interactivity

[ 112 ]

Prompting the User to Save
Interactive Reporting prompts the user to save the document when exiting an 
unsaved report for all client software versions. When creating or modifying reports 
in the Interactive Reporting Studio, the prompt to save is a helpful feature to prevent 
data loss by forgetting to save session changes before exiting. When end users are 
accessing the document with the Interactive Reporting Web Client plug-in, however, 
the additional prompt created by this feature maybe undesirable as it allows all users 
to save the document to their local machine. The easiest way to disable the Prompt To 
Save feature when the document is accessed using the Web Client plug-in is to set the 
PromptToSave document property to false during the Document Start-up event.

The save prompt is disabled by first referencing the PromptToSave document 
property, either by navigating through the Object Model to the PromptToSave 
property of the ActiveDocument group, or manually entering ActiveDocument.
PromptToSave to reference the PromptToSave property. Once referenced, the 
property is set to false by typing =false;. With the property set to false, the prompt 
will not be displayed when the end user closes the document.

The following screenshot shows the Code Pane of the Document Script Editor with 
the start-up scripts displayed:



Chapter 4

[ 113 ]

When the document is opened, the application will first activate the loading screen. 
It will then set the visible property of each of the toolbars in the toolbar collection to 
false. The Menu Bar, Section Catalog, Section Title Bar, and Prompt to Save dialog 
will be disabled, and finally the Home Dashboard section will be displayed.

Summary
The goal of the chapter was to demonstrate the steps for evolving the simple 
dashboard into a master dashboard with start-up scripts, navigation, controls, and 
dynamic objects.  The chapter began with an overview of the building blocks for 
creating interactive and presentable Dashboard sections, including Graphics and 
Controls. Dashboard development tools are described in detail with an overview of 
the alignment, sizing, and layering toolbars. The concept of the master dashboard 
was introduced and dashboard navigation was presented with the methods for 
reducing code maintenance through the use of reflection. The chapter presented 
the concept of start-up scripts and the use of the Loading screen and the Home 
dashboard, and the chapter provided detail on embedded section linking and 
visibility toggling. The methods for modifying section content (Facts) through 
the use of controls and JavaScript was demonstrated and discussed at length, and 
methods were presented for hiding the menus, the Section Catalogue, and various 
toolbars. The chapter concluded with details on writing code for the different 
Interactive Reporting client tools and the methods to preventing the user from saving 
the document upon exiting the software.





Building the  
Dashboard Framework

Dashboards evolve over time and a standard development best practice is to 
construct dashboards with the ability for growth and modification without using 
repetitive code through the document. An effective method to streamline dashboard 
programming with areas for growth is to create and extract the standard code 
statements of the document into a customized Dashboard Framework within 
Interactive Reporting. While there are various approaches to constructing a 
Dashboard Framework, the strategy detailed within this chapter demonstrates 
one approach to achieve an optimal configuration. In addition to the information 
provided for building the Dashboard Framework, this chapter provides information 
on the options for managing document size, delivery, and document security.

This chapter covers the following concepts:

•	 Understanding the Dashboard Framework
•	 Implementing the Dashboard Framework
•	 Document Save Options
•	 Working Offline, File Compression, and Document Security 

Understanding the Dashboard Framework
The previous chapter introduced the basic scripting concepts required to assign code 
directly to the Script property of an object. However, as dashboards become more 
complex, repetitive code across shapes should be extracted to create global functions 
that can be used by all objects in the document. The process of creating a set of global 
functions permits report authors to create and maintain a customized framework of 
JavaScript code in a centralized location within the Interactive Reporting document. 



Building the Dashboard Framework

[ 116 ]

The strategy used in this guide, called the Dashboard Framework, is simply an 
organization of global code contained within reusable global functions invoked by 
objects across the document.

Chapter 9, The Central Code Repository, goes one step further and demonstrates the 
process for storing the global functions of a document in a database for use across 
multiple documents.

Framework Naming Conventions
Interactive Reporting allows any name to be used as long as it conforms to the 
requirements of the object type and is unique within the object's collection. For 
example, the Section collection allows names to contain spaces, but the Shape 
collection does not. The requirement that an object name be unique within a 
collection can quickly escalate into an organizational challenge.

Naming conventions make code easier to write, understand, debug, and maintain. 
Naming Conventions also ensures consistent standards when multiple report 
authors are working in a collaborative environment, writing and maintaining 
customized reports together. When operating within the Dashboard Framework, 
using a naming convention is very important.

Section Names
Since all section names within a single document are a part of the same Section 
collection and must be unique, it is recommended that the section names be prefixed 
to denote the section type the name is referring to. For example, when a Query 
section is inserted into a document, the Query section and the Results section 
are created by default and named Query and Results respectively. Assuming the 
purpose of the Query section is to return information related to sales figures, it is 
recommended that the Query section be renamed to q Sales and the Results section 
be renamed to r Sales. Should a table be subsequently added, that Table section 
should be named t Sales. Additional sections representing sales data should also 
be prefixed with a single character representing the section type.

The addition of the prefix to denote the section type is extremely helpful as the 
document grows to easily identify the objects that relate to each other and quickly 
determine the type of those section objects.



Chapter 5

[ 117 ]

Variable Names
Variable names should always be descriptive. While it may seem unimportant, 
having good variable names goes a long way when the code is being tested or 
maintained by another report author. It is also recommended that variables be 
prefixed to denote the scope of the variable. Global variables should be prefixed 
with the letter g and local variables should be prefixed with the letter v. The use of g 
and v is an immense help when documents move into testing or maintenance as the 
variable's scope, and therefore the potential impact the variable has on other code, is 
immediately known to report authors. The variable vLimitName is a good example of 
a local variable with a descriptive name. The variable gLimitName is an example of 
how the same variable would look if the variable's scope was global. 

In a situation where a variable is representing an array of values, the name should 
indicate the scope of the variable and that it is an array. For example, gMonthsArray 
would be indicative of an array with global scope; vMonthsArray would represent 
an array with local scope.

Function Names
As the declaration process for a global function and a local function differ, it is 
recommended that only global functions are prefixed to denote that the function is 
being referenced and that the function is global. Additionally, within the Dashboard 
Framework, the use of local functions is very limited so the presence of a local 
function would be immediately noticed. An example of the recommended prefix is 
the name gfResetDashboardSelections to denote a global function that would 
execute code to reset dashboard selections.



Building the Dashboard Framework

[ 118 ]

Dashboard Shape Names
The dashboard Shape naming convention is the most important aspect of the naming 
convention, as the shape type can be very important when determining how to 
respond to an end-user action. It is recommended that the shape name be preceded 
by a two character prefix to denote the type of shape. The following chart displays 
commonly used dashboard shape types, including the ones used in this guide and 
their suggested prefixes:

Shape Type Shape Prefix Example Shape Name
Command Button bt btSubmit

Radio Button rb rbYes

Check Box cb cbCurrentYear

List Box lb lbState

Drop Down dd ddRegion

Text Box tb tbUserName

Embedded Browser eb ebHelpPage

Embedded Pivot pv pvSales

Embedded Chart ch chSales

Embedded Table ta taSales

Embedded Report rp rpSales

Hyperlink lk lkHomePage

Text Label tl tlRefreshDate

Any shapes accessed by JavaScript code that are not included in the chart displayed 
above should be preceded with a unique two character prefix that clearly indicates 
the type of shape the variable is representing. Generally speaking, shapes that are 
not acted upon by code, for example, a static label or a background box do not need 
to have a customized name as the impact the object would have, if modified, is easily 
understood by a report author. 

The concept of the Master Dashboard discussed in Chapter 4, Introducing Dashboard 
Interactivity, is a key component of template design within the Dashboard 
Framework. As one of the most powerful aspects of the framework is using 
loop statements to step through related document sections to perform repetitive 
operations, the synchronization of names and properties of related dashboard objects 
is imperative. Any individual Controls shared between Dashboard sections must 
have the same name in each Dashboard section. If the object names differ, attempts 
to react to end-user selections using global JavaScript functions will results in an 
error indicating that the object was not found.

 



Chapter 5

[ 119 ]

Understanding the JavaScript Workflow
The JavaScript used to define the Dashboard Framework contains three  
primary components: 

•	 Global Library Shapes are the shapes that contain code used to customize 
the Dashboard Framework.  This includes code for declaring any variables or 
arrays and defining JavaScript Functions.

•	 Start-up Events refers to the scripts, which are run directly by the OnStartup 
event of the document. Actions processed during the Start-up Events 
include the definition of any Global Library Shapes and the execution of the 
Activation Scripts. 

•	 Activation Scripts It contains single-use code that prepares the document to 
be shown to the end user after the Dashboard Framework has been defined. 
Any document default selections, such as radio button selections, are defined 
here before the script to display the home dashboard, also in this component, 
is executed.

Implementing the Dashboard Framework
The use of a single Dashboard section to act as the code library for the document is 
the basis of building out a framework within Interactive Reporting. The Dashboard 
Framework refers to this section, which contains the necessary global support code, 
as the Globals section. 

Continuing with the BMV Executive Dashboard example, insert a new Dashboard 
section called Globals into the document. Once the Globals Dashboard section 
is created and named, shapes which will contain code used by the Dashboard 
Framework are added, and scripts are written on their onClick() event triggers. 
Although any Graphic or Control with an onClick() event trigger could be used to 
contain global scripts, the Text Label Graphic is a convenient option as it provides 
the flexibility for customizing the text and visual properties of the object, such as the 
title, name, color, and border.

Global Library Shapes
Within the Dashboard Framework, Global Library Shapes are the individual 
objects that contain the JavaScript code responsible for defining the behaviors of the 
framework. Each shape in the library contains JavaScript that can define variables, 
functions, or execute code. While the organization and structure of code across the 
shapes within the library are defined by the report author, there are a few rules that 
must be followed for the Dashboard Framework to recognize a shape as a member of 
the Global Library.



Building the Dashboard Framework

[ 120 ]

Global Library Shapes must be named in the order they are to be executed starting 
from the number 1. Additionally, the number must be prefixed with the letters gs to 
denote their inclusion. For example, the first Global Library Shape must be named 
gs1 and the second, gs2. This naming convention allows the Dashboard Framework 
to use a loop statement to call the onClick() method of all shapes starting with the 
prefix on the Dashboard section without requiring the report author to define the 
number of shapes present.

Global Variables
It is recommended that the first shape in the Global Library be used to contain any 
global variables in a document. While local and global variables can be defined at any 
time, a best-practice is to group all of the global variables used across the document 
into a single object to assist with testing and maintenance.

Continuing with the example, add a Text Label to the Globals dashboard. Set the 
Name property of the newly created shape to gs1, as the code on this shape will be 
executed first, and add a descriptive title, such as Global Variables, to be displayed 
as the Title property.

Any global variables, including arrays, should be defined in the onClick() event 
trigger of this shape. When defining the variables in the Global Variables section, 
it is useful to create one array containing the Dashboard section names, as well as 
other arrays for other sections that can be accessed instead of repeating the section 
names in each block of code. These arrays will provide the ability to make identical 
changes throughout related sections of the document as configured in the array. The 
following code demonstrates a method for configuring the Dashboard section array 
in the BMV Executive Dashboard example:

// ---Array of Dashboard Sections accessible by users
gDashboardArray = [];
   gDashboardArray[0]="Home";
   gDashboardArray[1]="Plan v Act";
   gDashboardArray[2]="Products";
   gDashboardArray[3]="Stores";

By using arrays, sections can easily be added or removed from the collection without 
breaking any of the code in the document. Examples in the following chapter will 
demonstrate the use of these arrays and discuss their benefits in further detail.



Chapter 5

[ 121 ]

Framework Start-up Events
The shape containing the Dashboard Framework Start-up Events will be directly called 
during Document OnStartup event and will either directly contain or call any code to 
be executed during the initialization of the document. While global functions and code 
may be housed directly within the Document OnStartup event itself, it is important 
to note the possibility of creating an infinite loop upon start-up. An infinite loop in 
the start-up scripts of the document will crash Interactive Reporting and will prevent 
the opening or recovery of the document. Use of the StartUp Events shape within the 
Dashboard Framework prevents this from occurring by allowing the code to be tested 
before being connected to the Document OnStartup event.

To create the StartUp Events shape, add a Text Label graphic to the Globals 
dashboard. Name the newly created shape startUpEvents and set the Title object 
property to StartUp Events. Once this is completed, the shape is ready for code.

The code to be contained within the onClick() event trigger of the startUpEvents 
shape will first activate the Loading dashboard, then define the state of any 
document-level properties such as the visibility of toolbars and menus, then execute 
a for loop to declare any Global Library Shapes, and finally invoke the Activation 
Scripts.

As an added benefit, this method allows the code to be executed without having to 
invoke the document start-up code. Instead, report authors can test any document 
start-up processes simply by clicking on the StartUp Events shape with the Globals 
dashboard in Run mode.

Initializing the Loading Screen and Document Properties
In Chapter 4, Introducing Dashboard Interactivity, code used to activate the Loading 
dashboard, hide the different application toolbars and menus, and disable the 
PromptToSave document property was written directly within the OnStartup event 
trigger of the document. This code should be moved to the onClick() event trigger 
of the StartUp Events shape on the Globals dashboard. To do so, open the Document 
Scripts editor using the Document Scripts item from the File menu, highlight the 
code in the window, and use Ctrl+X or Cut from the right-click menu to cut all of the 
code from the OnStartup event. 



Building the Dashboard Framework

[ 122 ]

Navigate to the StartUp Events shape on the Globals dashboard, right-click, and 
open the Script Editor. Paste the scripts into the OnClick event trigger as shown in 
the following screenshot:

Declaring Global Library Shapes
Since the number of objects will vary depending on the customized requirements 
of each framework, the Dashboard Framework uses a loop statement to ensure all 
objects are appropriately defined. The code required to execute the JavaScript code 
for each of the Global Library Shapes is shown in the following code snippet:

// ---- Make sure required globals have been activated 
for (var i = 1; i < ActiveSection.Shapes.Count - 1; i++)
{
   var vGs = "gs" + i;
   ActiveDocument.Sections["Globals"].Shapes[vGs].OnClick();
}

The value of the incrementing variable, i, is used to control which shape is being 
accessed. Each time the loop runs, the OnClick() method of the shape represented 
by the vGs local variable is executed. The variable i then increments by one and, if the 
conditional statement of the for loop is still true, the next shape is similarly accessed.



Chapter 5

[ 123 ]

Notice the conditions of the for loop statement. The incrementing value, defined as 
i, starts at one and the loop continues until the value i is less than the number of 
shapes on the Globals dashboard -1. The less than operator and the -1 are required 
because there are two other shapes on the Globals Dashboard, StartUp Events and 
Activation Scripts, besides any Global Library Shapes. This prevents the loop from 
running too many times while providing report authors the flexibility to add or 
remove shapes from the Global Library without requiring additional scripting to 
support the StartUp Event scripts. 

Calling Activation Events
The final statement included in the StartUp Event scripts is the code required to 
execute the code contained within the Activation Scripts shape. The code, as shown 
below, executes after the Global Library Shapes have been defined:

// --- Execute the Activation Events
ActiveDocument.Sections["Globals"].Shapes["ActivationScripts"].
OnClick();

Activation Scripts
In the Dashboard Framework, code that is executed solely for the purpose of 
preparing a document for end-user interaction is part of the Activation Scripts and 
should be contained within a separate object. The reasoning behind the strategy 
of separating this code is that functions defined within the framework are used in 
conjunction with other scripts to set default state of the document. Because attempts 
to call a function prior to it being defined results in an error that would terminate the 
start-up sequence, the use of a separate object ensures any functions have already 
been defined.

Create a shape to represent the Activation Scripts by adding another Text Label 
to the Globals dashboard. Set the set the Name to ActivationScripts and the Title 
property to Activation Scripts. This object will contain code specific to any initial 
user interface objects, such as default filter selections or populating a last updated 
date on the dashboard header, and end with the following code to activate the Home 
dashboard object:

// Activate Home Section
ActiveDocument.Sections["Home"].Activate();



Building the Dashboard Framework

[ 124 ]

Setting the Document Scripts on Start-up 
Test the code thoroughly by clicking the StartUp Events shape on the Globals 
dashboard while in Run mode. If no errors are encountered and the code executes 
as expected, the code is ready to be executed when the document opens. To execute 
the code during the opening of the document, the OnStartup event of the Document 
Scripts needs to be modified to call the onClick() method of the StartUp Events 
shape on the Globals dashboard. Open the Document Script Editor using the 
Document Scripts menu item in the File menu and add the following code:

// Click the Start-Up Events shape
ActiveDocument.Sections["Globals"].Shapes["startUpEvents"].OnClick();

When the Interactive Reporting document is opened, the script within the OnClick() 
event trigger is executed and the Dashboard Framework is defined.

Understanding Document Save Options
Interactive Reporting offers various save options to give the report author additional 
control over the visibility of the code contained in the document as well as options 
that impact the size and performance of a document. The Save Query Results With 
Document, Work Offline in Web Client, and Compress Document options allow 
report author the ability to control document size and performance. The Password 
Protect Document and Password Protect Design Mode options give report author 
the ability to protect the coding and dashboard interface.

Save Query Results With Document
The Save Query Results With Document option provides the option to save the data 
in a Results or Table section in the Interactive Reporting document. When the option 
is active for a section, Interactive Reporting saves the data in the document for the 
section. This setting is active by default and is very beneficial, since the document 
can be saved with data for the user without requiring the user to reprocess the query. 
Saving the data in the document increases the file size of the document, which will 
impact the speed at which the dashboard opens. Deciding to save the results with the 
document should depend on the purpose and use of the document. The following 
steps demonstrate the methods for editing the Save Query Results With  
Document settings:



Chapter 5

[ 125 ]

After selecting the Save Query Results With Document menu item, the Save Query 
Results With Document window appears as shown in the following screenshot:

Queries with an x are the queries where the Results section data will be saved when 
the document is saved. Notice that there is also a setting for Computed Columns. 
The report author may decide to save the data in a Computed Item by keeping the 
column selected, or may instead force a recalculation of the Computed Item when 
the document is opened by clicking to remove the x from any of the Computed 
Columns.



Building the Dashboard Framework

[ 126 ]

While this setting is used to remove data from the document, the report author may 
also remove the data from a Results section by running the query with temporary 
filters that produce no data. This method will produce an empty Results section and 
will remove all of the data in the Results and dependent sections of the document 
without having to modify this setting in the document.

Work Offline in Web Client
The Work Offline in Web Client setting allows the report developer to create an 
Interactive Reporting document that does not require server authentication when 
opened in the Web Client. The method is used commonly for dashboards or reports 
that are passed around an organization to users without system accounts but with 
the Interactive Reporting Web Client plugin software. While users cannot process the 
queries in the document, the user will be able to view or export the data and utilize 
any dashboards in the document.

Compress Document
The Compress Document setting compresses the Interactive Reporting document, 
making the file size significantly smaller. The compression setting is one of the most 
useful settings in the software and should be turned on, allowing easier distribution 
and faster downloading from the Workspace. Document compression is set by 
selecting the Compress Document menu item from the Save Options menu located 
in the File menu as shown in the following screenshot:

When the check icon is shown to the left of the Compress Document menu item, 
compression is enabled. 



Chapter 5

[ 127 ]

Setting Compression by Default
Since document compression is a setting that is commonly used, the default settings 
of the application can be modified to make sure the document compression setting is 
enabled for each document created. The default settings for document compression 
are set by selecting the Program Options from the Options menu located in the 
Tools menu, as shown in the following screenshot:

With the Program Options window open, check the Compress All Documents 
option to compress all documents saved or check Create New Document 
Compressed to only compress new documents created with the software. 

Password Protect Document
The entire document can be password protected using the Password Protect 
Document option. If a document is password protected, a password will be required 
to open the document. To enable this feature, select the Password Protect Document 
from the Save Options menu. When prompted by the  Password Protect Document 
window, enter and verify a password as shown in the following screenshot: 

Once set, any user attempting to open the document will be prompted to enter  
the password.



Building the Dashboard Framework

[ 128 ]

Password Protect Design Mode
The Password Protect Design Mode prevents users from accessing the design mode 
within a Dashboard section without having the proper password. To prevent users 
from modifying the Dashboard sections within a document, select the Password 
Protect Design Mode setting from the Save Options. Provide and verify the 
password as requested by the Password Protect Design Mode window, as shown in 
the following screenshot:

Notice the additional option to Encrypt Scripts in BQY. When enabled, this setting 
encrypts any scripts within the document. When an authorized user enters the 
proper password, any encrypted scripts are decrypted and the Design mode is 
enabled.

Summary
The goal of this chapter was to introduce the Dashboard Framework and to 
demonstrate one method to building an effective Dashboard Framework. The 
chapter started with an introduction to Dashboard Frameworks and the steps for 
defining a naming convention for sections, variables, functions, and shapes. The 
chapter continues with the steps to implement the Dashboard Framework, starting 
first with methods for defining a library of global shapes and global variables. 
Next, the chapter introduces the steps for organizing all of the start-up code of the 
document into individual components with specific naming conventions for growth 
and ease of use. The methods for testing the start-up code are presented and finally 
the method for the implementation of the Dashboard Framework concludes with 
instructions for configuring the start-up code to execute during document opening. 
The final section of the chapter discusses built-in features of the tool for optimizing, 
securing, and saving Interactive Reporting documents, providing options for 
improving document delivery and ensuring security where necessary.



Advanced Dashboard 
Techniques

The previous three chapters set a solid foundation for dashboard development and 
demonstrated a simple approach to building a framework for efficiency and growth.  
With the framework in place and the dashboard layout determined, the final step in 
building a dashboard is to add interactivity. Most interactive dashboards provide 
a method to filter the objects shown on the screen, and advanced dashboards carry 
that filtering across multiple screens of the dashboard. The goal of this chapter is to 
introduce and demonstrate an approach to add filtering options to a dashboard, the 
steps to filter data based on user selections, and the methods for populating filters 
across dashboard pages. This chapter covers the following content:

•	 Populating Dashboard Controls with Database-Driven Values
•	 Applying User Selected Filters to Limit Data
•	 Synchronizing User Selections across Multiple Dashboards

Populating Dashboard Controls with 
Database-Driven Values
The values available for selection by an end user in a Drop Down or List Box Control 
can be populated with custom values by either editing the Values property of the 
object or through the use of programming to dynamically populate a List of Values 
(LOV) from a set of data contained within a Results or Table section in a document. 
The use of programming allows the displayed LOV in the Drop Down or List Box 
control to update as the values of the section change without the need to modify the 
Interactive Reporting document. This section introduces the processes required to 
use JavaScript code to generate a LOV for a Drop Down or List Box Control from 
database values.



Advanced Dashboard Techniques

[ 130 ]

Querying Available Values
The concept of Available Values appears throughout the software when working 
with filters. The term describes a distinct list of items available for selection, and 
the distinct list generated is utilized by report authors to generate a custom LOV in 
Drop Down or List Box Control on a Dashboard section. The list of distinct Available 
Values is first selected from a data source and 	then is extracted with JavaScript 
code to populate the values presented to an end user for selection using objects on a 
Dashboard section.

When building a dashboard, the report author must decide the filters and filtering 
methods to present to the users. The next step is to determine the method for 
obtaining the Available Values for the filter criteria. Obtaining these values depends 
on the number of queries and the approach used to gather data from the dashboard. 
Dashboards can consist of one or more queries with small to large results, so the 
approach to processing the queries and preparing filters plays into the approach 
for populating and using the LOV to provide customized filters on the Dashboard 
sections.

When multiple queries are required, best practice in generating the Available 
Values to populate the LOV is the use of the Append Query feature. This feature 
allows report authors to combine multiple queries in to a single Results section. In 
addition to cutting down on the number of Query sections required, the single query 
approach also simplifies the JavaScript code required to populate the dashboard 
objects. The following sections of the chapter will demonstrate the use of a combined 
query to generate the Available Values that will populate the LOV used by shapes on 
a Dashboard section.

