
PHP and MySQL
Recipes

A Problem-Solution Approach
—
Second Edition
—
Frank M. Kromann

THE E XPER T ’S VOICE® IN W E B D E V E L O P M E N T

www.allitebooks.com

http://www.allitebooks.org

 PHP and MySQL Recipes
 A Problem-Solution Approach

 Second Edition

 Frank M. Kromann

www.allitebooks.com

http://www.allitebooks.org

PHP and MySQL Recipes: A Problem-Solution Approach, Second Edition

Frank M. Kromann
Trabuco Canyon
California, USA

ISBN-13 (pbk): 978-1-4842-0606-5 ISBN-13 (electronic): 978-1-4842-0605-8
DOI 10.1007/978-1-4842-0605-8

Library of Congress Control Number: 2016943555

Copyright © 2016 by Frank M. Kromann

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that
may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springeronline.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to readers at
 www.apress.com/9781484206065 . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484206065
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author ..xxix

About the Technical Reviewer ..xxxi

Introduction ..xxxiii

 ■Chapter 1: Installation and Confi guration ... 1

 ■Chapter 2: Classes and Objects ... 29

 ■Chapter 3: Performing Math Operations .. 61

 ■Chapter 4: Working with Arrays .. 77

 ■Chapter 5: Dates and Times ... 109

 ■Chapter 6: Strings.. 125

 ■Chapter 7: Files and Directories .. 143

 ■Chapter 8: Dynamic Imaging ... 169

 ■Chapter 9: Regular Expressions .. 197

 ■Chapter 10: Variables .. 209

 ■Chapter 11: Functions ... 231

 ■Chapter 12: Web Fundamentals ... 249

 ■Chapter 13: Creating and Using Forms .. 271

 ■Chapter 14: XML, RSS, WDDX, and SOAP ... 293

 ■Chapter 15: Data Exchange with JSON .. 317

 ■Chapter 16: Using MySQL Databases ... 333

Index ... 357

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author ..xxix

About the Technical Reviewer ..xxxi

Introduction ..xxxiii

 ■Chapter 1: Installation and Confi guration ... 1

Recipe 1-1. Installing PHP .. 1

Problem .. 1

Solution... 1

How it Works ... 2

Recipe 1-2. Confi guring PHP .. 17

Problem .. 17

Solution... 17

How it Works ... 18

Recipe 1-3. Compiling PHP .. 21

Problem .. 21

Solution... 21

How it Works ... 22

Recipe 1-4. Installing MySQL ... 26

Problem .. 26

Solution... 26

How it Works ... 27

Recipe 1-5. Virtual Machines ... 27

Problem .. 27

Solution... 27

How it Works ... 28

v

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vi

 ■Chapter 2: Classes and Objects ... 29

Recipe 2-1. Writing a Simple Class .. 29

Problem .. 29

Solution... 29

How it Works ... 29

Recipe 2-2. Writing a Base Class ... 30

Problem .. 30

Solution... 30

How it Works ... 30

Recipe 2-3. Writing an Abstract Class .. 31

Problem .. 31

Solution... 31

How it Works ... 31

Recipe 2-4. Writing an Interface... 33

Problem .. 33

Solution... 33

How it Works ... 33

Recipe 2-5. Class Members as Regular Functions ... 35

Problem .. 35

Solution... 35

How it Works ... 35

Recipe 2-6. Protecting Data and Methods ... 36

Problem .. 36

Solution... 36

How it Works ... 36

Recipe 2-7. Mixed Static and Object Context ... 37

Problem .. 37

Solution... 37

How it Works ... 38

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vii

Recipe 2-8. Referencing Class Members ... 38

Problem .. 38

Solution... 38

How it Works ... 38

Recipe 2-9. Instantiation of Classes ... 39

Problem .. 39

Solution... 39

How it Works ... 40

Recipe 2-10. Printing Objects... 41

Problem .. 41

Solution... 41

How it Works ... 41

Recipe 2-11. Variable Overloading ... 42

Problem .. 42

Solution... 42

How it Works ... 42

Recipe 2-12. Serializing Types and Object ... 44

Problem .. 44

Solution... 44

How it Works ... 45

Recipe 2-13. Copying an Object ... 46

Problem .. 46

Solution... 46

How it Works ... 46

Recipe 2-14. Using Objects as Functions ... 47

Problem .. 47

Solution... 47

How it Works ... 47

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

viii

Recipe 2-15. Overloading Methods .. 48

Problem .. 48

Solution... 48

How it Works ... 48

Recipe 2-16. Debugging Objects .. 49

Problem .. 49

Solution... 49

How it Works ... 50

Recipe 2-17. Using Objects without a Class .. 51

Problem .. 51

Solution... 51

How it Works ... 51

Recipe 2-18. Directory Iteration ... 52

Problem .. 52

Solution... 52

How it Works ... 52

Recipe 2-19. Writing Reusable Code .. 53

Problem .. 53

Solution... 53

How it Works ... 53

Recipe 2-20. Avoiding Name Collisions .. 57

Problem .. 57

Solution... 57

How it Works ... 57

Recipe 2-21. Autoloading Classes on First Use .. 59

Problem .. 59

Solution... 59

How it Works ... 59

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

 ■Chapter 3: Performing Math Operations .. 61

Recipe 3-1. Changing the Base Values for Numbers .. 62

Problem .. 62

Solution... 62

How it Works ... 62

Recipe 3-2. Converting to a Different Base Value .. 63

Problem .. 63

Solution... 63

How it Works ... 63

Recipe 3-3. Storing Binary Values in Integers .. 64

Problem .. 64

Solution... 64

How it Works ... 64

Recipe 3-4. Setting and Clearing Bits in Binary ... 65

Problem .. 65

Solution... 65

How it Works ... 65

Recipe 3-5. Using Hexadecimal Numbers .. 66

Problem .. 66

Solution... 66

How it Works ... 66

Recipe 3-6. Increasing Performance with Binary Shift .. 67

Problem .. 67

Solution... 67

How it Works ... 67

Recipe 3-7. Rounding Floating Point Numbers .. 69

Problem .. 69

Solution... 69

How it Works ... 69

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

x

Recipe 3-8. Generating Random Numbers ... 70

Problem .. 70

Solution... 70

How it Works ... 70

Recipe 3-9. Expressing Ratios with Logarithmic Functions ... 71

Problem .. 71

Solution... 71

How it Works ... 71

Recipe 3-10. Calculating Future Values ... 71

Problem .. 71

Solution... 71

How it Works ... 72

Recipe 3-11. Using Trigonometry to Calculate Distance and Direction 73

Problem .. 73

Solution... 73

How it Works ... 73

Recipe 3-12. Working with Complex Numbers ... 74

Problem .. 74

Solution... 74

How it Works ... 75

 ■Chapter 4: Working with Arrays .. 77

Recipe 4-1. Creating Arrays ... 77

Problem .. 77

Solution... 77

How it Works ... 78

Recipe 4-2. Changing Arrays .. 79

Problem .. 79

Solution... 79

How it Works ... 80

 ■ CONTENTS

xi

Recipe 4-3. Adding Arrays .. 81

Problem .. 81

Solution... 82

How it Works ... 82

Recipe 4-4. Arrays of Arrays ... 86

Problem .. 86

Solution... 86

How it Works ... 86

Recipe 4-5. Traversing Arrays .. 88

Problem .. 88

Solution... 88

How it Works ... 88

Recipe 4-6. Sorting Arrays ... 90

Problem .. 90

Solution... 90

How It Works ... 90

Recipe 4-7. Using Arrays as Stacks ... 100

Problem .. 100

Solution... 101

How it Works ... 101

Recipe 4-8. Slicing and Splicing Arrays ... 102

Problem .. 102

Solution... 102

How it Works ... 102

Recipe 4-9. Debugging Arrays .. 105

Problem .. 105

Solution... 105

How it Works ... 106

 ■ CONTENTS

xii

Recipe 4-10. Storing Arrays ... 107

Problem .. 107

Solution... 107

How it Works ... 107

 ■Chapter 5: Dates and Times ... 109

Recipe 5-1. Working with Time Zones .. 109

Problem .. 109

Solution... 109

How it Works ... 110

Recipe 5-2. Creating a Timestamp ... 110

Problem .. 110

Solution... 110

How it Works ... 111

Recipe 5-3. Working with Dates ... 112

Problem .. 112

Solution... 112

How it Works ... 112

Recipe 5-4. Displaying Timestamps ... 113

Problem .. 113

Solution... 113

How it Works ... 113

Recipe 5-5. Using ISO Formats .. 116

Problem .. 116

Solution... 116

How it Works ... 116

Recipe 5-6. Working with Week Numbers .. 117

Problem .. 117

Solution... 117

How it Works ... 118

 ■ CONTENTS

xiii

Recipe 5-7. The DateTime Class .. 118

Problem .. 118

Solution... 118

How it Works ... 118

Recipe 5-8. Storing Date and Time Values ... 122

Problem .. 122

Solution... 122

How it Works ... 122

Recipe 5-9. Calculating Elapsed Time .. 123

Problem .. 123

Solution... 123

How it Works ... 123

 ■Chapter 6: Strings.. 125

Recipe 6-1. Creating Strings .. 125

Problem .. 125

Solution... 125

How it Works ... 125

Recipe 6-2. Working with the Characters in a String ... 126

Problem .. 126

Solution... 126

How it Works ... 126

Recipe 6-3. Replacing Characters .. 127

Problem .. 127

Solution... 127

How it Works ... 127

Recipe 6-4. Creating Long Strings with Heredoc and Newdoc 128

Problem .. 128

Solution... 128

How it Works ... 128

 ■ CONTENTS

xiv

Recipe 6-5. Escaping Strings ... 130

Problem .. 130

Solution... 131

How it Works ... 131

Recipe 6-6. Reformatting Strings ... 132

Problem .. 132

Solution... 132

How it Works ... 132

Recipe 6-7. Trimming Whitespace .. 133

Problem .. 133

Solution... 133

How it Works ... 133

Recipe 6-8. Finding Strings in Strings ... 133

Problem .. 133

Solution... 134

How it Works ... 134

Recipe 6-9. Dividing Strings into Substrings.. 135

Problem .. 135

Solution... 135

How it Works ... 135

Recipe 6-10. Displaying HTML Entities .. 137

Problem .. 137

Solution... 137

How it Works ... 137

Recipe 6-11. Generating Hash Values for Files .. 139

Problem .. 139

Solution... 139

How it Works ... 139

 ■ CONTENTS

xv

Recipe 6-12. Storing Passwords .. 141

Problem .. 141

Solution... 141

How it Works ... 141

 ■Chapter 7: Files and Directories .. 143

Recipe 7-1. Include and Require .. 143

Problem .. 143

Solution... 143

How it Works ... 144

Recipe 7-2. Reading Files .. 145

Problem .. 145

Solution... 145

How it Works ... 146

Recipe 7-3. Writing Files .. 147

Problem .. 147

Solution... 147

How it Works ... 148

Recipe 7-4. Copy, Rename, and Remove Files ... 148

Problem .. 148

Solution... 149

How it Works ... 149

Recipe 7-5. File Properties ... 150

Problem .. 150

Solution... 150

How it Works ... 150

Recipe 7-6. Permissions .. 152

Problem .. 152

Solution... 152

How it Works ... 152

 ■ CONTENTS

xvi

Recipe 7-7. Symbolic Links .. 153

Problem .. 153

Solution... 153

How it Works ... 153

Recipe 7-8. Directories ... 155

Problem .. 155

Solution... 155

How it Works ... 155

Recipe 7-9. CSV Files ... 156

Problem .. 156

Solution... 156

How it Works ... 156

Recipe 7-10. Streams ... 159

Problem .. 159

Solution... 159

How it Works ... 159

Recipe 7-11. Stream Context ... 160

Problem .. 160

Solution... 160

How it Works ... 160

Recipe 7-12. File Iterators .. 162

Problem .. 162

Solution... 162

How it Works ... 162

Recipe 7-13. Download Files .. 164

Problem .. 164

Solution... 164

How it Works ... 164

 ■ CONTENTS

xvii

Recipe 7-14. Upload Files .. 165

Problem .. 165

Solution... 165

How it Works ... 165

Recipe 7-15. Zipped Files ... 166

Problem .. 166

Solution... 166

How it Works ... 167

 ■Chapter 8: Dynamic Imaging ... 169

Recipe 8-1. Creating Images .. 169

Problem .. 169

Solution... 169

How it Works ... 170

Recipe 8-2. Image Resize... 171

Problem .. 171

Solution... 171

How it Works ... 171

Recipe 8-3. Image Crop .. 173

Problem .. 173

Solution... 173

How it Works ... 173

Recipe 8-4. Image Rotate ... 176

Problem .. 176

Solution... 176

How it Works ... 176

Recipe 8-5. Image Flip ... 177

Problem .. 177

Solution... 177

How it Works ... 177

 ■ CONTENTS

xviii

Recipe 8-6. Adding a Watermark.. 178

Problem .. 178

Solution... 178

How it Works ... 179

Recipe 8-7. Changing Colors .. 180

Problem .. 180

Solution... 180

How it Works ... 180

Recipe 8-8. Draw on Images .. 182

Problem .. 182

Solution... 182

How it Works ... 182

Recipe 8-9. Transparency ... 190

Problem .. 190

Solution... 190

How it Works ... 190

Recipe 8-10. Adding Text .. 191

Problem .. 191

Solution... 191

How it Works ... 191

Recipe 8-11. Caching Images .. 193

Problem .. 193

Solution... 193

How it Works ... 193

 ■Chapter 9: Regular Expressions .. 197

Recipe 9-1. Format Validation .. 200

Problem .. 200

Solution... 200

How it Works ... 200

 ■ CONTENTS

xix

Recipe 9-2. Sub Patterns ... 203

Problem .. 203

Solution... 203

How it Works ... 203

Recipe 9-3. String Replacement .. 205

Problem .. 205

Solution... 205

How it Works ... 206

 ■Chapter 10: Variables .. 209

Recipe 10-1. Converting Variable Type ... 209

Problem .. 209

Solution... 209

How it Works ... 210

Recipe 10-2. Allocating Memory .. 210

Problem .. 210

Solution... 210

How it Works ... 211

Recipe 10-3. Determining Memory Use ... 212

Problem .. 212

Solution... 212

How it Works ... 212

Recipe 10-4. Taking Advantage of Variable Scope ... 213

Problem .. 213

Solution... 213

How it Works ... 213

Recipe 10-5. Avoiding Global Variable Problems with Super Globals 214

Problem .. 214

Solution... 214

How it Works ... 214

 ■ CONTENTS

xx

Recipe 10-6. Determining Variable Type .. 215

Problem .. 215

Solution... 215

How it Works ... 215

Recipe 10-7. Reducing Memory Use with References ... 216

Problem .. 216

Solution... 216

How it Works ... 216

Recipe 10-8. Using Constants .. 219

Problem .. 219

Solution... 219

How it Works ... 219

Recipe 10-9. Variable Variables .. 220

Problem .. 220

Solution... 220

How it Works ... 220

Recipe 10-10. Comparing Variables ... 221

Problem .. 221

Solution... 221

How it Works ... 222

Recipe 10-11. Working with Strings ... 223

Problem .. 223

Solution... 223

How it Works ... 223

Recipe 10-12. Handling Floating Point Numbers ... 224

Problem .. 224

Solution... 224

How it Works ... 224

 ■ CONTENTS

xxi

Recipe 10-13. Special Language Constructs ... 225

Problem .. 225

Solution... 225

How it Works ... 225

Recipe 10-14. Iterating Over Array Values .. 228

Problem .. 228

Solution... 228

How it Works ... 229

Recipe 10-15. Generating Output ... 229

Problem .. 229

Solution... 229

How it Works ... 230

 ■Chapter 11: Functions ... 231

Recipe 11-1. Calling Functions .. 231

Problem .. 231

Solution... 231

How it Works ... 232

Recipe 11-2. Variable Scope .. 232

Problem .. 232

Solution... 232

How it Works ... 233

Recipe 11-3. Passing Parameters .. 234

Problem .. 234

Solution... 234

How it Works ... 234

Recipe 11-4. Optional Parameters ... 236

Problem .. 236

Solution... 236

How it Works ... 236

 ■ CONTENTS

xxii

Recipe 11-5. Type Declarations .. 238

Problem .. 238

Solution... 238

How it Works ... 238

Recipe 11-6. Return Values .. 239

Problem .. 239

Solution... 239

How it Works ... 239

Recipe 11-7. Check if Function Exists .. 241

Problem .. 241

Solution... 241

How it Works ... 241

Recipe 11-8. Calculated Function Names .. 242

Problem .. 242

Solution... 242

How it Works ... 242

Recipe 11-9. Anonymous Functions ... 243

Problem .. 243

Solution... 243

How it Works ... 243

Recipe 11-10. Variable Parameter List ... 246

Problem .. 246

Solution... 246

How it Works ... 246

 ■Chapter 12: Web Fundamentals ... 249

Recipe 12-1. Headers ... 249

Problem .. 249

Solution... 249

How it Works ... 250

 ■ CONTENTS

xxiii

Recipe 12-2. $_GET and $_POST ... 250

Problem .. 250

Solution... 251

How it Works ... 251

Recipe 12-3. Cookies ... 253

Problem .. 253

Solution... 253

How it Works ... 254

Recipe 12-4. Server Variables .. 255

Problem .. 255

Solution... 255

How it Works ... 255

Recipe 12-5. Session Data ... 257

Problem .. 257

Solution... 257

How it Works ... 258

Recipe 12-6. Content Type and Disposition .. 259

Problem .. 259

Solution... 259

How it Works ... 259

Recipe 12-7. Caching ... 261

Problem .. 261

Solution... 261

How it Works ... 261

Recipe 12-8. Remote Content .. 262

Problem .. 262

Solution... 262

How it Works ... 263

 ■ CONTENTS

xxiv

Recipe 12-9. The HTTPS Protocol ... 265

Problem .. 265

Solution... 265

How it Works ... 265

Recipe 12-10. AJAX Requests .. 266

Problem .. 266

Solution... 266

How it Works ... 266

Recipe 12-11. Web Sockets ... 267

Problem .. 267

Solution... 267

How it Works ... 267

 ■Chapter 13: Creating and Using Forms .. 271

Recipe 13-1. Form Elements .. 271

Problem .. 271

Solution... 271

How it Works ... 274

Recipe 13-2. Default Values ... 276

Problem .. 276

Solution... 276

How it Works ... 277

Recipe 13-3. Form Validation ... 280

Problem .. 280

Solution... 280

How it Works ... 280

Recipe 13-4. Form Generation ... 283

Problem .. 283

Solution... 283

How it Works ... 284

 ■ CONTENTS

xxv

Recipe 13-5. File Upload .. 288

Problem .. 288

Solution... 288

How it Works ... 289

Recipe 13-6. Form Data ... 290

Problem .. 290

Solution... 290

How it Works ... 291

 ■Chapter 14: XML, RSS, WDDX, and SOAP ... 293

Recipe 14-1. Exchanging Data with XML ... 293

Problem .. 293

Solution... 293

How it Works ... 294

Recipe 14-2. Generating XML Response .. 300

Problem .. 300

Solution... 300

How it Works ... 300

Recipe 14-3. Sharing Data with RSS .. 303

Problem .. 303

Solution... 304

How it Works ... 304

Recipe 14-4. Consuming RSS Feeds .. 306

Problem .. 306

Solution... 307

How it Works ... 307

Recipe 14-5. Standard Data Exchange ... 308

Problem .. 308

Solution... 308

How it Works ... 309

 ■ CONTENTS

xxvi

Recipe 14-6. SOAP Server and Client ... 311

Problem .. 311

Solution... 311

How it Works ... 311

 ■Chapter 15: Data Exchange with JSON .. 317

Recipe 15-1. Fetching Data with AJAX ... 317

Problem .. 317

Solution... 317

How it Works ... 317

Recipe 15-2. Returning JSON ... 319

Problem .. 319

Solution... 319

How it Works ... 320

Recipe 15-3. Consuming a JSON API ... 321

Problem .. 321

Solution... 321

How it Works ... 321

Recipe 15-4. JSON API ... 324

Problem .. 324

Solution... 324

How it Works ... 325

Recipe 15-5. Calling API's .. 327

Problem .. 327

Solution... 327

How it Works ... 327

Recipe 15-6. API Authentication ... 330

Problem .. 330

Solution... 330

How it Works ... 330

 ■ CONTENTS

xxvii

 ■Chapter 16: Using MySQL Databases ... 333

Recipe 16-1. Connecting to MySQL .. 333

Problem .. 333

Solution... 333

How it Works ... 334

Recipe 16-2. Persistent Connections ... 337

Problem .. 337

Solution... 337

How it Works ... 338

Recipe 16-3. Fetching Data .. 338

Problem .. 338

Solution... 339

How it Works ... 339

Recipe 16-4. Inserting Data.. 341

Problem .. 341

Solution... 341

How it Works ... 341

Recipe 16-5. Updating Data ... 348

Problem .. 348

Solution... 348

How it Works ... 349

Recipe 16-6. Deleting Data .. 351

Problem .. 351

Solution... 351

How it Works ... 351

Recipe 16-7. Schema Information .. 355

Problem .. 355

Solution... 355

How it Works ... 356

Index ... 357

xxix

 About the Author

 Frank M. Kromann has spent more than 30 years solving business
problems using software and technology. Since the introduction of the first
web browser he has developed systems with web technology on Unix,
Linux, Windows, and Mac platforms, with the primary focus on PHP,
JavaScript, C/C++, and other languages.

 He has contributed several PHP extensions over the years and has
been a member of the PHP development team since 1997. Previous
publications included several articles in PHP Magazine and he was the
coauthor of PHP 5 Recipes (Apress, 2005).

 Frank M. Kromann has held managing positions for more than
20 years, leading both smaller and larger teams in development and
implementation of business systems and processes utilizing databases
and programming. Currently he is an Engineering Manager at Panasonic
Avionics and the CEO and cofounder of Web by Pixel, Inc.

 Kromann holds a Master of Science degree in Electrical Engineering from the Technical University of
Denmark.

www.allitebooks.com

http://www.allitebooks.org

xxxi

 About the Technical Reviewer

 Massimo Nardone holds a Master of Science degree in Computing Science
from the University of Salerno, Italy. He has worked as a Project Manager,
Software Engineer, Research Engineer, Chief Security Architect,
Information Security Manager, PCI/SCADA Auditor, and Senior Lead IT
Security/Cloud/SCADA Architect for many years. He currently works as
Chief Information Security Office (CISO) for Cargotec Oyj. He has more
than 22 years of work experience in IT including Security, SCADA, Cloud
Computing, IT Infrastructure, Mobile, Security, and WWW technology
areas for both national and international projects. He worked as visiting
lecturer and supervisor for exercises at the Networking Laboratory of the
Helsinki University of Technology (Aalto University). He has been
programming and teaching how to program with Android, Perl, PHP,
Java, VB, Python, C/C++, and MySQL for more than 20 years. He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

 Nardone is the coauthor of Pro Android Games (Apress, 2015).

xxxiii

 Introd uction

 PHP 5 Recipes: A Problem-Solution Approach was released in 2005. At that time there were still many sites
using the older PHP 4 version of the scripting language, and PHP 5 introduced many new features and a
totally redesigned model for object-oriented programming. Since then PHP has seen many releases, and it’s
time to upgrade the contents and recipes that cover some of the new features that have been added to the
language in the eleven years since the first book. The current version of PHP is 5.6.x and the development
team recently released version 7.0 that promises double the performance and half the memory use
compared to PHP 5.6. The jump from PHP 5 to PHP 7, skipping the major version 6 has to do with a research
project that was labeled PHP 6. This project was abandoned because of complexity and performance
problems.

 PHP is a scripting language most commonly used to create dynamic web content; in fact about 80
percent of the web servers have PHP installed in some form. PHP can also be used as a general purpose
scripting language for shell scripts, and it’s even possible to create desktop applications with the help of the
PHP-GTK extension. This book is going to focus on web and shell scripting and it is intended for beginners
as well as advanced users.

 PHP is a loosely typed scripting language. There is no need to declare variables before using them and
variables can change types as the content changes. As a scripting language there is no need to compile or
otherwise process the code before execution. When the interpreter is instructed to execute a script it will
load the content of the file, perform the compilation, and execute the code if no compilation errors are
found. Various forms of caching can bypass the compilation stage and move directly to execution.

1© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_1

 CHAPTER 1

 Installation and Configuration

 It has been about 10 years since PHP 5 Recipes – A Problem-Solution Approach was published and PHP, and
web technology in general, has come a long way since then. It's time to update some of the recipes.

 The example code in this book is designed to work with the current versions (PHP 5.6 and PHP 7) but
in many cases the examples will work with older versions of PHP 5. PHP 7 is still fairly new and many site
owners have not yet upgraded. For the most part PHP 7 is compatible with PHP 5.6 but it does include a few
new features and a couple of backwards compatibility issues. Not all extensions have been updated to work
with the new Zend Engine (the internal workings of PHP).

 It is highly recommended to use the very latest version of PHP. This will ensure the best performance
and security, and it will provide access to the latest features.

 PHP was designed as a scripting language for generating dynamic web content in the form of responses
to requests from a client (usually a browser) to a web server using the HTTP protocol. The browser is no longer
the only type of client for these scripts. In a world where more and more data is accessed through web services
that return JSON, XML, or other structured formats, we are seeing clients being anything: from applications on
a smart phone, other applications, and even servers talking to other servers to exchange data.

 Recipe 1-1. Installing PHP
 Problem
 PHP is an open source scripting language that has been ported to many different platforms. It can run on
anything from a Raspberry PI to a big IBM mainframe. Installing PHP used to require the user to compile
the interpreter from source code, but today many operating systems provide packages that make it easy to
install. No matter which operating system and web server you choose to use, the problem is the same: how
do I get the web server to execute a script and return the response?

 Solution
 The number of supported operating systems, web servers, and server API's is quite large and the number
of different combinations is even bigger. Most of the web servers on the Internet that use PHP as a scripting
language are running some form of Linux and some are running Windows. When it comes to development
environments there are Windows, Mac OSX, and Linux systems that are common. In addition to this there
are at least three types of web servers: Apache, Nginx, and Internet Information Server (IIS) on Windows.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-0605-8_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-0605-8_1

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

2

 The common problem that all these configurations is solving is the injecting of a script parser into the
web server so requests for certain files will result in invoking of a script and returning the output generated
by the script. Other types of requests to the web server such as static HTML, images, JavaScript, and CSS
files, etc., are handled by the web server directly as the server will resolve the request to a file on the file
system and return the file unchanged to the requester.

 The usual configuration is to tell the web server that files with a certain file extension (.php) are to be
interpreted by PHP. When a request comes in for such a file the web server will pass the request to PHP and
wait for the output.

 How it Works
 With the large number of possible combinations of operating systems, web servers, and ways to link PHP
to the web server, I have chosen a few combinations that are described in the following few examples. The
first example covers how to install Apache and PHP on a clean CentOS 7 operating system using the package
management tool yum. A later example will show how to do the same on Windows.

 The package manager yum is used to install, update, or remove packages from the CentOS repository.
It can also be used to list the available packages. It is always a good idea to make sure the system is fully up to
date before installing new packages. This is done by running the following command:

 yum update

 This will ensure all kernel and application packages are updated to the latest version. After installing a
new kernel the system must be rebooted.

 The name of the apache package is called httpd , so to list all the packages related to the Apache web
server we could issue the following command:

 # yum list httpd*
 Available Packages
 httpd.x86_64 2.4.6-40.el7.centos base
 httpd-devel.x86_64 2.4.6-40.el7.centos base
 httpd-manual.noarch 2.4.6-40.el7.centos base
 httpd-tools.x86_64 2.4.6-40.el7.centos base

 Note that many of the yum commands should be run as the root user. Either use su - to switch to the
root account or use sudo in front of each command to execute that command as the root user.

 The output shows that there are five packages available in this environment. It is only necessary to
install the first package. It can be done with the command.

 yum install httpd

 This will install all packages needed to get the basic web server installed. The Apache web server
depends on the packages apr, apr-util, httpd-tools, and mailcap. After installation the server can be
configured to start automatically by calling.

 systemctl enable httpd

 And started with this command:

 systemctl start httpd

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

3

 This will provide you with a standard Apache 2.4 configuration . It is ready to serve static html files,
but there are still a few steps to do before it can serve requests to PHP scripts. To test the new web server
configuration it is necessary to create the first HTML document. The default configuration places the
document root at /var/www/html. In addition the default configuration is set to default to a document called
index.html. This is used if the request is made without a specific document. Use VI or your preferred editor
to create index.html in the folder /var/www/html. The content could look like this:

 <!DOCTYPE html>
 <html>
 <head>
 <title>Apache</title>
 </head>
 <body>
 <h1>It works!</h1>
 </body>
 </html>

 Testing of the web server as responding can be done with the wget command or by pointing a web
browser to the host name or IP address of the server. Depending on the configuration of the operating
system you might have to install the wget command first. If you have a firewall installed you might also have
to configure that to allow tcp traffic on port 80 to the server.

 Instead of a static HTML document we can now create the first simple PHP script. This will not do much
until PHP is installed, but it will showcase how PHP scripts work on a server that's not configured to handle
requests for PHP scripts. The very first PHP script could be a simple one like this:

 <?php
 // 1_1.php
 phpinfo();
 ?>

 The last closing tag ?> is not necessary unless the file contains any content after the closing tag that
is going to be sent directly to the client as is, without PHP interpreting the content. In fact it is a common
standard to exclude the closing ?> on scripts that only contain PHP code.

 If the browser is pointed to the web server (in my case the address is http://192.168.23.148/phpinfo.php),
the output will show the content of the file.

 <?php
 phpinfo();
 ?>

 The next step is to install one or more PHP packages. To get a list of the available packages use the yum
command:

 # yum list PHP*
 Available Packages
 php.x86_64 5.4.16-36.el7_1 base
 php-bcmath.x86_64 5.4.16-36.el7_1 base
 php-cli.x86_64 5.4.16-36.el7_1 base
 php-common.x86_64 5.4.16-36.el7_1 base
 php-dba.x86_64 5.4.16-36.el7_1 base

http://192.168.23.148/phpinfo.php

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

4

 php-devel.x86_64 5.4.16-36.el7_1 base
 php-embedded.x86_64 5.4.16-36.el7_1 base
 php-enchant.x86_64 5.4.16-36.el7_1 base
 php-fpm.x86_64 5.4.16-36.el7_1 base
 php-gd.x86_64 5.4.16-36.el7_1 base
 php-intl.x86_64 5.4.16-36.el7_1 base
 php-ldap.x86_64 5.4.16-36.el7_1 base
 php-mbstring.x86_64 5.4.16-36.el7_1 base
 php-mysql.x86_64 5.4.16-36.el7_1 base
 php-mysqlnd.x86_64 5.4.16-36.el7_1 base
 php-odbc.x86_64 5.4.16-36.el7_1 base
 php-pdo.x86_64 5.4.16-36.el7_1 base
 php-pear.noarch 1:1.9.4-21.el7 base
 php-pecl-memcache.x86_64 3.0.8-4.el7 base
 php-pgsql.x86_64 5.4.16-36.el7_1 base
 php-process.x86_64 5.4.16-36.el7_1 base
 php-pspell.x86_64 5.4.16-36.el7_1 base
 php-recode.x86_64 5.4.16-36.el7_1 base
 php-snmp.x86_64 5.4.16-36.el7_1 base
 php-soap.x86_64 5.4.16-36.el7_1 base
 php-xml.x86_64 5.4.16-36.el7_1 base
 php-xmlrpc.x86_64 5.4.16-36.el7_1 base

 Note that the version is 5.4.16 although the custom version is 5.6.20 or 7.0.5. This is the case with many
Linux distributions. They do backport security updates but they might not backport new features or new
versions. It is possible to get PHP from other repositories other than the official CentOS one, but if a newer
version is needed, I recommend compiling it from source as described in Recipe 1-3.

 The basic package is all that's needed, but installing the php-cli, php-common, and one or more
database packages is most likely going to work for most people. The packages can be installed one by one or
you can choose to install all the packages. The first example shows how to install a few packages.

 yum install php php-cli php-common php-mysql

 This will also install libzip and php-pdo.
 Installing all packages is done with yum install php* .
 After installation of the PHP packages it is necessary to restart the Apache server. This will make sure

the installed Apache module is loaded.

 systemctl restart httpd

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

5

 Pointing the browser to the web server (http://192.168.23.148/phpinfo.php or http://localhost/
phpinfo.php) will now yield this output:

http://192.168.23.148/phpinfo.php

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

6

 The actual output will show much more data but this shows that PHP is now working on the server.
 It is not that common to have Linux installed on a desktop or laptop computer. If you want to be able to

test the PHP code locally before deploying it to a server you will need a local web server that supports PHP.
It is also possible to do all the development remotely, but that will require Internet access.

 Use the following commands to show the actual version of Apache and PHP that's installed on
the system:

 # httpd -v
 Server version: Apache/2.4.6 (CentOS)
 Server built: Nov 19 2015 21:43:13

 And for PHP

 # php -v
 PHP 5.4.16 (cli) (built: Jun 23 2015 21:17:27)
 Copyright (c) 1997-2013 The PHP Group
 Zend Engine v2.4.0, Copyright (c) 1998-2013 Zend Technologies

 And to get a list of the installed PHP extensions use the php –m command:

 # php -m
 [PHP Modules]
 bz2
 calendar
 Core
 ctype
 curl
 date
 ereg
 exif
 fileinfo
 filter
 ftp
 gettext
 gmp
 hash
 iconv
 json
 libxml
 mhash
 mysql
 mysqli
 openssl
 pcntl
 pcre
 PDO
 pdo_mysql
 pdo_sqlite
 Phar
 readline
 Reflection

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

7

 session
 shmop
 SimpleXML
 sockets
 SPL
 sqlite3
 standard
 tokenizer
 xml
 zip
 zlib

 [Zend Modules]

 On the Mac OSX platform, PHP comes preinstalled. On my version of Mac OSX (El Capitain) the
 installed versions can be listed with the same commands as above:

 $ httpd -v
 Server version: Apache/2.4.16 (Unix)
 Server built: Jul 31 2015 15:53:26
 $ php -v
 PHP 5.5.30 (cli) (built: Oct 23 2015 17:21:45)
 Copyright (c) 1997-2015 The PHP Group
 Zend Engine v2.5.0, Copyright (c) 1998-2015 Zend Technologies

 The default-installed modules are the following:

 $ php -m
 [PHP Modules]
 bcmath
 bz2
 calendar
 Core
 ctype
 curl
 date
 dba
 dom
 ereg
 exif
 fileinfo
 filter
 ftp
 gd
 hash
 iconv
 json
 ldap
 libxml
 mbstring
 mysql

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

8

 mysqli
 mysqlnd
 openssl
 pcre
 PDO
 pdo_mysql
 pdo_sqlite
 Phar
 posix
 readline
 Reflection
 session
 shmop
 SimpleXML
 snmp
 soap
 sockets
 SPL
 sqlite3
 standard
 sysvmsg
 sysvsem
 sysvshm
 tidy
 tokenizer
 wddx
 xml
 xmlreader
 xmlrpc
 xmlwriter
 xsl
 zip
 zlib

 [Zend Modules]

 Getting PHP to run on Windows is almost as easy. Please note that PHP no longer supports older
versions of Windows (XP/2003 etc.). The first step is to install a web server: IIS or Apache. These days there is
not much difference in performance or features between the two. If you are going to deploy the PHP scripts
on IIS on a Windows server it’s recommended to do the development on a similar platform. The same goes
for Apache deployments.

 When developing on Windows and deploying on Linux it is important to note a few key differences
between the two operating systems. First of all, file names on Windows are case insensitive. If your script
refers to a file called MyFile.php but the actual file name is myfile.php, it will work on Windows but break
when you deploy to the Linux platform. Secondly there is the matter of directory separator. This is a slash
(/) on Linux and Unix environments and a backslash (\) on windows. PHP can use both when referencing
local files but always use slashes in URL's. It is recommended to always use the slash as a directory
separator on Windows because there is no need to escape that character when it's written as part of a
double quoted string.

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

9

 To install Internet Information Services (IIS version 7 or later) on a Windows 10 system, launch the
control panel and click on “Programs and Features.” In the left bar there is a link to “Turn Windows features
on or off.” This will bring up a window with Windows Features. Simply enable the option for Internet
Information Services and click on the Ok button, as shown in the image below.

 Make sure to expand the World Wide Web Services folder, then expand Application Development
Features and select the CGI option.

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

10

 This will install the web server, the CGI module needed for PHP, and the management tools. Be aware
that other processes (like Skype and Plex) installed on the computer might already be using the default web
port (80). If that is the case you can either disable these services or use a different port for the web server.
Using different ports for each web site you are working on will allow you to host multiple sites. It will also
allow concurrent use of Apache and IIS on the same system.

 It is possible to have multiple web sites (on the same server) share a single port. Using different host
names for each web site does that. These host names can be managed locally in a hosts file. This file is
located in c:\Windows\System32\Drivers\etc on a Windows system and in /etc on a Mac or Linux system.

 The default IIS configuration creates a web server that listens on port 80 and uses %SystemDrive%\
inetpub\wwwroot as the document root. %SystemDrive% normally resolves to C:\ . It is not necessary to use
this directory structure for the web site.

 The next step is to start the web site. In my case I had to use a different port as port 80 is used for
Skype. Use the IIS manager application to make changes to the site. The Internet Information Services (IIS)
manager can be found in the control panel under administrative tools or by typing IIS in the search bar. The
application looks like this:

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

11

 Right-click on the Default Web Site and select the Edit Bindings option and double-click on the line to
change the configuration. Only the port number is changed from 80 to 8080. It’s also possible to limit the IP
address or host name, and it’s possible to add additional bindings to bind the same web site to different port
numbers and/or host names if needed.

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

12

 The final step is to start the site. Right-clicking on the Default Web Site in the left pane and then the
Manage Website option to expand the menu and select the Start option does this.

 The web site can now be accessed from a browser. In this case the URL is http://localhost:8080.
As with the Apache installation on Linux this site only serves static HTML and ASP documents if ASP is
enabled. There are some additional steps needed to get support for PHP.

 This starts by downloading the PHP binary package from http://windows.php.net/download . There
are a number of different versions to choose from. It is recommended to use the latest version, compiled
with the latest version of Microsoft Visual Studio . That is currently PHP 7.0.5 compiled with Visual Studio
2015 (VC14) . Simply download the zip file and expand it into C:\PHP, or any other folder. This will give a
directory structure that looks like this:

 PS C:\PHP> ls

 Directory: C:\PHP

 Mode LastWriteTime Length Name
 ---- ------------- ------ ----
 d----- 4/2/2016 13:48 dev
 d----- 4/2/2016 13:48 ext
 d----- 2/13/2016 14:52 extras
 d----- 2/13/2016 14:52 lib
 d----- 4/2/2016 13:48 sasl2
 -a---- 4/2/2016 13:49 98816 deplister.exe
 -a---- 4/2/2016 13:49 1175552 glib-2.dll
 -a---- 4/2/2016 13:49 15872 gmodule-2.dll
 -a---- 4/2/2016 13:49 25048064 icudt56.dll
 -a---- 4/2/2016 13:49 1820160 icuin56.dll
 -a---- 4/2/2016 13:49 41984 icuio56.dll
 -a---- 4/2/2016 13:49 226816 icule56.dll
 -a---- 4/2/2016 13:49 1188864 icuuc56.dll
 -a---- 4/2/2016 13:49 79407 install.txt
 -a---- 4/2/2016 13:49 1389568 libeay32.dll
 -a---- 4/2/2016 13:49 36352 libenchant.dll
 -a---- 4/2/2016 13:49 135168 libpq.dll
 -a---- 4/2/2016 13:49 77824 libsasl.dll
 -a---- 4/2/2016 13:49 235008 libssh2.dll
 -a---- 4/2/2016 13:49 3286 license.txt
 -a---- 4/2/2016 13:49 51511 news.txt
 -a---- 4/2/2016 13:49 43 phar.phar.bat
 -a---- 4/2/2016 13:49 53242 pharcommand.phar
 -a---- 4/2/2016 13:49 52736 php-cgi.exe
 -a---- 4/2/2016 13:49 30720 php-win.exe
 -a---- 4/2/2016 13:49 98304 php.exe
 -a---- 4/2/2016 13:49 2523 php.gif
 -a---- 4/2/2016 13:49 70752 php.ini-development
 -a---- 4/2/2016 13:49 70784 php.ini-production
 -a---- 4/2/2016 13:49 7088640 php7.dll
 -a---- 4/2/2016 13:49 869002 php7embed.lib
 -a---- 4/2/2016 13:49 197632 php7phpdbg.dll
 -a---- 4/2/2016 13:49 214528 phpdbg.exe
 -a---- 4/2/2016 13:49 20183 readme-redist-bins.txt
 -a---- 4/2/2016 13:49 12722 snapshot.txt
 -a---- 4/2/2016 13:49 274944 ssleay32.dll

http://windows.php.net/download

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

13

 In most cases it's also necessary to install the redistribution libraries provided by Microsoft. It is
important to install the right version of these but you can install them all and some of them might be
installed already from other programs and tools installed on the system. The links to the different versions
can be found in the left pane on the site http://windows.php.net .

 The final step is to enable PHP in the web server. This is similar to how it was done for Apache on Linux.
IIS uses the FastCGI interface to communicate between IIS and PHP. On Linux, PHP was installed and
loaded as a module under the web server.

 Start by clicking on the Default Web Site in the left pane of the IIS Manager. That will bring up a list of
icons. Then double-click on the icon called Handler Mappings. Then click on the Add Module Mapping link
in the right pane. This opens an input dialog with four input boxes. The first one is where the request path is
defined. We want the PHP interpreter to be invoked on all files ending in .php so the value should be *.php.
The next box is a drop-down with a number of different modules to choose from. Make sure to select the
FastCGIModule and not the CGIModule. The interface between the web server and the module are different
and the request will fail if the wrong version is used. In the third box enter the path to php-cgi.exe (or use the
browse button to locate the file) and finally enter a name for the Module Mapping. I chose PHP as shown in
the screen shot below.

 The IIS Web server is now configured to serve requests to PHP scripts. Restart the web server and place
the same phpinfo.php file we used before in the document root (c:\inetpub\wwwroot). If you want to access
the server from other computers you will have to turn the firewall off or add a rule for the TCP port 8080 (if
that's the one you used).

http://windows.php.net/

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

14

 The sample script will generate output like this:

 Apache can be installed with binaries provided by Apache Lounge . The links to these can be found on
 http://windows.php.net . Download the zip file with the version that matches your system and unzip the
contents to C:\Apache24. This directory matches the configuration in the httpd.conf file. If you choose to
install in a different directory, update the httpd.conf file to match the location.

 The default configuration is also using port 80. In order to run both IIS and Apache and possible other
applications working on port 80 it is necessary to change the port for Apache. In this example I change the
port to 8090 by updating the line in c:\Apache24\conf\httpd.conf

 From

 Listen 80

 To

 Listen 8090

http://windows.php.net/

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

15

 The final step is to start the web server with this command:

 C:\Apache24\bin\httpd.exe

 This command is useful to create a single instance of the server. The server will only be running as long
as this process is running. It is also possible to install a service that starts automatically when the computer is
started. Adding -k install as an argument to the start command does this:

 C:\Apache24\bin\httpd.exe -k install

 As before, pointing a browser to the server, it's now possible to test the web server. In this case the URL
is http://localhost:8090.

 The final step is to configure the server to support PHP requests. This can be done by using the
Apache module that comes with the thread safe version of PHP or by using the FastCGI interface used for
the IIS server.

 Configuring with the Apache module requires these changes:
 Start by creating a file called C:\Apache24\conf\extras\httpd-php.conf and add the following lines:

 #
 LoadModule php7_module "C:/PHP/php7apache2_4.dll"
 AddHandler application/x-httpd-php .php

 <IfModule php7_module>
 PHPIniDir "C:/PHP"
 </IfModule>

 Then add the following line to the end of C:\Apache24\conf\https.conf

 Include conf/extra/httpd-php.conf

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

16

 Starting the Apache server will now support PHP requests and the output from phpinfo() looks like this:

 In order to configure Apache to use the FastCGI version of PHP it is necessary to download and install
an additional Apache module called mod_fcgid.so. This file should be placed in c:\Apache24\modules and
the configuration file for PHP (C:\Apache24\conf\extras\httpd-php.conf) should be changed to this:

 #
 LoadModule fcgid_module modules/mod_fcgid.so
 FcgidInitialEnv PHPRC "C:/PHP"
 AddHandler fcgid-script .php
 FcgidWrapper "C:/PHP/php-cgi.exe" .php

 The first line can also be placed in the main configuration file (C:\Apache24\conf\httpd.conf). The
second line instructs PHP to look for the php.ini file in C:\PHP. The third line instructs Apache to handle
requests for .php files via the FastCGI API, and the last line instructs FastCGI to call the php-cgi.exe
executable.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

17

 In addition it is necessary to add an option called ExecCGI to allow Apache to execute the CGI script.
This is either done in the main file by changing the Options in the <Directory> section from “Options
Indexes FollowSymLinks” to “Options ExecCGI Indexes FollowSymLinks” or by a similar change for each
virtual host that needs the same permissions.

 If we load the phpinfo.php file in a browser the output will now show that the server is using the CGI/
FastCGI server API instead of the Apache2Handler.

 Using the FastCGI interface in Apache and IIS makes it possible to install multiple versions of PHP on
the same system. Creating multiple virtual hosts pointing to the same document root but utilizing different
CGI handlers makes it very easy to test the application code with different versions of PHP.

 Recipe 1-2. Configuring PHP
 Problem
 The focus in the previous section was to install and perform basic configuration of a web server to be used
with PHP. There are a large number of configuration options for PHP that works independently of the web
server. What is the best approach to configuring PHP?

 Solution
 The basic configuration is done through a file called php.ini. It can be located in a number of different places
depending on how PHP is compiled and installed and which operating system of PHP it is installed on. In
addition it's possible to have different php.ini files based on which server API is used to execute the PHP
script. This makes it possible to have one php.ini file that's used by the web server and a different file that is
used when the CLI version of PHP is used to execute a script as a cron job or command line.

 A common location of the php.ini file(s) is in /etc/php.ini on most Linux and Mac OSX systems, and
on Windows it's common to place these files in the C:\Windows folder but it can be placed in other locations
based on environment variables or other configuration options.

 If php.ini is the only file that's found it will be used by all server API's. There is a special naming
convention that makes it possible to have files specific to each server API. The name of each of these can
be used as the replacement for ASPI in the name of the php-SAPI.ini file. Common names for SAPI's are cli,
apache, apache2handler, cgi-fcgi, isapi, and many more.

 Some of the settings in php.ini can be set or overwritten at runtime. This is done with the ini_set()
function. Some settings have an impact on resources and security, and these can only be defined in the main
php.ini file (system administrator), and others can be set in per directory bases and some can be set by the
script at runtime (ini_set()).

 It is common practice to use one configuration for the development environment and another for
the production environment. In the development environment it's often helpful to get error and warnings
shown directly in the web page, and in the production environment it's preferred not to show any errors or
warnings that might expose vulnerabilities or simply confuse the visitor.

 If the server is hosting multiple virtual hosts it can be necessary to overwrite certain values on the php.
ini file for one or more of these virtual hosts. That way it's possible to have one set of error reporting for the
development instance and a different set for the production instance even though both sites are installed on
the same web server, sharing a single php.ini file. These overwrites can be defined in Apache configuration
where the virtual host is defined or in a .htaccess file in a specific directory.

 It is recommend to minimize the use of .htaccess files. These files are parsed on every request and this
can have an impact on performance. Using the Apache configuration or a php.ini file will cause the settings
to be read once, when the server is started.

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

18

 If the display_errors option is set to off in php.ini and it is decided to set a different value for a single
host it can be done by adding a php_flag to the <VirtualHost></VirtualHost> section of the Apache
configuration. This can either be in the main httpd.conf file or in a file specific to the host as shown in the
following sample.

 <VirtualHost *:80>
 ServerName www.example.com
 DocumentRoot /var/www/example.com/root
 DirectoryINdex index.html index.php
 php_flag display_errors on
 </VirtualHost>

 The option php_flag is used for Boolean options. Other php.ini values can be set or overwritten with the
php_value option. To set the value for error_reporting to E_ALL (showing all errors, warnings, and notices,
etc.), you will have to use the integer value for E_ALL. When configured in the php.ini file it's possible to use
the names (E_ALL, E_ERROR, E_NOTICE etc.). These values are not known within the Apache configuration
and we have to use the corresponding integer value. Finding the value of the E_ALL constant can be done
with the following command-line script:

 # php -r 'echo E_ALL;'

 Using the -r option when running the CLI version of PHP is an easy way to run a simple one-line PHP
script. The script will show that the value is the sum of the 15 first bits of an integer or 32767. So to set the
error_reporting to E_ALL in the Apache configuration use the following line:

 php_value error_reporting 32767

 How it Works
 When PHP is installed from source it includes two different versions of the php.ini file called php.ini-
development and php.ini-production . These two files can be used as a recommended baseline for the two
different environments. In most cases these contain a good starting point for configuration of PHP, but in
most cases and as new features are added to the web site it's necessary to add or change certain values. At
the top of these files there is a Quick Reference section, a list of options that would normally be different in
the two environments or different from the default value if no setting is provided:

 ;;;;;;;;;;;;;;;;;;;
 ; Quick Reference ;
 ;;;;;;;;;;;;;;;;;;;
 ; The following are all the settings that are different in either the production
 ; or development versions of the INIs with respect to PHP's default behavior.
 ; Please see the actual settings later in the document for more details as to why
 ; we recommend these changes in PHP's behavior.

 ; display_errors
 ; Default Value: On
 ; Development Value: On
 ; Production Value: Off

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

19

 ; display_startup_errors
 ; Default Value: Off
 ; Development Value: On
 ; Production Value: Off

 ; error_reporting
 ; Default Value: E_ALL & ~E_NOTICE & ~E_STRICT & ~E_DEPRECATED
 ; Development Value: E_ALL
 ; Production Value: E_ALL & ~E_DEPRECATED & ~E_STRICT

 ; html_errors
 ; Default Value: On
 ; Development Value: On
 ; Production value: On

 ; log_errors
 ; Default Value: Off
 ; Development Value: On
 ; Production Value: On

 ; max_input_time
 ; Default Value: -1 (Unlimited)
 ; Development Value: 60 (60 seconds)
 ; Production Value: 60 (60 seconds)

 ; output_buffering
 ; Default Value: Off
 ; Development Value: 4096
 ; Production Value: 4096

 ; register_argc_argv
 ; Default Value: On
 ; Development Value: Off
 ; Production Value: Off

 ; request_order
 ; Default Value: None
 ; Development Value: "GP"
 ; Production Value: "GP"

 ; session.gc_divisor
 ; Default Value: 100
 ; Development Value: 1000
 ; Production Value: 1000

 ; session.hash_bits_per_character
 ; Default Value: 4
 ; Development Value: 5
 ; Production Value: 5

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

20

 ; short_open_tag
 ; Default Value: On
 ; Development Value: Off
 ; Production Value: Off

 ; track_errors
 ; Default Value: Off
 ; Development Value: On
 ; Production Value: Off

 ; url_rewriter.tags
 ; Default Value: "a=href,area=href,frame=src,form=,fieldset="
 ; Development Value: "a=href,area=href,frame=src,input=src,form=fakeentry"
 ; Production Value: "a=href,area=href,frame=src,input=src,form=fakeentry"

 ; variables_order
 ; Default Value: "EGPCS"
 ; Development Value: "GPCS"
 ; Production Value: "GPCS"

 If you are installing from a precompiled distribution you might see default standards, and the php.ini
file might be split into multiple files for easier management.

 In addition to the display_errors and error_reporting there is an option called log_errors. When it's
turned on all the errors that are encountered based on the error_reporting flag will be written to a log file.
This is very useful when trying to track down errors on a development or production server after they
happened. As a developer you might not have access to the browser where the error occurred so being able
to read through the errors after the fact can be a helpful debugging tool. Along with the log_errors option
there is also an option (error_log) to specify the name of the error log file. If it's not specified the errors will
go into Apaches error log.

 The error_log option can be set to a file name or a full path. When it's configured as just a file name the
file will be placed in the same directory as where the main PHP script of the request was found. If you use a
full path the error file is written at a specific location and it can even be shared among multiple hosts on the
same server.

 If the E_NOTICE option is turned on the error log file can grow very fast. It is recommended to clear
these files from time to time.

 The option register_argc_argv is used to define whether the variables $argc and $argv are defined.
These values are commonly used with the CLI version of PHP to access the number of arguments passed
($argc) and the values of these arguments ($argv). The CLI version will actually overwrite this value in the
php.ini and always turn these values on.

 The value makes little sense in a web environment where the parameters to the script are stored in
 $_POST , $_GET, and other super global variables.

 The default php.ini files are about 68kb in size. They include quite a bit of descriptive text that is
simply ignored when the file is parsed. Big or small versions of the php.ini file do not make any noticeable
difference as the file is only read once when the server starts up.

 In addition to the values described here it's also important to look at configuration values for memory
usage, execution time, size of POST, and upload data. If the max memory limit is set too high it could be
possible to run out of resources in a high traffic situation. On the other hand the memory limitation must be
high enough to handle the data. It is important to code the site in way that makes it possible to stay within
reasonable limits. If you are running into a memory problem you could just go ahead and increase the
configured value, but that might be an indication that you need to refactor the script to be more efficient
with the resources.

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

21

 Memory allocation can only be configured in php.ini (or in the apache configuration). That is not the
case for the max_execution_time . It is set to 30 seconds by default and that should be enough for most of
the requests on any site. In fact any request that takes more than 4 seconds should be optimized if possible
to give the user the best possible experience. It can however be necessary to increase the execution time on
certain request. If you have a query that analyzes a large data set and needs additional time you can specify
the time needed with the use of the ini_set() function. The syntax to extend the max execution time to 90
seconds look like this:

 ini_set('max_execution_time', 90);

 The web server might have its own timeout values that will interrupt the execution of a PHP script if this
value is exceeded. The max_execution_time only affects the actual PHP runtime. If the PHP script contains
system calls the 'clock' is stopped while these calls are running.

 One important configure option is the default time zone. Without this configuration the system will
generate a warning each time one of the date functions are used. The setting is called date.timezone and
can be set to any of the supported time zone values. Setting it to UTC will cause all the date/time functions
to work the same way as the once prefixed with gm. The function date() and gmdate() will return the same
value. Setting it to any other value like 'Americal/Los_Angels' will cause the two functions to return values
with an eight hour offset.

 The script when needed can change the default time zone. If a user’s time zone is stored in a database
the script can use that value to set the time zone. That way all representation of data/time values can be
done according to each user’s time zone. The function to set the time zone dynamically is called date_
default_timezone_set() and it takes a string as the only parameter.

 Most of the configuration options apply to both Windows and Linux, but a few of them are specific
to Windows. The big difference is things like naming of extensions. On linux the names end in .so and on
Windows they are prefixed with php_ and end in .dll (mysqli.so vs. php_mysqli.dll).

 Extensions can be loaded by the following configurations:

 extension=mysqli.so

 or on Windows

 extension=php_mysqli.dll

 Extensions can also be compiled in so there is no need to load them in php.ini. This is the case with the
standard extension (Core, ctype, date, etc.).

 Recipe 1-3. Compiling PHP
 Problem
 Using a precompiled version of PHP is most likely going to be good enough for most PHP developers, but if
the operating system doesn’t provide the latest version or you want to create your own extensions or perhaps
even contribute to the PHP project, you will have to compile PHP from source code. How is this done?

 Solution
 There are two basic ways to get the source code for PHP. The first is to download a preconfigured and
officially released version of PHP, and the other is to get the source code from the git repository. The first
option provides all the files matching a specific version and when a new version is released the developer
must download that package and compile everything again.

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

22

 Using the git repository makes it very easy to switch between versions and also very easy to always have
the latest version. It is not recommended to run a production server on the current development branch.
It might contain untested features. Production servers should be run on the officially released versions, as
these have been through religious QA testing.

 In order to compile PHP from sources it's necessary to have a few tools installed. On a Linux
environment these include automake, autoconf, libtool, and the compiler (gcc). On windows you will need
a version of Microsoft Visual Studio. In addition to these there are a number of open source libraries that
PHP depends on. Most of these can be detected during installation and quickly installed from the package
manager (on Linux). On Windows there is no package manager that makes this easy, but it's still doable to
download the source packages for these libraries and compile them as needed.

 How it Works
 The main difference between using an official release of PHP and compiling from the git repository is the
use of the 'buildconf' utility. On the official releases this was done when the source files were packaged,
and if you try to run the command it will generate a warning. The basic functionality of the buildconf script
is to scan through all the directories in the source tree and generate the configure file. The configure file is
then used to generate the Makefile, the input to the compiler that describes all the files and dependencies
needed to compile the configured options. This section will demonstrate building PHP 7 from a cloned
git repository.

 On a clean install of CentOS 7 the first step will be to a version of git. Use the package manager to do this:

 $ yum install git

 Make sure you are running this command as root or remember to prefix it with sudo. Depending on the
packages installed on the system already, this might install a number of other packages that git depends on.

 In the home directory create a folder called Source and change to that folder and then use the git
command to clone the git repository:

 $ mkdir Source
 $ cd Source
 $ git clone http://git.php.net/repository/php-src

 This will create a directory called php-src with a copy of all the source files. If you need a specific
version of PHP use the git checkout command to switch to the specific branch. The command git
branch -a will give a list of all available branches. The list is quite long as the repository contains versions
going back to PHP 4.0.

 By default the master branch is checked out. This branch contains the latest and greatest code. As of
today that corresponds to the unreleased PHP 7.1 version. To get the latest released version (PHP 7.0) uses
this command:

 $ git checkout PHP-7.0
 Branch PHP-7.0 set up to track remote branch PHP-7.0 from origin.
 Switched to a new branch ' PHP-7.0'

 Before the buildconf command is executed it's necessary to make sure the toolchain is complete.

 $ yum install gcc autoconf automake libtool

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

23

 This will install enough tools to run the buildconf command:

 $./buildconf
 buildconf: checking installation...
 buildconf: autoconf version 2.69 (ok)
 rebuilding aclocal.m4
 rebuilding configure
 rebuilding main/php_config.h.in

 This will generate the configure script that is used to specify the operation to use when compiling PHP.
Running this command at this time will result in a long output that ends with an error:

 $./configure
 checking for grep that handles long lines and -e... /usr/bin/grep
 checking for egrep... /usr/bin/grep –E
 ...
 configure: WARNING: This bison version is not supported for regeneration of the Zend/PHP
parsers (found: none, min: 204, excluded:).
 checking for re2c... no
 configure: WARNING: You will need re2c 0.13.4 or later if you want to regenerate PHP parsers.
 configure: error: bison is required to build PHP/Zend when building a GIT checkout!

 This error indicates that the system is missing some functionality required to compile PHP. In this case
it's the bison library. This can be installed with the following command:

 $ yum install bison

 After that we can run the configure script again and look for more errors. This will be the missing
libxml2 library. By default PHP includes support for SimpleXML and other XML extensions. Installing the
library alone is not quite enough. The system require both the library and the header and other files needed
to link against so the command to install looks like this:

 $ yum install libxml2-devel

 In this example the configure script was used without any options. If options to include various
extensions were used, other dependencies could show up and you will have to install these and repeat the
configure option until all the dependencies are installed.

 When the configure script completes successfully the output will end with these lines:

 Generating files
 configure: creating ./config.status
 creating main/internal_functions.c
 creating main/internal_functions_cli.c
 +--+
 | License: |
 | This software is subject to the PHP License, available in this |
 | distribution in the file LICENSE. By continuing this installation |
 | process, you are bound by the terms of this license agreement. |
 | If you do not agree with the terms of this license, you must abort |
 | the installation process at this point. |
 +--+

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

24

 Thank you for using PHP.

 config.status: creating php7.spec
 config.status: creating main/build-defs.h
 config.status: creating scripts/phpize
 config.status: creating scripts/man1/phpize.1
 config.status: creating scripts/php-config
 config.status: creating scripts/man1/php-config.1
 config.status: creating sapi/cli/php.1
 config.status: creating sapi/cgi/php-cgi.1
 config.status: creating ext/phar/phar.1
 config.status: creating ext/phar/phar.phar.1
 config.status: creating main/php_config.h
 config.status: executing default commands

 The configuration is now ready to build by running the make command. This takes a few minutes
depending on the number of enabled extensions. The make command will produce many lines of output
ending with these lines:

 Build complete.
 Don't forget to run 'make test'.

 It is always a good idea to run the test suite before installing. It will provide valuable feedback to the QA
team by sending a list of failed tests.

 The new version of PHP is now ready to be installed. The default install location in in /usr/local because
no other location was provided to the configure script. This will actually allow the installation of this newly
compiled version alongside the version installed with the CentOS package manager. To install this version
run this command:

 $ sudo make install

 After installation check the version of PHP:

 $ php -v
 PHP 7.0.6-dev (cli) (built: Apr 2 2016 20:05:26) (NTS)
 Copyright (c) 1997-2016 The PHP Group
 Zend Engine v3.0.0, Copyright (c) 1998-2016 Zend Technologies

 So far it's only the CLI and CGI versions of PHP that were compiled. In order to compile the Apache
module version it's necessary to add at least one option to the configure command:

 $./configure --with-apxs2

 This command will most likely fail, as the apxs script is not installed by default with the apache package
from CentOS. The apxs script is installed with the httpd-devel package.

 $ sudo yum install httpd-apxs2
 $./configure --with-apxs2
 $ make
 $ sudo make install

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

25

 This will install the php module into the httpd.conf file located in /etc/httpd. Because the PHP
5.4 version was installed earlier there is now a conflict between the two and it's no longer possible to start
the Apache server without errors. To resolve these errors it's necessary to edit the file to disable the PHP
5 version of the module. The install script installs the new module in /etc/httpd/conf/httpd.conf and the
CentOS installation created a modules configuration file /etc/httpd/conf.modules.d/10-php.conf. First edit
the file /etc/httpd/conf/httpd.conf and locate the line

 LoadModule php7_module /usr/lib64/httpd/modules/libphp7.so

 This line should be removed and added to the file /etc/httpd/conf.modules.d/10-php.conf. The file will
now look like this:

 #
 # PHP is an HTML-embedded scripting language which attempts to make it
 # easy for developers to write dynamically generated webpages.
 #
 <IfModule prefork.c>
 # LoadModule php5_module modules/libphp5.so
 LoadModule php7_module /usr/lib64/httpd/modules/libphp7.so
 </IfModule>

 The Apache server can now be started and pointing a browser to the phpinfo.php script will show the
following information:

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

26

 The list of modules installed can be shown by running the CLI version of php with the parameter –m.

 $ php -m
 [PHP Modules]
 Core
 ctype
 date
 dom
 fileinfo
 filter
 hash
 iconv
 json
 libxml
 mysqli
 mysqlnd
 pcre
 PDO
 pdo_sqlite
 Phar
 posix
 Reflection
 session
 SimpleXML
 SPL
 sqlite3
 standard
 tokenizer
 xml
 xmlreader
 xmlwriter

 [Zend Modules]

 Recipe 1-4. Installing MySQL
 Problem
 We now have a system with a web server that supports executing PHP scripts and returning the output of the
script instead of the raw source file. In order to complete the installation of a fully functional development
stack we need to install the MySQL database server.

 Solution
 The basic installation of a MySQL compatible database on CentOS 7 is called MariaDB. The official MySQL
database is owned by Oracle. It is still kept as an open source and they have a few community-based
versions. When Oracle purchased Sun Microsystems and thereby acquired the MySQL source code the
original development team created a new version. They have been developing new features and improved
performance. So far the two products provide a feature set that is compatible but as time goes by we might
see the two products develop features that are not compatible.

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

27

 To install the MariaDb Server and all its dependencies, run these commands as the root user:

 $ yum install mariadb-server
 $ systemctl enable mariadb
 $ systemctl start mariadb

 After that it is recommended to run the command mysql_secure_installation. This is a script that will
set a root password, disable remote root login, and perform other changes that will enhance security. With
the exception of setting a root password it is safe to answer yes to all questions. The name of the script is the
same for both MySQL and MariaDb installations.

 How it Works
 This completes the installation of the database sever but there is no support in PHP for this database.
In order to get the MySQLi extension installed it is necessary to reconfigure PHP to add the extension,
recompile, and reinstall:

 $./configure --with-apxs2 --with-mysqli
 $ make
 $ sudo make install

 In this environment it is necessary to re-edit the /etc/httpd/conf/httpd.conf file and remove the entry
added for the php7_module.

 The PHP installation is now complete. If other extensions are needed the steps above can be repeated.
 To install MariaDB on Windows is equally easy. The latest installation packages can be found at

 https://mariadb.org/download/ , or if you prefer the MySQL version you can download the installation
files from http://www.mysql.com/downloads/ .

 Recipe 1-5. Virtual Machines
 Problem
 When development is done on a Windows or Mac OSX computer and deployment is done on a Linux
environment it is easy to run into issues that are related to differences in the operating systems, or there
could be issues with lack of support for specific extensions on one of the platforms. Is there a way to
minimize these problems?

 Solution
 There are a number of cloud-based services that offer relatively cheap virtual Linux environments. Many of
these can be configured and launched in a few minutes and the user only pays for the time the configuration
is active. The cost is as low as $10 per month.

 Having a virtual server in the cloud requires an Internet connection to use with the server. If work is
done offline it is more convenient to install a Virtual Machine on the development environment. A Virtual
Machine is a system that allows the primary operating system on a computer to be the host for one or more
client systems. This is supported on Windows, Mac OSX, and Linus systems, either with native software,
third-party freeware (VirtualBox), or commercial products (VM-Ware or Parallels).

https://mariadb.org/download/
http://www.mysql.com/downloads/

CHAPTER 1 ■ INSTALLATION AND CONFIGURATION

28

 How it Works
 VirtualBox is supported by Oracle and can be downloaded for free at https://www.virtualbox.org/ . After
installation of the software you can create as many virtual machines as you have space on the hard drive.
Each virtual machine requires 10-100Gb of disk space. It is possible to install both Windows and Linux
guests. The guests can be installed from an ISO image that can be downloaded from the preferred Linux
distributions web site. Windows even provides distributions of prebuilt systems that can be downloaded
and launched. Most of these can be used for up to 90 days for testing purposes. If you have a valid Windows
license you can also create an installation that doesn’t expire.

https://www.virtualbox.org/

29© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_2

 CHAPTER 2

 Classes and Objects

 Object-oriented programming provides many advantages over procedural programming. It helps with
encapsulation when code is shared within a team or between teams and it can help protect elements of the
code from being abused. This is especially the case when code is shared in compiled form but the same
mechanisms can be applied to a scripting language like PHP. This chapter describes how object-oriented
programming works in PHP.

 Recipe 2-1. Writing a Simple Class
 Problem
 PHP can be used as a procedural programming language, but you want to make use of the many features of
object-oriented programming with classes and objects to create advanced libraries and applications that
make collaboration and encapsulation easy.

 Solution
 A class is the foundation of object-oriented programming. A class is a collection of properties and methods
that goes together and so this is where to start when writing an object-oriented PHP application.

 Like most other object-oriented programming languages the keyword class is used to define classes
that consist of class variables, class constants, and methods. The class is used to define all the data and all
the functionality associated with the object that can be instantiated from the class. In other words, the class
is the definition and the object is the live instance and multiple instances can be created from the same class
where each instance exists as a value in a variable.

 How it Works
 The first example is a simple class definition where the class foo has a single method called a() . Methods are
defined as any regular function but because it’s defined within a class it becomes a method that belongs to
that class.

 <?php
 // 2_1.php
 class foo {
 function a() {
 echo "Method foo::a()\n";
 }
 }

CHAPTER 2 ■ CLASSES AND OBJECTS

30

 Recipe 2-2. Writing a Base Class
 Problem
 PHP supports different types of classes that serve various purposes. These are called base, abstract, and
interface classes. You want to use a base class to include functionality that is shared by multiple subclasses
that all share the same base functionality.

 Solution
 A base class is usually a simple class that can be used to instantiate objects that store member data and can
perform actions on the data. A base class can also be extended to add additional or changed functionality.
This principle can be repeated so extended classes can be extended further and so on.

 How it Works
 In the following example we have a class with one member function and a second class that extends the first
one and adds a second member.

 <?php
 // 2_2.php
 class foo {
 function a() {
 echo "Method foo::a()\n";
 }
 }

 class bar extends foo {
 function b() {
 echo "Method bar::b()\n";
 }
 }

 Classes, as defined in the above example, act as a definition of data and behavior. They do not do anything
by themselves and must be instantiated before they can be used. If methods are defined as static they can
be used without instantiation, and this is described later in this chapter. Instantiation is done by assigning a
variable that is the result of calling the new operator followed by the name of the class and any parameters that
might be required by the constructor. The constructor is a special function that can be defined to automatically
initiate the object. The constructor method does not have to exist, but it does allow passing of parameters the
same way as functions do. This is also described later in the section about magical methods.

 It is possible to instantiate as many objects of a class as the available memory permits.
 The next example is based on reusing the previous script file that defined the class’s foo and bar. The

variable $foo will be an instance of the class foo and $bar will be an instance of the class bar . Although the
bar class only contains one method called b(), it inherits all the methods from foo as it’s extended from that
class. Therefore it’s also possible to call the method a() on the instance of the class bar.

 <?php
 // 2_3.php
 include "./2_2.php";
 $foo = new foo();
 $foo->a();

CHAPTER 2 ■ CLASSES AND OBJECTS

31

 $bar = new bar();
 $bar->b();
 $bar->a();

 Access to member variables and methods is done with the use of the dereferencing symbol ->. The
instance of a class or object can be used as any other variable. It can be copied to other variables and passed
as parameters to functions.

 Recipe 2-3. Writing an Abstract Class
 Problem
 PHP supports different types of classes that serve various purposes. These are called base, abstract, and
interface classes. You want to use an abstract class definition to define functions that are common for one or
more subclasses. Each subclass will define the specific behavior of each function but all classes that extend
an abstract base class must implement all of the methods. When a class is defined as an abstract class it must
contain at least one abstract function, and abstract classes cannot be instantiated directly, only through a
class that extends the abstract class.

 Solution
 An abstract class cannot be instantiated as objects but serves the sole purpose of providing basic method
definitions for derived classes, and it can include abstract methods that provide a method definition without
any functionality or fully defined methods that can be overwritten or left as is. All the abstract methods must
be declared and defined in full by the derived classes. Abstract classes are useful when building a system
of classes that all have the same set of functionality but with different implementations. An example of this
can be a set of database access classes. They all need connect, disconnect, and other functions but they all
implement these in a slightly different way.

 By defining an abstract base class with all the common functions, any derived class will have to
implement the exact same functions and thereby make it easier to switch between the databases by simply
instantiating a different class.

 ■ Note To compare abstract classes with base classes, see Recipe 2-2 for details of using base classes.

 How it Works
 Let’s see an example of this: a database abstraction system. The root class is an abstract class that defines all
the methods needed (connect, disconnect, query, etc.) and each of the derived classes will then implement
the logic to each type database. There might even be functionality that is shared among all the databases and
that would then be defined once in the abstract class.

 <?php
 // 2_4.php
 abstract class MyDB {
 protected $link = null;
 abstract function connect($database, $host = null, $user = null, $password = null);

CHAPTER 2 ■ CLASSES AND OBJECTS

32

 abstract function disconnect();
 abstract function query($sql);
 function escape($str) {
 return str_replace("'", "\'", $str);
 }
 }

 class MySQL extends MyDB {
 function connect($database, $host = null, $user = null, $password = null) {
 $this->link = mysql_connect($host, $user, $password);
 mysql_selectdb($database, $this->link);
 }

 function disconnect() {
 mysql_disconnect($this->link);
 $this->link = null;
 }

 function query($sql) {
 $rs = mysql_query($sql);
 }
 }

 class sqLite extends MyDB {
 function connect($database, $host = null, $user = null, $password = null) {
 $this->link = sqlite_open($database);
 }

 function disconnect() {
 sqlite_close($this->link);
 $this->link = null;
 }

 function query($sql) {
 $rs = sqlite_query($sql);
 }
 }

 In the example above the abstract class MyDB is extended to the classes MySQL and sqLite . The two
extended classes have the exact same methods so if the same schema is defined in the MySQL and SQLite
databases the developer could choose to implement the business logic to work with both systems, and
it could be a simple configuration parameter to decide on which database to use in production. It would
be easy to extend this system to include support for other database systems. This simple system does not
provide abstraction for differences in the query language used by each database system but that can also be
included in the database abstraction. So instead of passing query strings to the query method it would be
necessary to create methods to access specific types of data and perform joins, etc.

