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   Introduction 

   One million Uber rides are booked every day, 10 billion hours of Netflix videos are watched every month, and 
$1 trillion are spent on e-commerce web sites every year. The success of these services is underpinned by Big Data 
and increasingly, real-time analytics. Real-time analytics enable practitioners to put their fingers on the pulse 
of consumers and incorporate their wants into critical business decisions. We have only touched the tip of the 
iceberg so far. Fifty billion devices will be connected to the Internet within the next decade, from smartphones, 
desktops, and cars to jet engines, refrigerators, and even your kitchen sink. The future is data, and it is becoming 
increasingly real-time. Now is the right time to ride that wave, and this book will turn you into a pro. 

 The low-latency stipulation of streaming applications, along with requirements they share with 
general Big Data systems—scalability, fault-tolerance, and reliability—have led to a new breed of real-
time computation. At the vanguard of this movement is Spark Streaming, which treats stream processing 
as discrete microbatch processing. This enables low-latency computation while retaining the scalability 
and fault-tolerance properties of Spark along with its simple programming model. In addition, this gives 
streaming applications access to the wider ecosystem of Spark libraries including Spark SQL, MLlib, 
SparkR, and GraphX. Moreover, programmers can blend stream processing with batch processing to create 
applications that use data at rest as well as data in motion. Finally, these applications can use out-of-the-
box integrations with other systems such as Kafka, Flume, HBase, and Cassandra. All of these features have 
turned Spark Streaming into the Swiss Army Knife of real-time Big Data processing. Throughout this book, 
you will exercise this knife to carve up problems from a number of domains and industries. 

 This book takes a use-case-first approach: each chapter is dedicated to a particular industry vertical. 
Real-time Big Data problems from that field are used to drive the discussion and illustrate concepts from 
Spark Streaming and stream processing in general. Going a step further, a publicly available dataset from 
that field is used to implement real-world applications in each chapter. In addition, all snippets of code 
are ready to be executed. To simplify this process, the code is available online, both on GitHub 1  and on the 
publisher’s web site. Everything in this book is real: real examples, real applications, real data, and real code. 
The best way to follow the flow of the book is to set up an environment, download the data, and run the 
applications as you go along. This will give you a taste for these real-world problems and their solutions. 

 These are exciting times for Spark Streaming and Spark in general. Spark has become the largest open 
source Big Data processing project in the world, with more than 750 contributors who represent more than 
200 organizations. The Spark codebase is rapidly evolving, with almost daily performance improvements and 
feature additions. For instance, Project Tungsten (first cut in Spark 1.4) has improved the performance of the 
underlying engine by many orders of magnitude. When I first started writing the book, the latest version of 
Spark was 1.4. Since then, there have been two more major releases of Spark (1.5 and 1.6). The changes in these 
releases have included native memory management, more algorithms in MLlib, support for deep learning via 
TensorFlow, the Dataset API, and session management. On the Spark Streaming front, two major features have 
been added:  mapWithState  to maintain state across batches and using back pressure to throttle the input rate 
in case of queue buildup. 2  In addition, managed Spark cloud offerings from the likes of Google, Databricks, and 
IBM have lowered the barrier to entry for developing and running Spark applications. 

 Now get ready to add some “Spark” to your skillset!  

   1     https://github.com/ZubairNabi/prosparkstreaming     .  
   2  All of these topics and more will hopefully be covered in the second edition of the book.  

https://github.com/ZubairNabi/prosparkstreaming
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    CHAPTER 1   

 The Hitchhiker’s Guide to Big Data                          

    From a little spark may burst a flame.  

 —Dante   

 By the time you get to the end of this paragraph, you will have processed 1,700 bytes of data. This number 
will grow to 500,000 bytes by the end of this book. Taking that as the average size of a book and multiplying it 
by the total number of books in the world (according to a Google estimate, there were 130 million books in 
the world in 2010 1 ) gives 65 TB. That is a staggering amount of data that would require 130 standard, off-the-
shelf 500 GB hard drives to store. 

 Now imagine you are a book publisher and you want to translate all of these books into multiple 
languages (for simplicity, let’s assume all these books are in English). You would like to translate each line 
as soon as it is written by the author—that is, you want to perform the translation in real time using a stream 
of lines rather than waiting for the book to be finished. The average number of characters or bytes per line 
is 80 (this also includes spaces). Let’s assume the author of each book can churn out 4 lines per minute (320 
bytes per minute), and all the authors are writing concurrently and nonstop. Across the entire 130 million-
book corpus, the figure is 41,600,000,000 bytes, or 41.6 GB per minute. This is well beyond the processing 
capabilities of a single machine and requires a multi-node cluster. Atop this cluster, you also need a real-time 
data-processing framework to run your translation application. Enter Spark Streaming. Appropriately, this 
book will teach you to architect and implement applications that can process data at scale and at line-rate. 

 Before discussing Spark Streaming, it is important to first trace the origin and evolution of Big Data 
systems in general and Spark in particular. This chapter does just that. 

      Before Spark 
 Two major trends were the precursors to today’s Big Data processing systems, such as Hadoop and Spark: 
Web 2.0 applications, for instance, social networks and blogs; and real-time sources, such as sensor 
networks, financial trading, and bidding. Let’s discuss each in turn. 

   1  Leonid Taycher, “Books of the world, stand up and be counted! All 129,864,880 of you,”  Google Books Search , 2010, 
   http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html     .  

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-1479-4_1    ) 
contains supplementary material, which is available to authorized users.

http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html
http://dx.doi.org/10.1007/978-1-4842-1479-4_1
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      The Era of Web 2.0 
 The new millennium saw the rise of  Web 2.0 applications  , which revolved around user-generated content. The 
Internet went from hosting static content to content that was dynamic, with the end user in the driving seat. 
In a matter of months, social networks, photo sharing, media streaming, blogs, wikis, and their ilk became 
ubiquitous. This resulted in an explosion in the amount of data on the Internet. To even store this data, 
let alone process it, an entirely different new of computing, dubbed  warehouse-scale computing,  2,   3  was needed. 

 In this architecture, data centers made up of commodity off-the-shelf servers and network switches 
act as a large distributed system. To exploit economies of scale, these data centers host tens of thousands 
of machines under the same roof, using a common power and cooling mechanism. Due to the use of 
commodity hardware, failure is the norm rather than the exception. As a consequence, both the hardware 
topology and the software stack are designed with this as a first principle. Similarly, computation and data 
are load-balanced across many machines for processing and storage parallelism. For instance, Google 
search queries are sharded across many machines in a tree-like, divide-and-conquer fashion to ensure low 
latency by exploiting parallelism. 4  This data needs to be stored somewhere before any processing can take 
place—a role fulfilled by the relational model for more than four decades. 

      From  SQL to NoSQL   
 The size, speed, and heterogeneity of this data, coupled with application requirements, forced the industry 
to reconsider the hitherto role of relational database-management systems as the de facto standard. The 
relational model, with its Atomicity, Consistency, Isolation, Durability (ACID) properties could not cater to 
the application requirements and the scale of the data; nor were some of its guarantees required any longer. 
This led to the design and wide adoption of the Basically Available, Soft state, Eventual consistency (BASE) 
model. The BASE model relaxed some of the ACID guarantees to prioritize availability over consistency: if 
multiple readers/writers access the same shared resource, their queries always go through, but the result 
may be inconsistent in some cases. 

 This trade-off was formalized by the Consistency, Availability, Partitioning (CAP) theorem. 5,   6  According 
to this theorem, only two of the three CAP properties can be achieved at the same time. 7  For instance, if 
you want availability, you must forego either consistency or tolerance to network partitioning. As discussed 
earlier, hardware/software failure is a given in data centers due to the use of commodity off-the-shelf 
hardware. For that reason, network partitioning is a common occurrence, which means storage systems 
must trade off either availability or consistency. Now imagine you are designing the next Facebook, 
and you have to make that choice. Ensuring consistency means some of your users will have to wait a 
few milliseconds or even seconds before they are served any content. On the other hand, if you opt for 
availability, these users will always be served content—but some of it may be stale. For example, a user’s 
Facebook newsfeed might contain posts that have been deleted. Remember, in the Web 2.0 world, the user 
is the main target (more users mean more revenue for your company), and the user’s attention span (and in 
turn patience span) is very short. 8  Based on this fact, the choice is obvious: availability over consistency. 

   2  IEEE Computer Society, “Web Search for a Planet: The Google Cluster Architecture,” 2003,    http://static.
googleusercontent.com/media/research.google.com/en//archive/googlecluster-ieee.pdf     .  
   3  Luiz André Barroso and Urs Hölzle,  The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale 
Machines  (Morgan& Claypool, 2009),  www.morganclaypool.com/doi/abs/    10.2200/S00193ED1V01Y200905CAC006     .  
   4  Jeffrey Dean and Luiz André Barroso, “The Tail at Scale,”  Commun. ACM  56, no 2 (February 2013), 74-80.  
   5  First described by Eric Brewer, the Chief Scientist of Inktomi, one of the earliest web giants in the 1990s.  
   6  Werner Vogels, “Eventually Consistent – Revisited,”  All Things Distributed , 2008,    www.allthingsdistributed.com/
2008/12/eventually_consistent.html     .  
   7  ACID and BASE are not binary choices, though. There is a continuum between the two, with many design points.  
   8  This attention span is getting shorter because most users now consume these services on the go on mobile devices.  

http://static.googleusercontent.com/media/research.google.com/en//archive/googlecluster-ieee.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/googlecluster-ieee.pdf
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
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 A nice side property of eventual consistency is that applications can read/write at a much higher 
throughput and can also shard as well as replicate data across many machines. This is the model adopted by 
almost all contemporary NoSQL (as opposed to traditional SQL) data stores. In addition to higher scalability 
and performance, most NoSQL stores also have simpler query semantics in contrast to the somewhat 
restrictive SQL interface. In fact, most NoSQL stores only expose simple key/value semantics. For instance, 
one of the earliest NoSQL stores, Amazon’s Dynamo, was designed with Amazon’s platform requirements in 
mind. Under this model, only primary-key access to data, such as customer information and bestseller lists, 
is required; thus the relational model and SQL are overkill. Examples of popular NoSQL stores include key-
value stores, such as Amazon’s DynamoDB and Redis; column-family stores, such as Google’s BigTable (and 
its open source version HBase) and Facebook’s Cassandra; and document stores, such as MongoDB.  

      MapReduce: The Swiss Army Knife of Distributed Data Processing 
 As early as the late 1990s, engineers at Google realized that most of the computations they performed 
internally had three  key properties:   

•    Logically simple, but complexity was added by control code.  

•   Processed data that was distributed across many machines.  

•   Had divide-and-conquer semantics.    

 Borrowing concepts from functional programming, Google used this information to design a library 
for large-scale distributed computation, called MapReduce. In the MapReduce model, the user only has to 
provide  map  and  reduce  functions; the underlying system does all the heavy lifting in terms of scheduling, 
data transfer, synchronization, and fault tolerance. 

 In the MapReduce paradigm, the  map  function is invoked for each input record to produce key-value 
pairs. A subsequent internal  groupBy  and shuffle (transparent to the user) group different keys together and 
invoke the  reduce  function for each key. The  reduce  function simply aggregates records by key. Keys are 
hash-partitioned by default across  reduce  tasks. MapReduce uses a distributed file system, called the Google 
File System (GFS), for data storage. Input is typically read from GFS by the  map  tasks and written back to GFS 
at the end of the  reduce  phase. Based on this, GFS is designed for large, sequential, bulk reads and writes. 

 GFS is deployed on the same nodes as MapReduce, with one node acting as the master to keep 
metadata information while the rest of the nodes perform data storage on the local file system. To 
exploit data locality,  map  tasks are ideally executed on the same nodes as their input: MapReduce 
ships out computation closer to the data than vice versa to minimize network I/O. GFS divvies up files 
into chunks/blocks where each chunk is replicated  n  times (three by default). These chunks are then 
distributed across a cluster by exploiting its typical three-tier architecture. The first replica is placed on 
the same node if the writer is on a data node; otherwise a random data node is selected. The second 
and third replicas are shipped out to two distinct nodes on a different rack. Typically, the number of  map  
tasks is equivalent to the number of chunks in the input dataset, but it can differ if the input split size is 
changed. The number of  reduce  tasks, on the other hand, is a configurable value that largely depends on 
the capabilities of each node. 

 Similar to GFS, MapReduce also has a centralized master node, which is in charge of cluster-wide 
orchestration and worker nodes that execute processing tasks. The execution flow is barrier controlled: 
 reduce  tasks only start processing once a certain number of  map  tasks have completed. This model also 
simplifies fault-tolerance via re-execution: every time a task fails, it is simply re-executed. For instance, if 
the output of a  map  task is lost, it can readily be re-executed because its input resides on GFS. If a  reduce  
task fails, then if its inputs are still available on the local file system of the  map  tasks ( map  tasks write their 
intermediate state to the local file system, not GFS) that processed keys from the partition assigned to 
that reduce task, the input is shuffled again; otherwise, the  map  tasks need to be selectively or entirely re-
executed. Tasks ( map  or  reduce ) whose progress rate is slower than the job average, known as  stragglers , 
are speculatively executed on free nodes. Whichever copy finishes first—the original or the speculative 
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one—registers its output; the other is killed. This optimization helps to negate hardware heterogeneity. For 
 reduce  functions, which are associative and commutative, an optional combiner can also be provided; it is 
applied locally to the output of each  map  task. In most cases, this  combine  function is a local version of the 
 reduce  function and helps to minimize the amount of data that needs to be shipped across the network 
during the shuffle phase. 

      Word Count a la MapReduce 

 To illustrate the flow of a typical MapReduce job, let’s use the  canonical word-count example  . The purpose 
of the application is to count the occurrences of each word in the input dataset. For the sake of simplicity, 
let’s assume that an input dataset—say, a Wikipedia dump—already resides on GFS. The following  map  and 
 reduce  functions (in pseudo code) achieve the logic of this application: 

    map(k, v):  
      for word in v.split(" "):  
          emit((word, 1))    

    reduce(k, v):  
      sum = 0  
      for count in v.iterator():  
          sum += count  
      emit(k, sum)  

     Here’s the high-level flow of this execution:

    1.    Based on the specified format of the input file (in this case, text) the MapReduce 
subsystem uses an input reader to read the input file from GFS line by line. For 
each line, it invokes the  map  function.  

    2.    The first argument of the  map  function is the line number, and the second is the 
line itself in the form of a text object (say, a string). The  map  function splits the 
line at word boundaries using space characters. Then, for each word, it emits (to 
a component, let’s call it the  collector ) the word itself and the value 1.  