Appending Queries
The Append Query feature provides the ability to combine multiple queries to 
produce a single Results section. Each query shares a single Data Model section, 
where all of the tables for each query are brought and joined into one model. The 
query strings are determined by the fields used for each query, so all of the tables do 
not need to be joined together in the data model.

It is important to pay close attention to the fields selected for the 
Request line for each Appended Query, especially if un-joined tables 
exist in the data model. If unexpected query results appear, the fields 
used in the Request line should be examined to ensure they are from the 
desired tables in the model.



Chapter 6

[ 131 ]

When using the Append Query feature, the following options are available for use:

•	 Union: The Union operator combines distinct rows across the joined queries 
and will not produce duplicate rows if any exist.

•	 Union All: The Union All operator combines all results across all of the 
joined queries, including duplicate lines.

•	 Intersection: The Intersection operator returns rows that match in both 
queries.

•	 Minus: The Minus operator returns rows that appear in the first query but 
not in the second.

A helpful tip when creating an Appended Query, where all of the data 
from each query is to return in the Results, is to create a custom data 
identifier field in the Request line of the Query section. The custom 
identifier field provides information on the query in the Query section 
and provides the ability to troubleshoot issues  in the query output.

The following example continues with the BMV Sales Dashboard example and 
provides a demonstration of using a single Query section with Appended Queries to 
generate the LOV for the List Box and Drop Down controls on the Dashboard. The 
end result is a query with four unions, as shown in the following screenshot:

 



Advanced Dashboard Techniques

[ 132 ]

The first step in creating the filter query is to add a new Query section to the 
document. After adding the Query section to the example, it must be renamed to q 
Filter and the associated Results section to r Filter for the purposes of accessing the 
sections later in the chapter using the example code. The Regions and Stores tables 
are used to create all of the appended queries required by this example. Since each 
table will be used independently of each other in the appended queries, no join is 
required between the two tables and the tables may be displayed un-joined in the 
data model.

Each appended query is created using the Append Query menu option in the Query 
menu to add an Append Query section, as shown in the following screenshot:

The use of the Append Query feature modifies the traditional Query section interface 
to display a control at the top of the main window for configuring the behavior 
between the queries. To rename an appended query, right-click on the query tab with 
the Append Query name and choose Rename to modify the appended section name. 
The Union query operator is set by default and should not be changed to ensure that 
all distinct rows are retrieved without duplicates. In this example, an appended query 
will exist for each Drop Down and List Box Control.

Query Request Items
Once the data model is configured and the appended queries are added, the Request 
line items need to be added for each appended query. In order to process the query 
without an error, the same number of Request items need to exist in each appended 
query and the data type of each column must match.



Chapter 6

[ 133 ]

A simple method for generating the LOV for a control on the dashboard is to use 
two items on the Request line, named FilterName and FilterValue. The first field, 
FilterName, is a custom Computed Item to represent the name of the filter and should 
correspond to name of the dashboard Control that will contain the LOV from this 
query. The second field, FilterValue, is a field from the data model and contains 
the values that will be populated into the LOV for the specific List Box or Drop Down 
Control represented by the filter name.

Adding the FilterName Computed Item is completed by right-clicking on the Request 
line and choosing Add Computed Item as shown in the following screenshot:

Once the Computed Item Properties dialog is opened, changing the Name property 
to FilterName and entering the filter label name surrounded by single quotes (used 
specifically to add text to an Oracle query) completes the addition of the custom 
value. Pressing OK will close the dialog box and will add the computed column to 
the Request line.



Advanced Dashboard Techniques

[ 134 ]

After the Computed Item is added for the filter name, the column containing the 
filtering values is added to the Request line from the data model. After the column 
is added to the Request line, the Name property of the column must be changed to 
FilterValue to support the code for populating the dashboard Controls demonstrated 
later in the chapter. Once completed, repeating the configuration steps for each filter 
object will complete the Query section for the dynamic LOV.

Staging the Results Set for Code
The FilterName and FilterValue column from each of the appended queries 
will provide the road map to dynamically populate the LOV within the desired 
dashboard objects. Once the query with the filter values is processed, a filter is 
created on the Results section to be accessed by code to allow the report author to 
segment the results when building filters.

To build this filter, add  a filter on FilterName by dragging the FilterName column 
to the Filter line. Since the values of this filter are programmatically manipulated, 
it does not matter what value is added. Use an arbitrary value such as 99999 to 
populate the filter.

Click on the OK button to close the Filter dialog box and to apply the filter. The filter 
now limits the data to show rows where the FilterName column is equal to 99999. 
Double click the FilterName object on the Filter line to open the properties dialog 
and click on Ignore to disable the filter without deleting it.



Chapter 6

[ 135 ]

Scripting the Function
In this section, the code required to script the gfPopulateLOV function is discussed 
in detail. The purpose of this function will be to add the Available Values from the 
FilterValue column in the r Filters section to Drop Down and List Box Controls 
on a Dashboard section. Since this function is a part of the Dashboard Framework 
established in Chapter 5, Building the Dashboard Framework, the JavaScript must be 
added to a Text Label on the Globals Dashboard. If the examples in this guide 
have been followed in order, the Name property of the new Text Label should 
be gf2. Otherwise, the Name property should be gf# where # represents the 
next number available. The Title property of the Text Label should be set to 
gfPopulateFilterLOV.

As functions are defined at the global scope and are invoked by objects, testing 
the functions can be tricky. A handy trick to help facilitate the initial writing of a 
function is to assign the code to an object that can be clicked, such as a Text Label. 
To do this, script the function contents outside of the function declaration statement 
and temporarily define any parameters that will be passed to the function. When the 
object is clicked, the code will be directly executed using the predefined parameters. 
Once the function is tested, the additional code used to define the function can be 
added and the function can be globally declared.

When called, the gfPopulateFilterLOV function will expect parameters  for the 
Dashboard section name and for the name of the Control that will accept the filtering 
values. Define a sectionName variable to represent the section on which the shape is 
located and a shapeName variable to refer to the name of the shape calling the script, 
as displayed below:

//---temporary variable for section name
var sectionName = "Home";

//---temporary variable for shape name
var shapeName = "ddRegion";

With these two variables defined, the code can be tested by clicking on the Text Label 
shape during development. The last part of this section describes how to wrap the 
code written into a function and the steps to supply sectionName and shapeName as 
parameters, allowing the preceding code to be deleted from the final result.

www.allitebooks.com

http://www.allitebooks.org


Advanced Dashboard Techniques

[ 136 ]

Determining the vDataName Variable
If the naming suggestions have been followed, the data values in the FilterName 
column of the r Filter section correspond to the Dashboard section shapes to be 
populated dynamically, with the exception that the shape names have a two-
character prefix. When the function that populates the LOVs is called, the name 
of the shape to be populated and the name of the section to be populated will be 
supplied as parameters to the function. An additional variable that will equal a 
value in the FilterName column needs to be declared. This is accomplished by 
using the JavaScript substring() method to remove the two-character prefix on the 
shapeName variable.

Substring is a JavaScript method that extracts the individual characters between 
two values and returns the result as a string. In situations where only one value is 
assigned, the value defined is the starting point and the ending point is assumed 
to be the end of the string. The JavaScript below demonstrates using substring to 
remove the first two characters of shapeName to define the vDataName variable:

//---Remove the prefix from the shape name to determine the value of 
the FilterName filter on the r Filter section
var vDataName = shapeName.substring(2);

If it is assumed that the shapeName variable is equal to ddRegion, the outcome of 
the substring() method is all characters starting from the third character, R. The 
reason for this is that the count begins at zero not one, so the number two actually 
represents the third character. This defines the variable vDataName as the string 
Region, allowing report authors to now directly reference the data to be populated in 
referenced filter control.

Removing All Values from a LOV
Before any values are added to a filtering control object, the existing values must be 
removed or the LOV presented to the end user will be inaccurate or contain duplicate 
values. The Drop Down and List Box Controls have a RemoveAll() method that will 
remove all existing values. The following scripting example demonstrates the syntax 
to remove all values within the referenced shape:

//---Remove all existing values from the shape to be populated with 
the available values
ActiveDocument.Sections[sectionName].Shapes[shapeName].RemoveAll();



Chapter 6

[ 137 ]

Adding a Custom LOV Value
Adding a custom selection item to an object's LOV is a good way to give the end 
user an option to select all data values to be shown. From a usability standpoint, this 
option also acts as a very convenient filter label that does not require an additional 
Text Label graphic to be added for each filter. To ensure the custom 'select all' 
value is displayed first, this step must occur after the values have been removed 
from the control but before any other values are added to the LOV of the object. 
Having standardized the FilterName value to be a non-plural value that represents 
the name of the filter, the addition of an s to the vDataName value will display a 
pluralized version of the filter.

The following code demonstrates how to simply add a custom label to a filtering 
control using the vDataName variable to customize the label: 

//---Add custom value to allow user to select to see all available 
data
ActiveDocument.Sections[sectionName].Shapes[shapeName].Add("--All "+ 
vDataName +"s---");

In situations where the name of the filter ends in the letter y, the pluralization 
of the vDataName will be incorrect. Adding a logical statement to determine if 
the vDataName ends in y will allow the report author to handle these situations 
separately. The script for the statement to check for a vDataName ending is y is 
shown in the following code snippet: 

// Determine if last character of vDataName is a y to properly 
pluralize
if (vDataName.substring(vDataName.length-1)=="y")
{

// Drop y value from vDataName string
var vDataNameTrim = vDataName.substring(0, vDataName.length-1);

// Add ies to end of vDataNameTrim variable
ActiveDocument.Sections[sectionName].Shapes[shapeName].Add("--All "+ 
vDataNameTrim +"ies---");
}

The script uses JavaScript string commands to determine the last character of the 
vDataName variable and then remove that character if it is y, allowing for ies to be 
added instead of s to pluralize the data label.  



Advanced Dashboard Techniques

[ 138 ]

The first string command, substring, is combined with a second command, length, 
to allow the if statement to evaluate the last character of the string. Length is a 
JavaScript method that returns a number representative of the number of characters 
in a string. For example, if the vDataName variable is assumed to be equal to 
Country, the following statements would be true: 

•	 The value for vDataName.length-1 would be 6; 
•	 The value for vDataName.substring(6) would be y;
•	 The value for vDataName.substring(0,6) would be Countr;

The addition of an else statement to handle all situations where the vDataName 
variable does not end in y, completes the section of code that adds a select all option 
to the list of available values as shown in the following code snippet: 

//---Add custom value to select all available data

// Determine if last character of vDataNameis a y 
if (vDataName.substring(vDataName.length-1)=="y")
{
// Drop y value from vDataName string
var vDataNameTrim = vDataName.substring(0, vDataName.length-1);

// Add ies to end of vDataNameTrim variable
ActiveDocument.Sections[sectionName].Shapes[shapeName].Add("--All "+ 
vDataNameTrim +"ies---");
}

else
{
// vDataNamedoes not end with a y so add s 
ActiveDocument.Sections[sectionName].Shapes[shapeName].Add("--All 
"+vDataName+"s---");
}

Customizing Results Section Limits
The remaining values to be populated to the filter control are determined by the 
values available in the r Filter Results section of the q Filter Query section. To 
ensure that only the appropriate values are populated in each filter control object, the 
dummy FilterName filter created earlier in the chapter is modified using JavaScript 
to limit the data shown in the r Filter section so it displays only one set of values 
at a time. The following JavaScript code demonstrates the steps to customize the 
value to be filtered: 

//---Remove any existing values from the FilterName filter
ActiveDocument.Sections["r Filter"].Limits["FilterName"].
SelectedValues.RemoveAll()



Chapter 6

[ 139 ]

//---Add the vDataName variable value to the FilterName filter
ActiveDocument.Sections["r Filter"].Limits["FilterName"].
SelectedValues.Add(vDataName);

//---Set the Ignore property of the FilterName filter to false 
ActiveDocument.Sections["r Filter"].Limits["FilterName"].Ignore = 
false;

This JavaScript uses the RemovalAll() method of the FilterName limit's 
SelectedValues collection to disable any existing selections. The next statement 
uses the Add() method of the SelectedValues collection to select the vDataName 
value. The final step is to activate the FilterName limit by setting the Ignore 
property to false. The r Filter section now displays only the FilterValues where 
the FilterName column is equal to the vDataName variable.

Adding Values to the LOV Property
The customization of the FilterName limit allows a loop statement to be used to first 
read the value in the FilterValues column for each row of the r Filter section 
and then write that value to the shape referenced by shapeName and sectionName. 
As shown in the following code snippet, the JavaScript required uses the value of 
RowCount to determine how many times the script included in the loop should be 
run.

//---For each row of the r Filter section
for (var i = 1;  i <= ActiveDocument.Sections["r Filter"].RowCount; 
i++) 
{
   //Store the current row's data in the FilterValue column
   var vFilterText = ActiveDocument.Sections["r Filter"].
Columns['FilterValue'].GetCell(i);

   //Add the vFilterText to the shape on the desired section
   ActiveDocument.Sections[sectionName].Shapes[shapeName].
Add(vFilterText);
}

For each iteration of the loop, the GetCell() method of the Columns collection 
is used to first access and then store the data added to the dashboard Control 
referenced by sectionName and shapeName. Since the GetCell() method expects a 
numeric value for the row number of the cell to be returned, the incrementing value 
used in the loop, i, is also used to represent the row number. 



Advanced Dashboard Techniques

[ 140 ]

Each time the loop is run, i will be incremented by 1 and the cell returned is 
stored as vFilterText. Once vFilterText is populated with a value, the Add() 
method of the shape is used to add vFilterText to the filter control shape on the 
Dashboard section represented by the sectionName parameter. When the last row is 
encountered, as determined by the RowCount property, the loop will end.

Scripting a Default LOV Selection
While the first value in the list of a Drop Down Control is selected by default, the 
List Box Controls have no default selection and one must be set if desired. In the case 
of the BMV Executive Dashboard, the first item, 'select all', should be selected by 
default for all filters. The following code example demonstrates the syntax required 
to select the first item:

// Select the first value in the list as the default selection
ActiveDocument.Sections[sectionName].Shapes[shapeName].Select(1);

The Select() method of the shape referenced by sectionName and shapeName 
expects a numeric value that represents the index value of the item to be selected. 
Since the item to be selected is the first item in the list of values, the number 1 is 
supplied and the first item in the list is selected.

Completing the Function
After all of the code is complied and added, the function is tested by clicking on the 
gfPopulateFilterLOV text label. If successful, the Console Window is free of errors 
and the ddRegions shape should populate as displayed in the following image: 



Chapter 6

[ 141 ]

To complete the function, delete the temporary shapeName and sectionName 
variable declarations and add the declaration for the function and the opening 
brace at the top of the script. It is good practice to display the name of the function 
and define its purpose in comment lines before the function call to assist with 
maintenance. The comment shown below must be positioned at the top of the code 
before any other scripts as it is the opening declaration for the function: 

//------------ function PopulateFilterLOV ------------
//---  This function will populate the filters on Start up
function populateFilterLOV(sectionName, shapeName) 
{

All other scripts written as a part of this function are contained in the middle and the 
close brace must be added to the end. The final statement reassigns the function to a 
global variable making the function accessible throughout the Interactive Reporting 
document. The following code, which closes the function and then globally defines it, 
must be added to the end of the existing code:

}
gfPopulateFilterLOV = populateFilterLOV;

The entire JavaScript code to support the gfPopulateFilterLOV global function is 
displayed in the next code snippet:

//------------ function PopulateFilterLOV ------------
//---  This function will populate the filters on Start up
function populateFilterLOV(sectionName, shapeName) 
{

  //---Remove the prefix from the shape name to determine the value of  
  the FilterName filter on the r Filter section
  var vDataName = shapeName.substring(2);

  //---Remove all existing values from the shape to be populated with  
  the available values
  ActiveDocument.Sections[sectionName].Shapes[shapeName].RemoveAll();

  //---Add custom value to select all available data
  // Determine if last character of vDataName is a y 
  if (vDataName.substring(vDataName.length-1)=="y")
  {
    // Drop y value from vDataName string
    var vDataNameTrim = vDataName.substring(0, vDataName.length-1);

    // Add ies to end of vDataNameTrim variable
    ActiveDocument.Sections[sectionName].Shapes[shapeName].Add("--All 
      "+ vDataNameTrim +"ies---");
  }



Advanced Dashboard Techniques

[ 142 ]

  else
  {
    // vDataName does not end with a y so add s 
    ActiveDocument.Sections[sectionName].Shapes[shapeName].Add("--All  
    "+ vDataName +"s---");
  }

  //---Remove any existing values from the FilterName filter
  ActiveDocument.Sections["r Filter"].Limits["FilterName"]. 
    SelectedValues.RemoveAll()

  //---Add the vDataName variable value to the FilterName filter
  ActiveDocument.Sections["r Filter"].Limits["FilterName"]. 
    SelectedValues.Add(vDataName);

  //---Set the Ignore property of the FilterName filter to false 
  ActiveDocument.Sections["r Filter"].Limits["FilterName"].Ignore =  
    false;

  //---For each row of the r Filter section
  for (var i  = 1;  i <= ActiveDocument.Sections["r Filter"]. 
    RowCount; i++) 
  {
    //Store the current row's data in the FilterValue column
    var vFilterText = ActiveDocument.Sections["r Filter"]. 
      Columns['FilterValue'].GetCell(i);

    //Add the datavalue to the shape on the desired section
    ActiveDocument.Sections[sectionName].Shapes[shapeName]. 
      Add(vFilterText);
  }

  // Select the first value in the list as the default selection
  ActiveDocument.Sections[sectionName].Shapes[shapeName].Select(1);

}
gfPopulateFilterLOV = populateFilterLOV;



Chapter 6

[ 143 ]

Calling gfPopulateFilterLOV
When called, the gfPopulateFilterLOV function expects a sectionName and a 
shapeName parameter. The syntax to invoke the gfPopulateFilterLOV function to 
populate the ddRegion object on the Home Dashboard section is displayed below:

//Call gfPopulateFilterLOV
gfPopulateFilterLOV('Home','ddRegion');

In addition to referencing parameters as strings, parameters can also be referenced 
as variable objects. With regard to the BMV Executive Dashboard example, the 
ddRegion shape exists on more than one Dashboard section so the above call will not 
work to populate ddRegion on all sections. Leveraging a for loop statement and the 
length property of the gDashboardArray object allows report authors to populate 
the LOVs for all ddRegions across the defined Dashboards. Modifying the Activation 
shape on the Globals dashboard to include the array of multiple sections is displayed 
as follows: 

//Populate Dashboard filter controls
for (var i=0; i<gDashboardArray.length; i++)
{
   var sectionName=gDashboardArray[i];
   gfPopulateFilterLOV(sectionName,'ddRegion');
   gfPopulateFilterLOV(sectionName,'lbTerritory');
   gfPopulateFilterLOV(sectionName,'lbCountry');
   gfPopulateFilterLOV(sectionName,'lbState');
   gfPopulateFilterLOV(sectionName,'lbCity');
}

For each loop iteration, the string indexed at value i of gDashboardArray[i] is 
stored as sectionName. The gfPopulateFilterLOV function is then called for each 
of the dashboard shapes to populate the objects with values. With the abstraction 
of the parameter representing sectionName, the addition or removal of Dashboard 
sections to the dashboard array will not affect the effectiveness of this code.



Advanced Dashboard Techniques

[ 144 ]

When combined with the Dashboard Framework already in place, the example 
code will populate the dashboard filters on all Dashboard sections defined in 
gDashboardArray each time the document is opened. Clicking on the startUpEvents 
shape on the Globals Dashboard section will test the document's onStartupscript 
activities. When completed, the list of values for the Region, Territory, Country, 
State, and City filters are populated as shown in the following image: 

Applying User-Selected Filters to  
Limit Data
Once the filtering options are set on the dashboard, the next step is to configure the 
application of the filter across all of the dashboard pages within the document. These 
filters are applied locally to the data in the Results or Table sections or to the desired 
Query section based on the data refresh strategy. The following sections discuss an 
efficient approach for applying user-selected local filters in both Drop Down and List 
Box Controls throughout dashboard pages in a document.



Chapter 6

[ 145 ]

Preparation for Dynamic Limits
The term Dynamic Limits refers to Query or Results filters that are controlled by 
end user interactivity. These types of limits can be handled a couple of different 
ways using JavaScript. The most straightforward option is to have any limits that the 
user can control already positioned on the Results sections as filters, and then to use 
JavaScript to modify the limit's properties. Another option, which would provide 
more flexibility but involves considerably more JavaScript code, would be to create 
the filter limits on the fly. This technique would be well suited for enterprise-level 
solutions that leverage frameworks that extend beyond the Interactive  
Reporting document.

In the BMV Executive Dashboard, the filters required are unlikely to change, so pre-
positing the limits and using JavaScript to modify the properties of the predefined 
limits is well suited for this example. The process is similar to the process used to 
modify the FilterName limit used on the r Filters section. The process requires 
any Table or Results sections affected by the end user limits have the filters already 
applied to the required columns, so the filter selections can then be added with 
minimal JavaScript code.

Modify the Global Variables Shape
The first step in preparing the dashboard for dynamic filtering across sections is 
to create an array containing the sections of the document that will be filtered. The 
array approach is similar to the array created for accessing Dashboard sections and 
cuts down on repetitive code that would have to be maintained throughout the 
Dashboard if an array is not used. The following code, added to the Global Variables 
shape of the Globals dashboard, demonstrates adding an array containing the names 
of the Results sections for filtering:

//---Array of Results Sections to be limited by user selections
gResultsArray =[];
  gResultsArray[0]="r Plan v Act";
  gResultsArray[1]="r Advertising";
  gResultsArray[2]="r Sales";

In the BMV Executive Dashboard example, the Cost v Price Results section is not 
filtered based on location, since the data contained within the Cost v Price sections 
are company-specific and not affected by region. Therefore, the r Cost v Price section 
is not included in the above gResultsArray and is not filtered by user selections. 



Advanced Dashboard Techniques

[ 146 ]

Modifying the Query and Results Sections
The next step after creating the global Results section array is to verify that all 
columns that can be filtered are added to the Filter line in all of the sections 
contained in gResultsArray. Additionally, to take advantage of the Dashboard 
Framework, the names of the columns in each section must conform to the names 
previously defined as FilterName and should be non-plural. In the BMV Executive 
Dashboard example, q Plan v Act, q Advertising, and q Sales must all include 
Region, Territory, Country, State, and City columns as shown in the  
following screenshot:

Applying Local Filters with JavaScript
The process for modifying the local filters with JavaScript, based on the user's 
selections from the dashboard is very similar to the process used to manipulate the 
FilterName local filter to load the dashboard objects. However, in this situation, the 
user controls the limit values and interacts with the filter controls.

While the processes required to read user selections to manipulate local filters 
from List Box and Drop Down Controls are similar, each Control must be handled 
separately. If the framework naming standards are followed, the shape types are 
easily differentiated using the two-character prefix, which denotes type of shape by 
name. Shapes prefixed with dd are Drop Down Controls and shapes prefixed with lb 
are List Box Controls. While the code example assumes use of the framework naming 
convention defined in Chapter 5, Building the Dashboard Framework, the shape type 
can also be identified using the BqShapeType constant if defined standards are not 
followed.

 



Chapter 6

[ 147 ]

While the logic required to apply the local filters could very easily be contained 
within a single function, the next section will demonstrate the creation of multiple 
functions to handle various tasks so each function can be accessed independently. 
Since all of these functions are global, the declaration order is not important. 

Applying a Drop Down Control Selection to a  
Local Filter
The first of three functions will apply a value selected from a Drop Down Control to 
a local filter on the Results section. Using the BMV Executive Dashboard example, 
add a new Text Label Graphic shape to the Globals Dashboard and set the Name 
property to gf3 and the Title to gfApplyDDFilters.

