
PIC Microcontroller Projects in C
Basic to Advanced

Dogan Ibrahim

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

www.allitebooks.com

http://www.allitebooks.org

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
225 Wyman Street, Waltham, MA 02451, USA

First edition 2008

Copyright � 2014 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means electronic, mechanical, photocopying, recording or otherwise without the prior
written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@
elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at
http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter
of products liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in
particular, independent verification of diagnoses and drug dosages should be made.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN-13: 978-0-08-099924-1

For information on all Newnes publications visit our
website at http://store.elsevier.com/

Printed and bound in the UK
14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

mailto:permissions@elsevier.com
mailto:permissions@elsevier.com
http://elsevier.com/locate/permissions
http://store.elsevier.com/
http://www.allitebooks.org

Preface

A microcontroller is a single chip microprocessor system that contains data and program

memory, serial and parallel inputeoutput, timers, external and internal interrupts, all integrated

into a single chip that can be purchased for as little as $2.00. About 40% of microcontroller

applications are in office automation, such as PCs, laser printers, fax machines, intelligent

telephones, and so forth. About one-third of microcontrollers are found in consumer electronic

goods. Products like CD players, hi-fi equipment, video games, washing machines, cookers,

and so on fall into this category. The communications market, automotive market, and the

military share the rest of the application areas.

There are many different types of microcontrollers available from many manufacturers.

This book is about the PIC18F family of high-end 8-bit microcontrollers, developed and

manufactured by Microchip Inc. The highly popular PIC18F45K22 microcontroller is used in

the projects in this book. Many simple, intermediate level, and advanced projects are given in

the book. Most projects are developed using the highly popular mikroC Pro for PIC compiler as

well as the MPLABXC8 compiler. All the projects are fully documented where the following is

given for each project: project description, project hardware (and project block diagram where

appropriate), project PDL, project program, and for some projects suggestions are given for

possible modifications and improvements. All the projects have been tested and are working.

Knowledge of the C programming language will be useful. Also, familiarity with at least one

member of the PIC16F series of microcontrollers will be an advantage. The knowledge of

assembly language programming is not required because all the projects in the book are based

on using the C language.

This book is written for students, for practicing engineers, and for hobbyists interested in

developing microcontroller-based projects using the PIC series of microcontrollers. Attempt

has been made to include as many projects as possible, limited only by the size of the book.

Chapter 1 presents the basic features of microcontrollers.

Chapter 2 provides a short tutorial on the C language and then examines the features of the

highly popular mikroC Pro for PIC programming language and compiler used in projects in

this book.

xvii

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 is about the MPLB X IDE and the XC8 programming language and compiler. Both

the mikroC Pro and the XC8 program listings are given for most projects in the book. The

reader should be able to convert easily from one language to the other.

Chapter 4 describes the commonly used program development tools, such as the PDL and

flowcharts. Examples are given for both tools.

Chapter 5 gives simple projects using the PIC18F45K22 microcontroller. In this chapter, the

projects range from simple LEDs, 7-segment LED displays, LCD displays, sound projects, and

so on.

Chapter 6 provides intermediate level projects. The projects in this chapter range from using

the interrupts, using a keypad, generating waveforms in real time, serial communications, GPS

data decoding, various bus systems, and so on.

Chapter 7 provides more advanced projects. Some of the projects covered in this chapter are

using the Bluetooth communication, RFid, real-time clock, using graphics LCDs, SD cards,

Ethernet-based projects, using the CAN bus, multitasking in microcontroller systems, stepping

motors, and DC motors. Although the projects on motors are not advanced, they are given in

this chapter for completeness.

Dogan Ibrahim

London, 2014

xviii Preface

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

The following material is reproduced in this book with the kind permission of the respective

copyright holders and may not be reprinted, or reproduced in any way, without their prior

consent.

Figures 3.1 and 3.12 are taken from Microchip Technology Inc. Data Sheet PIC18(L)F2X/

4XK22 (DS41412F) and Microchip technology web site www.microchip.com.

Figure 6.48 is taken from the web site of Parallax Inc.

Figures 6.8, 7.13, 7.28, 7.30, 7.63 and 7.113 are taken from the web site of mikroElektronica.

PIC�, PICSTART�, and MPLAB� are all trademarks of Microchip Technology Inc.

xix

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Microcomputer Systems
Chapter Outline
1.1 Introduction 1

1.2 Microcontroller Systems 1

1.3 Summary 6

1.4 Exercises 6

1.1 Introduction

The term microcomputer is used to describe a system that includes a minimum of a

microprocessor, program memory, data memory, and inputeoutput (I/O) module. Some

microcomputer systems include additional components such as timers, counters, interrupt

processing modules, analog-to-digital converters, serial communication modules, USB

modules, and so on. Thus, a microcomputer system can be anything from a large system

having hard disks, keyboard, monitor, floppy disks, and printers to a single chip embedded

controller.

In this book, we are going to consider only the type of microcomputers that consists of a

single silicon chip. Such microcomputer systems are also called microcontrollers and they

are used in many everyday household goods such as personal computers, digital watches,

microwave ovens, digital TV sets, TV remote control units (CUs), cookers, hi-fi

equipment, CD players, personal computers, fridges, etc.

There are a large number of different types of microcontrollers available in the market,

developed and manufactured by many companies. In this book, we shall be looking at the

programming and system design using the highly popular 8-bit programmable interface

controller (PIC) series of microcontrollers manufactured by Microchip Technology Inc

(www.microchip.com).

1.2 Microcontroller Systems

A microcontroller is a single chip computer. Micro suggests that the device is small, and

controller suggests that the device can be used in control applications. Another term used

for microcontrollers is embedded controller, since most of the microcontrollers in

industrial, commercial, and domestic applications are built into (or embedded in) the

devices they control.

PIC Microcontroller Projects in C. http://dx.doi.org/10.1016/B978-0-08-099924-1.00001-0

Copyright © 2014 Elsevier Ltd. All rights reserved. 1

www.allitebooks.com

http://www.microchip.com
http://dx.doi.org/10.1016/B978-0-08-099924-1.00001-0
http://www.allitebooks.org

A microprocessor differs from a microcontroller in many ways. The main difference is

that a microprocessor requires several other external components for its operation as a

computer, such as program memory and data memory, I/O module, and external clock

module. A microcontroller on the other hand has all these support chips incorporated

inside the same chip. In addition, because of the multiple chip concept, microprocessor-

based systems consume considerably more power than the microcontroller-based systems.

Another advantage of microcontroller-based systems is that their overall cost is much less

than microprocessor-based systems.

All microcontrollers (and microprocessors) operate on a set of instructions (or the user

program) stored in their program memories. A microcontroller fetches these instructions

from its program memory one by one, decodes these instructions, and then carries out the

required operations.

Microcontrollers have traditionally been programmed using the assembly language of the

target device. Although the assembly language is fast, it has several disadvantages. An

assembly program consists of mnemonics and in general it is difficult to learn and

maintain a program written using the assembly language. Also, microcontrollers

manufactured by different firms have different assembly languages and the user is required

to learn a new language every time a new microcontroller is to be used.

Microcontrollers can also be programmed using high-level languages, such as BASIC,

PASCAL, and C. High-level languages have the advantage that it is much easier to learn a

high-level language than an assembler language. Also, very large and complex programs

can easily be developed using a high-level language. In this book, we shall be learning the

programming of high-end 8-bit PIC microcontrollers using two popular C programming

languages: the mikroC Pro for PIC, developed by mikroElektronika (www.mikroe.com),

and the MPLAB X IDE, developed by Microchip (www.microchip.com).

In general, a single chip is all that is required to have a running microcontroller-based

computer system. In practical applications, additional components may be required to

allow a microcomputer to interface to its environment. With the advent of the PIC family

of microcontrollers, the development time of an electronic project has reduced to several

months, weeks, or even hours.

Basically, a microcontroller (or a microprocessor) executes a user program that is loaded

in its program memory. Under the control of this program, data are received from external

devices (inputs), manipulated, and then sent to external devices (outputs).

For example, in a microcontroller-based fluid level control system, the aim is to control

the level of the fluid at a given point. Here, the fluid level is read by the microcomputer

via a level sensor device. The program running inside the microcontroller then actuates the

pump and the valve and attempts to control the fluid level at the required value. If the fluid

2 Chapter 1

www.allitebooks.com

http://www.mikroe.com
http://www.microchip.com
http://www.allitebooks.org

level is low, the microcomputer operates the pump to draw more fluid from the reservoir.

In practice, the pump is controlled continuously in order to keep the fluid at the required

level. Figure 1.1 shows the block diagram of our simple fluid level control system.

The system shown in Figure 1.1 is a very simplified fluid level control system. In a more

sophisticated system we may have a keypad to set the required fluid level, and an LCD to

display the current fluid level in the tank. Figure 1.2 shows the block diagram of this more

sophisticated fluid level control system.

We can make our design even more sophisticated (see Figure 1.3) by adding an audible

alarm to inform us if the fluid level is outside the required point. Also, the actual level at

any time can be sent to a PC every second for archiving and further processing. For

example, a graph of the daily fluid level changes can be plotted on the PC. Wireless

interface (e.g. Bluetooth or RF) or internet connectivity can be added to the system so that

the fluid level can be monitored or controlled remotely. Figure 1.4 shows the block

diagram with a Bluetooth module attached to the microcontroller.

As you can see, because the microcontrollers are programmable, it is very easy to make

the final system as simple or as complicated as we like.

Another example of a microcontroller-based system is the speed control of a direct current

(DC) motor. Figure 1.5 shows the block diagram of such a system. Here, a speed sensor

device reads current speed of the motor and this is compared with the desired speed

Figure 1.1: Microcontroller-Based Fluid Level Control System.

Microcomputer Systems 3

www.allitebooks.com

http://www.allitebooks.org

(which is assumed to be analog). The error signal between the desired and the actual speed

is converted into digital and fed to a microcontroller. A control algorithm running on the

microcontroller generates control signals that are converted into analog form and are fed

to a power amplifier. The output of the power amplifier drives the motor to achieve the

desired speed.

Depending upon the nature of the signals the block diagram given in Figure 1.5 can take

different shapes. For example, if the output of the speed sensor is digital (e.g. optical

encoder) and the set speed is also digital, then there is no need to use the A/D converter at

the input of the microcontroller. Also, the D/A converter can be eliminated if the power

amplifier can be driven by digital signals.

A microcontroller is a very powerful tool that allows a designer to create sophisticated I/O

data manipulation under program control. Microcontrollers are classified by the number of

bits they process. The 8-bit devices are the most popular ones and are currently used in

most low-cost low-speed microcontroller-based applications. The 16- and 32-bit

microcontrollers are much more powerful, but usually more expensive and their use may

not be justified in many small to medium-size general purpose applications. In this book,

we will be using 8-bit PIC18F series of microcontrollers.

Figure 1.2: Fluid Level Control System with a Keypad and LCD.

4 Chapter 1

www.allitebooks.com

http://www.allitebooks.org

Figure 1.3: More Sophisticated Fluid Level Controller.

Figure 1.4: Using Bluetooth for Remote Monitoring and Control.

Microcomputer Systems 5

www.allitebooks.com

http://www.allitebooks.org

The simplest microcontroller architecture consists of a microprocessor, memory, and I/O.

The microprocessor consists of a central processing unit (CPU) and the CU. The CPU is

the brain of the microcontroller and this is where all the arithmetic and logic operations

are performed. The CU is where the instructions are decoded and this unit controls the

internal operations of the microcontroller and sends out control signals to other parts of

the microcontroller to carry out the required operations.

Memory is an important part of a microcontroller system. Depending upon their usage, we

can in general classify memories into two groups: program memory, and data memory.

Program memory stores the user programs and this memory is usually nonvolatile, i.e.

data is permanent and is not lost after the removal of power. Data memory on the other

hand stores the temporary data used in a program and this memory is usually volatile, i.e.

data is lost after the removal of power.

1.3 Summary

Chapter 1 has given an introduction to the microprocessor and microcontroller systems.

The basic building blocks of microcontrollers have been described briefly. The differences

between the microprocessors and microcontrollers have been explained.

Example block diagrams of a microcontroller-based fluid level control system and a DC

motor control system are given.

1.4 Exercises

1. What is a microcontroller? What is a microprocessor? Explain the main differences

between a microprocessor and a microcontroller.

2. Give some example applications of microcontrollers around you.

3. Where would you use an EPROM memory?

Figure 1.5: DC Motor Control System.

6 Chapter 1

4. Where would you use a RAM memory?

5. Explain what type of memories are usually used in microcontrollers.

6. What is an I/O port?

7. What is an analog-to-digital converter? Give an example use for this converter.

8. Explain why a watchdog timer could be useful in a real-time system.

9. Why is the current sinking/sourcing important in the specification of an output port

pin?

10. It is required to control the temperature in an oven using a microcontroller. Assuming

that we have available an analog temperature sensor, an analog heater, and a fan, draw

a block diagram to show how the system may be configured.

11. Repeat Exercise 10 by assuming that the temperature sensor gives digital output.

12. Repeat Exercise 10 by assuming that the heater can be controlled digitally.

13. It is required to monitor the temperature of an oven remotely and to display the tem-

perature on a PC screen. Assuming that we have available a digital temperature sensor,

and a Bluetooth transmitterereceiver module, draw a block diagram to show how the

system may be configured.

Microcomputer Systems 7

CHAPTER 2

mikroC Pro for PIC
Programming Language

Chapter Outline
2.1 Structure of a mikroC Pro for PIC Program 10

2.2 Arrays 12

2.3 Pointers 13

2.4 Structures 14

2.5 Operators in C 15

2.6 Modifying the Flow of Control 15
If Statement 15

for Statement 17

while Statement 18

do Statement 19

goto Statement 19

2.7 mikroC Pro for PIC Functions 20

2.8 mikroC Pro for PIC Library Functions 20

2.9 Summary 20

2.10 Exercises 22

Some of the popular C compilers used in the development of commercial, industrial, and

educational programmable interface controller (PIC) 18 microcontroller applications are

• mikroC Pro for PIC C compiler

• PICC18 C compiler

• MPLAB C18 C compiler

• MPLAB XC8 C Compiler

• CCS C compiler

mikroC Pro for PIC C compiler has been developed by MikroElektronika (web site:

www.microe.com) and is one of the easy-to-learn compilers with rich resources, such as a

large number of library functions and an integrated development environment with built-in

simulator, and an in-circuit debugger (e.g. mikroICD). A demo version of the compiler

with a 2 K program limit is available from MikroElektronika.

PICC18 C compiler is another popular C compiler, developed by Hi-Tech Software (web

site: www.htsoft.com). This compiler has two versions: the standard compiler and the

professional version. A powerful simulator and an integrated development environment

PIC Microcontroller Projects in C. http://dx.doi.org/10.1016/B978-0-08-099924-1.00002-2

Copyright © 2014 Elsevier Ltd. All rights reserved. 9

http://www.microe.com
http://www.htsoft.com
http://dx.doi.org/10.1016/B978-0-08-099924-1.00002-2

(Hi-Tide) is provided by the company. PICC18 is supported by the PROTEUS simulator

(www.labcenter.co.uk) that can be used to simulate PIC microcontroller-based systems.

MPLAB C18 C compiler is a product of Microchip Inc. (web site: www.microchip.com).

A limited-period demo version and a limited functionality version with no time limit of

C18 are available from the Microchip web site. C18 includes a simulator and supports

hardware and software development tools.

MPLAB XC8 C compiler is the latest C compiler from Microchip Inc. that supports all their

8-bit family of microcontrollers. The compiler is available for download free of charge.

CCS C compiler has been developed by Custom Computer Systems Inc. (web site: www.

ccsinfo.com). The company provides a limited-period demo version of their compiler. CCS

compiler provides a large number of built-in functions and supports an in-circuit debugger.

In this book, we shall be using the two popular C languages: mikroC Pro for PIC and

MPLAB XC8. The details of mikroC Pro for PIC are given in this chapter. MPLAB XC8

is covered in detail in the next chapter.

2.1 Structure of a mikroC Pro for PIC Program

Figure 2.1 shows the simplest structure of a mikroC Pro for PIC program. This program

flashes a light-emitting diode (LED) connected to port RB0 (bit 0 of PORTB) of a PIC

/**

LED FLASHING PROGRAM

This program flashes an LED connected to port pin RB0 of PORTB with one
second intervals.

Programmer : D. Ibrahim
File : LED.C
Date : July, 2013
Micro : PIC18F45K22

**/

void main()
{

for(;;) // Endless loop
{

ANSELB = 0; // Configure PORTB digital
TRISB = 0; // Configure PORTB as output
PORTB.0 = 0; // RB0 = 0
Delay_Ms(1000); // Wait 1 s
PORTB.0 = 1; // RB0 = 1
Delay_Ms(1000); // Wait 1 s

} // End of loop
}

Figure 2.1: Structure of a Simple mikroC Pro for PIC Program.

10 Chapter 2

http://www.labcenter.co.uk
http://www.microchip.com
http://www.ccsinfo.com
http://www.ccsinfo.com

microcontroller with 1 s intervals. Do not worry if you do not understand the operation of

the program at this stage as all will be clear as we progress through this chapter. Some of

the programming statements used in Figure 2.1 are described below in detail.

Comments are used by programmers to clarify the operation of the program or a

programming statement. Two types of comments can be used in mikroC Pro for PIC

programs: long comments extending several lines and short comments occupying only a

single line. As shown in Figure 2.1, long comments start with characters “/*” and

terminate with characters “*/”. Similarly, short comments start with characters “//” and

there is no need to terminate short comments.

In general, C language is case sensitive and variables with lower case names are different

from those with upper case names. Currently, mikroC Pro for PIC variables are not case

sensitive. The only exception is that identifiers main and interrupt must be written in

lower case in mikroC Pro for PIC. In this book, we shall be assuming that the variables

are case sensitive for compatibility with other C compilers and variables with same names

but different cases shall not be used.

In C language, variable names can begin with an alphabetical character or with the

underscore character. In essence, variable names can be any of the characters aez and AeZ,

the digits 0e9, and the underscore character “_”. Each variable name should be unique

within the first 31 characters of its name. Variable names can contain upper case and lower

case characters and numeric characters can be used inside a variable name. Some names are

reserved for the compiler itself and they cannot be used as variable names in our programs.

mikroC Pro for PIC language supports the variable types shown in Table 2.1.

Table 2.1: mikroC Pro for PIC Variable Types

Type Size (Bits) Range

unsigned char 8 0 to 255
unsigned short int 8 0 to 255

unsigned int 16 0 to 65535
unsigned long int 32 0 to 4294967295

signed char 8 �128 to 127
signed short int 8 �128 to 127

signed int 16 �32768 to 32767
signed long int 32 �2147483648 to 2147483647

float 32 �1.17549435082E-38 to
�6.80564774407E38

double 32 �1.17549435082E-38 to
�6.80564774407E38

long double 32 �1.17549435082E-38 to
�6.80564774407E38

mikroC Pro for PIC Programming Language 11

Constants represent fixed values (numeric or character) in programs that cannot be

changed. Constants are stored in the flash program memory of the PIC microcontroller;

thus, the valuable and limited random-access memory (RAM) is not wasted.

2.2 Arrays

An array is declared by specifying its type, name, and the number of elements it will

store. For example,

unsigned int Total[5];

Creates an array of type unsigned int, with name Total, and having five elements. The first

element of an array is indexed with 0. Thus, in the above example, Total[0] refers to the

first element of this. The array Total is stored in memory in five consecutive locations as

follows:

Total[0]
Total[1]
Total[2]
Total[3]
Total[4]

Data can be stored in the array by specifying the array name and index. For example, to

store 25 in the second element of the array, we have to write:

Total[1] = 25;

Similarly, the contents of an array can be read by specifying the array name and its index.

For example, to copy the third array element to a variable called temp we have to write:

Temp = Total[2];

The contents of an array can be initialized during its declaration. An example is given

below where array months has 12 elements and months[0]¼ 31, months[1]¼ 28, and so

on.

unsigned char months[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

The above array can also be declared without specifying the size of the array:

unsigned char months[] = {31,28,31,30,31,30,31,31,30,31,30,31};

Character arrays can be declared similarly. In the following example, a character array

named Hex_Letters is declared with six elements:

unsigned char Hex_Letters[] = {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’};

12 Chapter 2

Strings are character arrays with a null terminator. Strings can either be declared by

enclosing the string in double quotes, or each character of the array can be specified

within single quotes, and then terminated with a null character:

unsigned char Mystring[] = “COMP”;

And

unsigned char Mystring[] = {‘C’, ‘O’, ‘M’, ‘P’, ‘\0’};

In C programming language, we can also declare arrays with multiple dimensions. In the

following example, a two-dimensional array named P is created having three rows and

four columns. Altogether, the array has 12 elements. The first element of the array is P[0]

[0], and the last element is P[2][3]. The structure of this array is shown below:

P[0][0] P[0][1] P[0][2] P[0][3]
P[1][0] P[1][1] P[1][2] P[1][3]
P[2][0] P[2][1] P[2][2] P[2][3]

2.3 Pointers

Pointers are an important part of the C language and they hold the memory addresses of

variables. Pointers are declared same as any other variables, but with the character (“*”) in

front of the variable name. In general, pointers can be created to point to (or hold the

addresses of) character variables, integer variables, long variables, floating point variables,

or functions.

In the following example, an unsigned character pointer named pnt is declared:

unsigned char *pnt;

When a new pointer is created, its content is initially unspecified and it does not hold the

address of any variable. We can assign the address of a variable to a pointer using the

(“&”) character:

pnt = &Count;

Now pnt holds the address of variable Count. Variable Count can be set to a value by

using the character (“*”) in front of its pointer. For example, Count can be set to 10 using

its pointer:

*pnt = 10; //Count = 10

Which is same as

Count = 10; //Count = 10

mikroC Pro for PIC Programming Language 13

Or, the value of Count can be copied to variable Cnt using its pointer:

Cnt = *pnt; //Cnt = Count

2.4 Structures

A structure is created by using the keyword struct, followed by a structure name, and a

list of member declarations. Optionally, variables of the same type as the structure can be

declared at the end of the structure.

The following example declares a structure named Person:

struct Person
{

unsigned char name[20];
unsigned char surname[20];
unsigned char nationality[20];
unsigned char age;

}

Declaring a structure does not occupy any space in memory, but the compiler creates a

template describing the names and types of the data objects or member elements that

will eventually be stored within such a structure variable. It is only when variables of

the same type as the structure are created that these variables occupy space in memory.

For example, two variables Me and You of type Person can be created by the

statement:

struct Person Me, You;

Variables of type Person can also be created during the declaration of the structure as

shown below:

struct Person
{

unsigned char name[20];
unsigned char surname[20];
unsigned char nationality[20];
unsigned char age;

} Me, You;

We can assign values to members of a structure by specifying the name of the structure,

followed by a dot (“.”), and the name of the member. In the following example, the age of

structure variable Me is set to 25, and variable M is assigned to the value of age in

structure variable You:

Me.age = 25;
M = You.age;

14 Chapter 2

Structure members can be initialized during the declaration of the structure. In the

following example, the radius and height of structure Cylinder are initialized to 1.2 and

2.5, respectively:

struct Cylinder
{

float radius;
float height;

} MyCylinder = {1.2, 2.5};

2.5 Operators in C

Operators are applied to variables and other objects in expressions and they cause some

conditions or some computations to occur.

mikroC Pro for PIC language supports the following operators:

• Arithmetic operators

• Logical operators

• Bitwise operators

• Conditional operators

• Assignment operators

• Relational operators

• Preprocessor operators

2.6 Modifying the Flow of Control

Statements are normally executed sequentially from the beginning to the end of a program.

We can use control statements to modify the normal sequential flow of control in a C

program. The following control statements are available in mikroC Pro for PIC programs:

• Selection statements

• Unconditional modification of flow

• Iteration statements

There are two selection statements: If and switch.

If Statement

The general format of the if statement is

if(expression)
Statement1;

else
Statement2;

mikroC Pro for PIC Programming Language 15

or,

if(expression)Statement1; else Statement2;

In the following example, if the value of x is greater than MAX then variable P is

incremented by 1, otherwise it is decremented by 1:

if(x > MAX)
P++;

else
P��;

We can have more than one statement by enclosing the statements within curly brackets.

For example,

if(x > MAX)
{

P++;
Cnt = P;
Sum = Sum + Cnt;

}
else

P��;

In the above example, if x is greater than MAX then the three statements within the curly

brackets are executed, otherwise the statement P�� is executed.

Another example using the if statement is given below:

if(x > 0 && x < 10)
{

Total + = Sum;
Sum++;

}
else
{

Total = 0;
Sum = 0;

}

The switch statement is used when there are a number of conditions and different

operations are performed when a condition is true. The syntax of the switch statement is

switch (condition)
{
case condition1:
Statements;
break;

case condition2:
Statements;

16 Chapter 2

break;
.......

.......

case condition:
Statements;
break;

default:
Statements;

}

In mikroC Pro for PIC there are four ways that iteration can be performed and we will

look at each one with examples:

• Using for statement

• Using while statement

• Using do statement

• Using goto statement

for Statement

The syntax of the for statement is

for(initial expression; condition expression; increment expression)
{

Statements;
}

The following example shows how a loop can be set up to execute 10 times. In this

example, variable i starts from 0 and increments by 1 at the end of each iteration. The

loop terminates when i¼ 10, in which case the condition i< 10 becomes false. On exit

from the loop, the value of i is 10:

for(i = 0; i < 10; i++)
{

statements;
}

The parameters of a for loop are all optional and can be omitted. If the condition

expression is left out, it is assumed to be true. In the following example, an endless loop

is formed where the condition expression is always true and the value of i starts with

0 and is incremented after each iteration:

/* Endless loop with incrementing i */
for(i = 0; ; i++)
{

Statements;
}

mikroC Pro for PIC Programming Language 17

Another example of an endless loop is given below where all the parameters are omitted:

/* Example of endless loop */
for(; ;)
{

Statements;
}

while Statement

This is another statement that can be used to create iteration in programs. The syntax of

the while statement is

while (condition)
{

Statements;
}

The following code shows how to set up a loop to execute 10 times using the while

statement:

/* A loop that executes 10 times */
k = 0;
while (k < 10)
{

Statements;
k++;

}

At the beginning of the code, variable k is 0. Since k is less than 10, the while loop starts.

Inside the loop, the value of k is incremented by 1 after each iteration. The loop repeats as

long as k< 10 and is terminated when k¼ 10. At the end of the loop, the value of k is 10.

Notice that an endless loop will be formed if k is not incremented inside the loop:

/* An endless loop */
k = 0;
while (k < 10)
{

Statements;
}

An endless loop can also be formed by setting the condition to be always true:

/* An endless loop */
while (k = k)
{

Statements;
}

18 Chapter 2

do Statement

The do statement is similar to the while statement but here the loop executes until the

condition becomes false, or the loop executes as long as the condition is true. The

condition is tested at the end of the loop. The syntax of the do statement is

do
{

Statements;
} while (condition);

The following code shows how to set up a loop to execute 10 times using the do

statement:

/* Execute 10 times */
k = 0;
do
{

Statements;
k++;

} while (k < 10);

An endless loop will be formed if the condition is not modified inside the loop as shown

in the following example. Here k is always less than 10:

/* An endless loop */
k = 0;
do
{

Statements;
} while (k < 10);

An endless loop can also be created if the condition is set to be true all the time.

goto Statement

Although not recommended, the goto statement can be used together with the if statement

to create iterations in a program. The following example shows how to set up a loop to

execute 10 times using the goto and if statements:

/* Execute 10 times */
k = 0;

Loop:

Statements;
k++;
if(k < 10)goto Loop;

mikroC Pro for PIC Programming Language 19

2.7 mikroC Pro for PIC Functions

An example function definition is shown below. This function, named Mult, receives two

integer arguments a and b and returns their product. Notice that using brackets in a return

statement are optional:

int Mult(int a, int b)
{

return (a*b);
}

When a function is called, it generally expects to be given the number of arguments

expressed in the function’s argument list. For example, the above function can be called as

z = Mult(x,y);

Where variable z has the data type int. In the above example, when the function is called,

variable x is copied to a, and variable y is copied to b on entry to function Mult.

Some functions do not return any data and the data type of such functions must be

declared as void. An example is given below:

void LED(unsigned char D)
{

PORTB = D;
}

void functions can be called without any assignment statements, but the brackets must be

used to tell the compiler that a function call is made.

2.8 mikroC Pro for PIC Library Functions

mikroC Pro for PIC provides a large set of library functions that can be used in our

programs. mikroC Pro for PIC user manual gives detailed descriptions of each library

function with examples. Table 2.2 gives a list of the mikroC Pro for PIC library functions,

organized in functional order.

2.9 Summary

This chapter presented an introduction to the mikroC Pro for PIC language. A C program

may contain a number of functions and variables and a main program. The beginning of

the main program is indicated by the statement void main().

A variable stores a value used during the computation. All variables in C must be declared

before they are used. A variable can be an 8-bit character, a 16-bit integer, a 32-bit long,

20 Chapter 2

or a floating point number. Constants are stored in the flash program memory of PIC

microcontrollers and thus using them saves valuable and limited RAM.

Various flow control and iteration statements such as if, switch, while, do, break, and so

on have been described in the chapter with examples.

Pointers are used to store the addresses of variables. As we shall see in the next chapter,

pointers can be used to pass information back and forth between a function and its calling

point. For example, pointers can be used to pass variables between a main program and a

function.

Table 2.2: mikroC Pro for PIC Library Functions

Library Description

ADC Analog-to-digital conversion functions
CAN CAN bus functions

CANSPI SPI-based CAN bus functions
Compact flash Compact flash memory functions

EEPROM EEPROM memory read/write functions
Ethernet Ethernet functions

SPI ethernet SPI-based ethernet functions
Flash memory Flash memory functions
Graphics LCD Standard graphics LCD functions

T6963C graphics LCD T6963-based graphics LCD functions
I2C I2C bus functions

Keypad Keypad functions
LCD Standard LCD functions

Manchester code Manchester code functions
Multimedia Multimedia functions
One Wire One Wire functions

PS/2 PS/2 functions
PWM PWM functions
RS-485 RS-485 communication functions
Sound Sound functions
SPI SPI bus functions

USART USART serial communication functions
Util Utilities functions

SPI graphics LCD SPI-based graphics LCD functions
Port expander Port expander functions

SPI LCD SPI-based LCD functions
ANSI C Ctype C Ctype functions
ANSI C Math C Math functions
ANSI C Stdlib C Stdlib functions
ANSI C String C String functions
Conversion Conversion functions
Trigonometry Trigonometry functions

Time Time functions

mikroC Pro for PIC Programming Language 21

Library functions simplify programmers’ tasks by providing ready and tested routines that

can be called and used in our programs. Examples are also given on how to use various

library functions in our main programs.

2.10 Exercises

1. Write a C program to set bits 0 and 7 of PORTC to logic 1.

2. Write a C program to count down continuously and send the count to PORTB.

3. Write a C program to multiply each element of a 10 element array with number 2.

4. It is required to write a C program to add two matrices P and Q. Assume that the

dimension of each matrix is 3� 3 and store the result in another matrix called W.

5. What is meant by program repetition? Describe the operation of the while, do-while,

and for loops in C.

6. What is an array? Write example statements to define the following arrays:

a. An array of 10 integers.

b. An array of 30 floats.

c. A two-dimensional array having 6 rows and 10 columns.

7. How many times do each of the following loops iterate and what is the final value of

the variable j in each case?

a. for(j = 0; j < 5; j++)

b. for(j = 1; j < 10; j++)

c. for(j = 0; j <= 10; j++)

d. for(j = 0; j <= 10; j += 2)

e. for(j = 10; j > 0; j �= 2)

8. Write a program to calculate the average value of the numbers stored in an array.

Assume that the array is called M and it has 20 elements.

9. Derive equivalent if-else statements for the following tests:

a. (a > b) ? 0 : 1

b. (x < y) ? (a > b) : (c > d)

10. What can you say about the following for loop:

Cnt = 0;

for(;;)

{

Cnt++;

}

22 Chapter 2

11. Write a function to calculate the circumference of a rectangle. The function should

receive the two sides of the rectangle as floating point numbers and then return the

circumference as a floating point number.

12. Write a function to convert inches to centimeters. The function should receive inches

as a floating point number and then calculate the equivalent centimeters.

13. An LED is connected to port pin RB7 of a PIC18F45K22 microcontroller. Write a

program to flash the LED such that the ON time is 5 s and the OFF time is 3 s.

14. Write a function to perform the following operations on two-dimensional matrices:

a. Add matrices

b. Subtract matrices

c. Multiply matrices

mikroC Pro for PIC Programming Language 23

CHAPTER 3

MPLAB X IDE and MPLAB XC8 C
Programming Language

Chapter Outline
3.1 The PICDEM PIC18 Explorer Development Board 26

3.1.1 Module Connections on the Explorer Board 28

3.1.2 Using the PICkit 3 to Program/Debug 29

3.2 MPLAB X IDE 29

3.3 MPLAB XC8 Compiler 29
3.3.1 Programming Other Boards Using the MPLAB X 39

3.3.2 Features of the XC8 Language 42

Program Template 43

Variables Types 44

Constants 44

Persistent Qualifier 45

Accessing Individual I/O Pins 45

Accessing Individual Bits of a Variable 45

Specifying Configuration Bits 45

Assembly Language Instructions in C Programs 45

Interrupt Service Routines 46

Program Startup 46

MPLAB XC8 Software Library Functions 46

MPLAB XC8 Peripheral Libraries 49

3.4 Summary 50

3.5 Exercises 50

In this chapter, we shall be looking at details of the other popular PIC C programming

language/compiler, the MPLAB XC8, and the MPLAB X IDE (Integrated Development

Environment), both developed by Microchip Inc.

This chapter is organized as a tutorial so that the user can quickly become familiar and

start using the compiler and the IDE. The popular PICDEM PIC18 Explorer Development

Board is used in the examples given in this chapter.

Before going into the details of the MPLAB XC8 programming language and the MPLAB

X IDE, it is worthwhile to look at the features of the PICDEM Explorer board.

It is recommended that if you are not familiar with programming using the C language,

then you should read Chapter 2 before continuing with this chapter.

PIC Microcontroller Projects in C. http://dx.doi.org/10.1016/B978-0-08-099924-1.00003-4

Copyright © 2014 Elsevier Ltd. All rights reserved. 25

http://dx.doi.org/10.1016/B978-0-08-099924-1.00003-4

3.1 The PICDEM PIC18 Explorer Development Board

The PICDEM PIC18 Explorer development board (called the Explorer board from now

on) is a low-cost development board for PIC18 family of microcontrollers. The board is

fitted with a PIC18F8722-type microcontroller.

Figure 3.1 shows the Explorer board where each feature is indicated with a number. The

board provides the following features:

1. PIC18F8722 microcontroller,

2. PIM header to connect an alternate PIC18 microcontroller,

3. In-circuit Debugger connector,

4. PICkit 3 programmer/debugger connector,

Figure 3.1: PICDEM PIC18 Explorer Board.

26 Chapter 3

5. Potentiometer for analog input,

6. Reset switch,

7. RS232-universal serial bus (USB) connector,

8. PIC18LF2450 microcontroller (for converting an RS232 to a USB),

9. Crystal for the PIC18LF2450 (12 MHz),

10. Nine-pin RS232 connector,

11. Jumper J13 for routing RS232 serial communication to the USB port or the RS232

socket,

12. Jumper J4 for programming the main microcontroller or the PIC18LF2450,

13. Switch S4 for selecting the main microcontroller as either the mounted PIC18F8722

or a PIM module,

14. Power indication light emitting diode (LED),

15. JP1 for disconnecting the eight LEDs,

16. LEDs,

17. A 32,768-kHz crystal (for Timer 1),

18. Push-button switches S1 and S2,

19. MPC9701A analog temperature sensor,

20. 25LC256 electrically erasable programmable read-only memory (EEPROM),

21. Jumper JP2 to enable/disable EEPROM,

22. Jumper JP3 to enable/disable an LCD,

23. Crystal for the main microcontroller (10 MHz),

24. PICtail daughter board connector,

25. I/O expander for the LCD,

26. User prototype area,

27. LCD,

28. Jumper J2 for selecting between 3.3 and 5 V (by default the VDD voltage is þ5 V),

29. Jumper J14 for use with a PIM.

To use the Explorer board with the on-board PIC18F8722 microcontroller, the following

switches and jumpers should be configured:

• Set Switch S4 to PIC to select the on-board microcontroller,

• Enable LEDs by connecting a jumper at JP1,

• Enable the LCD by connecting a jumper at JP3,

• Connect Jumper J4 to MAIN to program the main microcontroller (PIC18F8722).

The Explorer can be programmed by using several hardware tools, such as the PICkit 2/3,

ICD 2/3, and Real In Circuit Emulator (ICE). In this chapter, we shall be seeing how to

program and debug a program using the PICkit 3 and the ICD 3 programmer/debugger

tools.

MPLAB X IDE and MPLAB XC8 C Programming Language 27

www.allitebooks.com

http://www.allitebooks.org

3.1.1 Module Connections on the Explorer Board

The various modules on the Explorer board are connected as follows:

• Eight LEDs are connected to PORTD of the microcontroller (the LEDs can be discon-

nected by removing Jumper JP1).

• The LCD is controlled by port pins RC3, RC4, and RC5.

• Switch S1 is connected to port pin RB0 (active LOW).

• Switch S2 is connected to port pin RA5 (active LOW).

• Switch S3 is connected to the Master Clear (MCLR) reset input.

• Switch S4 is an MCLR select switch.

• The potentiometer is connected to the AN0 input through a resistor, and it can be

adjusted from 0 V to VDD.

• The analog temperature sensor MCP9701A is connected to port pin RA1.

• The RS232-USB port is connected to pins RC6 and RC7.

Figure 3.2: The Simplified Block Diagram of the Explorer Board.

28 Chapter 3

A simplified block diagram showing the module connections on the Explorer board is

shown in Figure 3.2. Note that the various chips on the board are fed with the adjustable

voltage source V_VAR, which is set to þ5 V by default. The board is powered from an

external 9 V DC mains adapter capable of providing up to 1.3 A.

3.1.2 Using the PICkit 3 to Program/Debug

A PICkit 3 programmer/debugger can be attached to the 6-pin connector mounted at the

top-left corner of the Explorer board for programming and debugging user programs.

3.2 MPLAB X IDE

The MPLAB X IDE is the integrated development environment (just like the mikroC Pro

for PIC IDE) that enables the user to create a source file, edit, compile, simulate, debug,

and send the generated code to the target microcontroller with the help of a compatible

programmer/debugger device. The Microchip Inc. web site (http://www.microchip.com/

pagehandler/en-us/family/mplabx/) contains detailed information on the features and the

use of the MPLAB X IDE. In this chapter, we will be looking at the program development

steps using this IDE.

MPLAB X IDE is available at the Microchip Inc. web site (http://www.microchip.com/

pagehandler/en-us/family/mplabx/#downloads), and it must be installed on your PC before

it can be used. At the time of writing this book, the latest version of the MPLAB X IDE

was v1.85.

3.3 MPLAB XC8 Compiler

The MPLAB XC8 compiler is a powerful C compiler developed for the PIC10/12/16/18

family of microcontrollers (there are also versions for the 24- and 32-bit PIC

microcontrollers). The MPLAB XC8 compiler has three versions: Pro, Standard, and Free.

In this book, we will be using the Free version. The main difference between the different

versions is the level of optimization applied during the compilation.

The XC8 compiler must be installed after installing the MPLAB X IDE. The compiler can

be installed during the last stage of installation of the MPLAB X IDE. Alternatively, it can

be installed from the Microchip Inc. web site (http://www.microchip.com/pagehandler/en_

us/devtools/mplabxc/). At the time of writing this book, the latest version of the compiler

was v1.20.

The XC8 language has many similarities to the mikroC Pro for PIC language. In this

chapter, we will be looking at the steps of developing a simple XC8-based project. The

similarities and differences between the two languages will also be explained.

MPLAB X IDE and MPLAB XC8 C Programming Language 29

http://www.microchip.com/pagehandler/en-us/family/mplabx/
http://www.microchip.com/pagehandler/en-us/family/mplabx/
http://www.microchip.com/pagehandler/en-us/family/mplabx/#downloads
http://www.microchip.com/pagehandler/en-us/family/mplabx/#downloads
http://www.microchip.com/pagehandler/en_us/devtools/mplabxc/
http://www.microchip.com/pagehandler/en_us/devtools/mplabxc/

Example 3.1dA Simple Project

A simple project is given in this section to show the steps in creating a source file using the
MPLAB X IDE, compiling the file, and downloading the generated hex file to the PIC18F8722
microcontroller on the Explorer board using the PICkit 3.

In this project, we will be using a push-button switch S1 and the LED connected to port pin
RD0. The program will turn the LED on whenever the button is pressed.

Solution 3.1
The steps are given below.

Step 1. Double click the icon to start the MPLAB X IDE. You should see the opening
window as in Figure 3.3.
Step 2. Move the right-hand cursor down and click on icon Create New Project. Select the
default (Category: Microchip Embedded, Projects: Standalone Project) as in Figure 3.4 since we
are creating a new standalone project.
Step 3. Click Next. Select the target microcontroller. Family: Advanced 8-bit MCUs (PIC18),
and Device: PIC18F8722 as in Figure 3.5.
Step 4. Click Next and select Hardware Tools: PICkit 3 as in Figure 3.6.
Step 5. Click Next. Select compiler XC8 as in Figure 3.7.
Step 6. Click Next. Give your project a name. In this example, the project is given the
name BUTTON-LED and is stored in the folder C:\Users\Dogan\MPLABXProjects. Click Set as
main project option as shown in Figure 3.8.
Step 7. Click Finish to create the required project files.

Figure 3.3: Opening Window of MPLAB X IDE.

30 Chapter 3

Step 8. Right click Source Files on the left-hand window and select New/ C Main File.
Name the new source file as NEWMAIN (extension .C) as in Figure 3.9.
Step 9. Click Finish, and you should get an empty template C file as shown in
Figure 3.10.

Figure 3.4: Create a Standalone Project.

Figure 3.5: Select the Target Microcontroller.

MPLAB X IDE and MPLAB XC8 C Programming Language 31

Figure 3.6: Select PICkit 3.

Figure 3.7: Select XC8 Compiler.

32 Chapter 3

Figure 3.8: Give the Project a Name.

Figure 3.9: Create the New Source File.

MPLAB X IDE and MPLAB XC8 C Programming Language 33

Step 10. Modify the file by inserting the following lines for our program. The program turns
on the LED connected to port pin RD0 whenever push-button switch S1 (connected to port
pin RB0) is pressed. See Figure 3.11 for part of the program listing in MPLAB X IDE:

**
* File: NEWMAIN.c
* Author: Dogan
* Date: August, 2013
*
* This program uses the PICDEM PIC18 EXPLORER DEVELOPMENT BOARD.
* The program turns on an LED when a push-button switch is pressed.
*
* The LED is connected to port pin RD0, and the switch is connected to
* port pin RB0 of the microcontroller.
*
***/
#include <xc.h>

// Configuration: Ext reset, Watchdog OFF, HS oscillator
#pragma config MCLRE = ON, WDT = OFF, OSC = HS
//
// Define switch and LED connections
#define S1 PORTBbits.RB0
#define LED PORTDbits.RD0
//
// Define clock frequency
#define _XTAL_FREQ 10000000

//

Figure 3.10: Template C File.

34 Chapter 3

// Start of main program
//
int main()
{
TRISBbits.TRISB0 = 1; // Configure RB0 as input
TRISDbits.TRISD0 = 0; // Configure PORTD as outputs
MEMCONbits.EBDIS = 1; // Enable PORTD I/O functions

for(;;) // Do FOREVER
{
if(S1 == 0)LED = 1; else LED = 0;

}
}

The description of the program is as follows:

• The #include <xc.h> statement at the beginning of the program identifies the mi-
crocontroller in use and calls the appropriate header files to include the processor
specific definitions at the beginning of the program (notice that the mikroC Pro
for the PIC compiler does not require a header file).

• The configuration statement #pragma config MCLRE¼ON, WDT¼OFF, OSC¼HS
defines the processor configuration. Here, master clear (reset) is enabled,
watchdog timer is turned off, and the external high-speed crystal is selected as the
clock source. The file pic18_chipinfo.html in the docs directory of the XC8 compiler
installation (usually the folder: C:\Program Files (x86)\Micro-
chip\xc8\v1.20\docs\pic18_chipinfo.html) contains a list of all the processors and a list
of all possible configuration options for each processor.

• The statement #define S1 PORTBbits.RB0 defines symbol S1 as port pin RB0. Simi-
larly, the statement #define LED PORTDbits.RD0 defines symbol LED as port pin
RD0 of the microcontroller.

• The microcontroller clock frequency is then defined as 10 MHz.

• At the beginning of the main program, port pin RB0 is configured as an input
port. Similarly, RD0 is configured as an output port.

Figure 3.11: The Program Listing.

MPLAB X IDE and MPLAB XC8 C Programming Language 35

• PORTD I/O functions are enabled by setting MEMCON bit EBDIS (see the
PIC18F8722 data sheet).

• The program then enters an infinite loop where switch S1 is checked. Whenever
the switch is pressed (i.e. when S1 becomes 0), the LED is turned on.

Step 11. Compile the program by clicking the Build Main Project button (shown as a hammer).
The program should compile successfully and Loading completedmessage should be displayed.
Step 12. Connect the PICkit 3 programmer/debugger to the Explorer board. Click Make
and Program Device Main Project button to load the program to the target microcontroller
on the Explorer board. You should get the messages Programming and then Programming/
Verify complete when the target microcontroller is programmed.
Step 13. The LED connected to RD0 should now turn on when push-button S1 is pressed
(Figure 3.12).

Example 3.2 Flashing the LEDs

In this simple example, we will write a program to flash all the LEDs on the Explorer board
with a 1-s interval.

Solution 3.2
The required program is called FLASH.C, and its listing is shown in Figure 3.13. Notice in this
program that a 1-s delay is created using the built-in function Delay10KTCYx(n). This func-
tion creates a 10,000*n instruction cycle delay. With a 10-MHz clock the instruction cycle is
10/4¼ 2.5 MHz, which has the period of 0.4 ms. Thus, each unit of Delay10KTCYx

Figure 3.12: Turning the LED on.

36 Chapter 3

corresponds to 0.4 ms� 10,000¼ 4 ms. To generate a 1-s delay, the argument should be
1000/4¼ 250.

Example 3.3dRunning in the Debug Mode

In this section, we will see how to debug the program developed in Example 3.2. The steps
for debugging the program are given below:

• Compile the program for debugging by clicking Build for Debugging Main Project
(Figure 3.14).

/**
 * File: FLASH.c
 * Author: Dogan
 * Date: August, 2013
 *
 * This program uses the PICDEM PIC18 EXPLORER DEVELOPMENT BOARD.
 * The program flashes all the LEDs on the board with 1 s interval
 *
 * The LEDs are connected to PORTD of the microcontroller
 *
 ***/

#include <xc.h>

// Configuration: Ext reset, Watchdog OFF, HS oscillator
#pragma config MCLRE = ON, WDT = OFF, OSC = HS
//
// Define LED connections
#define LEDS PORTD
//
// Define clock frequency
#define _XTAL_FREQ 10000000

//
// Start of main program
//
int main()
{
 TRISD = 0; // Configure PORTD as outputs
 MEMCONbits.EBDIS = 1; // Enable PORTD I/O functions

 for(;;) // Do FOREVER
 {
 LEDS = 0; // LEDs OFF
 Delay10KTCYx(250); // 1 s delay
 LEDS = 0xFF; // LEDs ON
 Delay10KTCYx(250); // 1 s delay
 }
}

Figure 3.13: Flashing all the LEDs.

MPLAB X IDE and MPLAB XC8 C Programming Language 37

• Load the target microcontroller by clicking Program Device for Debugging Main Project
(Figure 3.15).

• Start the debugger by clicking Debug/Discrete Debugger Operation/ Launch Debugger
Main Project (Figure 3.16). You should see the message Target reset displayed.

• Single step through the program by pressing F7. Step over the delay functions by press-
ing F8. As you single step through the program, you should see the LEDs turning on
and off.

You can set breakpoints in the program by clicking the mouse on the numbers at the left-
hand column of the program. Alternatively, breakpoints can be set by clicking Debug/New
Breakpoint.

The program memory, Special Function Register (SFR), configuration bits and EE data can be
observed by clicking Window/ PIC Memory Views and then selecting the required display.
Figure 3.17 shows a list of the SFR.

Figure 3.16: Launch the Debugger.

Figure 3.14: Compile for Debugging.

Figure 3.15: Load the Target Microcontroller.

38 Chapter 3

The program variables, breakpoints, call stack, etc. can be watched by clicking Window -
/Debugging and selecting the required feature.

3.3.1 Programming Other Boards Using the MPLAB X

In some applications, a program may be developed using the MPLAB XC8 compiler, but

the development board we are using may not be a Microchip board. Under these

circumstances, we can compile the program using the MPLAB XC8 and generate the hex

code. An external programming device or a development board with an on-board

programmer can then be used to load the program (hex code) to the target microcontroller.

An example is given here where the program developed in Example 3.2 is loaded to the

microcontroller on the popular EasyPIC V7 development board (www.mikroe.com). This

board includes an ICD 3 compatible socket for programming/debugging using Microchip

programming/debugging hardware tools. In this example, the ICD 3 debugger/programmer

device is used to program the EasyPIC V7. We shall be using the EasyPIC V7

development board together with mikroC Pro for PIC and MPLAB XC8 compilers in the

project sections of this book.

Example 3.4

In this example, we will modify the program in Example 3.2 to flash the PORTD LEDs on the
EasyPIC V7 development board. This board is equipped with a PIC18F45K22 microcontroller
running with an 8-MHz crystal.

Solution 3.4
Create a project as described in Example 3.1. Select the microcontroller device as
PIC18F45K22 and the hardware tool as ICD 3. The required program listing is shown in
Figure 3.18. Note that there are some differences in the code since a different microcontroller
is used here.

Figure 3.17: Displaying the SFR.

MPLAB X IDE and MPLAB XC8 C Programming Language 39

http://www.mikroe.com

Compile the program as described previously. Now, we will transfer the program to the mi-
crocontroller on the EasyPIC V7 board. The steps are given below:

• Connect the USB port of ICD 3 to the PC.

• Connect the ICD 3 plug into the ICD socket on the EasyPIC V7 board.

• Turn on power to the development board.

• Load the program to the target microcontroller by clicking Make and Program Device
Main Project in MPLAB X IDE.

• Enable the PORTD LED on the EasyPIC V7 board by setting switch SW3 PORTD to
ON. You should see the LEDs flashing.

/**
 * File: FLASH.c
 * Author: Dogan
 * Date: August, 2013
 *
 * This program uses the EasyPIC V7 development board.
 * The program flashes all the LEDs on the board with 1 s interval
 *
 * The LEDs are connected to PORTD of the microcontroller
 *
 ***/

#include <xc.h>

// Configuration: Ext reset, Watchdog OFF, HS oscillator
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
//
// Define LED connections
#define LEDS PORTD
//
// Define clock frequency
#define _XTAL_FREQ 8000000

//
// Start of main program
//
int main()
{
 TRISD = 0; // Configure PORTD as outputs

 for(;;) // Do FOREVER
 {
 LEDS = 0; // LEDs OFF
 Delay10KTCYx(250); // 1 s delay
 LEDS = 0xFF; // LEDs ON
 Delay10KTCYx(250); // 1 s delay
 }
}

Figure 3.18: The Program Listing.

40 Chapter 3

If you already have the older MPLAB IDE installed on your computer, then you may need to
select the correct ICD 3 driver before loading the target microcontroller. The steps for this are
as follows:

• Select All Programs/Microchip/MPLAB X IDE/MPLAB driver switcher. You
should see a window as in Figure 3.19.

• Select ICD3 and MPLAB X, and click Apply Changes as in Figure 3.20.

Figure 3.19: Driver Switcher Window.

Figure 3.20: Select the ICD 3 Driver.

MPLAB X IDE and MPLAB XC8 C Programming Language 41

Figure 3.21 shows the ICD 3 debugger/programmer connected to the ICD socket of the
EasyPIC V7 board.

It is also possible to load the generated hex code to a PIC microcontroller using any type of
PIC programming device as long as the device supports the microcontroller in use.

3.3.2 Features of the XC8 Language

In this section, we shall be looking at some features of the XC8 C language. Readers who

are not familiar with the C language should read Chapter 4 before continuing with this

chapter. Differences between the mikroC Pro for PIC and XC8 will be given where

appropriate.

Detailed information about the XC8 language can be obtained from the MPLAB XC8

Compiler User’s Guide, available from the Microchip Inc. web site.

Figure 3.21: Connecting ICD 3 to the EasyPIC V7 Board.

42 Chapter 3

Program Template

When a new XC8 program is created, the compiler generates the template shown in

Figure 3.22. In our programs, we shall be modifying this template and use the one given

in Figure 3.23 instead.

/*
* File: newmain.c
* Author: Dogan Ibrahim
*
* Created on November 6, 2013, 4:21 PM
*/
#include <stdio.h>
#include <stdlib.h>
/*
*
*/
int main(int argc, char** argv) {
return (EXIT_SUCCESS);
}

Figure 3.22: XC8 Program Template Created by the Compiler.

/**
 * File: Filename.c
 * Author: Author name
 * Date: Date program created
 *
 * Write a brief description of the program here, including the type of
 * microcontroller used, I/O connections etc.
 *
 *
 ***/

#include <xc.h>

// Define Configuration fuse settings
#pragma config =
//
// Define clock frequency
#define _XTAL_FREQ

//
// Start of main program
//
int main()
{
 Program body......
}

Figure 3.23: Modified Program Template.

MPLAB X IDE and MPLAB XC8 C Programming Language 43

An XC8 program has the following structure:

Program description
#include <xc.h>
Configuration bits
Oscillator frequency
Global variables
Functions
Main program

A single header <xc.h> must be declared at the beginning of a program to declare all

compiler and device-specific types and SFRs.

Variables Types

XC8 supports the variable types shown in Table 3.1. Notice that variable type char on its

own is same as unsigned char.

In addition, XC8 compiler supports 24- or 32-bit floating point variables, declared using

keywords double and float.

Constants

Constant objects are read only, and they are stored in the program memory of the

microcontroller. Objects that do not change their values in a program should be stored as

constants to save the limited random access memory space.

Table 3.1: Variable Types Supported by XC8

Type Size (Bits)

Bit 1
Unsigned char 8
Signed char 8

Unsigned short 16
Signed short 16
Unsigned int 16
Signed int 16

Unsigned short long 24
Signed short long 24
Unsigned long 32
Signed long 32

Unsigned long long 32
Signed long long 32

44 Chapter 3

Examples of constant declarations are as follows:

const int Max = 10; // constant integer
const int Tbl[] = {0, 2, 4,6, 8}; // constant table
const Tbl[] @ 0x100 = {2, 4, 6, 8}; // constant table

In the last example, the table constants are stored starting from program memory location

0x100.

Persistent Qualifier

The persistent qualifier can be used to indicate that variables should not be cleared by the

runtime startup code. An example is given below:

static persistent int x;

Accessing Individual I/O Pins

An individual I/O pin can be accessed by specifying the port name, followed by the word

bits, then a dot symbol, and the name of the port pin. An example is given below:

PORTBbits.RB0 = 1; // Set RB0 of PORTB to 1

Accessing Individual Bits of a Variable

Individual bits of a variable can be set or reset using the following macro definitions:

#define setbitðvar; bitÞ ððvarÞj ¼ð1 � ðbitÞÞÞ
#define clrbitðvar; bitÞ ððvarÞ ¼ wð1 � ðbitÞÞÞ

The following example sets bit 2 of variable Count:

setbit(Count, 2);

Specifying Configuration Bits

The #pragma config directive should be used to program the configuration bits for a

microcontroller. An example is given below:

#pragma config = MCLR = ON, WDT = OFF

Assembly Language Instructions in C Programs

Assembly language instructions can be inserted into C programs using the asm statement.

An example is given below:

asm(“MOVLW 12”);

MPLAB X IDE and MPLAB XC8 C Programming Language 45

Interrupt Service Routines

An interrupt service routine is recognized by the keyword interrupt, followed by the name

of the routine. An example is given below:

void interrupt Myint(void)
{

Body of the interrupt service routine
}

The interrupt priority can be specified after the keyword interrupt. For example,

void interrupt low_priority Myint(void)
{

Body of the interrupt service routine
}

If variables are to be accessed between the main program and the interrupt service routine,

then it is recommended to declare such variables as volatile.

The statements ei() and di() enable and disable global interrupts, respectively.

Program Startup

The function main() is the first function executed after Reset. However, after Reset

additional code provided by the compiler, known as the startup code, is executed first. The

startup code transfers control to function main(). During the startup code, the global

variables with assigned values are loaded with these values, and global variables with no

assigned values are cleared to zeros. A jump to address 0 (Reset) is included at the end of

function main(). Thus, if a return statement is included after the last instruction in main()

or if the code execution reaches the final terminating bracket at the end of main(), then the

program performs a software reset. It is recommended that a loop should be added to the

end of a program so that the program never performs a soft reset at the end.

MPLAB XC8 Software Library Functions

The MPLAB XC8 compiler includes a large number of software libraries that can be very

useful during program development. In this section, we shall be looking at some of the

commonly used library functions.

__delay_ms, __delay_us _delay, _delay3

Functions __delay_ms and __delay_us can be used to create small millisecond and

microsecond delays in our programs. Before using these functions, the clock frequency

should be declared using the definition _XTAL_FREQ. Assuming the clock frequency is

8 MHz, the following code generates a 20-ms delay:

#define _XTAL_FREQ 8000000
__delay_ms(20);

46 Chapter 3

Function _delay is used to create delays based on the instruction cycle specified in the

argument. In the following example, the delay is 20 instruction cycles:

_delay(20);

Function _delay3 is used to create delays based on 3 times the instruction cycle. In the

following example, the delay is 60 instruction cycles:

_delay3(20);

__EEPROM_DATA

This function stores data in the EEPROM memory. The data must be specified in blocks of

8 bytes. An example is given below:

__EEPROM_DATA(0x01,0x03,0x20,0x3A,0x00,0x78,0xAA,0x02);

ab, labs

Returns the absolute value of an integer (abs) or a long (labs). Header file <stdlib.h> must

be declared at the beginning of the program. An example is given below:

#define <xc.h>
#define <stdlib.h>

signed int x, y;
x = �3; // x = �3
y = abs(x); // y = 3

cos, sin, tan

These functions return the results of trigonometric functions. The argument must be in

radians. The header file <math.h> must be included at the beginning of the program. An

example is given below to calculate the sin of 30� and store the result in variable s:

#include <xc.h>
#include <math.h>

#define conv 3.14159/180.0
float s;
s = sin(30 * conv);

cosh, sinh, tanh

These functions implement the hyperbolic functions cosh, sinh, and tanh. The header file

<math.h> must be included at the beginning of the program. An example is given below

to calculate the sinh of 3.2:

#include <xc.h>
#include <math.h>

float s;
s = sinh(3.2);

MPLAB X IDE and MPLAB XC8 C Programming Language 47

www.allitebooks.com

http://www.allitebooks.org

acos, asin, atan, atan2

These functions return the inverses of trigonometric functions in radians. The header file

<math.h> must be included at the beginning of the program.

itoa

This function converts a number into a string with the specified number base. The header

file <math.h> must be included at the beginning of the program. In the following

example, number 25 is converted into a string in variable bufr with a hexadecimal base:

#include <xc.h>
#include <math.h>

char bufr[5];
itoa(bufr, 25, 16);

log, log10

Function log returns the natural logarithm of a floating point number. The function log10

returns the logarithm to base 10. The header file <math.h> must be included at the

beginning of the program.

memcmp

This function fills n bytes of memory with the specified byte. The header file <string.h>

must be included at the beginning of the program. In the following example, bufr is filled

with 10 character ‘x’ s:

#include <xc.h>
#include <string.h>

char bufr[10];
memset(bufr, ‘x’, 10);

rand

This is a random number generator function. It returns an integer between 0 and 32,767

that changes on each call to the function. The header file <stdlib.h> must be included at

the beginning of the program. The starting point is set using function srand. An example

is given below:

#include <xc.h>
#include <stdlib.h>

srand(5);
j = rand();

48 Chapter 3

round

This function rounds the argument to the nearest integer value in floating point format.

The header file <math.h> must be included at the beginning of the program. An example

is given below:

#include <xc.h>
#include <math.h>

double rnd;
rnd = round(23.456);

SLEEP

Used to put the microcontroller into the sleep mode.

sqrt

This function calculates the square root of a floating point number. The header file

<math.h> must be included at the beginning of the program.

String Functions

Some of the string functions provided are as follows:

Strcat, strncat: string concatenate
Strchr, strrchr: string search
Strcmp, strncmp: string compare
Strcpy, strncpy: string copy
Strlen: string length
Strstr, Strpbrk: occurrence of a character in a string

tolower, toupper, toascii

Convert a lower case character to the upper case character, upper case character to the

lower case character, and to ASCII.

trunc

This function rounds the argument to the nearest integer. The header file <math.h> must

be included at the beginning of the program.

MPLAB XC8 Peripheral Libraries

In addition to the useful functions XC8 compiler offers a number of peripheral libraries

that can be useful while developing complex projects using peripheral devices. Some of

these libraries are for an LCD, SD card, USB port, CAN bus, I2C bus, SPI bus, and so on.

MPLAB X IDE and MPLAB XC8 C Programming Language 49

3.4 Summary

This chapter has described the basic features of the MPLAB XC8 C compiler. Step-by-

step examples are given to show how to use the MPLAB X IDE to create a project and

how to load the executable code to the target microcontroller.

Examples are given to show how to load the target microcontrollers on the two popular

development boards: the PICDEM 18 Explorer board and the EasyPIC V7 development

board.

Finally, a list of some commonly used MPLAB XC8 functions are given. Interested

readers can obtain further details from the MPLAB XC8 Compiler User’s Guide.

3.5 Exercises

1. Write an XC8 C program to set bits 0 and 7 of PORT C to logic 1.

2. Write an XC8 C program to count down continuously and send the count to PORTB.

3. Write a C program to multiply each element of a 10-element array with number 2.

4. Explain how the individual bits of a port can be accessed. Write the code to clear bit 3

of PORTB.

5. Write an XC8 C program to calculate the average value of the numbers stored in an

array. Assume that the array is called M and that it has 20 elements.

6. Write a function to convert inches to centimeters. The function should receive inches

as a floating point number and then calculate the equivalent centimeters.

7. An LED is connected to port pin RB7 of a PIC18F8722 microcontroller. Write a

program to flash the LED such that the ON time is 5 s, and the OFF time is 3 s.

8. Write a program to calculate the trigonometric sine of angles from 0 to 90� in steps of

10�. Store the results in a floating point array.

9. Explain how a compiled XC8 C program can be downloaded to the target microcon-

troller on the PICDEM 18 Explorer board.

10. Explain how a program can be debugged using the PICkit 3 programmer/debugger and

the PICDEM 18 Explorer board.

11. Explain how a compiled XC8 program can be downloaded to the target microcontrol-

ler on the EasyPIC V7 development board.

50 Chapter 3

CHAPTER 4

Microcontroller Program Development
Chapter Outline
4.1 Using the PDL and Flow Charts 52

4.1.1 BEGINeEND 52

4.1.2 Sequencing 52

4.1.3 IFeTHENeELSEeENDIF 52

4.1.4 DOeENDDO 54

4.1.5 REPEATeUNTIL 55

4.1.6 Calling Subprograms 55

4.1.7 Subprogram Structure 56

4.2 Examples 57

4.3 Representing for Loops in Flow Charts 63
4.3.1 Method 1 63

4.3.2 Method 2 64

4.3.3 Method 3 64

4.4 Summary 64

4.5 Exercises 65

Before writing a program, it is always helpful first to think and plan the structure of the

program. Although simple programs can easily be developed by writing the code directly

without any preparation, the development of complex programs almost always become

easier if an algorithm is first derived. Once the algorithm is ready, coding the actual

program is not a difficult task.

A program’s algorithm can be described in a variety of graphical and text-based methods,

such as flow charts, structure charts, data flow diagrams, and program description

languages (PDLs). The problem with graphical techniques is that it can be very time

consuming to draw shapes with text inside them. Also, it is a tedious task to modify an

algorithm described using graphical techniques.

Flow charts can be very useful to describe the flow of control and data in small programs

where there are only a handful of diagrams, usually not extending beyond a page or two.

The PDL can be useful to describe the flow of control and data in small-to-medium size

programs. The main advantage of the PDL description is that it is very easy to modify a

given PDL since it only consists of text.

In this book, we will mainly be using the PDL, but flow charts will also be given where it

is felt to be useful. The next few sections briefly describe the basic building blocks of the

PIC Microcontroller Projects in C. http://dx.doi.org/10.1016/B978-0-08-099924-1.00004-6

Copyright © 2014 Elsevier Ltd. All rights reserved. 51

http://dx.doi.org/10.1016/B978-0-08-099924-1.00004-6

PDL and its equivalent flow charts. It is left to the readers to decide which method to use

during the development of their programs.

4.1 Using the PDL and Flow Charts

PDL is a free-format English-like text that describes the flow of control and data in a

program. PDL is not a programming language. It is a collection of some keywords that

enable a programmer to describe the operation of a program in a stepwise and logical

manner. In this section, we will look at the basic PDL statements and their flow chart

equivalents. The superiority of the PDL over flow charts will become obvious when we

have to develop medium-to-large programs.

4.1.1 BEGINeEND

Every PDL program description should start with a BEGIN and end with an END

statement. The keywords in a PDL description should be highlighted to make the reading

easier. The program statements should be indented and described between the PDL

keywords. An example is shown in Figure 4.1 together with the equivalent flow diagram.

4.1.2 Sequencing

For normal sequencing, the program statements should be written in English text to

describe the operations to be performed. An example is shown in Figure 4.2 together with

the equivalent flow chart.

4.1.3 IFeTHENeELSEeENDIF

IF, THEN, ELSE, and ENDIF should be used to conditionally change the flow of control

in a program. Every IF keyword should be terminated with a THEN, and every IF block

should be terminated with an ENDIF keyword. The use of the ELSE statement is optional

and depends on the application. Figure 4.3 shows an example of using IFeTHENeENDIF,

while Figure 4.4 shows the use of IFeTHENeELSEeENDIF statements in a program and

their equivalent flow charts.

Figure 4.1: BEGINeEND Statement and Equivalent Flow Chart.

52 Chapter 4

Figure 4.2: Sequencing and Equivalent Flow Chart.

Figure 4.3: Using IFeTHENeENDIF Statements.

Figure 4.4: Using IFeTHENeELSEeENDIF Statements.

Microcontroller Program Development 53

4.1.4 DOeENDDO

The DOeENDDO statements should be used when it is required to create iterations, or

conditional or unconditional loops in programs. Every DO statement should be terminated

with an ENDDO. Other keywords, such as FOREVER or WHILE, can be used after the

DO statement to indicate an endless loop or a conditional loop, respectively. Figure 4.5

shows an example of a DOeENDDO loop executed 10 times. Figure 4.6 shows an endless

loop created using the FOREVER statement. The flow chart equivalents are also shown in

the figures.

……..

DO 10 times

Turn ON L

Wait 2 s

Turn OFF L

Wait 2 s

ENDDO

……...

I = 0

Turn ON L

Wait 2 s

Turn OFF L

Wait 2 s

I = I + 1

I < 10

?

N

Y

Figure 4.5: Using DOeENDDO Statements.

……..

DO FOREVER

Turn ON L

Wait 2 s

Turn OFF L

Wait 2 s

ENDDO

……...

Turn ON L

Wait 2 s

Turn OFF L

Wait 2 s

Figure 4.6: Using DOeFOREVER Statements.

54 Chapter 4

4.1.5 REPEATeUNTIL

REPEATeUNTIL is similar to DOeWHILE, but here the statements enclosed by the

REPEATeUNTIL block are executed at least once, while the statements enclosed by

DOeWHILE may not execute at all if the condition is not satisfied just before entering the

DO statement. An example is shown in Figure 4.7, with the equivalent flow chart.

4.1.6 Calling Subprograms

In some applications, a program consists of a main program and a number of

subprograms (or functions). A subprogram activation in PDL should be shown by

adding the CALL statement before the name of the subprogram. In flow charts, a

rectangle with vertical lines at each side should be used to indicate the invocation of a

subprogram. An example call to a subprogram is shown in Figure 4.8 for both a PDL

description and a flow chart. Optionally, the inputeoutput data to a function can be

listed if desired. The following example shows how the temperature can be passed to

function DISPLY as an input:

CALL DISPLY(I: temperature)

In the following function call the temperature is passed to the function called CONV. The

function formats the temperature for display and returns it to the calling program:

CALL CONV(I: temperature, O: formatted temperature)

Figure 4.7: Using REPEATeUNTIL Statements.

Microcontroller Program Development 55

4.1.7 Subprogram Structure

A subprogram should begin and end with the keywords BEGIN/name and END/name,

respectively, where name is the name of the subprogram. In flow chart representation, a

horizontal line should be drawn inside the BEGIN box, and the name of the subprogram

should be written at the lower half of the box. An example subprogram structure is shown

in Figure 4.9 for both a PDL description and a flow chart.

Interrupt service routines can be shown using the same method, but the keyword ISR can

be inserted in front of the function name to identify that the function is actually an

BEGIN/DISPLY
Turn ON L

Wait 2 s

Turn OFF L

Wait 2 s

END/DISPLY Turn ON L

Wait 2 s

Turn OFF L

Wait 2 s

BEGIN

END

DISPLY

DISPLY

Figure 4.9: Subprogram Structure.

……..

Turn ON L

Wait 2 s

Turn OFF L

Wait 2 s

CALL DISPLY

……...

Turn ON L

Wait 2 s

Turn OFF L

Wait 2 s

DISPLY

Figure 4.8: Calling a Subprogram.

56 Chapter 4

interrupt service routine. For example, in Figure 4.9, assuming that function DISPLY is an

interrupt service routine, the function body can be written as

BEGIN/ISR:DISPLY
Turn ON L
Wait 2 s
Turn OFF L
Wait 2 s

END/ISR:DISPLY

4.2 Examples

Some examples are given in this section to show how the PDL and flow charts can be used

in program development.

Example 4.1

It is required to write a program to convert hexadecimal numbers “A” to “F” into the
decimal format. Show the algorithm using a PDL and also draw the flow chart. Assume that
the number to be converted is called HEX_NUM, and the output number is called
DEC_NUM.

Solution 4.1
The required PDL is

BEGIN
IF HEX_NUM = “A” THEN

DEC_NUM = 10
ELSE IF HEX_NUM = “B” THEN

DEC_NUM = 11
ELSE IF HEX_NUM = “C” THEN

DEC_NUM = 12
ELSE IF HEX_NUM = “D” THEN

DEC_NUM = 13
ELSE IF HEX_NUM = “E” THEN

DEC_NUM = 14
ELSE IF HEX_NUM = “F” THEN

DEC_NUM = 15
ENDIF

END

The required flow chart is shown in Figure 4.10. Note that it is much easier to write PDL
statements than it is to draw flow chart shapes and write text inside them.

Microcontroller Program Development 57

BEGIN

HEX_NUM = “A”
?

HEX_NUM = “B”
?

HEX_NUM = “C”
?

HEX_NUM = “D”
?

HEX_NUM = “E”
?

HEX_NUM = “F”
?

END

DEC_NUM = 10

DEC_NUM = 11

DEC_NUM = 12

DEC_NUM = 13

DEC_NUM = 14

DEC_NUM = 15

YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO

Figure 4.10: Flow Chart Solution.

58 Chapter 4

Example 4.2

The PDL of part of a program is given as follows:

J = 0
M = 0
DO WHILE J < 10

DO WHILE M < 20
Flash the LED
Increment M

ENDDO
Increment J

ENDDO

Show how this PDL can be implemented by a flow chart.

Solution 4.2
The required flow chart is shown in Figure 4.11. Here again, note how complicated the flow
chart can be even for a simple nested DO WHILE loop.

BEGIN

J = 0

M = 0

J < 0

?

M < 20

?

Flash the

LED

YES

YES

Increment M

No

No

END

Increment J

Figure 4.11: Flow Chart Solution.

Microcontroller Program Development 59

Example 4.3

It is required to write a program to calculate the sum of integer numbers between 1 and 100.
Show the algorithm using a PDL and also draw the flow chart. Assume that the sum will be
stored in a variable called SUM.

Solution 4.3
The required PDL is

BEGIN
SUM = 0
I = 1
DO 100 TIMES

SUM = SUM + I
Increment I

ENDDO
END

The required flow chart is shown in Figure 4.12.

BEGIN

SUM = 0

I = 1

CNT = 0

SUM = SUM + I

I = I + 1

CNT< 100
?

YES

NO

END

CNT = CNT + 1

Figure 4.12: Flow Chart Solution.

60 Chapter 4

Example 4.4

It is required to write a program to calculate the sum of all the even numbers between 1 and
10 inclusive. Show the algorithm using a PDL and also draw the flow chart. Assume that the
sum will be stored in a variable called SUM.

Solution 4.4
The required PDL is

BEGIN
SUM = 0;
CNT = 1
REPEAT

IF CNT is even number THEN
SUM = SUM + CNT

ENDIF
INCREMENT CNT
UNTIL CNT > 10

END

The required flow chart is shown in Figure 4.13. Note how complicated the flow chart can be
for a very simple problem such as this.

BEGIN

CNT = 1

SUM = 0

CNT even

no

?

SUM = SUM + CNT

CNT = CNT + 1

CNT > 10

?

YES

NO

END

YES

NO

Figure 4.13: Flow Chart Solution.

Microcontroller Program Development 61

Example 4.5

It is required to write a program to turn ON a light emitting diode (LED) when a button is
pressed and to turn it OFF when the button is released. Assuming that initially the LED is to
be OFF, write the PDL statements for this example.

Solution 4.5
The required PDL statements are as follows:

BEGIN
Turn OFF LED
DO FOREVER

IF Button is pressed THEN
Turn ON LED

ELSE
Turn OFF LED

ENDIF
ENDDO

END

Example 4.6

A temperature sensor is connected to the A/D input of a microcontroller. It is required to
write a program to read the temperature every second and display it on a liquid crystal
display (LCD). Use function DISPLAY to format and display the temperature. Show the PDL
statements for this example.

Solution 4.6
The required PDL statements are

BEGIN
Configure the A/D port
DO FOREVER

Read Temperature from A/D port
CALL DISPLAY
Wait 1 s

ENDDO
END
BEGIN/DISPLAY

Format temperature for LCD display
Display temperature on LCD

END/DISPLAY

62 Chapter 4

4.3 Representing for Loops in Flow Charts

Most programs include some form of iteration or looping. One of the easiest ways to

create a loop in a C program is by using the for statement. This section shows how a for

loop can be represented in a flow chart. As shown below, there are several methods of

representing a for loop in a flow chart.

Suppose that we have a for loop as shown below and we wish to draw an equivalent

flow chart.

for(m = 0; m < 10; m++)
{

Cnt = Cnt + 2* m;
}

4.3.1 Method 1

Figure 4.14 shows one of the methods for representing the above for loop as with a flow

chart. Here, the flow chart is drawn using the basic primitive components.

m = 0

m < 10

?

Cnt = Cnt + 2 * m

m = m + 1

NO

YES

Figure 4.14: Method 1 for Representing a for Loop.

Microcontroller Program Development 63

4.3.2 Method 2

Figure 4.15 shows the second method for representing the for loop with a flow chart. Here,

a hexagon-shaped flow chart symbol is used to represent the for loop, and the complete for

loop statement is written inside this symbol.

4.3.3 Method 3

Figure 4.16 shows the third method for representing the for loop with a flow chart. Here,

again a hexagon-shaped flow chart symbol is used to represent the for loop, and the

symbol is divided into three to represent the initial condition, the increment, and the

terminating condition.

4.4 Summary

This chapter has described the program development process using the PDL and flow

charts as tools. The PDL is commonly used as it is a simple and convenient method of

describing the operation of a program. The PDL consists of several English-like keywords.

Although the flow chart is also a useful tool, it can be very tedious in large programs to

draw shapes and write text inside them.

for(m = 0; m < 10; m++)

Cnt = Cnt + 2 * m

EXITLOOP

Figure 4.15: Method 2 for Representing a for Loop.

64 Chapter 4

m = 0

m = m +

1
M < 10

?

YES

NO

Cnt = Cnt + 2 * m

Figure 4.16: Method 3 for Representing a for Loop.

4.5 Exercises

1. Describe the various shapes used in drawing flow charts.

2. Describe how the various keywords used in PDL can be used to describe the operation

of a program.

3. What are the advantages and disadvantages of flow charts?

4. It is required to write a program to calculate the sum of numbers from 1 to 10. Draw a

flow chart to show the algorithm for this program.

5. Write the PDL statements for question (4) above.

6. It is required to write a program to calculate the roots of a quadratic equation, given

the coefficients. Draw a flow chart to show the algorithm for this program.

7. Write the PDL statements for question (6) above.

8. Draw the equivalent flow chart for the following PDL statements:

DO WHILE count < 10

Increment J

Increment count

ENDDO

9. It is required to write a function to calculate the sum of numbers from 1 to 10. Draw a

flow chart to show how the function subprogram and the main program can be

implemented.

10. Write the PDL statements for question (9) above.

Microcontroller Program Development 65

11. It is required to write a function to calculate the cube of a given integer number and

then call this function from a main program. Draw a flow chart to show how the func-

tion subprogram and the main program can be implemented.

12. Write the PDL statements for question (8) above.

13. Draw the equivalent flow chart for the following PDL statements:

BEGIN

J = 0

K = 0

REPEAT

Flash LED A

Increment J

REPEAT

Flash LED B

Increment K

UNTIL K = 10

UNTIL J > 15

END

14. It is required to write a function to convert meters into inches and then call this func-

tion from a main program. Draw a flow chart to show how the function subprogram

and the main program can be implemented.

15. Write the PDL statements for question (14) above.

16. Draw the equivalent flow chart for the following PDL statements:

BEGIN

Configure I/O ports

Turn OFF motor

Turn OFF buzzer

DO FOREVER

IF button 1 is pressed THEN

Turn ON motor

IF button 2 is pressed THEN

Turn ON buzzer

Wait 3 s

Turn OFF buzzer

ENDIF

ELSE

Wait for 10 s

Turn OFF motor

ENDIF

ENDDO

END

66 Chapter 4

CHAPTER 5

Simple PIC18 Projects
Chapter Outline
Project 5.1dChasing LEDs 70

Project Description 70

Current Sinking 70

Current Sourcing 71

Project Hardware 72

Project PDL 73

Project Program 73

mikroC Pro for PIC 73

MPLAB XC8 74

Further Development 76

Project 5.2dComplex Flashing LED 76
Project Description 76

Project Hardware 76

Project PDL 76

Project Program 76

mikroC Pro for PIC 76

MPLAB XC8 76

Project 5.3dRandom Flashing LEDs 78
Project Description 78

Project Hardware 80

Project PDL 80

Project Program 80

mikroC Pro for PIC 80

MPLAB XC8 80

Project 5.4dLogic Probe 81
Project Description 81

Project Hardware 81

Project PDL 83

Project Program 84

mikroC Pro for PIC 84

MPLAB XC8 85

Further Development 85

Project 5.5dLED Dice 85
Project Description 85

Project Hardware 87

Project PDL 91

PIC Microcontroller Projects in C. http://dx.doi.org/10.1016/B978-0-08-099924-1.00005-8

Copyright © 2014 Elsevier Ltd. All rights reserved. 67

http://dx.doi.org/10.1016/B978-0-08-099924-1.00005-8

Project Program 92

mikroC Pro for PIC 92

MPLAB XC8 94

Using a Random Number Generator 94

Project 5.6dTwo-Dice Project 94
Project Description 94

Project Hardware 96

Project PDL 96

Project Program 98

mikroC Pro for PIC 98

MPLAB XC8 98

Project 5.7dTwo-Dice Project Using Fewer I/O Pins 98
Project Description 98

Project Hardware 101

Project PDL 103

Project Program 105

mikroC Pro for PIC 105

MPLAB XC8 107

Modifying the Program 107

Project 5.8d7-Segment LED Counter 109
Project Description 109

Project Hardware 114

Project PDL 115

Project Program 116

mikroC Pro for PIC 116

MPLAB XC8 118

Modified Program 118

Project 5.9dTwo-Digit Multiplexed 7-Segment LED 120
Project Description 120

Project Hardware 121

Project PDL 123

Project Program 123

mikroC Pro for PIC 123

MPLAB XC8 125

Project 5.10dFour-Digit Multiplexed 7-Segment LED 125
Project Description 125

Project Hardware 125

Project PDL 125

Project Program 127

mikroC Pro for PIC 127

MPLAB XC8 128

Project 5.11dLED Voltmeter 129
Project Description 129

Project Hardware 129

68 Chapter 5

Project PDL 131

Project Program 131

mikroC Pro for PIC 131

MPLAB XC8 136

Project 5.12dLCD Voltmeter 140
Project Description 140

HD44780 LCD Module 141

Connecting the LCD to the Microcontroller 142

Project Hardware 143

Project PDL 143

Project Program 143

mikroC Pro for PIC 143

MPLAB XC8 147

BusyXLCD 149

OpenXLCD 149

putcXLCD 150

putsXLCD 150

putrsXLCD 150

SerDDRamAddr 151

WriteCmdXLCD 151

Project 5.13dGenerating Sound 156
Project Description 156

Project Hardware 156

Project PDL 156

mikroC Pro for PIC 158

MPLAB XC8 158

Project 5.14dGenerating Custom LCD Fonts 160
Project Description 160

Circuit Diagram 163

Project PDL 163

Project Program 164

mikroC Pro for PIC 164

Project 5.15dDigital Thermometer 168
Project Description 168

Circuit Diagram 168

Project PDL 168

Project Program 169

mikroC Pro for PIC 169

In this chapter, we will be looking at the design of simple PIC18 microcontroller-based

projects, with the idea of becoming familiar with basic interfacing techniques and

learning how to use the various microcontroller peripheral registers. We will look at

the design of projects using light emitting diodes (LEDs), push-button switches,

keyboards, LED arrays, liquid crystal displays (LCDs), sound devices, and so on.

We will be developing programs in C language using both the mikroC Pro for PIC and

Simple PIC18 Projects 69

the MPLAB XC8 compilers. The fully tested and working code will be given for both

compilers. All the projects given in this chapter can easily be built on a simple

breadboard, but we will be using the low-cost and highly popular development board

EasyPIC V7. The required board jumper settings will be given where necessary. We

will start with very simple projects and then proceed to more complex ones. It is

recommended that the reader moves through the projects in the given order to benefit

the most.

The following are provided for each project:

• Project name,

• Description of the project,

• Block diagram of the project (where necessary),

• Circuit diagram of the project,

• Description of the hardware,

• Algorithm description (in PDL),

• Program listing (mikroC pro for PIC and MPLAB XC8),

• Suggestions for further development.

Project 5.1dChasing LEDs
Project Description

In this project, eight LEDs are connected to PORTC of a PIC18F45K22-type

microcontroller, and the microcontroller is operated from an 8-MHz crystal. When the

power is applied to the microcontroller (or when the microcontroller is reset), the LEDs

turn ON alternately in an anticlockwise manner where only one LED is ON at any time.

A 1-s delay is used between each output so that the LEDs can be seen turning ON

and OFF.

An LED can be connected to a microcontroller output port in two different modes: the

current-sinking mode and the current-sourcing mode.

Current Sinking

As shown in Figure 5.1, in the current-sinking mode, the anode leg of the LED is

connected to the þ5-V supply, and the cathode leg is connected to the microcontroller

output port through a current limiting resistor.

The voltage drop across an LED varies between 1.4 and 2.5 V, with a typical value of 2 V.

The brightness of the LED depends on the current through the LED, and this current can

vary between 8 and 16 mA, with a typical value of 10 mA.

70 Chapter 5

The LED is turned ON when the output of the microcontroller is at logic 0 so that current

flows through the LED. Assuming that the microcontroller output voltage is about 0.4 V

when the output is low, we can calculate the value of the required resistor as follows:

R ¼ VS � VLED � VL

ILED
; (5.1)

where

VS is the supply voltage (5 V),

VLED is the voltage drop across the LED (2 V),

VL is the maximum output voltage when the output port is low (0.4 V),

ILED is the current through the LED (10 mA).

By substituting the values into Eqn (5.1), we get R ¼ 5� 2� 0:4
10 ¼ 260 U. The nearest

physical resistor is 270 U.

Current Sourcing

As shown in Figure 5.2, in the current-sourcing mode, the anode leg of the LED is

connected to the microcontroller output port, and the cathode leg is connected to the

ground through a current limiting resistor.

Figure 5.1: LED Connected in the Current-Sinking Mode.

Figure 5.2: LED Connected in the Current-Sourcing Mode.

Simple PIC18 Projects 71

In this mode, the LED is turned ON when the microcontroller output port is at logic 1,

that is, þ5 V. In practice, the output voltage is about 4.85 V, and the value of the resistor

can be determined as follows:

R ¼ VO � VLED

ILED
; (5.2)

where

VO is the output voltage of the microcontroller port when at logic 1 (þ4.85 V).

Thus, the value of the required resistor is R ¼ 4:85� 2
10 ¼ 285 U. The nearest physical

resistor is 290 U.

Project Hardware

The circuit diagram of the project is shown in Figure 5.3. LEDs are connected to

PORTC in the current-sourcing mode with eight 290-U resistors. An 8-MHz crystal is

Figure 5.3: Circuit Diagram of the Project.

72 Chapter 5

connected between the OSC1 and OSC2 pins of the microcontroller. Also, an external

reset push button is connected to the Master Clear (MCLR) input to reset the

microcontroller when required.

If you are using the EasyPIC V7 development board, then make sure that the following

jumper is configured:

DIP switch SW3: PORTC ON

Project PDL

The PDL of this project is very simple and is given in Figure 5.4.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is named MIKROC-LED1.C, and the program listing is

given in Figure 5.5. At the beginning of the program, PORTC pins are configured as

outputs by setting TRISC¼ 0. Then, an endless for loop is formed, and the LEDs are

turned ON alternately in an anticlockwise manner to give the chasing effect. The program

checks continuously so that when LED 7 is turned ON the next LED to be turned ON is

LED 0.

The program is compiled using the mikroC compiler. Project settings should be

configured to an 8-MHz clock, XT crystal mode, and WDT OFF. The HEX file

(MIKROC-LED1.HEX) should be loaded to the PIC18F45K22 microcontroller

using an in-circuit debugger, a programming device, or the EasyPIC V7 development

board.

When using the mikroC Pro for PIC compiler, the configuration fuses can be modified

from the Edit Project window that is entered by clicking Project/ Edit Project.

BEGIN
Configure PORTC pins as digital output
Initialize J = 1
DO FOREVER

Set PORTC = J
Shift left J by 1 digit
IF J = 0 THEN

J = 1
ENDIF
Wait 1 s

ENDDO
END

Figure 5.4: PDL of the Project.

Simple PIC18 Projects 73

MPLAB XC8

The MPLAB XC8 program is named XC8-LED1.C, and the program listing is given in

Figure 5.6. The program is basically the same as in Figure 5.5, except that here a 1-s delay is

created using the basic XC8 __delay_ms function in a loop as it is not possible to create large

delays using the __delay_ms function. Function Delay_Seconds creates delay in seconds

where the amount of delay is specified by the argument of the function. Note also that the

header file <xc.h> must be included at the beginning of the program. Also, the MPLAB IDE

must be configured for the PIC18F45K22 type microcontroller and In-Circuit Debugger

(ICD) 3 device (hardware tool). The ICD 3 device should be connected to the ICD socket on

the EasyPIC V7 development board (top middle part, labeled as EXT ICD). The generated

code can then be loaded to the target microcontroller using the MPLAB IDE (see Chapter 5

for more details).

When using the MPLAB XC8 compiler, the configuration fuses can be modified by

specifying the “#pragma config” statements at the beginning of the program. It is important to

note that different PIC microcontrollers have different sets of configuration fuses. Appendix

A gives a list of the valid configuration fuses for the PIC18F45K22 microcontroller.

/**
CHASING LEDS
============

In this project 8 LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal.

The program turns ON the LEDs in an an�clockwise manner with 1 s delay between
each output. The net result is that LEDs seem to be chasing each other.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED1.C
**/

void main()
{

unsigned char J = 1;

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as output
for(;;) // Endless loop
{

PORTC = J; // Send J to PORTC
Delay_ms(1000); // Delay 1 s
J = J << 1; // Shi� le� J
if(J == 0) J = 1; // If last LED, move to first one

}
}

Figure 5.5: mikroC Pro for PIC Program Listing.

74 Chapter 5

/**
CHASING LEDS
============

In this project 8 LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal.

The program turns ON the LEDs in an an�clockwise manner with 2 s delay between
each output. The net result is that LEDs seem to be chasing each other.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED1.C
**/
#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; I < 100; i++)__delay_ms(10);
}

}

void main()
{

unsigned char J = 1;

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as output

for(;;) // Endless loop
{

PORTC = J; // Send J to PORTC
Delay_Seconds(1); // Delay 1 s
J = J << 1; // Shi� le� J
if(J == 0) J = 1; // If last LED, move to first one

}
}

Figure 5.6: MPLAB XC8 Program Listing.

Simple PIC18 Projects 75

Further Development

The project can be modified such that the LEDs chase each other in both directions. For

example, while moving in an anticlockwise direction, when LED RB7 is ON, the direction

can be changed so that the next LED to turn ON is RB6, RB5, and so on.

Project 5.2dComplex Flashing LED
Project Description

In this project, one LED is connected to port pin RC0 (PORTC bit 0) of a

PIC18F45K22-type microcontroller, and the microcontroller is operated from an 8-MHz

crystal. The LED flashes continuously with the following pattern:

3 flashes with 200 ms delay between each flash

2 s delay

Project Hardware

The circuit diagram of the project is shown in Figure 5.7. An LED is connected to port pin

RC0 in the current-sourcing mode with eight 290-U resistors. An 8-MHz crystal is

connected between the OSC1 and OSC2 pins of the microcontroller. Also, an external

reset push button is connected to the MCLR input to reset the microcontroller when

required.

If you are using the EasyPIC V7 development board, then make sure that the following

jumper is configured:

DIP switch SW3: PORTC ON

Project PDL

The PDL of this project is very simple and is given in Figure 5.8.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is named MIKROC-LED2.C, and the program listing is

given in Figure 5.9. Using a for loop, the LED is flashed three times with a 200-ms delay

between each flash. Then, this process is repeated after 2 s of delay.

MPLAB XC8

The MPLAB XC8 program is named XC8-LED2.C, and the program listing is given in

Figure 5.10. The program uses a function called DelayMs to create milliseconds of delay

76 Chapter 5

BEGIN
Configure PORTC pins as digital output
DO FOREVER

DO 3 times
Turn ON LED
Wait 200 ms
Turn OFF LED
Wait 200 ms

ENDDO
Wait 2 s

ENDDO
END

Figure 5.8: PDL of the Project.

Figure 5.7: Circuit Diagram of the Project.

Simple PIC18 Projects 77

from 1 to 65535 ms (maximum value of an unsigned integer) where the required delay is

passed in the function argument.

Project 5.3dRandom Flashing LEDs
Project Description

In this project, eight LEDs are connected to PORTC of a PIC18F45K22-type

microcontroller, and the microcontroller is operated from an 8-MHz crystal. An integer

random number is generated between 1 and 255 every second, and the LEDs are turned

ON to indicate this number in binary. The net result is that the LEDs flash in a random

fashion, and it is interesting to watch them flashing.

/***
COMPLEX FLASHING LED
===================

In this project an LEDs is connected to port pin RC0 of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal.

The program flashes the LED con�nuously with the following pa�ern:

3 flashes with 200 ms delay between each flash
2 s delay

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED2.C
***/

void main()
{

unsigned char i;

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as output
for(;;) // Endless loop
{

for(i = 0; i < 3; i++) // Do 3 �mes
{

PORTC.RC0 = 1; // LED ON
Delay_ms(200); // 200 ms delay
PORTC.RC0 = 0; // LED OFF
Delay_ms(200); // 200 ms delay

}
Delay_ms(2000); // 2 s delay

}
}

Figure 5.9: mikroC Pro for PIC Program Listing.

78 Chapter 5

/***
COMPLEX FLASHING LED
====================

In this project an LEDs is connected to port pin RC0 of a PIC18F45K22 microcontroller and the
the microcontroller is operated from an 8 MHz crystal.

The program flashes the LED con�nuously with the following pa�ern:

3 flashes with 200 ms delay between each flash
2 s delay

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED2.C
***/
#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

//
// This func�on creates milliseconds delay. The argument specifies the delay �me.
// The delay can be 1 to 65535 ms
//
void DelayMs(unsigned int ms)
{

unsigned int j;

for(j = 0; j < ms; j++)__delay_ms(1);
}

void main()
{

unsigned char i;

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as output
for(;;) // Endless loop
{

for(i = 0; i < 3; i++) // Do 3 �mes
{

PORTCbits.RC0 = 1; // LED ON
DelayMs(200); // 200 ms delay
PORTCbits.RC0 = 0; // LED OFF
DelayMs(200); // 200 ms delay

}
DelayMs(2000);

}
}

Figure 5.10: MPLAB XC8 Program Listing.

Simple PIC18 Projects 79

Project Hardware

The circuit diagram of the project is as shown in Figure 5.3.

If you are using the EasyPIC V7 development board, then make sure that the following

jumper is configured:

DIP switch SW3: PORTC ON

Project PDL

The PDL of this project is very simple and is given in Figure 5.11.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is named MIKROC-LED3.C and the program listing is

given in Figure 5.12. The random number is generated using the built-in library function

rand. The function should be initialized once by calling function srand with an integer

argument before it is used (any integer number can be used). Then, every time rand is

called, it generates a pseudorandom number between 0 and 32,767. To generate a number

between 1 and 255, we can divide the generated number by 128. Although the generated

number is not exactly random, it is good enough for our application.

The random number seed is initialized by calling function srand with integer 10. Then, an

endless for loop is established, a random number is generated in variable p, divided by

128, and sent to PORTC. This process is repeated with a 1-s delay between each output.

MPLAB XC8

The MPLAB XC8 program is named XC8-LED3.C, and the program listing is given in

Figure 5.13. As in Figure 5.6, the required 1-s delay is created using a function called

Delay_Seconds. Random numbers are generated as in the mikroC Pro for PIC version of

the program. Note that the header file <stdlib.h> must be included at the beginning of the

program.

BEGIN
Configure PORTC pins as digital output
Initialize random number seed
DO FOREVER

Get a random number between 1 and 255
Send the random number to PORTC
Wait 1 s

ENDDO
END

Figure 5.11: PDL of the Project.

80 Chapter 5

Project 5.4dLogic Probe
Project Description

This project is a simple logic probe. A logic probe is used to indicate the logic status of an

unknown digital signal. In a typical application, a test lead (probe) is used to detect the

unknown signal, and two different color LEDs are used to indicate the logic status. If, for

example, the signal is logic 0, then the RED color LED is turned ON. If on the other hand

the signal is logic 1, then the GREEN LED is turned ON.

Project Hardware

The circuit diagram of the project is as shown in Figure 5.14. Port pin RC0 is used as the

probe input. Port pins RB6 and RB7 are connected to RED LED and GREEN LED,

respectively.

/***
RANDOM FLASHING LEDS
====================

In this project 8 LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal.

The program uses a pseudorandom number generator to generate a number between 0 and
32767. This number is then divided by 128 to limit it between 1 and 255. The resultant number
is sent to PORTC of the microcontroller. This process is repeated every second.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED3.C
***/

void main()
{

unsigned int p;

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as output
srand(10); // Ini�alize random number seed

for(;;) // Endless loop
{

p = rand(); // Generate a random number
p = p / 128; // Number between 1 and 255
PORTC = p; // Send to PORTC
Delay_ms(1000); // 1 s delay

}
}

Figure 5.12: mikroC Pro for PIC Program Listing.

Simple PIC18 Projects 81

/***
RANDOM FLASHING LEDS
====================

In this project 8 LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal.

The program uses a pseudorandom number generator to generate a number between 0 and
32767. This number is then divided by 128 to limit it between 1 and 255. The resultant number
is sent to PORTC of the microcontroller. This process is repeated every second.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED3.C
***/
#include <xc.h>
#include <stdlib.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

void main()
{

unsigned int p;

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as output
srand(10); // Ini�alize random number seed

for(;;) // Endless loop
{

p = rand(); // Generate a random number
p = p/128; // Number between 1 and 255
PORTC = p; // Send to PORTC
Delay_Seconds(1); // 1 s delay

}
}

Figure 5.13: MPLAB XC8 Program Listing.

82 Chapter 5

If you are using the EasyPIC V7 development board, then make sure that the following

jumper is configured:

DIP switch SW3: PORTC ON

Project PDL

The PDL of this project is very simple and is given in Figure 5.15.

Figure 5.14: Circuit Diagram of the Project.

BEGIN
Configure RC0 as digital input
Configure RC6, RC7 as digital outputs
DO FOREVER

IF RC0 is logic 0 THEN
Turn OFF GREEN LED
Turn on RED LED

ELSE
Turn OFF RED LED
Turn ON GREEN LED

ENDIF
ENDDO

END

Figure 5.15: PDL of the Project.

Simple PIC18 Projects 83

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is named MIKROC-LED4.C, and the program listing is

given in Figure 5.16. The operation of the program is very simple. An endless loop is

established using a for statement and inside this loop port pin RC0 is checked. If RC0 is at

logic 0, then the RED LED is turned ON; otherwise, the GREEN LED is turned ON. Note

/***
LOGIC PROBE
===========

This is a logic probe project. In this project 2 colored LEDs are connected to PORTC pins
RC6 (RED) and RC7 (GREEN). In addi�on, RC0 is used as the probe input.

If the logic probe is at logic 0 then the RED LED is turned ON. Otherwise, the GREEN LED is
turned ON.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED4.C
***/
#define PROBE PORTC.RC0
#define RED_LED PORTC.RC6
#define GREEN_LED PORTC.RC7

void main()
{

ANSELC = 0; // Configure PORTC as digital
TRISC0_bit = 1; // Configure RC0 as input
TRISC6_bit = 0; // Configure RC6 as output
TRISC7_bit = 0; // Configure RC7 as output

for(;;) // Endless loop
{

if(PROBE == 0) // If the signal is LOW
{
GREEN_LED = 0; // Turn OFF GREEN LED
RED_LED = 1; // Torn ON RED LED

}
else
{
RED_LED = 0; // Turn OFF RED LED
GREEN_LED = 1; // Turn ON GREEN LED

}
}

}

Figure 5.16: mikroC Pro for PIC Program Listing.

84 Chapter 5

in the program that the individual PORTC pins are configured as input or outputs. We

could instead set TRISC¼ 1 to configure RC0 as the input and others (RC1:RC7) as

outputs.

MPLAB XC8

The MPLAB XC8 program is named XC8-LED4.C, and the program listing is given in

Figure 5.17.

Further Development

The problem with this logic probe is that one of the LEDs is always ON even if the probe

is not connected to any digital signal, or if the signal is at high-impedance state (i.e.

tristate). We can develop the project further so that the high-impedance state can also be

detected, and none of the LEDs are turned ON.

Figure 5.18 shows the modified circuit diagram. Note here that a transistor (BC108) is

used at the front end of the circuit. The operation of the circuit is as follows.

The transistor is configured as an emitterefollower stage with the base controlled from

output pin RC4 of the microcontroller through a 100-K resistor. The external signal is also

applied to the base of the transistor through a 10-K resistor. The emitter of the transistor is

connected to input pin RC3 of the microcontroller through a 100-K resistor. Pin RC4

applies logic levels to the base of the transistor, and then pin RC3 determines the state of

the external signal (probe) as shown in Table 5.1. For example, if after setting RC4¼ 1,

we detect RC3¼ 1 and also after setting RC4¼ 0 we again detect RC3¼ 1 then the probe

must be at logic 1.

Figure 5.19 shows the mikroC Pro for the PIC program listing of the modified project. The

program is named MIKROC-LED4-1.C. At the beginning of the program, symbols are

given to the used I/O pins. Then, these I/O pins are configured as either inputs or outputs.

The program executes in an endless for loop where the logic in Table 5.1 is implemented.

A small delay is used (1 ms, although a few microseconds should be enough) after the

transistor base signal is changed to allow the transistor to settle down.

Figure 5.20 shows the equivalent MPLAB XC8 program named XC8-LED4-1.C.

Project 5.5dLED Dice
Project Description

This is a simple dice project based on LEDs, a push-button switch, and a PIC18F45K22

microcontroller operating with an 8-MHz crystal. The block diagram of the project is

shown in Figure 5.21.

Simple PIC18 Projects 85

/***
LOGIC PROBE
===========

This is a logic probe project. In this project 2 colored LEDs are connected to PORTC pins RC6
(RED) and RC7 (GREEN). In addi�on, RC0 is used as the probe input.

If the logic probe is at logic 0 then the RED LED is turned ON. Otherwise, the GREEN LED is
turned ON.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED4.C
***/
#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define PROBE PORTCbits.RC0
#define RED_LED PORTCbits.RC6
#define GREEN_LED PORTCbits.RC7

void main()
{

ANSELC = 0; // Configure PORTC as digital
TRISCbits.RC0 = 1; // Configure RC0 as input
TRISCbits.RC6 = 0; // Configure RC6 as output
TRISCbits.RC7 = 0; // Configure RC7 as output

for(;;) // Endless loop
{

if(PROBE == 0) // If the signal is LOW
{
GREEN_LED = 0; // Turn OFF GREEN LED
RED_LED = 1; // Turn ON RED LED

}
else
{
RED_LED = 0; // Turn OFF RED LED
GREEN_LED = 1; // Turn ON GREEN LED

}
}

}

Figure 5.17: MPLAB XC8 Program Listing.

86 Chapter 5

As shown in Figure 5.22, the LEDs are organized such that when they turn ON, they

indicate the numbers as in a real dice. Operation of the project is as follows: Normally, the

LEDs are all OFF to indicate that the system is ready to generate a new dice number.

Pressing the switch generates a random dice number between 1 and 6 and displays on the

LEDs for 3 s. After 3 s, the LEDs turn OFF again.

Project Hardware

The circuit diagram of the project is shown in Figure 5.23. Seven LEDs representing the faces

of a dice are connected to PORTC of a PIC18F45K22 microcontroller in current-sourcing

Table 5.1: Applied and Detected Logic Levels for Figure 5.18

Probe State Applied to RC4 Detected at RC3

Probe at high impedance 1 1
0 0

Probe at logic 1 1 1
0 1

Probe at logic 0 1 0
0 0

Figure 5.18: Modified Circuit Diagram.

Simple PIC18 Projects 87

/***
LOGIC PROBE
===========

This is a logic probe project. In this project 2 colored LEDs are connected to PORTC pins RC6
(RED) and RC7 (GREEN). A transistor is used at the front end of the project. Pin RC4 is
connected to the base of the transistor. The emi�er of the transistor is connected to pin RC3
of the microcontroller. Table 7.1 in the text explains how the logic state of the probe signal is
detected.

If the logic probe is at logic 0 then the RED LED is turned ON. If the logic level is 1 the GREEN
LED is turned ON. If the probe is not connected to any logic signal or if the signal is at
high-impedance state then none of the LEDs turn on.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED4-1.C
***/
#define RED_LED PORTC.RC6
#define GREEN_LED PORTC.RC7
#define TSTOUT PORTC.RC4
#define TSTIN PORTC.RC3

void main()
{

ANSELC = 0; // Configure PORTC as digital
TRISC6_bit = 0; // Configure RC6 as output
TRISC7_bit = 0; // Configure RC7 as output
TRISC4_bit = 0; // Configure RC4 as output
TRISC3_bit = 1; // Configure RC3 as input

for(;;) // Endless loop
{

TSTOUT = 1; // Set RC4 = 1
Delay_ms(1); // Small delay
if(TSTIN == 1) // Check RC3. If RC3 = 1
{
TSTOUT = 0; // Set RC4 = 0
Delay_ms(1); // Small delay
if(TSTIN == 0) // Check RC3. If RC3 = 0
{

GREEN_LED = 0; // High-impedance state
RED_LED = 0; // High-impedance state

}
else
{
RED_LED = 0;
GREEN_LED = 1; // Probe at logic 1

}
}
else
{
TSTOUT = 0;
Delay_ms(1); // Small delay
if(TSTIN == 0)
{

GREEN_LED = 0;
RED_LED = 1; // Probe at logic 0

}
}

}
}

Figure 5.19: mikroC Pro for PIC Program Listing.

88 Chapter 5

/***
LOGIC PROBE
===========

This is a logic probe project. In this project 2 colored LEDs are connected to PORTC pins RC6
(RED) and RC7 (GREEN). A transistor is used at the front end of the project. Pin RC4 is
connected to the base of the transistor. The emi�er of the transistor is connected to pin RC3
of the microcontroller. Table 7.1 in the text explains how the logic state of the probe signal is
detected.

If the logic probe is at logic 0 then the RED LED is turned ON. If the logic level is 1 the GREEN
LED is turned ON. If the probe is not connected to any logic signal or if the signal is at
high-impedance state then none of the LEDs turn on.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED4-1.C
***/

#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define RED_LED PORTCbits.RC6
#define GREEN_LED PORTCbits.RC7
#define TSTOUT PORTCbits.RC4
#define TSTIN PORTCbits.RC3

void main()
{

ANSELC = 0; // Configure PORTC as digital
TRISCbits.RC6 = 0; // Configure RC6 as output
TRISCbits.RC7 = 0; // Configure RC7 as output
TRISCbits.RC4 = 0; // Configure RC4 as output
TRISCbits.RC3 = 1; // Configure RC3 as input

for(;;) // Endless loop
{

TSTOUT = 1; // Set RC4 = 1
__delay_ms(1); // Small delay
if(TSTIN == 1) // Check RC3. If RC3 = 1
{
TSTOUT = 0; // Set RC4 = 0
__delay_ms(1); // Small delay
if(TSTIN == 0) // Check RC3. If RC3 = 0
{

GREEN_LED = 0; // High-impedance state
RED_LED = 0;

}

Figure 5.20: MPLAB XC8 Program Listing.

Simple PIC18 Projects 89

mode using 290-U current limiting resistors. A push-button switch is connected to bit 0 of

PORTB (RB0) using a pull-up resistor. The microcontroller is operated from an 8-MHz

crystal connected between pins OSC1 and OSC2.

If you are using the EasyPIC V7 development board, then make sure that the following

jumpers are configured. Push-button switch RB0 on the board can be pressed to generate a

dice number:

DIP switch SW3: PORTC ON

Jumper J17 (Button Press Level): GND

else
{
RED_LED = 0;
GREEN_LED = 1; // Probe at logic 1

}
}
else
{
TSTOUT = 0; // Set RC4 = 0
__delay_ms(1); // Small delay
if(TSTIN == 0) // Check RC3. If RC3 = 0
{

GREEN_LED = 0;
RED_LED = 1; // Probe at logic 0

}
}

}
}

Figure 5.20
cont’d

PIC18F45K22Push-button
switch

DICE

Figure 5.21: Block Diagram of the Project.

1 2 3 4 5 6

Figure 5.22: LED Dice.

90 Chapter 5

Project PDL

The operation of the project is described in the PDL given in Figure 5.24. At the

beginning of the program, PORTC pins are configured as outputs, and bit 0 of PORTB

(RB0) is configured as input. The program then executes in a loop continuously and

increments a variable between 1 and 6. The state of the push-button switch is checked, and

when the switch is pressed (switch output at logic 0), the current number is sent to the

LEDs. A simple array is used to find out the LEDs to be turned ON corresponding to the

generated dice number.

Table 5.2 gives the relationship between a dice number and the corresponding LEDs to be

turned ON to imitate the faces of a real dice. For example, to display number 1 (i.e. only

the middle LED is ON), we have to turn on D4. Similarly, to display number 4, we have

to turn ON D1, D3, D5, and D7.

The relationship between the required number and the data to be sent to PORTC to turn on

the correct LEDs is given in Table 5.3. For example, to display dice number 2, we have to

send hexadecimal 0x22 to PORTC. Similarly, to display number 5, we have to send

hexadecimal 0x5D to PORTC and so on.

Figure 5.23: Circuit Diagram of the Project.

Simple PIC18 Projects 91

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is called MIKROC-LED5.C and the program listing is

given in Figure 5.25. At the beginning of the program, Switch is defined as bit 0 of

PORTB, and Pressed is defined as 0. The relationship between the dice numbers and the

LEDs to be turned on are stored in an array called DICE. Variable J is used as the dice

Table 5.2: Dice Number and LEDs to be Turned ON

Required Number LEDs to be Turned on

1 D4
2 D2, D6
3 D2, D4, D6
4 D1, D3, D5, D7
5 D1, D3, D4, D5, D7
6 D1, D2, D3, D5, D6, D7

Table 5.3: Required Number and PORTC Data

Required Number PORTC Data (Hex)

1 0 x 08
2 0 x 22
3 0 x 2A
4 0 x 55
5 0 x 5D
6 0 x 77

BEGIN
Create DICE table
Configure PORTC as outputs
Configure RB0 as input
Set J = 1
DO FOREVER

IF button pressed THEN
Get LED pattern from DICE table
Turn ON required LEDs
Wait 3 s
Set J = 0
Turn OFF all LEDs

ENDIF
Increment J
IF J = 7 THEN

Set J = 1
ENDIF

ENDDO
END

Figure 5.24: PDL of the Project.

92 Chapter 5

number. Variable Pattern is the data sent to the LEDs. The program then enters an endless

for loop where the value of variable J is incremented very fast between 1 and 6. When the

push-button switch is pressed, the LED pattern corresponding to the current value of J is

read from the array and sent to the LEDs. The LEDs remain at this state for 3 s (using

function Delay_ms with the argument set to 3000 ms), and after this time, they all turn

OFF to indicate that the system is ready to generate a new dice number.

/***
SIMPLE DICE
==========

In this project 7 LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the faces
of a real dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern is
displayed on the LEDs. The display remains in this state for 3 s and a�er this period
the LEDs all turn OFF to indicate that the system is ready for the bu�on to be pressed again.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED5.C
**/

#define Switch PORTB.RB0
#define Pressed 0

void main()
{

unsigned char J = 1;
unsigned char Pa�ern;
unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

ANSELC = 0; // Configure PORTC as digital
ANSELB = 0; // Configure PORTB as digital
TRISC = 0; // Configure PORTC as outputs
TRISB = 1; // Configure RB0 as input
PORTC = 0; // Turn OFF all LEDs

for(;;) // Endless loop
{

if(Switch == Pressed) // Is switch pressed ?
{
Pa�ern = DICE[J]; // Get LED pa�ern
PORTC = Pa�ern; // Turn on LEDs
Delay_ms(3000); // Delay 3 s
PORTC = 0; // Turn OFF all LEDs
J = 0; // Ini�alize J

}
J++; // Increment J
if(J == 7) J = 1; // Back to 1 if >6

}
}

Figure 5.25: mikroC Pro for PIC Program Listing.

Simple PIC18 Projects 93

MPLAB XC8

The MPLAB XC8 program is named XC8-LED5.C, and the program listing is given in

Figure 5.26. The 3 -s delay is created using function Delay_Seconds as before.