    3.    The collector maintains an in-memory buffer that it periodically spills to disk. 
If an optional combiner has been turned on, it invokes that on each key (word) 
before writing it to a file (called a  spill file ). The partitioner is invoked at this point 
as well, to slice up the data into per-reducer partitions. In addition, the keys are 
sorted. Recall that if the  reduce  function is employed as a combiner, it needs to 
be associative and commutative. Addition is both, that’s why the word-count 
 reduce  can also be used as a combiner.  

    4.    Once a configurable number of  map s have completed execution,  reduce  tasks are 
scheduled. They first pull their input from  map  tasks (the sorted spill files created 
by the collector) and perform an  n -way merge. After this, the user-provided 
 reduce  function is invoked for each key and its list of values.  

    5.    The  reduce  function counts the occurrences of each word and then emits the 
word and its sum to another collector. In contrast to the  map  collector, this  reduce  
collector spills its output to GFS instead of the local file system.     
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 Google internally used MapReduce for many years for a large number of applications including 
Inverted Index and PageRank calculations. Some of these applications were subsequently retired and 
reimplemented in newer frameworks, such as Pregel 9  and Dremel. 10  The engineers who worked on 
MapReduce and GFS shared their creations with the rest of the world by documenting their work in the form 
of research papers. 11,   12  These seminal publications gave the rest of the world insight into the inner wirings of 
the Google engine.  

      Hadoop: An Elephant with Big Dreams 

 In 2004, Doug Cutting and Mike Cafarella, both engineers at Yahoo! who were working on the Nutch search 
engine, decided to employ MapReduce and GFS as the crawl and index and, storage layers for Nutch, 
respectively. Based on the original research papers, they reimplemented MapReduce and GFS in Java and 
christened the project Hadoop (Doug Cutting named it after his son’s toy elephant). Since then, Hadoop 
has evolved to become a top-level Apache project with thousands of industry users. In essence, Hadoop 
has become synonymous with Big Data processing, with a global market worth multiple billions of dollars. 
In addition, it has spawned an entire ecosystem of projects, including high-level languages such as Pig 
and FlumeJava (open source variant Crunch); structured data storage, such as Hive and HBase; and data-
ingestion solutions, such as Sqoop and Flume; to name a few. Furthermore, libraries such as Mahout and 
Giraph use  Hadoop   to extend its reach to domains as diverse as machine learning and graph processing. 

 Although the  MapReduce programming model      at the heart of Hadoop lends itself to a large number of 
applications and paradigms, it does not naturally apply to others:

•     Two-stage programming model:  A particular class of applications cannot be 
implemented using a single MapReduce job. For example, a top-k calculation 
requires two MapReduce jobs: the first to work out the frequency of each word, 
and the second to perform the actual top-k ranking. Similarly, one instance of a 
PageRank algorithm also requires two MapReduce jobs: one to calculate the new 
page rank and one to link ranks to pages. In addition to the somewhat awkward 
programming model, these applications also suffer from performance degradation, 
because each job requires data materialization. External solutions, such as 
Cascading and Crunch, can be used to overcome some of these shortcomings.  

•    Low-level programming API:  Hadoop enforces a low interface in which users have to 
write  map  and  reduce  functions in a general-purpose programming language such 
as Java, which is not the weapon of choice for most data scientists (the core users 
of systems like Hadoop). In addition, most data-manipulation tasks are repetitive 
and require the invocation of the same function multiple times across applications. 
For instance, filtering out a field from CSV data is a common task. Finally, stitching 
together a directed acyclic graph of computation for data science tasks requires 
writing custom code to deal with scheduling, graph construction, and end-to-end 
fault tolerance. To remedy this, a number of high-level languages that expose a SQL-
like interface have been implemented atop Hadoop and MapReduce, including Pig, 
JAQL, and HiveQL.  

   9  Grzegorz Malewicz et al., “Pregel: A System for Large-Scale Graph Processing,”  Proceedings of 
SIGMOD ‘10  (ACM, 2010), 135-146.  
   10  Sergey Melnik et al., “Dremel: Interactive Analysis of Web-Scale Datasets,  Proc. VLDB Endow 3 , 
no. 1-2 (September 2010), 330-339.  
   11  Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”  Proceedings of 
OSDI 04  6 (USENIX Association, 2004), 10.  
   12  Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,”  Proceedings of SOSP ‘03  
(ACM, 2003), 29-43.  
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•    Iterative applications:  Iterative applications that perform the same computation 
multiple times are also a bad fit for Hadoop. Many machine-learning algorithms 
belong to this class of applications. For example, k-means clustering in Mahout 
refines its centroid location in every iteration. This process continues until a 
threshold of iterations or a convergence criterion is reached. It runs a driver program 
on the user’s local machine, which performs the convergence test and schedules 
iterations. This has two main limitations: the output of each iteration needs to be 
materialized to HDFS, and the driver program resides in the user’s local machine at 
an I/O cost and with weaker fault tolerance.  

•    Interactive analysis:  Results of MapReduce jobs are available only at the end of 
execution. This is not viable for large datasets where the user may want to run 
interactive queries to first understand their semantics and distribution before running 
full-fledged analytics. In addition, most of the time, many queries need to be run 
against the same dataset. In the MapReduce world, each query runs as a separate job, 
and the same dataset needs to be read and loaded into memory each time.  

•    Strictly batch processing:  Hadoop is a batch-processing system, which means its jobs 
expect all the input to have been materialized before processing can commence. This 
model is in tension with real-time data analysis, where a (potentially continuous) 
stream of data needs to be analyzed on the fly. Although a few attempts 13  have been 
made to retrofit Hadoop to cater to streaming applications, none of them have been 
able to gain wide traction. Instead, systems tailor-made for real-time and streaming 
analytics, including Storm, S4, Samza, and Spark Streaming, have been designed and 
employed over the last few years.  

•    Conflation between control and computation:  Hadoop v1 by default assumes full 
control over a cluster and its resources. This resource hoarding prevents other 
systems from sharing these resources. To cater to disparate application needs and 
data sources, and to consolidate existing data center investments, organizations have 
been looking to deploy multiple systems, such as Hadoop, Storm, Hama, and so on, 
on the same cluster and pass data between them. Apache YARN, which separates 
the MapReduce computation layer from the cluster-management and -control layer 
in Hadoop, is one step in that direction. Apache Mesos is another similar framework 
that enables platform heterogeneity in the same namespace.       

      Sensors, Sensors Everywhere 
 In tandem with Web 2.0 applications, the early 2000s also witnessed the advent and widespread deployment 
of  sensor networks  . During this sensor data boom, they were used to monitor entities as diverse as gas-
distribution pipes, home automation systems, environmental conditions, and transportation systems. In 
this ecosystem, humans also acted as sensors by generating contextual data via smart phones and wearable 
devices, especially medical devices. 14  These data sources were augmented by data from telecommunication, 
including call data records, financial feeds from stock markets, and network traffic. The requirements to 
analyze and store these data sources included low-latency processing, blending data in motion with data at 
rest, high availability, and scalability. Some initial systems from academia to cater to these needs, dubbed 
 stream-processing  or  complex event-processing  (CEP) systems, were Aurora, 15  Borealis, 16  Medusa, 17  and 

   13  Tyson Condie et al., “MapReduce Online,”  Proceedings of NSDI ‘10  (USENIX, 2010), 21.  
   14  This is now known as the Internet of Things (IoT).  
   15     http://cs.brown.edu/research/aurora/     .  
   16     http://cs.brown.edu/research/borealis/     .  
   17     http://nms.csail.mit.edu/projects/medusa/     .  

http://cs.brown.edu/research/aurora/
http://cs.brown.edu/research/borealis/
http://nms.csail.mit.edu/projects/medusa/
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TelegraphCQ. 18  Of these, Aurora was subsequently commercialized by StreamBase Systems 19  (later acquired 
by TIBCO) as StreamBase CEP, with a high-level description language called StreamSQL, running atop a 
low-latency dataflow engine. Other examples of commercial systems included IBM InfoSphere Streams 20  
and Software AG Apama streaming analytics. 21  

 Widespread deployment of IoT devices and real-time Web 2.0 analytics at the end of the 2000s breathed 
fresh life into  stream-processing systems  . This time, the effort was spearheaded by the industry. The first 
system to emerge out of this resurgence was S4 22,   23  from Yahoo!. S4 combines the Actors model with the 
simplified MapReduce programming model to achieve general-purpose stream processing. Other features 
include completely decentralized execution (thanks to ZooKeeper, a distributed cluster-coordination 
system) and lossy failure. The programming model consists of  processing elements  connected via  streams  to 
form a graph of computation. Processing elements are executed on nodes, and communication takes place 
via partitioned  events . 

 Another streaming system from the same era is Apache Samza 24  (originally developed at LinkedIn), 
which uses YARN for resource management and Kafka (a pub/sub-based log-queuing system) 25  for 
messaging. As a result, its message-ordering and -delivery guarantees depend on Kafka.  Samza messages   
have  at-least-once  semantics, and ordering is guaranteed in a Kafka partition. Unlike S4, which is completely 
decentralized, Samza relies on an application master for management tasks, which interfaces with the 
YARN resource manager. Stitching together tasks using Kafka messages creates Samza jobs, which are then 
executed in containers obtained from YARN. 

 The most popular and widely used system in the Web 2.0 streaming world is Storm. 26  Originally 
developed at the startup BackType to support its social media analytics, it was open sourced once Twitter 
acquired the company. It became a top-level Apache project in late 2014 with hundreds of industry 
deployments. Storm applications constitute a directed  acyclic graph   (called a  topology ) where data flows 
from sources (called  spouts ) to output channels (standard output, external storage, and so on). Both 
intermediate transformations and external output are implemented via  bolts . Tuple communication 
channels are established between tasks via named  streams . A central  Nimbus  process handles job and 
resource orchestration while each worker node runs a  Supervisor  daemon, which executes tasks (spouts and 
bolts) in worker processes. Storm enables three delivery modes: at-most-once, at-least-once, and exactly-
once. At-most-once is the default mode in which messages that cannot be processed are dropped. At-least-
once semantics are provided by the guaranteed tuple-processing mode in which downstream operators 
need to acknowledge each tuple. Tuples that are not acknowledged within a configurable time duration 
are replayed. Finally, exactly-once semantics are ensured by Trident, which is a batch-oriented, high-level 
transactional abstraction atop Storm. Trident is very similar in spirit to Spark Streaming. 

 In the last few years, a number of cloud-hosted, fully managed streaming systems have also emerged, 
including Amazon’s Kinesis, 27  Microsoft’s Azure Event Hubs, 28  and Google’s Cloud Dataflow. 29  Let’s consider 
a brief description of Cloud Dataflow as a representative system. Cloud Dataflow under the hood employs 

   18     http://telegraph.cs.berkeley.edu/     .  
   19     www.streambase.com/     .  
   20     http://www-03.ibm.com/software/products/en/infosphere-streams     .  
   21     www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp     .  
   22  Leonardo Neumeyer et al., “S4: Distributed Stream Computing Platform,”  Proceedings of  
ICDMW ‘10 (IEEE, 2010), 170-177.  
   23     http://incubator.apache.org/s4/     .  
   24     http://samza.apache.org/     .  
   25  Chapter   4     describes Kafka in detail when we analyze the various external sources from which to ingest data.  
   26     https://storm.apache.org/     .  
   27     http://aws.amazon.com/kinesis/     .  
   28     http://azure.microsoft.com/en-us/services/event-hubs/     .  
   29     https://cloud.google.com/dataflow/     .  

http://telegraph.cs.berkeley.edu/
http://www.streambase.com/
http://www-03.ibm.com/software/products/en/infosphere-streams
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp
http://incubator.apache.org/s4/
http://samza.apache.org/
http://dx.doi.org/10.1007/978-1-4842-1479-4_4
https://storm.apache.org/
http://aws.amazon.com/kinesis/
http://azure.microsoft.com/en-us/services/event-hubs/
https://cloud.google.com/dataflow/
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MillWheel 30  and MapReduce as the processing engines and FlumeJava 31  as the programming API. MillWheel 
is a stream-processing system developed in house at Google, with one delineating feature: low watermark. 
The low watermark is a monotonically increasing timestamp signifying that all events until that timestamp 
have been processed. This removes the need for strict ordering of events. In addition, the underlying system 
ensures exactly-once semantics (in contrast to Storm, which uses a custom XOR scheme for deduplication, 
MillWheel uses Bloom filters). Atop this engine, FlumeJava provides a Java Collections–centric API, wherein 
data is abstracted in a  PCollection  object, which is materialized only when a transform is applied to it. Out 
of the box it interfaces with BigQuery, PubSub, Cloud BigTable, and many others.   

      Spark Streaming: At the Intersection of MapReduce 
and CEP 
 Before jumping into a detailed description of Spark, let’s wrap up this brief sweep of the Big Data landscape 
with the observation that  Spark Streaming   is an amalgamation of ideas from MapReduce-like systems and 
complex event-processing systems. MapReduce inspires the API, fault-tolerance properties, and wider 
integration of Spark with other systems. On the other hand, low-latency transforms and blending data at rest 
with data in motion is derived from traditional stream-processing systems. 

 We hope this will become clearer over the course of this book. Let’s get to it.       

   30  Tyler Akidau et al., “MillWheel: Fault-Tolerant Stream Processing at Internet Scale,”  Proc. VLDB Endow.  6, no. 11 
(August 2013), 1033-1044.  
   31  Craig Chambers et al., “FlumeJava: Easy, Efficient Data-Parallel Pipelines,  SIGPLAN Not.  45, no. 6 
(June 2010), 363-375.  
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    CHAPTER 2   

 Introduction to Spark                          

    There are two major products that came out of Berkeley: LSD and UNIX. We don’t 
believe this to be a coincidence.  

 —Jeremy S. Anderson   

 Like LSD and Unix, Spark was originally conceived in 2009 1  at Berkeley, 2  in the same Algorithms, Machines, 
and People (AMP) Lab that gave the world RAID, Mesos, RISC, and several Hadoop enhancements. It was 
initially pitched to the academic community as a distributed framework built from the ground up atop the 
Mesos cross-platform scheduler (then called Nexus). Spark can be thought of as an in-memory variant of 
Hadoop, with the following key differences:

•     Directed acyclic    graph   : Spark applications form a directed acyclic graph of 
computation, unlike MapReduce, which is strictly two-stage.  