When the function is called, shapeName and sectionName will represent parameters 
passed to the function. As demonstrated earlier, temporary variables can be defined 
to make testing easier. Define shapeName and sectionName as shown below to create 
temporary variables if desired:

//---Temporary Variables
var shapeName = "ddRegion";
var sectionName = "Home"

The code below demonstrates using the substring() function to remove the 
prefixing value on the shapeName variable, dynamically defining vLimitName to 
represent the name of the column to be filtered.

//Define the limit name from the shape name
var vLimitName = shapeName.substring(2);

Selecting All Values with a Drop Down
If the custom Select All Values item is chosen from the control, the end user is 
requesting all values to be shown. Logically, the request to show everything is the 
same as ignore, so the filter represented by vLimitName should be ignored. If the 
user selects an item other than the first item, the selected item represents the value to 
be added to the filter to show data only for that specific selection.

To accommodate the Select All Values selection, a conditional statement is used 
to determine if the first item is selected. In the case of a Drop Down Control, the 
SelectedIndex property is equal to the numeric value that indicates which item is 
selected. If the first item is selected, the SelectedIndex property is equal to 1 and 
the ignore property of the filter must be set to true to ensure all data is displayed. 



Advanced Dashboard Techniques

[ 148 ]

The code required to ignore a filter upon the selection of the first item is shown in the 
following code snippet:

// Is the selected the first item selected?
if(ActiveDocument.Sections[sectionName].Shapes[shapeName].
SelectedIndex == 1) 
{

 //Set the limit ignore property to true for all sections
 for (var i=0; i<gResultsArray.length; i++)
 {

  //determine the vActiveResults  from the Results Array
  var vActiveResults = gResultsArray[i];

  //set the ignore property of the limit collection to true
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName] 
.Ignore=true;

 } //close loop

}// close if 

The addition of the for loop to cycle through the values defined in the 
gResultsArray ensures that the filter represented by vLimitName is modified on all 
of the sections defined in gResultsArray.

Selecting Filters with a Drop Down 
If the first item is not selected, then the user has selected a value that must be added 
to the filter for each of the required Results sections to limit the data displayed. Since 
Drop Down Controls allow the selection of only one item at a time, the filter is set by 
retrieving the value from the Drop Down control on the Dashboard section and then 
applying that value to the items corresponding filter on each of the Results sections 
in gResultsArray. The following code demonstrates the steps to apply the selected 
Drop Down value to the Results section filters using JavaScript:

else //the selected item is not the first value
{
 //Access and store selected value
 var vLimitText = ActiveDocument.Sections[sectionName].
Shapes[shapeName].Item(ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedIndex);

 //For all table sections in the ResultsArray
 for (var i=0; i<gResultsArray.length; i++)
 {
  //Store the results array reference to the active section



Chapter 6

[ 149 ]

  var vActiveResults = gResultsArray[i];
      
  //Remove all values from the custom values collection
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName]. 
CustomValues.RemoveAll();

  //Add the user selected value stored as vLimitText from the 
Dashboard section to the Custom Values collection
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName]. 
CustomValues.Add(vLimitText);

  //Add all values in the Custom Values collection to the Selected 
Values Collection
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName]. 
SelectedValues.AddAll();

  //Set the Ignore property of the filter to false to activate the 
filter
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName]. 
Ignore=false;

 }// close the loop for results array
}// close the else conditional reaction

Since the check for the first value has already been completed, the else statement at 
the beginning of the preceding code executes only when a user selects a value other 
than the first value in the list. The selected value in a Drop Down Control is accessed 
by passing the Item control to the Selected Index of the Drop Down Control. The 
Selected Index is a numeric value that represents the item selected based on the 
order the items are added to the Drop Down Control. For example, if the Drop Down 
Control representing months has the first value, January, selected, the Selected Index 
of the value is 1. If the tenth item, October, is selected, the value of Selected Index is 
10. When the Items property of a Drop Down or List Box control receives a number 
as a parameter, it returns a string that represents the value stored. In keeping with 
the months comparison example, if the value 10 was provided to the Items property 
of a Drop Down Control, the value October would be returned. 

By leveraging the Selected Index and Items properties of the Drop Down Control, 
the string value of the item selected by the end user is stored as vFilterText if the 
selected item is not the first value in the list. The vFilterText value is then added 
to the Custom Values collection of the appropriate limit on the currently active 
Results section, represented by vActiveResults. The code then adds the custom value 
to the Selected Values collection of the filter, and sets the Ignore property of the 
limit to false, which activates the limit. This script executes once for each item in 
gResultsArray.



Advanced Dashboard Techniques

[ 150 ]

Completing the Function
Upon completion of testing, replace the temporary shapeName and sectionName 
variable declarations with the declaration for the function and the opening brace at 
the top of the script as shown:

//------------ function ApplyDDFilters ------------
//---  This function will apply user selections to local results 
filters from drop down Dashboard objects
function applyDDFilters(sectionName, shapeName) 
{

Add the close brace and globalization of the declared function at the bottom of  
the script:

}
gfApplyDDFilters = applyDDFilters;

The code for the function in its entirety is displayed below:

//------------ function ApplyDDFilters ------------
//---  This function will apply user selections to local results 
filters from drop down Dashboard objects
function applyDDFilters(sectionName, shapeName) 
{

//Define the limit name from the shape name
var vLimitName = shapeName.substring(2);

// Is the selected the first item which denotes all values?
if (ActiveDocument.Sections[sectionName].Shapes[shapeName].
SelectedIndex == 1) 
{

 //Set the limit ignore property to true to ignore the filter which 
will show ALL values for all table sections
 for (var i=0; i<gResultsArray.length; i++)
 {

  //determine the vActiveResults   from the Results Array
  var vActiveResults = gResultsArray[i];

  //set the ignore property of the limit collection to true for the 
active section
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName] 
.Ignore=true;

 } //close loop for results array
}// close if statement reaction

else //the selected item is not the first value
{



Chapter 6

[ 151 ]

 //Access and store selected value
 var vLimitText = ActiveDocument.Sections[sectionName].
Shapes[shapeName].Item(ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedIndex);

 //For all table sections in the ResultsArray
 for (var i=0; i<gResultsArray.length; i++)
 {

  //Store the results array reference to the active section
  var vActiveResults = gResultsArray[i];
      
  //Remove all values from the custom values collection
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName]. 
CustomValues.RemoveAll();

  //Add the user selected value stored as vLimitText from the 
Dashboard section to the Custom Values collection
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName]. 
CustomValues.Add(vLimitText);

  //Add all values in the Custom Values collection to the Selected 
Values Collection
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName]. 
SelectedValues.AddAll();

  //Set the Ignore property of the filter to false to activate the 
filter
  ActiveDocument.Sections[vActiveResults ].Limits[vLimitName]. 
Ignore=false;

 }// close the loop for results array
}// close the else conditional reaction

}
gfApplyDDFilters = applyDDFilters;

Applying List Box Selections to a Local Filter
While the process for assigning user-input values for a List Box Control to a local 
filter is a similar process to a Drop Down Control, the List Box Control object allows 
the user to select more than one contiguous or non-contiguous value.

Continuing with the BMV Executive Dashboard, add a new Text Label Graphic 
shape to the Globals Dashboard section and set the Name property to gf4 and the 
Title to gfApplyLBFilters.



Advanced Dashboard Techniques

[ 152 ]

With the gfApplyLBFilters shape selected, open the Script Editor. If desired, add 
temporary variables to reference a specific shape on a specific section to test the 
function, as shown below:

//---Temporary Variables
var shapeName = "lbTerritories";
var sectionName = "Home"

Use the substring() method to define vLimitName from the shapeName variable, as 
shown below:

//Define the limit name from the shape name
var vLimitName = shapeName.substring(2);

With the first two characters of shapeName removed, the resulting variable, 
vLimitName now represents the name of the Results section limit to be modified.  

Selecting All Values with a List Box
Similar to the Drop Down, the List Boxes in the example contain an option to Select 
All Values. If selected, the filter must be ignored. To determine if an end user has 
selected the Select All Values option, the code simply needs to check if the first item 
in the list is selected. If the first item is selected, the Ignore property of the filter 
represented by the filterName variable on each of the results sections must be set to 
true. By setting the property to true, the filter is ignored and all values are shown. 

The following code demonstrates the conditional statement and steps to ignore the 
filter if the first entry in the List Box is selected:

   //is the first item in the list a selection? 
   if (ActiveDocument.Sections[sectionName].Shapes[shapeName].
SelectedList.Item(1)==ActiveDocument.Sections[sectionName].
Shapes[shapeName].Item(1))
   {
      //Set the limit ignore property to true to ignore the filter 
which will show ALL values for all table sections
      for (var i=0; i<gResultsArray.length; i++)
      {
         //Ignore filter for active results section
         var vActiveResults = gResultsArray[i];
         ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
Ignore=true;
      }    
   }



Chapter 6

[ 153 ]

The preceding code first determines if the first item is selected by comparing the 
string value of the item, represented by selectedList.Item(1), to the string 
value of the first item in the LOV, represented by Item(1). If the values match, 
the code recognizes that the end user has chosen the first item and steps through 
gResultsArray to set the Ignore property of the filter to true.

Selecting Filters with a List Box
If the first item is not selected, then the user has selected one or more values to filter 
the data. For each selection, the selected value must be added to the Results filter that 
is represented by the filterName variable for each Results section represented in 
the gResultsArray variable. The following code demonstrates the steps to apply the 
selected List Box values to a Results section filter using JavaScript: 

else 
{
 //for all table sections
 for (var i=0; i<gResultsArray.length; i++)
 {
  //Store variable to denote active results section 
  var vActiveResults = gResultsArray[i];

  //Remove all values from the custom values collection
  ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
CustomValues.RemoveAll();

  //for each selection up to the total number of selections 
  for (var k=1; k<=ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedList.Count; k++)
  {
   //store the current selected value as filter text 
   var vLimitText = ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedList.Item(k);
   //Add the user selected value stored as vLimitText from the 
Dashboard section to the Custom Values collection
    ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
CustomValues.Add(vLimitText);
  }
 //Add all values in the Custom Values collection to the Selected 
Values Collection
   ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
SelectedValues.AddAll();

 //Set the Ignore property of the filter to false to activate the 
filter



Advanced Dashboard Techniques

[ 154 ]

   ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
Ignore=false;
 }
} 

Since this code immediately follows the code used to determine if the user has 
selected the first item, the first statement is an else statement. This means the 
preceding code will be executed only when the first item is NOT selected. This 
code executes two for loops: one to iterate through the gResultsArray to apply the 
selections on all appropriate sections and the other to iterate through the items the 
end user selected in the List Box and add the selections to the appropriate filter.

The first part of this statement is shown in the following code snippet: 

//for all table sections
 for (var i=0; i<gResultsArray.length; i++)
 {
  //Store variable to denote active results section 
  var vActiveSection = gResultsArray[i];

  //Remove all values from the custom values collection
  ActiveDocument.Sections[vActiveSection].Limits[vLimitName 
].CustomValues.RemoveAll();

This section of the code first stores the active Results section, defined as 
gResultsArray[i], to the vActiveResults variable. This code then removes any 
existing custom values from the limit, represented by the vLimitName variable. The 
CustomValues property of the filter represents values to be limited by the filter. The 
user-selected values are written to the this property, so any existing values must be 
cleared in the event a user is revising a previous selection.

The second for loop is shown in the next code snippet. This loop steps through every 
value in the SelectedList collection of the List Box control and adds the string value 
of each collection member to the CustomValues property of the filter represented 
by filterName. Since the loop is contained, or nested, within the first loop, this for 
loop will be executed for every item within the first for loop. More specifically, the 
loop will run once for each section represented in gResultArray.

//for each selection up to the total number of selections 
  for (var k=1; k<=ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedList.Count; k++)
  {
   //store the current selected value as filter text 
   var vLimitText = ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedList.Item(k);



Chapter 6

[ 155 ]

   //Add the user selected value stored as vLimitText from the 
Dashboard section to the Custom Values collection
    ActiveDocument.Sections[vActiveSection].Limits[vLimitName].
CustomValues.Add(vLimitText);
  }

The above section section of the code uses k to increment through each of the values 
in the SelectedList collection one at a time. The value currently being assessed, as 
represented by SelectedList[k], is first stored as the vLimitText variable and then 
added to the CustomValues collection of the filter using the Add() method.

The final statements of the loop are as shown in the following code snippet: 

//Add all values in the Custom Values collection to the Selected 
Values Collection
   ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
SelectedValues.AddAll();

 //Set the Ignore property of the filter to false to activate the 
filter
   ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
Ignore=false;

These statements first use the AddAll() method of the filter's SelectedValues 
collection to select all of the values displayed in the Custom Values collection. Then, 
the Ignore property of the filter is set to false,  to activate the filter.

Finalizing the Function
Upon successful testing of the function, replace the temporary shapeName and 
sectionName variable declarations with the declaration for the function as shown in 
the following code snippet:

//------------ function ApplyLBFilters ------------
//---  This function will apply user selections to local results 
filters from drop down Dashboard objects
function applyLBFilters(sectionName, shapeName) 
{

Add the close brace and globalization of the declared function at the bottom of  
the script:

}

gfApplyLBFilters = applyLBFilters;



Advanced Dashboard Techniques

[ 156 ]

The code for the function in its entirety is displayed below:

//------------ function ApplyLBFilters ------------
//---  This function will apply user selections to local results 
filters from drop down Dashboard objects
function applyLBFilters(sectionName, shapeName) 
{
    //is the first item in the list a selection? 

   if (ActiveDocument.Sections[sectionName].Shapes[shapeName].
SelectedList.Item(1)==ActiveDocument.Sections[sectionName].
Shapes[shapeName].Item(1))
   {
      //Set the limit ignore property to true to ignore the filter 
which will show ALL values for all table sections
      for (var i=0; i<gResultsArray.length; i++)
      {
         //Ignore filter for active results section
         var vActiveResults = gResultsArray[i];
         ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
Ignore=true;
      }    
   }
   else 
   {
      //for all table sections
      for (var i=0; i<gResultsArray.length; i++)
      {
         //Ignore filter for active results section
         var vActiveResults = gResultsArray[i];

         //Remove all values from the custom values collection
         ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
CustomValues.RemoveAll();

         //for each selection up to the total number of selections 
         for (var k=1; k<=ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedList.Count; k++)
         {
            //store the current selected value as filter text 
            var vLimitText = ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedList.Item(k);
            //Add the user selected value stored as vLimitText from 
the Dashboard section to the Custom Values collection
            ActiveDocument.Sections[vActiveResults].
Limits[vLimitName].CustomValues.Add(vLimitText);
         }

 



Chapter 6

[ 157 ]

         //Add all values in the Custom Values collection to the 
Selected Values Collection
         ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
SelectedValues.AddAll();

         //Set the Ignore property of the filter to false to activate 
the filter
         ActiveDocument.Sections[vActiveResults].Limits[vLimitName].
Ignore=false;
      }
   } 
}
gfApplyDDFilters = applyDDFilters;

Calling Functions with a Function
The final function used to apply filters from Drop Down and List Box Controls 
on a dashboard is the function called directly by the Apply button from the 
dashboard. This function simply determines the shape type of each filter being 
assessed and determines whether to call the gfApplyDDFilters function or the 
gfApplyLBFilters function. 

To script this function, add a new Text Label Graphic to the Globals Dashboard 
section. Set the Name property to gf5 and the Title to gfApplyFilters. The 
JavaScript for this shape is shown in the following code snippet:

//------------ function ApplyFilters ------------
//---  This function calls the ApplyFilters functions after the shape 
type has been determined
function applyFilters(sectionName, shapeName) 
{
   //---Determine shape type by using 2 character shape prefix
   var vShapeType = shapeName.substring(0,2);

   // Is the shape a drop down object?
   if (vShapeType == "dd")
   { 
     // Call the gfApplyDDFilters function
     gfApplyDDFilters(sectionName, shapeName)
   }

   // Is the shape a list box object?
   else if(vShapeType == "lb")
   {
      // Call the gfApplyLBFilters function
      gfApplyLBFilters(sectionName, shapeName)
   }



Advanced Dashboard Techniques

[ 158 ]

}
// make the function globally accessible
gfApplyFilters = applyFilters;

This function first uses substring to determine the first two characters of the shape 
name. If the recommended naming convention is used, the resulting value is either 
dd or lb. The function then uses conditional logic to determine if the resulting two 
character value, represented as vShapeType, is dd or lb. Depending on the result, the 
gfApplyDDFilters or the gfApplyLBFilters function is called appropriately. 

Set the Function to the Dashboard Filter Object
When a user has finished making selections, the user clicks on the Apply button to 
set the event in motion, which applies the selections to the filters. The code required 
to call the main function, the gfApplyFilters function, is placed in the onClick 
event trigger of the Apply button. The call to the function must be made for each 
filter to be applied and the sectionName and shapeName parameters must be 
supplied. The following code demonstrates calling the gfApplyFitlers function 
for each of the items to be filtered when the user clicks on the Apply button on a 
Dashboard section:

// Call the Apply Filter global function for each of the filters to be 
applied
// Add the Region Selection
gfApplyFilters(ActiveSection.Name, "ddRegion");

// Add the Territory Selection
gfApplyFilters(ActiveSection.Name, "lbTerritory");

// Add the Country Selection
gfApplyFilters(ActiveSection.Name, "lbCountry");

// Add the State Selection
gfApplyFilters(ActiveSection.Name, "lbState");

// Add the City Selection
gfApplyFilters(ActiveSection.Name, "lbCity");

The value ActiveSection.Name, which denotes the Name property of the current 
section, and the string value of the Shape the user selections have made are passed as 
the expected sectionName and shapeName parameters.



Chapter 6

[ 159 ]

Synchronizing User Selections across 
Multiple Dashboards
Synchronizing user selections across Dashboard sections is completed by taking the 
user selections on one section and applying the selections across all of the Dashboard 
sections in the document. While the there are many approaches that can be used to 
execute the synchronization, this section demonstrates one efficient and effective 
procedure for keeping List Box object selections in sync across multiple dashboards. 

The first step in executing the synchronization is to unselect any prior selections for 
the control across all Dashboard sections. With this approach, of the Controls are 
now consistent across the sections and are ready for the adding of filter selections. 
The second step to keeping the filters consistent across the dashboard is to obtain 
the selected values from one particular dashboard and propagate the selections to 
consistent controls in the other dashboards. 

Synchronizing List Box Controls
The List Box is one the most common Controls used for filtering on a dashboard. List 
Boxes are more complicated than many other Controls, due to the need to keep track 
of multiple selections that can be made inside the Control. This section of the chapter 
provides an in-depth view of the code necessary to keep List Boxes synchronized 
between Dashboard sections. While the chapter does not detail similar steps for 
Drop Down Controls, the approach and code displayed in this chapter can be easily 
modified to perform Drop Down Control synchronization.

The first step in synchronizing a List Box Control across multiple Dashboard sections 
is to make sure that the number of available values and the order  in which the 
available values are stored is identical across the Dashboard sections. Any mismatch 
in the number or order of the values displayed in the List Box Controls will display a 
flawed result when the synchronizing functions are executed.

Similar to the other global JavaScript functions discussed in this chapter, the 
functions used to synchronize List Box Control selections must be declared during 
the document start-up processes to become globally available. Add a Text Label 
to the Globals Dashboard section to leverage the Dashboard Framework staged in 
Chapter 5, Building the Dashboard Framework. Set the name property to gf5 and the 
title property to gfSyncLBFilters. The three functions, gfUnselect, gfSetBox, and 
gfSyncLBFilters will all be tied to the OnClick event trigger of this Text Label.



Advanced Dashboard Techniques

[ 160 ]

Unselecting Values
To ensure that the synchronization functions apply consistent values on execution, 
unselect all of the values from any correlated List Box Controls across the Dashboard 
sections. While selected values can be compared from one dashboard to another 
for matches, it is far easier to program and more efficient to simply unselect all the 
objects that are synced. This function will be called only when the filters change, so 
it makes sense to baseline all of the values in the List Box Controls across dashboard 
sections.

When working with List Box Controls, there is no method to remove all of the 
selected values from the Selected collection in a single command. With this 
limitation, a for loop must be used to step through all the values in the List Box and 
unselect one value at a time. The following code demonstrates the removal of the 
selected items from a List Box on a dashboard:

//--------- function Unselect --------- 
//--- This function unselects all shape selections 
function unselect(sectionName, shapeName)
{
  for (var i=1; i<=ActiveDocument.Sections[sectionName].
Shapes[shapeName].Count; i++)
   {
      ActiveDocument.Sections[sectionName].Shapes[shapeName].
Unselect(i)
   }

}gfUnselect = unselect; 

The first line of the unselect function uses a for loop, which steps through the full 
list of values in the List Box Control. As each item is encountered, the unselect() 
method is used to unselect each item from the List Box where i is the index or 
numeric value of the items in the List Box.

The unselect function also accepts the sectionName and shapeName parameters, 
allowing report authors to use this function to unselect the values of any List Box 
Control on any Dashboard section.



Chapter 6

[ 161 ]

Selecting Values
Once the values in the List Box are unselected, the new filters are ready to be added 
to each Dashboard section. The approach used to setting the filters in the function 
below is a bit different than the steps to set the selected values in a simple dashboard. 
The following function takes two arguments, the first for the name of the shape on 
the dashboard and the second for the position number or index of the item in the 
selected list for the selection.

function setBox(shapeName,numList)
{
   for (var k=0; k<gDashboardArray.length; k++)
   {
      var vSectionName = gDashboardArray[k];  
      ActiveDocument.Sections[vSectionName].Shapes[shapeName].
Select(numList)
   }
}
gfSetBox=setBox;

While the function in the previous section looped through all of the values in a 
single List Box and unselected each item, the select function loops through all of 
the Dashboard sections and applies the selected values to each specified List Box 
on each dashboard. The first line in the function is a loop that is used to enumerate 
through all the Dashboard sections that are specified in the dashboard array. Notice 
that the for loop in this function starts with a value of k=0. Also notice that the next 
argument in the for loop for specifying the number of iterations has the syntax of 
gDashboardArray.length, where the length syntax is a property of an array and is 
used to provide the number of entries in the array.

Synchronizing Selections
The final step is building a synchronization function to serve as the single function 
called to execute all of the processing for the synchronization, where all the 
operations and other dependent functions are referenced and the items executed. The 
following function references the previous functions for selecting and unselecting 
values while providing the additional processing necessary to provide the arguments 
to both functions: 

function syncLBFilters(sectionName, shapeName)
{
    var itemCount = ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedList.Count;
    for (var i=0; i<gDashboardArray.length; i++)



Advanced Dashboard Techniques

[ 162 ]

    {
        var vSectionName = gDashboardArray[i];  
        if (vSectionName != sectionName)
        {  
             gfUnselect(shapeName, vSectionName);
         }
      }
      for (var i=1; i<= itemCount; i++)
      {
         var index = ActiveDocument.Sections[sectionName].
Shapes[shapeName].SelectedList.ItemIndex(i);
         gfSetBox(index, shapeName)     
      }
}
gfSyncLBFilters=syncLBFilters;

The function above takes two arguments similar to the other two functions, where 
the name of the shape or Control and the section name are passed in. The first 
line of the function creates a variable itemCount and sets the value to the number 
of selected items in the List Box of the Dashboard section. The names of the List 
Boxes and Dashboard section are provided in the arguments of the function. This 
itemCount variable now holds the total number of selections that need to be made 
in each List Box for each dashboard. The second line of the function specifies a for 
loop to unselect all of the selected items in every Dashboard section in the document, 
taking into account logic to skip the section that was provided in the argument of 
the function, to make sure that the filters made on a specific Dashboard sections 
are retained after the unselect has occurred. The implementation of this logic is 
demonstrated in the fourth and fifth line of the function, where a new variable 
vSectionName is set to the name of the section currently selected by the loop through 
the array, as demonstrated by the code var vSectionName = gDashboardArray[i]. 
The fifth line of the function then compares the section provided in the argument of 
the function to the section that is currently set during the loop. If the section names 
do not match, then the function is allowed to continue and the final step is to call 
the Unselect function with the name of the control or shape and the section name 
as arguments. Once all of the sections in the Dashboard array are looped through, 
all list boxes in the document across all Dashboard sections will contain no selected 
values, except for the one where the user made the filtering selections in the first 
place.