CHAPTER 2 ■ CLASSES AND OBJECTS

33

 Recipe 2-4. Writing an Interface
 Problem
 Although PHP supports extending classes, each class can only extend a single class. PHP does not support
multiple inheritance. Sometimes it is necessary to define a set of functions that must be implemented in
addition to the functionality provided by the base class or abstract class. This is useful when classes need a
predefined set of behaviors to solve specific functionality like sorting of member data.

 Solution
 The solution is to use interface classes to define additional functionality with a predefined set of functions.
Interface classes act more as a definition of a contract and PHP allows any class to implement as many
interfaces as needed. If a class implements one or more interfaces it must implement all of the methods
required by each interface. Interface classes only contain the definition of methods but no actual code. They
can be compared to a collection of abstract methods from an abstract class.

 How it Works
 Each interface class is usually a collection of methods that defines behavior as in the next example where the
class records implement the interface sort with the methods ascending() , descending() , and shuffle() .

 <?php
 // 2_5.php
 interface sort {
 function ascending();
 function decendding();
 function shuffle();
 }

 class records implements sort {
 private $data = array();
 function add($title) {
 $this->data[] = $title;
 }
 function ascending() {
 sort($this->data);
 }
 function decendding () {
 rsort($this->data);
 }
 function shuffle() {
 shuffle($this->data);
 }
 function get() {
 return $this->data;
 }
 }

CHAPTER 2 ■ CLASSES AND OBJECTS

34

 $beatles = new records();
 $beatles->add("Yellow Submarine");
 $beatles->add("Sgt. Pepper's Lonely Hearts Club Band");
 $beatles->add("Help");
 $beatles->add("Abbey Road");

 echo "Ascending\n";
 $beatles->ascending();
 print_r($beatles->get());

 echo "Decending\n";
 $beatles->decendding();
 print_r($beatles->get());

 echo "Random\n";
 $beatles->shuffle();
 print_r($beatles->get());

 In the example the variable $beatles is an instance of the class records and the title of four famous
albums from The Beatles is added to the object. Then the object is used to sort and print the data ascending,
descending, and in random order. The output will look like this:

 Ascending

 Array

 (
 [0] => Abbey Road
 [1] => Help
 [2] => Sgt. Pepper's Lonely Hearts Club Band
 [3] => Yellow Submarine
)

 Decending

 Array

 (
 [0] => Yellow Submarine
 [1] => Sgt. Pepper's Lonely Hearts Club Band
 [2] => Help
 [3] => Abbey Road
)

 Random

 Array

 (
 [0] => Yellow Submarine
 [1] => Help
 [2] => Sgt. Pepper's Lonely Hearts Club Band
 [3] => Abbey Road
)

CHAPTER 2 ■ CLASSES AND OBJECTS

35

 Recipe 2-5. Class Members as Regular Functions
 Problem
 PHP supports two different contexts for using classes. These are called static context and object context.

 In object context the class is used to instantiate an object: in essence that means creating a variable with
a copy of the class and the class constructor method is executed if it is defined. This copy can then be used to
interact with class variables and methods.

 In the static context it is not necessary to instantiate the class as an object before using it and the
constructor is not executed. Calling methods statically work almost like a plain function call but with the
benefit of encapsulation provided by the objects.

 In some cases it can be useful to call class members as if they were regular functions. Normally this is only
possible by instantiating an object based on the class, and then executing the member function on that object.

 Solution
 By using the keyword static in front of a function definition, this makes that method accessible in the static
context. It can still be used as a regular member function.

 How it Works
 In the next example we show how a member can be used in both static and object contexts.

 <?php
 // 2_6.php
 class foo {
 static function a() {
 echo "Test\n";
 }
 }
 foo::a();
 $foo = new foo();
 $foo->a();

 In this case the method a() is called directly/statically as if it was a regular function just by prefixing it
with the name of the class and two colons. The same function is also called by instantiating an object $foo
from the class foo and then calling the method on the object.

 When member functions are called statically it’s not possible to reference member variables by using
 $this but it is possible to reference statically defined variables with the use of self:: . Referencing $this is
only allowed when classes are used in the object context.

 <?php
 // 2_7.php
 class foo {
 static private $b = 5;
 static function a() {
 foo::$b++;
 echo foo::$b;
 }
 }
 foo::a();

CHAPTER 2 ■ CLASSES AND OBJECTS

36

 Note that the member variable is defined with the private keyword. That prevents accessing the variable
from outside any of the member functions. Referencing foo::$b from the global scope will cause a runtime
error. If the variable was defined using the public keyword it would be possible to access it with foo::$b .

 It is possible to have classes that contain both static and non-static variables and methods but they
will have to be used within the correct context. If a static function access a member variable with the $this
reference the script will produce a runtime error.

 When a class is used in a static context each of the member variables will exist in memory only once.
When used in the object context the member variables will be copied to each object and manipulating a
member variable in one object will not affect any of the member variables in other objects even if they are
instantiated from the same class and defined as static.

 Recipe 2-6. Protecting Data and Methods
 Problem
 When working with class properties and methods it’s often needed to protect the data from being
manipulated outside of the class scope. In doing so it’s only the class itself or derived classes that have access
to class variables and member functions.

 Solution
 Using the visibility keywords when defining class variables and member functions restricts how these can
be accessed. There are three keywords available: public , protected, and private . If no keyword is used the
default visibility will be set to public .

 Any class property or method that is declared as public can be accessed directly. If declared as
 protected they can be accessed by the object itself or by any object that is instantiated from a derived class,
and finally a private class property or method can only be accessed by the object where it is defined.

 How it Works
 In the example below a class with a single member variable is used to instantiate an object.

 <?php
 // 2_8.php
 class foo {
 $a = 5;
 }
 $foo = new foo();
 $foo->a = 7;

 Because no visibility keyword was used the variable $a can be manipulated as soon as the object is
instantiated.

 Using the private keyword will make the variable invisible and it will no longer be possible to
manipulate it:

 <?php
 // 2_9.php
 class foo {
 private $a = 5;

CHAPTER 2 ■ CLASSES AND OBJECTS

37

 }
 $foo = new foo();
 $foo->a = 7;

 Trying to manipulate the variable will cause the following fatal error:

 Fatal error: Cannot access private property foo::$a in 2_x.php on line 6

 When member variables are protected or private it’s necessary to provide functions to set or get the
values if these variables should be accessed outside of the class, as shown in the next example where a
special function __construct() is used to set the value when the object is instantiated.

 <?php
 // 2_10.php
 class foo {
 private $type = null;
 function __construct($type) {
 $this->type = $type;
 }
 function getType() {
 return $this->type;
 }
 }
 $t = new foo('Book');
 echo $t->getType() . "\n";

 In some cases it’s necessary to provide access to private members. Declaring them with the use of the
 public keyword can do this, but that would provide both read and write access to the variable. In order to
restrict the access to read only the member can be declared as private and a method can be provided to
return a copy of the data as shown in the previous example. The property $type is declared as private and
the method getType() is used to access the value. The property can only be set by the constructor that could
include validation before setting the value.

 Recipe 2-7. Mixed Static and Object Context
 Problem
 When a class is used in both static and object context and it’s necessary to reference member variables and
methods, we can’t use the $this keyword.

 Solution
 In this case the self:: prefix will make it possible to access variables and members independent of the
context the class is used in.

CHAPTER 2 ■ CLASSES AND OBJECTS

38

 How it Works
 Member variables or methods that are declared as static can be accessed with the self:: prefix, which
means to access the class variable that is declared static. Using self:: will work when the class is used in
both static and object context, but only if the variable is declared as static.

 <?php
 // 2_11.php
 class foo {
 static private $value = 6;
 function getValue() {
 return self::$value;
 }
 }
 echo foo::getValue() . "\n";
 $bar = new foo();
 echo $bar->getValue() . "\n";

 Recipe 2-8. Referencing Class Members
 Problem
 Accessing public or protected properties or methods of a parent class is normally done by referencing them
as if they were direct members of the child class. In some cases, methods are overwritten in a child class and
a different access method is needed.

 Solution
 The use of the prefix parent:: will give explicit access to the variables or methods of the parent class. In
addition it’s also possible to access members of a class higher in the class hierarchy simply by prefixing the
variable with the name of the class and two colons (::).

 How it Works
 When working with classes and object there are a few keywords of interest. These are used to reference
member variables and methods within the object tree. When a class is instantiated to an object it’s possible
to reference member variables or methods with the use of $this . The use of $this will give access to all
members and methods in the current object and protected and public members and methods of parent
objects.

 Along the same lines we have the prefix parent:: to access members of a parent class. This can be used
to access any non-private member variable or methods, even if the extended class overwrites methods from
the parent.

 <?php
 // 2_12.php
 class foo {
 protected $value = 6;
 function method() {
 echo "foo::method()\n";
 }
 }

CHAPTER 2 ■ CLASSES AND OBJECTS

39

 class bar extends foo {
 function method() {
 parent::method();
 echo "bar::method()\nvalue = {$this->value}\n";
 }
 }
 $a = new bar();
 $a->method();

 It is also possible to use the name of a class further up in the class hierarchy to access public or
protected members. In the following example foo:: is used to reference a member of the parent class. This
is done on a method with the same name. This causes the method to be overwritten so the original version
will have to be called explicitly with foo:: or parent:: . Using $this-> would only work in the object context
and only if the method was not overwritten in the derived class.

 <?php
 // 2_13.php
 class foo {
 protected $value = 6;
 function method() {
 echo "foo::method()\n";
 }
 }
 class bar extends foo {
 function method() {
 foo::method();
 echo "bar::method()\nvalue = {$this->value}\n";
 }
 }
 $a = new bar();
 $a->method();

 Recipe 2-9. Instantiation of Classes
 Problem
 When objects are instantiated or destroyed it’s sometimes necessary to run code to perform the initialization
of the object or to clean up connections to resources, etc.

 Solution
 Classes in PHP have two special functions called __construct() and __destruct() . Note the two
underscores before the name. These functions are optional. If they are defined they will be executed when
the new operator or when the object is removed with the unset() function, when the variable that contains
the object is assigned a new value or when it is destroyed automatically when the script ends.

 Constructors can take any number of parameters but destructors can’t have any parameters.

CHAPTER 2 ■ CLASSES AND OBJECTS

40

 How it Works
 Each time a class is instantiated to an object the system will call the constructor method of the class to
initialize the object. It is not required for a class to have a constructor, if no special initialization is needed.
The constructor is defined with the special method name __construct() .

 <?php
 // 2_14.php
 class foo {
 private $type = null;
 function __construct($type) {
 $this->type = $type;
 }
 }
 $t = new foo('Book');

 In this case the constructor method takes a parameter so when objects are instantiated the parameter
must be passed.

 Classes can also define a __destruct() method that’s called when the object is destroyed. In most
cases destruction of objects will happen automatically when the script terminates, but it can also happen
programmatically by setting the value of the variable to null or using the unset() function on the object
variable. In the next example the class logger is used to write events to a logfile. The constructor takes the
name of the file as a parameter, the log() method will add a line to the file containing a timestamp and the
text passed to the function, and when the object is destroyed it will add a line and close the file.

 <?php
 // 2_15.php
 class logger {
 private $fp;
 function __construct($file_name) {
 $this->fp = fopen($file_name, "at");
 }
 function __destruct() {
 $this->log('Log file closed');
 if ($this->fp) {
 fclose($this->fp);
 }
 }
 function log($message) {
 if ($this->fp) {
 $t = date("c"); //ISO 8601 timestamp
 fwrite($this->fp, "{$t} {$message}\n");
 }
 }
 }
 $logger = new logger('log.txt');
 $logger->log('Event');

 Besides __construct() and __destruct() there are a couple of special method names that can make life
easier for the developer. These are called magic methods and will provide predefined functionality if used on
classes. All the magic methods have names that start with two underscore characters. The PHP manual has a
section that describes all the magic methods here: http://php.net/manual/en/language.oop5.magic.php .

http://php.net/manual/en/language.oop5.magic.php

CHAPTER 2 ■ CLASSES AND OBJECTS

41

 Recipe 2-10. Printing Objects
 Problem
 When debugging objects it can be necessary to print an object or some representation of an object. In other
instances it is necessary to convert an object to a string as part of the application flow of returning values
to the client.

 Solution
 There are a number of predefined methods that can be implemented on a class. These are commonly
known as magic methods. These methods add specific behaviors to a class. This includes getters, setters,
constructors, destructors, etc.

 By using the magic method __toString() it’s possible to define how an object behaves when it is used
in a string context, either as a parameter to print() or echo or embedded directly in a double quoted string.
The __toString() method does not take any parameters.

 How it Works
 The method __toString() defines how the object will be handled when used in a string context. An object
is handled in a string context if compared to a string, embedded in a string, or printed. The __toString()
method must always return a string and if it’s not defined on an object that’s used as a string the result will be
the word object. The __toString() method can be used to generate output from objects in a structured form.
A simple html class that can be used to generate HTML elements of various types is shown in the next example.

 <?php
 // 2_16.php
 class html {
 private $type;
 private $c = '';
 function __construct($type = 'div') {
 $this->type = $type;
 }
 function content($c) {
 $this->c .= $c;
 }
 function __toString() {
 return "<{$this->type}>{$this->c}</{$this->type }>";
 }
 }
 $div = new html();
 $span = new html('span');
 $span->content('place some text here');
 $div->content($span);
 echo $div;

 In this example there are two instances of the html class () called $div and $span . The $span object gets
a string added as the content and the $div object gets the $span object added. When the $div object is used
in the echo statement the __toString() method is called. That will cause the __toSting() method to be
called on the $span object when it’s used as a variable embedded in the string.

CHAPTER 2 ■ CLASSES AND OBJECTS

42

 Recipe 2-11. Variable Overloading
 Problem
 When class properties are declared as private they can only be accessed by the methods of the class.
Creating a function to get and set each of these private member variables can end up creating a long list of
methods on the class. Can this be done in an easier way?

 ■ Note Recipe 2-5 covers property visibility.

 Solution
 With the help of a special set of overloading functions it’s possible to create access to private variables as if
they were public and at the same time provide validation on setting these variables. The magic methods to
manage variable overloading are __get() , __set() , __isset(), and __unset() .

 How it Works
 The following example shows how to use these.

 <?php
 // 2_17.php
 class car {
 private $type;
 private $properties = array();

 function __construct($type) {
 $this->type = $type;
 }

 function __set($name, $value) {
 switch($name) {
 case 'type' :
 $this->type = $value;
 break;
 case 'wheels' :
 if (in_array($value, array(3,4,6))) {
 $this->properties[$name] = $value;
 }
 else {
 trigger_error(
 "Property wheels must be 3,4 or 6",
 E_USER_NOTICE
);
 }
 break;
 case 'seats' :

CHAPTER 2 ■ CLASSES AND OBJECTS

43

 if (in_array($value, array(2,4,5,7,8))) {
 $this->properties[$name] = $value;
 }
 else {
 trigger_error(
 "Property seats must be 2,4,5,7 or 8",
 E_USER_NOTICE
);
 }
 break;
 default :
 $this->properties[$name] = $value;
 break;
 }
 }

 function __get($name) {
 if (array_key_exists($name, $this->properties)) {
 return $this->properties[$name];
 }
 else if($name == 'type') {
 return $this->type;
 }
 trigger_error(
 "Undefined property $name",
 E_USER_NOTICE
);
 return null;
 }

 function __isset($name) {
 return array_key_exists($name, $this->properties);
 }

 function __undet($name) {
 unset($this->properties[$name]);
 }

 function __toString() {
 $prop = array();
 foreach ($this->properties as $k => $v) {
 $prop[] = "$v $k";
 }
 return "The {$this->type} has " . implode(", ", $prop) . "\n";
 }
 }

 $c1 = new car('truck');
 $c1->wheels = 4;
 $c1->seats = 2;
 $c1->color = 'white';

CHAPTER 2 ■ CLASSES AND OBJECTS

44

 $c2 = new car('big truck');
 $c2->wheels = 6;
 $c2->seats = 5;
 $c2->color = 'blue';

 echo $c1;
 echo $c2;

 $c2->seats = 9; // This will trigger a notice.

 Running this script will generate the following output:

 The truck has 4 wheels, 2 seats, white color
 The big truck has 6 wheels, 5 seats, blue color

 Notice: Property seats must be 2,4,5,7 or 8 in /source/2_15.php on line 35

 The class car has two private members called $type and $properties . The variable $type is set when
an object is instantiated from the class. In the example $c1 is instantiated with the type ‘truck’ and $c2 is
instantiated with ‘big truck’. There is no validation on the type so any value can be used. The example also
allows the setting of other properties: wheels, sets, color, etc. These are all stored in the $properties array
and the values are handled by the __get() and __set() magic method. The code allows any property to
be added but provides special handling for wheels and seats. If a value is set outside of the valid ranges
the code will use the trigger_error() function to print a notice. The property will not be set but the code
will continue.

 Recipe 2-12. Serializing Types and Object
 Problem
 Serializing PHP variables is used to convert integers, strings, and arrays into a string representation that
can be written to a file or database and later on retrieved and deserialized to get back to its original value.
Serializing objects is a bit trickier as these can contain connections to resources and other values that
require special handling on serialization and deserialization.

 Solution
 When working with the serialize() and unserialize() functions on objects it might be necessary to
perform special actions on the object to handle correct initialization of member variables. The methods
 __sleep() and __wakeup() are used in this context. The __sleep() function is called, if it exists, when an
object is serialized. The function should return an array of member variable names that should be serialized.
The function __wakeup() is called when the object is re-created with the unserialize() function. This
can be used to handle things like disconnect and reconnect to databases or other forms of cleanup and
initialization needed for proper use of the objects.

CHAPTER 2 ■ CLASSES AND OBJECTS

45

 How it Works
 The following example shows how an object instance of a database class can be serialized and unserialized.
When the object is created the parameters to the constructor is stored in private variables and a connection
is created to the database. When the object is serialized the name of the three private variables is returned by
the __sleep() function and when it is unserialized the __wakeup() function will automatically reconnect to
the same database.

 <?php
 // 2_18.php
 class Database {
 protected $pdo;
 private $dsn, $username, $password;

 public function __construct($dsn, $username, $password) {
 $this->dsn = $dsn;
 $this->username = $username;
 $this->password = $password;
 $this->connect();
 }

 private function connect() {
 $this->pdo = new PDO($this->dsn, $this->username, $this->password);
 }

 public function __sleep() {
 return array('dsn', 'username', 'password');
 }

 public function __wakeup() {
 $this->connect();
 }
 }

 $db = new Database('sqlite:mydb', 'user', 'password');

 $a = serialize($db);
 echo $a;

 This script will produce a single line of output that describes the serialized object:

 O:8:"Database":3:{s:13:"Databasedsn";s:11:"sqlite:mydb";s:18:"Databaseusername";
s:4:"user";s:18:"Databasepassword";s:8:"password";}

CHAPTER 2 ■ CLASSES AND OBJECTS

46

 Recipe 2-13. Copying an Object
 Problem
 If an object is created by instantiating a class with the new operator and later on is assigned to a second
variable, PHP only creates a reference to the object instead of copying the object. Manipulating the object
stored in the first variable will also affect the object stored in the second variable as they both reference the
same object.

 Solution
 The magic function __clone() is used to perform special actions on a newly created copy of an object. As
with any of the magical methods these cannot be called directly but they are invoked by special actions.
The __clone() method is called when an object is created with the use of the clone keyword. Cloning the
object provides a true copy of the object compared to assigning the object to a new variable, which will
produce a reference to the object.

 How it Works
 The next example shows the difference between assigning an object to a new variable and cloning the object.

 <?php
 // 2_19.php
 class foo {
 public $a = 5;
 }

 $b = new foo();

 $c = $b;
 $c->a++;
 echo $b->a . "\n";

 $d = clone $b;
 $d->a++;
 echo $b->a . "\n";
 echo $d->a . "\n";

 In the first part the object $b is assigned to a new variable and the member variable a is incremented by
1. This will cause both $b->a and $c->a to become 6 as both variables $b and $c references the same object.
In the second part the object $b is cloned and stored in the variable $d . Changing the values of the member
variable a in $d will not affect the value of a in $b as $b and $d are referencing two different objects. This was
done without the use of the __clone() method. Adding this magic method will make it possible to perform
actions on the object () after it is cloned, as shown next:

 <?php
 // 2_20.php
 class foo {
 public $a = 5;

CHAPTER 2 ■ CLASSES AND OBJECTS

47

 function __clone() {
 $this->a = 0;
 }
 }

 $b = new foo();

 $c = $b;
 $c->a++;
 echo $b->a . "\n";

 $d = clone $b;
 $d->a++;
 echo $b->a . "\n";
 echo $d->a . "\n";

 Now the code will call the __clone() method after all the member variables are copied so in the case
the member of a of $d will be set to 0 after the clone and then incremented to 1, and there is still no effect on
the original object.

 Recipe 2-14. Using Objects as Functions
 Problem
 PHP supports the use of variable function names. This makes it possible to store the name of a function in a
string $a = "MyFunction"; and have the function executed with the $a(); syntax. If the variable contains an
object PHP will generate a runtime error.

 Solution
 Defining the magic method __invoke() on a class will cause that method to be executed when the object is
used as a function.

 How it Works
 In the example below the object will use the var_dump() function on itself when invoked as a function.

 <?php
 // 2_21.php
 class foo {
 private $a = 5;
 function __invoke() {
 var_dump($this);
 }
 }

 $a = new foo();
 $a();

CHAPTER 2 ■ CLASSES AND OBJECTS

48

 The output of this script looks like this:

 object(foo)#1 (1) {

 ["a":"foo":private]=>

 int(5)

 }

 Recipe 2-15. Overloading Methods
 Problem
 PHP does not support method overloading the same way as other languages where the same method name
can be used multiple times in the same class but with a different argument list.

 Solution
 The same way as variables or properties can be overloaded with the __get() and __set() magic methods it’s
also possible to overload methods. This is done with __call() and __callStatic() .

 If these functions are defined and an object is used to call a nonexisting member function one of
these will be called instead. If the member is called in the object context __call() will be used and
 __callStatic() will be used when the method is called in the static context. The following example shows
how the method overload can be implemented. It also demonstrates that the method names of overloaded
methods will be handled as is (case sensitive) and not like functions and methods normally act as case
insensitive names.

 How it Works
 In the next example we create a class called MethodOverload and define the functions to handle method
overloading.

 <?php
 // 2_22.php
 class MethodOverload {
 private function call($name, $param, $context) {
 switch ($name) {
 case 'f1' :
 case 'f2' :
 echo "You called $name in $context context\n";
 break;
 default :
 trigger_error("Undefined method '$name'", E_USER_NOTICE);
 break;
 }
 }
 function __call($name, $param) {
 $this->call($name, $param, 'object');

CHAPTER 2 ■ CLASSES AND OBJECTS

49

 }
 static function __callStatic($name, $params) {
 self::call($name, $param, 'static');
 }
 static function abc() {
 echo "abc() called\n";
 }
 }

 $a = new MethodOverload();
 $a->f1();

 MethodOverload::f2();
 MethodOverload::F2();
 MethodOverload::ABC();

 The class is instantiated and the function f1() is called in the object context. This method does not
exist but because it’s defined in the call method() it’s still possible to get the method executed without errors.
The same way the object has support for calling the methods in the static context. The output of this script is
shown below.

 You called f1 in object context
 You called f2 in static context

 Notice: Undefined method 'F2' in /source/02/2_22.php on line 11
 abc() called

 Recipe 2-16. Debugging Objects
 Problem
 When objects are passed to functions like var_export() or var_dump() they might expose database
credentials or other configuration options that should be hidden from the user of the class/object.

 Solution
 Using the magic methods __set_state() and __debugInfo ()() makes it possible to change how the objects
are handled by the debugging functions. The method __set_state() must be declared static and takes a
single parameter that will be an array with all properties defined on the object and it should return the value
 var_export() should process. This can be any type so it is possible to simply return an array with some of
the input parameters removed. If __set_state() is undefined when an object is passed to var_export() the
system will generate a fatal error and stop execution.

 The method __debugInfo() was introduced in PHP 5.6 and can be used to overwrite the properties
dumped by var_dump() . If __debugInfo() is undefined var_dump() will dump all private, protected, and
public members.

http://php.net/manual/en/language.oop5.magic.php#object.debuginfo

CHAPTER 2 ■ CLASSES AND OBJECTS

50

 How it Works
 This can be used to hide content like database credentials in debug output as shown in the next example.

 <?php
 // 2_23.php
 class database {
 protected $host;
 protected $user;
 protected $password;

 function __construct($host, $user, $password) {
 $this->host = $host;
 $this->user = $user;
 $this->password = $password;
 }
 }

 $db = new database('localhost', 'user', 'secret');
 var_dump($db);

 class database2 {
 protected $host;
 protected $user;
 protected $password;

 function __construct($host, $user, $password) {
 $this->host = $host;
 $this->user = $user;
 $this->password = $password;
 }
 function __debugInfo() {
 return array(
 'host' => $this->host,
);
 }
 }

 $db = new database2('localhost', 'user', 'secret');
 var_dump($db);

 When this script is executed with PHP 5.6 or newer it will produce the following output where the
first section is from the object with no __debugInfo() method and the second section only contains the
properties that were elected to export.

 object(database)#1 (3) {
 ["host":protected]=>
 string(9) "localhost"
 ["user":protected]=>
 string(4) "user"
 ["password":protected]=>

CHAPTER 2 ■ CLASSES AND OBJECTS

51

 string(9) "secret"
 }
 object(database2)#2 (1) {
 ["host"]=>
 string(9) "localhost"
 }

 Recipe 2-17. Using Objects without a Class
 Problem
 Converting an associated array to an object makes it possible to access the member data as if they were
defined in a regular object.

 Solution
 PHP has a built-in class called stdClass . It is used when typecasting arrays to objects or it can be used to
create an object without defining a class first.

 How it Works
 The stdClass does not have any member variables or methods but it will turn all the elements of an
associative array into public members when the array is cast to an object as shown in this next example:

 <?php
 // 2_24.php
 $a = [
 'host' => 'localhost',
 'database' => 'mydb',
 'user' => 'user'
];
 $o = (object)$a;
 echo $o->host;

 The stdClass can also be used to create an empty object and manually add public member variables
to it.

 <?php
 // 2_25.php
 $a = new stdClass();
 $a->host = 'localhost';

 In this example the default setter will cause a public member variable called host to be created on
the object.

CHAPTER 2 ■ CLASSES AND OBJECTS

52

 Recipe 2-18. Directory Iteration
 Problem
 Iterating over files and directories can be done with the functions opendir() , readdir() , and closedir()
that works in a procedural setting. Would it be possible to do the same with an object-oriented approach?

 Solution
 Some of the built-in functions will also return objects. One example of this is the dir() function that will
return an instance of the built-in Directory() class. It takes a directory path as the first parameter. This class
provides methods for read() and close() .

 How it Works
 The next example shows how to use these functions to iterate over a directory and output the name and type
of all the files.

 <?php
 // 2_26.php
 $path = "./";

 // Open a known directory, and proceed to read its contents
 if (is_dir($path)) {
 if ($dh = opendir($path)) {
 while (($file = readdir($dh)) !== false) {
 echo "filename: $file : filetype: " . filetype($path . $file) . "\n";
 }
 closedir($dh);
 }
 }

 The same code written with the use of the object-oriented interface and the Directory class could look
like this.

 <?php
 // 2_27.php
 $path = "./";

 // Open a known directory, and proceed to read its contents
 if (is_dir($path)) {
 $dir = dir($path);
 while (($file = $dir->read()) !== false) {
 echo "filename: $file : filetype: " . filetype($path . $file) . "\n";
 }
 $dir->close();
 }

 The dir() function sets the two public properties, path and handle, so the same functionality can be
obtained by creating an instance of the Directory class and setting the property values manually.

CHAPTER 2 ■ CLASSES AND OBJECTS

53

 <?php
 // 2_28.php
 $path = "./";

 // Open a known directory, and proceed to read its contents
 if (is_dir($path)) {
 $dir = new Directory();
 $dir->path = $path;
 $dir->handle = opendir($path);
 while (($file = $dir->read()) !== false) {
 echo "filename: $file : filetype: " . filetype($path . $file) . "\n";
 }
 $dir->close();
 }

 Finally there is a predefined class Exception that’s used with handling of runtime errors through the try,
catch, finally pattern that will be discussed in a later chapter.

 Recipe 2-19. Writing Reusable Code
 Problem
 PHP only allows extending classes from a single base class. It does allow the use of interface classes but that
requires the user to type the functionality of each interface each time it’s used.

 When working with classes and objects it’s often needed to have the exact same functionality in
multiple classes. This can be private methods to perform validation or public methods that provide access to
private members etc. In many cases this is handled by creating the methods in the base class but when the
classes are derived from different base classes that’s not possible.

 Solution
 PHP version 5.4 and newer supports the use of traits to handle this situation. Traits are named code blocks
that can be reused in many different classes. The code block is written and maintained in one place and
used in many places. Making a change will affect all places where it is used.

 How it Works
 The definition of a trait works almost as a class definition. The keyword trait is used along with a name and
a set of member variables and/or functions.

 The following example shows how a trait can be used to define protected variables that are used in a
single class.

 <?php
 // 2_29.php
 trait A {
 protected $var;
 }

CHAPTER 2 ■ CLASSES AND OBJECTS

54

 class B {
 use A;
 function Get() {
 return $this->var;
 }
 function Set($var) {
 $this->var = $var;
 }
 }
 $o = new B();
 $o->Set(15);
 echo $o->Get();

 In this example there is only a single variable and a single class that uses the trait, but in the case of
multiple variables and many classes using the same set of variables this would save some typing and it
would make code maintenance easier.

 The real save comes when the trait also include functions as in the next example where the Get() and
 Set() functions are moved to the trait and the trait is used in two different classes.

 <?php
 // 2_30.php

 trait A {
 protected $var;
 function Get() {
 return $this->var;
 }
 function Set($var) {
 $this->var = $var;
 }
 }

 class B {
 use A;
 }

 class C {
 use A;
 }

 $o = new B();
 $o->Set(15);
 echo $o->Get();

 Trait works as a copy and paste function at compile time. That means a copy of the trait is inserted in
all places where it’s used as if the code was written the exact same way in all places. If the trait is used in
classes used in the static context the notion of copying the code will act slightly different from static object
declared from the same base class. If member variables or functions are declared as static and used in two
different classes they will become different instances. This is only the case when the classes are used in the
static context. The next two examples show the difference between extending a base class and using a trait to
define a member variable.

CHAPTER 2 ■ CLASSES AND OBJECTS

55

 <?php
 // 2_31.php

 class A {
 public static $var;
 }

 class B extends A {}
 class C extends A {}

 B::$var = 15;
 echo B::$var . "\n";
 echo C::$var . "\n";

 In this case the output will be the number 15 on two lines.

 <?php
 // 2_32.php

 trait A {
 public static $var;
 }

 class B {
 use A;
 }
 class C {
 use A;
 }

 B::$var = 15;
 echo B::$var . "\n";
 echo C::$var . "\n";

 And in this case the output will be the number 15 on the first line followed by an empty line.
 To avoid naming conflicts the methods from a base class, a trait and members from the current

class. The precedence order is that members from the current class override Trait methods, which in
turn overrides inherited methods. This makes it possible to define a trait that contains functions that will
overwrite functions inherited from a base class or to overwrite functions inserted from a trait in the current
class. So that case where a function is the same in 9 out of 10 instances is handled by overwriting one or
more methods in the trait when needed.

 Traits can also include abstract functions. In that case it is a requirement that the class where the trait is
used defines the function.

 Just like classes traits can be extended to include other traits. These can be easier to work with as the
developer can include a simple trait, a list of traits, or the trait that combines all the traits needed as show
in his next example where two traits for addition and subtraction are added to a single trait called math.
Note that the name of the trait is the same as the function in the trait. This works the same way as for classes
where it is possible to have a member method with the same name as the class.

CHAPTER 2 ■ CLASSES AND OBJECTS

56

 <?php
 // 2_33.php
 trait add {
 function add($a, $b) {
 return $a + $b;
 }
 }
 trait subtract {
 function subtract($a, $b) {
 return $a - $b;
 }
 }
 trait math {
 use add, subtract;
 }
 class calc {
 use add, subtract;
 }
 class calc2 {
 use math;
 }

 $o = new calc2();
 echo $o->add(4,5) . "\n";

 Inserting multiple traits in a class might cause conflicts if the same method names are used in more
than one of the traits. This can be resolved by specifying exactly which of the methods to use by using the
keyword instead of and by renaming the conflicting method when using the trait. In the following example
the two traits A and B both have the same function f1() . By adding B::f1 instead of A to the use statement
the parser will use the f1() function from the B thread. The second line renames the f1() function from trait
A to func1() allowing its use in the class C .

 <?php
 // 2_34.php
 trait A {
 function f1() {}
 }
 trait B {
 function f1() {}
 }
 class C {
 use A, B {
 B::f1 insteadof A;
 A::f1 as func1;
 }
 }

CHAPTER 2 ■ CLASSES AND OBJECTS

57

 Recipe 2-20. Avoiding Name Collisions
 Problem
 A common problem for authors of libraries that are included in other projects is collisions of names . It is not
possible to define a function or class more than once with the same name. Early on, adding prefixes to the
function and class names solved this problem, but that often creates a less readable code base.

 Solution
 The concept of namespaces was introduced in PHP 5.3, and is considered one of the most important
improvements to the language, in that release. With the introduction of the keywords namespace and use it
is possible to define and use functions within a namespace and thereby allow the same function name to be
used in multiple places. The definition of namespaces must be the first statement in a script. If it’s defined in
any other place the interpreter will stop the script with a fatal error. If multiple namespaces are needed in the
same file they can be defined by using the namespace keyword again. This will not result in an error as the
first part of the script already belongs to a namespace.

 Although any script code is allowed after the definition of a namespace it only applies to functions,
classes, and constants. Everything else will appear in the global space.

 The namespace called PHP is reserved for internal functions, other than that the names follow the same
rules as variable names. They must start with a letter or underscore and the following characters can be
letters, numbers, and underscores.

 The backslash character is also allowed but it does not really become part of the name. It acts as a
separator for sub-namespaces. These are useful on larger projects where multiple parts of the project can
have functions or classes with the same names.

 How it Works
 The following example shows a simple declaration of a namespace.

 <?php
 // 2_35.php
 namespace Test;

 function t1() {
 }

 In many ways namespaces works like a file system where file names or paths can be relative to the
current directory or subdirectory of the current directory or they can be specified absolutely with reference
to the root of the file system.

 The same principle applies to namespaces where the current namespace is set by the namespace
keyword and constants, functions, and classes are referred to relative to the current namespace or
absolutely. This is illustrated with the following two sample scripts.

 <?php
 // 2_36.php
 namespace Test\Utilities;

 function f1($a) {
 return $a * 2;
 }

CHAPTER 2 ■ CLASSES AND OBJECTS

58

 <?php
 // 2_37.php
 namespace Test;
 include "2_36.php";

 function f1($a) {
 return $a * 3;
 }

 echo "Relative\n";
 echo f1(5) . "\n";
 echo Utilities\f1(5) . "\n";

 namespace MyProject;

 echo "Absolute\n";
 echo \Test\f1(5) . "\n";
 echo \Test\Utilities\f1(5) . "\n";

 The function f1() is defined in the first script file and it belongs to the namespace Test\Utilities .
The function f1() is also defined in the second script file but this time under the namespace Test so the two
functions will not have a conflict. Accessing the two functions is done either relatively where f1(5) will call
the version of the function in the Test namespace (current namespace) and Utilities\f1(5) is calling the
version from the included file that is defined in the sub-namespace.

 Then the namespace is changed to MyProject and the only way to reference the two copies of the f1()
function is to use the absolute path starting from the root.

 Sometimes when long namespaces with sub-namespaces are used it can be useful to create an alias
for the full name as shown in the next example where the file from before 2_35.php is included and the
namespace used in that file is aliased to a namespace called U .

 <?php
 // 2_38.php
 include "2_36.php";

 use Test\Utilities as U;

 echo U\f1(3) . "\n";

 This script does not define a namespace and although one is defined in the included file the current
namespace is still the root or global space. Functions in the namespace Test\Utilities can now be accessed
from the alias U . Instead of aliasing namespaces it’s also possible to import or use classes and interfaces in the
current namespace. This functionality was extended in PHP version 5.6 to allow inclusion of functions and
constants. This is done with use function or use constant where the use keyword alone works on classes.

 <?php
 // 2_39.php
 include "2_36.php";

 use function Test\Utilities\f1;

 echo f1(3) . "\n";

 The example above will produce a parse error if used with PHP 5.5 or older.

CHAPTER 2 ■ CLASSES AND OBJECTS

59

 Recipe 2-21. Autoloading Classes on First Use
 Problem
 Working with many classes and remembering to include the right class definition files is tedious.

 Solution
 Autoloading is a concept that allows automatic inclusion of files that defines classes the first time a class
is used.

 How it Works
 There are a couple of different methods to implement this functionality. The simple way is to give each file
the same name as the class it defines and define a the magic function __autoload() .

 <?php
 // 2_40.php
 function __autoload($class_name) {
 include $class_name . '.php';
 }

 Using this will reduce the need to have a long list of include statements at the beginning of each file and
it will ensure that only the classes that are needed by the script are included. The content of the function can
be a simple include as in the example above or it can be a more elaborate statement that figures out which
file is needed through a lookup table.

 Alternatively the function spl_autoload_register() , from the SPL extension, can be used to register a
function or a class method that can resolve the class name into a specific file name based on a lookup table
or other method. The SPL extension is enabled by default on most PHP installations.

 An example of how to use the spl_autoload_register() function is shown below:

 <?php
 // 2_41.php
 function autoload($class) {
 include "../classes/{$class}.inc";
 }
 spl_autoload_register("autoload");

 When this code is used and a class not currently defined within PHP and the current script is
instantiated the autoloader will execute the autoload() function. If the file is not found or it doesn’t define
the class there will be an error, otherwise the class will be included and the class defined.

61© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_3

 CHAPTER 3

 Performing Math Operations

 A large number of math functions are built in to the core of PHP and additional functionality is available
through extensions including arbitrary precision numbers, statistics, and linear algebra.

 The built-in functions cover exponential, logarithmic, trigonometric, hyperbolic functions as well as
rounding and random number generators.

 PHP supports integer and float data types that can be used to perform the basic math operations:
addition (+), subtraction (-), multiplication (*), and division (/). No special functions are needed to perform
these actions and the logic can be written directly into the code.

 <?php
 // 3_1.php
 $i = 5;
 $j = 5 * $i;

 The order in which math operations are executed follows the same standard as most other
programming languages where multiplication and division are performed before addition and subtraction.
In the next example the calculation is performed as 3 × $i , in this case 15 and then 5 is added so the content
of $j will be 20.

 <?php
 // 3_2.php
 $i = 5;
 $j = 5 + 3 * $i;

 If it’s needed to add 3 and 5 before multiplying with $i, that operation must be isolated with parentheses.

 <?php
 // 3_3.php
 $i = 5;
 $j = (5 + 3) * $i;

 In this case 5 and 3 are added before the multiplication so the result in $j is 8 × 5 or 40.
 PHP version 5.6 introduces a new math operator (**) as a simple way of creating an exponential

expression . Before version 5.6 the use of the pow() function was the only way to perform this math operation.

 <?php
 // 3_4.php
 $k = 2 ** 10;

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

62

 The old way of writing this with the pow() function is

 <?php
 // 3_5.php
 $k = pow(2, 10);

 The result of this will be an integer if both base and exponent are non-negative integers and the result
can be represented by an integer (less than PHP_INT_MAX). In all other cases the result will be a float value.

 PHP also support the modulus (%) operator that is used to find the reminder of an integer division.

 Recipe 3-1. Changing the Base Values for Numbers
 Problem
 By default PHP uses base 10 to represent numbers when numbers are printed as output or numbers are used
to assign values to variables or used in calculations it is assumed that base 10 is used. In various situations it
makes the code more readable to use other base values for numbers .

 Solution
 PHP supports 3 other base values (2, 8, 16) binary, octal, and hexadecimal. In order to tell PHP that the
number written in a formula is not a base 10 number is to add a qualifier to the number 0b for binary, 0 for
octal, and 0x for hexadecimal numbers.

 How it Works
 In the next example the number 100 is used without qualifier and with each of the three special qualifiers to
turn the number into binary, octal, and hexadecimal values. The output does not do the same conversion so
the program will show the base 10 value of the number 100 in each of the representations.

 <?php
 // 3_6.php
 $i = 100;
 $b = 0b100;
 $o = 0100;
 $h = 0x100;
 echo $i . "\n";
 echo $b . "\n";
 echo $o . "\n";
 echo $h . "\n";

 The output of this example is the following:

 100

 4

 64

 256

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

63

 When using the base qualifiers on numbers the valid digits are these:

• 0b or binary only allow 0 and 1,

• 0 or octal only allow 0 to 7,

• 0x or hexadecimal allow 0-9 and the letters a-f or A-F.

 Using invalid digits will produce a parse error.
 Allowing these qualifiers makes certain types of values more readable. Consider the file permissions

on a Linux file system. These are normally represented with three octal digits for owner, group, and other
permission where 4 represents read, 2 represents write, and 1 represents execute permissions. The number
0750 means the owner has read, written, and executed permissions; and that the group has read and
executed and everyone else has no access. If this number would have been represented in the decimal
number system it would be 488 and it would not be easy to read the access.

 Recipe 3-2. Converting to a Different Base Value
 Problem
 Using qualifiers on numbers is only an option when the numbers are written as part of the PHP code. If the
number comes from a database or an API call and when numbers are written as output from the program,
we need other methods to convert between different base values.

 Solution
 PHP comes with a few functions that make this easy. The function dechex() converts an integer value in base
10 to the corresponding value in base 16. The opposite operation of converting a hexadecimal string to an
integer is handled by the hexdec() function. Similarly the functions decbin() and bindec() convert between
base 10 and base 2 and finally the functions decoct() and octdec() convert between base 10 and base 8.

 In addition to the base qualifiers and conversion functions PHP also comes with a built-in function
that can be used to convert numbers between arbitrary bases. The function base_convert() takes three
arguments called value, from base, and to base.

 base_convert(number, frombase, tobase);

 The value can be either an integer or a string representing an integer. If an integer is used PHP will
convert the number to a string before making the conversion. The return value is always a string. If the
return value is in base 10 the resulting string can be used as a numerical string in calculations and PHP will
convert it to a number when the calculation is performed.

 How it Works
 The example below will print the value 4.

 <?php
 // 3_7.php
 echo base_convert(100, 2, 10);

 Note that the input value of 100 is given as an integer and the function will convert that into a string,
using the conventional base 10 representations, before performing the operation. If the number was written
in binary representation (0b100) the system would convert that value to a string (4) and in that case the
function will return 0 as 4 is not a valid number in base 2.

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

64

 <?php
 // 3_8.php
 echo base_convert(0b100, 2, 10);

 Converting numbers to a different base can be useful to compact the size of number strings. The valid
bases are any integer between 2 and 36. The 26 characters in the English alphabet and the 10 digits define
this limitation.

 Recipe 3-3. Storing Binary Values in Integers
 Problem
 Programming often use bit values to store flags or options that only have two possible values (On and Off
or True and False). This allows the storage of 32 or 64 values in a single integer value. Using base 10 values
to check, set or clear any of these flags is a bit cumbersome as the numbers (1, 2, 4, 8, 16, 32, 64, etc.) are
difficult to remember and work with.

 Solution
 In addition to the basic math operations PHP also handles binary operations. These can be used to change
single bits in a number, shift bits left or right, etc. Depending on the operating system and how PHP was
compiled the number of available bits in an integer value is either 32 or 64. That gives 2 ** 32 or 2 ** 64 different
values of an integer. Because all of PHP’s integers are signed the first bit is used to handle the sign and that
leaves 2 ** 31 or 2 ** 63 positive and negative values when the binary string is converted to a decimal number.

 How it Works
 We can use the base_convert() function to print out a binary representation of an integer value. On a 64-bit
version of PHP the following code will produce 63 1’s

 <?php
 // 3_9.php
 echo base_convert(PHP_INT_MAX, 10, 2);

 111

 This is the binary representation of 9223372036854775807. There are only 63 1’s because the first bite is
0 and that’s not printed by the base_convert() function although it’s still part of the 64 bits.

 With the use of the binary not operator (~) all the bits in the number can be flipped so in the next
example we get a 1 followed by 63 0’s.

 <?php
 // 3_10.php
 echo base_convert(~PHP_INT_MAX, 10, 2);

 1000

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

65

 Recipe 3-4. Setting and Clearing Bits in Binary
 Problem
 You want to set or clear individual bits in binary representation .

 ■ Note Recipe 3-2 shows how to convert numbers to binary representation for display purposes.

 Solution
 In addition to the NOT (~) operator PHP also supports bitwise AND (&), OR (|), XOR (̂), and shifting left (<<)
and right (>>). The bitwise NOT, AND, and OR functions are different from the Boolean NOT (!), AND (&&)
and OR (||) operations. In fact the words AND and OR can be used instead of && and || the same ways as it’s
done in database queries using the SQL92 syntax.

 The bitwise OR operator combines the bits from the same location in two variables to form the bit in a
new variable using the OR logic. If both bits are 0 the resulting bit will also be 0. If one or both bits are 1 the
resulting bit will be 1.

 The bitwise AND operator combines the bits from the same location in two variables to form the bit in a
new variable using the AND logic. If both bits are 1 the resulting bit will also be 1. If one or both bits are 0 the
resulting bit will be 0.

 The bitwise XOR operator combines the bits from the same location in two variables to form the bit in
a new variable using the XOR logic. If one of the bits is 1 and the other is 0, the resulting bit will be 1. If both
bits are 0 or 1 the resulting bit will be 0.

 How it Works
 If a variable has a value and it is required that certain bits are set to 1, this can be done with the OR operation
by adding the value of the exact bits. In the following example the variable $v is assigned the value 12 (0b00).
The variable is then combined with 2 (0b10) using the bitwise OR operation and the result is stored in $x .
The result is 14 (0b1110) as all the bits in each position are combined staring with the least significant bit.
In this example the two numbers have 2 and 4 bits defined but in the internal representation both numbers
will have 32 or 64 bits and the once not defined will default to 0. In this case the numbers could be written
as 0b1100 and 0b0010. Both representations are valid, and that is also the case for octal and hexadecimal
numbers where leading zeros can help readability.

 <?php
 // 3_11.php
 $v = 0b1110;
 $x = $v | 0b10;

 If the opposite operation is required where a specific bit should be cleared the AND operator can be
used but we would also need to use the NOT. Consider the following example where $v is assigned the value
14 (0b1110) and the goal is to clear the third bit to create the result 10 (0b1010).

 <?php
 // 3_12.php
 $v = 0b1110;
 $x = $v & 0b100;

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

66

 In the case the AND operation will result in the value 4 (0b100) as the third bit is the only location where
both bits are 1. If the value is changed to 13 (0b1011) before the AND operation the result would be the
expected. Adding the not operator in front of the value will make this happen.

 <?php
 // 3_13.php
 $v = 0b1110;
 $x = $v & ~0b100;

 If ~0b100 is printed it will show the result of -5. That is because the default output is using base 10. This
can be illustrated with the use of the printf() function that can format the output to be binary.

 <?php
 // 3_14.php
 printf("%b\n", 0b100);
 printf("%b\n", ~0b100);

 Here is the output:

 100

 111011

 In this example all 64 bits are flipped from 0 to 1 or from 1 to 0.

 Recipe 3-5. Using Hexadecimal Numbers
 Problem
 Using integers in a binary way is handy to represent flags but writing long numbers with 0’s and 1’s is not
ideal for readability.

 Solution
 Using the hexadecimal (base 16) system can help with that. Each digit in a hexadecimal number represents
4 bits of the value. On a 32-bit system the integer can be represented by 8 digits and 16 on a 64-bit system.

 How it Works
 Changing the binary numbers in the example 14 (0xE) and 8 (0x8) will make the code shorter but still
preserve the readability.

 <?php
 // 3_15.php
 $v = 0xE;
 $x = $v & ~0x8;

 This becomes more obvious as more digits are involved.

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

67

 Recipe 3-6. Increasing Performance with Binary Shift
 Problem
 Multiplying two numbers used to be hard on computers. Many CPU cycles are needed and with limited
resources this was a problem.

 Solution
 By using binary math it’s possible to multiply a number by 2 or divide it by 2 with simple bit shifting. The
bitwise shift operations works, as arithmetic, where shifting all bits one place to the left is the same as
multiplying by 2 and shifting them one place to the right is the same as dividing by 2. The shift left operator
will add 0’s to the right side and drop the bit at the left side. The shift right operator will preserve the sign bit
and drop the bit at the right.

 How it Works
 The shift operators can shift any number of bits. The left side of the shift operator is the number that where
the bits are going to be shifted and the right side is the number of bits to shift.

 <?php
 // 3_16.php
 $bits = PHP_INT_SIZE * 8;
 $v = 1;
 for ($i = 0; $i < $bits; $i++) {
 printf("$v << $i = %64b \n", $v << $i);
 }

 Shifting numbers more than the number of bits in an integer (32 or 64) will result in undefined
behaviors. The number of bits in an integer can be calculated from the constant PHP_INT_SIZE times 8 (the
number of bits in a byte). The output from the example above looks like this:

 1 << 0 = 1
 1 << 1 = 10
 1 << 2 = 100
 1 << 3 = 1000
 1 << 4 = 10000
 1 << 5 = 100000
 1 << 6 = 1000000
 1 << 7 = 10000000
 1 << 8 = 100000000
 1 << 9 = 1000000000
 1 << 10 = 10000000000
 1 << 11 = 100000000000
 1 << 12 = 1000000000000
 1 << 13 = 10000000000000
 1 << 14 = 100000000000000
 1 << 15 = 1000000000000000
 1 << 16 = 10000000000000000

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

68

 1 << 17 = 100000000000000000
 1 << 18 = 1000000000000000000
 1 << 19 = 10000000000000000000
 1 << 20 = 100000000000000000000
 1 << 21 = 1000000000000000000000
 1 << 22 = 10000000000000000000000
 1 << 23 = 100000000000000000000000
 1 << 24 = 1000000000000000000000000
 1 << 25 = 10000000000000000000000000
 1 << 26 = 100000000000000000000000000
 1 << 27 = 1000000000000000000000000000
 1 << 28 = 10000000000000000000000000000
 1 << 29 = 100000000000000000000000000000
 1 << 30 = 1000000000000000000000000000000
 1 << 31 = 10000000000000000000000000000000
 1 << 32 = 100000000000000000000000000000000
 1 << 33 = 1000000000000000000000000000000000
 1 << 34 = 10000000000000000000000000000000000
 1 << 35 = 100000000000000000000000000000000000
 1 << 36 = 1000000000000000000000000000000000000
 1 << 37 = 10000000000000000000000000000000000000
 1 << 38 = 100000000000000000000000000000000000000
 1 << 39 = 1000000000000000000000000000000000000000
 1 << 40 = 100
 1 << 41 = 1000
 1 << 42 = 100
 1 << 43 = 1000
 1 << 44 = 100
 1 << 45 = 1000
 1 << 46 = 100
 1 << 47 = 1000
 1 << 48 = 100
 1 << 49 = 1000
 1 << 50 = 100
 1 << 51 = 1000
 1 << 52 = 100
 1 << 53 = 1000
 1 << 54 = 100
 1 << 55 = 1000
 1 << 56 = 100
 1 << 57 = 1000
 1 << 58 = 100
 1 << 59 = 1000
 1 << 60 = 100
 1 << 61 = 1000
 1 << 62 = 100
 1 << 63 = 1000

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

69

 As an example of that, consider the following example where the value 1 is shifted one bit to the left 64
times and the value one is shifted to the left by 64 bits.

 <?php
 // 3_17.php
 $bits = PHP_INT_SIZE * 8;
 $v = 1;
 for ($i = 0; $i < $bits; $i++) {
 $v = $v << 1;
 }
 $vv = 1 << $bits;
 echo "$v, $vv\n";

 In this case the first value printed is 0, which is correct and the second value is 1, which is incorrect as
all bits should be set to 0 after shifting to the left 64 times.

 Recipe 3-7. Rounding Floating Point Numbers
 Problem
 Due to the nature of floating point numbers where the internal representation is binary and most of the
places where they are used requires base 10 representation, we often get values with many decimals that are
not needed.

 Solution
 Rounding floating point numbers up or down to the nearest integer is done with ceil() and floor() and
rounding to a specific precision is done with the round() function. In addition the function abs() is used to
get the absolute value of a number by clearing the sign bit.

 How it Works
 The next example shows the use of these basic math functions.

 <?php
 // 3_18.php
 $a = -3.2556;
 echo abs($a) . "\n"; // 3.2556
 echo floor($a) . "\n"; // -4
 echo floor(abs($a)) . "\n"; // 3
 echo ceil($a) . "\n"; // -3
 echo ceil(abs($a)) . "\n"; // 4
 echo round($a, 2) . "\n"; // -3.26

 Note how floor() and ceil() seem to work differently on positive and negative values.

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

70

 Recipe 3-8. Generating Random Numbers
 Problem
 Random numbers are often used in games and other programs. Selecting a set of data from a database and
presenting it in random order can be used to generate HTML pages that look different for each user visiting.

 Solution
 There are two sets of randomization functions available in PHP. The rand() function generates a random
number between two specified values or between 0 and the maximum available random number as
returned by getrandmax() . The random number generator can also be seeded to generate a more random
number. This is done with the srand() function. It is no longer needed to call srand() (or mt_srand())
before generating random numbers as this is done automatically.

 The other random number generator is called mt_rand() and is based on a generator with known
characteristics and it’s often much faster than the rand() function. The implementation was created as a
drop-in replacement for the rand() , srand(), and getrandmax() functions simply prefixed with mt_ . The mt
comes from the name of the generator used called Mersenne Twister.

 How it Works
 The next example shows how to generate a random number between 0 and the maximal random value as
well as generating a random number between two boundaries.

 <?php
 // 3_19.php
 $r1 = mt_rand();
 $rmax = mt_getrandmax();
 $r2 = mt_rand(-5, 5);
 echo "$r1\n$rmax\n$r2\n";

 The random functions will always return integers between the default boundaries or the boundaries
provided to the function as parameter. Providing the boundaries makes it possible to generate negative
random numbers. The random number can be one of the boundaries or any value between the two,
meaning mt_rand(1, 5) can produce values 1, 2, 3, 4, and 5. Generating a random number between 1 and 2
with 3 decimals precision can be done like this:

 <?php
 // 3_20.php
 $r = mt_rand(0, 1000);
 $v = 1 + $r / 1000;
 echo "Random value between 1 and 2 is $v\n";

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

71

 Recipe 3-9. Expressing Ratios with Logarithmic Functions
 Problem
 Expressing ratios between two numbers is often done with the Decibel scale (0dB). This is a scale that allows
addition instead of multiplication to express changes. As an example, the power level of a transmitter is often
given relative to a reference value of 1 mW or 0 dBm. Doubling the power level is the same as adding 3 dB
and reducing the power level to half is done by subtracting 3 dB.

 Solution
 Converting ratios to the Decibel scale requires the use of logarithmic functions. PHP implements both the
natural logarithm function log() that is based on the natural number e ~ 2.718282 and the log10() function
that is using base 10. The number e is defined as a constant called M_E .

 How it Works
 The formula for expressing power ratios in db is defined as 10*log10(P2/P1) where P1 and P2 are the
power levels. A similar formula is used to express voltage and current rations in db. The formula for that is
 20*log10(V2/V1) . In the next example we calculate the ratio of 1 W compared to 1 mW and expressing it in
dB. It is common to use dBm as the unit to indicate that the value is relative to 1 mW.

 <?php
 // 3_21.php
 $ref = 0.001; // 1 mW.
 $p = 1.0; // 1 W
 $r = $p / $ref;
 $db = 10*log10($r);
 echo $db . " dBm\n";

 Logarithmic functions only work on positive numbers. Calculating the logarithm of 0 results in negative
infinity or –INF . All logarithmic functions return 0 for the parameter 1. And finally all logarithmic functions
return 1 when the base is provided. log(e) = 1 and log10(10) = 1 etc.

 The function log10() is a convenient function as the log() function takes a second argument that
defines the base. The base argument defaults to M_E if the argument is not passed to the function. So calling
 10*log($r, 10); will provide the same result as 10*log10($r);.

 Recipe 3-10. Calculating Future Values
 Problem
 Calculating the future value of a principal with a certain interest requires the use of exponential functions.
How are these implemented and used in PHP?

 Solution
 Exponential functions are defined as a base number raised to a power and the pow() function is used to
calculate the values of a raised to the power of x. The natural exponential function is defined by the natural
number e and PHP has a special function to calculate e to the power of x called exp() . This function only
takes one argument as the base value is given as e.

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

72

 How it Works
 Suppose you want to calculate the compounded interest of a loan of $1000 with an interest of 5 percent per
year with the interest added 1, 2, 4, or 12 times a year:

 <?php
 // 3_22.php
 $principal = 1000;
 $interest = 0.05;
 $periods = array(1, 2, 4, 12);
 foreach ($periods as $p) {
 $ci = $principal * pow(1 + $interest / $p, $p);
 echo "Periods: $p, future value = $ci\n";
 }

 The results shown below indicate that even if the annual interest rate is 5 percent the future value after
one year depends on how many times the interest is added.

 Periods: 1, future value = 1050

 Periods: 2, future value = 1050.625

 Periods: 4, future value = 1050.9453369141

 Periods: 12, future value = 1051.1618978817

 Using the same formula and compounding more and more often we can calculate the value for the
continuous compounding or e.

 <?php
 // 3_23.php
 $interest = 1;
 $periods = array(1, 2, 4, 12, 52, 365, 8670, 525600, 31536000);
 foreach ($periods as $p) {
 $ci = pow(1 + $interest / $p, $p);
 echo "Periods: $p, future value = $ci\n";
 }

 The more often the interest is coumputed the closer the resulting value gets to the natural number (e).

 Periods: 1, future value = 2

 Periods: 2, future value = 2.25

 Periods: 4, future value = 2.44140625

 Periods: 12, future value = 2.6130352902247

 Periods: 52, future value = 2.6925969544372

 Periods: 365, future value = 2.714567482022

 Periods: 8670, future value = 2.7181250813746

 Periods: 525600, future value = 2.7182792426664

 Periods: 31536000, future value = 2.718281778469

 This example shows what happens when the compounding rate is increased every second. If the
number of compoundings are increased even further the result will just get closer to the natural exponential e.

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

73

 Recipe 3-11. Using Trigonometry to Calculate Distance and
 Direction
 Problem
 You are creating a web site that provides a list of hotels in the country and you want to provide a service to
allow the user find the hotel that’s nearest to a given location.

 Solution
 Trigonometric functions relate an angle of a triangle with the lengths of its sides and are often used to model
periodic phenomena and calculate distance and direction between points on a sphere, but they also have
many other usages.

 There are six basic trigonometric functions that relate to the six possible ratios in a right angle triangle.
All the trigonometric functions in PHP operate on angles measured in radians instead of degrees. In order to
convert between radians and degrees PHP provides deg2rad() and rad2deg() functions.

 You can use Google Maps APIs to find the exact location of each hotel on the list or you can make an
approximation by using the zip code and perform a database lookup to convert the zip codes to longitude
and latitude.

 When you know the coordinates for both locations you can use trigonometric functions to calculate the
distance, with the assumption that the earth is almost spherical.

 How it Works
 The radius of the earth is approximately 6271 km or 3959 miles. These numbers are defined as constants
to allow the user to select which unit to use. All the trigonometric functions work on circles defined with a
radius of 1 unit. This makes it easy to scale to any sphere.

 Longitude and latitude are provided as floating point numbers in degrees so the Pos2Distance()
function starts by converting all these to radians used by the trigonometric functions in PHP.

 <?php
 // 3_24.php
 define('RADIUS_KM', 6371);
 define('RADIUS_MILES', 3959);

 function Pos2Distance($pos1, $pos2, $unit = RADIUS_KM, $precision = 0) {
 $lon1 = deg2rad($pos1['lon']);
 $lat1 = deg2rad($pos1['lat']);
 $lon2 = deg2rad($pos2['lon']);
 $lat2 = deg2rad($pos2['lat']);

 $d = acos(sin($lat1)*sin($lat2) + cos($lat1)*cos($lat2)*cos($lon2-$lon1));

 return round($d * $unit, $precision);

 }

 $p1 = array('lon' => -74.0059, 'lat' => 40.7128);
 $p2 = array('lon' => -118.2437, 'lat' => 34.0522);

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

74

 echo "Distance from New York to Los Angeles: " . Pos2Distance($p1, $p2) . " km\n";

 Distance from New York to Los Angeles: 3936 km

 With similar math it is possible to calculate the bearing it would take to travel in a straight line from
New York to Los Angeles.

 <?php
 // 3_25.php
 function Bearing($pos1, $pos2) {
 $lon1 = deg2rad($pos1['lon']);
 $lat1 = deg2rad($pos1['lat']);
 $lon2 = deg2rad($pos2['lon']);
 $lat2 = deg2rad($pos2['lat']);

 $b = rad2deg(atan2(sin($lon2 - $lon1)*cos($lat2), cos($lat1)*sin($lat2) -
sin($lat1)*cos($lat2)*cos($lon2 - $lon1)));

 return $b < 0 ? 360 + $b : $b;

 }

 $p1 = array('lon' => -74.0059, 'lat' => 40.7128);
 $p2 = array('lon' => -118.2437, 'lat' => 34.0522);

 echo "Bearing from New York to Los Angeles: " . Bearing($p1, $p2) . "\n";

 The expected result would be somewhere around southwest (225 degrees) but because the earth is a
sphere the result is slightly above the west.

 Bearing from New York to Los Angeles: 273.68719070573

 Recipe 3-12. Working with Complex Numbers
 Problem
 PHP and many other programming languages do not handle complex numbers natively. Working with and
calculating impedance of electronic circuits require the use of complex numbers .

 Solution
 PHP does not support operator overloading and there is no support for complex numbers, but it’s still
possible to create objects that can be used to handle the various operations of complex math.

CHAPTER 3 ■ PERFORMING MATH OPERATIONS

75

 How it Works
 Complex numbers have two parts and they can be represented as an object with a real and an imaginary
part. They are often written as r + i*j where r is the real part, j is the imaginary part, and i is the imaginary
number from taking the square root of -1. The following example implements addition, subtraction, and a
magic function to handle using the object in a string context.

 <?php
 // 3_26.php
 class Complex {
 public $re;
 public $im;

 function __construct($re, $im) {
 $this->re = $re;
 $this->im = $im;
 }

 static function Add(Complex $c1, Complex $c2) {
 return new Complex($c1->re + $c2->re, $c1->im + $c2->im);
 }

 static function Subtract(Complex $c1, Complex $c2) {
 return new Complex($c1->re - $c2->re, $c1->im - $c2->im);
 }

 function __toString() {
 return $this->re . " + " + $this->im . "i";
 }
 }
 $c1 = new Complex(1, -2);
 $c2 = new Complex(3, 5);
 $c3 = Complex::Add($c1, $c2);
 $c4 = Complex::Subtract($c2, $c1);
 echo "$c1\n$c2\n";

 -1i

 8i

 This is a simple implementation of complex math and it only implements addition and subtraction. For
a more complete implementation take a look at the PEAR module Math_Complex at http://pear.php.net/
package/Math_Complex/ .

 MATH EXTENSIONS

 By installing the extensions GNU MP (gmp) and/or Binary Calculator Math (bcmath) it will become
possible to work on numbers larger than the precision of the PHP version used. The numbers will be
represented as stings. The gmp extension is used for arbitrary length integers and bcmath is used for
arbitrary precession numbers.

http://pear.php.net/package/Math_Complex/
http://pear.php.net/package/Math_Complex/

77© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_4

 CHAPTER 4

 Working with Arrays

 Arrays play a central role in PHP programming. Many functions return arrays and they are often used to
handle configuration. The basic array is a list of key and value pairs where the key can be an integer or a
string and the value can be any variable type, including arrays.

 Recipe 4-1. Creating Arrays
 Problem
 Arrays are treated as a fundamental data type in PHP. There are no functions to call or objects that must be
instantiated to create variables with array values.

 Solution
 PHP uses the language construct array() to create arrays. If you assign the value array() to a variable you
create an empty array or an array without any elements. It is also possible to include a comma-separated list
of key => value pairs between the parentheses to create an array that’s already populated with values. If the
keys are omitted from the definition PHP will assign numerical values starting at 0 as the keys.

 As stated above, the keys can be either integers or strings. If other types of keys are used PHP will
perform an automatic type conversion. Floating point and Boolean values will be converted to integers.
The null value will be converted to the empty string and valid numerical strings like “7” will be converted to
integers as well. The sting “07” will not be converted as 07 is not a valid decimal number.

 The keys in an array do not all have to be of the same type. The same goes for the values. These can
be mixed as each element in the array is treated as any other variable with no relation to other elements or
other variables.

 From version 5.3 of PHP it’s possible to use shorthand syntax to create arrays. This is done with square
brackets [] just like it’s done in JavaScript.

 In order to access a specific element in an array you would need to know the key. The key value is
placed in square brackets after the variable name like $b = $a['key'];. This will assign the element value
for the key 'key' to the variable $b . If the array element is an array it’s possible to access elements in that
array by adding a second set of square brackets with a key value $b = $a['key']['key2']; . This can be
repeated every time the element is an array.

CHAPTER 4 ■ WORKING WITH ARRAYS

78

 How it Works
 The following example shows examples of six different arrays.

 <?php
 // 4_1.php
 $a = array(); // Empty array
 $b = []; // Empty array
 $c = array(1, 2, 3, 4, 5);
 $d = array(5 => 'Orange', 'Apple', 'Banana', 'test' => 5);
 $e = array(
 'host' => 'localhost',
 'database' => 'orders',
 'user' => 'root',
 'password' => 'secret',
);
 $f = [
 'host' => 'localhost',
 'database' => 'orders',
 'user' => 'root',
 'password' => 'secret',
];

 The first two arrays are empty with no elements. The third array contains five integer elements and the
keys are automatically assigned starting at 0 and ending at 4. In the fourth array the keys are mixed and the
first key is defined to be 5 so the following keys will be auto-assigned as 6 and 7 and the last element has a
string value as the key.

 The last two arrays are identical, and they are just created with the short and the long syntax just as the
first two arrays.

 When arrays are created the elements are stored in the order of creation. If the values are auto-assigned
they will increment from 0 or the last numerical key used.

 <?php
 // 4_2.php
 $a = [1, 2, 5=>3, 4, 5, 10 => 6];
 echo "\$a contains\n";
 foreach($a as $k => $v) {
 echo "$k = $v\n";
 }

 $b = [5 => 5, 4 => 4, 3 => 3, 2 => 2];
 echo "\$b contains\n";
 foreach($b as $k => $v) {
 echo "$k = $v\n";
 }

CHAPTER 4 ■ WORKING WITH ARRAYS

79

 This example will produce the following output showing the arrays will be traversed in the order the
elements are created and not by the order of the keys or values.

 $a contains

 0 = 1

 1 = 2

 5 = 3

 6 = 4

 7 = 5

 10 = 6

 $b contains

 5 = 5

 4 = 4

 3 = 3

 2 = 2

 Note the output shown is from command-line execution of the script. If the output is shown in a
browser the output will not show any line breaks. There is no HTML in the output but the web server still
sends the default Content-Type (text/html). Adding a header to set the Content-Type to text/plain will fix
this issue.

 If the order of the elements is important the values must be created in the order needed or, as described
later in this chapter, there are a number of functions available for sorting arrays.

 Recipe 4-2. Changing Arrays
 Problem
 It’s very easy to create arrays and assign values though the use of language constructs. The values might
not come directly from the programmer, and they might have to be changed over the course of the program
execution so there is a need to add, change, and remove elements in the array.

 Solution
 There are two basic ways to add elements to an array: either by use of a specific index value or by having PHP
generate the next available index value. Both methods involve addressing the element in the array by adding
square brackets to the variable name.

 Changing a value with a specific key is possible by assigning the element in the array a new value.
Memory from the old value is automatically released.

 Removing an element is done by using() the unset function on the specific element that is to be
removed. If unset is used on the arrays itself all elements will be removed. Variables in general can be
undefined by assigning them to null . That does not work for arrays where we need to get rid of both the key
and the value. It is perfectly fine to have an array element with a null or undefined value.

CHAPTER 4 ■ WORKING WITH ARRAYS

80

 How it Works
 In the next example we take an empty array and values by using a for loop to iterate over a set of values.

 <?php
 // 4_3.php
 $a = array();
 for ($i = 1; $i < 10; $i++) {
 $a[] = $i;
 }
 print_r($a);

 This will generate the following output:

 Array

 (

 [0] => 1

 [1] => 2

 [2] => 3

 [3] => 4

 [4] => 5

 [5] => 6

 [6] => 7

 [7] => 8

 [8] => 9

)

 The keys are assigned automatically because they are not provided. In this case the keys will be the
values 0 to 8 and the values will be 1 to 9. If specific keys are required the values can be assigned as shown in
a modified version of the sample.

 <?php
 // 4_4.php
 $a = array();
 for ($i = 1; $i < 10; $i++) {
 $a[$i] = $i;
 }
 print_r($a);

 If the key already exists in the array, then it’s used to assign a value. The value will be replaced without
any warnings.

 <?php
 // 4_5.php
 $a = array(1 => 15, 10 => 20);
 for ($i = 1; $i < 10; $i++) {
 $a[$i] = $i;
 }
 print_r($a);

CHAPTER 4 ■ WORKING WITH ARRAYS

81

 In this example the array is initialized with two key => value pairs. The first one is replaced by the first
assignment in the loop but the last one will remain unchanged. The order of the keys will be 1, 10, 2, 3, 4, 5, 6,
7, 8, 9 because that’s the order in which they were created.

 The arrays used in the examples here are very simple, and instead of using a for loop to populate these
arrays it would be more efficient to use the range() function as shown in the next example. The range()
function takes two or three parameters. The optional third parameter defines the step between the values
created. If it’s omitted the step will be 1.

 <?php
 // 4_6.php
 $a = range(1, 9);
 print_r($a);

 Removing elements from the array is done with the unset() function.

 <?php
 // 4_7.php
 $a = range(1, 9);
 unset($a[4]);
 print_r($a);

 Array

 (

 [0] => 1

 [1] => 2

 [2] => 3

 [3] => 4

 [5] => 6

 [6] => 7

 [7] => 8

 [8] => 9

)

 Recipe 4-3. Adding Arrays
 Problem
 Numbers can be added to create new values and strings can be concatenated to create longer strings, but
what happens if two arrays are added together or combined?

CHAPTER 4 ■ WORKING WITH ARRAYS

82

 Solution
 There are a number of built-in functions to handle combining two arrays into a single array and it’s even
possible to use the + operator to combine two arrays. The + operator works by combining values from the
two arrays and creating the union of the two. Consider $b = $a1 + $a2; Where $a1 and $a2 are both arrays.
The resulting array ($b) will contain all the elements from $a1 and all the elements from $a1 where the key
doesn’t exist in $a1 . If the same key is used in both arrays only the element from $a1 (the array on the left
side of the + operator) will be included. Given the same two arrays added in the opposite order can give a
different result depending on the keys of the two arrays: $c = $a2 + $a1; . The use of the key from the left
array does not depend on the key type.

 Merging two or more arrays can be done with the array_merge() function . This function acts slightly
different than the + operator by overwriting an existing key value with the value of the same key in the right
array and by appending elements from numeric keys instead of overwriting the keys.

 How it Works
 The following example shows the different behavior of the + operator and the array_merge() function on
two simple arrays:

 <?php
 // 4_8.php
 $a1 = array('a', 'b');
 $a2 = array('c', 'd');
 $b1 = $a1 + $a2;
 $b2 = $a2 + $a1;
 $c1 = array_merge($a1, $a2);
 $c2 = array_merge($a2, $a1);
 print_r($b1);
 print_r($b2);
 print_r($c1);
 print_r($c2);

 The two arrays $a1 and $a2 both have two numerical keys (0, 1). When the arrays are added with the +
operator the values for the keys from the left array is used and the resulting array only has the same two keys.
When the arrays are merged with the array_merge() function the resulting arrays will have four keys (0, 1, 2, 3),
and the order of the elements will depend on the order they are used as parameters to the array_merge()
function. The output of the script will look like this:

 Array

 (

 [0] => a

 [1] => b

)

 Array

 (

 [0] => c

 [1] => d

)

CHAPTER 4 ■ WORKING WITH ARRAYS

83

 Array

 (

 [0] => a

 [1] => b

 [2] => c

 [3] => d

)

 Array

 (

 [0] => c

 [1] => d

 [2] => a

 [3] => b

)

 Changing the keys from numerical to strings will change the behavior slightly as seen in the next
example where they keys (0, 1) are changed to strings (‘x’, ‘y’).