Using a Random Number Generator

In the above project, the value of variable J changes very fast between 1 and 6, and when

the push-button switch is pressed, the current value of this variable is taken and used as the

dice number. Because the values of J are changing very fast, we can say that the numbers

generated are random, that is, new numbers do not depend on the previous numbers.

In this section, we shall see how a pseudorandom number generator function can be used

to generate the dice numbers. The modified program listing is shown in Figure 5.27

(MIKROC-LED5-1.C). In this program, a function called Number generates the dice

numbers. Here, we could have used the built-in rand function as in Project 5.3, but a

pseudorandom number generator function has been created instead to show how such a

function works. The function receives the upper limit of the numbers to be generated (6 in

this example), and also a seed value that defines the number set to be generated. In this

example, the seed is set to 1. Every time the function is called, a number will be generated

between 1 and 6.

The operation of the program is basically the same as in Figure 5.25. When the push-

button switch is pressed, function Number is called to generate a new dice number

between 1 and 6, and this number is used as an index in array DICE to find the bit pattern

to be sent to the LEDs.

Figure 5.28 shows the MPLAB XC8 version of the program (XC8-LED5-1.C). In this

version, the random number generator function is used. The function is divided by 6553

and then 1 is added to generate a number between 1 and 6.

Project 5.6dTwo-Dice Project
Project Description

This project is similar to the previous project, but here a pair of dice are used instead of

one. In many dice games (e.g. backgammon), a pair of dice are thrown together and then

the player takes action based on the result.

The circuit given in Figure 5.23 can be modified by adding another set of seven LEDs for

the second dice. For example, the first set of LEDs can be driven from PORTC, the second

set from PORTD, and the push-button switch can be connected to RB0 as before. Such a

design will require the use of 14 output ports just for the LEDs. Later on, we will see how

94 Chapter 5

/***
SIMPLE DICE
==========

In this project 7 LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the faces
of a real dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern is
displayed on the LEDs. The display remains in this state for 3 s and a�er this period
the LEDs all turn OFF to indicate that the system is ready for the bu�on to be pressed again.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED5.C
**/

#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define Switch PORTBbits.RB0
#define Pressed 0

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

void main()
{

unsigned char J = 1;
unsigned char Pa�ern;
unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

ANSELC = 0; // Configure PORTC as digital
ANSELB = 0; // Configure PORTB as digital
TRISC = 0; // Configure PORTC as outputs
TRISB = 1; // Configure RB0 as input
PORTC = 0; // Turn OFF all LEDs

for(;;) // Endless loop
{

Figure 5.26: MPLAB XC8 Program Listing.

Simple PIC18 Projects 95

the LEDs can be combined to reduce the I/O requirements. Figure 5.29 shows the block

diagram of the project.

Project Hardware

The circuit diagram of the project is shown in Figure 5.30. The circuit is basically the

same as in Figure 5.23, with the addition of another set of LEDs, connected to

PORTD.

If you are using the EasyPIC V7 development board, then make sure that the following

jumpers are configured. Push-button switch RB0 on the board can be pressed to generate a

dice number:

DIP switch SW3: PORTC ON

DIP switch SW3: PORTD ON

Jumper J17 (Button Press Level): GND

Project PDL

The operation of the project is very similar to that in the previous project.

Figure 5.31 shows the PDL for this project. At the beginning of the program,

PORTC and PORTD pins are configured as outputs, and bit 0 of PORTB (RB0) is

configured as input. The program then executes in a loop continuously and checks

the state of the push-button switch. When the switch is pressed, two pseudorandom

numbers are generated between 1 and 6, and these numbers are sent to PORTC and

PORTD. The LEDs remain at this state for 3 s, and after this time, all the LEDs are

turned OFF to indicate that the push button can be pressed again for the next pair of

numbers.

if(Switch == Pressed) // Is switch pressed ?
{
Pa�ern = DICE[J]; // Get LED pa�ern
PORTC = Pa�ern; // Turn on LEDs
Delay_Seconds(3); // Delay 3 s
PORTC = 0; // Turn OFF all LEDs
J = 0; // Ini�alize J

}
J++; // Increment J
if(J == 7) J = 1; // Back to 1 if >6

}
}

Figure 5.26
cont’d

96 Chapter 5

/***
SIMPLE DICE
===========

In this project 7 LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the faces of a real
dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern is displayed on the
LEDs. The display remains in this state for 3 s and a�er this period the LEDs all turn OFF to
indicate that the system is ready for the bu�on to be pressed again.

In this program a pseudorandom number generator func�on is used to generate the
dice numbers between 1 and 6.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED5-1.C
**/

#define Switch PORTB.RB0
#define Pressed 0

//
// This func�on generates a pseudorandom integer number
// between 1 and Lim
//
unsigned char Number(int Lim, int Y)
{

unsigned char Result;
sta�c unsigned int Y;

Y = (Y * 32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return Result;

}

void main()
{

unsigned char J, Pa�ern, Seed = 1;
unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

ANSELC = 0; // Configure PORTC as digital
ANSELB = 0; // Configure PORTB as digital
TRISC = 0; // Configure PORTC as outputs
TRISB = 1; // Configure RB0 as input
PORTC = 0; // Turn OFF all LEDs

for(;;) // Endless loop
{

if(Switch == Pressed) // Is switch pressed ?
{

Figure 5.27: Modified mikroC Pro for the PIC Dice Program.

Simple PIC18 Projects 97

www.allitebooks.com

http://www.allitebooks.org

Project Program

mikroC Pro for PIC

The program is called MIKROC-LED6.C, and the program listing is given in Figure 5.32.

At the beginning of the program, Switch is defined as bit 0 of PORTB, and Pressed is

defined as 0. The relationship between the dice numbers and the LEDs to be turned on are

stored in an array called DICE as in the previous project. Variable Pattern is the data sent

to the LEDs. The program enters an endless for loop where the state of the push-button

switch is checked continuously. When the switch is pressed, two random numbers are

generated by calling function Numbers. The bit pattern to be sent to the LEDs are then

determined and sent to PORTC and PORTD. The program then repeats inside the endless

loop checking the state of push-button switch.

MPLAB XC8

The MPLAB X8 version of the program is shown in Figure 5.33. Here again, the built-in

random number generator function rand is used to generate the dice numbers.

Project 5.7dTwo-Dice Project Using Fewer I/O Pins
Project Description

This project is similar to Project 5.6, but here, LEDs are shared, which uses fewer input/

output pins.

The LEDs in Table 5.2 can be grouped as shown in Table 5.4. Looking at this Table we

can say that

• D4 can appear on its own,

• D2 and D6 are always together,

• D1 and D3 are always together,

• D5 and D7 are always together.

Thus, we can drive D4 on its own, and then drive the D2, D6 pair together in series, D1,

D3 pair together in series, and also D5, D7 pair together in series (actually, we could share

J = Number(6, seed); // Generate a Number 1 to 6
Pa�ern = DICE[J]; // Get LED pa�ern
PORTC = Pa�ern; // Turn on LEDs
Delay_ms(3000); // Delay 3 s
PORTC = 0; // Turn OFF all LED
}

}
}

Figure 5.27
cont’d

98 Chapter 5

/***
SIMPLE DICE
==========

In this project 7 LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the faces of a
real dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern is displayed
on the LEDs. The display remains in this state for 3 s and a�er this period the LEDs all
turn OFF to indicate that the system is ready for the bu�on to be pressed again.

The random number generator func�on is used in this program.
*

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED5-1.C
**/

#include <xc.h>
#include <stdlib.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define Switch PORTBbits.RB0
#define Pressed 0

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

void main()
{

unsigned char J, Pa�ern, Seed = 1;
unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

ANSELC = 0; // Configure PORTC as digital
ANSELB = 0; // Configure PORTB as digital
TRISC = 0; // Configure PORTC as outputs
TRISB = 1; // Configure RB0 as input
PORTC = 0; // Turn OFF all LEDs
srand(1); // Initialize rand func�on

Figure 5.28: Modified MPLAB XC8 Dice Program.

Simple PIC18 Projects 99

for(;;) // Endless loop
{

if(Switch == Pressed) // Is switch pressed ?
{

J = rand() / 6553 + 1; // Generate a number 1 to 6
Pattern = DICE[J]; // Get LED pa�ern
PORTC = Pa�ern; // Turn on LEDs
Delay_Seconds(3); // Delay 3 s
PORTC = 0; // Turn OFF all LEDs
}

}
}

Figure 5.28
cont’d

PIC18F45K22Push-button
switch

DICE

Figure 5.29: Block Diagram of the Project.

Figure 5.30: Circuit Diagram of the Project.

100 Chapter 5

D1, D3, D5, D7, but this would require 8 V to drive if the LEDs are connected in series.

Connecting these LEDs in parallel will require excessive current and a driver IC will be

required). Altogether four lines will be required to drive seven LEDs of a dice. Similarly,

four lines will be required to drive the second dice. Thus, a pair of dice can easily be

driven from an 8-bit output port.

Project Hardware

The circuit diagram of the project is shown in Figure 5.34. PORTC of a PIC18F45K22

microcontroller is used to drive the LEDs as follows:

• RC0 drives D2, D6 of the first dice,

• RC1 drives D1, D3 of the first dice,

• RC2 drives D5, D7 of the first dice,

• RC3 drives D4 of the first dice,

• RC4 drives D2, D6 of the second dice,

• RC5 drives D1, D3 of the second dice,

• RC6 drives D5, D7 of the second dice,

• RC7 drives D4 of the second dice.

Since we are driving two LEDs on some outputs, we can calculate the required value of

the current limiting resistors. Assuming that the voltage drop across each LED is 2 V, the

current through the LED is 10 mA, and the output high voltage of the microcontroller is

4.85 V, the required resistors are R ¼ 4:85� 2� 2
10 ¼ 85 U. We will choose 100-U resistors.

We now need to find the relationship between the dice numbers and the bit pattern to be

sent to the LEDs for each dice. Table 5.5 shows the relationship between the first dice

BEGIN
Create DICE table
Configure PORTC as outputs
Configure PORTD as outputs
Configure RB0 as input
DO FOREVER

IF button pressed THEN
Get a random number between 1 and 6
Find bit pattern
Turn ON LEDs on PORTC
Get second random number between 1 and 6
Find bit pattern
Turn on LEDs on PORTD
Wait 3 s
Turn OFF all LEDs

ENDIF
ENDDO

END

Figure 5.31: PDL of the Project.

Simple PIC18 Projects 101

/***
TWO DICE
========

In this project 7 LEDs are connected to PORTC of a PIC18F452 microcontroller and 7 LEDs to
PORTD. The microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the
faces of a real dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern is
displayed on the LEDs. The display remains in this state for 3 s and a�er this period the
LEDs all turn OFF to indicate that the system is ready for the bu�on to be pressed again.

In this program a pseudorandom number generator func�on is used to generate the dice
numbers between 1 and 6.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED6.C
***/

#define Switch PORTB.F0
#define Pressed 0

//
// This func�on generates a pseudorandom integer number between 1 and Lim.
//
unsigned char Number(int Lim, int Y)
{

unsigned char Result;
sta�c unsigned int Y;

Y = (Y * 32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return Result;

}

//
// Start of MAIN program
//
void main()
{

unsigned char J,Pa�ern,Seed = 1;
unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

ANSELC = 0; // Configure PORTC as digital
ANSELD = 0; // Configure PORTD as digital
ANSELB = 0; // Configure PORTB as digital
TRISC = 0; // Configure PORT as outputs
TRISD = 0; // Configure PORTD as outputs
TRISB = 1; // Configure RB0 as input
PORTC = 0; // Turn OFF all LEDs
PORTD = 0; // Turn OFF all LEDs

Figure 5.32: mikroC Pro for PIC Program Listing.

102 Chapter 5

numbers and the bit pattern to be sent to port pins RC0eRC3. Similarly, Table 5.6 shows

the relationship between the second dice numbers and the bit pattern to be sent to port

pins RC4eRC7.

We can now find the 8-bit number to be sent to PORTC to display both dice numbers as

follows:

• Get the first number from the number generator, call this P.

• Index DICE table to find the bit pattern for a low nibble, that is, L¼DICE[P].

• Get the second number from the number generator, call this P.

• Index DICE table to find the bit pattern for a high nibble, that is, U¼DICE[P].

• Multiply the high nibble with 16 and add a low nibble to find the number to be sent to

PORTC, that is, R¼ 16 * Uþ L where R is the 8-bit number to be sent to PORTC to

display both dice values.

If you are using the EasyPIC V7 development board, then make sure that the following

jumpers are configured. Push-button switch RB0 on the board can be pressed to generate a

dice number:

DIP switch SW3: PORTC ON

DIP switch SW3: PORTD ON

Jumper J17 (Button Press Level): GND

Project PDL

Figure 5.35 shows the PDL for this project. At the beginning of the program, PORTC pins

are configured as outputs, and bit 0 of PORTB (RB0) is configured as the input. The

for(;;) // Endless loop
{

if(Switch == Pressed) // Is switch pressed ?
{

J = Number(6,seed); // Generate first dice number
Pa�ern = DICE[J]; // Get LED pa�ern
PORTC = Pa�ern; // Turn on LEDs for first dice
J = Number(6,seed); // Generate second dice number
Pa�ern = DICE[J]; // Get LED pa�ern
PORTD = Pa�ern; // Turn on LEDs for second dice
Delay_ms(3000); // Delay 3 seconds
PORTC = 0; // Turn OFF all LEDs
PORTD = 0; // Turn OFF all LEDS
}

}
}

Figure 5.32
cont’d

Simple PIC18 Projects 103

/***
TWO DICE
========

In this project 7 LEDs are connected to PORTC of a PIC18F452 microcontroller and 7 LEDs to
PORTD. The microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the
faces of a real dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern is
displayed on the LEDs. The display remains in this state for 3 s and a�er this period the
LEDs all turn OFF to indicate that the system is ready for the bu�on to be pressed again.

In this program a pseudorandom number generator func�on is used to generate the dice numbers
between 1 and 6.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED6.C
***/

#include <xc.h>
#include <stdlib.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define Switch PORTBbits.RB0
#define Pressed 0

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

void main()
{

unsigned char J, Pa�ern, Seed = 1;
unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

ANSELC = 0; // Configure PORTC as digital
ANSELD = 0; // Configure PORTD as digital
ANSELB = 0; // Configure PORTB as digital
TRISC = 0; // Configure PORT as outputs
TRISD = 0; // Configure PORTD as outputs
TRISB = 1; // Configure RB0 as input

Figure 5.33: MPLAB XC8 Program Listing.

104 Chapter 5

program then executes in a loop continuously and checks the state of the push-button

switch. When the switch is pressed, two pseudorandom numbers are generated between 1

and 6, and the bit pattern to be sent to PORTC is found using the method described above.

This bit pattern is then sent to PORTC to display both dice numbers at the same time. The

display shows the dice numbers for 3 s, and then, all the LEDs turn OFF to indicate that

the system is waiting for the push button to be pressed again to display next set of

numbers.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program is called MIKROC-LED7.C, and the program listing

is given in Figure 5.36. At the beginning of the program, Switch is defined as bit 0 of

PORTC = 0; // Turn OFF all LEDs
PORTD = 0; // Turn OFF all LEDs
srand(1); // Ini�alize rand func�on

for(;;) // Endless loop
{

if(Switch == Pressed) // Is switch pressed ?
{

J = rand() / 6553 + 1; // Generate a number 1 to 6
Pa�ern = DICE[J]; // Get LED pa�ern
PORTC = Pa�ern; // Turn on PORTC LEDs
J = rand() / 6553 + 1; // Generate a number 1 to 6
Pa�ern = DICE[J]; // Get LED pa�ern
PORTD = Pa�ern; // Turn on PORTD LEDs
Delay_Seconds(3); // Delay 3 s
PORTC = 0; // Turn OFF PORTC LEDs
PORTD = 0; // Turn OFF PORTD LEDs
}

}
}

Figure 5.33
cont’d

Table 5.4: Grouping the LEDs

Required Number LEDs to be Turned on

1 D4
2 D2, D6
3 D2, D6, D4
4 D1, D3, D5, D7
5 D1, D3, D5, D7, D4
6 D2, D6, D1, D3, D5, D7

Simple PIC18 Projects 105

PORTB, and Pressed is defined as 0. The relationship between the dice numbers and the

LEDs to be turned on are stored in an array called DICE as in the previous project.

Variable Pattern is the data sent to the LEDs. The program enters an endless for loop

where the state of the push-button switch is checked continuously. When the switch is

pressed, two random numbers are generated by calling function Numbers. Variables L and

U store the lower and the higher nibbles of the bit pattern to be sent to PORTC. The bit

pattern to be sent to PORTC is then determined using the method described in the Project

hardware section and stored in variable R. This bit pattern is then sent to PORTC to

display both dice numbers at the same time. The dice is displayed for 3 s, and after this

period, the LEDs are turned OFF to indicate that the system is ready.

Figure 5.34: Circuit Diagram of the Project.

Table 5.5: First Dice Bit Patterns

Dice Number RC3 RC2 RC1 RC0 Hex Value

1 1 0 0 0 8
2 0 0 0 1 1
3 1 0 0 1 9
4 0 1 1 0 6
5 1 1 1 0 E
6 0 1 1 1 7

106 Chapter 5

MPLAB XC8

The MPLAB X8 version of the program is shown in Figure 5.37 (XC8-LED7.C). Here, again

the built-in random number generator function rand is used to generate the dice numbers.

Modifying the Program

The program given in Figure 5.36 can be modified and made more efficient by combining

the two dice nibbles into a single table value. The new program is described in this section.

There are 36 possible combinations of two dice values. Referring to Tables 5.5 and 5.6

and Figure 5.34, we can create Table 5.7 to show all the possible two dice values and the

corresponding numbers to be sent to PORTC.

The modified program (program name MIKROC-LED7-1.C) is given in Figure 5.38. In

this program, array DICE contains the 36 possible dice values. Program enters an endless

for loop, and inside this loop, the state of the push-button switch is checked. Also, a

variable is incremented from 1 to 36, and when the button is pressed, the value of this

variable is used as an index to array DICE to determine the bit pattern to be sent to

Table 5.6: Second Dice Bit Patterns

Dice Number RC7 RC6 RC5 RC4 Hex Value

1 1 0 0 0 8
2 0 0 0 1 1
3 1 0 0 1 9
4 0 1 1 0 6
5 1 1 1 0 E
6 0 1 1 1 7

BEGIN
Create DICE table
Configure PORTC as outputs
Configure RB0 as input
DO FOREVER

IF button pressed THEN
Get a random number between 1 and 6
Find low nibble bit pattern
Get second random number between 1 and 6
High high nibble bit pattern
Calculate data to be sent to PORTC
Wait 3 s
Turn OFF all LEDs

ENDIF
ENDDO

END

Figure 5.35: PDL of the Project.

Simple PIC18 Projects 107

/**
TWO DICE - FEWER I/O COUNT
==========================

In this project LEDs are connected to PORTC of a PIC18F45K22 microcontroller and
the microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the
faces of a real dice. When a push-bu�on switch connected to RB0 is pressed a dice
pa�ern is displayed on the LEDs. The display remains in this state for 3 s and
a�er this period the LEDs all turn OFF to indicate that the system is ready for the
bu�on to be pressed again.

In this program a pseudorandom number generator func�on is used to generate
the dice numbers between 1 and 6.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED7.C
**/

#define Switch PORTB.RB0
#define Pressed 0

//
// This func�on generates a pseudorandom integer Number between 1 and Lim.
//
unsigned char Number(int Lim, int Y)
{

unsigned char Result;
sta�c unsigned int Y;

Y = (Y * 32719 + 3) % 32749;
Result = ((Y % Lim) + 1);
return Result;

}

//
// Start of MAIN program
//
void main()
{

unsigned char J,L,U,R,Seed = 1;
unsigned char DICE[] = {0,0x08,0x01,0x09,0x06,0x0E,0x07};

ANSELC = 0; // Configure PORTC as digital
ANSELB = 0; // Configure PORTB as digital
TRISC = 0; // Configure PORTC as outputs
TRISB = 1; // Configure RB0 as input
PORTC = 0; // Turn OFF all LEDs

for(;;) // Endless loop

Figure 5.36: mikroC Pro for PIC Program Listing.

108 Chapter 5

PORTC. As before, the program displays the dice numbers for 3 s and then turns OFF all

LEDs to indicate that it is ready.

The MPLAB XC8 version of the modified program is shown in Figure 5.39 (XC8-LED7-

1.C).

Project 5.8d7-Segment LED Counter
Project Description

This project describes the design of a 7-segment LED based counter that counts from 0 to

9 continuously with a 1-s delay between each count. The project shows how a 7-segment

LED can be interfaced and used in a PIC microcontroller project.

Seven-segment displays are used frequently in electronic circuits to show numeric or

alphanumeric values. As shown in Figure 5.40, a 7-segment display basically consists of

seven LEDs connected such that numbers from 0 to 9 and some letters can be displayed.

Segments are identified by letters from a to g, and Figure 5.41 shows the segment names

of a typical 7-segment display.

Figure 5.42 shows how numbers from 0 to 9 can be obtained by turning ON different

segments of the display.

Seven-segment displays are available in two different configurations: common cathode

and common anode. As shown in Figure 5.43, in common-cathode configuration, all the

cathodes of all segment LEDs are connected together to the ground. The segments are

turned ON by applying a logic 1 to the required segment LED via current limiting

resistors. In the common-cathode configuration, the 7-segment LED is connected to the

microcontroller in the current-sourcing mode.

{
if(Switch == Pressed) // Is switch pressed ?
{

J = Number(6,seed); // Generate first dice number
L = DICE[J]; // Get LED pa�ern
J = Number(6,seed); // Generate second dice number
U = DICE[J]; // Get LED pa�ern
R = 16 * U + L; // Bit pa�ern to send to PORTC

PORTC = R; // Turn on LEDs for both dice
Delay_ms(3000); // Delay 3 s
PORTC = 0; // Turn OFF all LEDs

}
}

}

Figure 5.36
cont’d

Simple PIC18 Projects 109

/***
 TWO DICE - FEWER I/O COUNT
 ==========================

In this project LEDs are connected to PORTC of a PIC18F45K22 microcontroller and the
microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the faces of a
real dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern is displayed
on the LEDs. The display remains in this state for 3 s and a�er this period the LEDs all
turn OFF to indicate that the system is ready for the bu�on to be pressed again.

In this program a pseudorandom number generator func�on is used to generate the dice
numbers between 1 and 6.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED7.C
**/

#include <xc.h>
#include <stdlib.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define Switch PORTBbits.RB0
#define Pressed 0

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{
 unsigned char i,j;

 for(j = 0; j < s; j++)
 {
 for(i = 0; i < 100; i++)__delay_ms(10);
 }
}

void main()
{
 unsigned char J,L,U,R;
 unsigned char DICE[] = {0,0x08,0x22,0x2A,0x55,0x5D,0x77};

 ANSELC = 0; // Configure PORTC as digital
 ANSELB = 0; // Configure PORTB as digital
 TRISC = 0; // Configure PORTC as outputs
 TRISB = 1; // Configure RB0 as input
 PORTC = 0; // Turn OFF all LEDs
 srand(1); // Ini�alize rand func�on

Figure 5.37: MPLAB XC8 Program Listing.

110 Chapter 5

In a common anode configuration, the anode terminals of all the LEDs are connected

together as shown in Figure 5.44. This common point is then normally connected to the

supply voltage. A segment is turned ON by connecting its cathode terminal to logic 0 via

a current limiting resistor. In the common anode configuration, the 7-segment LED is

connected to the microcontroller in the current-sinking mode.

In this project, a Kingbright SA52-11 model red common anode 7-segment display is used.

This is a 13-mm (0.52-in) display with 10 pins, and it also has a segment LED for the

decimal point. Table 5.8 shows the pin configuration of this display.

 for(;;) // Endless loop
 {
 if(Switch == Pressed) // Is switch pressed ?
 {
 J = rand() / 6553 + 1; // Generate a number 1 to 6
 L = DICE[J]; // Get dice pa�ern
 J = rand() / 6553 + 1; // Generate another number
 U = DICE[J]; // Get dice pa�ern
 R = 16 * U + L; // Bit pa�ern to send to PORTC
 PORTC = R; // Send bit pa�ern to PORTC
 Delay_Seconds(3); // Delay 3 s
 PORTC = 0; // Turn OFF PORTC LEDs
 }
 }
}

Figure 5.37
cont’d

Table 5.7: Two Dice Combinations and Number to be Sent to PORTC

Dice Numbers PORTC Value Dice Numbers PORTC Value

1,1 0 x 88 4,1 0 x 86
1,2 0 x 18 4,2 0 x 16
1,3 0 x 98 4,3 0 x 96
1,4 0 x 68 4,4 0 x 66
1,5 0 x E8 4,5 0 x E6
1,6 0 x 78 4,6 0 x 76
2,1 0 x 81 5,1 0 x 8E
2,2 0 x 11 5,2 0 x 1E
2,3 0 x 91 5,3 0 x 9E
2,4 0 x 61 5,4 0 x 6E
2,5 0 x E1 5,5 0 x EE
2,6 0 x 71 5,6 0 x 7E
3,1 0 x 89 6,1 0 x 87
3,2 0 x 19 6,2 0 x 17
3,3 0 x 99 6,3 0 x 97
3,4 0 x 69 6,4 0 x 67
3,5 0 x E9 6,5 0 x E7
3,6 0 x 79 6,6 0 x 77

Simple PIC18 Projects 111

/***
 TWO DICE - LESS I/O COUNT
 =========================

In this project LEDs are connected to PORT C of a PIC18F452 microcontroller and the
microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the faces
of a real dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern
is displayed on the LEDs. The display remains in this state for 3 s and a�er this
period the LEDs all turn OFF to indicate that the system is ready for the bu�on to be
pressed again.

In this program a pseudorandom number generator func�on is used to generate the dice
numbers between 1 and 6.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED7-1.C
**/

#define Switch PORTB.F0
#define Pressed 0

//
// Start of MAIN program
//
void main()
{
 unsigned char Pa�ern, J = 1;
 unsigned char DICE[] = {0,0x88,0x18,0x98,0x68,0xE8,0x78,
 0x81,0x11,0x91,0x61,0xE1,0x71,
 0x89,0x19,0x99,0x69,0xE9,0x79,
 0x86,0x16,0x96,0x66,0xE6,0x76,
 0x8E,0x1E,0x9E,0x6E,0xEE,0x7E,
 0x87,0x17,0x97,0x67,0xE7,0x77};

 ANSELC = 0; // Configure PORTC as digital
 ANSELB = 0; // Configure PORTB as digital
 TRISC = 0; // Configure PORTC as outputs
 TRISB = 1; // Configure RB0 as input
 PORTC = 0; // Turn OFF all LEDs

 for(;;) // Endless loop
 {
 if(Switch == Pressed) // Is switch pressed ?
 {
 Pa�ern = DICE[J]; // Number to send to PORTC
 PORTC = Pa�ern; // Send to PORTC
 Delay_ms(3000); // 3 seconds delay
 PORTC = 0; // Clear PORTC
 }
 J++; // Increment J

 if(J == 37) J = 1; // If J = 37, reset to 1
 }
}

Figure 5.38: Modified mikroC pro for PIC Program.

112 Chapter 5

/***
 TWO DICE - LESS I/O COUNT
 =========================

In this project LEDs are connected to PORT C of a PIC18F452 microcontroller and the
microcontroller is operated from an 8 MHz crystal. The LEDs are organized as the faces
of a real dice. When a push-bu�on switch connected to RB0 is pressed a dice pa�ern
is displayed on the LEDs. The display remains in this state for 3 s and a�er this
period the LEDs all turn OFF to indicate that the system is ready for the bu�on to be
pressed again.

In this program a pseudorandom number generator func�on is used to generate
the dice numbers between 1 and 6.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED7-1.C
**/

#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define Switch PORTBbits.RB0
#define Pressed 0

//
// This func�on creates seconds delay. The argument specifies the delay �me
// in seconds.
//
void Delay_Seconds(unsigned char s)
{
 unsigned char i,j;

 for(j = 0; j < s; j++)
 {
 for(i = 0; i < 100; i++)__delay_ms(10);
 }
}

void main()
{
 unsigned char Pa�ern, J = 1;
 unsigned char DICE[] = {0,0x88,0x18,0x98,0x68,0xE8,0x78,
 0x81,0x11,0x91,0x61,0xE1,0x71,
 0x89,0x19,0x99,0x69,0xE9,0x79,
 0x86,0x16,0x96,0x66,0xE6,0x76,
 0x8E,0x1E,0x9E,0x6E,0xEE,0x7E,
 0x87,0x17,0x97,0x67,0xE7,0x77};

Figure 5.39: Modified MPLAB XC8 Program.

Simple PIC18 Projects 113

Project Hardware

The circuit diagram of the project is shown in Figure 5.44. A PIC18F45K22-type

microcontroller is used with an 8-MHz crystal. Segments aeg of the display are connected

to PORTC of the microcontroller through 290-U current limiting resistors. Before driving

the display, we have to know the relationship between the numbers to be displayed and the

corresponding segments to be turned ON, and this is shown in Table 5.9. For example, to

 ANSELC = 0; // Configure PORTC as digital
 ANSELB = 0; // Configure PORTB as digital
 TRISC = 0; // Configure PORTC as outputs
 TRISB = 1; // Configure RB0 as input
 PORTC = 0; // Turn OFF all LEDs

 for(;;) // Endless loop
 {
 if(Switch == Pressed) // Is switch pressed ?
 {
 Pa�ern = DICE[J]; // Number to send to PORTC
 PORTC = Pa�ern; // Send to PORTC
 Delay_Seconds(3); // 3 s delay
 PORTC = 0; // Clear PORTC
 }
 J++; // Increment J
 if(J == 37) J = 1; // If J = 37, reset to 1
 }

}

Figure 5.39
cont’d

Figure 5.40: Some 7-Segment Displays. (For color version of this figure, the reader is referred
to the online version of this book.)

114 Chapter 5

display number 3, we have to send the hexadecimal number 0x4F to PORTC which turns

ON segments a, b, c, d, and g. Similarly, to display number 9, we have to send the

hexadecimal number 0x6F to PORTC, which turns ON segments a, b, c, d, f, and g.

Project PDL

The operation of the project is shown in Figure 5.45 with a PDL. At the beginning of the

program, an array called SEGMENT is declared and filled with the relationship between the

a

b

c
d

e

g
f

Figure 5.41: Segment Names of a 7-Segment Display.

Figure 5.42: Displaying Numbers 0e9.

Figure 5.43: Common-Cathode 7-Segment Display.

Simple PIC18 Projects 115

numbers 0e9 and the data to be sent to PORTC. PORTC pins are then configured as outputs,

and a variable is initialized to 0. The program then enters an endless loop where the variable

is incremented between 0 and 9, and the corresponding bit pattern to turn ON the appropriate

segments is sent to PORTC continuously with a 1-s delay between each output.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is called MIKROC-LED8.C, and the program listing is

given in Figure 5.46. At the beginning of the program, character variables Pattern and

Figure 5.44
cont’d

Figure 5.44: Circuit Diagram of the Project.

116 Chapter 5

Cnt are declared, and Cnt is cleared to 0. Then, Table 5.9 is implemented using array

SEGMENT. After configuring PORTC pins as outputs, the program enters an endless loop

using the for statement. Inside the loop, the bit pattern corresponding to the contents of

Cnt is found and stored in variable Pattern. Because we are using a common anode

Table 5.8: The SA52-11 Pin Configuration

Pin Number Segment

1 e
2 d
3 Common anode
4 c
5 Decimal point
6 b
7 a
8 Common anode
9 f
10 g

Table 5.9: Displayed Number and Data Sent to PORTC

Number x g f e d c b a PORTC Data

0 0 0 1 1 1 1 1 1 0 x 3F
1 0 0 0 0 0 1 1 0 0 x 06
2 0 1 0 1 1 0 1 1 0 x 5B
3 0 1 0 0 1 1 1 1 0 x 4F
4 0 1 1 0 0 1 1 0 0 x 66
5 0 1 1 0 1 1 0 1 0 x 6D
6 0 1 1 1 1 1 0 1 0 x 7D
7 0 0 0 0 0 1 1 1 0 x 07
8 0 1 1 1 1 1 1 1 0 x 7F
9 0 1 1 0 1 1 1 1 0 x 6F

x is not used, taken as 0.

BEGIN
Create SEGMENT table
Configure PORTC as digital outputs
Initialize CNT to 0
DO FOREVER

Get bit pattern from SEGMENT corresponding to CNT
Send this bit pattern to PORTC
Increment CNT between 0 and 9
Wait 1 s

ENDDO
END

Figure 5.45: PDL of the Project.

Simple PIC18 Projects 117

display, a segment is turned ON when it is at logic 0, and thus, the bit pattern is inverted

before sending to PORTC. The value of Cnt is then incremented between 0 and 9, after

which the program waits for a second before repeating the above sequence.

MPLAB XC8

The MPLAB X8 version of the program is shown in Figure 5.47 (XC8-LED8.C). The

operation of the program is as in mikroC Pro for PIC.

Modified Program

Note that the program can be made more readable if we create a function to display the

required number and then call this function from the main program.

/***
7-SEGMENT DISPLAY
=================

In this project a common anode 7-segment LED display is connected to PORTC of a PIC18F45K22
microcontroller and the microcontroller is operated from an 8 MHz crystal. The program displays
numbers 0 to 9 on the display with a 1 s delay between each output.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED8.C
***/

void main()
{

unsigned char Pa�ern, Cnt = 0;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,

0x7D,0x07,0x7F,0x6F};

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as outputs

for(;;) // Endless loop
{

Pa�ern = SEGMENT[Cnt]; // Number to send to PORTC
Pa�ern = ~Pa�ern; // Invert bit pa�ern
PORTC = Pa�ern; // Send to PORTC
Cnt++; // Increment Cnt
if(Cnt == 10) Cnt = 0; // Cnt is between 0 and 9
Delay_ms(1000); // 1 s delay

}
}

Figure 5.46: mikroC Pro for PIC Program Listing.

118 Chapter 5

/***
7-SEGMENT DISPLAY
=================

In this project a common anode 7-segment LED display is connected to PORTC of a PIC18F45K22
microcontroller and the microcontroller is operated from an 8 MHz crystal. The program displays
numbers 0 to 9 on the display with a 1 s delay between each output.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED8.C
***/

#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

//
// This func�on creates seconds delay. The argument specifies the delay �me
// in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

void main()
{

unsigned char Pa�ern, Cnt = 0;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as outputs

for(;;) // Endless loop
{

Pa�ern = SEGMENT[Cnt]; // Number to send to PORTC
Pa�ern = ~Pa�ern; // Invert bit pa�ern
PORTC = Pa�ern; // Send to PORTC
Cnt++; // Increment Cnt
if(Cnt == 10) Cnt = 0; // Cnt is between 0 and 9
Delay_Seconds(1); // 1 s delay

}
}

Figure 5.47: MPLAB XC8 Program Listing.

Simple PIC18 Projects 119

Project 5.9dTwo-Digit Multiplexed 7-Segment LED
Project Description

This project is similar to the previous project, but here, multiplexed two digits are used

instead of just one digit, and a fixed number is displayed. In this project, number 25 is

displayed as an example. In multiplexed LED applications (Figure 5.48), the LED

segments of all the digits are tied together, and the common pins of each digit is turned

ON separately by the microcontroller. By displaying each digit for several milliseconds,

the eye cannot differentiate that the digits are not ON all the time. In this way we can

multiplex any number of 7-segment displays together. For example, to display number 53,

we have to send 5 to the first digit and enable its common pin. After a few milliseconds,

number 3 is sent to the second digit, and the common point of the second digit is enabled.

When this process is repeated continuously, the user sees as if both displays are ON

continuously.

Some manufacturers provide multiplexed multidigit displays in single packages. For

example, we can purchase two-, four-, or eight-digit multiplexed displays in a single

package. The display used in this project is the DC56-11EWA which is a red 0.56-in

height common-cathode two digit display having 18 pins and the pin configuration as

shown in Table 5.10. This display can be controlled from the microcontroller as follows:

• Send the segment bit pattern for digit 1 to segments aeg.

• Enable digit 1.

• Wait for a few milliseconds.

• Disable digit 1.

• Send the segment bit patter for digit 2 to segments aeg.

• Enable digit 2.

• Wait for a few milliseconds.

• Disable digit 2.

• Repeat the above process continuously.

Figure 5.48: Two Multiplexed 7-Segment Displays.

120 Chapter 5

The segment configuration of the DC56-11EWA display is shown in Figure 5.49. In a

multiplexed display application, the segment pins of the corresponding segments are

connected together. For example, pins 11 and 16 are connected as the common a segment.

Similarly, pins 15 and 10 are connected as the common b segment, and so on.

Project Hardware

The block diagram of this project is shown in Figure 5.50. The circuit diagram is given in

Figure 5.51. The segments of the display are connected to PORTD of a PIC18F45K22-type

microcontroller, operated with an 8-MHz crystal. Current limiting resistors are used on

each segment of the display. Each digit is enabled using a BC108-type transistor switch

connected to RA0 and RA1 port pins of the microcontroller. A segment is turned on when

a logic 1 is applied to the base of the corresponding segment transistor.

If you are using the EasyPIC V7 development board, then make sure that the following

jumpers are configured to enable two digits of the 7-segment display:

DIP switch SW4: DIS0 and DIS1 enabled to RA0 and RA1, respectively

Figure 5.49: The DC56-11EWA Display Segment Configuration.

Table 5.10: Pin Configuration of the

DC56-11EWA Dual Display

Pin Number Segment

1,5 e
2,6 d
3,8 c
14 Digit 1 enable
17,7 g
15,10 b
16,11 a
18,12 f
13 Digit 2 enable
4 Decimal point 1
9 Decimal point 2

Simple PIC18 Projects 121

PIC18F45K22

Enable 1

Enable 2

PORTD

PORTA

2-digit display

Figure 5.50: Block Diagram of the Project.

Figure 5.51: Circuit Diagram of the Project.

122 Chapter 5

Project PDL

At the beginning of the program, PORTA and PORTD pins are configured as outputs.

The program then enters an endless loop where first of all the most significant digit

(MSD) of the number is calculated, function Display is called to find the bit pattern, and

then sent to the display and digit 1 is enabled. Then, after a small delay digit 1 is

disabled, the LSD of the number is calculated, function Display is called to find the bit

pattern and then sent to the display, and digit 2 is enabled. Then, again after a small

delay, digit 2 is disabled and the above process repeats indefinitely. Figure 5.52 shows

the PDL of the project.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program is called MIKROC-LED9.C, and the program

listing is given in Figure 5.53. DIGIT1 and DIGIT2 are defined to be equal to bit

0 and bit 1 of PORTA, respectively. The value to be displayed (number 25) is stored

in variable Cnt. An endless loop is formed using a for statement. Inside the loop, the

MSD of the number is calculated by dividing the number by 10. Function Display is

then called to find the bit pattern to send to PORTD. Then, digit 2 is enabled by

setting DIGIT2¼ 1, and the program waits for 10 ms. After this, digit 2 is disabled,

and the LSD of the number is calculated using the mod operator (“%”) and sent

to PORTD. At the same time, digit 1 is enabled by setting DIGIT1¼ 1, and the

program waits for 10 ms. After this time, digit 1 is disabled, and the program repeats

forever.

BEGIN
Create SEGMENT table
Configure PORTA as digital outputs
Configure PORTD as digital outputs
Initialize CNT to 25
DO FOREVER

Find MSD digit
Get bit pattern from SEGMENT
Enable digit 2
Wait for a while
Disable digit 2
Find LSD digit
Get bit pattern from SEGMENT
Enable digit 1
Wait for a while
Disable digit 1

ENDDO
END

Figure 5.52: PDL of the Project.

Simple PIC18 Projects 123

/**
Dual 7-SEGMENT DISPLAY
======================

In this project two common cathode 7-segment LED displays are connected to PORTD of a
PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal.
Digit 1 (right digit) enable pin is connected to port pin RA0 and digit 2 (le� digit) enable pin is
connected to port pin RA1 of the microcontroller. The program displays number 25 on the displays.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED9.C
***/
#define DIGIT1 PORTA.RA0
#define DIGIT2 PORTA.RA1

//
// This func�on finds the bit pa�ern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the func�on.
//
unsigned char Display(unsigned char no)
{

unsigned char Pa�ern;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,

0x7D,0x07,0x7F,0x6F};

Pa�ern = SEGMENT[no]; // Pa�ern to return
return (Pa�ern);

}

//
// Start of MAIN Program
//
void main()
{

unsigned char Msd, Lsd, Cnt = 25;

ANSELA = 0; // Configure PORTA as digital
ANSELD = 0; // Configure PORTD as digital
TRISA = 0; // Configure PORTA as outputs
TRISD = 0; // Configure PORTD as outputs

DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2

for(;;) // Endless loop
{

Msd = Cnt/10; // MSD digit
PORTD = Display(Msd); // Send to PORTD
DIGIT2 = 1; // Enable digit 2

Figure 5.53: mikroC Pro for PIC Program Listing.

124 Chapter 5

MPLAB XC8

The MPLAB X8 version of the program is shown in Figure 5.54 (XC8-LED9.C). The

operation of the program is as in mikroC Pro for PIC.

Project 5.10dFour-Digit Multiplexed 7-Segment LED
Project Description

This project is similar to that in the previous project, but here, multiplexed four digits are

used instead of two. The display digits are enabled and disabled as in the two-digit

example.

Project Hardware

The block diagram of this project is shown in Figure 5.55. The circuit diagram is given in

Figure 5.56. The segments of the display are connected to PORTD of a PIC18F45K22

type microcontroller, operated with an 8-MHz crystal. Current limiting resistors are used

on each segment of the display. Each digit is enabled using a BC108 type transistor switch

connected to RA0:RA3 port pins of the microcontroller. A segment is turned on when

logic 1 is applied to the base of the corresponding segment transistor.

If you are using the EasyPIC V7 development board, then make sure that the following

jumpers are configured to enable four digits of the 7-segment display:

DIP switch SW4: DIS0:DIS3 enabled to RA0:RA3 respectively

Project PDL

Figure 5.57 shows the PDL of the project. At the beginning of the program,

DIGIT1eDIGIT4 connections are defined. Then, PORTA and PORTD are configured as

digital outputs, and all the digits are disabled. The program executes in an endless for

Delay_Ms(10); // Wait a while

DIGIT2 = 0; // Disable digit 2
Lsd = Cnt % 10; // LSD digit
PORTD = Display(Lsd); // Send to PORTD
DIGIT1 = 1; // Enable digit 1
Delay_Ms(10); // Wait a while
DIGIT1 = 0; // Disable digit 1

}
}

Figure 5.53
cont’d

Simple PIC18 Projects 125

/**
Dual 7-SEGMENT DISPLAY
======================

In this project two common cathode 7-segment LED displays are connected to PORTD of a
PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal
Digit 1 (right digit) enable pin is connected to port pin RA0 and digit 2 (le� digit) enable pin
is connected to port pin RA1 of the microcontroller. The program displays number 25 on the
displays.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED9.C
***/

#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define DIGIT1 PORTAbits.RA0
#define DIGIT2 PORTAbits.RA1

//
// This func�on finds the bit pa�ern to be sent to the port to display a number on the
// 7-segment LED. The number is passed in the argument list of the func�on.
//
unsigned char Display(unsigned char no)
{

unsigned char Pa�ern;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,

0x7D,0x07,0x7F,0x6F};

Pa�ern = SEGMENT[no]; // Pa�ern to return
return (Pa�ern);

}

void main()
{

unsigned char Msd, Lsd, Cnt = 25;

ANSELA = 0; // Configure PORTA as digital
ANSELD = 0; // Configure PORTD as digital
TRISA = 0; // Configure PORTA as outputs
TRISD = 0; // Configure PORTD as outputs

DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2

for(;;) // Endless loop
{

Figure 5.54: MPLAB XC8 Program Listing.

126 Chapter 5

loop. Inside this loop, the digits of the number to be displayed (1234) are extracted, sent

to PORTD, and the corresponding digits are enabled.

Function Display extracts the bit pattern corresponding to a number. Each digit is

displayed for 5 ms.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program is called MIKROC-LED10.C and the program listing

is given in Figure 5.58. DIGIT1eDIGIT4 are defined to be equal to bit 0ebit 3 of

PORTA, respectively. The value to be displayed (number 1234 in this example) is stored in

variable Cnt. An endless loop is formed using a for statement. Inside this loop, a digit is

Msd = Cnt/10; // MSD digit
PORTD = Display(Msd); // Send to PORTD
DIGIT2 = 1; // Enable digit 2
__delay_ms(10); // Wait a while

DIGIT2 = 0; // Disable digit 2
Lsd = Cnt % 10; // LSD digit
PORTD = Display(Lsd); // Send to PORTD
DIGIT1 = 1; // Enable digit 1
__delay_ms(10); // Wait a while
DIGIT1 = 0; // Disable digit 1

}
}

Figure 5.54
cont’d

PIC18F45K22

Enable 1

Enable 2

PORTD

PORTA

4-digit display

Enable 3
Enable 4

Figure 5.55: Block Diagram of the Project.

Simple PIC18 Projects 127

extracted, sent to the display, and then the corresponding digit is enabled. After a 5-ms

delay, the digit is disabled, and the next digit is processed.

The digits are stored in the following variables:

D1 1000s digit
D3 100s digit
D5 10s digit
D6 1s digit

MPLAB XC8

The MPLAB X8 version of the program is shown in Figure 5.59 (XC8-LED10.C). The

operation of the program is as in mikroC Pro for PIC.

Figure 5.56: Circuit Diagram of the Project.

128 Chapter 5

Project 5.11dLED Voltmeter
Project Description

In this project, a voltmeter with an LED display is designed. The voltmeter can be used to

measure voltages 0e5 V. The voltage to be measured is applied to one of the analog inputs

of a PIC18F45K22 microcontroller. The microcontroller reads the analog voltage, converts

into digital, formats it, and then turns ON one of the five LEDs to indicate the applied

voltage range.

Figure 5.60 shows the block diagram of the project.

Project Hardware

The circuit diagram is given in Figure 5.61. The LEDs are connected to PORTD, and

analog input RA0 (AN0, channel 0) is used to read the input voltage.

BEGIN
Define digits
Configure PORTA as digital outputs
Configure PORTD as digital outputs
Initialize CNT to 1234
DO FOREVER

Find 1000s digit
CALL Display to get bit pattern
Enable digit 4
Wait for a while
Disable digit 4
Find 100s digit
CALL Display to get bit pattern
Enable digit 3
Wait for a while
Disable digit 3
Find 10s digit
CALL Display to get bit pattern
Enable digit 2
Wait for a while
Disable digit 2
Find 1s digit
CALL Display to get bit pattern
Enable bit 1
Wait for a while
Disable digit 1

ENDDO
END

BEGIN/Display
Create Segment table
Find the bit pattern corresponding to the number
Return the bit pattern

END/Display

Figure 5.57: PDL of the Project.

Simple PIC18 Projects 129

/**
4-DIGIT 7-SEGMENT DISPLAY
=======================

In this project four common cathode 7-segment LED displays are connected to PORTD of a
PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal.
Four PORTA pins are used to enable/disable the LEDs. The program displays number 1234.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED10.C
***/
#define DIGIT1 PORTA.RA0
#define DIGIT2 PORTA.RA1
#define DIGIT3 PORTA.RA2
#define DIGIT4 PORTA.RA3

//
// This func�on finds the bit pa�ern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the func�on.
//
unsigned char Display(unsigned char no)
{

unsigned char Pa�ern;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

Pa�ern = SEGMENT[no]; // Pa�ern to return
return (Pa�ern);

}

//
// Start of MAIN Program
//
void main()
{

unsigned int Cnt = 1234;
unsigned int D1,D2,D3,D4,D5,D6;
ANSELA = 0; // Configure PORTA as digital
ANSELD = 0; // Configure PORTD as digital
TRISA = 0; // Configure PORTA as outputs
TRISD = 0; // Configure PORTD as outputs

DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2
DIGIT3 = 0; // Disable digit 3
DIGIT4 = 0; // Disable digit 4

for(;;) // Endless loop
{

Figure 5.58: mikroC Pro for PIC Program Listing.

130 Chapter 5

If you are using the EasyPIC V7 development board, then make sure that the following

jumper is connected so that the potentiometer can be enabled at the RA0 input:

Jumper J15 (ADC INPUT): Connect RA0 inputs

Project PDL

Figure 5.62 shows the PDL of the project. At the beginning of the program, PORTD is

configured as a digital output, and RA0 is configured as analog input. Then, an endless

loop is formed, and the applied voltage is read and converted into analog millivolts. The

corresponding LED is then turned ON. This process repeats continuously with a 10-ms

delay between each iteration.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is called MIKROC-LED11.C, and the program listing is

given in Figure 5.63. At the beginning of the program, the LEDs are given symbols to

D1 = Cnt/1000; // 1000s digit
PORTD = Display(D1); // Send to PORTD
DIGIT4 = 1; // Enable digit 4
Delay_Ms(5); // Wait a while
DIGIT4 = 0; // Disable digit 4

D2 = Cnt % 1000;
D3 = D2/100; // 100s digit
PORTD = Display(D3); // Send to PORTD
DIGIT3 = 1; // Enable digit 3
Delay_Ms(5); // Wait a while
DIGIT3 = 0; // Disable digit 3

D4 = D2 % 100;
D5 = D4/10; // 10s digit
PORTD = Display(D5); // Send to PORTD
DIGIT2 = 1; // Enable digit 2
Delay_Ms(5); // Wait a while
DIGIT2 = 0; // Disable digit 2

D6 = D4 % 10;
PORTD = Display(D6); // Send to PORTD
DIGIT1 = 1; // Enable digit 1
Delay_Ms(5); // Wait a while
DIGIT1 = 0; / / Disable digit 1

}
}

Figure 5.58
cont’d

Simple PIC18 Projects 131

/**
4-DIGIT 7-SEGMENT DISPLAY
=========================

In this project two common cathode 7-segment LED displays are connected to PORTD
of a PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal.
Four PORTA pins are used to enable/disable the LEDs.

The program displays number 1234.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED10.C
***/

#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define DIGIT1 PORTAbits.RA0
#define DIGIT2 PORTAbits.RA1
#define DIGIT3 PORTAbits.RA2
#define DIGIT4 PORTAbits.RA3

//
// This func�on finds the bit pa�ern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the func�on.
//
unsigned char Display(unsigned char no)
{

unsigned char Pa�ern;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

Pa�ern = SEGMENT[no]; // Pa�ern to return
return (Pa�ern);

}

void main()
{

unsigned int Cnt = 1234;
unsigned int D1,D2,D3,D4,D5,D6;
ANSELA = 0; // Configure PORTA as digital
ANSELD = 0; // Configure PORTD as digital
TRISA = 0; // Configure PORTA as outputs
TRISD = 0; // Configure PORTD as outputs

DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2
DIGIT3 = 0; // Disable digit 3

Figure 5.59: MPLAB XC8 Program Listing.

132 Chapter 5

DIGIT4 = 0; // Disable digit 4

for(;;) // Endless loop
{

D1 = Cnt/1000; // 1000s digit
PORTD = Display(D1); // Send to PORTD
DIGIT4 = 1; // Enable digit 4
__delay_ms(5); // Wait a while
DIGIT4 = 0; // Disable digit 4

D2 = Cnt % 1000;
D3 = D2/100; // 100s digit
PORTD = Display(D3); // Send to PORTD
DIGIT3 = 1; // Enable digit 3
__delay_ms(5); // Wait a while
DIGIT3 = 0; // Disable digit 3

D4 = D2 % 100;
D5 = D4/10; // 10s digit
PORTD = Display(D5); // Send to PORTD
DIGIT2 = 1; // Enable digit 2
__delay_ms(5); // Wait a while
DIGIT2 = 0; // Disable digit 2

D6 = D4 % 10;
PORTD = Display(D6); // Send to PORTD
DIGIT1 = 1; // Enable digit 1
__delay_ms(5); // Wait a while
DIGIT1 = 0; // Disable digit 1

}
}

Figure 5.59
cont’d

Input
voltage

PIC18F45K22

0–1 V

1–2 V

2–3 V

3–4 V

4–5 V

Figure 5.60: Block Diagram of the Project.

Simple PIC18 Projects 133

Figure 5.61: Circuit Diagram of the Project.

BEGIN
Define LED connections with symbols
Configure PORTD as digital outputs
Configure RA0 as analog input
Configure the A/D converter
DO FOREVER

Read analog data (voltage) from channel 0
Convert the data into millivolts
Display the data on one of the LEDs
Wait 10 ms

ENDO
END

Figure 5.62: PDL of the Project.

134 Chapter 5

/**
 VOLTMETER WITH LED DISPLAYS
 ===========================

In this project 5 LEDs are connected to PORTD. Also, input port RA0 (AN0) is used as analog input.
Voltage to be measured is applied to this pin. The microcontroller reads the analog voltage,
converts into digital, and then turns ON one of the LEDs to indicate the voltage range.

Analog input range is 0 to 5 V. A PIC18F45K22 type microcontroller is used in this project,
operated with an 8 MHz cystal.

Analog data is read using the mikroC Pro for PIC built-in func�on Adc_Read.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LED11.C
***/
#define LED01V PORTD.RD0
#define LED12V PORTD.RD1
#define LED23V PORTD.RD2
#define LED34V PORTD.RD3
#define LED45V PORTD.RD4

void main()
{
 unsigned long Vin, mV;

 ANSELD = 0; // Configure PORTD as digital
 ANSELA = 1; // COnfigure RA0 as analog
 TRISD = 0; // Configure PORTD as outputs
 TRISA = 1; // Configure RA0 as input

//
// Configure A/D converter. Channel 0 (RA0, or AN0) is used in this project.
//
 ADCON2 = 0x80; // Right jus�fy the result

 for(;;) // Endless loop
 {
 PORTD = 0; // Clear LEDs to start with
 Vin = Adc_Read(0); // Read from channel 0 (AN0)
 mV = (Vin * 5000) >> 10; // mv = Vin x 5000/1024
//
// Find which LED to turn ON
//
 if(mV >= 0 && mV <= 1000) // Between 1–2 V
 {
 LED01V = 1; // Turn ON LED0–1 V
 }
 else if(mV > 1000 && mV <= 2000) // Between 2–3 V

Figure 5.63: mikroC Pro for PIC Program Listing.

Simple PIC18 Projects 135

make it easy to identify them. Then, PORTD is configured as a digital output and RA0 is

configured as an analog input. The A/D converter is configured to right justify the result.

The program executes in an endless loop established using a for statement. Inside this

loop, analog data are read from channel 0 using the Adc_Read(0) built-in function. The

converted digital data are stored in variable Vin, which is declared as an unsigned long.

The A/D converter is 10 bits wide, and thus, there are 1024 steps (0e1023) corresponding

to the reference voltage of 5000 mV. Each step corresponds to 5000 mV/1024¼ 4.88 mV.

Inside the loop variable, Vin is converted into millivolts after multiplying by 5000 and

dividing into 1024. The division is done by shifting right by 10 digits. At this point,

variable mV contains the converted input voltage in millivolts. A number of conditional

statements are then used to turn ON the required LED.

MPLAB XC8

The MPLAB X8 version of the program is shown in Figure 5.64 (XC8-LED11.C). The

A/D converter process is slightly more complex. XC8 supports the following A/D

converter functions (see PIC18 Peripheral Library Help Document).

OpenADC: This function is used to configure the A/D module. The number of arguments

required depends on the type of microcontroller used (see PIC18 Peripheral Library Help

Document). PIC18F45K22 microcontroller requires three arguments. The bits of an

argument should be separated with the AND operator (&), and the arguments should be

separated using commas.

 {
 LED12V = 1; // Turn ON LED1–2 V
 }
 else if(mV > 2000 && mV <= 3000) // Between 2–3 V
 {
 LED23V = 1; // Turn ON LED2–3 V
 }
 else if(mv > 3000 && mV <= 4000) // Between 3–4 V
 {
 LED34V = 1; // Turn ON LED3–4 V
 }
 else if(mV > 4000 && mV <= 5000) // Between 4–5 V
 {
 LED45V = 1; // Turn ON LED4–5 V
 }
 Delay_Ms(10); // 10 ms delay
 }
}

Figure 5.63
cont’d

136 Chapter 5

/**
 VOLTMETER WITH LED DISPLAYS
 ===========================

In this project 5 LEDs are connected to PORTD. Also, input port RA0 (AN0) is used as analog
input. Voltage to be measured is applied to this pin. The microcontroller reads the analog
voltage, converts into digital, and then turns ON one of the LEDs to indicate the voltage range.

Analog input range is 0 to 5 V. A PIC18F45K22 type microcontroller is used in this project,
operated with an 8 MHz cystal.

Analog data is read using the MPLAB XC8 built-in func�ons.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LED11.C
***/
#include <xc.h>
#include <plib/adc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define LED01V PORTDbits.RD0
#define LED12V PORTDbits.RD1
#define LED23V PORTDbits.RD2
#define LED34V PORTDbits.RD3
#define LED45V PORTDbits.RD4

void main()
{
 unsigned long Vin, mV;

 ANSELD = 0; // Configure PORTD as digital
 ANSELA = 1; // COnfigure RA0 as analog
 TRISD = 0; // Configure PORTD as outputs
 TRISA = 1; // Configure RA0 as input
//
// Configure A/D converter
//
 OpenADC(ADC_FOSC_2 & ADC_RIGHT_JUST & ADC_12_TAD,
 ADC_CH0 & ADC_INT_OFF,
 ADC_TRIG_CTMU & ADC_REF_VDD_VDD & ADC_REF_VDD_VSS);

 for(;;) // Endless loop
 {
 PORTD = 0; // Clear LEDs to start with
 SelChanConvADC(ADC_CH0); // Select channel 0 and start conversion
 while(BusyADC()); // Wait for comple�on
 Vin = ReadADC(); // Rea converted data
 mV = (Vin * 5000) >> 10; // mv = Vin x 5000/1024

Figure 5.64: MPLAB XC8 Program Listing.

Simple PIC18 Projects 137

The following arguments are valid for the PIC18F45K22 microcontroller:

Argument 1:

A/D clock source

* ADC_FOSC_2

* ADC_FOSC_4

* ADC_FOSC_8

* ADC_FOSC_16

* ADC_FOSC_32

* ADC_FOSC_64

* ADC_FOSC_RC

* ADC_FOSC_MASK

A/D result justification

* ADC_RIGHT_JUST

* ADC_LEFT_JUST

* ADC_RESULT_MASK

//
// Find which LED to turn ON
//
 if(mV <= 1000) // Between 1–2 V
 {
 LED01V = 1; // Turn ON LED0–1 V
 }
 else if(mV > 1000 && mV <= 2000) // Between 2–3 V
 {
 LED12V = 1; // Turn ON LED1–2 V
 }
 else if(mV > 2000 && mV <= 3000) // Between 2–3 V
 {
 LED23V = 1; // Turn ON LED2–3 V
 }
 else if(mV > 3000 && mV <= 4000) // Between 3–4 V
 {
 LED34V = 1; // Turn ON LED3–4 V
 }
 else if(mV > 4000 && mV <= 5000) // Between 4–5 V
 {
 LED45V = 1; // Turn ON LED4–5 V
 }
 __delay_ms(10); // 10 ms delay
 }
}

Figure 5.64
cont’d

138 Chapter 5

A/D acquisition time select

* ADC_0_TAD

* ADC_2_TAD

* ADC_4_TAD

* ADC_6_TAD

* ADC_12_TAD

* ADC_16_TAD

* ADC_20_TAD

* ADC_TAD_MASK

Argument 2:

Channel

* ADC_CH0

* ADC_CH1

* ADC_CH2

* ADC_CH3

* ADC_CH4

* ADC_CH5

* ADC_CH6

* ADC_CH7

* ADC_CH8

* ADC_CH9

* ADC_CH10

* ADC_CH11

* ADC_CH12

* ADC_CH13

ADC_CH14

* ADC_CH15

* ADC_CH16

* ADC_CH17

* ADC_CH18

* ADC_CH19

* ADC_CH20

* ADC_CH21

* ADC_CH22

* ADC_CH23

* ADC_CH24

* ADC_CH25

* ADC_CH26

* ADC_CH27

Simple PIC18 Projects 139

* ADC_CH_CTMU

* ADC_CH_DAC

* ADC_CH_FRV

A/D Interrupts

* ADC_INT_ON

* ADC_INT_OFF

* ADC_INT_MASK

Argument 3:

Special Trigger Select

* ADC_TRIG_CTMU

* ADC_TRIG_CCP5

A/D VREF þ Configuration

* ADC_REF_VDD_VDD

* ADC_REF_VDD_VREFPLUS

* ADC_REF_FVR_BUF

A/D VREF� Configuration

* ADC_REF_VDD_VSS

* ADC_REF_VDD_VREFMINUS

SetChanADC: This function selects the channel to be used for the A/D converter.
SetChanConvADC: This function selects the channel to be used and at the same time starts the

conversion.
ConvertADC: This function starts the A/D conversion.
BusyADC: This function returns the A/D conversion status.
ReadADC: This function returns the A/D result.
CloseADC: This function turns off the A/D converter module.

The MPLAB XC8 A/D conversion process is carried out as follows:

• Configure the A/D converter (OpenADC).

• Select channel to be used (SelChanConvADC).

• Wait until the conversion is complete (BusyADC).

• Read converted data (ReadADC).

Project 5.12dLCD Voltmeter
Project Description

In this project, the design of a voltmeter with an LCD display is described. The voltmeter

can be used to measure voltages in the range 0e5 V. The voltage to be measured is applied

to one of the analog inputs of a PIC18F45K22-type microcontroller. The microcontroller

reads the analog voltage, converts into digital, and then displays on an LCD.

140 Chapter 5

In microcontroller systems, the output of a measured variable is usually displayed

using LEDs, 7-segment displays, or LCD-type displays. LCDs have the advantages that

they can be used to display alphanumeric or graphical data. Some LCDs have �40

character lengths with the capability to display several lines. Some other LCD displays

can be used to display graphics images. Some modules offer color displays while

some others incorporate back lighting so that they can be viewed in dimly lit

conditions.

There are basically two types of LCDs as far as the interface technique is concerned:

parallel LCDs and serial LCDs. Parallel LCDs (e.g. Hitachi HD44780) are connected to a

microcontroller using more than one data line, and the data are transferred in parallel

form. It is common to use either four or eight data lines. Using a four-wire connection

saves I/O pins, but it is slower since the data are transferred in two stages. Serial LCDs are

connected to the microcontroller using only one data line, and data are usually sent to the

LCD using the standard RS-232 asynchronous data communication protocol. Serial LCDs

are much easier to use, but they cost more than the parallel ones do.

The programming of a parallel LCD is usually a complex task and requires a good

understanding of the internal operation of the LCD controllers, including the timing

diagrams. Fortunately, most high-level languages provide special library commands for

displaying data on alphanumeric as well as on graphical LCDs. All the user has to do is

connect the LCD to the microcontroller, define the LCD connection in the software, and

then send special commands to display data on the LCD.

HD44780 LCD Module

HD44780 is one of the most popular alphanumeric LCD modules used in the industry and

also by hobbyists. This module is monochrome and comes in different sizes. Modules with

8, 16, 20, 24, 32, and 40 columns are available. Depending on the model chosen, the

number of rows varies between 1, 2, or 4. The display provides a 14-pin (or 16-pin)

connector to a microcontroller. Table 5.11 gives the pin configuration and pin functions of

a 14-pin LCD module. Below is a summary of the pin functions:

VSS is the 0-V supply or ground. The VDD pin should be connected to the positive supply.

Although the manufacturers specify a 5-V dc supply, the modules will usually work with

as low as 3 V or as high as 6 V.

Pin 3 is named VEE, and this is the contrast control pin. This pin is used to adjust the

contrast of the display, and it should be connected to a variable voltage supply. A

potentiometer is normally connected between the power supply lines with its wiper arm

connected to this pin so that the contrast can be adjusted.

Simple PIC18 Projects 141

Pin 4 is the Register Select (RS), and when this pin is LOW, data transferred to the display

are treated as commands. When RS is HIGH, character data can be transferred to and

from the module.

Pin 5 is the Read/Write (R/W) line. This pin is pulled LOW to write commands or

character data to the LCD module. When this pin is HIGH, character data or status

information can be read from the module.

Pin 6 is the Enable (E) pin that is used to initiate the transfer of commands or data

between the module and the microcontroller. When writing to the display, data are

transferred only on the HIGH to LOW transition of this line. When reading from the

display, data become available after the LOW to HIGH transition of the enable pin, and

these data remain valid as long as the enable pin is at logic HIGH.

Pins 7e14 are the eight data bus lines (D0eD7). Data can be transferred between the

microcontroller and the LCD module using either a single 8-bit byte, or as two 4-bit

nibbles. In the latter case, only the upper four data lines (D4eD7) are used. Four-bit mode

has the advantage that four less I/O lines are required to communicate with the LCD. In this

book, we shall be using alphanumeric-based LCD only and look at the 4-bit interface only.

Connecting the LCD to the Microcontroller

The following pins are used in 4-bit mode:

D4:D7

E

R/S

Table 5.11: Pin Configuration of the HD44780 LCD Module

Pin Number Name Function

1 VSS Ground
2 VDD þve supply
3 VEE Contrast
4 RS Register select
5 R/W Read/write
6 E Enable
7 D0 Data bit 0
8 D1 Data bit 1
9 D2 Data bit 2
10 D3 Data bit 3
11 D4 Data bit 4
12 D5 Data bit 5
13 D6 Data bit 6
14 D7 Data bit 7

142 Chapter 5

In this book, we shall be connecting the LCD to our microcontroller as in the following table:

LCD Pin Microcontroller Pin
D4 RB0
D5 RB1
D6 RB2
D7 RB3
R/S RB4
E RB5

Project Hardware

Figure 5.65 shows the block diagram of the project. The microcontroller reads the analog

voltage, converts into digital, formats it, and then displays on the LCD.

The circuit diagram of the project is shown in Figure 5.66. The voltage to be measured

(between 0 and 5 V) is applied to port AN0 where this port is configured as an analog

input in software. The LCD is connected to PORTB of the microcontroller as described

earlier. A potentiometer is used to adjust the contrast of the LCD display.

Project PDL

The PDL of the project is shown in Figure 5.67. At the beginning of the program,

PORTB is configured as the output, and PORTA is configured as the input. Then the

LCD and the A/D converter are configured. The program then enters an endless loop

where analog input voltage is converted into digital and displayed on the LCD. This

process is repeated every second.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program listing (MIKROC-LCD1.C) is given in Figure 5.68. At

the beginning of the program, the connections between the LCD and the microcontroller

are defined using a number of sbit statements. PORTB is defined as the output and PORTA

as the input. Then, the LCD is configured, and the text “VOLTMETER” is displayed on

LCD

Input
voltage

PIC18F45K22

Figure 5.65: Block Diagram of the Project.

Simple PIC18 Projects 143

the LCD for 2 s. The A/D is configured by setting register ADCON1 to 0x80 so that the

A/D result is right justified, Vref voltage is set to VDD (þ5 V), and all PORTA pins are

configured as analog inputs. The message “VOLTMETER” is displayed on the first row of

the LCD for 2 s.

The main program loop starts with a for statement. Inside this loop, the LCD is cleared,

analog data are read from channel 0 (pin AN0) using statement Adc_Read(0). The

converted digital data are stored in variable Vin, which is declared as an unsigned long.

The A/D converter is 10 bits wide, and thus, there are 1024 steps (0e1023) corresponding

to the reference voltage of 5000 mV. Each step corresponds to 5000 mV/1024¼ 4.88 mV.

Inside the loop, variable Vin is converted into millivolts by multiplying by 5000 and

Figure 5.66: Circuit Diagram of the Project.

BEGIN
Configure PORTB as digital outputs
Configure RA0 as input
Configure the LCD
Display heading
Configure the A/D converter
DO FOREVER

Read analog data (voltage) from channel 0
Format the data
Display the data (voltage)
Wait 1 s

ENDO
END

Figure 5.67: PDL of the Project.

144 Chapter 5

/***
VOLTMETER WITH LCD DISPLAY
==========================

In this project an LCD is connected to PORTB. Also, input port AN0 is used as analog input.
Voltage to be measured is applied to AN0. The microcontroller reads the analog voltage,
converts into digital, and then displays on the LCD.

Analog input range is 0 to 5 V. A PIC18F45K22 type microcontroller is used in this project,
operated with an 8 MHz crystal.

Analog data is read using the Adc_Read built-in func�on.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD
============ ===

RB0 D4
RB1 D5
RB2 D6
RB3 D7
RB4 R/S
RB5 E

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LCD1.C
**/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

void main()
{

unsigned long Vin, mV;
unsigned char op[12];
unsigned char i,j,lcd[5];

Figure 5.68: mikroC Pro for PIC Program Listing.

Simple PIC18 Projects 145

dividing into 1024. The division is done by shifting right by 10 digits. At this point,

variable mV contains the converted data in millivolts.

Function LongToStr is called to convert mV into a string in character array op.

LongToStr converts a long variable into a string having a fixed width of 12 characters.

If the resulting string is <12 characters, then the left of the data is filled with leading

blanks. These leading blanks are removed using built-in function Ltrim, and the data are

stored in character variable called str. Function Lcd_Out is called to display the data on

the LCD starting from column 6 of row 1. For example, if the measured voltage is

1267 mV, it is displayed on the LCD as

mV¼ 1267

char *str;

ANSELB = 0; // Configure PORTB as digital
ANSELA = 1; // Configure RA0 as analog
TRISB = 0; // Configure PORTB as outputs
TRISA = 1; // Configure RA0 as input

//
// Configure LCD
//

Lcd_Init(); // LCD is connected to PORTB
Lcd_Cmd(_LCD_CLEAR);
Lcd_cmd(_LCD_CURSOR_OFF); // Hide cursor
Lcd_Out(1,1,"VOLTMETER");
Delay_ms(2000);

//
// Configure A/D converter. AN0 is used in this project.
//

ADCON1 = 0x80; // Use AN0 and Vref = +5 V
//
// Program loop
//

for(;;) // Endless loop
{

Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Vin = Adc_Read(0); // Read from channel 0 (AN0)
Lcd_Out(1,1,"mV = "); // Display "mV = "
mV = (Vin * 5000) >> 10; // mv = Vin x 5000/1024
LongToStr(mV,op); // Convert to string in "op"
str = Ltrim(op); // Remove leading spaces

//
// Display result on LCD
//

Lcd_Out(1,6,str); // Output to LCD
Delay_ms(1000); // Wait 1 s

}
}

Figure 5.68
cont’d

146 Chapter 5

The above process is repeated after a 1-s delay.

MPLAB XC8

The MPLAB XC8 version of the program is slightly more complex because of the LCD

functions. Table 5.12 gives a list of the MPLAB XC8 LCD functions available. Note that

the header file “xlcd.h” must be included at the beginning of a program when any of these

functions are used.

The LCD library requires that the following delay functions must be included in a

program using the LCD library:

DelayFor18TCY Delay for 18 cycles
DelayPORXLCD Delay for 15 ms
DelayXLCD Delay for 5 ms

Assuming a microcontroller clock frequency of 4 MHz, the instruction cycle time is

1 ms. With a clock frequency of 8 MHz, the instruction cycle time is 0.5 ms. Figure 5.69

shows how the above delay functions could approximately be obtained for both 4- and

8-MHz clock frequencies. The 18-cycle delay is obtained using NOP operations, where

each NOP operation takes one cycle to execute. The end of a function with no “return”

statement takes two cycles. When a “return” statement is used, a BRA statement

branches to the end of the function where a RETURN 0 is executed to return from the

function, thus adding two more cycles. For example, the following function takes four

cycles to execute:

void test(void)
{

nop(); ; 1 cycle
nop(); ; 1 cycle

} ; RETURN 0, takes 2 cycles

Table 5.12: MPLAB XC8 LCD Functions

Function Description

BusyXLCD Check if the LCD controller is busy
OpenXLCD Configure I/O port lines for the LCD and initialize
putcXLCD Write a byte of data to the LCD
putsXLCD Write a string from the data memory to the LCD
putrsXLCD Write a string from the program memory to the LCD

ReadAddrXLCD Read the address byte from the LCD controller
ReadDataXLCD Read a byte from the LCD controller
SetCGRamAddr Set the character generator address
SetDDRamAddr Set the display data address
WriteCmdXLCD Write a command to the LCD (the LCD must not be

busy before sending a command)

Simple PIC18 Projects 147

4 MHz Clock

#include<delays.h>

void DelayFor18TCY(void)
{

Nop(); Nop(); Nop(); Nop(); // 18 cycle delay
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;

}

void DelayPORXLCD(void) // 15 ms delay
{

Delay1KTCYx(15);
}

void DelayXLCD(void)
{

Delay1KTCYx(5); // 5 ms delay
}

8 MHz Clock

#include <delays.h>

void Delayfor18TCY(void)
{

Nop(); Nop(); Nop(); Nop(); // 18 cycle delay
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;

}

void DelayPORXLCD(void) // 15 ms delay
{

Delay1KTCYx(30);
}

void DelayXLCD(void)
{

Delay1KTCYx(10); // 5 ms delay
}

Figure 5.69: LCD Delay Functions for 4- and 8-MHz Clock.

148 Chapter 5

and the following function takes six cycles to execute:

void test(void)
{

nop(); ; 1 cycle
nop(); ; 1 cycle
return; ; BRA X, 2 cycles

} ; X: RETURN 0, 2 cycles

Note that we could also use the __delay_ms(15) and __delay_ms(5) for the 15- and 5-ms

delays, respectively, instead of the Delay1KTCYx() function.

A brief description of the commonly used C18 LCD functions is given below.

BusyXLCD

This function checks to determine whether or not the LCD controller is busy and data or

commands should not be sent to the LCD if the controller is busy. The function returns a 1

if the controller is busy, and 0 otherwise. The program can be forced to wait until the LCD

controller is ready by using the following statement:

while(BusyXLCD());

Note that this function requires the RW pin of the LCD to be connected to the

microcontroller (not to ground).

OpenXLCD

This function is used to configure the interface between the microcontroller I/O ports and

the LCD pins. The function requires an argument to specify the interface mode (4- or

8-bit), and the LCD character mode and number of lines used. A value should be selected

and logically AND ed from the following two groups:

FOUR_BIT

EIGHT_BIT

LINE_5X7

LINE_5X10

LINES_5X7

LINES_5X7 is used for multiple row displays. For example, if we are using a four-wire

connection with an LCD having a single row with 5x7 characters, then the function should

be initialized as follows:

OpenXLCD(FOUR_BIT & LINE_5X7);

For a two-row display the initialization is

OpenXLCD(FOUR_BIT & LINES_5X7);

Simple PIC18 Projects 149

The actual physical connection between the LCD and microcontroller I/O ports is defined

in file “xlcd.h” and the default settings use PORTB pins in the 4-bit mode where the low 4

bits of the port (RB0eRB3) are connected to the upper data lines (D4eD7) of the LCD

(see the manual MPLAB C18 C Compiler Libraries for more information on the default

connection).

The default connection between an LCD and the microcontroller is shown below. Note

that E and RS are assumed to be connected to RB4 and RB5, respectively. This is the

other way round if using the EasyPIC V7 development board. In addition, the RW pin is

connected to the ground on the EasyPIC V7 development board.

LCD Pin Microcontroller Pin
E RB4
RS RB5
RW RB6
D4 RB0
D5 RB1
D6 RB2
D7 RB3

The connection between an LCD and a microcontroller can be modified by editing the

xlcd.h file. It will then be necessary to recompile the xlcd routines and add them to the

microcontroller library of the target microcontroller.

putcXLCD

This function is used to write a byte to the LCD. The byte is passed as an argument to the

function. In the following example, character “A” is displayed on the LCD:

unsigned char x = ‘A’;
putcXLCD(x);

putsXLCD

This function writes a string of characters from the data memory to the LCD. The

writing stops when a NULL character is detected. An example use of this function is

given below:

char txt[] = “My text”;
putsXLCD(txt);

putrsXLCD

This function writes a string of characters from the program memory to the LCD. The

writing stops when a NULL character is detected. An example use of this function is given

below:

putrsXLCD(“My Computer”);

150 Chapter 5

SerDDRamAddr

This function sets the display data address. For example, using this function, we can write

to a specified row and column of the LCD. The busy status of the LCD should be checked

before calling this function.

Each character occupies one DDRAM address. The first row addresses are from 00 to 0x27,

the second row addresses start from 0x40 to 0x67. For example, to move the cursor to the

beginning of the second row, the DDRAM address will be 0x40, and the required command is

SetDDRamAddr(0x40);

WriteCmdXLCD

This function sends a command to the LCD. The following commands can be specified in

the command argument:

DOFF Turn display off
CURSOR_OFF Enable display, hide cursor
BLINK_ON Enable cursor blinking
BLINK_OFF Disable cursor blinking
SHIFT_CUR_LEFT Shift cursor left
SHIFT_CUR_RIGHT Shift cursor right
SHIFT_DISP_LEFT Shift display to the left
SHIFT_DISP_RIGHT Shift display to the right

In addition, the LCD control functions given in Table 5.13 can be specified in the

argument to control the LCD.

It is important that the LCD controller should not be busy (check with function

BusyXLCD) when commands are sent to it. Some example commands are given below:

WriteCmdXLCD(BLINK_ON); // Blink ON
WriteCmdXLCD(1); // Clear LCD

Table 5.13: LCD Functions

Command Operation

0 x 1 Clear display
0 x 2 Home cursor
0 x 0C Cursor off
0 x 0E Underline cursor on
0 x 0F Blinking cursor on
0 x 10 Move the cursor left by one position
0 x 14 Move the cursor right by one position
0 x 80 Move the cursor to the beginning of the first row
0 x C0 Move the cursor to the beginning of the second row
0 x 94 Move the cursor to the beginning of the third row
0 x D4 Move the cursor to the beginning of the fourth row

Simple PIC18 Projects 151

Figure 5.70 shows the circuit diagram of this project when used with the MPLAB

XC8 compiler. Notice that this is similar to Figure 5.66 but the E and RS pins of the

LCD are interchanged and also the RW pin is connected to pin RB6 of the

microcontroller.

The MPLAB X8 version of the program for this project is shown in Figure 5.71

(XC8-LCD1.C). The following functions are used in the program:

Delay_Seconds create delay by the specified number of seconds
DelayFor18TCY 18 cycles delay (required by the xlcd library)
DelayPORXLCD 15 ms delay (required by the xlcd library)
DelayXLCD 5 ms delay (required by the xlcd library)
LCD_Clear Clear the LCD
LCD_Move Move cursor to the specified row and column

The program configures the LCD and the A/D converter. Then, the heading

“VOLTMETER” is displayed, and the program enters an endless loop. Inside this

loop, the external voltage at channel 0 is read and converted into millivolts. The

voltage is then converted into ASCII string using MPLAB XC8 function itoa and is

displayed starting from column 6 of the LCD. This process is repeated after a 1-s

delay.

Figure 5.70: Circuit Diagram of the Project.

152 Chapter 5

/***
VOLTMETER WITH LCD DISPLAY
==========================

In this project an LCD is connected to PORTB. Also, input port AN0 is used as analog input.
Voltage to be measured is applied to AN0. The microcontroller reads the analog voltage,
converts into digital, and then displays on the LCD.

Analog input range is 0 to 5 V. A PIC18F45K22 type microcontroller is used in this project,
operated with an 8 MHz crystal.

Analog data is read using the Adc_Read built-in func�on.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD
============ ===

RB0 D4
RB1 D5
RB2 D6
RB3 D7
RB4 E
RB5 R/S
RB6 RW

Author: Dogan Ibrahim
Date: August 2013
File: XC8-LCD1.C
**/

#include <xc.h>
#include <stdlib.h>
#include <plib/adc.h>
#include <plib/xlcd.h>
#include <plib/delays.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

Figure 5.71: MPLAB XC8 Program Listing.

Simple PIC18 Projects 153

//
// This func�on creates 18 cycles delay for the xlcd library
//
void DelayFor18TCY(void)
{
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;
}

//
// This func�on creates 15 ms delay for the xlcd library
//
void DelayPORXLCD(void)
{

__delay_ms(15);
return;

}

//
// This func�on creates 5 ms delay for the xlcd library
//
void DelayXLCD(void)
{

__delay_ms(5);
return;

}

//
// This func�on clears the screen
//
void LCD_Clear()
{

while(BusyXLCD());
WriteCmdXLCD(0x01);

}

//
// This func�on moves the cursor to posi�on row,column
//
void LCD_Move(unsigned char row, unsigned char column)
{
char ddaddr = 40*(row – 1) + column;
while(BusyXLCD());
SetDDRamAddr(ddaddr);

}

Figure 5.71
cont’d

154 Chapter 5

void main()
{

unsigned long Vin, mV;
char op[10];

ANSELB = 0; // Configure PORTB as digital
ANSELA = 1; // COnfigure RA0 as analog
TRISB = 0; // Configure PORTB as outputs
TRISA = 1; // Configure RA0 as input

//
// Configure the LCD to use 4-bits, in mul�ple display mode
//

Delay_Seconds(1);
OpenXLCD(FOUR_BIT & LINES_5X7);

//
// Configure the A/D converter
//

OpenADC(ADC_FOSC_2 & ADC_RIGHT_JUST & ADC_20_TAD,
ADC_CH0 & ADC_INT_OFF,
ADC_TRIG_CTMU & ADC_REF_VDD_VDD & ADC_REF_VDD_VSS);

while(BusyXLCD()); // Wait if the LCD is busy
WriteCmdXLCD(DON); // Turn Display ON
while(BusyXLCD()); // Wait if the LCD is busy
WriteCmdXLCD(0x06); // Move cursor right
putrsXLCD("VOLTMETER"); // Display heading
Delay_Seconds(2); // 2 s delay
LCD_Clear(); // Clear display

for(;;) // Endless loop
{

LCD_Clear(); // Clear LCD
SelChanConvADC(ADC_CH0); // Select channel 0 and start conversion
while(BusyADC()); // Wait for comple�on
Vin = ReadADC(); // Read converted data
mV = (Vin * 5000) >> 10; // mv = Vin x 5000/1024
LCD_Move(1,1); // Move to row = 1, column = 1
putrsXLCD("mV = "); // Display "mV = "
mV = (Vin * 5000) >> 10; // mv = Vin x 5000/1024
itoa(op, mV, 10); // Convert mV into ASCII string

//
// Display result on LCD
//

LCD_Move(1,6); // Move to row = 1,column = 6
putsXLCD(op); // Display the measured voltage
Delay_Seconds(1); // Wait 1 s

}
}

Figure 5.71
cont’d

Simple PIC18 Projects 155

Project 5.13dGenerating Sound
Project Description

This project shows how sound with different frequencies can be generated using a simple

buzzer. The project shows how the simple melody “Happy Birthday” can be played using

a buzzer.

Figure 5.72 shows the block diagram of the project.

Project Hardware

A buzzer is a small piezoelectric device that gives a sound output when excited. Normally,

buzzers are excited using square wave signals, also called Pulse Width Modulated (PWM)

signals. The frequency of the signal determines the pitch of the generated sound, and duty

cycle of the signal can be used to increase or decrease the volume. Most buzzers operate

in the frequency range 2e4 kHz. The PWM signal required to generate sound can be using

the PWM module of the PIC microcontrollers.

In this project, a buzzer is connected to pin RC2 of a PIC18F45K22-type microcontroller

through a transistor switch as shown in Figure 5.73.

If you are using the EasyPIC V7 development board, the following jumper should be selected:

J21: Select RC2

Project PDL

When playing a melody, each note is played for a certain duration and with a certain

frequency. In addition, a certain gap is necessary between two successive notes. The

frequencies of the musical notes starting from middle C (i.e. C4) are given below. The

harmonic of a note is obtained by doubling the frequency. For example, the frequency of

C5 is 2� 262¼ 524 Hz.

Notes C4 C4# D4 D4# E4 F4 F4# G4 G4# A4 A4# B4

Hz 261.63 277.18 293.66 311.13 329.63 349.23 370 392 415.3 440 466.16 493.88

PIC18F45K22

Microcontroller
Buzzer

Figure 5.72: Block Diagram of the Project.

156 Chapter 5

To play the tune of a song, we need to know its musical notes. Each note is played for a

certain duration, and there is a certain time gap between two successive notes.

The next thing we want is to know how to generate a sound with a required frequency and

duration. Fortunately, mikroC Pro for the PIC compiler provides a sound library with the

following two functions:

Sound_Init This function is used to specify to which port and which pin the sound device is
connected to

Sound_Play This function generates a square wave signal with the specified frequency (hertz) and
duration (milliseconds) from the port pin specified by the initialization function. The
frequencies given in the above table are approximated to their nearest integers since this
function accepts only integer frequencies.

In this project, we will be generating the classic “Happy Birthday” melody, and thus, we

need to know the notes and their durations. These are given in the table below where the

durations are in milliseconds and should be multiplied by 400 to give correct values.

Note C4 C4 D4 C4 F4 E4 C4 C4 D4 C4 G4 F4 C4 C4 C5 A4 F4 E4 D4 A4# A4# A4 F4 G4 F4

Duration 1 1 2 2 2 3 1 1 2 2 2 3 1 1 2 2 2 2 2 1 1 2 2 2 4

The PDL of the project is shown in Figure 5.74. Basically, two tables are used to store the

notes and their corresponding durations. Then, the Sound_Play function is called in a loop

to play all the notes. The melody repeats after a 3-s delay.

Figure 5.73: Circuit Diagram of the Project.

Simple PIC18 Projects 157

mikroC Pro for PIC

The mikroC Pro for the PIC program listing (MIKROC-SOUND1.C) is given in

Figure 5.75. Tables Notes and Durations store the frequencies (hertz) and durations

(1/400 ms) of each note, respectively. After initializing the sound library, an endless loop

is established where inside this loop each note is played with the specified duration. A

100-ms gap is used between each note. The durations and the gap can be changed to

increase or decrease the speed of the melody.

MPLAB XC8

The MPLAB XC8 compiler does not have a built-in sound library. We can however write

our own function to generate sound. There are basically two ways in which we can

generate accurate square waves for sounding the buzzer: using the processor built-in PWM

module, or writing a timer interrupt service routine. The problem with the PWM module

is that it is not possible to generate audio frequency signals using the PWM module. In

this section, we shall see how to develop a timer interrupt service routine to generate

square waves in the audio band.

The musical note frequencies we wish to generate are within the frequency range of

several hundred to several thousand Hertz. We shall be using Timer0 in the 16-bit interrupt

mode such that every time an interrupt is generated we shall toggle the output port pin

connected to the buzzer. Thus, effectively, we will be generating square waves.

When TIMER0 is operating in the 16-bit mode, the value to be loaded into registers

TMR0H and TMR0L to generate an interrupt after time T is given by

TMR0H:TMR0L¼ 65,536� T/(4� Tosc� Prescaler value)

Our clock frequency is 8 MHz, which has the period of Tosc¼ 0.125 ms. If we give the

Prescaler the value 2, then, the above equation becomes

TMR0H:TMR0L¼ 65,536� T

BEGIN
Create Notes and Dura�ons tables
Ini�alize the Sound library
DO FOREVER

DO for all notes
Play the note with specified dura�on
Delay 100 ms

ENDDO
ENDDO
Wait 3 s

END

Figure 5.74: PDL of the Project.

158 Chapter 5

The time T to generate an interrupt depends upon the frequency f of the waveform we

wish to generate. When an interrupt occurs, if the output signal is at logic 1, then it is

cleared to 0, if it is at logic 0, then it is set to 1. Assuming that we wish to generate square

waves with equal ON and OFF times, the time T in microseconds is then given by

T¼ 500,000/f

/***
PLAYING MELODY
==============

In this project a buzzer is connected to port pin RC2 of a PIC18F45K22 microcontroller,
opera�ng with an 8 MHz crystal.

The program plays the classical "Happy Birthday" melody.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-SOUND1.C
**/
#define Max_Notes 25

void main()
{

unsigned char i;

unsigned int Notes[Max_Notes] =
{

262, 262, 294, 262, 349, 330, 262, 262, 294, 262, 392,
349, 262, 262, 524, 440, 349, 330, 294, 466, 466, 440,
349, 392, 349

};

unsigned char Dura�ons[Max_Notes] =
{

1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 2, 2,
1, 1, 2, 2, 2, 3

};

ANSELC = 0; // Configure PORTC as digital

Sound_Init(&PORTC, 2); // Ini�alize the Sound library

for(;;) // Endless loop
{

for(i = 0; i < Max_Notes; i++) // Do for all notes
{

Sound_Play(Notes[i], 400*Dura�ons[i]); // Play the notes
Delay_ms(100); // Note gap

}
Delay_Ms(3000); // Repeat a�er 3 s

}
}

Figure 5.75: mikroC Pro for PIC Program Listing.

Simple PIC18 Projects 159

We can therefore calculate the value to be loaded into the timer registers as follows:

TMR0H:TMR0L¼ 65,536� 500,000/f

For example, assuming that we wish to generate a square wave signal with frequency,

f¼ 100 Hz, the value to be loaded into the Timer0 registers will be

TMR0H:TMR0L¼ 65,536� 500,000/100¼ 60,536

Here 60,536 is equivalent to 0xEC78 in hexadecimals. Thus, TMR0H¼ 0xEC and

TMR0L¼ 0x78.

The MPLAB XC8 program to generate the square waves and play the melody is shown

in Figure 5.76 (called XC8-SOUND1.C). The following functions are used in the

program:

Interrupt isr: This is the interrupt service routine. Here, the timer registers are reloaded,

the buzzer output is toggled, and the timer interrupt flag is cleared so that new timer

interrupts can be accepted by the microcontroller.

Delay_Ms This function generates millisecond delays specified by the argument.
Sound_Play This function is similar to the mikroC Pro for PIC Sound_Play function. It generates a

square wave signal with the specified frequency and duration. The values to be loaded
into the timer registers are calculated as described above. After loading the timer
registers, the timer counter is enabled and the program waits until the specified duration
occurs. After this point, the timer counter is disabled to stop further interrupt from
being generated, which effectively stops the buzzer.

Delay_Seconds This function generates seconds delays specified by the argument.

Delay_Seconds: This function generates seconds delays specified by the argument.

It is assumed that the buzzer is connected to the RC2 pin of the microcontroller. At the

beginning of the program, PORTC is configured as the digital output. Then, TIMER0 is

initialized to operate in the 16-bit mode, with internal clock, and with a prescaler value of

2. Global interrupts and TIMER0 interrupts are enabled by setting the appropriate bits in

register INTCON. The rest of the program is as in the mikroC Pro for the PIC where the

required melody is played by generating the required notes.

Project 5.14dGenerating Custom LCD Fonts
Project Description

There are some applications where we may want to create custom fonts such as special

characters, symbols, or logos on the LCD. This project will show how to create the

symbol of an arrow pointing right on the LCD, and then display “Right arrow <symbol of

side arrow>” on the first row of the LCD.

160 Chapter 5

/***
PLAYING MELODY
==============

In this project a buzzer is connected to port pin RC2 of a PIC18F45K22 microcontroller,
opera�ng with an 8 MHz crystal.

The program plays the classical "Happy Birthday" melody.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-SOUND1.C
**/

#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000
#define BUZZER LATCbits.LATC2
#define Max_Notes 25

unsigned char TIMER_H, TIMER_L;

unsigned int Notes[Max_Notes] =
{

262, 262, 294, 262, 349, 330, 262, 262, 294, 262, 392,
349, 262, 262, 524, 440, 349, 330, 294, 466, 466, 440,
349, 392, 349

};

unsigned char Dura�ons[Max_Notes] =
{

1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 2, 2,
1, 1, 2, 2, 2, 3

};

//
// Timer interrupt service rou�ne
//
void interrupt isr(void)
{

TMR0H = TIMER_H;
TMR0L = TIMER_L;
BUZZER = ~BUZZER;
INTCONbits.TMR0IF= 0;

}

//
// This func�on generates millisecond delays
//

Figure 5.76: MPLAB XC8 Program Listing.

Simple PIC18 Projects 161

void Delay_Ms(unsigned int s)
{

unsigned int j;
for(j = 0; j < s; j++)__delay_ms(1);

}

//
// This func�on plays a note with the specified frequency and dura�on
//
void Sound_Play(unsigned int freq, unsigned int dura�on)
{

float period;
period = 500000.0/freq;
period = 65536 – period;
TIMER_H = (char)(period/256);
TIMER_L = (char)(period – 256*TIMER_H);
TMR0H = TIMER_H;
TMR0L = TIMER_L;
T0CONbits.TMR0ON = 1;
Delay_Ms(dura�on);
T0CONbits.TMR0ON = 0;

}

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

void main()
{

unsigned char i;

ANSELC = 0; // Configure PORTC as digital
TRISC = 0; // Configure PORTC as output
BUZZER = 0; // Buzzer = 0 to start with

//
// Configure TIMER0 for 16 bit, prescaler = 2
//

T0CONbits.TMR0ON = 0; // Timer OFF
T0CONbits.T08BIT = 0; // Timer in 16 bit mode

Figure 5.76
cont’d

162 Chapter 5

mikroC Pro for the PIC compiler provides a tool that makes the creation of custom fonts

very easy. The steps for creating a font of any shape are given below:

• Start mikroC Pro for PIC compiler.

• Select Tools/ LCD Custom Character. You will see the LCD font editor form shown

in Figure 5.77.

• Select 5� 7 (the default).

• Click “Clear all” to clear the font editor.

• Now, draw the shape of your font by clicking on the squares in the editor window. In

this project, we will be creating the symbol of a “right arrow” as shown in Figure 5.78.

• When you are happy with the font, click “mikroC Pro for PIC” tab so that the code

generated will be for the mikroC Pro for PIC compiler.

• Click “Generate Code” button. You will get the code as shown in Figure 5.79.

• Click “Copy Code To Clipboard” to save the code.

• We shall see later in the project how to display this font using the generated code.

Circuit Diagram

The circuit diagram of the project is shown in Figure 5.80.

Project PDL

The PDL of this project is very simple and is given in Figure 5.81.

T0CONbits.T0CS = 0; // Use internal clock
T0CONbits.T0SE = 0; // Low-to-high transi�on
T0CONbits.PSA = 0; // Use the prescaler
T0CONbits.T0PS = 0; // Prescaler = 2

INTCON = 0xA0; // Enable global and TMR0 interrupts

for(;;) // Endless loop
{

for(i = 0; i < Max_Notes; i++) // Do for all notes
{

Sound_Play(Notes[i], 400 * Dura�ons[i]); // Play the notes
Delay_Ms(100); // Gap between notes

}
Delay_Seconds(3); // Repeat a�er 3 s

}
}

Figure 5.76
cont’d

Simple PIC18 Projects 163

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is named MIKROC-LCD2.C, and the program listing

of the project is shown in Figure 5.82. At the beginning of the project, the connections

between the microcontroller and the LCD are defined using sbit statements. PORTB is

Figure 5.78: Creating a “Side Arrow” Font.

Figure 5.77: LCD Font Editor.

164 Chapter 5

Figure 5.79: Generating Code for the Font.

BEGIN
Define microcontroller - LCD connec�ons
Define bit map of the required font
Configure PORTB as digital and output
Ini�alize LCD
Display text on LCD
CALL CustomChar to display the created font

END

BEGIN/CustomChar
Display required font as character 0

END/CustomChar

Figure 5.81: PDL of the Project.

Figure 5.80: Circuit Diagram of the Project.

Simple PIC18 Projects 165

/***
CREATING CUSTOM FONT ON LCD
===========================

This project displays a custom font on the LCD. A "Right arrow" is displayed with text as shown
below:

Right arrow <up arrow symbol>

The font has been created using the mikro C font editor.

In this project a HD44780 controller based LCD is connected to a PIC18F45K22 type microcontroller,
operated from an 8MHz crystal.

The LCD is connected to PORTB of the microcontroller as follows:

LCD pin Microcontroller pin
D4 RB0
D5 RB1
D6 RB2
D7 RB3
R/S RB4
E RB5

R/W pin of the LCD is not used and is connected to GND. The brightness of the LCD is
controlled by connec�ng the arm of a 10 K poten�ometer to pin Vo of the LCD. Other
pins of the poten�ometer are connected to power and ground.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-LCD2.C
**/
// Start of LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End of LCD module connec�ons

//
// The following code is generated automa�cally by the mikroC compiler font editor

Figure 5.82: Program Listing of the Project.

166 Chapter 5

//
const char character[] = {0,4,2,31,2,4,0,0};

void CustomChar(char pos_row, char pos_char) {
char i;

Lcd_Cmd(64);
for (i = 0; i <= 7; i++) Lcd_Chr_CP(character[i]);
Lcd_Cmd(_LCD_RETURN_HOME);
Lcd_Chr(pos_row, pos_char, 0);

}

//
// Start of Main program
//
void main()
{

ANSELB = 0; // Configure PORTB as digital
TRISB = 0; // Configure PORTB pins as output

Lcd_Init(); // Ini�alize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear display
Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off

Lcd_Out(1, 1, "Right arrow"); // Display text "Right arrow"
CustomChar(1, 13); // Display the "right arrow" symbol

while(1); // End of program, wait here forever
}

Figure 5.82
cont’d

Figure 5.83: The LCD Display.

Simple PIC18 Projects 167

configured as a digital output port. The LCD is initialized, cleared, and the cursor is

turned OFF. Then, the LCD_Out function is called to display text “Right arrow”,

starting row 1 and column 1 of the LCD. Function CustomChar is generated by the

compiler, and this function displays the created font at the specified row and column

positions.

Figure 5.83 shows a picture of the LCD display.

Project 5.15dDigital Thermometer
Project Description

In this project, the design of a digital thermometer is described. An analog temperature

sensor is used to sense the temperature, and the temperature is displayed on an LCD. The

block diagram of the digital thermometer is shown in Figure 5.84.

An LM35DZ type analog temperature sensor is used in this project. This is a three-pin

small sensor that provides an analog output voltage directly proportional to the measured

temperature. The output voltage is given by

Vo¼ 10 mV/�C

Thus, for example, at 20 �C, the output voltage is 200 mV, at 25 �C it is 250 mV, and so on.

Circuit Diagram

The circuit diagram of the project is shown in Figure 5.85. The temperature sensor is

connected to analog input AN0 (RA0) of the microcontroller. The LCD is connected to

PORTB as in the previous LCD projects.

Project PDL

The PDL of this project is very simple and is given in Figure 5.86.

Temperature
sensor

LCDMicrocontroller

Figure 5.84: Block Diagram of the Digital Thermometer.

168 Chapter 5

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program is named MIKROC-THERMO.C, and the program

listing of the project is shown in Figure 5.87. At the beginning of the project, the

connections between the microcontroller and the LCD are defined using sbit statements.

BEGIN
Define LCD connec�ons
Configure PORTA and PORTB as digital
Configure RA0 (AN0) as input
Ini�alize LCD
DO FOREVER

Read temperature from channel 0
Convert reading into millivolts
Divide by 10 to find the temperature in Degrees C
Convert temperature into string
Clear display
Display Heading “Temperature”
Display the temperature
Wait 1 s

ENDDO
END

Figure 5.86: PDL of the Project.

Figure 5.85: Circuit Diagram of the Project.

Simple PIC18 Projects 169

/**
Digital Thermometer
==================

This project is a digital thermometer with LCD display. An LM35DZ type analog temperature
sensor is used to sense the temperature. The sensor is connected to analog input AN0 (RA0)
of a PIC18F45K22 microcontroller opera�ng with an 8 MHz crystal. The program reads the
temperature every second and displays on the LCD.

Programmer: Dogan Ibrahim
Date: September 2013
File: MIKROC-THERMO.C

***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

void main()
{

unsigned char Txt[14];
unsigned int temp;
float mV;

ANSELA = 0; // Configure PORTA as digital
ANSELB = 0; // Configure PORTB as digital
TRISA.RA0 = 1; // RA0 is input
Lcd_Init(); // Ini�alize LCD

Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor

for(;;)
{
temp = ADc_Read(0); // Read from channel 0
mV = temp * 5000.0/1024.0; // Convert to mV
mV = mV/10.0; // mV is now the Degrees C
floatToStr(mV, Txt); // Convert to string
Lcd_cmd(_LCD_CLEAR); // Clear LCD
Lcd_out(1,1,"Temperature"); // Display heading
Lcd_Out(2,1,Txt);

// Display temperatureDelay_ms(1000);
// Wait 1 s and repeat}

}

Figure 5.87: mikroC Pro for PIC Program Listing.

170 Chapter 5

PORTA is configured as a digital input. The LCD is initialized, cleared, and the cursor is

turned OFF. The remainder of the program is executed in an endless loop. Here, the

temperature is read from analog channel 0 (AN0 or RA0), converted into millivolts by

multiplying with 5000, and dividing by the A/D converter resolution (10 bits), and divided

by 10 to find the temperature. The temperature is then converted into a string and is

displayed on the LCD. In this program, floating point arithmetic is used to find and

display the temperature for higher accuracy.

Simple PIC18 Projects 171

CHAPTER 6

Intermediate PIC18 Projects

Chapter Outline
Project 6.1dFour-Digit Multiplexed Seven-Segment Light Emitting Diode Event Counter Using

an External Interrupt 175
Project Description 175

Project Hardware 177

Project PDL 179

Project Program 179

mikroC Pro for PIC 179

Modified Program 186

MPLAB XC8 186

Project 6.2dCalculator with a Keypad and Liquid Crystal Display 190
Project Description 190

Project Hardware 191

Project PDL 192

Project Program 192

Program Using Built-in Keypad Function 198

MPLAB XC8 201

Project 6.3dThe High/Low Game 206
Project Description 206

Generating a Random Number 207

Block Diagram 207

Circuit Diagram 208

Project PDL 209

Project Program 209

mikroC Pro for PIC 209

Project 6.4dGenerating Waveforms 214
Project Description 214

DAC Converter 215

The SPI Bus 216

Generating Sawtooth Waveform 217

Project PDL 219

Project Program 219

mikroC Pro for PIC 219

Modified Sawtooth Program 222

MPLAB XC8 226

Generating Triangle Waveform 229

Generating an Arbitrary Waveform 229

PIC Microcontroller Projects in C. http://dx.doi.org/10.1016/B978-0-08-099924-1.00006-X

Copyright © 2014 Elsevier Ltd. All rights reserved. 173

http://dx.doi.org/10.1016/B978-0-08-099924-1.00006-X

Generating Sine Waveform 234

mikroC Pro for PIC 236

Generating Square Waveform 239

Project 6.5dUltrasonic Human Height Measurement 248
Project Description 248

Project Hardware 249

Project PDL 251

Project Program 252

mikroC Pro for PIC 252

MPLAB XC8 258

Project 6.6dMinielectronic Organ 258
Project Description 258

Project Hardware 260

Project PDL 260

Project Program 260

mikroC Pro for PIC 260

Project 6.7dFrequency Counter with an LCD Display 262
Project Description 262

Method I 262

Method II 262

Project PDL 264

Project Program 264

mikroC Pro for PIC 264

Project 6.8dReaction Timer 268
Project Description 268

Project Hardware 269

Project PDL 269

Project Program 270

mikroC Pro for PIC 270

Project 6.9dTemperature and Relative Humidity Measurement 277
Project Description 277

RESET 277

Transmission Start Sequence 278

Conversion Command 279

Acknowledgment 279

The Status Register 279

Conversion of Signal Output 280

Block Diagram 281

Circuit Diagram 281

Project PDL 282

Project Program 282

mikroC Pro for PIC 282

Project 6.10dThermometer with an RS232 Serial Output 290
Project Description 290

Project Hardware 293

Project PDL 294

174 Chapter 6

Project Program 294

mikroC Pro for PIC 294

Testing the Program 297

Using USB-RS232 Converter Cable 297

Using the USB UART Port 299

MPLAB XC8 299

Project 6.11dMicrocontroller and a PC-Based Calculator 304
Project Description 304

Project Hardware 304

Project PDL 304

Project Program 306

Testing the Program 306

Project 6.12dGPS with an LCD Output 306
Project Description 306

Project Hardware 310

Project PDL 312

Project Program 313

microC Pro for PIC 313

Project 6.13dONeOFF Temperature Control 317
Project Description 317

Project Hardware 318

Project PDL 319

Project Program 319

mikroC Pro for PIC 319

In this chapter, we will be developing more complex projects using various peripheral

devices. As in the previous chapter, the project description, hardware design, PDL,

full program listing, and description of the program for each project will be given in

detail.

Project 6.1dFour-Digit Multiplexed Seven-Segment Light Emitting
Diode Event Counter Using an External Interrupt
Project Description

This project is similar to Project 5.10, but here, the timer interrupt of the microcontroller

is used to refresh the displays. In Project 5.10, the microcontroller was busy updating the

displays continuously, and thus, it could not perform any other tasks. For example, if we

wish to make a counter with a 1 s delay between each count, the program given in Project

5.10 could not be used as the displays cannot be updated while the program waits for 1 s.

In this project, an external interrupt-based event counter will be designed to count up by one

and display on the seven-segment displays every time an external event is detected. In this

project, external interrupt input INT0 (RB0) is used as the event input. An event is said to

Intermediate PIC18 Projects 175

occur whenever the INT0 input goes from logic 0 to logic 1. The event count will be

incremented inside an interrupt service routine (ISR). The displays will be refreshed inside a

timer ISR so that the processor is free to do other tasks while the displays are refreshed.

In this project, Timer0 is used in the 8-bit mode (since the required delay is only several

milliseconds) to refresh the displays. The time for a timer interrupt is given by the

following:

Time¼ (4� clock period)� Prescaler� (256� TMR0L)

Where Prescaler is the selected prescaler value, and TMR0L is the value loaded into timer

register TMR0L to generate timer interrupts every Time period. In our application, the

clock frequency is 8 MHz, that is, the clock period¼ 0.125 ms, and Time¼ 5 ms. Selecting

a prescaler value of 64, the number to be loaded into TMR0L can be calculated as

follows:

TMR0L ¼ 256� Time

4 � clockperiod � prescaler
or

TMR0L ¼ 256� 5000

4 � 0:125 � 64 ¼ 100

Thus, TMR0L should be loaded with 100. The value to be loaded into the TMR0 control

register T0CON can then be found as follows:

Thus, the T0CON register should be loaded with hexadecimal 0xC5. The next register

to be configured is the interrupt control register INTCON where we will disable

176 Chapter 6

priority-based interrupts and enable the global interrupts and TMR0 and INT0

interrupts:

Taking the do not care entries (X) as 0, the hexadecimal value to be loaded into register

INTCON is thus 0xB0.

In addition, we have to set bit 6 of register INTCON2 so that external interrupts are

recognized on the low to high transition of the INT0 pin. Looking at the data sheet, we see

that this bit is automatically set by default after power up (or reset).

In this project, the source of interrupt can either be from the timer or from an external

event. Inside the ISR, we should check the interrupt flags of each source to determine the

actual cause of the interrupt.

When a timer interrupt occurs, the TMR0L register should be reloaded inside the timer

ISR. Interrupt flags of both interrupt sources must be cleared inside their ISR routines so

that further interrupts can be accepted from these sources.

Figure 6.1 shows the block diagram of the project.

Project Hardware

The circuit diagram of the project is shown in Figure 6.2. The circuit is basically the same

as in Figure 5.56, but here, additionally the external interrupt input is used for event

triggering.

Intermediate PIC18 Projects 177

If you are using the EasyPIC V7 development board, make sure that the following jumpers

are set correctly on the board:

SW4: DIS0, DIS1, DIS2, DIS3 set to ON

J17: set to GND

Figure 6.2: Circuit Diagram of the Project.

PIC18F45K22

Enable 1

Enable 2

PORTD

PORTA

4-digit display

Enable 3
Enable 4

INT0 (RB0)Events

Figure 6.1: Block Diagram of the Project.

178 Chapter 6

Project PDL

The PDL of the project is shown in Figure 6.3. The program is in two sections: the main

program and the ISR. Inside the main program, TMR0L is configured to generate

interrupts at every 5 ms. Also, input INT0 (RB0) is configured to accept external

interrupts. Whenever an interrupt occurs, the source of the interrupt is detected. If the

source is timer interrupt, then the display is refreshed. If the source of the interrupt is

INT0, then it is assumed that an external event has occurred, and a counter is incremented

by 1.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is called MIKROC-EVENT1.C and is shown in

Figure 6.4. At the beginning of the main program, PORTD and PORTA are configured as

BEGIN
Configure PORTD as digital and output
Configure PORTA as digital and output
Configure PORTB as digital and RB0 input
Clear all digits
Configure TIMER0
Configure and enable external interrupts
WAIT FOREVER

END

INTERRUPT SERVICE ROUTINE:

BEGIN
IF the interrupt source = Timer0

Reload �mer register
Clear �mer interrupt flag
CALL Display to display digit data
Enable appropriate display digit

ELSE IF the interrupt source = INT0
Increment event count
Clear INT0 interrupt flag

ENDIF
END

BEGIN/DISPLAY
Extract the bit pa�ern to send to the port to display a number
Return the bit number to the calling programm

END/DISPLAY

MAIN PROGRAM:

Figure 6.3: PDL of the Project.

Intermediate PIC18 Projects 179

/**
4-DIGIT 7-SEGMENT DISPLAY EVENT COUNTER
=======================================

In this project four common cathode 7-segment LED displays are connected to PORTD of a
PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal.
Four PORTA pins are used to enable/disable the LEDs. In addiƟon, external interrupt input
INT0 (RB0) is used to receive external events. An event is assumed to occur if pin INT0 goes
from logic 0 to logic 1.

The program uses two ISR rouƟnes: the Ɵmer rouƟne is used to refresh the Display every 5 ms.
External interrupt ISR is used to increment the event count. The event count is displayed
conƟnuously on the 7-segment displays.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-EVENT1.C
***/
#define DIGIT1 PORTA.RA0
#define DIGIT2 PORTA.RA1
#define DIGIT3 PORTA.RA2
#define DIGIT4 PORTA.RA3

unsigned int Cnt = 0;
unsigned char flag = 0;
unsigned int D1,D2,D3,D4,D5,D6;

//
// This funcƟon finds the bit paƩern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the funcƟon.
//
unsigned char Display(unsigned char no)
{

unsigned char PaƩern;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

PaƩern = SEGMENT[no]; // PaƩern to return
return (PaƩern);

}

//
// Interrupt Service RouƟne
//
void interrupt (void)
{

if(INTCON.TMR0IF == 1) // If Timer interrupt occured
{
TMR0L = 100; //
INTCON.TMR0IF = 0; // Clear Ɵmer interrupt flag
switch(flag)

Reload Ɵmer register

Figure 6.4: mikroC Pro for PIC Program Listing.

180 Chapter 6

{
case 0:
{
DIGIT1 = 0; // Disable digit 1
D1 = Cnt/1000; // 1000s digit
PORTD = Display(D1); // Send to PORTD
DIGIT4 = 1; // Enable digit 4
flag = 1;
break;

}
case 1:
{
DIGIT4 = 0; // Disable digit 4
D2 = Cnt % 1000;
D3 = D2/100; // 100s digit
PORTD = Display(D3); // Send to PORTD
DIGIT3 = 1; // Enable digit 3
flag = 2;
break;

}
case 2:
{
DIGIT3 = 0; // Disable digit 3
D4 = D2 % 100;
D5 = D4/10; // 10s digit
PORTD = Display(D5); // Send to PORTD
DIGIT2 = 1; // Enable digit 2
flag = 3;
break;

}
case 3:
{
DIGIT2 = 0; // Disable digit 2
D6 = D4 % 10;
PORTD = Display(D6); // Send to PORTD
DIGIT1 = 1; // Enable digit 1
flag = 0;
break;

}
}

}
if(INTCON.INT0IF == 1) // If external interrupt occurred
{

Cnt++; // Increment event count
INTCON.INT0IF = 0; // Clear ext interrupt flag

}
}

//
// Start of MAIN Program
//
void main()
{

Figure 6.4
cont’d

Intermediate PIC18 Projects 181

digital outputs. Pin INT0 (RB0) is configured as the digital input since this is the event

input.