Chapter 6

[ 163 ]

Once all of the List Boxes are unselected, the next step is to populate all of the List 
Boxes throughout the document with the values selected by the user on the filtered 
Dashboard section. Line 11 of the preceding function contains a for loop that loops 
from one through the total number of selected items in the List Box. This loop does 
not specify the actual index or number of the particular items that are selected, but 
rather just specifies the total count of items. The next line of code begins with setting 
the variable index to the numerical position of the selected item in the list box 
where the user filtered. The statement is executed through using the SelectedList.
ItemIndex(i) code, which provides the numerical position of the selected item for a 
value in the List Box. In the code, this is denoted by the variable i, which is assigned 
its value from the for loop and is configured to iterate through the total selected 
items in the List Box. The final step in the function is to call the Selection function 
and set the selected item from the filtered List Box to all of the other Dashboard 
sections, where the index of the item to select in the List Box as well as the section 
name is provided to the Selection function as an argument. Once the loop has 
completed iterating through the total selected items in the filtered List Box, the 
function completes and the list boxes across Dashboard sections are synchronized.

Calling the Functions
With the supporting functions in place, the gfSyncLBFilters function must be 
called using JavaScript. The function is called using gfSyncLBFilters(shapeName, 
sectionName). This code is only called during a user-driven event, such as a button 
click, and is always the last step of the filter application process.

With regards to the BMV Executive Dashboard example, this function is called from 
within the gfApplyFilters global function located on the Globals Dashboard:

//------------ function ApplyFilters ------------
//---  This function calls the ApplyFilters functions after the shape 
type has been determined
function applyFilters(sectionName, shapeName) 
{
   //---Determine shape type by using 2 character shape prefix
   var vShapeType = shapeName.substring(0,2);
   // Is the shape a drop down object?
   if (vShapeType == "dd")
   { 
     // Call the gfApplyDDFilters function
     gfApplyDDFilters(sectionName, shapeName);



Advanced Dashboard Techniques

[ 164 ]

   }

   // Is the shape a list box object?
   else if(vShapeType == "lb")
   {
      // Call the gfApplyLBFilters function
      gfApplyLBFilters(sectionName, shapeName);

      // Call the gfSyncLBFilters function
      gfSyncLBFilters(sectionName, shapeName);
   }
}
// make the function globally accessible
gfApplyFilters = applyFilters;

In the preceding example, shapeName and sectionName are the same sectionName 
and shapeName variables received by the gfApplyFilters global function. Since 
the gfSyncLBFilters function is called only when the script has determined if the 
shape is a List Box shape, this function is only executed for List Box objects.

Summary
The goal of this chapter was to introduce and demonstrate an approach to add 
filtering options to a dashboard, the steps to filter data based on user selections, 
and the methods for populating filters across dashboard pages. The chapter began 
with the steps to populate Dashboard section Controls with values from a database. 
The method of using available values is introduced and the approach to loading all 
of the dashboard filters from a single Results section is demonstrated. The chapter 
continues with an overview of the steps to add user-selected filters to the data 
sections of an Interactive Reporting document to filter dashboard content from Drop 
Down and List Box Controls. The method to select all filter values was presented 
as was the positioning of code within the Dashboard section and Dashboard 
Framework. The chapter concludes with the advanced steps to synchronize 
dashboard filter selections across multiple dashboards.  Each section of the chapter 
included information to add the code to the Dashboard Framework, and the chapter 
along with the previous three chapters provide a solid foundation for building 
advanced dashboards.



Advanced Data Analysis
One of the key aspects of business intelligence is the ability to analyse and 
manipulate content for reporting or to gain insight into data. Many business users 
prefer to use Microsoft Excel to perform data analysis due to their comfort with 
the software. While Microsoft Excel provides many excellent tools for performing 
data analysis, Interactive Reporting provides very strong data analysis capabilities 
including the ability to filter, add computations, leverage data sets, build functions, 
leverage variables, and manipulate millions of records.

While many business intelligence products on the market today provide the ability 
to perform analysis, some of these tools are limited in their ability to handle the 
number of records that Interactive Reporting can handle, thanks to the browser-
based Interactive Reporting Web Client. While the Web Client plug-in introduces 
additional overhead in managing the software throughout the enterprise, it provides 
the ability to quickly perform analysis on a large set of information. The goal of this 
chapter is to provide an in-depth explanation of the options available in Interactive 
Reporting for manipulating data throughout the document.

This content in this chapter covers the following analysis topics:

•	 Building Queries for Analysis
•	 Computed Items
•	 Leveraging Built-in Functions and Calculations
•	 Using JavaScript

 



Advanced Data Analysis

[ 166 ]

Building Queries for Analysis
Data analysis in Interactive Reporting starts with the configuration of the 
query. Since Interactive Reporting provides the user with flexibility to perform 
manipulations on the data returned to the document, the user building the query 
must determine the level of detail, filtering, and manipulation to apply before the 
results are returned from the database. While this sounds trivial, there are reasons 
for building a simpler query and retrieving more data into the Results section than 
needed for analysis. When making decisions on building queries, query performance 
as well as data volume must be taken into account when designing the query. The 
best practice approach to determining the best query design is to find the most 
efficient balance between the data volume (taking into account the level of detail 
needed for analysis) and query speed. Since Interactive Reporting provides the 
ability to effectively filter and perform computations on data after it is returned from 
the query on the local machine, it is important to identify the filters needed on the 
query and the filters that can be performed on the data results.

Interactive Reporting contains many presentation sections of the document where 
data returned from the query is manipulated and presented to the user. In these 
sections, sorting, filtering, and leveraging custom computations can be used in 
concert along with other sections to transform and prepare reports. The following 
sections of this chapter walk through the common data manipulation procedures 
available in Interactive Reporting.

Computed Items
Once the query is configured and data is returned into the Results section, the 
user has the ability to leverage the standard features of the Results section for 
filtering, grouping, totalling, and sorting. The user can also leverage a feature called 
Computed Items, introduced in Chapter 1, Advanced Hyperion Interactive Reporting 
Techniques, to perform custom computations using the set of results. These custom 
computations provide the ability to manipulate, calculate, enhance, and build filter 
criteria into the data results. While the ability exists to leverage custom computations 
in the Query section, Computed Items in the other Interactive Reporting sections 
provide additional flexibility that is helpful when conducting analysis.



Chapter 7

[ 167 ]

Building Advanced Computed Items 
When adding Computed Items to a document, the Computed Item window appears 
as shown in the screenshot below. Note: The Computed Item window is used in every 
section except for the Report section, which contains its own section specific Computed Item 
window. Report section Computed Items are described later in this chapter.

The text box at the top of the window is used to set the name of the Computed Item, 
which will become the name of the column in the section. The name of the Computed 
Item must be unique to the section. If another Computed Item exists with the 
same name, the name of the new item is automatically appended with a numerical 
value to ensure uniqueness. For example, if a column named Total Sales exists and 
a Computed Item is added to the section with the name Total Sales, Interactive 
Reporting will use the name Total Sales2 as the column name. To overcome the 
automatic addition to the name, blank spaces can be added after the name of the 
column allowing more than one column to display the same name. While the names 
will appear the same, it is important to note that the new column is referenced with 
an _ for each space added. In this case, the Totals Sales column with one space after 
the column name will appear as Total_Sales_ as the actual column reference.



Advanced Data Analysis

[ 168 ]

Building the Definition using JavaScript
The Definition text box is the location for entering the logic for the Computed 
Item. All Computed Items leverage one or a combination of built-in functions, 
data columns, and JavaScript to construct a Computed Item. Chapter 2, Introduction 
to JavaScript and the Interactive Reporting API, provides an overview to logical 
programming with JavaScript in Interactive Reporting. The concepts described in 
Chapter 2, Introduction to JavaScript and the Interactive Reporting API, are heavily used 
in creating Computed Items and these concepts are demonstrated in the following 
sections of this chapter. It is important to note again that JavaScript is case sensitive 
and specific attention to detail must be used throughout Interactive Reporting when 
leveraging JavaScript.

The buttons below the Definition text box are resources to assist the user with the 
logic that can be used in the column definition. It is important to first note that the 
displayed JavaScript operators are not the only JavaScript operators that can be 
used in the Computed Item. When an operator button is pressed in the window, the 
appropriate JavaScript syntax is inserted into the Definition window at the cursor 
location. For some of the buttons, the exact button label is added to the Definition 
window (specifically any of the arithmetic operators). However, when the and 
button is pressed, two ampersands (&&) are added to the Definition window. While 
these JavaScript hints are helpful, it is important to fully understand the use of these 
operators in common business examples in order to truly master Computed Items.

Referencing Columns
A column (data element) from the section can be typed into the Definition window 
or the user can leverage the Reference button to the right of the Definition box. It is 
important to note that the name of the column used in a definition may be different 
than the name of the column in the section. The Definition window requires that a 
column name not contain spaces or special characters when used in Computed Items 
so an underscore (_) is used in the place of either a space or a special character when 
referencing a column name. It is important to note that the column names are case-
sensitive and an error will occur if the data element name is not entered properly.

While the reference to a column name could be typed directly into the Definition 
box, the Reference button is especially helpful when selecting a long column name 
or when attempting to reference a column with special characters in the column 
name. When the Reference button is pressed, a Reference window appears allowing 
the user to select the item to insert into the Definition window. Upon selecting the 
column and pressing the OK button, the column name will appear in the Definition 
window at the point of the cursor location.



Chapter 7

[ 169 ]

Functions
Interactive Reporting comes with a number of built-in functions to support data 
analysis and manipulation. These functions are similar to functions found in Excel 
and databases and can be used in concert with JavaScript enhance content displayed 
in the software. Functions are either typed into the Definition window or the user 
can leverage the Functions button on the right of the Computed Item window. When 
the Functions button is pressed, the Functions window appears as shown in the 
following screenshot:



Advanced Data Analysis

[ 170 ]

Since a large number of functions exist, the functions are segmented into several 
categories by function type. Upon pressing one of the Function Categories, the 
Functions window is populated with the functions available in the selected category. 
Upon selecting one of the functions, the parameter segment of the window becomes 
populated with a brief description of the function and the required and optional 
arguments. The following screenshot displays the Functions window open to the 
Date Functions category with the ToChar function selected.



Chapter 7

[ 171 ]

The required and optional parameters may allow for the use of data elements 
(columns), text, or specific formatting information. When a data element is a possible 
argument value, the Reference button is provided next to the input box to allow the 
user to easily insert a column name into the specific argument. In the example above, 
the ToChar function allows for a date or number as the primary argument and the 
format to display the data as the second argument.

Function Formatting Arguments
Formatting functions and custom Computed Items in Interactive Reporting requires 
the user to enter specific text to provide instructions for formatting a set of data. 
These instructions are specific to Interactive Reporting and the instructions must 
be accurately specified for the function to correctly translate the data. Format 
instructions are predefined and the easiest place to locate many of these instructions 
is the Number Format menu, which provides the syntax and many examples of 
different formatting types. Right-clicking on a column in a section and selecting the 
Number menu item will open a Properties menu, providing the Number formatting 
options for the column. The Number Properties window is shown in the  
following screenshot:



Advanced Data Analysis

[ 172 ]

The formatting options are grouped into categories by formatting type, including 
Number, Currency, Percentage, Date, and Time. Clicking on the category will 
provide a list of standard formatting options available for each category. When 
clicking on one of the formatting options, the Preview window will update to 
demonstrate the formatting option selected. The syntax displayed in the Formatting 
window can be used in the software where formatting is required. For example, 
using the formatting #,##0.0 in a Computed Item provides a number with a 
comma after every third character and one number after the decimal. Similarly, 
using the formatting mmmm dd, yyyy in the ToChar function will convert a date into 
a string with a full month name, two-digit day, a comma, and a four-digit year. The 
formatting window only lists the common formatting types but custom combinations 
of the formatting syntax can be utilized to create a desired format. Using custom 
combinations is very common and provides the ability to transform data into a wide 
variety of formats.

Additional Help
While the documentation provided in the parameter area of the Functions window 
is brief, the Help button at the bottom left of the screen can be clicked to obtain 
additional documentation on each function contained in the software. Upon pressing 
the Help button, Interactive Reporting will open a web browser to a page on using 
functions. From the Using Functions help page, pressing the Scalar Functions link 
will open the Scalar Functions page, listing each of the function categories for all but 
the Trend Functions (found by searching for Trend Functions in the Help material). 
Upon pressing one of the function category links, a detailed description of each 
function and appropriate examples are presented.

Options
In addition to the Functions and Reference buttons, the final button on the right-
hand side of the Computed Item window is the Options button. The Options button 
provides the ability to select the specific datatype for the Computed Item. This option 
allows the user to override the Automatic datatype selection, providing the ability 
to select the desired data definition for the column from the Drop-Down menu. The 
following screenshot displays the Computed Item window with the Options  
feature open.



Chapter 7

[ 173 ]

Deleting Computed Items
Computed Items are deleted from each section by highlighting the column and 
pressing the DEL key or by selecting one of the Remove menu items from the section-
specific menus or right-click menu. If the column is not referenced by another 
column or section in the document, the Computed Item will be removed without 
a warning message. If the column is referenced in another section or if the column 
contains a dependency with another column, an alert will appear alerting the user to 
the section or other Computed Item dependency and will prompt the user to accept 
the desired change.



Advanced Data Analysis

[ 174 ]

Report section Computed Items
Computed Items in Report sections are different from other sections of the 
document. Report sections contain objects called Report Tables that display data 
similar to a Results or Table section. Each Report Table is a separate object inside the 
section and each Report Table may contain a unique set of Computer Items which 
are not shared with any other Report Table in the report. The following screenshot 
provides an example of a Computed Item inside a Report Table. In this example, the 
Advertising Expenses Column is divided by 1000.

Computed Items in a Report section provide the ability to combine elements across 
multiple Results and Table sections. Each expression references the section of the 
document, the column, and finally the data function to use on the item of data. 
Notice the final value assigned in the data function is the word currBreak. The 
currBreak identifier is used by Interactive Reporting to identify the level of detail to 
split out the data in the report, where the Break value is determined by the location 
of the table within the section (whether the table is located within the Body or inside 
a Report Group causing data aggregation).



Chapter 7

[ 175 ]

Built-in Functions and Calculations
While most users creating a Computed Items will choose to leverage the built-in 
Interactive Reporting functions to write calculations, it is important to completely 
understand the functionality provided within each built-in function. Once fully 
understood, the functions provide the gateway for building computations, filtering 
data, and preparing data for other presentation sections. The following content in 
this section breaks down each built-in function and provides examples of commonly 
used functions.

Conditional Functions
Conditional Functions in Interactive Reporting are specific to replacing content 
of a field based on a set of conditions. There are only two functions that exist in 
the Conditional Function grouping. The functions are Nvl and Decode. The Nvl 
function is used to replace null values with a defined value. The first argument of the 
function is the column of data and the second argument is the replacement string. 
Nvl(PRODUCTS, "No Product Name") will yield the result No Product Name in the 
Products field of the results set for each null value.

The Decode function is used to replace a value in a field with a different value. The 
Decode function takes a minimum of three arguments. The first argument in the 
function is the data column, the second is the value identified for replacement, and 
the third is the value to use for replacement. The second and third arguments may 
be repeated for as many values as desired. A final argument may be included to 
serve as the default value for all items that are not defined for replacement. If the 
final column is omitted, the values in the column not identified for replacement 
will be blank. To resolve the columns from showing blank, the field used in the 
first argument can be specified as the final argument to populate all of the values 
in the column not identified for replacement with the initial value. The example, 
Decode(Calendar_Month_Number, '01', 'January', '02', 'February', '03', 
'March', 'Other') will yield the result January for all instances of 01, February 
for all instances of 02, March for all instances of 03 and Other for any other values 
outside of 01, 02, or 03.



Advanced Data Analysis

[ 176 ]

Date Manipulation
Interactive Reporting provides a set of Date Functions that can be used to 
manipulate date and time values. While Interactive Reporting provides a large 
number of date manipulation functions, a number of commercial database products 
provide a more robust set of tools for manipulating dates. Before attempting complex 
date computations in Interactive Reporting, try to identify if the relational database 
containing the data has functions to manipulate date and time values.

Current Date & Time
One of the most popular date functions is Sysdate. Sysdate provides the current 
date and time and is commonly used to obtain the days between a set date and the 
current date and time.

Adding Time
The AddMonths function is used to add or subtract time from a date. This function 
takes two arguments, where the first argument is the date to adjust and the second 
argument is the number of months to add or subtract. This function is very useful 
and is commonly used to convert calendar dates to fiscal dates. For example, 
AddMonths("01/01/2008", 3) yields the result 04/01/2008. Entering a negative 
date subtracts time from the entered date. For example, AddMonths("01/01/2008", 
-3) yields the result 10/01/2007.

Identifying Specific Days
Three functions exist in Interactive Reporting for identifying a specific day from 
a date. The DayOfMonth function takes a single argument and provides the day 
of the month. For example, DayOfMonth("01/15/2008") yields the result 15. The 
LastDay function takes a single argument and provides the last day of the month for 
the date provided, and the function also takes into account leap years. For example, 
LastDay("02/12/2008") yields the result 29. The NextDay function takes two 
arguments and provides the next occurrence of the day of the week specified in the 
second argument. For example, NextDay("01/01/2008", "Monday") yields the 
result 01/07/2008.



Chapter 7

[ 177 ]

Date Conversion
Dates are commonly converted to character strings in various formats for 
presentation. The most common function for date conversion is the ToChar 
function. This function takes two arguments, where the first argument is the date 
to convert and the second argument is the format to display the date. For example, 
ToChar("01/01/2008", "mmm") yields the result Jan. The inverse of the ToChar 
function is the ToDate function, which provides the user with the ability to convert a 
character string into a date. The ToDate function in Interactive Reporting takes only 
a single argument, which is the string to convert. After transformation, the character 
string will display and behave as a date in the document.

Three other date conversion functions exist for converting a date. The functions 
ToMonth, ToQtr, and ToYear take a single argument and convert the specified value 
into a month, quarter, or year respectively.

Leveraging Mathematical Operations with Dates
Dates, similar to numbers, can be manipulated using math operators. Date fields are 
commonly subtracted to determine the time between two dates and date fields are 
commonly manipulated by adding or subtracting values from the date to obtain a 
desired value. For example, the addition of 1 to a date field adds a single day to the 
date. The subtraction of "01/15/2008" and "01/10/2008" yields the result 5, and 
the function MonthsBetween calculates the number of months between two dates. 
For example, MonthsBetween("01/15/2008", "04/10/2008") yields the  
result 2.83871.

Mathematical Operations 
Interactive Reporting provides built-in Math Functions for performing 
manipulations on numbers. Commonly used functions such as Abs, Ceil, Floor, Mod, 
Max, Min, and Sign can be nested and leveraged inside other functions in order to 
facilitate the appropriate manipulation of numbers into the document. The following 
provides information on each of the common functions:

•	 The Abs function applies an absolute value calculation on the value in a 
column, which is used to convert negative numbers into positive numbers. 
The function takes a single argument and is commonly used in calculations 
where a positive number difference between two numbers must be 
calculated. For example, he Abs(-1) will return the value 1.



Advanced Data Analysis

[ 178 ]

•	 The Ceil function takes a single argument and rounds the number up to the 
nearest whole number. The function is commonly used in date calculations to 
round fractions of a date to the next day. The Ceil(2.781) returns the  
value 3.

•	 The Floor function takes a single argument and rounds the number down 
to the nearest whole number. This function is used to round fractions of any 
value down. The Floor(2.781) returns the value 2.

•	 The Mod function takes two arguments and performs a modulus calculation, 
returning the remainder produced when the first argument is divided by the 
second. The modulus function is very powerful and can be used to segment 
data and identify numbers that divide evenly, in addition to many other 
operations. The Mod(10,2) returns the value 0 and the Mod(10,4) returns 
the value 2.

•	 The Max function takes two arguments and returns the maximum of the two 
values. The Max(2,5) returns the value 5.

•	 The Min function takes two arguments and returns the minimum of the two 
values. The Min(2.5) returns the value 2.

•	 The Round function takes two arguments and returns the first value rounded 
to the decimal place specified in the second argument. The Round(5.63,1) 
returns the value 5.6 and Round(5.63,0) returns the value 6.

•	 The Sign function takes a single argument and is used to determine whether 
a value is positive, negative, or zero. The Sign function returns a -1 if the 
value is less than zero, a 1 if the value is greater than zero, or a 0 if the value 
is equal to zero. The Sign(-5) returns the value -1.

There are many other math functions in addition to the ones identified in the section 
above. These math functions are very common to basic math operations and range 
from leveraging exponents, logarithms, and trigonometric functions.

Numeric Operations
Interactive Reporting separates a number of functions from the math category into 
a category called Numeric Functions. Unlike the math functions, which only allow 
the user to look at one value at a time, the numeric functions provide the user with 
the ability to perform a calculation across a set of data in the results. For example, 
the Sum function can be used to calculate a total from the sum of numbers in a 
column. Most functions in the Numeric Functions section also provide the user with 
the ability to break on a column. The break feature allows the function to look at 
subsets of the dataset, providing the user with the ability to calculate multiple sub-
computations across the set of results. The following provides an overview of each 
Numeric function:



Chapter 7

[ 179 ]

•	 The Avg and AvgNonNull functions are used to calculate the average across 
a column of data, where the AvgNonNull function excludes the null values 
in the column. The Avg and AvgNonNull functions allow for the addition of 
a break column or value.

•	 The ColMax and ColMin functions are used to select the maximum or 
minimum value across a column of values. The ColMax and ColMin 
functions allow for the addition of a break column or value.

•	 The Count, CountDistinct, CountNonNull, and CountNull functions are 
used to perform counting operations across a column of values. The counting 
functions allow for the addition of a break column or value. The Count 
function counts all of the values inside the column, including repeats and 
null values. The CountDistinct counts each distinct value as only one item 
in the count calculation. The CountNonNull function counts all of the values 
in a column with the exception of the null values. The CountNull function 
counts all of the null values in a column of data.

•	 The Sum function provides the ability to create a summation of all of the 
values in a column of data. The Sum function allows for the addition of a 
break column or value.

•	 The Cume function provides the ability to create a cumulative summation 
across  the values in the column. When creating a cumulative summation, 
sorting is necessary to align the data in the order to perform the calculation. 
The Cume function allows for the addition of a break column.

•	 The Next and Prior functions provide the ability to grab the value of data 
before  (Prior) or after (Next) a value in a column. These functions are very 
useful when determining whether or not there are duplicate values across 
a column and are commonly used with section sorting. The Next and Prior 
functions take a single argument and do not allow for any break columns 
or values. These functions are commonly used with conditional logic to 
flag repeats in a data set, such as a key identifier. When using the syntax 
if(Prior(COL) == COL) {1} else {0} in a Computed Item, where COL is a 
column of data and the data results are sorted by COL, a 1 will be displayed 
for every repeating value in the column COL.

•	 The Chr function is very different than the other functions in the section 
where it takes an ASCII value for the argument and returns the character 
value associated with the supplied ASCII value.

 



Advanced Data Analysis

[ 180 ]

It is important to note that Numeric functions, also referred to as aggregate 
functions, produce a result based on a set of values within the section instead of 
a single value. Since the calculation spans the entire set of data, Computed Item 
columns containing Numeric functions cannot be filtered directly in the section 
where the function is calculated. Attempting to filter on an aggregate function will 
produce the error message shown in the following screenshot:

To overcome the error, a Table section can be added to the document and the field 
containing the aggregate calculation can be filtered in the new section. This feature is 
especially important as Computed Item fields with aggregate functions are used to 
create flags for filtering a set of results.