 <?php
 // 4_9.php
 $a1 = array('x' => 'a', 'y' => 'b');
 $a2 = array('x' => 'c', 'y' => 'd');
 $b1 = $a1 + $a2;
 $b2 = $a2 + $a1;
 $c1 = array_merge($a1, $a2);
 $c2 = array_merge($a2, $a1);
 print_r($b1);
 print_r($b2);
 print_r($c1);
 print_r($c2);

 The same logic still applies but because there are no numerical keys the resulting arrays will only have
two keys but using the + operator will preserve the value of the left array and the array_merge() function
will overwrite the values of the same keys as shown in the output of the code.

 Array

 (

 [x] => a

 [y] => b

)

CHAPTER 4 ■ WORKING WITH ARRAYS

84

 Array

 (

 [x] => c

 [y] => d

)

 Array

 (

 [x] => c

 [y] => d

)

 Array

 (

 [x] => a

 [y] => b

)

 If there is no overlap of keys between the arrays the resulting array will contain all values from both
arrays and the two methods of combining arrays will give the same result.

 <?php
 // 4_10.php
 $a1 = array('a', 'b');
 $a2 = array('x' => 'c', 'y' => 'd');
 $b1 = $a1 + $a2;
 $b2 = $a2 + $a1;
 $c1 = array_merge($a1, $a2);
 $c2 = array_merge($a2, $a1);
 print_r($b1);
 print_r($b2);
 print_r($c1);
 print_r($c2);

 In the case the resulting arrays will all have four keys and the values are shown in the order they are
added.

 Array

 (

 [0] => a

 [1] => b

 [x] => c

 [y] => d

)

CHAPTER 4 ■ WORKING WITH ARRAYS

85

 Array

 (

 [x] => c

 [y] => d

 [0] => a

 [1] => b

)

 Array

 (

 [0] => a

 [1] => b

 [x] => c

 [y] => d

)

 Array

 (

 [x] => c

 [y] => d

 [0] => a

 [1] => b

)

 In addition to adding or combining arrays we can also find the intersection between two or more arrays.
The function array_intersect() will return an array of all the values that are present in the first argument
and in all of the additional arguments. The function ignores all the keys if the first array contains 'x' => 'c';
and if the second array contains 'y' => 'c', the value 'c' will be returned in the result.

 <?php
 // 4_11.php
 $a1 = array('x' => 'orange', 'y' => 'grape', 'z' => 'banana');
 $a2 = array('grape', 'banana');
 $b1 = array_intersect($a1, $a2);
 $b2 = array_intersect($a2, $a1);
 print_r($b1);
 print_r($b2);

 In this example we show how the returned data keeps the key values from the first array and only retains
the values that exists in all the subsequent arrays.

CHAPTER 4 ■ WORKING WITH ARRAYS

86

 Array

 (

 [y] => grape

 [z] => banana

)

 Array

 (

 [0] => grape

 [1] => banana

)

 Recipe 4-4. Arrays of Arrays
 Problem
 Most databases work with the concept of rows and columns. SQL databases use queries to select rows of
data where every row has the exact same set of columns but different values. How can arrays be used to
represent results from database queries?

 Solution
 Most of the database APIs in PHP provides a function that can fetch a single row as an indexed or associated
array. If a query is performed to select all rows from a table and a defined set of columns it’s easy to create a
structure that will look over all the rows and create an array of arrays . The other array will correspond to the
rows and each element in the array will be an array with all the columns.

 How it Works
 In this example we use a table called person that has three columns called first_name , last_name, and
 date_of_birth . The table contains four rows, one for each member of the pop group The Beatles.

 -- 4_12.sql
 create database samples;
 use samples;
 create table person (
 first_name varchar(50),
 last_name varchar(50),
 date_of_birth int
);
 insert into person (first_name, last_name, date_of_birth)
 values ('John', 'Lenon', -922406400);
 insert into person (first_name, last_name, date_of_birth)
 values ('Paul', 'McCartney', -869097600);
 insert into person (first_name, last_name, date_of_birth)
 values ('Ringo', 'Star', -930528000);

CHAPTER 4 ■ WORKING WITH ARRAYS

87

 insert into person (first_name, last_name, date_of_birth)
 values ('George', 'Harrison', -847324800);

 The code to query this table and store all values in an array would look something like this.

 <?php
 // 4_12.php
 $con = mysqli_connect("127.0.0.1", "root", "secret", "book");
 $rs = mysqli_query($con, "select * from person");
 if ($rs) {
 $persons = array();
 while($row = mysqli_fetch_assoc($rs)) {
 $persons[] = $row;
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);
 print_r($persons);

 The date of birth column is represented by a Unix timestamp. The values are negative as they indicate
the number of seconds before January 1, 1970. The output of this sample will look something like this.

 Array

 (

 [0] => Array

 (

 [first_name] => John

 [last_name] => Lenon

 [date_of_birth] => -922406400

)

 [1] => Array

 (

 [first_name] => Paul

 [last_name] => McCartney

 [date_of_birth] => -869097600

)

 [2] => Array

 (

 [first_name] => Ringo

 [last_name] => Star

 [date_of_birth] => -930528000

)

CHAPTER 4 ■ WORKING WITH ARRAYS

88

 [3] => Array

 (

 [first_name] => George

 [last_name] => Harrison

 [date_of_birth] => -847324800

)

)

 This show a two-level array structure where the outer array represents the selected rows and each
of the inner arrays represents a single record, all showing the same three key values. The outer array uses
numerical keys where the inner arrays are using string keys where the keys values represent the column
names of the query. If mysqli_fetch_row() function was used instead of the mysqli_fetch_assoc()
function the inner arrays would also use numerical keys, in the order of the column names in the querys’
string. Both of these functions can be called multiple times. As long as there is data in the result set the
functions will return a row. When there are no more rows in the result the function will return NULL.

 Recipe 4-5. Traversing Arrays
 Problem
 Accessing individual elements and values of an array require knowledge about the key names.

 Solution
 There are a number of ways to traverse an array with or without using the key names. If all the keys are
numerical and in order starting at 0, it’s possible to use a simple for loop to traverse the array. If the values
are out of order or a mix of numerical and string keys are used, we can use the each() function to return
the value at the current index. The index is an internal pointer that keeps track of the current elements in
an array. Each time the each() function is called the current element is returned and the internal pointer is
incremented. If the internal pointer is incremented above the last element the each() function will return
false, indicating that no more elements exists. If it is necessary to iterate over the same array again the
 reset() function must be called to reset the internal pointer back to the beginning of the array.

 In addition to the each() and reset() functions there are functions to return the current, next,
previous, last element and the key of the current element of the array. These are called current() , next() ,
 previous() , key(), and end() . The functions current() and key() do not change the internal pointer. All
the other functions change the internal pointer. Use of these functions is typically associated with the use of
a while loop.

 If you don’t care about the internal pointer and you want to iterate over an array multiple times and
have easy access to the keys and values, the simplest way is to use the foreach() language construct.

 How it Works
 In this example we use the array from the previous example to create a list of formatted strings that shows
the full name and date of birth for each of the members of The Beatles. We use all three methods of iteration.

CHAPTER 4 ■ WORKING WITH ARRAYS

89

 <?php
 // 4_13.php
 $con = mysqli_connect("127.0.0.1", "root", "secret", "book");
 $rs = mysqli_query($con, "select * from person");
 if ($rs) {
 $persons = array();
 while($row = mysqli_fetch_assoc($rs)) {
 $persons[] = $row;
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);

 for ($i = 0; $i < sizeof($persons); $i++) {
 echo "{$persons[$i]['first_name']} {$persons[$i]['last_name']} " .
 gmdate("M j Y", $persons[$i]['date_of_birth']) . "\n";
 }

 The result of the MySQL query is an array of arrays so in order to access the names and birthdays we
need to provide keys for both the first- and second-level arrays. That is still the case if we use the each()
function as it returns an array with four keys. The keys 0 and 1 will point to the key and value and in addition
we also get the keys ‘key’ and ‘value’ returned.

 <?php
 // 4_14.php
 $con = mysqli_connect("127.0.0.1", "root", "secret", "book");
 $rs = mysqli_query($con, "select * from person");
 if ($rs) {
 $persons = array();
 while($row = mysqli_fetch_assoc($rs)) {
 $persons[] = $row;
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);

 reset($persons);
 while ($person = each($persons)) {
 echo "{$person['value']['first_name']} {$person['value']['last_name']} " .
 gmdate("M j Y", $person['value']['date_of_birth']) . "\n";
 }

 The last method is to use the foreach() construct. This function will iterate over all elements of the
array and it is not necessary to remember to reset the internal pointer in the array. We can also work directly
on the keys and elements so the code becomes a bit simpler.

 <?php
 // 4_15.php
 $con = mysqli_connect("127.0.0.1", "root", "secret", "book");
 $rs = mysqli_query($con, "select * from person");
 if ($rs) {

CHAPTER 4 ■ WORKING WITH ARRAYS

90

 $persons = array();
 while($row = mysqli_fetch_assoc($rs)) {
 $persons[] = $row;
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);

 foreach ($persons as $person) {
 echo "{$person['first_name']} {$person['last_name']} " .
 gmdate("M j Y", $person['date_of_birth']) . "\n";
 }

 If the key of each element was needed we can change the statement to foreach ($persons as $key
=> $person) , and if we need to make updates to the values in the array we can change this to foreach
($persons as $key => &$person) and have $person be a reference to each of the elements in the array so
if $person['date_of_birth'] is assigned a new value it is updated in the array and not in the copy of the
element. In addition we could also add new values to the array by assigning $person['new_key'] a value.

 Recipe 4-6. Sorting Arrays
 Problem
 As we saw in the beginning of this chapter the elements of an array will appear in the order the elements are
added. When an array is traversed the keys and values are handled in the order they appear in the array and
not in a logical order of increased index value alphabetically.

 Solution
 There are many ways to sort an array. It can be done by the keys or by the values and in increasing or
decreasing orders. Sorting by the value is done by the functions sort() and rsort() . Both of these will
return an array where the keys are replaced with numerical values starting at 0. Any string keys or spacing
between the keys will be lost. If you want to preserve the key association you can use the asort() or
 arsort() functions that will move the values around but keep the key association.

 It is also possible to sort an array by the value of the keys using the ksort() and krsort() functions.

 How it Works
 The simplest array is one that uses numerical keys to store some values. This array can be sorted by the
values in normal or reverse order.

 <?php
 // 4_16.php
 $fruit = array('pear', 'apple', 'orange', 'banana', 'kiwi');
 sort($fruit);
 print_r($fruit);
 rsort($fruit);
 print_r($fruit);

CHAPTER 4 ■ WORKING WITH ARRAYS

91

 Note that the sort functions work directly on the array variable as it is passed by reference. This example
will produce the following output:

 Array

 (

 [0] => apple

 [1] => banana

 [2] => kiwi

 [3] => orange

 [4] => pear

)

 Array

 (

 [0] => pear

 [1] => orange

 [2] => kiwi

 [3] => banana

 [4] => apple

)

 In this case all the values were lowercase strings. If the strings had mixed case values the sorting would
be done according to the ASCII table where all uppercase letters come before the lowercase letters and the
sorting would look incorrect. The sort functions allow for a second parameter that can be used to indicate a
case insensitive string sorting like sown in this next example.

 <?php
 // 4_17.php
 $fruit = array('pear', 'apple', 'Orange', 'Banana', 'kiwi');
 sort($fruit);
 print_r($fruit);
 sort($fruit, SORT_FLAG_CASE | SORT_STRING);
 print_r($fruit);

 The output from this script will show the arrays sorted first case sensitive, where all the fruits that begin
with an uppercase letter is listed first, and then case insensitive.

 Array

 (

 [0] => Banana

 [1] => Orange

 [2] => apple

 [3] => kiwi

 [4] => pear

)

CHAPTER 4 ■ WORKING WITH ARRAYS

92

 Array

 (

 [0] => apple

 [1] => Banana

 [2] => kiwi

 [3] => Orange

 [4] => pear

)

 Another wrinkle on sorting is when the strings contain numbers. The expectation would be that item1,
item2 comes before item11 and item12, but because the sorting is done character by character the computer
will order these items as item1, item11, item12 and item2. To get around this there is an additional flag SORT_
NATURAL that can be added to the second parameter.

 <?php
 // 4_18.php
 $items = array('item1', 'Item11', 'Item12', 'item2', 'item20', 'item21');
 sort($items);
 print_r($items);
 sort($items, SORT_FLAG_CASE | SORT_NATURAL | SORT_STRING);
 print_r($items);

 The array is first sorted with the standard sorting function causing the elements that begins with an
uppercase character to show up first. Adding the flags to sort case insensitive and natural will cause the array
to be sorted as expected.

 Array

 (

 [0] => Item11

 [1] => Item12

 [2] => item1

 [3] => item2

 [4] => item20

 [5] => item21

)

 Array

 (

 [0] => item1

 [1] => item2

 [2] => Item11

 [3] => Item12

 [4] => item20

 [5] => item21

)

CHAPTER 4 ■ WORKING WITH ARRAYS

93

 Instead of using the flags to the sort() function it’s also possible to use natsort() and natcasesort()
to accomplish the same result.

 Sorting an array that uses strings as keys will cause the keys to be lost if we use sort() or rsort() . In
order to preserve the strings we would have to use the asort() and arsort() functions. If we expand the
fruit example from before and turn the fruit values into keys and add inventory values (number of each fruit
in stock) the example would look something like this:

 <?php
 // 4_19.php
 $fruit = array('pear' => 10, 'apple' => 3, 'orange' => 15, 'banana' => 5, 'kiwi' => 2);
 sort($fruit);
 print_r($fruit);

 $fruit = array('pear' => 10, 'apple' => 3, 'orange' => 15, 'banana' => 5, 'kiwi' => 2);
 asort($fruit);
 print_r($fruit);

 Note that the array fruit is defined twice because the sort() function will replace the keys with
numerical keys. The sorting of the array will cause the items to be sorted by inventory count, but by using the
 sort() function we lose the keys so we no longer know what each item is. In the second half of the example
we use asort() that keeps the keys and we can still tell what the items are.

 Array

 (

 [0] => 2

 [1] => 3

 [2] => 5

 [3] => 10

 [4] => 15

)

 Array

 (

 [kiwi] => 2

 [apple] => 3

 [banana] => 5

 [pear] => 10

 [orange] => 15

)

 If instead of getting the items sorted by inventory count we wanted to get them in alphabetical order we
can sort by the keys by the use of the ksort() function.

 <?php
 // 4_20.php
 $fruit = array('pear' => 10, 'apple' => 3, 'orange' => 15, 'banana' => 5, 'kiwi' => 2);
 ksort($fruit);
 print_r($fruit);

CHAPTER 4 ■ WORKING WITH ARRAYS

94

 And the elements would appear like this:

 Array

 (

 [apple] => 3

 [banana] => 5

 [kiwi] => 2

 [orange] => 15

 [pear] => 10

)

 So far the sorting has worked on simple arrays. If we return to the example of retrieving data from a
database where we get rows and columns and try to sort the resulting array directly, we would get a result
that is based on comparing arrays. This is done by comparing all the elements of each of the arrays to
determine which one is “bigger” and then using that to set the order of the elements.

 <?php
 // 4_21.php
 $con = mysqli_connect("127.0.0.1", "root", "Wbp2Theworld", "book");
 $rs = mysqli_query($con, "select * from person");
 if ($rs) {
 $persons = array();
 while($row = mysqli_fetch_assoc($rs)) {
 $persons[] = $row;
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);
 sort($persons);
 print_r($persons);

 In this example we have added a call to the sort() function to the code from example 4_9.php and
instead of the records showing up in the order of John, Paul, Ringo, and George they will now show up in
alphabetically order based on the first element of each record.

 Array

 (

 [0] => Array

 (

 [first_name] => George

 [last_name] => Harrison

 [date_of_birth] => -847324800

)

CHAPTER 4 ■ WORKING WITH ARRAYS

95

 [1] => Array

 (

 [first_name] => John

 [last_name] => Lenon

 [date_of_birth] => -922406400

)

 [2] => Array
 (
 [first_name] => Paul
 [last_name] => McCartney
 [date_of_birth] => -869097600
)

 [3] => Array
 (
 [first_name] => Ringo
 [last_name] => Star
 [date_of_birth] => -930528000
)

)

 If we wanted this example to sort by the last name column we could change the order of the columns in
the query.

 <?php
 // 4_22.php
 $con = mysqli_connect("127.0.0.1", "root", "Wbp2Theworld", "book");
 $rs = mysqli_query($con, "select last_name, first_name, date_of_birth from person");
 if ($rs) {
 $persons = array();
 while($row = mysqli_fetch_assoc($rs)) {
 $persons[] = $row;
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);
 sort($persons);
 print_r($persons);

 In this case the order of the columns has changed so when the sort() function is called the comparison
will start with the last name column and thus produce the following result.

CHAPTER 4 ■ WORKING WITH ARRAYS

96

 Array

 (

 [0] => Array

 (

 [last_name] => Harrison

 [first_name] => George

 [date_of_birth] => -847324800

)

 [1] => Array

 (

 [last_name] => Lenon

 [first_name] => John

 [date_of_birth] => -922406400

)

 [2] => Array

 (

 [last_name] => McCartney

 [first_name] => Paul

 [date_of_birth] => -869097600

)

 [3] => Array

 (

 [last_name] => Star

 [first_name] => Ringo

 [date_of_birth] => -930528000
)

)

 The sort() function has an optional second parameter called sort_flags. This parameter is used to
define how the sorting is done. The default value is SORT_REGULAR and it will use the standard PHP
compare functions to determine is one value is greater or less than another value. There are four other flags
that can be used:

• SORT_NUMERIC will convert the values to numbers. This is useful if the values are
numerical strings.

• SORT_STRING will convert the values to strings before comparing.

CHAPTER 4 ■ WORKING WITH ARRAYS

97

• SORT_LOCALE_STRING will convert to strings but use the locale setting on the
system to sort.

• SORT_NATURAL will use the string comparison method but numerical strings.

 In addition there is a flag to make the sorting case insensitive. This flag can be combined with any of the
other flags.

 It is of course more efficient to use the sorting functionality of the database and return the records in
the order they should be used, but there can be times where a different order is needed. Changing the query to
change the order of the columns could have an impact on presentation so that route might not be optimal either.

 This is where the usort() function becomes handy. The usort() function takes two parameters, the
first being the array to sort and the second the name of a user-defined callback function that will be used to
compare two elements of the array. If we want to expand on example 3_9.php and define functions to sort
the array of persons by first name, last name, or date of birth it could look something like this.

 <?php
 // 4_23.php

 function SortFirstName($a, $b) {
 if ($a['first_name'] == $b['first_name']) {
 return 0;
 }
 elseif ($a['first_name'] > $b['first_name']) {
 return 1;
 }
 else {
 return -1;
 }
 }

 function SortLastName($a, $b) {
 if ($a['last_name'] == $b['last_name']) {
 return 0;
 }
 elseif ($a['last_name'] > $b['last_name']) {
 return 1;
 }
 else {
 return -1;
 }
 }

 function SortDOB($a, $b) {
 if ($a['date_of_birth'] == $b['date_of_birth']) {
 return 0;
 }
 elseif ($a['date_of_birth'] > $b['date_of_birth']) {
 return 1;
 }
 else {
 return -1;
 }
 }

CHAPTER 4 ■ WORKING WITH ARRAYS

98

 $con = mysqli_connect("127.0.0.1", "root", "Wbp2Theworld", "book");
 $rs = mysqli_query($con, "select * from person");
 if ($rs) {
 $persons = array();
 while($row = mysqli_fetch_assoc($rs)) {
 $persons[] = $row;
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);
 usort($persons, 'SortFirstName');
 print_r($persons);
 usort($persons, 'SortLastName');
 print_r($persons);
 usort($persons, 'SortDOB');
 print_r($persons);

 In this case we have defined three callback functions, each one to sort on a specific column. The code
calls each of the sorting functions and the output is shown below.

 Array

 (

 [0] => Array

 (

 [first_name] => George

 [last_name] => Harrison

 [date_of_birth] => -847324800

)

 [1] => Array

 (

 [first_name] => John

 [last_name] => Lenon

 [date_of_birth] => -922406400

)

 [2] => Array

 (

 [first_name] => Paul

 [last_name] => McCartney

 [date_of_birth] => -869097600

)

CHAPTER 4 ■ WORKING WITH ARRAYS

99

 [3] => Array

 (

 [first_name] => Ringo

 [last_name] => Star

 [date_of_birth] => -930528000

)

)

 Array

 (

 [0] => Array

 (

 [first_name] => George

 [last_name] => Harrison

 [date_of_birth] => -847324800

)

 [1] => Array

 (

 [first_name] => John

 [last_name] => Lenon

 [date_of_birth] => -922406400

)

 [2] => Array

 (

 [first_name] => Paul

 [last_name] => McCartney

 [date_of_birth] => -869097600

)

 [3] => Array

 (

 [first_name] => Ringo

 [last_name] => Star

 [date_of_birth] => -930528000

)

)

CHAPTER 4 ■ WORKING WITH ARRAYS

100

 Array

 (

 [0] => Array

 (

 [first_name] => Ringo

 [last_name] => Star

 [date_of_birth] => -930528000

)

 [1] => Array

 (

 [first_name] => John

 [last_name] => Lenon

 [date_of_birth] => -922406400

)

 [2] => Array

 (

 [first_name] => Paul

 [last_name] => McCartney

 [date_of_birth] => -869097600

)

 [3] => Array

 (

 [first_name] => George

 [last_name] => Harrison

 [date_of_birth] => -847324800

)

)

 Sorting by first or last name does not make any difference in the case of the four members of The Beatles
but sorting by date of birth shows the records in a different order.

 Recipe 4-7. Using Arrays as Stacks
 Problem
 A stack is a commonly used structure where elements can be added and removed from the open end of the
stack. Stacks are considered as last-in first-out structures.

CHAPTER 4 ■ WORKING WITH ARRAYS

101

 Solution
 With the use of the functions array_pop() , array_push() , array_shift(), and array_unshift() it is
possible to use arrays as a stack. Shift and unshift works on the beginning of the array where push and pop
works on the end of the array. These functions will return the first or last element of the array. If the array is
empty or the variable is not an array these functions will return NULL.

 How it Works
 The function array_push() will add an element to the end of an array. The key will be the next available
numerical value. If the array is empty the first key will be 0. The function array_pop() will remove the last
value from the array and return it so it can be assigned to a value or used in a comparison.

 <?php
 // 4_24.php
 $stack = array();
 array_push($stack, 'orange');
 array_push($stack, 'apple');
 array_push($stack, 'banana');
 print_r($stack);
 $fruit = array_pop($stack);
 print_r($stack);

 In this case we have added three fruits to the stack and printed all the values of the array. Then we use
 array_pop() to remove the element that was added last and print the contents of the array again. This time
only two values are left in the array.

 Array

 (

 [0] => orange

 [1] => apple

 [2] => banana

)

 Array

 (

 [0] => orange

 [1] => apple

)

 We can accomplish the same functionality with the use of array_unshift() and array_shift() .

 <?php
 // 4_25.php
 $stack = array();
 array_unshift($stack, 'orange');
 array_unshift($stack, 'apple');
 array_unshift($stack, 'banana');

CHAPTER 4 ■ WORKING WITH ARRAYS

102

 print_r($stack);
 $fruit = array_shift($stack);
 print_r($stack);

 The fruits will show up in the reverse order and each time we add or remove an element all keys of the
existing elements will have to be shifted up or down in order to make room for the new element. This will
cause the shift and unshift functions to be a bit slower than push and pop.

 Array

 (

 [0] => banana

 [1] => apple

 [2] => orange

)

 Array

 (

 [0] => apple

 [1] => orange

)

 Recipe 4-8. Slicing and Splicing Arrays
 Problem
 You need to get a section of an array or insert an array into the middle of another array.

 Solution
 There are two functions to handle these operations. The function array_slice() can be used to cut a
portion of an array and assign it to a new array. The function array_splice() can be used to insert an array
anywhere in another array.

 How it Works
 The array_slice() function takes two to four parameters. The first is the source array, the second is the
offset. This is the number of elements to skip from the beginning of the array. The optional third parameter
is the length of the slice or number of elements to copy. Finally the optional fourth element defines if the
numerical array keys are going to be preserved. The default is false. The following example shows how
a small section of two elements can be copied from a larger array. The example also demonstrates the
difference between preserving the keys or not.

 <?php
 // 4_26.php
 $a = array(
 'apple',

CHAPTER 4 ■ WORKING WITH ARRAYS

103

 'orange',
 'banana',
 'animal' => 'horse',
 'vechicle' => 'truck'
);

 print_r(array_slice($a, 2, 2));
 print_r(array_slice($a, 2, 2, true));

 The output looks like this:

 Array

 (

 [0] => banana

 [animal] => horse

)

 Array

 (

 [2] => banana

 [animal] => horse

)

 It is a small difference but in the first part of the output the index from the banana is changed from 2 to 0
and in the second part its position/key is preserved.

 The array_splice() function also takes four parameters. The first is the source array, the second is
the offset, the third is a length, and the fourth is the array to inset. The function can be used in three distinct
ways. The first is to remove a section of an array, the second is to insert a new array into the array, and the
third is a combination of both of these things.

 This first parameter (the source array) is passed by reference. This causes the value of the array to
be changed by the function. In addition the function will return an array with all the elements that were
replaced.

 The second parameter can be positive or negative. If it's positive the offset is counted from the
beginning of the array and if it's negative it's counted from the end of the array.

 If the length parameter is omitted then all elements from the offset to the end of the array will be
removed. If it is positive the function will remove that number of elements from the offset position. If length
is negative the end of the removed elements will be found by counting that number of elements from the end
of the array. These calculations are similar to the substr() function that can have positive and negative values
for both offset and length.

 In the following example there are two arrays being spliced. Because the array_splice() function works
directly on the source array it is necessary to create a copy of the array before calling the function (only
because the same array is being used in all three samples.

 <?php
 // 4_27.php
 $a = array(
 'apple',
 'orange',

CHAPTER 4 ■ WORKING WITH ARRAYS

104

 'banana',
 'animal' => 'horse',
 'vechicle' => 'truck'
);
 $b = array(
 'kiwi',
 'grape'
);

 // Remove all but two elements from the array
 $a1 = $a;
 $r = array_splice($a1, 2, 2);
 print_r($r);
 print_r($a1);

 // instert $b into $a
 $a1 = $a;
 $r = array_splice($a1, 2, 0, $b);
 print_r($r);
 print_r($a1);

 // remove one element and inster $b
 $a1 = $a;
 $r = array_splice($a1, 2, 1, $b);
 print_r($r);
 print_r($a1);

 The output of this example gives the following six arrays:

 Array

 (

 [0] => banana

 [animal] => horse

)

 Array

 (

 [0] => apple

 [1] => orange

 [vechicle] => truck

)

 Array

 (

)

CHAPTER 4 ■ WORKING WITH ARRAYS

105

 Array

 (

 [0] => apple

 [1] => orange

 [2] => kiwi

 [3] => grape

 [4] => banana

 [animal] => horse

 [vechicle] => truck

)

 Array

 (

 [0] => banana

)

 Array

 (

 [0] => apple

 [1] => orange

 [2] => kiwi

 [3] => grape

 [animal] => horse

 [vechicle] => truck

)

 Recipe 4-9. Debugging Arrays
 Problem
 Arrays are printed directly as output so knowing the exact value of a super global or an array variable that is
generated from a database query or an API call requires the use of other outputting methods.

 Solution
 PHP has three functions that make debugging of array variables easy. These are print_r() , var_dump(),
and var_export() . The print_r() function walks through the array recursively and prints the keys and
values in a nice readable way. The var_dump() and var_export() functions will also print information the
data type and size of the elements

CHAPTER 4 ■ WORKING WITH ARRAYS

106

 How it Works
 In this example we use an array with mixed numerical and string keys to show how the debug information
looks when the three output methods are used.

 <?php
 // 4_28.php
 $a = array(
 'apple',
 'orange',
 'banana',
 'animal' => 'horse',
 'vechicle' => 'truck'
);
 print_r($a);
 var_dump($a);
 var_export($a);

 The output from this code looks like this:

 Array

 (

 [0] => apple

 [1] => orange

 [2] => banana

 [animal] => horse

 [vechicle] => truck

)

 array(5) {

 [0]=>

 string(5) "apple"

 [1]=>

 string(6) "orange"

 [2]=>

 string(6) "banana"

 ["animal"]=>

 string(5) "horse"

 ["vechicle"]=>

 string(5) "truck"

 }

 array (

 0 => 'apple',

 1 => 'orange',

CHAPTER 4 ■ WORKING WITH ARRAYS

107

 2 => 'banana',

 'animal' => 'horse',

 'vechicle' => 'truck',

)

 The first and the third example are the easiest to read but they do not contain any type info. Only the
 var_export() function produces output that can be used in an eval statement or written directly to a php
script file to be included or executed at a later time. This can be useful for writing config files.

 Note that these outputs should be included in a <pre>..</pre> tag when they are used in a browser
context in order for the formatting to be as shown above.

 Recipe 4-10. Storing Arrays
 Problem
 Arrays are defined differently in different languages and are often not supported natively by file systems or
databases, so how can the values of arrays be stored?

 Solution
 With the use of serialize() and unserialize() or json_encode() and json_decode() it’s possible to
stringify any array (and other types of PHP variables) so they can be written to a file or saved as a value in a
varchar column in a database. The json_* functions are also useful to convert arrays to a structure that can
be interpreted by the JavaScript engine in a browser.

 JSON is short for JavaScript Object Notation and it is commonly used to write and exchange data in
JavaScript code or between other systems like PHP and JavaScript. It can also be used as a serialization
format within PHP.

 How it Works
 Let's first consider the format of an array that is serialized and the same array as a JSON encoded string. Both
of them are string values that have enough information to describe each element in a form where it can be
regenerated.

 <?php
 // 4_29.php
 $a = array(
 'apple',
 'orange',
 'banana',
 'animal' => 'horse',
 'vechicle' => 'truck'
);
 echo serialize($a) . "\n";
 echo json_encode($a) . "\n";

CHAPTER 4 ■ WORKING WITH ARRAYS

108

 The two outputs will look like this:

 a:5:{i:0;s:5:"apple";i:1;s:6:"orange";i:2;s:6:"banana";s:6:"animal";s:5:"horse";s:8:"vechi
cle";s:5:"truck";}

 {"0":"apple","1":"orange","2":"banana","animal":"horse","vechicle":"truck"}

 In the serialized version we see information about the type and length. The a:5: indicates an array with
five elements, i: means integer and s:6: indicates a string with six characters. Using serialized data between
64-bit and 32-bit versions of PHP can lead to overflows as integers can hold much larger values in 64-bit
versions.

 The serialized data can be written to a database or a file and retrieved again later.

 <?php
 // 4_30.php
 $a = array(
 'apple',
 'orange',
 'banana',
 'animal' => 'horse',
 'vechicle' => 'truck'
);
 file_put_contents('serialize.dat', serialize($a));

 In this example we write the serialized array to a file called serialize.data and in the follow example the
file is read, unserialized, and the result is printed with the print_r() function

 <?php
 // 4_31.php
 $a = unserialize(file_get_contents('serialize.dat'));
 print_r($a);

 And the output will look like this:

 Array

 (

 [0] => apple

 [1] => orange

 [2] => banana

 [animal] => horse

 [vechicle] => truck

)

109© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_5

 CHAPTER 5

 Dates and Times

 PHP does not have a variable type dedicated to storing date or time values. Instead, integers are used to
indicate the number of seconds before or since January 1st, 1970, also called Epoc. When dates and times
are treated as a single value they are called a timestamp. The use of integers makes it easy to calculate
differences between two timestamps as ordinary math applies.

 Recipe 5-1. Working with Time Zones
 Problem
 All the date and time functions in PHP assume the timestamps to be in Coordinated Universal Time (UTC) .
It is necessary to configure PHP to use a specific time zone to convert all input and output of date values so
they show up in the right order.

 Solution
 PHP can be configured with a setting in the php.ini file. The setting is called date.timezone and the allowable
values include names such as CET for Central European Time and PST for Pacific Standard Time. In addition
you can also configure it by region and city such as America/Los_Angeles or Europe/Amsterdam . For a full
list of supported time zones please see http://php.net/manual/en/timezones.php .

 Having a single time zone configured for the web server works fine when the users of the web site are
local and all share the same time zone. In cases where users come from different time zones it is necessary to
be able to define the time zone for each user. This can be done by defining a preference where the user can
select the time zone and use the function date_default_timezone_set() to set the current time zone before
any date functions are used. Anonymous users will not have a preference defined, and they will get all date/
time values presented as if they were in the time zone defined by the server.

 If the time zone is undefined when one of the date/time functions are called the system will print a
warning and fall back to the UTC time zone .

 Warning: date(): It is not safe to rely on the system's time zone settings. You are
required to use the date.timezone setting or the date_default_timezone_set() function.
In case you used any of those methods and you are still getting this warning, you most
likely misspelled the time zone identifier. We selected the time zone 'UTC' for now, but
please set date.timezone to select your time zone.

http://php.net/manual/en/timezones.php

CHAPTER 5 ■ DATES AND TIMES

110

 In older versions of PHP the warnings might vary or no warning is given at all. Anyone using versions
older than PHP 5.3 is strongly encouraged to upgrade for both security and performance reasons and to get
the benefit of all the new functionality.

 How it Works
 The easy way to ensure a time zone is configured is by setting the date.timezone value in php.ini .
Remember to restart the web server when you make changes to php.ini . Setting the time zone
programmatically makes it possible to overwrite the value in php.ini when needed.

 <?php
 // 5_1.php
 $ts = time();
 echo date("Y m d H:i:s", $ts) . "\n";
 date_default_timezone_set("UTC");
 echo date("Y m d H:i:s", $ts) . "\n";

 With date.timezone defined to America/Los_Angeles this code will produce output that looks like this:

 2015 03 25 11:36:12

 2015 03 25 18:36:12

 If the output is shown in a browser the whitespace generated by "\n" is not shown as a line break. Either
use HTML (
) or add a header to set the content type to text/plain.

 The time difference shows as 7 hours although the normal difference between UTC time and the time
in Los Angeles is 8 hours. This is caused by daylight savings time in Los Angeles. Daylight savings time never
applies to UTC.

 In the example above the date function is passed two variables. The first one is the format string and the
second is a timestamp. The second parameter is optional and if it’s not passed the date function will use the
current time when generating the string.

 Recipe 5-2. Creating a Timestamp
 Problem
 Timestamps are useful when ordering data. They do not have the sorting problems as date time strings do
where the ordering depends on the format of the string. In Europe the dates are typically formatted as day,
month, and year; and in the United States it’s common to use month, day, and year. An easy is to use a format
of year, month, and day. This will provide a way to sort correctly by date but that does not present well.

 Solution
 There are a number of ways to create a timestamp in PHP. The simplest way is to use the time() function to
return the timestamp for the current date and time. If you need to get a timestamp for a specific date and
time you can use the mktime() function. This function takes a number of parameters. All the parameters
are optional and can be left out from the right. Any parameter that is left out will be set to the current value
based on the system time and the selected time zone. The parameters are Hour, Minute, Second, Month,
Day, Year, and Is DST, which indicates whether or not daylight savings time should be taken into account.

CHAPTER 5 ■ DATES AND TIMES

111

 Having the date and time split up into individual parts is not always practical so for those instances
there are a couple of functions that can help. The function strtotime() creates a timestamp based on
parsing of a string. The function works without a specific format. This makes it difficult to interpret 03
01 2015 as it can mean both March 1st and January 3rd depending on where in the world you are. The
 strtotime() function also allows more creative strings to be passed in like “+1 month,” which will take the
current day and time and add 1 month, or “January 5th 2015 + 15 weeks,” or “first Monday of April 2016.”

 How it Works
 In the next example we look at the various ways of creating timestamps.

 <?php
 // 5_2.PHP
 // Get timestamp for current day and time
 $ts = time();
 echo $ts . "\n";
 echo date("M j Y H:i:s", $ts) . "\n";

 // Get timestamp for March 1st 2015 at 00:00:00
 $ts = mktime(0, 0, 0, 3, 1, 2015);
 echo $ts . "\n";
 echo date("M j Y H:i:s", $ts) . "\n";

 // Use strtotime() to get a timestamp for a specific day time
 $ts = strtotime("first Monday of April 2016");
 echo $ts . "\n";
 echo date("M j Y H:i:s", $ts) . "\n";

 In these three examples the time portion is defaulting to 00:00:00 for the last two dates. This is because
no time value is specified as part of the string. The sample first prints the integer value of each timestamp
and then converts it back to a string value with the date() function.

 1427317600

 Mar 25 2015 14:06:40

 1425196800

 Mar 1 2015 00:00:00

 1459753200

 Apr 4 2016 00:00:00

 Although Epoc is set to start on January 1st, 1970, it is still possible to use timestamps that represent
dates before that. This is done with the use of negative values for the timestamp. On older versions of PHP
for Windows this was not possible. It was fixed in PHP 5.1 .

 On a 32-bit system the range of the timestamp goes from -2147483648 to 2147483647 these values
correspond to the dates 1901/12/13 20:45:51 and 2038/01/19 03:14:08. On a 64-bit system the corresponding
values are -292277022657/01/27 08:29:52 and 292277026596/12/04 03:30:07.

CHAPTER 5 ■ DATES AND TIMES

112

 Recipe 5-3. Working with Dates
 Problem
 Using timestamps to store date values can cause some undesired results when the data is used across
multiple time zones.

 This happens for birthdays and other dates like that. If you create a web site where users from all over
the world can enter their birthdate and you store that as an integer timestamp and then use the date()
function with a different user’s time zone, you might get wrong dates.

 Solution
 There are two special versions of mktime() and date() that ignore the time zone and always operates on
UTC values. These are called gmmktime() and gmdate() . These are convenient when you want to store date
values as timestamps.

 How it Works
 In this example we have a user who enters his birthday as October 10th, 1980, using the time zone of Europe/
Copenhagen . A second user looks at the birthday from the America/Los_Angeles time zone.

 <?php
 // 5_3.php
 // User 1 born on October 10th 1980 in Copenhagen Denmark
 date_default_timezone_set("Europe/Copenhagen");
 $dob = mktime(0, 0, 0, 10, 10, 1980);

 // User 2 looks at the birthday from Los Angeles
 date_default_timezone_set("America/Los_Angeles");
 echo date("M j Y", $dob). "\n";

 It now looks like the birthday is on October 9th. If we replace the date() and mktime() functions with
the gmdate() and gmmktime() this problem will go away.

 <?php
 // 5_4.php
 // User 1 born on October 10th 1980 in Copenhagen Denmark
 date_default_timezone_set("Europe/Copenhagen");
 $dob = gmmktime(0, 0, 0, 10, 10, 1980);

 // User 2 looks at the birthday from Los Angeles
 date_default_timezone_set("America/Los_Angeles");
 echo gmdate("M j Y", $dob). "\n";

 Not all months include the same number of data and PHP provides a quick way to verify if the
combination of day, month, and year corresponds to a valid date. This function is called checkdata() and
it takes three parameters: month, day, and year. The function returns true if the parameters correspond to a
valid date and returns false otherwise.

CHAPTER 5 ■ DATES AND TIMES

113

 Recipe 5-4. Displaying Timestamps
 Problem
 Dates and times are used in many different ways around the world. Using an integer to represent a
 UNIX timestamp for any date, time, or date/time value makes it easy to sort and calculate date and time
differences but they are not very practical for showing actual dates.

 Solution
 The date() functions is used to convert a UNIX timestamp into a readable sting format based an a
formatting string with a long range of options. In addition to the date() function that uses English names
for months and weekdays the function strftime() provides the same functionality but uses the settings for
 setlocale() to provide names, and the formatting strings are slightly different than the values used for the
 date() function.

 How it Works
 The formatting string for the date() function is a combination of upper- and lowercase letters. Any character
that is not recognized as a formatting character will remain as is in the returned string. This is useful for
adding periods, slashes, dashes, or colons to separate values.

 In this next example we take the timestamp for the current time and format it as a European and U.S.
date time string. The timestamp will represent the date and time in the time zone that is configured on
the server.

 <?php
 // 5_5.php
 $ts = time();
 // European
 echo date("d/m/Y H:i:s", $ts) . "\n";

 // US
 echo date("m/d/Y h:i:s a", $ts) ."\n";

 The output of this program will look something like this.

 27/03/2015 16:46:28

 03/27/2015 04:46:28 pm

 The two major differences here are the swapping of day and month and the use of a 24-hour vs. a
12-hour representation of time. As you can see, spaces, slashes, and colons are not converted but all other
characters are converted to a portion of the date time string that is returned. The full list of the supported
 characters can be found at http://php.net/date .

 Because the strftime() function relies on underlying operating system functions to format the string
and translate names for months and week days the system expects the formatting placeholders to be %
followed by a single upper- or lowercase letter.

 Let’s take a look at the same example but this time we include the name for the day of week and the full
name of the month.

http://php.net/date

CHAPTER 5 ■ DATES AND TIMES

114

 <?php
 // 5_6.php
 $ts = time();

 echo date("l F d Y h:i:s a", $ts) ."\n";

 This will output the date time string as shown below.

 Friday March 27 2015 04:54:36 pm

 In order to use the strftime() function we would have to change the formatting string as seen in this
next example.

 <?php
 // 5_7.php
 $ts = time();

 echo strftime("%A %B %e %Y %I:%M:%S %P ", $ts) ."\n";

 This example will generate output that looks like this:

 Friday March 27 2015 05:03:40 pm

 In order to get the names for months and weekdays in a different languages we can use the setlocale()
function to change the behavior to

 <?php
 // 5_8.php
 $ts = time();

 setlocale(LC_TIME, 'en_US');
 echo "English: ";
 echo strftime("%A %B %e %Y %I:%M:%S %P", $ts) ."\n";

 setlocale(LC_TIME, 'de_DE');
 echo "German: ";
 echo strftime("%A %B %e %Y %H:%M:%S", $ts) ."\n";

 setlocale(LC_TIME, 'fr_FR');
 echo "French: ";
 echo strftime("%A %B %e %Y %H:%M:%S", $ts) ."\n";

 Now we are using the strings from the operating system to show names of workdays and months in the
language selected by setlocale() and the output will look like this:

 English: Friday March 27 2015 05:16:32 pm

 German: Freitag März 27 2015 17:16:32

 French: Vendredi mars 27 2015 17:16:32

CHAPTER 5 ■ DATES AND TIMES

115

 ■ Note The language packages for the desired languages must be installed on the system in order for the
 setlocal() function to be able to utilize them.

 If you don’t want to rely on setlocale() for translations of names for weekdays and months, the simple
solution is to use numeric values for these but it is also possible to write your own formatting function.

 <?php
 // 5_9.php
 $weekdays = array(
 'en' => array(
 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
 'Thursday', 'Friday', 'Saturday', 'Sunday'
),
 'da' => array(
 'søndag', 'mandag', 'tirsdag', 'onsdag',
 'torsdag', 'fredag', 'lørdag', 'søndag'
),
);

 $months = array(
 'en' => array(
 1 => 'January', 'February', 'March', 'April', 'May', 'June',
 'July', 'August', 'September', 'October', 'November', 'December'
),
 'da' => array(
 1 => 'januar', 'februar', 'marts', 'april', 'maj', 'juni',
 'juli', 'august', 'september', 'oktober', 'november', 'december'
),
);

 function FormatDate($ts, $lang = 'en') {
 global $weekdays, $months;

 $d = date('j', $ts);
 $w = date('w', $ts);
 $m = date('n', $ts);
 $y = date('Y', $ts);
 switch($lang) {
 case 'en' :
 return $weekdays[$lang][$w] . ", " . $months[$lang][$m] .
 " {$m} {$y}";
 break;
 case 'da' :
 return $weekdays[$lang][$w] . ", {$m} " . $months[$lang][$m] .
 " {$y}";
 break;
 }
 }

CHAPTER 5 ■ DATES AND TIMES

116

 $ts = time();

 echo FormatDate($ts) . "\n";
 echo FormatDate($ts, 'da') . "\n";

 This example will produce a two-line output like this:

 Sunday, March 3 2015

 søndag, 3 marts 2015

 The downside to this is the maintenance of the translation tables but you can do it all within your
application without dependencies on the hosting environment.

 Recipe 5-5. Using ISO Formats
 Problem
 In many cases there is a need for a very specific string formatting. When creating e-mail messages it’s
convenient to have a formatting string, to generate date values for the headers, which follow the standard
without having to remember the exact formatting.

 Solution
 The date() function provides a few specific formatting characters that will convert a timestamp into the
string representation according to the specific ISO formatting. Using "c" will generate a string formatted
according to the ISO 8601 standard and "r" will generate an RFC 2822-formatted string .

 The ISO 8601 standard is intended to make it possible to exchange date and time values between
different parts of the world where different formatting is used. The RFC 2822 standard covers exchange of
e-mails. There is a commonly used string that looks similar to this and it’s used to see the Last-Modified and
Expire headers on an HTTP response. The main difference is that the e-mail data includes a time zone offset
and the response header is always given in GMT value.

 How it Works
 If you create your own e-mail client you will have to set headers for to, from, subject, and other parameters
in each e-mail message. In addition you would also have to create a header entry for the date and time the
e-mail was created. This could look something like this:

 <?php
 // 5_10.php

 $msg = "From: mail@example.com\r\n" .
 "To: mail@somedomain.com\r\n" .
 "Subject: ISO date format\r\n";
 $msg .= date("c") . "\r\n\r\n";
 $msg .= "This is the body of the email message\r\n";

 echo $msg;

CHAPTER 5 ■ DATES AND TIMES

117

 This is just a very simple e-mail message and it is recommended to use one of the many e-mail client
classes to handle sending and receiving of e-mail messages. This example will echo the content of the
 $msg variable.

 From: mail@example.com

 To: mail@somedomain.com

 Subject: ISO date format

 2015-04-01T12:25:38-07:00

 This is the body of the email message

 Setting the Expires and Last-Modified headers for a HTTP response could look something like this:

 <?php
 // 5_11.php

 $gmt_mtime = gmdate('D, d M Y H:i:s', $last_modified) . ' GMT';
 $gmt_etime = gmdate('D, d M Y H:i:s', time() + $ttl) . ' GMT';

 header("Pragma: Cache");
 header("Cache-Control: max-age=0, must-revalidate");
 header("Last-Modified: " . $gmt_mtime);
 header("Expires: " . $gmt_etime);

 if (!empty($_SERVER['HTTP_IF_MODIFIED_SINCE']) &&
 $_SERVER['HTTP_IF_MODIFIED_SINCE'] == $gmt_mtime) {
 http_response_code(304);
 exit();
 }
 // Output the rest of the response

 This will allow the browser to use a cached version of the response if and only if a revalidation sends
back the HTTP status 304.

 Recipe 5-6. Working with Week Numbers
 Problem
 In some industries around the world the use of week numbers are quite common. Unfortunately there are
multiple different standards for how week numbers are calculated. The week that includes the first Thursday
of the year, the week that includes January 4th, the first week with four or more days, or the week that starts
with the Monday that falls between December 29th and January 4th.

 Solution
 The date functions in PHP support the ISO-8601 standard for week numbers, which define the first week to
be the week that includes the first Thursday of the year. It is also worth mentioning that week numbering
changes between Sunday and Monday and not between Saturday and Sunday as weeks are defined in some
parts of the world.

CHAPTER 5 ■ DATES AND TIMES

118

 How it Works
 In order to get the week number of a given timestamp we use the ‘W’ formatting character to get week
number according to the ISO-8601 standard. Week numbers are often given with the year so the formatting
string would be ‘Y-W’ or ‘W-Y’.

 <?php
 // 5_12.php

 $ts = time();
 echo date("Y-W", $ts) . "\n";

 Recipe 5-7. The DateTime Class
 Problem
 When integer values are used to represent a timestamp as a number of seconds since the reference time,
the range of the dates that can be handled is determined by allowed values in an integer variable. On a
32-bit system where an integer is a 4-byte value a timestamp can range from 1901 12 13 20:45:51 to 2038 01
19 03:14:08 in UTC or roughly plus and minus 68 years. How can date and time values beyond this range be
represented in PHP?

 Solution
 On a 64-bit system, where integers are 8-byte values, the timestamp range is between -292277022657 01 28
08:29:52 and 292277026596 12 04 15:30:07 UTC or roughly plus and minus 29 billion years.

 Changing the operating system from 32-bit to 64-bit might not always be an option so for that PHP provides
a built-in class called DateTime() that allows the same date ranges as on a 64-bit system. The DateTime() class
was introduced as experimental with version 5.1 and has been included since version 5.2 of PHP.

 How it Works
 Instantiating an object from the DateTime() class can be done without parameters. This will create an object
with the current time and the current time zone. The date and time can be printed with the use of the same
formatting strings as the date() function uses.

 <?php
 // 5_13.php

 $d = new DateTime();
 echo $d->format("M d Y h:i:s a") . "\n";

 which will generate output that looks like this.

 Mar 29 2015 11:18:36 am

 If you want the date/time object to contain a specific date and time value rather than the current
time you can pass the value as the first argument when the object is instantiated. The format of the date/
time value must follow a specific format. The full list of supported formats can be found here:
 http://php.net/manual/en/datetime.formats.php .

http://php.net/manual/en/datetime.formats.php

CHAPTER 5 ■ DATES AND TIMES

119

 Creating a date/time object with a specific date would look like what is shown in the next example.

 <?php
 // 5_14.php

 $d = new DateTime("2010-10-31 13:15:00");
 echo $d->format("M d Y h:i:s a P") . "\n";

 The first parameter contains both a date part and a time part and the output will show the date and time
according to the format string provided.

 Oct 31 2010 01:15:00 pm -07:00

 If the date string you pass is from a different time zone you can use the second optional parameter
to create the date/time object in a different time zone. When a time zone parameter is used the date/time
object will remember that value and use it for all calculations including presentations. If we change the code
to include a time zone the output will be the same with the exception of the GMT offset.

 <?php
 // 5_15.php

 $tz = new DateTimeZone("Europe/Copenhagen");
 $d = new DateTime("2010-10-31 13:15:00", $tz);
 echo $d->format("M d Y h:i:s a P") . "\n";

 Note that the time zone is passed as an object instantiated from the DateTimeZone() class. The output
will look like this:

 Oct 31 2010 01:15:00 pm +01:00

 The data/time string passed as the first parameter is parsed the same way as the strtotime() function.
That means you can parse relative dates when you are instantiating the object as shown in the next example
where two objects are created. The first one uses the current date and time and the second one calculates a
date/time that is two months into the future and at the same time specifies the exact time to 12:00.

 <?php
 // 5_16.php

 $d = new DateTime();
 echo $d->format("M d Y h:i:s a P") . "\n";

 // Noon in 2 months
 $d = new DateTime("+2 months 12:00");
 echo $d->format("M d Y h:i:s a P") . "\n";

 It is a little before noon local time at the time this script was executed so the two times are close but on
dates that are two months apart.

 Mar 29 2015 11:39:46 am -07:00

 May 29 2015 12:00:00 pm -07:00

CHAPTER 5 ■ DATES AND TIMES

120

 Changing the date, time, or time zone after you have created the object is possible with a number of
methods on the DateTime() object.

 Setting a specific date or time can be done with DateTime::modify() . This method takes a string
parameter that works the same as the parameter used in the constructor. You can either change the date/
time to a new explicit value or you can modify it relatively.

 In the next example the date/time value is instantiated to the current time and then altered with the
 modify() method to a specific date and then changed relatively to a date that’s two months ahead and finally
to a date 2000 years ago.

 <?php
 // 5_17.php

 date_default_timezone_set('America/Los_Angeles');
 $d = new DateTime();
 echo $d->format("M d Y h:i:s a P") . "\n";

 $d->modify("2010-10-31");
 echo $d->format("M d Y h:i:s a P") . "\n";

 // Noon 2 months later
 $d->modify("+2 months 12:00");
 echo $d->format("M d Y h:i:s a P") . "\n";

 $d->modify("-2000 years");
 echo $d->format("M d Y h:i:s a P") . "\n";

 The resulting output shows a change in the GMT offset corresponding to dates where there is no
daylight savings time. The first date is because it falls in the wintertime and the second one because daylight
savings times didn’t exist 2000 years ago.

 Mar 29 2015 11:56:05 am -07:00

 Oct 31 2010 11:56:05 am -07:00

 Dec 31 2010 12:00:00 pm -08:00

 Dec 31 0010 12:00:00 pm -08:00

 Although this code was executed on a 64-bit system it would produce the same result on a 32-bit
platform.

 Another way to work with relative time is to use the add() or sub() methods of the DateTime() object.
These methods takes a single parameter that is an object of the class DateInterval() . The DateInterval()
constructor uses a string to define the length of the period by specifying a number of years (Y), months (M),
weeks (W), days (D), hours (H), minutes (M), and seconds (S). Note that M is used for both months and
minutes. This is possible because of two extra letters P and T that designate the period (P) and the time (T)
portion of the interval. To create a time interval of 2 years, 3 months, 5 days, and 10 hours you would use the
string ‘P2Y3M5DT10H’.

 <?php
 // 5_18.php
 date_default_timezone_set('America/Los_Angeles');
 $d = new DateTime("Oct 10 1980");
 echo $d->format("M d Y h:i:s a P") . "\n";

CHAPTER 5 ■ DATES AND TIMES

121

 $i = new DateInterval('P2Y3M5DT10H');
 $d->add($i);
 echo $d->format("M d Y h:i:s a P") . "\n";

 And the output will look like this where the GMT offset changes because the date moves from a period
with daylight savings time to a period without.

 Oct 10 1980 12:00:00 am -07:00

 Jan 15 1983 10:00:00 am -08:00

 The DateInterval() class is also used when it comes to differences between dates.

 <?php
 // 5_19.php
 // User 1 creates a date
 $d1 = new DateTime("Oct 10 1980");
 $d2 = new DateTime("March 15 1990");

 $i = $d1->diff($d2);

 echo $i->format("%Y %M %D %H:%I:%S") . "\n";

 In this example we have two date and time objects roughly 10 years apart. The output of the script
shows 09 05 05 00:00:00, which according to the format indicates 9 years, 5 months, and 5 days. There is
no time difference so the two objects have the same time of day.

 In the example from earlier where a user enters a date according to a local time zone and another user views
the date according to his or her time zone, can be handle by changing the time zone on the date/time object.

 <?php
 // 5_20.php
 // User 1 creates a date
 $tz = new DateTimeZone("Europe/Copenhagen");
 $d = new DateTime("Oct 10 1980", $tz);
 echo $d->format("M d Y h:i:s a P") . "\n";

 // User 2 in Los Angeles
 $tz = new DateTimeZone("America/Los_Angeles");
 $d->setTimezone($tz);
 echo $d->format("M d Y h:i:s a P") . "\n";

 The code shows the same flaw as before where dates stored, as a timestamp, will look like two different
dates, caused by the difference in time zone offset.

 Oct 10 1980 12:00:00 am +01:00

 Oct 09 1980 04:00:00 pm -07:00

 Again the solution for this is to treat dates that shouldn’t have a time part, like birthdays, as dates in the
same time zone no matter where the user is entering or displaying the dates from. Using the UTC time zone
for this is easy but in fact it could be any time zone as long as it does not change between input and output.

CHAPTER 5 ■ DATES AND TIMES

122

 The DateTime classes can also be used in a more procedural style by the use of the aliased function
names: date_create_immutable() is an alias for DateTimeImmutable::__construct() . I like the object-
oriented approach better and I think the names are a bit cleaner. To see the full list of DateTime functions go
to http://php.net/manual/en/ref.datetime.php .

 Recipe 5-8. Storing Date and Time Values
 Problem
 Using integers or UNIX timestamps to represent time and date values makes it easy to work with and store . If
I create the database schema I tend to simply use an integer or long integer column to store the exact values
I use in my PHP scripts. That way I only need to convert to a string when showing dates and times to the user
and convert from strings when receiving input from the user.

 If you are working on a database where the schema includes native datetime or timestamp columns you
might be able to select the value as an integer and use PHP for formatting or you might have to retrieve the
textual value of the column and perform the conversion in PHP.

 Solution
 The MySQL datetime column expects the string to be formatted as a 4-digit year, 2-digit month and day,
and 2 digits for hour, minute, and seconds. The time format should be 24 hours. The equivalent formatting
string looks like this: date("Y-m-d H:i:s") .

 How it Works
 If we create a simple table with a single datetime column:

 create table date_time (
 ts datetime;
);

 We can then create a simple PHP script that can populate the database with random dates between
1970 and now.

 <?php
 // 5_21.php

 $now = time();
 $dates = [];

 for ($i = 0; $i<100; $i++) {
 $dates[] = mt_rand(0, $now);
 }
 $con = mysqli_connect("127.0.0.1", "root", "seecret", "book");
 foreach($dates as $d) {
 $date = date("Y-m-d H:i:s", $d);
 mysqli_query($con, "insert into date_time (ts) values ('{$date}');");
 }
 mysqli_close($con);

http://php.net/manual/en/ref.datetime.php

CHAPTER 5 ■ DATES AND TIMES

123

 If we want to read the same values from the database and convert them into UNIX timestamps using
PHP it would look something like this.

 <?php
 // 5_22.php

 $now = time();
 $dates = [];

 for ($i = 0; $i<100; $i++) {
 $dates[] = mt_rand(0, $now);
 }
 $con = mysqli_connect("127.0.0.1", "root", "secret", "book");
 $rs = mysqli_query($con, "select * from date_time");
 while ($row = mysqli_fetch_row($rs)) {
 $dates[] = strtotime($row[0]);
 }
 mysqli_free_result($rs);
 mysqli_close($con);
 print_r($dates);

 Recipe 5-9. Calculating Elapsed Time
 Problem
 Although PHP has many ways of converting a timestamp to a string representation it does not have a way to
show elapsed time.

 Solution
 In order to get the elapsed time between two timestamps you simply subtract them from each other. This
will give the number of seconds between the two timestamps. Using the date function it’s possible to create
a nice representation of hours, minutes, and seconds between the two timestamps. If the elapsed time
were longer than 24 hours we would also need to account for days, weeks, months, and years. Using simple
math makes it possible to calculate these values. A day is 86400 seconds long and a week is 7 times that but
months are not all the same length and years do vary a bit in length, too, so for those we will have to settle for
averages of 30 days or 365 days when the calculations are made.

 Instead of trying to convert the number of seconds to its equivalent months, days, hours, etc., it’s a bit
easier to use the DateTime() class to create two objects from the timestamps and then calculate the diff and
use the DateInterval::format() method to represent the elapsed time.

 How it Works
 In this example we use the timestamp of two events generated with the use of the strtotime() function.

 <?php
 // 5_23.php
 $ts1 = strtotime("2000-06-15 20:30:00");
 $ts2 = strtotime("2005-03-18 14:15:30");

CHAPTER 5 ■ DATES AND TIMES

124

 $d1 = new DateTime();
 $d1->setTimestamp($ts1);
 echo $d1->format("Y-m-d H:i:s") . "\n";
 $d2 = new DateTime();
 $d2->setTimestamp($ts2);
 echo $d2->format("Y-m-d H:i:s") . "\n";

 $diff = $d1->diff($d2);
 echo $diff->format("Years: %y, Months: %m, days: %d %H:%I:%S") . "\n";

 The output from the script is a string according to the format string where the formatting characters that
start with a % are all replaced with the corresponding value from the time difference.

 Years: 4, Months: 9, days: 2 17:45:30

 The strtotime() function can also be used to calculate relative date/time offset. The function supports
the GNU date syntax (http://php.net/manual/en/datetime.formats.php). This is a very complex system
that allows us to move a number of days, weeks, months, in either direction from the current time or a fixed
timestamp.

 The following example shows a few use cases of this:

 <?php
 // 5_24.php

 date_default_timezone_set("America/Los_Angeles");
 // calculate 3 weeks from current time
 $ts = strtotime("+3 weeks");
 echo date("Y/m/d h:i:s a", $ts) . "\n";

 // calculate 5 days back from current time
 $ts = strtotime("-5 days");
 echo date("Y/m/d h:i:s a", $ts) . "\n";

 // calculate a timestamp at 11:30 3 month after a given date
 $ref = mktime(0, 0, 0, 12, 15, 2012);
 $ts = strtotime("11:30 + 3 month", $ref);
 echo date("Y/m/d h:i:s a", $ts) . "\n";

 This example uses the America/Los_Angeles time zone and the output will look like this:.

 2016/04/27 12:25:41 pm

 2016/04/01 12:25:41 pm

 2013/03/15 11:30:00 am

http://php.net/manual/en/datetime.formats.php

125© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_6

 CHAPTER 6

 Strings

 Strings are one of the basic variable types in PHP. They are typically used to build the output of a PHP script
that is returned as a response to a HTTP request.

 A string is a series of characters where each character is defined as a single byte with ordinal values
form 0 to 255. The single byte limitation makes it impossible to have native Unicode support for strings.
The mb_string extension makes it possible to work with Unicode (Multi Byte strings) in PHP, but these are
not handled with the native variable type and native string manipulation functions.

 Strings in PHP can be up to 2Gb long on a 32-bit system. This requires PHP to be configured with
enough memory to handle variables of this size. From PHP version 7 all integers provides true 64-bit support
allowing the size of strings (and files) to be much larger than the previous 2Gb limit.

 Strings are stored as a memory block and a length, which allows for binary safe strings. A binary safe
string can contain one or more null bytes without causing any problems of losing a portion of the string.

 Recipe 6-1. Creating Strings
 Problem
 Strings can be created in a number of different ways: assigning a value defined with single or double quotes
or the return value from one of the many functions that return a string.

 Solution
 The str_repeat() and str_pad() are two of the functions that can be used to generate a string. The first
one generates a string with a pattern of one or more characters repeated a number of times. The second
adds a specific string to another string as padding either before or after in order to create a string of a
specific length.

 For a given string it's possible to change the order of the characters to generate a new string with the
same characters but in random order. The function str_shuffle() acts like array_shuffle() ; it takes all the
elements and puts them in a random order.

 How it Works
 In the first example we have strings that contain times. Because the number of digits in the two times
are different the overall length of the two strings are not the same. In order to print the two strings so the
numbers align we would have to pad the two strings with spaces or zeros.

CHAPTER 6 ■ STRINGS

126

 <?php
 // 6_1.php
 $t1 = "7:00 am";
 $t2 = "11:00 am";

 echo str_pad($t1, 8, '0', STR_PAD_LEFT) . "\n";
 echo str_pad($t2, 8, '0', STR_PAD_LEFT) . "\n";

 The two time values will be the same lengths:

 07:00 am

 11:00 am

 If the strings were used as a response to a web request it could be simpler to set the CSS property for
text-align to right in order to justify the strings to the right.

 In the next example we create a string based on a pattern 'abc' repeated 15 times.

 <?php
 // 6_2.php
 $s = str_repeat('abc', 15);
 echo $s . "\n";

 This example generates the following output:

 abcabcabcabcabcabcabcabcabcabcabcabcabcabcabc

 A more practical example would be to create strings of a given length with a single character as shown
in Recipe 6-2.

 Recipe 6-2. Working with the Characters in a String
 Problem
 A string is, in essence, a long list of single characters. In many ways it looks like an array of characters , so is it
possible to access or change characters at a given position of the string?

 Solution
 Using the square brackets after the variable name it's possible to access each character as if it's an element in
an array. The characters start at index 0 and ends at index length -1. Getting the third character from a string
 $a="abcdef" ; can be done by referencing $a[2] .

 How it Works
 In the next example a string $s is declared with a static value and we use the array syntax to replace a single
character based on the knowledge of where the character 7 is in the string.

CHAPTER 6 ■ STRINGS

127

 <?php
 // 6_3.php
 $s = "The sun is up @ 7am";
 $s[16] = '6';
 echo $s . "\n";

 This example shows how to replace a single character in an existing string. If you want to add characters
or strings you can use the concatenate operator (. period) to build longer strings.

 <?php
 // 6_4.php
 $s = "The sun is up @ 7am";
 $s .= " and it sets again at 7pm";
 echo $s . "\n";

 Concatenation can either be done as $a = $b . $c; where a new variable is created to store the result
or by using $a .= $b; . This is equivalent to $a = $a . $b; but it is slightly shorter.

 Recipe 6-3. Replacing Characters
 Problem
 Knowing the exact position of one character is not always possible and replacing a single character with a
different character is also limiting. Having the ability to replace a number of characters with zero or more
characters gives more flexibility.

 Solution
 The function str_replace() is the simple way to replace all instances of a string with another string. The
function takes three parameters. The first one is the string to replace, the second is the string to replace it
with, and the third is the string to perform the replacement on.

 The first two parameters can be arrays of strings. In that case the replace function will be performed for
each string in the arrays. If the first argument is an array and the second is a string, the function will replace
all elements defined in the first array with the string passed as the second parameter.

 If the first array contains more values than the second array, any value in the first array without a
matching value in the second will be replaces with the empty string.

 If the first value is a string and the second is an array the string will be replaced with the word 'Array'.
 There is a variant of str_replace() called str_ireplace() . This function is case insensitive on the

search part of the function.

 How it Works
 Consider the HTML fragment '<h1>Document Title</h1>' stored in a string. If we decided to change the
tag from <h1> to <h2> we could use the str_replace() function.

 <?php
 // 6_5.php
 $s = "'<h1>Document Title</h1>";
 echo str_replace("h1", "h2", $s) . "\n";

CHAPTER 6 ■ STRINGS

128

 This only works if we know for sure that the string h1 only exists as a tag. If it was used as part of the
string it would also be replaced there, but only if the case was exactly the same. To improve a little on this we
could include the ending > and use the case-insensitive version of the function.

 <?php
 // 6_6.php
 $s = "'<H1>Document Title is h1</h1>";
 echo str_ireplace("h1>", "h2>", $s) . "\n";

 Now it's only the content of the tags that is replaced and even with the opening tag being H1 instead of
 h1 it still works.

 For more advanced replacements that can account for attributes within the HTML tags we will have to
use regular expressions. These are discussed in depth in chapter 9 .

 Recipe 6-4. Creating Long Strings with Heredoc and Newdoc
 Problem
 Building strings by concatenating string elements can take a lot of extra characters for line breaks, escaping
characters, and quotation marks.

 Solution
 With the use of Heredoc and Newdoc it’s possible to create long strings without the use of quotation
marks in a way that will preserve line breaks. Heredoc works as a double quoted string where any PHP
variable included will be resolved to its value where Newdoc acts as a single quoted string with no variable
substitution. Both Heredoc and Newdoc strings are started with the operator <<< followed by a name. For
Heredoc the name is simply a sequence of characters where Newdoc uses a name in single quotes. Both
types will end the string declaration at the point where the name is repeated as the only thing on the line
with no spaces before the name and a semicolon after the name to terminate the command.

 How it Works
 It is not necessary to use the identifiers HEREDOC or NEWDOC as long as the start and end of the block uses the
same identifier.

 <?php
 // 6_7.php
 // defining a Heredoc block
 $h = <<<HEREDOC
 Some string
 value
 HEREDOC;

 <?php
 // 6_8.php
 // defining a Newedoc block
 $n = <<<'NEWDOC'
 A different
 string value
 NEWDOC;

http://dx.doi.org/10.1007/978-1-4842-0605-8_9

CHAPTER 6 ■ STRINGS

129

 These blocks can be used both as variable assignments and as inline structures in an array or function
calls. In the example below we generate an array with two string elements.

 <?php
 // 6_9.php
 $a = [
 <<<HEREDOC
 Some string
 value
 HEREDOC
 ,
 <<<HEREDOC
 Second string
 HEREDOC
 ,
];

 This will produce the following output:

 Array

 (

 [0] => Some string

 value

 [1] => Second string

)

 Note how the line break is preserved in the string.

 <?php
 // 6_10.php
 printf("String = %s\n", <<<HEREDOC
 This is a very long string
 HEREDOC
);

 Note that the final part of the string must be the only thing on the line, with the exception of a semicolon
to terminate the statement. If the heredoc is used as part of an array declaration the closing name must be
the only thing on the line. Commas to separate parameters or elements in the array must be on a separate
line. Even whitespace after the closing name will cause parse errors.

 Blocks of text defined as a heredoc block is very practical to define templates used to build sections of
an HTML document. In the next example we use a database query to select two columns from a database,
loop over them, and create a HTML fragment based on two templates.

CHAPTER 6 ■ STRINGS

130

 <?php
 // 6_11.php
 $con = mysqli_connect("127.0.0.1", "root", "secret", "book");
 $rs = mysqli_query($con, "select * from person");
 if ($rs) {
 $persons = array();
 while($row = mysqli_fetch_assoc($rs)) {
 $persons[] = $row;
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);

 $person_tpl = <<<HEREDOC
 <div>
 %first_name%
 %last_name%
 %date_of_birth%
 </div>
 HEREDOC;

 $section_tpl = <<<HEREDOC
 <div>%persons%</div>
 HEREDOC;

 $html = "";
 $p = array();
 foreach ($persons as $person) {
 $r = str_replace('%first_name%', $person['first_name'], $person_tpl);
 $r = str_replace('%last_name%', $person['last_name'], $r);
 $r = str_replace('%date_of_birth%',
 gmdate("M j Y", $person['date_of_birth']), $r);
 $p[] = $r;
 }

 echo str_replace('%persons%', implode('', $p), $section_tpl);

 The inner template ($person_tpl) defines the layout used for each person and the outer template
defines the section of HTML where all the records are injected.

 Recipe 6-5. Escaping Strings
 Problem
 When strings are used as input to database queries where the single quote is used to start and end string
values, it is necessary to indicate that single quotes in the string value are not the end of the string.

 Without proper handling it would be very easy for a hacker to inject malicious code into the database.
 Escaping strings is the absolute minimum measure to prevent this. In general the programmer should never
trust input from the user, and especially not use any input from the user (query string, form post, etc.) as
direct injection into a database query.

CHAPTER 6 ■ STRINGS

131

 Solution
 Most databases use an escape string in the form of a backslash (\) or in some cases an extra single quote
before the single quote in order to indicate that the quote should be part of the string. Using the function
 str_replace() to replace a single quote with two single quotes is one way to prepare strings to be used in
update and insert statements. Many of the database extensions in PHP support a function to escape strings.
The benefit of using a function provided by the database engine allows the database to handle the escape
according to the selected character set.

 There are two functions do add and remove slashes from a string. These are called addslashes() and
 removeslashes() . These functions are not to be used to escape strings for insertion into databases but
rather to add slashes to code that is going to be evaluated or when outputting contents that is embedded in
javascript code. The adslashes() function escapes the NULL character, a backslash, a single quote, and a
double quote.

 How it Works
 In the next example we have a string variable that contains a name with an apostrophe. If we try to use this
variable as is we will get an error from the SQL server, but if the string variable is properly escaped before
inserting into the database it will succeed.

 <?php
 // 6_12.php
 $con = mysqli_connect("127.0.0.1", "root", "secret", "book");

 // create table strings (
 // val varchar(250);
 //);

 $name = "Mark O'Brian";
 // This will fail
 mysqli_query($con, "insert into strings (val) values ('{$name}');");

 $name = mysqli_escape_string($con, $name);
 // This will succeed
 mysqli_query($con, "insert into strings (val) values ('{$name}');");

 Remember that you should never trust the input of any kind. Always validate and escape any and all
input to your code.

 Consider the following code where the string $name could be the result of a user filling out a name value
in an HTML form and submitting the form to the server.

 <?php
 // 6_13.php
 $con = mysqli_connect("127.0.0.1", "root", "secret", "book");

 // create table strings (
 // val varchar(250);
 //);

 $name = "My Name";
 // This will fail
 mysqli_query($con, "insert into strings (val) values ('{$name}');");

CHAPTER 6 ■ STRINGS

132

 There is nothing in this code that prevents the user from entering SQL statements into the $name
variable. Instead of entering My Name the user could enter My Name'; delete from strings; --.

 This will cause the code to execute two statements. The first will fetch all matching rows from the strings
table and the second will delete all rows from the same table.

 Recipe 6-6. Reformatting Strings
 Problem
 Strings have many uses and often there is a need to work on parts of the string. This can be to reorder the
parts, add or remove portions of the string, or add HTML tags to format the string.

 Solution
 Strings can be converted into arrays with the explode() function that takes two arguments. The first
argument is the pattern to look for and perform the split on. This can be a space character, a newline, or any
other string patterns. The second parameter is the string to convert into an array. The return value will be an
array of strings.

 The reverse functionality is handled with the implode() function that turns an array into a string,
inserting the separator string (first argument) between each element in the array. The source array does
not have to be an array of strings but each element will be converted into strings before concatenation. The
function join() is an alias for implode() .