Then, all the display digits are cleared, and register T0CON is loaded with 0xC5 to

enable the TMR0 and set the prescaler to 64. The TMR0L register is loaded with 100 so

that an interrupt can be generated every 5 ms. INTCON is then set to 0xB0 to enable

global interrupts, timer interrupts, and external interrupts from input INT0. The

remainder of the main program waits for interrupts to occur and does not do anything

useful.

Inside the ISR, the program checks to determine the source of the interrupt. If the timer

has caused the interrupt, then the timer register is reloaded, and the timer interrupt flag is

cleared so that the processor can accept further interrupts from the timer. The display

digits are then refreshed inside the timer ISR. Here, only one digit is enabled at any time.

ANSELA = 0; // Configure PORTA as digital
ANSELD = 0; // Configure PORTD as digital
ANSELB = 0; // Configure PORTB as digital
TRISA = 0; // Configure PORTA as outputs
TRISD = 0; // Configure PORTD as outputs
TRISB = 1; // RB0 is event input

DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2
DIGIT3 = 0; // Disable digit 3
DIGIT4 = 0; // Disable digit 4

//
// Configure TIMER0 interrupts
//

T0CON = 0xC5; // TIMER0 in 8-bit mode
TMR0L = 100; // Load Timer register

//
// Configure External interrupts and enable interrupts
//

INTCON = 0xB0;

for(;;) // Endless loop
{ // Wait and process interrupts
}

}

Figure 6.4
cont’d

182 Chapter 6

/**
4-DIGIT 7-SEGMENT DISPLAY EVENT COUNTER

=======================================

In this project four common cathode 7-segment LED displays are connected to PORTD of a
PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal.
Four PORTA pins are used to enable/disable the LEDs. In addiƟon, external interrupt input
INT0 (RB0) is used to receive external events. An event is assumed to occur if pin INT0
goes from logic 0 to logic 1.

The program uses two ISR rouƟnes: the Ɵmer rouƟne is used to refresh the Display every 5 ms.
External interrupt ISR is used to increment the event count. The event count is displayed
conƟnuously on the 7-segment displays.

In this version of the program leading zeroes are blanked.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-EVENT2.C
***/
#define DIGIT1 PORTA.RA0
#define DIGIT2 PORTA.RA1
#define DIGIT3 PORTA.RA2
#define DIGIT4 PORTA.RA3

unsigned int Cnt = 0;
unsigned char flag = 0;
unsigned int D1,D2,D3,D4,D5,D6;

//
// This funcƟon finds the bit paƩern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the funcƟon.
//
unsigned char Display(unsigned char no)
{

unsigned char PaƩern;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

PaƩern = SEGMENT[no]; // PaƩern to return
return (PaƩern);

}

//
// Interrupt Service RouƟne
//
void interrupt (void)
{

if(INTCON.TMR0IF == 1) // If Timer interrupt occured
{
TMR0L = 100; // Reload Ɵmer register
INTCON.TMR0IF = 0; // Clear Ɵmer interrupt flag

Figure 6.5: mikroC Pro for the PIC-Modified Program.

Intermediate PIC18 Projects 183

switch(flag)
{
case 0:
{
DIGIT1 = 0; // Disable digit 1
D1 = Cnt/1000; // 1000s digit
if(D1 != 0) // Check if blanking required
{

PORTD = Display(D1); // Send to PORTD
DIGIT4 = 1; // Enable digit 4

}
flag = 1;
break;

}
case 1:
{
DIGIT4 = 0; // Disable digit 4
D2 = Cnt % 1000;
D3 = D2/100; // 100s digit
if(D3 != 0 || D1 != 0) // Check if blanking required
{

PORTD = Display(D3); // Send to PORTD
DIGIT3 = 1; // Enable digit 3

}
flag = 2;
break;

}
case 2:
{
DIGIT3 = 0; // Disable digit 3
D4 = D2 % 100;
D5 = D4/10; // 10s digit
if(D5 != 0 || D3 != 0 || D1 != 0) // Check if blanking is required
{

PORTD = Display(D5); // Send to PORTD
DIGIT2 = 1; // Enable digit 2

}
flag = 3;
break;

}
case 3:
{
DIGIT2 = 0; // Disable digit 2
D6 = D4 % 10;
PORTD = Display(D6); // Send to PORTD
DIGIT1 = 1; // Enable digit 1
flag = 0;
break;

}
}

}

Figure 6.5
cont’d

184 Chapter 6

if(INTCON.INT0IF == 1) // If external interrupt occurred
{

Cnt++; // Increment event count
INTCON.INT0IF = 0; // Clear ext interrupt flag

}
}

//
// Start of MAIN Program
//
void main()
{

ANSELA = 0; // Configure PORTA as digital
ANSELD = 0; // Configure PORTD as digital
ANSELB = 0; // Configure PORTB as digital
TRISA = 0; // Configure PORTA as outputs
TRISD = 0; // Configure PORTD as outputs
TRISB = 1; // RB0 is event input

DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2
DIGIT3 = 0; // Disable digit 3
DIGIT4 = 0; // Disable digit 4

//
// Configure TIMER0 interrupts
//

T0CON = 0xC5; // TIMER0 in 8-bit mode
TMR0L = 100; // Load Timer register

//
// Configure External interrupts and enable interrupts
//

INTCON = 0xB0;

for(;;) // Endless loop
{ // Wait and process interrupts
}

}

Figure 6.5
cont’d

Intermediate PIC18 Projects 185

For each successive interrupt, data are sent to the corresponding digit, and its digit is

enabled. A switch statement together with a flag variable is used to determine which digit

should be refreshed.

If on the other hand the source of the interrupt is the external event, then the event count

(Cnt) is incremented by 1, and the INT0 interrupt flag is cleared so that the processor can

accept further interrupts from this source.

Function Display as before determines the bit pattern to be sent to the port to display a

given number.

Modified Program

In Figure 6.4, the display shows leading zeroes, for example, number 14 is displayed as

0014. The program could easily be modified to blank leading zeroes. The modified

program (called MIKROC-EVENT2.C) is shown in Figure 6.5.

Figure 6.6 shows an example display.

MPLAB XC8

The MPLAB XC8 version of the program is shown in Figure 6.7 (XC8-EVENT1.C). The

operation of the program is the same as in Figure 6.5.

Figure 6.6: Example Display. (For color version of this figure, the reader is referred to the
online version of this book.)

186 Chapter 6

/**
 4-DIGIT 7-SEGMENT DISPLAY EVENT COUNTER
 =======================================

In this project four common cathode 7-segment LED displays are connected to PORTD of a
PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal.
Four PORTA pins are used to enable/disable the LEDs. In addiƟon, external interrupt input
INT0 (RB0) is used to receive external events. An event is assumed to occur if pin INT0 goes
from logic 0 to logic 1.

The program uses two ISR rouƟnes: the Ɵmer routine is used to refresh the Display every 5 ms.
External interrupt ISR is used to increment the event count. The event count is displayed
conƟnuously on the 7-segment displays.

In this version of the program leading zeroes are blanked.

Author: Dogan Ibrahim
Date: August 2013
File: XC8-EVENT2.C
***/

#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define DIGIT1 PORTAbits.RA0
#define DIGIT2 PORTAbits.RA1
#define DIGIT3 PORTAbits.RA2
#define DIGIT4 PORTAbits.RA3

unsigned int Cnt = 0;
unsigned char flag = 0;
unsigned int D1,D2,D3,D4,D5,D6;

//
// This funcƟon finds the bit paƩern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the funcƟon.
//
unsigned char Display(unsigned char no)
{
 unsigned char PaƩern;
 unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

 PaƩern = SEGMENT[no]; // PaƩern to return
 return (PaƩern);
}

//
// Interrupt Service RouƟne
//

Figure 6.7: MPLAB XC8 Program Listing.

Intermediate PIC18 Projects 187

void interrupt isr (void)
{
 if(INTCONbits.TMR0IF == 1) // If Timer interrupt occurred
 {
 TMR0L = 100; // Reload Ɵmer register
 INTCONbits.TMR0IF = 0; // Clear Ɵmer interrupt flag
 switch(flag)
 {
 case 0:
 {
 DIGIT1 = 0; // Disable digit 1
 D1 = Cnt/1000; // 1000s digit
 if(D1 != 0) // Check if blanking required
 {
 PORTD = Display(D1); // Send to PORTD
 DIGIT4 = 1; // Enable digit 4
 }
 flag = 1;
 break;
 }
 case 1:
 {
 DIGIT4 = 0; // Disable digit 4
 D2 = Cnt % 1000;

 if(D3 != 0 || D1 != 0) // Check if blanking required
 {
 PORTD = Display(D3); // Send to PORTD
 DIGIT3 = 1; // Enable digit 3
 }
 flag = 2;
 break;
 }
 case 2:
 {
 DIGIT3 = 0; // Disable digit 3
 D4 = D2 % 100;
 D5 = D4/10; // 10s digit
 if(D5 != 0 || D3 != 0 || D1 != 0) // Check if blanking is required
 {
 PORTD = Display(D5); // Send to PORTD
 DIGIT2 = 1; // Enable digit 2
 }
 flag = 3;
 break;
 }
 case 3:
 {
 DIGIT2 = 0; // Disable digit 2
 D6 = D4 % 10;
 PORTD = Display(D6); // Send to PORTD

 D3 = D2/100; // 100s digit

Figure 6.7
cont’d

188 Chapter 6

 DIGIT1 = 1; // Enable digit 1
 flag = 0;
 break;
 }
 }
 }
 if(INTCONbits.INT0IF == 1) // If external interrupt occurred
 {
 Cnt++; // Increment event count
 INTCONbits.INT0IF = 0; // Clear ext interrupt flag
 }
}

//
// Start of MAIN Program
//
void main()
{

 ANSELA = 0; // Configure PORTA as digital
 ANSELD = 0; // Configure PORTD as digital
 ANSELB = 0; // Configure PORTB as digital
 TRISA = 0; // Configure PORTA as outputs
 TRISD = 0; // Configure PORTD as outputs
 TRISB = 1; // RB0 is event input

 DIGIT1 = 0; // Disable digit 1
 DIGIT2 = 0; // Disable digit 2
 DIGIT3 = 0; // Disable digit 3
 DIGIT4 = 0; // Disable digit 4
 //
 // Configure TIMER0 interrupts
 //
 T0CON = 0xC5; // TIMER0 in 8-bit mode
 TMR0L = 100; // Load Timer register
 //
 // Configure External interrupts and enable interrupts
 //
 INTCON = 0xB0;

 for(;;) // Endless loop
 { // Wait and process interrupts
 }
 }

Figure 6.7
cont’d

Intermediate PIC18 Projects 189

Project 6.2dCalculator with a Keypad and Liquid Crystal Display
Project Description

Keypads are small keyboards that are used to enter numeric or alphanumeric data to

microcontroller systems. Keypads are available in a variety of sizes and styles from 2� 2

to 4� 4 or even bigger.

In this project, a 4� 4 keypad and a liquid crystal display (LCD) are used, and a simple

calculator is designed. Figure 6.8 shows the picture of the keypad used.

Figure 6.9 shows the structure of the keypad used in this project, which consists of 16

switches, formed in a 4� 4 array, and named 0e9, Enter, þ,�,* and /. Assuming that the

keypad is connected to PORTC, the steps to detect which key is pressed is as follows:

• A logic 1 is applied to the first column via RC0.

• Port pins RC4eRC7 are read. If the data are nonzero, then a switch is pressed. If RC4

is 1, key 1 is pressed, if RC5 is 1, key 4 is pressed, if RC6 is 1, key 9 is pressed, and so

on.

• A logic 1 is applied to the second column via RC1.

• Again Port pins RC4eRC7 are read. If the data are nonzero, then a switch is pressed. If

RC4 is 1, key 2 is pressed, if RC5 is 1, key 6 is pressed, if RC6 is 1, key 0 is pressed,

and so on.

• The above process is repeated for all the four columns continuously.

In this project, a simple integer calculator is designed. The calculator can add, subtract,

multiply, and divide integer numbers and show the result on the LCD. The operation of

Figure 6.8: A 43 4 Keypad. (For color version of this figure, the reader is referred to the
online version of this book.)

190 Chapter 6

the calculator is as follows: when power is applied to the system, the LCD displays text

CALCULATOR for 2 s. Then, text No1: is displayed in the first row of the LCD, and

the user is expected to type the first number and then press the ENTER key. Then, text

No2: is displayed in the second row of the LCD where the user enters the second

number and press the ENTER key. After this, the required operation key should be

pressed. The result will be displayed on the LCD for 5 s, and then the LCD will be

cleared, ready for the next calculation. The example below shows how numbers 12 and

20 can be added:

No1: 12 ENTER
No2: 20 ENTER
Op: +
Res = 32

In this project, the keypad is labeled as follows:

1 2 3 4
5 6 7 8
9 0 ENTER
+ � X /

One of the keys, between 0 and ENTER is not used in the project.

Project Hardware

The block diagram of the project is shown in Figure 6.10. The circuit diagram is given

in Figure 6.11. A PIC18F45K22 microcontroller with an 8 MHz crystal is used in the

project. Columns of the keypad are connected to port RC0eRC3, and rows are

Figure 6.9: The 43 4 Keypad Structure.

Intermediate PIC18 Projects 191

connected to port RC4eRC7 via pull-down resistors. The LCD is connected to PORTB

in the default mode. An external reset button also provides to reset the microcontroller

should it be necessary.

If you are using the EasyPIC V7 development board with the mikroElektronika

4� 4 Keypad, then simply connect the keypad IDC10 ribbon cable connector to

PORTC header at the edge of the board and enable the PORTC Pull-Down

resistors by moving them downward (see Figure 6.11 for pull-down resistor

requirements).

Project PDL

The project PDL is shown in Figure 6.12. The program consists of two parts: function

getkeypad and the main program. Function getkeypad receives a key from the keypad.

Inside the main program, PORTB is configured as the digital output, the LCD is

initialized, and the heading “CALCULATOR” is displayed for 2 s. The program then

executes in an endless loop. Inside this loop, two numbers and the required operation are

received from the keypad. The microcontroller performs the required operation and

displays the result on the LCD.

Project Program

The program listing (MIKROC-KEYPAD.C) is given in Figure 6.13. Each key is given a

numeric value as follows:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

LCD
 PIC
18F45K22

 Keypad

Figure 6.10: Block Diagram of the Project.

192 Chapter 6

The program consists of a function called getkeypad that reads the pressed keys, and the

main program. Variable MyKey stores the key value (0e15) pressed, variables Op1 and

Op2 store the first and the second numbers entered by the user, respectively. All these

variables are cleared to zero at the beginning of the program. A while loop is then formed

to read the first number and store in variable Op1. This loop exits when the user presses

the ENTER key. Similarly, the second number is read from the keyboard in a second

while loop. Then, the operation to be performed is read and stored in variable MyKey, and

a switch statement is used to perform the required operation and store the result in

variable Calc. The result is converted into a string array using function LongToStr and

leading blank characters are removed. The program displays the result on the LCD, waits

Figure 6.11: Circuit Diagram of the Project.

Intermediate PIC18 Projects 193

for 5 s, and then clears the screen and is ready for the next calculation. This process is

repeated forever.

Function getkeypad receives a key from the keypad. We start by sending a 1 to

column 1, and then, we check all the rows. When a key is pressed, a logic 1 is

detected in the corresponding row, and the program jumps out of the while loop.

Then, a for loop is used to find the actual key pressed by the user as a number from

0 to 15.

It is important to realize that when a key is pressed or released, we get what is

known as contact noise where the key output pulses up and down momentarily,

and this produces a number of logic 0 and 1 pulses at the output. Switch contact

noise is usually removed either in hardware or by programming, and this process is

called contact debouncing. In software, the simplest way to remove the contact

BEGIN
Configure LCD connections
Configure PORTB as digital output
Initialize LCD
Display heading
Wait 2 s
Clear heading
DO FOREVER

Display No1:
Read first number
Display No2:
Read second number
Display Op:
Read operation
Perform operation
Display result
Wait 5 s

ENDDO
END

BEGIN/GETKEYPAD
IF a key is pressed

 Get the key code (0 to 15)
 Return the key code

ENDIF
END/GETKEYPAD

Figure 6.12: Project PDL.

194 Chapter 6

/***
 CALCULATOR WITH KEYPAD AND LCD
 ==============================

In this project a 4 x 4 keypad is connected to PORTC of a PIC18F45K22 microcontroller. Also an
LCD is connected to PORTB. The project is a simple calculator which can perform integer arithmeƟc.

The keys are organised as follows:

 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15

The keys are labeled as follows:

 1 2 3 4
 5 6 7 8
 9 0 Enter
 + – * /

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-KEYPAD.C
**/
// LCD module connecƟons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_DirecƟon at TRISB4_bit;
sbit LCD_EN_DirecƟon at TRISB5_bit;
sbit LCD_D4_DirecƟon at TRISB0_bit;
sbit LCD_D5_DirecƟon at TRISB1_bit;
sbit LCD_D6_DirecƟon at TRISB2_bit;
sbit LCD_D7_DirecƟon at TRISB3_bit;
// End LCD module connecƟons

#define MASK 0xF0
#define Enter 11
#define Plus 12
#define Minus 13
#define MulƟply 14
#define Divide 15

//

//
// This funcƟon gets a key from the keypad and returns it to calling program

Figure 6.13: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 195

unsigned char getkeypad()
{
 unsigned char i, Key = 0;

 PORTC = 0x01; // Start with column 1
 while((PORTC & MASK) == 0) // While no key pressed
 {
 PORTC = (PORTC << 1); // next column
 Key++; // column number
 if(Key == 4)
 {
 PORTC = 0x01; // Back to column 1
 Key = 0;
 }
 }
 Delay_Ms(20); // Switch debounce

 for(i = 0x10; i !=0; i <<=1) // Find the key pressed
 {
 if((PORTC & i) != 0)break;
 Key = Key + 4;
 }

 PORTC = 0x0F;
 while((PORTC & MASK) != 0); // Wait unƟl key released
 Delay_Ms(20); // Switch debounce

 return (Key); // Return key number
}

//
// Start of MAIN program
//
void main()
{
 unsigned char MyKey, i,j,op[12];
 unsigned long Calc, Op1, Op2;
 char *lcd;

 ANSELB = 0; // Configure PORTB as digital
 ANSELC = 0; // Configure PORTC as digital
 TRISB = 0; // PORTB are outputs (LCD)
 TRISC = 0xF0; // RC4–RC7 are inputs

//
// Configure LCD
//
 Lcd_Init(); // IniƟalize LCD

Figure 6.13
cont’d

196 Chapter 6

 Lcd_Cmd(_LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"CALCULATOR"); // Display CALCULATOR
 Delay_ms(2000); // Wait 2 s
 Lcd_Cmd(_LCD_CLEAR); // Clear display
//
// Program loop
//
 for(;;) // Endless loop
 {
 MyKey = 0;
 Op1 = 0;
 Op2 = 0;

 Lcd_Out(1,1,"No1: "); // Display No1:
 while(1) // Get first no
 {
 MyKey = getkeypad();
 if(MyKey == Enter)break; // If ENTER pressed
 MyKey++; // Key number pressed
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 Lcd_Chr_Cp(MyKey + '0');

 }

 Lcd_Out(2,1,"No2: "); // Display No2:
 while(1) // Get second no
 {
 MyKey = getkeypad();
 if(MyKey == Enter)break; // If ENTER pressed
 MyKey++;
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 Lcd_Chr_Cp(MyKey + '0');

 }

 Lcd_Cmd(_LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"Op: "); // Display Op:

 MyKey = getkeypad(); // Get operaƟon
 Lcd_Cmd(_LCD_CLEAR);
 Lcd_Out(1,1,"Res="); // Display Res=
 switch(MyKey) // Perform the operaƟon
 {
 case Plus:
 Calc = Op1 + Op2; // If ADD
 break;
 case Minus:

 break;
 case MulƟply:
 Calc = Op1 * Op2; // If MulƟply

 Op1 = 10 * Op1 + MyKey; // First number in Op1

 Op2 = 10 * Op2 + MyKey; // Second number in Op2

 Calc = Op1 – Op2; // If Subtract

 break;

Figure 6.13
cont’d

Intermediate PIC18 Projects 197

noise is to wait for about 20 ms after a switch key is pressed, and also after a

switch key is released. In this project, contact debouncing is done in function

getkeypad.

Program Using Built-in Keypad Function

In the program listing in Figure 6.13, a function called getkeypad has been developed to

read a key from a keypad. mikroC Pro for PIC language has a built-in keypad library with

functions Keypad_Key_Press and Keypad_Key_Click to read a key from a keypad when

a key is pressed. The returned key has the code 1e16 (note that the returned key number

is not from 0 to 15). Figure 6.14 shows a modified program (MIKROC-KEYPAD2.C)

listing using the Keypad_Key_Click function to implement the calculator project. The

circuit diagram is the same as in Figure 6.11.

Before using any keypad function, we have to call the Keypad_Init function to

initialize the keypad library. Also, the connection port of the keypad must be

declared at the beginning of the program. In this project, the keypad is connected

to PORTC, and the following declaration must be made at the beginning of the

program:

char keypadPort at PORTC;

 case Divide:

 break;
 }

 LongToStr(Calc, op); // Convert to string in op
 lcd = Ltrim(op); // Remove leading blanks

 Lcd_Out_Cp(lcd); // Display result
 Delay_ms(5000); // Wait 5 s
 Lcd_Cmd(_LCD_CLEAR); / / Clear LCD
 }
}

 Calc = Op1/Op2; // If Divide

Figure 6.13
cont’d

198 Chapter 6

/***
 CALCULATOR WITH KEYPAD AND LCD
 ===============================

In this project a 4 x 4 keypad is connected to PORTC of a PIC18F45K22 microcontroller. Also an
LCD is connected to PORTB. The project is a simple calculator which can perform integer
arithmeƟc.

The keys are labeled as follows:

 1 2 3 4
 5 6 7 8
 9 0 Enter
 + – * /

In this version of the program built-in keypad libray is used.

Author: Dogan Ibrahim
Date: August 2013
File: MIKROC-KEYPAD2.C
***/
// LCD module connecƟons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_DirecƟon at TRISB4_bit;
sbit LCD_EN_DirecƟon at TRISB5_bit;
sbit LCD_D4_DirecƟon at TRISB0_bit;
sbit LCD_D5_DirecƟon at TRISB1_bit;
sbit LCD_D6_DirecƟon at TRISB2_bit;
sbit LCD_D7_DirecƟon at TRISB3_bit;
// End LCD module connecƟons

// Keypad module connecƟons
char keypadPort at PORTC;
// End of keypad module connecƟons

#define Enter 12
#define Plus 13
#define Minus 14
#define MulƟply 15
#define Divide 16

//
// Start of MAIN program
//
void main()

Figure 6.14: Modified mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 199

{
 unsigned char MyKey, i,j,op[12];
 unsigned long Calc, Op1, Op2;
 char *lcd;

 ANSELB = 0; // Configure PORTB as digital
 ANSELC = 0; // Configure PORTC as digital
 TRISB = 0; // PORTB are outputs (LCD)
 TRISC = 0xF0; // RC4–RC7 are inputs

 Keypad_Init(); // IniƟalize keypad library
//
// Configure LCD
//
 Lcd_Init(); // IniƟalize LCD
 Lcd_Cmd(_LCD_CLEAR);
 Lcd_Out(1,1,"CALCULATOR"); // Display CALCULATOR
 Delay_ms(2000); // Wait 2 s
 Lcd_Cmd(_LCD_CLEAR); // Clear display
//
// Program loop
//
 for(;;) // Endless loop
 {
 MyKey = 0;
 Op1 = 0;
 Op2 = 0;

 Lcd_Out(1,1,"No1: "); // Display No1:
 while(1) // Get first no
 {
 do
 MyKey = Keypad_Key_Click();
 while(!MyKey);
 if(MyKey == Enter)break; // If ENTER pressed
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 Lcd_Chr_Cp(MyKey + '0');

 }

 Lcd_Out(2,1,"No2: "); // Display No2:
 while(1) // Get second no
 {
 do
 MyKey = Keypad_Key_Click();
 while(!MyKey);
 if(MyKey == Enter)break; // If ENTER pressed
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 Lcd_Chr_Cp(MyKey + '0');

 }

 Op1 = 10 * Op1 + MyKey; // First number in Op1

 Op2 = 10 * Op2 + MyKey; // Second number in Op2

Figure 6.14
cont’d

200 Chapter 6

MPLAB XC8

The program listing for the MPLAB XC8 version of the program is shown in

Figure 6.15. Note here that the default LCD connections are slightly different when

using the MPLAB XC8 compiler, where RB4 is connected to E instead of RS, and RB5

is connected to RS instead of E. Also, the RW pin of the LCD is connected to RB6 of

the microcontroller.

 Lcd_Cmd(_LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"Op: "); // Display Op:

 do
 MyKey = Keypad_Key_Click(); // Get operaƟon
 while(!MyKey);
 Lcd_Cmd(_LCD_CLEAR);
 Lcd_Out(1,1,"Res="); // Display Res=
 switch(MyKey) // Perform the operaƟon
 {
 case Plus:
 Calc = Op1 + Op2; // If ADD
 break;
 case Minus:

 break;
 case MulƟply:
 Calc = Op1 * Op2; // If MulƟply
 break;
 case Divide:

 break;
 }

 LongToStr(Calc, op); // Convert to string in op
 lcd = Ltrim(op); // Remove leading blanks

 Lcd_Out_Cp(lcd); // Display result
 Delay_ms(5000); // Wait 5 s
 Lcd_Cmd(_LCD_CLEAR); // Clear LCD
 }
}

 Calc = Op1/Op2; // If Divide

 Calc = Op1 – Op2; // If Subtract

Figure 6.14
cont’d

Intermediate PIC18 Projects 201

/***
 CALCULATOR WITH KEYPAD AND LCD
 ==============================

In this project a 4 x 4 keypad is connected to PORTC of a PIC18F45K22 microcontroller. Also an
LCD is connected to PORTB. The project is a simple calculator which can perform integer arithmeƟc.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD
============ ===

 RB0 D4
 RB1 D5
 RB2 D6
 RB3 D7
 RB4 E
 RB5 R/S
 RB6 RW

The keys are organised as follows:

 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15

The keys are labeled as follows:

 1 2 3 4
 5 6 7 8
 9 0 Enter
 + – * /

Author: Dogan Ibrahim
Date: August 2013
File: XC8-KEYPAD.C
***/

#include <xc.h>
#include <stdlib.h>
#include <plib/xlcd.h>
#include <plib/delays.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define MASK 0xF0
#define Enter 11
#define Plus 12
#define Minus 13

Figure 6.15: MPLAB XC8 Program Listing.

202 Chapter 6

#define MulƟply 14
#define Divide 15

//
// This funcƟon creates seconds delay. The argument specifies the delay Ɵme in seconds.
//
void Delay_Seconds(unsigned char s)
{
 unsigned char i,j;

 for(j = 0; j < s; j++)
 {
 for(i = 0; i < 100; i++)__delay_ms(10);
 }
}

//
// This funcƟon creates 18 cycles delay for the xlcd library
//
void DelayFor18TCY(void)
{
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;
}

//
// This funcƟon creates 15 ms delay for the xlcd library
//
void DelayPORXLCD(void)
{
 __delay_ms(15);
 return;
}

//
// This funcƟon creates 5 ms delay for the xlcd library
//
void DelayXLCD(void)
{
 __delay_ms(5);
 return;
}

//

//
// This funcƟon clears the screen

Figure 6.15
cont’d

Intermediate PIC18 Projects 203

void LCD_Clear()
{
 while(BusyXLCD());
 WriteCmdXLCD(0x01);
}

//
// This funcƟon moves the cursor to posiƟon row,column
//
void LCD_Move(unsigned char row, unsigned char column)
{
 char ddaddr = 40 * (row–1) + column;
 while(BusyXLCD());
 SetDDRamAddr(ddaddr);
}

//
// This funcƟon gets a key from the keypad and returns it to calling program
//
unsigned char getkeypad()
{
 unsigned char i, Key = 0;

 PORTC = 0x01; // Start with column 1
 while((PORTC & MASK) == 0) // While no key pressed
 {
 PORTC = (PORTC << 1); // next column
 Key++; // column number
 if(Key == 4)
 {
 PORTC = 0x01; // Back to column 1
 Key = 0;
 }
 }
 __delay_ms(20); // Switch debounce

 for(i = 0x10; i !=0; i <<=1) // Find the key pressed
 {
 if((PORTC & i) != 0)break;
 Key = Key + 4;
 }

 PORTC = 0x0F;
 while((PORTC & MASK) != 0); // Wait unƟl key released
 __delay_ms(20); // Switch debounce

 return (Key); // Return key number
}

Figure 6.15
cont’d

204 Chapter 6

//
// Start of MAIN program
//
void main()
{
 unsigned char MyKey, i,j,op[10];
 unsigned long Calc, Op1, Op2;

 ANSELB = 0; // Configure PORTB as digital
 ANSELC = 0; // Configure PORTC as digital
 TRISB = 0; // PORTB are outputs (LCD)
 TRISC = 0xF0; // RC4–RC7 are inputs

 OpenXLCD(FOUR_BIT & LINES_5X7); // IniƟalize LCD
 while(BusyXLCD()); // Wait if the LCD is busy
 WriteCmdXLCD(DON); // Turn Display ON
 while(BusyXLCD()); // Wait if the LCD is busy
 WriteCmdXLCD(0x06); // Move cursor right
 putrsXLCD("CALCULATOR"); // Display heading
 Delay_Seconds(2); // 2 s delay
 LCD_Clear(); // Clear display
//
// Program loop
//
 for(;;) // Endless loop
 {
 MyKey = 0;
 Op1 = 0;
 Op2 = 0;

 LCD_Move(1,1); // Move to row = 1,column = 1
 putrsXLCD("No1: "); // Display No1:
 while(1) // Get first no
 {
 MyKey = getkeypad();
 if(MyKey == Enter)break; // If ENTER pressed
 MyKey++; // Key number pressed
 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 putcXLCD(MyKey + '0');

 }

 LCD_Move(2,1); // Move to row = 2,column = 1
 putrsXLCD("No2: "); // Display No2:
 while(1) // Get second no
 {
 MyKey = getkeypad();
 if(MyKey == Enter)break; // If ENTER pressed
 MyKey++;

 Op1 = 10 * Op1 + MyKey; // First number in Op1

Figure 6.15
cont’d

Intermediate PIC18 Projects 205

Project 6.3dThe High/Low Game
Project Description

This project uses a 4� 4 keypad and an LCD to create the classical High/Low game. For

those of you who do not know how to play the game, the rules for this version of the

game are as follows:

• The computer will generate a secret random number between 1 and 32767.

• The top row of the LCD will display “Guess Now.”.

• The player will try to guess what the number is by entering a number on the keypad

and then pressing the ENTER key.

 if(MyKey == 10)MyKey = 0; // If 0 key pressed
 putcXLCD(MyKey + '0');

 }

 LCD_Clear(); // Clear LCD
 LCD_Move(1,1); // Move to row = 1,column = 1
 putrsXLCD("Op: "); // Display Op:

 MyKey = getkeypad(); // Get operaƟon
 LCD_Clear();
 LCD_Move(1,1);
 putrsXLCD("Res="); // Display Res=
 switch(MyKey) // Perform the operaƟon
 {
 case Plus:
 Calc = Op1 + Op2; // If ADD
 break;
 case Minus:

 break;
 case MulƟply:
 Calc = Op1 * Op2; // If MulƟply
 break;
 case Divide:

 break;
 }

 ltoa(op, Calc, 10); // Convert to string in op
 putsXLCD(op); // Display result
 Delay_Seconds(5); // Wait 5 s
 LCD_Clear();
 }
}

 Op2 = 10 * Op2 + MyKey; // Second number in Op2

 Calc = Op1 – Op2; // If Subtract

 Calc = Op1/Op2; // If Divide

Figure 6.15
cont’d

206 Chapter 6

• If the guessed number is higher than the secret number, then the bottom row of the

LCD will display “HIGHdTry Again”.

• If the guessed number is lower than the secret number, then the bottom row of the LCD

will display “LOWdTry Again”.

• If the player guesses the number, then the bottom row will display “Well Done.”.

• The program waits for 5 s, and the game restarts

Generating a Random Number

In our program, we will be generating a random integer number using the mikroC Pro for

PIC library functions “srand” and “rand”. Function “srand” must be called with an integer

argument (or “seed”) to prepare the random number generator library. Then, every time

function “rand” is called a new random number will be generated between 1 and 32767.

The set of numbers generated is the same if the program is restarted with the same “seed”

applied to function “srand”. Thus, if the game is restarted after resetting the

microcontroller, the same set of numbers will be generated.

Block Diagram

The block diagram of the project is as in Figure 6.10.

The keys are organized on the keypad as shown below:

1 2 3 A
4 5 6 B
7 8 9 C
* 0 # D

The mikroC Pro for PIC returns the following numbers when a key is pressed on the keypad:

Key Pressed Number Returned
1 1
2 2
3 3
A 4
4 5
5 6
6 7
B 8
7 9
8 10
9 11
C 12
* 13
0 14
15
D 16

Intermediate PIC18 Projects 207

We will be using key “C” as the ENTER key in our program. Also, we will be correcting

the key numbering in our program so that, for example, when “7” is pressed on the keypad

a 7 is returned and not a 9 as in the above table.

Circuit Diagram

The circuit diagram of the project is shown in Figure 6.16. The LCD is connected to

PORTB as in the earlier projects. The rows and columns of the keypad are connected to

PORTC.

Figure 6.16: Circuit Diagram of the Project.

208 Chapter 6

Project PDL

The PDL of this project is given in Figure 6.17.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is named MIKROC-HILO.C, and the program listing of

the project is shown in Figure 6.18.

BEGIN

Declare keypad port number
Define LCD to microcontroller pin connecƟons

 Configure PORTB as digital
 IniƟalize keypad library
 IniƟalize LCD
 Display heading “High/Low Game”
 Set new game flag
 Wait 2 s

DO FOREVER
IF new game flag is set THEN

 Clear LCD
 Turn OFF cursor
 Generate a random number (secret number)
 Display “Guess Now..” on row 1

ENDIF
 Read and display (on row 2) numbers unƟl ENTER is pressed

IF entered number > secret number THEN
 Display “HIGH—Try Again”
 Wait 1 s
 Clear second row of LCD

ELSE IF entered number < secret number THEN
 Display “LOW—Try Again”
 Wait 1 s
 Clear second row of LCD

ELSE IF entered number = secret number THEN
 Display “Well Done..”
 Wait 5 s
 Set new game flag

ENDIF
 END

Figure 6.17: PDL of the Project.

Intermediate PIC18 Projects 209

/**
 High/Low Game Using Keypad and LCD
 ===============================

This project implements the High/Low game using the 4 x 4 keypad and an LCD.
The program generates a random number between 1 and 32767 and expects the
player to guess the number. The LCD displays "Guess Now.." on top row of the
display.

The player then guesses the number by entering a number via the keypad and then
pressing the ENTER key. If the guessed number is bigger than the generated number
the message “HIGH—Try Again” will be displayed on the boƩom row of the LCD.

If the guessed number is lower than the generated number then the message
“LOW—Try Again” will be generated on the boƩom row of the LCD. If on the
other hand the player guesses the number correctly, the boƩom row of the LCD
will display the message "Well Done..".

The game will re-start aŌer 5 s delay.

The microcontroller in this project is PIC18F45K22 and is operated from an 8 MHz
crystal as before. An 4x4 keypad is connected to PORTC. The LCD is connected to
PORTB.

Programmer: Dogan Ibrahim
Date: September 2013
File: MIKROC-HILO.C

***/
// Declare LCD connecƟons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_DirecƟon at TRISB4_bit;
sbit LCD_EN_DirecƟon at TRISB5_bit;
sbit LCD_D4_DirecƟon at TRISB0_bit;
sbit LCD_D5_DirecƟon at TRISB1_bit;
sbit LCD_D6_DirecƟon at TRISB2_bit;
sbit LCD_D7_DirecƟon at TRISB3_bit;
// End of LCD connecƟons

// Declare keypad connecƟon
char keypadPORT at PORTC;
// End of keypad connecƟon

#define ENTER_KEY 12

Figure 6.18: Program Listing of the Project.

210 Chapter 6

unsigned char kp, new_game;
unsigned int GuessNumber, PlayerNumber;
int Diff;

void main()
{
 unsigned char Txt1[4];

 ANSELB = 0; // Configure PORT B as digital
 ANSELC = 0; // Configure PORTC as digital
 Keypad_Init(); // IniƟalize keypad library
 Lcd_Init(); // IniƟalize LCD
 Lcd_Out(1, 1, "High/Low Game"); // Display heading
 Delay_ms(2000); // Wait 2 s

 new_game = 1;
 srand(5); // Random number seed

 for(;;) // DO FOREVER
 {
 if(new_game == 1)
 {
 Lcd_Cmd(_LCD_CLEAR); // Clear LCD
 Lcd_Cmd(_LCD_CURSOR_OFF); // Turn OFF cursor
 Lcd_Out(1, 1, "Guess Now.."); // Display "Guess Now.."
 GuessNumber = rand(); // Generate a random number
 }
 kp = 0;
 PlayerNumber = 0;
 Lcd_Out(2, 1, ""); // PosiƟon cursor at 1,1
 while(kp != ENTER_KEY) // UnƟl ENTER pressed
 {
 do
 {
 kp = Keypad_Key_Click(); // Look for key press
 }while(!kp);

 if(kp != ENTER_KEY) // If not ENTER key
 {

 if(kp >

 PlayerNumber = 10 * PlayerNumber + kp;
 ByteToStr(kp, Txt1);
 Txt1[0] = Txt1[2]; // Get the number
 Txt1[1] = '\0'; // Make a string
 Lcd_Out_Cp(Txt1); // Display on LCD
 }
 }

 if(kp > 4 && kp <9)kp = kp = kp–1; // 5 is 4, 6 is 5….
8 && kp < 12)kp = kp–2; // 7 is 9, 8 is 10…

 if(kp == 14)kp = 0; // 0 is14

Figure 6.18
cont’d

Intermediate PIC18 Projects 211

At the beginning of the program, keypad PORT is declared as PORTC, and some other

variables used in the program are also declared. Then, PORTB is configured as a digital

output, keypad library is initialized, the LCD is initialized, and message “High/Low

Game” is displayed on the LCD. After a 2 s delay, the program continues in an endless

loop.

If this is a new game, the LCD is cleared, and message “Guess Now.” is displayed in the

first row of the LCD. Then, a random number is generated between 1 and 32767 by

calling library function “rand”, and this number is stored in variable “GuessNumber”.

Note that the “srand” library function must be called with an integer number before

calling “rand”.

The keypad is then checked, and numbers are received until the ENTER key (key C) is

pressed. The key numbers are then adjusted such that if, for example, 4 is pressed, number

4 is used by the program instead of 5. Similarly, if key 0 is pressed, number 0 is used by

the program instead of 14 returned by the keypad library routine. The numbers entered by

 Delay_ms(1000); // Wait one s
 Diff = PlayerNumber - GuessNumber; // Find the diff

 if(Diff > 0) // Greater ?
 {
 Lcd_Out(2, 1, "HIGH - Try Again");
 new_game = 0; // Not a new game
 Delay_ms(1000);
 Lcd_Out(2,1," "); // Clear second row
 }

 if(Diff < 0) // Less ?
 {
 Lcd_Out(2, 1, "LOW - Try Again");
 new_game = 0; // Not a new game
 Delay_ms(1000);
 Lcd_Out(2,1," "); // Clear second row
 }

 if(Diff == 0) // Equal ?
 {
 Lcd_Out(2,1, "Well Done..");
 new_game = 1; // New game
 Delay_ms(5000); // Wait 5 s to
 } // re-start game
 } // End of for
 } // End of program

Figure 6.18
cont’d

212 Chapter 6

the player are displayed in the second row of the LCD as they are entered so that the

player can see what he/she has entered. After the player presses the ENTER key, a 1 s

delay is introduced. The number entered by the player is stored in variable

“PlayerNumber” in decimal format.

The program then calculates the difference between the secret number in “GuessNumber”

and the number entered by the player (in PlayerNumber). This difference is stored in

variable “Diff”.

If “Diff” is positive, that is, if the number entered by the player is greater than the secret

number, then the program displays message “HIGHdTry Again”, waits for a second, and

clears the second row of the LCD, ready for the player to try another number.

Figure 6.19: Display from the GamedStart of the Game.

Figure 6.20: Display from the GamedUser Guessed 258.

Intermediate PIC18 Projects 213

If “Diff” is negative, that is, if the number entered by the player is less than the secret

number, then the program displays message “LOWdTry Again”, waits for a second, and

clears the second row of the LCD, ready for the player to try another number.

If “Diff” is 0, that is, if the number entered by the player is equal to the secret number,

then the program displays message “Well Done.” waits for 5 s, and sets the “new_game”

flag so that a new secret number can be generated by the program. The game continues as

before.

Figures 6.19e6.21 show various displays from the game. Note that the keypad keys are

not debounced in the keypad library, and sometimes, you may get double key strokes even

though you press a key once. You should be firm and quick when pressing a key to avoid

this from happening.

Project 6.4dGenerating Waveforms
Project Description

This project demonstrates how various waveforms can be generated using a

microcontroller. The following waveforms will be generated in this project: sawtooth

wave, triangle wave, any arbitrary wave, sine wave, and square wave. The first three

waveforms will be generated using a digital-to-analog converter (DAC).

Figure 6.22 shows the block diagram of a typical microcontroller-based waveform

generation system. Here, the microcontroller generates the required waveform as a digital

signal, and then, the DAC converts this signal into analog. In practical applications, a low-

pass filter is used after the DAC to clean the signal and remove any high-frequency

components.

Figure 6.21: Display from the GamedThe Guess was Low.

214 Chapter 6

Basically, two methods are used for waveform generation:

• The microcontroller calculates the waveform points in real-time and sends them to the

DAC.

• The waveform points are stored in a look-up table. The microcontroller reads these

points from the table and sends them to the DAC (this method is used to generate any

arbitrary waveform, or to generate higher frequency waveforms).

As we shall see later, the rate at which the waveform points are sent to the DAC

determines the frequency of the waveform.

Before going into the details of waveform generation, perhaps it is worthwhile to look at

the operation of a DAC.

DAC Converter

A DAC converts a digital signal into an analog signal. The block diagram of a typical

DAC is shown in Figure 6.23. This has a digital input, represented by D, analog output,

represented by Vo, and a stable and accurate voltage reference, Vref. In addition, some

Microcontroller DAC
Low-pass
filter

Analog
output

Figure 6.22: Block Diagram of Microcontroller-Based Waveform Generation.

DAC
Analog
output

Digital
inputs

Reference
voltage

Control
signals

Figure 6.23: The Block Diagram of a Typical DAC.

Intermediate PIC18 Projects 215

control lines are also used, such as chip select, gain select, and so on. The digital input

can either be in serial or in parallel form. In parallel converters, the width of the digital

input is equal to the width of the converter. For example, a 12-bit converter has 12 input

bits. Serial converters in general use the SPI or the I2C bus, and basically, a clock and a

data signal are used to send data to the converter. Parallel converters provide much faster

conversion times, but they are housed in larger packages.

DACs are manufactured as either unipolar or bipolar as far as the output voltages are

concerned. Unipolar converters can provide only positive output voltages, whereas bipolar

converters provide both positive and negative voltages. In this book, we will only be using

unipolar converters.

The relationship between the digital inputeoutput and the voltage reference are given by

Vo ¼ DVref

2n
(6.1)

Where Vo is the output voltage, Vref is the reference voltage, and n is the width of the

converter. For example, in a 12-bit converter (resolution¼ 12 bits) with a þ5 V reference

voltage,

Vo ¼ 5D

212
¼ 1:22D mV (6.2)

Thus, for example, if the input digital value is 1, the analog output voltage will be

1.22 mV, if the input value is 2, the analog output voltage will be 2.44 mV, and so on.

In this book, we shall be using a serial DAC for convenience and low cost. Most of the

serial DACs use the SPI bus for communicating with a microcontroller. It is worth looking

at the basic principles of the SPI bus before continuing with the project.

The SPI Bus

The SPI bus is one of the most commonly used protocols for serial communication

between a microcontroller and a peripheral device. The SPI bus is a mastereslave

type bus protocol. In this protocol, one device (usually the microcontroller) is

designated the master, and one or more other devices (usually sensors, converters, etc.)

are designated slaves. In a minimum configuration, only one master and one slave

are used. The master communicates with the slaves and controls all the activity on

the bus.

Figure 6.24 shows a configuration with one master and three slaves. The SPI bus used

three signals: clock (SCK), data in (SDI), and data out (SDO). The SDO of the master

is connected to the SDIs of the slaves, and SDOs of the slaves are connected to the

216 Chapter 6

SDI of the master. The master generates the SCK signals to enable data to be

transferred on the bus. In every clock pulse, 1 bit of data is moved from the master to

the slave, or from the slave to the master. The communication is only between a master

and a slave, and the slaves cannot communicate with one an other. It is important to

note that only one slave can be active at any time since there is no mechanism to

identify the slaves. Thus, slave devices have enable lines (e.g. CS), which are normally

controlled by the master. A typical communication between a master and several slaves

can be as follows:

• Master enables slave 1.

• Master sends SCK signals to read or write data to slave 1.

• Master disables slave 1 and enables slave 2.

• Master sends SCK signals to read or write data to slave 2.

• The above process continues as required.

PIC18F microcontrollers provide one or more sets of special SPI bus compatible pins to

enable the microcontroller to be connected to SPI slave peripheral devices. mikroC Pro for

PIC and MPLAB XC8 compilers both provide SPI libraries to simplify programming and

communication on the SPI bus.

Generating Sawtooth Waveform

In this part of the project, we will be generating a sawtooth waveform with the following

specifications:

Output voltage 0 to þ5 V
Frequency 100 Hz (period: 10 ms)
Step size 0.1 ms

Microcontroller

SPI Bus master
Slave 1 Slave 2 Slave 3

SDI
SCK

SDO

CS CS CS

Figure 6.24: SPI Bus with One Master and Multiple Slaves.

Intermediate PIC18 Projects 217

The circuit diagram of the project is shown in Figure 6.25. An MCP4921-type serial DAC

is connected to the SPI port (PORTC) of a PIC18F45K22 microcontroller. The following

connection is used between the microcontroller and the DAC:

Microcontroller Pin DAC Pin
RC3 (SCK) SCK
RC5 (SDO) SDI
RC0 CS

If you are using the EasyPIC V7 development board and the 12-Bit DAC board, just plug

in the DAC board to the PORTC IDC10 connector of the development board and configure

the DAC board DIL jumper for the above connections. Also, set the reference voltage

jumper on the DAC board to þ5 V.

MCP4921 is a 12-bit serial DAC manufactured by Microchip Inc., having the following

basic specifications:

• A 12-bit resolution,

• Up to a 20-MHz clock rate (SPI),

• Fast settling time of 4.5 ms,

• Unity or 2x gain output,

• External Vref input,

Figure 6.25: Circuit Diagram of the Project.

218 Chapter 6

• A 2.7e5.5 V operation,

• Extended temperature range (�40 to þ125 �C),
• An 8-pin DIL package.

Figure 6.26 shows the pin layout of the MCP4921. The pin definitions are as follows:

VDD, AVSS power supply and ground
CS chip select (LOW to enable the chip)
SCK,SDI SPI bus clock and data in
VOUTA analog output
VREFA reference input voltage
LDAC DAC input latch (transfers the input data to the DAC registers.

Normally tied to ground so that CS controls the data transfer).

Data are written to the DAC in 2 bytes. The lower byte specified bits D0:D8 of the digital

input data. The upper byte consists of the following bits:

D8:D11 bits D8:D11 of the digital input data
SHDN 1: output power down mode, 0: disable output buffer
GA output gain control. 0: gain is 2x, 1: gain is 1x
BUF 0: input unbuffered, 1: input buffered
A/B 0: write to DACA, 1: write to DACB (MCP4921 supports only DACA)

Project PDL

The PDL of the project is shown in Figure 6.27.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program is called MIKROC-WAVE1.C and is given in

Figure 6.28. At the beginning of the program, the CS enable input of the DAC is

defined. PORTC is configured as digital, and the SPI bus module is initialized using

built-in function SPI_Init. Inside the main program, an endless loop is formed, and the

steps of the sawtooth waveform are sent out inside a for loop. Since there are 11 steps

Figure 6.26: Pin Layout of MCP4921 DAC.

Intermediate PIC18 Projects 219

(0e10) in the waveform and the required frequency is 100 Hz, that is, period 10 ms,

then the duration of each step should be 10,000/11¼ 909 ms. The delay_us function is

used to generate the required delay. Function DAC receives the digital data (0e4095)

in its argument and sends the data to the DAC. The chip is enabled (CS¼ 0), and the

high byte is sent out first by setting the output gain to 1x. Then, the low byte is sent

through the SPI bus.

Figure 6.29 shows the output waveform obtained using the PSCGU250 digital

oscilloscope. Here, the vertical axis is 1 V per division, and the horizontal axis is 5 ms per

division. The graph is moved down the 0 V point for clarity. Note that the period of the

waveform is around 13 ms (i.e. frequency of about 77 kHz, and not 100 Hz). This is

because of the delay caused by the statements inside the for loop. We will see in the next

section how to improve the frequency.

mikroC Pro for the PIC SPI library supports the following functions (“x” in these

functions is either 1 or 2, and it designates the SPI module number to be used):

SPIx_Init: Initialize the SPI module in the master mode with FOSC/4 clock, data

transmitted on low to high edge, and data sampled at the middle of the interval.

SPIx_Init_Advanced: Similar to SPI_Init, but various initialization parameters can be

selected.

SPIx_Read: Read a byte from the SPI bus.

SPIx_Write: Write a byte via the SPI bus.

BEGIN
Define DAC port

 Configure PORTC as digital
 IniƟalize SPI module
 DO FOREVER
 Generate 11 step sawtooth wave
 Send the steps to DAC
 Wait 909 ms
 ENDDO
END

BEGIN/DAC
 Enable DAC
 Send high byte with 1x gain
 Send low byte
 Disable DAC
END/DAC

Figure 6.27: PDL of the Project.

220 Chapter 6

/**
 Sawtooth Waveform GeneraƟon
 ===========================

This project shows how a sawtooth wavefor with specified frequency can be generated using a
microcontroller. The PIC18F45K22 microcontroller is used with an 8 MHz crystal.

The MCP4921 DAC chip is used to convert the generated signal into analog. This is a 12-bit
converter controlled with the SPI bus signals.

Programmer: Dogan Ibrahim
Date: September 2013
File: MIKROC-WAVE1.C

***/
// DAC module connecƟons
sbit Chip_Select at RC0_bit;
sbit Chip_Select_DirecƟon at TRISC0_bit;
// End DAC module connecƟons

//
// This funcƟon sends 12 bits digital data to the DAC. The data is passed
// through the funcƟon argument called "value"
//
void DAC(unsigned int value)
{
 char temp;

 Chip_Select = 0; // Enable DAC chip

 // Send High Byte
 temp = (value >> 8) & 0x0F; // Store bits 8:11 to temp
 temp |= 0x30; // Define DAC seƫng (choose 1x gain)
 SPI1_Write(temp); // Send high byte via SPI

 // Send Low Byte
 temp = value; // Store bits 0:7 to temp
 SPI1_Write(temp); // Send low byte via SPI

 Chip_Select = 1; // Disable DAC chip
}

void main()
{
 float i;
 unsigned int DAC_Value;

The generated sawtooth waveform has amplitude 0 to +5 V and frequency of 100 Hz (period: 10 ms).

Figure 6.28: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 221

SPI_Set_Active: Sets the active SPI module to be used (for processors having more

than one SPI module).

Modified Sawtooth Program

The program given in Figure 6.29 can be improved by using a timer to generate interrupts

very close to 909 ms. Data can then be sent to the DAC inside the ISR.

Figure 6.30 shows the modified program (MIKROC-WAVE2.C). Timer0 is used in the

8-bit mode. To generate a delay of 909 ms, the value to be loaded into the timer register is

calculated as (Project 6.1)

 ANSELC = 0; // Configure PORTC as digital
 Chip_select = 1; // Disable DAC
 Chip_Select_DirecƟon = 0; // Set CS as output
 SPI1_Init(); // IniƟalize SPI module
 //
 // Generate the Sawtooth waveform
 //
 for(;;) // Endless loop
 {
 for(i = 0; i <= 1; i = i + 0.1) // Generate waveform steps
 {
 DAC_Value = i * 4095;
 DAC(DAC_Value); // Send to DAC converter
 Delay_us(909); // Wait 909 ms
 }
 }
}

Figure 6.28
cont’d

Figure 6.29: The Generated Sawtooth Waveform.

222 Chapter 6

/**
 Sawtooth Waveform GeneraƟon
 ===========================

This project shows how a sawtooth waveform with specified frequency can be generated using a
microcontroller. The PIC18F45K22 microcontroller is used with an 8 MHz crystal.

The generated sawtooth waveform consists of 11 steps from 0 to +5 V and has a frequency of
100 Hz (period of 10 ms).

The MCP4921 DAC chip is used to convert the generated signal into analog. This is a 12-bit
converter controlled with the SPI bus signals.

This version of the program uses Timer0 interrupts to generate the waveform with the specified
frequency.

Programmer: Dogan Ibrahim
Date: September 2013
File: MIKROC-WAVE2.C

***/
// DAC module connecƟons
sbit Chip_Select at RC0_bit;
sbit Chip_Select_DirecƟon at TRISC0_bit;
// End DAC module connecƟons

float Sample = 0.0;

//
// This funcƟon sends 12 bits digital data to the DAC. The data is passed
// through the funcƟon argument called "value"
//
void DAC(unsigned int value)
{
 char temp;

 Chip_Select = 0; // Enable DAC chip

 // Send High Byte
 temp = (value >> 8) & 0x0F; // Store bits 8:11 to temp
 temp |= 0x30; // Define DAC seƫng (choose 1x gain)
 SPI1_Write(temp); // Send high byte via SPI

 // Send Low Byte
 temp = value; // Store bits 0:7 to temp
 SPI1_Write(temp); // Send low byte via SPI

 Chip_Select = 1; // Disable DAC chip
}

//

Figure 6.30: Modified Program.

Intermediate PIC18 Projects 223

Time¼ (4� clock period)� Prescaler� (256� TMR0L)

Where Prescaler is the selected prescaler value, and TMR0L is the value loaded into

timer register TMR0L to generate timer interrupts for every Time period. In our

application, the clock frequency is 8 MHz, that is, clock period¼ 0.125 ms and

Time¼ 909 ms. Selecting a prescaler value of 8, the number to be loaded into TMR0L

can be calculated as follows:

TMR0L ¼ 256� Time

4 � clockperiod � prescaler

// Timr interrupt service rouƟne. Program jumps here at every 10 ms
//
void interrupt (void)
{
 unsigned int DAC_Value;

 TMR0L = 28; // Reload Ɵmer register
 INTCON.TMR0IF = 0; // Clear Ɵmer interrupt flag
//
// Generate the Sawtooth waveform
//
 DAC_Value = Sample * 4095;
 DAC(DAC_Value); // Send to DAC converter
 Sample = Sample + 0.1; // Next sample
 if(Sample > 1.0)Sample = 0.0;
}

void main()
{
 ANSELC = 0; // Configure PORTC as digital
 Chip_select = 1; // Disable DAC
 Chip_Select_DirecƟon = 0; // Set CS as output
 SPI1_Init(); // IniƟalize SPI module
//
 // Configure TIMER0 interrupts
 //
 T0CON = 0xC2; // TIMER0 in 8-bit mode
 TMR0L = 28; // Load Timer register
 INTCON = 0xA0; // Enable global and Timer0 interrupts
 for(;;) // Wait for interrupts
 {
 }
}

Figure 6.30
cont’d

224 Chapter 6

or

TMR0L ¼ 256� 909

4 � 0:125 � 8 ¼ 28

Thus, TMR0L should be loaded with 28. The value to be loaded into the TMR0 control

register T0CON can then be found as follows:

Thus, the T0CON register should be loaded with hexadecimal 0xC2. The next register to

be configured is the interrupt control register INTCON:

Taking the do not care entries (X) as 0, the hexadecimal value to be loaded into register

INTCON is thus 0xA0.

Figure 6.31 shows the new waveform with the vertical axis of 1 V per division and the

horizontal axis of 5 ms per division. Clearly, this waveform has the specified period of 10 ms.

Figure 6.31: Generated Waveform.

Intermediate PIC18 Projects 225

MPLAB XC8

The MPLAB XC8 version of the program (XC8-WAVE2.C) is shown in Figure 6.32.

MPLAB XC8 compiler supports the following SPI functions (“x” is 1 or 2, and it

designates the SPI module number in multiple SPI processors. In single SPI processors,

“x” can be omitted):

OpenSPIx: Initialize the SPIx module for SPI communication. This function takes

three arguments as follows:

sync_mode

bus_mode

MODE_00 Setting for SPI bus Mode 0,0 (clock is idle low, transmit on rising edge)
MODE_01 Setting for SPI bus Mode 0,1 (clock is idle low, transmit on falling edge)
MODE_10 Setting for SPI bus Mode 1,0 (clock is idle high, transmit on falling edge)
MODE_11 Setting for SPI bus Mode 1,1 (clock is idle high, transmit on rising edge)

smp_phase

SMPEND Input data sample at the end of data out
SMPMID Input data sample at the middle of data out
CloseSPIx This function disables the SPIx module
DataRdySPIx This function determines if a new value is available in the SPIx buffer.

The Function returns 0 if there are no data and 1 if there are data
getcSPIx This function reads a byte from the SPIx bus
getsSPIx This function reads a string from the SPIx bus
putcSPIx This function writes a byte to the SPIx bus
putsSPIx This function writes a string to the SPIx bus
ReadSPIx This function reads a byte from the SPIx bus
WriteSPIx This function writes a byte to the SPIx bus

Note that the SPI signals SCK and SDO must be configured as outputs in the MPLAB

XC8 version. The SPI bus is initialized using the OpenSPI function. Data are sent to the

SPI bus using the WriteSPI function. The remainder of the program is the same as the

mikroC Pro for the PIC version.

SPI_FOSC_4 Master mode, clock¼ FOSC/4
SPI_FOSC_16 Master mode, clock¼ FOSC/16
SPI_FOSC_64 Master mode, clock¼ FOSC/64
SPI_FOSC_TMR2 Master mode, clock¼ TMR2 output/2
SLV_SSON Slave mode, /SS pin control enabled
SLV_SSOFF Slave mode, /SS pin control disabled

226 Chapter 6

/**
 Sawtooth Waveform GeneraƟon
 ===========================

This project shows how a sawtooth waveform with specified frequency can be generated
using a microcontroller. The PIC18F45K22 microcontroller is used with an 8 MHz crystal.

The generated sawtooth waveform consists of 11 steps from 0 to +5 V and has a frequency
of 100 Hz (period of 10 ms).

The MCP4921 DAC chip is used to convert the generated signal into analog. This is a 12-bit
converter controlled with the SPI bus signals.

This program uses Timer0 interrupts to generate the waveform with the specified frequency.

Programmer: Dogan Ibrahim
Date: September 2013
File: XC8-WAVE2.C

***/

#include <xc.h>
#include <plib/spi.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

// DAC module connecƟons
#define Chip_Select PORTCbits.RC0
#define Chip_Select_DirecƟon TRISCbits.TRISC0
// End DAC module connecƟons

// SPI bus signal direcƟons
#define SCK_DirecƟon TRISCbits.TRISC3
#define SDO_DirecƟon TRISCbits.TRISC5
// End of SPI bus signal direcƟons

float Sample = 0.0;

//
// This funcƟon sends 12 bits digital data to the DAC. The data is passed through the
// funcƟon argument called "value"
//
void DAC(unsigned int value)
{
 char temp;

 Chip_Select = 0; // Enable DAC chip

 // Send High Byte
 temp = (value >> 8) & 0x0F; // Store bits 8:11 to temp
 temp |= 0x30; // Define DAC seƫng (choose 1x gain)

Figure 6.32: MPLAB XC8 Program Listing.

Intermediate PIC18 Projects 227

 WriteSPI1(temp); // Send high byte via SPI

 // Send Low Byte
 temp = value; // Store bits 0:7 to temp
 WriteSPI1(temp); // Send low byte via SPI

 Chip_Select = 1; // Disable DAC chip
}

//
// Timer interrupt service rouƟne. Program jumps here at every 909 ms
//
void interrupt isr (void)
{
 unsigned int DAC_Value;

 TMR0L = 28; // Reload Ɵmer register
 INTCONbits.TMR0IF = 0; // Clear Ɵmer interrupt flag
//
// Generate the Sawtooth waveform
//
 DAC_Value = (unsigned int)(Sample * 4095);
 DAC(DAC_Value); // Send to DAC converter
 Sample = Sample + 0.1; // Next sample
 if(Sample > 1.0)Sample = 0.0;
}

void main()
{
 ANSELC = 0;
 Chip_Select_DirecƟon = 0;
 SCK_DirecƟon = 0;
 SDO_DirecƟon = 0;

 Chip_Select = 1; // Disable DAC
 OpenSPI1(SPI_FOSC_4, MODE_00, SMPMID); // IniƟalize SPI module

//
 // Configure TIMER0 interrupts
 //
 T0CON = 0xC2; // TIMER0 in 8-bit mode
 TMR0L = 28; // Load Timer register
 INTCON = 0xA0; // Enable global and Timer0 interrupts
 for(;;) // Wait for interrupts
 {
 }
}

Figure 6.32
cont’d

228 Chapter 6

Generating Triangle Waveform

In this part of the project, we will be generating a triangle waveform with the following

specifications:

Output voltage 0 to þ5 V
Frequency 100 Hz (period: 10 ms)
Step size 0.1 ms

The circuit diagram of the project is as in Figure 6.25. Since the required period is 10 ms,

the rising and falling parts of the waveform will each be 454 ms. The value to be loaded

into the timer register should therefore change to

TMR0L ¼ 256� Time

4 � clockperiod � prescaler
or

TMR0L ¼ 256� 454

4 � 0:125 � 8 ¼ 142

Figure 6.33 shows the program listing (MIKROC-WAVE3.C). The ISR code is also

changed to generate the required triangle waveform.

The generated waveform is shown in Figure 6.34 using a PGSCU250 PC-based

oscilloscope. The vertical axis is 1 V per division and the horizontal axis 5 ms per

division.

Generating an Arbitrary Waveform

In this part of the project, we will be generating an arbitrary waveform. One period of the

shape of the waveform will be sketched, and values of the waveform at different points

will be extracted and loaded into a look-up table. The program will output the data points

at the appropriate times to generate the required waveform.

The shape of one period of the waveform to be generated is shown in Figure 6.35. Assume

that the required period is 20 ms (50 Hz).

Intermediate PIC18 Projects 229

/**
 Triangle Waveform Genera�on
 ==========================

This project shows how a triangle waveform with specified frequency can be generated using a
microcontroller. The PIC18F45K22 microcontroller is used with an 8 MHz crystal.

The generated triangle waveform consists of 11 steps rising and 11 steps falling from 0V to +5V and
has a frequency of 100 Hz (period of 10 ms, 5 ms rising and 5 ms falling).

The MCP4921 DAC chip is used to convert the generated signal into analog. This is a 12-bit
converter controlled with the SPI bus signals.

This version of the program uses Timer0 interrupts to generate the waveform with the specified
frequency.

Programmer: Dogan Ibrahim
Date: September 2013
File: MIKROC-WAVE3.C

***/
// DAC module connec�ons
sbit Chip_Select at RC0_bit;
sbit Chip_Select_Direc�on at TRISC0_bit;
// End DAC module connec�ons

float Sample = 0.0, Inc = 0.1;

//
// This func�on sends 12 bits digital data to the DAC. The data is passed
// through the func�on argument called "value"
//
void DAC(unsigned int value)
{
 char temp;

 Chip_Select = 0; // Enable DAC chip

 // Send High Byte
 temp = (value >> 8) & 0x0F; // Store bits 8:11 to temp
 temp |= 0x30; // Define DAC se�ng (choose 1x gain)
 SPI1_Write(temp); // Send high byte via SPI

 // Send Low Byte
 temp = value; // Store bits 0:7 to temp
 SPI1_Write(temp); // Send low byte via SPI

 Chip_Select = 1; // Disable DAC chip
}

//

Figure 6.33: mikroC Pro for the PIC Program Listing.

230 Chapter 6

// Timer interrupt service rouƟne. Program jumps here at every 10 ms
//
void interrupt (void)
{
 unsigned int DAC_Value;

 TMR0L = 142; // Reload Ɵmer register
 INTCON.TMR0IF = 0; // Clear Ɵmer interrupt flag
//
// Generate the Triangle waveform
//
 DAC_Value = Sample * 4095;
 DAC(DAC_Value); // Send to DAC converter
 Sample = Sample + Inc; // Next sample
 if(Sample > 1.0 || Sample < 0)
 {
 Inc = –Inc;
 Sample = Sample + Inc;
} }

void main()
{
 ANSELC = 0; // Configure PORTC as digital
 Chip_select = 1; // Disable DAC
 Chip_Select_DirecƟon = 0; // Set CS as output
 SPI1_Init(); // IniƟalize SPI module
//
 // Configure TIMER0 interrupts
 //
 T0CON = 0xC2; // TIMER0 in 8-bit mode
 TMR0L = 142; // Load Timer register
 INTCON = 0xA0; // Enable global and Timer0 interrupts
 for(;;) // Wait for interrupts
 {
 }
}

Figure 6.33
cont’d

Figure 6.34: Generated Triangle Waveform.

Intermediate PIC18 Projects 231

The waveform takes the following values:

Time (ms) Amplitude (V) Time (ms) Amplitude (V)
0 0 11 5.000
1 0.625 12 5.000
2 1.250 13 4.364
3 1.875 14 3.750
4 2.500 15 3.125
5 3.125 16 2.500
6 3.750 17 1.875
7 4.375 18 1.250
8 5.000 19 0.625
9 5.000 20 0
10 5.000

The circuit diagram of the project is as given in Figure 6.25. Since the required period is

20 ms, each sample time is 1 ms. The value to be loaded into the timer register is found as

follows:

TMR0L ¼ 256� Time

4 � clockperiod � prescaler
or

TMR0L ¼ 256� 1000

4 � 0:125 � 8 ¼ 6

Figure 6.36 shows the mikroC Pro for PIC program listing (named

MIKROC-WAVE4.C). At the beginning of the program, the waveform points are stored

in a floating point array called Waveform, and a pointer called Sample is used to index

this array. The timer is configured to generate interrupts at every millisecond. Inside the

timer ISR, the waveform samples are sent to the DAC and the pointer Sample is

incremented ready for the next sample. The remainder of the program is the same as in

the previous project.

V

ms

5

3.75

2.5

1.25

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 6.35: Waveform to be Generated.

232 Chapter 6

/**
 Arbitrary Waveform GeneraƟon
 ==========================

This project shows how an arbitrary waveform with specified frequency can be generated using
a microcontroller. The PIC18F45K22 microcontroller is used with an 8 MHz crystal.

The generated waveform is first drawn, the waveform points extracted and stored in a floaƟng
point array. In this example the period of the Waveform is 20 ms, defined using 20 Waveform
points.

The MCP4921 DAC chip is used to convert the generated signal into analog. This is a 12-bit
converter controlled with the SPI bus signals.

This version of the program uses Timer0 interrupts to generate the waveform with the specified
frequency.

Programmer: Dogan Ibrahim
Date: September 2013
File: MIKROC-WAVE4.C

***/
// DAC module connecƟons
sbit Chip_Select at RC0_bit;
sbit Chip_Select_DirecƟon at TRISC0_bit;
// End DAC module connecƟons

unsigned char Sample = 0;
//
// Store the waveform points in an array
//
float Waveform[] = {0, 0.625, 1.250, 1.875, 2.5, 3.125, 3.750, 4.375, 5, 5,
 5, 5, 5, 4.375, 3.750, 3.125, 2.5, 1.875, 1.250, 0.625};

//
// This funcƟon sends 12 bits digital data to the DAC. The data is passed
// through the funcƟon argument called "value"
//
void DAC(unsigned int value)
{
 char temp;

 Chip_Select = 0; // Enable DAC chip

 // Send High Byte
 temp = (value >> 8) & 0x0F; // Store bits 8:11 to temp
 temp |= 0x30; // Define DAC seƫng (choose 1x gain)
 SPI1_Write(temp); // Send high byte via SPI

 // Send Low Byte
 temp = value; // Store bits 0:7 to temp

Figure 6.36: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 233

Figure 6.37 shows the waveform generated by the program. Here, the vertical axis is 1 V

per division and the horizontal axis 5 ms per division.

Generating Sine Waveform

In this part of the project, we will see how to generate a low-frequency sine wave

using the built-in trigonometric sin function, and then send the output to a DAC.

 SPI1_Write(temp); // Send low byte via SPI

 Chip_Select = 1; // Disable DAC chip
}

//
// Timer interrupt service rouƟne. Program jumps here at every 10 ms
//
void interrupt (void)
{
 unsigned int DAC_Value;

 TMR0L = 6; // Reload Ɵmer register
 INTCON.TMR0IF = 0; // Clear Ɵmer interrupt flag
//
// Generate the arbitrary waveform
//
 DAC_Value = Waveform[Sample] * 4095/5;
 DAC(DAC_Value); // Send to DAC converter
 Sample = Sample++; // Next Sample
 if(Sample == 20)Sample = 0;
}

void main()
{
 ANSELC = 0; // Configure PORTC as digital
 Chip_select = 1; // Disable DAC
 Chip_Select_DirecƟon = 0; // Set CS as output
 SPI1_Init(); // IniƟalize SPI module
//
 // Configure TIMER0 interrupts
 //
 T0CON = 0xC2; // TIMER0 in 8-bit mode
 TMR0L = 6; // Load Timer register
 INTCON = 0xA0; // Enable global and Timer0 interrupts
 for(;;) // Wait for interrupts
 {
 }
}

Figure 6.36
cont’d

234 Chapter 6

The generated sine wave has an amplitude of 2 V, frequency of 50 Hz, and offset

of 2.5 V.

The circuit diagram of the project is as in Figure 6.25 where the DAC is connected to

PORTC of a PIC18F45K22 microcontroller.

The frequency of the sine wave to be generated is 50 Hz. This wave has a period of 20 ms,

or 20,000 ms. If we assume that the sine wave will consist of 100 samples, then each

sample should be output at 20,000/100¼ 200 ms intervals. Thus, we will configure Timer0

to generate interrupts at every 200 ms, and inside the ISR, we will output a new sample of

the sine wave. The sample values will be calculated using the trigonometric sin function

of the compiler.

The sin function will have the following format:

sin

�
2p� Count

T

�

where T is the period of the waveform and is equal to 100 samples. Count is a variable

that ranges from 0 to 100 and is incremented by 1 inside the ISR every time a timer

interrupt occurs. Thus, the sine wave is divided into 100 samples, and each sample is

output at 200 ms. The above formula can be rewritten as follows:

sin ð0:0628� CountÞ
It is required that the amplitude of the waveform should be 2 V. With a reference voltage

of þ5 V and a 12-bit DAC converter (0e4095 quantization levels), 2 V is equal to decimal

number 1638. Thus, we will multiply our sine function with the amplitude at each sample

to give

1638 � sin ð0:0628� CountÞ

Figure 6.37: Generated Waveform.

Intermediate PIC18 Projects 235

The D/A converter used in this project is unipolar and cannot output negative values.

Therefore, an offset is added to the sine wave to shift it so that it is always positive. The

offset should be larger than the absolute value of the maximum negative value of the sine

wave, which is 1638 when the sin function above is equal to 1. In this project, we are

adding a 2.5 V offset, which corresponds to a decimal value of 2048 at the DAC output.

Thus, at each sample, we will calculate and output the following value to the DAC:

2048þ 2457 � sin ð0:0628� CountÞ
The value to be loaded to Timer0 to generate interrupts at 200 ms intervals is found as

(with a prescaler of 8):

TMR0L ¼ 256� Time

4 � clockperiod � prescaler
or

TMR0L ¼ 256� 200

4 � 0:125 � 8 ¼ 206

mikroC Pro for PIC

Figure 6.38 shows the mikroC Pro for the PIC program listing (named

MIKROC-WAVE5.C). At the beginning of the program, the chip select connection of the

DAC chip is defined. Then, the sine wave amplitude is set to 1638, offset is set to 2048,

and variable R is defined as 2p/100. The chip select direction is configured as the

output, DAC is disabled by setting its chip enable input, and SPI2 is initialized. The sine

waveform values for a period are obtained offline outside the ISR using the following

statement. The reason for calculating these values outside the ISR is to minimize the

time inside the ISR so that higher frequency sine waves can be generated (it is also

possible to generate higher frequency waveforms by increasing the clock frequency. For

example, by enabling the clock PLL, the frequency can be multiplied by 4 to be

32 MHz):

for(i = 0; i < 100; i++)sins[i] = offset + Amplitude * sin(R * i);

The main program then configures Timer0 to generate interrupts at every 200 ms. Timer

prescaler is taken as 8, and the timer register is loaded with 206. The main program then

waits in an endless loop where the processing continues inside the ISR whenever the timer

overflows.

Figure 6.39 shows the waveform generated by the program. It is clear from this figure that

the generated sine waveform has period 20 ms as designed. Here, the vertical axis is 1 V

per division, and the horizontal axis is 20 ms per division.

236 Chapter 6

/**
 GENERATE SINE WAVE
 ==================

In this project a DAC is connected to the microcontroller output and a 50 Hz sine wave with an
amplitude of 2 V and an offset of 2.5 V is generated in real-Ɵme at the output of the DAC.

The MCP4921 12-bit DAC is used in the project. This converter can operate from +3.3 to +5 V,
with a typical conversion Ɵme of 4.5 ms. OperaƟon of the DAC is based on the standard
SPI interface.

mikroC PRO for PIC trigonometric "sin" funcƟon is used to calculate the sine points.
50 Hz waveform has the period T = 20 ms, or, T = 20,000 us. If we take 100 points to sample
the sine wave, then each Sample occurs at 200 us. Therefore, we need a Ɵmer interrupt service
rouƟne that will generate interrupts at every 200 us, and inside this rouƟne we will calculate a
new sine point and send it to the DAC. The result is that we will get a 50 Hz sine wave. Because
the DAC is unipolar, we have to shiŌ the output waveform to a level greater than its maximum
negaƟve value so that the waveform is always posiƟve and can be output by the DAC.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-WAVE5.C
**/
// DAC module connecƟons
sbit Chip_Select at RC0_bit;
sbit Chip_Select_DirecƟon at TRISC0_bit;
// End DAC module connecƟons

#define T 100 // 100 samples
#define R 0.0628 // 2 * PI/T
#define Amplitude 1638 // 2 V * 4096/5 V
#define offset 2048 //2.5 * 4096/5 V

unsigned char temp, Count = 0;
float Sample;
unsigned int Value;
float sins[100];

//
// This funcƟon sends 12 bits digital data to the DAC. The data is passed
// through the funcƟon argument called "value"
//
void DAC(unsigned int value)
{
 char temp;

 Chip_Select = 0; // Enable DAC chip

 // Send High Byte
 temp = (value >> 8) & 0x0F; // Store bits 8:11 to temp

Figure 6.38: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 237

 temp |= 0x30; // Define DAC seƫng (choose 1x gain)
 SPI1_Write(temp); // Send high byte via SPI

 // Send Low Byte
 temp = value; // Store bits 0:7 to temp
 SPI1_Write(temp); // Send low byte via SPI

 Chip_Select = 1; // Disable DAC chip
}

//
// Timer ISR. Program jumps here at every 200 ms
//
void interrupt (void)
{
 TMR0L = 206; // Reload Ɵmer register
//
// Get sine wave samples and send to DAC
//
 Value = sins[Count];
 DAC(Value); // Send to DAC converter
 Count++;
 if(Count == 100)Count = 0;
 INTCON.TMR0IF = 0; // Clear Ɵmer interrupt flag
}

void main()
{
 unsigned char i;
 ANSELC = 0; // Configure PORTC as digital
 Chip_select = 1; // Disable DAC
 Chip_Select_DirecƟon = 0; // Set CS as output
 SPI1_Init(); // IniƟalize SPI module
//
// Generate the sine wave samples offline and load into an array called sins
//
 for(i = 0; i < 100; i++)sins[i] = offset + Amplitude * sin(R * i);
//
 // Configure TIMER0 interrupts
 //
 T0CON = 0xC2; // TIMER0 in 8-bit mode
 TMR0L = 206; // Load Timer register
 INTCON = 0xA0; // Enable global and Timer0 interrupts
 for(;;) // Wait for interrupts
 {
 }
}

Figure 6.38
cont’d

238 Chapter 6

Note that the code generated by the mikroC Pro for the PIC compiler is >2 K, and the

licensed full version of the compiler is required to compile the program given in

Figure 6.38.

MPLAB XC8

The MPLAB XC8 version of the program is shown in Figure 6.40 (XC8-WAVE5.C). In

this program, the PLL clock multiplier is enabled by adding the PLLCFG¼ON to the

configuration register definition at the beginning of the program. The clock frequency

(_XTAL_FREQ) is then changed to 32 MHz. The value to be loaded to Timer0 to generate

interrupts at 200 ms intervals is calculated as (with a prescaler of 16):

TMR0L ¼ 256� Time

4 � clockperiod � prescaler
or

TMR0L ¼ 256� 200

4 � 0:03125 � 16 ¼ 156

Note that the clock frequency is now 32 MHz, which has a period of 0.03125 ms.

Generating Square Waveform

The square wave is perhaps the easiest waveform to generate. If an accurate frequency is

not required, then a loop can be formed to generate a square wave signal. For example,

assuming we wish to generate 1 kHz (period¼ 1 ms) square wave signal on pin RB0 of

Figure 6.39: Generated Waveform.

Intermediate PIC18 Projects 239

/**
 GENERATE SINE WAVE
 ==================

In this project a DAC is connected to the microcontroller output and a 50 Hz sine wave with an
amplitude of 2 V and an offset of 2.5 V is generated in real-Ɵme at the output of the DAC.

The MCP4921 12-bit DAC is used in the project. This converter can operate from +3.3 to +5 V,
with a typical conversion Ɵme of 4.5 ms. OperaƟon of the DAC is based on the standard
SPI interface.

mikroC PRO for PIC trigonometric "sin" funcƟon is used to calculate the sine points. 50 Hz
waveform has the period T = 20 ms, or, T = 20,000 us. If we take 100 points to sample the
sine wave, then each Sample occurs at 200 us. Therefore, we need a Ɵmer interrupt service
rouƟne that will generate interrupts at every 200 us, and inside this rouƟne we will calculate
a new sine point and send it to the DAC. The result is that we will get a 50 Hz sine wave.
Because the DAC is unipolar, we have to shift the output waveform to a level greater than
its maximum negaƟve value so that the waveform is always posiƟve and can be output by
the DAC.

Author: Dogan Ibrahim
Date: September 2013
File: XC8-WAVE5.C
**/

#include <xc.h>
#include <math.h>
#include <plib/spi.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP, PLLCFG = ON
#define _XTAL_FREQ 32000000

// DAC module connecƟons
#define Chip_Select PORTCbits.RC0
#define Chip_Select_DirecƟon TRISCbits.TRISC0
// End DAC module connecƟons

// SPI connecƟons
#define SCK_DirecƟon TRISCbits.RC3
#define SDO_DirecƟon TRISCbits.RC5
//

#define T 100 // 100 samples
#define R 0.0628 // 2 * PI/T
#define Amplitude 1638 // 2 V * 4096/5 V
#define offset 2048 //2.5 * 4096/5 V

unsigned char temp, Count = 0;
float Sample;
unsigned int Value;
float sins[100];

Figure 6.40: MPLAB XC8 Program Listing.

240 Chapter 6

//
// This funcƟon sends 12 bits digital data to the DAC. The data is passed
// through the funcƟon argument called "value"
//
void DAC(unsigned int value)
{
 char temp;

 Chip_Select = 0; // Enable DAC chip

 // Send High Byte
 temp = (value >> 8) & 0x0F; // Store bits 8:11 to temp
 temp |= 0x30; // Define DAC seƫng (choose 1x gain)
 WriteSPI1(temp); // Send high byte via SPI

 // Send Low Byte
 temp = value; // Store bits 0:7 to temp
 WriteSPI1(temp); // Send low byte via SPI

 Chip_Select = 1; // Disable DAC chip
}

//
// Timer interrupt service rouƟne. Program jumps here at every 200 us
//
void interrupt isr (void)
{
 TMR0L = 156; // Reload Ɵmer register
//
// Get sine wave samples and send to DAC
//
 Value = (unsigned int)sins[Count];
 DAC(Value); // Send to DAC converter
 Count++;
 if(Count == 100)Count = 0;
 INTCONbits.TMR0IF = 0; // Clear Ɵmer interrupt flag
}

void main()
{

 unsigned char i;
 ANSELC = 0;
 Chip_Select_DirecƟon = 0;
 SCK_DirecƟon = 0;
 SDO_DirecƟon = 0;

 Chip_Select = 1; // Disable DAC

Figure 6.40
cont’d

Intermediate PIC18 Projects 241

the microcontroller with equal ON and OFF times, the following PDL shows how the

signal can easily be generated:

BEGIN
Configure RB0 as digital output
DO FOREVER

Set RB0 = 1
Wait 0.5 ms
Set RB0 = 0
Wait 0.5 ms

ENDDO
END

The problem with this code is that the generated frequency is not accurate because of

two reasons: first, the built-in delay functions are not meant to be very accurate, and

second, the time taken to execute the other instructions inside the loop are not taken into

account.

An accurate square wave signal can be generated using a timer interrupt routine as

described in the previous waveform generation projects. Inside the ISR, all we have to do

is toggle the output pin where the waveform, is to be generated from. This is illustrated

with an example. In this example a square wave signal with frequency 1 kHz

(period¼ 1 ms) is generated from port pin RD0 of a PIC18F45K22 microcontroller.

The required mikroC Pro for the PIC program listing is shown in Figure 6.41

(MIKROC-WAVE6.C). Inside the main program, PORTD is configured as an analog

 OpenSPI1(SPI_FOSC_4, MODE_00, SMPMID); // IniƟalize SPI module

//
// Generate the sine wave samples offline and load into an array called sins
//
 for(i = 0; i < 100; i++)sins[i] = offset + Amplitude * sin(R * i);
//
// Configure TIMER0 interrupts
//
 T0CON = 0xC3; // TIMER0 in 8-bit mode
 TMR0L = 156; // Load Timer register
 INTCON = 0xA0; // Enable global and Timer0 interrupts
 for(;;) // Wait for interrupts
 {
 }
}

Figure 6.40
cont’d

242 Chapter 6

/**
 GENERATE SQUARE WAVE
 ====================

In this project a square wave signal with frequency 1 kHz is generated. The program uses Ɵmer
interrupts to send the signal to output.

Timer0 is configured to provide interrupts at every 0.5 ms. Inside the ISR the output pin is toggled,
thus generaƟng a square wave signal.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-WAVE6.C
**/

#define OUT_PIN LATD.LATD0
//
// Timer ISR. Program jumps here at every 100 ms
//
void interrupt (void)
{
 TMR0L = 131; // Reload Ɵmer register
 OUT_PIN = ~OUT_PIN; // Toggle the output pin
 INTCON.TMR0IF = 0; // Clear Ɵmer interrupt flag
}

void main()
{
 ANSELD = 0; // Configure PORTC as digital
 TRISD = 0;
 OUT_PIN = 0;
//
 // Configure TIMER0 interrupts
 //
 T0CON = 0xC2; // TIMER0 in 8-bit mode
 TMR0L = 131; // Load Timer register
 INTCON = 0xA0; // Enable global and Timer0 interrupts
 for(;;) // Wait for interrupts
 {
 }
}

Figure 6.41: mikroC Pro for PIC Program Listing

Intermediate PIC18 Projects 243

output, and pin RD0 is configured as an output pin. Timer0 is configured to generate

interrupts at every 500 ms. Inside the ISR, pin RD0 is toggled, and timer interrupt flag is

cleared so that further interrupts can be accepted by the processor.

The value to be loaded to Timer0 to generate interrupts at 500 ms intervals is found as

(with a prescaler of 8)

TMR0L ¼ 256� Time

4 � clockperiod � prescaler
or

TMR0L ¼ 256� 500

4 � 0:125 � 8 ¼ 131

Figure 6.42 shows the waveform generated. Here, the vertical axis is 1 V per division, and

the horizontal axis is 1 ms per division.

Another accurate method of generating a square wave is by using the PWM module of the

microcontroller Chapter 2, Example 2.1. The PWM module makes use of ports CCP1,

CCP2, CCP3, etc. on the microcontroller. But unfortunately, this module cannot be used to

generate PWM signals with large periods such as 20 ms. The advantage of using the PWM

module is that once configured this module works independent of the central processing

unit (CPU), and thus, the CPU is free to do other tasks, while the PWM module is

working.

An example is given in this section to show how to program the PWM module. In this

program, it is required to generate a 20 kHz (period¼ 50 ms) square wave with equal ON

and OFF times of 25 ms. The output signal will be available on pin RC2 (CCP1) of the

Figure 6.42: Generated Waveform.

244 Chapter 6

microcontroller. The required program listing is given in Figure 6.43

(MIKROC-WAVE7.C). The PWM module is configured as follows:

The value to be loaded into Timer2 register can be calculated as follows:

PR2 ¼ PWM period

TMR2PS � 4 � Tosc
� 1

where

PR2 is the value to be loaded into the Timer2 register,

TMR2PS is the Timer2 prescaler value,

Tosc is the clock oscillator period (in seconds).

/**
 GENERATE SQUARE WAVE
 =====================

In this project a square wave signal with frequency 20 kHz (period 50 us) is generated. The
program uses the built-in PWM module to generate accurate square wave signal.

The output signal is available on pin RC2 (CCP1) of the microcontroller.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-WAVE7.C
**/

void main()
{

 ANSELC = 0; // Configure PORT C as digital
 TRISC = 0; // PORT C as output

 T2CON = 0b00000101; // Timer 2 with prescaler 4
 PR2 = 24; // Load PR2 register of Timer 2
 CCPTMRS0 = 0; // Enable PWM
 CCPR1L = 0X0C; // Load duty cycle
 CCP1CON = 0x2C; // Load duty cycle and enable PWM

 for(;;) // Wait here forever
 {
 }

}

Figure 6.43: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 245

Substituting the values into the equation, and assuming a prescaler of 4, an oscillator

frequency of 8 MHz (Tosc¼ 0.125 ms), the PWM period of 50 ms, and duty cycle (ON

time) of 25 ms, we get

PR2 ¼ 50� 10�6

4� 4� 0:125� 10�6
� 1

Which gives PR2¼ 24.

The 10-bit value to be loaded into PWM registers is given by (Chapter 2):

CCPR1L : CCP1CONh5 : 4i ¼ PWM duty cycle

TMR2PS � Tosc

Where the upper 8 bits will be loaded into register CCPR1L, and the two LSB bits will be

loaded into bits 4 and 5 of CCP1CON.

or

CCPR1L : CCP1CONh5 : 4i ¼ 25� 10�6

4� 0:125� 10�6
¼ 50

This number in 12-bit binary is “00001100 10”. Therefore, the value to be loaded into bits

4 and 5 of CCP1CON are the two LSB bits, that is, “10”. Bits 2 and 3 of CCP1CON must

be set to HIGH for PWM operation, and bits 6 and 7 are not used. Therefore, CCP1CON

must be set to (“X” is do not care):

XX101100 i.e. hexadecimal 0x2C

The number to be loaded into CCPR1L is the upper 8 bits, that is, “00001100”, that is,

hexadecimal 0x0C.

Figure 6.44: Generated Waveform.

246 Chapter 6

At the beginning of the program, PORTC is configured as a digital output port. Then,

Timer2 is configured and timer register PR2 is loaded to give the required period. PWM

registers CCPR1L and CCP1CON are loaded with the duty cycle (ON time) and the PWM

module is enabled. The main program then waits forever where the PWM works in the

background to generate the required waveform.

Figure 6.44 shows the generated waveform, which has a period of exactly 50 ms. In

this graph, the vertical axis is 1 V per division, and the horizontal axis is 10 ms per

division.

The MPLAB XC8 version of the program is shown in Figure 6.45 (XC8-WAVE7.C).

/**
 GENERATE SQUARE WAVE
 =====================

In this project a square wave signal with frequency 20 kHz (period 50 us) is generated. The
program uses the built-in PWM module to generate accurate square wave signal.

The output signal is available on pin RC2 (CCP1) of the microcontroller.

Author: Dogan Ibrahim
Date: September 2013
File: XC8-WAVE7.C
**/
#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

void main()
{

 ANSELC = 0; // Configure PORT C as digital
 TRISC = 0; // PORT C as output

 T2CON = 0b00000101; // Timer 2 with prescaler 4
 PR2 = 24; // Load PR2 register of Timer 2
 CCPTMRS0 = 0; // Enable PWM
 CCPR1L = 0X0C; // Load duty cycle
 CCP1CON = 0x2C; // Load duty cycle and enable PWM

 for(;;) // Wait here forever
 {
 }
}

Figure 6.45: MPLAB XC8 Program Listing.

Intermediate PIC18 Projects 247

Project 6.5dUltrasonic Human Height Measurement
Project Description

This project is about designing a microcontroller-based device to measure the human

height using ultrasonic techniques. Having the correct height is very important especially

during the child development ages. Human height is usually measured using a stadiometer.

A stadiometer can either be mechanical or electronic. Most stadiometers are portable,

although they can also be wall mounted. A mechanical stadiometer is commonly used in

schools, clinics, hospitals, and doctors’ offices.

As shown in Figure 6.46, a mechanical stadiometer consists of a long ruler, preferably

mounted vertically on a wall, with a movable horizontal piece that rests on the head of the

person whose height is being measured. The height is then read on the ruler corresponding

to the point of the horizontal piece. By using such devices, one can measure the height

from about 14 to 200 cm with graduations of 0.1 cm.

In this project, we will see how to design an electronic stadiometer based on the

principle of ultrasonic waves. Figure 6.47 shows the block diagram of the measurement

system. Basically, a pair of ultrasonic transducers (a transmitter TX, and a receiver RX)

are mounted at the top of a pole whose height from the ground level is known, say H.

The person whose height is to be measured stands under the ultrasonic transducers. The

system sends an ultrasonic signal through the TX. This signal hits the person’s head and

is received by the RX. By knowing the speed of sound in the air and the time the signal

takes to return, we can calculate the distance from the transducers to the head of the

person. If this distance is called h, then the height of the person is simply given by the

difference H� h.

Figure 6.46: A Mechanical Stadiometer.

248 Chapter 6

In this project, the PING))) ultrasonic transducer pair (Figure 6.48), manufactured by

Parallax is used. This transducer pair is mainly developed for distance measurement.

Project Hardware

The circuit diagram of the project is shown in Figure 6.49. The PING))) can be used to

measure distances from 2 cm to 3 m. The specifications of this device are as follows:

• A 5 V supply voltage,

• A 30 mA supply current,

• A 40 kHz operation frequency,

• Small size (22� 46� 16 mm),

• Requirement of only one pin for connection to a microcontroller.

Figure 6.47: Block Diagram of the Height Measurement System.

Figure 6.48: PING))) Ultrasonic Transducer Pair.

Intermediate PIC18 Projects 249

The device is connected to a microcontroller via the SIG pin, which acts as both an input

and an output. In Figure 6.49, this I/O pin is connected to pin RD0 of a PIC18F45K22

microcontroller, operated from an 8 MHz crystal. The pin layout of the PING))) is shown

in Figure 6.50. The operation of PING))) is as follows:

The device operates by emitting a short ultrasonic burst at 40 kHz from the TX output and

then listening for the echo. This pulse travels in the air at the speed of sound, hits an

Figure 6.49: Circuit Diagram of the Project.

Figure 6.50: Pin Layout of PING))).

250 Chapter 6

object, and then bounces back and is received by the RX sensor. The PING))) provides an

output pulse to the microcontroller that will terminate when the echo is detected, and thus,

the width of this pulse is proportional to the distance to the target.

An LCD, connected to PORTB, is used to display the height of the person.

Project PDL

The PDL of the project is shown in Figure 6.51. Timer0 of the microcontroller is

configured to operate as a counter in the 16-bit mode, and the count time is set to 1 ms

using a prescaler value of 2, where with a clock period of 0.125 ms, the count time is

given by

Count time¼ 4� 0.125� Prescaler¼ 4� 0.125� 2¼ 1 ms.

For a prescaler of 2, the lower 2 bits of register T0CON must be loaded with “00”.

Assuming that the total measured time is Tm, then the distance h to the object will be

(assuming that the speed of sound in air is 340 m/s, or 34 cm/ms, or 0.034 cm/ms):

T¼ Tm/2 (time T to the object in microseconds)

h¼ 0.034 * T (Distance¼ Speed� Time, where h is in cm)

where T is the time it takes for the signal to echo back after hitting the object. Tm is the

total time in microseconds measured by Timer0. The distance h in the above equation is in

centimeters, and the time T is in microseconds.

BEGIN
Define the LCD connec�ons
Define PING))) connec�on
Configure PORTD as digital
Configure PORTB as digital

 Ini�alize LCD
 Send start-up message to the LCD
 Configure Timer0 as 16-bit counter with count �me of 1 μs

DO FOREVER
 Send a pulse to the ultrasonic module
 Start �mer
 Wait un�l echo pulse is received
 Calculate the elapsed �me
 Divide the �me by 2 to find the �me to the object
 Calculate the distance to the object (h)
 Calculate the height of the person (H–h)
 Display the height of the person on the LCD
 Wait 1 s

ENDDO
END

Figure 6.51: PDL of the Project.

Intermediate PIC18 Projects 251

The above operation requires floating point arithmetic. Instead, we can use long integer

arithmetic to calculate the height with a good accuracy as follows:

h¼ 34 * T/1000

where T is a long integer.

Assuming that the PING))) device is mounted on a pole H centimeters high, the height of

the person is simply given by

Height of person¼H� h

The height is displayed on the LCD. After 1 s, the above process is repeated.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program is called MIKROC-HEIGHT.C and is shown in

Figure 6.52. At the beginning of the main program, the LCD and ultrasonic module

connections are defined, and PORTB and PORTD are configured as digital I/O ports.

Then, the LCD is initialized, and the heading “HEIGHT” is displayed on the LCD for 2 s.

Timer register T0CON is configured so that TIMER0 operates in a 16-bit counter mode

with the count rate of 1 ms. Timer0 prescaler is set to 2.

The height calculation is carried out inside an endless loop formed using a for loop. Inside

this loop, the counter is cleared, a pulse is sent to the ultrasonic module, counter is started,

and the program waits until the echo signal is received. When the echo signal is received,

the counter is stopped, and the total elapsed time is read and stored in variable Tm. Then,

the height of the person is calculated and stored in variable Person_Height. This number is

converted into a string in variable Txt and is displayed on the LCD. The program repeats

after a 1 s delay. If, for example, the person’s height is 150 cm, it is displayed in the

following format:

Height (cm)

150

The program given in Figure 6.52 can be improved by the following modifications:

• The height calculation can be done using floating point arithmetic to get more accurate

results.

• The program assumes that the speed of sound in the air is fixed and is 340 m/s. In

reality, the speed of sound in the air depends on several factors such as the ambient

temperature and to a lesser extent the atmospheric pressure and relative humidity.

A temperature sensor can be added to the project and more accurate results for the

speed can be obtained.

252 Chapter 6

/**
 ULTRASONIC HUMAN HEIGHT MEASUREMENT
 ======================================

In this project the height of a person is found and displayed on a LCD. The project uses the
PING))) Ultrasonic distance measuring transducer pair, connected to RD0 pin of a PIC18F45K22
microcontroller, operated from an 8 MHz crystal.

The LCD is connected to PORTB of the microcontroller.

The program assumes that the transducer pair is mounted on a pole 200 cm above the ground
level where the person stands.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-HEIGHT.C
**/

// LCD module connec�ons
sbit LCD_RS at LATB4_bit;
sbit LCD_EN at LATB5_bit;
sbit LCD_D4 at LATB0_bit;
sbit LCD_D5 at LATB1_bit;
sbit LCD_D6 at LATB2_bit;
sbit LCD_D7 at LATB3_bit;
sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

// Ultrasonic module connec�on
sbit Ultrasonic at RD0_bit;
sbit Ultrasonic_Direc�on at TRISD0_bit;
// End of Ultrasonic module connec�ons

#define Pole_Height 200

void main()
{
 unsigned long Tm;
 unsigned char Tl, Th;
 unsigned int h, Person_Height;
 char Txt[7];

 ANSELB = 0; // Configure PORTB as digital
 ANSELD = 0; // Configure PORTD as digital

 Lcd_Init(); // Ini�alize LCD

Figure 6.52: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 253

 Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor
 Lcd_Out(1,1,"HEIGHT"); // Display heading
 Delay_Ms(2000); // Wait 2 s
//
// Configure Timer 0 as a counter to operate in 16-bit mode with 1 ms
// count �me. The prescaler is set to 2. The �mer is stopped at this point.
//
 T0CON = 0x00;
//
// Start of program loop
// Send a pulse, start �mer, get echo, stop �mer, calculate distance and display
//
 for(;;)
 {
 Ultrasonic_Direc�on = 0; // RD0 in output mode
 TMR0H = 0; // Clear high byte of �mer
 TMR0L = 0; // Clear low byte of �mer

 Ultrasonic = 0;
 Delay_us(3);
 Ultrasonic = 1; // Send a PULSE to Ultrasonic module
 Delay_us(5);
 Ultrasonic = 0;
 Ultrasonic_Direc�on = 1; // RD0 in input mode
 while(Ultrasonic == 0); // Wait un�l echo is received
 T0CON.TMR0ON = 1; // Start Timer0
 while(Ultrasonic == 1);
 T0CON.TMR0ON = 0; // Stop Timer0
 Tl = TMR0L; // Read �mer low byte
 Th = TMR0H; // Read �mer high byte
 Tm = Th * 256 + Tl; // Timer as 16 bit value
 //
 // Now find the distance to person's head
 Tm = Tm/2; // Tm is half the �me
 Tm = 34 * Tm;
 Tm = Tm/1000; // Divide by 1000
 h = (unsigned int)Tm; // h is the distance to person's head
 Person_Height= Pole_Height – h; // Person's height
 //
 // Now display the height
 //
 IntToStr(Person_Height, Txt); // Convert into string to display
 Lcd_Cmd(_LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1, "Height (cm)"); // Display heading
 Lcd_Out(2,1, Txt); // Display the height
 Delay_Ms(1000); // Wait 1 s
 }
}

Figure 6.52
cont’d

254 Chapter 6

/**
 ULTRASONIC HUMAN HEIGHT MEASUREMENT
 ======================================

In this project the height of a person is found and displayed on a LCD. The project uses the
PING))) Ultrasonic distance measuring transducer pair, connected to RD0 pin of a PIC18F45K22
microcontroller, operated from an 8 MHz crystal.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD
============ ===

 RB0 D4
 RB1 D5
 RB2 D6
 RB3 D7
 RB4 E
 RB5 R/S
 RB6 RW

The program assumes that the transducer pair is mounted on a pole 200 cm above the ground
level where the person stands.

Author: Dogan Ibrahim
Date: September 2013
File: XC8-HEIGHT.C
**/

#include <xc.h>
#include <plib/xlcd.h>
#include <stdlib.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

// Ultrasonic module connec�on
#define Ultrasonic PORTDbits. RD0
#define Ultrasonic_Direc�on TRISDbits.TRISD0
// End of Ultrasonic module connec�ons

#define Pole_Height 200

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{
 unsigned char i,j;

 for(j = 0; j < s; j++)
 {

Figure 6.53: MPLAB XC8 Program Listing.

Intermediate PIC18 Projects 255

 for(i = 0; i < 100; i++)__delay_ms(10);
 }
}

//
// This func�on creates 18 cycles delay for the xlcd library
//
void DelayFor18TCY(void)
{
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;
}

//
// This func�on creates 15 ms delay for the xlcd library
//
void DelayPORXLCD(void)
{
 __delay_ms(15);
 return;
}

//
// This func�on creates 5 ms delay for the xlcd library
//
void DelayXLCD(void)
{
 __delay_ms(5);
 return;
}

//
// This func�on clears the screen
//
void LCD_Clear()
{
 while(BusyXLCD());
 WriteCmdXLCD(0x01);
}

//
// This func�on moves the cursor to posi�on row,column
//
void LCD_Move(unsigned char row, unsigned char column)
{
 char ddaddr = 40 * (row–1) + column;

Figure 6.53
cont’d

256 Chapter 6

 while(BusyXLCD());
 SetDDRamAddr(ddaddr);
}

void main()
{
 unsigned long Tm;
 unsigned char Tl, Th;
 unsigned int h, Person_Height;
 char Txt[10];

 ANSELB = 0; // Configure PORTB as digital
 ANSELD = 0; // Configure PORTD as digital

 OpenXLCD(FOUR_BIT & LINES_5X7); // Ini�alize LCD

 while(BusyXLCD()); // Wait if the LCD is busy
 WriteCmdXLCD(DON); // Turn Display ON
 while(BusyXLCD()); // Wait if the LCD is busy
 WriteCmdXLCD(0x06); // Move cursor right
 putrsXLCD("HEIGHT"); // Display heading
 Delay_Seconds(2); // 2 s delay
 LCD_Clear(); // Clear display
//
// Configure Timer 0 as a counter to operate in 16-bit mode with 1 ms
// count �me. The prescaler is set to 2. The �mer is stopped at this point.
//
 T0CON = 0x00;
//
// Start of program loop
// Send a pulse, start �mer, get echo, stop �mer, calculate distance and display
//
 for(;;)
 {
 Ultrasonic_Direc�on = 0; // RD0 in output mode
 TMR0H = 0; // Clear high byte of �mer
 TMR0L = 0; // Clear low byte of �mer

 Ultrasonic = 0;
 __delay_us(3);
 Ultrasonic = 1; // Send a PULSE to Ultrasonic module
 __delay_us(5);
 Ultrasonic = 0;
 Ultrasonic_Direc�on = 1; // RD0 in input mode
 while(Ultrasonic == 0); // Wait un�l echo is received
 T0CONbits.TMR0ON = 1; // Start Timer0
 while(Ultrasonic == 1);
 T0CONbits.TMR0ON = 0; // Stop Timer0
 Tl = TMR0L; // Read �mer low byte

Figure 6.53
cont’d

Intermediate PIC18 Projects 257

The temperature dependency of the speed of sound in dry air is given by

Speed = 331.4 + 0.6TC,

Where the speed is in meters per second and TC is the ambient temperature in degrees

centigrade. At 15 �C, the speed becomes nearly 340 m/s.

MPLAB XC8

The MPLAB XC8 program is called XC8-HEIGHT.C and is shown in Figure 6.53. Note

that although the LCD is connected to PORTB of the microcontroller, the following pin

connections differ from Figure 6.49:

• RB4 is connected to pin E of the LCD.

• RB5 is connected to pin RS of the LCD.

• RB6 is connected to pin RW of the LCD.

Project 6.6dMinielectronic Organ
Project Description

This project is about designing a microcontroller-based minielectronic organ using a 4� 4

keypad with 16 keys to produce musical notes in one octave. Figure 6.54 shows the block

diagram of the project.

 Th = TMR0H; // Read �mer high byte
 Tm = Th * 256 + Tl; // Timer as 16 bit value
 //
 // Now find the distance to person's head
 Tm = Tm/2; // Tm is half the �me
 Tm = 34 * Tm;
 Tm = Tm/1000; // Divide by 1000
 h = (unsigned int)Tm; // h is the distance to person's head
 Person_Height= Pole_Height – h; // Person's height
 //
 // Now display the height
 //
 itoa(Txt, Person_Height, 10); // Convert into string to display
 LCD_Clear(); // Clear LCD
 LCD_Move(1,1);
 putrsXLCD("Height (cm)"); // Display heading
 LCD_Move(2,1);
 putrsXLCD(Txt); // Display the height
 Delay_Seconds(1); // Wait 1 s
 }
}

Figure 6.53
cont’d

258 Chapter 6

Buzzer

 PIC
18F45K22

 Keyboard

Figure 6.54: Block Diagram of the Project.

Figure 6.55: Circuit Diagram of the Project.

Intermediate PIC18 Projects 259

The musical notes are configured on the keypad as follows:

C4 D4 E4 F4
G4 A4 B4 C5
C4# D4# F4# G4#
A4#

The frequencies of the notes are

Notes C4 C4# D4 D4# E4 F4 F4# G4 G4# A4 A4# B4

Hz 261.63 277.18 293.66 311.13 329.63 349.23 370 392 415.3 440 466.16 493.88

Project Hardware

The circuit diagram of the project is shown in Figure 6.55. The keypad is connected to

PORTC of the microcontroller. A buzzer is connected to port pin RE1.

Project PDL

The project PDL is shown in Figure 6.56.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program listing is given in Figure 6.57 (MIKROC-MUSIC.C).

The program is very simple. The notes are stored in an array called Notes. The program

initializes the keypad library and the sound library. Then, an endless loop is formed, and

BEGIN
 Store musical notes in a table
 Configure PORTE as digital
 Configure PORTC as digital
 Ini�alize Keypad library
 Ini�alize Sound library

DO FOREVER
 Get the code of the key pressed

IF this is a valid key code (< 13)
 Play the note corresponding to this note

ENDIF
 ENDDO
END

Figure 6.56: PDL of the Project.

260 Chapter 6

inside this loop, the code of the pressed key is determined, and this is used as an index to

the Notes array to play the note corresponding to the pressed key. Notes are played for a

minimum of 100 ms when a key is pressed. Valid key codes are from 1 to 13, and keys

with codes >13 are not played.

 /***
 MINI ELECTRONIC ORGAN
 ======================

In this project a 4 x 4 keypad is connected to PORTC of a PIC18F45K22 microcontroller. Also a
buzzer is connected to port pin RE1. The keypad is organized such that pressing a key plays a
musical note. The notes on the keypad are organized as follows:

C4 D4 E4 F4
G4 A4 B4 C5
C4# D4# F4# G4#
A4#

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC–MUSIC.C
***/
// Keypad module connec�ons
char keypadPort at PORTC;
// End of keypad module connec�ons

//
// Start of MAIN program
//
void main()
{
 unsigned char MyKey;
 unsigned Notes[] = {0,262,294,330,349,392,440,494,524,277,311,370,415,466};

 ANSELE = 0; // Configure PORTE as digital
 ANSELC = 0; // Configure PORTC as digital
 TRISC = 0xF0; // RC4–RC7 are inputs

 Keypad_Init(); // Ini�alize keypad library
 Sound_Init(&PORTE, 1); // Ini�alize sound library
//
// Program loop
//
 for(;;) // Endless loop
 {
 do
 MyKey = Keypad_Key_Press(); // Get code of pressed key
 while(!MyKey);

 if(MyKey <= 13)Sound_Play(Notes[MyKey], 100); // Play the note
 }
}

Figure 6.57: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 261

Project 6.7dFrequency Counter with an LCD Display
Project Description

In this project, we look at the design of a simple frequency counter with an LCD display.

There are basically two methods used for the measurement of the frequency of an external

signal.

Method I

This is perhaps the easiest method. The signal whose frequency is to be measured is

connected to the clock input of a microcontroller counter (timer). The counter is enabled

for a known time window, and the total count is read. Since each count corresponds to a

clock pulse of the external signal, we can easily determine its frequency. For example,

assuming that the time window is set to 1 s and the counter reaches 1000 at the end of 1 s,

then the frequency of the signal is 1 kHz. Thus, we can simply display the counter value

as the frequency of the signal in hertz. This way, using a 16-bit counter, we can measure

frequencies up to 65,535 Hz. If using a 32-bit counter, the maximum frequency that we

can measure will be 4,294,967,295 Hz. For the measurement of high frequencies, we can

actually use a 16-bit counter and increment a variable each time the counter overflows

(65535e0). The total count can then be found by multiplying this variable by 65536 and

adding the current counter reading.

The nice thing about using a 1 s time window is that we can directly display the frequency

in hertz by simply reading the counter value. This also means that the measurement

resolution is 1 Hz, which is acceptable for most measurements. Increasing the time

window to 10 s will increase the resolution to 0.1 Hz. On the other hand, decreasing the

time window to 0.1 s will reduce the resolution to 10 Hz. Figure 6.58 illustrates this

method.

Method II

In this method, the time between two or more successive edges of the signal is measured.

The period and the frequency are then calculated easily. The counter (timer) is started as

Figure 6.58: Frequency MeasurementdMethod I.

262 Chapter 6

soon as the leading edge of the signal is detected. The counter is stopped when the next

leading edge is detected. The elapsed time and hence the period of the signal and the

frequency are then easily calculated. For example, assuming that the counter is

configured to count using the internal clock at the rate of 1 ms, if the elapsed time

between two edges is 1000 ms, then the period of the signal is 1 ms (1 kHz). The

accuracy of the measurement depends on the accuracy of the internal clock and the

frequency stability of the external signal. To improve the accuracy, sometimes more than

two signal edges are taken.

In this project, the use of Method I will be illustrated by designing a frequency counter

system.

Using Method I

Figure 6.59 shows the circuit diagram of the project. In this design, Timer0 is used in a

16-bit counter mode. The external signal whose frequency is to be measured is applied to

Timer0 clock input T0CKI (RA4). An LCD is connected to PORTB of the microcontroller

as in the previous LCD projects.

Timer1 is used to create the 1 s time window. It is not possible to generate a 1 s delay

using Timer1 since the microcontroller clock frequency is high. Instead, the timer is

configured to generate an interrupt every 250 ms, and when 4 interrupts are generated, it is

assumed that 1 s has elapsed.

Figure 6.59: Circuit Diagram of the Project.

Intermediate PIC18 Projects 263

Assuming a prescaler setting of 8, the value to be loaded into Timer1 registers to

generate interrupts at 250 ms (250,000 ms) intervals can be calculated from the

following:

TMR0L ¼ 65536� Time

4 � clockperiod � prescaler
or

TMR0L ¼ 65536� 250000

4 � 0:125 � 8 ¼ 3036

Decimal 3036 is equivalent to 0x0BDC in hexadecimals. Thus, TMR0H¼ 0x0B and

TMR0L¼ 0xDC.

Project PDL

The project PDL is shown in Figure 6.60.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program listing is given in Figure 6.61 (MIKROC-FREQ1.C). At

the beginning of the program, PORTA and PORTB are configured as digital. RA4 is

configured as an input, the LCD is initialized, and the cursor is disabled.