Note: The Next, Prior, and Cume functions are not 
available for use in the Pivot section.

String Manipulation
Interactive Reporting provides String Functions to perform 	 string manipulations 
and translations such as changing the case of a string or trimming characters from a 
string. The following is an overview of the String Functions available in  
Interactive Reporting:

•	 The Concat function takes two arguments and concatenates the two string 
values provided together. The Concat("A", "BC") returns the result ABC. 
Note: Strings in Computed Items can also be concatenated using the + 
operator, which is also demonstrated in JavaScript in earlier chapters of the 
book.

•	 The Initcap function takes a single argument and sets the first letter in 
each word of the string to uppercase and all other letters in the word to 
lowercase. This function is especially useful with name fields as the function 
Initcap("firstname lastname") returns the result Firstname Lastname.

•	 The Lower and Upper functions take a single argument and are used 
to change a string to all lowercase letters or all uppercase letters. The 
Lower("Name") returns the result name and the Upper("Name") yields the 
result NAME.



Chapter 7

[ 181 ]

•	 The Ltrim and Rtrim functions expect two arguments and are used to trim 
off a set of characters from the left or right of the string. The functions are 
commonly used to trim the white space from the left or right of a value. 
When trimming the white space, the second argument in the function can 
be omitted. The Rtrim("value     ")returns the result of value without any 
spaces.

•	 The Substr function is used to create a subset of a string from a string value. 
The function takes three arguments, where the first argument is for the 
value of the whole string, the second argument is for the starting position 
to begin the substring, and the third argument determines the length of the 
substring. The Substr("First Last", 1, 5) returns the result First. String 
properties, such as length, can also be combined with the substring function 
to dynamically calculate the starting position and/or number of characters to 
for the substring.

•	 The Length function takes a single argument, which is the string to be 
evaluated, and is used to identify the number of characters within the 
supplied string. For example, the statement Length("Test") yields the 
result 4.

•	 The Instr function expects four arguments and is used test for the existence 
of a value within the supplied string. The Instr function returns the numeric 
position of the value in the tested string. The first argument in the Instr 
function is the string value, the second argument is for the value to identify, 
the third argument is the starting position for where to start searching in the 
string, and the fourth argument is used to select the occurrence of the value 
in the string. A simple demonstration of the Instr function is Instr("test", 
"s", 1, 1) which returns the result 3. In the example, the Instr function is 
looking for the first occurrence of the letter s in the string starting from the 
first character of the string.

•	 The Replace function is used to replace a set of characters in the string with a 
new set of characters. This function takes three arguments: the first argument 
is the string, the second argument is a set of characters to find in the string 
to replace, and the third argument is the set of replacement characters to put 
into the string. Replace("string", "st", "b") returns the result bring.

•	 Similar to the Replace function, the Translate function is used to replace 
a single character with another character and, multiple characters can 
be replaced inside one translation. The Translate function takes three 
arguments: the first argument is the string to translate, the second argument 
is the string of characters to replace, and the third argument is the set of 
characters to use for the replacement. Translate("143281", "12", "97") 
returns a result of 943789, where every instance of the number 1 is replaced 
with a 9 and every instance of the number 2 is replaced with a 7.



Advanced Data Analysis

[ 182 ]

Statistical and Trending Operations 
Interactive Reporting provides a set of function to perform statistical and trending 
calculations to address the more complicated needs of reporting users performing 
statistical analysis and data trending using Interactive Reporting. With the exception 
of the Rank and RankAsc functions, the functions contained within this section 
serve a specific analytical purpose and are rarely used beyond the realm of statistical 
analysis. As a whole, the Statistical and Trending group of functions behave similarly 
to Numerical functions in that these functions aggregate values within the dataset 
and allow users to define a break column.

Ranking
The Rank and RankAsc functions provide the rank of a value in a set of data. The 
Rank function ranks the data with the largest value in the column set to the value 
one of 1, the next largest to 2, and so on. The second function, RankAsc, provides 
similar functionality but the smallest number in the dataset is set to the value of one, 
the second smallest is set to 2, and so on. Ranking functions are especially useful to 
generate rank based data groupings, such as Top 5 Sales reports.

Using JavaScript
Computed Items support the use of JavaScript which allows users to leverage 
functions beyond those supplied by Interactive Reporting to include the use of 
conditional logic, variables, and functions. Additionally, Computed Items can access 
globally defined variables or functions already declared within the document. 
These features provide users with enhanced flexibility to dynamically modify data 
presented to the user in a set of results.

Variables and Functions in Computed Items
One very useful feature in Interactive Reporting is the ability to use both functions 
and variables defined with global scope in Computed Items. The functionality allows 
a user to write a custom code to apply modifications to data returned from a query. 
For example, the following simple code can be specified to run when the document is 
opened:

function STRFUNC(val1) 
{

  return val1 + 10;

} strfunc = STRFUNC;



Chapter 7

[ 183 ]

The function above expects a single value and then increases the value specified 
by 10. The return statement returns the value with the increase to the place that it 
is used in the code. Once the function is initialized by opening the document, the 
function can be used in a Computed Item. For example, strfunc(Col2) where Col2 
is a numerical column of data from a Results section will return each numerical value 
in the results Col2 increased by 10 in the new column. Similarly, a variable can be 
defined and then added to a Computed Item in the same manner to provide  
similar flexability.

Math Functions
One JavaScript component key to Computed Items is the Math object. The 
Math object has a number of functions assigned to it that allow users to perform 
complicated arithmetic. For any supported calculations, the Math object is supplied 
the required parameters, performs the desired calculation, and returns the resulting 
value. For example, the Math object can determine the absolute value of a number 
using the Math.abs()function. If the value -3 is supplied to the function, the result 
of the statement Math.abs(-3) is 3. Additional code samples of other Math object 
functions are found using a simple web search for JavaScript Math functions.

Random Number Generation
Generating random numbers is very useful for randomly splitting a data set into 
subsets. Since Interactive Reporting does not contain a random function, the Math.
random() object function is very useful for generating a random number for 
each row in a column. This function can be used together with the Rank and Ceil 
functions to create random buckets of data. For example, creating a Computed Item 
called Rand with the Math.random() will create a random number for each row 
in the column. Then creating the Computed Item named Grouping with the logic 
Ceil(Rank(Computed2)/10) will create random buckets of 10 rows in the data 
results. Creating a Table section under this section will allow for the filtering and 
additional calculations on the Grouping column. 



Advanced Data Analysis

[ 184 ]

Summary
The goal of this chapter was to provide an in-depth explanation of the options 
available in Interactive Reporting for manipulating data throughout the document. 
The chapter starts with an overview of structuring a query for data analysis, where 
the concept of data volume versus query performance is presented. The chapter 
continues with an overview of the Computed Item interface and the interface 
specifically for Report sections. The chapter continues with an in-depth view into a 
majority of the functions that exist in Interactive Reporting. The chapter details both 
an explanation and examples of functions from each function group and provides 
information on obtaining additional material from the system documentation. 
The chapter concludes with material on using JavaScript in Computed Items 
with information on adding functions and variables. The content presented in the 
JavaScript section provides a brief guide into the vast functionality that can be 
performed using custom JavaScript programming. Leveraging knowledge from 
this chapter and other chapters of the book should serve as a solid foundation for 
creating custom computations for advanced analysis.



Creating Briefing Slides and 
Executing Batch Exports

Interactive Reporting provides many options for exporting information and 
deliverables to different file formats. Users commonly struggle with the best and 
most appropriate method for creating a data or formatted export, with most users 
overlooking some of the most effective and efficient exporting methods. In addition 
to searching for the best export format, many users express interest in exporting 
information from Interactive Reporting into a Microsoft PowerPoint presentation. 
While the Hyperion SmartView product can be used to refresh objects in Microsoft 
Office documents, another exporting technique can be executed using the native 
functionality of Interactive Reporting and does not require the use of an additional 
piece of software.

Another less commonly known feature in Interactive Reporting is the ability to 
add custom code to generate batch exports of deliverables. The use of a simple 
programming approach to exporting allows the user to save significant time and 
effort when exporting multiple slices of information from the same document.

The goal of this chapter is to educate the advanced user on the methods and 
features most commonly used for exporting information from Interactive Reporting. 
The chapter will focus on the native software export features, leveraging custom 
programming to perform simple and complex exports, and simple steps for 
configuring a Report section to produce briefing slide content.

This chapter covers the following topics:

•	 Exporting Interactive Reporting sections
•	 Exporting sections with custom code
•	 Creating briefing slides from a report section
•	 Creating and executing batch exports



Creating Briefing Slides and Executing Batch Exports

[ 186 ]

Exporting document sections
Interactive Reporting provides many formats for exporting information to Adobe 
PDF, Microsoft Excel, images, HTML, and text formats. Each section of the document 
allows for different export options, and some sections provide more export flexibility 
than others. While there are many options, three formats are commonly used to 
produce deliverables from objects in the document. These three options are the PDF, 
JPEG, and MHTML formats.

Many users of the product are not familiar with and do not commonly use the 
MHTML (Microsoft Office Web Archive) export option. The MHTML export option 
provides users with the best method for exporting a section for use in Microsoft Excel, 
where the formatting of the section is retained and the export is not limited at 65 
thousand rows allowing for a larger export to the newer version of the Excel software. 
When exporting a section to the MHTML format, the MHTML document is created 
as a single page, unlike the regular HTML option, which provides a page and a folder 
of objects referenced in the HTML document.  Once exported, the MHTML document 
can be opened in Internet Explorer by default or in Microsoft Excel through opening 
the file through the application or by changing the file extension from .mhtml to .xlsx.

Exporting natively
A section is exported natively from the document by accessing the section and 
selecting one of the export options from the File menu. The File menu includes three 
options available for exporting sections, including Section, Document as Web Page, 
and HTML Wizard. The following screenshot depicts the export options from the  
File menu:



Chapter 8

[ 187 ]

The first and most frequently used export option, Section, allows the user to export 
one section of information into one of the default file types. The export is executed 
by selecting the Section menu item from the File | Export menu. Upon selecting the 
option, a dialog box appears to allow the user to set the filename, export location, 
and export file type of interest. Upon completion, the system writes the file in the 
desired export format to the specified location.

Some sections in Interactive Reporting will not export into every 
available file type. These sections show a smaller subset of file types in 
the file type drop-down of the Export window.

The second option, Document as Web Page, provides the user the ability to export 
multiple sections of the document into a web page. When this export option is 
selected, a window appears allowing for the selection of the sections in the document 
to export, as shown in the following image:



Creating Briefing Slides and Executing Batch Exports

[ 188 ]

After selecting sections and pressing the OK button, a dialog box appears to 
configure the name of the document. Only two file types can be selected as the 
export file type with the Document as Web Page export method. The first option 
is the default HTML option, and the section option is MHTML file type. When the 
document is exported to HTML or MHTML, the user is provided with a formatted 
result where each exported section is displayed as a page with tabs at the bottom 
of the document to allow user to navigate between the different pages or sections. 
While both of these documents provide the same output, the MHTML format of 
the document is stored in a single page and is more manageable to distribute. The 
following screenshot displays the exported document open in the web browser:

A key benefit of this feature is that both the HTML and MHTML objects can be 
opened in Microsoft Excel for viewing and editing. Each tab on the web page 
is converted into sheets in the Microsoft Excel document. Content can be easily 
modified, formatting can be easily changed, and the document can be saved into a 
native Microsoft Excel file type. The following screenshot provides an example of the 
document open in Excel:



Chapter 8

[ 189 ]

The final export option is the HTML Wizard. This feature is specifically used for 
exporting the document into an HTML layout. Used less frequently than the other 
features, the HTML Wizard is primarily focused on publishing content for the Web.

Exporting a single section (code)
While Interactive Reporting provides the ability to easily export sections of the 
document natively in the interface, the software also provides the ability to export 
sections of the document using simple JavaScript code statements. Two features 
exist for exporting a single section of the document. The first method, Export, is 
commonly used to export a single section of the document from the Interactive 
Reporting Web Client. The second export method, ExportToStream, is used with the 
iHTML client or to improve exporting performance.

The following is the Oracle documented syntax of the Export method:

Export( [optional] Filename As String, [optional] FileFormat As 
BqExportFileFormat, [optional] IncludeHeaders As Boolean, [optional] 
Boolean Prompt, [optional] BqEncoding Encoding)

The following is the Oracle documented syntax of the ExportToStream method:

ExportToStream([optional]String Filename, [optional]BqExportFileFormat 
FileFormat, [optional]Boolean IncludeHeaders, [optional]Boolean 
DataStreaming, [optional]Boolean Prompt, [optional]BqEncoding 
Encoding)



Creating Briefing Slides and Executing Batch Exports

[ 190 ]

The syntax of these methods may appear odd compared to other JavaScript code 
methods described in this book, since all of the arguments of the method are 
optional. If the methods are used without setting any arguments, a dialog box will 
appear prompting the user to set a filename, file type, and encoding when the export 
methods are executed. While the dialogue box allows the user to customize the 
export settings at the time of export, the developer configuring the document may 
want to preset some of the settings. The following is a breakdown of the arguments 
for both methods:

•	 The Filename [optional] argument allows the user to set the filename and/or 
path for the export.

•	 The FileFormat [optional] argument sets the file type of the document and 
accepts an Interactive Reporting constant from the BqExportFileFormat set 
of constants.

•	 The IncludeHeaders [optional] argument set the export to include section 
headers (specific to sections that allow page headers and page footers from 
the Insert menu).

•	 The DataStreaming [optional] argument is specific to the ExportToStream 
method and is used to toggle data streaming on and off.

•	 The Prompt [optional] argument sets the dialog box to display when the 
method is executed.

•	 The Encoding [optional] argument is used to specify the document encoding 
for the export and accepts a constant from the BqEncoding set of constants.

TheBqExportFileFormat, BqEncoding, and entire set of 
constants with descriptions are found in the Script Editor by 
expanding the Constants list of values.

Export examples
The following examples demonstrate the use of the Export method to export a Report 
section of a sample Interactive Reporting document. The first example, Export Example 
1, exports the Planned vs. Actual Cost Report section without any arguments providing 
the user the ability to specify the file path, filename, file type, and file encoding at 
runtime. The second example, Export Example 2, prompts the user to export the 
Planned vs. Actual Cost Report section into a PDF file format in the C: directory.



Chapter 8

[ 191 ]

Export Example 1:

/* Prompts the user to set the file name, file type, and encoding at    

   Runtime */

ActiveDocument.Sections["Planned vs Actual Cost Report"].Export()

Export Example 2:

// Predefines all of the arguments for the user

ActiveDocument.Sections["Planned vs Actual Cost Report"].
Export("C:\\Cost Report.pdf", bqExportFormatPDF, false, true, bqEnc_
WesternEuropean_Windows)

Note the use of two backslashes (\\) in Export Example 2 when 
specifying the location C:\\. Two slashes are required when specifying a 
file path in Interactive Reporting.

ExportToStream examples
The following examples demonstrate the use of the ExportToStream method to 
export a Pivot section of a sample Interactive Reporting document. The first example, 
ExportToStream Example 1, exports the Advertising Expense by Country Pivot section 
without any arguments, which allows the user to specify the file path, filename, file 
type, and file encoding at runtime. The second example, ExportToStream Example 
2, prompts the user to export the Advertising Expense by Country Pivot section into a 
MHTML file format in the C: directory.

ExportToStream Example 1:

/* Prompts the user to set the file name, file type, and encoding 
at Runtime */
ActiveDocument.Sections["Advertising Expense by Country Pivot"].
ExportToStream()

ExportToStream Example 2:

// Predefines all of the arguments for the user
ActiveDocument.Sections["Advertising Expense by Country 
Pivot"].ExportToStream("C:\\Advertising Pivot.mhtml", 
bqExportFormatOfficeMHTML, false, true, true, bqEnc_
WesternEuropean_Windows)



Creating Briefing Slides and Executing Batch Exports

[ 192 ]

Exporting multiple sections (JavaScript code)
In addition to exporting a single section of the document through custom 
programming, Interactive Reporting provides the ability to export multiple sections 
of the document together in one HTML or MHTML file.  This export is not completed 
at the section level but rather at the document level, using an Export method of the 
ActiveDocument object. This custom programming export functionality mimics 
the native Documents as Web Page export feature, and these HTML or MHTML 
documents can be opened and edited with Microsoft Excel, similar to other exports.

While Interactive Reporting appears to allow the user to set a file in any of 
the export formats, setting the file format to a value other than HTML or 
MHTML would generate the following error when the code is executed:
Error Code: Script(x):uncaught exception: Export 
format not supported

While the exporting of multiple sections functionality is limited in export 
format, it is extremely important when leveraging the batch feature, described 
later in this chapter. If there is an interest in exporting multiple sections of an 
Interactive Reporting document into one export format while running a batch 
process, the Export method of the ActiveDocument object must be utilized.  The 
ActiveDocument object contains three different methods utilized when exporting 
multiple sections:

•	 The AddExportSection method is used to add sections of the document into 
the export queue. This method accepts one argument, which is the name of 
the section to export.

•	 The RemoveExportSections method is used to clear out all sections from the 
export queue.

•	 The Export method is used to generate the multi-section export. While the 
Export method appears to be similar to the method described in exporting a 
single section, the ActiveDocument version of the Export method is limited 
to the HTML and MHTML file types. Additionally, the path of the file must 
be specified, as this specific Export method will not prompt the user to save 
the file, but will write the file directly to the specified file path.

The following example highlights the use of the ActiveDocument Export method to 
export two Report sections to the C:\Temp directory:

/* The AddExportSection statement must be unique for each 
Section */
ActiveDocument.AddExportSection("Planned vs Actual Cost Report");

 



Chapter 8

[ 193 ]

ActiveDocument.AddExportSection("Actual vs Planned Revenue 
Report");

/* Code use to generate the export to the specified file location 
on the drive as an MHTML file type. */ 
ActiveDocument.Export("C:\\Temp\\Revenue and Cost Report.mhtml",bq
ExportFormatOfficeMHTML);

// Removes all sections from the export queue. 
ActiveDocument.RemoveExportSections();

If the Temp file folder does not exist on the machine running the export, 
the following error message will be written to the Console window:
Error Code 2: Script(x):uncaught exception: Unable to open output file: 
'Revenue and Cost Report.mhtml'

Briefing slides
Many users are interested in using Interactive Reporting to create briefing slides 
for Microsoft PowerPoint documents. While there is no native export feature in 
Interactive Reporting to export a section to Microsoft PowerPoint, Hyperion created 
a tool called SmartView to integrate the different products of Microsoft Office with 
Interactive Reporting. While this product fills the void of integrating the Microsoft 
Office suite with Hyperion Interactive Reporting, there are additional custom 
methods that can be used to generate briefing slide content.

Report sections in Interactive Reporting can be exported to a JPEG file type, where 
each page of the Report section is saved as an individual image file. This image 
export feature from a Report section provides a convenient and easy to use approach 
for generating slide content for Microsoft PowerPoint presentations, where the 
content of the Interactive Reporting document can be segmented and arranged on a 
report with Report Groups with defined page breaks to create quality slide content.

Microsoft PowerPoint contains two different methods for importing files. The first 
method is used to import image files into a document. When the image files are 
imported into the document, the file is copied into the document and any changes to 
the original file do not impact the file displayed in the slide deck. This method can 
be used to import images from an Interactive Reporting document, but the images in 
the PowerPoint document must be exported from Interactive Reporting re-imported 
and reconfigured each time the data in Interactive Reporting is refreshed.



Creating Briefing Slides and Executing Batch Exports

[ 194 ]

A second option exists for linking images into a PowerPoint document through the 
addition of an object to the PowerPoint document. Microsoft PowerPoint recognizes 
the bitmap file type as one of the default objects in the software, where bitmap 
images can be linked into PowerPoint documents from a specified file location. 
When the source bitmap image is updated, the image in the PowerPoint document is 
updated when the document links are refreshed (the update setting is configurable 
in Microsoft PowerPoint). This feature is very effective and can be used together 
with the exported images from Hyperion Interactive Reporting to create updatable 
PowerPoint slideshows. However, there is a manual step that is necessary when 
using this feature. Interactive Reporting only exports files into the JPEG file type and 
Microsoft PowerPoint does not recognize the JPEG file type as one of the default 
object formats. Therefore, the files exported from Interactive Reporting will have to 
be renamed from the .jpg extension to the .bmp extension. Once the file extensions 
have been adjusted, the source bitmap files can be overwritten with the newly 
renamed files from the Interactive Reporting export. The next time the linked objects 
from the Microsoft PowerPoint document are updated, the new image files will 
automatically appear in the document.

Building the report for a briefing slide export
A Report section created for an image export should differ significantly from a 
Report used as a static report. Since each Interactive Reporting Report section page 
will be exported to a single image when the image export is utilized, each page of the 
Report section should be designed to support a single slide of the slideshow. Since 
the Report Groups feature of the Report section splits the content into subsections 
of data, the Report section provides an easy method to segment pivots and charts 
into grouped content for briefing slides. Once the content of the report is configured, 
a few Report section options are available to help prepare the report for export to 
image files. The following screenshot displays a Report section configured to display 
two Charts sections and one Report Group:



Chapter 8

[ 195 ]

In the screenshot above, notice that the groups of information are listed on the same 
page of each report, which makes the document difficult to segment into multiple 
pages. However, the default Report Group display settings can be modified to split 
each Report Group heading onto a separate page. 



Creating Briefing Slides and Executing Batch Exports

[ 196 ]

The page break step is accomplished by clicking inside the Report Group on the 
report, right-clicking, and selecting the Page Break Before menu item as shown in 
the following figure:

Since each Report Group is now on a separate page, the briefing content for each 
content area appears in a single image. However, when the images are exported from 
the report with the default report page size, the images contain a large portion of 
white space at the bottom of each image.

The second important feature of the Report section is the ability to change the report 
page size to better fit the information on each page of the report. The report page 
size is adjusted by selecting the Report Setup menu item from the Report menu. The 
Report Page Setup window opens to the Page Size tab with the default setting to 
use the dimensions of the printer (configured by the Page Setup options of the File 
menu). The report can be set to a custom page size by switching the Page Size radio 
button to use custom dimensions. Setting the custom dimensions is completed by 
clicking on the Custom Dimensions radio button and entering the width and height 
of the desired page size in the Report section.



Chapter 8

[ 197 ]

To identify the best dimensions for the Report section size, the rulers 
may be turned on by selecting the Rulers menu item from the Report 
menu. In the same Report Page Setup window, the margins tab may 
also be utilized to adjust the margin sizing as desired.

Once the page sizing has been modified, the report will appear as shown in the 
following screenshot and will export to image sizes that are appropriate for the size 
of the report pages. The following screenshot shows the initial example with the 
Page Break setting of the Report Group configured and the report page resized:



Creating Briefing Slides and Executing Batch Exports

[ 198 ]

Export code for briefing slides
The majority of work in creating briefing slides for the image export is completed in 
the formatting of the Report section and the setup and configuration of the Microsoft 
PowerPoint document. While the Report section is easily exported natively in the 
product by exporting the section to JPEG format, the Report section can also be 
exported using custom code. The following code example showcases the ability to 
export the PowerPoint example Report section into JPEG format:

ActiveDocument.Sections["PowerPoint Example"].Export("C:\\Cost 
Report", bqExportFormatJPEG, false, true)

Executing batches of reports
Users frequently express interest in creating an Interactive Reporting document that 
processes one or more queries and exports one or more reports for a set of input 
criteria. Interactive Reporting has a job scheduler utility allowing the user to perform 
batch processing features. However, many environments do not allow users to access 
the job scheduler feature. The Interactive Reporting Web Client does not natively 
contain the ability to batch process in the software. However, custom programming 
can be used to create similar functionality to the job scheduler by running a query 
and producing an export multiple times. This feature is extremely effective and can 
be easily leveraged to save a significant amount of time and effort.