 Both of these functions do not alter the string or array in the argument so the system ends up with two
variables that contain the data. If the string or array is large there might not be enough memory to hold
both values. In that case it might be better to use the tokenizer function strtok() , which can split the
string one token at the time and as such only keep the original string plus the current token in memory at
any given time.

 How it Works
 There are many uses of explode() and implode() . Say you have a file that you want to read and process line
by line; you can read the contents of the file and convert it into an array that can be used in a loop.

 <?php
 // 6_14.php

 $content = file_get_contents('file.txt');
 $a = explode("\n", $content);

 foreach ($a as $line) {
 // Do something
 }

 If you don't have a need for the contents as a string you can use the file() function. This function will
read the file and return the lines as an array.

 This is the same way we can take an array of integers and turn into a comma-separated string of integers
that could be used in a SQL query.

CHAPTER 6 ■ STRINGS

133

 <?php
 // 6_15.php

 $a = [1, 5, 7, 9, 3, 4];

 $s = implode(',', $a);

 $sql = "select * form mytable where id in({$s})"

 Recipe 6-7. Trimming Whitespace
 Problem
 When users enter string values in HTML forms they might add leading or trailing spaces by mistake. If those
values are first and last name and you want to concatenate them into a full name you might end up with
extra spaces. If the string is used as input to a search query and it contains leading or trailing spaces the
search might not yield any results unless these characters are moved first.

 Solution
 Whitespace in the beginning, the end, or both can be removed with one of the functions ltrim() , rtim(),
or trim() . Whitespace in the middle of the string is not removed by any of these functions. Whitespace
characters include a space character, newline (\n), or carriage return (\r).

 How it Works
 If you are using input from a HTML form as a search parameter in a database query, you can use the trim()
function to get rid of whitespace in the beginning and end of the string.

 <?php
 // 6_16.php

 $con = mysqli_connect('127.0.0.1', 'root', 'secret', 'book');

 $q = mysqli_escape_string($con, trim($_POST['name']));

 $sql = "select * form person where name like '%{$q}%'";

 Recipe 6-8. Finding Strings in Strings
 Problem
 Checking to see if one string is included in another string, checking how many times a sting occurs in
another string, or finding where in a string a specific string exists are common problems when working
with strings.

CHAPTER 6 ■ STRINGS

134

 Solution
 In PHP there are functions to find the first or the last position of a string (needle) in another string
(haystack). These functions are called strops() or strrpos() and will return an integer value for the
position or NULL if the string is not found. The family of strops() functions are case sensitive and binary safe.
The extra r in the function name indicates reverse or starting from the end instead of the beginning of the
string. Many of the string functions have a version that starts from the beginning and a version that starts
from the end of the string. All these have an extra r in the name. In the same way the name can have an extra
 i for case insensitive.

 Both strpos() functions take an optional parameter to indicate where in the string the search should
begin. This can be used to repeat the search to see if the string exists more than once. The functions are case
sensitive but if you don't care about case you can use the case insensitive versions called stripos() and
 strripos() .

 In the same where there are functions to find the first and last occurrence of a character or a string in a
string. These are called strchr() , strrchr() , strstr() , and strrstr() . Internally strchr() is an alias for
 strstr() . The return value is the first sting that starts from the first or last occurrence of the search string
and the rest of the string. Even if you search for a single character these functions will return the rest of the
string from the place where the character is found.

 How it Works
 In the next example we have a long string and we will be looking for the first and last occurrence of the
string 'at'.

 <?php
 // 6_17.php

 $s = "Lorem ipsum dolor sit amet, has dicit eleifend no, legimus " .
 "voluptatibus ad mei. Ornatus sententiae vituperatoribus mel ea, " .
 "at veri maiorum quaerendum vel, vis at deleniti vulputate. An vis " .
 "quis percipitur reformidans. Eu agam tation vel, " .
 "pri nemore discere no.";

 $p_first = strpos($s, 'at');
 $p_last = strrpos($s, 'at');

 echo "'at' is first found at positionn {$p_first}\n";
 echo "'at' is last found at positionn {$p_last}\n";

 $p = strchr($s, 'at');
 echo "{$p}\n";

 $p = strrchr($s, 'at');
 echo "{$p}\n";

 At first we use strops() and strrpos() to get the position of the first and last occurrence of 'at'. These
functions return an integer for the 0-based index of the position in the string.

CHAPTER 6 ■ STRINGS

135

 Next we use strchr() and strrchr() to get the string that starts at these positions. The output of the
sample looks like this:

 'at' is first found at positionn 65
 'at' is last found at positionn 227
 atibus ad mei. Ornatus sententiae vituperatoribus mel ea, at veri maiorum quaerendum vel,
vis at deleniti vulputate. An vis quis percipitur reformidans. Eu agam tation vel, pri
nemore discere no.
 ation vel, pri nemore discere no.

 Note that the functions are looking for an exact match to the string being searched for, even if that string
is a part of a word.

 Recipe 6-9. Dividing Strings into Substrings
 Problem
 Strings can be used to store different types of data and when the logic of the code calls for knowing a certain
portion of the string we need functions that can cut the string into small elements.

 Solution
 This is handled with the substr() function. This function takes a string and one or two integers as
parameters. The first integer is the starting position (0 offset numbers) and the optional second integer is the
length. If the length parameter is omitted the function will return all characters from the start position.

 The start parameter can be negative causing the function to start at the end of the string. Setting start
to -3 will return the last three characters if the length is not given. If the start position is a number higher than
the length of the string the substr() function will return null. If a negative value is given as the start and the
length is a negative value that is less than or equal to the start value, the function will return an empty string.

 How it Works
 In the previous recipe we saw how we can find the position of characters and strings in another string. Now
we are going to look at how this can be used to get a specific section of a string.

 If we take the same long string and want to get the content of the string between the first and last
occurrence of 'at' it would look something like this:

 <?php
 // 6_18.php

 $s = "Lorem ipsum dolor sit amet, has dicit eleifend no, legimus " .
 "voluptatibus ad mei. Ornatus sententiae vituperatoribus mel ea, " .
 "at veri maiorum quaerendum vel, vis at deleniti vulputate. An vis " .
 "quis percipitur reformidans. Eu agam tation vel, " .
 "pri nemore discere no.";

 $p_first = strpos($s, 'at');
 $p_last = strrpos($s, 'at');

 echo substr($s, $p_first + 2, $p_last - $p_first - 2) . "\n";

CHAPTER 6 ■ STRINGS

136

 Because we only want the content between the two positions we calculate the substring starting at the
first position plus the length of the string and we count the number length of the substring as the difference
between the two positions and here we subtract 2.

 Getting the extension of a filename stored in a string in order to figure out what type of content the file
might contain can be done in a similar way.

 <?php
 // 6_19.php

 $filename = "myfile.txt";
 $ext = substr($filename, -3);

 echo "Extension = {$ext}\n";

 In this case the start of the substring is set to -3. That means 3 characters from the end of the string and
there is no length provided so the function will return the rest of the string. This example only works for
extensions that are 3 characters long. If we want to be able to get the extension of different file types we can
use strrpos() to get the last occurrence of ',' and use that as a starting point for the substring. We will have
to adjust the starting point by adding 1 as the period should not be part of the extension string.

 <?php
 // 6_20.php

 $filename = "myfile.txt";
 $p = strrpos($filename, '.');
 $ext = substr($filename, $p + 1);

 echo "Extension = {$ext}\n";

 This example calculates the starting point of the extension part of the filename, but not all filenames
have an extension part. In that case strrpos() will return null. In order to compensate for that, we can turn
this into a function that also checks if the position of '.' is valid.

 <?php
 // 6_21.php

 function GetExtension($filename) {
 $ext = null;
 $p = strrpos($filename, '.');
 if ($p !== false) {
 $ext = substr($filename, $p + 1);
 }
 return $ext;
 }

 $filename = "myfile.txt";
 echo "Extension of {$filename} is " . GetExtension($filename) . "\n";

 $filename = "myfile.info";
 echo "Extension of {$filename} is " . GetExtension($filename) . "\n";

CHAPTER 6 ■ STRINGS

137

 $filename = "myfile";
 echo "Extension of {$filename} is " . GetExtension($filename) . "\n";

 $filename = ".cvsignore";
 echo "Extension of {$filename} is " . GetExtension($filename) . "\n";

 Note how the check for a valid position is done with $p !== false . This is because when the character
that is searched for is found at the first position of the string, which is 0 and a simple compare will yield 0 ==
false but 0 !== false when we compare both type and value.

 The output of the example looks like this:

 Extension of myfile.txt is txt
 Extension of myfile.info is info
 Extension of myfile is
 Extension of .cvsignore is cvsignore

 Recipe 6-10. Displaying HTML Entities
 Problem
 When strings are used to store HTML code and you want to display the code instead of having the browser
render the code, you will need to convert certain characters to HTML entities.

 Solution
 The simple way to handle this is to use str_replace() to replace < with < and > with >. That would
require two function calls. Instead we can use htmlspecialchars() . This function will convert & , ' , " , < and >
to the corresponding HTML entities. The string might contain other substrings that have associated named
entities. In order to convert all of these you must use the htmlentities() function.

 Both functions take the string to convert as the first parameter followed by three optional parameters
that define how the substitutions are made. Please see the PHP manual for details on these parameters at
 http://php.net/manual/en/function.htmlentities.php .

 How it Works
 Whenever your web site allows a user to input text values that are stored in a database and later presented
back to the same or a different user, you might want to prevent the users from entering HTML that is then
parsed by the browser and rendered as HTML instead of what the user actually entered. If you have a
comments section on your blog page, a user might enter an image tag in the comment and if you don't do
anything to the input the image will show up as part of the comment when it's shown to users as the image
tag can reference any url on the server or any other server connected to the Internet.

 You can call htmlentities() either before inserting the value into the database or before showing it to
the user, but don’t call it both times.

 <?php
 // 6_22.php

 $input = 'This is my comment ';

 echo htmlentities($input);

http://php.net/manual/en/function.htmlentities.php

CHAPTER 6 ■ STRINGS

138

 The raw output of this script will show the following:

 This is my comment

 When this is sent to a browser it will be shown as text and not be interpreted as an image tag. Converting
the string back to a valid HTML string can be done with the html_entity_decode() function.

 If you run this script on the command line the output will look like this:

 This is my comment

 If you look at this output in the browser it will look exactly as the user typed it and the image will not
be shown.

 If no preventions are taken the user could insert script tags that could execute JavaScript or load
script files from other sites. In this next example we use the strip_tags() function to remove all tags
from the input.

 <?php
 // 6_23.php

 $input = <<<HEREDOC
 Comment
 <script src="https://example.com/script.js"></script>
 <script>
 MyFunction();
 </script>

 This is my opinion about that!
 HEREDOC;

 $i = strip_tags($input);

 echo $i;

 Although all tags are removed the function will preserve anything between the tags and the browser will
be able to render the output as plain text. The output will look like this:

 Comment

 MyFunction();

 This is my opinion about that!

 Note that all the line breaks are preserved as it's only the tag portion of the string that is removed. You
might still want to run htmlentities() on the string before sending it to the browser in order not to create
an invalid HTML.

CHAPTER 6 ■ STRINGS

139

 Recipe 6-11. Generating Hash Values for Files
 Problem
 When creating an asset management system where files of different types and sizes are stored on a file
system and you want to make sure all the files are unique, you could use the file name as the key. That
would however allow the user to just rename a file and store it again and you would end up saving the same
file twice.

 Solution
 The solution is to generate a hash of the content of the file. There are a number of different functions to do
this. The simplest (and probably oldest) is the md5() function that returns a string of 32 bytes based on the
content of the string or file if you use md5_file() . A more comprehensive hashing algorithm is available
through sha1() and sha1_file() . These functions produce a string of 40 bytes. As of version 5.1.2 of PHP
includes the hash extension by default. This extension provides a long list of hashing algorithms from md2,
md5, sha1, sha256, sha512, and many more.

 How it Works
 Before the hash extension was introduced PHP used discreet functions like md5() and sha1() to generate
hashed, but with the hash() function it's possible to generate a number of different hash values with a single
function. The hash() and hash_file() functions take two or three parameters. The first is the name of the
hashing algorithm and the second is the string or file to create the hash from and the last optional parameter
specifies if the function returns binary data or lowercase hexits to represent the data.

 If you are creating a service to store images and other files you might end up with the same file being
uploaded multiple times with the same or different names but by looking at the hash value of the content
of the file it's possible to determine if the file is already on your system. In order to do that we will create a
database table that contains an id, filename, and hash of each file. When a new file is added we check to see
if the hash is already known, and if it is we return the existing hash; if it's not known we create a new record
and store the file.

 <?php
 // 6_24.php

 // create table files (
 // id int auto_increment,
 // hash varchar(255),
 // filename varchar(255),
 // primary key(id)
 //);
 // create index ixHash on files(hash);

 $con = mysqli_connect('127.0.0.1', 'root', 'secret', 'book');

 function GetFile($hash) {
 global $con;
 $file = null;

CHAPTER 6 ■ STRINGS

140

 $sql = "select * from files where hash = '{$hash}'";
 $rs = mysqli_query($con, $sql);
 if ($rs) {
 $file = mysqli_fetch_row($rs);
 mysqli_free_result($rs);
 }
 return $file;
 }

 function SaveFile($filename) {
 global $con;
 $hash = hash_file('sha256', $filename);
 if (!GetFile($hash)) {
 mysqli_query($con, "insert into files (hash, filename) values ('{$hash}', '{$filename}')");
 }
 }

 SaveFile('6_1.php');
 SaveFile('6_12.php');
 SaveFile('6_1.php');

 $rs = mysqli_query($con, "select * from files");
 if ($rs) {
 while ($row = mysqli_fetch_row($rs)) {
 print_r($row);
 }
 mysqli_free_result($rs);
 }
 mysqli_close($con);

 The function GetFile() will return the values stored in the database if the hash is already found and null
if it's not already in the database. The function SaveFile() will call the GetFile() function before creating the
new record to prevent duplicate records. This is shown at the end of the example where we insert three files.
The first and the last is the same file so only two records get created and the output will look like this :

 Array

 (

 [0] => 1

 [1] => 866b1551930506766708fbb73cfdfc6fd5038cf812cb64983f43d771b8e0ff71

 [2] => 6_1.php

)

 Array

 (

 [0] => 2

 [1] => 125a71508e064ee34662498fcb040585fd1bf539cf4f09b203a79adffba8fc99

 [2] => 6_12.php

)

CHAPTER 6 ■ STRINGS

141

 Recipe 6-12. Storing Passwords
 Problem
 Many web sites allow the users to register and create an account to get access to additional features or to
view statuses on shopping orders. Many of these sites use an e-mail address as the user id and some form of
password. Storing passwords as plain text values in a database is not very secure. If the site is hacked or the
hard drive gets into the wrong hands, all the passwords might be exposed.

 Solution
 Instead of storing the plain text password we can store a hash value of the password. We can use the md5() ,
 sha1(), or hash() function from the previous recipe or if you are using PHP 5.5 or newer, you can use the
 password_hash() function. It is recommended that the database schema allows for at least 60 characters
(255 is better) for the password column as the hashing algorithm might change over time to improve security
and create stronger hash values.

 How it Works
 If you have a table called users with the columns login and password you should use the password_hash()
function before storing a password for a user and before checking if the login and password provided during
the login is valid.

 <?php
 // 6_25.php

 //create table myusers (
 // id int auto_increment,
 // login varchar(255),
 // password varchar(255),
 // primary key(id)
 //);
 $con = mysqli_connect('127.0.0.1', 'root', 'secret', 'book');

 function CreateUser($login, $password) {
 global $con;
 $login = mysqli_escape_string($con, $login);
 $password = mysqli_escape_string($con, password_hash($password, PASSWORD_BCRYPT));
 mysqli_query($con, "insert into myusers (login, password) values ('{$login}',
'{$password}')");
 }

 function CheckUser($login, $password) {
 global $con;
 $user = null;
 $login = mysqli_escape_string($con, $login);
 $rs = mysqli_query($con, "select * from myusers where login='{$login}'");
 if ($rs) {
 $user = mysqli_fetch_assoc($rs);
 if ($user && !password_verify($password, $user['password'])) {

CHAPTER 6 ■ STRINGS

142

 $user = null;
 }
 mysqli_free_result($rs);
 }
 return $user;
 }

 CreateUser('john@example.com', 'A secret Password');

 if (CheckUser('john@example.com', 'A secret Password')) {
 echo "User exists and password is corect\n";
 }
 else {
 echo "User does not exist or password is incorrect\n";
 }

 Using the MySQL command-line tool to show the rows in the table will look something like this:

 MariaDB [book]> select password from myusers;

 +--+

 | password |

 +--+

 | $2y$10$V4KWuQIzssFRmlQeZNLPeegsyQ0MFp0vjUNl3FP9.7k5E4EiB5INi |

 +--+

 1 row in set (0.00 sec)

143© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_7

 CHAPTER 7

 Files and Directories

 In this chapter we are going to discuss two basic ways that files are used with PHP. The first one is the
script with the PHP code in the form of the main script file and includes any files that the script might use.
The second one is in the form of more content or data that is read off the local or remote file system and
processed by the script.

 Recipe 7-1. Include and Require
 Problem
 When PHP is used to execute or interpret a script it always starts with a single file. This can be as an input
parameter to the command-line version of PHP (php-cli) or indirectly from a web server request that is
passed onto PHP.

 Having a single file contain all the code needed for each request could lead to large script files and code
duplication. In addition it makes sense to break the code into small units each serving a specific purpose.
This is often done with a single class definition in each file.

 Solution
 This is where include and require come into play. Any time you have code that’s shared between multiple
scripts you can place it in a separate file and include the code everywhere it’s needed. The basic differences
between include and require is how these statements react if the requested file doesn’t exist on the file
system. Include will generate a warning and require will generate a fatal error and stop the script execution.

 There are two different schools of thought on how to structure include files. The first is to place them
in the same directory structure as the main script(s). Normally this forces the developer to use the same
extension as the main scripts in order to avoid exposure of the content to the end user if they were to request
the files directly. If the web server is configured to take files that have the .php extension and pass them
through the PHP interpreter, files with other extensions like .inc might just be passed on as is and if the file
includes database credentials and other secrets the end user might be able to access these. The simple fix
to this is to make sure the web server is configured to hand all PHP files off to the interpreter. An include file
that is used to configure database credentials will most likely not generate any output so the content the user
will see will be an empty document.

 The other school of thought is to place all include files outside the directory structure that is used to
define the document root for the web site. In this case the files can have any extension, and they can’t be
exposed directly to the user because the web server does not know how to access these. This is the preferred
method in my opinion.

CHAPTER 7 ■ FILES AND DIRECTORIES

144

 PHP uses a configuration option called include_path to locate include files. This works similarly to the
operating systems environment variable PATH. On Mac and Linux the include path is a set of directories
separated by a colon (:) and on Windows system the separator is a semicolon (;). When a file is included or
required the interpreter will look for the file in any of the directories specified by the include_path. If the
file exists in multiple directories, the first one found, when looking at the directories in the order they are
defined, will be used.

 Each directory in the include_path configuration can be specified as an absolute or relative path. If a
relative path is specified it will start from the current working directory where the PHP except is executed
from. This will in most cases be the document root or a directory under that. If you place all your php files
in the document root and have configured include_path="../inc" you can place all your include files in a
directory called inc that is located next to the document root.

 Both include and require can have the files specified as absolute or relative paths. An absolute path
starts with a / and the system will look for the include file in that location only. If a relative path is used the
system will prepend the path with each section of the include_path configuration until it finds the file.

 Depending on the content of the include file it might not be possible to include it more than one time.
This is the case for include files that define functions or classes. Trying to declare the same function or class
multiple times will lead to a compiler error.

 Other files that contain variable definitions can be included multiple times. In most cases each file
should only be included once but there are a couple of use cases where including files with the same name
but from different directories makes sense.

 There are special version of include and require called include_once and require_once . These will
ensure that if the user tries to include the same file multiple times the system will not only load the files once
and prevent errors coming from defining the same functions or classes multiple times.

 Include and require can be used to load non-PHP files. This can be useful if you have a snippet of
HTML code that should be read off the file system and served to the requesting browser as is. In that case
the included file will not have the opening <?php tag and the content will be passed on as output. It will be
injected to the output exactly where the file is included and the script can send other output to the browser
before and after the included file.

 Note: although Windows uses the backslash (\) as a directory separator PHP can use both slash (/)
and backslash (\). This makes it possible to use PHP to write code that can work on Linux and Windows
platforms without special considerations. It is recommended to always use the / as directory separator.

 How it Works
 If you have a class that’s defined in one file and you want to access it from other files, you will have to include
the file that defines the class.

 <?php
 // 7_1.php

 class Test {
 protected $a = null;
 function __construct($a) {
 $this->a = $a;
 }
 }

CHAPTER 7 ■ FILES AND DIRECTORIES

145

 <?php
 // 7_2.php

 require "7_1.php";

 class Test2 extends Test {
 function SetValue($a) {
 $this->a = $a;
 }

 function GetValue() {
 return $this->a;
 }
 }

 $t = new Test2(15);
 echo $t->GetValue() . "\n";

 $t->SetValue(30);
 echo $t->GetValue() . "\n";

 In the example above we define a class in one file and include the file in the next script where the calss
 Test() is extended to Test2() . Depending on how the include_path is defined in php.ini or if it’s redefined
with the ini_set() function you might have to add ./ in front of the name of the file if the file is located in the
same directory as the main script.

 If multiple files with the same name exists in any of the locations specified by the include_path
definition the system will only include the first file based on the order of the directories listed in the
 include_path directive. You can specify an absolute path if you want to bypass the search for the file in
all the directories included in the include_path . Doing so can cause problems if you intend to share the
application with users who might install it in a different location.

 Recipe 7-2. Reading Files
 Problem
 In the previous recipe we looked at including sections of code or other files that would either be executed or
passed onto the client as output, but what if the file contains data that must be processed before it’s sent to
the client?

 Solution
 PHP comes with a bunch of functions to read from files. The most basic ones (fopen() , fclose() , fread(),
etc.) mimics the low-level file handling functions of the operating system, and the more advanced ones
(file_get_contents() , file() fgetcsv()) lets you read a file with a single command, read a file and turn it
into an array, or read a file and parse its contents as comma separated values (CSV) file.

 Other functions like readfile() and fpassthru() will simply read the contents of the file or file pointer
and send it directly to the output.

CHAPTER 7 ■ FILES AND DIRECTORIES

146

 How it Works
 Using fopen() to create a file handle that can be used for read and/or write operations on the file works
similar to how the same functions work in C/C++.

 <?php
 // 7_3.php

 $f = '';
 $fp = fopen('myfile.txt', 'r');
 if ($fp) {
 while ($s = fread($fp, 100)) {
 $f .= $s;
 }
 fclose($fp);
 }
 var_dump($f);

 In this example the file 'myfile.txt' is opened for read operations as indicated by the second parameter
to the fopen() function. The file can be specified as a relative or absolute path. In this case the file is
expected to be in the same directory as the php script.

 The fopen() function will return a file handle if the file was opened. It is good coding practice to check
for errors before reading any content. If the file was missing or locked for writing by another process and
the system was unable to open the file, it will return zero instead of a file handle. This makes the checks for
errors very easy. Simply checking of the file handle has a value before continuing to the read step.

 Reading from the file is done in a loop where a section of up to 100 bytes of the file is read. The
internal file pointer is moved 100 bytes and the function is ready for the next iteration. This continues
until the fread() function fails to read more data. The fread() function will return the actual number of
bytes read. If the file is 233 bytes long the loop will get 3 iterations where the first two chunks will contain
100 bytes and the last one will contain the last 33 bytes. The fread() function is called a 4th time but as
there is no more data to read the return value will be 0 and the loop will be exited. After that the file is
closed with the fclose() function and the contents of the file are written to the standard output with the
 var_dump() function. The interpreter will automatically close any files not closed by the script, when the
script terminates. This is convenient for scripts used in a web environment but if the script is used for a long
running process it's always a good idea to close all files when they are no longer used.

 Using fopen() and reading only a section of the file at any given time will help reduce the memory
usage. The first argument to fopen() is the filename and path and the second is used to identify the mode
used when the file is opened. This is done with one or more characters. The options are r for read, w for
write, and a for append. These can be combined with + to add the opposite mode. In addition the use of x is
allowed to open a file for writing. If the file exists the operation will fail. The mode c indicates that the file is
opened for writing with the file pointer set at the beginning of the file but the file is not truncated as it is with
the w mode.

 If you are looking for a specific pattern in the file you can throw away each of the segments until you
find the one you are looking for. Alternatively if you know a specific offset where you want to start the read
from you can use the fseek() function to move the file pointer to that specific location before reading or
writing. This will be faster than reading through the file one chunk at the time.

 In the example above we end up reading and storing the entire file in a variable so we need to have
enough memory to hold the entire file. Following is a simpler way to get the same result by using the
 file_get_contents() function.

CHAPTER 7 ■ FILES AND DIRECTORIES

147

 <?php
 // 7_4.php

 $f = file_get_contents('myfile.html');
 echo $f;

 This example reads the content of the file and sends the content back to the client. If the file contains
the following content:

 <!DOCTYPE html>
 <html>
 <head>
 <title>PHP and MySQL Recipes</title>
 </head>
 <body>
 <h1>Chapter 7</h1>
 <p>This chapter is about files and directpries</p>
 </body>
 </html>

 The output in the browser will look like this:

 There is no need to open and close the file and no need to specify the read operation. That is all
handled internally. A single command is used to open the file, read the contents, store it as a variable, and
close the file.

 Recipe 7-3. Writing Files
 Problem
 Not all output of PHP is intended to go to the browser or console (stdout). Logging functions that can be
helpful when debugging problems in the code, writing cached content so it can be read by the web server
without invoking PHP, or simply exchanging data with other systems all require some form of writing to files
on the local file system.

 Solution
 Writing files follows the same sematics as described in the previous recipe for reading files. The basic
functions (fopen() , fclose(), and fwrite()) are wrappers around the low-level functions, and functions
like file_put_contents() and fputcsv() let you perform more advanced operations in a single command.

CHAPTER 7 ■ FILES AND DIRECTORIES

148

 How it Works
 In the following example a string is written to a file.

 <?php
 // 7_5.php

 $f = '';
 $fp = fopen('myfile.txt', 'at');
 if ($fp) {
 fwrite($fp, "The text that goes into this file\nAnd some on line 2");
 fclose($fp);
 }

 The file is opened with the options 'at'. That indicates that the text will be appended to the end of the file
if it exists already. Using 'wt' will overwrite any existing content of the file. The t in the potion indicates that
the content will be text. Using a b will indicate binary content.

 Similarly it is possible to write to a file with a single function call. The function file_put_contents()
takes two parameters where the first is the path to the file and the second is the content to write. If the
file exists already it will be overwritten with the new content. It is possible to pass a third argument to the
function call to force the content to be appended to the existing content. The third argument is a bitmapped
flag where FILE_APPEND is the value that will make the function append the content. Adding the flag LOCK_
EX to the third argument will ensure an exclusive lock on the file. No other process will be able to write to the
file at the same time.

 Writing a simple logging system could look something like this:

 <?php
 // 7_6.php

 $msg = date("Ymd H:i:s ") . "Script started\n";
 file_put_contents('myfile.log', $msg, FILE_APPEND);

 In the example the message to log is the date with a predefined format and then the actual message.
Note the date() function is called with a single formatting parameter. This causes the function to use the
current date/time when generating the string. The formatting string also contains a trailing space to create
some separation to the actual message. The message ends with the \n character to force the next message to
be logged on a new line. After running this script a few times the file will look something like this:

 20160201 20:33:49 Script started
 20160201 20:36:48 Script started
 20160201 20:36:49 Script started()

 Recipe 7-4. Copy, Rename, and Remove Files
 Problem
 Creating files and reading from then is handled by opening a file in a specified location, but what if you need
to get rid of a file, copy it, or move it to a different location on the file system?

CHAPTER 7 ■ FILES AND DIRECTORIES

149

 Solution
 The functions copy() and rename() work on a source and destination file name. The first parameter is the
source and the second is the destination. Each file name is a relative or an absolute path to the two files.
The copy() function can only be used to copy files. If you want to copy a directory with all the files and
subdirectories you will have to write a function that reads all of the directory and file names and makes a
copy of each of them.

 Moving files to a different location is the same as renaming the file. Using the same file name but a
different path will move the file to the new location. The rename() function can be used on regular files,
links, and directories.

 Files can be removed or deleted with the unlink() function. This function works on both regular files
and links but not on directories. To remove a directory you must first make sure all files and directories in it
are deleted and then use the rmdir() function to remove the directory.

 How it Works
 To create a copy of a file to a new file in the same directory you can do something like this:

 <?php
 // 7_7.php

 copy('myfile.log', 'myfile.log.1');

 This example uses the same log file we created in example 7_6. Both file names are relative to where the
script is executed and in this case both files will be in the same directory.

 If you want to copy a file from a different directory to the current directory you will simply change the
source path to give an absolute or relative path to where the source file is located. This could be a file that
comes from a set of distribution files in a config directory located next to the current directory.

 <?php
 // 7_8.php

 copy('../config/config.php.tmpl', 'config.php');

 Running this script will copy the file config.php.tmpl located in ../config to the same directory as the
script and it will rename the file to config.php. If you make changes to config.php and run the script again it
will overwrite the file without warning so you are back to a copy of the original file.

 If you didn’t want to copy the file but simply move it from the config directory to the current directory
simply replace the copy() function with the rename() function as shown in example 7_9.php.

 <?php
 // 7_9.php

 rename('../config/config.php.tmpl', 'config.php');

 Both copy() and rename() will print out warnings if the source file is missing or if the target file/
directory is missing the permission to write to the file for the user executing the script.

 If you are creating a caching system and want to remove the cached file you can do that with the
 unlink() function . In example 7_10.php we show how to create function that checks if a file exists before
attempting to remove the file. This will prevent warnings in the case that the file didn't exist.

CHAPTER 7 ■ FILES AND DIRECTORIES

150

 <?php
 // 7_10.php

 function DeleteCache($name) {
 if (file_exists($name)) {
 unlink($file);
 }
 }

 DeleteCache('cache.html');

 This function will work on regular files and symbolic links to other files. If the file is a symlink only the
link will be removed and the original file will still exist. See section 7-7 for more information on symbolic links.

 Recipe 7-5. File Properties
 Problem
 Besides the name and content of a file there are other properties that could be useful to the developer and
possibly the end user. Knowing the size of a file, when it was created or last changed could help determine if
the file contains new information.

 Solution
 The functions filesize() , filectime() , filemtime(), and fileatime() provide information about size,
create time, modify time, and access time. The stat() function can provide more detailed information
about the file as it returns an array of values that includes device number, inode, file size, ctime, mtime,
atime, and block size and number of blocks. In addition to these it’s also possible to use file_exists() ,
 is_readable() , is_dir() , is_file() , is_link() to determine if the file is a directory, plain file, or a
symbolic link.

 All the functions mentioned above take a single argument, which is the name of the file, including a
relative or absolute path. These functions do not work on a file handle returned by the fopen() function. The
 fstat() function can be used to get the file information from a file handle. This function takes a file handle
and not a file name as the parameter.

 Many of the functions that provide information about files in the file system is cached in order to boost
performance of these calls by not having to call the underlying system calls each time the function is called
on the same file. In order to clear the cache you can call the clearstatcache() function. If the same file
is checked multiple times during a single execution it is necessary to call the clearstatcache() function
between each check.

 How it Works
 The functions filesize() , filectime() , filemtime(), and fileatime() all return integer values. The UNIX
timestamps from the create, modify, and access times can be converted to human readable values with the
 date() function as shown in the next example. When using the date() function it's important to specify a
time zone. This can be done in php.ini or with the user of the date_default_timezone_set() function. If no
time zone is found the system will print a warning and use UTC.

CHAPTER 7 ■ FILES AND DIRECTORIES

151

 <?php
 // 7_11.php

 date_default_timezone_set("America/Los_Angeles");
 clearstatcache();
 $file = "7_11.php";

 echo "File Size: " . filesize($file) . "\n";
 echo "Created : " . date("Y-m-d H:i:s", filectime($file)) . "\n";
 echo "Modified : " . date("Y-m-d H:i:s", filemtime($file)) . "\n";
 echo "Accessed : " . date("Y-m-d H:i:s", fileatime($file)) . "\n";

 The output will look like this:

 File Size: 354

 Created : 2016-04-10 11:30:46

 Modified : 2016-04-10 11:30:46

 Accessed : 2016-04-10 11:31:19

 On some UNIX/Linux platforms it's possible to configure the system to ignore the updates of access
time. This is usually done to increase performance. In this case the function fileatime() is of little use.

 You can also use the stat() function to get similar data with a single function call.

 <?php
 // 7_12.php

 date_default_timezone_set("America/Los_Angeles");
 clearstatcache();
 $file = "7_11.php";

 $stat = stat($file);
 print_r($stat);

 The output from this script will look like this:

 Array
 (
 [0] => 16777220
 [1] => 145615535
 [2] => 33188
 [3] => 1
 [4] => 502
 [5] => 20
 [6] => 0
 [7] => 356
 [8] => 1454365742
 [9] => 1454361413
 [10] => 1454361413

CHAPTER 7 ■ FILES AND DIRECTORIES

152

 [11] => 4096
 [12] => 8
 [dev] => 16777220
 [ino] => 145615535
 [mode] => 33188
 [nlink] => 1
 [uid] => 502
 [gid] => 20
 [rdev] => 0
 [size] => 356
 [atime] => 1454365742
 [mtime] => 1454361413
 [ctime] => 1454361413
 [blksize] => 4096
 [blocks] => 8
)

 Note how the data is duplicated. The stat() function returns the values as a combined index with
numerical and name values for the same data.

 Recipe 7-6. Permissions
 Problem
 If the file system where PHP is used is shared with multiple users or files are shared among different processes
for file exchange, it can be necessary to use file permissions to control what actions can be taken on a file.

 Solution
 PHP was born on a Linux platform and uses the POSIX system for file permissions. The POSIX system uses
three bits to indicate execute (1) read (2) and write (4) access and access can be defined for the owner, the
group and everyone else. It is customary to represent the access as an octal number with three digits. In PHP
we add a 0 in front of the three digits to indicate that the number is octal and not decimal. The permission
0755 means execute, read, and write access for the owner and to execute and read permission for the group
as well as everyone else.

 The functions that are used to set access are chown() for setting the owner, chgrp() for setting the
group, and chmod() for setting the permissions. These functions are similar to the command-line functions
with the same names although the PHP functions do not have an option to set the permission recursively.

 How it Works
 When creating files with file_put_contents() or fopen()/fwrite() functions the default behavior is to set
the owner and group to the same as the user who ran the script, and the default access mode is set to read/
write for the owner and to read for the group and others. In order to change the mode so only the user can
read and write you can do something like this:

 <?php
 // 7_13.php

 file_put_contents('private.txt', 'The content of this file is private');
 chmod('private.txt, 0600);

CHAPTER 7 ■ FILES AND DIRECTORIES

153

 And the result would be a file with permission like this:

 -rw------- 1 kromannf staff 35 Feb 1 14:16 private.txt

 Similarly the chown() and chgrp() can be used to change the owner and the group for a file or directory.
Note that only super users are allowed to change owner and group on files. These functions are most
commonly used by shell scripts used by install processes or other long running processes.

 In order to create files and directories the user running the PHP script must have write permissions to the
folder where the file is created. On web installations the write access is often removed on files and directories
to prevent the web site from making changes to its own code. If the web site contains a feature to upload
images and other files the directory where these files are uploaded to must have the write permission set.

 Recipe 7-7. Symbolic Links
 Problem
 Symbolic links are often used on Linux and Unix file systems to have the same file in multiple locations
without using disk space for each file. If you open and read from a symbolic link, you will actually open the
file that is linked to it in a different location. The same is the case for the write operation.

 Solution
 The function as_link() will return true if the filename passed as the parameter is in fact a link to a file or
directory. You can use is_dir() and is_file() to test if the link points to a directory or a file. PHP can also
create and remove symbolic links with the functions link() (hard link) and symlink() (soft link).

 The difference between hard and soft links is in the way the links are created. For hard links the links
is directly to the inode (the data portion of the file) and for soft links the link is to a different file name that
internally links to an inode.

 Soft links are used when the link is to a file on a different file system or when you want to link a
directory. Hard links are used for files on the same file system and they have the advantage of being able to
move the original file to a different location without breaking the links. Soft links can’t do that as the link is to
a file that could be (re)moved.

 If you use the stat() function on a symbolic link you will get the information about the original file. To
get information about the link you will have to use the lstat() function.

 Links are removed with the unlink() function. If the path specified is a link or symbolic link, only the
link will be removed. If the path is the last hard link that points to the data section or it’s a real file, the file
will be removed.

 How it Works
 Files that are stored outside the document root and its subdirectories are not accessible to the user through
the browser and web server. If for some reason you want to make one of these files available for download
you can create a symlink to the file and use that to generate a URL that can be downloaded. This only works
only if the web server is configured to follow symlinks. For apache that looks like this:

 <Directory path/to/documentroot">
 Options FollowSymLinks
 AllowOverride None
 Require all granted
 </Directory>

CHAPTER 7 ■ FILES AND DIRECTORIES

154

 The code to create a symlink and make it available for download would look something like this:

 <?php
 // 7_14.php

 // Perform some access control here
 $token = sha1(random_bytes(50));
 link('../data/bigfile.tgz', $token);
 header("Location: $token);

 This code generates a random string of bytes and then creates a sha1 hash of that string. This is done to
make it difficult for other users to guess the actual string and still make it possible for the user to download
file without reading it into memory in PHP. This method has a couple of flaws and should not be used in real
life. First of all the symbolic links are never removed by the script. A cleanup script that runs periodically
could solve this. But as long as the symbolic link exists it is possible for any user, who knows the URL,
to download the file as there is no longer any validation or access control.

 A better solution to this problem is to use a PHP script to read the file and send it directly to the client
instead of redirecting to a symbolic link. This option does also have problems, especially with large files that
exceed the memory limitation of the PHP configuration.

 Using an extension to the Apache web server called mod_xsendfile solves this problem much better.
The basic functionality allows Apache to download files in a predefined location outside of the document
root, but only if a specific header is set before the download is set. Because the files are stored outside the
web root they can't be accessed directly with a request from a browser or other client. The files are accessed
through a PHP script that can validate if the user is allowed to download the file and if so tell Apache, through
the header, that it is Ok to download the file. The Xsendfile extension must be configured with the directories
where these downloads can take place from. The advantage of this extension is to allow the PHP script to
terminate and release resources while Apache reads the file from disk and send the data to the client.

 The Xsendfile extension can be downloaded from this website: https://tn123.org/mod_xsendfile/
 With this extension installed and configured in Apache it's possible to download large files without

affecting security or exceeding the memory limits of PHP.

 <?php
 // 7_15.php

 // Perform access control here
 header("X-Sendfile: ../data/some_file.tgz");

 If you are using NginX you can do the same thing without any special extensions.

 <?php
 // 7_16.php

 // Perform access control here
 header("X-Accel-Redirect: ../data/some_file.tgz");

 If you create an application that can be deployed on both Apache and NginX platforms you can create
code that checks the type of server before selecting the right header.

https://tn123.org/mod_xsendfile/

CHAPTER 7 ■ FILES AND DIRECTORIES

155

 <?php
 // 7_17.php

 // Perform access control here
 if (stristr($_SERVER["SERVER_SOFTWARE"], 'nginx')) {
 header("X-Accel-Redirect: ../data/some_file.tgz");
 else if (stristr($_SERVER["SERVER_SOFTWARE"], 'apache')) {
 header("X-Sendfile: ../data/some_file.tgz");
 }

 After setting the X- header the PHP code can end and the web server will take over and provide the
selected file to the user. If the file is missing or the server is missing the configuration the web server will
report a 404 – file not found status code.

 Recipe 7-8. Directories
 Problem
 As we have seen already there is not much difference between a file and a directory on the file system. They
are both identified with a relative or absolute path. Most of the functions used to get status or check for
specific types all works on both files and directories but how can we create, move, and delete directories?

 Solution
 Creating a directory is done with mkdir() function . This function takes up to four parameters where the first
is the relative or absolute path to the new directory and the second is the file permissions or mode in the
same format as the chmod() function described earlier. The third parameter is a Boolean flag that indicates
recursive functionality. This can be used to create nested directories. Instead of calling mkdir() multiple
times you can supply a path and if the recursive flag is set the function will create all the directories not
already exiting in the specified path. The forth parameter is the context and it’s only used when the function
is used with streams.

 To remove a directory you will use the rmdir() function . Make sure the directory is empty before calling
this function.

 How it Works
 In most cases web sites does not have a need to create new directories. It's designed to serve content already
located on the server. If you are building a system that can be used to exchange files between users or
allow users to upload images you might want to create a directory for each user. That way it's easy to keep
track of where the files come from and you do not end up with one user overwriting other users’ files. Your
application could even allow the user to create directories to group files.

 A simple script to create a directory could look like this:

 <?php
 // 7_18.php

 // Perform access control here
 mkdir('MyFiolder', 0700);

CHAPTER 7 ■ FILES AND DIRECTORIES

156

 Creating all the directories needed to complete a full path would look like this:

 <?php
 // 7_19.php

 // Perform access control here
 mkdir('path/to/MyFiolder', 0700, true);

 In this example the third parameter indicates that the system should create all the directories, if they
are missing. This script will first create a directory called path next to the location of the script, after that a
directory inside path called to, and finally the directory MyFolder inside the to directory. All three directories
will have the permissions rwx for the owner and no permissions for group or other users.

 Running the script twice will generate a warning the second time. This is because the final directory
called 'MyFolder' already exists. Running the script when only the directories 'path' and 'path/to' exists will
not generate any warnings.

 Recipe 7-9. CSV Files
 Problem
 If you are working with large datasets it might be useful to export the data to a format that can be read by
programs like Microsoft Excel or you might receive data from other systems using the comma separated
values (CSV) format. There is a need to be able to create or parse CSV files with PHP based on parameters
provided by the user to filter data, etc.

 Solution
 The functions fgetcsv() and fputcsv() are used to read or write CSV files. These functions work on file
handles created by the fopen() function and require the file to be opened in the correct read or write mode
before reading or writing.

 How it Works
 Creating a .csv file from an array of data, like a result set from a database query where each row contains the
same number of columns could look something like this:

 <?php
 // 7_20.php

 $data = [
 ['orange', 10],
 ['blood orange', 10],
 ['apple', 25],
 ['pineapple', 1]
];
 $fp = fopen('fruits.csv', 'wt');
 if ($fp) {
 foreach($data as $fruit) {
 fputcsv($fp, $fruit);

CHAPTER 7 ■ FILES AND DIRECTORIES

157

 }
 fclose($fp);
 }

 This script will generate output that looks like this:

 orange,10

 "blood orange",10

 apple,25

 pineapple,1

 Note how blood orange is enclosed in quotes. That's because there is a space in the string. The default
enclosure character is a double quote.

 Creating a tab separated file (.tsv) or any other separator, instead of comma separated file can be done
by adding the third parameter for delimiter as shown in the next example.

 <?php
 // 7_21.php

 $data = [
 ['orange', 10],
 ['blood orange', 10],
 ['apple', 25],
 ['pineapple', 1]
];
 $fp = fopen('fruits.tsv', 'wt');
 if ($fp) {
 foreach($data as $fruit) {
 fputcsv($fp, $fruit, "\t");
 }
 fclose($fp);
 }

 Which produces the following output:

 orange 10

 "blood orange" 10

 apple 25

 pineapple 1

 As seen in the previous examples the fputcsv() function works on one line at the time. The fgetcsv()
function works in a slightly different way. This has to do with the varying length of each line in the file. The
 fgetcsv() function takes the same number of parameters as the fputcsv() function. The second parameter
is the length in bytes to read from the file. This number must be greater than the length of the longest line in
the file. This is to allow the function to read up until the first line break. If the value is too small the system will
only read part of the line and the returned array of data will be incomplete. The rest of the line will be read on
the next iteration. As of PHP 5.1.0 it’s possible to set the length parameter to 0. This will cause the reading to be
slower as the function will read each byte separately until it reaches a line break or the end of the file.

CHAPTER 7 ■ FILES AND DIRECTORIES

158

 The code to read the data from the fruits.csv file created in example 7_21 would look like this:

 <?php
 // 7_22.php

 $data = [];
 $fp = fopen('fruits.csv', 'rt');
 if ($fp) {
 while ($row = fgetcsv($fp, 25)) {
 $data[] = $row;
 }
 fclose($fp);
 }
 print_r($data);

 And it will generate the following output:

 Array

 (

 [0] => Array

 (

 [0] => orange

 [1] => 10

)

 [1] => Array

 (

 [0] => blood orange

 [1] => 10

)

 [2] => Array

 (

 [0] => apple

 [1] => 25

)

 [3] => Array

 (

 [0] => pineapple

 [1] => 1

)

)

CHAPTER 7 ■ FILES AND DIRECTORIES

159

 Recipe 7-10. Streams
 Problem
 Files might not always be located on the local file system, and there might be other types of data that could
be consumed with the same set of basic functionality as provided for load files. This can be read, write, and
seek functionality.

 Solution
 In PHP version 4.3 the concept of streams was introduced. Streams lets the developers read and write data
from and to a number of different systems with the use of URL-style protocols. It is even possible to register
your own stream wrappers so you can access your own data with fopen() , fread(), and fwrite() functions.
Instead of reading files from the local hard drive you can use file_get_contents() to read data from a URL.
The file_get_contents() function is the preferred method to read contents of a local or remote file into a
string, as long as the contents of the file are small enough to fit in memory. This can be a normal when site
that returns an HTML document or a web service that returns json or xml formatted data.

 How it Works
 Using the file_get_contents() function to download a file or document from a URL is as simple as reading
it from a local disk drive. All you need to do is to provide a URL to the file instead of a path. So if you wanted
to fetch the default html document from your favorite website you would do something like this:

 <?php
 // 7_23.php

 $html = file_get_contents("http://google.com");
 echo $html;

 HTML documents are designed to be rendered by a browser so unless you are building code to copy
html documents to static files this example is not the most useful one, but web servers can also be used to
host other types of content like XML files or json string. I will go in detail with these web services in a later
chapter but the next example shows how PHP can be used to fetch a json string and turn it into a PHP object.
Most web services or API's require authentication and other parameters to be passed to the server in order
to retrieve data. There are a few API's available that can be used without authentication, like the one used
here that will simply return the public IP address of your computer as seen by the web server.

 <?php
 // 7_24.php

 $data = json_decode(file_get_contents("http://jsonip.com"));
 print_r($data);

CHAPTER 7 ■ FILES AND DIRECTORIES

160

 The output from this example is the response from the API. In this case the response is an object with
three properties.

 stdClass Object

 (

 [ip] => 180.190.203.15

 [about] => /about

 [Pro!] => http://getjsonip.com

)

 Recipe 7-11. Stream Context
 Problem
 Working with streams of different types might require options and parameters that can’t be passed in a
generic way to the fopen() function. These options and parameters can be used to control how the stream
reacts to various requests.

 Solution
 With the function stream_context_create() it’s possible to create a context resuest that can be used as an
optional parameter to most of the file handling functions. To create a stream context you must pass one or
two associative arrays to the function. The first array will hold the options and the second optional array will
be the parameters. The second params parameter is not widely used but can be used to set a notification
callback function that can be used for things progress indication.

 How it Works
 By default when the function file_get_contents() is used to retrieve content with the http protocol the
request will be created as a GET request where all the parameters are passed on as part of the URL. If you
want to pass parameters as header values or you want to send a POST request you can use stream_contect_
create() to generate these parameters in a form that can be passed to the third argument for file_get_
contents() . The next example shows how to create a script that can generate a form post to a URL (the url
in the example is fake but everything else works). The script starts with a function that generates the payload
or body of the POST request. The function html_build_form() takes two parameters. The first is the string
to use as a boundary between each of the variables in the post. and the second is an associative array of key
and value pairs to submit to the server.

 After the function the data is populated. This could be with input from a user or a query from a
database. In the last section of the script the stream context is created from an array of options and the
request is sent. Although the file_get_contents() is used it will actually start by sending all the data to the
server and then retrieve the response for the request. The server might do a redirect after the post if that is
the case it will be handled by the request. There is no need for additional code to handle that. If the response
is a file not found (404), access denied (403), or any other status the script should handle that.

CHAPTER 7 ■ FILES AND DIRECTORIES

161

 <?php
 // 7_25.php

 function http_build_form($mime_boundary, $data) {
 $eol = "\r\n";
 $form_data = '';
 if (is_array($data)) {
 foreach ($data as $name => $value) {
 if (is_array($value)) {
 foreach($value as $val) {
 $form_data .= '--' . $mime_boundary . $eol .
 "Content-Disposition: form-data; name=\"{$name}[]\"" .
 $eol . $eol . $val . $eol;
 }
 }
 else {
 $form_data .= '--' . $mime_boundary . $eol .
 "Content-Disposition: form-data; name=\"{$name}\"" .
 $eol . $eol . $value . $eol;
 }
 }
 }
 $form_data .= "--" . $mime_boundary . "--" . $eol . $eol;
 return $form_data;
 }

 $data = [
 'name' => 'Donald Duck',
 'phone' => '555 555 1234'
];

 $url = http://example.com/form;
 $mime_boundary = md5(time());
 $content = http_build_form($mime_boundary, $data);

 $options = array('http' =>
 array(
 'method' => 'POST',
 'header' => 'Content-Type: multipart/form-data; boundary=' .
 $mime_boundary,
 'content' => $content
)
);
 $context = stream_context_create($options);
 $response = file_get_contents($url, FILE_TEXT, $context);
 var_dump($response);

CHAPTER 7 ■ FILES AND DIRECTORIES

162

 Recipe 7-12. File Iterators
 Problem
 When the same action is going to be performed on multiple files we need a way to figure out which files are
stored in a directory and we need ways to traverse recursively through the directory structure.

 Solution
 The simple way to iterate over all the files in a directory is to use the glob() function to create an array of
all the files that matches a specific file pattern and then use foreach() or one of the other looping methods
to step through all the files. The glob() function looks in a single directory. In order to get files from
subdirectories you must call the glob() function for each of them.

 A second option is to use the opendir() , readdir(), and closedir() functions or the more object
oriented approach with dir() that resturns an instance of the built-in class Directory. Since PHP 5.0 these
funtions have supported the ftp:// URL wrapper.

 Another option is to use one of the iterator classes that are included with the SPL extension. SPL stands
for Standard PHP Library and it’s an extension that is enabled by default. The iterator classes can be used
directly with forech() and there is no need to read the contents of the file system into memory before
iterating over the files.

 How it Works
 The next three examples show how to get the contents of a directory using the methods described above.
The scripts will use the same directory as the script is located in and will print the name of each file and add
a slash to the name if it's a directory.

 <?php
 // 7_26.php

 $pattern = "*";

 $files = glob($pattern);
 foreach ($files as $file) {
 echo $file;
 if (is_dir($file)) {
 echo "/";
 }
 echo "\n";
 }

 This method of getting the names of files in a directory works well for small number of files and
for short paths. If you are looking at a directory with a long path or with many files it can consume too
 much memory.

CHAPTER 7 ■ FILES AND DIRECTORIES

163

 <?php
 // 7_27.php

 $dir = dir(".");
 while (($file = $dir->read()) !== false) {
 echo $file;
 if (is_dir($file)) {
 echo "/";
 }
 echo "\n";
 }
 $dir->close();

 In this example we only have one element of the directory in memory at any given time. Another
difference is that his methods includes entries for './' and '../'. These are automatically excluded when the
 glob() function is used.

 To do a similar thing with the SPL DirectoryIterators the could look like this:

 <?php
 // 7_28.php

 foreach (new DirectoryIterator('.') as $fileInfo) {
 if ($fileInfo->isDot()) continue;
 echo $fileInfo->getFilename();
 if ($fileInfo->isDir()) {
 echo "/";
 }
 echo "\n";
 }

 One advantage of using the SPL DirectoryIterator is it's very easy to make recursive although the
behavior is slightly different.

 <?php
 // 7_29.php

 $iterator = new RecursiveDirectoryIterator('.',
 FilesystemIterator::CURRENT_AS_FILEINFO);
 foreach (new RecursiveIteratorIterator($iterator) as $fileInfo) {
 if ($fileInfo->isDot()) continue;
 echo $fileInfo->getPathname();
 if ($fileInfo->isDir()) {
 echo "/";
 }
 echo "\n";
 }

CHAPTER 7 ■ FILES AND DIRECTORIES

164

 Recipe 7-13. Download Files
 Problem
 The standard output from a web server to a browser is some form of text file that contains HTML, JavaScript,
CSS, or JSON content. The web server can also return other types of files that are supported by the browser
for rendering (image and video files). But if the files are intended for other use than rendering in the browser,
we need a way to download the content and save it to disk or have a different type of client consume it.

 Solution
 The standard web server configuration will know the mime type of a file based on its file extension. If the file
is located in the directory structure available for the web server to serve files on you can in most cases simply
link to the file directly and the browser will know that it don’t know how to handle the file and it will save it to
disk.

 If the file is located outside of the available directory structure or the file has to be assembled based
on input parameters you can use PHP to read or generate the file and use the header() function to specify
Content-Type and Content-Disposition in order to help the browser handle the file as you intend. This is also
useful if you want to download a file that contains HTML or an image and you want to prevent the browser
from showing the file. This will cause the browser to show the save file dialog instead of just showing the
content in the browser.

 How it Works
 If you have a link in your document that goes to an image you would create some html that looks like this:

 This will show an image and create a link to the same file so when the user click on the image the
browser will simply show the image as the only content in the browser.

 If you change the html to look like this:

 You will need a PHP script to handle the rendering and also to set the headers. The script could look
something like this:

 <?php
 // 7_30.php

 header("Content-Type: image/gif; Content-Disposition: attachment;");
 readfile('myfile.gif');

 This will tell the browser that the content of the response will be an image of type gif and it will also
instruct the browser to open the save dialog rather than displaying the file. You can add more complicated
logic to handle access control and generate the image on the fly or allow download of any file. Be sure to add
a check to validate that the file can be downloaded. If not you might end up allowing users to download your
php scripts or password files.

CHAPTER 7 ■ FILES AND DIRECTORIES

165

 Recipe 7-14. Upload Files
 Problem
 The primary direction of content in a web environment is for a client (browser) to send a request to a server
and retrieve the response in the form of a HTML document that then is rendered by the browser. The
rendering process might send additional requests to the server or other servers to get additional content as
identified by links in the original document. In this scenario the majority of the bites transferred are from the
server to the client.

 If you are building an application that requires the users to upload a picture or avatar, or you want to
build a document library that holds files of many different kinds for other users to download you need a way
to push files from the client to the server.

 Using an FTP or SFTP server can solve this but they usually don’t give you what you really need. These
servers are simply a gateway to a preconfigured location on the file system where the user can create folders
and upload files but the server does nothing to the files and there is usually no PHP integration. You could
create a web-based API that would be called by the uploading application when the upload to the SFTP
server is complete but that adds an extra layer of complexity and the user would not be able to perform the
actions from a browser alsone.

 Solution
 Most modern browsers support multipart/form-data for the POST request and they allow you to include
an input field of type file. This will instruct the browser to read one or more files off the local file system and
send them to the server with the rest of the POST request. Only files selected by the user can be uploaded.
If the target for the POST request is a PHP script the data will be available in the superglobals $_POST and
$_FILES for processing by the script. The files will temporarily be stored in a folder specified by upload_dir in
php.ini and they will be removed from that directory when the PHP request ends. It is up to the script to copy
or move the file to its final destination.

 The most modern browsers also supports a JavaScript based API for Form Data that will allow the user
to use drag and drop of files from the local file system to a specific location in the browser window. This will
trigger a JavaScript function that can read the file from the file system and create the post request. With this
model it’s possible to get accurate progress status without a separate process sending requests to the server
every 500mS. The upload process does not have to be associated with a HTML form. This can be used to
allow users easy access to upload a new profile image with a single drag and drop.

 How it Works
 The basic file upload has two components. The first is a HTML form with the attribute enctype set to
multipart/form-data. The default is application/x-www-form-urlencoded and will cause the data to be
encoded the same way as URL or query string parameters. The HTML form needs at least one input field of
type file and could look something like this:

 <html>
 <body>
 <form method="POST" enctype="multipart/form-data" action="/upload.php">
 <input type="file" name="file" />
 <button type="submit">Upload</button>
 </form>
 </body>
 </html>

CHAPTER 7 ■ FILES AND DIRECTORIES

166

 This will create a form that will allow the user to select a file from the local file system and click the
submit button to send the file to the server. On the server there should be a PHP script to receive the file. In
this case called upload.php. In the example below the PHP script simply displays the content of the $_FILES
variable after the upload.

 <?php
 // upload.php
 header("Content-Type: text/plain");
 print_r($_FILES);

 And the output of this script shows information that looks like this:

 Array (
 [file] => Array
 (
 [name] => myfile.gz
 [type] => application/x-gzip
 [tmp_name] => /tmp/php1zqVJF
 [error] => 0
 [size] => 23435
)
)

 This array provides meta data and a location for the temporary file that can be used for further
processing. The file located in /tmp/php1zqVJF will be deleted automatically when the script ends and it
can be copied/moved to the desired location is the function move_uploaded_file() . This function takes to
parameters. The first is the path to the temporary file and the second is the path to the new location. It is also
a good idea to call is_uploaded_file() before mofing the file.

 Recipe 7-15. Zipped Files
 Problem
 Although the upload system can be used to select and upload multiple files to a web server it’s only possible
to download one file per request. If a user want’s to download all the images in a gallery it can be a slow
process to click on the links for each image and select where to save the file. It would be great if there were
a way for the server to receive a single file for upload or to create a single file that contains multiple files for
download.

 Solution
 The ZipArchive() class can be used to assemble or disassemble zip files on the server.

CHAPTER 7 ■ FILES AND DIRECTORIES

167

 How it Works
 A simple function to take all files in a directory on the server, zip them to a sinkle file and send the content as
a response could look like this:

 <?php
 // 7_31.php

 ini_set("zlib.output_compression", "Off");

 $files = glob('.');
 if (!empty($files)) {
 $zip = new ZipArchive();
 $tmp_name = tempnam("/tmp", "zipfile");
 $res = $zip->open($tmp_name . ".zip", ZipArchive::CREATE);
 if ($res === true) {
 foreach($files as $file) {
 if (is_file($file) || is_link($file)) {
 $zip->addFile($file);
 }
 }
 $zip->close();
 if (file_exists($tmp_name . ".zip")) {
 $file_name = 'archive.zip';
 $file_size = filesize($tmp_name . ".zip");
 header('Content-Type: application/octet-stream; Content-Disposition: attachment');
 readfile($tmp_name . ".zip");
 unlink($tmp_name . ".zip");
 unlink($tmp_name);
 }
 }
 }

 First the output compression is turned off. Having this on can cause problems with the downloaded file
 and it's a zip file so it's already compressed.

 Then we generate a list of files from the current directory. If there are files in the array the temporary
archive is created in the /tmp folder. The zip file can easily be too large to handle in memory so it will be
created on disk. If the creation is successful the files are added one by one, and finally if the zip file still exists
we set the headers for downloading the file and send the file to the client. Any temporary files are removed at
the end of the script.

 Instead of uploading many individual files it might be faster, and fewer clicks in the browser, to zip the
files locally, upload a single file, and unzip the files on the server so individual files can be accessed. The
script to perform the unzip function could look something like the next example. The script should be called
from a form POST request with at least one input field of type file, with the name file.

 <?php
 // 7_32.php

 // This script es expecting a a POST request from a form with at
 // least one input
 // <input type="file" name="file" />

CHAPTER 7 ■ FILES AND DIRECTORIES

168

 // This will generate the followng values in the $_FILES superglobal
 // $_FILES['file']['error']
 // $_FILES['file']['name']
 // $_FILES['file']['tmp_name']
 // $_FILES['file']['type']
 // $_FILES['file']['size']

 // Get the file extension from a file name
 function GetExtension($file_name) {
 $arrParts = explode(".", $file_name);
 if (sizeof($arrParts) > 1) {
 return strtolower(end($arrParts));
 }
 else {
 return null;
 }
 }

 $res = false;
 $ext = GetExtension($_FILES['file']['name']);
 if ($ext == "zip") {
 $zip = new ZipArchive();
 $res = $zip->open($_FILES['file']['tmp_name']);
 }
 if ($res === true) {
 $zip->extractTo('folder');
 $zip->close();
 }

169© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_8

 CHAPTER 8

 Dynamic Imaging

 Images uploaded to a web site might not always be usable as is. Images that come directly from a smart
phone or high-resolution digital camera might have resolution/size that is too high to use on a web site. If
the image is to be used as a profile image or thumbnail it might be a good idea to scale it down or crop a
section out in order to get rid of irrelevant areas of the image. Scaling and cropping can be done with CSS,
but that still requires the full image to be downloaded to the client and that would be a waste of bandwidth.

 Using the GD extension in PHP makes it possible to perform these and many other image manipulation
tasks on the server. This chapter will demonstrate how to perform these and many other tasks. The function
names used in the examples are written in so-called camel case where the first letter of each word is
capitalized. This is done for readability. All internal functions in PHP are case insensitive and can be written
in any way you like, as long as all the letters are in the right order.

 Recipe 8-1. Creating Images
 Problem
 Browsers can render a number of different image formats. These are all binary encodings of pixels and colors
with or without compression. The most common are GIF, JPEG, and PNG. Although it would be possible to
build images as a string of bytes according to the specifications of each file format, that is not practical and
would most likely lead to performance problems.

 Solution
 The GD extension for PHP is a wrapper around a library called libgd as well as a number of other libraries to
handle and create various image formats and compression. The libgd is bundled with PHP source code so
it is relatively easy to enable the extension. The GD extension is also available in most distributions of Linux
and it comes as a standard dll with the Windows version of PHP.

 There are a couple of functions in the GD extensions to create images. This can be done by copying
an image that exists in the file system with the functions ImageCreateFromJpeg() , ImageCreateFromGif() ,
 ImageCreateFromPng() . PHP also supports the formats GD and GD2. These are not supported in browsers
but can be used as the base format for creating images of other types.

 The ImageCreateFrom*() functions all takes a single parameter that can be the path to a file from
the local file system or a URL. In most case it is faster to load the image from the local file system but if
images are shared among multiple servers it might be practical to use an URL to fetch the image before
manipulation. If no manipulation is needed it will be faster to instruct the client to load the image directly
from the URL or by using a simple HTTP redirect.

CHAPTER 8 ■ DYNAMIC IMAGING

170

 Additionally the image can be created from a string with the function ImageCreateFromString() . This
is useful if the image is stored in a database or other storage or the image is retrieved from an API call. The
function will emit an error if the string passed in doesn't represent a valid image.

 Finally it's possible to create a new blank image of a specified size. This is done with the functions
 ImageCreate() and ImageCreateTrueColor() . Both functions take two parameters: the width and height of
the new image. It is recommended to use ImageCreateTrueColor() as it provides the highest quality of the
image. Using ImageCreate() will create a palette based image where each pixel is represented by an index in
the color palette. When using ImageCreateTrueColor() each pixel will be represented by the actual color.

 Although PHP provides an automated cleanup when the script ends it is always a good idea to manually
get rid of the image resources when they are no longer needed by the script. This is done by calling the
function ImageDestroy() .

 How it Works
 The simplest image is one where all the pixels have the same color. When you create a new blank image
with ImageCreateTrueColor() that is what you will get. Depending on what format you want to send to the
browser you can choose the output function that corresponds to it. In this example we create a small image
of 50x50 pixels and use a query parameter f to select the format. If the parameter f is missing, empty, or an
unsupported format the default format will be GIF.

 <?php
 // 8_1.php

 $img = ImageCreateTrueColor(50, 50);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 The standard value for the Content-Type from a PHP script is text/html . When the browser returns a
stream of binary data, it's a good idea to help the browser understand what type of data it's getting. Modern
browsers are able to look at the content of the data and determine what it is. This is especially the case with
image data where the formats are well known. In this case we set the Content-Type to image/jpeg , image/
png, or image/gif depending on the type of file requested.

 If this script is executed form the command line it will produce a binary output starting with the letters
 GIF87a22?,223????? . If it's placed on a web server and requested from a browser it will provide a small
black image.

CHAPTER 8 ■ DYNAMIC IMAGING

171

 Images with a single color are not that useful. In fact the same effect can be done with HTML and CSS
without any impact to the server, but the example demonstrates the basic functionality of image generation.
So let’s move on to some more useful examples.

 Recipe 8-2. Image Resize
 Problem
 On your web site you have a section that allows registered users to upload an image they can use as an avatar
when they add comments to your blog. The user takes a selfie with the latest smart phone and uploads the
image to your site. This will be a high-resolution image that takes up space and bandwidth each time a new
visitor look at pages on your site. It is possible to scale the image in the browser, but that will still cause the
high-resolution image to be transferred from the server to the browser at least once per visitor.

 Solution
 Building on the previous example we can create a script that loads an image from a file. And then it will
calculate a smaller version of the same image. In order not to skew the image we will have to maintain the
same aspect ratio as the original image. To get the size of the we can either use the functions ImagesX() and
 ImagesY() on the image resource or we can use GetImageSize() , which also returns additional information
like the type of the image. When you know the width and height of the original image you can calculate the
new width and height in order to stay within the borders of a fixed size. In the example the size of the scaled
image is set to be within 160x120 pixels.

 From PHP 5.6.3 you can provide -1 as the height and the scaling will be done so the aspect ratio is retained.

 How it Works
 The base image used in the example is named IMG_0099.JPG. It is 2048x1536 pixels wide and tall. First we
look at the values returned by GetImageSize() .

 <?php
 // 8_2.php

 $orig = GetImageSize('IMG_0099.JPG');
 print_r($orig);

 This will produce the following output:

 Array
 (
 [0] => 2048
 [1] => 1536
 [2] => 2
 [3] => width="2048" height="1536"
 [bits] => 8
 [channels] => 3
 [mime] => image/jpeg
)

CHAPTER 8 ■ DYNAMIC IMAGING

172

 The first two values contain the width and height. The third value is the image type. You can use the
constants IMG_GIF , IMG_JPG , IMG_JPEG (same as IMG_JPG), IMG_PNG , IMG_WBPM, and IMG_XPM to compare
the value to determine the type, or you can use the mime string directly. The third value is a string
representation of the width and height and the values for bits and channels indicates the number of bits and
channels. In this example the image has 8 bits and 3 channels allowing for 24 bits per pixel.

 <?php
 // 8_3.php

 $size = [160, 120];
 $orig = GetImageSize('IMG_0099.JPG');

 $a1 = $size[0] / $size[1];
 $a2 = $orig[0] / $orig[1];

 if ($a1 > $a2) {
 $d = ceil($orig[0] / $size[0]);
 }
 else {
 $d = ceil($orig[1] / $size[1]);
 }
 $w = $orig[0] / $d;
 $h = $orig[1] / $d;
 $img = ImageCreateFromJpeg('IMG_0099.JPG');
 $thumb = ImageScale($img, $w, $h);
 header('Content-Type: ' . $orig['mime']);
 switch ($orig[2]) {
 case IMG_JPG :
 case IMG_JPEG :
 ImageJPEG($thumb);
 break;
 case IMG_PNG :
 ImagePNG($thumb);
 break;
 case IMG_GIF :
 ImageGIF($thumb);
 break;
 }
 ImageDestroy($thumb);
 ImageDestroy($img);

 First we calculate the aspect ratio of the new image ($a1) and the aspect ratio of the original. This is then
used to determine the scaling factor based on the size ratio on either the width or height. This will ensure
that both sizes are scaled with the same factor and that the whole image will fit in the smaller box.

 This code assumes the original image is larger than the desired thumbnail. If it's smaller no scaling is
needed and the original could be used as is.

 At the end there are two calls to the ImageDestroy() function. This is because the ImageScale() creates
a copy of the original resource and we need to get rid of both the original and the copy. ImageDestroy() only
removes the image from memory. Use unlink() to delete the image file from disk.

CHAPTER 8 ■ DYNAMIC IMAGING

173

 The resulting image looks like this:

 Recipe 8-3. Image Crop
 Problem
 In the previous example we made an effort to keep the same aspect ratio as the original image had. What if
we want to create a square image from the uploaded image? In other words, scale the image based on the
smallest side and cut off any part of the other dimension that won’t fit within the square.

 Solution
 Instead of using the ImageScale() function we can use ImageCrop() . This is a relatively new function (PHP
5.5.0 and PHP 7.0.0). If you are using an older version of PHP you can use ImageCopyResampled() to achieve
the same result. This function is used to copy a rectangular section of one image to a rectangular section of
another image (or the same image) and it will resample the pixels to make the copy as smooth as possible.
The ImageCrop() function takes two parameters. The first is an image resource for the original image and
the second is an array with four values for x, y, width, and height of the section to return. The coordinates x, y
is from the upper-left corner of the image.

 How it Works
 If we use the same image as before but want to crop and scale it to fit in a box of 150x150 pixels we first need
to calculate which side to crop, and then calculate the x, y, width, and height to copy of the original image.
When we have a square image it can be scaled to the size required. It is assumed that both width and height
of the original image are larger than 150 px. There are no checks for this in the example but that could easily
be added. There is no need to crop an image that already fits within the box.

CHAPTER 8 ■ DYNAMIC IMAGING

174

 <?php
 // 8_4.php

 $size = [150, 150];
 $orig = GetImageSize('IMG_0099.JPG');

 $a1 = $orig[0] / $size[0];
 $a2 = $orig[1] / $size[1];

 if ($a1 < $a2) {
 $width = $size[0] * $a1;
 $height = $size[1] * $a1;
 $x = 0;
 $y = ($orig[1] - $height) / 2;
 }
 else {
 $width = $size[0] * $a2;
 $height = $size[1] * $a2;
 $x = ($orig[0] - $width) / 2;
 $y = 0;
 }
 $area = ['x' => $x, 'y' => $y, 'width' => $width, 'height' => $height];
 $img = ImageCreateFromJpeg('IMG_0099.JPG');
 $crop = ImageCrop($img, $area);
 $thumb = ImageScale($crop, $size[0], $size[1]);
 header('Content-Type: ' . $orig['mime']);
 switch ($orig[2]) {
 case IMG_JPG :
 case IMG_JPEG :
 ImageJPEG($thumb);
 break;
 case IMG_PNG :
 ImagePNG($thumb);
 break;
 case IMG_GIF :
 ImageGIF($thumb);
 break;
 }
 ImageDestroy($thumb);
 ImageDestroy($crop);
 ImageDestroy($img);

 In this example we end up with three image resources to free at the end of the script. The image created from
this code is now a square with the center of the image.

CHAPTER 8 ■ DYNAMIC IMAGING

175

 If you are using an older version of PHP or just want to work with one less image resource you can use
the ImageCopyResampled() function to achieve the same result.

 <?php
 // 8_5.php

 $size = [150, 150];
 $orig = GetImageSize('IMG_0099.JPG');

 $a1 = $orig[0] / $size[0];
 $a2 = $orig[1] / $size[1];

 if ($a1 < $a2) {
 $width = $size[0] * $a1;
 $height = $size[1] * $a1;
 $x = 0;
 $y = ($orig[1] - $height) / 2;
 }
 else {
 $width = $size[0] * $a2;
 $height = $size[1] * $a2;
 $x = ($orig[0] - $width) / 2;
 $y = 0;
 }
 $img = ImageCreateFromJpeg('IMG_0099.JPG');
 $thumb = ImageCreateTrueColor($size[0], $size[1]);
 ImageCopyResampled($thumb, $img, 0, 0, $x, $y, $size[0], $size[1], $width, $height);
 header('Content-Type: ' . $orig['mime']);
 switch ($orig[2]) {
 case IMG_JPG :

CHAPTER 8 ■ DYNAMIC IMAGING

176

 case IMG_JPEG :
 ImageJPEG($thumb);
 break;
 case IMG_PNG :
 ImagePNG($thumb);
 break;
 case IMG_GIF :
 ImageGIF($thumb);
 break;
 }
 ImageDestroy($thumb);
 ImageDestroy($img);

 In this example we create a new blank image and we copy a resized section of the original image onto
this image. There are 10 parameters to keep track of to the ImageCopyResampled() function . This include
destination and source image and x, y, width, and height of both images.

 Recipe 8-4. Image Rotate
 Problem
 Images that come from cell phones are either portrait or landscape (or something in between). Sometimes
they even show up upside down depending on how the cell phone was held when the picture was taken.
Cell phone software and some image viewing programs can use metadata in the image to correct this when
showing the image. Typically browsers do not support that. When users upload images from phones they
might want to rotate the image before sizing or cropping it.