BEGIN
 Configure PORTA and PORTB as digital
 Configure RA4 (T0CKI) as input
 Ini�alize LCD

DO FOREVER
 Clear Timer0 registers
 Load Timer1 registers for 250 ms interrupt
 Clear Overflow and Cnt
 Enable Timer0 and Timer1
 Wait un�l 1 s elapsed (Cnt = 4)
 Stop Timer0 and Timer1
 Calculate Timer0 count
 Convert count into string
 Clear Display
 Display heading “Frequency (Hz)”
 Display the frequency
 Wait 1 s
 ENDDO
END

Figure 6.60: PDL of the Project.

264 Chapter 6

/**
 Frequency Counter
 ================

This project is a frequency counter. The signal whose frequency is to be measured is applied
to pin RA4 (T0CKI) of a PIC18F45K22 microcontroller, opera�ng from an 8 MHz crystal. The
project measures the frequency and displays on an LCD in Hz.

The resolu�on of the measurement is 1 Hz. The project can measure frequencies from 1 Hz to
several MHz.

The project uses 2 �mers, TIMER0 and TIMER1. TIMER1 is used to open a �me window of 1 s
width. The pulses of the external signal increment the counter during this 1 s
window. At the end of 1 s both �mers are stopped. The count in TIMER0 gives us
directly the frequency in Hz.

Both �mers generate interrupts for higher accuracy. TIMER0 uses a variable called "Overflow"
to find out how many �mes it has overflowed (if any). This variable is used in calcula�ng the
 total count. TIMER1 interrupts at every 250 ms and a variable called Cnt is incremented at
each interrupt. When Cnt = 4 then it is assumed that 1 s has elapsed.

Programmer: Dogan Ibrahim
Date: September 2013
File: MIKROC-FREQ1.C

***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

#define PULSE PORTA.RA4

unsigned int Overflow;
unsigned char Cnt;
//
// Timer interrupt service rou�ne. Program jumps here at every 10 ms
//
void interrupt (void)
{

Figure 6.61: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 265

 if(INTCON.TMR0IF == 1) // If TIMER0 interrupt
 {
 Overflow++; // Increment Overflow count
 INTCON.TMR0IF = 0; // Clear Timer0 interrupt flag
 }
 if(PIR1.TMR1IF == 1) // If TIMER1 interrupt
 {
 TMR1H = 0x0B; // Reload �mer register
 TMR1L = 0xDC;
 Cnt++; // Increment Cnt
 PIR1.TMR1IF = 0; // Clear Timer1 interrupt flag
 }
}

void main()
{
 unsigned char Txt[11];
 unsigned long Elapsed;
 unsigned char L_Byte, H_Byte;

 ANSELA = 0; // Configure PORTA as digital
 ANSELB = 0;
 TRISA.RA4 = 1; // RA4 is input
 Lcd_Init(); // Ini�alize LCD
 Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor

//
 // Configure TIMER0 for 16-bit mode, no prescaler, clock provided by external
 // signal into pin T0CKI. Timer is not started here
 //
 T0CON = 0x28; // TIMER0 16-bit,no prescaler,T0CKI clk
//
// Configure Timer1 for 250 ms Overflow. Timer1 is not started here
//
 T1CON = 0x36;

 PIE1 = 0x01; // Enable TIMER1 interrupts
 PIR1.TMR1IF = 0; // Clear TIMER1 interrupt flag
 INTCON = 0xE0; // Enable TIMER0 and TIMER1 interrupts

 for(;;) // Wait for interrupts
 {
 TMR0H = 0; // Clear Timer0 registers
 TMR0L = 0;
 TMR1H = 0x0B; // Load Timer1 registers
 TMR1L = 0xDC;
 //
 Overflow = 0; // Clear Overflow count
 Cnt = 0; // Clear Cnt
 //

Figure 6.61
cont’d

266 Chapter 6

The program then configures Timer0 as a counter. Timer0 control register T0CON is

loaded as follows:

Thus, the T0CON register should be loaded with hexadecimal 0x28.

 // Start TIMER0. It will increment each �me an external pulse is detected.
 // TIMER0 increments on the rising edge of the external clock
 //
 T0CON.TMR0ON = 1;
 //
 // Start Timer1 to count 4 × 250 ms = 1 s
 //
 T1CON.TMR1ON = 1;
 while(Cnt != 4); // Wait un�l 1 s has elapsed
 //
 // 1 s has elapsed. Stop both �mers
 //
 T0CON.TMR0ON = 0; // Stop TIMER0
 T1CON.TMR1ON = 0; // Stop Timer1
 // Get TIMER0 count
 L_Byte = TMR0L;
 H_Byte = TMR0H;
 //
 // Store TIMER0 count is variable Elapsed
 //
 Elapsed = (unsigned long)256 * H_Byte + L_Byte;
 Elapsed = 65536 * Overflow + Elapsed;
 //
 // Convert into string and display
 //
 LongWordToStr(Elapsed, Txt); // Long to string conversion
 Lcd_Cmd(_LCD_CLEAR); // Clear LCD
 Lcd_Out(1,1,"Frequency (HZ)"); // Display heading
 Lcd_Out(2,1,Txt); // Display measured frequency

 Delay_ms(1000); // Wait 1 s and repeat
 }
}

Figure 5.61
cont’d

Intermediate PIC18 Projects 267

Similarly, Timer1 control register T1CON is loaded as follows:

Thus, the T1CON register should be loaded with hexadecimal 0x36.

Then, Timer1 interrupts are enabled by setting PIE1¼ 1 and also the timer1 interrupt flag

is cleared by clearing PIR1.TMR1IF¼ 0. The next step is to configure interrupt register

INTCON to enable Timer0 interrupts, unmasked interrupts (e.g. Timer1), and global

interrupts. This is done by setting INTCON to hexadecimal 0xE0. The remainder of the

program is executed in an endless loop. The following operations are carried out inside

this loop:

• Timer0 registers cleared.

• Timer1 registers loaded for 250 ms interrupt.

• Variables Overflow and Cnt are cleared.

• Timer0 is enabled so that the counter counts every time external pulse is received.

• Timer1 is enabled so that interrupts are generated at every 250 ms.

• The program then waits until 1 s has elapsed (Cnt¼ 4).

• At this point, Timer0 and Timer1 are stopped.

• Timer0 high and low count is read.

• Total Timer0 count is calculated.

• Timer0 count is converted into string format and displayed on the LCD.

• Program waits for 1 s and above process is repeated.

If, for example, the frequency is 25 kHz it is displayed as follows:

Frequency (Hz)

25000

Project 6.8dReaction Timer
Project Description

This project tests the reaction time of a person. Basically, a light emitting diode (LED) is

turned ON after a random delay of 1e10 s. The project times how long it takes for the person

to hit a switch in response. The reaction time is displayed on a LCD in milliseconds.

Figure 6.62 shows the block diagram of the project.

268 Chapter 6

Project Hardware

Figure 6.63 shows the circuit diagram. The LED and the push-button switch are connected

to port pins RC0 and RC7, respectively. The switch is configured in the active low mode

so that when the switch is pressed logic 0 is sent to the microcontroller. The LCD is

connected to PORTB as in the previous LCD projects.

Project PDL

The project PDL is shown in Figure 6.64. The program counts and displays the reaction

time in milliseconds. Timer0 is used in the 16-bit mode to determine the reaction time.

Using a prescaler of 256, Timer0 count rate is given by

4� 0.125� 256¼ 128 ms

LCD

LED

Switch

M
ic

ro
co

nt
ro

lle
r

Figure 6.62: Block Diagram of the Project.

Figure 6.63: Circuit Diagram of the Project.

Intermediate PIC18 Projects 269

We will start the timer as soon as the LED is turned ON and stop it when the switch is

pressed. If the timer count is N, then the reaction time in milliseconds will be

Reaction time¼ 128�N/1000

The maximum 16-bit Timer0 count is 65535. This corresponds to 128� 65535¼ 8388 ms.

Thus, the maximum reaction time that can be measured is just over 8.3 s (too long for

anyone to react to the LED) after which time the timer overflows and timer flag TMR0IF

is set to 1. If when the switch is pressed the timer flag is set, then this means that the

timer has overflowed and the user is requested to try again.

For operating Timer0 in the 16-bit mode and for a prescaler of 256, the value to be loaded

into register T0CON is “0000 0111”, or hexadecimal 0x07. Note that the timer is stopped

initially.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program listing is given in Figure 6.65 (MIKRO-REACT.C). At

the beginning of the program, the connection between the LCD and the microcontroller

is defined; symbols LED and SWITCH are assigned to port pins RC0 and RC7,

BEGIN
Define interface between the LCD and microcontroller
Configure PORTB and PORTC as digital
Configure RC0 as output and RC7 as input
Ini�alize LCD
Configure Timer0 in 16-bit,prescaler 256
Turn OFF LED
Ini�alize random number seed
DO FOREVER

Generate random number 1 to 10
Clear �mer registers
Turn ON LED
Turn ON �mer
Wait un�l switch is pressed
Stop �mer
Read �mer count
Convert count to milliseconds
Convert count to string
Display count on LCD
Turn OFF LED
Delay 2 s
Clear LCD

ENDDO
END

Figure 6.64: Project PDL.

270 Chapter 6

/**
 Reac�on Timer
 =============

This project is a reac�on �mer. Basically an LED is connected to RC0, a push-bu�on switch
is connected to RC7 and an LCD is connected to PORTB.

The LED turns ON a�er a random delay (between 1 and 10 s) and the user is expected
to press the bu�on as soon as he/she sees the LED. The elapsed �me between the LED turning
ON and the bu�on being pressed is displayed in milliseconds on the LCD

The project can measure reac�on �mes from 1 ms to just over 8.3 s (In prac�ce it is not
possible for any person to react in more than a few seconds). A message is sent to the LCD if
the maximum reac�on �me is exceeded.

Programmer: Dogan Ibrahim
Date: September 2013
File: MIKROC-REACT.C

***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

#define LED PORTC.RC0
#define SWITCH PORTC.RC7

void main()
{
 unsigned char T_Low, T_High, Txt[11];
 unsigned int No;
 unsigned long Cnt;

 ANSELB = 0; // Configure PORTB as digital
 ANSELC = 0; // Configure PORTC as digital
 TRISC.RC0 = 0; // Configure RC0 as output
 TRISC.RC7 = 1; // Configure RC7 as input

 Lcd_Init(); // Ini�alize LCD

Figure 6.65: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 271

 Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor
 T0CON = 0x07; // Timer0, 16-bit, prescaler = 256
 LED = 0; // Turn OFF LED to start with
 srand(10); // Ini�alize random number seed
 INTCON.TMR0IF = 0; // Clear �mer overflow flag

 for(;;)
 {
//
// Generate a random number between 1 and 32767 and change it to be between 1 and 10
//
 No = rand(); // Random number between 1 and 32767
 No = No % 10 + 1; // Number between 1 and 10
 Vdelay_Ms(1000 * No); // Delay No seconds
 TMR0H = 0; // Clear Timer0 H register
 TMR0L = 0; // Clear Timer0 L register
 LED = 1; // Turn ON LED
//
// Turn ON Timer0 (counts in mul�ples of 128 microseconds)
//
 T0CON.TMR0ON = 1; // Turn ON Timer0
 while(SWITCH == 1); // Wait un�l the switch is pressed
//
// Switch is pressed. Stop �mer and get the count
//
 T0CON.TMR0ON = 0; // Stop Timer0
 T_Low = TMR0L; // Read �mer low byte
 T_High = TMR0H; // read �mer high byte
 Cnt = (unsigned long)256 * T_High + T_Low; // Get �mer count
 Cnt = 128 * Cnt/1000; // Convert to milliseconds

 if(INTCON.TMR0IF == 1) // If �mer overflow detected
 {
 Lcd_Out(1,1,"Too long...");
 Lcd_Out(2,1,"Try again...");
 INTCON.TMR0IF = 0; // Clear �mer overflow flag
 }
 else
 {
//
// Convert count to string and display on LCD
//
 LongWordToStr(Cnt, Txt); // Convert to string
 Lcd_Out(1,1,"Reac�on (ms)"); // Display heading
 Lcd_Out(2,1,Txt); // Display reac�on �me in ms
 }
 LED = 0; // Turn OFF LED
 Delay_ms(2000); // Wait 2 s and repeat
 Lcd_Cmd(_LCD_CLEAR); // Clear LCD
 }
}

Figure 6.65
cont’d

272 Chapter 6

/**
 Reac�on Timer
 ============

This project is a reac�on �mer. Basically an LED is connected to RC0, a push-bu�on switch is
connected to RC7 and an LCD is connected to PORTB.

The LED turns ON a�er a random delay (between 1 and 10 s) and the user is expected to
press the bu�on as soon as he/she sees the LED. The elapsed �me between the LED turning ON
and the bu�on being pressed is displayed in milliseconds on the LCD

The project can measure reac�on �mes from 1 ms to just over 8.3 s (In prac�ce it is not
possible for any person to react in more than a few seconds). A message is sent to the LCD is
the maximum reac�on �me is exceeded.

Programmer: Dogan Ibrahim
Date: September 2013
File: XC8-REACT.C

***/

#include <xc.h>
#include <plib/xlcd.h>
#include <stdlib.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define LED PORTCbits.RC0
#define SWITCH PORTCbits.RC7

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{
 unsigned char i,j;

 for(j = 0; j < s; j++)
 {
 for(i = 0; i < 100; i++)__delay_ms(10);
 }
}

//
// This func�on creates 18 cycles delay for the xlcd library
//
void DelayFor18TCY(void)
{
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();

Figure 6.66: MPLAB XC8 Program Listing.

Intermediate PIC18 Projects 273

Nop(); Nop();
return;
}

//
// This fucn�on creates 15 ms delay for the xlcd library
//
void DelayPORXLCD(void)
{
 __delay_ms(15);
 return;
}

//
// This func�on creates 5 ms delay for the xlcd library
//
void DelayXLCD(void)
{
 __delay_ms(5);
 return;
}

//
// This func�on clears the screen
//
void LCD_Clear()
{
 while(BusyXLCD());
 WriteCmdXLCD(0x01);
}

//
// This func�on moves the cursor to posi�on row,column
//
void LCD_Move(unsigned char row, unsigned char column)
{
 char ddaddr = 40*(row – 1) + column;
 while(BusyXLCD());
 SetDDRamAddr(ddaddr);
}

void main()
{
 unsigned char T_Low, T_High, Txt[11];
 unsigned int No;
 unsigned long Cnt;

Figure 6.66
cont’d

274 Chapter 6

 ANSELB = 0; // Configure PORTB as digital
 ANSELC = 0; // Configure PORTC as digital
 TRISCbits.TRISC0 = 0; // Configure RC0 as output
 TRISCbits.TRISC7 = 1; // Configure RC7 as input

 OpenXLCD(FOUR_BIT & LINES_5X7); // Ini�alize LCD

 while(BusyXLCD()); // Wait if the LCD is busy
 WriteCmdXLCD(DON); // Turn Display ON
 while(BusyXLCD()); // Wait if the LCD is busy
 WriteCmdXLCD(0x06); // Move cursor right
 LCD_Clear(); // Clear display

 T0CON = 0x07; // Timer0 for 16-bit, prescaler = 256
 LED = 0; // Turn OFF LED to start with
 srand(10); // Ini�alize random number seed
 INTCONbits.TMR0IF = 0; // Clear �mer overflow flag

 for(;;)
 {
//
// Generate a random number between 1 and 32767 and change it to be between 1 and 10
//
 No = rand(); // Random number between 1 and 32767
 No = No % 10 + 1; // Make the number between 1 and 10
 Delay_Seconds(No); // Delay No seconds
 TMR0H = 0; // Clear Timer0 H register
 TMR0L = 0; // Clear Timer0 L register
 LED = 1; // Turn ON LED
//
// Turn ON Timer0 (counts in mul�ples of 128 microseconds)
//
 T0CONbits.TMR0ON = 1; // Turn ON Timer0
 while(SWITCH == 1); // Wait un�l the switch is pressed
//
// Switch is pressed. Stop �mer and get the count
//
 T0CONbits.TMR0ON = 0; // Stop Timer0
 T_Low = TMR0L; // Read �mer low byte
 T_High = TMR0H; // read �mer high byte
 Cnt = (unsigned long)256 * T_High + T_Low; // Get �mer count
 Cnt = 128 * Cnt/1000; // Convert to milliseconds

 if(INTCONbits.TMR0IF == 1) // If �mer overflow detected
 {
 LCD_Move(1,1);
 putrsXLCD("Too long..."); // Display message
 LCD_Move(2,1);
 putrsXLCD("Try again...");
 INTCONbits.TMR0IF = 0; // Clear �mer overflow flag
 }

Figure 6.66
cont’d

Intermediate PIC18 Projects 275

respectively. Then, PORTB and PORTC are configured as digital; RC7 is configured as

an input pin. The LCD is initialized, Timer0 is configured to operate in the 16-bit mode

with a prescaler of 256, and the count is disabled at this point. The timer overflow flag

(INT0IF) is cleared, the LED is turned OFF, and the random number seed srand is loaded

with an integer number. The remainder of the program is executed inside an endless

loop.

Inside the endless loop, the LED is turned ON and Timer0 is turned ON to start counting

the reaction time. When the SWITCH is pressed, the timer is stopped, and the count is

read and converted into milliseconds. If the timer has overflowed (INT0IF is set), then the

measurement is ignored since it is not correct anymore and message “Too long.Try

again.” is sent to the LCD. Otherwise, the count is converted into a string and displayed

on the LCD. The program repeats after a 2 s delay.

If, for example, the reaction time is 2568 ms, then it will be displayed as follows:

Reaction (ms)

2568

The program can be modified if desired to measure the reaction time to sound. This will

require the replacement of the LED with a buzzer and the generation of an audible sound

with the required frequency.

MPLAB XC8

The MPLAB XC8 version of the program is shown in Figure 6.66 (XC8-REACT.C). The

program operates as in the mikroC Pro for PIC version.

 else
 {
//
// Convert count to string and display on LCD
//
 utoa(Txt, Cnt, 10); // Convert to string
 LCD_Move(1,1);
 putrsXLCD("Reac�on (ms)"); // Display heading
 LCD_Move(2,1);
 putrsXLCD(Txt); // Display reac�on �me in ms
 }
 LED = 0; // Turn OFF LED
 Delay_Seconds(2); // Wait 2 s and repeat
 LCD_Clear(); // Clear LCD
 }
}

Figure 6.66
cont’d

276 Chapter 6

Project 6.9dTemperature and Relative Humidity Measurement
Project Description

This project demonstrates how the ambient temperature and relative humidity can be

measured and then displayed on an LCD.

In this project, the SHT11 relative humidity and temperature sensor chip is used. This is a

tiny eight-pin chip with dimensions 4.93� 7.47 mm and thickness 2.6 mm, manufactured

by Sensirion (http://www.sensirion.com). A capacitive sensor element is used to measure

the relative humidity, while the temperature is measured by a band-gap sensor. A calibrated

digital output is given for ease of connection to a microcontroller. The relative humidity is

measured with an accuracy of �4.5%RH, and the temperature accuracy is �0.5 �C.

Because the sensor is very small, it is available as mounted on a small printed circuit

board for ease of handling. Figure 6.67 shows a picture of the SHT11 sensor.

The sensor is operated with four pins. Pin 1 and pin 4 are the supply voltage and ground

pins. Pin 2 and pin 3 are the data and clock pins, respectively. The clock pin synchronizes

all the activities of the chip. It is recommended by the manufacturers that the data pin

should be pulled high through a 10 K resistor, and a 100 nF decoupling capacitor should

be connected between the power lines.

The SHT11 is based on serial communication where data are clocked in and out, in

synchronization with the SCK clock. The communication between the SHT11 and a

microcontroller consists of the following protocols (see the SHT11 data sheet for more

detailed information).

RESET

At the beginning of data transmission, it is recommended to send a RESET to the SHT11

just in case the communication with the device is lost. This signal consists of sending nine

Figure 6.67: The SHT11 Temperature and Relative Humidity Sensor.

Intermediate PIC18 Projects 277

http://www.sensirion.com

or more SCK signals while the DATA line is HIGH. Configuring the port pin as an input

will force the pin to logic HIGH. A Transmission Start Sequence must follow the RESET.

The C code to implement the RESET sequence as a function is given below (SDA and

SCK are the DATA and SCK lines, respectively). Note that the manufacturer’s data sheet

specifies that after SCK changes state it must remain in its new state for a minimum of

100 ns. Here, a delay of 1 ms is introduced between each SCK state change:

void Reset_Sequence()
{
SCK = 0; // SCK low
SDA_Direction = 1; // Define SDA as input so that the SDA line

becomes HIGH
for (j = 0; j < 10; j++) // Repeat 10 times
{
SCK = 1; // send 10 clocks on SCK line with 1 us delay
Delay_us(1); // 1 us delay
SCK = 0; // SCK is LOW
Delay_us(1); // 1 us delay

}
Transmission_Start_Sequence(); // Send Transmission-start-sequence
}

Transmission Start Sequence

Before a temperature or relative humidity conversion command is sent to the SHT11, the

transmission start sequence must be sent. This sequence consists of lowering the DATA

line while SCK is HIGH, followed by a pulse on the SCK and rising DATA again while

the SCK is still HIGH.

The C code to implement the transmission start sequence is given below:

void Transmission_Start_Sequence()
{
SDA_Direction = 1; // Set SDA HIGH
SCK = 1; // SCK HIGH
Delay_us(1); // 1 us delay
SDA_Direction = 0; // SDA as output
SDA = 0; // Set SDA LOW
Delay_us(1); // 1 us delay
SCK = 0; // SCK LOW
Delay_us(1); // 1 us delay
SCK = 1; // SCK HIGH
Delay_us(1); // 1 us delay
SDA_Direction = 1; // Set SDA HIGH
Delay_us(1); // 1 us delay
SCK = 0; // SCK LOW

}

278 Chapter 6

Conversion Command

After sending the transmission start sequence, the device is ready to receive a conversion

command. This consists of three address bits (only “000” is supported) followed by five

command bits. The list of valid commands is given in Table 6.1. For example, the

commands for relative humidity and temperature are “00000101” and “00000011”,

respectively. After issuing a measurement command, the sensor sends an ACK pulse on

the falling edge of the eighth SCK pulse. The ACK pulse is identified by the DATA line

going LOW. The DATA line remains LOW until the ninth SCK pulse goes LOW. The

microcontroller then has to wait for the measurement to complete. This can take up to

320 ms. During this time, it is recommended to stop generating clocks on the SCK line

and release the DATA line. When the measurement is complete, the sensor pulls the DATA

line LOW to indicate that the data are ready. At this point, the microcontroller can restart

the clock on the SCK line to read the measured data. Note that the data are kept in the

SHT11 internal memory until they are read out by the microcontroller.

The data read out consists of 2 bytes of data and 1 byte of CRC checksum. The checksum

is optional and if not used the microcontroller may terminate the communication by

keeping the DATA line HIGH after receiving the last bit of the data (LSB). The data bytes

are transferred with MSB first and are right justified. The measurement can be for 8, 12, or

14 bits wide. Thus, the fifth SCK corresponds to the MSB data for a 12-bit operation. For

an 8-bit measurement, the first byte is not used. The microcontroller must acknowledge

each byte by pulling the DATA line LOW, and sending an SCK pulse. The device returns

to the sleep mode after all the data have been read out.

Acknowledgment

After receiving a command from the microcontroller, the sensor issues an acknowledgment

pulse by pulling the DATA line LOW for one clock cycle. This takes place after the falling

edge of the eighth clock on the SCK line, and the DATA line is pulled LOW until the end

of the ninth clock on the SCK line.

The Status Register

The Status register is an internal 8-bit register that controls some functions of the device, such

as selecting the measurement resolution, end of battery detection, and use of the internal

Table 6.1: List of Valid Commands

Command Code

00011 Measure temperature
00101 Measure relative humidity
00111 Read status register
00110 Write status register
11110 Soft reset (reset interface, clear status register)

Intermediate PIC18 Projects 279

heater. To write a byte to the Status register, the microcontroller must send the write command

(“00110”), followed by the data byte to be written. Note that the sensor generates

acknowledge signals in response to receiving both the command and the data byte. Bit 0 of

the Status register controls the resolution, such that when this bit is 1, both the temperature

resolution and the relative humidity resolution are 12 bits. When this bit is 0 (the default

state), the temperature resolution is 14 bits, and the relative humidity resolution is 12 bits.

The sensor includes an on-chip heating element that can be enabled by setting bit 2 of the

Status register (the heater is off by default). By using the heater, it is possible to increase the

sensor temperature by 5e10 �C. The heater can be useful for analyzing the effects of changing
the temperature on humidity. Note that, during temperature measurements, the sensor

measures the temperature of the heated sensor element and not the ambient temperature.

The steps for reading the humidity and temperature are summarized below:

Humidity (Assuming 12-Bit Operation with No CRC)

• Send Reset_Sequence.

• Send Transmission_start_sequence.

• Send “00000101” to convert relative humidity.

• Receive ACK from sensor on eighth SCK pulse going LOW. The ACK is identified by

the sensor lowering the DATA line.

• Wait for the measurement to be complete (up to 320 ms), or until DATA line is LOW.

• Ignore first four SCK pulses.

• Get the four upper nibble starting with the MSB bit.

• Send ACK to sensor at the end of eighth clock by lowering the DATA line and sending

a pulse on the SCK.

• Receive low 8 bits.

• Ignore the CRC by keeping the DATA line HIGH.

• The next measurement can start by repeating the above steps.

Temperature

The steps for reading the temperature are similar, except that the command “00000011” is

sent instead of “00000101”.

Conversion of Signal Output

Relative Humidity Reading (SORH)

The humidity sensor is nonlinear, and it is necessary to perform a calculation to obtain the

correct reading. The manufacturer’s data sheet recommends the following formula for the

correction:

RHlinear ¼ C1 þ C2 þ SORH þ C3$SO
2
RHð%RHÞ (6.3)

280 Chapter 6

Where SORH is the value read from the sensor, and the coefficients are as given in

Table 6.2.

For temperatures significantly different from 25 �C, the manufacturers recommend another

correction to be applied to the relative humidity as follows:

RHTRUE ¼ ðT� 25Þ$ðt1 þ t2$SORHÞ þ RHlinear (6.4)

Where T is the temperature in degrees centigrade where the relative humidity reading is

taken, and the coefficients are as given in Table 6.3.

Temperature Reading (SOT)

The manufacturers recommend that the temperature reading of the SHT11 should be

corrected according to the following formula:

TTRUE ¼ d1 þ d2$SOT (6.5)

Where SOT is the value read from the sensor, and the coefficients are as given in

Table 6.4.

Block Diagram

The block diagram of the project is shown in Figure 6.68.

Circuit Diagram

The circuit diagram of the project is as shown in Figure 6.69. The SHT11 sensor

is connected to PORTC of a PIC18F45K22 microcontroller, operated from an 8-MHz

crystal. The DATA and SCK pins are connected to RC4 and RC3, respectively. The DATA

pin is pulled up using a 10 K resistor as recommended by the manufacturers. Also, a

100 nF decoupling capacitor is connected between the VDD pin and the ground.

Table 6.2: Coefficients for the RH Nonlinearity Correction

SORH C1 C2 C3

12 bits �2.0468 0.0367 �1.5955E-6
8 bits �2.0468 0.5872 �4.0845E-4

Table 6.3: Coefficients for RH Temperature Correction

SORH t1 t2

12 bits 0.01 0.00008
8 bits 0.01 0.00128

Intermediate PIC18 Projects 281

The project was tested using a plug-in SHT11 module (manufactured by

mikroElektronika) together with the EasyPIC V7 development board, where the module

was connected to the PORTC I/O connector located at the edge of the EasyPIC V7

development board (Figure 6.70).

Project PDL

The PDL of this project is given in Figure 6.71.

Project Program

mikroC Pro for PIC

The program listing of the project is shown in Figure 6.72 (MIKROC-SHT11.C). At the

beginning of the program, the connections between the LCD and the microcontroller are

defined. Then, the connections between the SHT11 sensor and the microcontroller are

Table 6.4: Coefficients for Temperature Correction

VDD d1 (
�C) d1 (

�F)

5 �40.1 �40.2
4 �39.8 �39.6
3.5 �39.7 �39.5
3 �39.6 �39.3
2.5 �39.4 �38.9

SOT D2(
�C) D2(

�F)

14 bits 0.01 0.018
12 bits 0.04 0.072

Figure 6.68: Block Diagram of the Project.

282 Chapter 6

Figure 6.69: Circuit Diagram of the Project.

Figure 6.70: Use of the SHT11 Module with the EasyPIC V7 Development Board.

Intermediate PIC18 Projects 283

BEGIN
 Define the connec�ons between the LCD and microcontroller
 Define the connec�ons between the SHT11 and microcontroller
 Define SHT11 correc�on coefficients
 Configure PORTB, PORTC, PORTD as digital
 Ini�alise LCD
 Clear display

CALL SHT11_Startup_Delay
DO FOREVER

CALL Measure to measure temperature
CALL Measure to measure rela�ve humidity

 Convert temperature to a string
 Convert rela�ve humidity to a string
 Append degree symbol and le�er “C” a�er the temperature value
 Append % sign a�er the rela�ve humidity value
 Display temperature
 Display rela�ve humidity
 Wait for 1 s
 ENDDO
END

BEGIN/SHT11_Startup_Delay
 Wait for 20 ms
END/SHT11_Startup_Delay

BEGIN/Reset_Sequence
 Implement SHT11 reset sequence
END/Reset_Seqeunce

BEGIN/Transmission_Start_Sequence
 Implement SHT11 transmission_start_sequence
END/Transmission_Start_Sequence

BEGIN/Send_ACK
 Send ACK signal to SHT11
END/Send_ACK

BEGIN/Measure
 Get type of measurement required
 Send Reset_Sequence
 Send Transmission_Start_Sequence
 Send address and temperature or humidity convert command to SHT11
 Send SCK pulse for the ACK signal
 Wait un�l measurement is ready (un�l DATA goes LOW)
 Read 8 bit measurement data
 Send ACK to SHT11
 Read remaining 8 bits
 Make correc�ons for temperature (or humidity)
END/Measure

Figure 6.71: PDL of the Project.

284 Chapter 6

/*===
 TEMPERATURE AND RELATIVE HUMIDITY MEASUREMENT
 ===

displays the readings on an LCD.

The SHT11 single chip temperature and rela�ve humidity sensor is used in this project. The
sensor is connected as follows to a PIC18F45K22 type microcontroller, opera�ng at 8 MHz:

 Sensor Microcontroller Port
 DATA RC4
 SCK RC3

A 10K pull-up resistor is used on the DATA pin. In addi�on, a 100 nF decoupling capacitor is
used between the VDD and the GND pins. The sensor is operated from a +5 V supply.

The connec�ons between the LCD and the microcontroller is as in the earlier LCD based projects.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-SHT11.C
==*/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

//SHT11 connec�ons
sbit SHT11_SDA at RC4_bit; // SHT11 DATA pin
sbit SHT11_SCK at RC3_bit; // SHT11 SCK pin
sbit SHT11_SDA_Direc�on at TRISC4_bit; // DATA pin direc�on
sbit SHT11_SCK_Direc�on at TRISC3_bit; // SCK pin direc�on
//
// SHT11 Constants for calcula�ng humidity (in 12 bit mode)
//
const float C1 = –2.0468; // –2.0468
const float C2 = 0.0367; // 0.0367
const float C3 = –1.5955E–6; // –1.5955* 10^–6
//

This project measures both the ambient temperature and the rela�ve humidity and then

Figure 6.72: mikroC Pro for PIC Program Listing.

Intermediate PIC18 Projects 285

// SHT11 Constants for rela�ve humidity temperature correc�on (in 12 bit mode)
//
const float t1 = 0.01; // 0.01
const float t2 = 0.00008; // 0.00008
//
// SHT11 temperature conversion coefficients (14 bit mode)
//
const float d1 = –40.1; // –40.1
const float d2 = 0.01; // 0.01

unsigned char i, mode;
unsigned int buffer;
float Res, Ttrue, RHtrue;
char T[] = "T= ";
char H[] = "H= ";

//
// Func�on to send the Transmission_Start_Sequence
//
void Transmission_Start_Sequence(void)
{
 SHT11_SDA_Direc�on = 1; // Set SDA as input
 SHT11_SCK = 1; // SCK HIGH
 Delay_us(1); // 1 us delay
 SHT11_SDA_Direc�on = 0; // Set SDA as output
 SHT11_SDA = 0; // SDA LOW
 Delay_us(1); // 1 us delay
 SHT11_SCK = 0; // SCK LOW
 Delay_us(1); // 1 us delay
 SHT11_SCK = 1; // SCK HIGH
 Delay_us(1); // 1 us delay
 SHT11_SDA_Direc�on = 1; // Set SDA as input
 Delay_us(1); // 1 us delay
 SHT11_SCK = 0; // SCK low
}

//
// This func�on sends the Reset_Sequence
//
void Reset_Sequence()
{

}

 SHT11_SCK = 0; // SCL low
 SHT11_SDA_Direc�on = 1; // Define SDA as input
 for (i = 1; i <= 10; i++) // Repeat 10 �mes
 {
 SHT11_SCK = 1; // Send clock pulses
 Delay_us(1);
 SHT11_SCK = 0;
 Delay_us(1);
 }
 Transmission_Start_Sequence();

Figure 6.72
cont’d

286 Chapter 6

//
// This func�on sends ACK
//
void Send_ACK()
{
 SHT11_SDA_Direc�on = 0; // Define SDA as output
 SHT11_SDA = 0; // SDA low
 SHT11_SCK = 1; // SCL high
 Delay_us(1); // 1 us delay
 SHT11_SCK = 0; // SCL low
 Delay_us(1); // 1 us delay
 SHT11_SDA_Direc�on = 1; // Define SDA as input
}

//
// This func�on returns temperature or humidity depending on the argument
//
float Measure(unsigned char command)
{
 mode = command; // Mode is 3 or 5
 Reset_Sequence(); // Reset SHT11
 Transmission_Start_Sequence(); // Start transmission sequence

 SHT11_SDA_Direc�on = 0; // Set SDA as output
 SHT11_SCK = 0; // Set SCK as LOW
//
// Send address and command to SHT11 sensor. A total of 8 bits are sent
//
 for(i = 0; i < 8; i++) // Send address and command
 {
 if (mode.F7 == 1)SHT11_SDA_Direc�on = 1; // If MSB (bit 7) is 1, Set SDA to 1
 else // If MSB is 0
 { // else MSB is 0
 SHT11_SDA_Direc�on = 0; // define SDA as output
 SHT11_SDA = 0; // Set SDA to 0
 }
 Delay_us(1); // 1 us delay
 SHT11_SCK = 1; // SCL high
 Delay_us(1); // 1 us delay
 SHT11_SCK = 0; // SCL low
 mode = mode << 1; / Move contents of j one place le�
 }
//
// Give a SCK pulse for the ACK
//
 SHT11_SDA_Direc�on = 1; // Set SDA to input (to read ACK)
 SHT11_SCK = 1; // SCL high

Figure 6.72
cont’d

Intermediate PIC18 Projects 287

 Delay_us(1); // 1 us delay
 SHT11_SCK = 0; // SCL low
 Delay_us(1); // 1 us delay
//
// Now wait un�l the measurement is ready (SDA goes LOW when data becomes ready)
//
 while (SHT11_SDA == 1)Delay_us(1); // Wait un�l SDA goes LOW
//
// Now, the data is ready, read the data as 2 bytes. Read all 16 bits even though the
// upper nibble may not be relevant
//
 buffer = 0;
 for (i = 1; i <=16; i++) // DO 16 �mes
 {
 buffer = buffer << 1; // Move MSB one place le�
 SHT11_SCK = 1; // SCK HIGH
 if (SHT11_SDA == 1)buffer = buffer | 0x0001; // Get the bit as 1 (OR with data)
 SHT11_SCK = 0;
 if (i == 8)Send_ACK(); // If counter i = 8 then send ACK
 }

//
// Now make the correc�ons to the measured value. If mode = 3 then temperature, if on the
// other hand, mode = 5 then rela�ve humidity
//
 if(command == 0x03) // Temperature correc�on
 Res = d1 + d2*buffer;
 else if(command == 0x05) // Rela�ve humidity correc�on
 {
 Res = C1 + C2*buffer + C3*buffer*buffer;
 Res = (Ttrue – 25)*(t1 + t2*buffer) + Res;
 }
 return Res; // Return temperature or humidity
}

//
// This is the SHT11 startup delay (20 ms)
//
void SHT11_Startup_Delay()
{
 Delay_ms(20);
}

//
// Start of MAIN program
//
void main()
{

Figure 6.72
cont’d

288 Chapter 6

defined. The temperature and relative humidity correction coefficients are then given as

floating point numbers.

The main program then configures PORTB, PORTC, and PORTD as digital outputs,

initializes the LCD, and clears the display. The program then enters an endless loop

formed with a for statement. Inside this loop, the temperature is measured and corrected

by calling function Measure with argument 3, and stored in a floating point variable Ttrue.

Then, the relative humidity is read, corrected, and stored in floating point variable RHtrue.

The measured values are converted into strings by using built-in function FloatToStr.

Finally, the degree symbol and letter “C” are appended to the temperature reading.

Similarly, symbol “%” is appended to the relative humidity reading before it is displayed.

Function Measure is the most complicated function in the program. This function

implements the measurement steps described earlier in the project. Argument command

specifies the type of measurement required: 3 for temperature measurement and 5 for

relative humidity measurement. After calling to functions Reset_Sequence and

Transmission_Start_Sequence, the address and command are sent to the SHT11 device.

 ANSELB = 0; // Configure PORT B as digital
 ANSELC = 0; // Configure PORT C as digital
 TRISB = 0;
 TRISC = 0;
 SHT11_SCK_Direc�on = 0; // SCL is output

 LCD_Init(); // Ini�alise LCD
 Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor
 SHT11_Startup_Delay(); // SHT11 startup delay

 for(;;) // DO FOREVER
 {
 SHT11_SCK_Direc�on = 0; // Define SCL1 as output
 Ttrue = Measure(0x03); // Measure Temperature
 RHtrue = Measure(0x05); // Measure Rela�ve humidity
 SHT11_SCK_Direc�on = 1; // Define SCK as input
 FloatToStr(Ttrue, T+3); // Convert temperature to string
 FloatToStr(RHtrue, H+3); // Convert rel humidity to string

 Lcd_Cmd(_LCD_CLEAR); // Clear display
 T[8] = 178; // Insert Degree sign
 T[9] = 'C'; // Insert C
 T[10] = 0x0; // Terminate with NULL
 H[8] = '%'; // Insert %
 H[9]=0x0; // Terminate with NULL
 Lcd_Out(1,1,T); // Display temperature
 Lcd_Out(2,1,H); // Display humidity
 Delay_ms(1000); // Delay 1 s
 }
}

Figure 6.72
cont’d

Intermediate PIC18 Projects 289

Bits of mode (3 or 5) are sent out through the MSB after shifting the data to the left in a

loop. The program then waits until the conversion is ready, which is indicated by the

DATA line going LOW. Once the data are ready, a loop is formed to read the 2 bytes from

the sensor. At the end of the eighth clock pulse, an ACK signal is sent to the sensor. In the

last part of this function, depending upon the type of conversion required, either the

temperature or the relative humidity readings are corrected and returned to the calling

program.

The program repeats after a delay of 1 s.

Figure 6.73 shows a typical display.

Project 6.10dThermometer with an RS232 Serial Output
Project Description

Serial communication is a simple means of sending data to long distances quickly and

reliably. The most commonly used serial communication method is based on the RS232

standard. In this standard, data are sent over a single line from a transmitting device to a

receiving device in bit serial format at a prespecified speed, also known as the Baud rate, or

the number of bits sent each second. Typical Baud rates are 4800, 9600, 19200, 38400 etc.

The RS232 serial communication is a form of asynchronous data transmission where data

are sent character by character. Each character is preceded with a Start bit, seven or eight

data bits, an optional parity bit, and one or more stop bits. The most commonly used

format is eight data bits, no parity bit, and one stop bit. The least significant data bit is

transmitted first, and the most significant bit is transmitted last.

A logic high is defined to be at �12 V, and a logic 0 is at þ12 V. Figure 6.74 shows how

character “A” (ASCII binary pattern 0010 0001) is transmitted over a serial line. The line

is normally idle at �12 V. The start bit is first sent by the line going from high to low.

Figure 6.73: A Typical Display.

290 Chapter 6

Then eight data bits are sent starting from the least significant bit. Finally, the stop bit is

sent by raising the line from low to high.

In serial connection, a minimum of three lines are used for communication: transmit (TX),

receive (RX), and ground (GND). Some high-speed serial communication systems use

additional control signals for synchronization, such as CTS, DTR, and so on. Some

systems use software synchronization techniques where a special character (XOFF) is used

to tell the sender to stop sending, and another character (XON) is used to tell the sender to

restart transmission. In this book, we will be using low-speed communication, and

therefore, the basic pins shown in Table 6.5 will be used with no hardware or software

synchronization.

Serial devices are connected to each other using two types of connectors: a nine-way

connector and a 25-way connector. Table 6.5 shows the TX, RX, and GND pins of each

types of connectors. The connectors used in RS232 serial communication are shown in

Figure 6.75.

As described above, RS232 voltage levels are at �12 V. On the other hand,

microcontroller inputeoutput ports operate at 0 to þ5 V voltage levels. It is therefore

necessary to translate the voltage levels before a microcontroller can be connected to an

RS232 compatible device. Thus, the output signal from the microcontroller has to be

converted into �12 V, and the input from an RS232 device must be converted into 0 to

þ5 V before it can be connected to a microcontroller. This voltage translation is normally

done using special RS232 voltage converter chips. One such popular chip is the MAX232.

START 1 0 0 0 0 0 1 0 STOP

Idle

Figure 6.74: Sending Character “A” in Serial Format.

Table 6.5: Minimum Required Pins for Serial Communication

Pin Function

Nine-Pin Connector

2 Transmit (TX)
3 Receive (RX)
5 Ground (GND)

Twenty Five-Pin Connector

2 Transmit (TX)
3 Receive (RX)
7 Ground (GND)

Intermediate PIC18 Projects 291

This is a dual converter chip having the pin configuration as shown in Figure 6.76. This

particular device requires four external 1-mF capacitors for its operation.

In the PIC18F series of microcontrollers, serial communication can be handled either in the

hardware or in the software. The use of the hardware option is easy. The PIC18F series of

microcontrollers have built-in Universal Asynchronous Receiver Transmitter (USART)

circuits providing special inputeoutput pins for serial communication. For serial

communication, all the data transmission is handled by the USART, but we have to configure

the USART before receiving and transmitting data. With the software option, all the serial bit

timing is handled in software and any inputeoutput pin can be programmed and used for

serial communication. In this book, we will only use the hardware UART functions.

In this project, a PC is connected to the microcontroller using an RS232 cable. The project

receives the ambient temperature every second and then sends it to the PC where it is

displayed on the PC screen.

Figure 6.75: RS232 Connectors.

Figure 6.76: MAX232 Pin Configuration.

292 Chapter 6

The block diagram of the project is shown in Figure 6.77.

Project Hardware

The circuit diagram of the project is shown in Figure 6.78. In this project, a PIC18F45K22

microcontroller is used with an 8 MHz crystal. The built-in USART of the microcontroller

is used in this project. The serial communication lines of the microcontroller (RC6 and

RC7) are connected to a MAX232 voltage translator chip and then to the serial input port

(COM1) of a PC using a nine-pin connector. An LM35DZ-type analog temperature is

connected to port pin AN0 (RA0) of the microcontroller.

 PC
 PIC
18F45K22

 RS232 cable

Temperature
sensor

Figure 6.77: Block Diagram of the Project.

Figure 6.78: Circuit Diagram of the Project.

Intermediate PIC18 Projects 293

If you are using the EasyPIC V7 development board, the following jumpers must be

configured on the board:
• Set Jumper J3 to RS232.

• Set Jumper J4 to RS232.

• Set DIL switch SW1, switch 1 to the ON position (to RC7).

• Set DIL switch SW2, switch 1 to the ON position (to RC6).

• Connect the development board RS232 port to your PC via a suitable RS232 cable.

Project PDL

The PDL of the project is shown in Figure 6.79. The project consists of a main program

and a function called Newline. Function Newline sends a carriage return and line feed to

the serial port. The main program reads the temperature every second and sends it to the

PC through the serial link.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program listing of the project is shown in Figure 6.80

(MIKROC-RS232-1.C). The program consists of a main program and a function called

Newline. Function Newline sends a carriage return and line feed to the USART to move

the cursor to the next line. At the beginning of the program, the UART is initialized to

operate at 9600 Baud, and the heading “AMBIENT TEMPERATURE” is sent to the serial

line. Then, an endless loop is formed, and inside this loop, the temperature is read from

BEGIN/NEWLINE
 Send carriage return to USART
 Send line feed to USART
 END/NEWLINE

Main program:

 BEGIN
Configure USART to 9600 Baud

 Display “AMBIENT TEMPERATURE”
CALL Newline

 Display “=====================”
CALL Newline
DO FOREVER

 Read temperature from analog sensor
 Convert temperature to Degrees C
 Send temperature over the serial line

CALL Newline
 Wait 1 s

ENDDO
END

Figure 6.79: Project PDL.

294 Chapter 6

/**
 THERMOMETER WITH RS232 SERIAL OUTPUT
 ====================================

In this project a PC is connected to a PIC18F452K2 microcontroller. The project reads the ambient
temperature using an LM35DZ type analog temperature sensor. The temperature is then sent to
a PC over the RS232 communica�ons line. The PC displays the temperature on the screen.

This program uses the built in USART of the microcontroller. The USART is configured to operate
with 9600 Baud rate.

The serial TX pin is RC6 and the serial RX pin is RC7.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-RS232-1.C
***/

//
// This func�ons send carriage-return and line-feed to USART
//
void Newline()
{
 Uart1_Write(0x0D); // Send carriage return
 Uart1_Write(0x0A); // Send line feed
}

//
// Start of MAIN program
//
void main()
{
 unsigned char Txt[14];
 unsigned char msg1[] = "AMBIENT TEMPERATURE";
 unsigned char msg2[] = "===================";
 unsigned int temp;
 float mV;
 char *res;

 ANSELA = 1; // Configure RA0 as analog
 ANSELC = 0; // Configure PORTC as digital
 TRISA = 1; // Configure RA0 as input

 Uart1_Init(9600); // Ini�alize UART to Baud = 9600

 Uart1_Write_Text(msg1); // Display heading
 Newline(); // Newline
 Uart1_Write_Text(msg2);
 Newline();

Figure 6.80: mikroC Pro for PIC Program.

Intermediate PIC18 Projects 295

channel 0 and is converted into millivolts after multiplying with 5000/1024. The result is

then divided by 10 to give the temperature in Degrees Centigrade. The temperature is

converted into a string using built-in function FloatToStr. The resulting string contains

several digits after the decimal point as in the following example:

29.23687

The number of digits to display after the decimal point can be selected by finding the

position of the decimal point and inserting a NULL character to terminate the string at

the required point. In this program, the built-in string function strchr is used to find the

address (pointer to) of the decimal point, and this is stored in character pointer res. Then,

a NULL character is added to string Txt three digits after the decimal point. The result is

that the string will be displayed with two digits after the decimal point. Thus, 29.23687

will be displayed as 29.23.

mikroC Pro for the PIC compiler supports the following hardware UART functions (“x” is

1 or 2 depending upon the UART module used in multiple UART processors):

UARTx_Init: This function initializes the UART module. The required Baud rate

must be specified in the argument.

UARTx_Data_Ready: This function is used to check if data are available in the

receive buffer. The function returns 1 if data are available for reading.

UARTx_Tx_Idle: This function is used to test if the transmit buffer is empty. The

function returns 1 if the transmit buffer is empty.

UARTx_Read: This function reads a byte from the UART. Function UARTx_Data_-

Ready should be used to make sure that data are available in the receive buffer.

UARTx_Read_Text: This function is used to read the text from UART. A delimiter and

number of attempts to detect the delimiter should be specified to identify the end of data.

 for(;;) // Endless loop
 {

 temp = ADC_Read(0); // Read temperature from channel 0
 mV = temp * 5000.0/1024; // Convert to millivolts
 mV = mV/10.0; // Convert to Degrees Cen�grade
 FloatToStr(mV, Txt); // Convert into a string
 res = strchr(Txt, '.'); // Locate "."
 *(res+3) = '\0'; // Insert NULL character 2 digits a�er "."
 Uart1_Write_Text(Txt); // Send temperature over the serial line
 Newline();
 Delay_Ms(1000); // Wait 1 s
 }
}

Figure 6.80
cont’d

296 Chapter 6

UARTx_Write: This function writes a byte to UART.

UARTx_Write_Text: This function is used to write zero-terminated text to the UART.

UART_Set_Active: Specify the UART to be used in processors having more than one

UART.

Testing the Program

The program can be tested using a terminal emulator software such as Hyperterminal,

which is distributed free of charge with the Windows operating systems. The steps to test

the program are given below (these steps assume that serial port COM15 is used. If you

are not sure which serial port is available on your PC, go to Control

Panel/ System/Device Manager and look for available Ports. Serial ports have

identifiers COM, followed by a number):

• Connect the RS232 output from the microcontroller to the serial input port of a PC (e.g.

COM15).

• Start Hyperterminal terminal emulation software and give a name to the session.

• Select File/New connection/ Connect using and select COM15.

• Select the Baud rate as 9600, data bits as 8, no parity bits, 1 stop bit, and Flow Control

None.

• Reset the microcontroller.

An example output from the Hyperterminal screen is shown in Figure 6.81.

Alternatively, the terminal emulator software included inside the mikroC Pro for PIC

compiler can be used. The steps are given below (assuming that COM15 will be used):

• Click Tools/USART Terminal.

• Select COM15, 9600 Baud, 1 Stop bit, No parity, Flow control None, data Format

ASCII (Figure 6.82).

• Click Connect. You should see the data being displayed on your terminal (Figure 6.83).

Using USB-RS232 Converter Cable

Most PCs nowadays do not have RS232 serial ports; instead, they are equipped with

universal serial bus (USB) ports. If this is the case, you should be able to purchase and use

a USB-RS232 converter cable. This is a special cable with built-in electronics to convert

RS232 signals into USB and vice versa. When such a cable is connected to a PC, it

creates a virtual serial communications port on your PC. You should go to Control

Panel/ System/Device Manager to see the name of the created COM port, and then

use a terminal emulator software such as the ones given above, that is, Hyperterm or the

mikroC Pro for PIC built-in terminal emulator.

Intermediate PIC18 Projects 297

Figure 6.81: Hyperterminal Screen.

Figure 6.82: Use of the mikroC Pro for the PIC Built-in Terminal Emulator.

298 Chapter 6

Using the USB UART Port

The EasyPIC V7 development board has an on-board USB-RS232 converter module that

enables you to connect the development board to the USB port on your PC. The steps to

use this port are as follows:

• Set Jumper J3 to USB UART.

• Set Jumper J4 to USB UART.

• Set DIL switch SW1, switch 1 to ON position (to RC7).

• Set DIL switch SW2, switch 1 to ON position (to RC6).

• Connect the development board USB UART port to your PC via a USB cable.

Figure 6.84 shows the EasyPIC V7 development board configured for USB UARToperation.

Note that the USB UART module on the development board uses the FT232RL chip to

convert the signals. This chip requires the FTDI driver (known as VCP_DRIVERS) to be

installed on your PC before you can use the USB UART communication. This driver is

available on the EasyPIC V7 product DVD. Alternatively, it can be downloaded free of

charge from the Internet.

MPLAB XC8

The mikroC Pro for PIC program listing of the project is shown in Figure 6.85

(MIKROC-RS232-1.C). Some of the important MPLAB XC8 hardware UART library

functions are given below (“x” is either 1 or 2 and specifies the UART to be used in

processors having more than one UART):

BusyxUSART: This function returns 1 if the UART transmitter is busy.

ClosexUSART: This function disables the UART.

Figure 6.83: Displaying Data Using the mikroC Pro for the PIC Terminal Emulator.

Intermediate PIC18 Projects 299

DataRdyxUSART: This function returns 1 if data are available in the UART receive

buffer.

getsxUSART: This function reads a fixed length of characters from UART. The

number of characters to be read is specified in the function argument.

OpenxUSART: This function configures the specified UART. The function

has two arguments. The first argument can be a bitwise AND of the following

identifiers:

Interrupt on Transmission:

USART_TX_INT_ON Transmit interrupt ON

USART_TX_INT_OFF Transmit interrupt OFF

Interrupt on Receipt:

USART_RX_INT_ON Receive interrupt ON

USART_RX_INT_OFF Receive interrupt OFF

USART Mode:

USART_ASYNCH_MODE Asynchronous Mode

USART_SYNCH_MODE Synchronous Mode

Figure 6.84: EasyPIC V7 Board Configured for the USB UART Operation. (For color version of
this figure, the reader is referred to the online version of this book.)

300 Chapter 6

/**
THERMOMETER WITH RS232 SERIAL OUTPUT
====================================

In this project a PC is connected to a PIC18F452K2 microcontroller. The project reads the
ambient temperature using an LM35DZ type analog temperature sensor. The temperature is
then sent to a PC over the RS232 communica�ons line. The PC displays the temperature on the
screen.

This program uses the built in USART of the microcontroller. The USART is configured to operate
with 9600 Baud rate.

The serial TX pin is RC6 and the serial RX pin is RC7.

Author: Dogan Ibrahim
Date: September 2013
File: XC8-RS232-1.C
***/
#include <xc.h>
#include <string.h>
#include <plib/usart.h>
#include <plib/adc.h>
//#include <strings.h>
#include <stdlib.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds.
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

void Newline()
{

Write1USART(0x0D); // Send carriage return
while(Busy1USART()); // Wait while UART is busy
Write1USART(0x0A); // Send line feed

}

//
// Start of MAIN program

Figure 6.85: MPLAB XC8 Program.

Intermediate PIC18 Projects 301

//
void main()
{

char *Txt;
unsigned char msg1[] = "AMBIENT TEMPERATURE";
unsigned char msg2[] = "===================";
unsigned int temp;
float mV;
char *res;
int status;

ANSELA = 1; // Configure RA0 as analog
ANSELC = 0; // Configure PORTC as digital
TRISA = 1; // Configure RA0 as input

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,
12);

putrs1USART(msg1); // Display heading
Newline(); // Newline
putrs1USART(msg2);
Newline();

//
// Configure A/D converter
//

OpenADC(ADC_FOSC_2 & ADC_RIGHT_JUST & ADC_12_TAD,
ADC_CH0 & ADC_INT_OFF,
ADC_TRIG_CTMU & ADC_REF_VDD_VDD & ADC_REF_VDD_VSS);

for(;;) // Endless loop
{

SelChanConvADC(ADC_CH0); // Select channel 0 and start conversion
while(BusyADC()); // Wait for comple�on
temp = ReadADC(); // Read converted data
mV = temp * 5000.0/1024; // Convert to millivolt
mV = mV/10.0; // Convert to Degrees Cen�grade
Txt = �oa(mV, &status); // Convert to string

res = strchr(Txt, '.'); // Locate "."
*(res+3) = '\0'; // Insert NULL character 2 digits a�er "."
putrs1USART(Txt);
Newline();
Delay_Seconds(1); // Wait 1 s

}
}

Figure 6.85
cont’d

302 Chapter 6

Transmission Width:

USART_EIGHT_BIT 8-Bit transmit/receive

USART_NINE_BIT 9-Bit transmit/receive

Slave/Master Select (synchronous mode only):

USART_SYNC_SLAVE Synchronous Slave mode

USART_SYNC_MASTER Synchronous Master mode

Reception mode:

USART_SINGLE_RX Single reception

USART_CONT_RX Continuous reception

Baud rate:

USART_BRGH_HIGH High baud rate

USART_BRGH_LOW Low baud rate

The second argument specifies the value to be written to the Baud rate generator register

for the required Baud rate. The formula used to determine the Baud rate is (FOSC is the

oscillator frequency):

Asynchronous mode, high speed:

FOSC/(16 * (spbrg + 1))

Asynchronous mode, low speed:

FOSC/(64 * (spbrg + 1))

Synchronous mode:

FOSC/(4 * (spbrg + 1))

putrsxUSART: This function writes a string of characters to the UART, including the

NULL character.

ReadxUSART: This function reads 1 byte from the UART.

WritexUSART: This function writes 1 byte to the UART.

Intermediate PIC18 Projects 303

Note that in Figure 6.85 the header file usart.h must be included at the beginning of the

program. The UART module is initialized by using the following identifiers:

Open1USART(USART_TX_INT_OFF &
USART_RX_INT_OFF &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,
12);

The second argument specifies the Baud rate. Using a low speed with the required 9600

Baud and clock rate of 8 MHz (FOSC)¼ 8� 106 Hz, we have

9600¼ FOSC/(64 * (spbrg þ 1))

or

spbrg¼ [FOSC/(64 * 9600)]� 1¼ 12

Project 6.11dMicrocontroller and a PC-Based Calculator
Project Description

In this project, a PC is connected to the microcontroller using an RS232 cable. The project

operates as a simple integer calculator where numbers and operation to be performed are sent

to the microcontroller via the PC keyboard, and the results are displayed on the PC screen.

A sample calculation is as follows:

CALCULATOR PROGRAM

Enter First Number: 12
Enter Second Number: 2

Enter Operation: +
Result = 14

Project Hardware

The circuit diagram of the project is shown in Figure 6.86. The serial communication lines

of the microcontroller (RC6 and RC7) are connected to an MAX232 voltage translator

chip and then to the serial input port (COM1) of a PC using a nine-pin connector.

Project PDL

The PDL of the project is shown in Figure 6.87. The main program receives two numbers

and the operation to be performed from the PC keyboard. The numbers are echoed on the

PC monitor. The result of the operation is also displayed on the monitor.

304 Chapter 6

Figure 6.86: Circuit Diagram of the Project.

BEGIN/NEWLINE
Send carriage return to USART
Send line feed to USART

END/NEWLINE

Main program:

BEGIN
Configure USART to 9600 Baud
DO FOREVER

Display “CALCULATOR PROGRAM”
Display “Enter First Number:”
Read first number
Display “Enter Second Number:”
Read second number
Display “Operation:”
Read operation
Perform required operation
Convert result into string
Remove leading spaces from the result
Display “Result=”
Display the result

ENDDO
END

Figure 6.87: Project PDL.

Intermediate PIC18 Projects 305

Project Program

The program listing of the project is shown in Figure 6.88 (MIKRO-RS232-2.C). At the

beginning of the program, various messages used in the program are defined as msg1 to

msg5. The USART is then initialized to the 9600-Baud using mikroC library routine

Uart1_Init. Then, the heading CALCULATOR PROGRAM is displayed on the PC

monitor. The program reads the first number from the keyboard using the library function

Uart1_Read. Function Uart1_Data_Ready checks when a new data byte is ready before

reading it. Variable Op1 stores the first number. Similarly, another loop is formed, and the

second number is read into variable Op2. The program then reads the operation to be

performed (þ, �, *, /). The required operation is performed inside a switch statement, and

the result is stored in variable Calc. The program then converts the result into string

format by calling library function LongToStr. Leading blanks are removed from this

string using the Ltrim built-in function, and the final result is stored in character array op

and sent to the UART to display on the PC screen.

Testing the Program

The program can be tested by using a terminal emulator program on the PC as described

in the previous project. If you are using the mikroC Pro for a PIC terminal emulator, you

should make the following settings before clicking the Connect button:

New Line Settings: CR (0x0D)

Append New Line

Keyboard data should be entered at the top of the terminal emulator window and the Send

button should be clicked.

Figure 6.89 shows a sample run of the program using the Hyperterm terminal emulator

software.

Project 6.12dGPS with an LCD Output
Project Description

This project is about designing a global positioning system-based system to display the

latitude and longitude of current position on an LCD display.

The GPS is a satellite navigation system that provides time and location information

anywhere on the Earth, 24 h a day, and in all weather conditions. Currently, the system is

heavily used by motorists, ships, and in the air. The system is maintained by the US

government and is freely available to anyone who has a GPS receiver.

306 Chapter 6

/***
CALCULATOR WITH PC INTERFACE
============================

In this project a PC is connected to a PIC18F45K22 microcontroller. The project is a simple integer
calculator. User enters the numbers using the PC keyboard. Results are displayed on the PC
monitor.

The following opera�ons can be performed:

+ – * /

This program uses the built in USART of the microcontroller. The USART is configured to operate
with 9600 Baud rate.

The serial TX pin is RC6 and the serial RX pin is RC7.

Author: Dogan Ibrahim
Date: September 2013
File: MIKRO-RS232-2.C
***/

#define Enter 13
#define Plus '+'
#define Minus '–'
#define Mul�ply '*'
#define Divide '/'

//
// This func�ons send carriage-return and line-feed to USART
//
void Newline()
{

Uart1_Write(0x0D); // Send carriage return
Uart1_Write(0x0A); // Send line feed

}

void main()
{

unsigned char MyKey, i,j,kbd[12];
unsigned char *op;
unsigned long Calc, Op1, Op2,Key;
unsigned char msg1[] = "CALCULATOR PROGRAM";
unsigned char msg2[] = " Enter First Number: ";
unsigned char msg3[]= " Enter Second Nummber: ";
unsigned char msg4[] = " Enter Opera�on: ";
unsigned char msg5[] = " Result = ";

Figure 6.88: mikroC Pro for PIC Program.

Intermediate PIC18 Projects 307

// Configure the USART
//

//

Uart1_Init(9600); // Baud = 9600
//
// Program loop
//

for(;;) // Endless loop
{

MyKey = 0;
Op1 = 0;
Op2 = 0;

Newline(); // Send newline
Newline(); // Send newline
Uart1_Write_Text(msg1); // Send TEXT
Newline(); // Send newline
Newline(); // Send newline

//
// Get the first number
//

Uart1_Write_Text(msg2); // Send TEXT to USART
do // Get first number
{

if(Uart1_Data_Ready()) // If a character ready
{

MyKey = Uart1_Read(); // Get a character
if(MyKey == Enter)break; // If ENTER key
Uart1_Write(MyKey); // Echo the character
Key = MyKey – '0';
Op1 = 10*Op1 + Key; // First number in Op1

}
}while(1);

Newline();

//
// Get the second character
//

Uart1_Write_Text(msg3); // Send TEXT to USART
do // Get second number
{

if(Uart1_Data_Ready())
{

MyKey = Uart1_Read(); // Get a character
if(Mykey == Enter)break; // If ENTER key
Uart1_Write(MyKey); // Echo the character
Key = MyKey – '0';
Op2 = 10*Op2 + Key; // Second number in Op2

}
}while(1);

ANSELC = 0;

Figure 6.88
cont’d

308 Chapter 6

The GPS system consists of 24 satellites orbiting the Earth in six orbital planes at an

altitude of 20,000 km. The orbital period is about 12 h, so each satellite orbits the earth

twice a day. The orbits are organized such that normally six satellites are visible from any

point on the Earth. To calculate the position, at least three satellites are required. The

height can also be calculated if the fourth satellite is available. There are many books on

the theory and operation of the GPS system. Also, there is a vast amount of information

on the Internet on this topic.

Newline();
//
// Get the opera�on
//

Uart1_Write_Text(msg4);
do
{

if(Uart1_Data_Ready())
{

MyKey = Uart1_Read(); // Get a character
if(MyKey == Enter)break; // If ENTER key
Uart1_Write(MyKey); // Echo the character
Key = MyKey;

}
}while(1);

//
// Perform the opera�on
//

Newline();
switch(Key) // Calculate
{
case Plus:

Calc = Op1 + Op2; // If ADD
break;

case Minus:
Calc = Op1 – Op2; // If Subtract
break;

case Mul�ply:
Calc = Op1 * Op2; // If Mul�ply
break;

case Divide:
Calc = Op1/Op2; // If Divide
break;

}

LongToStr(Calc, kbd); // Convert to string
op = Ltrim(kbd);
Uart1_Write_Text(msg5);
Uart1_Write_Text(op); // Display result

}
}

Figure 6.88
cont’d

Intermediate PIC18 Projects 309

GPS receivers are small handheld devices that receive information from the satellites and

report the position (latitude and longitude) as well as the height of the user on a graphical

display. GPS receivers usually provide ASCII output data to indicate the position and time

information. These data, called the NMEA sentences, consist of a number of text, each

one separated by a newline. We can read and decode these sentences to get information

about our current coordinates.

In this project, we will be using a small GPS receiver board with an antenna and display

our longitude and the latitude on an LCD display.

The block diagram of the project is shown in Figure 6.90.

Project Hardware

The project is based on the GPS Click board, manufactured by mikroElektronika

(www.mikroe.com). Click boards are small peripheral modules designed for the

Figure 6.90: Block Diagram of the Project.

Figure 6.89: Sample Run of the Program.

310 Chapter 6

http://www.mikroe.com

mikroBUS interface. There are Click boards available for many peripheral devices,

such as LED, A/D converter, DAC, temperature sensor, GPS, relay, pressure sensor,

light sensor, accelerator, WiFi, Ethernet, GSM, compass, and many more.

The mikroBUS is a 2� 8-pin female header that provides interface signals, enabling many

“Click Boards” to be connected to this bus. The mikroBUS provides interface signals for

the following:

Analog pin,

Reset pin,

SPI Bus pins (CS, clock, and data I/O),

þ3.3 V, þ5 V, GND,

PWM output line,

Hardware interrupt pin,

UART (TX and RX) pins,

I2C Bus pins (clock and data).

The EasyPIC V7 development board contains two identical mikroBUS connectors, enabling

up to two Click boards to be connected directly to the board. Figure 6.91 shows the GPS Click

board connected to one of the mikroBUS connectors on the EasyPIC V7 development board.

The GPS Click board uses the LEA-6S high performance GPS chip. The board can be

interfaced with a microcontroller through the UART, I2C bus, or through a USB

connection. In this project, the UART interface is used for simplicity. An active or a

passive antenna can be connected to the board to increase its sensitivity. Operation is with

a 3.3 V power supply, and a power regulator should be used to provide 3.3 V if the board

is used outside the EasyPIC V7 development board.

Figure 6.92 shows the circuit diagram of the project. In this diagram, only the UART

interface to the GPS Click board is shown (see mikrolektronika web site for full circuit

diagram of this Click board). The UART TX (RC6) and RX (RC7) pins of the

microcontroller are connected directly to the GPS chip. PORTB is connected to an LCD as

Figure 6.91: Connecting the GPS Click Board to EasyPIC V7 Development Board. (For color
version of this figure, the reader is referred to the online version of this book.)

Intermediate PIC18 Projects 311

in the previous projects. An LED is connected to the Time_Pulse output of the GPS chip

to see the device working. An antenna is connected to the RF_IN pin of the GPS chip.

Project PDL

The NMEA sentences generated by the GPS receivers start with the “$” character,

followed by the name of the sentence and then its parameters. Each parameter is separated

by a comma. A checksum byte is used at the end.

A sample of the NMEA sentences generated by the LEA-6 GPS every second are given

below (different GPS chips may generate different sentences):

$GPRMC,101241.00,A,5127.36070,N,0003.12726,,0.118,,28813,,,A*7F
$GPVTG,,T,M,0.118,N0.218,K,A*0
$GPGGA,01241.00,527.36070,N00003.1272,E,1,06,1.0,40.8,M,4.4,M,,*63
$GPGSA,A,329,02,31,1,25,14,,,,,,2.57,1.6,2.01*0C
$GPGSV,,2,09,24,0,142,,25,7,072,21,2967,189,34,1,52,298,3*79
$GPGLL,517.35744,N,0003.13373E,103109.00,A,A*65
$GPRMC,101242.00,A,5127.36058,N,0003.12714,E0.326,,2806,1.6,40.8,M,454,M,,*6C

The above sentence list was obtained on a PC screen by the following program code after

the microcontroller was connected to a PC and by running the terminal emulator software

on the PC. See Project 6.11:

Uart1_Init(9600);
for(;;)

Figure 6.92: Circuit Diagram of the Project.

312 Chapter 6

{
if(Uart1_Data_Ready() == 1)
{

c = Uart1_Read();
Uart1_Write(c);

}
}

The coordinates of the current position can be obtained from the $GPGLL sentence. This

sentence decodes as follows:

$GPGLL,517.35744,N,0003.13373,E,103109.00,A,A*65
5127.35744,N Latitude 51 deg. 27.35744 min. North
00003.1276,E Longitude 000 deg. 03.1276 min. East
10124100 Fix taken at 10:31:09 UTC
A Data valid (V¼ data invalid)
A Mode (A¼ autonomous, D¼ differential)
*65 Checksum

The PDL of the program is given in Figure 6.93. The program initially searches for

characters $GPGLL, and then the remainder of the text is read until the newline

character is obtained. The latitude and longitude are then extracted and displayed on

the LCD.

Project Program

microC Pro for PIC

The mikroC Pro for the PIC program listing is shown in Figure 6.94 (MIKROC-GPS.C).

At the beginning of the program, the connection between the LCD and the microcontroller

is defined, and PORTB and PORTC are configured as digital. The LCD is then initialized,

and message INVALID DATA is displayed to start with. Then, the UART is initialized,

and the remainder of the program is executed in an endless loop.

BEGIN
Define connec�on between LCD and microcontroller
Configure PORTB and PORTC as digital output
Ini�alize LCD
Ini�alize UART to 9600 Baud
DO FOREVER

Read un�l string “$GPGLL” is detected
Read un�l character “*” is detected
Extract la�tude
Extract longitude
Display la�tude and longitude
Wait 2 s

ENDDO
END

Figure 6.93: Project PDL.

Intermediate PIC18 Projects 313

/***
GPS WITH LCD OUTPUT
===================

In this project a GPS is connected to a PIC18F45K22 microcontroller. The coordinates (la�tude
and longitude) of the current loca�on are read and displayed on an LCD.

The GPS Click Board (www.mikroe.com) is used in this project together with the EasyPIC V7
development board. The GPS board is connected to one of the mikroBUS connectors on the
development board.

The LCD is connected to PORTB of the microcontroller as in the previous projects.

The communica�ons between the GPS and the microcontroller is by using the serial port.
TX pin (RC6) and the RX pin (RC7) of the microcontroller are connected to the corresponding
serial pins of the GPS.

The la�tude and longitude are determined by decoding the NMEA sentence $GPGLL. An example
is given below:

$GPGLL,5127.35744,N,00003.13373,E,103109.00,A,A*65

5127.35744,N La�tude 51 deg. 27.35744 min. North
00003.1276,E Longitude 000 deg. 03.1276 min. East
103109.00 Fix taken at 10:31:09 UTC
A Data valid
A Data autonomous
*65 Checksum

The program assumes fixed length NMEA sentence.

Author: Dogan Ibrahim
Date: September 2013
File: MIKRO-GPS.C
***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

Figure 6.94: mikroC Pro for PIC Program.

314 Chapter 6

void main()
{

unsigned char buffer[50];
unsigned char i,flag,c;
unsigned char Lat[13], Lon[13];
unsigned char gps[]="$GPGLL,";

ANSELB = 0;
ANSELC = 0;

LCD_Init(); // Ini�alize LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor
Lcd_Out(1,1,"INVALID DATA"); // Display INVALID DATA to start with

Uart1_Init(9600); // Baud = 9600

for(;;) // Endless loop
{

for(i = 0; i < 50; i++)buffer[i] = 0; // Clear the buffer

i = 0;
flag = 0;

//
// Read un�l "$GPGLL," is detected
//

while(flag == 0)
{

if(Uart1_Data_Ready() == 1)
{
c = Uart1_Read();
if(c == gps[i])
{

i++;
if(i == 7)flag=1;

}
else i = 0;

}
}

//
// We come to this point when the string "$GPGLL," has been detected
//

Uart1_Read_Text(buffer,"*",255); // Read un�l "*" detected
if(buffer[37] == 'A') // If the sentence is valid
{ // Get la�tude Degrees

Lat[0] = buffer[0];
Lat[1] = buffer[1];
Lat[2] = 178; // Degree character
Lat[3] = ' ';
Lat[4] = ' ';
for(i = 0; i < 6; i++)Lat[5+i] = buffer[2+i]; // Get la�tude minutes
Lat[11] = buffer[11]; // Get la�tude direc�on
Lat[12] = 0x0; // Terminate the string

Figure 6.94
cont’d

Intermediate PIC18 Projects 315

At the beginning of the loop, the buffer that will hold the GPS data is cleared. The

program then reads data from the GPS and looks for the string “$GPGLL,”. When this

string is detected, the Uart1_Read_Text function is used to read data from the GPS until

the delimiting character “*” is detected (this character is at the end of the $GPGLL

sentence just before the checksum). The buffer at this point contains all the parameters of

the sentence $GPGLL, starting from the latitude parameter. The remainder of the program

extracts the latitude and longitude parameters and loads into two string arrays called LAT

and LON, respectively. These arrays are then displayed on the LCD after adding the

degree sign and spaces at appropriate points.

Note that the code to detect the NMEA sentence “GPGLL,” could have been done using

the following two lines. Although the code seems to be smaller, it requires a very large

buffer size (e.g. �1000 characters) since all the generated NMEA sentences will be read

until the “$GPGLL,” is detected as the delimiter:

Uart1_Read_Text(buffer, “$GPGLL,”, 255); // Read until “$GPGLL,” detected
Uart1_Read_Text(buffer, “*”,255); // Read until “*” detected

The program checks the NMEA sentence validity every second, and if the sentence is not

valid, the message INVALID DATA is displayed. The program assumes that the width of

the parameters in the “$GPGLL” sentence have fixed sizes. Although this is the case with

Lon[0] = buffer[13]; // Get longitude Degrees
Lon[1] = buffer[14];
Lon[2] = buffer[15];
Lon[3] = 178; // Degree character
Lon[4] = ' ';
for(i = 0; i < 6; i++)Lon[5+i] = buffer[16+i]; // Get longitude minutes
Lon[11] = buffer[25]; // Get longitude direcƟon
Lon[12] = 0x0; // Terminate the string
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,"LAT="); // Display LAT=
Lcd_Out_Cp(Lat); // Display the laƟtude
Lcd_Out(2,1,"LON="); // Display LON=
Lcd_Out_Cp(Lon); // Display the longitude

}
else // If invalid data
{
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,"INVALID DATA"); // Display INVALID DATA

}
Delay_Ms(2000); // Wait 2 s

}
}

Figure 6.94
cont’d

316 Chapter 6

most GPS receivers, it may be necessary to locate the commas and then extract the

parameters if this is not the case.

A sample display is shown in Figure 6.95.

Project 6.13dONeOFF Temperature Control
Project Description

This project is about designing an ONeOFF type temperature control system for a small

plant. Figure 6.96 shows the block diagram of the system to be designed.

The desired temperature setting is entered using a keypad. The temperature of the plant is

measured using an analog temperature sensor. The microcontroller reads the temperature

Figure 6.95: Sample Display. (For color version of this figure, the reader is referred to the
online version of this book.)

Keypad

Buzzer

M
ic
ro
co
nt
ro
lle
r

Heater

Temp
sensor

Figure 6.96: Block Diagram of the System.

Intermediate PIC18 Projects 317

every 5 s and compares it with the desired value. If the desired value is higher than the

measured value, then the heater is turned ON. If on the other hand the measured value is

higher than the desired value, then the heater is turned OFF. An LCD display shows the

measured temperature continuously. If the absolute difference between the desired value

and the measured value is >2 �C, then the buzzer sounds every 5 s as an alarm and

remains ON as long as the temperature is high or low. The buzzer will turn OFF when the

difference between the desired value and the actual value is <2 �C.

Project Hardware

Figure 6.97 shows the circuit diagram of the project. The LCD is connected to PORTC as

in the previous projects. An LM35 analog temperature sensor chip is connected to the

analog input pin AN0 (RA0). A 4� 4 keypad is connected to PORTC. The buzzer is

connected to pin RE1. The heater is controlled using a transistor and a relay connected to

pin RD0 of the microcontroller.

Figure 6.97: Circuit Diagram of the Project.

318 Chapter 6

Project PDL

The project PDL is shown in Figure 6.98.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program listing is shown in Figure 6.99 (MIKROC-ON-

OFF.C). At the beginning of the program, the connections between the LCD and the

microcontroller are defined, the keypad port is defined, BUZZER, HEATER, and ON and

OFF are defined and assigned as symbols to port pins. PORTB, PORTC, PORTD, and

PORTE are configured as digital. RA0 is configured as an input pin. RD0, RE1, PORTB,

and half of PORTC are configured as output pins. The program then initializes the Keypad

and the Sound libraries. The LCD is cleared and message “ONeOFF CONTROL” is

displayed for 2 s.

BEGIN
Define LCD to microcontroller connec�ons
Define Keypad port
Assign symbols BUZZER, HEATER, ON, OFF to port pins
Configure PORTB, PORTC, PORTD, PORTE as digital
Configure RA0 as input, RD0, RE1 and RC0:RC3 as output
Ini�alize Keypad and Sound libraries
Display heading “ON–OFF CONTROL”
Wait 2 s
Read desired temperature
Wait un�l ENTER is pressed
DO FOREVER

Read plant temperature from channel 0
Convert temperature to Degrees Cen�grate
Display the Set Point and actual pant temperatures
IF Set Point > Plant temperature

Turn HEATER ON
IF Set Point – Plant temperature > 2

Sound alarm
ENDIF

ELSE
Turn HEATER OFF
IF Set Point – Plant temperature > 2

Sound alarm
ENDIF

ENDIF
Wait 5 s

ENDDO
END

Figure 6.98: Project PDL.

Intermediate PIC18 Projects 319

/***
ON-OFF TEMPERATURE CONTROL
==========================

In this project the temperature of a plant is controlled using simple ON–OFF type controller.

The plant temperature is measured using an LM35DZ type analog temperature sensor. An
LCD helps to enter the set point temperature, and also displays the set point as well as the
actual plant temperature in real-�me.

A 4×4 keypad is used to set the desired temperature. If the set temperature is below the
actual plant temperature then the heater relay is turned ON. If on the other hand the set
temperature is above the actual plant temperature then the relay is turned OFF. A buzzer
sounds if the absolute difference between the desired and the actual temperatures is more
than 2 ºC

The LCD is connected to PORTB
The buzzer is connected to pin RE1 through a transistor switch
The keypad is connected to PORTC
The heater relay is connected to pin RD0 through a transistor switch
The LM35DZ temperature sensor is connected to pin AN0 (RA0)

The program uses the built-in keypad library func�ons.

The control ac�on is taken every 5 s

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-ON-OFF.C
***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

// Keypad module connec�ons
char keypadPort at PORTC;
// End of keypad module connec�ons

#define BUZZER PORTE.RE1

Figure 6.99: mikroC Pro for PIC Program.

320 Chapter 6

#define HEATER PORTD.RD0
#define Enter 12
#define ON 1
#define OFF 0
//
// Start of MAIN program
//
void main()
{

unsigned char MyKey,Txt[14];
unsigned int SetPoint;
unsigned char *op;
unsigned int temp;
float mV, PlantTemp;

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
ANSELD = 0; // Configure PORTD as digital
ANSELE = 0; // Configure PORTE as digital
TRISA0_bit = 1; // Configure AN0 (RA0) as input
TRISB = 0; // PORTB are outputs (LCD)
TRISC = 0xF0; // RC4–RC7 are inputs
TRISD0_bit = 0; // RD0 is output
TRISE1_bit = 0; // RE1 is output

Keypad_Init(); // Ini�alize keypad library
Sound_Init(&PORTE,1); // Ini�alize Sound library

//
// Configure LCD
//

Lcd_Init(); // Ini�alize LCD
Lcd_Cmd(_LCD_CLEAR);
Lcd_Out(1,1,"ON–OFF CONTROL"); // Display CALCULATOR
Delay_ms(2000); // Wait 2 s
Lcd_Cmd(_LCD_CLEAR); // Clear display

BUZZER = OFF; // TURN OFF buzzer to start with
HEATER = OFF; // Turn OFF heater to start with

//
// On startup read the set point temperature from the keypad
//

Lcd_Out(1,1,"Enter Set Point");
setPoint = 0;

Lcd_Out(2,1,"SP: ");
while(1) // Get first no
{

do
MyKey = Keypad_Key_Click();

while(!MyKey);
if(MyKey == Enter)break; // If ENTER pressed

Figure 6.99
cont’d

Intermediate PIC18 Projects 321

if(MyKey == 10)MyKey = 0; // If 0 key pressed
Lcd_Chr_Cp(MyKey + '0');
SetPoint = 10*SetPoint + MyKey; // First number in Op1

}

Lcd_cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,"SP = "); // Display SP=
IntToStr(SetPoint,Txt); // Convert to string
op = Ltrim(Txt); // Remove leading spaces
Lcd_Out_CP(op);
Lcd_Out(2,1,"ENTER to cont.");

//
// Wait un�l ENTER is pressed
//

MyKey = 0;
while(MyKey != Enter)
{
do

MyKey = Keypad_Key_Click();
while(!MyKey);

}

// Program loop
//

for(;;) // Endless loop
{

//
// Display the SetPoint and the Actual temperatures
//

temp = ADC_Read(0); // Read from AN0 (RA0)
mV = temp*5000.0/1024.0; // Convert to mV
PlantTemp = mV/10.0; // Convert to degrees C
Lcd_Cmd(_LCD_CLEAR);
IntToStr(SetPoint,Txt); // Convert to string
op = Ltrim(Txt);
Lcd_Out(1,1,"SP="); // Display SP=
Lcd_Out_Cp(op); // Display Set Point
Lcd_Chr_Cp(178);
Lcd_Chr_Cp('C'); // Display C
Lcd_Out(2,1,"AC="); // Display AC=
FloatToStr(PlantTemp, Txt); // Convert to string
Lcd_Out_CP(Txt);
Lcd_Chr_Cp(178); // Display Degree sign
Lcd_Chr_Cp('C'); // Display C character

//
// Implement the ON–OFF controller algorithm
//

if(SetPoint > PlantTemp) // If SetPoint is bigger than actual
{

HEATER = ON; // Turn ON heater

Figure 6.99
cont’d

322 Chapter 6

The program then reads the desired temperature setting (Set Point temperature) from the

keypad after displaying the following message and waiting for the user to enter the desired

temperature:

Enter Set Point

SP:

After reading the desired temperature, the program displays a message to tell the user to

press the ENTER key to continue. The remainder of the program is executed inside an

endless loop that is repeated every 5 s.

Inside this loop, the program reads the plant temperature from analog channel 0 (AN0, or

RA0) of the microcontroller and stores in the floating point variable PlantTemp in degrees

centigrade. The Set Point and the actual plant temperature are then displayed in the

following format (assuming the Set Point temperature is 25 �C, and the actual plant

temperature is 20.45189 �C):

SP¼ 25 �C
AC¼ 20.45189 �C

The next part of the program implements the ONeOFF control algorithm. If the Set Point

temperature is greater than the measured temperature, then the plant temperature is low, and

HEATER is turned ON. If also the difference between the Set Point and the measured

temperatures is >2 �C, then the BUZZER is sounded as an alarm. If the Set Point

temperature is less than (or equal) to the measured temperature, then the HEATER is turned

OFF. At the same time, if the difference between the Set Point and the measured values are

>2 �C, then the BUZZER is sounded. The above process gets repeated every 5 s.

The program given in Figure 6.99 can be improved by the following modifications:

• The Set Point temperature can be stored in the electrically erasable programmable read-

only memory of the microcontroller so that it does not need to be entered every time.

if((SetPoint – PlantTemp) > 2.0) // If outside range
Sound_Play(1000,1000); // Turn ON BUZZER

}
else // If Set Point is not bigger than actual
{

HEATER = OFF; // Turn OFF heater
if((PlantTemp – SetPoint) > 2.0) // Actual temp is bigger than setPoint

Sound_Play(1000,1000); // Turn ON BUZZER
}
Delay_Ms(5000); // Wait 5 s and repeat

}
}

Figure 6.99
cont’d

Intermediate PIC18 Projects 323

Figure 6.101: Sample Display 2. (For color version of this figure, the reader is referred to the
online version of this book.)

Figure 6.102: Sample Display 3. (For color version of this figure, the reader is referred to the
online version of this book.)

Figure 6.100: Sample Display 1. (For color version of this figure, the reader is referred to the
online version of this book.)

324 Chapter 6

• Instead of the simple ONeOFF, a more powerful control algorithm can be used (e.g.

PID).

• Currently, the Set Point temperature must be an integer number. The keypad entry

routine can be modified to accept floating point Set Point temperatures.

The program given in Figure 6.99 exceeds the free 2 K limit of the compiler, and users

must have a licensed copy of the compiler to compile the program.

Figures 6.100e6.104 show sample displays from the project.

Figure 6.104: Sample Display 5. (For color version of this figure, the reader is referred to the
online version of this book.)

Figure 6.103: Sample Display 4. (For color version of this figure, the reader is referred to the
online version of this book.)

Intermediate PIC18 Projects 325

CHAPTER 7

Advanced PIC18 Projects
Chapter Outline
Project 7.1dBluetooth Serial CommunicationdSlave Mode 333

RN41 Bluetooth Module 334

Project Hardware 336

SA, <value> 339

SM, <value> 340

SN, <value> 340

SO, <value> 340

SP, <string> 340

SU, <value> 340

D 340

C, <address> 341

K 341

R,1 341

I, <value1>, <value2> 341

SR, <hex value> 341

Project PDL 346

Project Program 346

mikroC Pro for PIC 346

MPLAB XC8 355

Project 7.2dBluetooth Serial CommunicationdMaster Mode 361
Project Hardware 361

Project PDL 361

Project Program 363

mikroC Pro for PIC 363

Project 7.3dUsing the RFID 369
Radiofrequency Identification 369

Project Hardware 371

CR95HF Operational Modes 374

CR95HF Startup Sequence 374

UART Communication 374

Passive RFID Tags 375

Project PDL 377

Project Program 379

mikroC Pro for PIC 379

MPLAB XC8 387

Project 7.4dRFID Lock 387
Project Hardware 388

Project PDL 389

PIC Microcontroller Projects in C. http://dx.doi.org/10.1016/B978-0-08-099924-1.00007-5

Copyright © 2014 Elsevier Ltd. All rights reserved. 327

http://dx.doi.org/10.1016/B978-0-08-099924-1.00007-5

Project Program 389

mikroC Pro for PIC 389

Project 7.5dComplex SPI Bus Project 389
The Master Synchronous Serial Port Module 389

MSSP in the SPI Mode 396

SPI Mode Registers 397

SSPxSTAT 398

SSPxCON1 398

Operation in the SPI Mode 398

Sending Data to the Slave 400

Receiving Data From the Slave 400

Configuration of MSSP for the SPI Master Mode 400

Data Clock Rate 400

Clock Edge Mode 401

Enabling the SPI Mode 401

TC72 Temperature Sensor 402

TC72 Read/Write Operations 404

Internal Registers of the TC72 405

Control Register 405

LSB and MSB Registers 405

Manufacturer ID 405

Project Hardware 406

The Program 407

MPLAB XC8 407

Displaying Negative Temperatures 413

Displaying the Fractional Part 414

Project 7.6dReal-Time Clock Using an RTC Chip 414
Project Hardware 425

Project PDL 427

Project Program 427

mikroC Pro for PIC 427

MPLAB XC8 435

Project 7.7dReal-Time Alarm Clock 436
Project Hardware 438

Project PDL 438

Project Program 439

mikroC Pro for PIC 439

Project 7.8dSD Card ProjectsdWrite Text To a File 439
Operation of the SD Card in the SPI Mode 449

Reading Data 451

Writing Data 451

Project Description 452

Project Hardware 452

Project PDL 453

328 Chapter 7

Project Program 453

mikroC Pro for PIC 453

MPLAB XC8 457

Setting the Configuration Files 462

MPLAB XC8 MDD Library Functions 463

Library Options 464

Microcontroller Memory Usage 464

Sequence of Function Calls 465

Reading From an Existing File 465

Writing to an Existing File 465

Deleting an Existing File 466

Project 7.9dSD Card-Based Temperature Data Logger 466
Hardware Description 468

Project Program 469

mikeoC Pro for PIC 469

MPLAB XC8 476

Project 7.10dUsing Graphics LCDdDisplaying Various Shapes 477
The 128�64 Pixel GLCD 478

Operation of the GLCD 480

mikroC Pro for PIC GLCD Library Functions 481

Glcd_Init 481

Glcd_Set_Side 482

Glcd_Set_X 482

Glcd_Set_Page 482

Glcd_Write_Data 482

Glcd_Fill 482

Glcd_Dot 482

Glcd_Line 483

Glcd_V_Line 483

Glcd_H_Line 483

Glcd_Rectangle 483

Glcd_Rectangle_Round_Edges 484

Glcd_Rectangle_Round_Edges_Fill 484

Glcd_Box 484

Glcd_Circle 485

Glcd_Circle_Fill 485

Glcd_Set_Font 485

Glcd_Set_Font_Adv 486

Glcd_Write_Char 486

Glcd_Write_Char_Adv 486

Glcd_Write_Text 486

Glcd_Write_Text_Adv 487

Glcd_Write_Const_Text_Adv 487

Glcd_Image 487

Advanced PIC18 Projects 329

Project Hardware 487

Project Program 487

mikroC Pro for PIC 487

Project 7.11dBarometer, Thermometer and Altimeter Display on a GLCD 490
Project Hardware 493

Project PDL 494

Project Program 494

mikroC Pro for PIC 494

Project 7.12dPlotting the Temperature Variation on the GLCD 501
Project Description 501

Block Diagram 501

Circuit Diagram 501

Project PDL 502

Project Program 502

mikroC Pro for PIC 502

Project 7.13dUsing the EthernetdWeb Browser-Based Control 508
Ethernet Connectivity 509

Embedded Ethernet Controller Chips 510

Embedded Ethernet Access Methods 510

Using a Web Browser on the PC 511

Using a HyperTerminal 511

Embedded System Sending E-mail 512

Using Custom Application 512

Example Ethernet-Based Embedded Control Project 513

Project Hardware 513

The Construction 515

Project PDL 516

Project Software 516

mikroC Pro for PIC 516

Project 7.14dUsing the EthernetdUDP-Based Control 521
The Hardware 521

The PC Program 521

The Microcontroller Program 522

mikroC Pro for PIC 522

Project 7.15dDigital Signal ProcessingdLow Pass FIR Digital Filter Project 522
The Filter Structure 525

The Hardware 528

Project PDL 528

Project Program 529

mikroC Pro for PIC 529

Project 7.16dAutomotive ProjectdLocal Interconnect Network Bus Project 535
The LIN Protocol 536

Project Description 538

Project Hardware 538

Project PDL 541

Project Program 541

330 Chapter 7

mikroC Pro for PIC 541

Get_Response Function 546

Project 7.17dAutomotive ProjectdCan Bus Project 550
Data Frame 553

Start of Frame 554

Arbitration Field 554

Control Field 554

Data Field 554

CRC Field 555

ACK Field 555

Remote Frame 555

Error Frame 555

Overload Frame 555

Bit Stuffing 556

Nominal Bit Timing 556

PIC Microcontroller CAN Interface 558

PIC18F258 Microcontroller 559

Configuration Mode 561

Disable Mode 561

Normal Operation Mode 561

Listen-only Mode 561

Loop-back Mode 561

Error Recognition Mode 562

CAN Message Transmission 562

CAN Message Reception 562

Calculating the Timing Parameters 563

mikroC Pro for PIC CAN Functions 564

CAN Bus Programming 568

CAN Bus Project DescriptiondTemperature Sensor and Display 568

The COLLECTOR Processor 569

The DISPLAY Processor 569

DISPLAY Program 570

COLLECTOR Program 574

Project 7.18 Multitasking 578
Cooperative Scheduling 579

Round-robin Scheduling 579

Preemptive Scheduling 580

Project 1dUsing Cooperative Multitasking 581
Project Hardware 582

Project PDL 582

Project Program 582

mikroC Pro for PIC 582

Project 2dUsing Round-Robin Multitasking With Variable

CPU Time Allocation 590
Project Description 591

Project Hardware 591

Advanced PIC18 Projects 331

Project Program 594

mikroC Pro for PIC 594

Project 7.19dStepper Motor Control ProjectsdSimple Unipolar Motor Drive 598
Unipolar Stepper Motors 598

One-phase Full-step Sequencing 598

Two-phase Full-step Sequencing 598

Two-phase Half-step Sequencing 599

Bipolar Stepper Motors 600

Project Description 600

Project Hardware 601

Project PDL 602

Project Program 602

mikroC Pro for PIC 602

Project 7.20dStepper Motor Control ProjectsdComplex Control Of A Unipolar Motor 604
Project Hardware 604

Project Program 604

mikroC Pro for PIC 604

Project 7.21dStepper Motor Control ProjectdSimple Bipolar Motor Drive 608
Project Description 608

Project Hardware 609

Project Program 611

mikroC Pro for PIC 611

MPLAB XC8 611

Project 7.22dDC Motor Control ProjectsdSimple Motor Drive 613
Project Description 616

Project Hardware 617

Project Program 618

mikro Pro for PIC 618

Project 7.23dA Homemade Optical Encoder For Motor Speed Measurement 619
Project Hardware 620

Project Program 621

mikroC Pro for PIC 621

Project 7.24dClosed-Loop DC Motor Speed ControldOn/Off Control 624
Project Hardware 626

Project Program 626

mikroC Pro for PIC 626

In this chapter, we will be developing advanced projects using various peripheral devices

and protocols such as Bluetooth, radiofrequency identification (RFID), WiFi, Ethernet,

controller area network (CAN) bus, secure digital (SD) cards, universal serial bus (USB),

and motor control. As in the previous chapter, the project description, hardware design,

program description language (PDL), full program listing, and description of the program

for each project will be given in detail.

332 Chapter 7

Project 7.1dBluetooth Serial CommunicationdSlave Mode

In this project, we shall be using a Bluetooth module to communicate with a personal

computer (PC). The program will receive a text message from the PC and will display it

on an liquid crystal display (LCD). In this project, our Bluetooth device is used as a slave

device, and the PC is used as a master device.

Before going into the details of the project, it is worthwhile to review how Bluetooth

devices operate.

The bluetooth is a form of digital communication standard for exchanging data over short

distances using short-wavelength radiowaves in the industrial, scientific and medical (ISM)

band from 2.402 to 2.489 GHz. The Bluetooth was originally conceived in 1994 as an

alternative to the RS232 serial communications. Bluetooth communication occurs in the

form of packets where the transmitted data are divided into packets, and each packet is

transmitted using one of the designated Bluetooth channels. There are 79 channels, each

with a 1-MHz bandwidth, starting from 2.402 GHz. The channels are hopped 1600 times

per second using an adaptive frequency hopping algorithm. Because the communication is

based on radiofrequency (RF), the devices do not have to be in the line of sight of each

other in order to communicate.

Each Bluetooth device has a Media Access Control (MAC) address where communicating

devices can recognize and establish a link if required.

Bluetooth communication operates in a mastereslave structure, where one master can

communicate with up to seven slaves. All the devices share the master’s clock. Bluetooth

devices in contact with each other form a piconet. At any time, data can be transferred

between a master and a slave device. The master can choose which slave to communicate

to. In the case of multiple slaves, the master switches from one slave to the next.

Bluetooth is a secure way to connect and exchange data between various devices such as

mobile phones, laptops, PCs, printers, faxes, global positioning system (GPS) receivers,

and digital cameras.

Bluetooth’s main characteristics can be summarized as follows:

• There are two classes of Bluetooth standards. The communication range is up to 100 m

for Class 1, up to 10 m for Class 2, and up to 1 m for Class 3 devices.

• Class 1 devices consume 100 mW of power, Class 2 devices consume 2.5 mW, and

Class 3 devices consume only 1 mW.

• The data rate is up to 3 Mbps.

The effective communication range depends on many factors, such as the antenna size and

configuration, battery condition, and attenuation from walls.

Advanced PIC18 Projects 333

Further information about Bluetooth communication standards can be obtained from many

books, from the Internet, and from the Bluetooth Special Interest Group.

RN41 Bluetooth Module

In this project, the popular RN41 Bluetooth module, manufactured by Roving Networks,

will be used. RN41 (Figure 7.1) is a Class 1 Bluetooth module delivering up to 3-Mbps

data rate for distances up to 100 m. The module has been designed for easy interface to

embedded systems. The basic features of the RN41 are as follows:

• Low-power operation (30 mA when connected, 250 mA in the sleep mode);

• Support for Universal Asynchronous Receiver Transmitter (UART) and USB data

connection interfaces;

• On-board ceramic chip antenna;

• A 3.3-V operation;

• Baud rate from 1200 bps up to 921 kbps;

• A 128-bit encryption for secure communication;

• Error correction for guaranteed packet delivery.

RN41 is a 35-pin device. When operated using a UART interface, the following pins are

of importance:

1: GND

3: GPIO6 (Set Bluetooth mode. 1¼ auto master mode

4: GPIO7 (Set Baud rate. 1¼ 9600 bps, 0¼ 115�kbps, or firmware setting)

5: Reset (Active low)

11: VDD (3.3-V supply)

12: GND

13: UART_RX (UART receive input)

14: UART_TX (UART transmit output)

Figure 7.1: RN41 Bluetooth Module.

334 Chapter 7

15: UART_RTS (UART RTS, goes high to disable host transmitter)

16: UART_CTS (UART CTS, if set high, it disables transmitter)

20: GPIO3 (autodiscovery¼ 1)

28: GND

29: GND

In low-speed interfaces, RTS and CTS pins are not used. Pin 3 is set to 1 for the auto

master mode, pin 4 is set to 1 for 9600 Baud, Pin 5 is set to 1 for normal operation, and

pin 20 is set to 1 for autodiscovery, GND and VDD pins are connected to the ground and

3.3-V power supply lines. Thus, the module requires only two pins (pin 13 and pin 14) for

interfacing to a microcontroller.

The PIC18F45K22 microcontroller operates with a þ5-V power supply. The output logic

high level from an I/O pin is minimum at þ4.3 V. Similarly, the minimum input voltage to

be recognized as logic high is þ2.0 V.

The RN41 module operates with a þ3.3-V power supply. The minimum output logic high

level is VDD� 0.2¼þ3.1 V. Similarly, the maximum input logic high level is

VDDþ 0.4¼þ3.7 V.

The RN41 module cannot be connected directly to the PIC18F45K22 microcontroller.

Although there is no problem with low logic levels, the output high voltage of þ4.3 V of

the microcontroller is much larger than the maximum allowable input high voltage of

þ3.7 V of RN41. Similarly, the minimum output high voltage of þ3.1 V of the RN41 is

just enough to provide the minimum high-level voltage required by the microcontroller

inputs (minimum þ2.0 V). In practice, þ3.3- to þ5.0-V and þ5.0- to þ3.3-V voltage

converter chips are used in between the microcontroller and the RN41 module. A simple

voltage converter circuit can be designed using a pair of transistors as switches to give

both the required voltage level and also the correct logic polarity. Figures 7.2 and 7.3

show þ5.0- to 3.3-V level converter and þ3.3- to þ5.0-V level converter circuits,

respectively.

Figure 7.2: The þ5- to þ3.3-V Level Converter Circuit.

Advanced PIC18 Projects 335

Project Hardware

The project uses the EasyBluetooth board (HW Rev. 1.02) manufactured by

mikroelektronica (www.mikroe.com). This is a small plug-in board having the following

specifications:

• RN41 Bluetooth module,

• Power select jumper (þ5 or þ3.3 V),

• A þ5- to þ3.3-V power regulator,

• Pull-up jumpers for pins GPIO3, GPIO4, GPIO6, and GPIO7,

• Voltage level converter transistor circuits,

• Dual in-line package switch for selecting signals for the microcontroller,

• IDC10 connector.

The RN41 Bluetooth module operates in two modes: data mode and command mode. The

data mode is the default mode, and in this mode, when the module receives data, it simply

strips the protocol headers and trailers and passes the raw data to the UART port.

Similarly, data to be sent out are famed by the addition of protocol headers and trailers

and are passed to the UART for transmission. Thus, the process of data communication is

transparent to the microcontroller.

The default configuration of the RN41 Bluetooth module is as follows:

• Bluetooth in the slave mode;

• Pin code: 1234;

• Serial port 115,200 (it is set to 9600 in this project by pulling-up pin GPIO7), eight data

bits, no parity, one stop bit;

• No flow control.

The module can be configured after putting it into the command mode and sending

appropriate ASCII characters. There are two ways to put the module into the command

Figure 7.3: The þ3.3- to þ5.0-V Level Converter Circuit.

336 Chapter 7

http://www.mikroe.com

mode: Local communication with the module via the UART port and via the Bluetooth

link. The new configuration takes effect after a reboot of the module.

In this book, we shall see how to configure the Bluetooth module via its UART port. This

process requires the module ideally to be connected to a PC via its UART port and the use

of a terminal emulator program (e.g. Hyperterm or mikroC pro for a PIC built-in terminal

emulator). Once the module is rebooted, commands must be sent within 60 s (this can be

changed if required).

If you are using the EasyPIC V7 development board, the Bluetooth module can be

configured via the USB UART module of the development board. The steps are as follows:

• Configure the EasyBluetooth board jumpers as given below:

DIL switch SW1: Set 1 to ON (this connects RN41 RX to UART TX)

DIL switch SW1: Set 4 to ON (this connects RN41 TX to UART RX)

DIL switch SW1: Set 7 to ON (this connects RN41 RESET to RC1)

Set J1 to 5 V (EasyPIC V7 operates at þ5 V)

Set PI03 (GPI03) to Pull-Up

Set PI07 (GPIO7) to Pull-Up (9600 baud)

• Configure the EasyPIC V7 development board as follows:

SET Jumper J3 to USB UART

Set Jumper J4 to USB UART

DIL switch SW1: Set 1 to ON (RC7 to RX)

DIL switch SW2: Set 1 to ON (RC6 to TX)

J17 to GND (pin becomes low when button pressed)

Insert a jumper at “Disable Protect” jumper position (near Button Press Level)

• When using the USB UART, the RX and TX pins should be reversed, and as a result, it

is not possible to directly connect the EasyBluetooth board to PORTC of the EasyPIC

V7 development board.

Connect an Insulation Displacement Connector (IDC) cable with two female connectors to

PORTC and then make the following connections with wires between one end of the IDC

cable and the EasyBluetooth board connector:

Connect RC6 to pin P7 of EasyBluetooth board

Connect RC7 to pin P6 of EasyBluetooth board

Connect RC1 to pin P1 of EasyBluetooth board

Connect VCC to pin VCC of EasyBluetooth

Connect GND to pin GND of EasyBluetooth board

• Connect the USB UART port of the EasyPIC V7 development board to the PC USB port.

• Start the terminal emulator program on the PC and select the serial port, 9600 baud, 8

bits, no parity, 1 stop bit, and no flow control.

Advanced PIC18 Projects 337

• Enter characters “$$$” on the terminal emulator window with no additional characters

(e.g. no carriage return). The Bluetooth module should respond with characters “CMD”.

If there is no response from the Bluetooth module, reset the module by pressing button

RC1 on the EasyPIC V7 development board and send the “$$$” characters again.

Figure 7.4 shows the response from the Bluetooth module, using the mikroC Pro for PIC

terminal emulator. Note here that “Append New Line” box is disabled so that any other

characters are not sent after the “$$$”.

Now, enable the “Append New Line” by clicking the box and set the “New Line Setting”

to CR (0x0D). Now, Enter character “h” to get a list of default configuration settings.

Figure 7.5 shows a part of the display.

When a valid command is entered, the module returns string “AOK”. If an invalid

command is entered, the module returns “ERR”, and “?” character for unrecognized

commands. Some of the useful commands are given below. Command “—“ exits from the

command mode and returns to the data mode.

The various return codes have the following numeric values:

There are three types of commands: Set commands, Get commands, Change commands,

Action commands, and General Purpose Input Output (GPIO) commands.

Figure 7.4: “CMD” Response from the Bluetooth Module.

338 Chapter 7

Set commands: These commands store information to the flash memory. Changes take

effect after a power cycle or reboot.

Get commands: These commands retrieve and display the stored information.

Change commands: These commands temporarily change the values of various settings.

Action commands: These commands perform action commands such as connections.

GPIO commands: These commands configure and manipulate the GPIO signals.

Some of the commonly used command examples are given below (details of the full

command list can be obtained from the manufacturer’s data sheet):

SA, <value>

This command forces authentication when a remote device attempts to connect.

The <value> can be 0, 1, 2, or 4. The default value is 1 where the remote host

Figure 7.5: Part of the Default Configuration Settings.

Advanced PIC18 Projects 339

receives a prompt to pair. The user should press OK or YES on the remote device to

authenticate.

SM, <value>

This command sets the operation mode. The options are

0: Slave mode

1: Master mode

2: Trigger mode

3: Autoconnect master mode

4: Autoconnect DTR mode

5: Autoconnect any mode

6: Pairing mode

The default value is 0.

SN, <value>

This command sets the device name. In the following example, the device name is set to

Micro-Book:

SN,Micro-Book

SO, <value>

This command sets the extended status string (up to eight characters long). When set, two

status messages are sent to the local serial port: When a Bluetooth connection is

established, the device sends the string <string>CONNECT. Also, when disconnecting,

the device sends the string <string>DISCONNECT.

SP, <string>

This command sets the security pin code. The string can be up to 20 characters long. The

default value is 1234.

SU, <value>

This command sets the Baud rate. Valid values are 1200, 2400, 4800, 9600, 19.2, 28.8,

38.4, 57.6, 115, 230, 460, or 921 K. The default value is either 115 K or 9600, set by the

GPIO7 pin.

D

This command displays basic settings, such as the address, name, and pin code. Figure 7.6

shows an example.

340 Chapter 7

C, <address>

This command forces the device to connect to the specified remote address, where the

address must be specified in hexadecimal format.

K

This command disconnects the current connection.

R,1

This command causes a reboot of the Bluetooth module.

I, <value1>, <value2>

This command performs a scan for a device. <value1> is the scan time, and 10 s is

assumed if not specified. The maximum scan time is 48 s <value2> is the optional COD

of the device.

SR, <hex value>

This command stores the remote address as a 12-digit hexadecimal code (6 bytes). Two

additional characters can be specified with this command:

SR,I writes the last address obtained using the inquiry command. This option is useful

when there is only one other Bluetooth device in the range.

Figure 7.6: Displaying the Basic Settings with the D Command.

Advanced PIC18 Projects 341

SR,Z erases any stored addresses.

Making a Connection

The RN41 Bluetooth module has several operating modes. By default, the RN41 Bluetooth

module is a slave device, and the other device (e.g. PC) is the master. Assuming that the

device is configured as the slave, connection to a master is as follows:

• Discovery: This phase is only available in the slave mode. When we turn on the device

in the slave mode, it is automatically discoverable. In this phase, the Bluetooth device is

ready to pair with other devices, and it broadcasts its name, profile, and MAC address.

If the master is a PC, then the Bluetooth manager displays a list of discoverable devices

(if there is more than one).

• Pairing: During this phase, the master and slave devices validate the pin code, and if the

validation is successful, they exchange security keys, and a link key is established.

Double clicking the Bluetooth manager on the PC will pair with the device and create a

virtual serial COM port for the communication.

• Connecting: If the pairing is successful and the link key is established, then the master

and the slave connect to each other.

If the device is configured as the master, then the connection to a slave is as follows:

• The module makes connections when a connect command is received. The Bluetooth

address of the remote node can be specified in the command string. The master mode is

useful when we want to initiate connections rather than receive connections. Note that

in the master mode the device is neither discoverable nor connectable.

The RN41 Bluetooth module also supports Autoconnect modes where the module

makes connections automatically on power up and reconnects when the connection

is lost.

Manual Connection Example

A manual connection example is given in this section to show the steps in connecting to a

master device. Here, we assume that the master device is a PC, and the Bluetooth is

enabled on the PC:

• Make sure that the Bluetooth on the PC is enabled to accept connections. Open Blue-

tooth Settings and enable the Discovery as shown in Figure 7.7.

• Configure and connect the EasyBluetooth board to PORTC as described earlier,

configure the EasyPIC V7 development board, connect a cable from the USB UART on

the development board to the PC USB port. Start the terminal emulation software on

the PC. Get into the command mode (Press button RC1 and enter $$$ without any other

characters). Name device as “Bluetooth-Slave” (optional, command SN), set extended

342 Chapter 7

status string to “Slave” (optional, command SO), set the mode to slave (optional,

command SM), enable authentication (optional, command SA), change the pass code to

1234 (command SP), look for Bluetooth devices (command I), and store the address of

the found device (command SR). These steps are shown in Figure 7.8.

Figure 7.7: Enable the PC to Accept Connections.

Figure 7.8: Steps in Finding a Bluetooth Device.

Advanced PIC18 Projects 343

• Connect (command C). Enter the pass code (default 1234) as shown in Figure 7.9. You

should get a message to say that the device has been added to the computer

(Figure 7.10).

You can check whether the device is added to the computer by clicking the “Bluetooth

Devices” and then selecting “Show Bluetooth Devices” (Figure 7.11. The device name is

“Bluetooth-Slave”).

• Exit from the command menu by entering characters “—“. The Bluetooth device should

respond with string “END”.

Figure 7.12 shows the circuit diagram of the project. The RX, TX, and RESET pins of the

RN41 Bluetooth module are connected to pin RC7 (UART RX), pin RC6 (UART TX),

and pin RC1 of the microcontroller, respectively.

If you are using the EasyBluetooth board with the EasyPIC V7 development board, you

should directly plug in the EasyBluetooth board to the PORTC connector (no pin reversal

necessary) of the development board and then configure the following jumpers on the

EasyBluetooth board:

DIL switch SW1: Set 1 to ON (this connects RN41 RX to UART TX)

DIL switch SW1: Set 4 to ON (this connects RN41 TX to UART RX)

DIL switch SW1: Set 7 to ON (this connects RN41 RESET to RC1)

Figure 7.9: Entering the Pass Code.

Figure 7.10: Device Added to the Computer.

344 Chapter 7

Figure 7.11: Checking whether the New Device is Added to the Computer.

Figure 7.12: Circuit Diagram of the Project.

Advanced PIC18 Projects 345

Set J1 to 5 V (EasyPIC V7 operates at þ5 V)

Set PI03 (GPI03) to Pull-Up

Set PI07 (GPIO7) to Pull-Up (9600 baud)

CTS and RTS pins are connected to a pad (CN2) on the EasyBluetooth board and are not

used in his project.

Figure 7.13 shows the jumper settings on the EasyBluetooth board.

Project PDL

The project PDL is shown in Figure 7.14.

Project Program

mikroC Pro for PIC

The mikroC pro for the PIC program listing is shown in Figure 7.15

(MIKROC-BLUE1.C). The following sequence describes the operations performed by the

program:

• Get into command mode (command $$$).

Figure 7.13: EasyBluetooth Board Jumper Settings.

346 Chapter 7

• Configure the device by sending the following commands (these are optional and the

defaults can be used if desired):

Device name (command SN),

Extended status (command SO),

Main Program

BEGIN
Define the connec�on between the LCD and microcontroller
Configure PORTB and PORTC as digital
Configure RC1 as output
Enable UART interrupts
Ini�alize LCD
Ini�alize UART to 9600 baud
Reset the Bluetooth device
Get into command mode
Set device name
Set extended status
Set slave mode
Enable authen�ca�on
Set pass code
Wait un�l connected by the master
DO FOREVER

IF message received flag is set
Display message on the LCD

ENDIF
ENDDO

END

BEGIN/INTERRUPT
IF this is UART receive interrupt

IF command mode
Return command response

ELSE
Get message
Set message received flag

ENDIF
Clear UART interrupt flag

ENDIF
END/INTERRUPT

BEGIN/SEND_COMMAND
DO WHILE correct response not received

Send command to Bluetooth module
Send carriage-return character
Wait 500ms

ENDDO
END

Figure 7.14: Project PDL.