While there are many different methods for creating batches in Interactive Reporting, 
the most common approach is to create a set of code to loop through input criteria, 
process the required queries of the document, and produce the export for each input 
criteria value. The following diagram depicts a high-level process flow for the  
batch approach:



Chapter 8

[ 199 ]

Batch processing example
The following example is a demonstration of the methods for creating a PDF report of 
Actual Revenue vs. Plan Revenue by store type and store name for each month of each 
year from the sample data model. The input criteria are all of the month and date 
combinations stored in the month dimension. The following screenshot displays the 
different sections of the sample Interactive Reporting document:

Notice that a Dashboard section, a Report, and two Query sections with Results and 
one Pivot section exists in the document. The Dashboard section contains a button 
for executing the batch process and, upon pressing the button, the program will 
execute the batch process and will start producing exports.

The input criteria in the example are derived from the Input Criteria Query, which 
selects all of the distinct year and month combinations from the Month Dimension. 
Each record from the input criteria Results section will result in one PDF document 
created for the specified criteria. When executed, the program will start with the 
first record of the input criteria and will loop sequentially to the last record. At 
each iteration of the process, the year and month number from input criteria will 
be applied to the year and month number filters of the Planned vs. Actual Query. 
The Planned vs. Actual Query will be processed and a PDF export will be written 
to the C:\ directory with the year and month criteria included in the file name to 
distinguish each file.

Sorting the Results section of the input criteria query will present an 
ordered output of the batch and may assist with troubleshooting errors.



Creating Briefing Slides and Executing Batch Exports

[ 200 ]

Batch processing code
/* Process the Input Criteria Query to obtain the distinct list of 
input criteria values. The query properties are configured to 
return unique rows and the Results section is sorted by row and column 
*/

ActiveDocument.Sections["Input Criteria"].Process();

/*  For loop iterating through all of the values in the input criteria 
Results section.  The loop starts with the first value and 
continues through each record up to the total values of the  results 
section (denoted  by the row count). */

for(var i=1; i<=ActiveDocument.Sections["Input Criteria Results"].
RowCount; i++)
{
     /* 	 Variable Set to reduce the need to repeat the query string 
definition multiple times */
     
MainQry = ActiveDocument.Sections["Plan vs Acutal Query"];

     /*    Remove all of the values selected in the Year and Month 
     Number filters of the Plan vs Actual Query  */
   
    MainQry.Limits["Year"].SelectedValues.RemoveAll();
MainQry.Limits["Month Number"].SelectedValues.RemoveAll();

     /*    Grab and set the input criteria Year and Month number 
results to a variable.  */

   InputYear = ActiveDocument.Sections["Input Criteria 
Results"].Columns["Year"].GetCell(i);
   InputMonth = ActiveDocument.Sections["Input Criteria 
Results"].Columns["Month Number"].GetCell(i);

    /*    Sets the input criteria value for the month and year into 
the month and year filters of the Plan vs Actual Query */
 
   MainQry.Limits["Year"].SelectedValues.Add(InputYear);
   MainQry.Limits["Month Number"].SelectedValues.Add(InputMonth);

   //       Process the Plan vs Actual Query for the specified values
   



Chapter 8

[ 201 ]

MainQry.Process();

   /*      Allows the processor to complete the processing of the 
events in the statement.  The addition of this method prevents 
the application from failing during the export by requiring the 
application to complete events before moving onto the next step.  */
   
Application.DoEvents(); 
 
  /*    Specifies the path and creates a unique filename for each 
file.  Leverages the InputYear and InputMonth variables declared in 
the previous statement to mark the file name with the appropriate year 
and month combination. */
     
FileName = "C:\\Revenue Report " + InputYear + "-" + InputMonth;
 
  /*    Exports the document to the specified file path with dynamic 
file name.  Notice the prompt export setting is 
set to the off position so the program runs seamlessly 
without interruption. */
     
ActiveDocument.Sections["Actual vs Planned Revenue Report"].
Export(FileName, bqExportFormatPDF, false, false, bqEnc_
WesternEuropean_Windows)

  /*      Repeated to make sure the program completes the export 
before moving forward with processing the next set
          of input criteria.  */
  
Application.DoEvents();

/*        Once the file export is completed, the program moves to the 
next set of input criteria until all of the documents 
          are completed.  */

}

After the batch processing script completes, the directory configured to contain all of 
the export of files will be populated with a PDF document for each set of  
input criteria.



Creating Briefing Slides and Executing Batch Exports

[ 202 ]

Refining the batch code to remove empty results 
sections
Many times, situations arise where specific input criteria values do not yield a result 
when processed in the main query. Since users are typically interested in ignoring 
empty reports of information, adding a conditional statement to the export statement 
to ignore exporting empty reports is an efficient way of handling this situation. 
Replacing the export script statement in the batch export example above with the 
following statement (shown below), provides the specific logic to not export a Report 
section in instances when the main query has an empty results section:

/*     Exports the document to the specified file path with the 
name specified above provided the results section of the 
document contains information.  Notice the prompt export setting 
is set to the off position so the program runs seamlessly without 
interruption.  */
     
if(ActiveDocument.Sections["Plan vs Acutal Results"]) {

ActiveDocument.Sections["Actual vs Planned Revenue Report"].
Export(FileName, bqExportFormatPDF, false, false, bqEnc_
WesternEuropean_Windows)
}

After the refined batch processing script completes, the directory specified to receive 
the export of files will display the list of files where data existed for the input criteria.



Chapter 8

[ 203 ]

Summary
The goal of this chapter was to demonstrate new and innovative approaches for 
using Interactive Reporting to generate deliverables and briefings as well as the 
methods and features most commonly used for exporting information from the 
software. The chapter began with an introduction to the native export functionality 
provided by Interactive Reporting, including exporting an individual section to 
different file formats and exporting multiple sections of the document to a web 
page at one time. Once an explanation of the native tool features was discussed, an 
in-depth view of the code used to generate an export of information using custom 
programming was presented, which included basic section exporting and the process 
to export multiple sections at a time. The chapter continued with an innovative 
approach to using the Interactive Reporting Report section as a means of generating 
content for a Microsoft PowerPoint slideshow through the use of image files. The 
chapter then concluded with an approach to creating multiple custom deliverables 
by creating a custom process and using the export functionality to run multiple 
queries without manual intervention. At the end of this chapter, the advanced user 
should have a solid understanding of the export functionality provided in Interactive 
Reporting, and the user should have the knowledge needed to begin using the 
briefing slide and batch approaches to support daily efforts.

 





The Central Code Repository
One challenge that advanced users encounter with Interactive Reporting's report-
centric model is the tracking and maintenance of heavily customized dashboard 
reports, especially in enterprise-level implementations where code is used 
repetitively and transparently across multiple documents. Given the common and 
straightforward practice of storing similar JavaScript code within each document in 
an enterprise, it is incredibly difficult and infeasible to individually identify, track, 
and edit changes across documents.

One simple and invaluable methodology is to store report customization scripts in 
an accessible database table within the enterprise environment. This script table, 
referred to as the Central Code Repository (CCR), is an external reporting library 
that allows code to be quickly pushed into some or all documents in an enterprise. 
This centralized repository provides the capability for agile responses to ongoing 
business changes and code maintenance without modifying the consuming reporting 
documents. In addition to providing an efficient code update capability, the CCR 
drastically reduces development and testing man-hours since the code can be tested 
and vetted independently from the reporting document.

The goal of this chapter is to educate advanced users on both the theory and 
processes for creating a CCR. This chapter covers the following topics:

•	 Understanding the CCR
•	 Preparing code statements and implementing the CCR
•	 Querying and executing the CCR
•	 Creating the CCR Global Code Dashboard
•	 Scripting the Document Startup Event
•	 Advanced application concepts



The Central Code Repository

[ 206 ]

Understanding the Central Code Repository
The Central Code Repository (CCR) is a database model created for Hyperion 
Interactive Reporting that allows the storage, management, and implementation of 
a centralized code base. The repository is purely a custom developed database table 
or set of database tables created by development and business users to effectively 
leverage and maintain JavaScript code statements and variables across multiple 
Interactive Reporting documents. The tables are maintained by the development and 
user community, and the table must exist in a centralized location that is accessible 
by the Interactive Reporting documents using code from the developed solution. 
Below is a conceptual diagram of the use of the CCR across multiple Interactive 
Reporting documents:

Code Database Table
located in centralized

database

BQY Document 1 BQY Document 2 BQY Document 3

Changes made to the code database tables are efficiently managed within the CCR, 
and when changes are enacted the code updates globally across BQY documents. 
As business requirements evolve or even drastically change, the CCR will provide 
developers, managers, and advanced users with tremendous flexibility for global or 
partial report code management.

Preparing the JavaScript code
In order for the CCR to work properly in all database environments, the JavaScript 
code must be stripped of all comments and carriage returns. The removal of carriage 
returns from the code requires that the JavaScript deployed in the CCR adhere 
to strict coding standards including using semi-colons at the end of statements. 
These single lines of code are stored in the CCR code database table to be queried, 
evaluated, and then utilized by the individual BQY documents.

Table structure
Since the CCR is a custom-developed solution, the repository can be flexible to 
accommodate many needs of the user community. The rest of the chapter discusses 
using a single table as the CCR for simplicity in demonstrating the capabilities of 
the feature. When building the CCR with a single table, the CCR table should be 
structured with at least the three columns as shown in the following table:



Chapter 9

[ 207 ]

•	 Number: The Number field will determine the order in which the function 
is executed, which is especially useful for functions that perform document 
actions that have a hierarchy to them, such as Document Startup scripts

•	 Name: The Name field is used to provide a title for the code provided
•	 Code: The Code field stores the formatted JavaScript code used in the 

Interactive Reporting documents

As specified in the previous sections, additional columns or tables to manage content 
including report names, categories, or groupings, can be added to enhance the 
organization and management of Interactive Reporting documents in the enterprise. 
Using these additional components will allow developers and advanced users to 
minimize the amount of JavaScript coding declared as a part of the start-up process 
through the use of modifying the code query to obtain only the specific functions for 
each Interactive Reporting document.

Configuring the CCR code table and query
With the report code now stored in the CCR code table in the database, BQY 
documents can query the table and then evaluate the code that is stored in the 
table. The image below shows the CCR workflow within the Interactive Reporting 
document.

Query the CCR
database table

Evaluate the code
column returned
from the query

Invoke the code
using object event

triggers

When the document is first opened, the query to retrieve the code from the CCR 
code database is processed during the document start-up process. Once the query 
results are retrieved, the results from the code column are then looped through the 
JavaScript eval() function to declare the functions and variables or to execute code 
statements.



The Central Code Repository

[ 208 ]

Store any code statements commonly used in user interface 
modifications, including hiding or unhiding toolbars, menus, and 
other interface components in the CCR.

Querying the Central Code Repository (CCR)
Each Interactive Reporting document using code from the CCR requires a Query 
section to return the contents of the CCR database table into the specific document. 
The results of the code query will be read during the document start-up process 
using code described in the section above and demonstrated throughout the rest of 
this chapter.

Creating the Query section
The first step in using the CCR is to add a new Query section to the document. The 
new query must have access to the CCR database table. There is no harm in storing 
the database table with the other tables in a common production database, nor is 
there harm in allowing the table to be accessed by the OCE connection containing 
the production data set utilized by the user community. However, there are 
implementations where development teams like to separate the code tables along 
with other metadata, remarks, and other reference materials used by Interactive 
Reporting. This is also perfectly acceptable and requires the selection of the proper 
OCE connection with access to the CCR table.

Renaming the Query and Results sections
The names of the Query and Results sections are important because these sections 
are directly referenced by the code to read the contents of the table. The naming 
of the Query and Results sections should be consistently applied throughout the 
document and code. While any names could be used, using the naming convention 
described in Chapter 5, Building the Dashboard Framework, allows section types to be 
easily determined when referenced in code. The example outlined in this chapter 
specifies that the Query section must be named q Code and the Results section must 
be named r Code.



Chapter 9

[ 209 ]

Buidling the code DataModel
Once the new Query section is added to the database and renamed, expand the 
tables in the Elements Section by right clicking on the + sign to access the database 
and locate the CCR table. Bring the CCR table into the main window of the Query 
section to begin building the code query:



The Central Code Repository

[ 210 ]

Building the code query
Once the table is moved into the main window of the document, add all columns of 
the CCR code table to the Request line to bring in all of the data from the table into 
the Interactive Reporting document. Additionally, add the Number field to the Sort 
line to sort the query in ascending order. Sorting the document will ensure that the 
code is read in the proper order.

Building the Global Code Dashboard
In order for any section of the Interactive Reporting document to access functions 
stored in the CCR, the functions need to be globally declared as part of the document 
start-up process. If the necessary code was directly assigned to the document object's 
OnStartup event, the code would be run when the document was opened before any 
other actions were performed by the client. While this would ensure the functions 
are declared before any report object attempts to call them, code errors, such as 
an infinite for loop, will cause the document to become unstable and irrevocably 
corrupt. To avoid this hazard, use the techniques explained in Chapter 5, Building the 
Dashboard Framework to alternatively mange the document start-up processes.



Chapter 9

[ 211 ]

Creating the Global Code Dashboard
Once the query is configured, the next step in the process is to create a Global 
Code Dashboard to prepare all of the code for use in the document. Add a New 
Dashboard to the document using the Insert menu.

In the Sections window, click and activate the newly created Dashboard section. 
Rename the section and change the section label from Dashboard to Global Code 
Dashboard.

Once a new dashboard is added, renamed, and active, set the dashboard in Design 
Mode to begin adding controls and JavaScript code to the dashboard. While in 
Design Mode, add a Command Button Control to the dashboard. Click to select 
the command button and then right-click to open the menu. Choose the Properties 
option to view the object properties. Change the Name of the command button from 
CommandButton1 to cbDocumentStartupScripts and change the Title of the button 
from CommandButton1 to Document Start up Scripts. Once complete, click OK 
to close the dialog box.

Any dashboard control or dashboard graphic with an OnClick() 
event method can be used in place of the command button control.

Select the command button again and right-click to open the right-click menu. 
Choose the Scripts menu option to open the Script Editor. Add the following code to 
process the code table and then loop through and evaluate each line of code returned 
to the Results section:

/* Process the Code Query to retrieve the records in the Central Code 
Repository table */ 
ActiveDocument.Sections["q Code"].Process();

/* Store the row count from the query results. */ 
var vRowCount = ActiveDocument.Sections["r Code"].RowCount;

/* For each row in the r Code section, perform the enclosed code and 
increment the i variable by 1 until the i variable is more than the 
row count in the r Code Section */ 
for (var i=1;i<= vRowCount; i++)
{
  



The Central Code Repository

[ 212 ]

  /* The GetCell method returns the value of row number i in     
the code text column of the r code section. The eval() function 
executes the contents of that cell as JavaScript statements. */
  eval(ActiveDocument.Sections["r Code"].Columns["code"].GetCell(i));
}

Click OK to close the Script Editor and return to the Global Code Dashboard 
section. The following image shows the dashboard after the command button 
modifications and code steps are complete:



Chapter 9

[ 213 ]

By assigning code to the OnClick event trigger of the button, the code can be 
invoked by either manually clicking the command button or programmatically 
clicking it by calling the execution of the OnClick event through using code. 
Manually clicking the button allows the code to be tested without risking document 
corruption before the button is programmatically executed by the Document 
OnStartup event.

Now with the dashboard configured, switch the dashboard to Run Mode. With the 
dashboard now active and actionable, monitor the Console Window for any errors.

The Console Window is very helpful for debugging sections of code or for testing 
conditional statements. The Console Window is opened by selecting Console 
Window from the View menu as shown in the following image:

Use the code statement Console.Writeln("<message>"); in any block of code to 
display a message in the Console Window, where <message> is the message to be 
displayed. For example, Console.Writeln("Hello World!"); would display Hello 
World!.

The following screenshot shows the dashboard ready to be executed. Click the 
Document Startup Scripts command button to test the code and to check for errors:



The Central Code Repository

[ 214 ]

Once the button is clicked, the Console Window should appear blank without errors, 
as shown in the screenshot above.

Applying the code to objects
Once the code is processed using the eval() statement, the functions become 
globally available to objects within the document. Accessing functions from the 
Central Code Repository is no different than accessing functions centrally contained 
within the document. If the eval() statements have not occurred or the function is 
no longer in the CCR code table, any objects referencing the unavailable function 
will output a scripting error to the Console Window as the function will not be 
recognized by Interactive Reporting.

Scripting the Document Startup Event
The final automation of the dashboard requires that the Document Startup Scripts 
command button be executed when the document opens. Now that the Document 
Startup Scripts are tested and ready for implementation, the final step is to invoke 
the OnClick() method of the Document Startup Scripts button on the Global Code 
Dashboard during the document's OnStartup event process.

 



Chapter 9

[ 215 ]

In the File menu, click Document Scripts to open the document level Scripts  
Editor window:

Add the following code to the main section of the Document Script Editor to invoke 
the OnClick() method of the cbDocumentStartupScripts shape on the Global 
Code Dashboard section:

/*Invoke the OnClick() Method of the cdDocumentStartupScripts shape on 
the Global Code Dashboard section */

ActiveDocument.Sections["Global Code Dashboard"].Shapes["cbDocumentSta
rtupScripts"].OnClick()

Click OK to close the Document Script Editor and use save the document. The next 
time the document is opened, the document OnStartup() event trigger will be called 
and the code will be executed.

Advanced concepts
With an understanding of the concepts discussed and the demonstration of the 
simple example, the following topics are ideas for how the Centralized Code 
Repository can be enhanced in an enterprise implementation.



The Central Code Repository

[ 216 ]

Report Type Grouping
Different report types such as ad-hoc, dashboard, or canned typically have vastly 
different business requirements that are addressed with code unique to the report 
type. The addition of a Report Type column in the CCR code table and a Report Type 
filter on the CCR Query section allows management of code within a subsection  
of reports. This concept also lends well to creating sub-libraries by a business unit 
to address differing functional requirements across user groups in an enterprise 
implementation.

Enterprise Object Library
The idea behind an Enterprise Object Library is to prepare code and training for 
users outside the developer and power user community. This implementation would 
allow even beginner business users to create customized dashboards easily. Creating 
an Enterprise Object Library can be achieved by storing a series of standardized 
dashboard functions in the CCR code table. Business users can then be trained to 
attach simplistic function calls that resolve to code stored and maintained by the 
development team in the code table.

Batch Report Creation
Adding an additional column to the code table that denotes one-time use functions 
and code blocks to be accessed by blank documents is the bridge between combining 
the concepts described in Chapter 8, Creating Briefing Slides and Executing Batch 
Exports to automate the process of creating BQY documents. This is especially useful 
when creating multiple integrations of an existing Interactive Reporting document 
with minimal variances between the documents.



Chapter 9

[ 217 ]

Summary
The goal of this chapter was to provide the developers and users of Interactive 
Reporting with an approach to creating a Central Code Repository to 
programmatically push code into Interactive Reporting documents. The chapter 
began with an introduction to the concepts of the CCR, where the approach and 
configuration of the repository and database tables were discussed. The chapter 
continued with a simple example implementation, where the configuration of the 
query, dashboard, and code was demonstrated to provide the steps to implement the 
repository in an environment. Topics including best practices in code placement and 
error checking through the Console Window were discussed to assist with reducing 
failures and troubleshooting the implementation. Finally, advanced concepts for 
enhancing the CCR were introduced to describe other more advanced techniques and 
applications in the enterprise. An effective implementation of the CCR will provide 
both users and developers a stable environment with a significant reduction in 
document maintenance.





Optimizing and Merging
The Interactive Reporting Web Client or Studio developer utility provide the 
user significant flexibility in using software, but these products do not allow two 
critical functions commonly needed by users and developers. The first function is 
the ability to merge sections of two or more documents together, and the second 
function is the ability to reorder sections in the document. While many users 
believe this functionality does not exist in the software, the Interactive Reporting 
Studio developer utility is bundled two developer tools that are essential to 
the environment. The two software products are the Dashboard Studio and the 
Dashboard Studio Optimize software. These products complement the Studio 
developer software and allow developers to merge, modify, and fix Interactive 
Reporting documents.

The goal of this chapter is to educate the developer and user on additional software 
products that provide benefits outside the normal development tools. This chapter 
details the features of the Dashboard Studio and Dashboard Studio Optimize Utility 
for managing document content. 

This chapter covers the following topics:

•	 An overview of the Dashboard Studio Merge Utility
•	 Merging two or more Interactive Reporting documents
•	 An overview of the Dashboard Studio Optimize Utility 
•	 Changing the parent section of a Pivot, Chart, or Table
•	 Fixing corrupt Interactive Reporting documents



Optimizing and Merging

[ 220 ]

The Dashboard Studio
The Dashboard Studio is an Interactive Reporting product packaged with the 
Interactive Reporting Studio developer software installation for developers. The 
software was created and is commonly used as a utility for developers to quickly 
implement dashboards from a well-defined template. While this book is focused 
on creating dashboards using a customized programming approach, developers 
can use this product to create dashboards in a more automated fashion. While 
the Dashboard Studio provides the functionality for creating dashboards, these 
dashboards must follow a rigid set of requirements, and customizing these objects is 
often more complicated than programming the dashboards from a blank document. 
Additionally, the dashboard developer must have the Dashboard Studio utility on 
their local machine to create a dashboard. It is easier and just as effective for the user 
to use the Interactive Reporting Web Client program to create a simple customized 
dashboard.

Dashboard Studio: Merging sections 
While the Dashboard Studio provides the ability to create custom dashboards, 
another lesser-known feature of the product allows the user to merge sections from 
one or more documents into a new document. The merge document feature is 
extremely useful for merging and sharing preconfigured sections from one document 
to another. This merging cannot be achieved through the Interactive Reporting 
Studio or Interactive Reporting Web Client and is specific to the Dashboard Studio 
product. As this product is a developer-specific product, users will need to contact 
a member in their organization with the Dashboard Studio to execute the merging 
of the documents into a single document. While this feature is not available to the 
general user community, it is important for users to understand that this feature 
exists and that this feature can be easily leveraged to merge content from multiple 
Interactive Reporting BQY documents into a single document.

Merging sections example
The Interactive Reporting Dashboard Studio Merge Utility is a very simple and easy-
to-use software feature. The Merge Utility is accessed from inside the Interactive 
Reporting Dashboard Studio client tool, which is opened from the Reporting and 
Analysis folder of the Oracle EPM system folder in the Start Menu. The following 
screenshot displays the shortcut for the product:



Chapter 10

[ 221 ]

When the Dashboard Studio is opened, a splash screen is displayed and then the 
product progress to the main window of the Dashboard Studio. This main window 
does not contain the title Dashboard Studio, but rather denotes the first step in 
building a dashboard with the title of the window as Select a Framework Template, 
as displayed in the following screenshot:

Notice that there is no reference to the Merge Utility on this screen. However, many 
buttons are displayed at the bottom of the window which are used for executing 
features and setting options in the product. While many of the buttons are focused 
on options and utilities for the Dashboard Studio, the button at the bottom right-
hand side of the screen is used to execute the Merge Utility. 



Optimizing and Merging

[ 222 ]

The following image shows the Merge Utility execution button:

When the Merge Utility button is pressed, the Dashboard Studio product opens a 
new window with the title Dashboard Studio Merge Utility in the product header. 
The following screenshot displays the Dashboard Studio Merge Utility main 
window:

The Merge Utility contains two tabs at the top of screen. The first tab is for importing 
and the second tab is for merging. The Import option is used to import sections of a 
document into a standard Dashboard Development Studio Template. This feature 
is not used to merge sections of two or more custom documents together, but is 
specific to importing documents into a Dashboard Studio dashboard template.