 Solution
 Images can be rotated any number of degrees with the user of the ImageRotate() function . The rotation is
measured anticlockwise. If you want to rotate an image 90 degrees clockwise either use -90 or 270 degrees
as the rotation angle. As most of the image functions this one also takes an image resource as the first
parameter. After that the angle of rotation followed by the color to use in any areas that's no longer covered
by the image and finally an optional parameter to ignore transparent values.

 The center of the rotation is the center of the original image. The rotated image might have other image
dimensions compared to the original. If you rotate a square image 45 degrees you will end up with an image
that is 1.41 times larger in both directions. If you rotate an image 180 degrees you will end up with an image
with the exact same directions.

 How it Works
 The following example shows how to rotate an image 30 degrees. The background color of the new areas of
the image is set to black.

CHAPTER 8 ■ DYNAMIC IMAGING

177

 <?php
 // 8_6.php

 $orig = GetImageSize('IMG_0099.JPG');

 $img = ImageCreateFromJpeg('IMG_0099.JPG');
 $thumb = ImageRotate($img, 30, 0);
 header('Content-Type: ' . $orig['mime']);
 switch ($orig[2]) {
 case IMG_JPG :
 case IMG_JPEG :
 ImageJPEG($thumb);
 break;
 case IMG_PNG :
 ImagePNG($thumb);
 break;
 case IMG_GIF :
 ImageGIF($thumb);
 break;
 }
 ImageDestroy($thumb);
 ImageDestroy($img);

 Recipe 8-5. Image Flip
 Problem
 In the previous recipe we discussed how to rotate an image to correct for different camera orientation. What
if you need to create a copy of the image that is the mirror image horizontally or vertically?

 Solution
 This can be handled with the ImageFlip() function .

 ■ Note this function is only available if the GD extension is compiled with the bundled version of libgd.

 The ImageFlip() function can flip the image horizontally, vertically or both, although flipping in both
directions would be the same as a 180 degree rotation.

 How it Works
 ImageFlip() takes two parameters. The first is an image resource and the second is the flip direction. This
can be one of the predefined constants: IMG_FLIP_HORIZONTAL , IMG_FLIP_VERTICAL or IMG_FLIP_BOTH .

CHAPTER 8 ■ DYNAMIC IMAGING

178

 <?php
 // 8_7.php

 $orig = GetImageSize('IMG_0099.JPG');

 $img = ImageCreateFromJpeg('IMG_0099.JPG');
 ImageFlip($img, IMG_FLIP_HORIZONTAL);
 header('Content-Type: ' . $orig['mime']);
 switch ($orig[2]) {
 case IMG_JPG :
 case IMG_JPEG :
 ImageJPEG($img);
 break;
 case IMG_PNG :
 ImagePNG($img);
 break;
 case IMG_GIF :
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 The ImageFlip() function works slightly different compared to the copy and rotate functions. This
function does not create a copy of the image but it simply flips the image in place (In memory. The file is not
changed). No need to destroy extra copies at the end of the script.

 Recipe 8-6. Adding a Watermark
 Problem
 If you are a photographer and want to show high-resolution images on your web site you might want to
protect the images by adding a watermark. The same technology can be used if you are selling images for
use on other web sites and you want to prevent the buyer from using images from your catalog pages without
paying. In either case it's always a good idea to keep the original image and create a new copy when the files
are uploaded and add the watermark to that image.

 Solution
 Watermarks can be as simple as adding a string of text somewhere on top of the image, but is can also be an
image that is overlayed on top of the image. Add text will be covered in Recipe 8-10. This recipe will cover the
merging of two images into one.

 In recipe 8-3 we discussed image cropping and the use of the function ImageCopyResampled() was used
to copy and resize a section of one image onto another image. We can use the same function to copy a small
image onto a larger image.

CHAPTER 8 ■ DYNAMIC IMAGING

179

 How it Works
 If all your images are the same size it's relatively straightforward to add a watermark to them, but if they are
different sizes you might have to resize the watermark to fit on the image. I suggest creating a watermark file
that is the same width as the widest image you are working with and then scale it down so it will fit on top of
smaller images. If the size difference between the smallest and largest image are too big you can also create
multiple watermarks and choose the one that fits best.

 <?php
 // 8_8.php

 $orig = GetImageSize('IMG_0099.JPG');
 $wm = GetImageSize('watermark.png');

 $img = ImageCreateFromJpeg('IMG_0099.JPG');
 $watermark = ImageCreateFromPng('watermark.png');

 if ($orig[0] > $wm[0]) {
 $width = $wm[0];
 $height = $wm[1];
 $x = ($orig[0] - $wm[0]) / 2;
 $y = ($orig[1] - $wm[1]) / 2;
 }
 else {
 $d = $orig[0] / $wm[0];
 $width = $orig[0];
 $height = $wm[1] * $d;
 $x = 0;
 $y = ($orig[1] - $height) / 2;
 }

 ImageCopyResampled($img, $watermark, $x, $y, 0, 0, $width, $height, $wm[0], $wm[1]);
 header('Content-Type: ' . $orig['mime']);
 switch ($orig[2]) {
 case IMG_JPG :
 case IMG_JPEG :
 ImageJPEG($img);
 break;
 case IMG_PNG :
 ImagePNG($img);
 break;
 case IMG_GIF :
 ImageGIF($img);
 break;
 }
 ImageDestroy($watermark);
 ImageDestroy($img);

CHAPTER 8 ■ DYNAMIC IMAGING

180

 The calculation in the beginning compares the width of the original image to the width of the
watermark. If the original image is wider than the watermark the watermark will be centered on the
original image. If the watermark is wider the watermark will be scaled down to fit in the width. It will still be
centered vertically.

 If the original image is taller than it is wide or if you want a watermark that is narrow and tall you will
need to modify the calculations of x, y, width, and height, but the same logic for adding the watermark can
be used.

 Recipe 8-7. Changing Colors
 Problem
 When working with images, creating them from scratch or adding to existing images, there is a need to
define the colors used for the objects that are added to the image.

 Solution
 Bitmapped images are generally represented by pixels where each pixel is provided a color and perhaps
some transparency/opacity. Depending on the image format and image compression the way these are
handled varies. The gd extension uses an internal GD/GD2 format to represent the image and when the final
image is generated for output the format is converted to the target format.

 In the GD format each color is placed in a palette where an index points to a specific color. When you
add color to a pixel in the image you simply tell the system to use a specific index. If you later want to change
all the pixels of a given color you can just change the color for that index and all pixels with that index will
change color.

 This concept then requires the allocation of colors in the palette before the color can be used. If you are
using an existing image the palette will be initialized with all the different colors already used in the image,
but if you are starting from scratch the palette will be empty. There are three functions used to allocate and
deallocate colors in the image; these are called ImageColorAllocate() , ImageColorAlocateAlpha(), and
 ImageColorDeallocate() . The first color allocated will define the background color of the image. As shown
in recipe 8-1, when a blank image is created using ImageCreate() , the background color will be black, unless
you define it with a call to one of the allocate functions. The allocation functions use three integer values
between 0 and 255 for each of the color components (red, green, and blue). If you are allocating a color with
alpha transparency you need a fourth value to indicate the amount of transparency. This is a value between
0 and 127 where 0 indicates opaque and 127 is total transparency.

 How it Works
 If we take the code from example 8_1.php, change the ImageCreateTrueColor() to ImageCreate() and add
a line to allocate a yellow color, the image generated will no longer be black.

 <?php
 // 8_9.php

 $img = ImageCreate(50, 50);
 ImageColorAllocate($img, 0xe3, 0xda, 0x2b);
 $f = $_GET['f'] ?: 'gif';

CHAPTER 8 ■ DYNAMIC IMAGING

181

 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 You can also do the same with ImageCreateTrueColor() but then you would have to set the color of all
the pixels. This can be done with the ImageFill() function. This performs a flood fill function that takes four
parameters. The first is a valid image resource, the second and third parameters are the X and Y coordinates
of where the fill should start and the last argument is the color of the fill. On a blank image it's common to
start the fill at the upper-left corner (0,0).

 <?php
 // 8_10.php

 $img = ImageCreateTrueColor(50, 50);
 $col = ImageColorAllocate($img, 0xe3, 0xda, 0x2b);
 ImageFill($img, 0, 0, $col);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

CHAPTER 8 ■ DYNAMIC IMAGING

182

 When working with truecolor images it is not necessary to allocate the color before using it. The index
and the RGB value of the color are going to be the same.

 <?php
 // 8_11.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xe3da2b);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 Recipe 8-8. Draw on Images
 Problem
 We have seen how to scale, crop, and even merge images but what about adding things to an image? Is there
a way to draw pixels, lines, and other shapes on a blank image or even an existing image?

 Solution
 The gd extension provides a long list of functions to manipulate the content of an image ranging from
setting the color of a single pixel to drawing of lines, squares, arches, and ellipses, etc. All the drawing
functions work on an image resource, a color one, or more coordinate sets and other parameters used to
define the shape.

 How it Works
 The simplest drawing function is the one that sets the color of a single pixel. We can use that to create an
image with a white background and 10 randomly placed black dots.

CHAPTER 8 ■ DYNAMIC IMAGING

183

 <?php
 // 8_12.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xffffff);
 for ($i = 0; $i < 10; $i++) {
 $x = mt_rand(0, 49);
 $y = mt_rand(0, 49);
 ImageSetPixel($img, $x, $y, 0);
 }
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 This will generate an image that looks like this:

 Note that the coordinates are 0 based. The image is 50x50 pixels in size but the coordinates of each pixel
goes from 0, 0 to 49, 49.

 Now we can move on to more advanced shapes. The function to draw a line takes two sets of
coordinates indicating the starting and ending point of the line. The next example will draw three lines
starting and ending at random locations but all connected as one line.

CHAPTER 8 ■ DYNAMIC IMAGING

184

 <?php
 // 8_13.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xffffff);
 $sx = mt_rand(0, 49);
 $sy = mt_rand(0, 49);

 for ($i = 0; $i < 3; $i++) {
 $x = mt_rand(0, 49);
 $y = mt_rand(0, 49);
 ImageLine($img, $sx, $sy, $x, $y, 0);
 $sx = $x;
 $sy = $y;
 }
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 The resulting image could look like this:

 As you can see the lines are created with a width of a single pixel so they will not look quite as straight
lines unless they are vertical or horizontal.

 To get lines that look better (a bit more smooth) you can turn on the initializing mode. This will
cause the drawing functions to blend the line color with the background color. This only works for true
color images and there is no support for alpha components (transparency). The next example shows the
difference between two lines drawn without and with the antialias turned on.

CHAPTER 8 ■ DYNAMIC IMAGING

185

 <?php
 // 8_14.php

 $img = ImageCreateTrueColor(100, 50);
 ImageFill($img, 0, 0, 0xffffff);
 ImageLine($img, 0, 49, 49, 0, 0);
 ImageAntialias($img, true);
 ImageLine($img, 49, 49, 99, 0, 0);

 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 Note how the second line has some gray pixels on either side to make it look smoother. The gray is chosen
automatically because the background is white and the line is black. Other color combinations will give
different colors.

 There are two functions to draw rectangles: one that draws an outline and one that fills the rectangle.
These are called ImageRectabgle() and ImageFilledRectangle() . Both functions work with two sets of
coordinates. This limits the shape to have all sides parallel to the edges of the image. If you need a rectangle
placed at different angles you can either create a small image, rotate it, and merge it on to the large image or
you can use the ImagePolygon() function .

 The next example draws a red square at a random location on the image:

 <?php
 // 8_15.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xffffff);
 $x1 = mt_rand(0, 49);
 $y1 = mt_rand(0, 49);
 $x2 = mt_rand(0, 49);

CHAPTER 8 ■ DYNAMIC IMAGING

186

 $y2 = mt_rand(0, 49);
 ImageRectangle($img, $x1, $y1, $x2, $y2, 0xFF0000);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 This can easily be modified to draw a filled square by changing the function call to

 ImageFilledRectangle() with the same parameters. This function is commonly used to draw patterns using
a loop to iterate over a set of data points. If you have two rectangles that are overlapping each other you can
use the ImageFillToBorder() function to fill only the area that's overlapping as shown in the next example
where two red rectangles are drawn and the overlapping area is colored in a different color.

 <?php
 // 8_16.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xffffff);
 $x1 = 1; $y1 = 1; $x2 = 35;$y2 = 35;
 ImageRectangle($img, $x1, $y1, $x2, $y2, 0xFF0000);
 $x1 = 15; $y1 = 15; $x2 = 48;$y2 = 48;
 ImageRectangle($img, $x1, $y1, $x2, $y2, 0xFF0000);
 ImageFillToBorder($img, 16, 16, 0xFF0000, 0x00FFFF);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);

CHAPTER 8 ■ DYNAMIC IMAGING

187

 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 A circle is a special form of an ellipse where the width and height are the same value. The
 ImageEllipse() function is used to draw these shapes. The width of the ellipse is always parallel to the X
axis and the height is parallel to the Y axis of the image.

 <?php
 // 8_17.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xffffff);
 ImageFilledEllipse($img, 20, 20, 20, 10, 0xFF0000);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

CHAPTER 8 ■ DYNAMIC IMAGING

188

 The final drawing functions in this recipe are ImageArc() and ImagePolygon() , and as the name
indicates these functions will draw an arch and a polygon. The center coordinates – width, height, and start
and stop angles as well as a color describe the arc. Drawing an arch with 360 degrees between a start and
stop angle will draw an ellipse.

 <?php
 // 8_18.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xffffff);
 ImageFilledArc($img, 5, 25, 70, 70, -45, 45, 0xFF0000, IMG_ARC_PIE);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 Note how the width and height is wider than the width and height of the image. The width and height
represent the size of the ellipse if it was drawn from 0 to 360 degrees.

 The last parameter called style determines how the object is drawn. This is a bitmapped value with four
different options. IMG_ARC_PIE will draw a rounded arch and IMG_ARC_CHORD will connect the two points
from the start to end angle with a straight line. These two values are mutually exclusive. The last two options
are IMG_ARC_NOFILL (make it an outline) and IMG_ARC_EDGED (connect the point at the starting and ending
angle to the center).

CHAPTER 8 ■ DYNAMIC IMAGING

189

 The ImageFilledArc() and ImageFilledPolygon() take the same parameters but will fill the object
entirely with the drawing color.

 So far we have seen how to draw objects described with a number of integer or float values. The
 ImagePolygon() function is a bit different because it works on an arbitrary number of points or coordinates.
The coordinates are passed to the function as an array of integer values. Two integer values are needed for
each point. The function needs at least three points to create a polygon. The last side of the polygon, the one
that connects the last point to the first is handled automatically. No need to add the starting point as the last
point of the array.

 <?php
 // 8_19.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xffffff);
 $points = [
 10, 10,
 45, 5,
 25, 25,
 45, 45,
 10, 40
];
 ImagePolygon($img, $points, sizeof($points) / 2, 0xFF0000);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

CHAPTER 8 ■ DYNAMIC IMAGING

190

 Recipe 8-9. Transparency
 Problem
 Images are represented with a square box of a given width and height. If you draw objects on the image you
might not use the entire canvas down to every last pixel. Placing an image on top of a web page will show all
the pixels of the image, unless there is a way to make them transparent so that the background behind the
image is visible through part of the image.

 Solution
 Some image formats (GIF and PNG) supports transparent pixels. Transparency is not supported with the
JPEG format.

 Images created with the GD extension can have one of the colors defined as the transparent color or it's
possible to set partial transparency on specific colors to allow the background to be partially visible. This is
called alpha blending. To create a color with transparency use the function ImageColorAllocateAlpha() .

 How it Works
 The simple way to set transparency is to use a specific color, that's not otherwise used in the image and
convert that color to transparent. This can be done like this:

 <?php
 // 8_20.php

 $img = ImageCreateTrueColor(50, 50);
 ImageFill($img, 0, 0, 0xffffff);
 ImageColorTransparent($img, 0);
 ImageLine($img, 10, 10, 40, 10, 0xFF0000);
 ImageLine($img, 10, 30, 40, 30, 0);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

CHAPTER 8 ■ DYNAMIC IMAGING

191

 First the image is created with the size 50x50 pixels. Then the background is filled with the color white.
The transparent color is selected to black. This can happen at any time before the image is rendered. The
two lines that are drawn with the red and black colors will behave differently when the image is used. As
shown in the next image where the image is covering a colored background, the red line shows up as red but
the black is the same color as the background.

 Recipe 8-10. Adding Text
 Problem
 In the past few recipes we have seen how to draw on images and merge one image onto another image, but
what if you want to add text? Can you use fonts or can it only be done with a system-defined font?

 Solution
 Depending on how PHP and the GD extension is compiled there are a few options to add text. The basic
functionality is provided with the function ImageString() . This function will insert a string using one of five
built-in fonts or you can use ImageLoadFont() to load a GD font. These font files must be generated on the
same CPU architecture as they are being used on. This function can only draw horizontal text.

 In addition to this PHP can be compiled with FreeType support. When this is enabled you can use and
TrueType font (.ttf) from your computer to render text on your images. The function ImageTTFText() is used
to draw text with a TrueType font. The fonts used must be located on the server but there is no need to have
them installed on the client computer.

 Using TrueType fonts makes it difficult to know the size (in pixels) of the resulting string. The size
will depend on the font, font size and the characters written. The function ImageTTFBox() can be used to
calculate the size of the surrounding box for a given text. This is useful if you want to check if a given string
fits on the image or you want to center the text.

 How it Works
 The first example shows how to use the ImageString() function to add a text to an image.

CHAPTER 8 ■ DYNAMIC IMAGING

192

 <?php
 // 8_21.php

 $img = ImageCreateTrueColor(250, 50);
 ImageFill($img, 0, 0, 0xffffff);
 ImageString($img, 4, 10, 10, "PHP Recipes", 0);
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :
 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 This will generate an image like the one shown below:

 There is a similar function called ImageChar() . In general it takes the same parameters as ImageString
but it will only draw the first character of the string value passed.

 To create a similar image using TrueType fonts you need a version of PHP where TrueType/FreeType
is compiled into the GD extension. This is not standard on Mac OSX but it's available on most Linux
distributions. The code would look something like this:

 <?php
 // 8_22.php

 $img = ImageCreateTrueColor(250, 50);
 ImageFill($img, 0, 0, 0xffffff);
 ImageTTFText($img, 12, -10, 10, 10, 0, "Verdana.ttf", "PHP Recipes");
 $f = $_GET['f'] ?: 'gif';
 switch (strtolower($f)) {
 case 'jpg' :
 case 'jpeg' :
 header('Content-Type: image/jpeg');
 ImageJPEG($img);
 break;
 case 'png' :

CHAPTER 8 ■ DYNAMIC IMAGING

193

 header('Content-Type: image/png');
 ImagePNG($img);
 break;
 default :
 header('Content-Type: image/gif');
 ImageGIF($img);
 break;
 }
 ImageDestroy($img);

 And the resulting output would be an image with the text:

 Besides the fact the text is slanted on a 10 degree angle there is another difference between the two ways
of drawing text. This has to do with the positioning of the text. ImageString() takes the upper-left corner of
the text and places it at the coordinates specified in the function call. The function ImageTTFText() takes the
lower-left corner and positions it at the coordinates provided.

 Recipe 8-11. Caching Images
 Problem
 Although images can be created, scaled, and rotated, etc., it is not optimal to do so on every request. These
image manipulations take many CPU cycles and, to some extent, memory. Holding onto these resources for
a long time will reduce the number of requests the server is capable of handling within a given time frame.

 Solution
 Images that can be generated once and stored on the disk to be shared with other users will provide a much
better performance. The very first user who is accessing an image could experience load time if the image
generation is handled as part of the request. If this becomes a problem the image generation can be linked to
the upload process or an offline process that detects new images and generates the needed files.

 How it Works
 This example is an extension to Recipe 8-6 for adding a watermark to an image. If your web site is hosting
images that you want to protect from being copied and used elsewhere you might create lower resolution
versions and add a watermark with your logo. Instead of doing this on every request a caching system can be
implemented that checks if the requested image exists on the desk and use that instead.

 In the next example a script takes three parameters (file name and maximum width) to show how we
can look for a previously generated image and use that if it exists; otherwise create a new image based on the
parameters, save it to disk for the next request, and return it to the user.

CHAPTER 8 ■ DYNAMIC IMAGING

194

 <?php
 // 8_23.php

 $file = $_REQUEST['file'] ?: 'IMG_0099.JPG';
 $max_width = $_REQUEST['w'] ?: 600;

 if (file_exists($file)) {
 $orig = GetImageSize($file);
 header('Content-Type: ' . $orig['mime']);
 header('Content-Disposition: inline; filename="'. $file . '"');

 if (!file_exists("_" . $file)) {
 if ($orig[0] > $max_width) {
 $src = ImageCreateFromJpeg($file);
 $img = ImageScale($src, $max_width);
 ImageDestroy($src);
 $orig[0] = ImageSX($img);
 $orig[1] = ImageSY($img);
 }
 else {
 $img = ImageCreateFromJpeg($file);
 }
 $wm = GetImageSize('watermark.png');
 $watermark = ImageCreateFromPng('watermark.png');
 if ($orig[0] > $wm[0]) {
 $width = $wm[0];
 $height = $wm[1];
 $x = ($orig[0] - $wm[0]) / 2;
 $y = ($orig[1] - $wm[1]) / 2;
 }
 else {
 $d = $orig[0] / $wm[0];
 $width = $orig[0];
 $height = $wm[1] * $d;
 $x = 0;
 $y = ($orig[1] - $height) / 2;
 }
 ImageCopyResampled($img, $watermark, $x, $y, 0, 0,
 $width, $height, $wm[0], $wm[1]);
 switch ($orig[2]) {
 case IMG_JPG :
 case IMG_JPEG :
 ImageJPEG($img, '_' . $file);
 break;
 case IMG_PNG :
 ImagePNG($img, '_' . $file);
 break;
 case IMG_GIF :
 ImageGIF($img, '_' . $file);
 break;
 }

CHAPTER 8 ■ DYNAMIC IMAGING

195

 ImageDestroy($watermark);
 ImageDestroy($img);
 }
 readfile("_" . $file);
 }

 The first step is to get two parameters for file name and max width. Then there is a check for a cached
version of the file. In this case an underscore is used in front of the filename to indicate that the file is
cached. We could also include the width of this image. This will allow us to have multiple versions of the
same image cached. This could be one for thumbnail and one for a preview, for example. If the cached file is
missing the script will scale the image to the max size if needed and then add the watermark. In this case the
three Image...() functions use an extra parameter that will cause the image to be saved to disk instead of
returned to the client. The last step is to read the image file from disk and send it to the client.

197© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_9

 CHAPTER 9

 Regular Expressions

 PHP is often described as a templating language where HTML sections and script are mixed to generate
HTML documents for rendering in a browser. As the web technology is advancing PHP is used to generate
other types of content (JSON, see chapter 14 ; and images see chapter 8 , etc.) and the PHP scripts contain less
embedded HTML sections. Instead the script will read a template from disk or a database and perform string
replacements on the content before sending it to the client.

 Simple string replacements can be done with the str_replace() function , but this function will replace
a fixed string of characters with a different string of characters and unless the str_ireplace() version of the
function is used the replacement is case sensitive. It is possible to create other types of logic with the use of
the str_pos() and substr() functions , but that often ends up creating complex logic that can be difficult to
maintain, and because it’s written in PHP it might not be the most efficient use of resources.

 With the Regular Expression functions it is possible to do advanced search and/or replace functionality
with very few lines of code. The syntax for regular expressions is very powerful but can sometimes be hard to
understand.

 In the early days of PHP the regular expressions were made up of a few system functions: ereg() ,
 erigi() , ereg_replace() , and eregi_replace() . These functions were deprecated in PHP 5.3 and removed
completely in PHP 7.0. The functions are replaced with a more powerful library called Perl Compatible
Regular Expressions (PCRE). The PCRE library is bundled with the PHP source and is enabled standardly by
most PHP distributions on Linux, OSX, and Windows.

 The heart of regular expressions is a pattern or sequence of characters that describes the expression.
The expression is made of a number of components called metacharacters, character classes, subpatterns,
qualifiers, and branches.

 A metacharacter is a regular character with a special meaning for the expression. This can be an escape
character that can change the meaning of the character following the escape. The backslash ‘\’ character is
used as the escape character and it will turn the character ‘n’ into a new line by adding the backslash in front
‘\n’. It can also be used to turn a metacharacter into a regular character like ‘\ (’ or ‘\)’ etc. Table 9-1 shows a
full list of supported metacharacters.

http://dx.doi.org/10.1007/978-1-4842-0605-8_14
http://dx.doi.org/10.1007/978-1-4842-0605-8_8

CHAPTER 9 ■ REGULAR EXPRESSIONS

198

 Table 9-1. Meta characters

 \ Escape character

 ̂ Matches the beginning of the string or line

 $ Matches the end of string or line

 [Start of character class

] End of character class

 (Start of subpattern

) End of subpattern

 . Match any character

 * Qualifier to repeat 0 or more times

 + Qualifier to repeat 1 or more times

 { Start qualifier range

 } End qualifier range

 ? Allows the pattern to be there or not

 A character class is defined with square brackets []. This can define a list or range of characters. [abc]
will match any of the characters a, b, or c and [a-z] will match any character between a and z. A character
call will match a single character in the subject string, but they can be used with repetitions to match any
number of characters all being defined by the character class.

 Subexpressions or sub patterns are created with regular parentheses () and are used for both grouping
and to extract specific portions of a pattern for further use.

 Finally the qualifiers are used to indicate that something is repeated. The asterisk * indicates 0 or more
repetitions, the plus + indicates 1 or more repetitions, and with the use of curly brackets {} you can specify
either a fixed number of repetitions or a range like {3,7}, which will take the pattern before the qualifier
and allow repetition between 3 and 7 times. The asterisk and plus are short for {0,} and {1,} indicating 0
or more and 1 or more. The same way the question mark could be written as {0,1} meaning 0 or 1 of the
preceding element.

 The repetition qualifiers can be used after a single character as a{1,3} indicates a string with 1, 2, or 3 a’s.
When used after a character class [^”]* it means that the class defines any character but the double quotes
and is repeated 0 or more times. And if used with a subpattern ([a-z0-9]+\.){2,4}, it indicates that the pattern
must match a string of 2 to 4 sections where each section contains 1 or more characters from a-z or the
numbers 0-9, and each section is ended with a period.

 There are three metacharacters, as listed in Table 9-2 , that can be used inside a character class. Besides
the general escape character it’s the ^ for negation and the – for ranges.

 Table 9-2. Metacharacters in a character class

 \ General escape character

 ̂ Negate. When used as the first character in a character class the class will match any
character but the one listed in the class

 - Range separator

CHAPTER 9 ■ REGULAR EXPRESSIONS

199

 There are a number of characters that gives a special meaning when they are preceded by the escape
character. Some of these are listed in Table 9-3 . Please see the PHP documentation for a full list:
 http://php.net/manual/en/regexp.reference.escape.php.

 Table 9-3. Special characters

 \b A word boundary. This can be a space, a period, or other characters.

 \d A decimal digit

 \D Any character that is not a decimal digit

 \n New line

 \r Carriage return

 \t Tab

 \s A whitespace character (space, newline, tab, etc.)

 \S A character that is not a whitespace character

 This concludes the brief description of the building blocks of a regular expression. In practice there
is a bit more to it. The expression is typically placed between two slashes and when used in PHP you also
need to place the entire expression in quotes to create a string. In JavaScript it’s not necessary to create the
expression as a string as the language natively supports the regular expression. A regular expression that
matches any instance of the word ‘new’ is written like this: /new/.

 Although the / is commonly used as the delimiter it is also valid to use a hash sign (#), plus (+), and
percentage (%). /new/, #new#, +new+ and %new% are all the same regular expression.

 One benefit of using different delimiters is it eliminates the need to use the escape character. If you want
to create a regular expression that matches a specific protocol like http:// it would be written as this when
the / delimiter is used:

 /http:\/\/(.*)/

 And by using the # delimiter it would look like this:

 #http://(.*)#

 This is perhaps a bit more readable but both provide the exact same result.
 In addition to the building blocks of regular expressions there are a couple of modifiers. These are

identified by characters placed after the closing delimiter (/). In PHP there are a number of modifiers that
can be used to change how the expression works. Table 9-4 lists some of these. A full list can be found here:
 http://php.net/manual/en/reference.pcre.pattern.modifiers.php .

 Table 9-4. Modifiers

 i Make the pattern case insensitive.

 m Treat the subject as a multiline subject. Without this modifier the pattern will be treated as a
single line string where ^ and $ will match the beginning and ending of the string, even if the
string contains new line characters. If the m modifier is used ^ and $ will match the beginning
and end of each line in the string.

 s Changes how the dot (.) metacharacter works. Without this modifier the dot will not match
newline characters.

 u This modifier will cause the pattern and subject strings to be treated as UTF-8 encoded strings.

http://php.net/manual/en/regexp.reference.escape.php
http://php.net/manual/en/reference.pcre.pattern.modifiers.php

CHAPTER 9 ■ REGULAR EXPRESSIONS

200

 With the expression from before /new/ we can add a modifier that will match all possible upper- and
lowercase versions of the word new by assigning the I modifier /new/i.

 Recipe 9-1. Format Validation
 Problem
 Regular expressions can be used in both PHP and Javascript to validate the input from a user. Validating
the input in the browser with Javascript can be used to prevent the submission of a form with invalid data,
but the data should still be validated on the server side as there is no guarantee that the client validated the
content before submitting the request. The post could come from a non-browser-based client.

 How can we use regular expressions to validate things like e-mail addresses or phone numbers?

 Solution
 Any content validation starts with a definition of the pattern to validate. An e-mail address will always
contain some letters and/or numbers followed by the @ character, followed by more letters and numbers
then a dot and some more letters. A simple validation pattern can be created with a character class, the @
character, another character class, a dot, and a final character class.

 /[a-zA-Z0-9]+@[a-zA-Z0-9]+\.[a-zA-Z0-9]+/

 This can be made a bit shorter by using the case insensitive modifier.

 /[a-z0-9]+@[a-z0-9]+\.[a-z0-9]+/i

 In this example we allow characters from a-z and A-Z as well as numbers in all three character classes
and the + sign after each indicates that we need at least one character from the character class in each of
these locations.

 Not too long ago the top-level domain (the characters after the last dot) was two or three characters but
lately top-level domains with more letters such as f.eks. .info, .software, and other longer names require that
more characters are allowed.

 A phone number also follows some patterns. Depending of the country those patterns might vary a bit.
A U.S. phone number is usually described with the country code 1 followed by 10 digits. These digits are
often separated with spaces, dashes, parentheses, etc., to increase readability.

 The pattern to validate a U.S. phone number could look something like this:
 1?\d{7}|\d{10} this will allow an optional leading 1 for the country code and 7 or 10 digits. This format

will not allow the user to enter spaces or other characters and we could allow for that by extending the
expression to 1?\d{7}|\d{10}|(\d{3} \d{3} \d{4}), or written as the full regular expression:

 /1?\d{7}|\d{10}|(\d{3} \d{3} \d{4})/

 This pattern will allow a string that starts with an optional one followed by one of 3 options; 7 digits, 10
digits or 10 digits with 3 spaces in the format ### ### ####.

 How it Works
 In this first example we take the input from a post request that contains a value with the name e-mail. Only if
the field contains a valid e-mail address will it be added to the database.

CHAPTER 9 ■ REGULAR EXPRESSIONS

201

 <?php
 // 9_1.php

 function AddEmail($email) {
 // do the database query.
 echo "$email was added to the database\n";
 }

 if ($_POST['email']) {
 if (preg_match("/[a-z0-9]+@[a-z0-9]+\.[a-z0-9]+/i", $_POST['email'])) {
 AddEmail($_POST['email']);
 }
 }

 It is assumed that the function AddEmail() will take an e-mail address and add a row to a database table.
 The function of interest in this example is the preg_match() function. This function takes at least two

parameters where the first is the pattern and the second is the subject. If the subject matches the pattern it
will return true; otherwise it will return false.

 With the expression used above it would be possible for the user to enter more than the valid e-mail
address and get that full string inserted into the database. This can be prevented by using the third
parameter, called $matches . This is used to return the actual values that match the pattern. $matches will
return an array of all the strings that match. So instead of calling the AddEmail() function with the input
provided by the user we take the value that is returned from the preg_match() function .

 <?php
 // 9_2.php

 function AddEmail($email) {
 // do the database query.
 echo "$email was added to the database\n";
 }

 if ($_POST['email']) {
 if (preg_match("/[a-z0-9]+@[a-z0-9]+\.[a-z0-9]+/i",
 $_POST['email'],
 $matches)) {
 AddEmail($matches);
 }
 }

 With this code the user can write “email@example.com,” “My Name email@example.com,” or
“My Name <email@example.com>” and the regular expression will pick out the e-mail address portion and
add just that to the database.

 In the next example we will look closer at the phone number example from before. With the pattern
/1?\d{7,10}|(\d{3} \d{3} \d{4})/ there is no need to use the I modifier as only digital digits are of interest,
but it might be useful to get rid of anything that is not a digit before inserting the number into the database.
This can be done with the preg_replace() function. This function works a bit like str_replace() but
instead of matching one or more predefined strings it uses a regular expression to find the sections of
the string to replace. If we assume the user can enter numbers, spaces, dots, dashes, and parentheses in
the phone number field we could get rid of those with the use of the str_replace() function by doing
something like this:

CHAPTER 9 ■ REGULAR EXPRESSIONS

202

 <?php
 // 9_3.php

 $phone = str_replace([' ','.','-','(',')'],
 ['','','','',''],
 $_POST['phone']);

 To do the same operation with a regular expression, we use a character class that defines anything
that is not a digit [^\d] and replace that with the empty string. The regular expression will get rid of
anything that is not a digit. In the example above it’s only the special characters listed in the first array that
will be removed.

 <?php
 // 9_4.php

 $phone = preg_replace("/[^\d]/", "", $_POST['phone']);

 With all the non-digits removed it’s easy to perform the validation to check if the user entered enough
digits for the number to be a valid U.S. phone number. That would require 10 or 11 digits with the first digit
being a 1. Checking the length of the string alone will not work but the check could be done without regular
expressions:

 <?php
 // 9_5.php

 $phone = preg_replace("/[^\d]/", "", $_POST['phone']);
 if (strlen($phone) == 10 || (strlen($phone) == 11 && $phone[0] == '1')) {
 echo "$phone is a valid US number\n";
 }

 To do the same check with a regular expression would be a bit shorter:

 <?php
 // 9_6.php

 $phone = preg_replace("/[^\d]/", "", $_POST['phone']);
 if (preg_match("/^1?\d{10}$/", $phone)) {
 echo "$phone is a valid US number\n";
 }

 Note that the metacharacters ^, ?, and $ are used in the pattern. The ^ makes a thematic start at the
beginning of the line, and then look for an optional 1 and then finally 10 digits at the end of the line. Without
the ^ in the beginning and $ at the end, the pattern could match other numbers that have more than 10 or
11 digits. This would be the case for the string of numbers 00 13215554444 99 that would be matched by the
pattern /1?\d{10}/ as indicated with the bold digits.

CHAPTER 9 ■ REGULAR EXPRESSIONS

203

 Recipe 9-2. SubPatterns
 Problem
 In the previous example the branching (|) was used to define multiple options of content, but how can the
parser know when the last option ends?

 Solution
 The solution is subpatterns. These are defined surrounding the patterns with parentheses. To look for multiple
phrases: new car, new house, or just the word new by itself we could create a pattern that looks like this:

 /new|new car|new house/

 This can be written more efficiently by using subpatters. The word new is used in the beginning of all
three branches so that can be pulled outside of a subbranch like this:

 /new(car| house|)/

 Note that there is nothing between the last pipe and the closing parentheses. This allows an empty
branch in the subpattern. Putting the empty string at the beginning of the subpattern will not work.

 How it Works
 The next example shows how a regular expression can be used to scan a text and find all the instances of
the phrases new, new car, and new house. The approach here is to start with the preg_match() function
used in the previous examples.

 <?php
 // 9_7.php

 $txt = "I got a new car and I'm now looking for a new house";
 if (preg_match("/new((car| house)|)/", $txt, $matches) {
 print_r($matches);
 }

 The output of this is an array of three elements. The first element with index 0 corresponds to the string
found by the entire pattern. The following two elements correspond to the matching string for each of the
subpatterns.

 Array
 (
 [0] => new car
 [1] => car
 [2] => car
)

CHAPTER 9 ■ REGULAR EXPRESSIONS

204

 This shows that the preg_match() function only returns the first instance found. It is possible to pass a
parameter with a character count used as an offset for where the search should start.

 To get all the strings that matche the pattern in the subject string we can use the function preg_match_
all() instead. This function will return an array of arrays, where the first array contains all the strings found
matching the full pattern and then an array for each of the subpatterns.

 <?php
 // 9_8.php

 $txt = "I got a new car and I'm now looking for a new house";
 if (preg_match_all("/new((car| house)|)/", $txt, $matches)) {
 print_r($matches);
 }

 The output looks like this:

 Array
 (
 [0] => Array
 (
 [0] => new car
 [1] => new house
)

 [1] => Array
 (
 [0] => car
 [1] => house
)

 [2] => Array
 (
 [0] => car
 [1] => house
)

)

 Having the matches for each of the subpatterns as well as the full pattern, is useful as it’s not necessary
to call the preg_match() function multiple times to get this information. In the next example a list of e-mail
addresses with varying amounts of information is used to generate two lists. The first is a list of names and
the second is a list of e-mail addresses. Starting with a regular expression that will match any of the lines
could look like this: /^”?[a-z0-9,]*”? ?<[a-z0-9]+@[a-z0-9]+.[a-z0-9]+>$/mi. This pattern does not contain
any subpatterns so the returned array will be a list of the matches to the full pattern. Adding a couple of
subpatterns makes it possible to separate out the name and e-mail portions. /^”?([a-z0-9,]*)”? ?<([a-z0-
9]+@[a-z0-9]+.[a-z0-9]+)>$/mi. The subpattern for the name portion uses the * meta character that specifies
0 or more repetitions of the character class and the two quotation marks and the space between name and
e-mail address are made optional with the question marks.

CHAPTER 9 ■ REGULAR EXPRESSIONS

205

 <?php
 // 9_9.php

 $emails = <<<HEREDOC
 Joe Smith <smithj@example.com>
 "Scott, Colin" <scottc@example.com>
 <new@example.com>
 some other content
 HEREDOC;

 if (preg_match_all(
 '/^"?([a-z0-9,]*)"? ?<([a-z0-9]+@[a-z0-9]+.[a-z0-9]+)>$/mi',
 $emails, $matches)) {
 echo "names: " . implode(", ", $matches[1]) . "\n";
 echo "emails: " . implode(", ", $matches[2]) . "\n";
 }

 The output is just two lines of comma-separated lists.

 names: Joe Smith , Scott, Colin,
 emails: smithj@example.com, scottc@example.com, new@example.com

 One of the e-mail addresses in the list does not have a name. That’s why the output for the names has a
trailing comma. All the arrays in the $matches variable will have the same number of elements.

 Note that the first name ‘Joe Smith’ is listed with a trailing space. That happens because there is no
clear way to determine if the space belongs to the name or is the optional space between the name and the
e-mail address. E-mail addresses, and especially RFC822 addresses, are very complex and to take all the
possible options into account in one single regular expression would create a very long pattern. It is most
likely more efficient and readable to make a regular expression that matches only a subset of the allowed
combinations. A good reference to documentation and to test patterns in a dynamic environment can be
found at http://regexr.com/ .

 Recipe 9-3. String Replacement
 Problem
 In Recipe 9-1 it was shown how to use preg_replace() to find a string from a pattern and replace all
instances of that string with a new static string. How can this be used if part of the matching substring should
be retained? In other words, how can the replace function use some of the content found when creating new
values in the string?

 Solution
 The solution is to use subpatterns and special placeholders that will be used to substitute the values.
Subpatterns are numbered based on the order they show up in the pattern. The first parenthesis will indicate
the start of the first subpattern and it will be referenced with the index 1. This is inline with the numbering
within the arrays returned from preg_match() and preg_match_all() functions. Subpatterns can be
contained within other subpatterns and the numbering follows the order in which the opening parenthesis
for the pattern is located in the pattern.

http://regexr.com/

CHAPTER 9 ■ REGULAR EXPRESSIONS

206

 A specific subpattern is referenced with the escape character followed by the index of the subpattern,
when replacing strings. If the replacement string is provided as a double quoted string the backslash must be
escaped. Otherwise the string will try to use an escaped version of the index.

 The PCRE replace function is called preg_replace() and it takes three parameters. The first is the
regular expression pattern that is used to match sections of the subject string, the second parameter is
the replacement string, and finally the third parameter is the subject string where the replacements are
performed. This is similar to the str_replace() function.

 How it Works
 HTML documents contain images and other resources that are often referenced with a src attribute and a
relative URL. This works well when the HTML document is sent as a response to a request to the web server,
but if the same HTML document is embedded in an e-mail, fully qualified URL’s are needed for the e-mail
client to be able to render the images.

 If all the relative URL’s are known it’s easy to replace them using the str_replace() function but in
most cases the exact URL’s are unknown. The only thing that is known is the pattern src=“/some/path/
image.” This can be turned into a regular expression /src=“[^”]*”/. This expression does not contain any
subpatterns so in order to be able to identify the URL portion a subpattern is introduced by adding ()
around [^”]*. The final pattern becomes /src=“([^”]*)”/. The character class in the subpattern will match any
character except the double quote that is expected to end the src attribute.

 <?php
 // 9_10.php
 $html = <<<HEREDOC

 HEREDOC;
 $body = preg_replace('/src="([^"]*)"/mi',
 'src="http://mydomain.com\1"', $html);
 echo $body;

 In this case the pattern and replacement string is created as single quoted strings. If double quoted
strings were used the patterns would look slightly different as both the double quotes and the escape
characters would have to be escaped.

 $body = preg_replace("/src=\"([^\"]*)\"/mi",
 "src=\http://mydomain.com\\1\", $html);

 This script will output the reformatted html that looks like this:

 In this example it’s assumed all URL’s are absolute with regards to the document root (starts with a
slash) and no URL’s are fully qualified. To handle the various ways URL’s can be written we can use the
 preg_match_all() function to identify all the places that potentially needs replacement and loop over all the
matches and replace them one at the time.

CHAPTER 9 ■ REGULAR EXPRESSIONS

207

 <?php
 // 9_11.php
 $html = <<<HEREDOC

 HEREDOC;
 if (preg_match_all('/src="([^"]*)"/mi', $html, $matches)) {
 foreach ($matches[0] as $i => $str) {
 if ($matches[1][$i][0] == "/") {
 $html = str_replace($str,
 "src=\"http\"//mydomain.com{$matches[1][$i]}\"",
 $html);
 }
 else if (substr($matches[1][$i], 0, 7) == "http://" ||
 substr($matches[1][$i], 0, 8) == "https://") {
 // Do nothing the URL is complete.
 }
 else {
 $dir = dirname($_SERVER['REQUEST_URI']);
 $html = str_replace($str,
 "src=\"http\"//mydomain.com/{$dir }/{$matches[1][$i]}\"",
 $html);
 }
 }
 }
 echo $html;

 The $matches array will have two elements (arrays). The first will contain the matches to the full pattern
and the second (index 1) will contain the matches to the first subpattern. There will be the same number
of elements in both arrays. The loop iterates over the first array and the index ($i) is used to reference
corresponding elements in the second array.

 In the example above the HTML contains four images with URL’s written in different ways. The first URL
is absolute from the document root. Only the domain name should be added to this one. The second URL
is relative to where the current script is executed from. In this case the domain and the path to the file are
added. The third URL is also absolute to the document root and the fourth and last URL is an absolute URL
to a different web site so no need to do anything with this one.

 When the script is executed from a directory called folder the output will look like this:

209© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_10

 CHAPTER 10

 Variables

 Variables are used to store data temporarily in memory. Variables only exist as long as the PHP script is
running. They are identified with a dollar sign followed by a name. The name of a variable can begin with a
letter (a-z or A-Z) or an underscore. Any of the following characters can be a number, a letter, or any ASCII
character from 127 to 255 (0x7f – 0xff). There is no restriction on the number of characters in the name.
Variable names are case sensitive so $var , $Var , and $VAR will be three different variables.

 PHP is a loosely typed language where variables can change type depending on the result of a
calculation or operation. If an integer value is increased above the maximum size it will be converted to a
floating point value. If an integer is used as part of a string operation it will be converted to a string.

 The use of the dollar sign to designate variables makes it possible to use the same name for variables
and functions like in the case with the built-in function date() and the variable $date . The statement
 $date = date('c'); will generate a string with the current date formatted according to the ISO 8601 standard.

 PHP has a set of predefined variables that will be available based on the version of PHP, the type of web
server, the configuration, the type of HTTP request, and other factors. A full list of these predefined variables
can be found in the online PHP manual: http://php.net/manual/en/reserved.variables.php . These
variables typically contain information about the environment, parameters passed to the script, etc.

 It is not necessary to perform any special declaration of variables before using them; simply define it by
writing the dollar sign followed by the name when it's needed. Variables can be used in an assign statement
or it can be part of a statement or calculation. If no value has been assigned to the variable when it's used in
a statement the system might produce a notice. This depends on the configuration of error_reporting in
 php.ini . This does not happen when assigning a value to a new variable but if a value is used without getting
a value assigned the notice will be issued and a default value will be used. This can be an empty string or an
integer with the value 0 depending on the context the variable is used in.

 Recipe 10-1. Converting Variable Type
 Problem
 In a loosely typed language like PHP there is no way to define a variable to be of a specific type. The result of
the calculation determines the actual type used.

 Solution
 Overwriting the variable with a new value or casting the values to a different type can help the programmer
control the specific type a variable has.

http://php.net/manual/en/reserved.variables.php

CHAPTER 10 ■ VARIABLES

210

 How it Works
 A variable does not have a strict type and the type of any variable can be changed at any time during
execution simply by assigning it a value of a different type or by casting to a new type. In the following
example the variable $a is assigned an integer value of 5 and then a string value. The reference to the integer
value is lost when a new value is assigned and the memory used by the integer is released. The variable $b is
also assigned an integer value of 5 and then it's converted to a string and assigned back to itself.

 <?php
 // 10_1.php
 $a = 5;
 $a = "Some string";
 $b = 5;
 $b = (string)$b;

 PHP will try to convert any variable value to best match the context the variable is used in. If the variable
is a string and it's used in a math operation it will be converted to a numeric value before the math operation
is applied. This might lead to the value of 0 if the sting can't be converted to a numeric value. The conversion
of the variable type is only temporary and it does not affect the variable itself. It is necessary to allow the
comparison or calculation to become meaningful.

 In the following example two variables (integer and string) are compared. This will be done by
converting the string “10” to the integer value 10 before the two are compared.

 <?php
 // 10_2.php
 $a = 5;
 $b = "10";
 if ($b > $a) {
 echo '$b is greater than $a';
 }

 Recipe 10-2. Allocating Memory
 Problem
 When variables are defined and assigned values the system will handle all memory allocation needed based
on the type and size of data. It will also allocate memory as needed when the variable changes size. The
limit on available memory is handled by the configuration option memory_limit in php.ini . If the memory
exceeds the maximum allowed size a fatal error will be thrown and the execution will stop. For performance
reasons it's recommended to keep this configuration to a low value but large enough to be able to handle the
memory needed for any requests to the web site.

 Using many variables or storing large sets of data in arrays or strings might cause memory overflow. In
these cases it is convenient to get rid of unused variables and release the memory used by them.

 Solution
 In most cases it's not necessary to get rid of variables or free memory. All references to them are removed
automatically when the script ends and all memory used will be released back to the system. With PHP's
primary usage being to generate responses to HTTP requests the script should not be running for more than
a few seconds or even a few hundred milliseconds. If the script works on large datasets it can help on memory
consumption to remove references to variables that are no longer needed for the execution of the script
before assigning values to new variables. This will help the memory usage to stay under the configured limit.

CHAPTER 10 ■ VARIABLES

211

 How it Works
 If the script is used to serve dynamic content to the web browser the script usually terminates fast and in
most cases it's not necessary to perform cleanup even for large datasets. In some cases the memory limit will
not make it possible to keep large amounts of data in memory and it might be necessary to process the data
in batches. If the script is executed from the command line or as a cron job it might run for a long time and
process large amounts of data. In those cases it's always good to be conservative and free up unused resources.
Releasing memory is done by assigning a null value to the variable or by using the unset() function.

 <?php
 // 10_3.php
 $a = array("abc", "def", "ghi");
 $a = null;

 $a = array("abc", "def", "ghi");
 unset($a);

 Both methods will get rid of the data and free the memory and if isset() , empty(), or is_null() is
used to check the variable they will all give the same result and that would be false, true, and true. The next
example shows the use of the three functions on a variable that's assigned a null value or unset with the
 unset() function.

 <?php
 // 10_4.php
 $a = 5;
 $a = null;
 var_dump(isset($a));
 var_dump(empty($a));
 var_dump(is_null($a));
 unset($a);
 var_dump(isset($a));
 var_dump(empty($a));
 var_dump(is_null($a));

 will produce the following output:

 bool(false)
 bool(true)
 bool(true)
 bool(false)
 bool(true)
 bool(true)

 The result is shown with line breaks as when the code is executed with the CLI version of PHP. Adding
the header for Content-Type and setting it to text/plain will give the same result in a browser.

CHAPTER 10 ■ VARIABLES

212

 Recipe 10-3. Determining Memory Use
 Problem
 Working on large sets of data or when debugging the use of system resources, it's advantages to know how
much memory the script is using.

 Solution
 PHP has a couple of built-in functions to check the actual memory use of the current script. These are called
 memory_get_usage() and memory_get_peak_usage() . The functions return the values in bytes used. To
get kb, Mb, and Gb, etc., these results must be divided with a multiple of 1024 (2 to the power of 10). The
first function returns the current memory usage and the second one returns the maximum usage during
execution. Both functions will return the memory usage in bytes.

 How it Works
 The following example shows how an array grows from empty to holding 100 elements and how memory
usage is increased and decreased when elements are added and removed.

 <?php
 // 10_5.php
 $a = array();
 for ($i = 0; $i < 100; $i++) {
 $a[] = "This is a short string";
 echo "Memory usage for $i elements = " . memory_get_usage() . "\n";
 }
 while (($i = sizeof($a))) {
 echo "Memory usage for $i elements = " . memory_get_usage() . "\n";
 unset($a[$i - 1]);
 }
 echo "Maximim memory usage = " . memory_get_peak_usage() . "\n";

 This script produces a fairly long amount of output. Below is a listing of the first few lines.

 Memory usage for 0 elements = 352736
 Memory usage for 1 elements = 352768
 Memory usage for 2 elements = 352768
 Memory usage for 3 elements = 352768
 Memory usage for 4 elements = 352768
 Memory usage for 5 elements = 352768
 Memory usage for 6 elements = 352768
 Memory usage for 7 elements = 352768
 Memory usage for 8 elements = 353088
 Memory usage for 9 elements = 353088
 Memory usage for 10 elements = 353088
 Memory usage for 11 elements = 353088
 Memory usage for 12 elements = 353088
 Memory usage for 13 elements = 353088
 Memory usage for 14 elements = 353088
 Memory usage for 15 elements = 353088
 Memory usage for 16 elements = 353728

CHAPTER 10 ■ VARIABLES

213

 The first loop adds the same string to the array 100 times and each time the memory usage is printed
out. The second loop runs as many times as the array has elements and each time the current memory usage
is printed and the last element of the array is removed.

 Recipe 10-4. Taking Advantage of Variable Scope
 Problem
 The same variable can be used in different places of the code and hold different values. Thus the same name
can be used to designate different variables. This is often the case with temporary variables or variables used
in loops ($i, $j, $k).

 Solution
 Variables are valid within the scope they are defined. The most basic scope in PHP is the global scope. In
addition to the global scope PHP has a class scope and a function/method scope. Variables defined in the
global scope are only valid and available in the global scope. If the same variable name is used for variables
in different scopes they are considered to be two different variables unless special measures are used to
reference the same variable.

 It is always recommended to use unique variable names to avoid confusion.

 How it Works
 In the following example the variable $a is defined in the global scope and assigned the value of 5. $a is also
defined as a variable in the MyTest() function and here it is assigned the value of 7. At runtime the function
is called and the local version of $a is assigned but the function ends before it does anything else and the
local version of $a is discarded. The global variable $a is not affected by the function.

 <?php
 // 10_6.php
 $a = 5;
 function MyTest() {
 $a = 7;
 }
 MyTest();
 echo $a;

 It is possible to access variables from the global scope from within a function or class method. By using
the keyword global in front of the variable before the first usage of the variable will make the local variable a
reference to the global variable and any updates to the local variable will also affect the global variable. If the
variable is undefined in the global scope it will be defined in the global scope and any value assigned to it
will be preserved after the function ends.

 In the following example the internal variable $a is assigned a value of 7. Later in the same function $a
is changed to be a reference to the global version of $a and then assigned a new value. So after executing this
script the value of the global version of $a becomes 6. When the variable is changed from a local variable to a
reference to the global variable, the local value is lost.

CHAPTER 10 ■ VARIABLES

214

 <?php
 // 10_7.php
 $a = 5;
 function MyTest() {
 $a = 7;
 global $a;
 $a = 6;
 }
 MyTest();
 echo $a;

 Recipe 10-5. Avoiding Global Variable Problems with
Super Globals
 Problem
 Accessing global variables with the use of the global keyword can cause issues if you forget to use it. In that
case the variable becomes a local variable and the code will behave differently than expected.

 Solution
 An alternative to using the global keyword is to use what's called a super global to reference variables from
the global scope. Super globals are predefined variables that are accessible in the global scope as well as
any function or method scope without the use of the global keyword. These are populated with get ($_GET),
post ($_POST), cookie ($_COCKIES), environment ($_ENV), server ($_SERVER), and a special version for global
variables ($GLOBALS).

 The availability of the super globals is controlled by a configuration option in php.ini called
 variables_order . This configuration is a string of any of the letters E, G, P, C, and S, which is short for
Environment, Get, Post, Cookie, and Server. If the configuration is set to the empty string, none of these
super globals will be populated.

 How it Works
 The super globals are all associated arrays (key value pairs) and the variable names all start with $_ with the
exception of $GLOBALS . That's for historical reasons as it was named like this before any of the other super
globals were introduced to the language. The next example shows how to use the $GLOBALS variable to
change the value of a global variable.

 <?php
 // 10_8.php
 $a = 5;
 function MyTest() {
 $GLOBALS['a'] += 7;
 }
 MyTest();
 echo $a;

CHAPTER 10 ■ VARIABLES

215

 When a script uses a combination of GET (query string) and POST (request body) requests it is possible
to access the contents in a single super global called $_REQUEST . This can simplify the code so only one
variable is checked for the existence of specific values instead of checking both $_GET and $_POST . The
elements of this array are populated in the order specified by the configuration option request_order and if
that's not defined the system will use the same order as used in configuration variables_order .

 If the request_order is set to “GP” the system will take all variables corresponding to the $_GET array
first and then apply all values from $_POST . If the same index exists in both arrays the $_REQUEST variable will
only contain the value from $_POST . Changing the configuration to "PG" will change the order and if it's set
tp "P" or "G" the $_REQUEST variable will only contain get or post values.

 Recipe 10-6. Determining Variable Type
 Problem
 Variables in PHP can change type based on assignments and results of calculations, etc. How can we know
the actual type of a given variable?

 ■ Note Recipe 10-1 covers how to change the type of a PHP variable.

 Solution
 The basic variable types in PHP are integer, float, string, array, object, and resource and each of these have
a corresponding function that will check the data type and return true or false depending on the actual type
of the variable: is_integer() , is_float() , is_string() , is_array() , is_object(), and is_resource() .
In addition to these there are a couple of other is_* functions that can be used to check the content of a
variable; is_numeric() , is_nan() (not a number), is_finite() , is_infinite() , is_null() , empty() and
 isset() . The names empty() and isset() are kept this way for historical reasons to preserve compatibility
with older versions of PHP.

 How it Works
 When integers are assigned values greater than PHP_INT_MAX constant the variable will automatically change
to a float. The actual value of PHP_INT_MAX depends on the platform and version of PPHP. For 32-bit versions
the value is 2 to the power of 31 and for 64-bit values the value is 2 to the power of 63. The last bit is used for
the sign as all integer values in PHP are signed.

 Instead of checking a variable for a specific type the gettype() function can be used to get a string
representation of the type. The possible return values for gettype() are one of the strings “Boolean,” “integer,”
“double,” “string,” “array,” “object,” “resource,” “NULL,” and “unknown type.” This is demonstrated in the next
example where a variable is assigned the value of PHP_INT_MAX and then incremented.

 <?php
 // 10_9.php
 $i = PHP_INT_MAX;
 echo $i . "\n";
 echo gettype($i) . "\n";
 $i++;
 echo $i . "\n";
 echo gettype($i) . "\n";

CHAPTER 10 ■ VARIABLES

216

 The first call to gettype() will return 'integer' and the second will return 'double'. The string double is
used instead of float for historical reasons.

 On a 64-bit system the output will look like this:

 9223372036854775807
 integer
 9.2233720368548E+18
 double

 It is not possible to create a variable of type resource without calling a function that returns a
resource. This can either be a built-in function or a function from one of the many extensions. The
resource type is used for things like file handles, database connections, and results sets, etc. These are
usually returned by a function that opens the file or connects to a database and they are passed back
to other functions when actions are performed against that specific resource like sending a query to a
database or writing content to a file.

 The functions is_finite() and is_infinite() might yield different results on 32-bit and 64-bit
platforms as they use the limits of the float type to determine if the number will fit.

 Recipe 10-7. Reducing Memory Use with References
 Problem
 In certain cases it is useful to have multiple variables that point to the same value in memory. This will
reduce the need for additional memory.

 Solution
 In general variables are assigned by value and PHP does not support pointers as known from C and other
languages. Assigning by value will cause each value to have its own memory segment and even if a variable
is assigned to another variable they will each reference a unique memory segment.

 How it Works
 The following example shows how one variable is assigned the value of another variable and when any of
two variables are updated the other will not be affected.

 <?php
 // 10_10.php
 $a = 5;
 $b = $a;
 $a++;
 echo "\$a = $a\n";
 echo "\$b = $b\n";

 $a = 6
 $b = 5

CHAPTER 10 ■ VARIABLES

217

 In some cases it might be necessary to have multiple variables referencing the same value or internal
memory segment. Using the global keyword to make an internal variable access the value of a global variable
is one way to do this. It can also be done for variables in the same scope by adding & in front of the variable
name of the variable on the right side of the assign operator, and finally it can be done when passing variables
to functions. If the function is defined with an ampersand (&) in front of any of the parameters, these will be
passed as a reference to, instead of a copy of the original value.

 Passing variables by reference means that the variables that are references to the same memory object
all will have access to read and write to that object. Updating one of the variables will affect all the variables
that are a reference to that memory object. This is also the case across the scope so if a variable is passed
by reference to a function from the global scope or a different function, both will still reference the same
memory object.

 PHP also use the concept of copy-on-write, which means variables are passed by reference, even if
it's not intended to be, and only if the internal function changes the content of a variable it will be copied
before the change is made. This saves a great deal of time when passing large strings or arrays to functions
as the data will only be copied if the function makes changes to the variable. If the pass by reference is set
explicitly the copy operation will never be performed. In the next example the variable $a is assigned a
value of 5 and the variable $b is created as a reference to $a . When the variable $a is changed it will affect
both variables.

 <?php
 // 10_11.php
 $a = 5;
 $b = &$a;
 $a++;
 echo "\$a = $a\n";
 echo "\$b = $b\n";

 $a = 6
 $b = 6

 In this case the two variables $a and $b will reference the same value (memory) and when one
is changed the other will also change. Internally PHP will keep a reference count to each value and it
will not release the memory until the reference count is 0; in other words no variables are referencing
the value.

 Working with references can also be handy when working with arrays and iteration. Consider the code
that loops over an array and performs an action on each element:

 <?php
 // 10_12.php
 $a = array(1,2,3,4,5,6,7,8,9);
 foreach($a as $e) {
 if ($e % 2 == 0) {
 $e *= 2;
 }
 }
 print_r($a);

CHAPTER 10 ■ VARIABLES

218

 The output of this code when executed with PHP CLI is this:

 Array
 (
 [0] => 1
 [1] => 2
 [2] => 3
 [3] => 4
 [4] => 5
 [5] => 6
 [6] => 7
 [7] => 8
 [8] => 9
)

 This code does some work by iterating over the array, checking to see if the elements are even, and
calculating a new value, but it does not make any changes to the original array, $a . All updates to the variable
 $e is done on a copy of each element and the updates are thrown away after each iteration when $e is
assigned a copy of the next element. Changing the loop to also include the index of each element in the array
makes it possible to make changes to the original array.

 <?php
 // 10_13.php
 $a = array(1,2,3,4,5,6,7,8,9);
 foreach($a as $i => $e) {
 if ($e % 2 == 0) {
 $a[$i] = $e * 2;
 }
 }
 print_r($a);

 The output of this code is this:

 Array
 (
 [0] => 1
 [1] => 4
 [2] => 3
 [3] => 8
 [4] => 5
 [5] => 12
 [6] => 7
 [7] => 16
 [8] => 9
)

CHAPTER 10 ■ VARIABLES

219

 This is a bit clumsy and it requires the use of the extra index variable. By making the variable $e a
reference to each element of the array the script becomes a bit cleaner:

 <?php
 // 10_14.php
 $a = array(1,2,3,4,5,6,7,8,9);
 foreach($a as &$e) {
 if ($e % 2 == 0) {
 $e *= 2;
 }
 }
 print_r($a);

 This is about as simple as the first example but with the benefit that the values of the original array
 $a are changed when the references to the elements $e are updated.

 Recipe 10-8. Using Constants
 Problem
 Some values like configuration options or special values used to control flow should never change
throughout the program. We could use variables to store these values but that would allow the code to
change the values and thereby perhaps the functionality of the program.

 Solution
 It is possible to define values that can be accessed globally without the use of super globals or the use
of the global keyword. This is done with the definition of constants. Constants follow the same naming
convention as variables but they do not have the leading dollar sign before the variable name and they can
only be defined with the help of the define() function , or they can be defined by internal PHP functions or
extensions. It is common practice that constants are written in all caps, but this is not required.

 How it Works
 The next example defines MY_CONSTANT in the global scope and it's used to perform simple multiplication
inside the function MyFunc() .

 <?php
 // 10_15.php
 define('MY_CONSTANT', 12);
 function MyFunc($v) {
 return $v * MY_CONSTANT;
 }
 echo MyFunc(2);

 Constants can be defined in the global scope or inside a function or as a member method of a class. No
matter where they are defined they will be available globally.

 To avoid warnings it can be necessary to check if a constant is defined before trying to use it. That is
done with the defined() function. This function takes the constant name as a string as a parameter and

CHAPTER 10 ■ VARIABLES

220

returns true or false. The function is used like this: if (defined(' MY_CONSTANT ')) { ... } . Using the
constant instead of the string value of the name will still result in a runtime warning unless the constant
holds a string value. In that case the function might return false because the value of the constant does not
match a constant that is defined.

 Constants can also be removed if the script no longer needs them or if they need to be changed to
different values. That's done with the undefine() function that also takes a string with the name of the
constant as a parameter.

 PHP comes with a number of predefined constants: the most common ones are probably the Boolean
values for TRUE and FALSE but also constants to identify the version of php (PHP_VERSION) and the number pi
(M_PI) are defined. In addition constants might be defined by the extensions loaded at any given time. These
constants are usually prefixed with the extension name and they are used as flags or parameters for various
functions within the extension. Examples of such extension specific constants are MYSQL_ASSOC , MYSQL_NUM
and MYSQL_BOTH . These are used to tell the extensions mysql_fetch_row() function how to return arrays.
Constants are useful to make the code more readable. A list of predefined constants can be found here:
 http://php.net/manual/en/reserved.constants.php .

 Recipe 10-9. Variable Variables
 Problem
 It can be useful to programmatically use the value of one variable to find the content of a different variable.

 Solution
 PHP has a concept of variable variables that allows defining and using variables based on the content of
other variables that contain a string value. This works as long as the content of the variable follows the rules
for naming of variables.

 How it Works
 A variable variable is defined by adding an extra dollar sign in front of a regular variable.

 <?php
 // 10_16.php
 $var = "abc";
 $$var = 6;
 echo $var . "\n";
 echo $abc . "\n";

 In this example a variable $abc is created based on the content of the variable $var . The two dollar signs
in front of var takes the value of $var ("abc") and turns it into $abc . The value 6 will be assigned to $abc and
not to $var as shown in the following output:

 abc
 6

http://php.net/manual/en/reserved.constants.php

CHAPTER 10 ■ VARIABLES

221

 This pattern can be repeated as long as the variable naming convention is followed.

 <?php
 // 10_17.php
 $var = "abc";
 $$var = "def";
 $$$var = "ghi";
 $$$$var = 6;

 echo $ghi;

 A more useful example of variable variables is to use logic to calculate the name of a variable to use for
a certain operation.

 <?php
 // 10_18.php
 $us = "m/d/Y";
 $eu = "d-m-Y";
 $format = "us";
 echo date($$format);

 Defining an array with the possible values and then calculating the index to use can achieve a similar
result.

 <?php
 // 10_19.php
 $format = array(
 'us' => 'm/d/Y',
 'eu' => 'd-m-Y',
);
 echo date($format['us']);

 Super globals cannot be used as variable variables.

 Recipe 10-10. Comparing Variables
 Problem
 With the loosely typed nature of PHP, comparing two variables can yield unexpected results.

 Solution
 Comparing variables can be done with a number of operators as listed in Table 10-1 below. The loosely
typed nature of PHP provides a way to compare variables by value or by value and type.

CHAPTER 10 ■ VARIABLES

222

 Table 10-1. Comparison operators

 Operator Meaning Description

 == Equal True if both values are the same

 != Not equal True if both values are different

 <> Not equal True if both values are different

 === Identical True if type and values are the same

 !== Not identical True if type or value are different

 > Greater than True if left side is greater than the right side

 < Less than True if the left side is less than the right side

 >= Greater than or equal True if left side is greater than or equal to the right side

 <= Less than or equal True if the left side is less than or equal to the right side

 <=> "Spaceship" Returns -1, 0, or 1 if the left side is greater, the two values are
equal, or the right side is greater. This is new in PHP 7.

 How it Works
 Comparing the integer 7 to the string "7" will give two different results depending on the method of
comparison selected. Using the loose compare method, 7 == "7" will give a true and the strict compare 7
=== "7" will give false. This is because the loose compare will first convert one of the two sides to the same
type as the other side. The rules for how one side is converted depend on the types of the variables on
either side. If one side is NULL and the other is a string the NULL value will be converted to the empty string
"" before the two values are compared. If one side is a Boolean the other side will be converted to Boolean
before comparing. If one side is a number and the other is a string or resource, the string and resources are
converted to numbers before comparison. In the case of strings with numerical values the strings will also be
converted to numbers before comparing the values.

 Arrays are basically compared on the number of elements in each object or if all the keys of the two
objects are the same, the arrays are compared value by value.

 Objects that are instances of different classes are always different but objects instantiated from the
same classes can be equal, when compared with the loose operator (==), if they have the same attributes and
values. If they are compared with the strict operator (===) they must refer to the same instance to be equal.

 A full list of the rules can be found in the PHP manual here: http://php.net/manual/en/language.
operators.comparison.php

 The next example shows a few examples of how the compare operations work when comparing values
of different or same values.

 <?php
 // 10_20.php
 $i = 100;
 $f = 12.2;
 $s = "abc";
 $s2 = "100";

 var_dump($i == $s2);
 var_dump($i === $s2);
 var_dump($i != $s2);
 var_dump($i !== $s2);

http://php.net/manual/en/language.operators.comparison.php
http://php.net/manual/en/language.operators.comparison.php

CHAPTER 10 ■ VARIABLES

223

 var_dump($i >= $f);
 var_dump($s <=> $s2);
 var_dump($s2 <=> $s);
 var_dump($s <=> $s);

 The output will be a series of true and false values with the exception of the last three.

 bool(true)
 bool(false)
 bool(false)
 bool(true)
 bool(true)
 int(1)
 int(-1)
 int(0)

 Recipe 10-11. Working with Strings
 Problem
 The most common use of PHP is to generate HTML documents (or other dynamic documents). The
documents are often created by concatenating strings or inserting variable content into other strings in the
form of templates.

 Solution
 PHP supports both single (') and double (") quotes when defining strings. There is no difference in the
resulting string but the way PHP handles the content of the string is slightly different. When single quotes
are used the dollar sign ($) will be accepted as a character without the need to escape it with a backslash (\)
and there is no variable substitution. Variable substitution makes it possible to embed variables into a string
without using concatenation. Simple variables can be embedded directly into a string (the double quoted
version). More complex variables like arrays and objects will have to be wrapped in curly brackets {} to be
embedded in a string.

 How it Works
 <?php
 // 10_21.php
 $a = 5;
 $s1 = '$a = 5';
 $s2 = "$a = 5";

 Strings can also be generated by concatenating multiple variables using the . (period) operator. It is
possible to mix strings with single and double quotes and any variable. Variables will be converted to strings
before the concatenation.

CHAPTER 10 ■ VARIABLES

224

 <?php
 // 10_22.php
 $a = 5;
 $s = 'This string is '.
 'created by concatination of '.
 'strings and the variable $a '.
 "with the value $a\n";

 Comparing strings can be done with the normal compare operators but that might not always give the
desired results.

 Recipe 10-12. Handling Floating Point Numbers
 Problem
 Working with floating point numbers can cause some confusion. Numbers that have an exact representation
in base 10 do not always translate to an exact representation in the binary base 2. This is causing rounding
errors when math operations are performed on these values. Even simple math and comparison options that
look obvious can yield results that seem wrong.

 Solution
 You should never rely on comparing two floating point values and expect to make exact comparisons.
A better way is to look at the difference between the two values and determine if the difference is greater or
less than a certain threshold.

 How it Works
 The operation 8 – 7.7 should give the result 0.3 but performing the math and then comparing to the value 0.3
will show a different result.

 <?php
 // 10_23.php
 $v = 8 - 7.7;
 $u = 0.3;
 echo "$v\n";
 if ($v == $u) {
 echo "\$v == \$u\n";
 }
 else {
 echo "\$v != $u\n";
 }

 Instead of comparing if the two variables are identical it would be better to look at the difference
between the two and compare that to a number representing the precision required. This number is often
referred to as epsilon.

CHAPTER 10 ■ VARIABLES

225

 <?php
 // 10_24.php
 $epsilon = 0.00001;
 $v = 8 - 7.7;
 $u = 0.3;
 echo "$v\n";
 if (abs($v - $u) < $epsilon) {
 echo "\$v == \$u\n";
 }
 else {
 echo "\$v != $u\n";
 }

 The output of this script looks like this:

 0.3
 $v == $u

 R ecipe 10-13. Special Language Constructs
 PHP has a large number of functions built in and a few language constructs that look like functions but act
slightly different.

 Problem
 Arrays are indexed lists of variables where the index can be a numerical key or a string value. If no keys are
defined PHP will auto-assign values each time a new element is added. In order to work with arrays it is
necessary to use special language constructs to create arrays or to extract values, etc.

 Solution
 There are a few special language constructs in PHP that makes working with arrays simple. The first is
 array() . Although it looks like a function it is actually a language construct used to define array variables. If
nothing is written between the parentheses the variable will become an empty array.

 How it Works
 Below is a common way to initialize an array variable.

 <?php
 // 10_25.php
 $a = array();

 Other languages treat arrays as objects and they must be instantiated with the new operator. That's not
needed in PHP as an array is its own native type. If values are listed as a comma separated list these will
become elements of the array. Array elements can be of any supported type, including arrays, and they can
even be mixed.

CHAPTER 10 ■ VARIABLES

226

 <?php
 // 10_26.php
 $a = array(1, 2, "3", array(4, 5, 6));

 Because PHP and JavaScript are often used together a new shorter syntax for creating arrays was
introduced in PHP version 5.4. This new syntax looks more like a JSON encoded string:

 <?php
 // 10_27.php
 $a = [1, 2, "3", [4, 5, 6]];

 In the examples above all the values are added without providing a key. This will cause PHP to generate
index values for each element starting at the value 0. It is not necessary to start at 0 and it is allowed to have
“holes” in the index.

 <?php
 // 10_28.php
 $a = [7 => 1, 2, "3", 100 => [4, 5, 6]];

 This will cause the first values to be set at key 7 and all subsequent values will have the indexes 8, 9, and
the last one 100.

 In addition to numeric values, strings are also allowed as keys. This is a very common way of working
with key value pairs.