Advanced PIC18 Projects 347

/***
BLUETOOTH COMMUNICATION
==========================

This project is about using Bluetooth communica�on in a project. In this project a Bluetooth
module is used in slave mode. A PC is used in master mode. Messages sent to the slave module
are displayed on an LCD.

The Easy Bluetooth board (www.mikroe.com) is used in this project, connected to PORTC of an
EasyPIC V7 development board. An LCD is connected to PORTB of the microcontroller as in the
previous projects.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-BLUE1.C
***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

#define RESET PORTC.RC1

const CMD = 1;
const AOK = 2;
const CONN = 3;
const END = 4;

unsigned char Command_Mode, temp, Response, Data_Received;
unsigned char Buffer[6], Txt[16];
unsigned char Cnt = 0;
unsigned char i = 0;
//
// UART receive interrupt handler. In Command Mode we get the following responses:
// CMD, AOK, END, CONN. The interrupt handler returns responses in command mode
// and also stores the received data from the master
//
void interrupt(void)
{
if(PIR1.RC1IF == 1) // Is this a UART receive interrupt ?

Figure 7.15: mikroC Pro for the PIC Program.

348 Chapter 7

{
temp = UART1_Read(); // Read the received character
if(Command_Mode == 1 && temp != 0x0)
{

Buffer[Cnt] = temp;
Cnt++;
if(Cnt == 4)
{

if(Buffer[0] == 'C' && Buffer[1] == 'O' && Buffer[2] == 'N' && Buffer[3] == 'N')
{

Response = CONN;
Cnt = 0;

}
}

if(Cnt == 5)
{

Cnt = 0;
Response = 0;
if(Buffer[0] == 'C' && Buffer[1] == 'M' && Buffer[2] == 'D' && Buffer[3] == 0x0D &&

Buffer[4] == 0x0A)Response = CMD;
if(Buffer[0] == 'A' && Buffer[1] == 'O' && Buffer[2] == 'K' && Buffer[3] == 0x0D &&

Buffer[4] == 0x0A)Response = AOK;
if(Buffer[0] == 'E' && Buffer[1] == 'N' && Buffer[2] == 'D' && Buffer[3] == 0x0D &&

Buffer[4] == 0x0A)Response = END;
}

}
else
{

if(temp == 0x0D) // If END of data
{

Data_Received = 1; // End of data received flag
Txt[i] = 0x0; // Terminate data with NULL

}
else
{

Txt[i] = temp; // Store received data
i++; // Increment for next character

}
}
PIR1.RC1IF = 0; // Clear UART interrupt flag

}
}

//
// Send a command to the Bluetooth Module. The first argument is the command string
// to be sent to the Bluetooth module. The second argument is the Response expected
// from the module (can be CMD, AOK, END, or CONN)
//
void Send_Command(char *msg, unsigned char Resp)

Figure 7.15
cont’d

Advanced PIC18 Projects 349

{
do
{

UART1_Write_Text(msg);
UART1_Write(0x0D);
Delay_Ms(500);

}while(Response != Resp);
}

//
// Start of MAIN program
//
void main()
{

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
TRISC1_bit = 0; // Configure RC1 as an output

//
// Enable UART receive interrupts
//

PIE1.RC1IE = 1; // Clear UART1 interrupt flag
INTCON.PEIE = 1; // Enable UART1 interrupts
INTCON.GIE = 1; // Enable global interrupts

LCD_Init(); // Ini�alize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off
Lcd_Out(1,1,"Cmd Mode"); // Display message

Uart1_Init(9600); // Ini�alzie UART to 9600 Baud

Command_Mode = 1; // We are ge�ng into Command Mode
RESET = 0; // Reset the Bluetooth module
Delay_Ms(100);
RESET = 1;
Delay_Ms(1000); // End of Rese�ng the Bluetooth module

do // Send $$$ un�l in command mode
{

UART1_Write_Text("$$$"); // Get into command mode
Delay_Ms(1000);

}while(Response != CMD);

Send_Command("SN,Bluetooth-Tes�ng",AOK); // Set device name
Send_Command("SO,Slave", AOK); // Set extended status
Send_Command("SM,0", AOK); // Set into slave mode
Send_Command("SA,1", AOK); // Enable authen�ca�on
Send_Command("SP,1234", AOK); // Set pass code
Send_Command("---", END); // Exit command mode

Figure 7.15
cont’d

350 Chapter 7

Slave mode (command SM),

Enable authentication (command SA),

Set pass code (command SP),

• Exit command mode (command “—“).

• Wait for connection request from the master (PC).

• Read data from the master and display on the LCD.

At the beginning of the program, the connections between the LCD and the

microcontroller are defined, symbol RESET is assigned to port pin RC1, and the various

module responses are defined.

The main program configures PORTB and PORTC as digital, and RC1 pin is configured as

an output pin. The LCD is initialized, the UART module is initialized to operate at 9600

baud, and the Bluetooth module is reset.

The program then puts the Bluetooth module into the command mode by sending

characters “$$$” and waiting for the response string “CMD” to be received. This process

is repeated until a response is received from the Bluetooth module. Once the correct

response is received, commands are sent to the module to set the device name, extended

status, mode, etc. Function Send_Command is used to send commands to the module. This

function consists of the following code:

void Send_Command(char �msg, unsigned char Resp)
{

do
{

UART1_Write_Text(msg);

Lcd_Out(1,1,"Connec�ng"); // Display message
while(Response != CONN); // Wait un�l connected

Command_Mode = 0; // Now we are in Data mode
Data_Received = 0;

Lcd_Out(1,1,"Connected ");

for(;;) // Display received messages on the LCD
{

i = 0;
while(Data_Received == 0); // Wait un�l data up to CR is received
Data_Received = 0; // Clear data receivd flag
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,"Received Data:"); // Display "Received Data:" on first row
Lcd_Out(2,1,Txt); // Displayed received data
for(i = 0; i < 15; i++)Txt[i] = 0; // Clear buffer for next �me

}
}

Figure 7.15
cont’d

Advanced PIC18 Projects 351

UART1_Write(0x0D);
Delay_Ms(500);

}while(Response != Resp);
}

The first argument is the command string, while the second argument is the expected

response from the module. The last command to send is the “—”, which exits from the

command mode and waits for a connection from the master. Once a connection is

established, the program waits until data are received from the master (until variable

Data_Received becomes 1). The received text message in character array Txt is displayed on

the second row of the LCD. Txt is then cleared, ready for then next message to be received.

Commands and data are received inside the UART data receive interrupt service routine

(ISR). At the beginning of the ISR, the program checks to see whether or not the cause of the

interrupt is actually the UART data reception. If this is the case, the received data are stored in

variable temp. If we are in the command mode (Command_Mode¼ 1), then the received

character must form part of the command response, and this character is stored in character

array Buffer. After receiving four characters, the program checks to see if the received

response is “CONN”, and if so, the Response is set to CONN; otherwise, two more characters

are received and the program checks to see if the response is one of “CMD”, “AOK”, or

“END”, followed by carriage-return (0x0D) and line-feed (0x0A) characters. The correct

response is returned to the main program. If we are in the data mode (Command_Mode¼ 0),

then the received character in temp is copied to character array Txt. If the end of data is

detected (0x0D), then a NULL character is inserted at the end of Txt to turn it into a string.

The responses to various commands are as follows:

Command Response
$$$ CMD<cr><lf>
SN<cr> AOK<cr><lf>
SO<cr> AOK<cr><lf>
SM<cr> AOK<cr><lf>
SA<cr> AOK<cr><lf>
SP<cr> AOK<cr><lf>
—<cr> END<cr><lf>

Testing the Program

In this section, we shall see how we can connect to a PC master device and receive a message

from the PC and then display this message on the LCD. In this test, a Windows 7 PC is used.

• Make sure the Bluetooth adapter on the PC is turned on and the PC is set so that Blue-

tooth device can find the computer (open “Bluetooth Devices” in the hidden icons in the

status bar and then “Open Settings” and configure as necessary if this is not the case).

• Compile and run the program. You should see the message “Connecting” on the LCD.

352 Chapter 7

• Open “Bluetooth Devices” on the PC. Select “Add a Device”. You should see the

device name “Bluetooth Testing” (Figure 7.16). Double click on this device, and the

program will ask you to enter the pairing code (Figure 7.17). Enter “1234”

(Figure 7.18). The master should now connect to our slave device.

You are now ready to send messages to the slave device. The messages can be sent by

finding the COM port that the Bluetooth is using on the PC for outgoing data. Open

“Bluetooth Devices” on the PC. Then, “Open Settings”, click “COM Ports” and see which

port is assigned for outgoing data. In Figure 7.19, COM17 is the required port.

Now, we can send data via COM17 to our Bluetooth module. Start the Hyperterm terminal

emulation software and type COM17 for “Connect using”. Select 9600 Baud, 8 bits, no

Figure 7.16: Device “Bluetooth Testing”.

Figure 7.17: Asking the Pairing Code.

Advanced PIC18 Projects 353

parity, no flow control. Type a message, followed by the Enter key. You should see the

message displayed on the LCD. Note that by default the characters you type on the

Hyperterm window are not echoed. You can turn the echo ON by selecting and enabling

File/ Properties/ Settings/ASCII Setup/ Echo Typed Characters Locally. An

example message is shown in Figure 7.20.

The Bluetooth connection can be broken, and the device can be removed from the PC

easily. Open “Bluetooth Devices”, click “Show Bluetooth Devices”, right click on the

Figure 7.19: COM17 is Assigned for Outgoing Data.

Figure 7.18: Entering the Pairing Code.

Figure 7.20: Example Message Displayed on the LCD.

354 Chapter 7

device, and select “Remove Device”. Next time you connect you will need to enter the

pass code again.

Modifications

The program in Figure 7.20 can be used for remote control applications. For example, the

following modification shows how a message can be sent to the Bluetooth module to turn

ON required light emitting diodes (LEDs) of PORTD. Here, for simplicity, we will assume

that the message format is

PD = nnn

Where nnn is the three-digit decimal data (000e255) to be sent to PORTD.

Insert to the beginning of the program:

ANSELD = 0; // Configure PORTD as digital
TRISD = 0; // Configure PORTD as output
PORTD = 0; // Clear PORTD to start with

Modify last part of the program as follows:

for(;) // Display received messages on the LCD
{

i = 0;
while(Data_Received == 0); // Wait until data up to CR is received
Data_Received = 0; // Clear data received flag
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,“Received Data:”); // Display “Received Data:”
Lcd_Out(2,1,Txt); // Displayed the received data

//
// Check for command PD = nnn and set PORTD accordingly
//

if(Txt[0] == ‘P’ && Txt[1] == ‘D’ && Txt[2] == ‘=’)
{

i = 100�(Txt[3]�‘0’) + 10�(Txt[4] � ‘0’) + Txt[5] � ‘0’;
PORTD = i;

}
for(i = 0; i < 15; i++)Txt[i] = 0; // Clear buffer for next time

}

As an example, entering command PD¼ 067 will turn ON LEDs 6, 1, and 0 of PORTD.

MPLAB XC8

The MPLAB XC8 program is similar, and the full program listing is shown in Figure 7.21

(XC8-BLUE1.C). Note that the LCD connections are different in the MPLAB XC8

version of the program as described in earlier MPLAB XC8 projects. In addition, since the

MPLAB XC8 UART function putrsUSART sends the NULL character as well to the

Advanced PIC18 Projects 355

/***
BLUETOOTH COMMUNICATION
==========================

This project is about using Bluetooth communica�on in a project. In this project a Bluetooth
module is used in slave mode. A PC is used in master mode. Messages sent to the slave module
are displayed on an LCD.

The Easy Bluetooth board (www.mikroe.com) is used in this project, connected to PORTC of
an EasyPIC V7 development board. An LCD is connected to PORTB of the microcontroller as in
the previous MPLAB XC8 projects.

Author: Dogan Ibrahim
Date: September 2013
File: XC8-BLUE1.C
***/
#include <xc.h>
#include <string.h>
#include <plib/usart.h>
#include <plib/xlcd.h>
#include <stdlib.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define RST PORTCbits.RC1

unsigned char CMD = 1;
unsigned char AOK = 2;
unsigned char CONN = 3;
unsigned char END = 4;

unsigned char Command_Mode, temp, Response, Data_Received;
unsigned char Buffer[6], Txt[16];
unsigned char Cnt = 0;
unsigned char i = 0;
//
// UART receive interrupt handler. In Command Mode we get the following responses:
// CMD, AOK, END, CONN. The interrupt handler returns responses in command mode
// and also stores the received data from the master
//
void interrupt isr(void)
{
if(PIR1bits.RC1IF == 1) // Is this a UART receive interrupt ?
{

temp = getc1USART(); // Read the received character
if(Command_Mode == 1 && temp != 0x0)
{

Buffer[Cnt] = temp;
Cnt++;
if(Cnt == 4)
{

Figure 7.21: MPLAB XC8 Program.

356 Chapter 7

if(Buffer[0] == 'C' && Buffer[1] == 'O' && Buffer[2] == 'N' && Buffer[3] == 'N')
{

Response = CONN;
Cnt = 0;

}
}

if(Cnt == 5)
{
Cnt = 0;
Response = 0;
if(Buffer[0] == 'C' && Buffer[1] == 'M' && Buffer[2] == 'D' && Buffer[3] == 0x0D &&

Buffer[4] == 0x0A)Response = CMD;
if(Buffer[0] == 'A' && Buffer[1] == 'O' && Buffer[2] == 'K' && Buffer[3] == 0x0D &&

Buffer[4] == 0x0A)Response = AOK;
if(Buffer[0] == 'E' && Buffer[1] == 'N' && Buffer[2] == 'D' && Buffer[3] == 0x0D &&

Buffer[4] == 0x0A)Response = END;
}

}
else
{

if(temp == 0x0D) // If END of data
{

Data_Received = 1; // End of data received flag
Txt[i] = 0x0; // Terminate data with NULL

}
else
{

Txt[i] = temp; // Store received data
i++; // Increment for next character

}
}
PIR1bits.RC1IF = 0; // Clear UART interrupt flag

}
}

//
// This func�on creates seconds delay. The argument specifies the delay �me in seconds
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

//

Figure 7.21
cont’d

Advanced PIC18 Projects 357

// This func�on creates milliseconds delay. The argument specifies the delay �me in ms
//
void Delay_Ms(unsigned int ms)
{

unsigned int i;

for(i = 0; i < ms; i++)__delay_ms(1);
}

//
// This func�on creates 18 cycles delay for the xlcd library
//
void DelayFor18TCY(void)
{
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;
}

//
// This func�on creates 15 ms delay for the xlcd library
//
void DelayPORXLCD(void)
{

__delay_ms(15);
return;

}

//
// This func�on creates 5 ms delay for the xlcd library
//
void DelayXLCD(void)
{

__delay_ms(5);
return;

}

//
// This func�on clears the screen
//
void LCD_Clear()
{

while(BusyXLCD());
WriteCmdXLCD(0x01);

}

Figure 7.21
cont’d

358 Chapter 7

//
// This func�on moves the cursor to posi�on row,column
//
void LCD_Move(unsigned char row, unsigned char column)
{
char ddaddr = 40*(row-1) + column;
while(BusyXLCD());
SetDDRamAddr(ddaddr);

}

//
// This func�on sends commands to the Bluetooth module. The response is checked
// a�er sending a command
//
void Send_Command(const char msg[], unsigned char Resp)
{

unsigned char i;

do
{

i = 0;
do
{

while(Busy1USART()); // Check if UART is busy
putc1USART(msg[i]); // Send to UART
i++;

}while(msg[i] != 0x00); // Un�l NULL terminator detected

while(Busy1USART());
putc1USART(0x0D); // Send carriage-return at the end
Delay_Ms(500);

}while(Response != Resp);
}

//
// Start of MAIN program
//
void main()
{

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
TRISCbits.RC1 = 0; // Configure RC1 as an output

//
// Enable UART receive interrupts
//

PIE1bits.RC1IE = 1; // Clear UART1 interrupt flag
INTCONbits.PEIE = 1; // Enable UART1 interrupts
INTCONbits.GIE = 1; // Enable global interrupts

Figure 7.21
cont’d

Advanced PIC18 Projects 359

//
// Configure the LCD to use 4-bits, in mul�ple display mode
//

Delay_Seconds(1);
OpenXLCD(FOUR_BIT & LINES_5X7);

Open1USART(USART_TX_INT_OFF & // Ini�alize UART
USART_RX_INT_ON &
USART_ASYNCH_MODE &
USART_EIGHT_BIT &
USART_CONT_RX &
USART_BRGH_LOW,
12);

while(BusyXLCD()); // Wait if the LCD is busy
WriteCmdXLCD(DON); // Turn Display ON
while(BusyXLCD()); // Wait if the LCD is busy
WriteCmdXLCD(0x06); // Move cursor right
LCD_Clear(); // Clear LCD
LCD_Move(1,1);
putrsXLCD("Cmd Mode"); // Display message

Command_Mode = 1; // Ge�ng into Command Mode
RST = 0; // Reset the Bluetooth module
Delay_Ms(100);
RST = 1;
Delay_Seconds(1); // End of Reset

do // Get into command mode
{

putc1USART('$'); // Get into command mode
while(Busy1USART());
putc1USART('$');
while(Busy1USART());
putc1USART('$');
Delay_Seconds(1);

}while(Response != CMD);

Send_Command("SN,BLUETOOTH2",AOK); // Set device name
Send_Command("SO,SLAVE",AOK); // Set extended status
Send_Command("SM,0",AOK); // Set into slave mode
Send_Command("SA,1",AOK); // Enable authen�ca�on
Send_Command("SP,1234",AOK); // Set pass code
Send_Command("---", END); // Exit command mode
LCD_Move(1,1);
putrsXLCD("Connec�ng"); // Display message
while(Response != CONN); // Wait un�l connected

Command_Mode = 0; // Now we are in Data mode
Data_Received = 0;

Figure 7.21
cont’d

360 Chapter 7

UART, we have used the putcUSART function to send characters to the Bluetooth module

with no additional bytes.

Project 7.2dBluetooth Serial CommunicationdMaster Mode

In this project, we shall be using a Bluetooth module to communicate with a PC. The

program will connect to a PC and then send a text message to the PC, which will be

displayed on the screen. In this project, our Bluetooth device is used as a master device

and the PC is used as a slave device.

This project is very similar to the previous project. Here, after a connection is

established, the message “Bluetooth Test” will be sent to the master device every

second. The LCD is used to display various messages and also the text sent to the slave

device.

Project Hardware

The circuit diagram and the hardware configuration of this project is the same as the one

given in the previous project.

Project PDL

The project PDL is given in Figure 7.22.

LCD_Move(1,1);
putrsXLCD("Connected ");

//
// The received message is displayed inside this loop
//

for(;;) // Endless loop
{

i = 0;
while(Data_Received == 0); // Wait un�l CR is received
Data_Received = 0; // Clear data received flag
LCD_Clear(); // Clear LCD
LCD_Move(1,1);
putrsXLCD("Received Data:"); // Display "Received Data:" on
LCD_Move(2,1);
putrsXLCD(Txt); // Display the received data
for(i = 0; i < 15; i++)Txt[i] = 0; // Clear buffer for next �me

}
}

Figure 7.21
cont’d

Advanced PIC18 Projects 361

MAIN PROGRAM:

BEGIN
Define connec�on between LCD and microcontroller
Configure PORTB and PORTC as digital outputs
Enable UART receive interrupts
Ini�alize LCD
Ini�alize UART to 9600 Baud
Get into command mode
Set Device name (command SN)
Extended status (command SO)
Slave mode (command SM)
Enable authen�ca�on (command SA)
Set pass code (command SP)
Look for Bluetooth devices (command I)
Store the address of the found Bluetooth device (command SR)
Connect to the slave device (command C)
DO FOREVER

Send text “Bluetooth Test” to the slave device
Display text “Bluetooth Test” on the LCD
Wait 1 second
Cleat LCD

ENDDO
END

Interrupt Service Rou�ne:

BEGIN
IF this is a UART receive interrupt

Read received character
ELSE IF command mode

Return CMD
ELSE IF AOK

Return AOK
ELSE IF Done

Return IDone
ELSE IF CONNECT

Return CONN
ENDIF

ENDIF
END

BEGIN/ Send_Command
Send text to UART
Send carriage-return character to UART
Wait 500ms

END/Send_Command

Figure 7.22: Project PDL.

362 Chapter 7

Project Program

mikroC Pro for PIC

The mikroC pro for PIC program listing is shown in Figure 7.23 (MIKROC-BLUE2.C).

The following sequence describes the operations performed by the program:

• Get into command mode (command $$$).

• Configure the device by sending the following commands (these are optional and the

defaults can be used if desired):

Device name (command SN);

Extended status (command SO);

Slave mode (command SM);

Enable authentication (command SA);

Set pass code (command SP);

Look for Bluetooth devices (command I);

Store the address of the found Bluetooth device (command SR);

Connect to the slave device (command C);

Send text “Bluetooth Test” to the slave device every second. Display the sent

message on the LCD.

At the beginning of the program, the connections between the LCD and the

microcontroller are defined, symbol RESET is assigned to port pin RC1, and the various

module responses are defined.

The main program configures PORTB and PORTC as digital, and the RC1 pin is

configured as an output pin. The LCD is initialized, the UART module is initialized to

operate at 9600 baud, and the Bluetooth module is reset.

The program then puts the Bluetooth module into the command mode by sending

characters “$$$” and waiting for the response string “CMD” to be received. This

process is repeated until a response is received from the Bluetooth module. Once

the correct response is received, commands are sent to the module to set the device

name, extended status, mode, etc. Function Send_Command is used to send

commands to the module as in the previous project. Command “I,30” looks for

Bluetooth devices, and if a device is found, it gets its address. Command “SR,I”

stores the address of the device just found. Command “C” connects to a slave

device. The program then enters in a loop and sends message “Bluetooth Test” to

the slave device every second.

Commands and data are received inside the UART data receive ISR. The ISR

implemented here is slightly different from the one given in Figure 7.15. At the

beginning of the ISR, the program checks to see whether or not the cause of the

Advanced PIC18 Projects 363

/***
BLUETOOTH COMMUNICATION
==========================

This project is about using Bluetooth communica�on in a project. In this project a Bluetooth
module is used in master mode. A PC is used in slave mode. Text "Bluetooth Test" is sent to
the slave device every second.

The Easy Bluetooth board (www.mikroe.com) is used in this project, connected to PORTC of
an EasyPIC V7 development board. An LCD is connected to PORTB of the microcontroller as in
the previous projects.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-BLUE2.C
***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

#define RESET PORTC.RC1

const CMD = 1;
const AOK = 2;
const CONN = 3;
const IDone = 4;

unsigned char Response, temp;
unsigned char Buffer[60];
unsigned char i,Cnt = 0;
//
// UART receive interrupt handler. In Command Mode we get the following responses:
// CMD, AOK, Done, CONN. The interrupt handler returns responses in command mode
// and also stores the received data from the master
//
void interrupt(void)
{
if(PIR1.RC1IF == 1) // Is this a UART receive interrupt ?
{

Figure 7.23: mikroC Pro for the PIC Program.

364 Chapter 7

temp = UART1_Read(); // Read the received character
if(temp != 0x0)
{ if(temp == 0x0A)

{
if(Buffer[Cnt-4] == 'C' && Buffer[Cnt-3] == 'M' && Buffer[Cnt-2] == 'D' &&

Buffer[Cnt-1] == 0x0D)
{

Response = CMD;
Cnt = 0;

}
if(Buffer[Cnt-4] == 'A' && Buffer[Cnt-3] == 'O' && Buffer[Cnt-2] == 'K' &&

Buffer[Cnt-1] == 0x0D)
{

Response = AOK;
Cnt = 0;

}
if(Buffer[Cnt-5] == 'D' && Buffer[Cnt-4] == 'o' && Buffer[Cnt-3] == 'n' &&

Buffer[Cnt-2] == 'e' && Buffer[Cnt-1] == 0x0D)
{

Response = IDone;
Cnt = 0;

}
if(Buffer[Cnt-8] == 'C' && Buffer[Cnt-7] == 'O' && Buffer[Cnt-6] == 'N' &&

Buffer[Cnt-5] == 'N' && Buffer[Cnt-4] == 'E' && Buffer[Cnt-3] == 'C' &&
Buffer[Cnt-2] == 'T')

{
Response = CONN;
Cnt = 0;

}
Cnt=0;

}
else
{

Buffer[Cnt] = temp;
Cnt++;

}
}

}
PIR1.RC1IF = 0; // Clear UART interrupt flag

}

//
// Send a command to the Bluetooth Module. The first argument is the command string
// to be sent to the Bluetooth module. The second argument is the Response expected
// from the module (can be CMD, AOK, END, or CONN)
//
void Send_Command(char *msg, unsigned char Resp)
{

do
{

Figure 7.23
cont’d

Advanced PIC18 Projects 365

UART1_Write_Text(msg);
UART1_Write(0x0D);
Delay_Ms(500);

}while(Response != Resp);
}

//
// Start of MAIN program
//
void main()
{

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
TRISC1_bit = 0; // Configure RC1 as an output

//
// Enable UART receive interrupts
//

PIE1.RC1IE = 1; // Clear UART1 interrupt flag
INTCON.PEIE = 1; // Enable UART1 interrupts
INTCON.GIE = 1; // Disable global interrupts

LCD_Init(); // Ini�alize LCD
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // Cursor off
Lcd_Out(1,1,"Cmd Mode"); // Display message
Uart1_Init(9600); // Ini�alize UART to 9600 Baud

RESET = 0; // Reset the Bluetooth module
Delay_Ms(100);
RESET = 1;
Delay_Ms(1000); // End of Rese�ng the Bluetooth module

do // Send $$$ for command mode
{

UART1_Write_Text("$$$"); // Get into command mode
Delay_Ms(1000);

}while(Response != CMD);

Lcd_Out(1,1,"Send Commands");
Send_Command("SN,Bluetooth-Master",AOK); // Set device name
Send_Command("SO,Master", AOK); // Set extended status
Send_Command("SM,1", AOK); // Set into master mode
Send_Command("SA,1", AOK); // Enable authen�ca�on
Send_Command("SP,1234", AOK); // Set pass code
Lcd_Out(1,1,"Look For Devices");
Lcd_Out(2,1,"Wait 30 secs");

UART1_Write_Text("I,30"); // Look for Bluetooth devices (wait 30 s)
UART1_Write(0x0D); // Send carriage-return

Figure 7.23
cont’d

366 Chapter 7

interrupt is actually the UART data reception. The command responses are terminated

with the line-feed character 0x0A. The program stores the received characters in array

Buffer until the line-feed character is received. Then, the program checks to see what

type of response this is and sets variable Response accordingly. Response is set to

CMD, AOK, Done, or CONNECT.

The Bluetooth device returns the following responses when a command is sent:

Command Response
$$$ CMD<cr><lf>
SN<cr> AOK<cr><lf>
SO<cr> AOK<cr><lf>
SM<cr> AOK<cr><lf>
SA<cr> AOK<cr><lf>
SP<cr> AOK<cr><lf>
—<cr> END<cr><lf>
I<cr> Inquiry, COD¼0<cr><lf>

Found n<cr><lf>
<address>,<name>,<COD>,<serial
port><cr><lf>
Inquiry Done<cr><lf>

SR<cr> AOK<cr><lf>
C<cr> TRYING<cr><lf>

MasterCONNECT<cr><lf>

while(Response != IDone); // Wait up to 30 s

Lcd_Cmd(_LCD_CLEAR);
Lcd_Out(1,1,"Device Found "); // Display message
Send_Command("SR,I", AOK); // Store address of the device just found

UART1_Write_Text("C");
UART1_Write(0x0D);
while(Response != CONN); // Connect to the slave just found

for(;;)
{

Uart1_Write_Text("Bluetooth Test"); // Send text to the slave
Uart1_Write(0x0D); // Send carriage-return
LCD_Out(1,1,"Sent Message:");
Lcd_Out(2,1,"Bluetooth Test");
Delay_Ms(1000);
Lcd_Cmd(_LCD_CLEAR);

}
}

Figure 7.23
cont’d

Advanced PIC18 Projects 367

Testing the Program

In this section, we shall see how we can connect to a PC slave device and send a message

from our Bluetooth device. In this test, a Windows 7 PC is used.

• Make sure the Bluetooth adapter on the PC is turned on and the PC is set so that the

Bluetooth device can find the computer (open “Bluetooth Devices” in hidden icons in

the status bar and then “Open Settings” and configure as necessary if this is not the

case). You should also enable the option “Alert me when a new Bluetooth device wants

to connect”.

• Compile and run the program.

• You should see these messages on the LCD: “CMD Mode”, “Send Commands”, “Look

For Devices”, “Wait 30 s”. The program will look for Bluetooth devices. This may take

up to 30 s, and you should wait until the message “Device Found” is displayed on the

LCD.

• At this stage, the PC will display an alert message to say that a new Bluetooth device

wants to connect (Figure 7.24). Click the message and then enter the pass code 1234

(Figure 7.25). Open a terminal emulation session and enter the COM port number

(in Bluetooth settings), and connect with 9600 baud, 8 bits, no parity, no flow control.

The two devices will connect, and you should see the message “Bluetooth Test”

displayed on the terminal emulation window.

Figure 7.24: Alert from the PC.

Figure 7.25: Entering the Pass Code.

368 Chapter 7

You should now try as an exercise to use two EasyBluetooth boards, one configured as the

master and one as the slave, and connect them to each other to exchange data.

Project 7.3dUsing the RFID

In this project, we shall be using an RFID receiver to read the unique identifier (UID)

number stored on an RFID tag.

Before going into the details of the project, it is worthwhile to review the basic principles

of the RFID.

Radiofrequency Identification

RFID involves the use of RF electromagnetic waves to transfer data without making any

contact to the source of the data. Generally, an RFID system consists of two parts: A

Reader and one or more transponders (also known as Tags) that carry the data. RFID

systems evolved from barcode labels as a means of identifying an object. A comparison of

RFID systems with barcodes reveals the following:

• Barcodes are read only. Most RFID systems are read write.

• Barcodes are based on optical technology and may be affected from environmental

lighting, making the reliable reading distance not more than several feet. RFID systems

are based on RF waves and are not affected by environmental lighting. The reading dis-

tance of an RFID system can be �20e40 ft.

• Barcode images are normally printed on paper, and their readability is affected by aging

and the state of the paper, for example, dirt on the paper and torn paper. RFID systems

do not suffer from environmental lighting, but their operation may be affected if

attached to metals.

• Barcodes can be generated and distributed electronically, for example, via e-mail and

mobile phone. For example, boarding passes with barcodes can be printed.

• Barcode reading is more labor intensive as it requires the light beam to be directed onto

them. RFID readers on the other hand can read the data wirelessly and without touching

the tags.

• Barcodes are much cheaper to produce and use than RFID systems.

Some common uses of RFID systems are as follows:

• Tracking of goods,

• Tracking of persons and animals,

• Inventory systems,

• Public transport and airline tickets,

• Access management,

Advanced PIC18 Projects 369

• Passports,

• Hospitals and healthcare,

• Libraries,

• Museums,

• Sports,

• Defense,

• Shoplifting detection.

There are three types of RFID tags: Active, Passive, or Semipassive. Passive tags have no

internal power sources, and they draw their power from the electromagnetic field

generated by the RFID reader (Figure 7.26). Passive tags have no transmitters; they simply

alter the electromagnetic field emitted by the reader such that the reader can detect.

Because the reader has no transmitter, the range of passive tags is limited to several feet.

Passive tags have the advantage that their cost is low compared to other types of tags.

Active tags have their own power sources (small batteries). These tags also have their own

transmitters. As a result, active RFID systems have much greater detection ranges, usually

a few hundred feet. To extend the battery life, these tags are normally in a low-power state

until they detect the electromagnetic waves transmitted by the RFDI receiver. After they

leave the electromagnetic field, they return back to the low-power mode.

Semipassive tags have their own power sources (small batteries). But the power source is

used just to power the microchip embedded inside the tag. Like the passive tags, these

tags do not have any transmitters, and they rely on the same principle as the passive tags

for transferring their data. Semipassive tags have greater detection ranges than the

passive tags.

RFID tags can be read only where a fixed serial number is written on the tag, and this

number is used by the reader to identify the tag, or they may be read write where data can

be written onto the tag by the user. Some tags are write once, where the user can only

write once onto the tag but read as many times as required.

Figure 7.26: Passive RFID System.

370 Chapter 7

The data on the tag are stored in a nonvolatile memory. This may be a small memory that,

for example, stores just a serial number, or larger memory capable of storing, for example,

product-related information, or a person’s details.

An RFID tag contains at least two parts: an antenna for receiving (and transmitting on

some tags) the signal and a microchip with memory for controlling all operations of the

tag and for storing the data.

There are tags that operate in the LF, HF, or the UHF bands. Usually, every country sets

its own rules and the allocation of frequencies. LF tags are generally passive, operating in

the 120- to 150-kHz band, and their detection range is not >10 cm. The 13.56-MHz ISM

HF band is very popular for passive tags, offering good detection ranges up to 1 m. The

433-MHz ultra high frequency (UHF) band tags are active, offering detection ranges of

over several hundreds of meters but having higher costs. The 865e868 UHF ISM band

tags are passive with ranges up to 10 m, and having very low costs. The microwave band

tags are active with high data rates and usually high ranges, but their cost is high.

There are several standards that control and regulate the design and development of RFID

based products. It is important that the tag we use is compatible with the RFID receiver

we are using. Also, the receivers generally support various standards and the selection of a

particular standard is generally programmable. We should also make sure that the receiver

and the tag use the same standard.

The block diagram of the project is shown in Figure 7.27. An RFID receiver chip is

connected to the microcontroller. The microcontroller reads the serial number (UID) on

the tag and displays on the LCD.

Project Hardware

The project uses the RFID Click board manufactured by mikrolektronika (Figure 7.28).

This is a small mikroBUS compatible board, featuring the CR95HF 13.56-MHz RFID

Figure 7.27: Block Diagram of the Project.

Advanced PIC18 Projects 371

transceiver as well as the trace antenna. The board is designed to operate with a 3.3-V

supply voltage, and it can communicate with the microcontroller using one of several

busses, such as UART and serial peripheral interface (SPI). The basic specifications of the

CR95HF chip are as follows:

• Support for reading and writing;

• A 13.56-MHz frequency, supporting the following standards:

ISO/IEC 14443 Types A and B

ISO/IEC 15693

ISO/IEC 18092

• Host interface for UART, SPI, and INT;

• A 32-pin VFQFPN package;

• A 3.3-V operation.

In this project, we shall be using an RFID tag compatible with the standard ISO/IEC

14443 Type A. We shall be using the UART interface for simplicity. The CR95HF pins

used while operating in the UART mode are as follows:

Pin Pin name Pin Description
1 TX1 Driver output to the coil
2 TX2 Driver output to the coil
5 RX1 Receiver input from the coil
6 RX2 Receiver input from the coil
8 GND Ground
12 UART_RX/IRQ_IN UART receive pinþ Interrupt input
13 VPS Power supply
14 UART_TX/IRQ_OUT UART transmit pinþ interrupt output
19 SSI_0 Select comms interface
20 SSI_1 Select comms interface
22 GND Ground
29 XIN Crystal input
30 XOUT Crystal output
31 GND Ground
32 VPS_TX Power supply

Figure 7.28: The RFID Click Board.

372 Chapter 7

The CR95HF chip requires a 27.12-MHz crystal to be connected between its XIN-XOUT

pins together with a pair of 10-pF capacitors. These are included on the RFID Click

board.

Figure 7.29 shows the circuit diagram of the project. The UART pins of the

CR95HF chip, UART_RX and UART_TX are connected to UART pins RC6 (TX)

and RC7 (RX) of the microcontroller, respectively. The antenna is connected to pins

TX1-TX2 and RX1-RX” of the CR95HF. An LCD is connected to PORTB as in the

earlier projects.

If you are using the RFID Click board together with the EasyPIC V7 development board,

then configure the RFID board as follows (see the RFID Click board schematic):

Solder the jumpers in position B (to use the UART interface).

Connect the RFID board to mikroBUS 1 connector on the development board.

Figure 7.29: Circuit Diagram of the Project.

Advanced PIC18 Projects 373

The connections between the microcontroller and the RFID board are as follows (except

the power pins):

RFID Board Microcontroller
UART_RX/IRQ_IN RC6
UART_TX/IRQ/OUT RC7
SSI_0 RA2
SSI_1 RE1

CR95HF Operational Modes

The CR95HF chip operates in two modes: Wait For Event (WFE) mode and Active mode.

The WFE mode includes four low-power states: Power-up, Hibernate, Sleep, and Tag

Detector. The chip cannot communicate with the external host (e.g. a microcontroller),

while in one of these states, it can only be woken-up by the host. In the Active mode, the

chip communicates actively with a tag or an external host.

Power-up mode: This mode is entered after power is applied to the chip.

Hibernate mode: In this mode, the chip consumes the lowest power, and it has to be

woken up to communicate.

Sleep mode: The chip can be woken up from this state by the Timer, IRQ_IN pin, or the

SPI_SS pin.

Tag Detector mode: The chip can be woken up from this state by the Timer, IRQ_IN pin,

SPI_SS pin, or by tag detection.

CR95HF Startup Sequence

After applying power to the chip, the IRQ_IN pin should be raised after a minimum time

of 10 ms. The IRQ_IN pin should stay high for a minimum of 100 ms. The chip then waits

for a low pulse (minimum 10 ms) on the IRQ_IN pin. The IRQ_IN pin should then go

high for a minimum of 10 ms before the type of communications interface to be used (SPI

or UART) is selected and the device is ready to receive commands from the host.

To select the UART interface, both the SSI_0 and SSI_1 pins must be low.

UART Communication

The CR95HF default Baud rate is 57,600 bps, although it can be changed by a command

if desired. The host sends commands to the CR95HF and waits for replies. A command

consists of the following bytes. <CMD> and <LEN> are always 1 byte long, but

<DATA> can be from 0 to 255 bytes long:

<CMD><LEN><DATA.....DATA>

374 Chapter 7

Where CMD is the command type, LEN is the length of the command, and DATA are the

data bytes. If the LEN field is zero, no data will be sent or received.

The response from the CR95HF is in the following format:

<ResponseCode><LEN><Data....DATA>

A list of valid commands is given in Table 7.1 (see the CR95HF Data Sheet for further

information and command examples). The use of some of these commands is given later

in the programming section.

Passive RFID Tags

Passive RFID tags are available in many shapes, forms, frequencies, and capacities. The

format of a very simple popular read-only passive tag, known as EM4100, is given here

for reference (this is not the one used in this project). One form of the EM4100 card is

shown in Figure 7.30, although they are also available in credit-card shape.

Table 7.1: List of Commands.

Code Command Description

0x01 IDN Request short information and revision of the CR95HF
0x02 PROTOCOL_SELECT Select the required RF protocol and its parameters
0x04 SEND_RECV Send data and receive tag response
0x07 IDLE Switch CR95HF into the low-power WFE mode, specify the

wake-up source, and wait for an event to exit to ready state
0x08 RD_REG Read wake-up event register or the analog ARC_B register
0x09 WR_REG Write to ARC_B, Timer window, or the AutoDetect filter

enable register (for ISO/IEC 18092 tags)
0x0A BAUD_RATE Write the UART baud rate
0x55 ECHO CR95HF returns echo response (0x55)

Figure 7.30: Sample EM4100 RFID Tag.

Advanced PIC18 Projects 375

The EM4100 tag consists of a 64-bit Read-Only Memory. This means that the tag is

configured during the manufacturing process and the data on the tag cannot be

changed.

The format of the EM4100 tag is as follows:

• The first 9 bits is all 1 s, and this is the header field.

• Next, we have 11 groups of 5 bits of data. In the first 10 groups, the first 4 bits are the

data bits, while the last bit is the even parity bit. In the last group, the first 4 bits are the

column parity bits, while the last bit is the stop bit. The first 8 bits are the version

number (or customer ID).

The format of the data is shown in Figure 7.31.

An example tag string with its decoding is given below:

111111111 Header
00000 0
11110 F
00000 0
00000 0
00011 1
00011 1
01010 5
01010 5
01100 6
10100 A
11000 (column parities and stop-bit)

The version number (or customer ID)¼ 0x0F.

Data string¼ 0x0011556A.

The tag used in this project is called the MIFARE MF1ICS50, manufactured by NXP.

This is the card supplied by mikroElektronika for use with their RFID Click board.

1 1 1 1 1 1 1 1 1 HEADER
V00 V01 V02 V03 P0 Version number (or customer ID)+even parity bit (P0)
V04 V05 V06 V07 P1 Version number (or customer ID)+even parity bit (P1)
D08 D09 D10 D11 P2
D12 D13 D14 D15 P3
D16 D17 D18 D19 P4
D20 D21 D22 D23 P5 32 Data Bits (D08:D39) + even parity bits (P2:P9)
D24 D25 D26 D27 P6
D28 D29 D30 D31 P7
D32 D33 D34 D35 P8
D36 D37 D38 D39 P9
PC0 PC1 PC2 PC3 STP Column parity bits (PC0:PC3) + stop bit (STP)

Figure 7.31: EM4100 Tag Data Format.

376 Chapter 7

This tag has the following specifications (see manufacturers’ data sheet for further

information):

• A 13.56-MHz operating frequency,

• A 106-kbps data transfer rate,

• Up to a 100-mm detection range,

• A 1-kbyte electrically erasable programmable read-only memory (EEPROM), orga-

nized in 16 sectors with four blocks of 16 bytes each (one block consists of

16 bytes).

The memory on the tag is organized as shown in Figure 7.32. Block 0, Sector 0, is also

known as the Manufacturer Block, and the tag serial number is stored in the first 5 bytes

of this block (4-byte serial numberþ Check byte) as shown in Figure 7.33.

Project PDL

The project PDL is given in Figure 7.34.

Figure 7.32: MF1ICS50 Tag Memory Organization.

Advanced PIC18 Projects 377

Main Program:

BEGIN
Define LCD to microcontroller connec�ons
Configure PORTA,B,C,E as digital
ConfigureRA2, RC6, RE1 as outputs
Ini�alize LCD
Configure CR95HF to operate in UART mode
CALL Ini�alize_CR95HF
Ini�alize UART to 57600 Baud
Display message “RFID” on LCD
CALL Request_Short_Info to get CR95HF ID
CALL Select _Protocol to select protocol 14443-A
CALL RAQ to send RAQ and receive AQTA
CALL UID to get tag serial number

END

BEGIN/Ini�alize_CR95HF
Send startup ini�aliza�on sequence to CR95HF chip

END/Ini�alzie_CR95HF

BEGIN/Request_Short_Info
Send command 0x01 to CR95HF
Get the ID and display on the LCD

END/Request_Short_Info

BEGIN/Select_Protocol
Send command 0x02 to CR95hF to set ISO/IEC 14443-A protocol

END/Select_Protocol

BEGIN/RAQ
Send command 0x04 to CR95HF with RAQ parameters
CALL Get_Data to receive and display the data

END/RAQ

BEGIN/UID
Send command 0x04 to CR95HF to read the serial number
CALL Get_Data to receive and display the data

END/UID

BEGIN/Get_Data
Get the data length
Display the data on the LCD in hex format

END/Get_Data

Figure 7.34: Project PDL.

Figure 7.33: Serial Number is the First 4 Bytes.

378 Chapter 7

Project Program

mikroC Pro for PIC

The PIC18F45K22 microcontroller is operated from an 8-MHz crystal, but the PLL is

enabled and the clock frequency is set to 32 MHz via the Project/ Edit Project menu

option for faster speed (Figure 7.35).

The mikroC Pro for PIC program is given in Figure 7.36 (MIKROC-RFID1.C). At the

beginning of the program, the connections between the LCD and the microcontroller are

defined, symbols IRQ_IN, SSI_0 and SSI_1 are assigned to port pins RC6, RA2 and RE1,

respectively. Ports A, B, C, and E are then configured as digital, pins RA2, RC6, RE1

configured as outputs, and the LCD is initialized.

The program then configures the RFID reader to operate in the UART mode by clearing

both SSI_0 and SSI_1 pins. Function Initialize_CR95HF is called to initialize the chip as

explained earlier in the Startup Sequence. The UART is initialized to operate at 57,600

Baud, which is the default Baud rate of the RFID receiver. The LCD is cleared, and

message RFID is displayed at the top row.

Function Request_Short_Info requests the ID of the CR95HF by sending command 1 with

zero data length. Thus, the command sent to the chip is

0x01 Chip ID request command
0x00 Length of command

The chip returns result code and length of data. The result code must be 0x00 for success.

The received result code is checked for validity, and if this is the case, ID data are

received from the chip and displayed on the LCD as shown in Figure 7.37. The display

consists of the following letters: “NFC FS2JAST2”, which means read only memory

(ROM) code revision 2. This text is followed by Cyclic Redundancy Check (CRC) bytes

that are not ASCII and cannot be displayed on the LCD.

Figure 7.35: Setting the Microcontroller Clock Frequency to 32 MHz.

Advanced PIC18 Projects 379

/***
RFID
====

This project is about using an RFID receiver and a passive RFID tag. The project reads the
informa�on on the tag and then displays it on the LCD.

An 13.56 MHz CR95HF type RFID reader chip is used in the design. The chip is operated in
accordance with the standard ISO/IEC 14443 Type A. The communica�on between the chip
and the microcontroller is established using a standard UART interface. The CR95HF chip is
clocked from a 27.12 MHz crystal.

A compa�ble passive RFID tag is used in the design. The UID of the tag is read, forma�ed, and
then displayed on an LCD. The LCD is connected as in the previous LCD projects.

An 8 MHz crystal is used for the PIC18F45K22 microcontroller in the project. The PLL is enabled
so that the effec�ve microcontroller clock rate is X4. i.e. 32 MHz.

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-RFID1.C
***/
// LCD module connec�ons
sbit LCD_RS at LATB4_bit;
sbit LCD_EN at LATB5_bit;
sbit LCD_D4 at LATB0_bit;
sbit LCD_D5 at LATB1_bit;
sbit LCD_D6 at LATB2_bit;
sbit LCD_D7 at LATB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

#define IRQ_IN LATC.RC6 // IRQ_IN is also the URT TX pin
#define SSI_0 LATA.RA2 // SSI_0 pin
#define SSI_1 LATE.RE1 // SSI_1 pin

unsigned char Info[50];
unsigned char CMD, LEN;
//
// This func�on ini�alizes the chip a�er power-up so that it is in Ready state. See the
// CR95HF Data sheet for the delays
//
void Ini�alize_CR95HF()
{

Delay_Ms(10); // t4 delay �me

Figure 7.36: mikroC Pro for the PIC Program.

380 Chapter 7

IRQ_IN = 1; // Set IRQ_IN = 1
Delay_us(100); // t0 delay �me
IRQ_IN = 0; // Lower IRQ_IN
delay_us(500); // t2 delay �me (typical 250)
IRQ_IN = 1; // IRQ_IN high
Delay_Ms(10); // t3 delay �me. The CR95HF is Ready now

}

//
// This func�on waits un�l the UART is ready and sends a bytes to it
//
void WriteUart(unsigned char c)
{

while(Uart1_Tx_Idle() == 0);
Uart1_Write(c);

}

//
// This func�on waits un�l the UART is ready and reads a byte from it
//
unsigned char ReadUart()
{

unsigned char c;

while(Uart1_Data_Ready() == 0);
c = Uart1_Read();
return c;

}

//
// This func�on requests short info (IDN) about the CR95HF chip. The received informa�on
// is stored in character array called Info. Received short Info is displayed
//
void Request_Short_Info()
{

unsigned char i, Cnt, flag, c;

WriteUart(0x01); // Send IDN command
WriteUart(0x00); // Send length
c = ReadUart();
if(c != 0x00)
{
Lcd_Out(1,1,"Error"); // Error, abort
while(1);

}

i = 0;
flag = 0;
Cnt = 0;

Figure 7.36
cont’d

Advanced PIC18 Projects 381

while(flag == 0) // Read the data bytes
{

if(Uart1_Data_Ready() == 1)
{

Info[i] = Uart1_Read();
if(i == 0)
{
LEN = Info[0]; // Store the length
Cnt = LEN + 1;

}
i++;
if(i == Cnt)flag = 1; // All data read, terminate loop

}
}

LCD_Cmd(_LCD_FIRST_ROW); // To first row of the LCD
for(i=1; i < Cnt; i++)Lcd_Chr_Cp(Info[i]); // Write short Info to LCD
for(i=0; i < Cnt; i++)Info[i] = 0; // Clear buffer

}

//
// This func�on selects protocol 14443 Type A
//
void Select_Protocol_14443()
{

unsigned char c;

WriteUart(0x02); // Send Select Protocol command
WriteUart(0x02); // Send length
WriteUart(0x02); // Send protocol 14443 Type A
WriteUart(0x00);

//
// Get result code (must be 0x00)
//

c = ReadUart(); // Get result code
LEN = ReadUart(); // get length

if(c != 0x00) // If error, abort
{

Lcd_Out(1,1,"Protocol Error");
while(1);

}
else
{

Lcd_Out(1,1,"Protocol Selected");
}

}

//
// This func�on reads the data length and then reads all the data and displays on the
// LCD in hexadecimal format

Figure 7.36
cont’d

382 Chapter 7

//
void Get_Data()
{

unsigned char i, Cnt, flag;
unsigned char Txt[3];

i = 0;
flag = 0;
Cnt = 0;

while(flag == 0) // Read data
{

if(Uart1_Data_Ready() == 1) // If UART has a character
{

Info[i] = Uart1_Read(); // Get the character
if(i == 0)
{
LEN = Info[0]; // Get the data length
Cnt = LEN + 1;

}
i++;
if(i == Cnt)flag = 1; // If no more data, exit the loop

}
}

LCD_Cmd(_LCD_FIRST_ROW); // Goto first row of LCD
for(i=1; i < Cnt; i++)
{

ByteToHex(Info[i], Txt); // Convert to hex
Lcd_Out_CP(Txt); // Display in hex

}
}

//
// This func�on sends RAQ to the card and receives ATAQ response. The response is
// displayed on the LCD
//
void RAQ()
{

unsigned char i, Cnt, flag, c;
unsigned char Txt[3];

WriteUart(0x04); // Send IDN command
WriteUart(0x02); // Send length
WriteUart(0x26); // Send length
WriteUart(0x07); // Send length

c = ReadUart(); // Read result code
if(c != 0x80)
{

Figure 7.36
cont’d

Advanced PIC18 Projects 383

Lcd_Out(1,1,"Read Error");
while(1);

}

Get_Data(); // Get data and display it
}

//
// This func�on receives the UID of the card and displays on the LCD
//
void UID()
{

unsigned char i, Cnt, flag, c;
unsigned char Txt[3];

WriteUart(0x04); // Send IDN command
WriteUart(0x03); // Send length
WriteUart(0x93); // Send length
WriteUart(0x20);
WriteUart(0x08);

c = ReadUart(); // Get result code
if(c != 0x80)
{
c = ReadUart(); // Read length
while(1);

}

Get_Data(); // Get data and display it
}

void main()
{

ANSELA = 0; // Configure PORTA as digital
ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
ANSELE = 0; // Configure PORTE as digital
TRISA.RA2 = 0; // Configure RA2 as output
IRQ_IN = 1;
TRISC.RC6 = 0; // Configure RC6 as output
TRISE.RE1 = 0; // Configure RE1 as output

Lcd_Init(); // Ini�alize LCD
Delay_ms(10);

SSI_0 = 0; // Configure CR95HF to use UART
SSI_1 = 0; // Configure CR95HF to se UART
Ini�alize_CR95HF(); // Ready mode a�er power-up

UART1_Init(57600); // Ini�alize UART to 57600 Baud

Figure 7.36
cont’d

384 Chapter 7

The next step is to select the RF communication protocol to be used. Function

Select_Protocol_14443 is called for this purpose. In this example, ISO/IEC 14443-A

protocol is used. The command to set a protocol is 0x02. The protocol code for the

required protocol is 0x02, and the parameter is 0x00, which is the recommended setting to

Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,8,"RFID"); // Display heading on LCD
Delay_Ms(1000); // Wait 1 s for the display
Lcd_Cmd(_LCD_CLEAR);

//
// Request short Info (IDN) about the CR95HF chip
//

Request_Short_Info(); // Request short informa�on
Delay_Ms(2000); // Wait 2 s
Lcd_Cmd(_LCD_CLEAR);

//
// Select the proocol used (14443 Type A)
//

Select_Protocol_14443();
Delay_Ms(2000); // Wait 2 s
Lcd_Cmd(_LCD_CLEAR);

//
// Send RAQ and get ATAQ
//

RAQ();
Delay_ms(1000);
Lcd_Cmd(_LCD_CLEAR);

//
// Read the Tag UID
//

UID();

for(;;) // Wait here forever
{

}
}

Figure 7.36
cont’d

Figure 7.37: Displaying ID of the CR95HF Chip.

Advanced PIC18 Projects 385

send and receive at 106 kbps (see the CR95HF data sheet). Thus, the command sent to the

CR95HF is

0x02 Protocol select command
0x02 Command length is 2
0x02 Select ISO/IEC 14443-A
0x00 Command parameter

The chip returns the result code and length of data. The result code must be 0x00

if the required protocol is successfully selected. Selecting a protocol automatically

turns ON the electromagnetic field around the RFID board so that tags can be

detected.

The next step is to send an RAQ request command and receive the ATQA response from

the chip. Command 0x04 (SEND_RECV) is used for this purpose. The command to send

the RAQ is as follows:

0x04 SEND_RECV command
0x02 Command length 2
0x26 RAQ command
0x07 No of significant bits (RAQ is coded on 7 bits)

The tag must be near the receiver when this command is issued. The result code of 0x80

corresponds to success, and if this is the case, the command length and the data bytes

(ATAQ) are returned. The card used by the author displayed the following data in

hexadecimal format:

0400280000

This data decodes to the following (see ISO/IEC 14443-A specifications):

0400 - ATQA response

Twenty eight in binary is “0001 1000”. This translates as

Bits 0: 3¼Number of significant bits in the first byte (here, 8),

Bit 4: 1¼ Parity error, 0¼No parity error (here, no parity error),

Bit 5: 1¼CRC error, 0¼No CRC error (here this bit has no meaning since there is no

CRC in AQTA response),

Bit 6: Not used,

Bit 7: 1¼Collision between multiple tags, 0¼No collision (here, no collision)

00 00 - Indexes to where collision detected (no collision here)

386 Chapter 7

In the next step, we send a command to read the manufacturers’ block, which also

contains the serial number. Command 0x04 (SEND_RECV) is used for this purpose. The

command is as follows:

0x04 SEND_RECV command
0x03 Command length 3
0x93 Cascade Level 1 (CL1) command to get the serial number
0x20 Command tail
0x08 Command tail

The result code of 0x80 corresponds to success, and if this is the case, the command

length and the data bytes are returned. The card used by the author displayed the

following data in hexadecimal format (Figure 7.38):

AD3D910706280000

The serial number is the first 5 bytes (40 bits), that is, AD3D910706, which corresponds to

the binary number “1010 1101 0011 1101 1001 0001 0000 0111 0000 0110”.

MPLAB XC8

It is left as an exercise for the reader to convert the program to compile under the MPLAB

XC8 compiler.

Project 7.4dRFID Lock

In this project, we shall be using an RFID system to create a security lock. The lock

will be based on a relay that will operate when the correct tag is placed near the

reader.

The block diagram of the project is shown in Figure 7.39.

Figure 7.38: Data Returned by the Receiver.

Advanced PIC18 Projects 387

Project Hardware

The circuit diagram of the project is very similar to the one given in Figure 7.26,

except that here additionally a relay and a lock mechanism are connected to the RC0

pin of the microcontroller via a transistor switch. Figure 7.40 shows the complete

circuit diagram.

Figure 7.39: Block Diagram of the Project.

Figure 7.40: Circuit Diagram of the Project.

388 Chapter 7

Project PDL

The project PDL is shown in Figure 7.41.

Project Program

mikroC Pro for PIC

The program listing of the project is given in Figure 7.42 (MIKROC-RFID2.C). In this

project, it is assumed that the tag used in the previous project is used to open the lock.

The program is similar to the one given in Figure 7.36. Additionally, at the beginning of

the program, symbol RELAY is assigned to port RC0. Also, there is no need to read and

display the ID of the CR95HF chip.

The program selects the required protocol (ISO/IEC 14443-A), displays the message

READY on the LCD, and then enters an endless loop formed by a while statement. Inside

this loop, the RAQ request is sent with no display of the AQAT. The serial number of the

tag is read and compared with what was read in the earlier project (i.e. AD3D9107). If

this is the matching tag, then the relay is energized by setting RELAY¼ 1, message

“Opened” is sent to the LCD, and the program stays in this state for 5 s. After this time,

the relay is deenergized, and message “Ready.” is displayed on the LCD to inform the

user that the system is ready again.

Project 7.5dComplex SPI Bus Project

In Chapter 8, we have seen briefly how to use the SPI bus to generate various

waveforms using a DAC. In this project, we will look at the operation of the SPI bus

in greater detail as it is very important in the design of microcontroller-based systems.

We will also develop a project to measure the temperature using an SPI-based

temperature sensor. The ambient temperature will be measured and then displayed on

an LCD.

The Master Synchronous Serial Port Module

The Master Synchronous Serial Port (MSSP) module is a serial interface module on

PIC18F series of microcontrollers, used for communicating with other serial devices such

as EEPROMs, display drivers, A/D converters, D/A converters, and SD cards.

PIC18F45K22 microcontroller has two built-in MSSP modules.

The MSSP module can operate in one of two modes:

• SPI,

• Interintegrated Circuit (I2C).

Advanced PIC18 Projects 389

Main Program:

BEGIN
Define LCD to microcontroller connecƟons
Configure PORTA,B,C,E as digital
ConfigureRA2, RC6, RE1,RC0 as outputs
IniƟalize LCD
Configure CR95HF to operate in UART mode
CALL IniƟalize_CR95HF
IniƟalize UART to 57600 Baud
Display message “RFID LOCK” on LCD
CALL Select _Protocol to select protocol 14443-A
Display “READY” on LCD
DO FOREVER

CALL RAQ to send RAQ and receive AQTA
CALL UID to get tag serial number
IF the tag matches the serial number

Energize the relay
Display “Opened” on LCD
Wait for 5 seconds
De-energize the relay

ELSE
Display “Ready…” on LCD to try again

ENDIF
ENDDO

END

BEGIN/Ini alize_CR95HF
Send startup iniƟalizaƟon sequence to CR95HF chip

END/Ini alzie_CR95HF

BEGIN/Select_Protocol
Send command 0x02 to CR95hF to set ISO/IEC 14443-A protocol

END/Select_Protocol

BEGIN/RAQ
Send command 0x04 to CR95HF with RAQ parameters
CALL Get_Data to receive and display the data

END/RAQ

BEGIN/UID
Send command 0x04 to CR95HF to read the serial number
CALL Get_Data to receive and display the data

END/UID

BEGIN/Get_Data
Get the data length
Display the data on the LCD in hex format

END/Get_Data

Figure 7.41: Project PDL.

390 Chapter 7

/***
RFID LOCK
========

This project is about using an RFID receiver and a passive RFID tag to operate a relay to open a lock.

An 13.56 MHz CR95HF type RFID reader chip is used in the design, operated in accordance with the
standard ISO/IEC 14443 Type A. The communicaƟon between the chip and the microcontroller is
established using a standard UART interface. The CR95HF chip is clocked from a 27.12 MHz crystal.

A compaƟble passive RFID tag is used in the design. The UID of the tag is read and if it is an
acceptable tag then the relay is operated to open the lock. The relay operates for 5 s to
open the lock and then stops. The program then waits for other acƟvaƟons.

An LCD is used to display various messages about the operaƟon of the lock. The relay is connected
To RC0 pin of the microcontroller via a transistor switch. The lock is assumed to operate when the
Relay is energized.

An 8 MHz crystal is used for the PIC18F45K22 microcontroller in the project. The
PLL is enabled so that the effecƟve microcontroller clock rate is X4. i.e. 32 MHz.

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-RFID2.C
***/
// LCD module connecƟons
sbit LCD_RS at LATB4_bit;
sbit LCD_EN at LATB5_bit;
sbit LCD_D4 at LATB0_bit;
sbit LCD_D5 at LATB1_bit;
sbit LCD_D6 at LATB2_bit;
sbit LCD_D7 at LATB3_bit;

sbit LCD_RS_DirecƟon at TRISB4_bit;
sbit LCD_EN_DirecƟon at TRISB5_bit;
sbit LCD_D4_DirecƟon at TRISB0_bit;
sbit LCD_D5_DirecƟon at TRISB1_bit;
sbit LCD_D6_DirecƟon at TRISB2_bit;
sbit LCD_D7_DirecƟon at TRISB3_bit;
// End LCD module connecƟons

#define IRQ_IN LATC.RC6 // IRQ_IN is also the URT TX pin
#define SSI_0 LATA.RA2 // SSI_0 pin
#define SSI_1 LATE.RE1 // SSI_1 pin
#define RELAY LATC.RC0 // Relay

unsigned char Info[50];
unsigned char CMD, LEN, ErrorFlag, ID[30];
//
// This funcƟon iniƟalizes the chip aŌer power-up so that it is in Ready state
// See the CR95HF Data sheet for the delays

Figure 7.42: mikroC Pro for PIC Program.

Advanced PIC18 Projects 391

//
void Ini�alize_CR95HF()
{

Delay_Ms(10); // t4 delay �me
IRQ_IN = 1; // Set IRQ_IN = 1
Delay_us(100); // t0 delay �me
IRQ_IN = 0; // Lower IRQ_IN
delay_us(500); // t2 delay �me (typical 250)
IRQ_IN = 1; // IRQ_IN high
Delay_Ms(10); // t3 delay �me. The CR95HF is Ready now

}

//
// This func�on waits un�l the UART is ready and sends a byte to it
//
void WriteUart(unsigned char c)
{

while(Uart1_Tx_Idle() == 0);
Uart1_Write(c);

}

//
// This func�on waits un�l the UART is ready and reads a byte from it
//
unsigned char ReadUart()
{

unsigned char c;

while(Uart1_Data_Ready() == 0);
c = Uart1_Read();
return c;

}

//
// This func�on selects protocol 14443 Type A
//
void Select_Protocol_14443()
{

unsigned char c;

WriteUart(0x02); // Send Select Protocol command
WriteUart(0x02); // Send length
WriteUart(0x02); // Send protocol 14443 Type A
WriteUart(0x00);

//
// Get result code (must be 0x00)
//

c = ReadUart(); // Get result code
LEN = ReadUart(); // get length

Figure 7.42
cont’d

392 Chapter 7

if(c != 0x00) // If error, abort
{

Lcd_Out(1,1,"Protocol Error"); // Error. Reset the device
while(1);

}
else Lcd_Out(1,1,"Protocol Set ");
Delay_Ms(1000);

}

//
// This funcƟon reads the data length and then reads all the data and displays
// on the LCD in hexadecimal format
//
void Get_Data()
{

unsigned char i, Cnt, flag;
unsigned char Txt[3];

i = 0;
flag = 0;
Cnt = 0;

while(flag == 0) // Read data
{

if(Uart1_Data_Ready() == 1) // If UART has a character
{

Info[i] = Uart1_Read(); // Get the character
if(i == 0)
{
LEN = Info[0]; // Get the data length
Cnt = LEN + 1;

}
i++;
if(i == Cnt)flag = 1; // If no more data, exit the loop

}
}

ID[0] = 0x0;
for(i=1; i < Cnt; i++)
{

ByteToHex(Info[i], Txt); // Convert to hex
strcat(ID, Txt); // Append to ID

}
}

//
// This funcƟon sends RAQ to the card and receives ATAQ response. The response
// is displayed on the LCD
//

Figure 7.42
cont’d

Advanced PIC18 Projects 393

void RAQ()
{

unsigned char i, Cnt, flag, c;
unsigned char Txt[3];

WriteUart(0x04); // Send IDN command
WriteUart(0x02); // Send length
WriteUart(0x26); // Send length
WriteUart(0x07); // Send length

c = ReadUart(); // Read result code
ErrorFlag = 0; // Assume no error

if(c != 0x80) // If error
{
c = ReadUart(); // Read length
ErrorFlag = 1; // Set error flag
return;

}

Get_Data(); // Get data
}

//
// This funcƟon receives the UID of the card and displays on the LCD
//
void UID()
{

unsigned char i, Cnt, flag, c;
unsigned char Txt[3];

WriteUart(0x04); // Send IDN command
WriteUart(0x03); // Send length
WriteUart(0x93); // Send length
WriteUart(0x20);
WriteUart(0x08);

c = ReadUart(); // Get result code
if(c != 0x80)
{
ErrorFlag = 1; // error flag
c = ReadUart(); // Read length
return;

}

Get_Data(); // Get data and display it
}

void main()
{

Figure 7.42
cont’d

394 Chapter 7

ANSELA = 0; // Configure PORTA as digital
ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
ANSELE = 0; // Configure PORTE as digital
TRISA.RA2 = 0; // Configure RA2 as output
IRQ_IN = 1;
TRISC.RC6 = 0; // Configure RC6 as output
TRISE.RE1 = 0; // Configure RE1 as output
TRISC.RC0 = 0; // Configure RC0 as output
RELAY = 0; // Relay OFF to start with

Lcd_Init(); // IniƟalize LCD
Delay_ms(10);

SSI_0 = 0; // Configure CR95HF to use UART
SSI_1 = 0; // Configure CR95HF to se UART
IniƟalize_CR95HF(); // Ready mode aŌer power-up

UART1_Init(57600); // IniƟalize UART to 57600 Baud

Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,"RFID LOCK"); // Display heading on LCD
Delay_Ms(2000); // Wait 1 s for the display
Lcd_Cmd(_LCD_CLEAR);

//
// Select the proocol used (14443 Type A)
//

Select_Protocol_14443();
Delay_Ms(2000); // Wait 2 s
Lcd_Cmd(_LCD_CLEAR);
Lcd_Out(1,1,"READY"); // Display “READY” message

//
// This is the tag detecƟon and relay energizaƟon part of the program
//

while(1)
{

RAQ(); // Send RAQ and get ATAQ
UID(); // get serial number

if(ErrorFlag == 0) // If no errors in RAQ and UID
{

if(ID[0] == 'A' && ID[1] == 'D' && ID[2] == '3' && ID[3] == 'D' && // If tag matches ?
ID[4] == '9' && ID[5] == '1' && ID[6] == '0' && ID[7] == '7')

{
Lcd_Cmd(_LCD_CLEAR);
Lcd_Out(1,1,"Opened"); // Display “Opened” message
RELAY = 1; // Energize the relay
Delay_Ms(5000); // Wait for 5 s
RELAY = 0; // de-energize the relay

Figure 7.42
cont’d

Advanced PIC18 Projects 395

Both SPI and I2C are serial bus protocol standards. The SPI protocol was initially

developed and proposed by Motorola for use in microprocessor and microcontroller-based

interface applications. In a system that uses the SPI bus, one device acts as the master and

other devices act as slaves. The master initiates a communication and also provides clock

pulses to the slave devices.

The I2C is a two-wire bus and was initially developed by Philips for use in low-speed

microprocessor-based communication applications.

In this project, we shall be looking at the operation of the MSSP module in the SPI mode.

MSSP in the SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received

simultaneously. In the master mode, the device uses three signals, and in the slave mode, a

fourth signal is used. In this project, we shall be looking at how to use the MSSP module

in the master mode since in most microcontroller applications the microcontroller is the

master device.

In the master mode, the following pins of the PIC18F45K22 microcontroller are used for

SPI1 interface:

• Serial data out (SDO1) -Pin RC5

• Serial data in (SDI1) -Pin RC4

• Serial clock (SCK1) -Pin RC3

And for SPI2 interface:

• Serial data out (SDO2) -Pin RD4

• Serial data in (SDI2) -Pin RD1

• Serial clock (SCK2) -Pin RD0

Lcd_Cmd(_LCD_CLEAR); // Clear LCD
}

}
else
{

Lcd_Out(1,1,"Ready..."); // Error detected. Ready to try again
}
Delay_Ms(500); // Wait before re-try

}
}

Figure 7.42
cont’d

396 Chapter 7

Figure 7.43 shows the block diagram of the PIC18F45K22 microcontroller MSSP module

when operating in the SPI mode.

SPI Mode Registers

The MSSP module has three registers when operating in the SPI master mode, ‘x’ is 1 or

2 and corresponds to the SPI module used:

• MSSP control register (SSPxCON1),

• MSSP status register (SSPxSTAT),

• MSSP receive/transmit buffer register (SSPxBUF),

• MSSP shift register (SSPxSR, not directly accessible).

Figure 7.43: MSSP Module in the SPI Mode.

Advanced PIC18 Projects 397

SSPxSTAT

This is the status register with the lower 6 bits read only and the upper two bits read/

write. Figure 7.44 shows the bit definitions of this register. Only bits 0, 6, and 7 are

related to operation in the SPI mode. Bit 7 (SMP) allows the user to select the input

data sample time. When SMP¼ 0, input data are sampled at the middle of data output

time, and when SMP¼ 1, the sampling is done at the end. Bit 6 (CKE) allows the user

to select the transmit clock edge. When CKE¼ 0, transmit occurs on transition from

the idle to active clock state, and when CKE¼ 1, transmit occurs on transition from

the active to the idle clock state. Bit 0 (BF) is the buffer full status bit. When BF¼ 1,

receive is complete (i.e. SSPxBUF is full), and when BF¼ 0, receive is not complete

(i.e. SSPxBUF is empty).

SSPxCON1

This is the control register (Figure 7.45) used to enable the SPI mode and to set the clock

polarity and the clock frequency. In addition, the transmit collision detection (bit 7), and

receive overflow detection (bit 6) are indicated by this register.

Operation in the SPI Mode

Figure 7.46 shows a simplified block diagram with a master and a slave device

communicating over the SPI bus. In this diagram, SPI module 1 is used. The SDO1

output of the master device is connected to the SDI1 input of the slave device, and the

SDI1 input of the master device is connected to the SDO1 output of the slave device.

The clock SCK1 is derived by the master device. The data communication is as

follows:

SMP CKE D/A P S R/W UA BF
7 6 5 4 3 2 1 0

Bit 7 SMP: SPI Data Input Sample bit
1 = Input data sampled at the end of data output �me
0 = Input data sample at middle of data output �me

Bit 6 CKE: SPI Clock Edge Select bit
1 = Transmit occurs on transi�on from ac�ve to idle clock state
0 = Transmission occurs on transi�on from idle to ac�ve clock state

Bit 0 BF: Buffer Full Status bit
1 = Receive complete SSPxBUF is full
0 = Receive not complete SSPxBUF is empty

Figure 7.44: SSPxSTAT Register Bit Configuration. Only the Bits when Operating in the SPI
Master Mode are Described.

398 Chapter 7

WCOL SSPxOV SSPxEN CKP SSPxM
7 6 5 4 3 2 1 0

Bit 7 WCOL: Write Collision detect bit
1 = Collision detected
0 = No collision

Bit 6 SSPxOV: Receive Overflow Indicator bit
1 = Overflow occurred (can only occur in slave mode)
0 = No overflow

Bit 5 SSPxEN: Synchronous Serial Port Enable bit
1 = Enables serial port and configures SCKx,SDOx,SDIx as the source of port pins
0 = Disables serial port and configures these pins as I/O pins

Bit 4 CKP: Clock Polarity Select bit
1 = Idle state for clock is a high level
0 = Idle state for clock is a low level

Bit 3-0 SSPxM: Synchronous Serial Port Mode Select bits
0000 = SPI Master mode, clock = FOSC/4
0001 = SPI Master mode, clock = FOSC/16
0010 = SPI Master mode, clock = FOSC/64
0011 = SPI Master mode, clock = TMR2 output/2
0100 = SPI Master mode, clock = SCKx pin, SSx pin control enabled
0101 = SPI Master mode, clock = SCKx pin, SSx pin control disabled
1010 = SPI Master mode, clock = FOSC/4*(SSPxADD+1)

Figure 7.45: SSPxCON1 Register Bit Configuration. Only the Bits when Operating in the SPI
Master Mode are Described.

SSP1BUF SSP1BUF

SSP1SR SSP1SR
SCK1

SDO1SDI1 SDI1SDO1

Master Slave

Figure 7.46: A Master and a Slave Device on the SPI Bus.

Advanced PIC18 Projects 399

Sending Data to the Slave

To send data from the master to the slave, the master writes the data byte into its

SSP1BUF register. This byte is also written automatically into the SSP1SR register of the

master. As soon as a byte is written into the SSP1BUF register, eight clock pulses are sent

out from the master SCK1 pin and at the same time the data bits are sent out from the

master SSP1SR into the slave SSP1SR, that is, the contents of master and slave SSP1SR

registers are swapped. At the end of this data transmission, the SSP1IF flag (PIR1 register)

and the BF flag (SSP1STAT) will be set to show that the transmission is complete. Care

should be taken not to write a new byte into SSP1BUF before the current byte is shifted

out, otherwise an overflow error will occur (indicated by bit 7 of SSP1CON1).

Receiving Data From the Slave

To receive data from the slave device, the master has to write a “dummy” byte into its

SSP1BUF register to start the clock pulses to be sent out from the master. The received

data are then clocked into SS1PSR of the master, bit by bit. When the complete 8 bits are

received, the byte is transferred to the SSP1BUF register and flags SSP1IF and BF are set.

It is interesting to note that the received data are double buffered.

Configuration of MSSP for the SPI Master Mode

The following MSSP parameters for the master device must be set up before the SPI

communication can take place successfully (SPI module 1 is assumed):

• Set data clock rate,

• Set clock edge mode,

• Clear bit 5 of TRISC (i.e. SDO1¼ RC5 is output),

• Clear bit 3 of TRISC (i.e. SCK1¼ RC3 is output),

• Enable the SPI mode.

Note that the SDI1 pin (pin RC4) direction is automatically controlled by the SPI module.

Data Clock Rate

The clock is derived by the master, and the clock rate is user programmable to one of the

following values via the SSP1CON1 register bits 0e3:

• Fosc/4,

• Fosc/16,

• Fosc/64,

• Timer2 output/2.

400 Chapter 7

Clock Edge Mode

The clock edge is user programmable via register SSP1CON1 (bit 4) and the user can

either set the clock edge as idle high or idle low. In the idle high mode, the clock is high

when the device is not transmitting, and in the idle low mode the clock is low when the

device is not transmitting. Data can be transmitted either at the rising or the falling edge

of the clock. The CKE bit of SSP1STAT (bit 6) is used to select the clock edge.

Enabling the SPI Mode

Bit 5 of SSP1CON1 must be set to enable the SPI mode. To reconfigure the SPI parameters,

this bit must be cleared, SPI mode configured, and then the SSPEN bit set back to one.

An example is given below to demonstrate how to set the SPI parameters.

Example 7.1

It is required to operate the MSSP module 1 of a PIC18F45K22 microcontroller in the SPI
mode. The data should be shifted on the rising edge of the clock and the SCK1 signal must
be idle low. The required data rate is at least 1 Mbps. Assume that the microcontroller clock
rate is 16 MHz and that the input data are to be sampled at the middle of data output time.
What should be the settings of the MSSP registers?

Solution 7.1
Register SSP1CON1 should be set as follows

• Clear bits 6 and 7 of SSP1CON1 (i.e. no collision detect and no overflow);

• Clear bit 4 to 0 to select idle low for the clock;

• Set bits 0 through 3 to 0000 or 0001 to select the clock rate to Fosc/4 (i.e. 16/
4¼ 4 Mbps data rate), or Fosc/16 (i.e. 16/16¼ 1 Mbps);

• Set bit 5 to enable the SPI mode.

Thus, register SSP1CON1 should be set to the following bit pattern:

00 1 0 0000 i.e. 0x20

Register SSP1STAT should be set as follows:

• Clear bit 7 to sample the input data at the middle of data output time;

• Clear bit 6e0 to transmit data on the rising edge (low to high) of the SCK1 clock;

• Bits 5e0 are not used in the SPI mode.

Thus, register SSP1STAT should be set to the following bit pattern:

0 0 0 00000 i.e. 0x00

Figure 7.47 shows the block diagram of the project. The temperature sensor TC72 is used
in this project. The sensor is connected to the SPI bus pins of a PIC18F45K22 microcon-
troller. In addition, the microcontroller is connected to an LCD to display the
temperature.

Advanced PIC18 Projects 401

The specifications and operation of the TC72 temperature sensor are described below in
detail.

TC72 Temperature Sensor

The TC72 is an SPI bus compatible digital temperature sensor IC that is capable of

reading temperatures from �55 to þ125 �C.

The device has the following features

• SPI bus compatible,

• A 10-bit resolution with 0.25 �C/bit,
• A �2 �C accuracy from �40 to þ85 �C,
• A 2.65- to 5.5-V operating voltage,

• A 250-mA typical operating current,

• A 1-mA shutdown operating current,

• Continuous and one-shot operating modes.

The pin configuration of TC72 is shown in Figure 7.48. The device is connected to an

SPI bus via standard SPI bus pins SDI, SDO, and SCK. Pin CE is the chip-enable pin

and is used to select a particular device in multiple TC72 applications. CE must be logic

1 for the device to be enabled. The device is disabled (output in tristate mode) when CE

is logic 0.

LCDTC72

Temperature sensor

PIC18F45K2SPI

Figure 7.47: Block Diagram of the Project.

1

2

3

4 5

6

7

8NC

CE

SCK

GND SDO

SDI

NC

VDD

TC72

Figure 7.48: TC72 Pin Configuration.

402 Chapter 7

The TC72 can operate either in the one-shot mode or in the continuous mode. In the one-

shot mode, the temperature is read after a request is sent to read the temperature. In the

continuous mode, the device measures the temperature approximately every 150 ms.

Temperature data are represented in 10-bit two’s complement format with a resolution of

0.25 �C/bit. The converted data are available in two 8-bit registers. The most significant bit

(MSB) register stores the decimal part of the temperature, whereas the least significant bit

(LSB) register stores the fractional part. Only bits 6 and 7 of this register are used. The

format of these registers is shown below:

MSB S 26 25 24 23 22 21 20

LSB 2�1 2�2 0 0 0 0 0 0

Where S is the sign bit. An example is given below.

Example 7.2

The MSB and LSB settings of a TC72 are as follows:

MSB: 00101011
LSB: 10000000

Find the temperature read.

Solution 7.2
The temperature is found to be

MSB ¼ 25þ 23þ 21þ 20¼ 43,
LSB ¼ 2�1¼ 0.5

Thus, the temperature is 43.5 �C.

Table 7.2 shows sample temperature output data of the TC72 sensor.

Table 7.2: TC72 Temperature Output Data.

Temperature (�C) Binary (MSB/LSB) Hex

þ125 0111 1101/0000 0000 7D00
þ74.5 0100 1010/1000 0000 4A80
þ25 0001 1001/0000 0000 1900
þ1.5 0000 0001/1000 0000 0180
þ0.5 0000 0000/1000 0000 0080
þ0.25 0000 0000/0100 0000 0040

0 0000 0000/0000 0000 0000
�0.25 1111 1111/1100 0000 FFC0
�0.5 1111 1111/1000 0000 FF80

�13.25 1111 0010/1100 0000 F2C0
�25 1110 0111/0000 0000 E700
�55 1100 1001/0000 0000 C900

Advanced PIC18 Projects 403

TC72 Read/Write Operations

The SDI input writes data into TC72’s control register, while SDO outputs the temperature

data from the device. The TC72 can operate using either the rising or the falling edge of

the clock (SCK). The clock idle state is detected when the CE signal goes high. As shown

in Figure 7.49, the clock polarity (CP) determines whether data are transmitted on the

rising or the falling clock edge.

The maximum clock frequency (SCK) of TC72 is specified as 7.5 MHz. Data transfer

consists of an address byte, followed by one or more data bytes. The most significant bit

(A7) of the address byte determines whether a read or a write operation will occur. If

A7¼ 0, one or more read cycles will occur; otherwise, if A7¼ 1, one or more write cycles

will occur. The multibyte read operation will start by writing to the highest desired register

and then reading from high to low addresses. For example, the temperature high byte

address can be sent with A7¼ 0 and then the result high byte, low byte, and the control

register can be read as long as the CE pin is held active (CE¼ 1).

The procedure to read temperature from the device is as follows (assuming SPI module 1

is used):

• Configure the microcontroller SPI bus for the required clock rate and clock edge.

• Enable TC72 by setting CE¼ 1.

• Send temperature result high byte read address (0x02) to the TC72 (Table 7.3).

CE

SCK

CP = 0 CP = 1

Data shift on rising edge Data shift on falling edge

Figure 7.49: Serial Clock Polarity.

Table 7.3: TC72 Internal Registers.

Register Read Address Write Address Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Control 0x00 0x80 0 0 0 OS 0 1 0 SHDN
LSB temperature 0x01 N/A T1 T0 0 0 0 0 0 0
MSB temperature 0x02 N/A T9 T8 T7 T6 T5 T4 T3 T2
Manufacturer ID 0x03 N/A 0 1 0 1 0 1 0 0

404 Chapter 7

• Write a “dummy” byte into the SSP1BUF register to start eight pulses to be sent out

from the SCK1 pin and then read the temperature result high byte.

• Write a “dummy” byte into the SSP1BUF register to start eight pulses to be sent out

from the SCK1 pin and then read the temperature low byte.

• Set CE¼ 0 to disable the TC72 so that a new data transfer can begin.

Internal Registers of the TC72

As shown in Table 7.3, the TC72 has four internal registers: Control register, LSB

temperature register, MSB temperature register, and the Manufacturer ID register.

Control Register

This is a read and write register used to select the mode of operation as shutdown,

continuous, or one-shot. The address of this register is 0x00 when reading, and 0x80 when

writing to the device. Table 7.4 shows how different modes are selected. At power-up, the

shutdown bit (SHDN) is set to 1 so that the device is in the shutdown mode at startup and

the device is used in this mode to minimize the power consumption.

A temperature conversion is initiated by a write operation to the Control register to select

either the continuous mode or the one-shot mode. The temperature data will be available

in the MSB and LSB registers after about 150 ms of the write operation. The one-shot

mode performs a single temperature measurement after which time the device returns to

the shutdown mode. In the continuous mode, new temperature data are available at 159-ms

intervals.

LSB and MSB Registers

These are read-only registers that contain the 10-bit measured temperature data. The

address of the MSB register is 0x02, and LSB register is 0x01.

Manufacturer ID

This is a read-only register with address 0x03. This register identifies the device as a

temperature sensor, returning 0x054.

Table 7.4: Selecting the Mode of Operation.

Operating Mode One Shot (OS) Shutdown (SHDN)

Continuous X 0
Shutdown 0 1
One-shot 1 1

Advanced PIC18 Projects 405

Project Hardware

The circuit diagram of the project is shown in Figure 7.50. The TC72 temperature

sensor is connected to the SPI bus pins of a PIC18F45K22 microcontroller, which is

operated from a 4-MHz crystal. The CE pin of the TC72 is controlled from pin

RC0 of the microcontroller. An LCD is connected to PORTB of the microcontroller

as follows:

Microcontroller LCD
RB0 D4
RB1 D5
RB2 D6
RB3 D7
RB4 E
RB5 R/S
RB6 RW

The connection between the TC72 and the microcontroller are as follows:

Microcontroller TC72
RC0 CE
RC3 SCK
RC4 SDO
RC5 SDI

Figure 7.50: Circuit Diagram of the Project.

406 Chapter 7

The microcontroller sends control commands to the TC72 sensor to initiate temperature

conversions every second. The temperature data are then read and displayed on the LCD.

The Program

MPLAB XC8

The MPLAB XC8 program listing of the project is shown in Figure 7.51 (XC8-SPI.C).

The program reads the temperature from the TC72 sensor and displays on the LCD every

second. In this version of the program, only the positive temperatures and only the integer

part are displayed.

The program consists of a number of functions. Some functions used in the program are

Init_LCD: This function initializes the LCD to 4-bit operation with 5� 7 characters. The

function also calls LCD_Clear to clear the LCD screen.

Init_SPI: This function initializes the microcontroller SPI bus to:

Clock rate: Fosc/4 (i.e. 1 MHz)

Clock Idle Low, Shift ta on clock falling edge

Input data sample at end of data out

Send_To_TC72: This function loads a byte to SPI register SSP1BUF and then waits until

the data are shifted out.

Read_Temperature: This function communicates with the TC72 sensor to read the

temperature. The following operations are performed by this function:

1. Enable TC72 (CE¼ 1, for single byte write),

2. Send Address 0x80 (A7¼ 1),

3. Clear BF flag,

4. Send One-Shot command (Control¼ 0001 0001),

5. Disable TC72 (CE¼ 0, end of single byte write),

6. Clear BF flag,

7. Wait at least 150 ms for the temperature to be available,

8. Enable TC72 (CE¼ 1, for multiple data transfer),

9. Send Read MSB command (Read address¼ 0x02),

10. Clear BF flag,

11. Send dummy output to start clock and read data (Send 0x00),

12. Read high temperature into variable MSB,

13. Send dummy output to start clock and read data (Send 0x00),

14. Read low temperature into variable LSB,

15. Disable TC72 data transfer (CE¼ 0),

16. Copy high result into variable “result”.

Advanced PIC18 Projects 407

/***
SPI BUS BASED DIGITAL THERMOMETER
=================================

In this project a TC72 type SPI bus based temperature sensor IC is used. The IC is
connected to the SPI bus pins of a PIC18F45K22 type microcontroller (i.e. to pins
RC3=SCK, RC4=SDI, and RC5=SDO) and the microcontroller is operated from an
8 MHz crystal.

In addiƟon PORT B pins of the microcontroller are connected to a standard LCD.

The microcontroller reads the temperature every second and displays on the LCD as a
posiƟve number (fracƟonal part of the temperature, or negaƟve temperatures are not
displayed in this version of the program).

An example display is:

23

Author: Dogan Ibrahim
Date: October 2013
File: XC8-SPI.C
***/
#include <xc.h>
#include <string.h>
#include <plib/usart.h>
#include <plib/xlcd.h>
#include <plib/spi.h>
#include <stdlib.h>

#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define CE PORTCbits.RC0
#define Ready SSPSTATbits.BF

unsigned char LSB, MSB;
int result;

//
// This funcƟon creates seconds delay. The argument specifies the delay Ɵme in seconds
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

Figure 7.51: MPLAB XC8 Program.

408 Chapter 7

//
// This funcƟon creates milliseconds delay. The argument specifies the delay Ɵme in ms
//
void Delay_Ms(unsigned int ms)
{

unsigned int i;

for(i = 0; i < ms; i++)__delay_ms(1);
}

//
// This funcƟon creates 18 cycles delay for the xlcd library
//
void DelayFor18TCY(void)
{
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;
}

//
// This funcƟon creates 15 ms delay for the xlcd library
//
void DelayPORXLCD(void)
{

__delay_ms(15);
return;

}

//
// This funcƟon creates 5 ms delay for the xlcd library
//
void DelayXLCD(void)
{

__delay_ms(5);
return;

}

//
// This funcƟon clears the screen
//
void LCD_Clear()
{

while(BusyXLCD());
WriteCmdXLCD(0x01);

Figure 7.51
cont’d

Advanced PIC18 Projects 409

}

//
// IniƟalize the LCD, clear and home the cursor
//
void Init_LCD(void)
{

OpenXLCD(FOUR_BIT & LINE_5X7); // 8 bit, 5x7 character
LCD_Clear(); // Clear LCD

}

//
// IniƟalize the SPI bus
//
void Init_SPI(void)
{

OpenSPI(SPI_FOSC_4, MODE_01, SMPEND); // SPI clk = 2MHz
}

//
// This funcƟon sends a control byte to the TC72 and waits unƟl the
// transfer is complete
//
void Send_To_TC72(unsigned char cmd)
{

SSPBUF = cmd; // Send control to TC72
while(!Ready); // Wait unƟl data is shiŌed out

}

//
// This funcƟon reads the temperature from the TC72 sensor
//
// Temperature data is read as follows:
//
// 1. Enable TC72 (CE=1, for single byte write)
// 2. Send Address 0x80 (A7=1)
// 3. Clear BF flag
// 4. Send One-Shot command (Control = 0001 0001)
// 5. Disable TC72 (CE=0, end of single byte write)
// 6. Clear BF flag
// 7. Wait at leat 150ms for temperature to be available
// 8. Enable TC72 (CE=1, for mulƟple data transfer)
// 9. Send Read MSB command (Read address=0x02)
// 10. Clear BF flag
// 11. Send dummy output to start cloak and read data (Send 0x00)
// 12. Read high temperature into variable MSB

Figure 7.51
cont’d

410 Chapter 7

// 13. Send dummy output to start clock and read data (Send 0x00)
// 14. Read low temperature into variable LSB
// 15. Disable TC72 data transfer (CE=0)
// 16. Copy high result into variable "result"
void Read_Temperature(void)
{

char dummy;

CE = 1; // Enable TC72
Send_To_TC72(0x80); // Send control write with A7=1
dummy = SSPBUF; // Clear BF flag
Send_To_TC72(0x11); // Set for one-shot operaƟon
CE = 0; // Disable TC72
dummy = SSPBUF; // Clear BF flag
Delay_Ms(200); // Wait 200 ms for conversion
CE =1; // Enable TC72
Send_To_TC72(0x02); // Read MSB temperature address
dummy = SSPBUF; // Clear BF flag
Send_To_TC72(0x00); // Read temperature high byte
MSB = SSPBUF; // save temperature and clear BF
Send_To_TC72(0x00); // Read temperature low byte
LSB = SSPBUF; // Save temperature and clear BF
CE = 0; // Disable TC72
result = MSB;

}

//
// This funcƟon formats the temperature for displaying on the LCD.
// We have to convert to a string to display on the LCD.
//
// Only the posiƟve MSB is displayed in this version of the program
//
void Format_Temperature(char *tmp)
{

itoa(tmp,result,10); // Convert integer to ASCII
}

//
// This funcƟon clears the LCD, homes the cursor and then displays the
// temperature on the LCD
//
void Display_Temperature(char *d)
{

LCD_Clear(); // Clear LCD and home cursor
putsXLCD(d);

}

Figure 7.51
cont’d

Advanced PIC18 Projects 411

Format_Temperature: This function converts the integer temperature into an ASCII string

so that it can be displayed on the LCD.

Display_Temperature: This function calls to LCD_Clear to clear the LCD screen and

home the cursor. The temperature is then displayed calling function putsXLCD.

Main Program: At the beginning of the main program, the port directions are configured,

the LCD is initializes, the message “Temperature.” is sent to the LCD, and the

void main(void)
{

char msg[] = "Temperature...";
char tmp[3];

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital

TRISCbits.RC0 = 0; // Configure RC0 (CE) as output
TRISB = 0; // Configure PORT B as outputs

Delay_Seconds(1);
//
// IniƟalize the LCD
//

Init_LCD();
while(BusyXLCD()); // Wait if the LCD is busy
WriteCmdXLCD(DON); // Turn Display ON
while(BusyXLCD()); // Wait if the LCD is busy
WriteCmdXLCD(0x06); // Move cursor right
LCD_Clear(); // Clear LCD

//
// Display a message on the LCD
//

putsXLCD(msg);
Delay_Seconds(2);
LCD_Clear();
Init_SPI(); // IniƟalize the SPI bus

//
// Endless loop. Inside this loop read the TC72 temperature, display on the LCD,
// wait for 1 s and repeat the process
//

for(;;) // Endless loop
{

Read_Temperature(); // Read the TC72 temperature
Format_Temperature(tmp); // Format the data for display
Display_Temperature(tmp); // Display the temperature
Delay_Seconds(1); // Wait 1 s

}
}

Figure 7.51
cont’d

412 Chapter 7

microcontroller SPI bus is initialized. The program then enters an endless loop where the

following functions are called inside this loop:

Read_Temperature();
Format_Temperature(tmp);
Display_Temperature(tmp);
One_Second_Delay();

Displaying Negative Temperatures

The program given in Figure 7.51 displays only the positive temperatures. Negative

temperatures are stored in TC72 in two’s complement format. If bit 8 of the MSB byte is

set, the temperature is negative and two’s complement should be taken to find the correct

temperature. For example, if the MSB and LSB bytes are “1110 0111/1000 0000”, the

correct temperature is

1110 0111/1000 0000/ the complement is 0001 1000/0111 1111

adding “1” to find the two’s complement gives: 0001 1000/1000 0000,

that is, the temperature is “�24.5 �C”.

Similarly, if the MSB and LSB bytes are “1110 0111/0000 0000”, the correct

temperature is

1110 0111/0000 0000/ the complement is 0001 1000/1111 1111

adding “1” to find the two’s complement gives: 0001 1001/0000 0000,

that is, the temperature is “�25 �C”.

In the modified program, both negative and positive temperatures are displayed where the

sign “�“ is inserted in-front of negative temperatures. The temperature is displayed in

integer format with no fractional part in this version of the program. The

Format_Temperature function is modified such that if the temperature is negative the two’s

complement is taken, the sign bit is inserted, and then the value is shifted right by 8 digits

and converted into an ASCII string for the display.

The new Format_Temperature function is shown below:

//
// Positive and negative temperatures are displayed in this version of the program
//
void Format_Temperature(char �tmp)
{

if(result & 0x8000) // If negative

Advanced PIC18 Projects 413

{
result = wresult; // Take complement
result++; // Take 2’s complement
result >>= 8; // Get integer part
�tmp++ = ’-’; // Insert "-" sign

}
else
{

result >>= 8; // Get integer part
}
itoa(tmp,result,10); // Convert integer to ASCII

}

Displaying the Fractional Part

The program in Figure 7.51 does not display the fractional part of the temperature. The

program can be modified to display the fractional part as well. In the new function, the

LSB byte of the converted data is taken into consideration and the fractional part is

displayed as “.00”, “.25”, “.50”, or “.75”. The two most significant bits of the LSB byte

are shifted right by 6 bits. The fractional part then takes one of the following values:

Two Shifted LSB Bits Fractional Part
00 .00
01 .25
10 .50
11 .75

Figure 7.52 shows the modified program (XC8-SPI2.C).

Project 7.6dReal-Time Clock Using an RTC Chip

In this project, we will design a clock using a real-time clock (RTC) chip. We will be

using three push-button switches to set the clock initially: Mode, Up, and Down. Mode

button will select the date and time field, Up and Down buttons will increment and

decrement the selected field, respectively.

There are several RTC chips available. The one that we will be using in this project is the

PCF8583 eight-pin DIL chip. The specifications of this chip are as follows:

• Clock, alarm, and timer functions;

• I2C bus interface;

• A þ2.5- to þ6-V operation;

• A 32.768-kHz time base (requires an external 32.768-kHz crystal);

• Programmable alarm, timer, and interrupt functions;

• A 240� 8 random access memory (RAM).

414 Chapter 7

/***
SPI BUS BASED DIGITAL THERMOMETER
=================================

In this project a TC72 type SPI bus based temperature sensor IC is used. The IC is
connected to the SPI bus pins of a PIC18F45K22 type microcontroller (i.e. to pins
RC3=SCK, RC4=SDI, and RC5=SDO) and the microcontroller is operated from an
8 MHz crystal.

In addiƟon PORT B pins of the microcontroller are connected to a standard LCD.

The microcontroller reads the temperature every second and displays on the LCD

This version of the program displays the sign as well as the fracƟonal part of the
temperature. An example display is:

-23.75

Author: Dogan Ibrahim
Date: October 2013
File: XC8-SPI2.C
***/
#include <xc.h>
#include <string.h>
#include <plib/usart.h>
#include <plib/xlcd.h>
#include <plib/spi.h>
#include <stdlib.h>

#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define CE PORTCbits.RC0
#define Ready SSPSTATbits.BF

unsigned char LSB, MSB;
int result,int_part,fract_part;

//
// This funcƟon creates seconds delay. The argument specifies the delay Ɵme in seconds
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

Figure 7.52: Modified MPLAB XC8 Program to Display Fractional Part as Well.

Advanced PIC18 Projects 415

//
// This funcƟon creates milliseconds delay. The argument specifies the delay Ɵme in ms
//
void Delay_Ms(unsigned int ms)
{

unsigned int i;

for(i = 0; i < ms; i++)__delay_ms(1);
}

//
// This funcƟon creates 18 cycles delay for the xlcd library
//
void DelayFor18TCY(void)
{
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop(); Nop(); Nop();
Nop(); Nop();
return;
}

//
// This funcƟon creates 15 ms delay for the xlcd library
//
void DelayPORXLCD(void)
{

__delay_ms(15);
return;

}

//
// This funcƟon creates 5 ms delay for the xlcd library
//
void DelayXLCD(void)
{

__delay_ms(5);
return;

}

//
// This funcƟon clears the screen
//
void LCD_Clear()
{

while(BusyXLCD());
WriteCmdXLCD(0x01);

}

Figure 7.52
cont’d

416 Chapter 7

//
// IniƟalize the LCD, clear and home the cursor
//
void Init_LCD(void)
{

OpenXLCD(FOUR_BIT & LINE_5X7); // 8 bit, 5x7 character
LCD_Clear(); // Clear LCD

}

//
// IniƟalize the SPI bus
//
void Init_SPI(void)
{

OpenSPI(SPI_FOSC_4, MODE_01, SMPEND); // SPI clk = 2MHz
}

//
// This funcƟon sends a control byte to the TC72 and waits unƟl the
// transfer is complete
//
void Send_To_TC72(unsigned char cmd)
{

SSPBUF = cmd; // Send control to TC72
while(!Ready); // Wait unƟl data is shiŌed out

}

//
// This funcƟon reads the temperature from the TC72 sensor
//
// Temperature data is read as follows:
//
// 1. Enable TC72 (CE=1, for single byte write)
// 2. Send Address 0x80 (A7=1)
// 3. Clear BF flag
// 4. Send One-Shot command (Control = 0001 0001)
// 5. Disable TC72 (CE=0, end of single byte write)
// 6. Clear BF flag
// 7. Wait at leat 150ms for temperature to be available
// 8. Enable TC72 (CE=1, for mulƟple data transfer)
// 9. Send Read MSB command (Read address=0x02)
// 10. Clear BF flag
// 11. Send dummy output to start cloak and read data (Send 0x00)
// 12. Read high temperature into variable MSB
// 13. Send dummy output to start clock and read data (Send 0x00)

Figure 7.52
cont’d

Advanced PIC18 Projects 417

// 14. Read low temperature into variable LSB
// 15. Disable TC72 data transfer (CE=0)
// 16. Copy high result into variable "result"
void Read_Temperature(void)
{

char dummy;

CE = 1; // Enable TC72
Send_To_TC72(0x80); // Send control write with A7=1
dummy = SSPBUF; // Clear BF flag
Send_To_TC72(0x11); // Set for one-shot operaƟon
CE = 0; // Disable TC72
dummy = SSPBUF; // Clear BF flag
Delay_Ms(200); // Wait 200 ms for conversion
CE =1; // Enable TC72
Send_To_TC72(0x02); // Read MSB temperature address
dummy = SSPBUF; // Clear BF flag
Send_To_TC72(0x00); // Read temperature high byte
MSB = SSPBUF; // save temperature and clear BF
Send_To_TC72(0x00); // Read temperature low byte
LSB = SSPBUF; // Save temperature and clear BF
CE = 0; // Disable TC72
result = MSB*256+LSB; // The complete temperature

}

//
// PosiƟve and negaƟve temperatures are displayed as well as the fracƟonal part
//
void Format_Temperature(char *tmp)
{

if(result & 0x8000) // If negaƟve
{

result = ~result; // Take complement
result++; // Take 2's complement
int_part = result >> 8; // Get integer part
*tmp++ = '-'; // Insert "-" sign

}
else
{

int_part = result >> 8; // Get integer part
}

itoa(tmp,result,10); // Convert integer to ASCII
//
// Now find the fracƟonal part. First we must find the end of the string "tmp"
// and then append the fracƟonal part to it
//

while(*tmp != '\0')tmp++; // find end of string "tmp"
//

Figure 7.52
cont’d

418 Chapter 7

// Now add the fracƟonal part as ".00", ".25", ".50", or ".75"
//

fract_part = result &0x00C0; // fracƟonal part
fract_part = fract_part >> 6; // fract is between 0-3
switch(fract_part)
{

case 1: // FracƟonal part = 0.25
*tmp++ = '.'; // decimal point
*tmp++ = '2'; // "2"
*tmp++ = '5'; // "5"
break;

case 2: // FracƟonal part = 0.50
*tmp++ = '.'; // decimal point
*tmp++ = '5'; // "5"
*tmp++ = '0'; // "0"

break;
case 3: // FracƟonal part = 0.75

*tmp++ = '.'; // decimal point
*tmp++ = '7'; // "7"
*tmp++ = '5'; // "5"
break;

case 0: // FracƟonal part = 0.00
*tmp++ = '.'; // decimal point
*tmp++ = '0'; // "0"
*tmp++ = '0'; // "0"
break;

}
*tmp++ = '\0'; // Null terminator

}

//
// This funcƟon clears the LCD and then displays the temperature on the LCD
//
void Display_Temperature(char *d)
{

LCD_Clear(); // Clear LCD and home cursor
putsXLCD(d);

}

void main(void)
{

char msg[] = "Temperature...";
char tmp[8];

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital

TRISCbits.RC0 = 0; // Configure RC0 (CE) as output

Figure 7.52
cont’d

Advanced PIC18 Projects 419

The PCF8583 operates as a slave I2C device with devices addresses 0xA1 or 0xA3 for

reading, and 0xA0 or 0xA2 for writing.

Figure 7.53 shows the block diagram of the project.

Before going into the details of the design, it is worthwhile to review the basic principles

of the I2C bus communications protocol. I2C is a bidirectional two-line communication

between a master and one or more slave devices. The two lines are named SDA (serial

data) and SCL (serial clock). Both lines must be pulled up to the supply voltage using

suitable resistors. Figure 7.54 shows a typical system configuration with one master and

three slaves communicating over the I2C bus.

Most high-level language compilers provide libraries for I2C communication. We can also

easily develop our own I2C library. Although the available libraries can easily be used, it

is worthwhile to look at the basic operating principles of the bus.

TRISB = 0; // Configure PORT B as outputs

Delay_Seconds(1);
//
// IniƟalize the LCD
//

Init_LCD();
while(BusyXLCD()); // Wait if the LCD is busy
WriteCmdXLCD(DON); // Turn Display ON
while(BusyXLCD()); // Wait if the LCD is busy
WriteCmdXLCD(0x06); // Move cursor right
LCD_Clear(); // Clear LCD

//
// Display a message on the LCD
//

putsXLCD(msg);
Delay_Seconds(2);
LCD_Clear();
Init_SPI(); // IniƟalize the SPI bus

//
// Endless loop. Inside this loop read the TC72 temperature, display on the LCD,
// wait for 1 s and repeat the pro cess
//

for(;;) // Endless loop
{

Read_Temperature(); // Read the TC72 temperature
Format_Temperature(tmp); // Format the data for display
Display_Temperature(tmp); // Display the temperature
Delay_Seconds(1); // Wait 1 s

}
}

Figure 7.52
cont’d

420 Chapter 7

The I2C bus must not be busy before data can be sent over the bus. Data are sent serially, and

synchronized with the clock. Both SDA and SCL lines are HIGH when the bus is not busy.

The START bit is identified by the HIGH-to-LOW transition of the SDA line while the SCL is

HIGH. Similarly, a LOW-to-HIGH transition of the SDA line while the SCL is HIGH is

identified as the STOP bit. Figure 7.55 shows both the START and STOP bit conditions.

One bit of data is transferred during each clock pulse. Data on the bus must be stable

when SCL is HIGH; otherwise, the data will be interpreted as a control signal. Data can

change when the SCL line is LOW. Figure 7.56 shows how bit transfer takes place on

the bus.

Figure 7.53: Block Diagram of the Project.

Figure 7.54: I2C System Configuration.

Figure 7.55: Start and STOP Bit Conditions.

Advanced PIC18 Projects 421

Each byte of 8 bits on the bus is followed by an acknowledgment cycle. The

acknowledgement cycle has the following requirements:

• An addressed slave device must generate an acknowledgement after the reception of

each byte from the master.

• A master receiver must acknowledge after the reception of each data byte from the

slave (except the last byte).

• The acknowledge signal is identified by a device by lowering the SDA line during the

acknowledge clock HIGH pulse.

• A master receiver must signal the end of data to the transmitter by not lowering the

SDA line during the acknowledge clock HIGH pulse. In this case, the transmitter leaves

the SCL line HIGH so that the master can generate the STOP bit.

The communication over the I2C bus is based on addressing where each device has a

unique 8-bit address, usually setup by hardware configuration. Before sending any data,

the address of the device that is expected to respond is sent after the START bit.

During the PCF8583 write cycle, the following events occur:

• Master sends START bit.

• Master sends the slave address. Bit 0 of the address is 0 for a write operation.

• Slave sends an acknowledgement bit.

• Master sends the register address to specify the slave register to be accessed.

• Slave sends an acknowledgement bit.

• Slave sends the required data.

• Slave sends an acknowledgement bit.

• Master sends a STOP bit.

During the PCF8583 read cycle, the following events occur (8-bit address mode):

• Master sends START bit.

• Master sends the slave address. Bit 0 of the address is 1 for a read operation.

• Slave sends an acknowledgement bit.

Figure 7.56: Bit Transfer on the Bus.

422 Chapter 7

• Slave sends data.

• Master sends acknowledgement bit.

• Slave sends the last byte.

• Master does not send the acknowledgement bit.

• Master sends the STOP bit.

In some read applications, as in the RTC clock project, it is sometimes necessary to send a

16-bit address to the slave device in the form of the actual device address, followed by the

address of the register to be accessed. In such applications, the PCF8583 read cycle is as

follows:

• Master sends START bit.

• Master sends the slave address in the write mode. Bit 0 of the address is 0 for a write

operation.

• Slave sends an acknowledgement bit.

• Master sends the register address.

• Slave sends the acknowledgement bit.

• Master sends repeated START bit.

• Master sends the slave address in the read mode. Bit 0 of the address is 1 for a read

operation.

• Slave sends the acknowledgement bit.

• Slave sends data.

• Master sends the acknowledgement bit.

• Slave sends the last byte.

• Master does not send the acknowledgement bit.

• Master sends the STOP bit.

When in the clock mode, the operation of the PCF8583 RTC chip is configured with seven

registers. Figure 7.57 shows all the registers of the chip. The remaining registers are used

to configure the timer and alarm functions as we shall see in the next project.

The first register is the control/status register. This register by default is loaded by 0x00

after reset. The important bit here as far as the clock operation is concerned is bit 7. This

bit stops and restarts the internal clock counter. The normal state of this bit is 0, but it

must be set to 1 to stop the counter during loading the current date and time information

to the chip.

The date and time information is stored in the BCD format, the upper nibble

holding the 10 s and the lower nibble holding the 1 s. For example, number 25 is

stored in binary pattern as “0010 0101”. The data should be converted into the

correct format before being displayed on the LCD or before new data are loaded

into the registers.

Advanced PIC18 Projects 423

It is important to know the format of the registers during programming. Figures 7.58e7.60

give the format of the hour register, yearedate register, and the weekdayemonth register,

respectively. Note that the format of the yeareday register is different from the others. The

year is stored in 2 bits, having values 0e3. Thus, for example, to display year 2013, we

have to provide the first three digits (201x) and read the last digit from the clock chip.

Bit7 Bit 4 Bit 3 Bit 0
0 Control/status

Hundreths of a second 1 1/10 s 1/100 s
Seconds 2 10 s 1 s
Minutes 3 10 min 1 min
Hours 4 10 h 1 h
Year/day 5 10 day 1 day
Weekday/month 6 10 month 1 month
Timer 7 10 day 1 day
Alarm control 8 Alarm control
Hundreths of a second 9 1/10 s 1/100 s
Alarm seconds 10 10 s 1 s
Alarm minutes 11 10 min 1 min
Alarm hours 12 10 h 1 h
Alarm date 13 10 day 1 day
Alarm month 14 10 month 1 month
Alarm Ɵmer 15
Free RAM 16 RAM (240 Bytes)

Figure 7.57: PCF8583 Registers.

7 6 5 4 3 2 1 0

0: 24 h format
1: 1–12 h format

0: AM
1: PM

10 s 1 s

Figure 7.58: Hours Register.

7 6 5 4 3 2 1 0

Year (0–3) 10 s 1 s

Figure 7.59: YeareDate Register.

7 6 5 4 3 2 1 0

Weekdays
(0–6)

10 s
1 s

Figure 7.60: WeekdayeMonth Register.

424 Chapter 7

Project Hardware

Figure 7.61 shows the pin layout of the PCF8583 chip. The pin descriptions are as

follows:

OSC1 oscillator or event pulse input
OSC0 oscillator input/output
A0 address input
VSS,VDD power lines
SDA data pin
SCL clock pin
INT interrupt output pin (active LOW, open drain)

If pin A0 is connected LOW the device responds to addresses 0xA0 and 0xA1 for writing

and reading, respectively; otherwise, it responds to 0xA2 and 0xA3 for writing and

reading, respectively.

The circuit diagram of the project is shown in Figure 7.62. The SDA and SCL pins of the

PCF8583 are connected to microcontroller pins SDA1 (RC4) and SCL1 (RC3),

respectively. Pin A0 is connected to the ground to select slave addresses 0xA0 and 0xA1.

An LCD is connected to PORTB to display the clock. Three push-button switches

connected to PORTD pins are used to set the initial date and time:

MODE (RD0) this button is used to select the date or time field that will be set
UP (RD1) this button increments the selected field
DOWN (RD2) this button decrements the selected field

A 32.768-kHz crystal is used to provide timing pulses to the chip. A button shaped 3-V

lithium battery (CR2032) is used to power the RTC chip so that it keeps the time even

after the microcontroller power is turned off.

If you are using the mikroElektronika RTC board with the EasyPIC V7 development

board, set the following jumpers on the RTC board and plug-in the board to PORTC:

Set switch 3 ON (Connect SDA line)

Set switch 4 ON (Connect SCL line)

Figure 7.61: PCF8583 Pin Layout.

Advanced PIC18 Projects 425

In addition, set the following jumper on the EasyPIC V7 development board so that when

a button is pressed the button state goes from logic HIGH to logic LOW:

Set J17 to GND

PORTD RD0 switch to pull-up

PORTD RD1 switch to pull-up

PORTD RD2 switch to pull-up

Figure 7.63 shows the mikroElektronika RTC board.

Figure 7.62: Circuit Diagram of the Project.

Figure 7.63: mikroElektronika RTC Board.

426 Chapter 7

Project PDL

The project PDL is shown in Figure 7.64.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC compiler I2C library supports the following functions

(‘x’ refers to the I2C module used in microcontrollers with more than one module):

I2Cx_Init Initialize the I2C library. The I2C clock rate must be entered as an argument
I2Cx_Start Sends START bit on the bus
I2C_Repeated_Start Sends repeated START bits
I2C_Is_Idle Returns 1 if the bus is free, otherwise returns 0
I2Cx_Rd Reads one byte from the slave. If the argument is 1 an acknowledgement is

sent, otherwise acknowledgement is not sent.
I2Cx_Wr Sends a byte to the slave device. Returns 0 if there are no errors
I2Cx_Stop Sends STOP bit on the bus

The mikroC Pro for PIC program is given in Figure 7.65 (MIKROC-I2C.C). Before

looking at the software in detail let us assume that we wish to set the date and time to 10-

09-2013 08:10:15. The steps are given below:

• Reset the microcontroller while pressing the MODE button.