Chapter 10

[ 223 ]

The second tab at the top of the screen is the Merge tab. It is used for merging 
sections of Interactive Reporting documents together into a single document. The 
following screenshot displays the Merge Utility screen open to the Merge tab:

Merging two documents into one
The default Merge Method is set to the Two To One option. This option is the 
most common merge method as most requests are for merging the sections of 
two documents together. The Two To One option requires the user to define a 
Primary Document and a Secondary Document for the merge process. The Primary 
Document is defined as the document that accepts the new sections, and the 
Secondary Document is the document supplying the new sections. Both the primary 
and secondary documents, as well as the output for the merge (denoted by the label 
Save Path), are configured at the bottom of the Merge window.  These features are 
executed by clicking on the folder icons to the right of the text boxes to bring up a file 
browser window, allowing the user to navigate to the document of interest. 



Optimizing and Merging

[ 224 ]

After selecting the primary and secondary documents, the final merged document, 
referred to as the Save Path, is automatically populated with the location and 
filename of the primary document, but with the text _merged appended to the end 
of the filename. The following screenshot displays the Merge Utility configured with 
two files selected:

The textboxes displayed in the previous screenshot containing the file path names 
are read-only. The filenames must be selected using the file browsing window 
and cannot be edited by typing. Similar to selecting the Primary and Secondary 
documents, the filename and path of the final merged document in the Save Path 
textbox is edited by pressing the folder button to the right of the textbox and by 
specifying the filename in the file browser window.

 



Chapter 10

[ 225 ]

In addition to the configuration of the path and filename for the primary, secondary, 
and final merged document, the user is presented with two other features to enable 
through checkboxes on the main screen. The first checkbox is the Select and Re-
order Sections option. When the Select and Re-order Sections option is checked, 
the Merge Utility displays a window allowing the user to select the sections of 
interest from the secondary document to import into the primary document. If the 
Select and Re-order Sections option is not checked, the Merge Utility will import 
all of the sections from the Secondary Document into the Primary Document. The 
second checkbox on the screen is named Remove duplicate images from the final 
document. When this feature is checked, all consistent images that match between 
the primary and secondary documents are set to the image in the primary document 
to reduce the size of the file. The following screenshot displays the Merge Utility 
configured to run a merge between two documents with the Select and Re-order 
Sections and Remove duplicate images from the final document options selected:



Optimizing and Merging

[ 226 ]

The final step in executing the merge is to press the Merge button at the bottom of 
the Merge Utility window. Upon pressing the Merge button, the Select and Re-
order Sections window appears, providing the ability to select the sections of the 
secondary document for merging into the final document. The following screenshot 
displays the Select and Re-order Sections window:

The Select and Re-order Sections window has two lists used for selecting the 
content to merge. The list on the left contains all of the available sections in the 
secondary document and the list on the right contains all of the sections selected 
for merging into the final document. There are four buttons in the middle of the 
window. The top two buttons in the window are for moving content from the 
Available Sections list into the Selected Sections list and the bottom two buttons 
are used to remove sections from the Selected Sections list back into the Available 
Sections list. In both cases, the buttons with the double carets are used to move all of 
the sections into or out of the Selected Sections list and the single caret buttons are 
used to move a single item at a time.



Chapter 10

[ 227 ]

It is important to note the order of the sections in the Available Sections window. 
The order of the Available Sections is not the order that the sections are displayed 
in the Interactive Reporting document, but rather the order that the sections are 
assigned by the Interactive Reporting software product. The ordering of the sections 
is discussed further in the Dashboard Studio Optimize Utility section of this chapter.

As items are added into the Selected Sections list, these items are reordered by 
selecting a single section and pressing the up and down buttons at the bottom of the 
Selected Sections list to move the selected section up or down in the list order. The 
following screenshot shows items moved from the Available Sections list into the 
Selected Sections list:

In the previous screenshot, the Planned vs Actual Query and the Planned vs Actual 
Results were automaticity selected when the Actual vs. Planned Revenue Pivot section 
was moved into the Selected Sections list. The reason these additional sections 
moved with the pivot is because the Pivot section is dependent on the Query and 
Results sections to supply the pivot with data. These dependent sections are referred 
to as Parent sections. Parent sections will be discussed later in the Dashboard Studio 
Optimize Utility section of this chapter.



Optimizing and Merging

[ 228 ]

After all of the desired sections are added to the Selected Sections list, the next step 
in executing the Merge Utility is to press the OK button at the bottom of the Select 
and Re-order Sections window. Upon pressing the OK button, the screen reverts 
to the Dashboard Studio Merge Utility window with two status bars shown at the 
bottom of the screen, providing information on the status and progress of the merge 
process. The following screenshot shows the two status bars and related information 
at the bottom of the Dashboard Studio Merge Utility window:

During the Merge Utility process, the Interactive Reporting Studio developer utility 
is active and performing operations. The Interactive Reporting Studio is used by the 
Dashboard Studio Merge Utility to perform the section merging and manipulation. 
When the Merge Utility completes the merge process, the Report window appears 
and displays a full log of the activities that took place during the merge process. Any 
change that took place in the document is highlighted in blue text and a full text 
description provides an explanation of the changes. The Report is closed by pressing 
the OK button. The Report can also be saved into an HTML file by pressing the Save 
button. The following screenshot shows the Report window that appears when the 
Merge Utility has completed (the Report window in this example has been scrolled 
to the bottom to display the merge changes):



Chapter 10

[ 229 ]

After the merge process is complete, the final document may be opened and  
the sections merged into the document will be displayed at the bottom of the list of 
documents sections.



Optimizing and Merging

[ 230 ]

Merging many documents into one
In addition to merging two documents into one, the Dashboard Studio Merge 
Utility allows for the merging of multiple documents together into one document. 
When the Many To One merge method option is selected, the flexibility that existed 
in the Two To One merge method is now replaced with a more generic merge 
interface. The following screenshot displays the Dashboard Studio Merge Utility set 
to the Many To One merge method:

The Many To One interface does not provide the ability to select and reorder 
sections, and the ability to select a primary and secondary document is removed and 
replaced with a Source Document Folder. The Source Document Folder option is 
used to select a folder containing multiple Interactive Reporting documents and not 
individual files. Upon selecting the folder icon to the right of the Source Document 
Folder option, the Browse for Folder window appears for selecting the desired 
folder. After a folder is selected, the Save Path for the document must be manually 
specified. The Save Path is set by clicking the folder icon to the right of the Save 
Path textbox and by browsing to a folder and providing a filename for the final 
merged document. 



Chapter 10

[ 231 ]

The following screenshot shows the Many To One merge method window 
populated and ready for merging:



Optimizing and Merging

[ 232 ]

Once the merge process is executed, the software merges all of the documents 
together into the final file. The following screenshot shows the Merge Utility during 
the Many To One merge execution:

Similar to the Two To One merge method, the Merge Utility creates a merge report 
after the Merge Utility completes. The following screenshot shows the Report:



Chapter 10

[ 233 ]

Merging documents for users
As Interactive Reporting allows users to save documents locally with a saved 
connection to the server, it is important to note the impact of using the Merge Utility 
on documents saved locally and run by users from their desktops. When the Merge 
Utility is executed on a set of documents, the final document produced will allow the 
queries from the primary document to continue to be processed against the server. 
However, any query that is merged from the secondary document into the final 
document will not have a connection for processing. When users attempt to run a 
query merged in from a secondary document, the query will fail. To re-establish a 
connection between the document and the server for processing, the final document 
from the merge process must be posted to the Oracle EPM Workspace and the query 
connections made. 

 



Optimizing and Merging

[ 234 ]

Merging presentation sections for users 
In many environments, the interest to share formatted presentations sections across 
Interactive Reporting files exists. As detailed Pivot, Chart, Dashboard, and Report 
sections are time-consuming to produce, the ability to merge the formatted sections 
into another document and then switch the objects to use a different Query section 
would save significant time in the development process. The Dashboard Studio 
Merge Utility in concert with the Dashboard Studio Optimize Utility can be used 
to execute the sharing of presentation sections across documents. The first step in 
executing this process is to use the Merge Utility to merge the presentation sections 
of the document with the primary document that will be accepting the new sections. 
When the Merge Utility is utilized, the dependent Query and Results sections of 
the secondary document will also be imported into the primary document.  The 
Dashboard Studio Optimize Utility can then be used to move the sections from one 
Query section to another based on a few rules that are required to be met before the 
move can be executed. The Dashboard Studio Optimize Utility section will discuss the 
steps and rules for switching a section between queries.

The Dashboard Studio Optimize Utility
The Dashboard Studio Optimize Utility contains features to make rapid changes 
to the composition, ordering, and formatting of the document. The software allows 
users to make sections read-only, contains the ability to run documents faster by 
compressing JavaScript, provides the ability to move sections across queries, and 
fixes corrupt Interactive Reporting documents.

The first step in working with the Dashboard Studio Optimize Utility is to access the 
software from the Utilities and Administration folder of the Oracle EPM system folder 
in the Start Menu. The following screenshot displays the shortcut for the product:

When the software is opened, the Dashboard Studio Optimize Utility product will 
display as shown in the following screenshot and the Interactive Reporting Studio 
developer utility will also open:



Chapter 10

[ 235 ]

The Dashboard Studio Optimize Utility begins with a blank screen ready for the 
user to open a document into the product. A file is opened in the Dashboard Studio 
Optimize Utility in one of four options: the first method is to use the open shortcut 
from the File menu, the second method is to use the open file button on the toolbar, 
the third method is by dragging and dropping the file on the local machine into the 
window, and the final method is to use the Interactive Reporting Studio toolbar 
button to bring a file open in the Interactive Reporting Studio into the Dashboard 
Studio Optimize Utility.

Interactive Reporting Studio swap shortcuts
The Dashboard Studio Optimize Utility swap buttons are displayed in the 
Dashboard Studio Optimize Utility toolbar. The following screenshot highlights the 
three buttons and a drop-down list used to swap documents between the Interactive 
Reporting Studio and the Dashboard Studio Optimize Utility:



Optimizing and Merging

[ 236 ]

The first swap button in the toolbar is displayed with an arrow facing to the 
right. It opens the active document from the Interactive Reporting Studio into the 
Dashboard Studio Optimize Utility. Instead of opening the file from the machine, the 
Dashboard Studio Optimize Utility grabs the latest modifications from the file open 
in the Interactive Reporting Studio. The file loaded does not need to be saved to be 
imported and modifications made to a live file in the Interactive Reporting Studio 
can be quickly moved into the Dashboard Studio Optimize Utility for modification.

The second swap button in the toolbar is displayed with an arrow facing to the left. 
It publishes the changes made in the Dashboard Studio Optimize Utility back to the 
Interactive Reporting Studio. The publish back functionality allows the user to quickly 
publish a document back to the Interactive Reporting Studio for further editing.

The last swap button in the toolbar, displayed with the Interactive Reporting Studio 
icon, makes the Interactive Reporting Studio the active window. Finally, the drop-
down button displays a list of all of the files open in the Interactive Reporting Studio 
with the active window shown at the top of the list. Selecting one of the documents 
from the list of available documents will open the selected document into the 
Dashboard Studio Optimize Utility. The following screenshot shows the drop-down 
button pressed:



Chapter 10

[ 237 ]

Filtering section types
When an Interactive Reporting document is opened into the Dashboard Studio 
Optimize Utility, the list of sections is displayed in the main window with a few 
of the file properties that can be edited using the Optimize Utility. The following 
screenshot displays a file open in the Dashboard Studio Optimize Utility:

Interactive Reporting documents can contain a large number of sections making the 
documents hard to edit in the Interactive Reporting Studio. The Dashboard Studio 
Optimize Utility provides the functionality to filter the list of sections displayed in 
the main window by checking and un-checking section types from the show section 
type options in the bottom right hand corner of the Dashboard Studio Optimize 
Utility window. The Optimize Utility allows the user to filter to display only a 
particular type of section or a combination of different sections, including Data 
Models, Queries, Results, and Tables, Charts, Pivots, Reports, Dashboards, as well 
as the ability to display or hide the hidden sections of the document regardless of 
section type. 



Optimizing and Merging

[ 238 ]

The following screenshot shows the example from the previous screenshot filtered to 
display only the Query sections of the document:

Only one file can be opened in the Dashboard Studio Optimize Utility 
at a time. Any attempt to open a second file after editing the first file 
will result in this software prompting to save progress before closing 
the initial file and opening the new file.

Editing Interactive Reporting documents
The Dashboard Studio Optimize Utility provides the user with the ability to make 
quick changes across sections of the document that are difficult to complete in the 
Interactive Reporting Studio. The Edit menu, shown in the following screenshot, 
displays the full list of options that can be executed inside the Dashboard Studio 
Optimize Utility:



Chapter 10

[ 239 ]

The Edit menu options can also be accessed by selecting a section in the main 
window of the document and right-clicking on it. As the options contained in the 
Edit menu and right-click menu are consistent across the product, the following 
subsections will discuss editing the sections by using the Edit menu or by using the 
shortcuts displayed on the toolbar.

Moving sections
Moving sections in the Interactive Reporting Studio and Interactive Reporting Web 
Client product requires the user to duplicate and delete sections to achieve a desired 
section order. The Dashboard Studio Optimize Utility provides a much easier 
method for moving sections.

Notice the listing of the sections shown in the Dashboard Studio Optimize Utility 
in the next screenshot. The order of the sections is set by the tool and depends on 
when the section was introduced into the document. While the section order does 
not mimic the grouping displayed in the Web Client or Studio product, the ordering 
of the sections displayed in the Dashboard Studio Optimize Utility will impact the 
ordering of the objects inside the software. 



Optimizing and Merging

[ 240 ]

A best practice when working with the Dashboard Studio Optimize Utility is to 
order the sections in the order the section should be displayed in the document. This 
ordering will ensure the document is easily readable and maintainable.

Sections in the Interactive Reporting document are moved in the Dashboard Studio 
Optimize Utility by selecting the section and either accessing the Edit menu and 
selecting the Move Section Up or Move Section Down options, or by using the up 
and down arrows displayed on the Dashboard Studio Optimize Utility toolbar as 
shown in the following image:

The example in the following screenshot displays the Sales Query and the Sales 
Results sections of the document moved above the Planned vs Actual Query and 
Planned vs Actual Results sections. Upon opening the document in Interactive 
Reporting, the Sales Query and the Sales Results sections are now listed as the first 
Query and Results section pair in the document.



Chapter 10

[ 241 ]

Showing and Cap Hiding
The Interactive Reporting Web Client and Studio product provide the ability to 
hide and unhide sections of the document. While multiple sections of the document 
can be shown that were once previously hidden, each section must be hidden 
individually. The Dashboard Studio Optimize Utility provides the ability to view the 
visible status of the section in the document and it provides the ability to show or 
hide multiple sections of the document at one time.

Showing or hiding multiple sections in the document is easily achieved by 
highlighting multiple sections in the main window and selecting the Show Sections 
or Hide Sections menu item, or by using the Show Sections or Hide Sections button 
in the toolbar as shown in the following screenshot:

After a section is shown or hidden, the visible column in the main window updates 
to true or false, where true indicates visible and false indicates hidden.

Renaming and Deleting
The Interactive Reporting Web Client and Studio provide the ability to rename and 
delete sections from the document on an individual basis. The Dashboard Studio 
Optimize Utility provides the same functionality, but also allows the user to delete 
multiple sections from the document at one time.

Renaming or deleting sections in the document is easily achieved by highlighting 
the section or multiple sections (if deleting) in the main window and selecting the 
Rename Section or Delete Section menu item or toolbar button, as shown in the 
following screenshot:

When a section is deleted, an alert box will appear to confirm deletion if the section 
is used in dependent sections. Canceling the deletion will prevent the deletion from 
completing. 



Optimizing and Merging

[ 242 ]

Locking and Unlocking
The locking and unlocking features of the Dashboard Studio Optimize Utility are 
unique in that these features allow the developer to put a section into read-only 
mode by simply locking the section. The locking and unlocking features are specific 
to only the Interactive Reporting Web Client, where objects that are locked are not 
editable by the Web Client user.

Sections in the document are easily locked and unlocked in the Dashboard Studio 
Optimize Utility by highlighting the section(s) in the main window and selecting 
the Lock sections or Unlock sections menu items or by using the Lock and Unlock 
buttons in the toolbar, as shown in the following screenshot:

After a section has been locked or unlocked, the locked column in the main window 
of the Dashboard Studio Optimize Utility will display true if the section is locked or 
false if the section is unlocked.

Duplicatable and Unduplicatable
Similar to locking and unlocking, a section can be put in a duplicatable and 
unduplicatable state preventing Web Client users of the product from duplicating a 
section. While this property can be set in the Interactive Reporting Studio through 
the Edit menu, the Dashboard Studio Optimize Utility allows the user to make 
multiple sections duplicatable or unduplicatable at one time.

Sections in the document are put in a duplicatable or unduplicatable state by 
highlighting the section(s) in the main window and selecting the Make Sections 
Duplicatable or Make Sections Unduplicatable menu items. After a section is 
set to a duplicatable or unduplicatable state, the Duplicatable column in the main 
window of the Dashboard Studio Optimize Utility will display true if the section is 
duplicatable or false if the section is unduplicatable.

Packing section code
Packing the code of a section is used to optimize the speed of the JavaScript 
processing in the document. Some documents, including documents built by the 
Dashboard Studio product, contain significant amounts of code that increase the file 
size and slow down the execution of the document. The Pack Section Code feature 
provides an automated method to optimize the code execution in the document.

 



Chapter 10

[ 243 ]

The packaging of code in the documents can be done on a section-by-section basis or 
across an entire document by highlighting the desired sections and selecting the Pack 
Selected Sections Edit menu item or by merely selecting the Pack All Sections Edit 
menu item. Upon selecting either option, the Pack JavaScript window appears and 
prompts the user to remove specific sections of code native to the Dashboard Studio 
in addition to the other packaging features provided by the software as shown in the 
following screenshot:

After selecting the OK button on the Pack JavaScript window displayed in the 
previous screenshot, the software will condense the JavaScript code inside the 
document.

Moving objects and sections across Results 
One of the most unique and beneficial features of the Dashboard Studio Optimize 
Utility is the ability to move sections from one set of results to another as well as 
similar functionality with filters and objects in Report sections. The functionality 
allows users to share features created for one specific task across many tasks, which 
drastically reduces development efforts.

Moving sections across Results or Table sections
The Dashboard Studio Optimize Utility is the only product that provides the ability 
to move a section of the document from one set of results to a completely separate set 
of results. The software requires the section receiving the moved object to contain the 
same column names as leveraged in the current object. In the case of moving a Pivot 
section between two Results sections, the receiving Results section must contain 
the same column names used in the Pivot section. In addition to Pivots, Tables and 
Charts may also be moved under any Results and Table section that contains the 
same column names. 



Optimizing and Merging

[ 244 ]

Initiating the changing of the parent section begins by highlighting the section in 
the main window and selecting the Change Parent Section Edit menu item or by 
selecting the Change Parent Section button in the toolbar as shown in the 
following screenshot:

The Edit menu item will appear disabled if the section does not have another 
section that can be used as a parent section in the document. If another section in the 
document qualifies as a parent section, the Optimize: Select New Parent window 
will appear upon selecting the Change Parent Section menu item, as shown in the 
following screenshot:

After the parent section of the document is changed, the Parent column in the main 
window of the Dashboard Studio Optimize Utility will display the name of the new 
parent section. The new parent section can be switched back to the original parent 
section as desired by following the same instructions for changing the parent section.



Chapter 10

[ 245 ]

Modifying Report Dependencies
Another beneficial feature of the Dashboard Studio Optimize Utility is its ability 
to take a Report section and change the referenced objects contained within the 
report across Query, Results, and Table sections. As significant effort is expended in 
creating Report section templates, the Change Report Dependency feature allows 
the software user to take a report and easily swap out the existing presentation 
sections in the document to a different section. Once the Report section is modified, 
the report retains the existing report features and Report Groups, but now displays 
the new objects in the report.

The Change Report Dependency feature is specific to Report sections. The feature 
is executed by highlighting a Report section in the main window of the Dashboard 
Studio Optimize Utility and selecting the Change Report Dependency Edit menu 
item or the Change Report Dependency shortcut on the toolbar, as shown in the 
following screenshot:

When the Change Report Dependency menu item is executed, the Optimize: 
Change Report Dependency window appears providing the user with the ability to 
change the report references in the document as shown in the following screenshot:

 



Optimizing and Merging

[ 246 ]

Upon opening the saved document, the modified Report section will display the 
newly referenced sections in the same place as the section that was replaced in  
the report.

Moving Filters
The Dashboard Studio Optimize Utility allows users to take filters created on one 
section and move those filters to another section of the document. The Move Filters 
option is very beneficial as sections of the document may be created with custom 
filter selections and recreating the filters across sections may require significant 
effort. Interactive Reporting contains rules for moving filters across the document, 
where the receiving section must have the same definition for the column as the 
section providing the column.

Filters are moved to another section of the document by executing the Move Filters 
Edit menu option or by selecting the Move Filters button on the toolbar as shown in 
the following example:

 

The Move Filters Edit menu item will appear disabled if the filters in the section 
cannot be received by any other document section. When the Move Filters menu 
item is executed, the Optimize: Move Filters window appears, providing the user 
with the ability to change the filters as shown in the following screenshot:



Chapter 10

[ 247 ]

The Optimize: Move Filters window allows the user to select the receiving section 
from the drop-down box and then to select the filters to move into the receiving 
section. Upon pressing OK, the filters moved are displayed in the  
receiving section.

Fixing corrupt files
Interactive Reporting documents can become corrupted as changes are made to 
the document over time. When a corrupt document is opened in the Interactive 
Reporting Studio or Web Client Utility, the report will freeze upon opening or it 
will display an error window stating Unknown Error. When the document will not 
open appropriately in Interactive Reporting, the Dashboard Studio Optimize Utility 
may be used to open the document and in some cases will allow the document 
to be resaved. The resaving of the document may fix the file corruption that was 
experienced when opening the document. The file fixing feature is an invaluable 
resource for users with corrupt files. Users experiencing these issues with a file 
should send the files to users with the Dashboard Studio Optimize Utility to attempt 
to fix corrupt files. Additionally, users should save multiple versions of a document 
to ensure the ability to revert back to an earlier version if the files are corrupt.

Summary
The goal of this chapter was to provide the user and developer insight into tools and 
technologies that are available for use outside the standard Interactive Reporting 
Studio and Web Client products. The chapter focused on two specific products: 
the Dashboard Studio and Dashboard Studio Optimize Utility. The chapter began 
with an introduction to the Dashboard Studio and Dashboard Studio Merge Utility 
product. All of the available features of the Dashboard Studio Merge Utility were 
discussed in-depth, including merging two documents together to merging multiple 
documents into a single document. After the merge features were presented, the 
chapter presented a complete guide to the Dashboard Studio Optimize Utility. 
Quickly editing the document sections and section properties were discussed in 
addition to details on modifying parent sections, section filters, and report referenced 
objects. The chapter concluded with the steps to corrupt Interactive Reporting 
documents using the Dashboard Studio Optimize utility. 