 <?php
 // 10_29.php
 $a = [
 'host' => 'localhost',
 'user' => 'root'
];

 Checking of a specific key exists in an array can be done with the isset() function or by use of
 array_key_exists() . It takes two parameters where the first represents the key and the second the array.
Depending on the values of the array elements the two functions might yield different results as seen in this
next example:

 <?php
 // 10_30.php
 $a = [
 0 => '123',
 1 => null,
 'a' => 'abc',
 'b' => null
];

 var_dump(isset($a[0]));
 var_dump(isset($a[1]));
 var_dump(isset($a['a']));
 var_dump(isset($a['b']));

CHAPTER 10 ■ VARIABLES

227

 var_dump(array_key_exists(0, $a));
 var_dump(array_key_exists(1, $a));
 var_dump(array_key_exists('a', $a));
 var_dump(array_key_exists('b', $a));

 This script will produce the following output:

 bool(true)
 bool(false)
 bool(true)
 bool(false)
 bool(true)
 bool(true)
 bool(true)
 bool(true)

 The same way arrays can be created with the array() construct it's also possible to use the list()
construct to decompose arrays. The list() construct belongs on the left side of the assignment and it is
used to take the elements of an array and assign them to individual variables as shown in this next example.

 <?php
 // 10_31.php
 $a = [1, 2, 3];

 list($v1) = $a;
 echo "$v1\n";
 list($v1, $v2) = $a;
 echo "$v1, $v2\n";
 list($v1, $v2, $v3) = $a;
 echo "$v1, $v2, $v3\n";
 list($v1, $v2, $v3, $v4) = $a;
 echo "$v1, $v2, $v3, $v4\n";

 $b = ['a' => 7, 'b' => 8];
 list($x1, $x2) = $b;
 echo "$x1, $x2\n";

 This example will not assign any values to $x1 and $x2 because the list() construct only works on
numerical indexes starting with 0. The output from this script looks like this:

 1
 1, 2
 1, 2, 3
 1, 2, 3,
 ,

 With the use of extract() it is possible to work on associative arrays and convert them to variables in
the scope of where the construct is used.

CHAPTER 10 ■ VARIABLES

228

 <?php
 // 10_32.php
 $a = [
 'host' => 'localhost',
 'database' => 'mydb',
 'user' => 'user'
];
 foreach($a as $key => $value) {
 if (isset($$key)) {
 $key = "prefix_" . $key;
 }
 $$key = $value;
 }

 echo "$host, $database, $user\n";

 This can be simplified with the use of the extract() construct.

 <?php
 // 10_33.php
 $a = [
 'host' => 'localhost',
 'database' => 'mydb',
 'user' => 'user'
];
 extract($a, EXTR_PREFIX_SAME, 'prefix');

 echo "$host, $database, $user\n";
 The output looks like this:

 localhost, mydb, user

 Recipe 10-14. Iterating Over Array Values
 Problem
 Working with arrays often requires the program to perform the same action for each row in the array.
Fetching a result set from a database query and turning it into a HTML structure for presentation is an
example of this.

 Solution
 There are a number of ways to access elements in an array. If the elements are indexed with integers and
the starting value is known a for(;;) or while() loop could be used. If there are holes in the index or
string values are used as the keys it's possible to use each() or foreach() language constructs to iterate
over the array.

CHAPTER 10 ■ VARIABLES

229

 How it Works
 The each() construct takes an array as the parameter and returns the element at the current internal index
pointer. It will also increment the internal index pointer to the next element. This is useful when iterating
over the elements of an array.

 <?php
 // 10_34.php
 $a = [10, 15, 20, 25];
 while ($b = each($a)) {
 echo $b . "\n";
 }

 This can be written a bit cleaner with the use of the foreach() construct :

 <?php
 // 10_35.php
 $a = [10, 15, 20, 25];
 foreach($a as $b) {
 echo $b . "\n";
 }

 It is not necessary to call the reset() function on the array if the same array is used in multiple
 foreach() statements. With each() it is necessary to use reset() between multiple iterations.

 There are a couple of other language constructs to be aware of. These do not have anything to do with
variables but they are important for the program flow.

 The construct include() will include the contents of the file specified if the file exists; otherwise a
warning message will be printed. The require() statement works like include() but it will throw a fatal
error and stop execution if the file is missing. Both of these are useful when the code base is growing and it is
necessary to use the same code in multiple scripts. A variant of these constructs called include_once() and
 require_once() will not throw errors if the same file is included more than once; it will simply be skipped as
the file is already loaded. In general it is recommended to write code that includes files only once and only
includes files that are actually used. This will give the best performance.

 Recipe 10-15. Generating Output
 Problem
 Generating output is a key functionality of PHP as it is most commonly used to generate HTML (or other
web-related documents) dynamically based on database queries and other resources.

 Solution
 PHP implements a couple of language constructs: echo() , print(), and die() . The first two have to
do with output alone and the last function will print the content of the parameter passed and then stop
script execution.

 Although the language constructs all look like functions they can be used both with and without the
parentheses.

CHAPTER 10 ■ VARIABLES

230

 How it Works
 Writing echo "a"; and echo("a"); will give the same result. In addition echo can handle any number of
parameters separated by commas, without concatenating them to a single string first.

 <?php
 // 2_36.php
 $a = 'value 1';
 $b = 'value 2';
 //This will output $a and $b
 echo $a, $b, "\n";
 // This will concatenate $a and $b and output the result
 print $a . $b . "\n";

231© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_11

 CHAPTER 11

 Functions

 Functions are a way to structure code that is used several times into a convenient structure. This is a great
way to reduce code duplication and increase reusability. There are more than 1000 built-in functions in PHP
and user-defined functions can be declared in the main script or in an include file, and it is up to the script
developer to make sure the correct files are included before a function is called.

 Recipe 11-1. Calling Functions
 Problem
 In chapter 2 we discussed the use of classes to build objects of data (member variables) and functionality
(methods). Using a class to instantiate an object and then call one of the methods might be too complicated
when here is a way to simply wrap the logic into a single function that works more or less like any of the
functions that are built into the language.

 One major difference between classes and functions is the ability to declare members as public,
protected, or private. This does not exist for functions, with the exception of functions in functions as
described later in this chapter.

 Functions can define variables that are only available within the function, almost like private member
variables as described in the recipe about function scope.

 Solution
 The simplest form of a function is defined with the keyword function followed by a function name and a set
of parentheses and a set of curly brackets for the function definition.

 function DeleteRows() {}

 Function names are case insensitive. A function that is declared as MyFunc() can be called as myfunc();
or MYFUNC(); but it is recommended to use the same case as used in the function definition. To make this
function do something we need to write the logic between the curly brackets. The code in a function follows
the exact same structure as any PHP script. Any function that is callable outside of the function is also
available inside the function. This is true for both built-in functions and user-defined functions.

 Functions can be called as a statement or as the right side of a calculation, assuming the function has a
return value.

 There are a few examples of language constructs that look like functions. The most basic is the array()
construct that is used to define a variable of the array type. This is used as the right side of an assignment.
The list() construct is used to take an array and split its elements into individual variables. The list()
construct is used on the left side of an assignment.

http://dx.doi.org/10.1007/978-1-4842-0605-8_2

CHAPTER 11 ■ FUNCTIONS

232

 How it Works
 In this example we have a function that can delete all rows in a specific table. The function does not have any
parameters as input and it does not return any values.

 <?php
 // 11_1.php

 function DeleteRows() {
 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 mysqli_query($con, "delete from mytable;");
 mysqli_close($con);
 }
 else {
 echo "No database connection";
 }
 }

 // Call the function
 DeleteRows();

 If overall the script doesn’t have to do anything else it’s not really needed to wrap the delete operation in
a function, but if the delete function is being used in multiple scripts or there is logic to check if the condition
is right it will increase readability of the code to have the logic for the delete operation in a separate function.
In that case it’s important to use meaningful function names.

 Recipe 11-2. Variable Scope
 Problem
 In the previous example the DeleteRows() function created a connect to the database before deleting the
rows and the connection was closed at the end of the function. If the script performs many operations on the
database there would be an impact on performance as the connect operation is relatively expensive. If it’s
possible to connect at the beginning of the script and use the same connection in all database operations the
connect operation would only be performed once for the entire request.

 It’s always a good idea to minimize the number of database operations the script is performing in order
to get the best possible performance of the script.

 Solution
 Variables defined outside of a function are not directly accessible inside the function. This is called scope.
In PHP there is the global scope that includes all variables defined outside of any function. These can be
accessed directly by any code that is executed outside of any function.

 Variables defined inside a function are only available to code defined as part of the function.
 There are two ways to access variables from the global scope from within a function. The first way is to

use the super global variable $GLOBALS . The built-in variable $GLOBALS does not have the leading _ as the
other super globals because it was introduced in the language a long time before the concept of the super
globals. All super globals can be accessed in all scopes. The $GLOBALS variable is an array of all the variables
defined in the global scope. The second option is to use the keyword global in front of one or more variable
names separated by commas. This will create and reference the variable in the global scope.

CHAPTER 11 ■ FUNCTIONS

233

 How it Works
 With this knowledge we can now rewrite the code from example 11_1.php to use either of the two methods
of accessing global variables .

 <?php
 // 11_2.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

 function DeleteRows() {
 if ($_GLOBALS['con']) {
 mysqli_query($_GLOBALS['con'], "delete from mytable;");
 }
 else {
 echo "No database connection";
 }
 }

 // Call the function
 DeleteRows();

 mysqli_close($con);

 Using the $_GLOBALS array makes the code a bit unreadable but it’s clear what’s happening. The same
code using the global keyword looks like this:

 <?php
 // 11_3.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

 function DeleteRows() {
 global $con;
 if ($con) {
 mysqli_query($con, "delete from mytable;");
 }
 else {
 echo "No database connection";
 }
 }

 // Call the function
 DeleteRows();

 mysqli_close($con);

 In this case the script is a bit more readable but it’s also common to forget to add the global statement
causing the script to show the error message even though the script might have a database connection.

CHAPTER 11 ■ FUNCTIONS

234

 R ecipe 11-3. Passing Parameters
 Problem
 Deleting all the rows in a specific table is not a practical function. It does a single thing and it can only be
used for that. How can we create a more generic function that can delete specific rows from any table?

 Solution
 The solution is to extend the function definition with one or more parameters. Function parameters act as
variables defined inside the function but allow the passing of information to or from the function. The order
of the variables is important. If the function defines three variables $a, $b, and $c in that order then that first
value passed in will be assigned to $a, the second to $b, etc.

 All supported variable types can be used as parameters. Names are not directly supported but can
be implemented by passing an array where each element is a key value pair. That way the order of the
parameters is no longer important.

 As with any input it’s the best practice to validate the type and content of variables before using them.
This can prevent errors.

 How it Works
 Expanding the DeleteRows() function with two parameters where the first is a string with the name of the
table to delete from and the second is an array of id’s to delete. This assumes that all the tables include an id
column as the primary key.

 <?php
 // 11_4.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

 function DeleteRows($table, $ids) {
 global $con;
 if ($con) {
 $where = "";
 if (is_array($ids) && sizeof($ids)) {
 $strids = implode(", ", $ids);
 $where = " where id in ({$strids})";
 }
 mysqli_query($con, "delete from {$table}{$where};");
 }
 else {
 echo "No database connection";
 }
 }

 // Call the function
 DeleteRows("mytable", [1, 3, 5]);

 mysqli_close($con);

CHAPTER 11 ■ FUNCTIONS

235

 Passing an empty array as the second parameter will cause the where clause to be empty and the
function will delete all rows from the table.

 There is no validation of the $table variable. This will allow the user to pass any type of variable that
could cause a SQL error. If an array is passed to the $table parameter the string replacement will cause the
SQL statement to be “delete from Array.”

 In addition the function will allow the user to delete records from any table in the database. It could be a
good idea to validate that the table exists and the user is allowed to perform the delete operation.

 The same example could be implemented with a single array parameter where the parameters are named.

 <?php
 // 11_5.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

 function DeleteRows($options) {
 global $con;
 if ($con) {
 if (is_array($options) && $options['table']) {
 $where = "";
 if (is_array($options['ids']) && sizeof($options['ids'])) {
 $strids = implode(", ", $options['ids']);
 $where = " where id in ({$strids})";
 }
 mysqli_query($con, "delete from {$options['table']}{$where};");
 }
 else {
 echo '$options must be an array';
 }
 }
 else {
 echo "No database connection";
 }
 }

 // Call the function
 $params = [
 'ids' => [1, 3, 5],
 'table' => 'mytable'
];
 DeleteRows($params);

 mysqli_close($con);

 Now the function takes a single parameter called $options. It must be an array and the key called ‘table’
must be defined, otherwise the function will print an error message. The order the parameters are created in
the array does not matter.

 Using arrays as parameters makes it possible to change how a function works without breaking existing
code that uses the function. That is only the case if new parameters are added. Renaming or removing
parameters might still require changes to existing code that is calling the function.

CHAPTER 11 ■ FUNCTIONS

236

 Recipe 11-4. Optional Parameters
 Problem
 In the previous examples the parameter for the ids to delete could be an empty array causing the function to
delete all rows in the table. In the example where the parameters was passed as an array it would be possible
to leave out the ids key and the function would still work, but in the example where table and ids were
passed as two separate variables the ids would have to be passed, even if it was an empty array. It would be
nice to be able to only pass the parameters that make sense in the context of calling the function.

 Solution
 Optional parameters are a way to tell the function to use a specific value for a parameter if the caller provides
none. Optional parameters are defined from right to left in the parameter list. The first optional parameter
that can be defined is the last parameter in the list and when that is optional the one before that can be
defined optional. This can continue until all parameters are defined as optional.

 Optional parameters are defined by assigning a value to the variable in the parameter list. If the $ids
parameter should have a default value of an empty array it’s written as $ids = [] or $ids = array() if you
prefer the classic syntax.

 How It Works
 By changing the last parameter to have a default value of an empty array it’s possible to call the DeleteRows()
function with a single parameter. In that case the function will delete all rows from the specified table.

 <?php
 // 11_6.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

 function DeleteRows($table, $ids = []) {
 global $con;
 if ($con) {
 $where = "";
 if (is_array($ids) && sizeof($ids)) {
 $strids = implode(", ", $ids);
 $where = " where id in ({$strids})";
 }
 mysqli_query($con, "delete from {$table}{$where};");
 }
 else {
 echo "No database connection";
 }
 }

 // Call the function
 DeleteRows("mytable");

 mysqli_close($con);

CHAPTER 11 ■ FUNCTIONS

237

 Variables with an optional value will either be assigned the optional value, when nothing is passed to
the parameter, or the value passed by the caller. In the case where the options are passed as an array, that
might cause an unwanted overwrite effects. Consider the function declaration:

 function DeleteRows($options = ['table' => 'mytable']) {}

 If this function is called with DeleteRows(['ids' => [1, 3, 5]); the table name is lost and the
function will not delete anything. To get around this we can define the default values inside the function
and merge the options that are passed in onto the internal variable. This can be done with the
 array_merge() function .

 <?php
 // 11_7.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

 function DeleteRows($opt = []) {
 global $con;
 $options = array_merge(['table' => 'mytable'], $opt);
 if ($con) {
 if (is_array($options) && $options['table']) {
 $where = "";
 if (is_array($options['ids']) && sizeof($options['ids'])) {
 $strids = implode(", ", $options['ids']);
 $where = " where id in ({$strids})";
 }
 mysqli_query($con, "delete from {$options['table']}{$where};");
 }
 else {
 echo '$options must be an array';
 }
 }
 else {
 echo "No database connection";
 }
 }

 // Call the function
 $params = [
 'ids' => [1, 3, 5]
];
 DeleteRows($params);

 mysqli_close($con);

 The $opt parameter is not optional and the internal variable $options is defined as the merge between
a static array defining the table parameter and the values from $opt , if any. The array_merge() function will
overwrite keys from the first array with values from the second array or add keys that are missing in the first
array and exist in the second array.

CHAPTER 11 ■ FUNCTIONS

238

 Calling the DeleteRows() function without any parameters will delete all the rows in the mytable
table. Adding only a parameter for ids will delete the matching rows in mytable. If deletion is required for a
different table the caller can simply provide an option for table with an optional list of ids.

 Again this function does not provide any checks if the table exists or if the user is allowed to delete the
data (access control).

 Recipe 11-5. Type Declarations
 Problem
 In a strict typed language like C the compiler will check that all parameters passed to functions are the
correct type and the compilation will fail before the code can be executed. In a loosely typed language like
PHP (see chapter 10) it’s possible for variables to accept any type of data and they can change type during
runtime. Is it possible to enable features that can help the developer passing the correct types of data to
functions and class methods?

 Solution
 Type Declarations was introduced in PHP version 5.0. Back then the concept was called type hinting. In
this version it was only possible to use class/interface or self as a type declaration. PHP version 5.1 added
support for array, PHP version 5.4 added support for callable, and PHP 7.0 added support for scalar types
(bool, int, float, and string).

 Type declaration works by adding a type string in front of the variable. The type string can be a name of
a class or interface, the word ‘self’ to indicate an object of the same class as the method is defined on or one
of the keywords array, callable, bool, int, float, or string.

 When a type declaration is used the parameter will not accept a null value. A null value does not have
any type. It is however possible to allow the parameter to accept null values by making the parameter
optional and defining the default value as null.

 How it Works
 In the next example the function definition is changed to have a string and array as the parameters.

 <?php
 // 11_8.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

 function DeleteRows(string $table, array $ids = []) {
 global $con;
 if ($con) {
 $where = "";
 if (is_array($ids) && sizeof($ids)) {
 $strids = implode(", ", $ids);
 $where = " where id in ({$strids})";
 }

http://dx.doi.org/10.1007/978-1-4842-0605-8_10

CHAPTER 11 ■ FUNCTIONS

239

 mysqli_query($con, "delete from {$table}{$where};");
 }
 else {
 echo "No database connection";
 }
 }

 // Call the function
 DeleteRows("mytable");

 mysqli_close($con);

 If this function is called with other types of parameters than a string and an array, PHP will cause a
catchable fatal error (PHP 5) or throw an exception of TypeError (PHP 7).

 Catchable fatal error: Argument 1 passed to DeleteRows() must be an instance of string, integer given

 Recipe 11-6. Return Values
 Problem
 So far we have looked at calling functions and passing parameters but what about getting the result of a
database calculation or a database query?

 Solution
 There are two ways of getting values from a function call. The first option is to define a return value. This is
done with the use of the keyword return. The return keyword can be used alone and will cause the function
to stop executing at that point, without returning any value.

 If the return keyword is followed by a value or expression the function will return the value. This can be
a scalar or a more complex value like an array or object.

 The other way to return data from a function is to use parameters passed by reference. This is done by
adding an & in front of the parameter name in the function declaration. Older versions of PHP would allow
this at call time but this has been deprecated. It can only be done at the declaration.

 A function can return a value with the use of the return statement and at the same time return one or
more values by parameters passed as reference. It is common to use the return value as a status code that’s
easy to check and then use the returned parameters as the actual data returned.

 How it Works
 The DeleteRows() function used as an example throughout this chapter can be extended to return the
number of rows actually deleted.

 <?php
 // 11_9.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

CHAPTER 11 ■ FUNCTIONS

240

 function DeleteRows(string $table, array $ids = []) {
 global $con;
 if ($con) {
 $where = "";
 if (is_array($ids) && sizeof($ids)) {
 $strids = implode(", ", $ids);
 $where = " where id in ({$strids})";
 }
 mysqli_query($con, "delete from {$table}{$where};");
 return mysqli_affected_rows($con);
 }
 else {
 echo "No database connection";
 return -1;
 }
 }

 // Call the function
 DeleteRows("mytable");

 mysqli_close($con);

 The function contains two return statements that each will terminate execution at that point. The
second return statement is used in the case of an error condition where no connection to the database exists.
The possible return values for a successful deletion are 0 or higher so to indicate an error a return value
outside of this range is chosen.

 It is good programming practice to have as few places a function can return as possible. That makes the
code easier to understand. In the example above we could assign the number of affected rows to a variable
and do the same with the -1 value and simply have a single return statement at the end of the function.

 To show how a function can return data in parameters passed by reference we can create a function that
selects rows from a table.

 <?php
 // 11_10.php

 $con = mysqli_connect('host', 'user', 'secret');
 if ($con) {
 mysqli_select_db($con, 'mydb');
 }

 function SelectRows(string $table, &$data) {
 global $con;
 $data = [];
 if ($con) {
 $where = "";
 $rs = mysqli_query($con, "select * from {$table};");
 if ($rs) {
 while($row = mysqli_fetch_assoc($rs)) {
 $data[] = $row;
 }
 mysqli_free_result($rs);
 }

CHAPTER 11 ■ FUNCTIONS

241

 }
 else {
 echo "No database connection";
 }
 return sizeof($data);
 }

 // Call the function
 if (SelectRows("mytable", $mytable)) {
 // Do Something
 }

 mysqli_close($con);

 In this example the function SelectRows() takes two parameters. The first is a string that indicates the
name of the table to use. The second parameter does not have any type declaration, as the function will
overwrite any data already in it as the return value.

 This function will always return a value of 0 or higher, even if there is an error.

 Recipe 11-7. Check if Function Exists
 Problem
 Calling a function that is undefined will cause a fatal error. Most of the time this happens due to spelling
errors but there can be cases where the programmer wants to check if a function is defined and then
act accordingly.

 Solution
 There are a number of built-in functions that can help the programmer determine if a function exists. The
first one is get_defined_functions() . This function does not take any parameters and it will return a
multidimensional array with two keys, ‘internal’ and ‘user’. There are over 1500 internal functions, depending
on the number of extensions installed. This makes this method less practical to check for a single function.

 The next function is called function_exists() . This function takes a single parameter describing a
specific function to look for. This can either be a string value or a variable with a string value. The value is not
case sensitive as it is the case with any function name in PHP.

 Finally there is a function called is_callable() . This function will check if the content of the variable
passed in is a callable function or a method on a class. The variable can either be a string value that points to
a function or an array with two values where the first is an object and the second is a string with the name of
a method on that object.

 How it Works
 A simple use of the function function_exists() could be to determine if a specific include file is loaded.

 <?php
 // 11_11.php

 if (!function_exists('MyFunction')) {
 include "myfunc.inc";
 }

CHAPTER 11 ■ FUNCTIONS

242

 Recipe 11-8. Calculated Function Names
 Problem
 If your script contains a number of functions that do similar things, and you need to call the right function
based on the value of a variable you might end up writing a set of nested if statements or a switch/case
statement. If there are a few functions that might not be a big problem but if the number of functions is
growing it can create long and complicated logic.

 Solution
 The solution is to use PHP’s ability to use a variable as a function. Just like it’s possible to have variable
variables (multiple $ signs in front of the name) it’s also possible to start a function call with a $. In that case
PHP will take the contents of the variable and use that as the function name. If the variable contains a non-
string value or the value is a string that can’t be matched to a function name the system will throw a fatal error.

 How it Works
 Let’s first look at the example using a traditional switch/case statement to call the desired function.

 <?php
 // 11_12.php

 $v = 1.25;

 function FormatInteger($i) {
 }
 function FormatFloat($f) {
 }
 function FormatBool($b) {
 }
 function FormatString($s) {
 }

 switch (gettype($v)) {
 case 'integer' :
 FormatInteger($v);
 break;
 case 'double' :
 FormatFloat($v);
 break;
 case 'boolean' :
 FormatBool($v);
 break;
 case 'string' :
 FormatString($v);
 break;
 }

CHAPTER 11 ■ FUNCTIONS

243

 The same functionality can be obtained by calculating the name of the function. First we need to make
sure the functions are named correctly, so the name matches an actual name of a valid type.

 <?php
 // 11_13.php

 $v = 1.25;

 function FormatInteger($i) {
 }
 function FormatDouble($f) {
 }
 function FormatBoolean($b) {
 }
 function FormatString($s) {
 }

 $f = "Format" . gettype($v);
 if (is_callable($f)) {
 $f($v);
 }

 Then we can create a variable that contains the prefix of all the functions (Format) and then add the
name of the variable type. The name of the variable type will be all lowercase, but because function names
are case insensitive this will still resolve to the correct option. We use the function is_callable() to check if
 $f points to a function. In this little example there are no functions defined for arrays, objects, or resources
so the code would fail if $v had a value of any of these types.

 Recipe 11-9. Anonymous Functions
 Problem
 In the previous section we saw how function names can be calculated, assigned to a variable, and then
executed. Is it also possible to “store” complete functions in variables?

 Solution
 The answer is yes and these are called anonymous functions or closures. These have been available since
PHP 5.3 and are useful in a couple of ways.

 The most basic use is as a callback function. This is used as a parameter to another function that will
execute the callback one or more times. By using an anonymous function this function will only be available
within the scope of the function that is called.

 Another use are functions that can exist for a short amount of time and be redefined as needed. This is
done by creating a variable and assigning it a function value $a = function($b) {};

 How it Works
 Let’s first look at the use as a callback function. PHP has a number of building functions that takes a callback
as a parameter. The function usort() is one of these. This function is designed to take a user-defined function
and use it to sort an array.

CHAPTER 11 ■ FUNCTIONS

244

 Before closures were introduced the usort function would be used like this:

 <?php
 // 11_14.php

 function compare($a, $b) {
 if ($a == $b) {
 return 0;
 }
 return ($a < $b) ? -1 : 1;
 }
 $arr = [1, 9, 3, 1, 5, 7, 4];
 usort($arr, 'compare');
 print_r($arr);

 With the introduction of the ‘spaceship’ operator (<=>) in PHP 7.0 and the use of closures it’s possible to
write this same code a bit simpler.

 <?php
 // 11_15.php

 $arr = [1, 9, 3, 1, 5, 7, 4];
 usort($arr, function($a, $b) { return $a <=> $b; });
 print_r($arr);

 The spaceship operator will compare the two values on each side and return -1 if the left side is smaller
than the right side, 0 if the two sides have the same value, and 1 if the right side is smaller than the left.

 The anonymous function will only exist in memory as long as the usort() function is running and it is
not callable when the function ends.

 The combination of anonymous functions and variable functions can be used to modify functions
based on logic or other criteria during execution. In the next example we create an anonymous function to
calculate the profit on sales. It is decided to give the customers who shop on Wednesdays a small discount.
Instead of checking the day of the week for all transactions we can make the check once and define the
function to do the calculation.

 <?php
 // 11_16.php

 if (date('w') == 3) {
 $profit = function($p) {
 return $p * 1.25;
 };
 }
 else {
 $profit = function($p) {
 return $p * 1.30;
 };
 }
 // read all transactions from the database
 foreach($transaction as $t) {
 $p = $profit($t);
 }

CHAPTER 11 ■ FUNCTIONS

245

 This example could have been implemented with regular function definitions. Only one of the functions
would be defined, based on the logic. But if you want to redefine a function during execution you would
have to use closures.

 <?php
 // 11_17.php

 $profit = function($p) {
 return $p * 1.30;
 };

 echo $p = $profit(100) . "\n";

 // Do some stuff

 $profit = function($p) {
 return $p * 1.25;
 };

 echo $p = $profit(100) . "\n";

 In this case the first profit function is used once and after that isn’t thrown away when a new function is
assigned to the variable $profit . This is done without compiler or runtime errors.

 As a side effect of how the PHP parser works it’s possible to define nested functions. Although this is
possible it is not recommended. The inner function will only be defined if the outer function is executed and
if the outer function is called more than once the inner function will be redefined causing a fatal error as
shown in the next example.

 <?php
 // 11_18.php
 function A() {
 function B($i) {
 echo "B called with $i\n";
 }
 for ($i = 1; $i < 3; $i++) {
 B($i);
 }
 echo "A called\n";
 }
 A();
 B(0);

 In this case A() is called first causing the function B() to be defined so when B() is called after A() it will
still work. If B() was called first or A() was called more than once a fatal error would be raised.

 Closures can be used to get around this and create “private” functions within functions

 <?php
 // 11_19.php
 function A() {
 $f = function ($i) {
 echo "B called with $i\n";
 };

CHAPTER 11 ■ FUNCTIONS

246

 for ($i = 1; $i < 3; $i++) {
 $f($i);
 }
 echo "A called\n";
 }
 A();
 A();

 Now we can call the A() function as often as needed and the function defined by the variable $f can
only be called from within the function A() .

 Recipe 11-10. Variable Parameter List
 Problem
 Is it possible to define a function that takes a variable number of arguments?

 Solution
 A function can be called with more parameters than it was declared to have. In that case there are a couple of
special functions that can be used to get information about the parameters. The function func_num_args()
returns the number of arguments passed to the function. The functions func_get_arg() and func_get_args()
can be used to fetch a single argument (by ordinal number) or all the arguments passed to the function.

 A warning will be issued if any of these functions are called from the global scope. They should only be
called from within a function or method.

 How it Works
 In the next example a function is declared with no required parameters and then it’s called with a string, an
integer, and an array as the parameters. The function will show that three parameters were passed to the
function.

 <?php
 // 11_20.php

 function MyFunc() {
 echo func_num_args() . "\n";
 }

 MyFunc("A", 1, [1,2,3]);

 If the function has some required and optional parameters it’s still possible to pass and process
additional parameters.

CHAPTER 11 ■ FUNCTIONS

247

 <?php
 // 11_21.php

 function MyFunc(string $s, int $i = 0) {
 echo func_num_args() . "\n";
 print_r(func_get_args());
 }

 MyFunc("Abc", 1, [1,2,3]);

 Although the parameters $s and $i are defined, they will be assigned the first two parameters that are
passed in the function func_num_args() and func_get_args() will count and return the total number of
parameters passed. The output will look like this when executed with PHP 7:

 3
 Array
 (
 [0] => Abc
 [1] => 1
 [2] => Array
 (
 [0] => 1
 [1] => 2
 [2] => 3
)

)

249© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_12

 CHAPTER 12

 Web Fundamentals

 The primary purpose of PHP is to process web or http requests from a browser through a web server and to
generate valid responses to such requests. The nature of a web request is that it’s usually short lived and it
does not have any knowledge about previous or future requests. The principle makes it possible for even a
modest hardware configuration to serve a large number of requests in a short amount of time. This is often
measured in the average response time or the number of requests per second or per hour.

 In the beginning PHP was a way to inject values or sections of content into existing HTML documents
but from PHP version 3 it has been possible to dynamically create complete HTML documents from the
scripting language and any resource available to PHP at runtime. The structure of the PHP file can include
static HTML sections with sections of PHP code that will resolve to dynamic content or it can contain no
static blocks and just be a single script where the output of the script is returned to the requesting client.

 Recipe 12-1. Headers
 Problem
 The Hyper Text Transport Protocol (HTTP) is very simple. When a TCP/IP socket connection is created
between a browser and a web server the browser will send a request that has two basic sections. The first
are the headers and the second is the body of the message. When the server returns the response it will also
consist of headers and a body. The separation between headers and body is \r\n\r\n (two sets of carriage
return and line feed).

 For most simple requests the developer can ignore the header values in both the request and the
response. The default configuration of PHP will automatically set the valid headers, assuming the response
is a HTML document, but in other cases it might be necessary to overwrite these headers or add additional
information. For the request it might be necessary to validate a header in order to proceed.

 Solution
 The default header (for Content-Type) that is sent with a PHP response is configured in php.ini, with the
setting called default_mimetype, and is set to text/html. In addition there is also a setting called default_
characterset and it defaults to UTF-8. Older versions of PHP used ISO-8889-1 as the default character set. If
you want to add or overwrite any of the headers you use the header() function. Each header is a key value
pair with a name of the header followed by a colon (:) and then the value. Setting the Content-Type header
looks like this:

 header("Content-Type: text/html");

CHAPTER 12 ■ WEB FUNDAMENTALS

250

 There are a couple of ways to get the request headers. With a standard configuration the headers end
up in the super global called $_SERVER and the keys are prefixed with HTTP_. In addition to the request
headers the $_SERVER variable also contains environment variables and other data.

 A commonly used request header is the user agent ($_SERVER['HTTP_USER_AGENT']) variable.
This can be used to detect the type of client requesting the content and, based on that, format the response
specifically to the client.

 All header values can easily be spoofed and any header value should be handled as any other user input.

 How it Works
 In this next example we use the header() function to set the Content-Type to text/plain and then send some
plain content to the client. All calls to the header() function should be done before any other output is sent
to the client.

 <?php
 // 12_1.php
 header("Content-Type: text/plain");
 ?>
 This software is licensed under the MIT license
 Plese see https://opensource.org/licenses/MIT for details

 If you want to redirect users of mobile devices to a special version of a website you can do that by
checking the user agent string and a regular expression that checks for certain keywords and if one of them is
found use the header function to redirect the request.

 <?php
 // 12_2.php
 $mobile = '/(ios|ipod|mobile|pad|phone|tablet|' .
 'symbian|android|blackberry|webos)/i';
 if (is_set($_SERVER['HTTP_USER_AGENT']) &&
 preg_match($mobile_agents, $_SERVER['HTTP_USER_AGENT'])) {
 header("Location: http://m.mysite.com");
 }

 The first part of the if statement where we check if the variable is set is to avoid warnings when the
script is requested from a client that doesn’t set a value for the user agent. This could be a PHP script that’s
using the open wrappers to request content from a remote server. This could be a simple call to file_get_
contents() , This is the preferred way to read the content of a file or stream into a variable. Unless a stream
context is provided no headers will be set.

 Please note that all header values must be set before any other output is generated. If headers are set
after output is generated, PHP will generate a warning.

 Recipe 12-2. $_GET and $_POST
 Problem
 GET and POST are two HTTP request methods support by browsers. The GET method is used when a
user clicks a link in a document or types a URL in the address bar. The POST method is associated with
submitting the HTML form from a web page.

 How can the data from a GET or POST request be access in a PHP script?

CHAPTER 12 ■ WEB FUNDAMENTALS

251

 Solution
 The solution is again the super globals. Depending on the configuration value variables_order in php.ini
the super globals will be populated with values from the request. The valid configuration options are zero
or more of the letters G, P, C, E, and S. Each of these represents Get, Post, Cookie, Environment, and Server.
Environment variables are not commonly used by PHP scripts so a common configuration is variables_
order = "GPCS" . In addition to variables_order you can also configure request_order to define which of
the request data is populated into the $_REQUEST array.

 The $_REQUEST super global is a combination of data from other the requests and there can be overlap,
so the order of whose data is populated matter. If you are posting a form with a field named ‘phone’ and the
post URL is http://mydomain.com?phone=123 you will end up with an index called phone in both the $_GET
and the $_POST super global. When the data is populated into the $_REQUST array it’s the value from the
array defined last in the request_order configuration. If the request_order is set to “GP” the value from the
$_POST array will win. Setting it to “PG” will give you the value from the $_GET array.

 How it Works
 When a get request is performed without any parameters the $_GET array will be an empty array. When
parameters are added to the URL each of the parameters will end up in the $_GET array as a key. The URL
 http://mydomain.com?p1=test&p2=123 will produce the following values in the $_GET variable:

 Array (
 [p1] => test
 [p2] => 123
)

 It is possible to use the same variable name multiple times, but only the last one is registered, as keys
must be unique. The URL http://mydomain.com?p1=test&p2=123&p1=abc , where the parameter p1 is
included twice with two different values will give these values in the $_GET array.

 Array (
 [p1] => abc
 [p2] => 123
)

 Just like PHP can add elements to an array with the syntax $a[] = ‘abc’; it’s possible to generate elements in
the $_GET array that contains an array of values. The URL http://mydomain.com?p1[]=test&p2=123&p1[]=abc
will do just that.

 Array (
 [p1] => Array (
 [0] => test
 [1] => abc
)
 [p2] => 123
)

http://mydomain.com/?phone=123
http://mydomain.com/?p1=test&p2=123
http://mydomain.com/?p1=test&p2=123&p1=abc
http://mydomain.com/?p1[]=test&p2=123&p1[]=abc

CHAPTER 12 ■ WEB FUNDAMENTALS

252

 If you want to specify the keys in the array you can do that too. The URL http://mydomain.com?p1[a]=t
est&p2=123&p1[b]=abc will generate the keys a and b on the p1 element in the $_GET array.

 Array (
 [p1] => Array (
 [a] => test
 [b] => abc
)
 [p2] => 123
)

 Getting data into the $_POST array is a bit more complicated. Although it follows the exact same rules
as the $_GET array it requires the user to submit a HTML form from a browser (or other client that can
generate a POST request). This is one reason why POST requests are used or even preferred for API requests.
Requiring a POST request will prevent a user from sending requests from a browser or the wget command-
line tool. It can also make testing a bit more complicated. There is no real security in requiring a POST
request but it makes it more difficult.

 Creating a post request in a browser starts with a HTML form and a button to submit the form. The form
has two HTML components. The first is the form tag that wraps one or more input tags. The form tag has
attributes to define the method (GET or POST) and an action. The action is the target URL that will receive
the post. This can be an absolute or relative URL to the URL where the HTML document that included the
form was loaded from, or it can be a URL on a completely different web site. A HTML form that can populate
the $_POST array with similar values as in the previous examples could look like this:

 <form method="POST" action="/">
 <input name="p1[a]" type="text" />
 <input name="p1[b]" type="text" />
 <input name="p2" type="text" />
 <input type="submit" />
 </form>

 And the contents of the $_POST array will look like this:

 Array (
 [p1] => Array (
 [a] => abc
 [b] => def
)
 [p2] => 123
)

 It is not necessary to have a HTML form to create a POST request. This can be done with an Asynchronous
Javascript and XML request (AJAX). This is described in more detail in a later section of this chapter.

 The same variable name can be used in the query string and the post body as shown in the next example:

 <form method="POST" action="/?p2=value">
 <input name="p1[a]" type="text" />
 <input name="p1[b]" type="text" />
 <input name="p2" type="text" />
 <input type="submit" />
 </form>

http://mydomain.com/?p1[a]=test&p2=123&p1[b]=abc
http://mydomain.com/?p1[a]=test&p2=123&p1[b]=abc

CHAPTER 12 ■ WEB FUNDAMENTALS

253

 This will result in both the $_GET and $_POST arrays containing a value for p2.
 The contents of $_GET will look like this:

 Array (
 [p2] => value
)

 And the $_POST array will still contain these values:

 Array (
 [p1] => Array (
 [a] => abc
 [b] => def
)
 [p2] => 123
)

 Recipe 12-3. Cookies
 Problem
 Because of the nature of how web servers and browsers interact where every request is a new connection
between the browser and the server, there is no easy way for the server to know that the request is coming
from the same browser. The server could use the IP address of the request and/or the user agent string. But
in an environment where multiple users can share the same public IP address (NAT) this does not guarantee
that the requests are from the same user. Is it possible to identify the requests as coming from the same
client?

 Solution
 One of the headers that can be exchanged between the client and server is the cookie header. This value
originates on the server as part of a response. If the server sets a cookie, the browser will automatically
include that cookie on subsequent requests to the same server. It can be set with the header() function
but the format of the cookie is not trivial so PHP offers a SetCookie() function that takes a number of
parameters that makes the setting and clearing of cookies relatively easy.

 Browsers can store cookies in a couple of different places. A cookie can be stored on desk. This makes it
possible to have cookies that will be persisted on the client for a long time, and they will be accessible even if
the browser application is closed and restarted. All cookies must have an expiration time. When a non-zero
value is set the cookie will automatically be written to disk and the browser will purge it after the expiration
data/time.

 Another option is to use an in-memory cookie, where the expiration time is set to 0. This will not be
written to disk and it will be deleted when the browser is closed. In addition the SetCookie() function has
a couple of options to set the cookie as secure, meaning it will only be used if the connection is over HTTPS
and the cookie can be defined as HTTP only. This will prevent the client-side scripting code (javascript) from
accessing the cookie.

 The user of the browser can clear the cookies at any time, and as cookies are just files on a disk they can
be faked. The code on the server side should take appropriate actions to handle cookies. In addition many
countries require that the web site announce the use of cookies alongside with the purpose.

CHAPTER 12 ■ WEB FUNDAMENTALS

254

 How it Works
 This next example shows how a cookie can be used to track if a user has visited the web site before and print
a special message accordingly.

 <?php
 //12_3.php

 if ($_COOKIE['visited']) {
 echo "Welcome Back!";
 }
 else {
 echo "Welcome to mydomain.com";
 }
 SetCookie('visited', time(), time() + 30 * 86400);

 All parameters except the first (name) to the SetCookie() function are optional.
 First we check the super global variable $_COOKIE for a key called visited. This is the way to check if a

cookie is set. Based on that check the script will print one of two messages and then set the cookie with an
expiration date 30 days in the future. The value of the cookie is set to the current time. This could used to
show additional information about when the user was last visiting the site.

 The first time a user requests the script they will get the generic welcome message and if the page is
refreshed or the user returns within the 30 days they will get the welcome back message.

 Cookies that are in-memory only are often used to store information about the user so the site can
operate without the user has to log in again and again. This can be used as a timer that checks the time since
the last request to the server and if too much time has gone by since the previous request, force the user to
provide credentials again.

 <?php
 //12_4.php

 if (empty($_COOKIE['access']) || $_COOKIE['access'] < time() - 15 * 60) {
 SetCookie('access');
 Login();
 }
 else {
 SetCookie('access', time(), 0);
 // Perform action;
 }

 In this example we check for a cookie called access and if it’s not defined or the value is older than 15
minutes the user is forced to perform the login, otherwise the value of the access cookie is set to the current
time allowing the user another 15 minutes before the next action to stay locked in.

 The SetCookie() function is also called with a single parameter, the name of the cookie. This will
cause the cookie to be set but with an empty value. Deleting the cookie is done by setting the cookie
with an expiration time in the past. Deleting a cookie will work for in-memory cookies as well as cookies
written to disk.

 In section 12-5 we will discuss the use of session data. When session data is used PHP will automatically
generate a cookie called PHPSESSID. This is a memory-only cookie used to identify the data stored on the
server side for the specific browser.

CHAPTER 12 ■ WEB FUNDAMENTALS

255

 Recipe 12-4. Server Variables
 Problem
 We have seen how we can change the program flow based on the user’s interaction with the web site, but what if
we can’t react to where the user is located in the world or whether they use the http or https version of the site?

 Solution
 There are a number of values stored in the $_SERVER super global that has to do with the request. These
values can be used to provide specific content or to redirect the user to a different site. The request scheme
can be checked with $_SERVER['REQUEST_SCHEME'] . The values can be http or https.

 You can also get the public IP address of the client machine with $_SERVER['REMOTE_ADDR'] . This can
be used to detect the country the user is originating from. This information is not always accurate as users
can go though a number of proxies before accessing the Internet and thus it will be the IP address of the last
proxy the request is coming from that will be populated in the $_SERVER variable.

 If you decide to “trust” the IP address you can use services like GeoIP to translate the IP address to
a location. This can be a country and perhaps a state/province and a city name depending on the type of
subscription you are using with GeoIP.

 How it Works
 If you wanted to make sure a user is on the secure version of your site when they are accessing certain URL’s
you can add this to the script:

 <?php
 // 12_5.php

 if ($_SERVER['REQUEST_SCHEME'] == 'http') {
 $Location = $_SERVER['SERVER_NAME'] . $_SERVER['REQUEST_URI'];
 header("Location: Error! Hyperlink reference not valid. }");
 exit;
 }

 As an alternative you can use the browser’s Geolocation API to get the user’s location. This is available
in most browsers that support the HTML 5 standard. Although the API is supported in most browsers it
comes with the caveat that the user will have to approve the revealing of the information. Geolocation
provides longitude and latitude data that can be used to locate the browser or to serve content that is
relevant to the user’s current location.

 The Geolocation API is implemented in javascript and you will need a form or an AJAX request
to submit the data to the server side. The next example shows a HTML 5 document that will detect if
Geolocation is available, and if the user accepts the request it will get and print the latitude and longitude.

 <!DOCTYPE html>
 <!—Position.html->
 <html>
 <head>
 <script>
 function showPosition(position) {
 document.write("Latitude: " + position.coords.latitude +

CHAPTER 12 ■ WEB FUNDAMENTALS

256

 "
Longitude: " + position.coords.longitude);
 }
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(showPosition);
 }
 else {
 document.write("Geolocation is not supported by this browser.");
 }
 </script>
 </head>
 <body>
 </body>
 </html>

 If the device the browser is running on is equipped with a GPS receiver the position is more accurate
than a laptop or desktop computer connected to the Internet.

 Finally there are a number of third-party JavaScript libraries that can be used to collect useful
information from the user. One I often use is the jstz library that makes it possible to get the user’s time zone
and use that as part of a request to sign up for an account on the web site. Knowing the user’s time zone
makes it possible to show date/time values according to the user’s local time. The easy way is to provide a
drop-down list with the valid time zones. This list is going to be quite long and it’s nice to be able to have
a value preselected for the user. The library can be found here: http://pellepim.bitbucket.org/jstz/ .
The library is very easy to use. After loading the library you can instantiate the time zone object with var
 timezone = jstz.determine(); and then access the name of the time zone with timezone.name(); .

 The full script for a user signup with automatic time zone selection could look like this.

 <?php
 // 12_6.php

 if (empty($_POST)) {
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <script src="/js/jstz.js"></script>
 </head>
 <body>
 <form method="POST" action="{$_SERVER['PHP_SELF']}">
 <div>
 <label for="user">User Name</label>
 <input name="user" type="text" required />
 </div>
 <div>
 <label for="timezone">Time Zone</label>
 <input id="tz" name="timezone" type="text" required />
 </div>
 <div>
 <input type="submit" />
 </div>
 </form>
 <script>

http://pellepim.bitbucket.org/jstz/

CHAPTER 12 ■ WEB FUNDAMENTALS

257

 var timezone = jstz.determine();
 var tz = document.getElementById('tz');
 tz.value = timezone.name();
 </script>
 </body>
 </html>
 HEREDOC;
 }
 else {
 date_default_timezone_set($_POST['timezone']);
 $lt = date('M d Y H:i:s');
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <script src="/js/jstz.js"></script>
 </head>
 <body>
 <div>Welcome: {$_POST['user']}</div>
 <div>Local time is: {$lt}</div>
 </body>
 </html>
 HEREDOC;
 }

 In this example we used a simple text input field and used JavaScript to fill in a value for the time zone.
In my case that was America/Los_Angeles. The user can manually type another time zone (i.e., Europe/Paris)
and when the form is submitted the script will show a welcome notice and the local time in the time zone entered.

 This script does not validate any of the input and it would be a better user experience to present the
user with a list of all the valid time zones. This will prevent mistyping and the user will not have to know the
exact time zone names.

 On the PHP side, when the form is submitted we use the function date_default_timezone_set() to set
the current time zone before using any of the date functions. This function takes a mandatory parameter that
is the string representing the time zone like “Europe/Paris.”

 R ecipe 12-5. Session Data
 Problem
 As described in section 12-3 we can use cookies to store data in the client, but that is somewhat insecure, as
the client will have access to manipulate the data between requests. It would be nice if there were a way to
store the data on the server where only the server side scripts can access it.

 Solution
 Data can be stored on the server in a number of different ways. The server can write files, create records in
a database, or other type of storage. Any of these are usually not linked to a specific session in a browser. By
using the session data in PHP the system will generate a unique id that is used as a cookie. It’s stored in the
browser’s memory and sent with all requests to the server. The session id is used to load or save a serialized
array of data from disk (or other storage engine). This is all handled by the session_start() function .
Calling this function before any output will look for the existence of a cookie called PHPSESSID. If it exists

CHAPTER 12 ■ WEB FUNDAMENTALS

258

it will load all existing data matching the id and the same Id will be used for future references. If the cookie
doesn’t exist a new Id is generated and the cookie is set.

 Any variable added to the $_SESSION variable will be stored when the script terminates or when the
function session_close() is called and all the data written will automatically be populated in $_SESSION on
the next request where session_start() is called.

 Session data has a configurable expiration time. If no requests are made from the client to the server
before the data expires, all the data will be removed from the session storage. The default value for the
expiration is 1440 seconds or 24 minutes. This is configured in php.ini with the configuration value session.
gc_maxlifetime = 1440 . Each time the data is written the counter is reset.

 There are a number of other configuration options that I recommend to use with the session
configuration:

 Session Id’s can be initialized from many sources but by setting session.use_only_cookies = 1 in
php.ini will restrict the source to cookies only. To ensure that the value of the cookie can’t be accessed from
scripting languages set the session.cookie_httponly = 1 , and finally setting session.hash_function = 1
will make use of that SHA-1 function instead of the MD5 function to create the value for the cookie.

 How it Works
 In this example we use the session storage to store values that are linked to the browser through the cookie
named PHPSESSID.

 <?php
 // 12_7.php

 date_default_timezone_set('UTC');
 session_start();
 if ($_SESSION['last_request']) {
 echo "Las access was " . date('M d Y H:i:s');
 }
 else {
 echo 'This is the first request to the site';
 }
 $_SESSION['last_request'] = time();

 The first time a user requests the script they will get the message indicating that they have not been
on the site before. As this is handled with a session cookie, they will get the same message if they close the
browser and open it again or if they ways more than the configured lifetime for the garbage collector
(24 min). In all other cases the script will show when they last accessed anything on the same server where
the script started the session.

 The $_SESSION array can contain values of any type of data. It can be used to store scalars as shown
above, arrays, and even instantiated objects.

 In example 12_3.php we used a cookie variable (visited) to store data about the time of access to the
site. Using client-side storage makes it possible for the user to alter the data before sending subsequent
requests making it an insecure form of storage. By moving the data to session data on the server we can link
multiple values to a single session cookie and at the same time prevent the user from manipulating the data
between requests.

 The only security concern becomes the session cookie. If a user can take the value of the cookie and
inject it in a different browser or other type of client they could potentially get access to data stored in
the session data and thereby gain access to the site (of the session data contains information that
identifies a user).

CHAPTER 12 ■ WEB FUNDAMENTALS

259

 Recipe 12-6. Content Type and Disposition
 Problem
 Although PHP is designed to generate HTML documents it can also be used to generate other forms of
content. The content can be used within the browser or saved to desk, but how can we tell the browser what
type of content it is and how it’s expected to use it?

 Solution
 There are some defaults that most browsers follow. If the content is identified with Content-Type defined as
one of the headers and set to text/html or text/plain the browser will render the content as the document.
The same way of the Content-Type is defined as application/octent-stream the browser will attempt to save
the content to a file by opening the save as dialog to allow the user to select a folder and specify the filename.

 In no Content-Type header is given from PHP the default value will be provided, and if the file is
downloaded directly from the web server (image files, etc.) the web server will apply the appropriate header.
If the wrong Content-Type is specified the browser might even look at the content and overwrite, rendering
the content correct anyway. This is the case with images where it’s possible to use image/jpeg for a GIF and
it’s possible to rename a .jpg file to .gif and the browser will still handle the image rendering correct.

 The header Content-Type is intended to tell the browser what it is receiving in the body of the HTTP
request. In the same way we can use the header Content-Disposition to tell the browser how to handle the
response. The Content-Disposition can have two values. The value inline means the content should be
rendered as part of the document if possible (text, html, image, etc.) and the value attachment indicates
that the browser should save the file to disk. This is useful if you want the user to download a file that can
be rendered in the browser. If you don’t specify the Content-Disposition the browser will use its default
behavior and the user will have to use the Save As function in the browser to save the content to desk.

 Both of these headers can be set with the header() function. And both of them have additional options
that can be provided. For the Content-Type we can add charset and specify if we are using utf-8 or iso-8889-1
or other character sets.

 For the Content-Disposition we can add a filename option to suggest a file name that goes along with
the content. If the filename is not provided the browser will default to the name of the file that is fetched
from the server. That might be Ok if the file is served directly from the web server but if the file is generated
with php the file name will be the name of the script.

 How it Works
 If you have an image file that you want to scale to a smaller size when the image is viewed in the browser
but also allow the user to click a link and download the full-sized version of the image; you can use the code
from example 8_3.php and add headers for downloading the image.

 <?php
 // 12_8.php

 $size = [160, 120];
 $img_name = 'IMG_0099.JPG';
 $orig = GetImageSize($img_name);

 $a1 = $size[0] / $size[1];
 $a2 = $orig[0] / $orig[1];

CHAPTER 12 ■ WEB FUNDAMENTALS

260

 if ($a1 > $a2) {
 $d = ceil($orig[0] / $size[0]);
 }
 else {
 $d = ceil($orig[1] / $size[1]);
 }
 $w = $orig[0] / $d;
 $h = $orig[1] / $d;
 header('Content-Type: ' . $orig['mime']);
 if ($_REQUEST['Download']) {
 header('Content-Disposition: attachment; filename="' . $img_name . '"');
 readfile($img_name);
 }
 else {
 $img = ImageCreateFromJpeg('IMG_0099.JPG');
 $thumb = ImageScale($img, $w, $h);
 switch ($orig[2]) {
 case IMG_JPG :
 case IMG_JPEG :
 ImageJPEG($thumb);
 break;
 case IMG_PNG :
 ImagePNG($thumb);
 break;
 case IMG_GIF :
 ImageGIF($thumb);
 break;
 }
 ImageDestroy($thumb);
 ImageDestroy($img);
 }

 The HTML to show the image and provide a download link could look like this:

 <!DOCTYPE html>
 <!- 12_8.html ->
 <html>
 <body>

 Download this image
 </body>
 </html>

 The image tag will render the thumbnail of the image and then a tag will provide a link to download the
image in full size. Depending on the settings in the browser the user might or might not get a dialog box. In
most browsers these days the default action is to save the file in a preconfigured download folder.

CHAPTER 12 ■ WEB FUNDAMENTALS

261

 Recipe 12-7. Caching
 Problem
 Various types of content might end up changing at different frequencies. Static files like javascript and
images might not change often and it would be a good idea to let the browser use the version already
downloaded if it exists. This will save bandwidth and reduce the load on the server. This is usually handled
with configurations of the web server. For content generated by PHP the default behavior is to generate and
send the content to the client on every request, even if the client already has a copy of the content. That
is using both bandwidth as well as CPU and memory resources on the server. In addition the script might
use other resources to get the data. How can we dynamically handle the requests to determine if the client
already has a copy of the content and whether it’s Ok to use the copy already on the client?

 Solution
 The first step is to divide the content into various groups. Images, scripts, and other files that are served
directly by the web server (without invoking PHP) should be handled by the web server configuration.

 Content that is generally available to the public, no login or other user identification required could be
served as a static file. Meaning when the content changes a process on the server will generate a new copy
and all requests for the content will simply serve the pregenerated file. All this can be handled on the server
without specific headers.

 Content that changes more often could be given an expiration time. If that is done alone the browser
will use the local copy until the time of expiration, but if we tell the browser that it must revalidate on every
request the browser will add headers that can be tested and only of the content was changed on the server it
will be regenerated; otherwise the server will simply tell the browser to use the copy it already has through a
status code 304. This does require some communication between the browser and server but the server only
spends time checking if the cache is still valid.

 How it Works
 The trick is to use a number of headers that identify that the browser can cache the content, how the cache
should be handled, when the content was modified, and when it expires.

 <?php
 // 12_9.php

 function Cache($last_mod, $ttl = 86400) {
 $gmt_mod = gmdate('D, d M Y H:i:s', $last_mod) . ' GMT';
 $gmt_expires = gmdate('D, d M Y H:i:s', time() + $ttl) . ' GMT';

 header("Pragma: Cache");
 header("Cache-Control: max-age=0, must-revalidate");
 header("Last-Modified: " . $gmt_mod);
 header("Expires: " . $gmt_expired);

 if (!empty($_SERVER['HTTP_IF_MODIFIED_SINCE']) &&
 $_SERVER['HTTP_IF_MODIFIED_SINCE'] == $gmt_mod) {
 http_response_code(304);
 exit();
 }
 }

CHAPTER 12 ■ WEB FUNDAMENTALS

262

 // Lookup the timestamp when the data was changed
 $LastMod = GetModified();
 Cache($LastMod);

 // Check for a cached version on the server
 if (file_exists("cache_12_9.php")) {
 readfile("cache_12_9.php");
 }
 else {
 // Generate the content
 }

 In the example we use the Cache() function to check if the content was changed and to set the headers
for the content. This function could be added to an include file so it can be used by multiple requests.

 The format for the date/time values for the Last-Modified and Expires headers should be in the very
specific format 'D, d M Y H:i:s' or by using one of the predefined constants DATE_RSS . The dates are also
required to always be in GMT.

 When the Cache-Control header is defined with must-revalidate the browser will always send a request
to the server with the header HTTP_IF_MODIFIED_SINCE set to the modification last-modified date from
the original response. That value will end up in the super global variable $_SERVER['HTTP_IF_MODIFIED_
SINCE'] and can be compared directly to the modification date/time. If they are identical the script will
send a status code 304 telling the browser to use the cached content and it exists so it does not have to spend
resources on generating the content again.

 For this to work the code that fetches the modification time must generate the same UNIX timestamp
until the content actually changes.

 The last section of the script checks for a cached version of the content on the server. If this file exists
it will be sent to the client as is, otherwise the script will generate the content and perhaps save a cached
version. The elements of code used to update the content could also generate the cached version when the
new content is saved. This type of caching is relevant on sites that serve the exact same version of the content
to many users in a high volume. For low-volume sites it might be fine to generate the content from scratch on
every request.

 Recipe 12-8. Remote Content
 Problem
 So far we have concentrated on the communication between the server and the browser, but what if the data
needed is located on a different (web) server?

 Solution
 The fopen wrappers (as discussed in chapter 7) and stream functions in PHP can be used to communicate
with other servers. The simplest for it is to use file_get_content() with a URL instead of a local file. This
does not in itself provide a way to specify header values for the request or allow any access to the response
headers. That’s here the stream context comes in. It is possible to set the default stream context used with
all functions (fopen() , file_get_contents() etc.) when used without a specified stream context. This is
done with the stream_context_set_default() function. If a specific stream context is needed for individual
function calls it can be created by calling the function stream_context_create() . The two functions both
work on an array of options.

http://dx.doi.org/10.1007/978-1-4842-0605-8_7

CHAPTER 12 ■ WEB FUNDAMENTALS

263

 There is a long line of options available and the options are specific to the protocol used to
communicate with the server. The supported protocols are HTTP, FTP, SSL, CURL, Phar, and MongoDB.
These are available is the respective modules are installed. In this example we focus on the HTTP protocol,
but the other protocols follow a similar pattern. More information can be found here: http://php.net/
manual/en/context.php .

 The important options available for the HTTP protocol are method, header, user_agent, and content.
There are a number of other options to enable/disable redirects and other advanced features.

 The method is either GET or POST and if it’s not defined it defaults to GET. Headers can either be a
string or an array of strings if more than one header should be sent. It follows the exact same pattern or
syntax as is used with the header() function . The user_agent is a string that identifies the client. This can be
anything and could be used to emulate various devices. If it’s not defined the default value defined in php.ini
will be used. If that is undefined the system will use PHP as the user agent. Finally the content should be the
body of the POST request, following the standard formatting rules of a HTTP request.

 How it Works
 In the next example we look at how stream_context can be used to get content from a server acting as
various different user agents. The first step is to identify the user agent strings to use. A few popular strings
are the following:

 Safari on an iPad:

 Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko)
Version/6.0 Mobile/10A5355d Safari/8536.25

 Google Chrome on Windows:

 Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0
Safari/537.36

 The web site http://www.useragentstring.com/pages/useragentstring.php keeps a list of the user
agent strings used by many browsers and many different versions.

 The next step is to create a stream context that sets the desired user agent and other parameters and
finally we can make the request to the desired server.

 <?php
 // 12_10.php

 $options = array('http' => array(
 'user_agent' => 'Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X) AppleWebKit/536.26 (KHTML,
like Gecko) Version/6.0 Mobile/10A5355d Safari/8536.25',
));

 $context = stream_context_create($options);
 $data = file_get_contents(
 'http://mydomain.com/myfile.php',
 false,
 $context
);

 The second parameter indicates if the include path should be followed. It defaults to false but it is
required to pass a value in order to specify the third parameter, the stream contact.

http://php.net/manual/en/context.php
http://php.net/manual/en/context.php
http://www.useragentstring.com/pages/useragentstring.php

CHAPTER 12 ■ WEB FUNDAMENTALS

264

 The only thing we changed here was the user agent string. If we wanted to use the POST method and
add some actual content that would be included in the request we would still use the file_get_contents()
function but the options to the stream context would look slightly different.

 <?php
 // 12_11.php

 function FormEncode($data) {
 $val = [];
 foreach($data as $key => $value) {
 $val[] = "$key=$value";
 }
 return implode("&", $val);
 }

 $content = [
 'a' => 1,
 'b' => 2,
];

 $options = array('http' => array(
 'method' => 'POST',
 'content' = FormEncode($content)
));

 $context = stream_context_create($options);
 $data = file_get_contents(
 'http://mydomain.com/myfile.php',
 false,
 $context
);

 var_dump($data);
 var_dump($http_response_header);

 The function FormEncode() is used to create the body of the POST request. When no special headers are
used the form is expected to be a series of key value pairs separated by &.

 The variable $data will contain the response form the request and the magic variable $http_response_
header will be an array of all the response headers from the last stream operation. The dump of these will
look something like this:

 array(7) {
 [0] =>
 string(15) "HTTP/1.1 200 OK"
 [1] =>
 string(35) "Date: Sun, 28 Feb 2016 01:33:41 GMT"
 [2] =>
 string(62) "Server: Apache/2.4.18 (Unix) OpenSSL/1.0.1e-fips PHP/7.1.0-dev"
 [3] =>
 string(27) "X-Powered-By: PHP/7.1.0-dev"

CHAPTER 12 ■ WEB FUNDAMENTALS

265

 [4] =>
 string(18) "Content-Length: 47"
 [5] =>
 string(17) "Connection: close"
 [6] =>
 string(38) "Content-Type: text/html; charset=UTF-8"
 }

 Recipe 12-9. The HTTPS Protocol
 Problem
 The traditional protocol used to communicate between browser and web server is the HTTP protocol. This
protocol sends all data in either direction in clear text. This allows proxy servers and other technologies to
intercept and possibly change the content. How can this be avoided?

 Solution
 The HTTPS protocol uses encryption of the data in both directions. The encryption is based on a pair of
encryption keys installed on the server. The web server handles all the encryption and decryption and for
most PHP scripts there are no special things to take care of or do differently. The PHP script can use $_
SERVER['REQUEST_SCHEME'] to determine the actual scheme used. This can be useful when creating rewrite
responses or links to other parts of the site.

 How it Works
 HTTPS works like HTTP as far as creating a connection to the server. HTTP uses port 80 as the standard TCP
port and HTTPS uses 443. It is possible to use any other port, but if nonstandard ports are used they must be
specified explicitly as part of the URL.

 When the socket connection is established the server will send the public key to the browser. The
browser will use this key to encrypt the request and to decrypt the responses. By having the request and
response encrypted it is no longer possible for proxies and others to know what’s going on, with the
exception of the fact there is a connection between the browser and server.

 A redirect that matches the scheme used to formulate the request could look like this:

 header("Location: " . $_SERVER['REQUEST_SCHEME'] .
 "://" . $_SERVER['SERVER_NAME'] . "/some/new/document";

 Or if the request came in on HTTP and you wanted to force the request to use HTTPS:

 <?php
 // 12_12.php
 if ($_SERVER['REQUEST_SCHEME'] == 'http') {
 header("Location: https://{$_SERVER['SERVER_NAME']}" .
 $_SERVER['REQUEST_URI']);
 exit;
 }

CHAPTER 12 ■ WEB FUNDAMENTALS

266

 Recipe 12-10. AJAX Requests
 Problem
 PHP used to send complete HTML documents to the browser. The browser would then render the document
and fetch additional resources like images and javascript from the same server or other servers. In order
to minimize the amount of data and create sites that are more dynamic it us useful to send requests to the
server to fetch just the latest information, get a status update, or get details about some content on the page.

 Solution
 From the PHP perspective there is no real difference between a request for a full HTML document, a request
for an image, or some partial HTML or JSON document. It all follows the standard HTTP protocol and we
have seen all the building blocks on how to create the response to any of those requests.

 From the client side we have discussed GET requests as entered in the address bar or when a user clicks
a link and we have seen how a HTML form can be used to generate a POST request. In this section we will
work on generating a GET or POST request using JavaScript. It is possible to create these requests with pure
Javascript or you can choose a library like jQuery that wraps some of the functionality into simple and easy-
to-use functions.

 How it Works
 The basis of the functionality starts by the creation of a communication object. This is not done the same
way in all browsers but when the object is created it does provide the same functionality.

 if (window.XMLHttpRequest) { // code for Mozilla, etc.
 xml xmlhttp = new XMLHttpRequest()
 }
 else if (window.ActiveXObject) { // code for IE
 var xmlhttp = new ActiveXObject("Microsoft.XMLHTTP")
 }

 In this little example we test to see if the XMLHttpRequest object is defined on the window or if there is
support for ActiveXObject in IE browsers.

 The asynchronous nature of the XMLHttpResponse requires the definition of a function to process the
response when it comes in. This can be done with a function like this:

 ProcessStatus = function() {
 switch (xmlhttp.readyState) {
 case 4 :
 switch (xmlhttp.status) {
 case 0 : // Aborted
 break;
 case 200 : // if Ok
 case 304 : // if not modified
 resp = xmlhttp.responseText;
 break;
 }
 }
 }

CHAPTER 12 ■ WEB FUNDAMENTALS

267

 And the code to start the request would look something like this:

 xmlhttp.onreadystatechange = ProcessStatus;
 try {
 xmlhttp.open("GET", 'http://mydomain.com/12_12.php', true);
 }
 catch (e) {
 alert('Error');
 }

 On the PHP side the response should be formatted to how the JavaScript code expects the response.
This can be a string or a Json encode string.

 <?php
 // 12_13.php
 $resp = [
 'a' => 1,
 'b' => 2
];
 header('Content-Type: application/json');
 echo json_encode($resp);

 The output will be a JSON encoded string of the response variable:

 {"a":1,"b":2}

 Recipe 12-11. Web Sockets
 Problem
 So far we have worked on problems that start by the client sending a request to the server and receiving a
response. Nothing happens on the server unless there is a client sending requests. Is it possible to have a line
of communication open as long as the browser stays of the page?

 Solution
 Web Sockets is a bidirectional (full duplex) communication pipe that allows browsers to connect to special
purpose php scripts. The Web Sockets protocol does not use http or https as the basis for communication.
Instead it uses ws or wss for SSL encrypted connections.

 How it Works
 Easy ways to get started with Web Sockets is to download, and extend an existing socket server. This could
be https://github.com/ghedipunk/PHP-WebSockets . This is a stand-alone script that is executed from
the command line. The scripts should not be placed in the web root and they can even be used on servers
without a regular web server.

https://github.com/ghedipunk/PHP-WebSockets

CHAPTER 12 ■ WEB FUNDAMENTALS

268

 A simple server that receives a message and sends back a string with the characters in reversed order
looks like this.

 #!/usr/bin/env php
 <?php
 // 12_14.php

 require('./websockets.php');

 class echoServer extends WebSocketServer {
 protected function process ($user, $message) {
 $this->send($user, str_reverse($message));
 }
 protected function connected ($user) {
 }

 protected function closed ($user) {
 }
 }

 $echo = new echoServer("0.0.0.0","9000");

 try {
 $echo->run();
 }
 catch (Exception $e) {
 $echo->stdout($e->getMessage());
 }

 The WebSocketsServer class uses a couple of abstract methods that must be defined in the class even if
they do nothing as in this example. These functions could be used to configure data and clean up on connect
and disconnect from clients.

 And an html document that can send and receive messages from the server could look like this:

 <!DOCTYPE html>
 <!- 12_14.html ->
 <html>
 <head>
 <script>
 var socket;
 function init() {
 var host = "ws://127.0.0.1:9000/echobot";
 try {
 socket = new WebSocket(host);
 socket.onmessage = function(msg) {
 var div = document.createElement("div");
 div.innerHTML = msg.data;
 document.getElementsByTagName('body')[0].appendChild(div);
 };
 }

CHAPTER 12 ■ WEB FUNDAMENTALS

269

 catch (e) {
 alert(e);
 }
 }
 function send(msg) {
 try {
 socket.send(msg);
 }
 catch (e) {
 alert(e);
 }
 }
 </script>
 </head>
 <body onload="init();">
 <button onclick="send('This is a test');">Send</button>
 </script>
 </body>
 </html>

271© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_13

 CHAPTER 13

 Creating and Using Forms

 HTML Forms have many usages, ranging from a simple contact form to a way to collect and edit data in a
web-based application. Forms can be created as a static section of HTML or it can be dynamically generated
with PHP based on a set of data from a database or another source. No matter how the form is generated
it’s good practice to validate the input before the form is submitted. This will help prevent data errors and
the user will be able to correct errors without having the data sent to the server for validations. It is also
necessary to validate the contents of the POST request before data is inserted into the database or otherwise
used on the server.

 Recipe 13-1. Form Elements
 Problem
 There are a number of different types of input that can be used in an HTML form. How does these map to
native PHP data types and even to column types in a database?

 Solution
 In general all input from a HTML form is treated as string values in PHP. This is because the type is not passed
on from the client to the server. The POST request contains key/value pairs with no other information. The
PHP script that receives the POST request has to perform the necessary type conversion.

 There are a number of input types supported by HTML. The most generic type is a text field that can
be used to enter any character the user can type on the keyboard. The basic HTML syntax for a text input
looks like this:

 <input type="text" name="text" />

 The value of the name attribute will cause an index in the $_POST (or $_GET) array to be created with
the same value and the value entered by the user can be accessed at that index.

 A special type of text input is called password. This will replace the content of the input while the user is
typing, preventing others from reading over the shoulder.

 <input type="password" name="password" />

 Each character is typically replaced with an asterisk *. Please note that the content on the form is still
transferred in clear text, unless an encrypted connection is used between the client and the server. It is not
necessary to encrypt the GET request that sends the empty form from the server to the client, but the POST
that sends data back to the server should be encrypted to secure passwords.

CHAPTER 13 ■ CREATING AND USING FORMS

272

 Some types of input do not work well with free text input fields. If the form contains yes/no questions
or other similar situations with a limited set of values where the user can select one of the options it’s
recommended to use radio button or drop-down lists. Drop-down lists are useful when there are many
options, like a list of states as the total space needed for the form is reduced to a single line. The next few
lines show an input structure for a variable called “agree.” There are two options for the user to select. Only
the selected value (if any) will be submitted as part of the form. Because the two inputs have the same name
and the browser only allows the user to select one of the values the server only needs to check on variables.

 <input type="radio" name="agree" value="0" />No
 <input type="radio" name="agree" value="1" />Yes

 Creating a drop-down lost is a bit more involved. Two html tags are needed. The other tag is called
select and the inner tag is called option. The inner tag can be repeated as many times as needed.

 <select name="state">
 <option value="AL">Alabama</option>
 <option value="AK">Alaska</option>
 <option value="AZ">Arizona</option>
 <option value="AR">Arkansas</option>
 <option value="CA">California</option>
 ...
 <option value="WY">Wyoming</option>
 </state>

 This element will create an index called state on the $_POST variable. It will contain only the selected
value, in this case a two-letter code for the state.

 Common for both radio buttons and drop-down lists are the fact that they can show a more readable
version of the selection and simply send a short value back to the server.

 If the user should have the option to select more than one value the form can contain check boxes or
multiselect lists .

 For check boxes to work it is necessary to name them with unique names for each option or use a name
that will cause PHP to create an array of values. The yes/no example from above could be implemented with
a single check box.

 <input type="checkbox" name="agree" value="1" />I Agree

 Submitting the form will only contain a value for the ‘agree’ variable if the value is checked. The PHP
script will have to check if the index agree exists on $_POST. If it’s undefined that means the value
was not selected.

 Creating a form that contains the selection of a user’s programming skills could look like this:

 <input type="checkbox" name="skill[]" value="1" />PHP
 <input type="checkbox" name="skill[]" value="2" />JavaScript
 <input type="checkbox" name="skill[]" value="4" />C/C++
 <input type="checkbox" name="skill[]" value="8" />Java

 If none of the values are selected when the form is submitted the $_POST array will not have an index
called ‘skill’. If one or more values are selected the variable will be an array of the selected values. Selecting
PHP and JavaScript will create this content in $_POST .

CHAPTER 13 ■ CREATING AND USING FORMS

273

 Array (
 [skill] => Array
 (
 [0] => 1
 [1] => 2
)
)

 The possible values in the example are chosen to be the values of a single bit in an integer. That way the
values can be ORed (bitwise disjunction) together to create an integer value that can be stored in a single
column in a database.

 The same example can be created with a multiselect list :

 <select multiple name="skill[]">
 <option value="1">PHP</option>
 <option value="2">JavaScript</option>
 <option value="4">C/C++</option>
 <option value="8">Java</option>
 </select>

 This will produce the same content in the $_POST array as the check boxes. The user will have to hold
down Ctrl (Windows) or Cmd (Mac) to select more than one value.

 If the name is missing the square brackets [] at the end PHP will treat the values as one and it will only
contain the value of the last selected option from the list.