•    In-memory analytics:  At the very heart of Spark lies the concept of resilient 
distributed datasets (RDDs)—datasets that can be cached in memory. For fault-
tolerance, each RDD also stores its lineage graph that consists of transformations 
that need to be partially or fully executed to regenerate it. RDDs accelerate the 
performance of iterative and interactive applications.

   a.     Iterative applications:  A cached RDD can be reused across iterations without 
having to read it from disk every time.  

   b.     Interactive applications:  Multiple queries can be run against the same RDD. 

 RDDs can also be persisted as files on HDFS and other stores. Therefore, Spark 
relies on a Hadoop distribution to make use of HDFS.      

•    Data first:  The RDD abstraction cements data as a first-class citizen in the Spark API. 
Computation is performed by manipulating an RDD to generate another one, and 
so on. This is in contrast to MapReduce, where you reason about the dataset only in 
terms of key-value pairs, and the focus is on the computation.  

   1  Matei Zaharia et al., “Spark: Cluster Computing with Working Sets,  Proceedings of HotCloud ’10  (USENIX 
Association, 2010).  
   2  *Insert “speed” joke here.*  
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•    Concise API:  Spark is implemented using Scala, which also underpins its default 
API. The functional abstracts of Scala naturally fit RDD transforms, such as  map , 
 groupBy ,  filter , and so on. In addition, the use of anonymous functions (or lambda 
abstractions) simplifies standard data-manipulation tasks.  

•    REPL analysis:  The use of Scala enables Spark to use the Scala interpreter as an 
interactive data-analytics tool. You can, for instance, use the Scala shell to learn the 
distribution and characteristics of a dataset before a full-fledged analysis.    

 The first version of Spark was open sourced in 2010, and it went into Apache incubation in 2013. By 
early 2014, it was promoted to a top-level Apache project. Its current popularity can be gauged by the fact 
that it has the most contributors (in excess of 700) across all  Apache open source projects  . Over the last few 
years, Spark has also spawned a number of related projects:

•     Spark SQL  (and its predecessor, Shark 3 ) enables SQL queries to be executed atop 
Spark. This coupled with the DataFrame 4  abstraction makes Spark a powerful tool for 
data analysis.  

•    MLlib  (similar to Mahout atop Hadoop) is a suite of popular machine-learning and 
data-mining algorithms. In addition, it contains abstractions to assist in feature 
extraction.  

•    GraphX  (similar to Giraph atop Hadoop) is a graph-processing framework that uses 
Spark under the hood. In addition to graph manipulation, it also contains a library of 
standard algorithms, such as PageRank and Connected Components.  

•    Spark Streaming  turns Spark into a real-time, stream-processing system by treating 
input streams as micro-batches while retaining the familiar syntax of Spark.    

      Installation 
 The best way to learn  Spark   (or anything, for that matter) is to start getting your hands dirty right from the 
onset. The first order of the day is to set up Spark on your machine/cluster. Spark can be built either from 
source or by using prebuilt versions for various Hadoop distributions. You can find prebuilt distributions and 
source code on the official Spark web site:    https://spark.apache.org/downloads.html     . Alternatively, the 
latest source code can also be accessed from Git at    https://github.com/apache/spark     . 

 At the time of writing, the latest version of Spark is 1.4.0; that is the version used in this book, along 
with Scala 2.10.5. The Java and Python APIs for Spark are very similar to the Scala API so it should be very 
straightforward to port all the Scala applications in this book to those languages if required. Note that some 
of the syntax and components may have changed in subsequent releases. 

 Spark can also be run in a YARN installation. Therefore, make sure you either use a prebuilt version of 
Spark with YARN support or specify the correct version of Hadoop while building Spark from source, if you 
plan on going this route. 

   3  Reynold Xin, “Shark, Spark SQL, Hive on Spark, and the Future of SQL on Spark,”  Databricks , July 1, 2014,    https://
databricks.com/blog/2014/07/01/shark-spark-sql-hive-on-spark-and-the-future-of-sql-on-spark.html     .  
   4  Reynold Xin, Michael Armbrust, and Davies Liu, “Introducing DataFrames in Spark for Large Scale Data Science,” 
 Databricks , February 17, 2015,    https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-
for-large-scale-data-science.html     .  

www.allitebooks.com
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 Installing Spark is just a matter of copying the compiled distribution to an appropriate location in 
the local file system of each machine in the cluster. In addition, set  SPARK_HOME  to that location, and add 
 $SPARK_HOME/bin  to the  PATH  variable. Recall that Spark relies on HDFS for optional RDD persistence. If your 
application either reads data from or writes data to HDFS or persists RDDs to it, make you sure you have a 
properly configured HDFS installation available in your environment. 

 Also note that Spark can be executed in a local, noncluster mode, in which your entire application 
executes in a single (potentially multithreaded) process.  

      Execution 
 Spark can be executed as a standalone framework, in a cross-platform scheduler (such as Mesos/YARN), or 
on the cloud. This section introduces you to launching Spark on a standalone cluster and in YARN. 

       Standalone Cluster 
 In the  standalone-cluster mode  , Spark processes need to be manually started. This applies to both the 
master and the worker processes: 

      Master 
 To run the master, you need to execute the following script:  $SPARK_HOME/sbin/start-master.sh .  

      Workers 
 Workers can be executed either manually on each machine or by using a helper script. To execute a worker 
on each machine, execute the script  $SPARK_HOME/sbin/start-slave.sh <master_url> , where  master_url  
is of the form  spark://hostname:port . You can obtain this from the log of the master. 

 It is clearly tedious to start a worker process manually on each machine in the cluster, especially in 
clusters with thousands of machines. To remedy this, create a file named  slaves  under  $SPARK_HOME/
conf  and fill it with the hostnames of all the machines in your cluster, one per line. Subsequently executing 
 $SPARK_HOME/sbin/start-slaves.sh  will seamlessly start worker processes on these machines. 5   

      UI 
 Spark in standalone mode also includes a handy UI that is executed on the same node as the master on port 
8080 (see Figure  2-1 ). The UI is useful for viewing cluster-wide resource and application state. A detailed 
discussion of the UI is deferred to Chapter 7, when the book discusses optimization techniques for Spark 
Streaming applications.     

   5  This requires passwordless key-based authentication between the master and all worker nodes. 
Alternatively, you can set  SPARK_SSH_FOREGROUND  and provide a password for each worker machine.  
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      YARN 
 With  YARN  , the Spark application master and workers are launched for each job in YARN containers on the 
fly. The application master starts first and coordinates with the YARN resource manager to grab containers 
for executors. Therefore, other than having a running YARN deployment and submitting a job, you don’t 
need to launch anything else.   

      First Application 
 Get ready for your very first Spark application. In this section, you will implement the batch version of the 
translation application mentioned in the first paragraph of this book. Listing  2-1  contains the code of the 
driver program. The driver is the gateway to every Spark application because it runs the  main()  function. 
The job of this driver is to act as the interface between user code and a Spark deployment. It runs either on 
your local machine or on a worker node if it’s a cluster deployment or running under YARN/Mesos. Table  2-1  
explains the different Spark processes and their roles.  

  Figure 2-1.    Spark UI       

   Table 2-1.    Spark  Control Processes     

 Daemon  Description 

 Driver  Application entry point that contains the  SparkContext  instance 

 Master  In charge of scheduling and resource orchestration 

 Worker  Responsible for node state and running executors 

 Executor  Allocated per job and in charge of executing tasks from that job 

 ■   Note    It is highly recommended that you run the driver program on a machine on the cluster, such as the 
master node, especially if the driver pulls in data from the workers, to reduce network traffic.  
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      Listing 2-1.    Translation Application      

 1.    package  org.apress.prospark    
  2.       
  3.    import  scala.io.Source    
  4.       
  5.    import  org.apache.spark.SparkConf    
  6.    import  org.apache.spark.SparkContext    
  7.       
  8.   object TranslateApp {    
  9.     def main(args: Array[String]) {    
  10.       if  (args.length != 4) {    
  11.        System.err.println(    
  12.          "Usage: TranslateApp <appname> <book_path> <output_path> <language>")    
  13.        System.exit(1)    
  14.      }    
  15.      val Seq(appName, bookPath, outputPath, lang) = args.toSeq    
  16.      
  17.      val dict = getDictionary(lang)    
  18.      
  19.      val conf =  new  SparkConf()    
  20.        .setAppName(appName)    
  21.        .setJars(SparkContext.jarOfClass( this .getClass).toSeq)    
  22.      val sc =  new  SparkContext(conf)    
  23.      val book = sc.textFile(bookPath)    
  24.       val translated = book.map(line => line.split("\\s+").map(word => dict.

getOrElse(word, word)).mkString(" "))    
  25.      translated.saveAsTextFile(outputPath)    
  26.    }    
  27.      
  28.    def getDictionary(lang: String): Map[String, String] = {    
  29.       if  (!Set("German", "French", "Italian", "Spanish").contains(lang)) {    
  30.        System.err.println(    
  31.          "Unsupported language: %s".format(lang))    
  32.        System.exit(1)    
  33.      }    
  34.      val url = "http://www.june29.com/IDP/files/%s.txt".format(lang)    
  35.      println("Grabbing dictionary from: %s".format(url))    
  36.      Source.fromURL(url, "ISO-8859-1").mkString    
  37.        .split("\\r?\\n")    
  38.        .filter(line => !line.startsWith("#"))    
  39.        .map(line => line.split("\\t"))    
  40.        .map(tkns => (tkns(0).trim, tkns(1).trim)).toMap    
  41.    }    
  42.  }    

    Every Spark application needs an accompanying configuration object of type  SparkConf . For instance, 
the application name and the JARs for cluster deployment are provided via this configuration. Typically 
the location of the master is picked up from the environment, but it can be explicitly provided by setting 
 setMaster()  on  SparkConf . Chapter   4     discusses more configuration parameters. In this example, a 
  SparkConf  object   is defined on line 19. 

http://dx.doi.org/10.1007/978-1-4842-1479-4_4
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 The connection with the Spark cluster is maintained through a   SparkContext  object  , which takes as 
input the  SparkConf  object (line 22). We can make the definition of the driver program more concrete by 
saying that it is in charge of creating the  SparkContext. SparkContext  is also used to create input RDDs. 
For instance, you create an RDD, with alias  book , out of a single book on line 23. Note that  textFile(..)  
internally uses Hadoop’s  TextInputFormat , which tokenizes each file into lines.  bookPath  can be both a local 
file system location or an HDFS path. 

 Each  RDD object   has a set of transformation functions that return new RDDs after applying an operation. 
Think of it as invoking a function on a Scala collection. For instance, the  map  transformation on line 24 
tokenizes each line into words and then reassembles it into a sentence after single-word translation. This 
translation is enabled by a dictionary (line 17), which you generate from an online source. Without going into 
the details of its creation via the  getDictionary()  method (line 28), suffice to say that it provides a mapping 
between English words and the target language. This  map  transformation is executed on the workers. 

 Spark applications consist of transformations and actions. Actions are generally output operations 
that trigger execution—Spark jobs are only submitted for execution when an output action is performed. 
Put differently, transformations in Spark are lazy and require an action to fire. In the example, on line 25, 
 saveAsTextFile(..)  is an output action that saves the RDD as a text file. Each action results in the execution 
of a Spark job. Thus each Spark application is a concert between different entities. Table  2-2  explains the 
difference between them. 6   

   6  A task may or may not correspond to a single transformation. This depends on the dependencies in a stage. Refer to 
Chapter   4     for details on dependencies.  
   7     www.scala-sbt.org/     .  

   Table 2-2.    Spark  Execution Hierarchy     

 Entity  Description 

 Application  One instance of a  SparkContext  

 Job  Set of stages executed as a result of an action 

 Stage  Set of transformations at a shuffle boundary 

 Task set  Set of tasks from the same stage 

 Task  Unit of execution in a stage 

 Let’s now see how you can build and execute this application. Save the code from Listing  2-1  in a file 
with a  .scala  extension, with the following folder structure:  ./src/main/scala/FirstApp.scala . 

      Build 
 Similar to Java, a Scala application also needs to be compiled into a JAR for deployment and execution. 
Staying true to pure Scala, this book uses sbt 7  (Simple Build Tool) as the  build   and dependency manager 
for all applications. sbt relies on Ivy for dependencies. You can also use the build manager of your choice, 
including Maven, if you wish. 

 Create an   .sbt  file   with the following content at the root of the project directory: 

    name := "FirstApp"  

    version := "1.0"  

    scalaVersion := "2.10.5"  

    libraryDependencies += "org.apache.spark" %% "spark-core" % "1.4.0"  

http://dx.doi.org/10.1007/978-1-4842-1479-4_4
http://www.scala-sbt.org/
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     sbt by default expects your Scala code to reside in  src/main/scala  and your test code to reside in  src/
test/scala . We recommend creating a fat JAR to house all dependencies using the sbt-assembly plugin. 8  
To set up sbt-assembly, create a file at  ./project/assembly.sbt  and add  addSbtPlugin("com.eed3si9n" 
% "sbt-assembly" % "0.11.2")  to it. Creating a fat JAR typically leads to conflicts between binaries and 
configuration files that share the same relative path. To negate this behavior, sbt-assembly enables you to 
specify a merge strategy to resolve such conflicts. A reasonable approach is to use the first entry in case of a 
duplicate, which is what you do here. Add the following to the start of your build definition ( .sbt ) file:    

     import  AssemblyKeys._    

    assemblySettings    

    mergeStrategy in assembly <<= (mergeStrategy in assembly) { mergeStrategy => {    
    case  entry => {    
     val strategy = mergeStrategy(entry)    
      if  (strategy == MergeStrategy.deduplicate) MergeStrategy.first    
      else  strategy    
   }    
  }}    

     To build the application, execute  sbt assembly  at the command line, with your working directory 
being the directory where the  .sbt  file is located. This generates a JAR at  ./target/scala-2.10/FirstApp-
assembly-1.0.jar .  

      Execution 
 Executing a Spark application is very similar to executing a standard Scala or Java program. Spark supports a 
number of execution modes. 

       Local Execution   
 In this mode, the entire application is executed in a single process with potentially multiple threads of 
execution. Use the following command to execute the application in local mode 

   $SPARK_HOME/bin/spark-submit --class org.apress.prospark.TranslateApp --master local[n] 
./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book_path> <output_path> <language>  

    where  n  is the number of threads and should be greater than zero.  