• The LCD should display:

DAY:
31

• Keep pressing the UP button until 10 is displayed.

• Press MODE button to change the field to month:

MONTH:
12

• Keep pressing the DOWN button until 9 is displayed.

• Press MODE button to change the field to year:

YEAR (201x):
6

• Keep pressing the UP button until 3 is displayed (only the last digit of the year is

entered).

• Press MODE button to change the field to hour:

HOUR:
23

Advanced PIC18 Projects 427

Main Program:
BEGIN

Define LCD – microcontroller interface
Assign symbols MODE, UP, DOWN to port pins
Configure PORTB, PORTC, PORTD as digital
Configure RD0, RD1, RD2 as inputs
IniƟalize LCD
IniƟalize I2C bus
IF SETUP mode

CALL Set_Date_Time to read new date and Ɵme values
CALL SET_RTC to load the new values into clock chip

ENDIF
DO FOREVER

CALL Read_Date_Time to read date and Ɵme from the clock chip
CALL Convert_Date_Time to convert into displayable format
CALL Display_Date_Time to display the date and Ɵme on the LCD

ENDDO
END

BEGIN/Set_Date_Time
Display maximum field value
WHILE MODE buƩon not pressed

IF UP buƩon pressed
Increment value
IF value > maximum

Set value = minimum
ENDIF

ENDIF
IF DOWN buƩon pressed

Decrement value
IF value < minimum

Set value = maximum
ENDIF

ENDIF
WEND
Return new value to the calling program

END/Set_Date_Time

BEGIN/SET_RTC
Convert date and Ɵme into BCD
Load date and Ɵme to the clock chip

END/SET_RTC

BEGIN/Read_Date_Time
Get date and Ɵme from the clock chip

END/Read_Date_Time

BEGIN/Convert_Date_Time

Figure 7.64: Project PDL.

428 Chapter 7

• Keep pressing the UP button until 8 is displayed.

• Press the MODE button to change the field to minutes:

MINUTES:
59

• Keep pressing the UP button until 10 is displayed.

• Press the MODE button to change the field to seconds:

SECONDS:
59

• Keep pressing the UP button until 15 is displayed.

• Press the MODE button to terminate the setup. The clock should start working from the

set date and time.

At the beginning of the program, the connections between the LCD and the

microcontroller are defined. Symbols MODE, UP, DOWN and SETUP are assigned to port

bits, PORTB, PORTC, PORTD are configured as digital with RD0, RD1, and RD2 pins

configured as inputs. Then, the LCD and the I2C modules are initialized. If the MODE

button is pressed (MODE¼ 0) during the reset, the program enters the SETUP phase.

Here, the new data and time values are read via the UP/DOWN/MODE buttons as

described earlier, using function Set_Date_Time. This function displays the field to be

modified at the first row of the LCD. The user changes the displayed value by pressing the

UP or DOWN buttons. When the required value is displayed, the MODE button is pressed

to move to the next field. This process continues until the last field value is selected and

then the program calls function SET_RTC to load the new date and time values into the

registers of PCF8583.

The rest of the program is executed in an endless loop. Here, the date and time are read

from the PCF8583 using function Read_Date_Time. Function Convert_Date_Time is

called to convert these values into a form that can be displayed on the LCD. Finally,

function Display_Date_Time is called to display the date and time.

Convert date and Ɵme into ASCII for display
END/Convert_Date_Time

BEGIN/Display_Date_Time
Display converted date on row 1
Display converted Ɵme on row 2

END/Display_Date_Time

Figure 7.64
cont’d

Advanced PIC18 Projects 429

/***
REAL TIME CLOCK
==============

This project is about designing an accurate real Ɵme clock (RTC) using the RTC chip PCF8583

The PCF8583 chip is connected to the I2C pins (modul e 1) of a PIC18F45K22 microcontroller.
The connecƟons between the PCF8583 and the microcontroller are as follows (the SDA and SCL
lines are pulled high with resistors):

PCF8583 Microcontroller
======= =============

SDA SDA1 (RC4)
SCL SCL1 (RC3)

Clock Ɵming to the PCF8583 is provided with a 32.768 kHz crystal. 3 Push-buƩon switches are
used to set the clock iniƟally:

MODE (RD0): Selects the date or Ɵme field to be set
UP (RD1): Increments the value
DOWN (RD2): Decrements the value

AN LCD is connected to PORTB of the microcontroller to help in seƫng the clock and also for
displaying the clock data in real Ɵme.

The microcontroller is operated with an 8 MHz crystal with the PLL disabled (i.e. the actual
running clock frequency is 8 MHz).

The soŌware has 2 phases: SETUP and RUNNING. The SETUP phase is entered if the MODE
buƩon is pressed during the startup. In this phase the clock is set to current date and Ɵme.
The RUNNING phase is entered if the MODE buƩon is not pressed during the startup and
this is the normal running state of the clock where the date and Ɵme are displayed on the
LCD in the following format:

dd-mm-yyyy
hh:mm:ss

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-I2C.C
***/
// LCD module connecƟons
sbit LCD_RS at LATB4_bit;
sbit LCD_EN at LATB5_bit;
sbit LCD_D4 at LATB0_bit;
sbit LCD_D5 at LATB1_bit;
sbit LCD_D6 at LATB2_bit;
sbit LCD_D7 at LATB3_bit;

sbit LCD_RS_DirecƟon at TRISB4_bit;
sbit LCD_EN_DirecƟon at TRISB5_bit;

Figure 7.65: mikroC Pro for PIC Program.

430 Chapter 7

sbit LCD_D4_DirecƟon at TRISB0_bit;
sbit LCD_D5_DirecƟon at TRISB1_bit;
sbit LCD_D6_DirecƟon at TRISB2_bit;
sbit LCD_D7_DirecƟon at TRISB3_bit;
// End LCD module connecƟons

#define MODE PORTD.RD0 // MODE buƩon
#define UP PORTD.RD1 // UP buƩon
#define DOWN PORTD.RD2 // DOWN buƩon
#define SETUP 0

unsigned char seconds, minutes, hours, day, month, year;
unsigned char newday, newmonth, newyear, newhour, newminutes, newseconds;
//
// Ths funcƟon reads the Date and Time from the RTC chip
//
void Read_Date_Time()
{

I2C1_Start(); // Send START bit to RTC chip
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0x02); // Start from address 2 (seconds)
I2C1_Repeated_Start(); // Issue repeated START bit
I2C1_Wr(0xA1); // Address the RTC chip for reading
seconds = I2C1_Rd(1); // Read seconds, send ack
minutes = I2C1_Rd(1); // Read minutes, send ack
hours = I2C1_Rd(1); // Read hours, send ack
day = I2C1_Rd(1); // Read year/day, send ack
month = I2C1_Rd(0); // Read month, no ack (last byte)
I2C1_Stop(); // Send STOP bit to RTC chip

}

//

// numbers in RTC memory are in BCD form and are converted as follows:
// "extract upper byte, shiŌ right 4 bits, mulƟply by 10, add lower byte".
// For example, number 25 in RTC memory is stored as 37. i.e bit paƩern: "0010 0101".
// AŌer the conversion we obtain the required number 25.
//
Convert_Date_Time()
{

seconds = ((seconds & 0xF0) >> 4)*10 + (seconds & 0x0F);
minutes = ((minutes & 0xF0) >> 4)*10 + (minutes & 0x0F);
hours = ((hours & 0xF0) >> 4)*10 + (hours & 0x0F);
month = ((month & 0x10) >> 4)*10 + (month & 0x0F);;
year = (day & 0xC0) >> 6;
day = ((day & 0x30) >> 4)*10 + (day & 0x0F);

}

//

// This funcƟon converts the date-Ɵme into correct format for displaying on the LCD. The

Figure 7.65
cont’d

Advanced PIC18 Projects 431

// Display the date and Ɵme on the LCD
//
void Display_Date_Time()
{
//
// Write day, month, year as: dd=mm=xxxy
//

Lcd_Chr(1, 1, (day / 10) + '0');
Lcd_Chr(1, 2, (day % 10) + '0');
Lcd_Chr(1, 4, (month / 10) + '0');
Lcd_Chr(1, 5, (month % 10) + '0');
Lcd_Chr(1 , 10, year + '0');

//
// Write hour, minutes, seconds as: hh:mm:ss
//

Lcd_Chr(2, 1, (hours / 10) + '0');
Lcd_Chr(2, 2, (hours % 10) + '0');
Lcd_Chr(2, 4, (minutes / 10) + '0');
Lcd_Chr(2, 5, (minutes % 10) + '0');
Lcd_Chr(2, 7, (seconds / 10) + '0');
Lcd_Chr(2, 8, (seconds % 10) + '0');

}

//
// This funcƟon gets the date and Time from the user via the 3 buƩons. New values
// of Date and Time are returned to the calling program. IniƟally the maximum values
// are shown and these can be changed using the UP and DOWN buƩons.
//
unsigned char Set_Date_Time(unsigned char *str, unsigned char min, unsigned char max)
{

unsigned char c, Txt[4];

ByteToStr(max, Txt); // Convert max value to string in Txt
Lcd_Cmd(_LCD_CLEAR);
Lcd_Out(1,1,str); // Display field name (e.g. "DAY:")
Lcd_Out(2,1,Txt); // Display max value to start with
c = max;

while(MODE == 1) // While MODE buƩon not pressed
{

if(UP == 0) // If UP buƩon pressed (increment)
{

Delay_Ms(10);
while(UP == 0); // Wait unƟl UP buƩon is released
c++; // Increment value
if(c > max)c = min; // If greater than max rollover to min

}
if(DOWN == 0) // If DOWN buƩon is pressed
{

Delay_Ms(10);
while(DOWN == 0); // Wait unƟl DOWN buƩon is released

Figure 7.65
cont’d

432 Chapter 7

c--; // Decrement value
if(c < min || c == 255)c = max; // If less than min, rollover to max

}
ByteToStr(c, Txt); // Convert selected value to string
Lcd_Out(2,1,Txt); // Display selected value on LCD

}
Delay_Ms(10);
while(MODE == 0); // Wait unƟl MODE buƩon is released
return c; // return number to calling program

}

//
// This funcƟon sets the RTC with the new Date and Time values. The number to be sent to
// the RTC chip is divided by 10, shiŌed leŌ 4 digits, and the remainder is added to it. Thus,
// for example if the number is decimal 25, it is converted into bit paƩern "0010 0101" and
// stored at the appropriate RTC memory
//
void Set_RTC()
{
//
// Convert Date and Time into a format compaƟble with the RTC chip
//

seconds = ((newseconds / 10) << 4) + (newseconds % 10);
minutes = ((newminutes / 10) << 4) + (newminutes % 10);
hours = ((newhour / 10) << 4) + (newhour % 10);
month = ((newmonth / 10) << 4) + (newmonth % 10);
day = (newyear << 6) + ((newday / 10) << 4) + (newday % 10);

I2C1_Start(); // Send START bit to RTC chip
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0x00); // Start from address 0
I2C1_Wr(0x80); // Pause RTC counter
I2C1_Wr(0x00); // Write to hundreths memory locaƟon
I2C1_Wr(seconds); // Write to seconds memory locaƟon
I2C1_Wr(minutes); // Write to minutes memory locaƟon
I2C1_Wr(hours); // Write to hours memory locaƟon;
I2C1_Wr(day); // Write to year/day memory locaƟon
I2C1_Wr(month); // Write to month memory locaƟon
I2C1_Stop(); // Send STOP bit

I2C1_Start(); // Send START bit to RTC chip
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0); // Start from address 0 (ConfiguraƟon reg)
I2C1_Wr(0); // Write 0 to Conf reg to start counter
I2C1_Stop(); // Send STOP bit

}

void main()

Figure 7.65
cont’d

Advanced PIC18 Projects 433

It is important to notice that the PCF8583 RTC chip stores the date and time values in the

BCD format. Thus, for example, if the current minutes is 28, it is stored internally as

“00101000” (which is decimal 40). Function Convert_Date_Time converts the BCD

minutes into decimal using the following code:

minutes¼ ((minutes & 0xF0)>> 4)�10þ (minutes & 0x0F);

{
ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
ANSELD = 0; // Configure PORTD as digital
TRISD.RD0 = 1; // Configure RD0 (MODE)as input
TRISD.RD1 = 1; // Configure RD1 (UP) as input
TRISD.RD2 = 1; // Configure RD2 (DOWN) as input

Lcd_Init(); // IniƟalize LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor
Lcd_Cmd(_LCD_CLEAR); // Clear LCD

I2C1_Init(100000); // IniƟalize I2C module
//
// If the MODE buƩon is pressed on startup we must get into SETUP phase
//

if(MODE == SETUP) // If SETUP mode
{

while(MODE == SETUP); // Wait unƟl MODE buƩon is released
newday = Set_Date_Time("DAY:",1,31); // Get current day
newmonth = Set_Date_Time("MONTH:", 1,12); // Get current month
newyear = Set_Date_Time("YEAR (201x):", 3,6); // Get current year (201x)
newhour = Set_Date_Time("HOUR:", 0, 23); // Get current hour
newminutes = Set_Date_Time("MINUTES:", 0, 59); // Get current minutes
newseconds = Set_Date_Time("SECONDS:", 0, 59); // get current seconds
//
// We have got all the new Date and Time values. Now set the RTC with these values
//
Set_RTC();

}

//
// Read the Date and Time from the RTC chip and display on the LCD in the following format:
// Row 1: dd-mm-yyyy
// Row 2: hh:mm:ss
//

Lcd_Out(1, 1, "dd-mm-2013");
Lcd_Out(2, 1, "hh:mm:ss");
while(1)
{

Read_Date_Time(); // Read Date and Time from RTC chip
Convert_Date_Time(); // Convert into a form to display
Display_Date_Time(); // Display Date and Time on the LCD

}
}

Figure 7.65
cont’d

434 Chapter 7

The upper nibble (“0010”) is shifted right by four digits, which becomes decimal 2. It is

then multiplied by 10 to give 20. The lower nibble (8) is then added to give the required

value 28.

Function Display_Date_Time divides the given number by 10 to extract the 10s digit.

Then, character ‘0’ is added to convert it into ASCII, and it is then displayed using the

LCD_Chr function. The 1s digit is also determined by finding the remainder of the

division by 10. Again the value is converted into ASCII and displayed on the LCD. The

following code is used:

Lcd_Chr(2, 4, (minutes/10)þ ‘0’);

Lcd_Chr(2, 5, (minutes % 10)þ ‘0’);

Before loading the clock registers, the opposite process is done, that is, the number is

converted into BCD. As an example, the following code is used to convert the minutes:

minutes¼ ((newminutes/10)<< 4)þ (newminutes % 10);

The decimal number is divided by 10 to find the 10s digit. This number is shifted left by

four digits so that it occupies the upper nibble position. Then the 1s digit is determined by

finding the remainder, and added to the number as the second BCD digit.

MPLAB XC8

The MPLAB XC8 compiler supports the following I2C functions (header file <plib/

i2C.h> must be included at the beginning of the program):

The program is basically similar to the mikroC Pro for PIC version, but here the

initialization routines and the LCD functions are different. Also, the E, RS, and RW pins

of the LCD are connected to port pins RB4, RB5, and RB6, respectively.

The MPLAB XC8 version of the program is left as an exercise for the reader.

AckI2C Generate acknowledgement
CloseI2C disable MSSP module
DataRdyI2C Check if data is available in the I2C buffer
getcI2C Read a byte from the I2C bus
getsI2C Read a string from the I2C bus (in master mode)
IdleI2C Loop until I2C bus is idle
NotAckI2C Generate not acknowledgement condition
OpenI2C Configure the I2C module
putcI2C Write a byte to the I2C bus
RestartI2C Generate a restart condition
StartI2C Generate a start condition
StopI2C Generate a stop condition

Advanced PIC18 Projects 435

Project 7.7dReal-Time Alarm Clock

This project is an extension to Project 7.5. In this project, we set up a daily alarm using

the PCF8583 RTC chip. The time of the alarm can be set as in the previous project. An

LED is used to indicate the alarm condition (we could have also used a buzzer) and the

LED turns ON when alarm occurs. The alarm condition stays until a button is pressed to

stop the alarm. The alarm occurs daily at the same time every day.

Figure 7.66 shows the block diagram of the project. The functions of the buttons are as

follows:

MODE: Used to enter the clock setup mode. Keep this button pressed while resetting the

microcontroller. This button is also used to move between the fields while setting the

clock or the alarm time.

UP: Used during clock or alarm setup. Pressing the button increments the value in the

selected field.

DOWN: Used during clock or alarm setup. Pressing the button decrements the value in the

selected field.

ALARM SETUP: Used to enter the alarm setup mode. Keep this button pressed while

resetting the microcontroller.

STOP ALARM: Pressing this button stops the present alarm condition (turns OFF the

LED). The alarm will occur at the same time every day.

Figure 7.66: Block Diagram of the Project.

436 Chapter 7

Bit 2 of the control and status register (at address 0x00) must be set for the alarm

functions to be enabled. When an alarm occurs the INT pin of the PCF8583 goes from

logic 1 to logic 0 to indicate the alarm condition. The INT bit can be cleared by clearing

bit 0 of the control and status register.

Alarm functions are configured via register 0x08. Figure 7.67 shows the bit definitions of

this register. To set daily alarms, the following bits must be set:

Bit 7: Lower INT pin when alarm occurs.
Bit 4: Set daily alarms.

When daily alarms are set, the day, month, and year fields are ignored. An alarm is

generated when the contents of the alarm registers match the involved counter registers.

New date and time are loaded into the chip using the MODE, UP, and DOWN buttons as

described in the previous project. New daily alarm time is loaded into the chip using the

ALARM SETUP, MODE, UP, and DOWN buttons. The steps are given below as an

example to set the daily alarm to occur every day at 10:00:00:

• Reset the microcontroller while pressing the ALARM SETUP button.

• The LCD should display:

ALRM HOUR:
23

• Keep pressing the UP button until 10 is displayed.

• Press MODE button to change the field to minutes:

ALRM MINS:
59

• Keep pressing the UP button until 0 is displayed.

• Press MODE button to change the field to seconds:

ALRM SECS:
59

7 6 5 4 3 2 1 0

0: No INT (flag)
1: INT

Timer alarm
control

00: No clock alarm
01: Daily alarm
10: Weekday alarm
11: Dated alarm

Timer interrupt
control

Timer func�on

Figure 7.67: Alarm Control Register (Address 0x08).

Advanced PIC18 Projects 437

• Keep pressing the UP button until 0 is displayed.

• Press MODE button to return to the clock mode. The daily alarm time will be set to

10:00:00.

Project Hardware

The circuit diagram of the project is shown in Figure 7.68. This circuit is similar to the

one given in Figure 7.62, but here additional buttons and an LED are used for the alarm

part of the project. Also, the alarm output pin (INT) of the PCF8583 is connected to the

RC2 pin of the microcontroller. Note that this pin is active LOW, that is, it is normally

HIGH and goes LOW when an alarm occurs.

Project PDL

The project PDL is shown in Figure 7.68.

Figure 7.68: Circuit Diagram of the Project.

438 Chapter 7

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program listing is given in Figure 7.69 (MIKEOC-I2C2.C).

The major part of the program is the same as the clock setting and display program given

in the previous project. At the beginning of the program, the connections between the

LCD and the microcontroller are defined. Symbols MODE, UP, DOWN, ALARM SETUP,

STOP ALARM, and SETUP are assigned to port bits, PORTB, PORTC, PORTD are

configured as digital with RD0:RD4 pins configured as inputs. Then, the LCD and the I2C

modules are initialized. If the MODE button is pressed (MODE¼ 0) during the reset, the

program enters the clock setup phase.

If the ALARM SETUP button is pressed during the reset, the program enters the alarm

setup phase. Here, the alarm hours, minutes, and seconds are read via the UP/DOWN/

MODE buttons as described earlier, using function Set_Date_Time function. The,

Set_RTC_Alarm function is called to load the PCF8583 registers for the daily alarm so

that the alarm occurs every day exactly at the selected time. Here, the alarm register is

loaded with 0x90, which enables daily alarms and selects the INT pin as the alarm output.

While displaying the current date and time, the program continuously checks the state of

the INT pin (this could also be configured as an external interrupt, but the external

interrupt pins are used for the LCD) and an alarm condition is said to occur if this pin

goes LOW. The program turns ON the ALARM LED to indicate the alarm condition. The

present alarm condition can be cleared by pressing the STOP ALARM button. Pressing

this button calls function Reset_Alarm_Flag, which clears the timer flag (located at bit

0 of the control and status register) to set the INT pin back to HIGH to stop the alarm

condition.

Project 7.8dSD Card ProjectsdWrite Text To a File

In this and the next few projects, we will be using SD cards as storage devices. But before

going into the details of these projects, we should take a look at the basic principles and

operation of SD card memory devices.

SD cards are commonly used in many electronic devices where a large amount of

nonvolatile data storage is required. Some application areas are as follows:

• Digital cameras,

• Camcorders,

• Printers,

• Laptop computers,

• GPS receivers,

Advanced PIC18 Projects 439

/***
REAL TIME ALARM CLOCK
====================

This project is about designing an accurate real �me alarm clock using the PCF8583 RTC chip

The PCF8583 chip is connected to the I2C pins (modul 1) of a PIC18F45K22 microcontroller.
The connec�ons between the PCF8583 and the microcontroller are as follows The SDA, SCL
and INT lines are pulled high with resistors):

PCF8583 Microcontroller
======= ===============

SDA SDA1 (RC4)
SCL SCL1 (RC3)
INT RC2

Clock �ming to the PCF8583 is provided with a 32.768 kHz crystal. In this project both the
clock and daily alarms can be set. When an alarm occurs, an LED connected to pin RD7 is
turned ON.

MODE (RD0): Enter clock setup mode. Also change fields during setup
UP (RD1) : Increments the value
DOWN (RD2): Decrements the value
ALARM SETUP (RD3): Enter Alarm setup mode
STOP ALARM (RD4): Stop present alarm condi�on

AN LCD is connected to PORTB of the microcontroller to help in se�ng the clock and alarm
�me and also for displaying the clock data in real �me.

The microcontroller operated with an 8 MHz crystal with the PLL disabled (i.e. the actual
running clock frequency is 8 MHz).

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-I2C2.C
***/
// LCD module connec�ons
sbit LCD_RS at LATB4_bit;
sbit LCD_EN at LATB5_bit;
sbit LCD_D4 at LATB0_bit;
sbit LCD_D5 at LATB1_bit;
sbit LCD_D6 at LATB2_bit;
sbit LCD_D7 at LATB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

Figure 7.69: mikroC Pro for PIC Program.

440 Chapter 7

#define MODE PORTD.RD0 // MODE bu�on
#define UP PORTD.RD1 // UP bu�on
#define DOWN PORTD.RD2 // DOWN bu�on
#define ALARM_SETUP PORTD.RD3 // ALARM SETUP bu�on
#define STOP_ALARM PORTD.RD4 // Alarm stop bu�on
#define ALARM_INT PORTC.RC2 // RTC clock alarm INT pin
#define ALARM_LED PORTD.RD7 // LED connected to RD7
#define SETUP 0

unsigned char seconds, minutes, hours, day, month, year;
unsigned char newday, newmonth, newyear, newhour, newminutes, newseconds;
//
// Ths func�on reads the Date and Time from the RTC chip
//
void Read_Date_Time()
{

I2C1_Start(); // Send START bit to RTC chip
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0x02); // Start from address 2 (seconds)
I2C1_Repeated_Start(); // Issue repeated START bit
I2C1_Wr(0xA1); // Address the RTC chip for reading
seconds = I2C1_Rd(1); // Read seconds, send ack
minutes = I2C1_Rd(1); // Read minutes, send ack
hours = I2C1_Rd(1); // Read hours, send ack
day = I2C1_Rd(1); // Read year/day, send ack
month = I2C1_Rd(0); // Read month, no ack (last byte to read)
I2C1_Stop(); // Send STOP bit to RTC chip

}

//
// This func�on convert the date-�me into correct format for displaying on the LCD. The numbers
// in RTC memory are in BCD form and are converted as follows:
// "extract upper byte, shi� right 4 bits, mul�ply by 10, add lower byte".
// For example, number 25 in RTC memory is stored as 37. i.e bit pa�ern: "0010 0101". A�er the
// conversion we obtain the required number 25.
//
Convert_Date_Time()
{

seconds = ((seconds & 0xF0) >> 4)*10 + (seconds & 0x0F);
minutes = ((minutes & 0xF0) >> 4)*10 + (minutes & 0x0F);
hours = ((hours & 0xF0) >> 4)*10 + (hours & 0x0F);
month = ((month & 0x10) >> 4)*10 + (month & 0x0F);;
year = (day & 0xC0) >> 6;
day = ((day & 0x30) >> 4)*10 + (day & 0x0F);

}

//

Figure 7.69
cont’d

Advanced PIC18 Projects 441

// Display the date and �me on the LCD
//
void Display_Date_Time()
{
//
// Write day, month, year as: dd=mm=xxxy
//

Lcd_Chr(1, 1, (day / 10) + '0');
Lcd_Chr(1, 2, (day % 10) + '0');
Lcd_Chr(1, 4, (month / 10) + '0');
Lcd_Chr(1, 5, (month % 10) + '0');
Lcd_Chr(1 , 10, year + '0');

//
// Write hour, minutes, seconds as: hh:mm:ss
//

Lcd_Chr(2, 1, (hours / 10) + '0');
Lcd_Chr(2, 2, (hours % 10) + '0');
Lcd_Chr(2, 4, (minutes / 10) + '0');
Lcd_Chr(2, 5, (minutes % 10) + '0');
Lcd_Chr(2, 7, (seconds / 10) + '0');
Lcd_Chr(2, 8, (seconds % 10) + '0');

}

//
// This func�on gets the date and Time from the user via the 3 bu�ons. New values of Date
// and Time are returned to the calling program. Ini�ally the maximum values are shown
// and these can be changed using the UP and DOWN bu�ons.
//
unsigned char Set_Date_Time(unsigned char *str, unsigned char min, unsigned char max)
{

unsigned char c, Txt[4];

ByteToStr(max, Txt); // Convert maximum value to string in Txt
Lcd_Cmd(_LCD_CLEAR);
Lcd_Out(1,1,str); // Display field name (e.g. "DAY:")
Lcd_Out(2,1,Txt); // Display maximum value to start with
c = max;

while(MODE == 1) // While MODE bu�on is not pressed
{

if(UP == 0) // If UP bu�on is pressed (increment)
{

Delay_Ms(10);
while(UP == 0); // Wait un�l UP bu�on is released
c++; // Increment value
if(c > max)c = min; // If greater than max, rollover to min

}
if(DOWN == 0) // If DOWN bu�on is pressed
{

Delay_Ms(10);
while(DOWN == 0); // Wait un�l DOWN bu�on is released

Figure 7.69
cont’d

442 Chapter 7

c--; // Decrement value
if(c < min || c == 255)c = max; // If less than min, rollower to max

}
ByteToStr(c, Txt); // Convert selected value to string
Lcd_Out(2,1,Txt); // Display selected value on LCD

}
Delay_Ms(10);
while(MODE == 0); // Wait un�l MODE bu�on is released
return c; // Return selected number to calling program

}

//
// This func�on sets the RTC with the new Date and Time values. The number to be sent to
// the RTC chip is divided by 10, shi�ed le� 4 digits, and the remainder is added to it. Thus
// for example if the number is decimal 25, it is converted into bit pa�ern "0010 0101" and
// stored at the appropriate RTC memory
//
void Set_RTC()
{
//
// Convert Date and Time into a format compa�ble with the RTC chip
//

seconds = ((newseconds / 10) << 4) + (newseconds % 10);
minutes = ((newminutes / 10) << 4) + (newminutes % 10);
hours = ((newhour / 10) << 4) + (newhour % 10);
month = ((newmonth / 10) << 4) + (newmonth % 10);
day = (newyear << 6) + ((newday / 10) << 4) + (newday % 10);

I2C1_Start(); // Send START bit to RTC chip
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0x00); // Start from address 0
I2C1_Wr(0x80); // Pause RTC counter
I2C1_Wr(0x00); // Write to hundreths memory loca�on
I2C1_Wr(seconds); // Write to seconds memory loca�on
I2C1_Wr(minutes); // Write to minutes memory loca�on
I2C1_Wr(hours); // Write to hours memory loca�on;
I2C1_Wr(day); // Write to year/day memory loca�on
I2C1_Wr(month); // Write to month memory loca�on
I2C1_Stop(); // Send STOP bit

I2C1_Start(); // Send START bit to RTC chip
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0); // Start from address 0 (Configura�on reg)
I2C1_Wr(0); // Write 0 to Configuration reg to start

counter
I2C1_Stop(); // Send STOP bit

}

//
// This func�on sets the RTC alarm. The alarm is configured to occur every day

Figure 7.69
cont’d

Advanced PIC18 Projects 443

// at the set �me. The BUZZER sounds when the alarm occurs
//
void Set_RTC_Alarm()
{
//
// Convert Alarm Time into a format compa�ble with the RTC chip. For daily Alarm
// setup the Date fields (day, month, year) are ignored
//

seconds = ((newseconds / 10) << 4) + (newseconds % 10);
minutes = ((newminutes / 10) << 4) + (newminutes % 10);
hours = ((newhour / 10) << 4) + (newhour % 10);

I2C1_Start(); // Send START bit to RTC chip
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0x00); // Start from address 0
I2C1_Wr(0x04); // Enable Alarm Control register
I2C1_Stop();

I2C1_Start();
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0x08); // Start from address 8
I2C1_Wr(0x90); // Enable Daily alarms, enable INT output
I2C1_Wr(0x00); // Write to hundreths memory loca�on
I2C1_Wr(seconds); // Write to seconds memory loca�on
I2C1_Wr(minutes); // Write to minutes memory loca�on
I2C1_Wr(hours); // Write to hours memory loca�on;
I2C1_Stop(); // Send STOP bit

}

//
// This func�on stops the alarm by clearing the �mer register of the
// control and status register
//
void Reset_Alarm_Flag()
{

I2C1_Start(); // Send START bit to RTC chip
I2C1_Wr(0xA0); // Address the RTC chip
I2C1_Wr(0x00); // Start from address 0
I2C1_Wr(0x04); // Reset Alarm flag
I2C1_Stop(); // Send STOP bit

}

void main()
{

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
ANSELD = 0; // Configure PORTD as digital
TRISC.RC2 = 1; // Alarm INT input
TRISD.RD0 = 1; // Configure RD0 (MODE)as input
TRISD.RD1 = 1; // Configure RD1 (UP) as input

Figure 7.69
cont’d

444 Chapter 7

TRISD.RD2 = 1; // Configure RD2 (DOWN) as input
TRISD.RD3 = 1; // Configure RD3 (Alarm setup)
TRISD.RD4 = 1; // Configure RD4 as input (Alarm STOP)
TRISD.RD7 = 0; // Alarm LED is output

ALARM_LED = 0; // Alarm LEDOFF to start with
Lcd_Init(); // Ini�alize LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // Disable cursor
Lcd_Cmd(_LCD_CLEAR); // Clear LCD

I2C1_Init(100000); // Ini�alize I2C module
//
// If the MODE bu�on is pressed on startup we must get into SETUP phase
//

if(MODE == SETUP) // If CLOCK SETUP mode
{

while(MODE == SETUP); // Wait un�l MODE bu�on is released
newday = Set_Date_Time("DAY:",1,31); // Get current day
newmonth = Set_Date_Time("MONTH:", 1,12); // Get current month
newyear = Set_Date_Time("YEAR (201x):", 3,6); // Get current year (201x)
newhour = Set_Date_Time("HOUR:", 0, 23); // Get current hour
newminutes = Set_Date_Time("MINUTES:", 0, 59); // Get current minutes
newseconds = Set_Date_Time("SECONDS:", 0, 59); // Get current seconds
//
// We have got all the new Date and Time values. Now set the RTC with these values
//
Set_RTC();

}
if(ALARM_SETUP == 0) // If ALARM SETUP mode
{

while(ALARM_SETUP = 0); // Wait un�l ALARM bu�on is released
newhour = Set_Date_Time("ALRM HOUR:", 0, 23);
newminutes = Set_Date_Time("ALRM MINS:", 0, 59);
newseconds = Set_Date_Time("ALRM SECS:", 0, 59);
//
// We have got the Daily Alarm �me. Now set the RTC clock to generate alarm
// at this �me every day. Sound the BUZZER when alarm is generated.
//
Set_RTC_Alarm();

}

//
// Read the Date and Time from the RTC chip and display on the LCD in the following format:
// Row 1: dd-mm-yyyy
// Row 2: hh:mm:ss
//

Lcd_Out(1, 1, "dd-mm-2013");
Lcd_Out(2, 1, "hh:mm:ss");
while(1)

Figure 7.69
cont’d

Advanced PIC18 Projects 445

• Electronic games,

• Personal digital assistants (PDAs),

• Mobile phones,

• Embedded electronic systems.

Figure 7.70 shows the picture of a typical SD card.

{
Read_Date_Time(); // Read Date and Time from RTC chip
Convert_Date_Time(); // Convert into a form to display
Display_Date_Time(); // Display Date and Time on the LCD

if(ALARM_INT == 0) // If alarm occurred (ac�ve LOW)
{

ALARM_LED = 1; // Turn ON ALARM LED
if(STOP_ALARM == 0) // if STOP ALARM bu�on pressed
{

ALARM_LED = 0; // Turn OFF ALARM LED
Reset_Alarm_Flag(); // Reset alarm flag back to 1

}
}

}
}

Figure 7.69
cont’d

Figure 7.70: A Typical SD Card.

446 Chapter 7

The SD card is a flash memory storage device designed to provide a high capacity,

nonvolatile, and rewritable storage in small size. The memory capacity of the SD cards

is increasing all the time. Currently, they are available in capacities from several

gigabytes to >128 GB. SD cards are available in three sizes: standard SD card, miniSD

card, and the microSD card. Table 7.5 lists the main specifications of different size

cards.

SD card specifications are maintained by the SD Card Association, which has >600

members. MiniSD and microSD cards are electrically compatible with the standard SD

cards, and they can be inserted in special adapters and used as standard SD cards in

standard card slots.

SD card speeds are measured in three different ways: in kilobytes per second (kB/s), in

megabytes per second (MB/s), or in an “x” rating similar to that of CD-ROMS where

“x” is the speed corresponding to 150 kB/s. Thus, the various “x” based speeds are as

follows:

• 4x: 600 kB/s,

• 16x: 2.4 MB/s,

• 40x: 6.0 MB/s,

• 66x: 10 MB/s.

As far as the memory capacity is concerned, we can divide SD cards into three families:

Standard-Capacity (SDSC), High-Capacity (SDHC), and eXtended-Capacity (SDXC).

SDSC are the older cards with capacities 1e2 GB. SDHC have capacities 4e32 GB, and

SDXC cards have capacities >32e128 GB. The SD and SDHC families are available in

all three sizes, but the SDXC family is not available in the mini size.

In the projects in this book, we shall be using the standard SD cards only. The use of the

smaller size SD cards is virtually the same and is not described here any further.

SD cards can be interfaced to microcontrollers using two different protocols: SD card

protocol and the SPI protocol. The SPI protocol is the most commonly used protocol and

Table 7.5: Different Size SD Card Specifications.

Standard SD miniSD mikroSD

Dimensions 32� 24� 2.1 mm 21.5� 20� 1.4 mm 15� 11� 1 mm
Card weight 2.0 g 0.8 g 0.25 g

Operating voltage 2.7e3.6 V 2.7e3.6 V 2.7e3.6 V
Write protect Yes No No

Pins 9 11 8
Interface SD or SPI SD or SPI SD or SPI

Current consumption 100 mA (Write) 100 mA (Write) 100 mA (Write)

Advanced PIC18 Projects 447

is the one used in the projects in this book. SPI bus is currently used by microcontroller

interface circuits to talk to a variety of devices such as

• Memory devices (SD cards),

• Sensors,

• RTCs,

• Communications devices,

• Displays.

The advantages of the SPI bus are as follows:

• Simple communication protocol,

• Full duplex communication,

• Very simple hardware interface.

In addition, the disadvantages of the SPI bus are

• Requires four pins,

• No hardware flow control,

• No slave acknowledgement.

It is important to realize that there are no SPI standards governed by any international

committee. As a result of this, there are several versions of the SPI bus

implementation. In some applications, the MOSI and MISO lines are combined into a

single data line, thus reducing the line requirements into three. Some implementations

have two clocks, one to capture (or display) data and another to clock it into the

device. Also, in some implementations, the chip select line may be active-high rather

than active low.

The standard SD card has nine pins with the pin layout shown in Figure 7.71. Depending

on the interface protocol used, pins have different functions. Table 7.6 gives the function

of each pin in both the SD mode and the SPI mode of operation.

1 2 3 4 5 6 7 8
9

Figure 7.71: Standard SD Card Pin Layout.

448 Chapter 7

Operation of the SD Card in the SPI Mode

When the SD card is operated in the SPI mode only seven pins are used:

• Two power supply ground (pins 3 and 6),

• Power supply (pin 4),

• Chip select (pin 1),

• Data out (pin 7),

• Data in (pin 2),

• CLK (pin 5).

Three pins are used for the power supply, leaving four pins for the SPI mode of operation:

• Chip select (pin 1),

• Data out (pin 7),

• Data in (pin 2),

• CLK (pin 5).

At power-up, the SD card defaults to the SD bus protocol. The card is switched to the SPI

mode if the CS signal is asserted during the reception of the reset command. When the

card is in the SPI mode, it only responds to SPI commands. The host may reset a card by

switching the power supply off and on again.

Most high-level language compilers normally provide a library of commands for

initializing, reading, and writing to SD cards. In general, it is not necessary to know

the internal structure of an SD card before it can be used since the available library

functions can easily be used. It is however important to have some knowledge about

the internal structure of an SD card so that it can be used efficiently. In this

section, we shall be looking briefly at the internal architecture and the operation of

SD cards.

Table 7.6: Standard SD Card Pin Definitions.

Pin Name SD Description SPI Description

1 CD/DAT3/CS Data line 3 Chip select
2 CMD/Datain Command/response Host to card command and data
3 VSS Supply ground Supply ground
4 VDD Supply voltage Supply voltage
5 CLK Clock Clock
6 VSS2 Supply voltage ground Supply voltage ground
7 DAT0 Data line 0 Card to host data and status
8 DAT1 Data line 1 Reserved
9 DAT2 Data line 2 Reserved

Advanced PIC18 Projects 449

An SD card has a set of registers that provide information about the status of the card.

When the card is operated in the SPI mode, these registers are as follows:

• Card Identification Register (CID),

• Card Specific Data Register (CSD),

• SD Configuration Register (SCR),

• Operation Control Register (OCR).

The CID consists of 16 bytes, and it contains the manufacturer ID, product name, product

revision, card serial number, manufacturer date code, and a checksum byte.

The CSD consists of 16 bytes, and it contains card-specific data such as the card data

transfer rate, read/write block lengths, read/write currents, erase sector size, file format,

write protection flags, and checksum.

The SCR is 8 bytes long, and it contains information about the SD card’s special features

capabilities such as the security support, and data bus widths supported.

The OCR is only 4 bytes long, and it stores the VDD voltage profile of the card. The OCR

shows the voltage range in which the card data can be accessed.

All SD card SPI commands are 6 bytes long with the MSB transmitted first. The first byte

is known as the “command” byte, and the remaining 5 bytes are “command arguments”.

Bit 6 of the command byte is set to “1” and the MSB bit is always “0”. With the

remaining 6 bits, we have 64 possible commands, named CMD0 to CMD63. Some of the

important commands are

• CMD0 GO_IDLE_STATE (Resets the SD card),

• CMD1 SEND_OP_COND (Initializes the card),

• CMD9 SEND_CSD (Get CSD data),

• CMD10 SEND_CID (Get CID data),

• CMD16 SET_BLOCKLEN (Selects a block length in bytes),

• CMD17 READ_SINGLE_BLOCK (Reads a block of data),

• CMD24 WRITE_BLOCK (Writes a block of data),

• CMD32 ERASE_WR_BLK_START_ADDR (Sets the address of the first write

block to be erased),

• CMD33 ERASE_WR_BLK_END_ADDR (Sets the address of the last write block

to be erased),

• CMD38 ERASE (Erases all previously selected blocks).

In response to a command, the card sends a status byte known as R1. The MSB bit of this

byte is always “0” and the other bits indicate various error conditions.

450 Chapter 7

Reading Data

The SD card in the SPI mode supports single block and multiple block read operations. The

host should set the block length, and after a valid read command, the card responds with a

response token, followed by a data block and a CRC check. The block length can be

between 1 and 512 bytes. The starting address can be any valid address range of the card.

In multiple block read operations, the card sends data blocks with each block having its

own CRC check attached to the end of the block.

Writing Data

The SD card in the SPI mode supports single or multiple block write operations. After

receiving a valid write command from the host, the card will respond with a response

token and will wait to receive a data block. A 1 byte “start block” token is added to the

beginning of every data block. After receiving the data block, the card responds with a

“data response” token and the card will be programmed as long as the data block has been

received with no errors.

In multiple write operations, the host sends the data blocks one after the other, each

preceded with a “start block” token. The card sends a response byte after receiving each

data block.

A card can be inserted and removed from the bus without any damage. This is because all data

transfer operations are protected by CRC codes, and any bit changes as a result of inserting or

removing a card can easily be detected. SD cards operate with a typical supply voltage of

2.7 V. The maximum allowed power supply voltage is 3.6 V. If the card is to be operated from

a standard 5.0-V supply, a voltage regulator should be used to drop the voltage to 2.7 V.

The use of an SD card requires the card to be inserted into a special card holder with external

contacts (Figure 7.72). Connections can then be made easily to the required card pins.

Figure 7.72: SD Card Holder.

Advanced PIC18 Projects 451

Project Description

This project is about using the card filing system. In this project, a file called

“MYFILE55.TXT” is created on an SD card. Text “This is MYFILE.TXT” is written to

the file initially. The text “This is the added data.” is appended to the file. The file can

be opened on a PC and its contents can be verified.

Project Hardware

Figure 7.73 shows the circuit diagram of the project. The SD card is inserted into a card

holder, and the holder is connected to PORTC of the microcontroller. The interface

between the SD card and the microcontroller ports is as follows:

SD Card Pin Microcontroller Pin
CS RC2
CLK RC3
DO RC3
DI RC5

Figure 7.73: Circuit Diagram of the Project.

452 Chapter 7

According to the SD card specifications, when the card is operating with a supply voltage

of VDD¼ 3.3 V, the inputeoutput pin voltage levels are as follows:

• Minimum produced output HIGH voltage, VOH¼ 2.475 V,

• Maximum produced output LOW voltage, VOL¼ 0.4125 V,

• Minimum required input HIGH voltage, VIH¼ 2.0625,

• Maximum input HIGH voltage, VIH¼ 3.6 V,

• Maximum required input LOW voltage, VIL¼ 0.825 V.

Although the output produced by the card (2.475 V) is sufficient to drive the input

port of a PIC microcontroller, the logic HIGH output of the microcontroller (about

4.3 V) is too high for the SD card inputs (maximum 3.6 V). As a result of this, a

potential divider is setup at the three inputs of the SD card using 2.2 and 3.3 K

resistors. Thus, the maximum voltage at the inputs of the SD card is limited to

about 2.5 V:

SD card input voltage¼ 4.3 V� 3.3 K/(2.2 Kþ 3.3 K)¼ 2.48 V

The microcontroller is powered from a 5-V supply, which is obtained using a 7805 type

5-V regulator with a 9-V input. The 2.7- to e3.6-V supply required by the SD card is

obtained using a MC33269DT-3.3 type regulator with a 3.3-V output, and is driven from

the 5-V input voltage.

Project PDL

The project PDL is shown in Figure 7.74.

Project Program

mikroC Pro for PIC

The program listing of the project is given in Figure 7.75 (MIKROC-SD1.C). mikroC Pro

for PIC language provides an extensive set of library functions to read and write data to

BEGIN
Define CS port pin and direc�on
Define file open argument defini�ons
Configure PORTC as digital
Ini�alize SPI bus
Ini�alize Mmc_FAT library
Create new file (if it does not exist)
Posi�on the cursor at the beginning for wri�ng
Write text “This is MYFILE.TXT.” to the file
Write “This is the added data…” to the file
Close the file

END

Figure 7.74: Project PDL.

Advanced PIC18 Projects 453

/***
SD CARD PROJECT - WRITE TEXT TO A FILE
==================================

In this project an SD card is connected to PORT C as follows:

CS RC2
CLK RC3
DO RC4
DI RC5

The program creates a new file called MYFILE55.TXT on the SD card and writes the text
"This is MYFILE.TXT." to the file. Then the string "This is the added data..." is appended to the file.

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-SD1.C
***/
// MMC module connec�ons
sbit Mmc_Chip_Select at LATC2_bit;
sbit Mmc_Chip_Select_Direc�on at TRISC2_bit;
// MMC module connec�ons

#define FILE_READ 0x01 // read only
#define FILE_WRITE 0x02 // write only
#define FILE_APPEND 0x04 // append to file

char filename[] = "MYFILE55.TXT";
unsigned char txt[] = "This is the added data...";
unsigned short character;
unsigned long file_size,i;

void main()
{

unsigned char �andle;

ANSELC = 0; // Configure PORTC as digital
//
// Ini�alise the SPI bus
//

SPI1_Init_Advanced(_SPI_MASTER_OSC_DIV64, _SPI_DATA_SAMPLE_MIDDLE,
_SPI_CLK_IDLE_LOW, _SPI_LOW_2_HIGH);

//
// Ini�alize the Mmc library. Wait un�l card detected
//

while(Mmc_Fat_Init());
//
// Create new file (if it does not exist)
//

�andle = MMc_Fat_Open(&filename,FILE_WRITE,0x80);
//
// Clear the file, start at the beginning for wri�ng
//

Mmc_Fat_Rewrite();
//
// Write to the file, specifying the length of the text

Figure 7.75: mikroC Pro for PIC Program.

454 Chapter 7

SD cards (and also MultiMedia Cards, MMC). Data can be written or read from a given

sector of the card, or the file system on the card can be used for more sophisticated

applications.

mikroC Pro for PIC compiler supports an SD card library (called the Mmc library) with

many functions. Some commonly used functions for file handling are listed below:

• Mmc_Fat_Init (Initialize the card)

• Mmc_Fat_QuickFormat (Format the card)

• Mmc_Fat_Assign (Assign the file we will be working with)

• Mmc_Fat_Reset (Reset the file pointer. Opens the currently assigned file

for reading)

• Mmc_Fat_Rewrite (Reset the file pointer and clear assigned file. Opens the

assigned file for writing)

• Mmc_Fat_Append (Move file pointer to the end of assigned file so that

new data can be appended to the file)

• Mmc_Fat_Read (Read the byte at which file pointer points to)

• Mmc_Fat_Write (Write a block of data to the assigned file)

• Mmc_Fat_Delete (Delete a file)

• Mmc_Set_File_Date (Write system timestamp to a file)

• Mmc_Fat_Get_File_Dat (Read file timestamp)

• Mmc_Fat_Get_File_Size (Get file size in bytes)

• Mmc_Fat_Tell (Get cursor position in a file)

• Mmc_Fat_Seek (Set cursor position in a file)

• Mmc_Fat_Rename (Rename a file)

• Mmc_Fat_MakeDir (Create a new directory)

• Mmc_Fat_Exists (Returns information about a file’s existence)

• Mmc_Fat_Activate (Select a file when multiple files are used)

//
Mmc_Fat_Write("This is MYFILE.TXT.",19);

//
// Add more data to the end...
//

Mmc_Fat_Append();
Mmc_Fat_Write(txt,sizeof(txt));

//
// Now close the file (releases the handle)
//

Mmc_Fat_Close();

while(1); // Wait here forever
}

Figure 7.75
cont’d

Advanced PIC18 Projects 455

• Mmc_Fat_ReadN (Read multiple bytes)

• Mmc_Fat_Open (Open/create a file)

• Mmc_Fat_Close (Close currently open file)

• Mmc_Fat_EOF (Check if end of file is reached)

The SPI module has to be initialized through SPIx_Init_Advanced routine with the

following parameters. Once the MMC/SD card is initialized, the SPI module can be

operated at higher speeds:

• SPI Master,

• Primary prescaler 64,

• Data sampled in the middle of data output time,

• Clock idle low,

• Serial output data changes on transition form low to high edge.

In this project, a new file is created, text is written inside the file, and then the file is

closed. At the beginning of the program, the program creates file MYFILE55.TXT by

calling library function Mmc_Fat_Open with the arguments as the filename and the

creation flag 0x80, which tells the function to create a new file if the file does not

exist. The filename should be in “filename.extension” format, although it is also

possible to specify an eight-digit filename and a three-digit extension with no “.” in

between as the “.” will be inserted by the function. Other allowed values of the

creation flag are given in Table 7.7. The Mmc_Fat_Open function returns a file

handle. In multiple file operations, we can select the file we wish to operate on by

specifying this handle in the Mmc_Fat_Activate function call. Note that the SD card

must have been formatted in FAT16 before we can read or write to the card. Most

new cards are already formatted, but we can also use the Mmc_Fat_QuickFormat

function to format a card.

Function Mmc_Fat_Rewrite is called to clear the file and position the cursor to the

beginning, ready for writing. Initial text is written to the file using function

Table 7.7: Mmc_Fat_Open File Creation Fags.

Flag Description

0x01 Read only
0x02 Hidden
0x04 System
0x08 Volume label
0x10 Subdirectory
0x20 Archive
0x40 Device (internal use only, never found on disk)
0x80 File creation flag. If the file does not exist and this flag

is set, a new file with specified name will be created.

456 Chapter 7

Mmc_Fat_Write. Then, function Mmc_Fat_Append is called to append the second text to

the file. Finally, function Mmc_Fat_Close is called to close the file and release the handle.

Note that one of the arguments to the Mmc_Fat_Open function is the file mode

(FILE_READ, FILE_WRITE, or FILE_APPEND). The following definitions must be

made at the beginning of the program before one of these arguments can be used:

#define FILE_READ 0x01 // read only
#define FILE_WRITE 0x02 // write only
#define FILE_APPEND 0x04 // append to file

MPLAB XC8

For the MPLAB XC8 version of the program, we shall be using the PICDEM PIC18

Explorer board (Chapter 5). A Microchip daughter SD card board (known as the PICtail

Daughter Board for SD & MMC Cards, see Figure 7.76) is used as the SD card interface.

This board directly plugs onto the PICDEM PIC18 Explorer board (Figure 7.77) and

provides the SD card interface to the demonstration board (note that there are minor

design faults with the voltage level conversion circuitry on some of the PICtail Daughter

Boards for SD & MMC Cards. You can get around these problems by providing a 3.3-V

supply for the daughter board directly from the PICDEM Explorer board. Cut short the

Figure 7.76: PICtail Daughter Board for SD & MMC Cards.

Advanced PIC18 Projects 457

power supply pin of the daughter board connector, and connect this pin to the þ3.3-V test

point on the PICDEM Explorer board).

The SD card daughter board has an on-board positive-regulated charge pump direct

current (DC)/DC converter chip (MCP1253) used to convert the þ5-V supply to þ3.3 V

required for the SD card. In addition, the board has buffers to provide correct voltages for

the SD card inputs. Seven jumpers are provided on the board to select the SD card signal

interface. The following jumpers should be selected:

Jumper Description
JPI Pin 1-2 SCK connected to RC3
JP2 Pin 1-2 SDI connected to RC4
JP3 Pin 1-2 SDO connected to RC5
JP4 Pin 2-3 (default) Card detect to RB4 (not used)
JP5 Pin 2-3 (default) Write protect to RA4 (not used)
JP6 Pin 2-3 (default) CS connected to RB3
JP7 Pin 2-3 (default) Shutdown (not used)

The default jumper positions are connected by circuit tracks on the board, and these

tracks should be cut to change the jumper positions if different connections are

desired. Signals “card detect”, “write protect”, and “shutdown” are not used in this

book, and the jumper settings can be left as they are. We shall be programming the

PIC18 Explorer board using the ICD 3 programmer/debugger as described in earlier

chapters.

The MPLAB XC8 version of the SD card program is slightly more complex. This is

because a number of included files will have to be extracted and loaded in their correct

Figure 7.77: The Daughter Board Plugs onto the PICDEM Board.

458 Chapter 7

places. The steps in loading the required files are given below (see Microchip Inc

“Application Note 1045 Implementing File I/O Functions Using Microchip’s Memory Disk

Drive File System Library”, located in folder “microchip_solutions_v2013-06-

15\Microchip\MDD File System\Documentation” for further information).

• Download and install the “microchip solutions” library from the Microchip Inc website.

At the time of writing this book, this library had the name “microchip_solutions_v2013-

06-15”. The installation process should create a folder called “micro-

chip_solutions_v2013-06-15” under the main C:\ folder.

• Create a new MPLAB XC8 project as before. Choose the processor type as

PIC18F8722 since the PICDEM PIC18 Explorer board is shipped with this microcon-

troller. Create a new main C source file.

• Right click Header Files on the left top window of MPLAB X IDE and select Add

Existing Item (Figure 7.78). Find folder “microchip_solutions_v2013-06-15” and select

the following files from the subfolders (one at a time):

C:\Microchip Solutions\Microchip\MDD File System\FSIO.c

C:\Microchip Solutions\Microchip\MDD File System\SD-SPI.c

C:\Microchip Solutions\Microchip\PIC18 salloc\salloc.c

C:\Microchip Solutions\Microchip\Include\Compiler.h

C:\Microchip Solutions\Microchip\Include\GenericTypeDefs.h

Figure 7.78: Add the Required Header Files.

Advanced PIC18 Projects 459

C:\Microchip Solutions\MDD File System-SD Card\Pic18f\FSconfig.h

C:\Microchip Solutions\MDD File System-SD Card\Pic18f\HardwareProfile.h

C:\Microchip Solutions\Microchip\Include\MDD File System\FSDefs.h

C:\Microchip Solutions\Microchip\Include\MDD File System\SD-SPI.h

C:\Microchip Solutions\Microchip\Include\MDD File System\FSIO.h

C:\Microchip Solutions\Microchip\Include\PIC18 salloc\salloc.h

• Set the file paths in the compiler by: Select File/ Project Properties in MPLAB X

IDE and then select XC8 compiler as shown in Figure 7.79.

• Click Include Directories, and browse and include the following folders (Figure 7.80):

microchip_solutions_v2013-06-15\Microchip\MDD File System

microchip_solutions_v2013-06-15\Microchip\PIC18 salloc

Figure 7.79: Select File Properties and XC8 Compiler.

Figure 7.80: Set Folders to be Included.

460 Chapter 7

microchip_solutions_v2013-06-15\Microchip\Include

microchip_solutions_v2013-06-15\MDD File System-SD Card

microchip_solutions_v2013-06-15\Microchip\Include\MDD File System

microchip_solutions_v2013-06-15\Microchip\Include\PIC18 salloc

Finally, before writing our program, we have to modify the compiler linker file to include

a 512-byte section for the data read and write and also a 512-byte section for the FAT

allocation. This is done by editing the linker file 18f8722.lkr in the folder and adding lines

for a dataBuffer, and an FATBuffer. In addition, it is required to add a section named

_SRAM_ALLOC_HEAP to the linker file. The modified linker file is shown in

Figure 7.81 (check the last part of the file for the modifications).

// File: 18f8722.lkr
// Sample linker script for the PIC18F8722 processor

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f8722.lib

CODEPAGE NAME=page START=0x0 END=0x1FFFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
DATABANK NAME=gpr6 START=0x600 END=0x6FF
DATABANK NAME=buffer1 START=0x700 END=0x8FF PROTECTED
DATABANK NAME=buffer2 START=0x900 END=0xAFF PROTECTED
DATABANK NAME=gpr7 START=0xB00 END=0xBFF
DATABANK NAME=gpr8 START=0xC00 END=0xCFF
DATABANK NAME=gpr9 START=0xD00 END=0xEFF
//DATABANK NAME=gpr9 START=0xE00 END=0xEFF
//DATABANK NAME=gpr10 START=0xF00 END=0xFFF
DATABANK NAME=gpr11 START=0xF00 END=0xF5F
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config
SECTION NAME=_SRAM_ALLOC_HEAP RAM=gpr7
SECTION NAME=dataBuffer RAM=buffer1
SECTION NAME=FATBuffer RAM=buffer2

STACK SIZE=0x200 RAM=gpr9

Figure 7.81: Modified Linker File.

Advanced PIC18 Projects 461

Setting the Configuration Files

It is now necessary to customize some of the header files for our requirements. You should

make the following modifications when using the PICDEM PIC18 Explorer Demonstration

board with the PICtail SD Card Daughter board (you are recommended to make copies of

the original files before modifying them in case you may want to return to them):

• Modify File C:\Microchip Solutions\MDD File System-SD Card\Pic18f\FSconfig.h and

enable the following defines:

1. #define FS_MAX_FILES_OPEN 2
2. #define MEDIA_SECTOR_SIZE 512
3. #define ALLOW_FILESEARCH

#define ALLOW_WRITES
#define ALLOW_DIRS
#define ALLOW_PGMFUNCTIONS

4. #define USERDEFINEDCLOCK
5. Make sure that the file object allocation is dynamic. i.e.

#if 1

• Modify File C:\Microchip Solutions\MDD File System-SD Card\Pic18f\Hardwar-

eProfile.h and set the following options (notice that the system clock is 10 MHz, but the

configuration option OSC¼HSPLL will be used in our projects to multiply the clock

by a factor of four, and it should be set to 40 MHz):
1. Set clock rate to 10 MHz:

#define GetSystemClock() 40000000
2. Enable SD-SPI interface.

#define USE_SD_INTERFACE_WITH_SPI
3. Define SD card interface pins and SPI bus pins to be used:

#define SD_CS PORTBBits.RB3
#define SD_CS_TRIS TRISBBits.TRISB3
#define SD_CD PORTBBits.RB4
#define SD_CD_TRIS TRISBBits.TRISB4
#define SD_WE PORTABits.RA4
#define SD_WE_TRIS TRISABits.TRISA4
#define SPICON1 SSP1CON1
#define SPISTAT SSP1STAT
#define SPIBUF SSP1BUF
#define SPISTAT_RBF SSP1STATbits.BF
#define SPICON1bits SSP1CON1bits
#define SPISTATbits SSP1STATbits
#define SPICLOCK TRISCbits.TRISC3
#define SPIIN TRISCbits.TRISC4
#define SPIOUT TRISCbits.TRISC5
#define SPICLOCKLAT LATCbits.LATC3
#define SPIINLAT LATCbits.LATC4
#define SPIOUTLAT LATCbits.LATC5
#define SPICLOCKPORT PORTCbits.RC3
#define SPIINPORT PORTCbits.RC4
#define SPIOUTPORT PORTCbits.RC5

462 Chapter 7

MPLAB XC8 MDD Library Functions

Before writing our program, let us look at the MPLAB XC8 MDD library functions.

The MDD library provides a large number of “File and Disk Manipulation” functions that

can be called and used from our programs. The functions can be collected into following

groups:

• Initialize a card.

• Open/create/close/delete/locate/rename a file on the card.

• Read/write to an opened file.

• Create/delete/change/rename a directory on the card.

• Format a card.

• Set file creation and modification date and time.

Table 7.8eTable 7.13 give a summary of each function briefly.

Table 7.8: Initialize a Card Function.

Function Description

FSInit Initialize the card

Table 7.9: Open/Create/Close/Delete/Locate/Rename Functions.

Function Description

FSfopen/FSfopenpgm This function opens an existing file for reading, or appending at the end of
the file, or creates a new file for writing.

FSfclose Updates and closes a file. The file time-stamping information is also
updated

FSRemove/FSremovepgm Delete a file
FSrename Change the name of a file

FindFirst/FindFirstpgm Locate a file in the current directory that matches the specified name and
attributes

FindNext Locate the next file in the current directory that matches the name and
attributes specified earlier

pgm versions are to be used with PIC18 microcontrollers where the arguments are specified in the ROM.

Table 7.10: Read/Write Functions.

Function Description

FSfread Reads data from an open file to a buffer
FSfwrite Writes data from a buffer to an open file
FSftell Return the current position in a file

FSfprintf Write a formatted string to a file

Advanced PIC18 Projects 463

Library Options

A number of options are available in the MDD library. These options are enabled or

disabled by uncommenting or commenting them, respectively, in include file FSconfig.h.

The available options are given in Table 7.14.

Microcontroller Memory Usage

The MPLAB XC8 program memory and data memory usage with the MDD library

functions is shown in Table 7.15. Note that 512 bytes of data are used for the data buffer

Table 7.11: Create/Delete/Change/Rename Directory.

Function Description

FSmkdir Create a new subdirectory in the current working directory
FSrmdir Delete the specified directory
FSchdir Change the current working directory
FSrename Change the name of a directory
FSgetcwd Return the name of the current working directory

Table 7.12: Format a Card.

Function Description

FSformat Format a card

Table 7.13: File Time-Stamping Function.

Function Description

SetClockVars Set the date and time that will be applied to files when they are created or modified

Table 7.14: MDD Library Options (in File FSconfig.h).

Library Option Description

ALLOW_WRITES Enables write functions to write to the card
ALLOWS_DIRS Enables directory functions (Writes must be enabled)

ALLOW_FORMATS Enable card formatting function (Writes must be enabled)
ALLOW_FILESEARCH Enables file and directory search

ALLOW_PGMFUNCTIONS Enabled pgm functions for getting parameters from the ROM
ALLOW_FSFPRINTF Enables Fsfprintf function (Writes must be enabled)
SUPPORT_FAT32 Enables FAT32 functionality

464 Chapter 7

and an additional 512 bytes are used for the file allocation table buffer. The amount of

required memory also depends on the number of files opened at a time. In Table 7.15, it is

assumed that two files are opened. The first row shows the minimum memory

requirements, and additional memory will be required when any of the subsequent row

functionality is enabled.

Sequence of Function Calls

The sequence of the function calls to read or write data to a file, or to delete an existing

file are given in this section.

Reading From an Existing File

The steps to open en existing file and read from it are as follows:

Call FSInit to initialize the card and SPI bus

Call FSfopen or FSfopenpgm to open the existing file in read mode

Call FSfread to read data from the file

Call FSfclose to close the file

The FSread function can be called as many times as required.

Writing to an Existing File

The steps to open an existing file and append data to it are as follows:

Call FSInit to initialize the card and SPI bus

Call FSfopen or FSfopenpgm to open the existing file in append mode

Call FSwrite to write data to the file

Call FSfclose to close the file

The FSwrite function can be called as many times as required.

Table 7.15: MPLAB C18 Memory Usage with MDD Library.

Functions Included Program Memory (bytes) Data memory (bytes)

Read-only mode (basic) 11099 2121
File search enabled þ2098 þ0

Write enabled þ7488 þ0
Format enabled þ2314 þ0

Directories enabled þ8380 þ90
pgm functions enabled þ288 þ0

FSfprintf enabled þ2758 þ0
FAT32 support enabled þ407 þ4

Advanced PIC18 Projects 465

Deleting an Existing File

The steps to delete an existing file are as follows:

Call FSInit to initialize the card and SPI bus

Call FSfopen or FSfopenpgm to open the existing file in write mode

Call FSremove or FSremovepgm to delete the file

Call FSfclose to close the file

The circuit diagram of the XC8 version of the project is shown in Figure 7.82.

The program listing for the MPLAB XC8 version of the project is shown in Figure 7.83

(XC8-SD.C).

Project 7.9dSD Card-Based Temperature Data Logger

In this project, the design of a temperature data logger system is described. The ambient

temperature is read every 10 s, and 100 records are stored on an SD card, or the contents

Figure 7.82: Circuit Diagram of the XC8 Version of the Project.

466 Chapter 7

/***
PROJECT TO WRITE SHORT TEXT TO AN SD CARD
=======================================

In these projects a PIC18F8722 type microcontroller is used. The microcontroller
is operated with an 10 MHz crystal.

An SD card is connected to the microcontroller as follows:

SD card microcontroller
CS RB3
CLK RC3
DO RC4
DI RC5

The program uses the Microchip MDD library func�ons to read and write to the
SD card.

In this version of the program an LED is connected to port RD0 and the LED is turned
ON when the program is terminated successfully.

Author: Dogan Ibrahim
Date: October 2013
File: XC8-SD.C
***/
#include <p18f8722.h>
#include <FSIO.h>

#pragma config WDT = OFF, OSC = HSPLL,LVP = OFF
#pragma config MCLRE = ON,CCP2MX = PORTC, MODE = MC

#define LED PORTDbits.RD0
#define ON 1
#define OFF 0

/* ================ START OF MAIN PROGRAM ============== */
//
// Start of MAIN Program
//
void main(void)
{

FSFILE *MyFile;
unsigned char txt[]="This is a TEXT message";

TRISD = 0;
PORTD = 0;

//
// Ini�alize the SD card rou�nes
//

while(!FSInit());
//
// Create a new file called MESSAGE.TXT
//

MyFile = FSfopenpgm("MESSAGE.TXT", "w+");
if(MyFile == NULL)while(1);

//
// Write message to the file
//

if(FSfwrite((void *)txt, 1, 22, MyFile) != 22)while(1);
//
// Close the file
//

if(FSfclose(MyFile) != 0)while(1);
//
// Success. Turn ON the LED
//

LED = ON;

while(1);
}

Figure 7.83: MPLAB XC8 Program.

of an already saved file are sent to the PC. The program is menu based, and the user is

given the options of (Figure 7.84)

• Send saved temperature readings on the SD card to a PC.

• Save temperature readings in a new file on SD card.

• Append the temperature readings to an existing file on SD card.

The block diagram of the project is shown in Figure 7.83.

Hardware Description

The circuit diagram of the project is shown in Figure 7.85. An SD card is connected to the

microcontroller. Additionally, the UART pins (RX6 and RX7) are connected to an RS232

SD
CARD

Temp
sensor

Voltage
conv

PC
Microcontroller

Figure 7.84: Block Diagram of the Project.

Figure 7.85: Circuit Diagram of the Project.

468 Chapter 7

connector via a MAX232 voltage level translator chip. The temperature is sensed via the

LM35DZ-type analog temperature sensor, connected to AN0 pin.

LM35DZ is a three-pin analog temperature sensor that can measure temperature with a

1 �C accuracy in the interval 0 to þ100 �C. One pin of the device is connected to the

supply (þ5 V), the other pin to the ground and the third pin is the analog output. The

output voltage of the sensor is directly proportional to the temperature, that is,

Vo¼ 10 mV/�C. If, for example, the temperature is 10 �C, the output voltage will be

100 mV. Similarly, if the temperature is 35 �C, the output voltage of the sensor will be
350 mV.

Project Program

mikeoC Pro for PIC

When the program is started, the following menu will be displayed on the PC screen:

TEMPERATURE DATA LOGGER

1. Send temperature data to the PC
2. Save temperature data in a new file
3. Append temperature data to an existing file

Choice ?

The user is then expected to choose the required option. At the end of an option, the

program does not return to the menu and the system should be restarted to display the

menu again.

The mikroC Pro for PIC program listing of the project is shown in Figure 7.86

(MIKROC-SD2.C). In this project, a file called “TEMPERTR.TXT” is created on the SD

card to store the temperature readings.

The following functions are created at the beginning of the program, before the main

program:

Newline: This function sends a carriage return and a line feed to the UART so that the

cursor moves to the next line.

Get_Temperature: This function starts the A/D conversion and receives the converted data

into a variable called Vin. The voltage corresponding to this value is then calculated in

millivolts and divided by 10 to find the actual measured temperature in degrees Celsius.

The decimal part of the temperature found is then converted into string form using

function LongToStr. The leading spaces are removed from this string, and the resulting

string is stored in character array temperature. Then the fractional parts of the measured

temperature, a carriage return, and a line feed are added to this character array, which is

later written onto the SD card.

Advanced PIC18 Projects 469

/***
TEMPERATURE DATA LOGGER PROJECT
===============================

In this project an SD card is connected to PORTC as follows:

CS RC2
CLK RC3
DO RC4
DI RC5

In addi�on, a MAX232 type RS232 voltage level converter chip is connected to serial ports RC6
and RC7. Also, a LM35DZ type analog temperature sensor is connected to analog input AN0 of the
microcontroller.

The program is menu based. The user is given op�ons of either to send the saved temperature
data to a PC, or to read and save new data on the SD card, or to read temperature data and append
to the exis�ng file. Temperature is read at every 10 s.

The temperature is stored in a file called "TEMPERTR.TXT"

Author: Dogan Ibrahim
Date: September 2013
File: MIKROC-SD2.C
***/
// MMC module connec�ons
sbit Mmc_Chip_Select at LATC2_bit;
sbit Mmc_Chip_Select_Direc�on at TRISC2_bit;
// End of MMC module connec�ons

char filename[] = "TEMPERTR.TXT";
unsigned short character;
unsigned long file_size,i,rec_size;
unsigned char ch1,ch2,flag,ret_status,choice;
unsigned char temperature[10],txt[12];

//
// This func�on sends carriage-return and line-feed to USART
//
void Newline()
{

Uart1_Write(0x0D); // Send carriage-return
Uart1_Write(0x0A); // Send line-feed

}

//
// This func�on sends a space character to USART
//
void Space()
{

Figure 7.86: mikroC Pro for PIC Program.

470 Chapter 7

Uart1_Write(0x20);
}

//
// This func�on reads the temperature from analog input AN0
//
void Get_Temperature()
{

unsigned long Vin, Vdec,Vfrac;
unsigned char op[12];
unsigned char i,j;

Vin = Adc_Read(0); // Read from channel 0 (AN0)
Vin = 488*Vin; // Scale up the result
Vin = Vin /10; // Convert to temperature in C
Vdec = Vin / 100; // Decimal part
Vfrac = Vin % 100; // Frac�onal part
LongToStr(Vdec,op); // Convert Vdec to string in "op"

//
// Remove leading blanks
//

j=0;
for(i=0;i<=11;i++)
{
if(op[i] != ' ') // If a blank
{

temperature[j]=op[i];
j++;

}
}

temperature[j] = '.'; // Add "."
ch1 = Vfrac / 10; // frac�onal part
ch2 = Vfrac % 10;
j++;
temperature[j] = 48+ch1; // Add frac�onal part
j++;
temperature[j] = 48+ch2;
j++;
temperature[j] = 0x0D; // Add carriage-return
j++;
temperature[j] = 0x0A; // Add line-feed
j++;
temperature[j]='\0';

}

//

Figure 7.86
cont’d

Advanced PIC18 Projects 471

// Start of MAIN program
//
void main()
{

unsigned char i;

ANSELC = 0; // Configure PORTC as digital
ANSELA = 1; // Configure RA0 as analog
TRISA = 0x1; // RA0 (AN0) is input

//
// Configure the serial port
//

Uart1_Init(2400);
//
// Ini�alise the SPI bus
//

SPI1_Init_Advanced(_SPI_MASTER_OSC_DIV64, _SPI_DATA_SAMPLE_MIDDLE,
_SPI_CLK_IDLE_LOW, _SPI_LOW_2_HIGH);

//
// Ini�alise the SD card FAT file system
//

while(Mmc_Fat_Init());
//
// Display the MENU and get user choice
//
while(1)
{

Newline();
Newline();
Uart1_Write_Text("TEMPERATURE DATA LOGGER"); // Display heading on the PC
Newline();
Newline();
Uart1_Write_Text("1. Send temperature data to the PC"); // Display opt 1 on the PC
Newline();
Uart1_Write_Text("2. Save temperature data in a new file"); // Display opt 2 on the PC
Newline();
Uart1_Write_Text("3. Append temperature data to an exis�ng file"); // Display opt 3 on the PC
Newline();
Newline();
Uart1_Write_Text("Choice ? "); // Get choice

//
// Read a character from the PC keyboard
//

flag = 0;
do {
if (Uart1_Data_Ready() == 1) // If data received
{
choice = Uart1_Read(); // Read the received data
Uart1_Write(choice); // Echo received data
flag = 1;

Figure 7.86
cont’d

472 Chapter 7

}
} while (!flag);
Newline();
Newline();
rec_size = 0;

//
// Now process user choice
//

switch(choice)
{

case '1':
ret_status = Mmc_Fat_Assign(&filename,1);
if(!ret_status)
{

Uart1_Write_Text("File does not exist...");
Newline();
Uart1_Write_Text("Try again...");

}
else
{
//
// Read the data and send to UART
//
Uart1_Write_Text("Sending saved data to the PC...");
Newline();
Mmc_Fat_Reset(&file_size);
for(i=0; i<file_size; i++)
{

Mmc_Fat_Read(&character);
Uart1_Write(character);

}
Newline();
Uart1_Write_Text("End of data...");

}
break;

case '2':
//
// Start the A/D converter, get temperature readings every
// 10 s, and then save in a NEW file
//
Uart1_Write_Text("Saving data in a NEW file...");
Newline();
Mmc_Fat_Assign(&filename,0x80); // Assign the file
Mmc_Fat_Rewrite();
Mmc_Fat_Write("TEMPERATURE DATA - SAVED EVERY 10 SECONDS\r\n",43);
//
// Read the temperature from A/D converter, format and save
//
for(i = 0; i < 100; i++)
{

Figure 7.86
cont’d

Advanced PIC18 Projects 473

Mmc_Fat_Append();
Get_Temperature();
Mmc_Fat_Write(temperature,9);
rec_size++;
LongToStr(rec_size,txt);
Newline();
Uart1_Write_Text("Saving record:");
Uart1_Write_Text(txt);
Delay_ms(10000);

}
break;

case '3':
//
// Start the A/D converter, get temperature readings every
// 10 s, and then APPEND to the exis�ng file
//
Uart1_Write_Text("Appending data to the exis�ng file...");
Newline();
ret_status = Mmc_Fat_Assign(&filename,1); // Assign the file
if(!ret_status)
{

Uart1_Write_Text("File does not exist - can not append...");
Newline();
Uart1_Write_Text("Try again...");
Newline();

}
else
{
//
// Read the temperature from A/D converter, format and save
//

for(i = 0; i < 100; i++)
{

Mmc_Fat_Append();
Get_Temperature();
Mmc_Fat_Write(temperature,9);
rec_size++;
LongToStr(rec_size,txt);
Newline();
Uart1_Write_Text("Appending new record:");
Uart1_Write_Text(txt);
Delay_ms(10000);

}
}
break;

default:
Uart1_Write_Text("Wrong choice.Try again...");

}
}

}

Figure 7.86
cont’d

474 Chapter 7

The following operations are performed inside the main program:

• Initialize the UART to 2400 Baud.

• Initialize the SPI bus.

• Initialize the FAT file system.

• Display menu on the PC screen.

• Get a choice from the user (between 1 and 3).

• If the choice¼ 1, then open the saved temperature file, read the temperature records,

and send them to the PC.

• If the choice¼ 2, then create a new temperature file, get new temperature readings

every 10 s, and store 100 records in the file.

• If the choice¼ 3, then assign to the temperature file, get new temperature readings

every 10 s, and append them to the existing temperature file. Hundred records are

appended to the file.

• If the choice is not 1e3, display an error message on the screen.

The menu options are described below in more detail:

Option 1: The program attempts to open an existing temperature file with name

TEMPERTR.TXT (notice here that Mmc_Fat_Assign function is used. We could have

used the Mmc_Fat_Open function instead). If the file does not exist, the error messages:

”File does not exist...” and “Try again...” are displayed on the screen. If on the other

hand the temperature file already exists, then the message: “Sending saved data to the

PC...” is displayed on the PC screen. Mmc_Fat_Reset function is called to set the file

pointer to the beginning of the file and also to return the size of the file in bytes. Then a

for loop is formed, temperature records are read from the card 1 byte at a time using

function Mmc_Fat_Read, and these records are sent to the PC screen. At the end of the

data, the message “End of data.” is sent to the PC screen.

Option 2: In this option, the message: “Saving data in a NEW file.”is sent to the PC

screen, a new file is created, with the create flag set to 0x80. The message

“TEMPERATURE DATA e SAVED EVERY 10 SECONDS” is written on the first

line of the file using function Mmc_Fat_Write. Then, a for loop is formed, the SD card

is set into file append mode by calling function Mmc_Fat_Append, and a new

temperature reading is obtained by calling function Get_Temperature. The temperature

is then written to the SD card. Also, the current record number is shown on the PC

screen to indicate that the program is actually working. This process is repeated after a

10-s delay, until 100 records are written to the file. After this time, the main menu is

displayed again.

Option 3: This option is very similar to Option 2. The only difference is that here a new

file is not created, but the existing temperature file is opened in the append mode, and 100

Advanced PIC18 Projects 475

records are written to the file. If the file does not exist, then an error message is displayed

on the PC screen.

Default: If the user entry is a number outside 1e3, then this option runs and displays the

error message “Wrong choice.Try again.” on the PC screen.

The project can be tested by connecting the output of the microcontroller to the serial port

of a PC (e.g. COM1) and then running a terminal emulation software (e.g. Hyperterm or

mikroC Pro for PIC built-in terminal emulatordUSART Terminal). Set communication

parameters to 2400 baud, 8 data bits, 1 stop bit, no parity bit, and no flow control.

Figure 7.87 shows a snapshot of the PC screen when Option 2 is selected to save

temperature records in a new file. Note that the current record numbers are displayed on

the screen as they are written to the SD card.

Figure 7.88 shows a screen snapshot where Option 1 is selected to read the temperature

records from the SD card and display them on the PC screen.

Finally, Figure 7.89 shows a screen snapshot when option 3 is selected to append the

temperature readings to the existing file.

MPLAB XC8

The MPLAB XC8 version of the program is left as an exercise to the reader.

Figure 7.87: Saving Temperature Records on the SD Card with Option 2.

476 Chapter 7

Project 7.10dUsing Graphics LCDdDisplaying Various Shapes

Graphics LCD (GLCDs) are used in many consumer applications, such as mobile phones,

MP3 players, GPS systems, games, and educational toys. Another important applications

area of GLCDs is in industrial automation and control where various plant characteristics

can easily be monitored or changed.

There are several GLCD screens and GLCD controllers in use currently. For small

applications, the 128� 64 pixel monochrome GLCD with the KS0107/8 controller is one

of the most commonly used display. For larger display requirements and more complex

projects, one can select the 240� 128 pixel monochrome GLCD screen with the T6963

(or RA6963) controller. For color GLCD-based applications, thin film transistor

(TFT)-type displays seem to be the best choice currently.

Figure 7.88: Displaying the Records on the PC Screen with Option 1.

Figure 7.89: Saving Temperature Records on an SD Card with Option 3.

Advanced PIC18 Projects 477

In this project, we shall be looking at how the standard 128� 64 GLCD can be interfaced

and used in microcontroller-based projects. In this simple project, we shall see how to

display various shapes on the GLCD.

The 128� 64 Pixel GLCD

These GLCDs have dimensions of 7.8� 7.0 cm and a thickness of 1.0 cm. The viewing

area is 6.2� 4.4 cm. The display consists of 128� 64 pixels, organized as 128 pixels in

the horizontal direction and 64 pixels in the vertical direction. The display operates with a

þ5-V supply, consumes typically 8-mA current, and comes with a built-in KS0108-type

display controller. A backlight LED is provided for visibility in low ambient light

conditions. This LED consumes about 360 mA when operated. Basically two controllers

are used internally: one for segments 1e64, and the other one for segments 65e128.

The display is connected to the external world through a 20-pin SIL (Single-In-Line) type

connector. Table 7.16 gives the pin numbers and corresponding pin names.

The description of each pin is as follows:

/CSA, /CSB: Chip select pins for the two controllers. The display is logically divided into

two sections, and these signals control which half should be enabled at any time.

Table 7.16: 1283 64 Pixel GLCD Pin Configuration.

Pin No Pin Name Function

1 \CSA or CS1 Chip select for controller 1
2 \CSB or CS2 Chip select for controller 2
3 VSS Ground
4 VDD þ5 V
5 V0 Contrast adjustment
6 D/I Register select
7 R/W Read-write
8 E Enable
9 DB0 Data bus bit 0
10 DB1 Data bus bit 1
11 DB2 Data bus bit 2
12 DB3 Data bus bit 3
13 DB4 Data bus bit 4
14 DB5 Data bus bit 5
15 DB6 Data bus bit 6
16 DB7 Data bus bit 7
17 RST Reset
18 VEE Negative voltage
19 A LED þ4.2 V
20 K LED ground

478 Chapter 7

VCC, GND: Power supply and ground pins.

V0: Contrast adjustment. A 10 K potentiometer should be used to adjust the contrast. The

wiper arm should be connected to this pin, and the other two arms should be connected to

VEE and the ground.

D/I: Register select pin. Logic HIGH is data mode, logic LOW is instruction mode.

R/W: Readewrite pin. Logic HIGH is read, logic LOW is write.

E: Enable pin. Logic HIGH to LOW to enable.

DB0eDB7: Data bus pins.

RST: Reset pin. The display is reset if this pin is held LOW for at least 100 ns. During

reset, the display is off, and no commands can be executed by the display controller.

VEE: Negative voltage output pin for contrast adjustment.

A, K: Power supply and ground pins for the backlight. Pin K should be connected to the

ground and pin A should be connected to a þ5-V supply through a 10-U resistor.

Figure 7.90 shows the connection of the GLCD to a microcontroller with the contrast

adjustment potentiometer and backlight LED connections shown as well.

Figure 7.90: Connecting the 1283 64 GLCD to a Microcontroller.

Advanced PIC18 Projects 479

Operation of the GLCD

The internal operation of the GLCD and the KS0108 controller is very complex and

beyond the scope of this book. Most high-level microcontroller compiler developers

provide libraries for using these displays in their programming languages. In this

project, only the basic information required before using the GLCD library is given.

Figure 7.91 shows the structure of the GLCD as far as programming the display is

concerned. The 128� 64 pixel display is logically split into two halves. There are two

controllers: controller A controlling the left half of the display and controller B

controlling the right half, where the two controllers are addressed independently. Each

half of the display consists of 8 pages where each page is 8 bits high and 8 bytes (64

bits) wide. Thus, each half consists of 64� 64 bits. Text is written to the pages of the

display. Thus, a total of 16 characters across can be written for a given page on both

halves of the display. Considering that there are 8 pages, a total of 128 characters can

be written on the display.

The origin of the display is the top left hand corner (Figure 7.92). The X-direction

extends toward the right, and Y-direction extends toward the bottom of the display.

In the X-direction, the pixels range from 0 to 127, while in the Y-direction the pixels

range from 0 to 63. Coordinate (127, 63) is at the bottom right-hand corner of the

display.

Controller 1 Controller 2
PAGE 0 PAGE 0
PAGE 1 PAGE 1
PAGE 2 PAGE 2
PAGE 3 PAGE 3
PAGE 4 PAGE 4
PAGE 5 PAGE 5
PAGE 6 PAGE 6
PAGE 7 PAGE 7
64 bits 64 bits

0 .….… 63
1
2 ……..
3
4 ….…
5
6
7

64 bits

64 bits

Figure 7.91: Structure of the GLCD.

480 Chapter 7

mikroC Pro for PIC GLCD Library Functions

mikroC Pro for PIC language supports the 128� 64 pixel GLCDs and provides a large

library of functions for the development of GLCD-based projects. In actual fact there are

libraries for several different types of GLCDs. In this section, we shall be looking at the

commonly used library functions provided for the 128� 64 GLCDs, working with the

KS0108 controller.

Glcd_Init

This function initializes the GLCD module. The GLCD control and data lines can be

configured by the user, but the eight data lines must be on a single port. Before this

function is called, the interface between the GLCD and the microcontroller must be

defined using sbit type statements of the following format. In the following example, it is

assumed that the GLCD data lines are connected to PORTD, and in addition, the CS1,

CS2, RS, RW, EN, and RST lines are connected to PORTB:

// GLCD pinout settings
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direction at TRISB0_bit;
sbit GLCD_CS2_Direction at TRISB1_bit;
sbit GLCD_RS_Direction at TRISB2_bit;

Figure 7.92: GLCD Coordinates.

Advanced PIC18 Projects 481

sbit GLCD_RW_Direction at TRISB3_bit;
sbit GLCD_EN_Direction at TRISB4_bit;
sbit GLCD_RST_Direction at TRISB5_bit;

Example Call: Glcd_Init();

Glcd_Set_Side

This function selects the GLCD side based on the argument, which is the x coordinate.

Values from 0 to 63 specify the left side of the display, while values from 64 to 127

specify the right side.

Example Call: Glcd_Set_Side(0); // Select left hand side of display

Glcd_Set_X

This function sets the x-axis position from the left border of the GLCD within the selected

display side.

Example Call: Glcd_Set_X(10); // Set position to pixel 10

Glcd_Set_Page

This function selects a page of the GLCD. The argument to the function is the page

number between 0 and 7.

Example Call: Glcd_Set_Page(2); // Select Page 2

Glcd_Write_Data

This function writes 1 byte to the current location on the GLCD memory and moves to the

next location. The GLCD side and page number should be set before calling this function.

Example Call: Glcd_Write_Data(MyData);

Glcd_Fill

This function fills the GLCD memory with the specified byte pattern, where the pattern is

passed as an argument to the function.

Example Call: Glcd_Fill(0); // Clears the screen

Glcd_Dot

This function draws a dot on the GLCD at coordinates x_pos, y_pos. The x and y

coordinates and the color of the dot are passed as arguments. Valid x coordinates are

482 Chapter 7

0e127, valid y coordinates are 0e63, and valid colors are 0e2, where 0 clears the dot, 1

places a dot, and 2 inverts the dot.

Example Call: Glcd_Dot(0, 10, 1); // Place a dot at x = 0, y = 10

Glcd_Line

This function draws a line on the GLCD. The arguments passed to the function are

x_start: x coordinate of the line starting position (0 to 127)
y_start: y coordinate of the line starting position (0 to 63)
x_end: x coordinate of the line ending position (0 to 127)
y_end: y coordinate of the line ending position (0 to 63)
colour: The colour value between 0 and 2. 0 is white, 1 is black, and 2

inverts each dot.
Example Call: Glcd_Line(0, 0, 5, 10, 1); // Draw a line from (0,0) to (5,10)

Glcd_V_Line

This function draws a vertical line on the GLCD. The arguments passed to the function

are

y_start: y coordinate of the line starting position (0 to 63)
y_end: y coordinate of the line ending position (0 to 63)
x_pos: x coordinate of the vertical line (0 to 127)
colour: The colour value between 0 and 2. 0 is white, 1 is black, and 2

inverts each dot.
Example Call: Glcd_V_Line(4, 10, 5, 1); // Draw a line from (5,4) to (5,10)

Glcd_H_Line

This function draws a horizontal line on the GLCD. The arguments passed to the function

are

x_start: x coordinate of the line starting position (0 to 127)
x_end: x coordinate of the line ending position (0 to 127)
y_pos: y coordinate of the vertical line (0 to 63)
colour: The colour value between 0 and 2. 0 is white, 1 is black, and 2

inverts each dot.
Example Call: Glcd_H_Line(15, 55, 25, 1); // Draw a line from (15,25) to (55,25)

Glcd_Rectangle

This function draws a rectangle on the GLCD. The arguments passed to the function are

x_upper_left: x coordinate of the upper left corner of rectangle (0 to 127)
y_upper_left: y coordinate of the upper left corner of rectangle (0 to 63)

Advanced PIC18 Projects 483

x_bottom_right: x coordinate of the lower right corner of rectangle (0 to 127)
y_bottom_right: y coordinate of the lower right corner of rectangle (0 to 63)
colour: The colour value between 0 and 2. 0 is white, 1 is black, and 2

inverts each dot.
Example Call: Glcd_Rectangle(5, 5, 10, 10); // Draw rectangle between (5,5)

and (10,10)

Glcd_Rectangle_Round_Edges

This function draws a rounded-edge rectangle on the GLCD. The arguments passed to the

function are

x_upper_left: x coordinate of the upper left corner of rectangle (0 to 127)
y_upper_left: y coordinate of the upper left corner of rectangle (0 to 63)
x_bottom_right: x coordinate of the lower right corner of rectangle (0 to 127)
y_bottom_right: y coordinate of the lower right corner of rectangle (0 to 63)
round radius: radius of the rounded edge
colour: The colour value between 0 and 2. 0 is white, 1 is black, and 2

inverts each dot.
Example Call: Glcd_Rectangle_Round_Edge(5, 5, 10, 10, 15, 1);

// Draw rectangle between (5,5) and (10,10) with edge radius 15

Glcd_Rectangle_Round_Edges_Fill

This function draws a filled rounded edge rectangle on the GLCD with color. The

arguments passed to the function are

x_upper_left: x coordinate of the upper left corner of rectangle (0 to 127)
y_upper_left: y coordinate of the upper left corner of rectangle (0 to 63)
x_bottom_right: x coordinate of the lower right corner of rectangle (0 to 127)
y_bottom_right: y coordinate of the lower right corner of rectangle (0 to 63)
round radius: radius of the rounded edge
colour: colour of the rectangle border. The colour value is between 0 and

2. 0 is white, 1 is black, and 2 inverts each dot.
Example Call: Glcd_Rectangle_Round_Edges_Fill(5, 5, 10, 10, 15, 1);

// Draw rectangle between (5,5) and (10,10) with edge radius 15

Glcd_Box

This function draws a box on the GLCD. The arguments passed to the function are:

x_upper_left: x coordinate of the upper left corner of box (0 to 127)
y_upper_left: y coordinate of the upper left corner of box (0 to 63)
x_bottom_right: x coordinate of the lower right corner of box (0 to 127)
y_bottom_right: y coordinate of the lower right corner of box (0 to 63)
colour: colour of the box fill. The colour value is between 0 and 2. 0 is

white, 1 is black, 2 inverts each dot.
Example Call: Glcd_Box(5, 15, 20, 30, 1); // Draw box between (5,15) and (20,30)

484 Chapter 7

Glcd_Circle

This function draws a circle on the GLCD. The arguments passed to the function are as

follows:

x_center: x coordinate of the circle center (0 to 127)
y_center: y coordinate of the circle center (0 to 63)
radius: radius of the circle
colour: colour of the circle line. The colour value is between 0 and 2.

0 is white, 1 is black, 2 inverts each dot.
Example Call: Glcd_Circle(30, 30, 5, 1);

// Draw circle with center at (30,30), and radius 5

Glcd_Circle_Fill

This function draws a filled circle on the GLCD. The arguments passed to the function are

as follows:

x_center: x coordinate of the circle center (0 to 127)
y_center: y coordinate of the circle center (0 to 63)
radius: radius of the circle
colour: The colour value is between 0 and 2. 0 is white, 1 is black, 2

inverts each dot.
Example Call: Glcd_Circle_Fill(30, 30, 5, 1);

// Draw a filled circle with center at (30,30), and radius 5

Glcd_Set_Font

This function sets the font that will be used with functions: Glcd_Write_Char and

Glcd_Write_Text. The arguments passed to the function are

activeFont: font to be set. Needs to be formatted as an array of char
aFontWidth: width of the font characters in dots.
aFontHeight: height of the font characters in dots.
aFontOffs: number that represents difference between the mikroC Pro for PIC

character set and regular ASCII set (e.g. if A is 65 in ASCII
character, and A is 45 in the mikroC Pro for the PIC character set,
aFontOffs is 20)

List of supported fonts are as follows:

• Font_Glcd_System3x5,

• Font_Glcd_System5x7,

• Font_Glcd_5x7,

• Font_Glcd_Character8x7.

Example Call: Glcd_Set_Font(&MyFont, 5, 7, 32);
//Use custom 5x7 font MyFont which starts with space character (32)

Advanced PIC18 Projects 485

Glcd_Set_Font_Adv

This function sets the font that will be used with functions: Glcd_Write_Char_Adv and

Glcd_Write_Text_Adv. The arguments passed to the function are

activeFont: font to be set. Needs to be formatted as an array of char.
font_colour: sets font colour.
font_orientation: sets font orientation.
Example Call: Glcd_Set_Font_Adv(&MyFont, 0, 0);

Glcd_Write_Char

This function displays a character on the GLCD. if no font is specified, then the default

Font_Glcd_System5x7 font supplied with the library will be used. The arguments passed

to the function are

chr: character to be displayed
x_pos: character starting position on x-axis (0 to 127- FontWidth)
page_num: the number of the page on which the character will be displayed (0 to 7)
colour: colour of the character between 0 and 2. 0 is white, 1 is black, 2

inverts each dot
Example Call: Glcd_Write_Char(’Z’, 10, 2, 1);

//Display character Z at x position 10, inside page 2

Glcd_Write_Char_Adv

This function displays a character on the GLCD at coordinates (x, y).

ch: character to be displayed.
x: character position on x-axis.
y: character position on y-axis.
Example Call: Glcd_Write_Char_Adv(’A’, 20, 10,); // Display A at (20,10)

Glcd_Write_Text

This function displays text on the GLCD. if no font is specified, then the default

Font_Glcd_System5x7 font supplied with the library will be used. The arguments passed

to the function are

text: text to be displayed
x_pos: text starting position on x-axis.
page_num: the number of the page on which text will be displayed (0 to 7)
colour: The colour parameter between 0 and 2. 0 is white, 1 is black and 2

inverts each dot.
Example Call: Glcd_Write_Text(“My Computer”, 10, 3, 1);

//Display “My Computer” at x position 10 in page 3

486 Chapter 7

Glcd_Write_Text_Adv

This function displays text on the GLCD at coordinates (x, y). The arguments passed to

the function are as follows:

text: text to be displayed
x: text position on x-axis.
y: text position on y-axis.
Example Call: Glcd_Write_Text_Adv(“My Computer”, 10, 10);

//Display text “My Computer” at coordinates (10,10)

Glcd_Write_Const_Text_Adv

This function displays text on the GLCD, where the text is assumed to be located in the

program memory of the microcontroller. The text is displayed at coordinates (x, y). The

arguments passed to the function are

text: text to be displayed
x: text position on x-axis.
y: text position on y-axis.

const char Txt[] = “My Computer”;
Example Call: Glcd_Write_Text_Adv(Txt, 10, 10);

//Display text “My Computer” at coordinates (10,10)

Glcd_Image

This function displays the bitmap image on the GLCD. The image to be displayed is

passed as an argument to the function. The bitmap image array must be located in the

program memory of the microcontroller. The GLCD Bitmap Editor of mikroC Pro for PIC

compiler can be used to convert an image to a constant so that it can be displayed by this

function.

Example Call: Glcd_Image(MyImage);

Project Hardware

The circuit diagram of the project is shown in Figure 7.93. The GLCD is connected to

PORTB and PORTD of the microcontroller. The microcontroller is operated from an

8-MHz crystal.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program listing is given in Figure 7.94

(MIKROC-GLCD1.C). At the beginning of the program, the GLCD connections are

Advanced PIC18 Projects 487

defined, and PORTB and PORTD are configured as digital. Then, the following

shapes are drawn on the GLCD:

• A rectangle with rounded edges at coordinates (5, 5), (123, 59) and edge radius 10;

• A rectangle at coordinates (15, 15), (113, 49);

• A line from (50, 30) to (70, 30);

• A circle with center at (30, 30) and radius 10;

• A filled circle with the center at (50, 42) and radius 5;

• Text “Txt” at the x coordinate 80 and page 3;

• Text “LCD” at the x coordinate 80 and page 4;

• Text “micro” at coordinates (80, 38).

Figure 7.93: Circuit Diagram of the Project.

488 Chapter 7

/***
GLCD LIBRARY EXAMPLE

This program uses some of the mikroC GLCD library func�ons to show how the func�ons should
be used in programs.

The program was loaded to a PIC18F45K22 microcontroller and operated with a 8 MHz crystal.
The EasyPIC 7 development board is used for this project

Author: Dogan Ibrahim
Date: October, 2013
File: MIKROC-GLCD1.C
***/

// Glcd module connec�ons
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direc�on at TRISB0_bit;
sbit GLCD_CS2_Direc�on at TRISB1_bit;
sbit GLCD_RS_Direc�on at TRISB2_bit;
sbit GLCD_RW_Direc�on at TRISB3_bit;
sbit GLCD_EN_Direc�on at TRISB4_bit;
sbit GLCD_RST_Direc�on at TRISB5_bit;
// End Glcd module connec�ons

void main()
{

ANSELB = 0; // Configure PORTB as digital
ANSELD = 0; // Configure PORTD as digital

Glcd_Init(); // Ini�alize GLCD
Glcd_Fill(0x00); // Clear GLCD
Glcd_rectangle_round_edges(5,5,123,59,10,1); // Draw rectangle
Glcd_Rectangle(15,15,113,49,1); // Draw rectangle
Glcd_Line(50, 30, 70, 30, 1); // Draw line
Glcd_Circle(30,30,10,1); // Draw circle
Glcd_Circle_Fill(50,42,5,1); // Draw filled circle
Glcd_Set_Font(Font_Glcd_Character8x7, 8, 7, 32); // Change Font

Glcd_Write_Text("Txt", 80, 3, 2); // Write string "Txt"
Glcd_Write_Text("LCD",80,4,1); // Write string "LCD"
Glcd_Write_Text_Adv("micro",80,38); // Write string "micro"

}

Figure 7.94: mikroC Pro for PIC Program.

Advanced PIC18 Projects 489

Figure 7.95 shows the shapes drawn on the GLCD.

Project 7.11dBarometer, Thermometer and Altimeter Display
on a GLCD

This project is about using a sensor to read and display the pressure, temperature, and the

altitude on a GLCD.

The project is based on using a MEMS sensor called LPS331AP. This is basically a

pressure sensor, but it can also measure the ambient temperature. The altitude is calculated

mathematically from the pressure measurements.

It is necessary to know the features and basic operation of this sensor before it can be used

in projects. The features of this sensor are as follows:

• A 260e1260 mbar absolute pressure measurement;

• A 0 to þ80 �C temperature measurement;

• Very low-power consumption (30 mA in the high-resolution mode);

• A 24-bit digital pressure output in millibars;

• A 16-bit digital temperature output in degrees Celsius;

• SPI and I2C interfaces;

• A þ1.71- to þ3.6-V supply voltage.

Figure 7.95: Shapes Drawn on the GLCD.

490 Chapter 7

The LPS331AP is a 16-pin device, having dimensions of 3� 3� 1 mm. In this project, it

is operated in the I2C communications mode. When operated in this mode the following

pins are used:

Pin Description
1 VDD_IO (power supply)
4 SCL (I2C clock)
5 GND
6 SDA (I2C data)
7 SA0 (I2C device address LSB)
8 CS (Set to 1 for I2C mode)
9 INT2 (interrupt or data ready)

11 INT1 (interrupt or data ready)
12 GND
13 GND
14 VDD (power supply)
15 VCCA (analog power supply)
16 GND

When pin 7 is connected to the supply voltage, the device write and read addresses are

0xBA and 0xBB, respectively. Alternatively, when connected to the ground, the device

write and read addresses are 0xB8 and 0xB9, respectively.

Figure 7.96 shows the output block diagram of the LPS331AP sensor. The device is

controlled with 19 registers (Table 7.17). A 24-bit reference pressure output

(registers REF_P_XL, REF_P_L, and REF_P_H) is subtracted from the measure

sensor pressure to obtain the 24-bit output pressure via registers

PRESS_POUT_XL_REH, PRESS_OUT_L, and PRESS_OUT_H. The measured

pressure is compared with two threshold pressures preloaded into registers

THS_P_LOW_REG and THS_P_HIGH_REG. If the measured pressure is higher than

THS_P_HIGH_REG, then a High Pressure Interrupt (PH) is generated. Similarly, if

the measured pressure is lower than THS_P_LOW_REG, then a Low Pressure

Interrupt (PL) is generated.

Pressure
+

Temp
sensor

Microcontroller GLCD

Figure 7.96: Block Diagram of the Project.

Advanced PIC18 Projects 491

The functions of some important registers are described below:

WHO_AM_I: This register is used to identify the device and returns 0xBB.

RES_CONF: This register is used to select the internal pressure and temperature

averaging to be used in a measurement. Loading the recommended value 0x78

configures for 256 averages for the pressure and 128 averages for the temperature

measurements.

CTRL_REG1: This register controls the active/power-down mode (bit 7), output data rates

for pressure and temperature (bits 4e6), and output update control bit (bit 2). Loading

0x04 configures the device to enter power-down mode, one-shot pressure and temperature

measurement, that is, a request must me done for a measurement.

CTRL_REG2: Bit 0 of this register controls the one-shot action. When the bit is set to 1, a

new measurement starts. The bit is cleared at the end of the measurement.

STATUS_REG: This register can be used to check if new pressure or temperature data is

available. Bit 0 (T_DA) is set to 1 if new temperature data are available. Similarly, bit 1

(P_DA) is set to 1 when new pressure data are available.

PRESS_OUTxxx: 24-bit pressure output registers.

TEMP_OUTxxx: 16-bit temperature output registers.

Table 7.17: LPS331AP Registers.

Name Type Address (Hex)

REF_P_XL R/W 08
REF_P_L R/W 09
REF_P_H R/W 0A

WHO_AM_I R 0F
RES_CONF R/W 10
CTRL_REG1 R/W 20
CTRL_REG2 R/W 21
CTRL_REG3 R/W 22

INT_CFG_REG R/W 23
INT_SOURCE_REG R 24
THS_P_LOW_REG R/W 25
THS_P_HIGH_REG R/W 26

STATUS_REG R 27
PRESS_POUT_XL_REH R 28

PRESS_OUT_L R 29
PRESS_OUT_H R 2A
TEMP_OUT_L R 2B
TEMP_OUT_H R 2C
AMP_CTRL R/W 30

492 Chapter 7

The block diagram of the project is shown in Figure 7.96. The pressure is displayed in

integer format while the other two are displayed in fractional format:

P (mb) : nnnn
T(C) : nn.n
A(ft) : nnn.n

Project Hardware

The circuit diagram of the project is shown in Figure 7.97. The sensor is connected to

the I2C pins of the microcontroller via pull-up resistors. The SA0 pin is connected to

supply voltage so that the device write and read addresses are 0xBA and 0xBB,

respectively. The CS pin is connected to the supply voltage to select I2C communication

protocol. The GLCD is connected to PORTB and PORTD pins in the default

configuration.

Figure 7.97: Circuit Diagram of the Project.

Advanced PIC18 Projects 493

An 8-MHz crystal is used for timing, but the clock PLL is enabled so that the actual

running clock frequency is 32 MHz.

Project PDL

The PDL of the project is shown in Figure 7.98.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program is shown in Figure 7.99 (MIKRO-GLCD2.C). At the

beginning of the program, the GLCD connections to the microcontroller are defined. Also,

the register names and addresses of the LPS331AP chip are defined. Inside the main

program, PORTB, PORTC, and PORTD are configured as digital. The GLCD module is

initialized and the screen is cleared, the I2C module is initialized (with 100 kHz clock rate).

The program then initializes the LPS331AP chip with full resolution and One-shot

operation mode. The rest of the program is executed in an endless loop. Here, the pressure

and temperature are read from the sensor, the altitude is calculated, and all three

parameters displayed on the GLCD screen. This process is repeated every 5 s.

According to the LPS331AP data sheet, the pressure must be divided by 4096 (or shifted

right by 12 bits) to convert it to millibars. The temperature must be divided by 480 and

then 42.5 added to obtain the readings in degrees centigrade. The altitude calculation is

done based on a formula given in the LPS331AP application note. This formula depends

only on the pressure reading and is very approximate, given by

Altitude ðfeetÞ ¼
"
1�

�
Pressure

1013:25

�0:190284
#
� 145; 366:45:

The following functions are used in the project:

Pressure_Write: Write a byte to the sensor chip.

Pressure_Read: Read a byte from the sensor chip.

Init_Pressure: Initialize the sensor chip.

Read_Pressure_Value: Send a One-shot signal to the sensor chip to start measurement.

Read the pressure when it is ready, convert to millibars, and return the value to the calling

program.

Read_Temperature_Value: Read the temperature when it is ready, convert into degrees

Centigrade, and return to the calling program.

494 Chapter 7

Main Program

BEGIN
Define connec�ons between LCD and microcontroller
Define LPS331AP register addresses
Configure PORTB, PORTC, PORTD as digital
Ini�alize GLCD
Ini�alize I2C module
CALL Init_Pressure_Chip
DO FOREVER

CALL Read_Pressure_Value
CALL Read_Temperature_Value
CALL Read_Al�meter_Value
Display pressure, temperature, and al�tude
Wait 5 seconds
Clear GLCD

ENDDO
END

BEGIN/Pressure_Write
Write byte to sensor chip

END/Pressure_Write

BEGIN/Pressure_Read
Read byte from sensor chip
Return the byte to calling program

END/Pressure_Read

BEGIN/Init_Pressure_Chip
Configure sensor resolu�on
Configure sensor to one-shot mode
Check chip iden�ty

END/Init_Pressure_Chip

BEGIN/Read_Pressure_Value
Start conversion
Wait un�l reading is available
Get a pressure reading
Convert into millibars
Return the pressure to calling program

END/Read_Pressure_Value

BEGIN/Read_Temperature_Value
Wait un�l temperature is available
Read temperature
Convert into degrees Cen�grade
Return temperature to calling program

END/Read_Temperature_Value

BEGIN/Read_Al�meter_Value
Convert pressure into al�tude
Return al�tude to calling program

END/Read_Al�meter_Value

BEGIN/Display_PTA
Display pressure
Display temperature
Display al�tude

END/Dislay_PTA

Figure 7.98: Project PDL.

Advanced PIC18 Projects 495

/***
BAROMETER, THERMOMETER AND ALTIMETER DISPLAY
--

This program uses the LPS331AP MEMS pressure sensor chip. In addi�on to pressure, the chip
also measures the temperature, and the al�meter reading can be obtained
from the pressure reading

The program displays the pressure, al�tude, and temperature. The program works in One-shot
mode. i.e. a new sample is requested and the sample is received and displayed. Then a new
sample is requested and so on.

The clock PLL is enabled so that the actual clock frequency is 32 MHz (Enable the 4xPLL and set
oscillator frequency to 32 MHz in Project -> Edit Project)

Author: Dogan Ibrahim
Date: October, 2013
File: MIKROC-GLCD2.C
***/

// Glcd module connec�ons
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at LATB0_bit;
sbit GLCD_CS2 at LATB1_bit;
sbit GLCD_RS at LATB2_bit;
sbit GLCD_RW at LATB3_bit;
sbit GLCD_EN at LATB4_bit;
sbit GLCD_RST at LATB5_bit;

sbit GLCD_CS1_Direc�on at TRISB0_bit;
sbit GLCD_CS2_Direc�on at TRISB1_bit;
sbit GLCD_RS_Direc�on at TRISB2_bit;
sbit GLCD_RW_Direc�on at TRISB3_bit;
sbit GLCD_EN_Direc�on at TRISB4_bit;
sbit GLCD_RST_Direc�on at TRISB5_bit;
// End Glcd module connec�ons

// Define LPS331AP registers
#define REF_P_XL 0x08 // Reference pressure (LSB)
#define REF_P_L 0x09 // Reference pressure (middle)
#define REF_P_H 0x0A // Reference pressure (MSB)
#define WHO_AM_I 0x0F // Device iden�fica�on
#define RES_CONF 0x10 // Pressure resolu�on
#define CTRL_REG1 0x20 // Control register 1
#define CTRL_REG2 0x21 // Control register 2
#define CTRL_REG3 0x22 // Control register 3
#define INT_CFG_REG 0x23 // Interrupt configura�on register
#define INT_SOURCE_REG 0x24 // Interrupt source register
#define THS_P_LOW_REG 0x25 // Threshold LOW register
#define THS_P_HIGH_REg 0x26 // Threshold HIGH register

Figure 7.99: mikroC Pro for PIC Program.

496 Chapter 7

#define STATUS_REG 0x27 // Status register
#define PRESS_POUT_XL_REH 0x28 // Pressure output register (LSB)
#define PRESS_OUT_L 0x29 // Pressure output register (middle)
#define PRESS_OUT_H 0x2A // Pressure output register (MSB)
#define TEMP_OUT_L 0x2B // Temperature output register (LSB)
#define TEMP_OUT_H 0x2C // Temperature output register (MSB)
#define AMP_CTRL 0x30 // Analog front end control register
#define Write_Addr 0xBA // Device write register
#define Read_Addr 0xBB // Device read register

void Pressure_Write(unsigned char address, unsigned char value)
{

I2C1_Start(); // Send START bit
I2C1_Wr(Write_Addr); // Send device address
I2C1_Wr(address); // Send register address
I2C1_Wr(value); // Send data
I2C1_Stop(); // Send STOP bit

}

unsigned char Pressure_Read(unsigned char address)
{

unsigned char c = 0;

I2C1_Start(); // Send START bit
I2C1_Wr(Write_Addr); // Send device address
I2C1_Wr(address); // Send register address
I2C1_Repeated_Start(); // Send repeated START
I2C1_Wr(Read_Addr); // Send device read address
c = I2C1_Rd(0); // Read, send no ack
I2C1_Stop(); // Send STOP bit
return c;

}
//
// This func�on ini�alizes the pressure chip
//
unsigned char Init_Pressure_Chip()
{

unsigned char temp, flag = 0;

Pressure_Write(RES_CONF, 0x78); // Select pressure and temp resolu�on
Pressure_Write(CTRL_REG1, 0x04); // Configure One-shot mode
Pressure_Write(CTRL_REG1, 0x84); // Configure chip ac�ve mode
temp = Pressure_Read(WHO_AM_I); // Read chip iden�ty
if(temp != 0xBB)flag = 1; // Error if wrong chip iden�ty
return flag;

}

//
// This func�on reads and returns the pressure (24 bits). The reading is converted into
// millibars a�er dividing by 4019 (shi�ing right 12 bits)
//

Figure 7.99
cont’d

Advanced PIC18 Projects 497

//
long int Read_Pressure_Value()
{

long int outP;
unsigned char stat, P_DA, PressureM, PressureL;

Pressure_Write(CTRL_REG2, 1); // Send One-shot request
//
// Check if new pressure data is available, if so read it
//

P_DA = 0;
while(P_DA == 0) // Wait un�l new pressure is available
{

stat = Pressure_Read(STATUS_REG); // Read the status register
P_DA = stat & 0x02; // Extract P_DA

}

OutP = Pressure_Read(PRESS_OUT_H); // Read high byte
PressureM = Pressure_Read(PRESS_OUT_L); // Read middle byte
PressureL = Pressure_Read(PRESS_POUT_XL_REH); // Read low byte

OutP = (OutP << 8); // Move to middle byte posi�on
OutP = OutP | PressureM; // Add middle byte
OutP = (OutP << 8); // Move to upper byte posi�on
OutP = (OutP | PressureL); // Add low byte
OutP = (OutP >> 12); // Divide by 4096 (in mbars)
return OutP; // Return the pressure

}

//
// This func�on reads and returns the temperature (16 bits). The reading is converted into
// Degrees Cen�grade a�er the following opera�on:
//
// (Value / 480) + 42.5
//
//
float Read_Temperature_Value()
{

int OutT;
unsigned char stat, T_DA, TempL;
float DegreesC;

//
// Wait un�l a new temperature data is available and if so get it
//

T_DA = 0;
while(T_DA == 0) // Wait for new temperature
{

stat = Pressure_Read(STATUS_REG); // Read status register
T_DA = stat & 0x01; // extract T_DA bit

}

Figure 7.99
cont’d

498 Chapter 7

OutT = Pressure_Read(TEMP_OUT_H); // Read high byte
TempL = Pressure_Read(TEMP_OUT_L); // Read low byte

OutT = OutT << 8; // Move to le� byte
OutT = OutT | TempL; // Add low byte
DegreesC = ((OutT / 480.0) + 42.5);
return DegreesC; // Return the temperature

}

//
// This func�on calculates the height (al�meter func�on) from the pressure
//
float Read_Al�meter_Value(long int Pressure)
{

float Al�tude_�;

Al�tude_� = Pressure/1013.25;
Al�tude_� = pow(Al�tude_�, 0.190284);
Al�tude_� = (1.0 - Al�tude_�)*145366.45;

return Al�tude_�;
}

//
// This func�on displays the pressure, temperature and al�tude on the GLCD
// in the following format:
//
// P(mb): nnnn
// T(C) : nn.n
// A(�): nnn.n
//
void Display_PTA(long int Pressure, float Temperature, float Al�tude)
{

unsigned char i, Txt[14];
char *res;

Glcd_Rectangle(5,5,120,55,1); // Draw rectangle
Glcd_Write_Text("P(mb): ", 7,1,1); // Write string "Pressure (mb): "
Glcd_Write_Text("T(C) : ", 7,3,1);
Glcd_Write_Text("A(�): ", 7,5,1);

// Display Pressure
for(i=0; i<14; i++)Txt[i] = 0;
LongWordToStr(Pressure, Txt);
Ltrim(Txt);
Glcd_Write_Text(Txt, 45,1,1);

// Display temperature
for(i=0; i<14; i++)Txt[i] = 0;
FloatToStr(Temperature, Txt);
res = strrchr(Txt, '.'); // Locate "."
*(res + 2) = 0x0; // Terminate a�er 1 digit
Glcd_Write_text(Txt, 45, 3, 1);

Figure 7.99
cont’d

Advanced PIC18 Projects 499

// Display al�tude
for(i=0; i<14; i++)Txt[i] = 0;
FloatToStr(Al�tude, Txt);
res = strrchr(Txt, '.');
*(res + 2) = 0x0;
Glcd_Write_Text(Txt, 45, 5, 1);

}

//
// Display Error message
//
void Error()
{

Glcd_Write_Text("Error...", 5,3,1); // Wrong device ID
while(1);

}

void main()
{

unsigned char stat;
long int P;
float T, A;

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
ANSELD = 0; // Configure PORTD as digital

Glcd_Init(); // Ini�alize GLCD
Glcd_Fill(0x00); // Clear GLCD

I2C1_Init(100000); // Ini�alize I2C
Delay_Ms(10);

stat = Init_Pressure_Chip(); // Ini�alize pressure chip
if(stat != 0)Error();

//
// Loop to read and display the pressure, temperature and al�tude
//

while(1)
{

P = Read_Pressure_Value(); // Read pressure
T = Read_Temperature_Value(); // Read temperature
A = Read_Al�meter_Value(P); // Read al�tude
Display_PTA(P, T, A); // Display Pressure, Temp, Al�tude
Delay_Ms(5000); // Wait 5 seconds
Glcd_Fill(0x00); / Clear GLCD

}
}

Figure 7.99
cont’d

500 Chapter 7

Read_Altimeter_Value: Use the above formula to convert pressure into altitude.