 In HTML 5 there were a couple of new input options introduced. The new types are listed here:

 Type Description

 Color Allows selecting of a color value from a color picker

 Date A date selector control for entering month, day, and year

 datetime-local A control for entering both date and time

 Email Control with simple e-mail validation

 Month Allows entering a month and a year

 Number Used for integer values

 Range An integer represented with a slider

 Search Defines a text field for entering a search

 Tel Allows input of a telephone number

 Time A control for entering time

 url A text field for entering a url

 Week A control to enter a week number and a year

 It is up to each browser to define the look and feel of these new controls, and the browsers might not
implement support for all of them.

 There are plenty of resources online for HTML documentation. One of my favorites is W3Schools at
 http://www.w3schools.com . It’s a reference for HTML, CSS, JavaScript, and Databases. It also contains some
PHP documentation I prefer to use the PHP manual as it’s more complete and it contains user-contributed
code segments.

http://www.w3schools.com/

CHAPTER 13 ■ CREATING AND USING FORMS

274

 How it Works
 The basic functionality of a form includes two steps. The first is to request a HTML document that contains
the form definition. The second step is to submit the form with all the data to the server. This can be to the
same server or a completely different one. A common implementation is to have a single PHP script that
checks if a post was received. If no data was received it will show a form that will allow the user to enter data.
If data was posted the data will be processed and the script will show some form of a thank you message.

 The next example implements a simple Contact Us form with a number of input fields and the use of
the jQuery library and Bootstrap framework .

 <?php
 // 13_1.php

 if (empty($_POST)) {
 // nothing posted show the form
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <title>Contact Us</title>
 <!-- Latest compiled and minified CSS -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1
fgjWPGmkzs7" crossorigin="anonymous">

 <!-- Optional theme -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap-theme.min.css" integrity="sha384-fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzap
T0u7EYsXMjQV+0En5r" crossorigin="anonymous">

 <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
 <!-- Latest compiled and minified JavaScript -->
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"
integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
crossorigin="anonymous"></script>

 </head>
 <body>
 <form name="contact" method="POST" action="{$_SERVER['PHP_SELF']}">
 <div>
 <label for="name">Name</label>
 <input class="form-control" name="name" type="text" />
 </div>
 <div>
 <label for="email">Email</label>
 <input class="form-control" name="email" type="text" />
 </div>
 <div>
 <label for="phone">Phone</label>
 <input class="form-control" name="phone" type="text" />
 </div>
 <div>
 <label>Best way to contact you</label>
 <div class="radio">

CHAPTER 13 ■ CREATING AND USING FORMS

275

 <label><input name="cnt" type="radio" value="0"/>Don't contact</label>
 </div>
 <div class="radio">
 <label><input name="cnt" type="radio" value="1"/>Email</label>
 </div>
 <div class="radio">
 <label><input name="cnt" type="radio" value="2"/>Phone</label>
 </div>
 </div>
 <button class="btn btn-default" onclick="document.contact.submit()">Submit</button>
 </form>
 </body>
 </html>
 HEREDOC;
 }
 else {
 switch ($_POST['cnt']) {
 case 0:
 default:
 $contact = "We will not contact you!";
 break;
 case 1:
 $contact = "We will contact you via email!";
 break;
 case 2:
 $contact = "We will contact you via phone!";
 break;
 }
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <title>Thank You</title>
 </head>
 </body>
 <div>Thank you for your input. We have received the following input from you:<div>
 <div>Name: {$_POST['name']}</div>
 <div>Email: {$_POST['email']}</div>
 <div>Phone: {$_POST['phone']}</div>
 <div>{$contact}</div>
 </body>
 </html>
 HEREDOC;
 $mysqli = new mysqli("localhost", "user", "secret", "contact_db");
 $name = $mysqli->real_escape_string($_POST['name']);
 $email = $mysqli->real_escape_string($_POST['email']);
 $phone = $mysqli->real_escape_string($_POST['phone']);
 $cnt = (int)$_POST['cnt'];
 $SQL = "insert into contacts (contact_name, email, phone, cnt) values " .
 "('{$name}', '{$email}', '{$phone}', $cnt)";
 $mysqli->query($SQL);
 }

CHAPTER 13 ■ CREATING AND USING FORMS

276

 It is not necessary to use the jQuery library or the Bootstrap framework but it makes the forms look a bit
better than plain HTML forms.

 The jQuery library is a de facto standard for interacting with the DOM from JavaScript. It allows easy
access to elements by using a selector syntax that’s close to that of CSS.

 The Bootstrap framework is responsive and will cause the content to have a similar look and feel on
mobile and laptop/desktop devices. As a growing portion of web requests is done from mobile devices it is
highly recommended to create content that is responsive so it can adjust to the device. In fact many search
engines will penalize content that is not mobile friendly in the search results.

 After showing the collected data to the user the script will insert the values in a database using the
mysqli extension. In this example the object- oriented style is used. The string values are escaped before they
are used in the database query and the cnt value is cast to an integer to avoid errors if the value should be
missing or contain a string value.

 Recipe 13-2. Default Values
 Problem
 The forms used in the previous examples have all been empty when first loaded. There are a couple of use
cases for adding default content to a form. One is to fill the form with common values or select the most
common value of drop-down lists, etc. The other is to allow the user to edit a record that was previously
submitted and saved on the server.

 Solution
 Setting the default value for an input tag depends on the type of input. For a text input the value is set with
the value attribute.

 <input type="text" name="name" value="Some default value" />

 For check boxes and radio buttons the attribute checked it used to indicate if the value is checked. For
radio button where only one value can be selected it’s only the last element with the attribute checked that
will be selected. Adding the attribute checked to the first value of the no/yes example from above will change
the behavior of the form. In the original example none of the values were selected when the form was first
loaded but by setting the checked on the No value this radio button will be selected when the form is loaded.

 <input type="radio" name="agree" value="0" checked />No
 <input type="radio" name="agree" value="1" />Yes

 For check boxes where multiple values can be selected at once the same system can be used.

 <input type="checkbox" name="skill[]" value="1" checked />PHP
 <input type="checkbox" name="skill[]" value="2" checked />JavaScript
 <input type="checkbox" name="skill[]" value="4" />C/C++
 <input type="checkbox" name="skill[]" value="8" />Java

 In this example the first two values will be preselected when the form is loaded.
 Finally for the drop-down list the use of the attribute selected on the option that should be the default

value will cause the drop-down to preselect that value. For a select with a single value it is possible to set the
selected attribute on multiple values but only the last value with the attribute will be the selected option. If
it’s a multiselect list all options with the selected attribute will show as selected.

CHAPTER 13 ■ CREATING AND USING FORMS

277

 In the next example the state California will be the default value in the drop-down.

 <select name="state">
 <option value="AL">Alabama</option>
 <option value="AK">Alaska</option>
 <option value="AZ">Arizona</option>
 <option value="AR">Arkansas</option>
 <option value="CA" selected>California</option>
 ...
 <option value="WY">Wyoming</option>
 </state>

 As with multiple checked check boxes we can use the selected attribute to select both PHP and
JavaScript in the multiple select list.

 <select multiple name="skill[]">
 <option value="1" selected>PHP</option>
 <option value="2" selected>JavaScript</option>
 <option value="4">C/C++</option>
 <option value="8">Java</option>
 </select>

 The attributes checked and selected are used without any values. It is allowed to add a value to
these attributes. This could be checked=“true” or selected=“true”, but be careful as checked=“false” or
selected=“false” will still cause these to be set as the default values. It does not matter what the value is. If the
attribute is present the element will be checked or selected.

 How it Works
 Extending Recipe 13-1, it’s possible to do some checks on the server before inserting the data into the
database. If the name or e-mail column is empty the form is regenerated with the values the user already
submitted and a message is added to show the user that data is missing.

 <?php
 // 13_2.php

 if (empty($_POST) ||
 empty($_POST['name']) ||
 empty($_POST['email'])) {
 $warning = empty($_POST) ? "" : "<div style=\"color:red;\">Please provide all required
fields</div>";
 // nothing posted or missing name or email show the form
 $checked0 = $_POST['cnt'] == 0 ? " checked" : "";
 $checked1 = $_POST['cnt'] == 1 ? " checked" : "";
 $checked2 = $_POST['cnt'] == 2 ? " checked" : "";
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>

CHAPTER 13 ■ CREATING AND USING FORMS

278

 <head>
 <title>Contact Us</title>
 <!-- Latest compiled and minified CSS -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1
fgjWPGmkzs7" crossorigin="anonymous">

 <!-- Optional theme -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap-theme.min.css" integrity="sha384-fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzapT
0u7EYsXMjQV+0En5r" crossorigin="anonymous">

 <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
 <!-- Latest compiled and minified JavaScript -->
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"
integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
crossorigin="anonymous"></script>

 </head>
 <body>
 {$warning}
 <form name="contact" method="POST" action="{$_SERVER['PHP_SELF']}">
 <div>
 <label for="name">Name (required)</label>
 <input class="form-control" name="name" type="text" value="{$_POST['name']}" />
 </div>
 <div>
 <label for="email">Email (required)</label>
 <input class="form-control" name="email" type="text" value="{$_POST['email']}" />
 </div>
 <div>
 <label for="phone">Phone</label>
 <input class="form-control" name="phone" type="text" value="{$_POST['phone']}" />
 </div>
 <div>
 <label>Best way to contact you</label>
 <div class="radio">
 <label><input name="cnt" type="radio" value="0"{$checked0}/>Don't contact</label>
 </div>
 <div class="radio">
 <label><input name="cnt" type="radio" value="1"{$checked1}/>Email</label>
 </div>
 <div class="radio">
 <label><input name="cnt" type="radio" value="2"{$checked2}/>Phone</label>
 </div>
 </div>
 <button class="btn btn-default" onclick="document.contact.submit()">Submit</button>
 </form>
 </body>
 </html>
 HEREDOC;
 }

CHAPTER 13 ■ CREATING AND USING FORMS

279

 else {
 switch ($_POST['cnt']) {
 case 0:
 default:
 $contact = "We will not contact you!";
 break;
 case 1:
 $contact = "We will contact you via email!";
 break;
 case 2:
 $contact = "We will contact you via phone!";
 break;
 }
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <title>Thank You</title>
 </head>
 </body>
 <div>Thank you for your input. We have received the following input from you:<div>
 <div>Name: {$_POST['name']}</div>
 <div>Email: {$_POST['email']}</div>
 <div>Phone: {$_POST['phone']}</div>
 <div>{$contact}</div>
 </body>
 </html>
 HEREDOC;
 $mysqli = new mysqli("localhost", "user", "secret", "contact_db");
 $name = $mysqli->real_escape_string($_POST['name']);
 $email = $mysqli->real_escape_string($_POST['email']);
 $phone = $mysqli->real_escape_string($_POST['phone']);
 $cnt = (int)$_POST['cnt'];
 $SQL = "insert into contacts (contact_name, email, phone, cnt) values " .
 "('{$name}', '{$email}', '{$phone}', $cnt)";
 $mysqli->query($SQL);
 }

 Now the form will be shown if the variable $_POST is empty (nothing posted) or if either
$_POST[‘name’] or $_post[‘email’] are empty. In addition there is some added code to generate a warning
message if needed and to set the checked attribute on the correct radio button. This allows the user to edit
the values already entered and to fill in the missing data before submitting the form again.

 The validation performed here is done on the server side only. This requires the entire form to be
submitted and validated on the server and if there is an error sends back to the user for reentry.

CHAPTER 13 ■ CREATING AND USING FORMS

280

 Recipe 13-3. Form Validation
 Problem
 HTML 5 supports a new attribute on the input field called required. Setting this attribute will prevent the
browser from submitting the form if the input field is blank/empty. This can be an easy way to add some
validation but it might not be enough. A field marked required will still allow the form to be submitted if the
field contains a space. How can form validation be added on the client side?

 Solution
 The solution is to use JavaScript to traverse through all the (or a few selected) input fields and validate that
the content is as expected before the form is submitted. This will not eliminate the requirement to do server-
side validation. The client submitting the form might not be a browser or it could have JavaScript disabled
causing the validation to fail.

 How it Works
 In order to use jQuery it’s necessary to have a way to identify the elements of the form. This can be done with
the name of the form but it’s a simpler syntax if an id attribute is added to the form.

 <form id="cont" name="contact" method="POST" action="{$_SERVER['PHP_SELF']}">
 </form>

 To access this form via jQuery we use the selector ‘#cont’, indicating that all elements with an
id=“cont” should be selected. If there are other elements with the same id adding the element type can
reduce the number of elements selected. The selector ‘form#cont’ will select all elements of type form and
with the id of cont.

 The next step is to find all the inputs for the form. This is done by expanding the selector to ‘form#cont
:input’. This selector will select all inputs that are located inside of the form tag with the id of cont. Iterating
over the elements and applying a validation rule to each of them could look like this:

 <?php
 // 13_3.php

 if (empty($_POST) ||
 empty($_POST['name']) ||
 empty($_POST['email'])) {
 $warning = empty($_POST) ? "" : "<div style=\"color:red;\">Please provide all required
fields</div>";

 // nothing posted or missing name or email show the form
 $checked0 = $_POST['cnt'] == 0 ? " checked" : "";
 $checked1 = $_POST['cnt'] == 1 ? " checked" : "";
 $checked2 = $_POST['cnt'] == 2 ? " checked" : "";
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <title>Contact Us</title>
 <!-- Latest compiled and minified CSS -->

CHAPTER 13 ■ CREATING AND USING FORMS

281

 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1
fgjWPGmkzs7" crossorigin="anonymous">

 <!-- Optional theme -->
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/
bootstrap-theme.min.css" integrity="sha384-fLW2N01lMqjakBkx3l/M9EahuwpSfeNvV63J5ezn3uZzap
T0u7EYsXMjQV+0En5r" crossorigin="anonymous">

 <!-- jQuery (necessary for Bootstrap's JavaScript plugins) -->
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
 <!-- Latest compiled and minified JavaScript -->
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"
integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
crossorigin="anonymous"></script>

 </head>
 <body>
 {$warning}
 <form name="contact" method="POST" action="{$_SERVER['PHP_SELF']}">
 <div>
 <label for="name">Name (required)</label>
 <input class="form-control" name="name" type="text" value="{$_POST['name']}" />
 </div>
 <div>
 <label for="email">Email (required)</label>
 <input class="form-control" name="email" type="text" value="{$_POST['email']}" />
 </div>
 <div>
 <label for="phone">Phone</label>
 <input class="form-control" name="phone" type="text" value="{$_POST['phone']}" />
 </div>
 <div>
 <label>Best way to contact you</label>
 <div class="radio">
 <label><input name="cnt" type="radio" value="0"{$checked0}/>Don't contact</label>
 </div>
 <div class="radio">
 <label><input name="cnt" type="radio" value="1"{$checked1}/>Email</label>
 </div>
 <div class="radio">
 <label><input name="cnt" type="radio" value="2"{$checked2}/>Phone</label>
 </div>
 </div>
 <button class="btn btn-default" onclick="$('form#cont').submit()">Submit</button>
 </form>
 <script>
 $(document).ready(function() {
 $('form#cont').submit(function() {
 $('form#cont :input').each(function() {
 if (this.name == 'name' && $(this).val() == '') {
 alert('Name may not be empty');
 return false;
 }

CHAPTER 13 ■ CREATING AND USING FORMS

282

 if (this.name == 'email' && $(this).val() == '') {
 alert('Email may not be empty');
 return false;
 }
 });
 });
 });
 </script>
 </body>
 </html>
 HEREDOC;
 }
 else {
 switch ($_POST['cnt']) {
 case 0:
 default:
 $contact = "We will not contact you!";
 break;
 case 1:
 $contact = "We will contact you via email!";
 break;
 case 2:
 $contact = "We will contact you via phone!";
 break;
 }
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <title>Thank You</title>
 </head>
 </body>
 <div>Thank you for your input. We have received the following input from you:<div>
 <div>Name: {$_POST['name']}</div>
 <div>Email: {$_POST['email']}</div>
 <div>Phone: {$_POST['phone']}</div>
 <div>{$contact}</div>
 </body>
 </html>
 HEREDOC;
 $mysqli = new mysqli("localhost", "user", "secret", "contact_db");
 $name = $mysqli->real_escape_string($_POST['name']);
 $email = $mysqli->real_escape_string($_POST['email']);
 $phone = $mysqli->real_escape_string($_POST['phone']);
 $cnt = (int)$_POST['cnt'];
 $SQL = "insert into contacts (contact_name, email, phone, cnt) values " .
 "('{$name}', '{$email}', '{$phone}', $cnt)";
 $mysqli->query($SQL);
 }

CHAPTER 13 ■ CREATING AND USING FORMS

283

 The addition of a small section of JavaScript code will iterate over all the elements of the form and
validate if the name or e-mail fields are empty and show an error message if that is the case. Returning false
in the case of a validation error will ensure the form is not submitted.

 The validation can easily be extended to use regular expressions to check for leading/trailing spaces and
even to validate that the e-mail address contains an e-mail address that could be used for sending e-mails.

 When the same script is used to generate the form and process the post request, it’s common practice
to use $_SERVER[‘PHP_SELF’] at the action on the form tag. This will ensure the script is working even if it is
renamed.

 Recipe 13-4. Form Generation
 Problem
 Creating HTML forms using static HTML files or sections of HTML embedded in a php script can be tedious,
especially when there are many types of data to edit in the application. How can form creation be made easier?

 Solution
 Most form elements that are used in multiple places follow the same pattern with each use. It’s possible to
create a generic function or class that can be used to generate HTML forms based on a simple form definition.

 The first step is to define the types of inputs the form class should support, then the implementation can
be stubbed out and finally the code created to handle the generation of the actual form tags.

 As described earlier a form is defined with the form tag with one or more input elements inside. A basic
form can have text, number, radio button, drop-down, check box, and multiselect options. Each of these
options can have a predefined layout that can be reused as many times as needed.

 The basic class to generate a HTML form can be created with a few methods.

 <?php

 class HTMLForm {

 function __constructor($id, $action, $method = "POST") {
 }

 function AddInput($name, $type, $value = null) {
 }

 function __toString() {
 }
 }

 The first method is the constructor that is called when the object is instantiated. The constructor takes a
few parameters that define some of the attributes on the form tag.

 Next there is a function used to add inputs to the form. The parameters listed are a minimum set. As the
class is developed there might be a need to add things like min and max values, options for a drop-down,
and validations functions, but this is a good start. Finally the method __toString() is used to generate the
output. When the object is used in a string context the __toString() function will be called and the returned
value will be used as the value of the object.

CHAPTER 13 ■ CREATING AND USING FORMS

284

 How it Works
 The purpose of the constructor is to initialize the object. In this case all it does is to store the parameters that
are passed in. These values will be used later when the output is generated.

 <?php
 // 13_4.php

 class HTMLForm {
 private $id;
 private $action;
 private $method;
 private $inputs = [];

 function __constructor($id, $action, $method = "POST") {
 $this->id = $id;
 $this->action = $action;
 $this->method = $method;
 }

 function AddInput($type, $name, $label, $value = null) {
 $this->inputs[] = [
 $type,
 $name,
 $label,
 $value
];
 }

 function __toString() {
 $form = '<form id="%s" action="%s", method="%s>%s</form>';
 $inputs = [];
 foreach($this->inputs as $input) {
 switch($input[0]) {
 case "hidden" :
 $template = '<input type="hidden" name="%s" value="%s" />';
 $inputs[] = sprintf($template, $input[1], $input[3]);
 break;
 case "text" :
 $template = '<div><label for="%s">%s</label><input type="text" name="%s"

value="%s" /></div>';
 $inputs[] = sprintf($template, $input[1], $input[2], $input[1], $input[3]);
 break;
 case "textarea" :
 $template = '<div><label for="%s">%s</label><textarea type="text" name="%s" />%s</

textarea></div>';
 $inputs[] = sprintf($template, $input[1], $input[2], $input[1], $input[3]);
 break;
 case "number" :
 $template = '<div><label for="%s">%s</label><input type="number" name="%s"

value="%s" /></div>';

CHAPTER 13 ■ CREATING AND USING FORMS

285

 $inputs[] = sprintf($template, $input[1], $input[2], $input[1], $input[3]);
 break;
 case "select" :
 $template = '<div><label for="%s">%s</label><select name="%s" >%s</select></div>';
 $options = [];
 if (is_array($value)) {
 $option = '<option value="%s">%s</option>';
 foreach($value as $k => $v) {
 $options[] = sprintf($option, $k, $v);
 }
 }
 $inputs[] = sprintf($template, $input[1], $input[2], $input[1], implode("", $options));
 break;
 }
 }
 $form = sprintf($form, $this->id, $this->action, $this->method, implode("", $inputs));
 return $form;
 }
 }

 The AddInput() method is used to add new inputs to the form. The method has three mandatory and
one optional argument and the main purpose is to create an array with the definition of all the input fields.

 Finally the method __toString() is used to generate the actual form. This method uses a number of
string templates for the HTML tags and the function sprint() to populate the placeholders (%s) with the
actual values.

 The HTMLForm class is defined in a file called 13_4.php. This file can be included and the object
instantiated.

 <?php
 // 13_5.php
 require "./13_4.php";

 $form = new HTMLForm('contact', $_SERVER['PHP_SELF']);
 $form->AddInput('text', 'name', 'Name');
 $form->AddInput('text', 'email', 'Email');
 $form->AddInput('text', 'phone', 'Phone');
 $form->AddInput('textarea', 'comment', 'Comment');

 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <body>
 $form
 </body>
 </html>
 HEREDOC;

 This example does not add any specific styling so the browser will add the default styling for each
element. It is relatively simple to add the Bootstrap css and it’s straightforward to add more attributes to
handle class, required, and other attributes on each element.

CHAPTER 13 ■ CREATING AND USING FORMS

286

 A couple of new input types were used in this example. The hidden type is a way to add additional
information that is beyond the control of the user but the values are passed on to the server as part of the
request. The text area type is a form of multiline input that will allow the user to enter longer text with
line breaks.

 The AddInput() method could be split into separate functions for each type of input where each
method could have parameters that matches the specific type.

 <?php
 // 13_6.php

 class HTMLForm {
 private $id;
 private $action;
 private $method;
 private $inputs = [];

 function __constructor($id, $action, $method = "POST") {
 $this->id = $id;
 $this->action = $action;
 $this->method = $method;
 }

 function AddHidden($name, $value = null) {
 $this->inputs[] = <<<HEREDOC
 <input type="hidden" name="{$name}" value="{$value}" />
 HEREDOC;
 }

 function AddText($name, $label, $value = null, $required = false) {
 $attrib = $required ? " required" : "";
 $this->inputs[] = <<<HEREDOC
 <div>
 <label for="{$name}">{$label}</label>
 <input type="text" name="{$name}" value="{$value}"{$attrib} />
 </div>
 HEREDOC;
 }

 function AddTextArea($name, $label, $value = null) {
 $this->inputs[] = <<<HEREDOC
 <div>
 <label for="{$name}">{$label}</label>
 <textarea name="{$name}">{$value}</textarea>
 </div>
 HEREDOC;
 }

CHAPTER 13 ■ CREATING AND USING FORMS

287

 function AddNumber($name, $label, $value = null, $required = false, $min = null, $max = null) {
 $attrib = $required ? " required" : "";
 if (is_numeric($min)) {
 $attrib .= " min=\"{$min}\"";
 }
 if (is_numeric($max)) {
 $attrib .= " max=\"{$max}\"";
 }
 $this->inputs[] = <<<HEREDOC
 <div>
 <label for="{$name}">{$label}</label>
 <input type="number" name="{$name}" value="{$value}"{$attrib} />
 </div>
 HEREDOC;
 }

 function AddSelect($name, $label, $values = [], $selected = null) {
 $options = [];
 if (is_array($values)) {
 $option = '<option value="%s"%s>%s</option>';
 foreach($values as $k => $v) {
 if ($k == $selected) {
 $options[] = sprintf($option, $k, " selected", $v);
 }
 else {
 $options[] = sprintf($option, $k, "", $v);
 }
 }
 }
 $options = implode("", $options);
 $this->inputs[] = <<<HEREDOC
 <div>
 <label for="{$name}">{$label}</label>
 <select name="{$name}">$options</select>
 </div>
 HEREDOC;
 }

 function __toString() {
 $form = '<form id="%s" action="%s", method="%s>%s</form>';
 $inputs = [];
 $form = sprintf($form, $this->id, $this->action, $this->method, implode("", $this->inputs));
 return $form;
 }
 }

CHAPTER 13 ■ CREATING AND USING FORMS

288

 In this case each of the Add..() methods is responsible for creating the HTML layout for the input. This
makes the __toString() method simpler. Using this class is very similar to the previous example.

 <?php
 // 13_7.php
 require "./13_6.inc";

 $form = new HTMLForm('contact', $_SERVER['PHP_SELF']);
 $form->AddHidden('form', 'Contact');
 $form->AddText('name', 'Name', null, true);
 $form->AddText('email', 'Email', null, true);
 $form->AddText('phone', 'Phone');
 $form->AddSelect('ref', 'How did your find us?', ['Google', 'Bing', 'Ask', 'Yahoo', 'Other']);
 $form->AddTextarea('comment', 'Comment');

 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <body>
 $form
 </body>
 </html>
 HEREDOC;

 Recipe 13-5. File Upload
 Problem
 So far we have looked at HTML forms that are populated with input from the keyboard or mouse. This
generates mostly textual input, but with the graphic nature of the web it is necessary to include files from the
computer’s hard drive.

 Solution
 Uploading files to a PHP script requires some settings to be enabled in php.ini. First of all there is file_
uploads = On . If this is not set PHP will ignore all uploaded files. Secondly there is the limit on the upload
size. This is used to prevent users from uploading very large files that eventually would fill up the disk drive.
The setting to control this is called upload_max_filesize and it defaults to 2Mb. Finally there is the setting
for maximum number of files per request, max_file_uploads and that has a default value of 20. In general
there is also a setting for the maximum size of a post request. This value is defined by post_max_size and the
default value is 8Mb. If you are going to allow large text inputs you will have to adjust this setting accordingly.

 The special input type “file” allows the user to browse the local hard drive for a specific file. The
selection of a file requires an action from the user. The browser can’t be instructed with script code to select
arbitrary files from the user’s hard drive.

 The file input will provide the user with a “browse” button. When the user clicks the browse button, the
browser will open a file dialog. The browser, according to the guidelines from the platform, handles the look
and feel of the browse button and the dialog. It is not possible to style these elements.

 When the html form is created it is necessary to add the enctype attribute to the form in order for the form
to handle file uploads. The value is defined as enctype="multipart/form-data" and the method must be set
to POST. It’s not possible to include file uploads as part of a GET request. Forgetting to set the enctype attribute
will cause the name of the file to be stored in the $_POST array and the file is not available on the server.

CHAPTER 13 ■ CREATING AND USING FORMS

289

 On the server side the content of the upload is not available in the normal $_POST array but can be
found in the $_FILES array. The upload of the file(s) take place before the PHP script starts executing. The
file is given a temporary name and placed in the /tmp folder. The actual location is controlled with the
 upload_temp_dir setting in php.ini. It is also possible to restrict the max size of uploads and the entire POST
with settings in php.ini. If you plan to allow your users to upload large files you will have to adjust these
values accordingly.

 The super global $_FILES will contain a number of values based on the name of the input, the name of
the select file, and the size of the uploaded file.

 How it Works
 A file upload is handled with a form where the user selects the file and a PHP script that received the
uploaded file. As before these can be in one php script. The next example shows a simple form with two
inputs. The first is a text field and the second is a file.

 <?php
 // 13_8.php

 if (empty($_POST)) {
 // nothing posted show the form
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <title>File Upload</title>
 </head>
 <body>
 <form name="contact" method="POST" action="{$_SERVER['PHP_SELF']}" enctype="multipart/form-data" >
 <div>
 <label for="name">Name</label>
 <input name="name" type="text" />
 </div>
 <div>
 <label for="email">File</label>
 <input name="file" type="file" />
 </div>
 <button class="btn btn-default" onclick="document.contact.submit()">Submit</button>
 </form>
 </body>
 </html>
 HEREDOC;
 }
 else {
 print("<pre>");
 print_r($_POST);
 print_r($_FILES);
 print("</pre>");
 }

CHAPTER 13 ■ CREATING AND USING FORMS

290

 The initial output of the script is the form and when the form is submitted it will show the contents of
the two super globals $_POST and $_FILES .

 Array (
 [name] => test
)
 Array (
 [file] => Array
 (
 [name] => city.list.json
 [type] => application/json
 [tmp_name] => /tmp/php0pdVpy
 [error] => 0
 [size] => 19208925
)
)

 The attribute of the $_FILES array is the name of the input. This is also an array that contains the name
of the file, the mime type, the temporary name and path, an error code (0 means no errors), and the size in
bytes of the uploaded file.

 The temporary file is automatically deleted when the script terminates, unless there is a fatal error in
the script. In order to keep the file on the server the script must move the file to a different location. Besides
checking for error conditions with the upload there are a couple of functions that are useful to move files.

 The function is_uploaded_file() will check if the file was actually uploaded via the HTTP POST. This
function takes a single parameter, which usually is $_FILES['file']['tmp_name'] . The other function
 move_uploaded_file() is used to move and rename the uploaded file into its permanent position. This
function takes two parameters where the first is the temporary name and the second is the path and name of
the new file/location. In the example above this would look something like this:

 <?php
 // 13_9.php

 if ($_FILES['file']['error'] == UPLOAD_ERR_OK &&
 is_uploaded_file($_FILES['file']['tmp_name'])) {
 move_uploaded_file($_FILES['file']['tmp_name'],
 "/path/to/file/{$_FILES['file']['name']}");
 }

 Recipe 13-6. Form Data
 Problem
 In all the previous recipes we have used a HTML form to allow the user to enter data and a button to submit
data to the server. Is it possible to submit forms without the submit button?

 Solution
 In most modern browsers (Firefox, Chrome, IE 10, and newer) there is an object called FormData. This
object can be used to build and post forms with a dynamic number of fields.

CHAPTER 13 ■ CREATING AND USING FORMS

291

 How it Works
 From the server side there is no difference in how the POST is received and managed but in the client the
POST is created entirely with javascript and is submitted with a XMLHTTP request.

 var content = new FormData();
 content.append('name', 'Frank Kromann');
 content.append('email', 'fmk@php.net');
 xmlhttp = new XMLHttpRequest();
 xmlhttp.open("POST", URL, true);
 xmlhttp.send(content);

 This can be used to validate a partial form without submitting the entire form. For example, you might
want to check if a user name exists in the database before allowing the user to submit the form or if you want
to use other server-side validation.

293© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_14

 CHAPTER 14

 XML, RSS, WDDX, and SOAP

 Web technology is more than HTML and JavaScript used by browsers and web servers. Other types of clients
use other protocols and data formats to exchange and present data. This chapter contains recipes on how to
create content in formats other than the usual HTML and JavaScript.

 Recipe 14-1. Exchanging Data with XML
 Problem
 XML is a structured data format with tags and attributes like HTML. It is usually a bit stricter as tags without
a corresponding closing tag will cause an error. In HTML it is allowed to have a <hr> or
 tag without a
corresponding </hr> or </br>. The XHTML standard enforces the XML convention and requires the tags to
be written as <hr/> or
 which is valid XML.

 XML is commonly used to exchange data, as it is a platform independent standard that is easy to read
and parse. Just like PHP can be used to generate XML content the same way it generates HTML content but
managing XML structures as strings is not always the most efficient, especially when it comes to parsing
the values if the XML is used as an input to the PHP script. What tools does PHP provide to generate and
consume XML content?

 Solution
 There are a number of different ways to generate XML with PHP. The simplest form is to create a string that
contains the XML string and output that goes to the client with the correct headers. For small XML strings
like a response to an insert or update command this can work well as the XML is relatively simple. The next
example shows how PHP can be used to generate a simple response with an error or success XML structure .

 <?php
 // 14_1.php
 // Process request and make a response
 header("Content-Type: text/xml");
 if ($error) {
 $resp = <<<HEREDOC
 <?xml version="1.0" encoding="UTF-8"?>
 <error>
 <code>100</code>
 <message>The insert failed</message>
 </error>
 HEREDOC;

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

294

 }
 else {
 $resp = <<<HEREDOC
 <?xml version="1.0" encoding="UTF-8"?>
 <success>
 <message>The record was added</message>
 </sucess>
 HEREDOC;
 }

 When the XML structure becomes more complex or you want to convert from an XML structure to an
object structure that can be used to iterate over values, there are a number of options in PHP. Most of them
require the library called libxml to be installed on the system.

 The DOM extension allows the manipulation of a XML document through the so-called DOM API. This
is an object-oriented interface.

 The libxml extension is the “wrapper” around the libxml library. It is mostly been used by many of the
other XML extensions, but it does provide a few functions that can be called directly.

 The SDO extension provides a way to work with data from different data sources using the same
interface. The consumer of data does not have to know anything about the underlying data source and how
to interact with it. The data sources can be XML files, Spreadsheets, and Database queries, etc.

 The SimpleXML extension was introduced in PHP 5. This is a lightweight and simple-to-use extension
for reading and writing XML content.

 The WDDX extension makes it possible to do data exchanges between different programming
languages over different protocols.

 The XMLDiff extension can be used to compare two XML documents and to apply patches to XML
documents in a similar way to how source control systems work.

 The XML Parser extension is a set of functions that can be used to build XML parsers for specific
document definitions. The parsers can work on small sections of a file so its not needed to load large XML
documents into memory all at the same time.

 The XML Reader extension acts as a cursor that reads the XML structure one node at the time.
 The XML Writer extension can be used to create XML streams, where each node is processed and

written without the need to load the entire data structure into memory to create the XML content.
 Finally there is the XSLT extension that makes it possible to transform an XML structure. This extension

requires the libxslt library.

 How it Works
 The SimpleXML extension is perhaps the easiest to use. Parsing and converting an XML document into
a PHP object structure can be done in a few lines of code. In this example we are going to use an external
source for the XML document. The example uses OpenWeatherMap.com and the source. This is a free
source of weather data. It is only required that you sign up for an API key. The API key must be passed as a
parameter to every request. In the example where <API KEY> is used you should replace it with your own
key. You can get an API key here: http://openweathermap.org/appid .

 To get the current weather in Los Angeles you can use this url with a few parameters:

 http://api.openweathermap.org/data/2.5/weather

 The API takes three parameters. The first is an indication of the location. This can be a city and a
country code.

 q=Los%20Angeles,us

http://openweathermap.org/appid

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

295

 The second is the mode . The API will default to a JSON response. To get an XML response, add
this parameter:

 mode=xml

 And finally add a parameter with your api key :

 appid=<API KEY>

 When using the simplexml:load_file() function the filename provided as the first parameter can
point to a file on the local file system or it can be a URL to read the XML content from a remote server:

 <?php
 // 14_2.php
 $xml = simplexml:load_file("http://api.openweathermap.org/data/2.5/weather?q=Los%20
Angeles,us&mode=xml&appid=<API KEY>");
 print_r($xml);

 In this simple example the XML structure is requested and passed in the same function call. The
 simplexml:load_file() function will return an instance of the class SimpleXMLElement as shown with the
sample output.

 SimpleXMLElement Object
 (
 [city] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [id] => 5368361
 [name] => Los Angeles
)

 [coord] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [lon] => -118.24
 [lat] => 34.05
)

)

 [country] => US
 [sun] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [rise] => 2016-04-10T13:26:29
 [set] => 2016-04-11T02:21:43
)

)
)

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

296

 [temperature] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [value] => 292.26
 [min] => 285.15
 [max] => 294.15
 [unit] => kelvin
)

)

 [humidity] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [value] => 56
 [unit] => %
)

)

 [pressure] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [value] => 1013
 [unit] => hPa
)

)

 [wind] => SimpleXMLElement Object
 (
 [speed] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [value] => 6.2
 [name] => Moderate breeze
)

)

 [gusts] => SimpleXMLElement Object
 (
)

 [direction] => SimpleXMLElement Object
 (
 [@attributes] => Array

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

297

 (
 [value] => 260
 [code] => W
 [name] => West
)

)
)

 [clouds] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [value] => 90
 [name] => overcast clouds
)

)

 [visibility] => SimpleXMLElement Object
 (
)

 [precipitation] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [mode] => no
)

)

 [weather] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [number] => 804
 [value] => overcast clouds
 [icon] => 04d
)

)

 [lastupdate] => SimpleXMLElement Object
 (
 [@attributes] => Array
 (
 [value] => 2016-04-10T20:27:02
)

)

)

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

298

 Using the var_dump() function is a quick way to get information about the XML object, but it’s not very
useful when it comes to generating content for a web site.

 To make the example a bit more useful we can extract a few values from the XML and show them in a
table. The values of interest are temperature, wind, and clouds. By passing the object to a foreach loop it’s
possible to list all the attributes that are available in the XML object.

 <?php
 // 14_3.php

 $xml = simplexml:load_file('http://api.openweathermap.org/data/2.5/weather?q=Los%20
Angeles,us&mode=xml&appid=<API KEY>');
 foreach($xml as $attrib => $value) {
 echo $attrib . "\n";
 }

 This will generate the following output.

 city
 temperature
 humidity
 pressure
 wind
 clouds
 visibility
 precipitation
 weather
 lastupdate

 Each of these attributes is also an object that is an instance of the SimpleXMLElement class . The
temperature object has parameters for value, min, max, and unit. In this case the temperature unit is Kelvin
so a bit of math is needed to show the current temperature in Celsius or Fahrenheit.

 <?php
 // 14_4.php

 $xml = simplexml:load_file('http://api.openweathermap.org/data/2.5/weather?q=Los%20
Angeles,us&mode=xml&appid=<API KEY>');

 echo "City: {$xml->city['name']}\n";

 if ($xml->temperature['unit'] == 'kelvin') {
 $k = $xml->temperature['value'];
 $c = $k - 273.15;
 $f = $c * 9 / 5 + 32;
 }
 printf("Temperature: %3.1f K / %3.1f C / %3.1f F\n", $k, $c, $f);

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

299

 This will show the name of the city for the request as well as the temperature in Kelvin, Celsius, and
Fahrenheit according to Open Weather Map on a ‘cold’ March evening.

 City: Los Angeles
 Temperature: 282.2 K / 8.9 C / 47.9 F

 Note that the attributes on the top level (city, temperature, etc.) are accessed as member variables on the
object and the members on the inner elements are accessed as array keys on the attribute. The difference can
be seen in the raw dump of the $xml variable, where the @attributes element on each of the inner objects is
marked as an array and not an instance of the SimpleXMLElement class . This can also be seen in the raw XML
content where the name of the city and the temperature elements are attributes on the XML tags.

 <current>
 <city id="5368361" name="Los Angeles">
 <coord lon="-118.24" lat="34.05"/>
 <country>US</country>
 <sun rise="2016-03-13T14:05:11" set="2016-03-14T01:59:41"/>
 </city>
 <temperature value="282.202" min="282.202" max="282.202" unit="kelvin"/>
 <humidity value="85" unit="%"/>
 <pressure value="966.32" unit="hPa"/>
 <wind>
 <speed value="0.84" name="Calm"/>
 <gusts/>
 <direction value="202.504" code="SSW" name="South-southwest"/>
 </wind>
 <clouds value="0" name="clear sky"/>
 <visibility/>
 <precipitation mode="no"/>
 <weather number="800" value="clear sky" icon="01n"/>
 <lastupdate value="2016-03-13T01:42:16"/>
 </current>

 To add the wind conditions (speed and direction) to the output a second level of indirection is needed.
As the wind element contain three separate elements for speed, gust, and direction.

 <?php
 // 14_5.php

 $xml = simplexml:load_file('http://api.openweathermap.org/data/2.5/weather?q=Los%20
Angeles,us&mode=xml&appid=<API KEY>');

 echo "City: {$xml->city['name']}\n";

 if ($xml->temperature['unit'] == 'kelvin') {
 $k = $xml->temperature['value'];
 $c = $k - 273.15;
 $f = $c * 9 / 5 + 32;
 }

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

300

 printf("Temperature: %3.1f K / %3.1f C / %3.1f F\n", $k, $c, $f);

 echo "Wind: {$xml->wind->speed['value']} mph, " .
 "direction: {$xml->wind->direction['name']}\n";

 This will now produce the following output:

 City: Los Angeles
 Temperature: 282.2 K / 8.9 C / 47.9 F
 Wind: 0.84 mph, direction: South-southwest

 If you want to use these and other API’s to fetch data for your web site it’s recommended to build
a caching system around each API call. This will prevent your site from calling the API each time a user
accesses your site. First of all the data is only updated once an hour or even less often, and secondly it’s
always faster to fetch content from the local server than it is to run queries over the Internet to remote
servers.

 The SimpleXML parser used here could be replaced with the DOM parser, but that would require more
code but at the same time also provide more features. The SimpleXML parser is just that: Simple.

 Recipe 14-2. Generating XML Response
 Problem
 The previous recipe was focusing on parsing XML documents into a structure that can be used within
PHP and where the elements can be accessed by a known path or by iterating over a SimpleXMLElement
object. That is useful when the PHP script consumes data that’s already in XML format. When the server is
generating the XML response for other clients to consume we need a set of tools that can convert PHP arrays
and other values to a XML document.

 Solution
 The SimpleXMLElement class can still be used, but instead of starting with a XML document we start
with an empty instance of the SimpleXMLElement class. We can then use the methods addChild() and
 addAttribute() to build the XML object and finally we can use the method asXML() to convert the object to
a XML string.

 How it Works
 This example starts with a list of planets. Each planet has a couple of parameters that describe the distance
from the sun, the type of planet, number of moons, and the average surface temperature.

 <?php
 // 14_6.php
 $planets = [
 'mercury' => [
 'type' => 'rock',
 'dist' => 0.39,
 'moons' => 0,

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

301

 'temp' => 452
],
 'venus' => [
 'type' => 'rock',
 'dist' => 0.723,
 'moons' => 0,
 'temp' => 726
],
 'earth' => [
 'type' => 'rock',
 'dist' => 1,
 'moons' => 1,
 'temp' => 285
],
 'mars' => [
 'type' => 'rock',
 'dist' => 1.524,
 'moons' => 2,
 'temp' => 240
],
 'jupiter' => [
 'type' => 'gas',
 'dist' => 5.203,
 'moons' => 67,
 'temp' => 120
],
 'saturn' => [
 'type' => 'gas',
 'dist' => 9.539,
 'moons' => 62,
 'temp' => 88
],
 'uranus' => [
 'type' => 'gas',
 'dist' => 19.18,
 'moons' => 27,
 'temp' => 59
],
 'neptune' => [
 'type' => 'gas',
 'dist' => 30.06,
 'moons' => 13,
 'temp' => 48
],
 'plutu' => [
 'type' => 'rock',
 'dist' => 39,53,
 'moons' => 4,
 'temp' => 37
],
];

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

302

 $base = "<?xml version=\"1.0\" ?><planets></planets>";
 $xml = new SimpleXMLElement($base);

 foreach($planets as $name => $data) {
 $p = $xml->addChild('planet');
 $p->addAttribute('name', $name);
 $a = $p->addChild('dist');
 $a->addAttribute('value', $data['dist']);
 $a->addAttribute('unit', 'AU');
 $p->addChild('moons', $data['moons']);
 $a = $p->addChild('temp');
 $a->addAttribute('value', $data['temp']);
 $a->addAttribute('unit', 'kelvin');
 }
 header("Content-Type: text/xml");
 echo $xml->asXML();

 The method asXML takes an optional parameter for a filename. If a filename is passed in, the method
will save the XML structure to the file. If no parameter is passed in, the method will simply return the XML
structure as a string that can be sent to the client.

 The raw output is one long string of data that can be hard to read for a human, but it’s perfectly fine for a
computer to parse.

 <?xml version="1.0"?>
 <planets><planet name="mercury"><dist value="0.39" unit="AU"/><moons>0</moons><temp
value="452" unit="kelvin"/></planet><planet name="venus"><dist value="0.723"
unit="AU"/><moons>0</moons><temp value="726" unit="kelvin"/></planet><planet
name="earth"><dist value="1" unit="AU"/><moons>1</moons><temp value="285"
unit="kelvin"/></planet><planet name="mars"><dist value="1.524" unit="AU"/><moons>2</
moons><temp value="240" unit="kelvin"/></planet><planet name="jupiter"><dist value="5.203"
unit="AU"/><moons>67</moons><temp value="120" unit="kelvin"/></planet><planet
name="saturn"><dist value="9.539" unit="AU"/><moons>62</moons><temp value="88"
unit="kelvin"/></planet><planet name="uranus"><dist value="19.18" unit="AU"/><moons>27</
moons><temp value="59" unit="kelvin"/></planet><planet name="neptune"><dist value="30.06"
unit="AU"/><moons>13</moons><temp value="48" unit="kelvin"/></planet><planet
name="plutu"><dist value="39.53" unit="AU"/><moons>4</moons><temp value="37"
unit="kelvin"/></planet></planets>

 Adding a few line breaks and some indentation makes it easier to read.

 <?xml version="1.0"?>
 <planets>
 <planet name="mercury">
 <dist value="0.39" unit="AU"/>
 <moons>0</moons>
 <temp value="452" unit="kelvin"/>
 </planet>
 <planet name="venus">
 <dist value="0.723" unit="AU"/>
 <moons>0</moons>

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

303

 <temp value="726" unit="kelvin"/>
 </planet>
 <planet name="earth">
 <dist value="1" unit="AU"/>
 <moons>1</moons>
 <temp value="285" unit="kelvin"/>
 </planet>
 <planet name="mars">
 <dist value="1.524" unit="AU"/>
 <moons>2</moons>
 <temp value="240" unit="kelvin"/>
 </planet>
 <planet name="jupiter">
 <dist value="5.203" unit="AU"/>
 <moons>67</moons>
 <temp value="120" unit="kelvin"/>
 </planet>
 <planet name="saturn">
 <dist value="9.539" unit="AU"/>
 <moons>62</moons>
 <temp value="88" unit="kelvin"/>
 </planet>
 <planet name="uranus">
 <dist value="19.18" unit="AU"/>
 <moons>27</moons>
 <temp value="59" unit="kelvin"/>
 </planet>
 <planet name="neptune">
 <dist value="30.06" unit="AU"/>
 <moons>13</moons>
 <temp value="48" unit="kelvin"/>
 </planet>
 <planet name="plutu">
 <dist value="39.53" unit="AU"/>
 <moons>4</moons>
 <temp value="37" unit="kelvin"/>
 </planet>
 </planets>

 Recipe 14-3. Sharing Data with RSS
 Problem
 The previous example used data that are reasonable static. It is not expected that new planets will be
discovered in our solar system anytime soon and although the distance from the sun and the surface
temperature is varying the values are not changing as often as the headlines on a news blog. In addition
the example used valid XML for the list of planets and data, but without additional information about the
content a consumer will not be able to use the data. How is it possible to share data that is easy to consume
by multiple clients?

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

304

 Solution
 The use of XML is a good step in the right direction. Adding a predefined schema for the XML makes it
possible for various clients to consume the data. There are many standards for how to use XML, either for
specific purposes like a news summary or more generic uses. One of these is called Rich Site Summary or
Really Simple Syndication : in short, RSS. There are a number of variants of the schemas used but the two
most popular are called RSS 2.0 and Atom 1.0 .

 The two schemas provide almost the same values but use different tag names. Many browsers and
e-mail clients have support for the RSS formats and there are a number of dedicated reader applications
available too. Some of these have been discontinued due to the declining popularity of the RSS format.

 How it Works
 The top-level element of a RSS feed is called <rss></rss> and it is typically written with a version attribute
<rss version=“2.0”></rss>. Inside the top-level element is an element called <channel>. This is used to
describe the content provider and includes fields for title, description, and link, etc. The channel element
also contains one or more <item> elements. Each item describes an article or story.

 Using the dom extension we can create a simple RSSWriter class that can be used to create RSS feeds for
different types of data. The new class extends the class domDocument and in order to get the parent class
initialized, there is a call to the parent:: __constructor() method .

 <?php
 //14_7.php

 class RSSWriter extends domDocument {
 private $rss;
 private $channel;

 function __construct($xml = "1.0", $encoding = "UTF-8") {
 parent::__construct($xml, $encoding);
 $this->formatOutput = true;
 $this->rss = $this->CreateElement("rss");
 $this->rss->setAttribute("version", "2.0");
 $this->channel = $this->CreateElement("channel");
 }

 function SetChannel($title, $description, $link, $pubdate, $ttl=1800) {
 $element = $this->CreateElement('title');
 $element->appendChild($this->CreateTextNode($title));
 $this->channel->appendChild($element);

 $element = $this->CreateElement('description');
 $element->appendChild($this->CreateTextNode($description));
 $this->channel->appendChild($element);

 $element = $this->CreateElement('link');
 $element->appendChild($this->CreateTextNode($link));
 $this->channel->appendChild($element);

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

305

 $element = $this->CreateElement('pubDate');
 $element->appendChild($this->CreateTextNode(gmdate("D, d M Y H:i:s", (int)$pubdate) . " GMT"));
 $this->channel->appendChild($element);

 $element = $this->CreateElement('ttl');
 $element->appendChild($this->CreateTextNode($ttl));
 $this->channel->appendChild($element);
 }

 function AddItem($title, $link, $description = null, $attribs = null) {
 $item = $this->CreateElement("item");

 if (!empty($title)) {
 $obj = $this->CreateElement("title");
 $obj->appendChild($this->CreateTextNode($title));
 $item->appendChild($obj);
 }

 if (!empty($link)) {
 $obj = $this->CreateElement("link");
 $obj->appendChild($this->CreateTextNode($link));
 $item->appendChild($obj);
 }

 if (!empty($attribs["description"])) {
 $obj = $this->CreateElement("description");
 $obj->appendChild($this->CreateTextNode($attribs["description"]));
 $item->appendChild($obj);
 }

 if (!empty($attribs["pubDate"])) {
 $obj = $this->CreateElement("pubDate");
 $obj->appendChild($this->CreateTextNode(gmdate("D, d M Y H:i:s",

(int)$attribs["pubDate"]) . " GMT"));
 $item->appendChild($obj);
 }

 if (!empty($attribs["category"])) {
 $obj = $this->CreateElement("category");
 $obj->appendChild($this->CreateTextNode($attribs["category"]));
 $item->appendChild($obj);
 }

 if (!empty($attribs["author"])) {
 $obj = $this->CreateElement("author");
 $obj->appendChild($this->CreateTextNode($attribs["author"]));
 $item->appendChild($obj);
 }

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

306

 if (!empty($attribs["guid"])) {
 $obj = $this->CreateElement("guid");
 $obj->appendChild($this->CreateTextNode($attribs["guid"]));
 $item->appendChild($obj);
 }

 if (!empty($attribs["comments"])) {
 $obj = $this->CreateElement("comments");
 $obj->appendChild($this->CreateTextNode($attribs["comments"]));
 $item->appendChild($obj);
 }

 $this->channel->appendChild($item);
 }

 function Output($file_name = "opensearch.xml") {
 $this->rss->appendChild($this->channel);
 $this->appendChild($this->rss);

 header("Content-Type: text/xml; name=\"{$file_name}\"");
 header("Content-Disposition: inline; filename=\"{$file_name}\"");
 echo $this->saveXML();
 }
 }

 $rss = new RSSWriter();
 $rss->SetChannel("PHP & MySQL Recipes", "A book about PHP and MySQL", "http://example.com", time());
 $rss->AddItem("PHP 7", "http://php.net", "The new and faster version of php");
 $rss->AddItem("MariaDB", "http://mariadb.org", "The open source database");
 $rss->Output();

 At the end of the script the $rss variable is assigned an instance of the RSSWriter() class , then the
channel is defined and a couple of items are added.

 To follow best practices the list of items should be limited to the latest 5 or 10 items of data. Each of the
clients that subscribe to the feed can save copies of the elements for as long as the user wants. The client
should not query the same feed again until the ttl value is exceeded. In this case it is set to 1800 seconds or a
half hour. Requesting updates from the feed too often will create high load on the server.

 Placing the RSSWriter() class in a separate file makes it possible to use the same class to generate
multiple RSS feeds with different content.

 Recipe 14-4. Consuming RSS Feeds
 Problem
 Depending on the definition used the last S in RSS stands for Syndication. Syndication is a way to share
or distribute information. How can this be used to create a list of posts from a couple of space-related
web sites?

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

307

 Solution
 We can use the SimpleXML extension to create a class that can read a feed, and perform extraction and
formatting of the data.

 How it Works
 The constructor of the class takes a single parameter. This is the URL of the RSS feed. When the class is
instantiated, it will read the content of the feed and store it in a private variable called $xml.

 The method channel() also takes a single parameter. The parameter is used to identify and return the
value. The can be used to fetch title and description value from the channel section of the feed.

 Finally the method items() is used to extract some of the values for each of the items in the feed.

 <?php
 // 14_8.php

 date_default_timezone_set('America/Los_Angeles');

 $feeds = [
 'https://www.nasa.gov/rss/dyn/breaking_news.rss',
 'http://www.nasaspaceflight.com/feed/'
];

 class RSSReader {
 private $xml;

 function __construct($url) {
 $this->xml = simplexml:load_file($url);
 }

 function channel($name) {
 return $this->xml->channel->$name;
 }

 function items() {
 $i = [];
 foreach($this->xml->channel->item as $item) {
 $i[] = [
 (string)$item->title,
 (string)$item->description,
 (string)$item->link,
 strtotime((string)$item->pubDate)
];
 }
 return $i;
 }
 }

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

308

 foreach($feeds as $f) {
 $rss = new RSSReader($f);
 echo "<div>Channel: {$rss->channel('title')}</div>";
 echo "<div>{$rss->channel('description')}</div>";
 foreach($rss->items() as $item) {
 echo <<<HEREDOC
 <div>
 {$item[0]}
 <div>{$item[1]}</div>
 </div>
 HEREDOC;
 }
 }

 The example shows uses two feeds and it turns the content into a list of links that points to the full story
on each site. Because the function strtodate() is used to convert the pubDate value into a Unix timestamp
it is necessary to call the date_default_timezone_set() function or define the default time zone value in
php.ini.

 Best practice would be to save the values for each response in a database and only query for new data
once an hour.

 Recipe 14-5. Standard Data Exchange
 Problem
 Exchanging or syndicating data with RSS is simple and efficient, but it’s also limited to the values that are
defined in the definition. Adding new fields will most likely not work in all cases. Is there a way to exchange
structured data (numbers, strings, and Booleans, etc.) in a format that can be described by the server
allowing the client to consume the data?

 Solution
 In the early days of the web the Web Distributed Data eXchange (WDDX) platform was developed. It is built
on XML where an element is defined with a couple of tags that defines the name of the value, the type, and
the actual value. A simple example of the XML structure to exchange two values is shown below.

 <wddxPacket version='1.0'>
 <data>
 <var name="language">
 <string>PHP</string>
 </var>
 <var name="version">
 <number>7</number>
 </var>
 </data>
 </wddxPacket>

 The WDDX format is very simple and easy to use but it has mostly been replaced by SOAP and
XML-RPC, which offers more functionality.

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

309

 How it Works
 The WDDX extension is not enabled by default but it can be enabled if you have libxml and the expat library
(bundled with Apache from version 1.3.7).

 The extension provides a few functions to serialize and deserialize variables to and from the WDDX
packet format.

 To create a WDDX packet with a single value you can use the function wddx_serialize_value() . This
function takes two parameters. The first is the value

 <?php
 // 14_9.php

 echo wddx_serialize_value("PHP & MySQL Recipes", "Packet");

 This script will generate the following XML:

 <wddxPacket version='1.0'>
 <header><comment>Packet</comment></header>
 <data><string>PHP & MySQL Recipes</string></data>
 </wddxPacket>

 To convert a wddx packet back to PHP variables we can use the wddx_deserialize() function like this:

 <?php
 // 14_10.php

 $wddx = <<<HEREDOC
 <wddxPacket version='1.0'>
 <header><comment>Packet</comment></header>
 <data><string>PHP & MySQL Recipes</string></data>
 </wddxPacket>
 HEREDOC;

 var_dump(wddx_deserialize($wddx));

 This script will generate the following XML:

 <wddxPacket version='1.0'>
 <header><comment>Packet</comment></header>
 <data><string>PHP & MySQL Recipes</string></data>
 </wddxPacket>

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

310

 This can be used to exchange a single variable of any type, but with a bit more functions it’s possible to
exchange multiple variables.

 <?php
 // 14_11.php

 $int = 1234;
 $str = "PHP & MySQL Recipes";
 $arr = [
 12,
 "abc",
 [
 3.15,
 7.25
]
];
 $packet_id = wddx_packet_start("Packet");
 wddx_add_vars($packet_id, "int");
 wddx_add_vars($packet_id, "str");
 wddx_add_vars($packet_id, "arr");

 echo wddx_packet_end($packet_id);

 The output will look like this when formatted with line breaks and indentation:

 <wddxPacket version='1.0'>
 <header>
 <comment>Packet</comment>
 </header>
 <data>
 <struct>
 <var name='int'>
 <number>1234</number>
 </var>
 <var name='str'>
 <string>PHP & MySQL Recipes</string>
 </var>
 <var name='arr'>
 <array length='3'>
 <number>12</number>
 <string>abc</string>
 <array length='2'>
 <number>3.15</number>
 <number>7.25</number>
 </array>
 </array>
 </var>
 </struct>
 </data>
 </wddxPacket>

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

311

 Recipe 14-6. SOAP Server and Client
 Problem
 Although the WDDX extension from the previous section can be used to exchange data between different
systems and different programming languages it only has support for limited data types and it works directly
on variables in the programming language. Having a data exchange format that includes definitions of the
data that is being exchanged and a description of how the data can be validated would greatly improve on
the quality and flexibility of the exchange.

 Solution
 SOAP or as it was called in the beginning ‘Simple Object Access Protocol’ is the solution. As of version 1.2 of
the standard, the acronym was dropped and it’s now just called SOAP. SOAP is a XML-based format where
the message definition is provided in a wdsl file (also XML format). With the use of the wdsl file it’s possible
for clients to consume SOAP API’s in an automated fashion without prior knowledge of the API structure .

 SOAP works over any type of transport protocol but is often used with HTTP/HTTPS.
 PHP implements classes for creation of both SOAP Server and SOAP Client functionality . The basic

functionality takes a PHP class and uses that to generate a SOAP Server. Each of the public methods in the
class will be exposed as endpoints that can be accessed by the clients.

 How it Works
 The SOAP format supports passing parameters to the endpoints. These parameters can be used as input to
the query as if the method was called locally.

 In this first example we will create a SOAP server that can perform some simple math operations. The
class called Math has three methods that can Add, Subtract, or Multiply two numbers.

 <?php
 // 14_12.php

 class Math {
 function Add($i, $j) {
 return $i + $j;
 }

 function Subtract($i, $j) {
 return $i - $j;
 }

 function Multiply($i, $j) {
 return $i * $j;
 }
 }

 To use this class in a SOAP server it is necessary to define an instance of the SoapServer class. The
constructor of the SoapServer class takes two arguments. The first is a wsdl and the second is an array of
options to use. The wsdl can be omitted by setting it to null and the minimum set of options in the second
parameter is the URI of the API endpoint for the server. In this example the SOAP Server will be used on the
localhost so the configuration of the server will look like this:

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

312

 <?php
 // 14_13.php
 include "./14_12.php";
 $server = new SoapServer(null, ['uri' => 'http://localhost/14_13.php']);
 $server->setClass('Math');
 $server->handle();

 The last two method calls are used to add the Math class to the server, exposing the public functions
and to start the server.

 The next step is to create a client that can consume the API’s. Because there is no wsdl definition for the
file the client must have prior knowledge about the available API’s.

 <?php
 // 14_14.php
 $client = new SoapClient(null, array(
 'location' => "http://localhost/14_13.php",
 'uri' => "http://localhost/14_13.php",
 'trace' => 1
));

 echo $return = $client->__soapCall("Add",array(5, 2)) . "\n";
 echo $return = $client->__soapCall("Subtract",array(5, 2)) . "\n";
 echo $return = $client->__soapCall("Multiply",array(5, 2)) . "\n";

 The SoapCLient() class follows the same system as the SoapServer() and can be used with or without
a WSDL file, but without a WSDL file it’s necessary to pass in the location and url of the endpoints.

 Creating a wsdl file can be a bit cumbersome but it’s worth the work as the code for the client becomes
simpler and more readable. As an example for the Math service above, we can create a wsdl file that defines
the input and output of each procedure call and binds it all together in a service:

 <?xml version="1.0" encoding="UTF-8" ?>
 <definitions name="Math"
 targetNamespace="http://localhost/math.wsdl"
 xmlns:tns="http://localhost/math.wsdl"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="addRequest">
 <part name="i" type="xsd:int"/>
 <part name="j" type="xsd:int"/>
 </message>
 <message name="addResponse">
 <part name="Result" type="xsd:int"/>
 </message>
 <message name="subtractRequest">
 <part name="i" type="xsd:int"/>
 <part name="j" type="xsd:int"/>
 </message>
 <message name="subtractResponse">

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

313

 <part name="Result" type="xsd:int"/>
 </message>
 <message name="multiplyRequest">
 <part name="i" type="xsd:int"/>
 <part name="j" type="xsd:int"/>
 </message>
 <message name="multiplyResponse">
 <part name="Result" type="xsd:int"/>
 </message>

 <portType name="MathPortType">
 <operation name="Add">
 <input message="tns:addRequest"/>
 <output message="tns:addResponse"/>
 </operation>
 <operation name="Subtract">
 <input message="tns:subtractRequest"/>
 <output message="tns:subtractResponse"/>
 </operation>
 <operation name="Multiply">
 <input message="tns:multiplyRequest"/>
 <output message="tns:multiplyResponse"/>
 </operation>
 </portType>
 <binding name="MathBinding" type="tns:MathPortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Add">
 <soap:operation soapAction="http://localhost/Add"/>
 <input>
 <soap:body use="encoded"
 namespace=http://localhost/math.wsdl
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
 namespace=http://localhost/math.wsdl
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="Subtract">
 <soap:operation soapAction="http://localhost/Subtract"/>
 <input>
 <soap:body use="encoded"
 namespace=http://localhost/math.wsdl
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
 namespace=http://localhost/math.wsdl
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

314

 </output>
 </operation>
 <operation name="Multiply">
 <soap:operation soapAction="http://localhost/Multiply"/>
 <input>
 <soap:body use="encoded"
 namespace=http://localhost/math.wsdl
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
 namespace=http://localhost/math.wsdl
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service name="MathService">
 <port name="MathPort" binding="MathBinding">
 <soap:address location="http://localhost/14_15.php"/>
 </port>
 </service>

 </definitions>

 With this new definition of the data structure the examples 14_13.php and 14_15.php can be simplified
to the code shown in example 14_15.php and 14_16.php.

 <?php
 // 14_15.php
 include "./14_12.php";
 $server = new SOAPServer('math.wsdl', ['encoding'=>'UTF-8']);
 $server->setClass('Math');
 $server->handle();

 The code in 14_15.php is designed to work as the server side. In this case the math.wsdl file is located in
the same folder as the PHP script and is loaded from the server.

 <?php
 // 14_16.php
 $client = new SoapClient('https://localhost/math.wsdl');

 echo $return = $client->Add(5, 2) . "\n";
 echo $return = $client->Subtract(5, 2) . "\n";
 echo $return = $client->Multiply(5, 2) . "\n";

 In the client example the wsdl file is loaded from the server. It could also be loaded locally to save a
web request but the soap client supports caching of the wsdl file preventing it from being loaded on every
request. The cache is usually stored in the /tmp directory and it must be cleared manually if the wsdl file is
updated on the server.

CHAPTER 14 ■ XML, RSS, WDDX, AND SOAP

315

 With the use of a wsdl file the client becomes more like ‘normal’ PHP code. When the wsdl file is
loaded the SoapClient will create magic functions for each of the methods defined and these can now be
called directly.

 If the server defines additional methods that are not included in the wsdl file it is still possible to call
these, but only with the use of the __soapCall() method .

 The soap functions can be used over HTTPS to make the requests more secure. It is also recommended
that if sensitive data is being transferred the server the client should make use of additional parameters to
pass credentials. This can be done in the same way as other parameters and the values can be exchanged
by some other means before the client can make calls and the server will validate the credentials before
returning any values to the client. This makes it possible to revoke the access to a client from the server side
by invalidating the credentials.

317© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_15

 CHAPTER 15

 Data Exchange with JSON

 Chapter 14 covered the use of XML to exchange date between a client and a server. When the client is
created with JavaScript in a browser it’s much easier to exchange data with something called JSON. JSON is
an acronym for JavaScript Object Notation. It is a sting-like notation that makes it easy to declare complex
structures like arrays and object.

 Recipe 15-1. Fetching Data with AJAX
 Problem
 Traditionally a browser is used to fetch HTML pages from a server. Navigation to a different page on the
same or different server is done with links in the HTML document. When a user clicks on a link the browser
will fetch and render the content of the new page.

 As the web technology evolves and in order to reduce load time it’s becoming more common to load
part of a page and when the user clicks on a read more link or scrolls to the bottom of the page, the browser
will fetch additional content and render it inline without reloading the existing document.

 Solution
 The technology to use is an AJAX request. This is a section of JavaScript code that will perform an HTTP
request to a server (usually the same server where the page was loaded from) and the response will be used
to insert additional content into the HTML document.

 The simple approach is to have the server generate the HTML that needs to be added and simply
append the returned value directly into the HTML document.

 How it Works
 Using the XMLHTTP object in the browsers is relatively simple but it can be made even simpler with the
use of jQuery. jQuery is a JavaScript library that makes it very easy to manipulate the HTML document,
add event listeners, and perform AJAX requests. All the recipes in this chapter will make use of the
jQuery library.

http://dx.doi.org/10.1007/978-1-4842-0605-8_14

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

318

 The first example shows how to use jQuery and PHP scripts to load a simple document with a few rows
of data and then make AJAX request to update the section of data without reloading the document.

 <?php
 // 15_1.php
 $languages = [
 'PHP', 'JavaScript',
 'C', 'C++', 'C#', 'Objective-C',
 'Python', 'Java', 'Ruby',
 'Visual Basic',
 'Scala'
];
 shuffle($languages);
 $data = array_slice($languages, 0, 3);

 $html = "";
 foreach($data as $lang) {
 $html .= "$lang";
 }
 if ($_REQUEST['data']) {
 echo $html;
 }
 else {
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <script src="https://code.jquery.com/jquery-1.12.2.min.js"
 integrity="sha256-lZFHibXzMHo3GGeehn1hudTAP3Sc0uKXBXAzHX1sjtk="
 crossorigin="anonymous"></script>
 </bead>
 <body>
 <h1>Programming Languages</h1>
 <ul id="lang">
 $html

 <button onclick="Update()">Update</button>
 <script>
 function Update() {
 $.get("{$_SERVER['PHP_SELF']}?data=1", function(data) {
 $("#lang").html(data);
 });
 }
 </script>
 </body>
 </html>
 HEREDOC;
 }

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

319

 The output of the initial load of this script will look like this:

 Every time the user clicks the Update button the same script is called with the parameter data=1 and it
will return only the HTML for the 3 elements. The returned string will be inserted into the element
with the id=“lang” attributes and replaces the content that was already there.

 Recipe 15-2. Returning JSON
 Problem
 Returning the finished HTML string from the server makes it difficult for the client to manipulate the data, if
needed. Is there was a way to get the data back in a structured form that would allow the client to manipulate
the data and perhaps create the html needed to match the device it’s rendering on?

 Solution
 PHP has functions to encode and decode variables to and from the JSON format. The function json_
encode() will convert the variable into a stringified version and json_decode() will take a stringified
JSON string and convert it back to a PHP variable. Encoding variables as JSON is often used to generate a
response and decoding is used when PHP acts as a client to an API that returns a JSON response. In addition
to the encode and decode function PHP also supports json_last_error() . This function does not take any
parameters and can be called after encode or decode. It will return an integer value that represents the result
of the last operation. The possible return values can be compared to one of the following constants:

 Constant Meaning Available

 JSON_ERROR_NONE No errors detected

 JSON_ERROR_DEPTH Maximum stack depth exceeded

 JSON_ERROR_STATE_MISMATCH Invalid JSON

 JSON_ERROR_CTRL_CHAR Invalid control character

 JSON_ERROR_SYNTAX Syntax error

 JSON_ERROR_UTF8 Malformatted UTF-8 characters 5.3.3

 JSON_ERROR_RECURSION Recursive references 5.5.0

 JSON_ERROR_INF_OR_NAN NAN or INF values found 5.5.0

 JSON_ERROR_UNSUPPORTED_TYPE Unsupported type 5.5.0

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

320

 When it’s necessary to return more than one variable the easiest way is to add them into an array and
return the JSON encoded version of the array.

 How it Works
 Changing the previous example to work with JSON instead of HTML strings only takes a few changes.

 The first is to make sure the Content-Type is set correct. This simple example will work without it but
it’s always a good idea to set the correct Content-Type to tell the clients what to expect. The second step is to
only generate the $html variable used on the full document load and to return the JSON encoded value of
the $data variable. Finally there are some small changes to the JavaScript code. In this example the code will
generate the final html segment to insert into the document. In this case the code looks at the data and if the
language returned is PHP it will add a bold tag around it.

 <?php
 // 15_2.php
 $languages = [
 'PHP', 'JavaScript',
 'C', 'C++', 'C#', 'Objective-C',
 'Python', 'Java', 'Ruby',
 'Visual Basic',
 'Scala'
];
 shuffle($languages);
 $data = array_slice($languages, 0, 3);

 if ($_REQUEST['data']) {
 header("Content-Type: application/json");
 echo json_encode($data);
 }
 else {
 $html = "";
 foreach($data as $lang) {
 $html .= "$lang";
 }
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <script src="https://code.jquery.com/jquery-1.12.2.min.js"
 integrity="sha256-lZFHibXzMHo3GGeehn1hudTAP3Sc0uKXBXAzHX1sjtk="
 crossorigin="anonymous"></script>
 </bead>
 <body>
 <h1>Programming Languages</h1>
 <ul id="lang">
 $html

 <button onclick="Update()">Update</button>
 <script>

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

321

 function Update() {
 $.getJSON("{$_SERVER['PHP_SELF']}?data=1", function(data) {
 var html = '';
 $.each(data, function(key, value) {
 if (value == 'PHP') {
 html += 'PHP';
 }
 else {
 html += '' + value + '';
 }
 });
 $('#lang').html(html);
 });
 }
 </script>
 </body>
 </html>
 HEREDOC;
 }

 The jQuery function used in the first example was called $.get(). This is now replaced with a call to
$.getJSON(). This function will automatically convert the JSON string into an array or object so the script can
traverse through the values.

 Recipe 15-3. Consuming a JSON API
 Problem
 When you are creating Web API’s it’s often a good idea to create a test client that can consume and validate
the responses of API’s.

 Solution
 PHP has built-in support for fetching remote content via the fopen wrappers that allow the user of URL’s to
fetch content from an HTTP based endpoint. We can use a combination of file_get_contents() and json_
decode() to work with JSON-based API’s.

 How it Works
 To create a simple command-line script that can call the API from example 15_2.php and show the output, it
could look something like this:

 <?php
 // 15_3.php
 $url = "http://localhost/15_2.php?data=1";
 $response = file_get_contents($url);
 $languages = json_decode($response);
 var_dump($languages);

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

322

 This script will produce output similar to this:

 array(3) {
 [0] =>
 string(3) "PHP"
 [1] =>
 string(12) "Visual Basic"
 [2] =>
 string(1) "C"
 }

 Example 14_4.php was used to consume an XML-based API from openweathermap.com. That service
actually works with JSON as the default format. It is relatively simple to convert the XML script to use JSON
instead. The data structure is not exactly the same but it follows the same structure.

 When I work with API’s I like to create a simple script that fetches the data, convert it into a PHP
variable, and dump the content to the console so it’s clear what the response looks like. In the case of the
weather API the data from the JSON response looks like this:

 stdClass Object
 (
 [coord] => stdClass Object
 (
 [lon] => -118.24
 [lat] => 34.05
)

 [weather] => Array
 (
 [0] => stdClass Object
 (
 [id] => 721
 [main] => Haze
 [description] => haze
 [icon] => 50d
)

)

 [base] => stations
 [main] => stdClass Object
 (
 [temp] => 290.6
 [pressure] => 1018
 [humidity] => 72
 [temp_min] => 289.15
 [temp_max] => 292.15
)

 [visibility] => 3219
 [wind] => stdClass Object

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

323

 (
 [speed] => 2.1
 [deg] => 260
)

 [clouds] => stdClass Object
 (
 [all] => 40
)

 [dt] => 1458413206
 [sys] => stdClass Object
 (
 [type] => 1
 [id] => 372
 [message] => 0.0446
 [country] => US
 [sunrise] => 1458395766
 [sunset] => 1458439495
)

 [id] => 5368361
 [name] => Los Angeles
 [cod] => 200
)

 The object stdClass is a built-in class definition that is used whenever an object is created without any
class definitions. This happens because the JSON response returns an object and not an array.