      Standalone Cluster 
 In  standalone cluster mode  , the driver program can be executed on the submission machine (as shown in 
Figure  2-2 ):  

   $SPARK_HOME/bin/spark-submit --class org.apress.prospark.TranslateApp --master <master_
url> ./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book_path> <output_path> 
<language>  

   8     https://github.com/sbt/sbt-assembly     .  

https://github.com/sbt/sbt-assembly
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    Alternatively, the driver can be executed on the cluster (see Figure  2-3 ):  

   $SPARK_HOME/bin/spark-submit –class org.apress.prospark.TranslateApp --master <master_url> 
--deploy-mode cluster ./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book_path> 
<output_path> <language>  

  Figure 2-2.    Standalone cluster deployment with the driver running on the client machine       

  Figure 2-3.    Standalone cluster deployment with the driver running on a cluster       

    Note that in both cases, the jobs execute on the worker nodes, and only the execution location of the 
driver program varies.  
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      YARN 
 Similar to standalone cluster mode, under  YARN  , 9  the driver program can be executed either on the client 

   $SPARK_HOME/bin/spark-submit --class org.apress.prospark.TranslateApp --master yarn-client 
./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book_path> <output_path> <language>  

    or on the YARN cluster: 

   $SPARK_HOME/bin/spark-submit --class org.apress.prospark.TranslateApp --master yarn-
cluster ./target/scala-2.10/FirstApp-assembly-1.0.jar <app_name> <book_path> <output_path> 
<language>  

    Similar to the distributed cluster mode, the jobs execute on the YARN  NodeManager  nodes in both cases, 
and only the execution location of the driver program varies. 

 The rest of the chapter walks through some of the artifacts introduced in the example application to 
take a deep dive into the inner workings of Spark.    

      SparkContext 
 As mentioned before,  SparkContext  is the main application entry point. It serves many purposes, some of 
which are described in this section. 

      Creation of RDDs 
  SparkContext  has utility functions to  create RDDs   for many data sources out of the box. Table  2-3  lists some 
of the common ones. Note that these functions also accept an argument specifying an optional number of 
slices/number of partitions.  

   Table 2-3.    RDD Creation Methods Exposed by  SparkContext    

 Signature  Description 

  parallelize[T](seq: Seq[T]): RDD[T]   Converts a Scala collection into an RDD. 

  range(start: Long, stop: Long, step: 
Long): RDD[Long]  

 Creates an RDD of  Long s from  start  to  stop  (exclusive) 
with an increment of  step . 

  hadoopFile[K, V](path: String, 
inputFormatClass: Class[_ <: 
InputFormat[K, V]], keyClass: Class[K], 
valueClass: Class[V]): RDD[(K, V)]  

 Returns an RDD for a Hadoop file located at  path , 
parameterized by  K,V , and using  inputFormatClass  for 
reading. 

  textFile(path: String): RDD[String]   Returns an RDD for a Hadoop text file located at 
 path . Under the hood, it invokes  hadoopFile()  by 
using  TextInputFormat  as the  inputFormatClass , 
 LongWriteable  as the  keyClass , and  Text  as the 
 valueClass . It is important to highlight that the key in this 
case is the position in the file, whereas the value is a line. 

   9  Spark uses  HADOOP_CONF_DIR  and  YARN_CONF_DIR  to access HDFS and talk to the YARN resource manager.  

(continued)



CHAPTER 2 ■ INTRODUCTION TO SPARK

18

 Note that each function returns an RDD with an associated object type. For instance,  parallelize()  
returns a  ParallelCollectionRDD  (which knows how to serialize and slice up a Scala collection), and 
 textFile()  returns a  HadoopRDD  (which knows how to read data from HDFS and to create partitions). More 
on RDDs later.  

      Handling Dependencies 
 Due to its distributed nature, Spark tasks are parallelized across many worker nodes. Typically, the data 
(RDDs) and the code (such as closures) are shipped out by Spark; but in certain cases, the task code may 
require access to an external file or a Java library. The  SparkContext  instance can also be used to handle 
these external dependencies (see Table  2-4 ).      

 Signature  Description 

  sequenceFile[K, V](path: String, 
keyClass: Class[K], valueClass: 
Class[V]): RDD[(K, V)]  

 Returns an RDD for a Hadoop  SequenceFile  located 
at  path . Internally, invokes  hadoopFile()  by passing 
 SequenceFileInputFormat  as the  inputFormatClass . 

  newAPIHadoopFile[K, V, F <: 
NewInputFormat[K, V]]( path: String, 
inputFormatClass: Class[F], keyClass: 
Class[K], valueClass: Class[V]): 
RDD[(K, V)  

 Returns an RDD for a Hadoop file located at  path , 
parameterized by  K ,  V , and  F , based on the new Hadoop 
API introduced in version 0.21. 10  

  wholeTextFiles(path: String): 
RDD[(String, String)]  

 Returns an RDD for whole Hadoop files located at 
 path . Under the hood, uses  String  as both the key 
and the value and  WholeTextFileInputFormat  as the 
 InputFormatClass . Note that the key is the file path, 
whereas the value is the entire content of the file(s). Use 
this method if the files are small. For larger files, use 
 textFile() . 

  union[T](rdds: Seq[RDD[T]]): RDD[T]   Returns an RDD that is the union of all input RDDs of the 
same type. 

Table 2-3. (continued)

   Table 2-4.    Dependency-Handling Features of  SparkContext    

 Signature  Description 

  addFile(path: String): Unit   Downloads the file present at  path  to every node. This file can be 
accessed via  SparkFiles.get(filename: String) . In addition to being 
a local or HDFS location,  path  can also point to a remote HTTP/FTP 
location. 

  addJar(path: String): Unit   Adds the file at  path  as a JAR dependency for all tasks executed in this 
 SparkContext . 

   10  Tom White, “What’s New in Apache Hadoop 0.21,” Cloudera, August 26, 2010,    http://blog.cloudera.com/
blog/2010/08/what%E2%80%99s-new-in-apache-hadoop-0-21/     .  

http://blog.cloudera.com/blog/2010/08/what�s-new-in-apache-hadoop-0-21/
http://blog.cloudera.com/blog/2010/08/what�s-new-in-apache-hadoop-0-21/
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      Creating Shared Variables 
 Spark transformations manipulate independent copies of data on worker machines, and thus there is no 
shared state between them. In certain cases, though, some state may need to be shared across workers and 
the driver—for instance, if you need to calculate a global value.  SparkContext  provides two types of  shared 
variables:  

•     Broadcast variables:  As the name suggests, broadcast variables are read-only copies 
of data broadcast by the driver program to worker tasks—for instance, to share a 
copy of large variables. Spark by default ships out the data required by each task in 
a stage. This data is serialized and deserialized before the execution of each task. 
On the other hand, the data in a broadcast variable is transported via efficient P2P 
communication and is cached in deserialized form. Therefore, broadcast variables 
are useful only when they are required across multiple stages in a job. Table  2-5  
outlines the creation and use of broadcast variables.    

   Table 2-5.    Broadcast Variable Creation and Use   

 Signature  Description 

  broadcast(v: T): Broadcast[T]   Broadcasts  v  to all nodes, and returns a broadcast variable reference. 
In tasks, the value of this variable can be accessed through the  value  
attribute of the reference object. After creating a broadcast variable, 
do not use the original variable  v  in the workers. 

•     Accumulators:  Accumulators are variables that support associative functions such 
as  increment . Their prime property is that tasks running on workers can only write 
to them, and only the driver program can read their value. Thus they are handy for 
implementing counters or manipulating objects that allow  +=  and/or  add  operations. 
Table  2-6  showcases out of the box Accumulators in Spark.       

   Table 2-6.    Out-of-the-Box Accumulators in Spark    

 Signature  Description 

  accumulator[T](initialValue: T): 
Accumulator[T]  

 Returns an accumulator of type  T . Tasks can then directly 
reference it and perform  add  and  +=  operations. Only the 
driver can read its value by accessing its  value  attribute. 

  accumulator[T](initialValue: T, 
name: String): Accumulator[T]  

 The additional  name  argument enables this accumulator to be 
viewed in the UI. Note that the accumulator is displayed on 
the UI page for each stage that updates its value. For instance, 
Figure  2-4  shows a named accumulator: Foobar Accumulator. 

  accumulableCollection [R, T]
(initialValue: R): Accumulable[R, T]  

 Returns an accumulator for a  Collection  of type  R . Note 
that  R  should implement  +=  and  ++=  operations. Standard 
choices include  mutable.HashSet ,  mutable.ArrayBuffer , and 
 mutable.HashMap . 
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       Job execution   
 Transparent to you,  SparkContext  is also in charge of submitting jobs to the scheduler. These jobs are 
submitted every time an RDD action is invoked. A job is broken down into stages, which are then broken 
down into tasks. These tasks are subsequently distributed across the various workers. You will learn more 
about scheduling in Chapter   4    .   

      RDD 
  Resilient distributed datasets (RDDs)   lie at the very core of Spark. Almost all data in a Spark application 
resides in them. Figure  2-5  gives a high-level view of a typical Spark workflow that revolves around the 
concept of RDDs. As the figure shows, data from an external source or multiple sources is first ingested and 
converted into an RDD that is then  transformed  into potentially a series of other RDDs before being written 
to an external sink or multiple sinks.  

  Figure 2-5.    RDDs in a nutshell       

  Figure 2-4.    Spark UI screenshot of a named accumulator       

 An RDD in essence is an envelope around data partitions. The persistence level of each RDD is 
configurable; the default behavior is regeneration under failure. Keeping lineage information—parent 
RDDs that it depends on—enables RDD regeneration. An RDD is a first-class citizen in the Spark order of 
things: applications make progress by transforming or actioning RDDs. The base RDD class exposes simple 
transformations ( map ,  filter , and so on). Derived classes build on this by extending and implementing 
three  key methods  :  compute() ,  getPartitions() , and  getDependencies() . For instance,  UnionRDD , which 
takes the union of multiple RDDs, simply returns the partitions and dependencies of the unionized RDDs 
in its  rdd.partitions  (public version of  getPartitions() ) and  rdd.dependencies  (sugared version of 
 getDependencies())  methods, respectively. In addition, its  compute()  method invokes the respective 
 compute()  methods of its constituent RDDs. 

 Similarly, certain transformations that apply to only specific RDD types are enabled with Scala implicit 
conversions. A good example of such functionality are methods that only apply to key-value pair RDDs, such 
as  groupByKey()  and  reduceByKey() , which reside in  the    PairRDDFunctions  class. Table  2-7  lists widely 
used RDDs.  

 

 

http://dx.doi.org/10.1007/978-1-4842-1479-4_4
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 As mentioned, RDDs can also be transformed via implicit conversions. Table  2-8  lists some of these 
conversion classes.  

   Table 2-7.    Examples of Specialized RDDs   

 RDD Type  Description 

  CartesianRDD   Obtained as a result of calculating the Cartesian product of two RDDs 

  HadoopRDD   Represents data stored in any Hadoop-compatible store: local FS, HDFS, 
S3, and HBase 

  JdbcRDD   Contains results of a SQL query execution via a JDBC connection 

  NewHadoopRDD   Same as  HadoopRDD  but uses the new Hadoop API 

  ParallelCollectionRDD   Contains a Scala  Collections  object 

  PipedRDD   Used to pipe the contents of an RDD to an external command, such as a 
bash command or a Python script 

  UnionRDD   Wrapper around multiple RDDs to treat them as a single RDD 

   Table 2-8.    RDD  Conversion Functions     

 RDD Conversion Class  Description 

  DoubleRDDFunctions   Functions that can be applied to RDDs of  Double s. These functions 
include  mean() ,  variance() ,  stdev() , and  histogram() . 

  OrderedRDDFunctions   Ordering functions that apply to key-value pair RDDs. Functions include 
 sortByKey() . 

  PairRDDFunctions   Functions applicable to key-value pair RDDs. Functions include 
 combineByKey() ,  aggregateByKey() ,  reduceByKey() , and 
 groupByKey() . 

  SequenceFileRDDFunctions   Functions to convert key-value pair RDDs to Hadoop  SequenceFiles . 
For example,  saveAsSequenceFile() . 

      Persistence 
 The  persistence level   of RDDs explores different points in the space between CPU, IO, and memory cost. 
This value can be set by making a call to the  persist()  method exposed by each RDD. The  cache()  
method defaults to a persistence level of  MEMORY_ONLY.  Persistence is handled by  BlockManager , which 
internally maintains a memory store and a disk store. In addition, RDDs can also be checkpointed using the 
 checkpoint()  function. Unlike caching, checkpointing directly saves the RDD to HDFS and does not keep its 
lineage information. 

 Table  2-9  explains the features of each persistence level exposed by the  StorageLevel  class.  
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 Persisted RDDs can also be unpersisted by calling their  unpersist()  method. By default, this is a 
blocking call, but it can be made asynchronous by passing  false  to the method.  

      Transformations 
 As discussed earlier, applications make progress by transforming RDDs. These transforms can be grouped 
into four broad categories:

•     Mappings  transform the input RDD to an output one by calling a user-defined 
function. In most cases, the output RDD is smaller or equivalent in size—in terms of 
number of data points—to the input one (see Table  2-10 ).   

•    Variation  operators either increase or decrease the number of partitions in an RDD 
or perform fission or fusion of RDDs (see Table  2-11 ).   

•    Key-value  (including aggregation) transformations apply only to RDDs with key-
value pairs. Invoking a  map  function that returns a 2-tuple typically creates these 
key-value pairs (see Table  2-12 ).   

•    Miscellaneous  operators perform various tasks such as taking a sample of elements 
in an RDD (see Table  2-13 ).     

   Table 2-9.    RDD Storage  Levels     

 Storage Level  Description 

  NONE   Default persistence level. Entails regeneration of the RDD on failure. 

  DISK_ONLY   The RDD is persisted on disk. 

  DISK_ONLY_2   Same as previous, but on two machines. 

  MEMORY_ONLY   The RDD is persisted in memory in unserialized form. Partitions that do not 
fit in memory fall back on recomputation. 

  MEMORY_ONLY_2   Same as previous, but on two machines. 

  MEMORY_ONLY_SER   The RDD is persisted in memory in serialized form. 

  MEMORY_ONLY_SER_2   Same as previous, but on two machines. 

  MEMORY_AND_DISK   The RDD is first persisted in memory in unserialized format. Partitions that do 
not fit are spilled to disk. 

  MEMORY_AND_DISK_2   Same as previous, but on two machines. 

  MEMORY_AND_DISK_SER   Similar to  MEMORY_AND_DISK , but the partitions are kept serialized. 

  MEMORY_AND_DISK_SER_2   Same as previous, but on two machines. 

  OFF_HEAP   RDDs are offloaded to Tachyon (now called Alluxio), 11  which is an in-memory 
data store. This greatly reduces the memory footprint and GC overhead of the 
worker JVMs. Note that you need to have a running Tachyon deployment for 
this to work (discussed in detail in Chapter   7    ). 