Index
Symbols
&& logical operator  38

A
abs function  177
activation scripts  123
AddAll() method  155
AddMonths function  176
AddExportSection method  192
Add() method  139, 140
aggregated data facts  47
Append Query feature

about  130
Intersection operator  131
Minus operator  131
Union All operator  131
Union operator  131

application menus
about  110
ShowMenuBar property  110

Application Programming Interface (API)  
27

application toolbar
formatting toolbar  108
navigation toolbar  109
paging toolbar  109
sections toolbar  109
standard toolbar  108

arrays
about  34
functions  34, 35

associative arrays  34
available values

append query function  130-132

query request items  132-134
Avg function  179
AvgNonNull function  179

B
bar chart

legend, setting  49
bar-line chart

bar-line chart, creating  55, 56
chart query, creating  52, 53
creating  52
customizing  56
grid, customizing  58
line properties  57
null values, ignoring  56
query data, limiting  53, 54
right values, turning off  56
switching  55, 56

bars
stacking, virtually  50

batch processing
code  200, 201
example  199

Batch Report Creation  216
BMV USA Executive Dashboard, example  

44
boolean variables  32
both option, Make Same Size option  92
bottom option, object alignment option  91
break statement  40
briefing slides

about  193
export code  198
report, building for  194, 196

Bring Forward option  90

 



[ 250 ]

Bring To Front option  90

C
CCR

about  205, 206
code table, configuring  207
JavaScript code, preparing  206
query, configuring  207
table structure  206, 207

CCR, querying
about  208
Code DataModel, building  209
code query, building  210
query section, creating  208
query section, renaming  208
results section, renaming  208

ceil function  178
center option, object alignment option  91
Central Code Repository. See  CCR
chart display space

maximising  50
chart query

creating  46, 52, 53
chart section computed items  20
check box dashboard control  88
Chr function  179
code

leveraging, through document  13
code pane  31
code table, CCR

configuring  207
collections  28
ColMax function  179
ColMin function  179
columns

referencing  168
command button dashboard control  88
comparison operators, decision logic  36
Compress Document setting  126
computed items

about  166
adding  167
deleting  173
functions  182
variables  182

concatenation  33

concat function  180
conditional functions  175
conditional statements, decision logic  37, 38
continue statement  40
controls, dashboard section objects

about  87
check box dashboard control  88
command button dashboard control  88
drop box dashboard control  88
embedded browser control  88
hyperlink control  88
list box dashboard control  88
radio button dashboard control  88
slider control  88
text box control  88

CountDistinct function  179
Count function  179
CountNonNull function  179
CountNull function  179
cPlanvAct embedded chart section  98
cume function  179
custom dashboard navigation

implementing  92
internal navigation, scripting  92-94

custom dashboard navigation, implement-
ing

external navigation  93, 94
internal navigation, scripting  92, 93

custom images, adding  74
Custom Values property  154

D
dashboard

about  24
BMV USA Executive Dashboard, example  

44
controls, adding  74
creating  72
custom images, adding  74
data driven dashboard objects, creating  45, 

46
graphics, adding  74
hyperlinks, adding  75
interactivity  76, 77
objects, adding  73
planning  43, 44



[ 251 ]

preparing  43, 44
dashboard framework

about  115
implementing  119
naming conventions  116

dashboard framework, implementing
about  119
activation scripts  123
document scripts, setting on start-up  124
framework start-up events  121
global libarary shapes  119

Dashboard-level Events  29
Dashboard menu  29
Dashboard Object-level Events  29
Dashboard Script Editor  29
dashboard section objects

about  86
controls  87, 88
graphics  86, 87

dashboard sections
about  94
detail dashboard section  98
Document start-up scripts  107
dynamic section formatting  103-106
element facts, modifying  99-102
home dashboard section  96, 97
loading  94
objects, toggling between  98, 99

dashboard shape names  118
Dashboard Studio

about  220
documents, merging for users  233
documents, merging in one  230-232
interactive reporting documents, hiding  

241
merging sections  220
merging sections, example  220-222
presentation sections, merging for users  

234
studio swap shortcuts  235, 236
two documents, merging into one  223-228

Dashboard Studio Optimize Utility
about  234
corrupt files, fixing  247
filtering section types  237, 238
filters, moving  246, 247
interactive reporting documents, deleting  

241
interactive reporting documents, duplicat-

able  242
interactive reporting documents,  

editing  238, 239
interactive reporting documents,  

hiding  241
interactive reporting documents,  

locking  242
interactive reporting documents,  

packing section code  242, 243
interactive reporting documents,  

renaming  241
interactive reporting documents,  

showing  241
interactive reporting documents,  

unduplicatable  242
interactive reporting documents,  

unlocking  242
interactive reporting studio  235, 236
objects, moving accross   243
optimize utility  235
report dependencies, modifying  245, 246
sections, moving  239, 240
sections, moving across results  243, 244
sections, moving across table sections  243, 

244
data driven dashboard objects

chart display space, maximising  50
chart query, creating  46
color, considerations  50, 52
creating  45, 46
data facts, aggregated  47
detail-oriented formatting  50
legend, setting  49
vertical stack bar chart, creating  46-48
vertical stack chart, cutomizing  50

DataStreaming [optional] argument  190
date, manipulating

about  176
current date  176
current time  176
date conversion  177
mathematical operations, leveraging with 

dates  177
specific days, identifying  176
time, adding  176



[ 252 ]

DayOfMonth function  176
decision logic

about  36
comparision operators  36
conditional statements  37, 38
logical operators  38, 39
loops  39, 40

decode function  175
default pivot formatting

overriding  72
setting  70, 71

definition
building, JavaScript used  168

DEL key  173
detail dashboard section

about  98
cPlanvAct embedded chart section  98
dynamic section, formatting  103-106
element facts, modifying  99-102
objects, toggling between  98

detailed-oriented formatting  50
Document-level Events  29
document save options

about  124
compress document setting  126
design mode, password protect  128
document, password protect  127
query results, saving  124, 125
Work Offline in Web Client setting  126

Document Script Editor  29
document scripts  24
document sections

export, examples  190
exporting  186, 187, 188
ExportToStream, examples  191
multiple sections (JavaScript code), export-

ing  192, 193
single section (code), exporting  189, 190

document start-up scripts
menus  108
screen script, loading  107, 108
toolbars  108

Document Startup Scripts button  214
do.while() loop  40
drill anywhere paths, limiting  69
drop box dashboard control  88
drop-down control selection

all values, selecting  147
filters, selecting  148, 149
function, completing  150

dynamic limits
about  145
global variables shape, modifying  145
query sections, modifying  146

dynamic typing  32

E
Edit mode  29
element facts, detail dashboard section

dynamic section, formatting  103-106
else conditional statements  37
embedded browser control  88
Encoding [optional] argument  190
Enterprise Object Library  216
EPM Workspace  11
eval() function  207
eval() statement  214
Event Trigger drop-down list  31
Export method  192
ExportToStream, examples  191

F
FileFormat [optional] argument  190
Filename [optional] argument  190
FilterName column  136
FilterName filter  138
filterName variable  153
FilterValues column  139
floor function  178
for loop  110
for() loop  39
formatting toolbar  108
for statement  39
framework start-up events

about  121
activation events, calling  123
document properties, initializing  121
global libraray shapes, declaring  122
loading screen, initializing  121

functions
about  34, 169-171
formatting, arguments  171, 172
help button  172



[ 253 ]

in computed items  182
names  117

function, scripting
about  135
results section limit, customizing  138, 139
values, adding to LOV property  139

G
gauges

about  77
color ranges  78, 79
configuring  77, 78
properties  78, 79

gDashboardArray object  143
GetCell() method  139
gfApplyDDFilters function  157
gfApplyFilters global function  163
gfApplyLBFilters function  157
gfApplyLBFilters shape  152
gfPopulateFilterLOV

calling  143, 144
gfPopulateFilterLOV function  135, 143
global code dashboard

applying, to objects  214
building  210
creating  211-214
document startup event, scripting  214, 215

global library shapes
about  119
global variables  120

graphics, dashboard section objects
about  86, 87
picture graphics  87
text label graphics  86

grid
customizing  58

H
height option, Make Same Size option  91
help button  172
home dashboard section

about  96, 97
chPlanvAct chart object  97
OnClick() Event Trigger  96

hyperlink
adding  75

control  88

I
Ignore property  155
IncludeHeaders [optional] arguement  190
infinite loop  39
initcap function  180
instr function  181
interactive reporting documents

duplicatable  242
editing  238, 239
hiding  241
locking  242
renaming  241
section code, packing  242
sections, moving  239
showing  241
unduplicatable  242
unlocking  242

Intersection operator  131

J
JavaScript

about  31
code, preparing  206
local filters, applying with  146
using  182
variables  31

JavaScript workflow
components  119
global library shapes  119

L
LastDay function  176
left option, object alignment option  91
length function  181
line properties  57
list box controls, synchronizing

about  159
selections, synchronizing  161-163
values, selecting  161
values, unselecting  160

list box dashboard control  88
list box selections

applying, to local filters  151, 152



[ 254 ]

filters, selecting with list box  153-155
function, finalizing  155
values, selecting  152, 153

List of Values (LOV)  
about  88
custom LOV value, adding  137, 138
default LOV selection, scripting  140
gfPopulateFilterLOV, calling  143, 144
removing  136
values, adding to property  139, 140

live charts
configuring  79-81
properties  82

local filters
applying, with JavaScript  146
drop-down control selection, applying  147
functions, calling with function  157
function, setting to dashboard filter object  

158
list box selections, applying  151, 152

logical operators, decision logic  38, 39
loops, decision logic  39, 40
lower function  180
ltrim function  181

M
Make Same Size option

both option  92
height option  91
width option  91

master dashboard
creating  89
custom dashboard navigation, implement-

ing  92
objects, placing  90, 91

Math.abs()function  183
mathematical operations

about  177, 178
abs function  177
ceil function  178
floor function  178
max function  178
min function  178
mod function  178
round function  178
sign function  178

math functions  183
math object  183
Math.random() function  183
Math.random() object function  183
max function  178
merging sections, Dashboard Studio

about  220
example  220-222

methods  28
middle option, object alignment option  91
min function  178
Minus operator  131
mod function  178
multiple sections (JavaScript code)

AddExportSection method  192
exporting  192
Export method  192
RemoveExportSections method  192

N
naming conventions, dashboard framework

dashboard shape names  118
function names  117
variable names  117

navigation toolbar  109
NextDay function  176
Next function  179
null values

ignoring  56
null variables  33
NumberFormat property  105
number variables  33
numeric functions  178
numeric operations

about  178
Avg function  179
AvgNonNull function  179
chr function  179
ColMax function  179
ColMin function  179
CountDistinct function  179
Count function  179
CountNonNull function  179
CountNull function  179
cume function  179
next function  179



[ 255 ]

prior function  179
sum function  179

Nvl function  175

O
object  28
Object drop-down list  31
object model  29, 30
objects, Dashboard Studio Optimize Utility

moving  243
objects, master dashboard

align feature  90
aligning, options  91
both, Make Same Size option  92
bottom, aligning option  91
Bring Forward option  90
Bring To Front option  90
center, aligning option  91
height, Make Same Size option  91
layer, changing  90
left, aligning option  91
Make Same Size feature  91
Make Same Size option  91
middle, aligning option  91
placing  90
right, aligning option  91
Send Backward option  90
Send To Back option  90
top, aligning option  91
width, Make Same Size option  91

OK button  168
OnClick event trigger  92, 119, 120, 121, 213
OnClick() method  120, 122, 124, 214
OnSelection event trigger  106
OnStartup event  119, 210
OnStartup() event trigger  106, 213, 215
options button  172
Oracle Hyperion Interactive Reporting

about  8
advanced computations  9
batch exports  10
briefing slides  10
central code repository  10
components  12
concepts, review  8
interface  12

JavaScript  9
merging  10
optimizing  10
review  12
simple to advanced dashboards, building  9

P
paging toolbar  109
parameters  35
Password Protect 

Design Mode option  128
Document option  127

picture graphics  87
pivots

country, limiting  60
default pivot formatting, overriding  72
default pivot formatting, setting  70, 71
displaying  59
drill anywhere paths, limiting  69
parent query, creating  60
pivot drill path configuration, ranking  62, 

64
ranked dimensions, displaying  64-67
request items, renaming  60, 61
simple pivot, creating  59
YTD, limiting  60

pivot section computed items  19, 20
Plan v Act dashboard section  97
pPlanvAct  98
Prompt [optional] argument  190
Prior function  179
PromptToSave property  112
properties  28

Q
queries

building, for analysis  166
configuring  207
data, limiting  53, 54
request items  132-134

query section computed items  13-15

R
radio button dashboard control  88
Rand  183

 



[ 256 ]

RankAsc function  182
ranked dimensions, displaying  64-67
rank function  182
Reference... button  168
reflection  93
regular expressions  40
RemovalAll() method  102, 139
RemoveAll() method  136
RemoveExportSections method  192
replace function  181
reports

batch code, refining to remove empty re-
sults sections  202

batch processing, code  200, 201
batch processing, example  199
branches, executing  198

report section computed items  22, 23, 24, 174
report type grouping  216
reserved words  32
resources  87
results section computed items  16, 17
results section limit

customizing  138, 139
right option, object alignment option  91
right values

turning off  56
round function  178
rtrim function  181

S
Save Query Results With Document option  

124, 125
scope  32
script editor  29
scripting interface  25
Scripts menu item  29
section dialog

about  111
ShowCatalog property  111

sectionName variable  135
sections, Dashboard Studio Optimize  

Utility
moving  243
moving, accross results  243, 244
moving, accross table sections  243, 244

sections toolbar  109

section title bar
about  111
SectionTitleBar property  111

SectionTitleBar property  111
SelectedIndex property  147
selections, list box controls

synchronizing  161, 163
Select() method  140
Send Backward option  90
Send To Back option  90
shapeName parameter  158
shapeName variable  135, 136
ShowCatalog property  111
ShowMenuBar property  110
ShowValuesAtRight property  104
sign function  178
single section (code), exporting

about  189, 190
DataStreaming [optional] argument  190
Encoding [optional] argument  190
export, examples  190
ExportToStream examples  191
FileFormat [optional] argument  190
Filename [optional] argument  190
IncludeHeaders [optional] argument  190
Prompt [optional] argument  190

slider control  88
standard toolbar  108
statistical and trending operations

about  182
RankAsc functions  182
rank function  182

stringDate  33
string functions

Concat function  180
initcap function  180
instr function  181
length function  181
lower function  180
ltrim function  181
replace function  181
rtrim function  181
substr function  181
translate function  181
upper function  180

string variables  33
substr function  181



[ 257 ]

substring() method  136, 152
Sum function  179
Switch() statement  37

T
table section computed items

about  18, 19
chart section computed items  20
expression line  24
pivot section computed items  19, 20
report section computed items  22-24

table structure, CCR
preparing  206, 207

text box control  88
text label graphics  86
tlHomeNav object  93
ToChar function  177
ToDate function  177
toolbars

about  108
application toolbar  108-110

top option, object alignment option  91
translate function  181
trend functions  172

U
Union All operator  131
Union operator  131
unselect function  160
upper function  180
user selections, synchronizing

accross multiple dashboards  159
functions, calling  163, 164

V
vActiveResults variable  154
values, list box controls

selecting  161
unselecting  160

variables
about  31
boolean variables  32
data types  32
in computed items  182
names  117
null variables  33
number variables  33
string variables  33
variable data types  32

var keyword  32
vDataName value  139
vDataName variable  137

about  138
determining  136

vertical stack bar chart
creating  46-48

vertical stack chart
customizing  50

visible property  110

W
while() loop  40
width option, Make Same Size option  91
Work Offline in Web Client setting  126





 

Thank you for buying  
Oracle Hyperion Interactive Reporting 11 Expert Guide 

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books give 
you the knowledge and power to customize the software and technologies you're using to get 
the job done. Packt books are more specific and less general than the IT books you have seen in 
the past. Our unique business model allows us to bring you more focused information, giving 
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For more 
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to 
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to 
books published on enterprise software – software created by major vendors, including (but 
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer 
information relevant to a range of users of this software, including administrators, developers, 
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



The Business Analyst's Guide 
to Oracle Hyperion Interactive 
Reporting 11
ISBN: 978-1-84968-036-3             Paperback: 232 pages

Quickly master this powerful business intelligence 
product

1.	 Get to grips with the most important, 
frequently used, and advanced features of 
Oracle Hyperion Interactive Reporting 11

2.	 A step-by-step Oracle Hyperion training guide 
packed with screenshots and clear explanations

3.	 Explore the features of Hyperion dashboards, 
reports, pivots, and charts

Getting Started with Oracle 
Hyperion Planning 11
ISBN: 978-1-84968-138-4             Paperback: 620 pages

Design, configure, and implement a robust planning, 
budgeting, and forecasting solution in your 
organization using Oracle Hyperion Planning

1.	 Successfully implement Hyperion Planning—
one of the leading planning and budgeting 
solutions—to manage and coordinate all your 
business needs

2.	 Step-by-step instructions taking you from the 
very basics of installing Hyperion Planning to 
implementing it in an enterprise environment

3.	 Test and optimize Hyperion Planning to 
perfection with essential tips and tricks

Please check www.PacktPub.com for information on our titles



Oracle SOA Suite Developer's 
Guide
ISBN: 978-1-847193-55-1             Paperback: 652 pages

Design and build Service-Oriented Architecture 
Solutions with the Oracle SOA Suite 10gR3

1.	 A hands-on guide to using and applying the 
Oracle SOA Suite in the delivery of real-world 
SOA applications

2.	 Detailed coverage of the Oracle Service Bus, 
BPEL Process Manager, Web Service Manager, 
Rules, Human Workflow, and Business Activity 
Monitoring

3.	 Master the best way to combine / use 
each of these different components in the 
implementation of a SOA solution

Oracle Business Intelligence: The 
Condensed Guide to Analysis and 
Reporting
ISBN: 978-1-84968-118-6            Paperback: 184 pages

A fast track Oracle book and eBook guide to 
uncovering the analytical power of Oracle Business 
Intelligence: Analytic SQL, Oracle Discoverer, Oracle 
Reports, and Oracle Warehouse Builder

1.	 Install, configure, and deploy the components 
included in Oracle Business Intelligence Suite 
(SE)

2.	 Gain a comprehensive overview of components 
and features of the Oracle Business Intelligence 
package

3.	 Leverage the computational power of Oracle 
Database

Please check www.PacktPub.com for information on our titles

 


	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	PacktLib.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Advanced Hyperion Interactive Reporting Techniques
	Introduction to the Oracle Hyperion Interactive Reporting 11 Expert Guide
	Review of Interactive Reporting concepts 
	An Introduction to JavaScript in Interactive Reporting
	Building simple to advanced dashboards
	Advanced computations
	Briefing slides and batch exports
	The Central Code Repository 
	Optimizing and Merging

	The EPM Workspace
	Interactive Reporting interface and components
	Review of Interactive Reporting sections
	Leveraging code
	Query section Computed Items
	Results section Computed Items
	Table section Computed Items
	Pivot section Computed Items
	Pivot Settings: True Totals and Surface Values
	Editing Pivot Computed Items
	Chart section Computed Items
	Report section Computed Items
	The Expression line

	Document Scripts
	Dashboards

	The Scripting Interface
	Summary

	Chapter 2: Introduction to JavaScript and the Interactive  Reporting API
	Introduction to objects and collections
	The Script Editor
	Introduction to JavaScript
	Variables
	Variable data types

	Arrays
	Associative Arrays
	Functions

	Decision logic
	Comparison operators
	Conditional statements
	Logical operators
	Loops

	Regular expressions

	Summary

	Chapter 3: Creating a Simple Dashboard
	Dashboard planning and preparation
	The BMV USA Executive Dashboard Example
	Creating data driven dashboard objects
	Creating a Vertical Stack Bar chart
	Creating a Bar-Line chart
	Displaying pivots
	Creating a simple pivot
	Ranking and Pivot Drill path configuration 


	Creating a simple dashboard
	Adding dashboard objects
	Adding graphics and controls
	Adding custom images
	Adding Hyperlinks

	Basic interactivity

	Gauges
	Configuring gauges
	Gauge properties and color ranges

	Live Charts
	Configuring Live Charts
	Live Chart properties

	Summary

	Chapter 4: Introducing Dashboard Interactivity
	Dashboard Section Objects
	Graphics
	Controls

	Creating a Master Dashboard
	Placing Objects
	Implementing Custom Dashboard Navigation
	Scripting Internal Navigation 
	External Navigation


	Creating Supporting Dashboard Sections
	Loading Dashboard Section
	Home Dashboard Section
	Detail Dashboard Sections
	Toggling Between Objects
	Modifying Element Facts


	Document Start-up Scripts
	Loading Screen Script
	Understanding Toolbars and Menus
	Application Toolbars
	Application Menus 
	Section Catalog
	Section Title Bar

	Prompting the User to Save

	Summary

	Chapter 5: Building the 
Dashboard Framework
	Understanding the Dashboard Framework
	Framework Naming Conventions
	Section Names
	Variable Names
	Function Names
	Dashboard Shape Names

	Understanding the JavaScript Workflow

	Implementing the Dashboard Framework
	Global Library Shapes
	Global Variables

	Framework Start-up Events
	Activation Scripts
	Setting the Document Scripts on Start-up 

	Understanding Document Save Options
	Save Query Results With Document
	Work Offline in Web Client
	Compress Document
	Setting Compression by Default

	Password Protect Document
	Password Protect Design Mode

	Summary

	Chapter 6: Advanced Dashboard Techniques
	Populating Dashboard Controls with Database-Driven Values
	Querying Available Values
	Appending Queries

	Staging the Results Set for Code
	Scripting the Function
	Determining the vDataName Variable
	Removing All Values from a LOV
	Adding a Custom LOV Value
	Customizing Results Section Limits
	Adding Values to the LOV Property
	Scripting a Default LOV Selection
	Completing the Function
	Calling gfPopulateFilterLOV


	Applying User-Selected Filters to 
Limit Data
	Preparation for Dynamic Limits
	Modify the Global Variables Shape
	Modifying the Query and Results Sections

	Applying Local Filters with JavaScript
	Applying a Drop Down Control Selection to a 
Local Filter
	Applying List Box Selections to a Local Filter
	Calling Functions with a Function
	Set the Function to the Dashboard Filter Object


	Synchronizing User Selections across Multiple Dashboards
	Synchronizing List Box Controls
	Unselecting Values
	Selecting Values
	Synchronizing Selections

	Calling the Functions

	Summary

	Chapter 7: Advanced Data Analysis
	Building Queries for Analysis
	Computed Items
	Building Advanced Computed Items 
	Building the Definition using JavaScript
	Referencing Columns
	Functions
	Function Formatting Arguments
	Additional Help

	Options
	Deleting Computed Items
	Report section Computed Items

	Built-in Functions and Calculations
	Conditional Functions
	Date Manipulation
	Current Date & Time
	Adding Time
	Identifying Specific Days
	Date Conversion
	Leveraging Mathematical Operations with Dates

	Mathematical Operations 
	Numeric Operations
	String Manipulation
	Statistical and Trending Operations 
	Ranking


	Using JavaScript
	Variables and Functions in Computed Items
	Math Functions
	Random Number Generation


	Summary

	Chapter 8: Creating Briefing Slides and Executing Batch Exports
	Exporting document sections
	Exporting natively
	Exporting a single section (code)
	Export examples
	ExportToStream examples

	Exporting multiple sections (JavaScript code)

	Briefing slides
	Building the report for a briefing slide export
	Export code for briefing slides


	Executing batches of reports
	Batch processing example
	Batch processing code
	Refining the batch code to remove empty results sections


	Summary

	Chapter 9: The Central Code Repository
	Understanding the Central Code Repository
	Preparing the JavaScript code
	Table structure

	Configuring the CCR code table and query
	Querying the Central Code Repository (CCR)
	Creating the Query section
	Renaming the Query and Results sections
	Buidling the code DataModel
	Building the code query


	Building the Global Code Dashboard
	Creating the Global Code Dashboard
	Applying the code to objects
	Scripting the Document Startup Event

	Advanced concepts
	Report Type Grouping
	Enterprise Object Library
	Batch Report Creation

	Summary

	Chapter 10: Optimizing and Merging
	The Dashboard Studio
	Dashboard Studio: Merging sections 
	Merging sections example
	Merging two documents into one
	Merging many documents into one
	Merging documents for users
	Merging presentation sections for users 


	The Dashboard Studio Optimize Utility
	Interactive Reporting Studio swap shortcuts
	Filtering section types
	Editing Interactive Reporting documents
	Moving sections
	Showing and Cap Hiding
	Renaming and Deleting
	Locking and Unlocking
	Duplicatable and Unduplicatable
	Packing section code

	Moving objects and sections across results 
	Moving sections across Results or Table sections
	Modifying Report Dependencies
	Moving Filters

	Fixing corrupt files

	Summary

	Index