Display_PTA: Display the pressure, temperature, and altitude on the GLCD.

Error: Display error message if the sensor chip is not identified.

Figure 7.100 shows a sample display.

Project 7.12dPlotting the Temperature Variation on the GLCD
Project Description

This project demonstrates how the ambient temperature can be measured and then plotted

in real time on the GLCD. The temperature is measured every second using an

LM35DZ-type analog sensor and is then plotted in real-time on the GLCD.

The X and Y axes are drawn on the GLCD, the axes ticks are displayed, and the Y axis is

labeled as shown in Figure 7.101. The Y axis is the temperature, and the X axis is the time

where every pixel corresponds to 1 s in real time.

Block Diagram

The block diagram of the project is shown in Figure 7.102.

Circuit Diagram

The circuit diagram of the project is as shown in Figure 7.103. The LM35DZ temperature

sensor is connected to analog port RA0 (or AN0) of the microcontroller. The sensor

Figure 7.100: Sample Display from the Project.

Advanced PIC18 Projects 501

provides an output voltage directly proportional to the measured temperature. The output

of the sensor is given by

Vo¼ 10 mV/�C.

PORT B and PORT D are connected to the GLCD as in the previous project.

Project PDL

The PDL of this project is given in Figure 7.104.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program is given in Figure 7.105 (MIKROC-GLCD3.C). The

A/D converter on the PIC18F45K22 microcontroller is 10 bits wide. Thus, with a þ5-V

Figure 7.102: Block Diagram of the Project.

Figure 7.101: Layout of the Screen.

502 Chapter 7

reference voltage the resolution will be 5000/1024 or 4.88 mV, which is accurate enough

to measure the temperature to an accuracy of 0.5 �C.

The microcontroller is operated from an 8 MHz crystal. The PLL is disabled so that the

actual running clock frequency is 8 MHz.

At the beginning of the program, the connections between the microcontroller and the

GLCD are defined using sbit statements. The GLCD is connected to ports B and D of the

microcontroller and thus both these ports are configured as digital output ports using

ANSEL and TRIS statements. PORTA is configured as analog with pin RA0 (or AN0)

being configured as an input.

The GLCD library is then initialized using the Glcd_Init function. This function must be

called before calling to any other GLCD function. The GLCD screen is then cleared using

the Glcd_Fill(0x0), which turns OFF all pixels of the GLCD.

The A/D converter is initialized by calling library function ADC_Init. The background of

the display is drawn by calling function PlotAxis. This function draws the X and Y axes.

The bottom left part of the screen with coordinates (12, 60) is taken as the (0, 0)

coordinate of our display. Then, ticks are placed on both the X and the Y axes using

Figure 7.103: Circuit Diagram of the Project.

Advanced PIC18 Projects 503

Glcd_Dot statements. The Y axis is labeled from 10 to 30 �C in steps of 5 �C using the

Glcd_Write_Text_Adv statements.

The program then enters an endless loop formed by a for statement. Inside this loop, the

analog temperature is converted into digital format and stored in variable T by calling

function ADC_Get_Sample with the channel number specified as 0 (RA0 or AN0). This

digital value is converted into millivolts by multiplying with 5000 and dividing by 1024.

The actual temperature in degrees Celsius is calculated by dividing the voltage in

millivolts by 10 (Vo¼ 10 mV/�C).

The graph is drawn using the GLCD function Glcd_Line. This function draws a line

between the specified starting and ending X and Y coordinates. Variables old_x, old_y,

new_x, and new_y are used to store the old and the new (current) X and Y values of the

temperature, respectively. At the first iteration, the old and the current values are assumed

to be the same, and this is identified by variable flag being cleared to 0. In all other

Main Program

BEGIN
Define the connec�on between the LCD and the microcontroller
Configure PORTB and PORTD as digital output
Configure PORTA as analog input
Ini�alise GLCD
Clear GLCD
Ini�alise A/D converter
CALL PlotAxis
DO FOREVER

Read analog temperature from Channel 0
Convert into millivolts
Convert into Degrees cen�grade
Calculate the Y co-ordinate based on temperature reading
CALL PlotXY to plot the temperature
Wait 1 second

ENDDO
END

BEGIN/PlotAxis
Draw X and Y axes
Draw axes �cks
Draw Y axis labels

END/PlotAxis

BEGIN/PlotXY
Draw a line to join previous and current temperature values
Update the previous X and Y values with current values

END/PlotXY

Figure 7.104: PDL of the Project.

504 Chapter 7

/***
TEMPERATURE PLOTTING ON GLCD
============================

This project shows how the temperature can be read from an analog temperature sensor and then
plo�ed on a GLCD in real �me.

In this project an LM35DZ type analog temperature sensor is used. This sensor has 3 pins: The
ground, power supply (+5 V), and the output pin. The sensor gives an output voltage which is
directly propor�onal to the measured temperature. i.e. V o = 10mV/C. Thus, for example at 15C
the output voltage is 150 mV. Similarly, at 30C the output voltage is 300 mV and so on.

The temperature sensor is connected to analog input RA0 (or AN0) of a PIC18F45K22 type
microcontroller. The microcontroller is operated from an 8 MHz crystal, with the PLL is disabled,
so that the actual clock frequency is 8 MHz. The GLCD used in the project is based on KS0107/108
type controller with 128 x 64 pixels.

The program first draws the X and Y axes, axes �cks, and the Y axis labels. Then, the temperature
is read from Channel 0 (RA0 or AN0), converted into digital, and then into Degrees C. The
temperature is plo�ed in real-�me every second. i.e. the horizontal axis is the �me where each
pixel corresponds to 1 s.

The GLCD is connected to PORTB and PORTD of the microcontroller as in the previous
GLCD projects.

Author: Dogan Ibrahim
Date: October, 2013
File: MIKROC-GLCD3.C
**/

unsigned char stp, old_x, old_y, new_x, new_y;

// Glcd module connec�ons
char GLCD_DataPort at PORTD;

sbit GLCD_CS1 at RB0_bit;
sbit GLCD_CS2 at RB1_bit;
sbit GLCD_RS at RB2_bit;
sbit GLCD_RW at RB3_bit;
sbit GLCD_EN at RB4_bit;
sbit GLCD_RST at RB5_bit;

sbit GLCD_CS1_Direc�on at TRISB0_bit;
sbit GLCD_CS2_Direc�on at TRISB1_bit;
sbit GLCD_RS_Direc�on at TRISB2_bit;
sbit GLCD_RW_Direc�on at TRISB3_bit;
sbit GLCD_EN_Direc�on at TRISB4_bit;
sbit GLCD_RST_Direc�on at TRISB5_bit;
// End Glcd module connec�ons

Figure 7.105: mikroC Pro for the PIC Program.

Advanced PIC18 Projects 505

//
// This func�on plots the X and Y axis. The origin is set at screen co-ordinates (12,60).
// First the two axes are drawn. Then the axes �cks are displayed for both X and Y axis.
// Finally, the Y axis labels are displayed (i.e. the temperature labels)
//
void PlotAxis()
{

unsigned char i;

Glcd_Line(12, 0, 12, 60, 1); // Draw Y axis
Glcd_Line(12, 60, 127, 60, 1); // Draw X axis
for(i=12; i<127; i += 9)Glcd_Dot(i, 61, 1); // Display x axis �cks
for(i=0; i<60; i += 10)Glcd_Dot(11, i, 1); // Display y axis �cks
Glcd_Write_Text_Adv("30",0,5); // Y axis label
Glcd_Write_Text_Adv("25",0,15); // Y axis label
Glcd_Write_Text_Adv("20",0,25); // Y axis label
Glcd_Write_Text_Adv("15",0,35); // Y axis label
Glcd_Write_Text_Adv("10",0,45); // Y axis label

}

//
// This func�on plots the temperature in real-�me. The temperature is plo�ed by joining
// the data points with straight lines. The X axis is the �me where each pixel corresponds
// to one second. The Y axis is the temperature in Degrees C
//
void PlotXY(float Temperature)
{

Glcd_Line(old_x,old_y,new_x,new_y,1); // Draw temperature changes
old_x = new_x; // Update old points
old_y = new_y;

}

//
// Start of main program
//
void main()
{

unsigned int T;
unsigned char flag = 0;
float mV, C;

ANSELA = 1; // Configure PORTA as analog
ANSELB = 0; // Configure PORTB as digital
ANSELD = 0; // Configure PORTD as digital
TRISA = 1; // RA0 is input (analog)
TRISB = 0; // PORT B is output
TRISD = 0; // PORT D is output

Glcd_Init(); // Ini�alise GLCD
Glcd_Fill(0x0); // Clear GLCD

Figure 7.105
cont’d

506 Chapter 7

iterations, variable flag is 1 and the else part of the if statement is executed. The X value is

incremented by 1 to correspond to the next second and the new Y value is updated.

The Y coordinate (temperature) is calculated as follows:

The relationship between the Y axis ticks and the Y coordinates of data values can be

derived from the table:

Y Axis Ticks Pixel Coordinates Y Axis Data Coordinate (Degrees C)
10 30
20 25
30 20
40 15
50 10

The above relationship is linear and is in the form of a straight line y¼mxþ C, where m

is the slope of the line and C is the point where the line crosses the Y axis. The equation

of this line can be found from

ye y1¼m(xe x1),

where m¼ (y2e y1)/(x2e x1)

ADC_Init(); // Ini�alise ADC
PlotAxis(); // Plot X-Y axes and labels

for(;;) // DO FOREVER
{

T = ADC_Get_Sample(0); // Read temperature from channel 0
mV = T*5000.0/1024.0; // Temperature in mV
C = mV /10.0; // Temperature in Degrees C

if(flag == 0) // If first �me
{

new_x = 12; // Start from x = 12
old_x = new_x;
new_y = -2*C+70; // New temperature value
old_y = new_y;
flag = 1; // Set so that not first �me

}
else // Not first �me
{

new_x++; // Inc x by 1 (1 second each pixel)
new_y = -2*C+70; // New temperature value

}
PlotXY(C); // Plot the graph
Delay_Ms(1000); // Wait 1 s

}
}

Figure 7.105
cont’d

Advanced PIC18 Projects 507

by taking any two points on the line, we can easily find the equation. Considering the

points

(x1, y1)¼ (30, 10) and (x2, y2)¼ (10, 50)

The relationship is found to be

y¼�2xþ 70.

Therefore, given the temperature C in degrees Celsius, the y coordinate to be used for

plotting can be calculated from

new_y¼�2�Cþ 70.

After plotting a point, the new_x and new_y are copied to old_x and old_y, respectively,

ready for the next sample to be plotted.

Figure 7.106 shows a sample display of the temperature in real time.

Project 7.13dUsing the EthernetdWeb Browser-Based Control

The Ethernet has traditionally been implemented on PCs and laptops and has been used

widely at homes, offices, and industries to access the worldwide Internet and

companywide intranet networks. The Internet can nowadays be accessed using smaller

handheld devices such as smart mobile phones, PDAs and, IPADs. Most of these devices

are based on microcontrollers and use single-chip Ethernet-controller devices for

connectivity. Such Ethernet controllers can easily be configured, programmed, and

Figure 7.106: Sample Display of the Temperature.

508 Chapter 7

incorporated into embedded systems to provide the system with Ethernet connectivity with

the outside world.

Ethernet Connectivity

Ethernet was originally invented by Xerox in 1972, and then developed jointly by

Xerox, DEC, and Intel. It is a frame-based networking technology based on the

standard IEEE 802.3. The physical medium of a typical Ethernet-based local area

network (LAN) network uses coaxial cable, twisted pair wires, fiber optics, or can

be in the form of Wireless LANs. Currently, the most common form of Ethernet is

called 100Base-T, and it provides transmission speeds up to 100 Mbps. Slower

Ethernet or 10Base-T is also commonly used in lower speed control and monitoring

projects.

Devices on the Ethernet are all connected together, and the communication is based on the

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol. Only one

node transmits its data while all the other nodes listen to avoid collision. In the case of a

possible collision, transmitting nodes wait for a random time and attempt to retransmit,

hoping to avoid the collision. The maximum length of an Ethernet cable depends on the

speed of transmission and the type of cable used.

As shown in Figure 7.107, an Ethernet packet consists of

• Six-byte destination address,

• Six-byte source address,

• Two-byte data type,

• Forty five to 1500 byte data,

• Four-byte CRC.

In addition, when transmitted on the Ethernet medium, a 7-byte preample field and Start-

of-Frame (SOF) delimiter byte are appended to the beginning of the Ethernet packet.

Various network communication protocols are embedded inside Ethernet packets. For

example, DECnet, IP, and ARP protocols all make use of the Ethernet as the

communications protocol. In this article, we will be using a Web Browser command to

establish communication between the PC and the microcontroller system. Web Browser is

based on the transmission control protocol (TCP) and uses port 80. TCP is an advanced

protocol requiring connection and providing guaranteed packet delivery with

DESTINATION ADDRESS SOURCE ADDRESS TYPE DATA CRC

Figure 7.107: Ethernet Packet Format.

Advanced PIC18 Projects 509

retransmission if an error occurs. TCP packets are acknowledged to confirm the safe

packet delivery.

Embedded Ethernet Controller Chips

There are many Ethernet controller chips in the market. Although these chips can be

purchased as components, in most applications, it is easier and usually cheaper to use

boards with incorporated Ethernet controller chips and network connection sockets (e.g.

RJ45). The ENC28J6 is a standalone 28-pin Ethernet controller chip that meets the IEEE

802.3 specifications and is controlled using the SPI interface. This chip is used in the

project given later in this section. This chip has the following basic features:

• Compatible with 10Base-T networks,

• Supports both half-duplex and full-duplex operation,

• Supports automatic polarity detection and correction,

• Automatic retransmit on collision,

• Eight-kilobyte transmit/receive buffer,

• Supports unicast, multicast, and broadcast addresses,

• Link and Activity LED interface,

• Differential signal interface to RJ45 connector.

Figure 7.108 shows the block diagram and connection of the ENC28J60 Ethernet

controller chip to a microcontroller. Basically, the interface requires the SPI signals SI,

SO, and SCK to be connected to the microcontroller. In addition, the CS pin can also be

connected to a microcontroller I/O pin.

Some high-end PIC microcontrollers incorporate Ethernet controllers. For example, the

PIC18F97J60 is a microcontroller that includes a 10Base-T Ethernet controller with

8-kbyte transmit/receive buffers. The advantage of using an Ethernet-based microcontroller

chip is that in addition to the Ethernet functions, the chip provides analog and digital I/O

ports and many other microcontroller features.

Embedded Ethernet Access Methods

In general, there are four access methods that can be used to establish the connectivity between

a PC and an embedded Ethernet controller (see Application Note AN292, Silicon Labs):

Figure 7.108: Connecting the ENC28J60 Ethernet Controller to a Microcontroller.

510 Chapter 7

• Using a Web Browser on the PC,

• Using a HyperTerminal on the PC,

• Having the embedded system to send E-mail,

• Using a custom application based on developing software on both the PC and the

embedded system,

Using a Web Browser on the PC

This is perhaps the easiest and the most reliable method of establishing connectivity

with no software development on the PC. This method is based on HTTP, which has

been in use since the 1990s as the most widely used protocol to transfer data on the

internet. The aim of HTTP protocol is to allow the transfer of HTML files between a

browser (usually a PC) and a Web Server where the data item is located. In this method,

the PC is termed the Client and the microcontroller system is termed the Server. The

client sends a request by entering the url of the server. Assuming that the server url is

192.168.10.15, then entering the following command on the PC will establish a link to

the microcontroller system:

http://192.168.10.15

The microcontroller system, for example, can then send an HTML page as a response to

the client to display a menu with buttons. By clicking a button on the menu, a command

(e.g. GET) will be sent to the server with the appropriate command tail. The server can

decode this command tail and take appropriate actions.

Figure 7.109 shows the connectivity using a Web Browser interface.

Using a HyperTerminal

The HyperTerminal interface is also known as the Telnet interface. Here, the user connects

to the microcontroller system by issuing Telnet commands and specifying the IP address.

This kind of interface is usually an interactive interface and requires the connectivity to be

initiated and terminated by the user on the PC.

Figure 7.109: Web Browser Connectivity.

Advanced PIC18 Projects 511

http://192.168.10.15

Embedded System Sending E-mail

In this method, the microcontroller system sends its data using the E-mail protocols. The

outgoing E-mail is handled by SMTP, while the incoming mail is handled by mail servers

such as POP, IMAP, or HTTP. Using this method has disadvantages that an incoming mail

may stay in the input buffers for a long time until it is discovered and read by the user.

Figure 7.110 shows the connectivity using the E-mail method.

Using Custom Application

The development of custom applications for network connectivity provides a highly

flexible interface. This method however has the greatest disadvantage that network

software should be developed on both the PC and the microcontroller system. Two

protocols are usually used for custom development: user datagram package (UDP) and

TCP. The TCP protocol is used in applications where a guaranteed packet delivery is

required with the delivery of each packet being acknowledged. Lost packets are

retransmitted. The UDP protocol on the other hand is used where a high transmission

speed is more important than the safe delivery of packets. There is no acknowledgement

and no retransmission if a packet is lost.

Table 7.18 compares the TCP and the UDP protocols.

Figure 7.110: Connectivity using the E-mail Method.

Table 7.18: Comparing the TCP and UDP Protocols.

Feature TCP UDP

Speed Slow. Packets acknowledged, lost packets
retransmitted

Fast. No acknowledgement, no
retransmission

Complexity High Low
Connectivity Connection required between two devices Connection is not required
Packet delivery Guaranteed Not guaranteed. Lost packets

are not retransmitted
Packet overhead Large Small

512 Chapter 7

Example Ethernet-Based Embedded Control Project

This section describes the design of a simple microcontroller-based automation system

using the Ethernet as the communication medium. In this project, a web browser-based

communication is used where the PC is a client and the microcontroller system is the

server. Figure 7.111 shows the block diagram of the project. The project hardware is in

two parts, connected using a network hub or a switch (or a crossed network cable for local

testing): the Ethernet controller (or the Server) and the PC (or the Client).

The Ethernet controller consists of a microcontroller and an ENC28J60 Ethernet controller

chip. Two LEDs (LED A and LED B) are connected to the microcontroller RD0 and RD1

output pins to simulate two lamps. These LEDs are toggled under the control of a standard

Web Browser command initiated on the PC. There is no software development on the PC.

Project Hardware

Figure 7.112 shows the circuit diagram of the project. The microcontroller is designed

around a PIC18F45K22-type microcontroller chip, operating at 8 MHz. The Ethernet

controller is based on the ENC28J60 chip, operating at 25 MHz. The interface between the

microcontroller and the Ethernet chip is based on the SPI bus protocol, where SI, SO, and

SCK pins of the Ethernet chip are connected to SPI pins (PORTC) of the microcontroller.

The Ethernet controller chip operates at 3.3 V, and thus, its output pin SO cannot drive the

microcontroller input pin without a voltage translator. In Figure 7.112, a 74HCT245-type

buffer is used to boost the output level of pin SO. Other lower cost chips, such as 74HCT08

(AND gate), 74ACT125 (quad 3-state buffer) or other chips could also have been used.

The internal analog circuitry of the ENC28J60 chip requires that an external resistor be

connected from RBIA to the ground. Some of the device’s digital logic operates at 2.5 V,

Figure 7.111: Block Diagram of the Project.

Advanced PIC18 Projects 513

and an external filter capacitor should be connected from Vcap to ground. Transmit

output pins of the Ethernet chip (TPOUTþ and TPOUT�) and the receive inputs

(TPINþ and TPIN�) are connected to an RJ45 network socket with an integrated

Ethernet transformer (T58P8C-PCB-TRAF). Two LEDs on the Serial Ethernet board

provide visual indication of the Link and Activity on the line (the RJ45 socket has a pair

of built-in internal LEDs, but are not used in this project). A 5- to 3.3-V power supply

regulator chip (e.g. MC33269DT-3.3) is used to provide power to the Ethernet chip. If

the PC and the Ethernet controller are on the same network and close to each other, then

the two can be connected together using a crossed network cable; otherwise, a hub or a

switch may be required. If the PC and the Ethernet controller are located on different

networks and are not close to each other, then routers may be required to establish

connectivity between the two.

Two LEDs, LED A and LED B, are connected to pins RD0 and RD1 of the

microcontroller, respectively. These LEDs are toggled under the control of a Web Browser

command issued from the PC.

Figure 7.112: Circuit Diagram of the Project.

514 Chapter 7

The Construction

The project was constructed using the EasyPIC V7 development board and the

mikroElektronika Serial Ethernet Board (Figure 7.113). This is a small board that plugs in

directly to PORTC of the EasyPIC V7 development board via a 10-way IDC plug

(Figure 7.114) simplifying the development of embedded Ethernet projects. The board is

equipped with an EC28J60 Ethernet controller chip, a 74HCT245 voltage translation chip,

three LEDs, a 5- to 3.3-V voltage regulator, and an RJ45 socket with an integrated

transformer.

Figure 7.113: The Serial Ethernet Board.

Figure 7.114: Connecting the Serial Ethernet Board to EasyPIC7 V7.

Advanced PIC18 Projects 515

If you are using the EasyPIC V7 development board for this project, use a 10-way ribbon

cable and make sure that you plug in one side of the cable to PORTC on the development

board, and the other side to the bottom connector on the Serial Ethernet board

(Figure 7.114).

Project PDL

Figure 7.115 shows the project PDL.

Project Software

mikroC Pro for PIC

The mikroC Pro for PIC program listing is given in Figure 7.116 (MIKROC-ETHER.C).

At the beginning of the main program, PORTC and PORTD are configured as digital, and

the SPI bus is initialized by calling built-in library function SPI_Init. Then, the Serial

Ethernet module is initialized by calling built-in function SPI_Ethernet_Init and specifying

the MAC address of the ethernet board, the IP address to be used, and the mode of

operation as full duplex.

MAIN program

BEGIN
Configure I/O ports
Ini�alise SPI bus
Ini�alise Serial Ethernet Library
DO FOREVER

Check for packets
ENDDO

END

BEGIN/SPI_Ethernet_UserTCP
IF a GET packet is received THEN

IF two characters star�ng at index 6 are “TA”
Toggle LED A

ELSE IF two characters star�ng at index 6 are “TB”
Toggle LED B

ENDIF
ENDIF
Send HTML response page to the Client

END/SPI_Ethernet_UserTCP

BEGIN/SPI_Ethernet_UserUDP
END/SPI_Ethernet_UserUDP

Figure 7.115: Project PDL.

516 Chapter 7

/***
WEB BROWSER BASED ETHERNET CONTROL PROJECT
==

This project shows how the ETHERNET can be used in microcontroller based projects. In this
project a Serial Ethernet Board (www.mikroe.com) is connected to the EasyPIC V7 development
board.

The project uses the Web Browser method to establish Ethernet based communica�on between
a PC and the microcontroller system.

The PC is the client and the microcontroller system is the server.

Two LEDs (LED A and LED B) are connected to the microcontroller system. These LEDs are toggled
remotely by entering commands on the PC. The HTTP protocol is used in the project

Author: Dogan Ibrahim
Date: October, 2013
File: MIKROC-ETHER.C
***** ***/
const char HTTPheader[] = "HTTP/1.1 200 OK\nContent-type:";
const char HTTPMimeTypeHTML[] = "text/html\n\n";
const char HTTPMimeTypeScript[] = "text/plain\n\n";
//
// Define the HTML page to be sent to the PC
//
char StrtPage[] =
"<html><body>\
<form name=\"input\" method=\"get\"><table align=center width=500 \
bgcolor=Red border=4><tr><td align=center colspan=2><font size=7 \
color=white face=\"verdana\">LED CONTROL</td></tr>\
<tr><td align=center bgcolor=Blue><input name=\"TA\" type=\"submit\" \
value=\"TOGGLE LED A\"></td><td align=center bgcolor=Green> \
<input name=\"TB\" type=\"submit\" value=\"TOGGLE LED B\"></td></tr>\
</table></form></body></html>";

//
// Ethernet NIC interface defini�ons
//
sfr sbit SPI_Ethernet_Rst at RC0_bit;
sfr sbit SPI_Ethernet_CS at RC1_bit;
sfr sbit SPI_Ethernet_Rst_Direc�on at TRISC0_bit;
sfr sbit SPI_Ethernet_CS_Direc�on at TRISC1_bit;
//
// Define Serial Ethernet Board MAC Address, and IP address to be used for the communica�on
//
unsigned char MACAddr[6] = {0x00, 0x14, 0xA5, 0x76, 0x19, 0x3f} ;
unsigned char IPAddr[4] = {192,168,1,15};
unsigned char getRequest[10];

typedef struct

Figure 7.116: Program Listing of the Project.

Advanced PIC18 Projects 517

{
unsigned canCloseTCP:1;
unsigned isBroadcast:1;

}TethPktFlags;

//
// TCP rou�ne. This is where the user request to toggle LED A or LED B are processed
//
//
unsigned int SPI_Ethernet_UserTCP(unsigned char *remoteHost,

unsigned int remotePort, unsigned int localPort,
unsigned int reqLength, TEthPktFlags *flags)

{
unsigned int Len;
for(len=0; len<10; len++)getRequest[len]=SPI_Ethernet_getByte();
getRequest[len]=0;
if(memcmp(getRequest,"GET /",5))return(0);

if(!memcmp(getRequest+6,"TA",2))RD0_bit = ~ RD0_bit;
else if(!memcmp(getRequest+6,"TB",2))RD1_bit = ~ RD1_bit;

if(localPort != 80)return(0);
Len = SPI_Ethernet_putConstString(HTTPheader);
Len += SPI_Ethernet_putConstString(HTTPMimeTypeHTML);
Len += SPI_Ethernet_putString(StrtPage);
return Len;

}

//
// UDP rou�ne. Must be declared even though it is not used
//
unsigned int SPI_Ethernet_UserUDP(unsigned char *remoteHost,

unsigned int remotePort, unsigned int destPort,
unsigned int reqLength, TEthPktFlags *flags)

{
return(0);

}

//
// Start of MAIN program
//
void main()
{

ANSELC = 0; // Configure PORTC as digital
ANSELD = 0; // Configure PORTD as digital
TRISD = 0; // Configure PORTD as output
PORTD = 0;
SPI1_Init(); // Ini�alize SPI module
SPI_Ethernet_Init(MACAddr, IPAddr, 0x01); // Ini�alize Ethernet module

while(1) // Do forever

{
SPI_Ethernet_doPacket(); // Process next received packet

}
}

Figure 7.116
cont’d

518 Chapter 7

The MAC address of the Serial Ethernet Board used in this project is set at factory to

“0x00, 0x14, 0xA5, 0x76, 0x19, 0x3F”. The program sets the IP address of the board to

“192.168.1.15”. The main program then enters an infinite loop where built-in library

function SPI_Ethernet_doPacket is called to check for the arrival of packets and also to

send any outstanding packets to their destinations. The Ethernet library requires both the

UDP and TCP functions to be present in the program even though they may not be used.

Only the TCP is used in this example as the Web Browser communication is based on

TCP. Inside the TCP function, any received packets are checked, and the function

continues if the packets are of type “GET/”. Then, the command tail is checked and the

LEDs are toggled as required. The transmit buffer is loaded with the HTML response

and the length of the buffer is returned from the function which then sends the buffer to

the client.

The array StrtPage at the beginning of the program defines the HTML page to be sent to

the PC so that the PC can display it. This page is made up of the following commands.

This HTML script basically displays a form (Figure 7.118) on the PC screen with two

buttons. Clicking TOGGLE LED A toggles the state of LED A (if the LED is ON it turns

OFF, and vice versa), and similarly, clicking TOGGLE LED B button toggles the state of

LED B:

<html>
<body>
<form name="input" method="get">

<table align=center width=500 bgcolor=Red border=4>
<tr>

<td align=center colspan=2>LED CONTROL</td>
</tr>
<tr>

<td align=center bgcolor=Blue><input name="TA" type="submit" value="TOGGLE LED A"></td>
<td align=center bgcolor=Green><input name="TB" type="submit" value="TOGGLE LED B"></td>

</tr>
</table>

</form>
</body>
</html>

Figure 7.117: HTML Code Sent to the Web Browser.

Figure 7.118: Form Displayed by the Web Browser on the PC.

Advanced PIC18 Projects 519

char StrtPage[] =
"<html><body>\
<form name=\"input\" method=\"get\"><table align=center width=500 \
bgcolor=Red border=4><tr><td align=center colspan=2><font size=7 \
color=white face=\"verdana\">LED CONTROL</td></tr>\
<tr><td align=center bgcolor=Blue><input name=\"TA\" type=\"submit\" \
value=\"TOGGLE LED A\"></td><td align=center bgcolor=Green> \
<input name=\"TB\" type=\"submit\" value=\"TOGGLE LED B\"></td></tr>\
</table></form></body></html>";

The connectivity of the system can be checked by using the PING command to send packets

from the PC to the Ethernet controller. If everything is working as expected, then PING

replies should be displayed on the PC screen. To use the PING command, Click the START

button (Windows 7) and type CMD, followed by the Enter key. Then enter the command

PING 192.168.1.15

You should get a response similar to the following lines:

Pinging 192.168.1.15 with 32 bytes of data:
Reply from 192.168.1.15: bytes = 32 time = 12 ms TTL = 128
Reply from 192.168.1.15: bytes = 32 time = 6 ms TTL = 128
Reply from 192.168.1.15: bytes = 32 time = 6 ms TTL = 128
Reply from 192.168.1.15: bytes = 32 time = 6 ms TTL = 128

Ping statistics for 192.168.1.15:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss>

Approximate round trip time in milliseconds:
Minimum = 6 ms, Maximum = 12 ms, Average = 7 ms

The operation of the system is described below in steps:

• Compile and load the program to the microcontroller. Connect the Serial Ethernet board

to PORTC of the development board. Connect the PC and the Serial Ethernet board

together using a hub, switch, or router, or using a crossed network cable for local testing.

• Open a web browser on the PC (e.g. Microsoft Internet Explorer or Firefox) and send

an HTTP request by entering the following url: http://192.168.1.15

• Upon receipt of this request, the Ethernet controller sends the HTML code shown in

Figure 7.117 to the Web Browser, together with the HTTP header. The Content-Type

field is used by the browser to tell which format the document it receives is in. HTML

is identified with “text/html”, and ordinary text is identified with “text/plain”.

• The Web Browser then displays the form shown in Figure 7.118.

• The user can toggle LED A or LED B by clicking on the appropriate buttons. Assuming

that button LED A is clicked, the Web Browser sends the following command to the

Ethernet controller:

GET /? TA¼TOGGLE_LEDþA

520 Chapter 7

http://192.168.1.15

Similarly, if button B is pressed, the Web Browser sends the following command to the

Ethernet controller:

GET /? TB¼ TOGGLE_LEDþB

• The Ethernet controller checks the received command (inside function TCP) and

toggles LED A or LED B as required.

Project 7.14dUsing the EthernetdUDP-Based Control

This is another project using the embedded Ethernet. In this project, communication is

established between the PC and the microcontroller system using the UDP protocol.

Eight LEDs are connected to PORTD of the microcontroller. A Graphical User

Interface (GUI) program is developed on the PC using the Visual Studio, Visual Basic

program (VB.NET). The user specifies which bits of PORTD should be turned ON by

clicking the appropriate parts of a GUI form. The PC program establishes UDP

communication with the microcontroller system and sends a packet about the PORTD

bits that should be turned ON. The microcontroller system uses the UDP protocol to

receive this packet and then turns ON the required bits of PORTD.

The Hardware

The circuit diagram of the project is similar to the one given in Figure 7.112, but here,

eight LEDs are connected to PORTD instead of just 2.

The PC Program

The PC program is based on VB.NET. When the program is run, the form shown in

Figure 7.119 is displayed. The form consists of 8 Textboxes (called TextBox0 to

TextBox7) and 8 Buttons (called Button0 to Button7). The Textboxes correspond to the

LEDs connected to the microcontroller, and they can take two values: ON or OFF.

Clicking a button under a textbox toggles the contents of the Textbox from ON to OFF, or

from OFF to ON. When in state ON, the corresponding LED is ON.

After selecting which bits of PORTD should be ON, the user should click the

CONNECT button to establish UDP communication with the microcontroller system.

After this, the SEND button should be clicked to send a packet to the microcontroller

system so that the required LEDs can be turned ON. Byte array PortArray has elements

as either 0 or 1, and it stores the required state of each individual bit. The UDP packet

consists of 1 byte only which is the byte stored in variable PortValue, corresponding to

Advanced PIC18 Projects 521

the PORTD bits to be turned ON. Function ClientSocket.Send is used to send this byte

to the microcontroller.

The PC program listing is shown in Figure 7.120.

The Microcontroller Program

mikroC Pro for PIC

The microcontroller program is shown in Figure 7.121 (MIKRO-UDP.C). At the beginning

of the program, the connections between the Serial Ethernet board and the microcontroller

are defined. Then the Ethernet board MAC address and the IP address to be used in the

UDP communication are defined.

This program uses the UDP, but the function SPI_Ethernet_UserTCP must be declared

with a return statement, even though the, TCP protocol is not used in the program.

The SPI_Ethernet_UserUDP is very simple. It checks the port number, and if the

remote port number is invalid (i.e. is not 10001), then the function returns. Otherwise,

the received packet is stored in array Txt using function SPI_Ethernet_getByte, and the

contents of Txt[0], which is the byte corresponding to user’s selection is sent to

PORTD.

Project 7.15dDigital Signal ProcessingdLow Pass FIR Digital
Filter Project

Digital filters are very important in many digital signal processing applications. The theory

of digital filters is complex and is beyond the scope of this book. It is assumed that the

Figure 7.119: The PC Form.

522 Chapter 7

Imports System.Net.Sockets
Imports System.Text
Imports System.Threading

Public Class Form1
Public Txt(1) As Byte
Public PortArray(8) As Byte
Public ClientSocket As New UdpClient

Public ServerAddress As String = "192.168.1.15" ' Set the IP address of the server
Public PortNumber As Integer = 10001 ' Set port number

Private Sub Button0_Click(sender As System.Object, e As System.EventArgs) Handles
Button0.Click

If TextBox0.Text = "OFF" Then
TextBox0.Text = "ON"
PortArray(0) = 1

Else
TextBox0.Text = "OFF"
PortArray(0) = 0

End If
End Sub

Private Sub Button1_Click(sender As System.Object, e As System.EventArgs) Handles
Button1.Click

If TextBox1.Text = "OFF" Then
TextBox1.Text = "ON"
PortArray(1) = 1

Else
TextBox1.Text = "OFF"
PortArray(1) = 0

End If
End Sub

Private Sub Button2_Click(sender As System.Object, e As System.EventArgs) Handles
Button2.Click

If TextBox2.Text = "OFF" Then
TextBox2.Text = "ON"
PortArray(2) = 1

Else
TextBox2.Text = "OFF"
PortArray(2) = 0

End If
End Sub

Private Sub Button3_Click(sender As System.Object, e As System.EventArgs) Handles
Button3.Click

If TextBox3.Text = "OFF" Then
TextBox3.Text = "ON"
PortArray(3) = 1

Else
TextBox3.Text = "OFF"
PortArray(3) = 0

End If
End Sub

Private Sub Button4_Click(sender As System.Object, e As System.EventArgs) Handles
Button4.Click

If TextBox4.Text = "OFF" Then

Figure 7.120: The PC Program.

Advanced PIC18 Projects 523

TextBox4.Text = "ON"
PortArray(4) = 1

Else
TextBox4.Text = "OFF"
PortArray(4) = 0

End If
End Sub

Private Sub Button5_Click(sender As System.Object, e As System.EventArgs) Handles
Button5.Click

If TextBox5.Text = "OFF" Then
TextBox5.Text = "ON"
PortArray(5) = 1

Else
TextBox5.Text = "OFF"
PortArray(5) = 0

End If
End Sub

Private Sub Button6_Click(sender As System.Object, e As System.EventArgs) Handles
Button6.Click

If TextBox6.Text = "OFF" Then
TextBox6.Text = "ON"
PortArray(6) = 1

Else
TextBox6.Text = "OFF"
PortArray(6) = 0

End If
End Sub

Private Sub Button7_Click(sender As System.Object, e As System.EventArgs) Handles
Button7.Click

If TextBox7.Text = "OFF" Then
TextBox7.Text = "ON"
PortArray(7) = 1

Else
TextBox7.Text = "OFF"
PortArray(7) = 0

End If
End Sub

Private Sub ButtonConnect_Click(sender As System.Object, e As System.EventArgs)
Handles ButtonConnect.Click

ClientSocket.Connect(ServerAddress, PortNumber)
End Sub

Private Sub ButtonSend_Click(sender As System.Object, e As System.EventArgs) Handles
ButtonSend.Click

Dim PortValue As Byte
PortValue = 0

For i = 0 To 7
PortValue = PortValue + PortArray(i) * 2 ^ i

Next
Txt(0) = PortValue
ClientSocket.Send(Txt, 1)

End Sub

Figure 7.120
cont’d

524 Chapter 7

readers have a sufficient knowledge on finding the filter coefficients and the various digital

filtering structures for a given design specifications. There are many books and references

on the theory of digital filters that may be helpful.

In this project, we will be designing a low-pass FIR type digital filter with the following

specifications:

Window Type No Windowing
Cut-off frequency 50 Hz
Sampling frequency 1000 Hz
Filter order 10 (11 taps)

The block diagram of the project is shown in Figure 7.122. In this project, a Velleman

PCSGU250 is used (Figure 7.123). This is a device that operates as a frequency

generator, oscilloscope, transient recorder, spectrum analyzer, and frequency plotter

(Bode plotter).

The analog signal generated by the PCSGU250 is applied to one of the analog channels of

the microcontroller. The filtered signal is converted into the analog signal using a DAC

chip and is then fed to the PCSGU250 for plotting the frequency response.

The Filter Structure

There are many software packages that could be used to find the filter coefficients. In this

book, the highly popular ScopeFIR program is used.

The steps in finding the filter parameters using the ScopeFIR program are given below:

• Start the program.

• Create a new project by selecting the filter type as low-pass, Windowed Sinc,

11 taps, sampling frequency 100 Hz, and the cut-off frequency of 50 Hz

(Figure 7.124).

• Click Design to design the filter. The frequency response, filter coefficients, and the

impulse response of the filter to be designed will be displayed by the program.

Figure 7.125 shows the frequency response and Figure 7.126 shows the required filter

coefficients.

Private Sub ButtonExit_Click(sender As System.Object, e As System.EventArgs) Handles
ButtonExit.Click

ClientSocket.Close()
End

End Sub
End Class

Figure 7.120
cont’d

Advanced PIC18 Projects 525

/***
UDP ETHERNET CONTROL PROJECT
============================

This project shows how the ETHERNET can be used in microcontroller based projects. In this project
a Serial Ethernet Board (www.mikroe.com) is connected to the EasyPIC V7 development board.

The project uses the UDP method to establish Ethernet based communica�on between a PC and
the microcontroller system.

The PC is the client and the microcontroller system is the server. The PC program is wri�en using
the Visual Studio, Visual Basic programming language (VB.NET). The PC sends a packet to the
microcontroller system in the form of a UDP packet.

8 LEDs are connected to PORTD. The user interac�vely enters the LEDs to be turned ON using a
GUI type window. This message is then passed to the microcontroller system via the UDP and
then the required LEDs are turned ON by the microcontroller.

Port 10001 and IP address 192.168.1.15 are used in the project.

Author: Dogan Ibrahim
Date: October, 2013
File: MIKROC-UDP.C
**/
//
// Ethernet NIC interface defini�ons
//
sfr sbit SPI_Ethernet_Rst at RC0_bit;
sfr sbit SPI_Ethernet_CS at RC1_bit;
sfr sbit SPI_Ethernet_Rst_Direc�on at TRISC0_bit;
sfr sbit SPI_Ethernet_CS_Direc�on at TRISC1_bit;
//
// Define Serial Ethernet Board MAC Address, and IP address to be used for the communica�on
//
unsigned char MACAddr[6] = {0x00, 0x14, 0xA5, 0x76, 0x19, 0x3f} ;
unsigned char IPAddr[4] = {192,168,1,15};
unsigned char getRequest[10];

typedef struct
{
unsigned canCloseTCP:1;
unsigned isBroadcast:1;

}TethPktFlags;

//
// TCP rou�ne. This is where the user request to toggle LED A or LED B are processed
//
//
unsigned int SPI_Ethernet_UserTCP(unsigned char *remoteHost,

unsigned int remotePort, unsigned int localPort,
unsigned int reqLength, TEthPktFlags *flags)

Figure 7.121: mikroC Pro for PIC Program.

526 Chapter 7

The filter coefficients are

h[0] = h[10] = 0.0681
h[1] = h[9] = 0.0810
h[2] = h[8] = 0.0918
h[3] = h[7] = 0.1001
h[4] = h[6] = 0.1052
h[5] = 0.1070

The filter structure is shown in Figure 7.127.

{
return (0);

}

//
// UDP rou�ne. Must be declared even though it is not used
//
unsigned int SPI_Ethernet_UserUDP(unsigned char *remoteHost,

unsigned int remotePort, unsigned int destPort,
unsigned int reqLength, TEthPktFlags *flags)

{
char Txt[10];
char len=0;

if(destport != 10001)return(0); // Check that correct port is used
while(reqLength--)
{

Txt[len++] = SPI_Ethernet_getByte(); // Extract the received bytes
}

PORTD = Txt[0]; // Turn ON required LEDs
return;

}

//
// Start of MAIN program
//
void main()
{

ANSELC = 0; // Configure PORTC as digital
ANSELD = 0; // Configure PORTD as digital
TRISD = 0; // Configure PORTD as output
PORTD = 0; // Clear PORTD to start with

SPI1_Init(); // Ini�alize SPI module
SPI_Ethernet_Init(MACAddr, IPAddr, 0x01); // Ini�alize Ethernet module

while(1) // Do forever
{

SPI_Ethernet_doPacket(); // Process next received packet
}

}

Figure 7.121
cont’d

Advanced PIC18 Projects 527

The Hardware

The circuit diagram of the project is shown in Figure 7.128. The MCP4921 12-bit serial

DAC chip, controlled by the SPI bus, is used for the DAC.

Project PDL

The project PDL is shown in Figure 7.129.

Figure 7.122: Block Diagram of the Project.

Figure 7.123: The Velleman PCSGU250 Device.

528 Chapter 7

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program listing is given in Figure 7.130 (MIKROC-FIR.C).

At the beginning of the program, the D/A converter chip select pin connection is defined.

The 11 filter coefficients are then stored in a floating point array called h:

float h[N] = {0.0681, 0.0810, 0.0918, 0.1001, 0.1052, 0.1070, 0.1052, 0.1001,
0.0918, 0.0810, 0.0681};

Figure 7.124: ScopeFIR Filter Design Program.

Figure 7.125: Frequency Response of the Filter.

Advanced PIC18 Projects 529

Figure 7.126: Filter Coefficients.

Figure 7.127: The 10th Order (11-tap) FIR Filter Structure.

530 Chapter 7

Figure 7.128: Circuit Diagram of the Project.

BEGIN/MAIN
 Configure the D/A chip select pin
 Store filter coefficients in an array
 Configure PORTC and PORTE as digital
 Configure AN0 (Channel 0) as analog input
 Initialize the SPI library
 Initialize A/D converter module
 Initialize Timer 1 for 1ms interrupts
 Wait for Timer 0 interrupts (TMR)

END/MAIN

 BEGIN/TMR
 Get a new signal sample
 Calculate the output sample
 Send the output sample to the D/A converter
 Delay the input signals by one sample time
 Clear Timer 0 interrupt flag
 END/TMR

Figure 7.129: Project PDL.

Advanced PIC18 Projects 531

/**
FINITE IMPULSE RESPONSE FILTER DESIGN
==================================

This project shows how a FIR type digital filter can be designed.

Analog sine wave signal is fed to the AN0 (RA0) analog input of the microcontroller.
A D/A converter is connected to the microcontroller through the SPI bus so that the
filtered signal is in analog form and can be plo�ed using a frequency plo�er.

In this example a LOW-Pass filter is designed with the following specifica�ons:

Filter Type: No windowing
Sampling Frequency: 1000 Hz
Passband Upper Frequency: 50 Hz
Filter Order: 10 (11 taps)

The FIR filter coefficients are obtained using the ScopeFIR so�ware package.

The filter response is plo�ed using a Velleman PCSGU250 type oscilloscope+
frequency generator + frequency plo�er device.

The PIC18F45K22 microcontroller is used in this project. The external clock is supplied
using an 8 MHz crystal, but internally the PLL is used to increase the clock frequency
to 32 MHz (this is done during the programming by enabling 4xPLL and se�ng the
clock frequency to 32 MHz in Project -> Edit Project window).

The D/A converter used is the MCP4921 SPI bus based converter with 12-bit resolu�on,
opera�ng with +5 V reference voltage.

The connec�on between the microcontroller and the D/A converter is as follows:

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-FIR.C
**/
// DAC module connec�ons
sbit Chip_Select at LATE0_bit;
sbit Chip_Select_Direc�on at TRISE0_bit;
// End DAC module connec�ons

#define N 10 // Filter order=10, having 11 taps

float Sample,xn, yn, x[N];
unsigned ADC;
unsigned char temp;
unsigned int DAC;
float h[N+1] = {0.0681, 0.0810, 0.0918, 0.1001, 0.1052, 0.1070, 0.1052, 0.1001, 0.0918, 0.0810,
0.0681};
//
// Timer 1 interrupt service rou�ne. The program jumps here every 1000us (the sampling

Figure 7.130: mikroC Pro for PIC Program.

532 Chapter 7

// frequency is 1 kHz, i.e. Period = 1ms = 1000us). Here, a new output is calculated and sent
// to the D/A converter
//
void interrupt()
{

unsigned char i;

TMR0L = 6; // Re-load TMR0
ADC = ADC_Get_Sample(0); // Get new input Sample from AN0
x[0]=ADC;
yn = 0.0;

//
// Calculate a new output yn
//

for(i = 0; i <= N; i++)
{

yn = yn + h[i]*x[i];
}

//
// Output the new Sample via the D/A converter
//

DAC = yn;
Chip_Select = 0; // Select DAC chip

// Send High Byte
temp = (DAC >> 8) & 0x0F; // Store DAC[11..8] to temp[3..0]
temp |= 0x30; // Define D/A se�ng
SPI1_Write(temp); // Send high byte via SPI

// Send Low Byte
temp = DAC; // Store DAC[7..0] to temp[7..0]
SPI1_Write(temp); // Send low byte via SPI

Chip_Select = 1; // Deselect D/A converter chip
//
// Shi� the input samples for the delay ac�on
//

for(i = 0; i < N; i++)
{

x[N-i] = x[N-i-1];
}

//
// Re-enable Timer 0 interrupts
//

INTCON.TMR0IF = 0; // Clear Timer 0 interrupt flag
}

//
//************************* MAIN PROGRAM **********************
// Start of MAIN program. In the main program the I/O ports are configured, SPI bus

Figure 7.130
cont’d

Advanced PIC18 Projects 533

Inside the main program, analog input AN0 (Channel 0, or pin RA0) is configured as an

analog input, D/A converter is disabled, and the SPI library and A/D converter modules

are initialized. Timer 0 is then configured to interrupt at every sampling time (1000 ms).

With a clock frequency of 32 MHz, the clock period is 0.03125 ms (note that the actual

crystal frequency is 8 MHz, but the internal PLL module is used to multiply the external

clock frequency by 4 to give an operating clock frequency of 32 MHz. This is done by

enabling the 4xPLL option in the Project/ Edit Project window before the microcontroller

is programmed. In addition, the oscillator frequency should be selected as 32 MHz in this

window). Since the instruction cycle time is four clock periods, the actual timer clock

frequency is 8 MHz, or the actual timer clock period is 0.125 ms. The timer prescaler is set

to 32, giving a value of 6 for the timer register TMR0L. Thus, when Timer 0 is loaded with

6 and timer and global interrupts are enabled, the timer will generate interrupts at every

millisecond and the program will jump to the ISR declared by the programmer:

TMR0L¼ 256�Delay/(Clock period� prescaler value)

or,

TMR0L¼ 256� 1000 ms/(0.125 ms� 32)¼ 6

// library is ini�alized, and the A/D converter module library is ini�alized. In addi�on,
// Timer 0 is configured to interrupt at every one millisecond and interrupts are enabled.
//
void main()
{

TRISA0_bit = 1; // AN0 (RA0) is input
ANSELE = 0; // RE0 is digital I/O
ANSELA = 1; // RA0 is analog I/O
Chip_Select_Direc�on = 0; // Configure CS pin as output
Chip_Select = 1; // Disable D/A converter
SPI1_Init(); // Ini�alize SPI1
ADC_Init(); // Ini�alize A/D converter

//
// Configure Timer 0 for 1000us (1ms) interrupts
//

T0CON = 0 x 44; // Disable TMR0, 8-bit, prescaler-32
INTCON.TMR0IF = 0; // Clear Timer 0 interrupt flag
INTCON.TMR0IE = 1; // Enable Timer 0 interrupts
TMR0L = 6; // Load TMR0
T0CON.TMR0ON = 1; // Enable Timer 0
INTCON.GIE = 1; // Enable global interrupts

for(;;) // Wait for Timer 0 interrupts
{
}

}

Figure 7.130
cont’d

534 Chapter 7

The main program then enters a loop and waits for timer interrupts to occur. The digital

filtering operation is performed inside the timer ISR, which is entered every millisecond.

Here, a new input sample is obtained from analog channel AN0 by calling function

ADC_Get_Sample with channel number 0, and the output sample is calculated.

The program then sends the output sample to the D/A converter. The D/A converter is 12

bits wide and the high nibble (bits 8e11) is sent first, followed by the low byte (bits 0e7).

Function SPI1_Write sends data to the D/A converter over the SPI bus. Note that the

PIC18F45K22 microcontroller supports two SPI bus I/O pins, and in this project, only the

first SPI bus is used. This is why the SPI statements are terminated with number 1. The

following statements are used to send the processed data to the D/A converter:

Chip_Select = 0; // Enable DAC chip
// Send High Byte
temp = (DAC >> 8) & 0x0F; // Store DAC[11..8] to temp[3..0]
temp j= 0x30; // Define D/A setting
SPI1_Write(temp); // Send high byte via SPI
// Send Low Byte
temp = DAC; // Store DAC[7..0] to temp[7..0]
SPI1_Write(temp); // Send low byte via SPI
Chip_Select = 1; // Disable D/A chip

The input samples are then shifted (delayed) by one sampling time using the following code:

for(i = 0; i < N; i++)
{
x[N-i] = x[N - i - 1];

}

Just before exiting from the ISR, the timer interrupt flag TMR0IF is cleared so that further

timer interrupts can be accepted by the processor.

Note that the A/D and D/A converters used in the design are unipolar (accept only positive

voltages), and therefore, it is necessary to introduce the DC level to the input signal to

shift it up so that it is always positive. This is done by clicking the Offset button at the

bottom right-hand corner of the PCSGU250 screen.

In addition, the PCSGU250 device will not give an accurate graph in the stop band if the

input signal is very small as may be the case in the stop band of low-pass filters.

Project 7.16dAutomotive ProjectdLocal Interconnect Network
Bus Project

The Local Interconnect Network (LIN) is a serial network protocol developed for the

automotive industry. The CAN bus was too expensive to implement for every electronic

component in a car and the need for a cheap serial network arose as a result of this.

Advanced PIC18 Projects 535

The LIN bus is a low-cost serial protocol that can easily be implemented with

microcontrollers having UART modules. The bus consists of a master and typically

up to 16 slaves. All messages are initiated by the master with an identifier. The

slave with the matching identifier replies to the message. As a result of this two-

way communication, there is no collision on the bus. In typical applications, the

master is a microcontroller requesting information or sending commands to a slave.

The slaves are typically sensors or actuators that respond to the commands sent by

the master.

Compared to the CAN bus, the LIB bus has the following advantages and

disadvantages:

• The LIN bus has maximum data rate of 19,200 bps, while the CAN bus is much faster,

up to 1 Mbps.

• The LIN bus is limited to 16 nodes (1 master and up to 15 slaves). The CAN bus can

have up to 128 nodes.

• The LIN can is a single-wire bus (plus the chassis), while the CAN bus is a two-wire

bus.

• The LIN bus is much cheaper to implement than the CAN bus.

The LIN bus can be up to 40 m long and is typically used in the following components of

vehicles:

• Vehicle doors, central locking system, mirrors.

• Vehicle light sensor, sun roof, light control.

• Seat heater, occupancy sensor, seat motors.

• Small engine controls, such as cruise control, wiper, turn indicator, climate control,

small motors, sensors, steering wheel.

Figure 7.131 shows a typical LIN bus implementation with one master and three slaves.

The LIN Protocol

The LIN protocol can be implemented with any microcontroller that supports a

UART module. The protocol consists of frames, where each frame has two

Figure 7.131: LIN Bus with One Master and Three Slaves.

536 Chapter 7

parts: the Header, and the Response. The protocol consists of the following fields

(Figure 7.132):

• Synch Break,

• Synch Field,

• Identifier Field,

• Data Field,

• Checksum Field.

Each byte, except the Synch Break, is transmitted (or received) in standard serial format

with one start bit, eight data bits, and one stop bit.

Synch Break: The Synch Break is always initiated by the master, and it signifies the

start of a frame. It is identified by a start bit, and at least 13 bits of 0s, followed by the

stop bit.

Synch Field: This field is sent by the master as the Synch delimiter, and it allows the

slaves to synchronize. The data sent are one start bit, eight data bits corresponding to

hexadecimal number 0x55 (bit pattern 01010101), and one stop bit.

Identifier Field: This byte is sent by the master. and it consists of the start bit, eight

identifier bits, and one stop bit in the following format:

• Bits 0 to 3dLIN ID,

• Bits 4 and 5dData Length,

• Bits 6 and 7dParity.

ID0 ID1 ID2 ID3 ID4 ID5 P0 P1

The LIN ID bits (ID0 to ID3) represent the identifier of the slave node who is to respond

in the Response part of the frame.

Figure 7.132: LIN Protocol.

Advanced PIC18 Projects 537

The Data Length bits specify the number of bytes in the Data Field:

ID5 ID4 No of Bytes
0 0 2
0 1 2
1 0 4
1 1 8

The last 2 bits of the identifier Field are parity bits that are used to detect possible errors

(there is no error correction). The parity is calculated using the following algorithm:

P0¼ ID04ID14 ID24 ID4

P1¼ ID14ID34 ID44 ID5

Identifiers in the range 0x00 to 0x3B are known as Unconditional frame identifiers, and

there is only one sender of these frames. The identifiers, known as Command Frame

Identifiers and having codes 0x60, 0x3C, and 0x3D are known as Diagnostic Frames and

are reserved for diagnostic purposes. The Command Frame with the first byte set to 0x00

is used to put all slaves into the Sleep mode.

Data Field: the Data Field can contain 2, 4, or 8 bytes, each having one start bit, eight data

bits, and one stop bit.

Checksum Field: This is the last byte in a frame. This byte contains the inverted modulo

e 256 sum of all bytes within the Data Field. The sum is calculated by adding all data

bytes with any carry bits and then inverting the answer (the property of inverted module-

256 sum is that if the resultant number is added to the sum of all data bytes, the result will

be 0xFF). For example, 0xFFþ 0x01¼ 0x01 and not 0x00.

Project Description

In this project, a master and a slave node are used. The slave node is connected to a

temperature sensor. Temperature readings are sent to the master on request and are

displayed on an LCD connected to the master.

Figure 7.133 shows the block diagram of the project.

Project Hardware

The circuit diagram of the project is shown in Figure 7.134. The MCP 201 LIN bus

transceiver chip is used for the LIN bus to microcontroller interface. An LM35DZ-type

temperature sensor is connected to the slave node.

The MCP 201 chip has the following features:

• Support up to 19,200 bps communication speed;

• Six- to 18-V supply voltage;

538 Chapter 7

• Eight-pin DIL housing;

• Standard UART interface;

• Internal pull-up resistor and diode;

• A 40-mA current drive;

• Short-circuit current limit;

• Internal 5 V, 50-mA regulator.

Figure 7.133: Block Diagram of the Project.

Figure 7.134: Circuit Diagram of the Project.

Advanced PIC18 Projects 539

The MCP 201 provides half-duplex, bidirectional communications interface between a

microcontroller and the LIN bus. The device translates the microcontroller logic levels to

LIN logic, and vice versa.

The MCP 201 has the following pin definitions:

Pin 1, RXD: Receive data output.

Pin 2, CS/WAKE: Chip select (logic 1 to activate chip).

Pin 3, VREG: þ5-V output.

Pin 4, TXD: Transmit data output.

Pin 5, VSS: Ground.

Pin 6, LIN: Lin bus connection.

Pin 7, VBAT: 6- to 18-V input.

Pin 8, FAULT: Fault detect output.

Two EasyPIC V7 development boards and two mikroElektronika LIN Bus Boards were

used in the project development. These LIN Bus boards (Figure 7.135) have the following

features:

• Baud rates up to 19,200 bps;

• Supply voltage 6e18 V;

• Conforming to LIN bus standards;

• Compatible with mikroC Pro for PIC compiler;

• Compatible with the EasyPIC V7 development board.

Figure 7.135: mikroElektronika LIN Bus Board.

540 Chapter 7

If you are using the LIN Bus board together with the EasyPIC V7 development board,

then plug in the board to PORTC connector at the edge of the development board and set

the following jumpers on both the MASTER and the SLAVE boards (these jumper settings

connect the UART pins RC6 and RC7 to the board. Also, the CS is connected to the RC2

pin of the microcontroller):

• Set DIL switch SW1 1, 4, and 7 ON.

• Leave J1 on the MASTER node.

• Remove J1 from the SLAVE node.

• Apply external a 6- to 18-V DC supply to the VBAT connectors.

• Establish the LIN bus between the MASTER and SLAVE by connecting LIN and GND

connectors of both boards together.

Project PDL

The project PDL is shown in Figure 7.136.

Project Program

mikroC Pro for PIC

MASTER Node

The mikroC Pro for the PIC program listing of the MASTER node is shown in

Figure 7.137 (MIKROC-LINMSTR.C). At the beginning of the program, the connections

between the LCD and the microcontroller are defined. Also, the CS connection of the

MCP 201 chip is defined as pin RC2 of the microcontroller. Symbols SYNCH_FIELD,

SLAVE_NODE, and No_Of_Bytes are assigned values.

Inside the main program, PORTB and PORTC are configured as digital, MCP 201 chip is

disabled, LCD is initialized, and message “LIN BUS PROJECT” is displayed for 2 s. The

remainder of the program is executed in an endless loop, formed using a while statement.

Inside this loop, the HEADER is sent to the LIN bus using function Send_Header,

response is received from the slave using function Get_Response, and the received data

(temperature in this project) are displayed on the LCD.

Send_Header Function

This function sends the BREAK sequence, SYNCH_FIELD, and the IDENT FIELD. The

BREAK sequence is accomplished by forcing the UART to generate a frame error (i.e. the

Advanced PIC18 Projects 541

MASTER:
Main Program

BEGIN
Define connec�ons between the LCD and microcontroller
Configure PORTB and PORTC as digital
Ini�alize LCD
Send a message to the LCD
Ini�alize UART
DO FOREVER

CALL Send_Header
CALL Get_Response
Clear LCD
Display temperature
Wait 1 second

ENDDO
END

BEGIN/Send_Header
Send BREAK sequence
Send SYNCH FIELD
Send IDENT FIELD

END/Send_Header

BEGIN/Get_Response
Get response bytes from the slave

END/Get_Response

SLAVE:
Main Program

BEGIN
Define connec�ons between the LCD and microcontroller
Configure RA0 as analog and PORTC as digital
Ini�alize UART
DO FOREVER

Wait for BREAK sequence
Get SYNC FIELD
Get IDENT FIELD
Extract iden�fier
IF the request is for this node

Read temperature from channel 0
Send data to MASTER over the LIN bus
CALL Calc_ Checksum
Send Checksum to MASTER over the LIN bus

ENDIF
ENDDO

END

Begin/Calc_Checksum

Add all data bytes including carry bit
Invert the sum
Return the sum to the caller

END/Calc_Checksum

Figure 7.136: The Project PDL

542 Chapter 7

/***
LIN BUS CONTROL PROJECT
======================

This project shows how to use the Automo�ve LIN bus in microcontroller projects.

In this project 2 LIN bus nodes, named MASTER and SLAVE communicate with each other
at 9600 bps over the LIN BUS.

An LCD is connected to the MASTER node. An LM35DZ type temperature sensor is connected
to the SLAVE node. The MASTER node requests the temperature every second from the SLAVE
node. The SLAVE node reads the temperature and sends to the MASTER node which then displays
on the LCD.

This project is based on the EasyPIC V7 development board and the mikroElektronika
LIN bus boards. Two development boards are used, one as the MASTER, the other one as the
SLAVE. LIN bus boards are a�ached to PORTC of each development board and the two boards
are connected to each other with two cables (LIN bus and ground). The CS pins of the
LIN bus boards are connected to RC2 pin of the microcontroller.

There is one MASTER and one SLAVE in this project.

This is the MASTER node program. The program works with 8 MHz clock (clock PLL is disabled)

Author: Dogan Ibrahim
Date: October, 2013
File: MIKROC-LINMSTR.C
***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

#define MCP201_CS PORTC.RC2 // MCP201 CS connec�on
#define SYNCH_FIELD 0x55 // SYNCH FIELD
#define SLAVE_NODE_ID 0x01 // Slave node iden�fier
#define No_Of_Bytes 2 // Number of bytes to receive
//
// This func�on sends HEADER to the SLAVE. The Header consists of:
// SYNCH BREAK, SYNCH FIELD, IDENT FIELD

Figure 7.137: mikroC Pro for PIC MASTER Program.

Advanced PIC18 Projects 543

//
void Send_Header()
{

bit P0, P1, ID0, ID1, ID2, ID3, ID4, ID5;
unsigned char IDENT_FIELD, temp, Cnt, c;

//
// Enable BREAK sequence
//

TXSTA1.TXEN = 1; // Set TXEN bit
TXSTA1.SENDB = 1; // Set SENDB bit
TXREG1 = 0x0; // send dummy data to start the sequence
Uart1_Write(SYNCH_FIELD); // Send SYNCH FIELD character

//
// The Node Iden�fier is set to 1, and number of bytes is 2. Thus, the IDENT FIELD has the
// format P1 P0 00 0001. Find parity bits P1 and P0 and add to the IDENT field

if(No_Of_Bytes == 2) // No of bytes
Cnt = 0; // 2-bit field for the number of bytes

else if(No_Of_Bytes == 4) // Cnt is 0,2, or 3 depending on byte count
Cnt = 2;

else if(No_Of_Bytes == 8)
Cnt = 3;

IDENT_FIELD = SLAVE_NODE_ID;
Cnt = Cnt << 4;
IDENT_FIELD = CNT | IDENT_FIELD; // Add No of Bytes to IDENT field

ID0 = IDENT_FIELD.F0; // Bit 0
ID1 = IDENT_FIELD.F1; // Bit 1
ID2 = IDENT_FIELD.F2; // Bit 2
ID3 = IDENT_FIELD.F3; // Bit 3
ID4 = IDENT_FIELD.F4; // Bit 4
ID5 = IDENT_FIELD.F5; // Bit 5
P0 = ID0 ^ ID1 ^ ID2 ^ ID4; // Find P0
P1 = ID1 ^ ID3 ^ ID4 ^ ID5; // Find P1
Temp = 0;
Temp = P1 | P0;
Temp = Temp << 6;
IDENT_FIELD = IDENT_FIELD | Temp; // Add the parity bits to IDENT field
while(Uart1_Tx_Idle() == 0); // Wait un�l ready
Uart1_Write(IDENT_FIELD); // Send IDENT_FIELD

}

//
// This func�on reads data from the SLAVE node. The last byte received is the Checksum
//
void Get_Response(unsigned char c[])
{

unsigned char i, Checksum;

Figure 7.137
cont’d

544 Chapter 7

condition where the STOP bit is not received at the expected time). There are basically

two ways that we can generate the BREAK sequence:

1. By sending a logic 0 (START bit) on pin RC6 and keeping the line low for at least 13

bit times, and then sending a STOP bit. For example, if the baud rate is 9600 bps, then

for(i = 0; i < No_Of_Bytes; i++) // Do to read all data
{
while(Uart1_Data_Ready() == 0); // Wait un�l UART is ready
c[i] = Uart1_Read(); // get data from UART

}
c[i] = 0x0; // Insert NULL terminator
while(Uart1_Data_Ready() == 0); // Wait un�l UART has data
Checksum = Uart1_Read(); // Read the Checksum

}

//
// Start of MAIN program
//
void main()
{

unsigned char Txt[3];

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
MCP201_CS = 0; // Disable MCP201 to stat with
TRISC.RC2 = 0; // Configure RC2 as output

Lcd_Init(); // Ini�alize LCD
Lcd_Cmd(_LCD_CURSOR_OFF); // LCD cursor OFF
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,"LIN BUS PROJECT"); // Write message on row 1
Delay_Ms(2000); // Wait to see the message

Uart1_Init(9600); // Set UART baud rate to 9600bps
MCP201_CS = 1; // Ac�vate MCP201

while(1) // Do FOREVER
{

Send_Header(); // Send LIN bus Header over the LIN bus
Get_Response(Txt); // Get Response from the SLAVE
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(2,1,Txt); // Display data (temperature)
Delay_Ms(1000); // Wait 1 s

}
}

Figure 7.137
cont’d

Advanced PIC18 Projects 545

13 bits will take approximately 1.3 ms. The following statements will generate a

BREAK sequence:

PORTC.RC6 = 0; // Send START bit
Delay_Ms(2); // Wait for 2 ms
PORTC.RC6 = 1; // send STOP bit

2. Alternatively, we can force the UART module to send a BREAK sequence. The

extended UART, found in most PIC18F series microcontrollers, supports sending the

BREAK sequence. The following statements force the UART to send a BREAK

sequence:
TXSTA1.TXEN = 1; // Set TXEN bit
TXSTA1.SENDB = 1; // Set send-break (SENDB) bit
TXREG1 = 0x0; // Send dummy data to start the sequence

After sending the BREAK sequence, the SYNCH_FIELD character (0x55) is sent to the

slave over the bus. Next, the IDENT field is formed by combining the slave node

identifier, number of data bytes expected, and the parity bits P1 and P0, formed by

Exclusive-OR’ing the appropriate bits.

Get_Response Function

This function reads the data bytes from the slave device, including the Checksum byte.

Although the Checksum is received, it is not validated here for simplicity. The program

finally displays the temperature on the LCD. The above process is repeated every

second.

SLAVE Node

The mikroC Pro for the PIC program listing of the SLAVE node is shown in Figure 7.138

(MIKROC-LINSLAVE.C). At the beginning of the main program, PORTC is configured as a

digital input, and RA0 is configured as an analog input. The UART is initialized to 9600 bps

and the MCP 201 chip is activated. The remainder of the program is executed in an endless

loop formed using a while statement. Inside this loop, the program waits until the BREAK

sequence is received. There are several ways that the BREAK sequence can be detected:

1. By starting a timer when the START bit is detected and stopping the timer when the

STOP bit is detected. If the timer value is equal or greater than 13 bit times (1.3 ms at

9600 bps), then it is assumed that the BREAK sequence is received and terminated.

2. By looking for the START bit and then a STOP bit, and assuming that the BREAK

sequence is terminated when the STOP bit is received. Since when a slave device is

waiting the only communication on the bus is the BREAK sequence, this is perhaps the

simplest method of detecting the BREAK sequence.

3. By checking the framing error bit of the UART (RCSTA1.FERR).

546 Chapter 7

/***
LIN BUS CONTROL PROJECT
======================

This project shows how to use the Automo�ve LIN bus in microcontroller projects.

In this project 2 LIN bus nodes, named MASTER and SLAVE communicate with each other
at 9600 bps over the LIN BUS.

An LCD is connected to the MASTER node. An LM35DZ type temperature sensor is connected
to the SLAVE node. The MASTER node requests the temperature every second from the SLAVE
node. The SLAVE node reads the temperature and sends to the MASTER node which then displays
on the LCD.

This project is based on the easyPIC V7 development board and the mikroElektronika
LIN bus boards. Two development boards are used, one as the MASTER, the other one as
the SLAVE. LIN bus boards are a�ached to PORTC of each development board and the two boards
are connected to each other with two cables (LIN bus and ground). The CS pins of the
LIN bus boards are connected to RC2 pin of the microcontroller.

There is one MASTER and one SLAVE in this project.

This is the SLAVE node program. The program works with 8MHz clock (clock PLL is disabled)

Author: Dogan Ibrahim
Date: October, 2013
File: MIKROC-LINSLAVE.C
***/
#define MCP201_CS PORTC.RC2 // MCP201 CS bit
#define SLAVE_NODE_ID 0x01 // Our Iden�fier
#define SYNCH_FIELD 0x55 // SYNCH FIELD

//
// This func�on waits if UART is busy and then writes a character
//
void Write_Uart(unsigned char c)
{

while(Uart1_Tx_Idle() == 0); // Wait if UART is busy
Uart1_Write(c); // Write the character

}

//
// This func�on checks if a character is ready in UART and then reads it
//
unsigned char Read_Uart()
{

unsigned char c;

while(Uart1_Data_Ready() == 0); // Wait to receive from the MASTER
c = Uart1_Read();
return c;

Figure 7.138: mikroC Pro for PIC SLAVE Program.

Advanced PIC18 Projects 547

}

//
// This func�on calculates the Checksum byte and returns to the calling program.
// The Checksum is calculated by adding all the data bytes (including carry bit)
// and then inver�ng the result
//
unsigned char Calc_Checksum(unsigned char N, unsigned char c[])
{
unsigned char i, Checksum = 0;

for(i = 0; i < N; i++)
{

Checksum = Checksum + c[i] - '0'; // Add data bytes (not ASCII)
if(Checksum > 255)Checksum++; // Add carry (if any)

}
Checksum = ~Checksum; // Invert the data
return Checksum;

}

// Start of MAIN program
//
void main()
{

unsigned char c, i, Checksum, No_Of_Bytes, ID, MYID, Txt[7];
unsigned int temp, mV;

ANSELA = 1; // RA0 is analog
ANSELC = 0; // Configure PORTC as digital
TRISA.RA0 = 1; // RA0 is input
MCP201_CS = 0; // Disable MCP201
TRISC.RC2 = 0; // Configure RC2 as output

Uart1_Init(9600); // Set UART baud rate to 9600 bps
Delay_Ms(10); // Wait un�l UART is se�led
MCP201_CS = 1; // Ac�vate MCP201

//
// START OF LOOP
//

while(1) // Do FOREVER
{

//
// Wait to receive the BREAK sequence. The BREAK sequence is iden�fied when Framing
// error occurs
//

TRISC.RC7=1; // Configure RC7 as input
while(PORTC.RC7 == 1); // Wait for START bit

Figure 7.138
cont’d

548 Chapter 7

In this program, option 2 is used to detect the end of the BREAK sequence:

TRISC.RC7 = 1; // Configure RC7 as input
while(PORTC.RC7 == 1); // Wait for START bit
while(PORTC.RC7 == 0); // Wait for STOP bit

The program then reads a byte and checks to make sure that the received byte is actually a

SYNCH byte (0x55). Then, the IDENT FIELD is read and the program extracts the ID to

check if the request is for this node. If so, the temperature is read from analog channel

0 (RA0, AN0) of the microcontroller, converted into a string, and sent to the MASTER

while(PORTC.RC7 == 0); // Wait for STOP bit

//
// Receive the SYNCH_FIELD byte
//

c = Read_Uart(); // Read a character
if(c == SYNCH_FIELD) // If SYNCH FIELD
{

ID = Read_Uart(); // Read the IDENT FIELD
MYID = ID & 0x0F; // Extract ID nibble

if(MYID == SLAVE_NODE_ID) // If this node is requested
{

No_Of_Bytes = ID & 0x30; // Extract No Of Bytes to send
No_Of_Bytes = No_Of_Bytes >> 4;

if(No_Of_Bytes == 0 || No_Of_Bytes == 1)
No_Of_Bytes = 2;

if(No_Of_Bytes == 2)
No_Of_Bytes = 4;

if(No_Of_Bytes == 3)
No_Of_Bytes = 8;

temp = ADC_READ(0); // Read the analog temperature
mV = temp*5; // In millivolts (approximate)
mV = mV / 10; // Temperature in Degrees C
IntToStr(mV, Txt); // Convert to string
Ltrim(Txt); // Remove leading spaces

for(i = 0; i < No_Of_Bytes; i++) // Do for all requested bytes
{

Write_Uart(Txt[i]); // Send temperature to MASTER
}
Checksum = Calc_Checksum(No_Of_Bytes, Txt); // Calculate the Checksum
Write_Uart(Checksum); // Send the Checksum byte

}
}

}
}

Figure 7.138
cont’d

Advanced PIC18 Projects 549

device over the LIN bus. Finally, the Checksum is calculated and sent over the bus.

Although the Checksum is sent, it is not validated by the MASTER for simplicity. The

program then waits for the next request.

Project 7.17dAutomotive ProjectdCan Bus Project

CAN is a serial bus communications protocol developed by Bosch (an electrical equipment

manufacturer in Germany) in the early 1980s. Thereafter CAN was standardized in ISO-

11898 and ISO-11519, establishing itself as the standard protocol for in-vehicle networking

in car industry. CAN defines an efficient communication protocol between sensors,

actuators, controllers, and other nodes in real time applications. The early CAN development

was mainly supported by the vehicle industry, and it was used in passenger cars, boats,

trucks, and other types of vehicles. Today, the CAN protocol is also used in many other

fields requiring networked embedded control, such as industrial automation, medical

applications, building automation, weaving machines, and production machinery.

CAN is widely accepted for its simplicity, high performance, and reliability. In the early

days of the automotive industry various actuators and electromechanical subsystems were

controlled using standalone, localized controllers. By networking all the electronics in

vehicles, it became possible to control them from a central point, the engine control unit,

and this has increased the functionality, added modularity, and made it possible to carry

out diagnostics more efficiently.

CAN is based on a bus topology, and only two wires are needed for communication over

the bus. The bus has a multimaster structure where each device on the bus is capable of

sending or receiving data. Only one device can send data at any time while all the other

devices listen. If two or more devices attempt to send data at the same time, then the

device with the higher priority is allowed to send its data while the others return into the

receive mode.

The use of CAN in the automotive industry has caused the mass production of CAN

controllers. Today, it is estimated that >400 million CAN modules are sold every year, and

CAN controllers are integrated on many microcontrollers (e.g. PIC microcontrollers) and

are available at a low cost.

Figure 7.139 shows a CAN bus with three nodes. The CAN protocol is based on CSMA/

CDþAMP (Carrier Sense Multiple Access/Collision Detection with Arbitration on

Message Priority) protocol, which is similar to the protocol used in an Ethernet LAN.

When Ethernet detects a collision the sending nodes stop transmitting. They wait a

random time before trying to send again. The CAN protocol solves the collision problem

with the principle of arbitration where only the higher priority node is given the right to

send its data.

550 Chapter 7

There are basically two types of CAN protocols: standard CAN 2.0A and CAN 2.0B.

CAN 2.0A is the earlier standard with 11 bits of identifier, while Can 2.0B is the new

extended standard with 29 bits of identifier. The 2.0B controllers are completely backward

compatible with 2.0A controllers and can receive and transmit messages in either format.

There are two types of 2.0A controllers: the first is capable of sending and receiving 2.0A

messages only and reception of any 2.0B message will flag an error. The second type of

2.0A controller (known as 2.0B passive) can also send and receive 2.0A messages, but in

addition, they will acknowledge receipt of 2.0B messages and then ignore them.

Some of the features of CAN protocol are as follows:

• CAN bus is a multimaster. When the bus is free, any device attached to the bus can

start sending a message.

• CAN bus protocol is flexible. The devices connected to the bus have no addresses. This

means that messages are not transmitted from one node to another node based on ad-

dresses. All the nodes in the system receive every message transmitted on the bus and it

is up to each node in the system to decide whether the message received should be kept

or discarded. A single message can be destined for one particular node to receive, or

many nodes based on the way the system is designed. Another advantage of not having

addresses is that, when a new device is added or an existing device is removed from the

bus, there is no need to change any configuration data, that is, the bus is “hot

pluggable”.

• Another feature of the CAN protocol is the ability for a node to request information

from other nodes on the bus. This is called Remote Transmit Request (RTR). Thus,

instead of waiting for information to be sent continuously by a node, a request can be

sent to the node to get its information. For example, in a vehicle, the engine tempera-

ture is an important parameter. The system can be designed such that the temperature

can be sent periodically over the bus. A more elegant solution would be to request the

temperature whenever required. This approach would minimize the bus traffic while still

maintaining the integrity of the network.

Node
1

Node
3

Node
2

TerminatorTerminator

CAN bus

Figure 7.139: Example CAN Bus.

Advanced PIC18 Projects 551

• CAN bus communication speed is not fixed. Any communication speed can be set for

the devices attached to a bus.

• All devices on the bus can detect an error. The device that has detected an error imme-

diately notifies all other devices.

• Multiple devices can be connected to the bus at the same time. There are no logical

limits to the number of devices that can be connected to the bus. In practice, the

number of units that can be attached to the bus is limited by the delay time and elec-

trical load of the bus.

The data on the CAN bus are differential, and there can be two states: dominant state and

recessive state. Figure 7.140 shows the state of voltages on the bus. The bus defines a

logic bit 0 as a dominant bit and a logic bit 1 as a recessive bit. When there is arbitration

on the bus, a dominant bit state always wins arbitration over a recessive bit state. In the

recessive state, the differential voltage CANH and CANL is less than the minimum

threshold, that is, <0.5-V receiver input and <1.5-V transmitter output. In the dominant

state, the differential voltage CANH and CANL is greater than the minimum threshold.

ISO-11898 specifies that a device on the CAN bus must be able to drive a 40-m cable at

1 Mb/s. A much longer bus length can usually be achieved by lowering the bus speed. A

CAN bus is terminated to minimize signal reflections on the bus. ISO-11898 requires that

the bus have a characteristic impedance of 120 U. The bus can be terminated in one of the

following methods:

• Standard termination,

• Split termination,

• Biased split termination.

In standard termination, a 120-U resistor is used at each end of the bus as shown in

Figure 7.141(a), and this is the most commonly used termination method. In split

Time

Voltage
level

CANH

CANL

Recessive Recessive

Dominant

Vdiff2.5

3.5

1.5

Figure 7.140: CAN Logic States.

552 Chapter 7

termination, the ends of the bus is split and a single 60-U resistor is used as shown in

Figure 7.141(b). Split termination provides reduced emission, and this method is gaining

popularity. The biased split termination is similar to the split termination, but here, a

voltage divider circuit and a capacitor are used at each end of the bus. This method

increases the EMC performance of the bus (Figure 7.141(c)).

There are basically four message frames in CAN: data, remote, error, and overload

frames. The data and remote frames need to be set by the user. Other frames are set by the

CAN hardware.

Data Frame

The data frame is in two formats: standard and extended. The standard format has a

11-bit ID, and the extended format has a 29-bit ID. The data frame is used by the

120 Ω

Standard termination

60 Ω

Split termination

60 Ω

60 Ω

Biased split termination

60 Ω

R1

R2

VDD

(a)

(b)

(c)

Figure 7.141: Bus Termination Methods.

Advanced PIC18 Projects 553

transmitting device to send data to the receiving device, and this is the most important

frame handled by the user. A standard data frame starts with the SOF bit. It is then

followed by an 11-bit identifier and the remote transmit request (RTR) bit. The identifier

and the RTR form the arbitration field. The control field is 6 bits wide and it indicates

how many bytes of data there are in the data field. The data field can be 0e8 bytes. The

data field is followed by the CRC field, which checks whether or not the received bit

sequence is corrupted. The ACK field is 2 bits, and it is used by the transmitter to

receive an acknowledgement of a valid frame from any receiver. The end of the message

is indicated by a 7-bit end-of-frame (EOF) field. In an extended data frame, the

arbitration field is 29 bits wide.

The data frame consists of the following fields:

Start of Frame

This field indicates the beginning of a data frame and is common to both standard and

extended formats.

Arbitration Field

Arbitration is used to resolve bus conflicts when more than one device starts sending a

message on the bus. This field indicates the priority of a frame and differs between the

standard and extended formats. In the standard format, there are 11 bits, and up to 2032

IDs can be set. The extended format ID consists of 11 base IDs and 18 extended IDs. Up

to 2032� 218 discrete IDs can be set.

During the arbitration phase, each transmitting device transmits its identifier and compares

it with the level on the bus. If the levels are equal, the device continues to transmit. If the

device detects a dominant level on the bus while it was trying to transmit a recessive level,

then it quits transmitting and becomes a receiving device. When the arbitration is over,

there is only one transmitter left on the bus, and this transmitter continues to control field,

data field etc.

Control Field

The control field is 6 bits wide, and it indicates the number of data bytes in a message to

be transmitted. This field consists of two reserved bits and four data length code (DLC)

bits. The control field is coded as shown in Table 7.19, where up to eight transmit bytes

can be coded with 6 bits.

Data Field

This field indicates the actual content of data. The data size can vary from 0 to 8 bytes.

The data are transmitted with the MSB first.

554 Chapter 7

CRC Field

The CRC field is used to check the frame for a transmission error. This field consists of a

15-bit CRC sequence and a 1-bit CRC delimiter. The CRC calculation includes the SOF,

arbitration field, control field, and data field. The calculated CRC and the received CRC

sequence are compared, and if they do not match, an error is assumed.

ACK Field

The ACK field indicates that the frame has been received normally. This field consists of 2

bits, one for ACK slot and one for ACK delimiter.

Remote Frame

This frame is used by the receive unit to request transmission of a message from the

transmitting unit. The remote frame consists of six fields: start of frame, arbitration

field, control field, CRC field, ACK field, and end of frame field. The remote field is the

same as a data frame except that it does not have a data field.

Error Frame

The error frame is used to notify an error that has occurred during transmission. This field

consists of an error flag and an error delimiter. Error frames are generated and

transmitted by the CAN hardware. There are two types of error flags: active error flag, and

passive error flag. Active error flag consists of six dominant bits. Passive error flag

consists of six recessive bits. The error delimiter consists of eight recessive bits.

Overload Frame

The overload frame is used by the receive unit to notify that it is not ready to receive

frames yet. This frame consists of an overload flag and an overload delimiter. The

Table 7.19: Coding the Control Field.

No of Data Bytes DLC3 DLC2 DLC1 DLC0

0 D D D D
1 D D D R
2 D D R D
3 D D R R
4 D R D D
5 D R D R
6 D R R D
7 D R R R
8 R D or R D or R D or R

D: Dominant level, R: Recessive level.

Advanced PIC18 Projects 555

overload flag consists of six dominant bits, and it is structured the same way as the active

error flag of the error frame. The overload delimiter consists of eight recessive bits and

this field is structured the same way as the error delimiter of the error frame.

Bit Stuffing

CAN bus uses bit stuffing technique that is used to periodically synchronize

transmitereceive operations to prevent timing errors between receive nodes. If five

consecutive bits with the same level appear, 1 bit of inverted data is added to the

sequence. During sending of a data or a remote frame, the same level occurs in five

consecutive bits during the SOF to CRC sequence, an inverted level preceding 5 bits is

inserted in the next (i.e. the sixth) bit. During receiving a data or a remote frame, the same

level occurs in five consecutive bits during the SOF to CRC sequence, the next (sixth) bit

is deleted from the received frame. If the deleted sixth bit is at the same level as the

preceding fifth bit, an error (stuffing error) is detected.

Nominal Bit Timing

The CAN bus nominal bit rate (NMR) is defined as the number of bits transmitted every

second without resynchronization. The inverse of the NMR is the nominal bit time. All

devices on the CAN bus must use the same bit rate, even though each device can have its

own different clock frequency. One message bit consists of four nonoverlapping time

segments:

• Synchronization segment (Sync_Seg),

• Propagation time segment (Prop_Seg),

• Phase buffer segment 1 (Phase_Seg1),

• Phase buffer segment 2 (Phase_Seg2).

The Sync_Seg segment is used to synchronize various nodes on the bus, and an edge is

expected to lie within this segment. The Prop_Seg segment compensates for the physical

delay times within the network. The Phase_Seg1 and Phase_Seg2 segments are used to

compensate for edge phase errors. These segments can be lengthened or shortened by

synchronization. The sample point is the point in time where the actual bit value is

located. The sample point is at the end of Phase_Seg1. A CAN controller can be

configured to sample three times and use a majority function to determine the actual bit

value.

Each segment is divided into units known as Time Quantum, or TQ. A desired bit timing

can be set by adjusting the number of TQ’s that comprise one message bit and the number

of TQ’s that comprise each segment in it. The TQ is a fixed unit derived from the oscillator

556 Chapter 7

period and the time quantum of each segment can vary from 1 to 8. The length of each

time segment is

• Sync_Seg is one time quantum long.

• Prop_Seg is programmable to be one to eight time quanta long.

• Phase_Seg1 is programmable to be one to eight time quanta long.

• Phase_Seg2 is programmable to be two to eight time quanta long.

By setting the bit timing, it is possible to set a sampling point so that multiple units on the

bus can sample messages with the same timing.

The nominal bit time is programmable from a minimum of eight time quanta to a

maximum of 25 time quanta. By definition, the minimum nominal bit time is 1 ms

corresponding to a maximum 1 Mb/s rate. The nominal bit time (TBIT) is given by

TBIT ¼ TQ
�ðSync_Segþ Prop_Segþ Phase_Seg1þ Phase_Seg2Þ (7.1)

and the NMR is

NBR ¼ 1=TBIT:

The time quantum is derived from the oscillator frequency and the programmable baud

rate prescaler, with integer values from 1 to 64. The time quantum can be expressed as

TQ ¼ 2 � ðBRPþ 1Þ=FOSC;
Where

TQ is in microseconds, and FOSC is in megahertz, and BRP is the baud rate prescaler

(0e63).

We can also write

TQ ¼ 2 � ðBRPþ 1Þ � TOSC;

Where TOSC is in microseconds.

An example is given below for the calculation of the NMR.

Example 7.1

Assuming a clock frequency of 20 MHz, a baud rate prescaler value of 1, and a nominal bit
time of TBIT¼ 8 � TQ, determine the NMR.

Solution 7.1
From the above equations,

TQ ¼ 2 � ð1þ 1Þ=20 ¼ 0:2 ms:

Advanced PIC18 Projects 557

Also,

TBIT ¼ 8 � TQ ¼ 8 � 0:2 ¼ 1:6 ms

and

NBR ¼ 1=TBIT ¼ 1=1:6 ms ¼ 625; 000 bits=s or 625 Kb=s:

To compensate for phase shifts between the oscillator frequencies of the nodes on the bus,
each CAN controller must synchronize to the relevant signal edge of the received signal.
Two types of synchronization are defined: hard synchronization and resynchronization. Hard
synchronization is done only at the beginning of a message frame, when each CAN node
aligns the Sync_Seg of its current bit time to the recessive or dominant edge of the
transmitted SOF. According to the rules of synchronization, if a hard synchronization
occurs, there will not be a resynchronization within that bit time.
With resynchronization, the Phase_Seg1 may be lengthened or Phase_Seg2 may be short-
ened. The amount of change of the phase buffer segments has an upper bound given by the
Synchronization Jump Width (SJW). The SJW is programmable between 1 and 4, and its
value is added to Phase_Seg1, or subtracted from Phase_Seg2.

PIC Microcontroller CAN Interface

PIC microcontrollers can be used in CAN bus-based projects. In general, any type of PIC

microcontroller can be used, but some PIC microcontrollers (e.g. PIC18F258) have built-in

CAN modules that simplify the design of CAN bus-based systems. Microcontrollers with

no built-in CAN modules can also be used in CAN bus applications, but additional

hardware and software are required, making the design costly and also more complex.

Figure 7.142 shows the block diagram of a PIC microcontroller-based CAN bus

application. Here, a PIC microcontroller with no built-in CAN module is used.

CAN
Transceiver
MCP2551

CAN
Controller
MCP2515

PIC
microcontroller
with no CAN

SPI
RX

TX

CAN bus

CAN node

Figure 7.142: CAN Node with Any PIC Microcontroller.

558 Chapter 7

The microcontroller is connected to the CAN bus using an external MCP2515 CAN

controller chip and an MCP2551 CAN bus transceiver chip. This configuration is suitable

for a quick upgrade to an existing design using any PIC microcontroller.

For new CAN bus-based designs, it is easier to use a PIC microcontroller with a built-in

CAN module. As shown in Figure 7.143, such devices include built-in CAN controller

hardware on the chip. All that is required to make a CAN node is then to add a CAN

transceiver chip.

In this project, the PIC18F258 microcontroller is used in a CAN bus-based project. The

description and operating principles given in this section are in general applicable to other

PIC microcontrollers with CAN modules.

PIC18F258 Microcontroller

PIC18F258 is a high performance 8-bit microcontroller with an integrated CAN module.

The device has the following features:

• A 32 k flash program memory,

• A 1536-byte RAM data memory,

• A 256-byte EEPROM memory,

• Twenty two I/O ports,

• Five-channel 10-bit A/D converters,

• Three timers/counters,

• Three external interrupt pins,

• High current (25-mA) sink/source,

• Capture/compare/Pulse Width Modulation (PWM) module,

• SPI/I2C module,

CAN
Transceiver
MCP2551

PIC18F
Series 8-bit

Microcontroller
&

CAN controller
module

RX

TX

CAN bus

CAN node

Figure 7.143: CAN Node with an Integrated CAN Module.

Advanced PIC18 Projects 559

• CAN 2.0A/B module,

• Power-on reset and power-on timer,

• Watchdog timer,

• Priority level interrupts,

• DC to 40-MHz clock input,

• An 8� 8 hardware multiplier,

• Wide operating voltage (2.0e5.5 V),

• Power saving sleep mode.

It is important to understand the architecture of the CAN module. In this section, we shall

be looking at the CAN module features of the PIC18F258 microcontroller.

PIC18F258 microcontroller CAN module has the following features:

• Compatible with CAN 1.2, CAN 2.0A and CAN 2.0B,

• Supports standard and extended data frames,

• Programmable bit rate up to 1 Mbit/s,

• Double buffered receiver,

• Three transmit buffers,

• Two receive buffers,

• Programmable clock source,

• Six acceptance filters,

• Two acceptance filter masks,

• Loop-back mode for self-test,

• Low-power sleep mode,

• Interrupt capabilities.

The CAN module uses port pins RB3/CANRX and RB2/CANTX for CAN bus receive

and transmit functions, respectively. These pins are connected to the CAN bus via an

MCP2551 type CAN bus transceiver chip.

PIC18F258 microcontroller supports the following frame types:

• Standard data frame,

• Extended data frame,

• Remote frame,

• Error frame,

• Overload frame,

• Interframe space.

A node uses filters to decide whether or not to accept a received message. Message

filtering is applied to the whole identifier field, and mask registers are used to specify

which bits in the identifier are to be examined with the filters.

560 Chapter 7

The CAN module in the PIC18F258 microcontroller has six modes of operation:

• Configuration mode,

• Disable mode,

• Normal operation mode,

• Listen-only mode,

• Loop-back mode,

• Error recognition mode.

Configuration Mode

The CAN module is initialized in the configuration mode. The module is not allowed to

enter the configuration mode while a transmission is taking place. In the configuration

mode, the module will not transmit or receive, the error counters are cleared, and the

interrupt flags remain unchanged.

Disable Mode

In the disable mode, the module will not transmit or receive. In this mode, the internal

clock is stopped unless the module is active. If the module is active, the module will wait

for 11 recessive bits on the CAN bus, detect that condition as an IDLE bus, and then

accept the module disable command. The WAKIF interrupt (wake-up interrupt) is the only

CAN module interrupt that is active in the disable mode.

Normal Operation Mode

This is the standard operating mode of the CAN module. In this mode, the module

monitors all bus messages and generates acknowledge bits, error frames, etc. This is the

only mode that will transmit messages.

Listen-only Mode

This mode allows the CAN module to receive messages, including messages with errors.

This mode can be used to monitor the bus activities or for detecting the baud rate on the

bus. For autobaud detection, there must be at least two other nodes communicating with

each other. The baud rate can be determined by testing different values until valid

messages are received. No messages can be transmitted in the listen-only mode.

Loop-back Mode

In this mode, messages can be directed from internal transmit buffers to receive buffers,

without actually transmitting messages on the CAN bus. This mode can be used during

system developing and testing.

Advanced PIC18 Projects 561

Error Recognition Mode

This mode is used to ignore all errors and receive all messages. In this mode, all

messages, valid or invalid, are received and copied to the receive buffer.

CAN Message Transmission

PIC18F258 microcontroller implements three dedicated transmit buffers: TXB0, TXB1,

and TXB2. Pending transmittable messages are in a priority queue. Prior to sending the

SOF, the priority of all buffers that are queued for transmission is compared. The transmit

buffer with the highest priority will be sent first. If two buffers have the same priorities,

the buffer with the highest buffer number will be sent first. There are four levels of

priority.

CAN Message Reception

Reception of a message is a more complex process. PIC18F258 microcontroller includes

two receive buffers RXB0 and RXB1 with multiple acceptance filters for each

(Figure 7.144). All received messages are assembled in Message Assembly Buffer (MAB).

Once a message is received, regardless of the type of identifier and the number of data

bytes received, the entire message is copied into MAB.

Accept

Accept

Acceptance mask
RXM1

Acceptance filter
RXM2

Acceptance filter
RXF3

Acceptance filter
RXF4

Acceptance filter
RXF5

Acceptance filter
RXF1

Acceptance filter
RXF0

Acceptance mask
RXM0

RXB1RXB0

Identifier Identifier

Message assembly buffer

Data and
identifier

Data and
identifier

Figure 7.144: Receive Buffer Block Diagram.

562 Chapter 7

Received messages have priorities. RXB0 is the higher priority buffer, and it has two

message acceptance filters RXF0 and RXF1. RXB1 is the lower priority buffer, and it has

four acceptance filters RXF2, RXF3, RXF4, and RXF5. There are also two programmable

acceptance filter masks RXM0 and RXM1 available, one for each receive buffer.

The CAN module uses message acceptance filters and masks to determine if a message in

the MAB should be loaded into a receive buffer. Once a valid message is received by the

MAB, the identifier field of the message is compared to the filter values. If there is a

match, that message will be loaded into the appropriate receive buffer. The filter masks are

used to determine which bits in the identifier are examined with the filters.

Calculating the Timing Parameters

Setting the timing parameters of the nodes are very important for the reliable operation of

the bus. Given the microcontroller clock frequency and the required CAN bus bit rate, we

need to calculate the values of the following timing parameters:

• Baud rate prescaler value,

• Prop_Seg value,

• Phase_Seg1 value,

• Phase_Seg2 value,

• SJW value.

Correct timing requires that

• Prop_Segþ Phase_Seg1� Phase_Seg2,

• Phase_Seg2� SJW.

An example is given below to illustrate how the various timing parameters can be

calculated.

Example 7.2

Assuming that the microcontroller oscillator clock rate is 20 MHz, and the required CAN bit
rate is 125 kHz, calculate the timing parameters.

Solution 7.2
With a 20-MHz clock rate, the clock period is 50 ns. Choosing a baud rate prescaler value of
4, from Eqn (7.4),

TQ ¼ 2 � ðBRPþ 1Þ � TOSC

gives a time quantum of TQ¼ 500 ns. To obtain a NMR of 125 kHz, the nominal bit time
must be

TBIT ¼ 1=0:125 MHz ¼ 8 ms; or 16TQ:

Advanced PIC18 Projects 563

The Sync_Segment is 1TQ. Choosing 2TQ for the Prop_Seg, and 7TQ for Phase_Seg1 leaves
6TQ for Phase_Seg2 and places the sampling point at 10TQ (at the end of Phase_Seg1).

By the rules given above, the SJW could be the maximum allowed (i.e. 4). However, a large
SJW is only necessary when the clock generation of different nodes is not stable or accurate
(e.g. if using ceramic resonators). Typically an SJW of 1 is enough. In summary, the required
timing parameters are as follows:

Baud rate prescaler (BRP) = 4
Sync_Seg = 1
Prop_Seg = 2
Phase_Seg1 = 7
Phase_Seg2 = 6
SJW = 1

The sampling point is at 10TQ that corresponds to 62.5% of the total bit time.

There are several tools available on the Internet for calculating the CAN bus timing parameters
accurately. Interested readers should refer to the excellent book of the author on this topic,
entitled “Controller Area Network Project, Elektor Int. Media, ISBN: 978-1-907920-04-2”

mikroC Pro for PIC CAN Functions

mikroC Pro for the PIC language provides two sets of libraries for CAN bus applications:

the library for PIC microcontrollers with built-in CAN modules, and the library based on

the use of SPI bus for PIC microcontrollers having no built-in CAN modules. In this

project, we shall only be looking at the library functions available for PIC microcontrollers

with built-in CAN modules. Similar functions are available for PIC microcontrollers with

no built-in CAN modules.

mikroC CAN functions are supported only by PIC18XXX8 microcontrollers with

MCP2551 or similar CAN transceivers. Both standard (11 identifier bits) and extended

format (29 identifier bits) messages are supported.

The following mikroC functions are provided:

• CANSetOperationMode,

• CANGetOperationMode,

• CANInitialize,

• CANSetBaudRAte,

• CANSetMask,

• CANSetFilter,

• CANRead,

• CANWrite.

564 Chapter 7

These functions are described below.

1. CANSetOperationMode

This function is used to set the CAN operation mode. The function prototype is

void CANSetOperationMode(char mode, char wait_flag)

Parameter wait_flag is either 0 or 0xFF. If set to 0xFF, the function blocks and will not

return until the requested mode is set. If 0, the function returns as a nonblocking call.

The mode can be one of the following:

• _CAN_MODE_NORMAL - normal mode of operation,

• _CAN_MODE_SLEEP - SLEEP mode of operation,

• _CAN_MODE_LOOP - Loop-back mode of operation,

• _CAN_MODE_LISTEN - Listen Only mode of operation,

• _CAN_MODE_CONFIG - Configuration mode of operation,

2. CANGetOperationMode

This function returns the current CAN operation mode. The function prototype is

char CANGetOperationMode(void)

3. CAN_Initialize

This function initializes the CAN module. All mask registers are cleared to 0 to allow all

messages. Upon execution of this function, the Normal mode is set. The function prototype is

void CANInitialize(char SJW, char BRP, char PHSEG1,

char PHSEG2,char PROPEG, char CAN_CONFIG_FLAGS)

where

SJW is the Synchronization Jump Width,

BRP is the Baud Rate prescaler,

PHSEG1 is the Phase_Seg1 timing parameter,

PHSEG2 is the Phase_Seg2 timing parameter,

PROPSEG is the Prop_Seg.

CAN_CONFIG_FLAGS can be one of the following configuration flags:

Value Meaning

_CAN_CONFIG_DEFAULT Default flags
_CAN_CONFIG_PHSEG2_PRG_ON Use supplied PHSEG2 value
_CAN_CONFIG_PHSEG2_PRG_OFF Use a maximum of PHSEG1 or information

processing Time whichever is greater

Continued

Advanced PIC18 Projects 565

Value Meaning

_CAN_CONFIG_LINE_FILTER_ON Use the CAN bus line filter for wake-up
_CAN_CONFIG_FILTER_OFF Do not use a CAN bus line filter

_CAN_CONFIG_SAMPLE_ONCE Sample bus once at the sample point
_CAN_CONFIG_SAMPLE_THRICE Sample bus three times prior to the sample point

_CAN_CONFIG_STD_MSG Accept only standard identifier messages
_CAN_CONFIG_XTD_MSG Accept only extended identifier messages

_CAN_CONFIG_DBL_BUFFER_ON Use double buffering to receive data
_CAN_CONFIG_DBL_BUFFER_OFF Do not use double buffering

_CAN_CONFIG_ALL_MSG Accept all messages including invalid ones
_CAN_CONFIG_VALID_XTD_MSG Accept only valid extended identifier messages
_CAN_CONFIG_VALID_STD_MSG Accept only valid standard identifier messages
_CAN_CONFIG_ALL_VALID_MSG Accept all valid messages

The above configuration values can be bitwise AND’ed to form complex configuration

values.

4. CANSetBaudRate

This function is used to set the CAN bus baud rate. The function prototype is

void CANSetBaudRate(char SJW, char BRP, char PHSEG1, char PHSEG2,

char PROPSEG, char CAN_CONFIG_FLAGS)

the arguments of the function are as in function CANInitialize.

5. CANSetMask

This function sets the mask for filtering of messages. The function prototype is

void CANSetMask(char CAN_MASK, long value, char
CAN_CONFIGFLAGS)

CAN_MASK can be one of the following:

• _CAN_MASK_B1dReceive Buffer 1 mask value,

• _CAN_MASK_B2dReceive Buffer 2 mask value.

value is the mask register value. CAN_CONFIG_FLAGS can be either

_CAN_CONFIG_XTD (extended message), or _CAN_CONFIG_STD (standard message).

6. CANSetFilter

This function sets filter values. The function prototype is

void CANSetFilter(char CAN_FILTER, long value, char
CAN_CONFIG_FLAGS)

566 Chapter 7

CAN_FILTER can be one of the following:

• _CAN_FILTER_B1_F1dFilter 1 for Buffer 1,

• _CAN_FILTER_B1_F2dFilter 2 for Buffer 1,

• _CAN_FILTER_B2_F1dFilter 1 for Buffer 2,

• _CAN_FILTER_B2_F2dFilter 2 for Buffer 2,

• _CAN_FILTER_B2_F3dFilter 3 for Buffer 2,

• _CAN_FILTER_B2_F4dFilter 4 for Buffer 2.

CAN_CONFIG_FLAGS can be either _CAN_CONFIG_XTD (extended message), or

_CAN_CONFIG_STD (standard message).

7. CANRead

This function is used to read messages from the CAN bus. Zero is returned if no message

is available. The function prototype is

char CANRead(long �id, char �data, char �datalen, char
�CAN_RX_MSG_FLAGS)

id is the CAN message identifier. Only 11 or 29 bits may be used depending on message

type (standard or extended). data is an array of bytes up to eight where the received data

are stored. datalen is the length of the received data (1e8).

CAN_RX_MSG_FLAGS can be one of the following:

• _CAN_RX_FILTER_1dReceive Buffer Filter 1 accepted this message.

• _CAN_RX_FILTER_2dReceive Buffer Filter 2 accepted this message.

• _CAN_RX_FILTER_3dReceive Buffer Filter 3 accepted this message.

• _CAN_RX_FILTER_4dReceive Buffer Filter 4 accepted this message.

• _CAN_RX_FILTER_5dReceive Buffer Filter 5 accepted this message.

• _CAN_RX_FILTER_6dReceive Buffer Filter 6 accepted this message.

• _CAN_RX_OVERFLOWdReceive buffer overflow occurred.

• _CAN_RX_INVALID_MSGdInvalid message received.

• _CAN_RX_XTD_FRAMEdExtended Identifier message received.

• _CAN_RX_RTR_FRAMEdRTR frame message received.

• _CAN_RX_DBL_BUFFEREDdThis message was double-buffered.

The above flags can be bitwise AND’ed if desired.

8. CANWrite

This function is used to send a message to the CAN bus. A zero is returned if the message

cannot be queued (buffer full). The function prototype is

char CANWrite(long id, char �data, char datalen, char
CAN_TX_MSG_FLAGS)

Advanced PIC18 Projects 567

id is the CAN message identifier. Only 11 or 29 bits may be used depending on the

message type (standard or extended). data is an array of bytes up to eight where the data

to be sent are stored. datalen is the length of the data (1e8).

CAN_TX_MSG_FLAGS can be one of the following:

• _CAN_TX_PRIORITY_0 - Transmit priority 0

• _CAN_TX_PRIORITY_1 - Transmit priority 1

• _CAN_TX_PRIORITY_2 - Transmit priority 2

• _CAN_TX_PRIORITY_3 - Transmit priority 3

• _CAN_TX_STD_FRAME - Standard Identifier message

• _CAN_TX_XTD_FRAME - Extended Identifier message

• _CAN_TX_NO_RTR_FRAME - Non-RTR message,

• _CAN_TX_RTR_FRAME - RTR message.

The above flags can be bitwise AND’ed if desired.

CAN Bus Programming

To operate the PIC18F258 microcontroller on the CAN bus, the following steps should be

carried out:

• Configure CAN bus I/O port directions (RB2 and RB3).

• Initialize the CAN module (CANInitialize).

• Set CAN module to the CONFIG mode (CANSetOperationMode).

• Set Mask registers (CANSetMask).

• Set Filter registers (CANSetFilter).

• Set CAN module to the Normal mode (CANSetOperationMode).

• Write/Read data (CANWrite/CANRead).

CAN Bus Project DescriptiondTemperature Sensor and Display

This is a simple two-node CAN bus based project. The block diagram of the project is

shown in Figure 7.145. The system is made up of two CAN nodes. One node (called

the COLLECTOR node) reads the temperature from an external semiconductor

temperature sensor. The other node (called the DISPLAY node) requests the

temperature every second and then displays it on an LCD. This process is repeated

continuously.

The circuit diagram of the project is given in Figure 7.146. Two CAN nodes are

connected together using a 2-m twisted pair cable, terminated with 120-U resistors at

both ends.

568 Chapter 7

The COLLECTOR Processor

The COLLECTOR processor consists of a PIC18F258 microcontroller with a built-in

CAN module and an MCP2551 transceiver chip. The microcontroller is operated

from an 8-MHz crystal. The MCLR input is connected to an external reset button.

Analog input AN0 of the microcontroller is connected to a LM35DZ-type

semiconductor temperature sensor. The sensor can measure temperature in the range

0e100 �C and generates an analog voltage directly proportional to the measured

temperature, that is, the output is 10 mV/�C. For example, at 20 �C, the output

voltage is 200 mV.

The CAN outputs (RB2/CANTX and RB3/CANRX) of the microcontroller are connected

to the TXD and RXD inputs of an MCP2551-type CAN transceiver chip. The CANH and

CANL outputs of this chip are connected directly to a twisted cable terminated CAN bus.

MCP2551 is an eight-pin chip that supports data rates up to 1 Mb/s. The chip can drive up

to 112 nodes. An external resistor connected to pin 8 of the chip controls the rise and fall

times of CANH and CANL so that EMI can be reduced. For high-speed operation, this pin

should be connected to the ground. A reference voltage equal to VDD/2 is output from pin

5 of the chip.

The DISPLAY Processor

As in the COLLECTOR processor, the DISPLAY processor consists of a PIC18F258

microcontroller and an MCP2551 transceiver chip. The microcontroller is operated from

an 8-MHz crystal. The MCLR input is connected to an external reset button. The CAN

outputs (RB2/CANTX and RB3/CANRX) of the microcontroller are connected to the

TXD and RXD inputs of the MCP2551. Pins CANH and CANL of the transceiver chip are

Node: COLLECTOR Node: DISPLAY

CAN bus
120 ohm
terminator

120 ohm
terminator

Temperature
sensor

LCD
PIC18F

258
PIC18F

258

MCP2551 MCP2551

LM35

Figure 7.145: Block Diagram of the Project.

Advanced PIC18 Projects 569

connected to the CAN bus. An LCD is connected to PORTC of the microcontroller to

display the temperature values.

The program listing is in two parts: the COLLECTOR program and the DISPLAY

program. The operation of the system is as follows:

• The DISPLAY processor requests the current temperature from the COLLECTOR pro-

cessor over the CAN bus.

• The COLLECTOR processor reads the temperature, formats it, and sends to the

DISPLAY processor over the CAN bus.

• The DISPLAY processor reads the temperature from the CAN bus and then displays it

on the LCD.

• The above process is repeated every second.

DISPLAY Program

Figure 7.147 shows the program listing of the DISPLAY program, called

CAN-DISPLAY.C. At the beginning of the program, PORTC pins are configured as

outputs, RB3 is configured as input (CANRX), and RB2 is configured as output

(CANTX). In this project, the CAN bus bit rate is selected as 100 kb/s. With a

microcontroller clock frequency of 8 MHz, the timing parameters were calculated to be

Figure 7.146: Circuit Diagram of the Project.