   11     http://tachyon-project.org/     .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_7
http://tachyon-project.org/
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   Table 2-10.     Mapping Transformations      

 Transformation (Mapping)  Description 

  map[U](function): RDD[U]   Standard  map  function from functional programming that invokes the 
user-provided  function  for each data point in the input RDD to create 
an output RDD of the same length. 

  flatMap[U](function): RDD[U]   Same as  map() , but flattens the RDD, so the size of the output may be 
different than that of the input RDD. 

  mapPartitions[U](function): 
RDD[U]  

 Invokes the passed  function  for each partition in the RDD, as opposed 
to a standard  map()  that is invoked for each data point. The provided 
function should be able to take as input an iterator over the data points 
in a partition. This is more efficient than  map()  because it reduces the 
number of function calls. (In Chapter   6    , you see how mapPartitions() 
can make writing to external storage more efficient.) 

  mapPartitionsWithIndex[U]
(function): RDD[U]  

 Similar to  mapPartitions() , but alongside the iterator, the function 
should also accept a partition index. This is useful if the logic requires 
keeping track of the index of the partition being processed. 

  filter[U](function): RDD[U]   Filters out values that fit a particular condition. To this end, the provided 
 function  needs to return a Boolean value corresponding to the given 
condition. 

   Table 2-11.     Variation Transformations     

 Transformation (Variation)  Description 

  coalesce(numPartitions: Int, 
shuffle: Boolean): RDD[T]  

 Decreases the number of partitions in an RDD. Under the 
hood, it logically merges partitions by treating them as a 
conglomerate. This behavior is ensured by setting  shuffle  to 
 false —the default behavior. Setting  shuffle  to  true  forces 
a shuffle phase that uses hash partitioning to physically 
repartition the RDD. This also means the number of partitions 
can be both decreased and increased via this mechanism. 

  repartition(numPartitions: Int): 
RDD[T]  

 Increases or decreases the number of partitions in the 
RDD by always forcing a shuffle. Under the hood, it invokes 
 coalesce()  by passing  shuffle  as  true . 

  union(other: RDD[T]): RDD[T]   Returns another RDD that is the union of this RDD with the 
passed RDD. The concrete implementation of the returned 
RDD is provided by  UnionRDD . 

  intersection(other: RDD[T]): RDD[T]   Takes the intersection of the calling RDD with the passed one. 

http://dx.doi.org/10.1007/978-1-4842-1479-4_6
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   Table 2-12.     Key-Value Pair Transformations     

 Transformation (Key-Value)  Conversion Class  Description 

  repartitionAndSortWit
hinPartitions(partit
ioner: Partitioner): 
RDD[(K, V)]  

  OrderedRDDFunctions   Increases or decreases the number of partitions and 
the key space of the RDD based on the supplied 
partitioner, and also sorts the keys in each partition. 
Note that this transform only applies to RDDs 
where the key is sortable, and hence it resides in 
 OrderedRDDFunctions . 

  groupByKey(): 
RDD[(K, Iterable[V])]  

  PairRDDFunctions   Groups the values by key. The returned RDD 
contains a key-value pair for each group, where the 
value is an iterator over the grouped values. 

  sortByKey(): 
RDD[(K, V)]  

  OrderedRDDFunctions   Sorts the RDD by key. The key should extend the 
 Ordering  Scala trait. By default, it sorts the keys in 
ascending order by keeping the number of partitions 
intact. Both of these values can be tweaked by 
passing arguments,  ascending :  Boolean  =  false  and 
 numPartitions : Int =  #Partitions . Note that if your 
logic requires changing the number of partitions 
and also sorting the keys, it is more efficient to use 
 repartitionAndSortWithinPartitions() , which 
pushes the sorting into the shuffle infrastructure. 

  reduceByKey(function: 
(V, V)  ⇒  V): RDD[(K, V)]  

  PairRDDFunctions   Aggregates the values for each key using the 
provided  function . The function is invoked for each 
pair of values (aggregated ones as well) until a final 
aggregated value is obtained. 
 Note that  reduceByKey()  can only be used for 
associative and commutative functions. This 
gives the added benefit of  map -side combiners a la 
MapReduce. As a result, it is more efficient to use 
 reduceByKey()  as opposed to first  groupByKey()  
and then  reduce()  (explained in the “Actions” 
section). Furthermore,  reduceByKey()  uses the 
first element of the RDD as the initial value for its 
internal accumulator. To explicitly supply an initial 
value, use  foldByKey() . 
 It is also important to highlight that the return 
type of the aggregation function needs to be the 
same as the type of the values under aggregation. 
If your logic requires this type to be different, use 
 combineByKey() . 

  foldByKey(intialValue: 
V)(func: (V, V)  ⇒  V): 
RDD[(K, V)]  

  PairRDDFunctions   Similar to  reduceByKey() , but uses  initialValue  to 
initialize the internal accumulator. 

(continued)



CHAPTER 2 ■ INTRODUCTION TO SPARK

25

   Table 2-13.     Miscellaneous Transformations     

 Transformation (Misc.)  Description 

  cartesian[U](other: RDD[U]): 
RDD[(T, U)]  

 Takes the Cartesian product of two RDDs and returns the result in 
the form of a  CartesianRDD . 

  distinct(): RDD[T]   Returns an RDD containing distinct elements from the calling 
RDD. 

  pipe(command: String): 
RDD[String]  

 Executes an external command, and pipes the elements of 
the RDD through it. Returns a  PipedRDD  with the results. An 
overloaded version also accepts an environment key-value map. 

  sample(withReplacement: Boolean, 
fraction: Double): RDD[T]  

 Samples a random subset of the elements of the RDD. The 
 withReplacement  argument decides whether elements can be 
sampled multiple times, and  fraction  decides the expected total 
size of the resulting RDD as a fraction of this RDD’s size. 

 Transformation (Key-Value)  Conversion Class  Description 

  combineByKey[C]
(createCombiner: (V)  ⇒ 
 C, mergeValue: (C, V)  ⇒ 
 C, mergeCombiners: 
(C, C)  ⇒  C): RDD[(K, C)]  

  PairRDDFunctions   Aggregates the values of the RDD, but allows 
the return type of the aggregation function to 
be different than the input type. Requires three 
functions as arguments: 
 •  createCombiner  to initialize the accumulator 
 •  mergeValue  to merge pairs of values 
 •  mergeCombiners  to merge two accumulators 

  aggregateByKey[U]
(initialValue: U)
(seqOp: (U, V)  ⇒  U, 
combOp: (U, U)  ⇒  U): 
RDD[(K, U)]  

  PairRDDFunctions   Similar to  combineByKey() , but instead of using a 
function to initialize the accumulator, accepts an 
explicit value,  initialValue,  for the initialization. 

  join[W](other: RDD[(K, 
W)]): RDD[(K, (V, W))]  

  PairRDDFunctions   Performs an inner join on the RDD with another 
one. Variants for left and right outer joins also exist: 
 leftOuterJoin()  and  rightOuterJoin() . 

  cogroup[W](other: 
RDD[(K, W)]): RDD[(K, 
(Iterable[V], 
Iterable[W]))]  

  PairRDDFunctions   Groups this RDD with another one by pairing values 
that share a key. 

  subtractByKey[W](other: 
RDD[(K, W)]): RDD[(K, V)]  

  PairRDDFunctions   Returns an RDD containing keys that exist in the 
calling RDD but not the passed one. 

  mapValues[U](function): 
RDD[(K, U)]  

  PairRDDFunctions   Invokes  function  for each value without touching 
the keys or the partitioning. 

  flatMapValues[U]
(function): RDD[(K, U)]  

  PairRDDFunctions   Similar to  mapValues() , but values are flattened. 

Table 2-12. (continued)

  Note that  groupByKey() ,  reduceByKey() ,  foldByKey() ,  combineByKey() ,  aggregateByKey() ,  join() , 
 cogroup() , and  subtractByKey()  by default use the default parallelism level and the default partitioner. You 
can invoke their overloaded variants to change both. 
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 Refer to Chapter   3     for examples of using these transforms in the context of DStreams.  

       Actions 
 Actions kick off the execution of Spark jobs. Each  action   is either a data-egress point to an external data store 
or an ingress point into the driver program. Under the hood, each action invokes the  SparkContext  instance 
to schedule its execution. Similar to transformations, these actions vary depending on the RDD type. 
Table  2-14  lists actions that write to an external data source, and Table  2-15  contains those that cause data to 
be materialized into the driver program.   

   Table 2-14.    Actions that Trigger Data Materialization to External Storage   

 Action  Description 

  foreach(function): Unit   A generic function for invoking operations with side 
effects. For each element in the RDD, it invokes the 
passed  function . This is generally used for manipulating 
accumulators or writing to external stores. 

  foreachPartition(function): Unit   Similar to  foreach() , but instead of invoking  function  
for each element, it calls it for each partition. The 
function should be able to accept an iterator. This is 
more efficient than  foreach()  because it reduces the 
number of function calls (just like  mapPartitions() ). 

  saveAsHadoopFile[K, V](path: String): Unit   Saves the key-value RDD to a Hadoop-compatible file 
system at location  path . 

  saveAsNewAPIHadoopFile[K, V](path: 
String): Unit  

 Similar to  saveAsHadoopFile() , but uses the new 
Hadoop API. 

  saveAsTextFile(path: String): Unit   Saves the RDD as a text file on a Hadoop-compatible file 
system at location  path . Invokes  saveAsHadoopFile()  
under the hood by using  NullWritable  as the key. 

  saveAsSequenceFile(path: String): Unit   Saves the RDD as a Hadoop sequence file at location 
 path . Makes a call to  saveAsHadoopFile()  under the 
hood. 

  saveAsObjectFile(path: String): Unit   Saves the elements in the RDD as serializable objects 
at location  path . Invokes  saveAsSequenceFile()  under 
the hood by employing  NullWritable  as the key and 
 BytesWritable  as the value. 

  saveAsHadoopDataset(conf: JobConf): Unit   Saves the output to a Hadoop-compatible data store 
such as HBase. Uses  conf  to decide the output format 
and other settings. 

http://dx.doi.org/10.1007/978-1-4842-1479-4_3
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   Table 2-15.    Actions that Materialize Data into the Driver Program   

 Action  Description 

  reduce(function: (T, T)  ⇒  T): T   Invokes the user-defined  function  for every pair of values (and 
aggregated values) in the RDD. Returns the results to the driver 
program. Note that  reduce()  is an action, whereas  reduceByKey()  
is not, because the latter may entail a larger number of partitions 
and a large key space—enough to overwhelm the driver. 

  collect(): Array[T]   Returns all the contents of the RDD to the driver program in the 
form of an array. An overloaded variant also accepts a function 
to filter the contents of the fetched array. 

  collectAsMap(): Map[K, V]   Collects the data in  PairRDD  as a  Map . 

  count(): Long   Counts the number of elements in the calling RDD. 

  countByKey(): Map[K, Long]    PairRDD  variant of  count() . 

  countApproxDistinct(relativeSD: 
Double): Long  

 Counts the number of distinct elements in the RDD by using 
the HyperLogLog algorithm.  relativeSD  decides the relative 
accuracy, with larger values requiring less space. 

  countApproxDistinctByKey(relative
SD: Double = 0.05): RDD[(K, Long)]  

 The key-value variant of  countApproxDistinct() . 

  take(n: Int): Array[T]   Returns the first  n  elements from this RDD in the form of an array. 

  first(): T   Returns the first element of the RDD. Simply invokes  take(1)  
behind the scenes. 

  takeOrdered(k: Int): Array[T]   Returns the first  k  elements from this RDD while preserving 
the natural ordering of the elements. Conceptually, a bottom- k  
query. 

  top(k: Int): Array[T]   Returns the top  k  elements from this RDD. 

  takeSample(withReplacement: 
Boolean, num: Int): Array[T]  

 Action version of  sample() . 

  lookup(key: K): Seq[V]   Returns a sequence of values associated with key  k . 

 It should be abundantly clear by now that Spark is a functional Big Data processing framework wherein 
RDDs are immutable collections of data that are transformed to achieve application logic. Applications 
are side-effect-free for the most part: the number of actions is typically smaller than the number of 
transformations. Transformations are lazy and only triggered when a downstream action is invoked.    

      Summary 
 RDDs constitute the cornerstone of Spark. They are the unit of fault-tolerance, data ingestion and storage, 
and transformation. These data envelopes in concert with transformations, actions, and a small number 
of other primitives can be used to stitch together almost any embarrassingly parallel application. Spark 
maximizes productivity by enabling you to focus on analytics while the underlying engine takes care of all 
the distributed magic. Starting from the basics of application development, this chapter has explored the 
various power tools that Spark puts at your disposal. 

 You now have enough background to jump into Spark Streaming and transition from a largely static 
batch-processing world to one where everything is in motion and time is of the essence.      



29© Zubair Nabi 2016 
Z. Nabi, Pro Spark Streaming, DOI 10.1007/978-1-4842-1479-4_3

    CHAPTER 3   

 DStreams: Real-Time RDDs                          

    Always in motion is the future.  

 —Grand Jedi Master Yoda,  Star Wars Episode V: The Empire Strikes Back    

 According to IBM, 60% of all sensory information loses value in a few milliseconds if it is not acted on. 1  
Bearing in mind that the Big Data and analytics market has reached $125 billion and a large chunk of 
this will be attributed to IoT in the future, 2  the inability to tap real-time information will result in a loss of 
billions of dollars. Examples of some of these applications include a telco working out how many of its users 
have used Whatsapp in the last 30 minutes, a retailer keeping track of the number of people who have said 
positive things about its products today on social media, or a law enforcement agency looking for a suspect 
using data from traffic CCTV. This is the primary reason stream-processing systems like Spark Streaming will 
define the future of real-time analytics. There is also a growing need to analyze both data at rest and data in 
motion to drive applications, which makes systems like Spark—which can do both—all the more attractive 
and powerful. It’s a system for all Big Data seasons. 

 In this chapter, you see how Spark uses micro-batching to achieve real-time computation. In the 
process, you learn how Spark Streaming not only keeps the familiar Spark API intact but also, under the 
hood, uses RDDs for storage as well as fault-tolerance. This enables Spark practitioners to jump into the 
streaming world from the outset. With that in mind, let’s get right to it. 