 In the JSON there is no unit on the temperature value. It is assumed that it always returns the
temperature in Kelvin, so there is no need to have special check for that. The calculation of the temperature
value in Celsius and Fahrenheit stays the same.

 The elements for the name of the city and for the wind’s speed, etc., are also structured slightly different
but the concept is similar. The code to process the response looks like this:

 <?php
 // 15_4.php

 $json = file_get_contents('http://api.openweathermap.org/data/2.5/weather?q=Los%20
Angeles,usxxx&appid=<API KEY>');
 $weather = json_decode($json);

 echo "City: {$weather->name}\n";

 $k = $weather->main->temp;
 $c = $k - 273.15;
 $f = $c * 9 / 5 + 32;

 printf("Temperature: %3.1f K / %3.1f C / %3.1f F\n", $k, $c, $f);

 echo "Wind: {$weather->wind->speed} mph, direction: {$weather->wind->deg}\n";

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

324

 This script will generate output similar to the code in example 14_4.php.

 City: Los Angeles
 Temperature: 290.7 K / 17.6 C / 63.7 F
 Wind: 1.31 mph, direction: 201.001

 Recipe 15-4. JSON API
 Problem
 When a client consumes API’s from multiple sources it’s common that each source has its own definition for
how the content is formatted and which elements are included in the response. This makes it more difficult
to work with these API’s.

 Solution
 In 2015 a new standard called JSON API reached version 1.0. This standard defines all the headers and other
information about how API requests and responses should be formatted. The standard is documented at
 http://jsonapi.org . The goal is to improve caching and thereby reduce the amount of network traffic
required to interact with the API’s. Less network traffic makes it possible to serve a greater number of users
on the same hardware.

 The basic structure of all API’s is a JSON structure with one or more of these three top-level objects;
data, errors, and meta. In addition it is also allowed to include jsonapi, links, and includes as top-level
objects.

 The data object should contain the primary data for the response. This can be a single object or null
for API’s returning a single resource and an array of objects or an empty array for API’s returning a list of
resources.

 A simple response of an API to get the number of visitors to a site could look like this:

 {
 'data': {
 'type': 'statistics',
 'id': 'visitors',
 'attributes': {
 'value': 25
 }
 }
 }

 Each resource must include type and id and they must be strings. A link object can be added to the top
level to show the link to the API.

 {
 'data': {
 'type': 'statistics',
 'id': 'visitors',
 'attributes': {
 'value': 25

http://jsonapi.org/

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

325

 }
 },
 'links': {
 'self': "http://localhost/statistics/visitors"
 }

 The link section can also be used to reference other data in the same dataset. If the API returns a single
blog post and you want to link to the next, previous, first, and list posts in the same series the response could
look like this:

 {
 'data': {
 'type': 'articles',
 'id': '5',
 'attributes': {
 'title': 'PHP and MySQL Recipes'
 }
 },
 'links': {
 'self': "http://localhost/articles/5",
 'next': "http://localhost/articles/6",
 'prev': "http://localhost/articles/4",
 'first': "http://localhost/articles/1",
 'last': "http://localhost/articles/17"
 }

 All requests and responses must use the Content-Type: application/vnd.api+json and the standard also
describes how to handle related data like comments on a blog post, etc.

 How it Works
 One of the benefits of using a standard like JSON API is its ability to be handled with a common set of tools.

 <?php
 // 15_5.php

 class JsonResource {
 function __construct($type, $id) {
 $this->type = $type;
 $this->id = $id;
 $this->addLink('self', "$type/$id");
 }

 function addAttribute($name, $value) {
 if (!$this->attributes) {
 $this->attributes = new stdClass();
 }
 $this->attributes->$name = $value;
 }

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

326

 function addLink($name, $value) {
 if (!$this->links) {
 $this->links = new stdClass();
 }
 $this->links->$name = "http://localhost/$value";
 }
 }

 class JsonApi {
 function addResource($data) {
 $this->data = $data;
 }

 function addLink($name, $value) {
 if (!$this->links) {
 $this->links = new stdClass();
 }
 $this->links->$name = "http://localhost/$value";
 }

 function __toString() {
 return json_encode($this, JSON_PRETTY_PRINT | JSON_UNESCAPED_SLASHES);
 }
 }

 $user = new JsonResource('user', 123);
 $user->addAttribute('name', 'John Smith');
 $user->addAttribute('age', 25);

 $api = new JsonApi();
 $api->addResource($user);
 header("Content-Type: application/vnd.api+json");
 echo $api;

 This is a very basic example that only covers a few of the elements supported, but this simple structure
can be used to generate valid API responses for any type of data. For this to be complete there would need to
be a way to handle errors relations and other types of data. There are currently a number of different projects
on GitHub that are more complete than this example shows.

 The output from this script looks like this:

 {
 "data": {
 "type": "user",
 "id": 123,
 "links": {
 "self": "http://localhost/user/123"
 },
 "attributes": {

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

327

 "name": "John Smith",
 "age": 25
 }
 }
 }

 More information about the standard and documentation can be found at http://jsonapi.org .

 Recipe 15-5. Calling API’s
 Problem
 API’s often require parameters to be passed in order to return data about specific elements. Parameters can
be passed as either GET parameters where they are simply added as key value pairs to the request URI or as
POST parameters where they are key value pairs of the body of the request.

 Some API’s require a POST request simply to make it a bit more difficult for a user to request data (it’s
not possible to enter the request in the address bar of a browser to use wget to request the data), and some
API’s require special header values to be set. How can PHP and JavaScript be used to call such API’s?

 Solution
 In PHP we can make use of the stream context to set the request method and add headers and body data and
in JavaScript we can use the $.post() function that is part of the jQuery library. It is also possible to use the
XMLHTTP object but it will take a few more lines of code. The browser will in most cases block XMLHTTP
requests to any other domain than the one the html document came from. This is done for security reasons.

 How it Works
 The first example is a PHP script that builds a HTML form where a user can enter the endpoint URI and a
couple of key value pairs. The form is submitted by PHP and is used to create an API request and show the
result of the request. This can be used as a simple debugging tool when working with API’s.

 <?php
 // 15_6.php

 $response = null;
 if ($_POST) {
 $params = [];
 foreach($_POST['key'] as $i=>$key) {
 if (!empty($key) && array_key_exists($i, $_POST['value'])) {
 $params = "$key=" . urlencode($_POST['value'][$i]);
 }
 }
 $options = array('http' =>
 array(
 'method' => $_POST['method'],
 'content' => implode("&", $params)
)
);

http://jsonapi.org/

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

328

 $context = stream_context_create($options);
 $response = file_get_contents($_POST['url'], false, $context);
 switch ($_POST['response']) {
 case 0 :
 $json = json_decode($response, true);
 $response_text = json_encode($json, JSON_PRETTY_PRINT);
 break;
 case 1:
 $dom = dom_import_simplexml($response)->ownerDocument;
 $dom->formatOutput = true;
 $response_text = $dom->saveXML();
 break;
 }
 }
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <script src="https://code.jquery.com/jquery-1.12.2.min.js"
 integrity="sha256-lZFHibXzMHo3GGeehn1hudTAP3Sc0uKXBXAzHX1sjtk="
 crossorigin="anonymous"></script>
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"
 integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
 crossorigin="anonymous"></script>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"
 rel="stylesheet"
 integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7"
 crossorigin="anonymous">
 <script>
 function AddParameter() {
 var \$params = $('#parameters');
 if (\$params) {
 var \$div = \$('<div>');
 \$div.html(\$params.html());
 \$div.insertAfter(\$params);
 }
 }
 echo <<<HEREDOC
 <!DOCTYPE html>
 <html>
 <head>
 <script src="https://code.jquery.com/jquery-1.12.2.min.js"
 integrity="sha256-lZFHibXzMHo3GGeehn1hudTAP3Sc0uKXBXAzHX1sjtk="
 crossorigin="anonymous"></script>
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"
 integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS"
 crossorigin="anonymous"></script>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css"
 rel="stylesheet"
 integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7"
 crossorigin="anonymous">

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

329

 <script>
 function AddParameter() {
 var \$params = \$('#parameters');
 if (\$params) {
 var \$div = \$('<div>');
 \$div.html(\$params.html());
 \$div.insertAfter(\$params);
 }
 }
 </script>
 </head>
 <body>
 <form name="api" method="POST" action="{$_SERVER['PHP_SELF']}">
 <div>
 <lable>API Endpoint</label>
 <input class="form-control" type="text" name="url" />
 </div>
 <div>
 <lable>Method</label>
 <select class="form-control" name="method">
 <option value="GET">GET</option>
 <option value="POST">POST</option>
 </select>
 </div>
 <div>
 <lable>Response</label>
 <select class="form-control" name="response">
 <option value="0">JSON</option>
 <option value="1">XML</option>
 </select>
 </div>
 <div id="parameters">
 <div id="parameters">
 <lable>Parameters</label>
 <div style="width:30%; display: inline-block">
 <input class="form-control" type="text" name="key[]" />
 </div>
 <div style="width:50%; display: inline-block">
 <input class="form-control" type="text" name="value[]" />
 </div>
 </div>
 </form>
 <button onclick="AddParameter()">Add Parameters</button>
 <button onclick="document.api.submit()">Submit</button>
 <pre id="response">
 $response_text
 </pre>
 </body>
 </html>
 HEREDOC;

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

330

 Note how the dollar signs in javascript section are escaped. The dollar sign is used as a shorthand
for the jQuery() function as $() and also in some of the variable names, but as PHP performs variable
replacement in the HEREDOC block these will be replaced by empty strings as these variables are not
defined in the PHP scope.

 The form has input fields for the URL, the method, how the response should be displayed, and a key/
value for a single parameter. If more parameters are needed the user can click the Add Parameter button and
the form will be expanded.

 When the form is submitted the PHP side will create a HTTP request based on the data submitted and
shows the response from the API call in the preformatted section of the HTML document.

 Recipe 15-6. API Authentication
 Problem
 What is the best way to authenticate a user of an API?

 Solution
 First of all you should never send user names and passwords in clear text when you are calling an API, and
you should never include any of the authentication parameters as part of the URI as that gets logged by the
server. These should always be sent as headers or as part of the body.

 Providers of API’s will often issue an app key or other id that’s unique for each user. This is typically
some sort of hash value that can’t be linked to a specific user account. Some sites also provide a secret code
that should be used when generating a hash of the request, but the code should not be included with the
request. The server will know the secret and it can generate the hash on the server side and compare it to
the hash that was included with the request. If they match, the server can assume the requester is who they
claim to be.

 The hashing can be done with some of the request parameters but it can also include things like the
public IP of the requester or the user agent string as long as both client and server use the same set of data to
create the hash.

 Some API’s require the client to authenticate on every request, but the server can also include a session
token with the response and any subsequent requests from the same client that include the session token
will be considered valid. The server might use additional parameters from the request like the user agent
string and IP address to validate the session token. If any of these are changed from one request to another
the server will invalidate the session.

 How it Works
 There are many ways to generate app keys and secrets. The app key could be generated as a sha256 hash of
some of the data associated with the account.

 <?php
 $appkey = hash('sha256', $email . $first_name, $date);

 In this example concatenating the e-mail address, first name, and some representation of a data creates
a string that is then used to create a hash value from. The hash value is then stored with the account.

 Hashing different account values that are unique to the user can generate a secret that will only be
known by the server and the client and never included as part of the request.

 <?php
 $secret = hash('sha1', $account_id . $email);

CHAPTER 15 ■ DATA EXCHANGE WITH JSON

331

 On the server side the app key and secret will be saved as additional account information. It is a god
practice if the secret is generated on a web page to prevent showing of this element more than once, when it
is generated. If the user forgets the secret a new one should be generated.

 Between the client and the server there must be an agreement on how to generate the hash. This can be
by taking all the parameters as a string, adding the secret and then create a hash of the string. The hash value
is then added as an additional parameter to the request. On the server side all parameters except the hash
will be combined to similar string and the app key is used to do a database lookup for the secret so a hash
can be created to validate again the provided hash.

 The next example shows who a client can use an include file with the $appkey and $secret variables.
Make sure the include file is stored outside of the web root to prevent accessing it from a browser.

 <?php
 // 15_7.php

 require "api_credentials.inc";

 $params = [
 "appkey=$appkey",
 "article=1"
];
 $hash = hash('sha256', implode("", $params) . $secret);
 $params['hash'] = $hash;

 $options = array('http' =>
 array(
 'method' => "POST",
 'content' => implode("&", $params)
)
);
 $context = stream_context_create($options);
 $response = file_get_contents("http://example.com/articels", false, $context);

 If the server side of the API call is process by a PHP script it would process the request like this:

 <?php
 // 16_8.php

 $params = [
 "appkey={$_POST['appkey']}",
 "article={$_POST['article']}"
];
 $secret = GetSecret($_POST['appkey']);
 $hash = hash('sha256', implode("", $params) . $secret);
 if ($hash == $_POST['hash']) {
 // Request is allowed
 }
 else {
 // Error – the hash did not match
 }

 The GetSecret() function call should perform a database lookup to get the secret value based on the
provided appkey.

333© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8_16

 CHAPTER 16

 Using MySQL Databases

 Databases play an important role in web applications where content is constantly changing and being served
according to users’ preferences, location, or other parameters. Databases are also used to collect information
from the users in the form of comments to a blog, personal information when accounts are created, etc.

 PHP provides support for many different types of databases in the form of a set of functions to connect,
perform queries, and get information about tables and columns in the database. Some of the database
extensions are procedural and some offer an object-oriented interface. The open source database called
MySQL is the most used database with PHP and both small and large companies like Facebook, Twitter, and
Wikipedia use it. The extension is provided by default with most distributions.

 The mysql extension is deprecated and replaced by the mysqli extension. The I stands for Improved.
From PHP 7 the mysql extension is no longer provided.

 The source code to the MySQL database is owned and maintained by Oracle today and there is a new
open source version developed by the original MySQL team called MariaDB . This database is compatible
with the MySQL API’s and can be used as a drop in replacement for MySQL. The standard database provided
by CentOS 7 today is MariaDB.

 Another advantage is the small footprint that makes it possible to use MySQL on limited hardware or
embedded systems.

 In this chapter we are going to show how to perform common database tasks from PHP scripts using the
mysqli extension.

 Recipe 16-1. Connecting to MySQL
 Problem
 Although MySQL data in a database is stored in a file system it can’t be accessed by opening and reading/
writing a file using the fopen() or file_get_contents() functions . In order to issue commands and receive
data it is necessary to have the database server running and use a TCP/IP connection between the client and
the server. How can this be done from PHP?

 Solution
 The mysqli extension includes a function called mysqli_connect() . This function requires a host name,
user id, password, name of the database, tcp port, and socket, as parameters and it will return a connection
resource if the connection could be made and false if the connection failed.

 It is also possible to connect to MySQL using the PHP Data Objects (PDO) extension.

CHAPTER 16 ■ USING MYSQL DATABASES

334

 All the parameters can have default values provided as configuration options in php.ini. These are
defined as the following:

 mysqli.default_host = "127.0.0.1"
 mysqli.default_user = "db_user"
 mysqli.default_pw = "secret"
 mysqli.default_port = 3306
 mysqli.default_socket = ""

 As a minimum it is required to provide values for host, user, and password. If the database is specified
an attempt to connect to that database is made. The database can always be switched to a different database
under the same host with the user of the mysqli_select_db() function .

 If the database server and web server is running on the same box we can use localhost or the ip address
127.0.0.1 as the host name for the database server. If the two services are on different servers it’s necessary to
provide the remote host name or IP address. In a high-traffic environment it can provide better performance
by using an IP address. In that case it’s not necessary for the client to perform a DNS query to resolve a host
name to an IP address on every connect request.

 How it Works
 In order to connect to a database we need one created on the server. Using the mysql command on the
server can do this.

 mysql –u root –p

 This command will connect to the MySQL (or MariaDB) server on the local host using the root user .
The connection will be interactive and can be used to create new databases, tables, and add/update or
delete data.

 In this example we will create a table called music to store albums, tracks, and artist information. The
first step is to create the database:

 create database music;

 Use the command ' show databases ;' to get a list of all databases available on the server.

 MariaDB [mysql]> show databases;
 +--------------------+
 | Database |
 +--------------------+
 | information_schema |
 | book |
 | music |
 | mysql |
 | performance_schema |
 +--------------------+
 5 rows in set (0.00 sec)

CHAPTER 16 ■ USING MYSQL DATABASES

335

 It is also necessary to create a database user and grant that user access to the database. This is the user
account that will be used when connecting to the database from PHP.

 MariaDB [mysql]> CREATE USER 'php'@'localhost' IDENTIFIED BY 'secret';
 Query OK, 0 rows affected (0.01 sec)

 This will create a user account called php with the password secret. The final step is to grant the php
user access to the music database.

 MariaDB [mysql]> GRANT ALL PRIVILEGES ON music . * TO 'php'@'localhost';
 Query OK, 0 rows affected (0.00 sec)

 This statement will grant the user access to all tables in the music database.
 Exit the mysql tool and enter it again with the new account:

 mysql -u php -p

 Enter the password (secret) and type the command to show the databases.

 MariaDB [(none)]> show databases;
 +--------------------+
 | Database |
 +--------------------+
 | information_schema |
 | music |
 +--------------------+
 2 rows in set (0.01 sec)

 This will only list the databases the user has access to. The information_schema database is used by
mysql to store data about tables, columns keys, and indexes, etc. It’s a database all users can access
(read-only).

 In order to store data in a database we need to create one or more tables. Each table defines a number
of columns of various data types (integer, char, datetime, etc.). Data is added to a table in the form of a row.
Each row will contain a value for each column. The value of some columns can be empty if that is allowed by
the schema definition but all rows will have the same number of columns.

 MariaDB [music]> create table album (
 -> id int auto_increment,
 -> title varchar(250) not null,
 -> description varchar(2000),
 -> primary key(id)
 ->);
 Query OK, 0 rows affected (0.02 sec)

CHAPTER 16 ■ USING MYSQL DATABASES

336

 The show tables; and describe album; commands can be used to show a list of available tables and
the definition of the album table.

 MariaDB [music]> show tables;
 +-----------------+
 | Tables_in_music |
 +-----------------+
 | album |
 +-----------------+
 1 row in set (0.00 sec)

 MariaDB [music]> describe album;
 +-------------+---------------+------+-----+---------+----------------+
 | Field | Type | Null | Key | Default | Extra |
 +-------------+---------------+------+-----+---------+----------------+
 | id | int(11) | NO | PRI | NULL | auto_increment |
 | title | varchar(250) | NO | | NULL | |
 | description | varchar(2000) | YES | | NULL | |
 +-------------+---------------+------+-----+---------+----------------+
 3 rows in set (0.00 sec)

 Columns included in the primary key can’t have a null value so it’s not necessary to specify a constraint
disallowing null values on any column that is included in the primary key.

 The auto_increment constraint is used to automatically assign a value to the column, if the insert
statement does not provide a value.

 We now have a database with a single table and a user that can be used to connect and interact with the
database from a PHP script. In a procedural setting this could look like example 16_1.php.

 <?php
 // 16_1.php
 $con = mysqli_connect('127.0.0.1', 'php', 'secret', 'music');
 if (mysqli_connect_error()) {
 die("Error connecting: " . mysqli_connect_errno() . ' '
 . mysqli_connect_error() . "\n");
 }
 else {
 echo "Connected to music\n";
 }

 As an alternative the same functionality can be obtained with an object-oriented approach .

 <?php
 // 16_2.php
 $mysqli = new mysqli('127.0.0.1', 'php', 'secret', 'music');
 if ($mysqli->connect_error) {
 die("Error connecting: {$mysqli->connect_errno} {$mysqli->connect_error}\n");
 }
 else {
 echo "Connected to music\n";
 }

CHAPTER 16 ■ USING MYSQL DATABASES

337

 If the script is called as a request from a web server it is not necessary to disconnect or release any
resources. This is handled by PHP automatically when the script terminates. If the script is long running
or no longer needs the connection to the database, it’s a good idea to get rid of the connection. This can be
done with the mysqli_close() function or the mysqli::close() method .

 <?php
 // 16_3.php
 $con = mysqli_connect('127.0.0.1', 'php', 'secret', 'music');
 if (mysqli_connect_error()) {
 die("Error connecting: " . mysqli_connect_errno() . ' '
 . mysqli_connect_error() . "\n");
 }
 else {
 echo "Connected to music\n";
 mysqi_close($con);
 }

 Or in object-oriented code:

 <?php
 // 16_4.php
 $mysqli = new mysqli('127.0.0.1', 'php', 'secret', 'music');
 if ($mysqli->connect_error) {
 die("Error connecting: {$mysqli->connect_errno} {$mysqli->connect_error}\n");
 }
 else {
 echo "Connected to music\n";
 $mysqli->close();
 }

 Recipe 16-2. Persistent Connections
 Problem
 Connecting to a database can be a process that takes some time, and if the same database is used by all, or
most, requests to the web server, it can make sense to keep a pool of connections open and reuse them again
and again.

 Solution
 Persistent connection in various database extensions has been available for a long time. Although persistent
connections can save some time they can also cause problems. If a persistent connection is used to lock a
table and the script is unable to release the lock the table might stay locked until the connection is killed
manually (restart of the web server and possibly the database server) so be careful.

 In the older database drivers it used to be a special connect function (mysql_pconnect() instead of
 mysql_connect()), but in the mysqli driver the persistent connection is created by adding the prefix ‘p:’ in
front of the hostname.

CHAPTER 16 ■ USING MYSQL DATABASES

338

 The number of persistent connections allowed is configurable in php.ini and it should match the
number of simultaneous requests to the web site. If the number is set too low some users might experience
connectivity issues.

 Persistent connections are closed when the web server is shut down or restarted. If the persistent
connection is created from a script running under CLI the connection will be closed when the script
terminates. In that case there will be no difference between persistent and non-persistent connections.

 How it Works
 The next example shows the use of the ‘p:’ prefix to the host name to create a persistent connection.

 <?php
 // 16_5.php
 $mysqli = new mysqli('p:127.0.0.1', 'php', 'secret', 'music');
 if ($mysqli->connect_error) {
 die("Error connecting: {$mysqli->connect_errno} {$mysqli->connect_error}\n");
 }
 else {
 echo "Connected to music\n";
 }

 Don’t use the close() function on a persistent link as that will remove it from memory.
 The function phpinfo() can be used to display status about mysqli connections. Active Persistent Links

is the number of links currently in use. Inactive Persistent Links is the number of available links not currently
in use and Active Links is the number on non-persistent links currently in use.

 mysqli

 MysqlI Support enabled

 Client API library version mysqlnd 5.0.12-dev - 20150407 - $Id:
d8daadaf41e3cd81d7c6ae96c6091fd15b2c9382 $

 Active Persistent Links 0

 Inactive Persistent Links 0

 Active Links 0

 Recipe 16-3. Fetching Data
 Problem
 Databases use an internal format to store the data and are optimized to use indexes and memory to extract
the data based on a query. If we use the mysql command-line tool the result of a query will be listed as text
on the console. How can the data be extracted into PHP variables so it can be used in the script to perform
action or generate output?

CHAPTER 16 ■ USING MYSQL DATABASES

339

 Solution
 The net rectangular nature of SQL databases can easily be represented in PHP arrays. This will be an array
of arrays. The outer array will correspond to the rows in the result and the inner array will represent the
values of all columns in each row.

 How it Works
 In order to have some data in the table to fetch we need to insert some first. Use the mysql command-line
tool to execute the following commands:

 use music;
 insert into album (title) values('Yellow Submarine');
 insert into album (title) values('Sgt. Pepper''s Lonely Hearts Club Band');
 insert into album (title) values('Help')
 insert into album (title) values('Abbey Road');

 And to verify the date select all columns from the table:

 MariaDB [music]> select * from album;
 +----+---------------------------------------+-------------+
 | id | title | description |
 +----+---------------------------------------+-------------+
 | 1 | Yellow Submarine | NULL |
 | 2 | Sgt. Pepper's Lonely Hearts Club Band | NULL |
 | 3 | Help | NULL |
 | 4 | Abbey Road | NULL |
 +----+---------------------------------------+-------------+
 4 rows in set (0.00 sec)

 Note how the insert statements for the second album have two quotes where the apostrophe is. This is
necessary as the single quote is the string delimiter and in order to insert a single quote it must be escaped to
tell the parser that it’s not the end of the string.

 The Id columns are added automatically as the insert statements did not provide them and the
description field was left unspecified and shows the NULL value.

 The next example shows how to create a class that extends the mysqli class.

 <?php
 // 16_6.php

 ini_set('display_errors', 1);

 class music extends mysqli {
 function __construct() {
 parent::__construct('127.0.0.1', 'php', 'secret', 'music');
 if ($this->connect_error) {
 die("Unable to connect to music\n");
 }
 }

CHAPTER 16 ■ USING MYSQL DATABASES

340

 function getAlbums() {
 $albums = [];
 $result = $this->Query("select * from album;");
 if ($result) {
 while($row = $result->fetch_assoc()) {
 $albums[] = $row;
 }
 $result->close();
 }
 return $albums;
 }
 }

 $music = new music();
 print_r($music->getAlbums());

 The constructor of the music class does not take any parameters, but it calls the parent class’
constructor with some hard-coded parameters for host, user, password, and database. The getAlbums()
method performs the query “select * from album;” and if the query was executed successfully it will loop
over the result and insert each row into an array that is then returned. The result is closed before the function
returns. This will free any memory used by the query.

 The output of this script will look like this:

 Array
 (
 [0] => Array
 (
 [id] => 1
 [title] => Yellow Submarine
 [description] =>
)

 [1] => Array
 (
 [id] => 2
 [title] => Sgt. Pepper's Lonely Hearts Club Band
 [description] =>
)

 [2] => Array
 (
 [id] => 3
 [title] => Help
 [description] =>
)

 [3] => Array
 (
 [id] => 4
 [title] => Abbey Road
 [description] =>
)
)

CHAPTER 16 ■ USING MYSQL DATABASES

341

 There are a couple of different functions that can fetch data from a result set. The one used here is
 fetch_assoc() . It will return an associative array for each row. That’s why each of the elements in the inner
arrays have keys that match the column names for each of the columns selected. In this case the query uses
“select * from album;” to select all columns but we could have written “select id, title from album;” to select
only the first two columns.

 Recipe 16-4. Inserting Data
 Problem
 The class in the previous example can be used to extract data from a specific table in a database, but how
can new rows be added?

 Solution
 Before data could be extracted from the database they had to be added. This was done with the command-
line tool with the use of the insert statement. The insert statement can work on a single table and it can be
used to create new records with any number of columns. In the command-line example we only provided
the title column. In this example that is a required column because it’s defined with the constraint NOT NULL.

 A simple function that can add rows to the database can be written like this:

 function addAlbum($title, $description = null) {
 $t = this->real_escape_string($title);
 if ($description) {
 $d = $this->real_escape_string($description);
 $sql = "insert into album (title, description) values ('$t', '$d')";
 }
 else {
 $sql = "insert into album (title) values ('$t')";
 }
 $this->Query($sql);
 return $this->insert_id;
 }

 This method uses the real_escape_string() function to make sure single quotes and other characters
before they can be included in the query. The return value will be the id of the newly created row. This can
be used later to link other data to the specific record.

 How it Works
 The full script to insert new albums and get the list of all albums is shown here:

 <?php
 // 16_7.php

 ini_set('display_errors', 1);

 class music extends mysqli {
 function __construct() {
 parent::__construct('127.0.0.1', 'php', 'secret', 'music');

CHAPTER 16 ■ USING MYSQL DATABASES

342

 if ($this->connect_error) {
 die("Unable to connect to music\n");
 }
 }

 function addAlbum($title, $description = null) {
 $t = $this->real_escape_string($title);
 if ($description) {
 $d = $this->real_escape_string($description);
 $sql = "insert into album (title, description) values ('$t', '$d')";
 }
 else {
 $sql = "insert into album (title) values ('$t')";
 }
 $this->Query($sql);
 return $this->insert_id;
 }

 function getAlbums() {
 $albums = [];
 $result = $this->Query("select * from album;");
 if ($result) {
 while($row = $result->fetch_assoc()) {
 $albums[] = $row;
 }
 $result->close();
 }
 return $albums;
 }
 }

 $music = new music();
 $music->addAlbum("Let It Be");
 $music->addAlbum("Twist and Shout");

 print_r($music->getAlbums());

 The table that contains albums is missing some information. So far only albums from a single band
are added, but what if additional bands are to be added? The simple solution is to add an extra character
column to the album table. This will allow insertion of a text value with each record. Using a text column
makes it possible to use different values for each record, even if it’s the same band. In this case we could use
“The Beatles,” “Beatles,” “Beatles, The,” and many other combinations. This could make it difficult to find all
albums from a single band.

 To solve this problem we can create a new tasble called artist and link the album table to this table.
The SQL to perform these actions looks like this.

 create table artist (
 id int auto_increment,
 artist_name varchar(250) not null,
 description varchar(2000),
 primary key(id)
);

CHAPTER 16 ■ USING MYSQL DATABASES

343

 And the SQL to update the album table with an extra column that will allow linking to the artist table:

 Alter table album add artist_id int;
 Alter table album add foreign key(artist_id) references artist(id);

 The first statement changes the column definition for the album table and the second creates a foreign
key relation between album and artist. This relation will prevent deletion of an artist of one or more albums
that exist with a link to the artist.

 So far only albums from The Beatles were created in the albums table. We can then create them as an
artist and link the albums to the new artist.

 insert into artist (artist_name) values ('The Beatles');
 update album set artist_id=1;

 In this case the first artist added will get the id=1 so the link will be made by setting artist_id=1 for all
rows in the album table.

 We can now expand the class to allow insertion of new artists and albums and to return artist_name as
part of the query.

 <? php
 // 16_8.php

 ini_set('display_errors', 1);

 class music extends mysqli {
 function __construct() {
 parent::__construct('127.0.0.1', 'php', 'secret', 'music');
 if ($this->connect_error) {
 die("Unable to connect to music\n");
 }
 }

 function addArtist($name, $description = null) {
 $n = $this->real_escape_string($name);
 if ($description) {
 $d = $this->real_escape_string($description);
 $sql = "insert into artist (artist_name, description) values ('$n', '$d')";
 }
 else {
 $sql = "insert into artist (artist_name) values ('$n')";
 }
 $this->Query($sql);
 return $this->insert_id;
 }

 function getArtists() {
 $artists = [];
 $sql = "select * from artist";
 $result = $this->Query($sql);
 if ($result) {
 while($row = $result->fetch_assoc()) {

CHAPTER 16 ■ USING MYSQL DATABASES

344

 $artists[] = $row;
 }
 $result->close();
 }
 return $artists;
 }

 function addAlbum($title, $artist_id = null, $description = null) {
 if (is_null($artist_is)) {
 $id = "NULL";
 }
 else {
 $id = (int)$artist_id;
 }
 $t = $this->real_escape_string($title);
 if ($description) {
 $d = $this->real_escape_string($description);
 $sql = "insert into album (title, artist_id, description) values ('$t', $id, '$d')";
 }
 else {
 $sql = "insert into album (title, artist_id) values ('$t', $id)";
 }
 $this->Query($sql);
 return $this->insert_id;
 }

 function getAlbums($artist_id = null) {
 $albums = [];
 if ($artist_id) {
 $sql = "select album.id, artist_id, artist_name, title from album, artist where album.

artist_id=artist.id and artist_id=$artist_id";
 }
 else {
 $sql = "select album.id, artist_id, artist_name, title from album left outer join

artist on (album.artist_id=artist.id)";
 }
 $result = $this->Query($sql);
 if ($result) {
 while($row = $result->fetch_assoc()) {
 $albums[] = $row;
 }
 $result->close();
 }
 return $albums;
 }
 }

 $music = new music();
 $id = $music->addArtist("Pink Floyd");
 $music->addAlbum("The Dark Side Of The Moon", $id);
 $music->addAlbum("The Wall", $id);
 $music->addAlbum("Widh You Were Here", $id);

CHAPTER 16 ■ USING MYSQL DATABASES

345

 print_r($music->getArtists());
 print_r($music->getAlbums(1));
 print_r($music->getAlbums(2));
 print_r($music->getAlbums());

 The script can now insert an artist and get a list of all artists and the function to insert an album has
been modified to take an extra parameter for the artist id. If this is omitted the album will be created without
a link to an artist.

 The getAlbums() method was also modified to allow an optional artist id. If it’s not included the query
will perform a special join that will ensure all rows in the albums table are selected and linked to all the rows
in the artist table. If there is no matching row in the artist table (artist_id is null) the row will still be selected
but null will be returned for both artist_id and artist_name. This is called a ‘ left outer join .”

 If a value is provided for artist id the simple join is made, and only records that exist in both album and
artist will be selected as seen in the output listed below where the four arrays represent all artists, all Beatles
albums, all Pink Floyd albums, and finally all albums.

 Array
 (
 [0] => Array
 (
 [id] => 1
 [artist_name] => The Beatles
 [description] =>
)

 [1] => Array
 (
 [id] => 2
 [artist_name] => Pink Floyd
 [description] =>
)

)
 Array
 (
 [0] => Array
 (
 [id] => 1
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Yellow Submarine
)

 [1] => Array
 (
 [id] => 2
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Sgt. Pepper's Lonely Hearts Club Band
)

CHAPTER 16 ■ USING MYSQL DATABASES

346

 [2] => Array
 (
 [id] => 3
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Help
)

 [3] => Array
 (
 [id] => 4
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Abbey Road
)

 [4] => Array
 (
 [id] => 5
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Let It Be
)

 [5] => Array
 (
 [id] => 6
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Twist and Shout
)

)
 Array
 (
 [0] => Array
 (
 [id] => 7
 [artist_id] => 2
 [artist_name] => Pink Floyd
 [title] => The Dark Side Of The Moon
)

 [1] => Array
 (
 [id] => 8
 [artist_id] => 2
 [artist_name] => Pink Floyd
 [title] => The Wall
)

CHAPTER 16 ■ USING MYSQL DATABASES

347

 [2] => Array
 (
 [id] => 9
 [artist_id] => 2
 [artist_name] => Pink Floyd
 [title] => Widh You Were Here
)

)
 Array
 (
 [0] => Array
 (
 [id] => 1
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Yellow Submarine
)

 [1] => Array
 (
 [id] => 2
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Sgt. Pepper's Lonely Hearts Club Band
)

 [2] => Array
 (
 [id] => 3
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Help
)

 [3] => Array
 (
 [id] => 4
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Abbey Road
)

 [4] => Array
 (
 [id] => 5
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Let It Be
)

CHAPTER 16 ■ USING MYSQL DATABASES

348

 [5] => Array
 (
 [id] => 6
 [artist_id] => 1
 [artist_name] => The Beatles
 [title] => Twist and Shout
)

 [6] => Array
 (
 [id] => 7
 [artist_id] => 2
 [artist_name] => Pink Floyd
 [title] => The Dark Side Of The Moon
)

 [7] => Array
 (
 [id] => 8
 [artist_id] => 2
 [artist_name] => Pink Floyd
 [title] => The Wall
)

 [8] => Array
 (
 [id] => 9
 [artist_id] => 2
 [artist_name] => Pink Floyd
 [title] => Widh You Were Here
)

)

 Recipe 16-5. Updating Data
 Problem
 Adding new records or rows to a table is not the only operation users might want to have. How can we create
a method that can update one or more columns in a table?

 Solution
 In SQL the update statement can be used to update one or more columns of one or more rows in the table.
Like insert statements update statements work on a single table. If it’s necessary to update records in
multiple tables, multiple updates statements are needed.

 The structure of an update statement starts by identifying the table to update, followed by a comma
separated list of column names and values and finally a where clause that identifies the rows to update. If the
where clause is omitted the update statement will make the update to all rows in the table.

 Identifying the primary key in the where clause is the easiest way to update a single record but it’s
possible to use other values to identify the row(s) to update.

CHAPTER 16 ■ USING MYSQL DATABASES

349

 How it Works
 The following code section is an example of a method called updateAlbum() for the music class. This
method takes two parameters. The first one is the id column that identifies the row to update and the second
is an array of values, similar to the values returned from the getAlbum() method.

 function updateAlbum($id, $data = []) {
 $schema = [
 "id" => "int",
 "title" => "char",
 "artist_id" => "int",
 "description" => "char",
];
 $columns = [];
 foreach($data as $k => $v) {
 if (array_key_exists($k, $schema)) {
 if (is_null($v)) {
 $column[] = "$k = NULL";
 }
 else {
 switch($schema[$k]) {
 "int" :
 $column[] = "$k = " . (int)$v;
 break;
 "char" :
 $column[] = "$k = '" . $this->real_escape_string($v) ."'";
 break;
 }
 }
 }
 }
 if (sizeof($columns)) {
 $sql = "update album set " . implode(", ", $columns) .
 " where id = $id;";
 $this->Query($sql);
 }
 }

 The function includes a schema definition. This is used to validate the content of the $data variable.
Any value that is not found in the $schema definition will be ignored. This will eliminate SQL errors if the
user were to update a nonexisting column. The schema also defines the types of the columns, allowing the
code to perform the correct type casting.

 The schema definition does not include column length or other restrictions that could be used for
additional validation. This would be easy to add as additional parameters in the schema definition.

 This function could be made a more generic by adding a private method that includes parameters for
table name and the schema definition. This can then be used to add a method to update both the album and
artist tables.

CHAPTER 16 ■ USING MYSQL DATABASES

350

 Both of these tables use the same type of primary key. In both cases it’s an integer value that is
incremented automatically. It is always a good idea to use a private key without any real information,
especially if the primary key is used as a foreign key reference. Changing the value of such a key would
require changing the value in all tables that references it. If the key is without any value there is never any
reason to change it.

 private function updateRow($table, $schema, $id, $data) {
 $columns = [];
 foreach($data as $k => $v) {
 if (array_key_exists($k, $schema)) {
 if (is_null($v)) {
 $column[] = "$k = NULL";
 }
 else {
 switch($schema[$k]) {
 "int" :
 $column[] = "$k = " . (int)$v;
 break;
 "char" :
 $column[] = "$k = '" . $this->real_escape_string($v) ."'";
 break;
 }
 }
 }
 }
 if (sizeof($columns)) {
 $sql = "update $table set " . implode(", ", $columns) .
 " where id = $id;";
 $this->Query($sql);
 }
 }

 function updateAlbum($id, $data = []) {
 $schema = [
 "id" => "int",
 "title" => "char",
 "artist_id" => "int",
 "description" => "char",
];
 $this->update("album", $schema, $id, $data);
 }

 function updateArtist($id, $data = []) {
 $schema = [
 "id" => "int",
 "artist_name" => "char",
 "description" => "char",
];
 $this->update("artist", $schema, $id, $data);
 }

CHAPTER 16 ■ USING MYSQL DATABASES

351

 Recipe 16-6. Deleting Data
 Problem
 The next problem is how do we get rid of data no longer needed in the table/database?

 Solution
 The solution is to use the delete SQL statement. This statement starts with delete from table and has an
optional where clause to specify the exact rows to delete. Without the where clause all the rows in the
specified table will be deleted.

 If other tables have foreign key relations to any of the rows being deleted the query will fail because the
foreign key relations will no longer point to a valid row. This can be handled by updating all the rows of the
other tables that are related to the rows being deleted so they no longer points to them. That is if those rows
should be kept in the database. If those rows should be deleted also it’s possible to tell the database to delete
the selecting rows and also all the rows in other tables that point to any of the rows being deleted. Adding the
keyword ‘cascade’ to the end of the delete query does this.

 The SQL statement to delete all rows in the album table looks like this:

 delete from album;

 The statement to delete all the rows that belongs to a specific artist looks like this:

 delete from album where artist_id = 2;

 If the Id of the artist is unknown this can be found by writing a sub query:

 delete from album where artist_id in (select id from artist where artist_name='Pink Floyd');

 The where clause uses the keyword in instead of =. This is helpful if the subquery results in multiple
rows. This will ensure that all of the rows matching any of the id’s returned from the subquery are deleted. If
multiple rows are returned by the subquery and the main query use the = character the SQL query will fail
with a cardinal exception. This indicates that artist_id can’t be equal to more than one value but it can be in
a list of multiple values.

 How it Works
 Inline with the update example from the previous recipe we can now write delete functions. The first one
will be a private member that can delete data from any table, based on the table name and id provided. The
other two functions will be public members to delete a specific id.

 private function deleteRow($table, $id) {
 $sql = "delete from $table where id = " . (int)$id . ";";
 $this->Query($sql);
 }

 function deleteArtist($id) {
 $sql = "update album set artist_id=NULL where id = " . (int)$id . ";";
 $this->Query($sql);
 $this->deleteRow("artist", $id);
 }

CHAPTER 16 ■ USING MYSQL DATABASES

352

 function deleteAlbum($id) {
 $this->deleteRow("album", $id);
 }

 In the deleteArtist() function there is an extra statement to get rid of all constraints pointing to the
row being deleted.

 The entire class with insert, update, and delete functions can now be combined into one.

 <?php
 // 16_9.php

 class music extends mysqli {
 private $schema = [
 'artist' => [
 'id' => 'int',
 'artist_name' => 'char',
 'description' => 'char',
],
 'album' => [
 'id' => 'int',
 'title' => 'char',
 'artist_id' => 'int',
 'description' => 'char',
]
];

 function __construct() {
 parent::__construct('127.0.0.1', 'php', 'secret', 'music');
 if ($this->connect_error) {
 die("Unable to connect to music\n");
 }
 }

 function insertRow($table, $schema, $data = []) {
 $columns = [];
 $values = [];
 foreach($data as $k => $v) {
 if (array_key_exists($k, $schema)) {
 $columns[] = $k;
 if (is_null($v)) {
 $values[] = "NULL";
 }
 else {
 switch($schema[$k]) {
 case 'int' :
 $values[] = (int)$v;
 break;
 case 'char' :
 $values[] = "'" . $this->real_escape_string($v) . "'";
 break;
 }

CHAPTER 16 ■ USING MYSQL DATABASES

353

 }
 }
 }
 if (sizeof($columns)) {
 $sql = "insert into $table (" . implode(", ", $columns) . ") values (" .
 implode(", ", $values) . ");";
 $this->Query($sql);
 return $this->insert_id;
 }
 else {
 return false;
 }
 }

 function addArtist($name, $description = null) {
 return $this->insertRow(
 'artist', $this->schema['artist'], [
 'artist_name' => $name,
 'description' => $description
]
);
 }

 function addAlbum($title, $artist_id, $description = null) {
 return $this->insertRow(
 'album', $this->schema['album'], [
 'title' => $title,
 'artist_id' => $artist_id,
 'description' => $description
]
);
 }

 private function updateRow($table, $schema, $id, $data) {
 $columns = [];
 foreach($data as $k => $v) {
 if (array_key_exists($k, $schema)) {
 if (is_null($v)) {
 $column[] = "$k = NULL";
 }
 else {
 switch($schema[$k]) {
 case 'int' :
 $column[] = "$k = " . (int)$v;
 break;
 case 'char' :
 $column[] = "$k = '" . $this->real_escape_string($v) ."'";
 break;
 }
 }
 }
 }

CHAPTER 16 ■ USING MYSQL DATABASES

354

 if (sizeof($columns)) {
 $sql = "update $table set " . implode(", ", $columns) .
 " where id = $id;";
 $this->Query($sql);
 }
 }

 function updateArtist($id, $data = []) {
 $this->update("artist", $this->schema['artist'], $id, $data);
 }

 function updateAlbum($id, $data = []) {
 $this->update("album", $this->schema['album'], $id, $data);
 }

 private function deleteRow($table, $id) {
 $sql = "delete from $table where id = " . (int)$id . ";";
 $this->Query($sql);
 }

 function deleteArtist($id) {
 $sql = "update album set artist_id=NULL where id = " . (int)$id . ";";
 $this->Query($sql);
 $this->deleteRow("artist", $id);
 }

 function deleteAlbum($id) {
 $this->deleteRow("album", $id);
 }

 function getArtists() {
 $artists = [];
 $sql = "select * from artist";
 $result = $this->Query($sql);
 if ($result) {
 while($row = $result->fetch_assoc()) {
 $artists[] = $row;
 }
 $result->close();
 }
 return $artists;
 }

 function getAlbums($artist_id = null) {
 $albums = [];
 if ($artist_id) {
 $sql = "select album.id, artist_id, artist_name, title from album, artist where album.

artist_id=artist.id and artist_id=$artist_id";
 }
 else {

CHAPTER 16 ■ USING MYSQL DATABASES

355

 $sql = "select album.id, artist_id, artist_name, title from album left outer join
artist on (album.artist_id=artist.id)";

 }
 $result = $this->Query($sql);
 if ($result) {
 while($row = $result->fetch_assoc()) {
 $albums[] = $row;
 }
 $result->close();
 }
 return $albums;
 }
 }

 The addArtist() and addAlbum() methods are also refactored to use the common schema definitions.

 Recipe 16-7. Schema Information
 Problem
 In the previous example the schema definition for the two tables were hard coded and would need to be
updated if there were any changes to the database. Would it be possible to extract the schema information
from the database?

 Solution
 There is a special purpose database or schema in the MySQL database. This is called INFORMATION_
SCHEMA and it contains information about all the tables and columns in any of the databases on the server.
INFORMATION_SCHEMA is common among many SQL92 database engines.

 The commands show databases; and show tables; that were used on the command line, and they can
also be used from the Query() method of the mysqli class. These commands use the information in the
INFORMATION_SCHEMA to extract data about the system.

 The command show databases; is equivalent to this:

 select schema_name `Database` from information_schema.schemata;

 The ticks around the alias Database is there because database is a reserved word and it must be escaped
to be used as a column name in the query.

 In a similar way we can write a statement to get all the tables in the database called music. This will be
equivalent to the following:

 use music;
 Show tables;

 Using the information schema makes it possible to use this from any location. You don’t have to select a
specific database before querying this schema.

 select table_name from information_schema.tables where table_schema='music';

 And finally we can get the list of columns in each of the tables by using this SQL statement:

 select column_name, column_type from information_schema.columns where table_name='album';

CHAPTER 16 ■ USING MYSQL DATABASES

356

 How it Works
 With this information we can now change the constructor of the music class to query the database for the
schema information.

 <?php
 // 16_10.php

 class music extends mysqli {
 private $schema = [];

 function __construct() {
 parent::__construct('127.0.0.1', 'php', 'secret', 'music');
 if ($this->connect_error) {
 die("Unable to connect to music\n");
 }
 $sql = "select table_name from information_schema.tables where table_schema='music';";
 $rs = $this->Query($sql);
 while ($table = $rs->fetch_assoc()) {
 $sql = "select column_name, column_type from information_schema.columns where table_

name='{$table['table_name']}';";
 $rs1 = $this->query($sql);
 while($col = $rs1->fetch_assoc()) {
 $this->schema[$table['table_name']][$col['column_name']] = $col['column_type'];
 }
 $rs1->close();
 }
 $rs->close();
 print_r($this->schema);
 }
 }

 $music = new music();

357© Frank M. Kromann 2016
F.M. Kromann, PHP and MySQL Recipes, DOI 10.1007/978-1-4842-0605-8

 A
 addArtist() and addAlbum() methods , 355
 AddInput() method , 285–286
 Anonymous functions , 243
 Apache Lounge , 14
 array_merge() function , 237
 Array of arrays , 86–88
 Arrays

 addition, elements , 79–81
 array_merge() function , 82–86
 creation , 77, 79
 debugging, variables , 105–107
 defi nition , 107
 each() and reset() functions , 88
 json_decode() , 107
 json_encode() , 107
 print_r() function , 108
 range() function , 81
 removal, elements , 81
 serialize() , 107
 slicing and splicing arrays , 102, 104–105
 sorting , 79

 arsort() , 90, 93
 asort() , 90, 93
 insensitive string sorting , 91–92
 krsort() , 90
 ksort() , 90, 93
 rsort() , 90, 93
 sort() function , 93–96
 SORT_LOCALE_STRING , 96
 SORT_NATURAL , 92, 97
 SORT_NUMERIC , 96
 SORT_STRING , 96
 usort() function , 97–100

 stacks , 100–101
 traverse process , 88–90
 unserialize() , 107

 array_slice() function , 102–103
 array_splice() function , 103–104

 B
 Binary safe string , 125

 C
 Cache() function , 262
 Calculated function names , 242
 __constructor() method , 304
 Coordinated Universal Time (UTC) , 109
 CSV fi les , 156–158

 D
 date_default_timezone_set() function , 308
 Date functions

 date() function , 112–113
 gmmktime() , 112
 RFC 2822-formatted string , 116
 storage , 122–123
 week numbers , 117

 DateTime Class , 118–122
 defi ne() function , 219
 DeleteRows() function , 238
 Dynamic imaging

 adding text , 191
 caching , 193
 changing colors , 180
 creation , 169
 crop , 173
 drawing function , 182
 fl ip , 177
 ImageArc() function , 188
 ImageEllipse() function , 187
 ImageFilledArc() , 189
 ImageFilledPolygon() , 189
 ImageFilledRectangle() function , 185
 ImageFillToBorder() function , 186
 ImagePolygon() function , 185, 188
 ImageRectabgle() function , 185

 Index

■ INDEX

358

 resize , 171
 rotate , 176
 transparency , 190
 watermark , 178

 E
 error_log option , 20
 Escaping strings , 130–132
 ExecCGI , 17

 F
 FastCGI interface , 17
 File permissions , 152–153
 File properties , 150–152
 Files and Directories

 copy() function , 149
 downloading , 164
 fopen(), fclose(), and

fwrite() , 147–148
 include and require , 143, 145
 iterators , 162–163
 mkdir() function , 155
 readfi le() and fpassthru() , 145–147
 rename() , 149
 rmdir() function , 155
 single class defi nition , 143
 Stream Context , 160–161
 streams , 159–160
 Test() , 145
 unlink() function , 149
 uploading , 165

 $_FILES array , 290
 FormEncode() , 264
 Forms

 data , 290
 default values , 276
 elements

 $_POST (or $_GET) array , 271
 Bootstrap framework , 274, 276
 check boxes/multiselect lists , 272
 html tags , 272
 implementation , 274
 jQuery library , 274, 276
 multiselect list , 273
 PHP script , 272
 text input , 271
 types , 273
 user’s programming skills , 272

 fi le upload , 288
 generation , 283
 validation , 280

 function_exists() , 241

 Functions
 anonymous functions , 243
 calculated function names , 242
 calling functions , 231
 function_exists() , 241
 get_defi ned_functions() , 241
 is_callable() , 241
 optional parameters , 236
 passing parameters , 234
 return values , 239
 type declarations , 238
 variable parameter list , 246
 variable scope , 232

 G
 getAlbums() method , 345
 get_defi ned_functions() , 241
 GetSecret() function , 331

 H
 header() function , 263
 HTMLForm class , 285

 I
 ImageChar() , 192
 ImageCopyResampled() function , 175–176
 ImageCreateFrom*() functions , 169
 ImageFilledRectangle() function , 185
 ImageFillToBorder() function , 186
 ImageFlip() function , 177–178
 ImageLoadFont() , 191
 ImagePolygon() function , 185
 ImageRectabgle() function , 185
 ImageRotate() function , 176
 ImageScale() function , 173
 ImageString() function , 191
 ImageTTFText() function , 191
 Internet Information Services (IIS version 7) , 9
 is_callable() , 241
 is_fi nite() , 216
 is_infi nite() , 216
 ISO formats , 116–117
 isset() function , 226
 is_uploaded_fi le() , 290

 J, K
 jQuery() function , 321, 330
 JSON

 API authentication , 324, 330
 consume and validation , 321
 Content-Type , 320

Dynamic imaging (cont.)

■ INDEX

359

 debugging tool , 327
 fetching data, AJAX , 317
 HTML strings , 320
 jQuery() function , 330
 json_last_error() , 319
 return values , 319
 stringifi ed version and json_decode() , 319
 $.post() function , 327

 json_last_error() , 319

 L
 Linux , 6
 list() construct , 227

 M, N
 Math functions

 base values, numbers , 62–64
 binary representation , 65–66
 binary shift , 67, 69
 binary values, integers , 64
 built-in functions , 61
 complex numbers , 74–75
 data types , 61
 exponential expression , 61
 exponential functions , 71–72
 fl oating point numbers , 69
 hexadecimal numbers , 66
 logarithmic functions , 71
 randomization functions , 70
 trigonometry, distance and direction , 73–74

 Memory allocation, PHP , 21
 method __toString() , 285
 Microsoft Visual Studio , 12
 MySQL database installation , 26–27
 MySQL databases

 auto_increment constraint , 336
 deleting data , 351
 fetching data , 338
 fi le_get_contents() functions , 333
 fopen() , 333
 INFORMATION_SCHEMA , 355
 inserting data

 array , 345
 code implementation , 343
 column defi nition , 343
 command-line tool , 341
 getAlbums() method , 345
 left outer join , 345
 list , 341
 real_escape_string() function , 341
 simple function , 341

 MariaDB , 333
 mysql command , 334

 mysql extension , 333
 mysqli::close() method , 337
 mysqli_select_db() function , 334
 object-oriented approach , 336
 PDO , 333
 persistent connections , 337
 php user access , 335
 root user , 334
 show databases , 334
 updating data , 348

 mysqli_select_db() function , 334

 O
 Object-oriented programming, PHP

 abstract classes , 31–32
 access method , 38
 applications , 29
 autoloading classes , 59
 base class , 30
 class hierarchy , 39
 class properties and methods , 36–37
 collisions of names , 57–58
 directory iteration , 52–53
 initialization, classes , 39–40
 interface classes , 33–34
 magic function __clone() , 46–47
 magic method __invoke() , 47
 magic method __toString() , 41
 member variables/methods , 38
 method __debugInfo() , 49–50
 method getType() , 37
 MethodOverload , 48–49
 object context , 35–36
 object context __call() , 48
 Reusable Code , 53–56
 __set_state() , 49
 simple class defi nition , 29
 static and object context , 37–38
 static context , 35–36
 types, classes , 30
 variable overloading functions , 42–44

 object stdClass , 323

 P, Q
 PHP

 administrative tools , 10
 Apache installation , 12
 Apache module , 15
 compiling , 21–24
 confi guration , 2
 default-installed modules , 7–8
 display_errors and error_reporting , 20
 E_NOTICE option , 20

■ INDEX

360

 extensions , 21
 FastCGI version , 16
 httpd , 2
 IIS confi guration , 10
 IIS Web server , 13
 installation , 3, 6–7
 open source scripting language , 1
 package manager yum , 2
 php.ini-development , 17–18
 php.ini-production , 18
 redistribution libraries , 13
 standard Apache 2.4 confi guration , 3

 PHP Data Objects (PDO) , 333
 phpinfo() function , 338
 POSIX system , 152
 $.post() function , 327
 preg_match() function , 201, 203–204
 preg_match_all() function , 206
 preg_replace() , 205

 R
 real_escape_string() function , 341
 Really SimpleSyndication . See Rich site

summary (RSS)
 Reformatting Strings , 132–133
 Regular expressions

 character class , 198
 ereg() , 197
 eregi_replace() , 197
 ereg_replace() , 197
 erigi() , 197
 format validation , 200
 metacharacter , 197
 meta characters , 198
 metacharacters , 198
 modifi ers , 199
 special characters , 199
 string replacement , 205
 str_pos() and substr() functions , 197
 str_replace() function , 197
 subexpressions/sub patterns , 198
 sub patterns , 203

 Rich site summary (RSS)
 date_default_timezone_set() function , 308
 defi nition , 304
 method channel() , 307
 method items() , 307
 sharing data

 channel element , 304
 __constructor() method , 304
 RSS 2.0 and Atom 1.0 , 304
 RSSWriter() class , 306

 strtodate() , 308
 rmdir() function , 149

 S
 Serializing PHP variables , 44–45
 session_start() function , 257
 SetCookie() function , 253
 Simple Object Access Protocol (SOAP)

 API structure , 311
 code implementation , 312
 Math class , 311–312
 math.wsdl fi le , 314
 parameters , 311
 PHP implements classes , 311
 quality and fl exibility , 311
 Server and Client functionality , 311
 __soapCall() method , 315
 SoapCLient() class , 312
 transport protocol , 311
 wsdl fi le , 312, 314

 simplexml:load_fi le() function , 295
 __soapCall() method , 315
 SoapCLient() class , 312
 stdClass , 51
 stream_context_create() , 262
 Strings

 array of characters , 126–127
 character replacement , 127–128
 creation , 125–126
 Hash values, fi les , 139–140
 HTML Entities , 137–138
 Long Strings, Heredoc and Newdoc , 128–130
 passwords storage , 141–142
 storage , 125
 Substrings , 135–137
 Trimming Whitespace , 133

 Strings in Strings , 133–135
 strpos() functions , 134
 Symbolic links , 153–155

 T, U
 Time functions

 date function , 110
 elapsed time calculation , 123–124
 PHP 5.1 , 111
 strftime() function , 113–116
 strtotime() function , 111
 UNIX timestamp , 113

 Timestamps , 110–111, 113, 116
 Time Zones , 109–110
 __toString() method , 283, 288

 V
 Variable parameter list , 246
 Variables

 accessing global variables , 233
 allocating memory , 210

PHP (cont.)

■ INDEX

361

 comparing variables , 221
 constants , 219
 construct include() , 229
 converting variable type , 209
 defi nition , 232
 each() construct , 229
 foreach() construct , 229
 global variable problems , 214
 handling fl oating point

numbers , 224
 include_once() , 229
 language constructs , 225
 memory use , 212
 output generation , 229
 reducing memory use , 216
 require_once() , 229
 reset() function , 229
 scope , 213
 type , 215
 variable variables , 220
 with strings , 223
 $_GLOBALS array , 233

 Virtual Machines , 27–28
 Visual Studio 2015 (VC14) , 12

 W
 wddx_deserialize() function , 309
 wddx_serialize_value() , 309
 Web Distributed Data eXchange

(WDDX) platform , 308
 Web fundamentals

 $_GET and $_POST , 250
 AJAX requests , 266
 caching , 261
 content type and disposition , 259

 cookies , 253
 headers , 249
 HTTPS protocol , 265
 remote content , 262
 server variables , 255
 session data , 257
 web sockets , 267

 WebSocketsServer class , 268
 World Wide Web Services , 9

 X, Y
 XML

 exchanging data
 api key , 295
 API key , 294
 DOM extension , 294
 indication , 294
 libxml extension , 294
 mode , 295
 SDO extension , 294
 SimpleXMLElement class , 298–299
 SimpleXML extension , 294
 simplexml:load_fi le() function , 295
 structure , 293
 var_dump() function , 298
 WDDX extension , 294
 XMLDiff extension , 294
 XML Parser extension , 294
 XML Reader extension , 294
 XML Writer extension , 294

 generating XML response , 300

 Z
 Zipped Files , 166–167

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Installation and Configuration
	Recipe 1-1. Installing PHP
	Problem
	Solution
	How it Works

	Recipe 1-2. Configuring PHP
	Problem
	Solution
	How it Works

	Recipe 1-3. Compiling PHP
	Problem
	Solution
	How it Works

	Recipe 1-4. Installing MySQL
	Problem
	Solution
	How it Works

	Recipe 1-5. Virtual Machines
	Problem
	Solution
	How it Works

	Chapter 2: Classes and Objects
	Recipe 2-1. Writing a Simple Class
	Problem
	Solution
	How it Works

	Recipe 2-2. Writing a Base Class
	Problem
	Solution
	How it Works

	Recipe 2-3. Writing an Abstract Class
	Problem
	Solution
	How it Works

	Recipe 2-4. Writing an Interface
	Problem
	Solution
	How it Works

	Recipe 2-5. Class Members as Regular Functions
	Problem
	Solution
	How it Works

	Recipe 2-6. Protecting Data and Methods
	Problem
	Solution
	How it Works

	Recipe 2-7. Mixed Static and Object Context
	Problem
	Solution
	How it Works

	Recipe 2-8. Referencing Class Members
	Problem
	Solution
	How it Works

	Recipe 2-9. Instantiation of Classes
	Problem
	Solution
	How it Works

	Recipe 2-10. Printing Objects
	Problem
	Solution
	How it Works

	Recipe 2-11. Variable Overloading
	Problem
	Solution
	How it Works

	Recipe 2-12. Serializing Types and Object
	Problem
	Solution
	How it Works

	Recipe 2-13. Copying an Object
	Problem
	Solution
	How it Works

	Recipe 2-14. Using Objects as Functions
	Problem
	Solution
	How it Works

	Recipe 2-15. Overloading Methods
	Problem
	Solution
	How it Works

	Recipe 2-16. Debugging Objects
	Problem
	Solution
	How it Works

	Recipe 2-17. Using Objects without a Class
	Problem
	Solution
	How it Works

	Recipe 2-18. Directory Iteration
	Problem
	Solution
	How it Works

	Recipe 2-19. Writing Reusable Code
	Problem
	Solution
	How it Works

	Recipe 2-20. Avoiding Name Collisions
	Problem
	Solution
	How it Works

	Recipe 2-21. Autoloading Classes on First Use
	Problem
	Solution
	How it Works

	Chapter 3: Performing Math Operations
	Recipe 3-1. Changing the Base Values for Numbers
	Problem
	Solution
	How it Works

	Recipe 3-2. Converting to a Different Base Value
	Problem
	Solution
	How it Works

	Recipe 3-3. Storing Binary Values in Integers
	Problem
	Solution
	How it Works

	Recipe 3-4. Setting and Clearing Bits in Binary
	Problem
	Solution
	How it Works

	Recipe 3-5. Using Hexadecimal Numbers
	Problem
	Solution
	How it Works

	Recipe 3-6. Increasing Performance with Binary Shift
	Problem
	Solution
	How it Works

	Recipe 3-7. Rounding Floating Point Numbers
	Problem
	Solution
	How it Works

	Recipe 3-8. Generating Random Numbers
	Problem
	Solution
	How it Works

	Recipe 3-9. Expressing Ratios with Logarithmic Functions
	Problem
	Solution
	How it Works

	Recipe 3-10. Calculating Future Values
	Problem
	Solution
	How it Works

	Recipe 3-11. Using Trigonometry to Calculate Distance and Direction
	Problem
	Solution
	How it Works

	Recipe 3-12. Working with Complex Numbers
	Problem
	Solution
	How it Works

	Chapter 4: Working with Arrays
	Recipe 4-1. Creating Arrays
	Problem
	Solution
	How it Works

	Recipe 4-2. Changing Arrays
	Problem
	Solution
	How it Works

	Recipe 4-3. Adding Arrays
	Problem
	Solution
	How it Works

	Recipe 4-4. Arrays of Arrays
	Problem
	Solution
	How it Works

	Recipe 4-5. Traversing Arrays
	Problem
	Solution
	How it Works

	Recipe 4-6. Sorting Arrays
	Problem
	Solution
	How it Works

	Recipe 4-7. Using Arrays as Stacks
	Problem
	Solution
	How it Works

	Recipe 4-8. Slicing and Splicing Arrays
	Problem
	Solution
	How it Works

	Recipe 4-9. Debugging Arrays
	Problem
	Solution
	How it Works

	Recipe 4-10. Storing Arrays
	Problem
	Solution
	How it Works

	Chapter 5: Dates and Times
	Recipe 5-1. Working with Time Zones
	Problem
	Solution
	How it Works

	Recipe 5-2. Creating a Timestamp
	Problem
	Solution
	How it Works

	Recipe 5-3. Working with Dates
	Problem
	Solution
	How it Works

	Recipe 5-4. Displaying Timestamps
	Problem
	Solution
	How it Works

	Recipe 5-5. Using ISO Formats
	Problem
	Solution
	How it Works

	Recipe 5-6. Working with Week Numbers
	Problem
	Solution
	How it Works

	Recipe 5-7. The DateTime Class
	Problem
	Solution
	How it Works

	Recipe 5-8. Storing Date and Time Values
	Problem
	Solution
	How it Works

	Recipe 5-9. Calculating Elapsed Time
	Problem
	Solution
	How it Works

	Chapter 6: Strings
	Recipe 6-1. Creating Strings
	Problem
	Solution
	How it Works

	Recipe 6-2. Working with the Characters in a String
	Problem
	Solution
	How it Works

	Recipe 6-3. Replacing Characters
	Problem
	Solution
	How it Works

	Recipe 6-4. Creating Long Strings with Heredoc and Newdoc
	Problem
	Solution
	How it Works

	Recipe 6-5. Escaping Strings
	Problem
	Solution
	How it Works

	Recipe 6-6. Reformatting Strings
	Problem
	Solution
	How it Works

	Recipe 6-7. Trimming Whitespace
	Problem
	Solution
	How it Works

	Recipe 6-8. Finding Strings in Strings
	Problem
	Solution
	How it Works

	Recipe 6-9. Dividing Strings into Substrings
	Problem
	Solution
	How it Works

	Recipe 6-10. Displaying HTML Entities
	Problem
	Solution
	How it Works

	Recipe 6-11. Generating Hash Values for Files
	Problem
	Solution
	How it Works

	Recipe 6-12. Storing Passwords
	Problem
	Solution
	How it Works

	Chapter 7: Files and Directories
	Recipe 7-1. Include and Require
	Problem
	Solution
	How it Works

	Recipe 7-2. Reading Files
	Problem
	Solution
	How it Works

	Recipe 7-3. Writing Files
	Problem
	Solution
	How it Works

	Recipe 7-4. Copy, Rename, and Remove Files
	Problem
	Solution
	How it Works

	Recipe 7-5. File Properties
	Problem
	Solution
	How it Works

	Recipe 7-6. Permissions
	Problem
	Solution
	How it Works

	Recipe 7-7. Symbolic Links
	Problem
	Solution
	How it Works

	Recipe 7-8. Directories
	Problem
	Solution
	How it Works

	Recipe 7-9. CSV Files
	Problem
	Solution
	How it Works

	Recipe 7-10. Streams
	Problem
	Solution
	How it Works

	Recipe 7-11. Stream Context
	Problem
	Solution
	How it Works

	Recipe 7-12. File Iterators
	Problem
	Solution
	How it Works

	Recipe 7-13. Download Files
	Problem
	Solution
	How it Works

	Recipe 7-14. Upload Files
	Problem
	Solution
	How it Works

	Recipe 7-15. Zipped Files
	Problem
	Solution
	How it Works

	Chapter 8: Dynamic Imaging
	Recipe 8-1. Creating Images
	Problem
	Solution
	How it Works

	Recipe 8-2. Image Resize
	Problem
	Solution
	How it Works

	Recipe 8-3. Image Crop
	Problem
	Solution
	How it Works

	Recipe 8-4. Image Rotate
	Problem
	Solution
	How it Works

	Recipe 8-5. Image Flip
	Problem
	Solution
	How it Works

	Recipe 8-6. Adding a Watermark
	Problem
	Solution
	How it Works

	Recipe 8-7. Changing Colors
	Problem
	Solution
	How it Works

	Recipe 8-8. Draw on Images
	Problem
	Solution
	How it Works

	Recipe 8-9. Transparency
	Problem
	Solution
	How it Works

	Recipe 8-10. Adding Text
	Problem
	Solution
	How it Works

	Recipe 8-11. Caching Images
	Problem
	Solution
	How it Works

	Chapter 9: Regular Expressions
	Recipe 9-1. Format Validation
	Problem
	Solution
	How it Works

	Recipe 9-2. SubPatterns
	Problem
	Solution
	How it Works

	Recipe 9-3. String Replacement
	Problem
	Solution
	How it Works

	Chapter 10: Variables
	Recipe 10-1. Converting Variable Type
	Problem
	Solution
	How it Works

	Recipe 10-2. Allocating Memory
	Problem
	Solution
	How it Works

	Recipe 10-3. Determining Memory Use
	Problem
	Solution
	How it Works

	Recipe 10-4. Taking Advantage of Variable Scope
	Problem
	Solution
	How it Works

	Recipe 10-5. Avoiding Global Variable Problems with Super Globals
	Problem
	Solution
	How it Works

	Recipe 10-6. Determining Variable Type
	Problem
	Solution
	How it Works

	Recipe 10-7. Reducing Memory Use with References
	Problem
	Solution
	How it Works

	Recipe 10-8. Using Constants
	Problem
	Solution
	How it Works

	Recipe 10-9. Variable Variables
	Problem
	Solution
	How it Works

	Recipe 10-10. Comparing Variables
	Problem
	Solution
	How it Works

	Recipe 10-11. Working with Strings
	Problem
	Solution
	How it Works

	Recipe 10-12. Handling Floating Point Numbers
	Problem
	Solution
	How it Works

	Recipe 10-13. Special Language Constructs
	Problem
	Solution
	How it Works

	Recipe 10-14. Iterating Over Array Values
	Problem
	Solution
	How it Works

	Recipe 10-15. Generating Output
	Problem
	Solution
	How it Works

	Chapter 11: Functions
	Recipe 11-1. Calling Functions
	Problem
	Solution
	How it Works

	Recipe 11-2. Variable Scope
	Problem
	Solution
	How it Works

	Recipe 11-3. Passing Parameters
	Problem
	Solution
	How it Works

	Recipe 11-4. Optional Parameters
	Problem
	Solution
	How It Works

	Recipe 11-5. Type Declarations
	Problem
	Solution
	How it Works

	Recipe 11-6. Return Values
	Problem
	Solution
	How it Works

	Recipe 11-7. Check if Function Exists
	Problem
	Solution
	How it Works

	Recipe 11-8. Calculated Function Names
	Problem
	Solution
	How it Works

	Recipe 11-9. Anonymous Functions
	Problem
	Solution
	How it Works

	Recipe 11-10. Variable Parameter List
	Problem
	Solution
	How it Works

	Chapter 12: Web Fundamentals
	Recipe 12-1. Headers
	Problem
	Solution
	How it Works

	Recipe 12-2. $_GET and $_POST
	Problem
	Solution
	How it Works

	Recipe 12-3. Cookies
	Problem
	Solution
	How it Works

	Recipe 12-4. Server Variables
	Problem
	Solution
	How it Works

	Recipe 12-5. Session Data
	Problem
	Solution
	How it Works

	Recipe 12-6. Content Type and Disposition
	Problem
	Solution
	How it Works

	Recipe 12-7. Caching
	Problem
	Solution
	How it Works

	Recipe 12-8. Remote Content
	Problem
	Solution
	How it Works

	Recipe 12-9. The HTTPS Protocol
	Problem
	Solution
	How it Works

	Recipe 12-10. AJAX Requests
	Problem
	Solution
	How it Works

	Recipe 12-11. Web Sockets
	Problem
	Solution
	How it Works

	Chapter 13: Creating and Using Forms
	Recipe 13-1. Form Elements
	Problem
	Solution
	How it Works

	Recipe 13-2. Default Values
	Problem
	Solution
	How it Works

	Recipe 13-3. Form Validation
	Problem
	Solution
	How it Works

	Recipe 13-4. Form Generation
	Problem
	Solution
	How it Works

	Recipe 13-5. File Upload
	Problem
	Solution
	How it Works

	Recipe 13-6. Form Data
	Problem
	Solution
	How it Works

	Chapter 14: XML, RSS, WDDX, and SOAP
	Recipe 14-1. Exchanging Data with XML
	Problem
	Solution
	How it Works

	Recipe 14-2. Generating XML Response
	Problem
	Solution
	How it Works

	Recipe 14-3. Sharing Data with RSS
	Problem
	Solution
	How it Works

	Recipe 14-4. Consuming RSS Feeds
	Problem
	Solution
	How it Works

	Recipe 14-5. Standard Data Exchange
	Problem
	Solution
	How it Works

	Recipe 14-6. SOAP Server and Client
	Problem
	Solution
	How it Works

	Chapter 15: Data Exchange with JSON
	Recipe 15-1. Fetching Data with AJAX
	Problem
	Solution
	How it Works

	Recipe 15-2. Returning JSON
	Problem
	Solution
	How it Works

	Recipe 15-3. Consuming a JSON API
	Problem
	Solution
	How it Works

	Recipe 15-4. JSON API
	Problem
	Solution
	How it Works

	Recipe 15-5. Calling API’s
	Problem
	Solution
	How it Works

	Recipe 15-6. API Authentication
	Problem
	Solution
	How it Works

	Chapter 16: Using MySQL Databases
	Recipe 16-1. Connecting to MySQL
	Problem
	Solution
	How it Works

	Recipe 16-2. Persistent Connections
	Problem
	Solution
	How it Works

	Recipe 16-3. Fetching Data
	Problem
	Solution
	How it Works

	Recipe 16-4. Inserting Data
	Problem
	Solution
	How it Works

	Recipe 16-5. Updating Data
	Problem
	Solution
	How it Works

	Recipe 16-6. Deleting Data
	Problem
	Solution
	How it Works

	Recipe 16-7. Schema Information
	Problem
	Solution
	How it Works

	Index