570 Chapter 7

/**
CAN BUS EXAMPLE - NODE: DISPLAY
==============================

This is the DISPLAY node of the CAN bus example. In this project a PIC18F258 type
microcontroller is used. An MCP2551 type CAN bus transceiver is used to connect the
microcontroller to the CAN bus. The microcontroller is operated from an 8 MHz
crystal with an external reset bu�on.

Pin CANRX and CANTX of the microcontroller are connected to pins RXD and TXD of the
transceiver chip respec�vely. Pins CANH and CANL of the transceiver chip are connected
to the CAN bus.

An LCD is connected to PORT C of the microcontroller. The ambient temperature is read from
another CAN node and is displayed on the LCD.

The LCD is connected to the microcontroller as follows:

Microcontroller LCD

RC0 D4
RC1 D5
RC2 D6
RC3 D7
RC4 RS
RC5 EN

CAN speed parameters are:

Microcontroller clock: 8 MHz
CAN Bus bit rate: 100 Kb/s
Sync_Seg: 1
Prop_Seg: 6
Phase_Seg1: 6
Phase_Seg2: 7
SJW: 1
BRP: 1
Sample point: 65%

Author: Dogan Ibrahim
Date: October 2013
File: CAN-DISPLAY.C
**/
// LCD module connec�ons
sbit LCD_RS at RC4_bit;
sbit LCD_EN at RC5_bit;
sbit LCD_D4 at RC0_bit;
sbit LCD_D5 at RC1_bit;
sbit LCD_D6 at RC2_bit;
sbit LCD_D7 at RC3_bit;

Figure 7.147: DISPLAY Program Listing.

Advanced PIC18 Projects 571

sbit LCD_RS_Direc�on at TRISC4_bit;
sbit LCD_EN_Direc�on at TRISC5_bit;
sbit LCD_D4_Direc�on at TRISC0_bit;
sbit LCD_D5_Direc�on at TRISC1_bit;
sbit LCD_D6_Direc�on at TRISC2_bit;
sbit LCD_D7_Direc�on at TRISC3_bit;
// End LCD module connec�ons

void main()
{

unsigned char temperature, dat[8];
unsigned char init_flag, send_flag, dt, len, read_flag;
char SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, txt[4];
long id, mask;

TRISC = 0; // PORTC are outputs (LCD)
TRISB = 0x08; // RB2 is output, RB3 is input

//
// CAN BUS Parameters
//

SJW = 1;
BRP = 1;
Phase_Seg1 = 6;
Phase_Seg2 = 7;
Prop_Seg = 6;

init_flag = _CAN_CONFIG_SAMPLE_THRICE &
_CAN_CONFIG_PHSEG2_PRG_ON &
_CAN_CONFIG_STD_MSG &
_CAN_CONFIG_DBL_BUFFER_ON &
_CAN_CONFIG_VALID_XTD_MSG &
_CAN_CONFIG_LINE_FILTER_OFF;

send_flag = _CAN_TX_PRIORITY_0 &
_CAN_TX_XTD_FRAME &
_CAN_TX_NO_RTR_FRAME;

read_flag = 0;
//
// Ini�alise CAN module
//

CANIni�alize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);
//
// Set CAN CONFIG mode
//

CANSetOpera�onMode(_CAN_MODE_CONFIG, 0xFF);

mask = -1;
//
// Set all MASK1 bits to 1's
//

Figure 7.147
cont’d

572 Chapter 7

CANSetMask(_CAN_MASK_B1, mask, _CAN_CONFIG_XTD_MSG);
//
// Set all MASK2 bits to 1's
//

CANSetMask(_CAN_MASK_B2, mask, _CAN_CONFIG_XTD_MSG);
//
// Set id of filter B2_F3 to 3
//

CANSetFilter(_CAN_FILTER_B2_F3,3,_CAN_CONFIG_XTD_MSG);
//
// Set CAN module to NORMAL mode
//

CANSetOpera�onMode(_CAN_MODE_NORMAL, 0xFF);

//
// Configure LCD
//

Lcd_Init(); // Ini�alizd LCD
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,"CAN BUS"); // Display heading on LCD
Delay_ms(1000); // Wait for 2 seconds

//
// Program loop. Read the temperature from Node:COLLECTOR and display
// on the LCD con�nuously
//

for(;;) // Endless loop
{

Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Lcd_Out(1,1,"Temp = "); // Display "Temp = "
//
// Send a message to Node:COLLECTOR and ask for data
//
dat[0] = 'T'; // Data to be sent
id = 500; // Iden�fier
CANWrite(id, dat, 1, send_flag); // Send 'T'
//
// Get temperature from node:COLLECT
//
dt = 0;
while(!dt)dt = CANRead(&id, dat, &len, &read_flag);
if(id == 3)
{

temperature = dat[0];
ByteToStr(temperature,txt); // Convert to string
Lcd_Out(1,8,txt); // Output to LCD
Delay_ms(1000); // Wait 1 second

}
}

}

Figure 7.147
cont’d

Advanced PIC18 Projects 573

SJW = 1
BRP = 1
Phase_Seg1 = 6
Phase_Seg2 = 7
Prop_Seg = 6

mikroC Pro for PIC CAN bus function CANInitialize is used to initialize the CAN

module. The timing parameters and the initialization flag are specified as arguments in this

function. The initialization flag was made up from the bitwise AND of

init_flag = _CAN_CONFIG_SAMPLE_THRICE &
_CAN_CONFIG_PHSEG2_PRG_ON &
_CAN_CONFIG_STD_MSG &
_CAN_CONFIG_DBL_BUFFER_ON &
_CAN_CONFIG_VALID_XTD_MSG &
_CAN_CONFIG_LINE_FILTER_OFF;

Where it was specified to sample the bus three times, standard identifier was specified,

double buffering was turned on, and the line filter was turned off.

Then, the operation mode was set to CONFIGURATION, and the filter masks and filter

values were specified. Both mask 1 and mask 2 were set to all 1’s (�1 is a short hand of

writing 0xFFFFFFFF, that is, setting all mask bits to 1’s) so that matching of all filter bits

was required.

Filter 3 for Buffer 2 was set to value 3 so that identifiers having values 3 will be accepted

by the receive buffer.

The operation mode is then set to NORMAL. The program then configures the LCD and

displays message “CAN BUS” for 1 s on the LCD.

The main program loop executes continuously and starts with a for statement. Inside this

loop, the LCD is cleared and text “TEMP¼ ” is displayed on the LCD. Then character

“T” is sent over the bus with identifier equal to 500 (the COLLECTOR node filter is set

accept identifier 500). This is a request to the COLLECTOR node to send the temperature

reading. The program then reads the temperature from the CAN bus, converts it to a string

in array txt, and then displays it on the LCD. The above process is repeated after a 1-s

delay.

COLLECTOR Program

Figure 7.148 shows the program listing of the COLLECTOR program, called

CAN-COLLECTOR.C. The initial part of this program is the same as the DISPLAY

program. Here, the receive filter is set to 500 so that messages with identifier 500 can be

accepted by the program.

574 Chapter 7

/**
CAN BUS EXAMPLE - NODE: COLLECTOR
================================

This is the COLLECTOR node of the CAN bus example. In this project a PIC18F258 type
microcontroller is used. An MCP2551 type CAN bus transceiver is used to connect
the microcontroller to the CAN bus. The microcontroller is operated from an 8 MHz
crystal with an external reset bu�on.

Pin CANRX and CANTX of the microcontroller are connected to pins RXD and TXD of the
transceiver chip respec�vely. Pins CANH and CANL of the transceiver chip are connected to
the CAN bus.

An LM35DZ type analog temperature sensor is connected to port AN0 of the microcontroller.
The microcontroller reads the temperature when a request is received and then sends the
temperature value as a byte to Node:DISPLAY on the CAN bus.

CAN speed parameters are:

Microcontroller clock: 8 MHz
CAN Bus bit rate: 100 Kb/s
Sync_Seg: 1
Prop_Seg: 6
Phase_Seg1: 6
Phase_Seg2: 7
SJW: 1
BRP: 1
Sample point: 65%

Author: Dogan Ibrahim
Date: October 2013
File: CAN-COLLECTOR.C
**/

void main()
{

unsigned char temperature, dat[8];
unsigned short init_flag, send_flag, dt, len, read_flag;
char SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, txt[4];
unsigned int temp;
unsigned long mV;
long id, mask;

TRISA = 0xFF; // PORT A are inputs
TRISB = 0x08; // RB2 is output, RB3 is input

//
// Configure A/D converter
//

ADCON1 = 0x80;
//
// CAN BUS Timing Parameters

Figure 7.148: COLLECT Program Listing.

Advanced PIC18 Projects 575

//
SJW = 1;
BRP = 1;
Phase_Seg1 = 6;
Phase_Seg2 = 7;
BRP = 1;
Prop_Seg = 6;

init_flag = _CAN_CONFIG_SAMPLE_THRICE &
_CAN_CONFIG_PHSEG2_PRG_ON &
_CAN_CONFIG_STD_MSG &
_CAN_CONFIG_DBL_BUFFER_ON &
_CAN_CONFIG_VALID_XTD_MSG &
_CAN_CONFIG_LINE_FILTER_OFF;

send_flag = _CAN_TX_PRIORITY_0 &
_CAN_TX_XTD_FRAME &
_CAN_TX_NO_RTR_FRAME;

read_flag = 0;
//
// Ini�alise CAN module
//

CANIni�alize(SJW, BRP, Phase_Seg1, Phase_Seg2, Prop_Seg, init_flag);
//
// Set CAN CONFIG mode
//

CANSetOpera�onMode(_CAN_MODE_CONFIG, 0xFF);

mask = -1;
//
// Set all MASK1 bits to 1's
//

CANSetMask(_CAN_MASK_B1, mask, _CAN_CONFIG_XTD_MSG);
//
// Set all MASK2 bits to 1's
//

CANSetMask(_CAN_MASK_B2, mask, _CAN_CONFIG_XTD_MSG);
//
// Set id of filter B2_F3 to 500
//

CANSetFilter(_CAN_FILTER_B2_F3,500,_CAN_CONFIG_XTD_MSG);
//
// Set CAN module to NORMAL mode
//

CANSetOpera�onMode(_CAN_MODE_NORMAL, 0xFF);

//
// Program loop. Read the temperature from analog temperature
// sensor
//

Figure 7.148
cont’d

576 Chapter 7

Inside the program loop, the program waits until it receives a request to send the

temperature. Here, the request is identified by the reception of character “T”. Once a valid

request is received, the temperature is read and converted into degrees centigrade (stored

in variable temperature) and then sent to the CAN bus as a byte with identifier value

equal to 3. The above process repeats forever.

Figure 7.149 summarizes the operation of both nodes.

for(;;) // Endless loop
{

//
// Wait un�l a request is received
//
dt = 0;
while(!dt) dt = CANRead(&id, dat, &len, &read_flag);
if(id == 500 && dat[0] == 'T')
{

//
// Now read the temperature
//
temp = Adc_Read(0); // Read temp
mV = (unsigned long)temp * 5000 / 1024; // in mV
temperature = mV/10; // in degrees C
//
// send the temperature to Node:Display
//
dat[0] = temperature;
id = 3; // Iden�fier
CANWrite(id, dat, 1, send_flag); // Send temperature

}
}

}

Figure 7.148
cont’d

Node: DISPLAY Node: COLLECTOR

Initialize CAN module Initialize CAN module
Set mode to CONFIG Set mode to CONFIG
Set Mask bits to 1’s Set Mask bits to 1’s
Set Filter value to 3 Set Filter value to 500
Set mode to NORMAL Set mode to NORMAL

DO FOREVER DO FOREVER
 Send character “T” with identifier 500 Read a character
 Read temperature with identifier 3 IF character is “T”
 Convert temperature to string Read temperature
 Display temperature on LCD Convert to digital
 Wait 1 second Convert to ºC
ENDDO Send with identifier 3

ENDIF
ENDDO

Figure 7.149: Operation of Both Nodes.

Advanced PIC18 Projects 577

Project 7.18 Multitasking

Most complex real-time systems consist of a number of tasks running independently.

This requires some form of scheduling and task control mechanisms. For example,

consider an extremely simple real-time system that must flash an LED at required

intervals and at the same time look for a key input from a keypad. One solution

would be to scan the keypad in a loop at regular intervals while flashing the LED

at the same time. Although this approach may work for simple systems, in most

complex real-time systems, a real-time operating system (RTOS) or a

multiprocessing approach are usually employed. Multiprocessing is beyond the scope

of this project.

An RTOS is a program that manages system resources, scheduling the execution of

various tasks in the system and provides services for intertask synchronization and

messaging. There are many books and other sources of reference that describe the

operation and principles of various RTOS systems.

Every RTOS consists of a kernel that provides the low-level functions, mainly the

scheduling, creation of tasks and intertask resource management. Most complex RTOSs

also provide file-handling services, disk inputeoutput operations, interrupt servicing,

network management, user management, and so on.

A task is an independent thread of execution in a multitasking system, usually with its

own local set of data. A multitasking system consists of a number of independent tasks,

each running its own code and communicating with each other to have orderly access to

shared resources. The simplest RTOS consists of a scheduler that determines the order in

which the tasks should run. This scheduler switches from one task to the next by

performing a context switching where the context of the running task is stored and

context of the next task is loaded so that execution can continue properly with the next

task. Tasks are usually in the form of endless loops, executed in an order determined by

the scheduler.

Although there exists many variations of scheduling algorithms in use, the three most

commonly used algorithms are as follows:

• Cooperative scheduling,

• Round-robin scheduling,

• Preemptive scheduling.

578 Chapter 7

Cooperative Scheduling

This is perhaps the simplest algorithm (Figure 7.150) where tasks voluntarily give up the

central processing unit (CPU) usage when they have nothing useful to do, or when they

are waiting for some resources to become available (e.g. a key to be pressed and a timer to

expire). This algorithm has the disadvantage that certain tasks can use excessive CPU

times, and thus not allow some other important tasks to run when needed. Cooperative

scheduling is used in simple multitasking systems with no time critical applications. A

variation of the pure cooperative scheduling is to prioritize the tasks and run the highest

priority computable task when the CPU becomes available. As we shall see in an example

project later, cooperative scheduling can easily be implemented in microcontrollers using

the switch statement.

Round-robin Scheduling

Round-robin scheduling (Figure 7.151) allocates each task an equal share of the CPU time.

In its simplest form, tasks are in a circular queue and when a task’s allocated CPU time

Figure 7.150: Cooperative Scheduling.

Figure 7.151: Round-robin Scheduling.

Advanced PIC18 Projects 579

expires, the task is put to the end of the queue and the new task is taken from the front of

the queue. Round-robin scheduling is not very satisfactory in many real-time applications

where each task can have varying amounts of CPU requirements depending upon the

complexity of processing required. One variation of the pure round-robin scheduling is to

provide priority-based scheduling, where tasks with the same priority levels receive equal

amounts of CPU time. It is also possible to allocate different maximum CPU times to each

task. An example project is given later on the use of round-robin scheduling.

Preemptive Scheduling

This is the most commonly used and the most complex scheduling algorithm used in

real-time systems. Here, the tasks are prioritized, and the task with the highest priority

among all other tasks gets the CPU time (Figure 7.152). If a task with a priority higher

than the currently executing task becomes ready to run, the scheduler saves the context

of the current task and switches to the higher priority task by loading its context.

Usually, the highest priority task runs to completion or until it becomes noncomputable

(e.g. waiting for a resource to be available). Although the preemptive scheduling is very

powerful, care is needed as an error in programming can place a high priority task in an

endless loop and thus not release the CPU to other tasks. Some real-time systems

employ a combination of round-robin and preemptive scheduling. In such systems, time

critical tasks are usually prioritized and run under preemptive scheduling, whereas less

time-critical tasks run under the round-robin scheduling, sharing the left CPU time

among themselves.

There are many commercially available, shareware, and open-source RTOS software

for the PIC microcontrollers. Brief details of some popular RTOS systems are given

below.

Salvo (www.pumpkininc.com) is a low-cost, event driven, priority-based, multitasking

RTOS designed for microcontrollers with limited data and program memories. Salvo

Figure 7.152: Preemptive Scheduling.

580 Chapter 7

http://www.pumpkininc.com

can be used for many microcontroller families and it supports large number of

compilers, such as Keil C51, Hi-Tech 8051, Hi-Tech PICC-18, MPLAB C18, and many

others. A demo version (Salvo Lite) is available for evaluation purposes. The Pro

version is the top model aimed for professional applications, supporting unlimited

number of tasks with priorities, event flags, semaphores, message queues, and many

more features.

CCS compiler (www.ccsinfo.com) from Custom Computer services Inc supports a

cooperative RTOS with a number of functions to start and terminate tasks, to send

messages between tasks, to synchronize tasks using semaphores, and so on.

CMX-Tinyþ (www.cmx.com) supports large number of microcontrollers. This is a

preemptive RTOS with a large number of features such as event-flags, cyclic timers,

message queues, and semaphores. Although CMX-Tinyþ is a sophisticated RTOS, it has

the disadvantage that the cost is relatively high.

PICos18 (www.picos18.com) is an open-source preemptive RTOS for the PIC18

microcontrollers. The full documentation and the source code are provided free of charge

for people wishing to use the product.

MicroC/OS-II (http://micrium.com) is a preemptive RTOS, which has been ported to many

microcontrollers, including the PIC family. This is a very sophisticated RTOS, providing

semaphores, mailboxes, event-flags, timers, memory management, message queues, and

many more.

FreeRTOS (www.freertos.org) is an open-source RTOS that can be used in

microcontroller-based projects. This is a preemptive RTOS but can be configured for

cooperative or hybrid operations.

Finally, OSA-RTOS (http://picosa.narod.ru) is freeware RTOS for PIC microcontrollers.

The full source code and documentation are available and can be downloaded. OSA is a

cooperative multitasking RTOS, offering many features such as semaphores, data queues,

mutexes, memory pools, system services, and many more.

Project 1dUsing Cooperative Multitasking

This is a simple project demonstrating how cooperative multitasking can be implemented

easily using the C language. This is an example of an event counter with two-digit seven-

segment LEDs. The project counts external events and displays the count on the LEDs.

The following tasks are used in this project:

Task 1 (REFRESH_COUNT): This task refreshes the seven-segment LEDs every 3 ms and

displays the current count.

Advanced PIC18 Projects 581

http://www.ccsinfo.com
http://www.cmx.com
http://www.picos18.com
http://micrium.com
http://www.freertos.org
http://picosa.narod.ru

Task 2 (EVENT): This is the event counter task. An event is assumed to occur when a

push-button switch goes from logic 1 to logic 0.

Task 3 (CLEAR_COUNT): This task clears the count. A 1 to 0 transition of a push-button

switch clears the count.

Task 4 (STOP_COUNT): This task stops the count. A 1 to 0 transition of a push-button

switch clears the count.

The block diagram of the project is shown in Figure 7.153.

Project Hardware

The circuit diagram of the project is shown in Figure 7.154. A two-digit seven-segment

display is used to display the event count. Three push-button switches are used to initiate

an event, clear the count, and to stop the count.

Project PDL

The project PDL is shown in Figure 7.155.

Project Program

mikroC Pro for PIC

Cooperative scheduling can easily be implemented using the switch statement. For

example, a system with three tasks can be implemented as follows:

for(;;)
{

state = 1;
switch(state)
{

Figure 7.153: Block Diagram of the Project.

582 Chapter 7

case 1:
Implement TASK 1
state = 2;
break;

case 2:
Implement TASK 2
state = 3;
break;

case 3:
Implement TASK 3
state = 1;
break;

}
}

Figure 7.154: Circuit Diagram of the Project.

Advanced PIC18 Projects 583

BEGIN
Configure PORTA, PORTB, PORTD as digital
Configure PORTA, PORTD as outputs, RB0:RB2 as inputs
Disable the display
Configure TIMER0 to interrupt at every millisecond
DO FOREVER

CALL TASK1
CALL TASK2
CALL TASK3
CALL TASK4

ENDDO
END

BEGIN/Timer0 Interrupt

Re-load TMR0L

Decrement variable Timer by 1

Re-enable Timer0 interrupts

END/Timer0 Interrupt

BEGIN/DISPLAY

Extract the bit pa�ern of the number to be displayed

Return the bit pa�ern

END/DISPLAY

BEGIN/TASK1

IF variable Timer equals 0

Set variable Timer to 5

Display variable Cnt

ENDIF

END/TASK1

BEGIN/TASK2

IF STOP_COUNT bu�on is pressed

Clear Count_Flag to 0

Figure 7.155: Project PDL.

584 Chapter 7

The mikroC Pro for the PIC program listing is shown in Figure 7.156

(MIKROC-RTOS1.C). At the beginning of the program, PORTA, PORTB, and

PORTD are configured as digital. PORTB and PORTD are configured as outputs and

RB0, RB1, and RB2 are configured as inputs. Then, Timer 0 is configured to

generate interrupts at every millisecond. The remaining part of the main program

implements the multitasking loop where the tasks are executed in order one after

the other.

TASK 1 refreshes the seven-segment display every 5 ms. Global variable Timer is loaded

with five and is decremented by one every time a timer interrupt is generated. When the

variable Timer is 0, the display is refreshed. First, the MSD digit is refreshed, followed by

the LSD digit by enabling the corresponding digit enable bits.

ENDIF

END/TASK2

BEGIN/TASK3

IF Clear_Count bu�on is pressed

Clear Cnt to 0

ENDIF

END/TASK3

BEGIN/TASK4

IF EVENT occurred

Wait un�l event is removed

Increment variable Cnt

ENDIF

END/TASK4

Figure 7.155
cont’d

Advanced PIC18 Projects 585

/**
Dual 7-SEGMENT DISPLAY EVENT COUNTER
===================================

In this project two common cathode 7-segment LED displays are connected to PORTD of a
PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal.
Digit 1 (right digit) enable pin is connected to port pin RA0 and digit 2 (le� digit) enable pin
is connected to port pin RA1 of the microcontroller.

The program is an event counter. 3 push-bu�on switches are connected to PORTB as follows:

RB0 Event push bu�on switch
RB1 Stop_Count push bu�on switch
RB2 Clear_Count push bu�on switch

Events are assumed to occur when RB0 goes from 1 to 0. When an event occurs, variable Cnt
is incremented by 1. The Display is refreshed every 5 ms and the count is displayed. Pressing
Stop Count bu�on disables the coun�ng. Pressing the Clear Count bu�on clears the count to 0.

This program uses co-opera�ve mul�tasking, implemented using a switch statement. There are
4 tasks in the program:

TASK1: Refreshes the Display every 5ms
TASK2: Disables coun�ng
TASK3: Clears coun�ng to zero
TASK4: Increments coun�ng when an event is detected

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-RTOS1.C
***/
#define DIGIT1 PORTA.RA0 // Display DIGIT 1 enable
#define DIGIT2 PORTA.RA1 // Display DIGIT 2 enable
#define EVENT PORTB.RB0 // Event input (push bu�on)
#define STOP_COUNT PORTB.RB1 // STOP_COUNT push bu�on
#define CLEAR_COUNT PORTB.RB2 // CLEAR_COUNT push bu�on

unsigned char state = 1; // Ini�al value of state variable
unsigned char Count_Flag = 1; // Set when coun�ng is enables
unsigned char refresh = 0;
unsigned char Cnt = 0; // Ini�al value of count
unsigned int Timer = 5; // Refreshing �me (ms)
unsigned char Sbu�on = 0;

//
// Generate Timer interrupts every milliseconds
//
void interrupt()
{

TMR0L = 225; // Re-load Timer0 for 1ms interrupts
Timer--; // Decrement variable Timer

Figure 7.156: mikroC Pro for the PIC Program.

586 Chapter 7

INTCON = 0x20; // Re-enable Timer0 interrupts
}

//
// This func�on finds the bit pa�ern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the func�on.
//
unsigned char Display(unsigned char no)
{

unsigned char Pa�ern;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,

0x7D,0x07,0x7F,0x6F};

Pa�ern = SEGMENT[no]; // Pa�ern to return
return (Pa�ern);

}

//
// This task refreshes the 7-segment LEDs every 5 milliseconds
//
void TASK1()
{

unsigned char Msd, Lsd;

if(Timer == 0) // If 5 ms has elapsed
{

Timer = 5; // Re-load variable Timer
if(refresh == 0) // Time to refresh MSD digit ?
{

refresh = 1;
DIGIT1 = 0;
Msd = Cnt / 10; // MSD digit
PORTD = Display(Msd); // Send to PORTD
DIGIT2 = 1; // Enable digit 2

}
else if(refresh == 1) // Time to refresh LSD digit ?
{

refresh = 0;
DIGIT2 = 0; // Disable digit 2
Lsd = Cnt % 10; // LSD digit
PORTD = Display(Lsd); // Send to PORTD
DIGIT1 = 1; // Enable digit 1

}
}

}

//
// This task stops the count
//
void TASK2()

Figure 7.156
cont’d

Advanced PIC18 Projects 587

{
if(STOP_COUNT == 0)Count_Flag = 0; // Clear count flag to stop coun�ng

}

//
// This task clears the count
//
void TASK3()
{

if(CLEAR_COUNT == 0)Cnt = 0; // Clear the count to 0
}

//
// This task incrfements the event counter
//
void TASK4()
{

if(EVENT == 0 && Count_Flag == 1)Sbu�on = 1; // If event and coun�ng enabled
if(EVENT == 1 && Sbu�on == 1 && Count_Flag == 1) // If event has been removed
{

Cnt++; // Increment count
Sbu�on = 0;

}

}

//
// Start of MAIN Program
//
void main()
{

ANSELA = 0; // Configure PORTA as digital
ANSELB = 0; // Configure PORTB as digital
ANSELD = 0; // Configure PORTD as digital
TRISA = 0; // Configure PORTA as outputs
TRISB = 7; // Configure RB0, RB1, RB2 as input
TRISD = 0; // Configure PORTD as outputs

DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2

//
// Set Timer0 to interrupt at every millisecond
//

T0CON = 0xC5; // Configure T0CON register
TMR0L = 225; // Load TMR0L register
INTCON = 0xA0; // Enable Timer0 interrupts

//
// Start of mul�tasking loop
//

Figure 7.156
cont’d

588 Chapter 7

TASK2 clears flag Count_Flag so that counting stops, that is, no count is generated when

an event occurs.

TASK3 clears the count by clearing variable Cnt.

TASK4 checks the state of the EVENT button (RB0). This button is normally at logic 1.

When the button is pressed, it goes to logic 0 and is back at logic 1 when the button is

released. It is important that we generate only one count when the button is pressed and

released. This task initially sets variable Sbutton to 1 when an event occurs (EVENT¼ 0)

and also when the counting is enabled (Count_Flag¼ 1). At this point, the button is in the

pressed state, and we have to wait until the button is released before incrementing the

count; otherwise, the count increment while the button is kept pressed. The following

program code detects when the button is pressed and then it increments the count only

when the button is released:

if(EVENT == 0 && Count_Flag == 1)Sbutton = 1;
if(EVENT == 1 && Sbutton == 1 && Count_Flag == 1)
{

Cnt++;
Sbutton = 0;

}

while(1)
{

switch(state)
{

case 1:
TASK1(); // Do TASK1
state = 2; // Next task is TASK2
break;

case 2:
TASK2(); // Do TASK2
state = 3; // Next task is TASK3
break;

case 3:
TASK3(); // Do TASK3
state = 4; // Next task is TASK4
break;

case 4:
TASK4(); // Do TASK4
state = 1; // Next task is TASK1
break;

}
}

}

Figure 7.156
cont’d

Advanced PIC18 Projects 589

Project 2dUsing Round-Robin Multitasking With Variable CPU Time
Allocation

In this project, we will be developing and using a round robin-type multitasking software

with variable CPU time allocation. The software, called RTOS.C, can be included in

multitasking programs. Each task is allocated maximum processing time selected by the

user. The scheduler terminates a task when this time is reached, or when the task

voluntarily gives-up CPU time by calling a function. The scheduler is interrupt driven and

activates the tasks in order.

Each task in the user program is organized as a C function, running forever in a loop.

The first thing a task does is to call scheduler function InitTask, which saves the task

return address in an array called TStack. In addition, the maximum allocated duration

of each task (in milliseconds) is also stored in array TTime. The program counter of a

PIC18F microcontroller is 24 bits wide and is stored in three 8-bit stack registers

TOSL, TOSH, and TOSU after a function call or an interrupt (Figure 7.157). These

registers are accessed by the scheduler during the saving and restoring of task return

addresses.

Figure 7.158 shows the program listing of the multitasking scheduler. In an

application, the main program initially calls all the tasks in turn so that their return

addresses can be saved. Then, function StartTasks is called. This function calls to

SetUpTmrInt in order to configure timer TMR0 so that timer interrupts can be

Figure 7.157: PIC18F Microcontroller Stack Structure.

590 Chapter 7

generated every milliseconds for the scheduler. In addition, the return address of

Task 0 is pushed onto the stack and a RETURN is executed so that task execution

starts from Task 0. At the core of the scheduler, we have the timer ISR. The ISR

determines the next task to run and performs the necessary context switching. The

following operations are carried out within the ISR:

• Timer register TMR0 is reloaded for 1-ms interrupts.

• Current CPU registers W, STATUS, and BSR are saved.

• If the allocated duration of current task has not expired, then timer interrupts are reen-

abled and the ISR passes control back to the same task with no context changing.

• Otherwise, the return address of the current task is saved in array TStack.

• Task number of the next task is determined, and its return address is pushed onto pro-

cessor stack.

• CPU registers W, STATUS, and BSR of the next task are restored.

• Timer interrupts are reenabled, and the ISR passes the CPU control to the next task.

Three timer registers called TimerA, TimerB, and TimerC are decremented every

millisecond inside the ISR, and these registers can be used in task timing applications.

Project Description

This project is the same as the previous project where a two-digit seven-segment LED is

used with four tasks:

Task 1 (REFRESH_COUNT): This task refreshes the seven-segment LEDs every 3 ms and

displays the current count.

Task 2 (EVENT): This is the event counter task. An event is assumed to occur when a

push-button switch goes from logic 1 to logic 0.

Task 3 (CLEAR_COUNT): This task clears the count. A 1e0 transition of a push-button

switch clears the count.

Task 4 (STOP_COUNT): This task stops the count. A 1e0 transition of a push-button

switch clears the count.

The block diagram of the project is as shown in Figure 7.153.

Project Hardware

The circuit diagram of the project is as given in Figure 7.154.

Advanced PIC18 Projects 591

#pragma disablecontextsaving
#define freq 8 // Clock frequency
#define Prescale 64 // Timer prescaler
#define T 1000 // 1000 us (1 ms) �mer
#define Timervalue 256-(T*freq/(4*Prescale))
#define StopTask while(1){Swapp = 1; INTCON.F2 = 1;}
#define SwapTask {Swapp = 1; INTCON.F2 = 1;}
unsigned char TMR0 = Timervalue;
unsigned char Temp, Twreg, Tstatus, Tbsr, Swapp = 0;
unsigned char Saved[MaxTsk][3];
unsigned char TaskNumber = 0;
unsigned char TStack[MaxTsk][4];
unsigned int TCount[MaxTsk];
unsigned int TTime[MaxTsk];
signed char TimerA, TimerB, TimerC;

//
// The program jumps here every 1 ms
//
void interrupt()
{

TMR0L = TMR0; // Reload �mer register
TimerA--; // Two general purpose �mers
TimerB--;
TimerC--;

Twreg = WREG; Tstatus = STATUS; Tbsr = BSR; // Get current context

TCount[TaskNumber]++;
if((Swapp == 1) || (TCount[TaskNumber] >= TTime[TaskNumber]))
{

TCount[TaskNumber] = 0;
if(Swapp == 1)Swapp = 0;

Saved[TaskNumber][0] = Twreg; Saved[TaskNumber][1] = Tstatus;
Saved[TaskNumber][2] = Tbsr;

//
// Save return address of current task
//

TStack[TaskNumber][0] = TOSL; TStack[TaskNumber][1] = TOSH;
TStack[TaskNumber][2] = TOSU;
asm POP

//
// Get next task, and save its return address on TOS
//

TaskNumber++;
if(TaskNumber > MaxTsk - 1)TaskNumber = 0;
asm PUSH
Temp = TStack[TaskNumber][0]; TOSL = Temp;
Temp = TStack[TaskNumber][1]; TOSH = Temp;

Figure 7.158: Scheduler (RTOS.C) Program Listing.

592 Chapter 7

Temp = TStack[TaskNumber][2]; TOSU = Temp;
//
// Restore task registers and return from interrupt
//

INTCON = 0x20;
Temp = Saved[TaskNumber][1]; BSR = Saved[TaskNumber][2];
WREG = Saved[TaskNumber][0]; STATUS = Temp;

}
else
{

INTCON = 0x20; WREG = Twreg;
BSR = Tbsr; STATUS = Tstatus;

}
asm re	ie 0

}

//
// Set up Timer0 interrupts every 100 microseconds
//
void SetUpTmrInt(void)
{

T0CON = 0xC5; // Prescaler = 64
TMR0L = TMR0;
INTCON = 0xA0;

}

//
// Store tasks return addresses on stack
//
void initTask(unsigned char TaskNo, unsigned int t)
{

TStack[TaskNo][0] = TOSL; TStack[TaskNo][1] = TOSH;
TStack[TaskNo][2] = TOSU; TTime[TaskNo] = t;
asm POP

}

//
// Start tasks
//
void StartTasks(void)
{

SetUpTmrInt();
Temp = TStack[0][0]; TOSL = Temp;
Temp = TStack[0][1]; TOSH = Temp;
Temp = TStack[0][2]; TOSU = Temp;
asm RETURN

}

Figure 7.158
cont’d

Advanced PIC18 Projects 593

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program listing is shown in Figure 7.159 (MIKROC-RTOS2.C).

At the beginning of the program, the number of tasks is specified using symbol MaxTsk,

and multitasking scheduler file RTOS.C is included in the program.

The main program configures PORTA, PORTB, and PORTD as digital. Timer variable

TimerA is set to 4 so that the LED refreshing time can be set to be every 4 ms in Task0.

The tasks are then called one after the other and function StartTasks is called to start the

tasks and pass control to the multitasking scheduler.

TASK0 refreshes the seven-segment display every 4 ms. Global variable TimerA is loaded

with four and is decremented by one every time a timer interrupt is generated. When

variable TimerA is �0, the display is refreshed. First, the MSD digit is refreshed, followed

by the LSD digit by enabling the corresponding digit enable bits. Function call InitTask(0,

1) pushes the return address of Task0 on stack and allocates maximum processing time of

1 ms to TASK0.

TASK1 clears flag Count_Flag so that counting stops, that is, no count is generated when

an event occurs. Function call InitTask(1, 1) pushes the return address of Task1 on stack

and allocates maximum processing time of 1 ms to TASK1. Note that the following code

is used for this task:

while(1)
{

while(STOP_COUNT == 1); // Wait until STOP_COUNT button is pressed
Count_Flag = 0; // Clear Count_Flag to stop counting
SwapTask; // Return to scheduler (Give up the CPU)

}

Note that since 1 ms is allocated to this task, the program will remain here for at least

1 ms if the button is not pressed. A quicker way of checking whether or not the button is

pressed would be as in the following code. Here, the button is checked and if it is not

pressed, the task releases the CPU by calling to function SwapTask:

while(1)
{

if(STOP_COUNT == 0)Count_Flag = 0;
SwapTask; // Return to scheduler (Give up the CPU)

}

TASK2 clears the count by clearing variable Cnt.

TASK3 checks state of the EVENT button (RB0) and increments the event count Cnt when

an event is detected and at the same time if the counting is enabled (Count_Flag¼ 1).

594 Chapter 7

/**
Dual 7-SEGMENT DISPLAY EVENT COUNTER WITH ROUND-ROBIN MULTITASKING
==

In this project two common cathode 7-segment LED displays are connected to PORTD of a
PIC18F45K22 microcontroller and the microcontroller is operated from an 8 MHz crystal.
Digit 1 (right digit) enable pin is connected to port pin RA0 and digit 2 (le� digit) enable pin is
connected to port pin RA1 of the microcontroller.

The program is an event counter. 3 push-bu�on switches are connected to PORTB as follows:

RB0 Event push bu�on switch
RB1 Stop Count push bu�on switch
RB2 Clear Count push bu�on switch

Events are assumed to occur when RB0 goes from 1 to 0. When an event occurs the variable
Cnt is incremented by 1. The Display is refreshed every 5 ms and the count is displayed.
Pressing Stop Count bu�on disables the coun�ng. Pressing the Clear Count bu�on clears
the count to 0.

This program uses round-robin mul�tasking algorithm with the modifica�on that the allocated
CPU �me to each task can be set by the user.

There are 4 tasks in the program:

TASK0: Refreshes the Display every 5ms
TASK1: Disables coun�ng
TASK2: Clears coun�ng to zero
TASK3: Increments coun�ng when an event is detected

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-RTOS2.C
***/
#define MaxTsk 4 // Define number of tasks
#include "RTOS.C" // Include RTOS.C file

#define DIGIT1 PORTA.RA0 // Display DIGIT 1 enable
#define DIGIT2 PORTA.RA1 // Display DIGIT 2 enable
#define EVENT PORTB.RB0 // Event input (push bu�on)
#define STOP_COUNT PORTB.RB1 // STOP_COUNT push bu�on
#define CLEAR_COUNT PORTB.RB2 // CLEAR_COUNT push bu�on

unsigned char refresh = 0;
unsigned char Count_Flag = 1;
unsigned char Cnt = 0;

//
// This func�on finds the bit pa�ern to be sent to the port to display a number
// on the 7-segment LED. The number is passed in the argument list of the func�on.
//

Figure 7.159: mikroC Pro for PIC Program.

Advanced PIC18 Projects 595

unsigned char Display(unsigned char no)
{

unsigned char Pa�ern;
unsigned char SEGMENT[] = {0x3F,0x06,0x5B,0x4F,0x66,0x6D,

0x7D,0x07,0x7F,0x6F};

Pa�ern = SEGMENT[no]; // Pa�ern to return
return (Pa�ern);

}

//
// This task refreshes the 7-segment LEDs every 5 ms
//
void TASK0()
{

unsigned char Msd, Lsd;

InitTask(0,1); // Allocate max 1 ms to TASK0
while(1)
{

if(TimerA <= 0) // Time to refresh ?
{
TimerA = 4; // Reload TimerA with 4 ms
if(refresh == 0) // Time to refresh MSD digit ?
{

refresh = 1;
DIGIT1 = 0;
Msd = Cnt / 10; // MSD digit
PORTD = Display(Msd); // Send to PORTD
DIGIT2 = 1; // Enable digit 2

}
else if(refresh == 1) // Time to refresh LSD digit ?
{

refresh = 0;
DIGIT2 = 0; // Disable digit 2
Lsd = Cnt % 10; // LSD digit
PORTD = Display(Lsd); // Send to PORTD
DIGIT1 = 1; // Enable digit 1

}
}
SwapTask; // Return to scheduler

}
}

//
// This task stops the count
//
void TASK1()
{ // Allocate maximun 1 ms to TASK1

InitTask(1,1);

Figure 7.159
cont’d

596 Chapter 7

while(1)
{

while(STOP_COUNT == 1); // Wait un�l bu�on is pressed
Count_Flag = 0; // Clear count flag to stop coun�ng
SwapTask; // Return to scheduler

}
}

//
// This task clears the count
//
void TASK2()
{

InitTask(2,1); //Allocate maximum 1 ms to TASK2
while(1)
{

while(CLEAR_COUNT == 1); // Wait un�l bu�on is pressed
Cnt = 0; // Clear Cnt
SwapTask; // Return to scheduler

}
}

//
// This task increments the event counter
//
void TASK3()
{

InitTask(3,1); // Allocate maximum 1 ms to TASK3
while(1)
{

while(EVENT == 1); // Wait un�l bu�on press -release
while(EVENT == 0);
if(Count_Flag = = 1)Cnt++; // Increment Cnt
SwapTask; // Return to scheduler

}

}

//
// Start of MAIN Program
//
void main()
{

ANSELA = 0; // Configure PORTA as digital
ANSELB = 0; // Configure PORTB as digital
ANSELD = 0; // Configure PORTD as digital
TRISA = 0; // Configure PORTA as outputs
TRISB = 7; // Configure RB0, RB1, RB2 as input
TRISD = 0; // Configure PORTD as outputs

Figure 7.159
cont’d

Advanced PIC18 Projects 597

Project 7.19dStepper Motor Control ProjectsdSimple Unipolar Motor
Drive

This project is about using stepper motors in microcontroller-based systems. This is an

introductory project where a stepper motor is driven from a microcontroller.

Before going into the details of the project, it is worthwhile to look at the theory and

operation of stepper motors briefly.

Stepper motors are commonly used in printers, disk drives, position control systems, and

many more systems where precision position control is required. Stepper motors come in a

variety of sizes, shapes, strengths, and precision. There are two basic types of stepper

motors: unipolar and bipolar.

Unipolar Stepper Motors

Unipolar stepper motors have two identical and independent coils with center taps, and

having five, six, or eight wires (Figure 7.160).

Unipolar stepper motors can be driven in three modes: One-phase full-step sequencing,

two-phase full-step sequencing and two-phase half-step sequencing.

One-phase Full-step Sequencing

Table 7.20 shows the sequence of sending pulses to the motor. Each cycle consists of four

pulses.

Two-phase Full-step Sequencing

Table 7.21 shows the sequence of sending pulses to the motor. The torque produced is

higher in this mode of operation.

DIGIT1 = 0; // Disable digit 1
DIGIT2 = 0; // Disable digit 2
TimerA = 4; // Set TimerA variable to 4ms

TASK0(); // Ini�alize TASK0
TASK1(); // Ini�alize TASK1
TASK2(); // Ini�alize TASK2
TASK3(); // Ini�alize TASK3
StartTasks(); // Start Tasks

}

Figure 7.159
cont’d

598 Chapter 7

Two-phase Half-step Sequencing

Table 7.22 shows the sequence of sending pulses to the motor. This mode of operation

gives more accurate control of the motor rotation, but it requires twice as many pulses for

each cycle.

As we shall see later in the project, the motor can be connected to a microcontroller using

power transistors or power MOSFET transistors.

Figure 7.160: Unipolar Stepper Motor Windings.

Table 7.20: One-phase Full-step Sequencing.

Step a c b d

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

Table 7.21: Two-phase Full-step Sequencing.

Step a c b d

1 1 0 0 1
2 1 1 0 0
3 0 1 1 0
4 0 0 1 1

Advanced PIC18 Projects 599

Bipolar Stepper Motors

Bipolar stepper motors have two identical and independent coils and four wires, as shown

in Figure 7.161.

The control of bipolar stepper motors is slightly more complex. Table 7.23 shows the

driving sequence. The “þ” and “�” signs denote the polarity of the voltage that should be

given to the motor legs. Bipolar stepper motors are usually driven using H-bridge circuits.

Project Description

In this project, a unipolar stepper motor is used and the motor is rotated for 100 turns

before it is then stopped.

Table 7.22: Two-phase Half-step Sequencing.

Step a c b d

1 1 0 0 0
2 1 1 0 0
3 0 1 0 0
4 0 1 1 0
5 0 0 1 0
6 0 0 1 1
7 0 0 0 1
8 1 0 0 1

Figure 7.161: Bipolar Stepper Motor Windings.

600 Chapter 7

Project Hardware

The circuit diagram of the project is shown in Figure 7.162. In this project, an UAG2 type

unipolar stepping motor is used. The motor is connected to RB0:RB3 pins of the

microcontroller via IRLI520N-type power MOSFET transistors. UAG2 is a small stepper

motor with an 18� stepping angle. Thus, a complete revolution requires 20 pulses. In this

Table 7.23: Bipolar Stepper Motor Driving Sequence.

Step a c b d

1 þ � � �
2 � þ � �
3 � � þ �
4 � � � þ

Figure 7.162: Circuit Diagram of the Project.

Advanced PIC18 Projects 601

example, the motor rotates 100 turns (i.e. 2000 pulses are given), and then it stops. A 3-ms

delay is inserted between each pulse to slow down the motor.

The pin connections of the UAG2 motor is as follows:

Pin Description
1 Start of first coil
3 Middle connection of first coil
5 End of first coil
2 Start of second coil
4 Middle connection of second coil
6 End of second coil

Project PDL

The project PDL is shown in Figure 7.163.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program listing is given in Figure 7.164

(MIKROC-USTP1.C). The motor is operated in one-phase full-step sequencing mode. At

the beginning of the program, the required number of revolutions and the moor step size

are defined. Inside the main program array Step stores the sequence of pulses to be sent to

the motor in each cycle. PORTB is configured as a digital output. Then, the cycle count is

calculated and pulses are sent to the motor inside two for loops. The motor rotates 100

revolutions where 2000 pulses are sent to the motor. A 3-ms delay is inserted between

each pulse. Therefore, the motor operates for 6 s. The speed of the motor can be

calculated to be 1000 revolutions per minute (rpm).

BEGIN

Configure PORTB as digital output

Calculate number of cycles required

DO for the number of cycles

DO 4 �mes

Send pulse sequence to the motor

Wait 3ms

ENDDO

ENDDO

END

Figure 7.163: Project PDL.

602 Chapter 7

/**

UNIPOLAR STEPPER MOTOR PROJECT

==============================

In this project an UAG2 model unipolar stepper motor is connected to PORTB of a PIC18F45K22

microcontroller through IRLI520N type MOSFET transistor switches.

The program rotates the motor 100 �mes and then stops. In total 2000 pulses are sent to the

motor. 3ms delay is inserted between each pulse. Therefore, the motor rotates 100 revolu�ons

in 6 s (2000 x 3 ms = 6 s) and then stops.

Author: Dogan Ibrahim

Date: October 2013

File: MIKROC-USTP1.C

***/

const unsigned int Req_Rev_Count = 100; // Required no of revs

const unsigned char Step_Size = 18; // Motor Step Size (degrees)

void main()

{

unsigned char Step[4] = {1, 2, 4, 8};

unsigned int One_Rev_Step, Step_Count, Cycle_Count, j;

unsigned char i;

ANSELB = 0; // Configure PORTB as digital

TRISB = 0; // Configure PORTB as digital

One_Rev_Step = 360/Step_Size; // No of steps for 1 revolu�on

Step_Count = Req_Rev_Count*One_Rev_Step; // Total no of steps required

Cycle_Count = Step_Count/4; // No of cycles

for(j = 0; j < Cycle_Count; j++) // Do for all cycles

{

for(i = 0; i < 4; i++) // Do for all steps

{

PORTB = Step[i]; // Send pulses to the motor

Delay_Ms(3); // 3 ms delay between each pulse

}

}

while(1); // End. Wait here forever

}

Figure 7.164: mikroC Pro for PIC Program.

Advanced PIC18 Projects 603

Project 7.20dStepper Motor Control ProjectsdComplex Control
Of A Unipolar Motor

In this project, a unipolar stepper motor is controlled in the following order:

• Turn 200 revolutions clockwise,

• Wait 5 s,

• Turn 50 revolutions anticlockwise,

• Wait 3 s,

• Turn 100 revolutions clockwise,

• Wait 1 s,

• Stop.

Project Hardware

The circuit diagram of the project is shown in Figure 7.165. In this project, a

UCN5804B type stepper motor controller chip is used. This chip can drive small

unipolar stepper motors up to þ35 V and 1.25 A. The chip is connected to the

microcontroller via its Step (pin 11) and Direction (pin 14) pins. The chip also has half-

step (pin 10) and phase (pin 9) selection inputs. Depending upon the connection of pins

9 and 10, the chip can operate in one-phase full-step, two-phase full-step, or in two-

phase half-step sequencing modes. In this project, both pins 9 and 10 are connected to

ground to operate in two-phase full-step sequencing mode. The direction input controls

direction of the motor. The motor rotates one step when a pulse is applied to the Step

input. Notice that diodes are used at the output pins of the microcontroller to protect the

pins from negative voltage.

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program listing is shown in Figure 7.166 (MIKROC-USTP2.C).

The speed of a stepper motor depends upon the time delay between the step inputs. If the

time delay between the steps is T, and the motor step constant is b degrees, then the motor

rotates b/T steps in a second. Since a complete revolution is 360�, the number of

revolutions in a second is b/360T. The number of revolutions per minute, that is, the

revolutions per minute of the motor is then given by

RPM¼ 60b/360T

or

RPM¼ b/6T.

604 Chapter 7

We can also write

T¼ b/6xRPM.

In this project, the motor has b¼ 18� and therefore

T¼ 3/RPM where T is in seconds

or

T¼ 3000/RPM where T is in milliseconds.

If the required revolutions per minute is 500 rpm (assuming this is below the maximum

revolutions per minute that can be provided by the motor) then the delay between each

step is

T¼ 3000/500¼ 6 ms

Figure 7.165: Circuit Diagram of the Project.

Advanced PIC18 Projects 605

/**
COMPLEX UNIPOLAR STEPPER MOTOR ROTATION
==

In this project a UAG2 model unipolar stepper motor is connected to PORTB of a PIC18F45K22
microcontroller through a UCN5804B type motor controller chip

The program rotates the motor clockwise, or an�clockwise as requested with the required
amount of Delay between each rota�on.

In this project the motor is rotated as follows:

Turn 200 revolu�ons clockwise
Wait 5 seconds
Turn 50 revolu�ons an�clockwise
Wait 3 seconds
Turn 100 revolu�ons clockwise
Wait 1 second
Stop

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-USTP2.C
***/
#define STEP PORTB.RB0 // UCN5804B Step input
#define DIRECTION PORTB.RB7 // UCN5804B Direc�on input

const unsigned char Step_Size = 18; // Motor Step Size (degrees)
const unsigned int RPM = 500; // Required RPM

unsigned int Step_Count, Delay;

//
// This func�on operates the stepper motor as requested. "revcnt" is the rev count, "revdir"
// is the rev direc�on, and "gapdly" is the intergap Delay
// If the rev count is nega�ve the motor rotates in the required direc�on con�nuously
// if rev is equal to 0 then the motor stops
//
void Stepper_Motor(int revcnt, unsigned char revdir, unsigned int gapdly)
{

unsigned int k,p;

if(revcnt < 0)
{

DIRECTION = revdir;
for(;;)
{

STEP = 1; // Send pulse to the motor
STEP = 0;
VDelay_Ms(Delay);

}

Figure 7.166: mikroC Pro for PIC Program.

606 Chapter 7

}
else
{

p = revcnt*Step_Count;
DIRECTION = revdir;
for(k = 0; k < p; k++)
{

STEP = 1; // Send pulse to the motor
STEP = 0;
VDelay_Ms(Delay);

}
for(k = 0; k < gapdly; k++)Delay_Ms(1); // Inter command delay

}
}

//
// This is the main program. The required Rev_Count, Rev_Direc�on, and Inter_Delay
// must be specified here. In this example, the motor rotates 200 revs clockwise, then
// waits 5s, rotates 50 revs an�clockwise, waits 3s, rotates 100revs clockwise, waits
// 1s and then stops
//
void main()
{

int Rev_Count[] = {200, 50, 100, 0}; // 0 is the terminator
unsigned char Rev_Direc�on[] = {0, 1, 0}; // 0=clockwise, 1=an�cloc kwise
unsigned char Inter_Delay[] = {5000, 3000, 1000}; // Delay in ms

unsigned char j;

ANSELB = 0; // Configure PORTB as digital
TRISB = 0; // Configure PORTB as digital
STEP = 0; // Step = 0 to start with

j = 0;
Delay = 3000/RPM; // Delay a�er each command
Step_Count = 360/Step_Size;

while(Rev_Count[j] != 0)
{

Stepper_Motor(Rev_Count[j], Rev_Direc�on[j], Inter_Delay[j]);
j++;

}

while(1); // End. Wait here forever
}

Figure 7.166
cont’d

Advanced PIC18 Projects 607

Three arrays are used in the program to specify the required number of revolutions, the

direction of rotation, and the interstep gap:

Rev_Count: This array stores the required number of revolutions. A 0 entry specifies the

end of the array. A negative value indicates that the motor is required to rotate

continuously in the specified direction.

Rev_Direction: This array stores the corresponding motor rotation direction. 0 specifies

clockwise and 1 specified anticlockwise rotation.

Inter_Delay: This array stores the required delay after each command.

For the example in this project, the arrays should have the following values:

Rev_Count[] = {200, 50, 100, 0}; // 0 is the terminator
Rev_Direction[] = {0, 1, 0}; // 0 = clockwise, 1 = anticlockwise
Inter_Delay[] = {5000, 3000, 1000}; // Delay is in ms

At the beginning of the program, symbols STEP and DIRECTION are assigned to

port pins RB0 and RB7, respectively. Then, the above arrays are initialized, the step

count is found, and a loop is formed. Inside this loop, the motor is activated by

calling function Stepper_Motor. This array has three arguments: revolution count,

revolution direction, and the delay after each command. If the revolution count is

negative, then the motor rotates continuously in the specified direction. The rotation

stops when the revolution is specified as 0. The motor is rotated by setting the

required direction and then sending pulses to the STEP input of the UCN5804N

controller chip.

Project 7.21dStepper Motor Control ProjectdSimple Bipolar
Motor Drive

The Bipolar Stepper motor is similar to the unipolar motor discussed in previous projects.

The bipolar consists of two coils, but there is no center tap. As a result of this, the bipolar

motor requires a controller where the current flow through the coils can be reversed. A

bipolar motor is capable of a higher torque since entire coils may be energized, not just

half of the coils. Bipolar stepper motors are usually controlled using H-bridge circuits

where the current flow through the coils can easily be reversed.

Project Description

In this project, a bipolar stepper motor is used. The motor is rotated 10 revolutions in one

direction, then stopped for 5 s, and then rotated 10 revolutions in the other direction, and

is then stopped.

608 Chapter 7

Project Hardware

The circuit diagram of the project is shown in Figure 7.167. In this project, A3967SLB

type bipolar stepper motor controller chip is used. This chip can operate a bipolar stepper

motor in the following modes, controlled by its MS1 and MS2 inputs:

• Full step,

• Half step,

• Quarter step,

• Eight microsteps.

In this project, the full step mode is used where MS1¼MS2¼ 0. The other pins of

interest are

STEP: A low-to-high transition on this pin rotates the motor by one step.

Figure 7.167: Circuit Diagram of the Project.

Advanced PIC18 Projects 609

ENABLE: This input (active low) enables the chip outputs.

RESET: This pin (active low) resets the chip. During normal operation RESET¼ 1.

SLEEP: This pin (active low) puts the chip into the sleep mode for low-power

consumption.

DIR: This pin controls the direction of rotation.

OUT1A/B: These are the connections for coil 1.

OUT2A/B: These are the connections for coil 2.

The mikroElektronika Bipolar Stepper Motor Driver board is used in this project. This

board is plugged in to PORTB of the EasyPIC V7 development board. This board

(Figure 7.168) has the following features:

• A 750 mA, 30-V output rating,

• Full-step and microstep modes,

• Direct interface to a bipolar stepper motor,

• Fully compatible with the EasyPIC V7 development board.

The following connections are made between the Bipolar Stepper Motor Driver board and

PORTB:

PORTB Driver Board
RC0 ENABLE
RC1 STEP
RC2 RESET
RC3 SLEEP
RC4 MS1
RC5 MS2
RC6 DIR

Figure 7.168: mikroElektronika Bipolar Stepper Motor Driver Board.

610 Chapter 7

The type of motor used in this project is the 39HS02 (Figure 7.169). This motor has the

following features:

• A 1.8� step angle (200 steps for a complete revolution),

• A �5% step angle accuracy,

• A 0.6-A phase current,

• Four leads (Coil 1: brownþ gray, Coil 2: orangeþ green).

Project Program

mikroC Pro for PIC

The mikroC Pro for PIC program listing is shown in Figure 7.170 (MIKROC-BSTP.C). At

the beginning of the program, the controller pins are defined by symbols. In the main

program, the controller chip is enabled. Then, a loop is formed to send 2000 steps

(10 revolutions) to the motor in one direction (DIR¼ 0). After a 5-s delay, the direction is

changed (DIR¼ 1) and another 2000 steps are sent to the motor to rotate in the opposite

direction. Note that a 1-ms delay is inserted between each step so that the speed of

rotation is RPM¼ 1.8�/6� 1� 10�3 s¼ 300.

MPLAB XC8

The MPLAB XC8 program is shown in Figure 7.171 (XC8-BSTP.C). The program is

similar to the mikroC version.

Figure 7.169: The 39HS02 Bipolar Stepper Motor.

Advanced PIC18 Projects 611

/**
BIPOLAR STEPPER MOTOR ROTATION
==============================

In this project a 39HS model bipolar stepper motor is connected to PORTB of a PIC18F45K22
microcontroller through an A3967SLB type bipolar motor controller chip

The program rotates the motor clockwise 10 revolu�ons, stops for 5 s, and then
rotates an�clockwise for 10 turns and stops.

39HS motor has step angle of 1.8 degrees. thus, a complete revolu�on requires 200 pulses
(steps) to be sent to the motor. For 10 revolu�ons, we have to send 2000 pulses. The DIR
input controls the direc�on of rota�on.

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-BSTP.C
***/
#define ENABLE PORTB.RB0 // A3967SLB ENABLE input
#define STEP PORTB.RB1 // A3967SLB STEP input
#define RST PORTB.RB2 // A3967SLB RESET input
#define SLP PORTB.RB3 // A3967SLB SLEEP input
#define MS1 PORTB.RB4 // A3967SLB MS1 input
#define MS2 PORTB.RB5 // A3967SLB MS2 input
#define DIR PORTB.RB6 // A3967SLB DIR input
//
// This is the main program. The motor turns 10 revolu�ons clockwise with 1ms delay
// between each step. Then the motor stops for 5 seconds. The motor then rotates
// an�clockwise for 10 revolu�ons and then stops.
//
void main()
{

unsigned int i;

ANSELB = 0; // Configure PORTB as digital
TRISB = 0; // Configure PORTB as digital

//
// A3967SLB chip configura�on
//

ENABLE = 0; // Enable the controller chip
RST = 1; // Disable RESET
SLP = 1; // Disable SLEEP
MS1 = 0; // Full-step sequence
MS2 = 0;
STEP = 0; // Step = 0 to start with

//
// First rotate clockwise 10 revolu�ons
//

DIR = 0;
for(i = 0; i < 2000; i++)
{

Figure 7.170: mikroC for the PIC Program.

612 Chapter 7

Project 7.22dDC Motor Control ProjectsdSimple Motor Drive

DC motors are used in many industrial, commercial, and domestic applications. In this

project, a DC motor is controlled by rotating it in either the clockwise or anticlockwise

direction.

A simplified electrical circuit diagram of a DC motor is shown in Figure 7.172.

The motor torque is proportional to the current through the motor:

T ¼ KTi: (7.2)

The back emf is given by

Ve ¼ Kew; (7.3)

Where w is the motor angular speed (radians per second). We can write the following

formula for the motor circuit:

V� Ve ¼ Riþ L di=dt (7.4)

or

V ¼ Riþ Ldi=dtþ Kew: (7.5)

At the same time,

T ¼ J dw=dt: (7.6)

STEP = 1; // Send STEP pulses
STEP = 0;
Delay_Ms(1);

}

Delay_Ms(5000); // Wait 5 s
//
// Now rotate an�clockwise 10 revolu�ons
//

DIR = 1;
for(i = 0; i < 2000; i++)
{

STEP = 1; // Send STEP pulses
STEP = 0;
Delay_Ms(1);

}
while(1); // End. Wait here forever

}

Figure 7.170
cont’d

Advanced PIC18 Projects 613

/**
BIPOLAR STEPPER MOTOR ROTATION
==============================

In this project a 39HS model bipolar stepper motor is connected to PORTB of a PIC18F45K22
microcontroller through an A3967SLB type bipolar motor controller chip

The program rotates the motor clockwise 10 revoluƟons, stops for 5 s, and then
rotates anƟclockwise for 10 turns and stops.

39HS motor has step angle of 1.8 degrees. thus, a complete revoluƟon requires 200 pulses
(steps) to be sent to the motor. For 10 revoluƟons, we have to send 2000 pulses. The DIR
input controls the direcƟon of rotaƟon.

Author: Dogan Ibrahim
Date: October 2013
File: XC8-BSTP.C
***/
#include <xc.h>
#pragma config MCLRE = EXTMCLR, WDTEN = OFF, FOSC = HSHP
#define _XTAL_FREQ 8000000

#define ENABLE PORTBbits.RB0 // A3967SLB ENABLE input
#define STEP PORTBbits.RB1 // A3967SLB STEP input
#define RST PORTBbits.RB2 // A3967SLB RESET input
#define SLP PORTBbits.RB3 // A3967SLB SLEEP input
#define MS1 PORTBbits.RB4 // A3967SLB MS1 input
#define MS2 PORTBbits.RB5 // A3967SLB MS2 input
#define DIR PORTBbits.RB6 // A3967SLB DIR input
//
// This funcƟon creates seconds delay. The argument specifies the delay Ɵme in seconds
//
void Delay_Seconds(unsigned char s)
{

unsigned char i,j;

for(j = 0; j < s; j++)
{

for(i = 0; i < 100; i++)__delay_ms(10);
}

}

//
// This is the main program. The motor turns 10 revoluƟons clockwise with 1ms delay
// between each step. Then the motor stops for 5 seconds. The motor then rotates
// anƟclockwise for 10 revoluƟons and then stops.
//
void main()
{

unsigned int i;

Figure 7.171: MPLAB XC8 Program.

614 Chapter 7

ANSELB = 0; // Configure PORTB as digital
TRISB = 0; // Configure PORTB as digital

//
// A3967SLB chip configuraƟon
//

ENABLE = 0; // Enable the controller chip
RST = 1; // Disable RESET
SLP = 1; // Disable SLEEP
MS1 = 0; // Full-step sequence
MS2 = 0;
STEP = 0; // Step = 0 to start with

//
// First rotate clockwise 10 revoluƟons
//

DIR = 0;
for(i = 0; i < 2000; i++)
{

STEP = 1; // Send STEP pulses
STEP = 0;
__delay_ms(1);

}

Delay_Seconds(5); // Wait 5 s
//
// Now rotate anƟclockwise 10 revoluƟons
//

DIR = 1;
for(i = 0; i < 2000; i++)
{

STEP = 1; // Send STEP pulses
STEP = 0;
__delay_ms(1);

}
while(1); // End. Wait here forever

}

Figure 7.171
cont’d

Figure 7.172: Simplified Electrical Circuit of a DC Motor, Where, R is the Motor Resistance; L
is the Motor Inductance; J is the Motor Inertia; Ve is the Back Electromotive Force (emf).

Advanced PIC18 Projects 615

Thus, from Eqns (7.2) and (7.6),

I ¼ J=KTdw=dt: (7.7)

Combining Eqns (7.5) and (7.7),

V ¼ RJ

KT

dw

dt
þ LJ

KT

d2w

dt2
þ Kew: (7.8)

The inductance is negligible in small motors. If we remove the second-order inductance

term from Eqn (7.8) we get

V ¼ RJ

KT

dw

dt
þ Kew: (7.9)

Taking the Laplace transform of both sides, the relationship between the motor speed and

applied voltage is simply given by

wðsÞ
VðsÞ ¼

KT

KTKe þ RJs
: (7.10)

We can show the open-loop transfer function of the DC motor as in Figure 7.173.

The closed-loop motor transfer function is used in speed control applications. Figure 7.174

shows the closed-loop transfer function where the speed of the motor is sensed using

either an optical encoder or a tachogenerator and is compared with the desired speed. The

digital controller is usually a microcontroller or a PC that generates the control signals to

drive the motor to obtain the required speed.

Project Description

This project is about controlling the direction of rotation of a DC motor. Two push-button

switches are used: one to control the direction and another one to start/stop the motor.

KT

KTKe + RJs
V(s) w(s)

Figure 7.173: Open-loop Transfer Function of the DC Motor.

KT

KTKe + RJs
w(s)Digital controller

Encoder/tacho

V(s)
+

–

Figure 7.174: Closed-loop DC Motor Speed Control.

616 Chapter 7

Figure 7.175 shows the block diagram of the project.

Project Hardware

The circuit diagram of the project is shown in Figure 7.176. An H-bridge circuit is

constructed from four MOSFET transistors, connected to PORTB of the microcontroller.

The motor is controlled as shown in the following table:

ON/OFF Button Direction Button RB3 RB2 RB1 RB0 Motor State
0 X 0 0 0 0 (0x00) OFF
1 0 0 1 0 1 (0x05) Clockwise
1 1 1 0 1 0 (0x0A) Anticlockwise

Figure 7.175: Block Diagram of the Project.

Figure 7.176: Circuit Diagram of the Project.

Advanced PIC18 Projects 617

Project Program

mikro Pro for PIC

The mikroC Pro for the PIC program listing is shown in Figure 7.177

(MIKROC-DCMTR1.C). Symbols ONOFF and DIR are assigned to I/O ports RA0 and

RA1, respectively. The motor is controlled by the two buttons and rotates clockwise,

anticlockwise, or stops.

/**
DC MOTOR CONTROL
=================

In this project a DC motor is connected to PORTB of a microcontroller via an H-bridge circuit,
constructed from 4 MOSFET transistors.

Two push-bu�on switches are used to control the motor. Normally the motor rotates
an�clockwise. Pressing the DIR bu�on changes the direc�on of rota�on. Pressing the ON/OFF
bu�on stops the motor.

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-DCMTR1.C
***/
#define ONOFF PORTA.RA0
#define DIR PORTA.RA1
#define ON 1
#define ClockWise 0x05
#define An�ClockWise 0x0A
//
// Two bu�ons are used to control the motor movements: The motor turns clockwise,
// an�clockwise, or stops
//
void main()
{

ANSELA = 0; // Configure PORTA as digital
ANSELB = 0; // Configure PORTB as digital
TRISB = 0; // Configure PORTB as output
TRISA = 3; // Configure RA0 and RA1 as inputs

for(;;) // Do forever
{

if(ONOFF == ON) // The motor is normally ON
{

if(DIR == 0)
PORTB = ClockWise;

else
PORTB = An�ClockWise;

}
else

PORTB = 0; // If the ON/OFF bu�on is pressed, stop the motor
}

}

Figure 7.177: mikroC Pro for PIC Program.

618 Chapter 7

Instead of using four transistors, we could have used a motor controller chip, for example,

LMD18200T (Figure 7.178). This chip is connected directly to the motor. For fixed speed

applications, we can apply logic 1 to the PWM input. The DIR input controls the motor

direction.

Project 7.23dA Homemade Optical Encoder For Motor Speed
Measurement

Optical encoders are used as sensors in motor speed and position control applications.

There are several types of optical sensors available, such as incremental sensors, absolute

sensors, and linear sensors. The encoder technology is not covered in this book and

interested readers can search the Internet for further information and manufacturers’

datasheets.

In this project, we will look at the design of an optical sensor to measure and display the

speed of a motor. In the design, a round-shaped plate is attached to the motor shaft whose

speed is to be measured. Holes are made on this plate at equal distances around the corner

of the plate (Figure 7.179). A light source (e.g. infrared) emits light that passes through

the holes as the plate rotates. At the other side of the plate, a light detector senses when a

hole passes in front of it. This information is then passed to a microcontroller that counts

the number of holes passing in front of the detector at a given time interval. This reading

is then converted into motor speed.

Figure 7.178: Using the LMD18200T for DC Motor Control.

Advanced PIC18 Projects 619

Project Hardware

In this project, a small plate with eight holes is attached to the motor shaft (Figure 7.180).

The accuracy is increased when the number of holes is increased. Most commercially

available encoders provide �200 holes. An infrared light source and light detector pair are

Figure 7.179: Simple Optical Encoder.

Figure 7.180: Homemade Optical Encoder Attached to a DC Motor.

620 Chapter 7

used in this project as shown in Figure 7.181. The output of the light detector is connected

to pin RA0 of the microcontroller. The motor speed is displayed on the LCD.

Project Program

mikroC Pro for PIC

In this project, Timer0 of the microcontroller is configured to generate interrupts at every

100 ms and the number of holes passing in-front of the detector are counted within this

time interval. If n is the number of holes passing in 100 ms, then we have 10n holes

passing every second. If N is the number of holes on the encoder plate, then the plate

makes 10n/N revolutions every second, that is,

Motor speed¼ 10n/N revolutions per second

In this project, N¼ 8 and therefore

Motor speed¼ 10n/8¼ 1.25n revolutions per second

The speed is usually measured in revolutions per minute. Thus, multiplying the right-hand

side by 60 we get

Motor Speed (revolutions per minute)¼ 60� 1.25n¼ 75n.

Figure 7.181: Circuit Diagram of the Project.

Advanced PIC18 Projects 621

/**
OPTICAL ENCODER MOTOR SPEED MEASUREMENT
===

In this project a homemade op�cal encoder is used. The encoder has 8 holes and is connected
to the sha� of DC motor. Infrared light source and detectors are used and connected to a
microcontroller to count the number of holes passing in-front of the detector. The speed is then
calculated in RPM and is displayed on the LCD.

Timer 0 is configured in 16-bit mode to generate interrupts at every 100 ms. The number of holes
passing in-front of the detector in 100 ms is counted and then the RPM is calculated as described in
the text.

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-ENCODER.C
***/
// LCD module connec�ons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_Direc�on at TRISB4_bit;
sbit LCD_EN_Direc�on at TRISB5_bit;
sbit LCD_D4_Direc�on at TRISB0_bit;
sbit LCD_D5_Direc�on at TRISB1_bit;
sbit LCD_D6_Direc�on at TRISB2_bit;
sbit LCD_D7_Direc�on at TRISB3_bit;
// End LCD module connec�ons

#define ENCODER PORTA.RA0
unsigned int RPM, Cnt = 0;
unsigned char Txt[] = "RPM= ";
unsigned char DsplyCnt = 0;

void interrupt(void)
{

TMR0H = 0x3C; // Reload TMR0 for 100ms interrupts
TMR0L = 0xB0;
RPM = 75*Cnt; // Speed in RPM
IntToStr(RPM, Txt+4); // Convert to string
Cnt = 0;
DsplyCnt++;
if(DsplyCnt == 10) // 1 s ?
{
DsplyCnt = 0;
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
Ltrim(Txt+4); // Remove leading spaces

Figure 7.182: mikroC Pro for PIC Program.

622 Chapter 7

Therefore, by counting the number of holes passing in-front of the detector in 100 ms we

can easily find the motor speed in revolutions per minute.

In some applications, the motor speed is measured in radians per second. Since each

rotation is 2p radians, the motor rotation in 1 s will be 10n� 2p/N. Thus, the motor speed

in radians per second is given by

Motor speed (radians/second)¼ 10n� 2p/N.

In this project, N¼ 8 and therefore,

Motor speed (radians per second)¼ 7.85n.

The mikroC Pro for PIC program listing is shown in Figure 7.182. The main program

initializes the LCD, configures the timer, and then enters an endless loop. Inside this loop,

the number of holes passing in front of the detector are counted and stored in variable Cnt.

Lcd_Out(1,1,Txt); // Display speed every second
}
INTCON.T0IF = 0; // Re-enable TMR0 interrupts

}

//
// Two bu�ons are used to control the motor movements: The motor turns clockwise,
// an�clockwise, or stops
//
void main()
{

ANSELA = 0; // Configure PORTA as digital
ANSELB = 0; // Configure PORTB as digital
TRISB = 0; // Configure PORTB as output
TRISA = 1; // Configure RA0 as input

Lcd_Init(); // Ini�alize LCD
//
// Configure TMR0 is 16 bit mode to generate interrupts every 100 ms
//

T0CON = 0x81; // 16-bit mode, prescaler = 4
TMR0H = 0x3C; // Load 0x3CB0 for 100 ms interrupts
TMR0L = 0xB0;
INTCON = 0xA0; // Enable TMR0 and global interrupts

while(1)
{

while(ENCODER == 0); // Wait if 0
Cnt++; // Increment encoder count
while(ENCODER == 1); // Wait if 1

}
}

Figure 7.182
cont’d

Advanced PIC18 Projects 623

Timer 0 is configured in the 16-bit mode to generate interrupts at every 100 ms. The value

to be loaded into the timer registers for 100 ms (100,000 ms) interrupt is found as follows:

TMR0H:TMR0L¼ 65536e 100,000/(4xTxPre-scaler).

With a clock frequency of 8 MHz (T¼ 0.125 ms) and the Prescaler value of 4,

TMR0H:TMR0L¼� 15,536 which is 0x3CB0 in hexadecimal

that is, TMR0H¼ 0x3C and TMR0L¼ 0xB0.

Inside the ISR, the motor speed is calculated in revolutions per minute. The speed is

displayed every second (every 10 times we enter the ISR) on the LCD. The motor used in

this project had a speed of 5800 RPM, which is displayed as follows:

RPM¼ 5800

Project 7.24dClosed-Loop DC Motor Speed ControldOn/Off Control

This project is about closed-loop speed control of a DC motor using a microcontroller.

In the project, an optical encoder is used to detect the motor speed and feedback is

applied to achieve the desired speed. The motor control signal is in the form of a PWM

waveform.

PWM waveform is frequently used in power control applications, such as motor control,

pump control, and heating control. By changing the duty cycle (ON time), we can control

the average voltage (or power) applied to the load.

If Vi is the amplitude of the PWM signal, the average voltage supplied to the load is given by

Average voltage ¼ tON
tON þ tOFF

Vi ¼ tON
T

Vi:

The relationship between tON and the average load voltage is linear, and as tON changes

from 0 to T (0e100% duty cycle), the average voltage delivered to the load changes from

0 to þVi. Thus, we can control tON time to control the motor voltage and hence the motor

speed.

In this project, the built-in PWM module of the microcontroller is used to generate the

PWM signal. We can choose the PWM frequency from a few kilohertz to �10 kHz. Here,

we chose 10 kHz (T¼ 0.1 ms). We can find the register values to generate the required

PWM waveform. With an 8-MHz clock:

PR2 ¼ PWM period

TMR2 prescale value � 4 � TOSC
� 1

624 Chapter 7

or

PR2 ¼ 0:1� 10�3

4 � 4 � 0:125� 10�6
� 1 ¼ 49 or 0x31 in hexadecimal:

Also,

CCPR1L : CCP1CONh5 : 4i ¼ PWM pulse width

TMR2 prescale value � TOSC

or

CCPR1L : CCP1CONh5 : 4i ¼ Duty cycle� 10�3

4 � 0:125� 10�6
¼ 2000� Duty cycle;

where the Duty cycle is in milliseconds.

Thus, for a Duty cycle of 0.001 ms, CCPR1L:CCP1CON<5:4>¼ 2, which gives the

average voltage as

Average voltage ¼ 0:001

0:1
Vi ¼ 0:01 Vi

For 100% Duty cycle, Duty cycle¼ 0.1 ms and

CCPR1L:CCP1CON<5:4>¼ 200 which gives the average voltage equal to Vi.

As a summary, as we change the register value from 2 to 200, the average voltage applied

to the motor will change linearly from 0.01Vi to Vi. Combining the above equations, we

can write an expression for the average load voltage as follows:

Average voltage ¼ CCPR1L : CCP1CON < 5 : 4 >

2000� 0:1
Vi

or

Average voltage ¼ CCPR1L : CCP1CONh5 : 4i
200

Vi:

The value loaded into CCPR1L:CCP1CON<5:4> changes from 2 to 200.

The CCPR1L:CCP1CON<5:4> register combination is 10 bits wide. Assuming that

the number to be loaded into the register pair is integer N, the value to be loaded

into CCPR1L can be found by right shifting N by 2 bits. The number to be loaded

into bits 5 and 4 of CCP1CON can be found by taking the two least significant bits

of N and left shifting by 4 bits. Bits 2 and 3 of CCP1CON are then set to 1 for

Advanced PIC18 Projects 625

PWM operation. The following program code shows how to load the PWM register

pair:

CCPR1L = N >> 2;
Temp = N & 0x03;
Temp = Temp << 4;
CCP1CON = Temp j 0x0C;

In this project, the homemade optical encoder (with eight holes) described in the previous

project is used. The encoder data are read every 10 ms. If n is the number of holes passing

in front of the detector in 0.01 s, then 100n holes pass in 1 s. If N is the number of holes

on the encoder, the motor speed is given by

Motor speed¼ 100n/N revolutions per second

With N¼ 8,

Motor speed¼ 100n/8¼ 12.5 revolutions per second

or

Motor speed (revolutions per minute)¼ 750n

The timer interrupt TMR0 is set to generate interrupts every 10 ms, and the motor speed is

calculated inside the ISR.

Assuming a prescaler value of 128- and 8-MHz clock (T¼ 0.125 ms), the TMR0 register

value for 10-ms interrupts can be found from

TMR0L¼ 256e10000/(4� 0.125� 128)¼ 100.

Project Hardware

The circuit diagram of the project is shown in Figure 7.183. The speed of the motor is fed

back via the optical encoder to RA0 input of the microcontroller. The PWM output of the

microcontroller drives the motor through a MOSFET transistor. An LCD is connected to

PORTB to display the actual motor speed in revolutions per minute.

Project Program

mikroC Pro for PIC

The mikroC Pro for the PIC program listing is shown in Figure 7.184

(MIKROC-MTRONOFF.C). At the beginning of the main program, I/O ports are

configured, and the LCD is initialized. Then, the PWM module is configured to generate

pulses with a period of 9.1 ms. Timer 2 is used to provide clock to the PWM module, and

Timer 0 is configured to generate interrupts at every 10 ms. The desired speed is set to

626 Chapter 7

2000 RPM with a dead band of 100, that is, it is required to keep the speed between

2000� 100 RPM. The remainder of the main program counts the encoder pulses.

Inside the ISR the timer register TMR0L is reloaded, the motor speed is calculated and the

ON/OFF control action is applied using the following program code:

/� IF SLOW �/
if(RPM < (DesiredRPM � Deadband))
{
SetSpeed(200); // Rotate motor FAST
}
/� IF FAST �/
if(RPM > (DesiredRPM + Deadband))
{
SetSpeed(2); // Rotate motor SLOW
}

Figure 7.183: Circuit Diagram of the Project.

Advanced PIC18 Projects 627

/**
CLOSED-LOOP ON/OFF MOTOR SPEED CONTROL
======================================

In this project a DC motor is controlled using feedback and ON/OFF type simple control. The
motor speedis measured using a homemade opƟcal encoder.

If the motor speed is higher than the desired speed than the motor supply is cut. If on the other

The motor is connected to the microcontroller through a VN66AFD type MOSFET transistor. The
PWM module of the microcontroller is used to provide control pulses to the motor. An LCD is
connected to PORTB and the LCD shows the actual motor speed every second.

CCP1 (RC2) output.

Homemade opƟcal encoder is used. The encoder has 8 holes and is connected to the shaŌ of
DC motor. Infrared light source and detectors are used and connected to a microcontroller to
count the number of holes passing in-front of the detector. The speed is then calculated in RPM
and is displayed on the LCD.

Author: Dogan Ibrahim
Date: October 2013
File: MIKROC-MTRONOFF.C
***///
LCD module connecƟons
sbit LCD_RS at RB4_bit;
sbit LCD_EN at RB5_bit;
sbit LCD_D4 at RB0_bit;
sbit LCD_D5 at RB1_bit;
sbit LCD_D6 at RB2_bit;
sbit LCD_D7 at RB3_bit;

sbit LCD_RS_DirecƟon at TRISB4_bit;
sbit LCD_EN_DirecƟon at TRISB5_bit;
sbit LCD_D4_DirecƟon at TRISB0_bit;
sbit LCD_D5_DirecƟon at TRISB1_bit;
sbit LCD_D6_DirecƟon at TRISB2_bit;
sbit LCD_D7_DirecƟon at TRISB3_bit;
// End LCD module connecƟons

#define ENCODER PORTA.RA0
unsigned int Cnt = 0;
unsigned int RPM, DesiredRPM, DeadBand;
unsigned char Txt[] = "RPM= ";
unsigned char DsplyCnt = 0;

//
// This funcƟon sets the motor speed
//

hand the motor speed is lower than the desired speed than full power is applied to the motor.

The opƟcal encoder is connected to RA0 input of the microcontroller. The motor is driven from the

Figure 7.184: mikroC Pro for the PIC Program.

628 Chapter 7

void SetSpeed (unsigned char N)
{

unsigned char Temp;

CCPR1L = N >> 2;
Temp = N & 0x03;
Temp = Temp << 4;
CCP1CON = Temp | 0x0C;

}

//
// This is the Timer0 interrupt service rou�ne. The program jumps here every 10ms.
// The actual motor speed is compared with the desired speed and either the motor is
// operated with full voltage (maximum speed), or with low voltage (minimum speed). The
// motor speed is displayed on the LCD.
//
void interrupt(void)
{

TMR0L = 100; // Reload Timer register
RPM = 750*Cnt; // Actual motor speed (in RPM)
Cnt = 0;
/* IF SLOW */
if(RPM < (DesiredRPM - Deadband))
{

SetSpeed(200); // Rotate motor FAST
}

/* IF FAST */
if(RPM > (DesiredRPM + Deadband))
{

SetSpeed(2); // Rotate motor SLOW
}
DsplyCnt++;
if(DsplyCnt == 100) // 1 second (10msx100=1s) ?
{
DsplyCnt = 0;
Lcd_Cmd(_LCD_CLEAR); // Clear LCD
IntToStr(RPM,Txt+4); // Convert into string
Ltrim(Txt+4); // Remove leading spaces
Lcd_Out(1,1,Txt); // Display speed every second

}

INTCON.T0IF = 0; // Re-enable TMR0 interrupts
}

//
// The desired RPM is set to 2000 and the DeadBand is set to 100 RPM
//
void main()
{

ANSELA = 0; // Configure PORTA as digital

Figure 7.184
cont’d

Advanced PIC18 Projects 629

Function SetSpeed loads the CCPR1L and CCp1CON register of the PWM module

accordingly. The LCD displays the actual motor speed every second.

ANSELB = 0; // Configure PORTB as digital
ANSELC = 0; // Configure PORTC as digital
TRISA = 1; // Configure RA0 as input
TRISB = 0; // Configure RB0 as input

LCD_Init(); // Ini�alize LCD
//
// Configure the PWM module
//

T2CON = 0x05; // Set Timer 2 ON and prescaler to 4
PR2 = 0x31; // Load Timer 2 PR2 register with 49
CCPR1L = 0; // Motor OFF to start with
TRISC = 0; // Configure CCP1 (RC2) as output
CCP1CON = 0x0C; // Enable PWM module
CCPTMRS0 = 0; // Use Timer 2 for the PWM module (CCP1)

//
// Configure TMR0 in 8 bit mode to generate interrupts every 10ms
//

T0CON = 0xC6; // 8-bit mode, prescaler = 128
TMR0L = 100; // Timer value for 10ms �mer overflow
INTCON = 0xA0; // Enable TMR0 interrupts

DesiredRPM = 2000; // Desired RPM
DeadBand = 100; // Deadband range

while(1)
{

while(ENCODER == 0); // Wait if 0
Cnt++; // Increment encoder count
while(ENCODER == 1); // Wait if 1

}
}

Figure 7.184
cont’d

630 Chapter 7

Index

Note: Page numbers with “f” denote figures; “t” tables.

A
A3967SLB bipolar stepper motor,

609
Ab function, 47
Access methods, Ethernet,

510e513
e-mail, 512
using custom application, 512
using HyperTerminal, 511
using web browser on PC, 511,

511f
Acos function, 48
Action commands, 339
Active RFID tags, 370
ADC_Get_Sample function, 504,

535
ADC_Init function, 503e504
Adc_Read(0) function, 131e136,

144e146
Alarm clock, real-time, 436e439,

436fe438f, 440f
Altimeter display on GLCDs,

490e501, 491f, 493f,
495fe496f, 501f

Arbitrary waveform generation,
229e234, 232fe233f, 235f

Arrays, 12e13
character, 12e13

Asin function, 48
Assembly language
instructions, 45

Assembly program, 2
Atan function, 48
Atan2 function, 48
Automotive project see CAN bus;

Local interconnect network
(LIN) bus

B
Barometer display on GLCDs,

490e501, 491f, 493f,
495fe496f, 501f

Baud rate, 290, 303e304
BEGINeEND, 52, 52f
Biased split termination of CAN

bus, 552e553
Bipolar A/D converter, 216
Bipolar stepper motors, 600
drive, 608e611, 609fe612f, 614f
driving sequence, 601f
windings, 600f

Bit stuffing in CAN bus, 556
Bluetooth, 5f
master mode, serial

communication in,
361e369, 362f, 364f, 368f

program testing, 368e369
slave mode, serial communication

in, 333e361, 335fe336f,
338fe339f, 343fe348f,
353fe354f, 356f

making connection, 342
manual connection, 342e346
modifications, 355
program testing, 352e355
RN41 module, 334e335, 334f

BusyXLCD function, 149
BusyxUSART function, 299
Buzzer, 156

C
C, <address> command, 341
Calculator
with keypad and liquid crystal

display, 190e201,
190fe194f, 202f

program using built-in keypad
function, 195f, 198e201,
199f

PC-based, 304e306, 305f, 307f,
310f

CAN bus, 535e536, 550e577,
551f

bit stuffing, 556
configuration mode, 561
data frame, 553e555
disable mode, 561
error frame, 555
error recognition mode, 562
listen-only mode, 561
logic states, 552f
loop-back mode, 561
message reception, 562e563
message transmission, 562
nominal bit timing, 556e558
normal operation mode, 561
overload frame, 555e556
PIC microcontroller interface,

558e559, 558fe559f
PIC18F258 microcontroller,

559e561
remote frame, 555
temperature sensor and display

project, 568, 569fe570f,
577f

COLLECTOR processor,
569

COLLECTOR program,
574e577, 575f

DISPLAY processor,
569e570

DISPLAY program, 570e574,
571f

termination methods, 553f

631

CAN bus (Continued)
timing parameters calculation,

563e564
CAN_Initialize function, 565, 574
CANGetOperationMode function,

565
CANRead function, 567
CANSetBaudRate function,

566
CANSetFilter function, 566
CANSetMask function, 566
CANSetOperationMode function,

565
CANWrite function, 567
Card Identification Register (CID),

450
Card Specific Data Register (CSD),

450
Carrier Sense Multiple Access with

Collision Detection (CSMA/
CD) protocol, 509

with Arbitration on Message
Priority (CSMA/CD +
AMP), 550

Case sensitivity, 11
CCS C compiler, 10, 581
Change commands, 339
Character arrays, 12e13
Click boards, 310e311

RFID, 372f
Clock

real-time, 414e435, 421fe422f,
426f, 428f, 430f

alarm clock, 436e439,
436fe438f, 440f

Clock edge mode, 401
Clock polarity (CP), 404, 404f
Closed-loop DC motor speed

control, 616, 616f,
624e630, 627fe628f

ClosexUSART function, 299
CMX-Tiny+, 581
Command frame identifiers, 538
Comments, 11
Common-anode7-segment display,

109, 116f
Common-cathode7-segment

display, 109, 115f
Complex instruction set computer

see CISC

Configuration
bits, specifying, 45
mode of CAN module, 561

Constants, 12, 44e45
Contact debouncing, 194e198
Contact noise, 194e198
Control flow, 15e19
iteration statements, 17
selection statements, 15

Control register, 405
Controller area network see CAN

bus
Controller chips, Ethernet, 510
CONV function, 55
Convert_Date_Time function, 429,

434
Cooperative scheduling,

579, 579f
multitasking, 581e589,

582fe584f, 586f
Cos function, 47
Cosh function, 47
CR95HF, 385f
operational modes, 374
startup sequence, 374

CustomChar function, 164e168

D
D command, 340
basic settings with, 341f

Data clock rate, 400
Data frame in CAN bus,

553e555
ACK field, 555
arbitration field, 554
control field, 554, 555t
CRC field, 555
data field, 554
start of frame, 554

Data memory, 6
DataRdyxUSART function, 299
DC motors control, 613e619,

617fe619f
closed-loop transfer function,

616f
electrical circuit, 615f
open-loop transfer function, 616f

_delay function, 46e47
_delay3 function, 46e47
Delay_ms function, 76e77, 92e93

__delay_ms function, 46e47, 74
__delay_ms(5) function, 149
__delay_ms(15) function, 149
Delay_Seconds function, 74,

80, 94, 160
__delay_us function, 46e47
Diagnostic frames, 538
Dice, LED, 85e94, 90fe92f, 92t,

93f, 95f
two-dice project, 94e98,

100fe102f, 104f
using random number generator,

94, 97f, 99f
Digital signal processing (DSP),

522e535, 528fe532f
filter structure, 525e527, 530f

Digital thermometer, 168e171,
168fe170f

Digital-to-analog converter (DAC),
214e216, 215f

Direct current (DC) motor control
system, 3e4, 6f

Disable mode of CAN module, 561
Display function, 123, 127
Display_Date_Time function, 429,

435
Display_PTA function, 501
Display_Temperature function, 412
DISPLY function, 55e57
Do statement, 19
DOeENDO, 54, 54f
DOeFOREVER, 54, 54f

E
EasyPIC V7 development board,

39e42
__EEPROM_DATA function, 47
Electronic stadiometer, 248
EM4100 RFID tag, 375e376,

375f
data format, 376f

E-mail, 512, 512f
Embedded controller see

Microcontrollers
ENC28J6 Ethernet controller chip,

510
ENC28J60 Ethernet controller chip,

510e511, 510f, 513, 515
Error frame in CAN bus, 555
Error function, 501

632 Index

Error recognition mode of CAN
module, 562

Ethernet, 550
UDP-based control, 521e522,

522fe523f, 526f
web browser-based control,

508e521, 513fe517f, 519f
connectivity, 509
embedded access methods,
510e513

embedded controller chips,
510, 510f

packet format, 509f
External interrupt, four-digit

multiplexed 7-segment
event LED counter using,
175e186, 178fe180f, 183f,
186fe187f

F
FloatToStr function, 294e296
Flowcharts, 51e57
representing for loops in, 36

Fluid level control system, 3, 3f, 5f
with Bluetooth, 5f
with keypad and LCD, 4f

Fonts, LCD, 160e168, 164fe167f
For statement, 17e18, 84e85,

116e118, 123, 127e128,
131e136, 144e146, 289,
504, 574

loop, 92e93, 107e109,
125e126, 194, 219e220,
475, 602

representing in flow charts, 63
Format_Temperature function,

412e413
4 � 4 keypad see Keypad
Four-digit multiplexed 7-segment

LED counter, 125e128,
127fe130f, 132f

using external interrupt,
175e186, 178fe180f, 183f,
186fe187f

FreeRTOS, 581
Frequency counter with LCD,

262e268, 262fe265f
FSfclose function, 465e466
FSfopen function, 465e466
FSfopenpgm function, 465e466

FSInit function, 465e466
FSread function, 465
FSremove function, 466
FSremovepgm function, 466
FSwrite function, 465
Functions, 20
library, 20, 21t

G
Get commands, 339
Getkeypad function, 192e198
Get_Response function, 546e550
GetsxUSART function, 300
Get_Temperature function, 469, 475
Glcd_Box function, 484
Glcd_Circle function, 485
Glcd_Circle_Fill function, 485
Glcd_Dot function, 482e483
Glcd_Fill function, 482
Glcd_H_Line function, 483
Glcd_Image function, 487
Glcd_Init function, 481e482, 503
Glcd_Line function, 483,

504e507
Glcd_Rectangle function, 483e484
Glcd_Rectangle_Round_Edges

function, 484
Glcd_Rectangle_Round_

Edges_Fill function, 484
Glcd_Set_Font function, 485
Glcd_Set_Font_Adv function, 486
Glcd_Set_Page function, 482
Glcd_Set_Slide function, 482
Glcd_Set_X function, 482
Glcd_V_Line function, 483
Glcd_Write_Char function,

485e486
Glcd_Write_Char_Adv function,

486
Glcd_Write_Const_Text_Adv

function, 487
Glcd_Write_Data function, 482
Glcd_Write_Text function,

485e486
Glcd_Write_Text_Adv function,

486e487
Global positioning system (GPS)

with LCD output, 306e317,
310fe314f, 317f

Goto statement, 19

GPIO commands, 339
Graphical User Interface (GUI), 521
Graphics LCD displays (GLCDs),

477e490, 488fe489f
barometer, thermometer, and

altimeter display on,
490e501, 491f, 493f,
495fe496f, 501f

display coordinates, 481f
128 � 64 pixel, 478e479
operation, 480
plotting temperature variation on,

501e508, 502fe505f, 508f
shapes drawn on, 490f
structure, 480f

H
#pragma config statement, 74
HD44780 LCD controller
module, 141e142
pin configuration of, 142t

High-level languages, 2
High/Low game, 206e214,

208fe210f, 213fe214f
generating random number, 207

HTTP, 511
Human height measurement,

248e258, 249fe251f, 253f,
255f

HyperTerminal, 297, 298f, 511

I
I,<value 1>,<value 2> command,

341
I/O pins
accessing individual, 45
two-dice project using fewer pins,

98e109, 105t, 106f, 106t,
107f, 107t, 108f, 110f, 111t,
112fe113f

I2C bus, 396, 420, 421f, 422, 435,
491, 493

If statement, 15e17
IFeTHENeELSEeENDIF, 52, 53f
IFeTHENeENDIF, 52, 53f
Init_LCD function, 407
Init_Pressure function, 494
Init_SPI function, 407
Initialize_CR95HF function, 379
InitTask function, 590

Index 633

Internal registers of TC72, 404t
Internet, 508
Interrupt isr function, 160
Interrupt service routines (ISRs),

46, 56e57, 175e177, 179,
182e186, 235e236, 242,
244, 352, 363e367,
590e591, 627

Iteration statements, 17
Itoa function, 48, 152

K
K command, 341
Keypad

calculator, 190e201, 190fe195f,
199f, 202f

High/Low game, 206e214,
208fe210f, 213fe214f

structure, 191f
Keypad_Init function, 198
Keypad_Key_Click function,

198
Keypad_Key_Press function,

198

L
Labs function, 47
Lcd_Chr function, 435
Lcd_Out function, 164e168
Led_Out function, 146
Library functions, 20, 21t

peripheral libraries, 49
software, 46e49

Light emitting diodes (LEDs)
chasing, 70e76, 72fe75f
current sinking mode, 70e71,
71f

current sourcing mode, 71e72,
72f

complex flashing, 76e77,
77fe79f

dice, 85e98, 90fe92f, 92t, 93f,
95f, 97f, 99f

random flashing, 78e80,
80fe82f

7-segment LED counter,
109e118, 114fe117f, 117t,
118fe119f

voltmeter, 129e140, 133fe135f,
137f

Liquid crystal display (LCD)
calculator, 190e201, 190fe195f,

199f, 202f
custom fonts, 160e168,

164fe167f
frequency counter with,

262e268, 262fe265f
GLCDs, 477e490, 478t,

479fe481f, 488fe490f
High/Low game, 206e214,

208fe210f, 213fe214f
output, GPS with, 306e317,

310fe314f, 317f
voltmeter, 140e152, 143fe145f,

147t, 148f, 151t, 152fe153f
connecting LCD to
microcontroller, 142e143

HD44780 LCD module,
141e142, 142t

Listen-only mode of CAN module,
561

LM35DZ temperature sensor, 469,
501e502, 538

LMD18200T motor controller chip,
619, 619f

Local interconnect network (LIN)
bus, 535e550, 539f, 540f,
542f, 543f, 547fe549f

Get_Response function,
546e550

MASTER node, 541
with one master and three slaves,

536f
protocol, 536e538, 537f
Send_Header function,

541e546
SLAVE node, 546e550

Lock, RFID, 387e389, 388f,
390fe391f

Log function, 48
Log10 function, 48
Logic probe, 81e85, 83fe84f,

86fe87f, 87t, 88fe89f
LongToStr function, 146, 193, 306,

469
Loop-back mode of CAN module,

561
Looping, 63fe65f, 63
Low pass FIR digital filter,

522e535, 528fe532f

coefficients, 530f
structure, 525e527

LPS331AP sensor, 490e501
registers, 492t

LSB register, 405
LTrim function, 146, 306

M
Main Program function, 412
Manufacturer ID, 405
Master mode, 361e369
Bluetooth serial communication,

361e369, 362f, 364f, 368f
Master Synchronous Serial Port

(MSSP) module, 389e396
configuration for SPI master

mode, 400
in SPI mode, 396e397, 397f

MAX232, 291e292
pin configuration, 292f

MCP 201 LIN bus, 538e539
Measure function, 289e290
Mechanical stadiometer, 248f
Memcmp function, 48
Memory organization see Data

memory, organization;
Program memory,
organization

Message reception in CAN bus,
562e563, 562f

Message transmission in CAN bus,
562

MF1ICS50 RFID tag, 376e377
memory organization, 377f

MicroC/OS-II, 581
Microcomputer, defined, 1
Microcontrollers
defined, 1
fluid level control system, 3f
program development, 51
PDL and flowcharts, 52e57

Microprocessor, 2
mikroBUS, 311
mikroC Pro, 9
arrays, 12e13
functions, 20
library, 20, 21t

modifying flow of control, 15e19
operators, 15
pointers, 13e14

634 Index

program structure, 10e12, 10f
structures, 14
variable types, 11t

Minielectronic organ, 258e261,
259fe261f

Mmc_Fat_Activate function,
455e456

Mmc_Fat_Append function, 455,
475

Mmc_Fat_Assign function, 455
Mmc_Fat_Close function,

456e457
Mmc_Fat_Delete function, 455
Mmc_Fat_EOF function, 456
Mmc_Fat_Exists function, 455
Mmc_Fat_Get_File_Dat function,

455
Mmc_Fat_Get_File_Size function,

455
Mmc_Fat_Init function, 455
Mmc_Fat_MakeDir function, 455
Mmc_Fat_Open function,

456e457, 456t
Mmc_Fat_QuickFormat function,

455e456
Mmc_Fat_Read function, 455e457,

475
Mmc_Fat_ReadN function, 456
Mmc_Fat_Rename function, 455
Mmc_Fat_Reset function,

455, 475
Mmc_Fat_Rewrite function,

455e457
Mmc_Fat_Seek function, 455
Mmc_Fat_Tell function, 455
Mmc_Fat_Write function,

455e457, 475
Mmc_Set_File_Date function, 455
Motor speed
control, closed-loop, 624e630,

627fe628f
measurement, 619e624,

620fe622f
MPLAB C18 C compiler, 10
MPLAB X IDE, 29
MPLAB XC8 C compiler, 10
MPLAB XC8 C compiler, 10,

29e49
MDD library functions, 463,

463te464t

programming other boards,
39e42

XC8 language features, 42e49
accessing individual bits of
variable, 45

accessing individual I/O pins,
45

assembly language
instructions, 45

constants, 44e45
interrupt service routines, 46
peripheral libraries, 49
persistent qualifier, 45
program startup, 46
program template, 43e44,
43f

software library functions,
46e49

specifying configuration bits,
45

variable types, 44, 44t
MSB register, 405
Mult function, 20
Multitasking, 578e581
cooperative scheduling, 579,

579f, 581e589, 582fe584f,
586f

preemptive scheduling,
580e581, 580f

round-robin scheduling,
579e580, 579f, 590e594,
590f, 592f, 595f

N
Negative temperatures, displaying,

413e414
Newline function, 294e296, 469
NMEA sentences, 310, 312,

316e317
Nominal bit timing in CAN bus,

556e558
Normal operation mode of CAN

module, 561
Number function, 94
Numbers function, 98, 105e106

O
100Base-T, 509e510
128 � 64 pixel, 478e479, 479f
pin configuration, 478t

One-phase full-step sequencing,
598, 599t

ONeOFF temperature control,
317e325, 317f

OpenADC function, 136
Open-loop transfer function of DC

motor, 616, 616f
OpenSPIx function, 226
OpenXLCD function, 149e150
OpenxUSART function, 300
Operation Control Register (OCR),

450
Operators in C, 15
Optical encoders, 619e624,

620fe622f
Organ, minielectronic, 258e261,

259fe261f
OSA-RTOS, 581
Overload frame in CAN bus,

555e556

P
Parallel LCDs, 141
Passive RFID tags, 370, 370f,

375e377
PCF8583 RTC chip, 414e435
pin layout, 425f
registers, 424f
hours, 424f
weekdayemonth, 424f
yearedate, 424f

PCSGU250, 525, 528f
Peripheral libraries, 49
Persistent qualifier, 45
Personal computer (PC)
-based calculator, 304e306,

305f, 307f, 310f
Ethernet access using web

browser on, 511, 511f
PIC18F258 microcontroller,

559e561
see also CAN bus

PICC18 C compiler, 9e10
PICDEM PIC18 Explorer

development board, 26e29,
26f

block diagram, 28f
module connections, 28e29
programming and debugging, 29

Piconet, 333

Index 635

PICos18, 581
PICtail Daughter Board,

457fe458f, 462
PlotAxis function, 503e504
Pointers, 13e14
Preemptive scheduling, 580e581,

580f
Pressure_Read function, 494
Pressure_Write function, 494
Program

startup, 46
template, 43e44, 43f

Program description languages
(PDLs), 51e57

Program memory, 6
Pseudorandom number generator

function, 94
Pulse width modulated (PWM)

modules, 156, 244, 247,
624e627

PutcXLCD function, 150
PutrsXLCD function, 150
PutrsxUSART function, 303
PutsXLCD function, 150

R
R,1 command, 341
Radiofrequency identification

(RFID), 369e387,
370fe371f, 373f, 375f,
375t, 376fe380f, 385f, 387f

click board, 372f
CR95HF
operational modes, 374
startup sequence, 374

lock, 387e389, 388f, 390fe391f
passive tags, 375e377
UART communication, 374e375

Rand function, 48, 207, 212
Random access memory see RAM
Random flashing light emitting

diodes, 78e80
Random number generator, 94
Reaction timer, 268e276,

269fe271f, 273f
Read only memory see ROM
Read_Alarm_Flag function, 439
Read_Altimeter_Value function,

501
Read_Date_Time function, 429

Reading data in SD cards, 451
Read_Pressure_Value function, 494
Read_Temperature function, 407
Read_Temperature_Value function,

494
ReadxUSART function, 303
Real-time clock (RTC), 414e435,

421fe422f, 426f, 428f, 430f
alarm clock, 436e439,

436fe438f, 440f
Real-time operating system

(RTOS), 578, 580
Reduced instruction set computer

see RISC
Registers
alarm control, 437f
LPS331AP sensor, 492t
PCF8583 RTC chip, 424f
SPI mode, 397e398

Relative humidity measurement,
277e290, 277f, 279t, 281t,
282fe285f, 290f

acknowledgment, 279
conversion command, 279
conversion of signal output,

280e281
RESET, 277e278
Status register, 279e280
transmission start sequence, 278

Remote frame in CAN bus, 555
Remote Transmit Request (RTR),

551, 553e554
REPEATeUNTIL, 55, 55f
Request_Short_Info function, 379
Reset_Sequence function,

289e290
Return statement, 147
RN41 Bluetooth module, 334e335,

334f
Round function, 49
Round-robin scheduling, 579e580,

579f
multitasking with variable CPU

time allocation, 590e594,
590f, 592f, 595f

RS232, 304
serial output, thermometer with,

290e304, 291f, 291t,
292fe295f, 298fe301f

RTOS.C, 590

S
SA, <value> command, 339
Salvo, 580e581
Sawtooth waveform generation,

217e219, 218fe223f, 225f,
227f

Sbit statements, 164e171
ScopeFIR program, 525, 529f
SD cards, 446f, 452fe454f,

457fe461f, 466fe467f
-based temperature data logger,

466e476, 468f, 470f,
476fe477f

deleting existing file, 466
holder, 451f
MPLAB XC8
library options, 464, 464t
MDD library functions, 463,

463te464t
microcontroller memory

usage, 464e465, 465t
operation in SPI mode,

449e450
reading data, 451
reading from existing file, 465
sequence of function calls,

465
setting configuration files, 462
specifications, 447t
standard card
pin definitions, 449t
pin layout, 448f

writing data, 451
writing to existing file, 465

SD Configuration Register (SCR),
450

Select_Protocol_14443 function,
385e386

Selection statements, 15
Semipassive RFID tags, 370
Send_Command function, 363
Send_Header function, 541e546
Send_To_TC72 function, 407
Sequencing, 52, 53f
SerDDRamAddr function, 151
Serial clock polarity, 404f
Serial communication
Bluetooth
master mode, 361e369, 362f,

364f, 368f

636 Index

slave mode, 333e361,
334fe336f, 338fe339f,
343fe348f, 353fe354f, 356f

pins required for, 291t
RS232 serial output, thermometer

with, 290e304, 291fe295f,
298fe299f, 301f

using USB-RS232 converter
cable, 297

using USB-UART port,
299e304, 300f

Serial Ethernet board, 515f
Serial LCDs, 141
Set commands, 339
Set_Date_Time function, 429, 439
Set_RTC_Alarm function, 439
SetSpeed funcion, 630
7-segment LED counter, 109e118,

114fe117f, 117t,
118fe119f

four-digit multiplexed, 125e128,
127fe130f, 132f

two-digit multiplexed, 120e125,
120fe121f, 121t,
122fe124f, 126f

SHT11 temperature and relative
humidity sensor, 277f

Sin function, 47, 234e235
Sine waveform, 234e239, 237f,

239fe240f
Sinh function, 47
Slave mode Bluetooth serial

communication, 333e361,
334fe336f, 338fe339f,
343fe348f, 353fe354f, 356f

Sleep function, 49
SM, <value> command, 340
SN, <value> command, 340
SO, <value> command, 340
Software library functions, 46e49
Sound generation, 156e160,

156fe159f, 161f
Sound_Play function, 157
SP, <string> command, 340
SP11_Write function, 535
SPI bus, 216e217, 217f, 447e448
complex bus project, 389e414,

406f, 408f, 415f
clock edge mode, 401
control register, 405

data clock rate, 400
displaying fractional part, 414
displaying negative
temperatures, 413e414

enabling SPI mode, 401e402
LSB and MSB registers, 405
manufacturer ID, 405
MSSP configuration for SPI
master mode, 400

MSSP in SPI mode, 396e397,
397f

MSSP module, 389e396
operation in SPI mode, 398,
399f

receiving data from slave, 400
sending data to slave, 400
SPI mode registers, 397e398,
398fe399f

TC72 internal registers, 404t,
405

TC72 read/write operations,
404e405

TC72 temperature sensor,
402e403

SPI_Ethernet_doPacket function,
519

SPI_Ethernet_Init function, 516
SPI_Ethernet_UserTCP function,

522
SPI_Ethernet_UserUDP function,

522
SPI_Init function, 219e220, 516
SPI_Set_Active function, 222
SPIx_Init function, 220
SPIx_Init_Advanced function, 220
SPIx_Read function, 220
SPIx_Write function, 220
Split termination of CAN bus,

552e553
Sqrt function, 49
Square waveform, 239e247,

243fe247f
SR,, 341e346
Srand function, 207, 212
SSPxCON1 register, 398, 399f
SSPxSTAT register, 398, 398f
Stadiometer, 248
mechanical, 248f

Standard termination of CAN bus,
552e553

StartTasks function, 590, 594
Statements
iteration, 17
selection, 15

Stepper motor control
bipolar motor drive, 608e611,

609fe612f, 614f
complex control of unipolar

motor, 604e608,
605fe606f

unipolar motor drive, 598e602,
601fe603f

Stepper_Motor function, 608
Strchr function, 296
String functions, 49
Structures, 14
SU, <value> command, 340
Subprograms, 55, 56f
structure, 56e57, 56f

SwapTask function, 594
Switch statement, 16, 193, 582

T
Tan function, 47
Tanh function, 47
TC72 temperature sensor,

402e403
internal registers, 404t, 405
pin configuration, 402f
read/write operations,

404e405
TCP protocol, 509, 512, 512t, 519
Telnet interface, 511
Temperature
data logger, SD card-based,

466e476, 468f, 470f,
476fe477f

measurement, 277e290, 277f,
279t, 281t, 282f, 282t,
283fe285f, 290f

acknowledgment, 279
conversion command, 279
conversion of signal output,
280e281

RESET, 277e278
Status register, 279e280
transmission start sequence,
278

ONeOFF control, 317e325,
317fe320f, 324f, 825

Index 637

Temperature (Continued)
sensor and display using CAN,

568, 569fe570f, 577f
COLLECTOR processor, 569
COLLECTOR program,
574e577, 575f

DISPLAY processor, 569e570
DISPLAY program, 570e574,
571f

TC72 temperature sensor,
402e403

variation plotting on GLCDs,
501e508, 502fe505f, 508f

Terminal emulator software, 297
Thermometer

digital, 168e171, 168fe170f
display on GLCDs, 490e501,

491f, 493f, 495fe496f, 501f
with RS232 serial output,

290e304, 291f, 291t,
292fe295f, 298fe301f

39HS02 bipolar stepper motor, 611f
Timing parameters calculation in

CAN bus, 563e564
Toascii function, 49
Tolower function, 49
Toupper function, 49
Transducers, ultrasonic, 249f
Transmission_Start_Sequence

function, 289e290
Triangle waveform generation, 229,

230fe231f
Trunc function, 49
Two-dice project, 94e98,

100fe102f, 104f
using fewer I/O pins, 98e109,

105t, 106f, 106t, 107f, 107t,
108f, 110f, 111t, 112fe113f

Two-digit multiplexed 7-segment
LED, 120e125, 120fe121f,
121t, 122fe124f, 126f

Two-dimensional arrays, 13
Two-phase full-step sequencing,

598, 599t
Two-phase half-step sequencing,

599, 600t

U
UAG2 stepper motor, 601e602
UART communication, 374e375
UART_Set_Active function, 297
Uart1_Data_Ready function, 306
Uart1_Read function, 306
Uart1_Read_Text function, 316
UARTx_Data_Ready function, 296
UARTx_Init function, 296
UARTx_Read function, 296
UARTx_Read_Text function, 296
UARTx_Tx_Idle function, 296
UARTx_Write function, 297
UARTx_Write_Text function, 297
UCN5804B stepper motor, 604
UDP protocol, 512, 512t, 519
-based Ethernet control,

521e522, 522fe523f, 526f
Ultrasonic human height

measurement, 248e258,
249fe251f, 253f, 255f

Unconditional frame identifiers,
538

Unipolar A/D converter, 216
Unipolar stepper motors, 598e599
complex control of, 604e608,

605fe606f
drive, 598e602, 601fe603f
windings, 599f

Universal serial bus (USB)
USB-RS232 converter cable, 297
USB-UART port, 299e304, 300f

Universal Synchronouse
Asynchronous Receivere
Transmitter (UDART), 292

Universal Synchronouse
Asynchronous
ReceivereTransmitter
(USART), 306

Unsigned long, 144e146

V
Variable
accessing individual bits of, 45
names, 11
types, 11t, 44, 44t

Void functions, 20
Voltmeter
LCD, 140e152, 143fe145f,

147t, 148f, 151t, 152fe153f
LED, 129e140, 133fe135f, 137f

W
Waveform generation, 214e247,

215f
arbitrary waveform, 229e234,

232fe233f, 235f
DAC, 215e216, 215f
sawtooth waveform, 217e219,

218fe223f, 225f, 227f
sine waveform, 234e239, 237f,

239fe240f
SPI bus, 216e217, 217f
square waveform, 239e247
triangle waveform, 229,

230fe231f
Web browser-based control of

Ethernet, 508e521,
509fe517f, 519f

While statement, 18, 389, 541, 546
loop, 193e194

WriteCmdXLCD function, 151
WriteSPI function, 226
WritexUSART function, 303
Writing data in SD cards, 451

X
XC8. see MPLAB XC8 compiler,

XC8 language features

638 Index