     From Continuous to Discretized Streams 
  Traditional stream processing   consists of routing records from data sources to sinks with intermediate 
processing operators that enforce user logic. A good real-world example of stream processing is the kitchen 
of a typical restaurant, which consists of waiters, dishwashers, prep cooks, line cooks, sous chefs, and a 
main chef who collectively implement culinary applications. Waiters take orders and bring them to the 
main chef, who instructs the prep cooks on the initial preparation. This may entail chopping ingredients, 
making dough, preparing icing, and so on. Their product is passed on to a line cook who is dedicated to a 
particular kitchen station: the fryer, the grill, and so on. Once the line cook is done, the dish goes to either 
the sous chef or the main chef for the finishing touches, which may be as simple as garnishing it with herbs. 
The waiter then takes the fully prepared dish to the customer. After the customer has finished their meal, 

   1  Pietro Lee, “Data Has a Gravity and Is Attracting Decisions,” May 26, 2015,    www.slideshare.net/pieroleo/
data-has-a-gravity-and-is-attracting-decisions     .  
   2  Gil Press, “6 Predictions for the $125 Billion Big Data Analytics Market in 2015,”  Forbes , December 11, 2014, 
   www.forbes.com/sites/gilpress/2014/12/11/6-predictions-for-the-125-billion-big-data-
analytics-market-in-2015/     .  

http://www.slideshare.net/pieroleo/data-has-a-gravity-and-is-attracting-decisions
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the physical plate/bowl ends up in front of the dishwasher, who does the final cleaning. Note that at any 
instance in time, a number of dishes may be in various stages of the cooking pipeline, because customers 
arrive and order at different times. In addition, to ensure this parallelism, a kitchen employs many prep 
cooks, line cooks, and so on. 

 In stream-processing speak, the waiter who brings in the order is the data source. The order itself is the 
record to be processed. The various cooks and chefs constitute processing operators, whereas the customer 
is the application driver. There are multiple orders, which follow parallel processing streams. Such pipelines 
have to deal with two major issues: random faults and stragglers. In very large kitchens with scores of cooks 
and orders, the probability of an accident is very high. Furthermore, one or two cooks may be slower than 
everyone else, leading to the buildup of back pressure. Conventional systems deal with faults by either 
maintaining a redundant replica of each processing stream or buffering records upstream and replaying 
failed ones. Both approaches double the amount of data storage across the system. In addition, neither 
method has an efficient mechanism to deal with stragglers. Imagine restaurants having to cook two dishes 
instead of one for each order. 

 An alternative way to deal with these issues is to batch different orders together and have everyone in 
the kitchen collectively perform one function in  tandem  . For instance, everyone would first perform the 
work of the prep cooks, followed by line cooks, and so on. Because the entire staff would be focusing on 
one task at a time, their throughput would be much higher at the expense of latency. In case of an accident, 
such as a cook burning a key ingredient, the other cooks would help to bring that cook up to speed by 
reperforming all the steps from the beginning in addition to their current work. Note that this can only 
be done for ingredients and intermediate steps that apply to a single batch of dishes. Moreover, the same 
mechanism is used to tackle stragglers: if one or more cooks are holding up the batch, the rest of the staff can 
pitch in to bring them up to speed. 

 This is exactly how Spark Streaming operates: by treating stream processing as discrete-time micro-
batch processing, called  discretized streams  or   DStream s  . Every time there is a failure or a straggler, other 
nodes use the lineage of the lost partitions to regenerate them in addition to their standard processing tasks. 
Certain operations need to maintain state across batches; their state is checkpointed every now and then to 
negate infinite state regeneration.  

     First Streaming Application 
 Similar to the previous chapter, let’s jump in to the deep end of the pool by starting with a running book-
translation example. If you recall, you were able to process books that had already been materialized in the 
previous chapter. You can update that application using the Spark Streaming API to make it real-time; see 
Listing  3-1 . Notice that the changes to the code are mostly cosmetic. In fact, there is almost a one-to-one 
mapping between regular Spark primitives and those exposed by Spark Streaming. This is primarily because 
Spark Streaming uses RDD primitives behind the scenes. A 30,000-foot view of the application is that it can 
be used to translate books from English to any other language as soon as they are written by the authors. 

       Listing 3-1.     Streaming Version   of the Translation Application   

  1.    package  org.apress.prospark   
 2.    
 3.    import  scala.io.Source   
 4.    import  org.apache.spark.SparkConf   
 5.    import  org.apache.spark.SparkContext   
 6.    import  org.apache.spark.streaming.Seconds   
 7.    import  org.apache.spark.streaming.StreamingContext   
 8.    import  org.apache.hadoop.io.LongWritable   
 9.    import  org.apache.hadoop.fs.Path   
 10.   import  org.apache.hadoop.mapreduce.lib.input.TextInputFormat   
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 11.   import  org.apache.hadoop.io.Text   
 12.   
 13.  object StreamingTranslateApp {   
 14.    def main(args: Array[String]) {   
 15.       if  (args.length != 4) {   
 16.        System.err.println(   
 17.          "Usage: StreamingTranslateApp <appname> <book_path> <output_path> <language>")   

 18.        System.exit(1)   
 19.      }   
 20.      val Seq(appName, bookPath, outputPath, lang) = args.toSeq   
 21.   
 22.      val dict = getDictionary(lang)   
 23.   
 24.      val conf =  new  SparkConf()   
 25.        .setAppName(appName)   
 26.        .setJars(SparkContext.jarOfClass( this .getClass).toSeq)   
 27.      val ssc =  new  StreamingContext(conf, Seconds(1))   
 28. 
 29.      val book = ssc.textFileStream(bookPath)   
 30.       val translated = book.map(line => line.split("\\s+").map(word => 

dict.getOrElse(word, word)).mkString(" "))   
 31.      translated.saveAsTextFiles(outputPath)   
 32.   
 33.      ssc.start()   
 34.      ssc.awaitTermination()   
 35.    }   
 36. 
 37.    def getDictionary(lang: String): Map[String, String] = {   
 38.       if  (!Set("German", "French", "Italian", "Spanish").contains(lang)) {   
 39.        System.err.println(   
 40.          "Unsupported language: %s".format(lang))   
 41.        System.exit(1)   
 42.      }   
 43.      val url = "http://www.june29.com/IDP/files/%s.txt".format(lang)   
 44.      println("Grabbing dictionary from: %s".format(url))   
 45.      Source.fromURL(url, "ISO-8859-1").mkString   
 46.        .split("\\r?\\n")   
 47.        .filter(line => !line.startsWith("#"))   
 48.        .map(line => line.split("\\t"))   
 49.        .map(tkns => (tkns(0).trim, tkns(1).trim)).toMap   
 50.    }   
 51.   
 52.  } 

     The  SparkConf  object (line 24) remains unchanged. Your friend  SparkContext , on the other hand, has 
been replaced with  StreamingContext , which, as the name suggests, enables streaming applications. Along 
with  SparkConf , it takes a batch size, which dictates the time interval at which the application is invoked for 
each micro-batch of the input data. In this example, the batch size is 1 second (line 27). 

www.allitebooks.com

http://www.allitebooks.org
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   StreamingContext    is created by the driver program and maintains the connection with the Spark 
subsystem. It is also used to create  DStream s from various input sources.  textFileStream()  3  (line 29) uses 
 StreamingContext  to create a  DStream  for a book in a directory ( bookPath ) on a file system.  textFileStream  
uses  TextInputStream  (analogous to  textFile() ) under the hood to tokenize the book into lines. You then 
translate each line into the required language using the same translation logic as the batch example from the 
previous chapter. Post-translation, the translated book is written back to the file system (line 31). 

 Unlike batch applications, which have a clear life cycle—they finish execution as soon as they have 
processed their input files—streaming execution has no marked start and stop. Both need to be explicitly sign-
posted. Table  3-1  lists methods that orchestrate the execution of Spark Streaming applications. Line 33 ( start() ) 
in the sample application kicks off the execution, and line 34 ( awaitTermination() ) waits for completion.  

   Table 3-1.    Methods That Dictate the Lifecycle of a Spark Streaming Application   

 Method  Description 

  start()         Starts the execution of the application. 

  awaitTermination()         Waits for the termination of the application. A variant,  awaitTerminationOrTimeo
ut(long) , accepts a timeout value in milliseconds. 

  stop()         Forces the application to stop execution. An overloaded version of  stop()  can also 
be used to wait for all data to be processed before stopping. In addition,  stop()  
takes a Boolean as input to control whether  SparkContext  should be stopped. This 
is set to  true  by default. 

 Once the application has fully processed the file, you have the translated version. From a result 
perspective, the outcome is identical to that of the example in Chapter   2    . The advantage of this approach 
becomes apparent when you begin thinking of incremental input and output. In strictly batch mode, the 
entire book needs to be present before it can be processed. In contrast, in this micro-batch processing 
approach, books can be incrementally added to a data source (the file system, in this case), and they are 
processed almost instantaneously. Let’s build and execute the application now. 

     Build and Execution 
 The Spark Streaming codebase is modular, which means to use a certain project, you only have to add it as a 
separate dependency rather than include a bloated JAR. For instance, you only need to add the following to 
the  .sbt  configuration file from the previous chapter to pull in Spark Streaming as a dependency: 

   libraryDependencies += "org.apache.spark" %% "spark-streaming" % "1.4.0" 

   The rest of the  build and execution process   remains the same. 
 Time to dissect  StreamingContext .  

     StreamingContext 
 Similar to  SparkContext ,  StreamingContext  is the main entry point for real-time applications. It also serves 
as the umbilical cord of the driver program with the Spark engine.  SparkContext  and  StreamingContext  are 
not mutually exclusive. In fact,  StreamingContext  internally has a reference to  SparkContext  (which can be 

   3  Note that  textFileStream  only reads files that have been added to the directory within the last batch interval and are 
not older than  spark.streaming.minRememberDuration  (60 seconds by default).  

http://dx.doi.org/10.1007/978-1-4842-1479-4_2
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accessed as  StreamingContext#sparkContext ). Streaming applications can also use  SparkContext  during 
their execution. For instance, dependencies can be handled by using  addFile()  and  addJar() . Another use 
case is the creation of shared variables, such as broadcast variables and accumulators. 

 The features of  StreamingContext  can be grouped on the basis of their functionality. That is what we do 
next. 

    Creating DStreams 
 The unit of application development from the user perspective is a  DStream . It is also the data-ingestion 
point.  StreamingContext  is used to read data from various real-time sources and convert it to  DStream s. Files, 
sockets, Akka actors, or others— StreamingContext  covers them all. Some of these are presented in Table  3-2 .  

   Table 3-2.    Creation of   DStream s   Enabled by  StreamingContext    

 Signature  Description 

  fileStream[K, V, F 
<: NewInputFormat[K, 
V]] (dirPath: String, 
filterFunc: Path => Boolean, 
newFilesOnly: Boolean)  

 Creates a  DStream  to process files located at  dirPath  parametrized by 
 K,V , and uses  F  as the input format for reading.  filterFunc  is used 
to filter out files: say, those with a certain extension.  newFilesOnly  
dictates whether only new files that have been added to  dirPath  in the 
last interval should be considered. 

 In a typical setting, an external process appends files to the directory, 
which are then ingested by this  DStream  every batch interval. 

  fileStream[K, V, F <: 
NewInputFormat[K, V]] 
(dirPath: String)  

 Creates a  DStream  to process files located at  dirPath , parametrized by  K,V  
and using  F  as the input format for reading. By default, it considers all new 
files (except those that start with “ . ”) at  dirPath  in every batch. 

  textFileStream(dirPath: 
String)  

 Returns a  DStream  for text files added at  dirPath . Under the hood, it 
invokes  fileStream()  by using  LongWritable  as the key class,  Text  as 
the value class, and  TextInputFormat  as the input format. Note that this 
method ignores all old files and only considers files that have been created 
in the last  spark.streaming.minRememberDuration  seconds. To change 
this behavior, you need to use  fileStream()  and set  newFilesOnly  to  false  
while parametrizing it with  LongWritable ,  Text , and  TextInputFormat . 

  socketStream[T](hostname: 
String, port: Int, 
converter: (InputStream) => 
Iterator[T], storageLevel: 
StorageLevel)  

 Wraps around a socket connected to  hostname  on  port  in a  DStream. 
converter  is a function to convert a byte stream into an object type 
expected by the application.  storageLevel  decides the persistence 
level of the  DStream  in the block store. 

  socketTextStream(hostname: 
String, port: Int)  

 Connects to  hostname  on  port , and interprets the data as UTF-8 
encoded, newline-delimited text data. The data is stored with level 
 StorageLevel.MEMORY_AND_DISK_SER_2 . 

  rawSocketStream[T](hostname: 
String, port: Int)  

 In cases where the data has already been serialized in a format that Spark 
understands, this method is used to bypass the cost of deserialization. It 
reads the data from  hostname:port  and writes it directly to the block store. 

  actorStream[T]
(akkaProperties: Props, 
name: String)  

 Creates a  DStream  for an Akka actor where  name  is the name of the actor 
and  akkaProperties  contains its definition. 

  queueStream[T](queue: 
Queue[RDD[T]])  

 Converts a queue of RDDs to a  DStream . By default, the behavior is to 
dequeue one RDD in each batch interval. 
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 These are not the only sources from which Spark Streaming can ingest data. The Spark Streaming 
codebase contains connectors for popular real-time sources, such as Kafka, Flume, and Twitter. These are 
discussed in detail in Chapter   5    .    

    DStream Consolidation   
 In certain applications, it is useful to merge similar streams into one: for instance, when reading from 
multiple but similar data sources.  StreamingContext  contains a   union()  method   that provides this 
functionality as shown in Table  3-3 .   

   Table 3-3.    Consolidation Method Provided by  StreamingContext    

 Signature  Description 

  union[T](streams: Seq[DStream[T]])   Takes as input a sequence of  DStream s, and returns their union 

    Job Execution   
  StreamingContext  also handles scheduling, transparent to the user. Every time an action is invoked on a 
 DStream , corresponding jobs are submitted to the Spark scheduler back end via  StreamingContext .    

     DStreams 
   DStream s   are to Spark Streaming what RDDs are to Spark. Applications make progress by ingesting, 
transforming, and exporting  DStream s. Conceptually, a  DStream  converts a potentially endless flow of data 
into discrete batches of RDDs. Every batch interval, newly generated RDDs are consumed by pushing 
them through user-defined logic. You have the option of customizing the persistence of each  DStream . On 
failure, all nodes take part in regeneration of the lost RDDs. Generally, no micro-batch invariant state is 
maintained—each batch is stateless. 

 This model works well for a large class of applications. For instance, the translation application does 
not need to maintain state across batches because it only converts RDDs of books from one form to another. 
Similarly, a solution that analyzes a stream of temperature data and generates a flag if it exceeds a threshold 
only needs to make a decision based on data in the current batch. 

 Another class of applications needs to maintain state across logic invocations. A minor enhancement 
of the previous two examples can help to illustrate this point. In addition to translating books, you may 
also want to keep track of the top-ten words (in terms of word frequency) that have been translated so far. 
In a similar vein, maintaining a histogram of temperature change over the course of an entire application 
requires state across all batches. Spark exposes primitives that allow you to achieve such behavior. Stateful 
 DStream s have the same fault-tolerance properties as regular ones, with a single catch: they need to be 
checkpointed regularly to negate endless regeneration. 

 Figure  3-1  shows a high-level view of Spark Streaming execution. At every batch interval, the source 
pulls in data and converts it to regular RDDs using the block store. Like any standard RDD, RDDs that 
constitute a  DStream  are partitioned and have configurable persistence levels. The only (somewhat 
obvious) catch is that this persistence level is set at the  DStream  level and applies to all the RDDs that make 
up that  DStream . From the figure, it is evident that each batch is a self-contained, end-to-end execution 
step. Applications make progress by repeatedly executing this batch model every time interval. The base 
class  DStream  has methods and functionality that apply to all variants. Each of its derived classes needs to 

http://dx.doi.org/10.1007/978-1-4842-1479-4_5
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implement three methods:  slideDuration() ,  dependencies() , and  compute() . The first method returns the 
time interval after which this  DStream  generates an RDD, and the second returns a list of its dependencies. 
 compute()     is the method that is invoked every batch interval to generate an RDD.  

  Figure 3-1.     DStream s: Standing on the shoulders of  RDDs  . Time is on the y-axis, and per-batch execution is on 
the x-axis.       

 The operations and transformations applied to  DStream s are similar if not identical to the ones 
for RDDs, such as  map() ,  reduce() ,  count() , and so on. As you see shortly, a few of them are unique to 
streaming analytics. But first, let’s walk through the execution of an application to get a feel for all the events 
that take place behind the scenes. 
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     The Anatomy of a Spark Streaming Application 
 Let’s dissect the  example   translation application:

    1.    Depending on the submission process, the driver program begins executing 
in either the user’s local machine or a cluster node. On execution, the driver 
program creates a new   StreamingContext    and connects to the Spark subsystem. 
Note that a  StreamingContext  can also be created from a checkpointed file or 
an existing  SparkContext .  Checkpointing  is the process of saving the state of 
the  StreamingContext  or a  DStream  to secondary storage. In case of  DStream s, 
checkpointing ensures that the root of the lineage graph remains within bounds. 
That is why checkpointing is a mandatory step for stateful  DStream  operations, as 
you see shortly. 

 Internally,  StreamingContext  creates a  SparkContext  object and a  JobScheduler  
object. The latter is used to ship streaming jobs to Spark.  

    2.    The rest of the lines before  start()  set up the computation but do not actually 
perform the execution. Let’s wait on those lines and first examine  start() . 
Behind the scenes,  start()  kicks off the execution of  JobScheduler , which 
in turn starts  JobGenerator. JobGenerator  is in charge of creating jobs from 
 DStream s, RDD checkpointing, and metadata checkpointing every batch interval. 
 awaitTermination()  uses a condition variable-like mechanism to block until 
either the application explicitly invokes  stop()  or the application is terminated.  

    3.    The first actual processing line to be executed is the creation of an input  DStream  
using  textFileStream() , which in turn invokes  fileStream(). fileStream()  
returns a  FileInputDStream  object.  

    4.      FileInputDStream    internally monitors the specified directory on the file system, 
and every batch interval picks up new files that have become visible. Each one of 
these files is turned into an RDD.  FileInputDStream  in its  compute()  methods 
returns a  UnionRDD  of all these files.  

    5.    Invoking  map()     on the  FileInputDStream  results in the creation of a 
 MappedDStream , which simply invokes the  map  function on the underlying RDD.  

    6.    Once the  map  function has finished execution,  saveAsTextFiles()  results in the 
invocation of  saveAsTextFile()  for each RDD in the  DStream .  

    7.    Steps 4 to 6 are repeated (potentially) forever.     

 Figure  3-2  shows the execution of a single batch. Each blue box represents a single  DStream  with a single 
RDD (because you only analyzed a single book). There are four  DStream s. The first contains a  UnionRDD  
for the input data.  textFileStream()  internally performs a map transformation to cull the key from the 
key-value pair of line number and line content. That accounts for the first  MapPartitionsRDD . It is worth 
highlighting that behind the scenes, an operation on a  DStream  invokes the same operation on its underlying 
RDDs. For example, a  map  on a  DStream  applies the  map  to each RDD in it. The second  map  operation is 
from line 30 of Listing  3-1 . The last  MapPartitionsRDD  is for the output operation on line 31 (internally, 
 saveAsTextFiles  makes a call to  saveAsTextFile  on each RDD, which in turn calls a  save  function for each 
partition in that RDD using a  map ).  
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 ■   Note   Figure  3-2  was obtained via the Spark UI. To view it, from the main UI page, click the application ID in 
the Running Applications section. Then jump to Application Detail UI, which takes you to the Spark Jobs page. 
Clicking any completed job enables you to view completed stages for that job. Clicking any stage lands you on 
the Details page (Figure  3-3 ) for that particular stage. The DAG Visualization option on this page generates the 
graph in Figure  3-2 . Chapter   7     digs into the specifics of the Spark UI.   

  Figure 3-2.    Visual depiction of the execution graph for a single  batch         

 

http://dx.doi.org/10.1007/978-1-4842-1479-4_7
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 One thing should be very evident from this walkthrough: a  DStream  is just a time-driven, logical 
wrapper around RDDs. In most situations, all operations are pushed down into the RDD layer, which allows 
Spark to support both batch and streaming models in the same system. 

 Similar to RDDs, many specialized variants of  DStream s exist. Table  3-4  lists some of the more 
popular ones.  

   Table 3-4.     Specialized  DStream s     

 DStream Type  Description 

  ConstantInputDStream    DStream  that returns the same RDD in every batch interval. This is useful for 
testing purposes. 

  FileInputDStream   Monitors a directory on the file system, and returns a  UnionRDD  for all new files 
in each batch interval. 

  ForEachDStream   Represents a  DStream  whose RDDs can have side effects. 

  FilteredDStream   Obtained as a result of applying a  filter  operation to a  DStream . 

  InputDStream   Base class for all  DStream s that fetch input from external sources by running a 
service in the driver program. 

  MappedDStream   Obtained as a result of applying a  map  operation to a  DStream . 

  SocketInputDStream   Represents RDDs created from reading data from a socket. Runs the 
connection on a worker node. 

  StateDStream   RDDs for this  DStream  are obtained by applying a stateful operation to the 
RDDs for the same  DStream  from the previous batch. 

  UnionDStream   Logical consolidation of many  DStream s. Created by invoking the  union()  
method exposed by  StreamingContext . 

  WindowedDStream   A  DStream  that returns all RDDs in a running-time window. 

  Figure 3-3.     Details page   for a stage       
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  DStream s that operate on top of key-value pairs can be obtained via an implicit conversion. Importing 
 PairDStreamFunction s enables this. 

 Let’s illustrate this via a concrete example using monthly comment dumps from Reddit, 4  which is akin 
to an online bulletin board. This dataset contains comments on the web site alongside metadata. Each line 
consists of a single JSON object with data including  author ,  body ,  subreddit_id , and so on; Table  3-5  lists 
some of the fields. 5  Assume that an external process copies this dump to the target folder periodically.  

   Table 3-5.    Important Fields from the  Reddit Dataset     

 Field Name  Type  Description 

  author   String  The name of the comment poster 

  created_utc   Long  The comment timestamp in UTC epoch-second format 

  body   String  The body of the comment 

  subreddit   String  The subreddit (Reddit speak for  topic ) the comment belongs to 

   4     http://files.pushshift.io/reddit/comments/monthly     .  
   5  The complete list of fields is available at    https://github.com/reddit/reddit/wiki/JSON     .  
   6  gzip files cannot be split, but bzip2 and LZO are splittable.  

 Download a few of the files from the dump, and copy them to HDFS at  inputPath . Listing  3-2  contains 
code to read this dataset. 

      Listing 3-2.    Reading the Reddit Hourly Dumps   

 val comments = ssc.fileStream[LongWritable, Text, TextInputFormat](inputPath, (f: Path) => 
 true , newFilesOnly= false ).map(pair => pair._2.toString)   

   You use  fileStream()  explicitly instead of  textFileStream()  because the latter only reads files that 
have been recently added to the input folder. In this case, because you copied the files offline, you need to 
read existing files. You use  fileStream() , set  newFilesOnly  to  false , and use  LongWritable  as the key and 
 Text  as the value.   TextInputFormat    also decompresses the input files, which is why you can directly feed it 
 .gz  files. Setting  newFilesOnly  to  false  ensures that you also read existing files. There is a catch, though: 
you only read files that you added in the last 60 seconds. This is decided by the configuration parameter 
 spark.streaming.minRememberDuration . You can either increase its value beyond 60 or, alternatively,  touch  
the files to update their timestamps to fall in the 60-second window. 

 To illustrate the creation of a key-value  DStream , let’s index each record by using the author ID as key. 
As shown in Listing  3-3 , you first use  json4s  to parse each record and get the author ID in the  map  function. 
You output a 2-tuple where the author ID is the key and the record itself is the value; creating a key-value 
 DStream  is just a matter of returning a 2-tuple from a transformation. 

     Listing 3-3.    Indexing Each Record by Author  ID     

 val keyedByAuthor = comments.map(rec => ((parse(rec) \ "author").values, rec))   

   It you’re really curious and astute, you will have noticed that each RDD in this example contains 
only a single partition; but if you uncompress the files manually and rerun the application, the number 
of partitions goes up. This is because for uncompressed files, each HDFS split is turned into a partition. 
Compressed files, 6  on the other hand, are unsplittable, so each file results in a single partition. This obviously 
results in suboptimal parallelism. The solution is to repartition the  DStream  and its underlying RDDs. You 
will see an example of that shortly. 

http://files.pushshift.io/reddit/comments/monthly
https://github.com/reddit/reddit/wiki/JSON
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 ■   Note   Compressed files, such as gzipped ones, are not splittable and hence result in a single RDD partition. 
A good practice is to repartition such a  DStream  manually after creating it.   

     Transformations 
 Like RDD transformations,  DStream  transformations can be clumped together on the basis of their 
functionality. The categories are mapping, variation, aggregation, key-value, windowing, and miscellaneous. 
Let’s walk through each category in turn by using the Reddit dataset. Note that to view the output, this 
section assumes you are using  saveAsTextFiles()  on the resulting  DStream . You will see other  DStream  
actions in the next section. 

    Mapping 
   map[U](function): DStream[U] 

 Applies the user-provided  function  to each element in the  DStream  to construct a new  DStream . 
 Listing  3-4  lets you group the comments by day. It uses a  map  function to convert the  created_utc  

field—which is a Unix timestamp—into a date and returns that as the key. A subsequent transform can 
perform the actual grouping. 

      Listing 3-4.    Using a  Map   to Convert  created_utc  to  Date    

 1.   val sdf =  new  SimpleDateFormat("yyyy-MM-dd")   
 2.   val tsKey = "created_utc"   
 3.   val secs = 1000L   
 4.   val keyedByDay = comments.map(rec => {   
 5.       val ts = (parse(rec) \ tsKey).values   
 6.           (sdf.format( new  Date(ts.toString.toLong * secs)), rec)   
 7.   })   

     mapPartitions[U](function): DStream[U] 
 Applies the user-provided  function  to each partition in the RDDs that constitute this  DStream  
(see Listing  3-5 ). 

     Listing 3-5.    Using mapPartitions to convert “created_utc” per partition to Date   

 1.   val keyedByDay = comments.mapPartitions(iter => {   
 2.       var ret = List[(String, String)]()   
 3.                while  (iter.hasNext) {   
 4.                   val rec = iter.next   
 5.                           val ts = (parse(rec) \ tsKey).values   
 6.                           ret .::= (sdf.format( new  Date(ts.toString.toLong * secs)), rec)   
 7.               }   
 8.       ret.iterator        
 9.   })   
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   This code is more efficient than Listing  3-4  for two reasons:

•    The number of function invocations is lower.  

•   The  SimpleDateFormat (sdf) ,  String  ( tsKey ), and  Long  ( secs ) objects are shipped 
out to workers for each partition instead of each element.     

   flatMap[U](function): DStream[U] 
 Applies the user-provided  function  to each element in the  DStream  and then flattens out the content. 

 To highlight the difference between a regular  map  and a  flatMap , it is useful to look at an example. 
Suppose you want to spit out the body of the comments as newline-separated words. Using a regular  map  
(Listing  3-6 ) does not achieve this, because the content of the  DStream  is an array of strings for each record. 

     Listing 3-6.    Attempt at Mapping the Record Body into Words   

 1.   val wordTokens = comments.map(rec => {   
 2.         ((parse(rec) \ "body")).values.toString.split(" ")   
 3.   })   

   Alternatively, a  flatMap  (Listing  3-7 ) flattens out the array of strings so a subsequent write to file will 
result in one word per line. 

     Listing 3-7.     flatMap , Enabling the Contents of the Resulting  DStream  to Be Flattened   

 1.   val wordTokens = comments.flatMap(rec => {   
 2.         ((parse(rec) \ "body")).values.toString.split(" ")   
 3.   })   

      filter(function): DStream[T] 
 Uses the user-provided predicate  function  to filter out elements that do not match the condition. Listing  3-8  
showcases a  filter  operation that only keeps comments from the AskReddit subreddit. 

     Listing 3-8.    Filtering Out AskReddit Subreddits   

 1.   val filterSubreddit = comments.filter(rec =>    
 2.     (parse(rec) \ "subreddit").values.toString.equals("AskReddit")) 

      transform[U](function): DStream[U] 
 Allows arbitrary operations to be applied to each RDD in this  DStream . This is most useful when you need 
to use operations directly exposed by RDDs. For instance,  DStream s currently do not allow you to sort their 
elements, but RDDs do. Listing  3-9  uses that functionality to sort the records by author. 

     Listing 3-9.    Sorting RDDs by Author   

 1.   val sortedByAuthor = comments.transform(rdd =>    
 2.   (rdd.sortBy(rec => (parse(rec) \ "author").values.toString))) 
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         Variation 
    union(that: DStream[T]): DStream[T] 

 Returns the union of  this    DStream  with the passed one. The types of both  DStream s need to be the same. For 
instance, this can be used if you have to ingest the same dataset from multiple locations. Taking the union 
enables you to treat all those datasets as a single enveloped  DStream . Listing  3-10  shows an example. 

     Listing 3-10.    Taking the Union of Two  DStream s   

 val merged = comments.union(commentsFromNetwork)   

      repartition(numPartitions: Int): DStream[T] 

 Increases or decreases the number of partitions of each RDD in this  DStream . Listing  3-11  increases the 
number of partitions of the compressed dataset from Listing  3-2 . 

     Listing 3-11.    Increasing the Number of Partitions in a  DStream    

 val repartitionedComments = comments.repartition(4)   

      glom(): DStream[Array[T]] 

 Treats each partition in the underlying RDDs as an array. Although this increases the memory footprint 
of the operation, it decreases the amount of data that needs to be shuffled. It is largely useful to break out 
problems that first require determining the local result and then shuffling to perform an aggregation. A good 
example is trying to figure out the minimum  created_utc  timestamp in all the records (the earliest posted 
comment). The snippet of code in Listing  3-12  lets you calculate the minimum timestamp in each partition, 
which a subsequent aggregation can consume to give you a global minimum. 

     Listing 3-12.    Calculating the Minimum Timestamp in Each Partition   

 1.   val rddMin = comments.glom().map(arr =>    
 2.     arr.minBy(rec => ((parse(rec) \ "created_utc").values.toString.toInt))) 

        Aggregation 
    count(): DStream[Long] 

 Counts the number  of   elements in the RDDs of this  DStream . Under the hood, this uses a combination of  map , 
 transform , and  reduce  to achieve this calculation (see Listing  3-13 ). 

     Listing 3-13.    Counting the Number of Elements in Each RDD of This  DStream  per Batch   

 val recCount = comments.count()   

      countByValue(): DStream[(T, Long)] 

 Counts the frequency of each distinct element in the RDDs of this  DStream . Internally, this invokes a  map()  
followed by a  reduceByKey()  (see Listing  3-14 ). 
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     Listing 3-14.    Determines the Frequency of Each Distinct Record   

 val recCount = comments.countByValue()   

   The canonical MapReduce word-count application can be implemented by a  flatMap()  followed by 
 countByValue() .  

   reduce(reduceFunc: (T, T) ⇒ T): DStream[T] 

 Aggregates the values in each RDD into a single value by invoking  reduceFunc  on each pair of values. 
Listing  3-15  counts the total number of words in the body of all messages per batch using a  reduce . 

     Listing 3-15.    Counting the Total Number of Words in the Body   

 1.   val totalWords = comments.map(rec => ((parse(rec) \ "body").values.toString))   
 2.   .flatMap(body => body.split(" "))   
 3.   .map(word => 1)   
 4.   .reduce(_ + _) 

   The number of partitions and the partitioner for the reduction can also be tweaked by using overloaded 
variants of the same function.    

   Key-value 
    groupByKey(): DStream[(K, Iterable[V])] 

 Groups the values of each  key   in this  DStream . Listing  3-16  uses  groupBy  to count the number of comments 
published by each user and then sorts them by their frequency. 

      Listing 3-16.    Sorting Authors by the Number of Comments Posted   

 1.   val topAuthors = comments.map(rec => ((parse(rec) \ "author").values.toString, 1))   
 2.   .groupByKey()   
 3.   .map(r => (r._2.sum, r._1))   
 4.   .transform(rdd => rdd.sortByKey(ascending =  false )) 

      reduceByKey(reduceFunc: (V, V) ⇒ V): DStream[(K, V)] 

 Reduces the values for each key. Logically, this can be thought of as a  groupByKey()  followed by an 
aggregation. In practice, it is more efficient, especially in case of large datasets, because it minimizes 
the amount of data that needs to be transferred across the wire via the use of combiners. Listing  3-17  
reimplements the code from Listing  3-16  using  reduceByKey() . 

     Listing 3-17.    Sorting Authors by the Number of Comments Using  reduceByKey()    

 1.   val topAuthors = comments.map(rec => ((parse(rec) \ "author").values.toString, 1))   
 2.    .reduceByKey(_ + _)   
 3.    .map(r => (r._2, r._1))   
 4.    .transform(rdd => rdd.sortByKey(ascending =  false )) 
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      combineByKey[C](createCombiner: (V) ⇒ C, mergeValue: (C, V) ⇒ C, 
mergeCombiner: (C, C) ⇒ C, partitioner: Partitioner): DStream[(K, C)] 

 Combines the values by key by invoking user-defined accumulation and merge functions. 
 Arguments:

    1.      createCombiner   : Function to create the combiner  

    2.      mergeValue   : Function to accumulate the values of each partition  

    3.      mergeCombiner   : Function to merge two accumulators across partitions  

    4.      partitioner   : The partitioner to use     

 Every time a new key is encountered, the  createCombiner  method is called to spawn a new combiner 
instance for it. On subsequent encounters,  mergeValue  is used to accumulate its values. Once all keys have 
been exhausted,  mergeCombiner  is invoked to merge accumulators across partitions. 

 Unlike with  reduceByKey()  and its variants, the input and output types of the values can be different. 
Note that  reduce()  under the hood invokes  reduceByKey()  with the key as  null . In turn,  reduceByKey()  
calls  combineByKey()  by

•    Using the same types for input and output  

•   Using the same  reduceFunc  for both  mergeValue  and  mergeCombiner     

  combineByKey()  is useful to implement functionality that requires custom accumulation, such 
as calculating averages. Listing  3-18  ranks the users in the dataset based on the average length of their 
comments. 

     Listing 3-18.    Ranking Authors on the Basis of the Average Length of Their Comments   

 1.   val topAuthorsByAvgContent = comments.map(rec    
 2.            => ((parse(rec) \ "author").values.toString, (parse(rec) \ "body").values.

toString.split(" ").length))   
 3.   .combineByKey(   
 4.           (v) => (v, 1),   
 5.           (accValue: (Int, Int), v) => (accValue._1 + v, accValue._2 + 1),   
 6.            (accCombine1: (Int, Int), accCombine2: (Int, Int)) => (accCombine1._1 + 

accCombine2._1, accCombine1._2 + accCombine2._2),   
 7.            new  HashPartitioner(ssc.sparkContext.defaultParallelism)   
 8.           )   
 9.   .map({ case  (k, v) => (k, v._1 / v._2.toFloat)})   
 10.  .map(r => (r._2, r._1))   
 11.  .transform(rdd => rdd.sortByKey(ascending =  false )) 

      join[W](other: DStream[(K, W)]): DStream[(K, (V, W))] 

 Performs a join between this  DStream  and the  other  one. To illustrate this function, let’s use another dataset, 
which contains the 750 most popular subreddits as of 2014. 7  Each record contains the industry, subreddit 
URL, number of subscribers, and submission type. Your goal is to use this dataset to add an industry to each 
record in the original Reddit comments dataset. Listing  3-19  contains the code for this query. Note that 
 popular  is another  DStream  created via  fileStream() . 

   7  Scott Tousley, “750 Popular Subreddits, Categorized by Industry and Submission Type,”  Siege Media , updated April 11, 
2016,    www.siegemedia.com/popular-subreddits-by-industry     .  

http://www.siegemedia.com/popular-subreddits-by-industry
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      Listing 3-19.    Join Between Two  DStream s   

 1.    val keyedBySubreddit = comments.map(rec => (((parse(rec)) \ "subreddit").values.
toString, rec))   

 2.   val keyedBySubreddit2 = popular.map(rec => ({   
 3.     val t = rec.split(",")   
 4.     (t(1).split("/")(4), t(0))   
 5.     }))   
 6.   val commentsWithIndustry = keyedBySubreddit.join(keyedBySubreddit2)   

   Methods also exist for performing  fullOuterJoin ,  leftOuterJoin , and  rightOuterJoin .  

   cogroup[W](other: DStream[(K, W)]): DStream[(K, (Iterable[V], Iterable[W]))] 

 Groups elements that share the same key across  DStream s (and their RDDs). It can be thought of as a combination 
of a  group by  and  join . Listing  3-20  has the same logic as Listing  3-19  but uses a  cogroup  instead of  join . 

     Listing 3-20.    Cogrouping Two Datasets   

 1.    val keyedBySubreddit = comments.map(rec => (((parse(rec)) \ "subreddit").values.
toString, rec))   

 2.   val keyedBySubreddit2 = popular.map(rec => ({   
 3.     val t = rec.split(",")   
 4.     (t(1).split("/")(4), t(0))   
 5.     }))   
 6.   val commentsWithIndustry = keyedBySubreddit.cogroup(keyedBySubreddit2) 

      updateStateByKey[S](updateFunc: (Seq[V], Option[S]) ⇒ Option[S]): 
DStream[(K, S)] 

 Updates the state of each key in the  DStream  using  updateFunc . Can be used to maintain arbitrary state 
for each key across batches. For example, if you wanted to maintain a list of the number of comments 
per subreddit topic, you would implement something along the lines of the code in Listing  3-21 . Because 
 updateStateByKey()  is a stateful operation, 8  checkpointing needs to be enabled (line 2). 

      Listing 3-21.     updateStateByKey()  as a Means to Maintain State Across Batches   

 1.   val checkpointPath = ....   
 2.   ssc.checkpoint(checkpointPath)   
 3.   val updateFunc = (values: Seq[Int], state: Option[Int]) => {   
 4.     val currentCount = values.sum   
 5.     val previousCount = state.getOrElse(0)   
 6.     Some(currentCount + previousCount)   
 7.   }   
 8.    val keyedBySubreddit = comments.map(rec => (((parse(rec)) \ "subreddit").values.

toString, 1))   
 9.   val globalCount = keyedBySubreddit.updateStateByKey(updateFunc)   
 10.  .map(r => (r._2, r._1))   
 11.  .transform(rdd => rdd.sortByKey(ascending =  false )) 

   8  Checkpointing is required for all stateful operations.  



CHAPTER 3 ■ DSTREAMS: REAL-TIME RDDS

46

   The return type of the  update  method is  Option  because in the first batch,  state  is  None . The 
 updateFunction  takes as input the current state of each key in the form of  Seq[V] . This first argument is a 
sequence because there may be many values for the same key in a batch. The second argument is an  Option  
with the previous state of the key. The new state is simply the sum of the previous and the current states. 

 A variant of  upstateStateByKey()  also takes in an initial RDD that is used to seed the first batch. This 
can be used to use precomputed state. Keys can also be added and removed in every batch. Chapter   6     
analyzes  updateStateByKey()  in detail where you look at the different ways to maintain batch-invariant state.  

 ■   Note   The number partitions or the default partitioner for each key-value operation can be provided by 
using overloaded methods.    

   Windowing 
  Real-time analytics  also   require applying queries to temporal and spatial windows of streaming data. 
Examples of such queries include spitting out the number of users in a particular cellular base station in 
the last 15 minutes, determining the number of tweets sent for a particular hash tag in a 30-minute time 
window, and raising a flag every time 1 million distinct orders are placed on an e-commerce web site. 

   window(windowDuration: Duration, slideDuration: Duration): DStream[T] 

 Accumulates values in a window for  windowDuration  time and slides the window forward every 
 slideDuration . Both  windowDuration  and  slideDuration  need to be multiples of the batch interval. If 
you want to figure out the frequency of comments in all subreddits in a 5-second window, you can use 
something similar to Listing  3-22 . The windowing logic in simple English can be read as “flush 5 seconds of 
data every 5 seconds.” 

       Listing 3-22.    Counting the Number of Distinct Times a Subreddit Was Commented On in a Window   

 1.    val distinctSubreddits = comments.map(rec =>((parse(rec)) \ "subreddit").values.
toString)   

 2.   val windowedRecs = distinctSubreddits.window(Seconds(5), Seconds(5))   
 3.   val windowedCounts = windowedRecs.countByValue() 

   If  slideDuration  is not provided, the value of the batch interval is used instead. Figure  3-4  illustrates 
the windowing operation from Listing  3-22 .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_6
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 Each individual square on the x-axis represents an RDD, and the entire array represents a  DStream . 
Time is on the y-axis with a batch interval of 1 second. Green RDDs are present in the current window, 
whereas blue ones are pending. Red RDDs are currently in processing, and grey ones have been evicted. 
With a slide duration of 5, the first time the RDDs in the window are processed is in batch interval 5. After 
that, all the in-window RDDs are evicted. The window is refilled again until batch interval 10, when it is 
processed again, and so on. Figure  3-5  illustrates the processing with a slide interval of 2 seconds.  

  Figure 3-4.    Window with a window duration and slide duration of 5 seconds       
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 Changing the slide interval to 2 enables the window to be processed every 2 seconds, meaning it slides 
forward every 2 seconds. Note that until batch interval 6, the number of RDDs in the window is fewer than 
5, but from that point onward—once the window has filled up—5 RDDs are processed every 2 seconds. Also 
note that these windows are overlapping. 

 There are also a number of convenience methods that clump the specific logic with a windowing 
operation. The names are self-explanatory: 

    reduceByWindow(reduceFunc: (T, T) ⇒ T, windowDuration: Duration, slideDuration: Duration): 
DStream[T]  
  countByWindow(windowDuration: Duration, slideDuration: Duration): DStream[Long]  
  countByValueAndWindow(windowDuration: Duration, slideDuration: Duration): DStream[(T, Long)]  
  groupByKeyAndWindow(windowDuration: Duration, slideDuration: Duration): DStream[(K, 
Iterable[V])]  
  reduceByKeyAndWindow(reduceFunc: (V, V) ⇒ V, windowDuration: Duration, slideDuration: 
Duration): DStream[(K, V)]  

  Figure 3-5.    Window with window duration of 5 seconds and slide interval of 2 seconds       
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        Actions 
 Actions trigger the execution of Spark Streaming jobs and, in pure functional speak, result in side-effect 
generation that may be external I/O or data ingestion into the driver. Each action internally creates a new 
 Streaming  job instance and passes it to  StreamingContext , which in turn passes it the scheduler back end. 

   print(num: Int): Unit 

 Prints the first  num  number of elements to standard output of all RDDs in this  DStream  every batch interval.  

   print(): Unit 

 Prints the first ten elements of each RDD to standard output (see Listing  3-23 ). Internally invokes  print(10) .  

   saveAsObjectFiles(prefix: String): Unit 

 Saves each RDD as a serialized object (see Listing  3-23 ). The convention for the output files and location is 
 prefix-TIME_IN_MS  in every batch. An optional suffix argument changes the convention to  prefix-TIME_
IN_MS.suffix .  

   saveAsTextFiles(prefix: String): Unit 

    Saves each RDD as a text file (see Listing  3-23 ). The naming convention is the same as for  saveAsObjectFiles() . 

  Listing 3-23.    Output Operations Applied to Listing  3-22    

 1.   windowedCounts.print(10)   
 2.   windowedCounts.saveAsObjectFiles("subreddit", "obj")   
 3.   windowedCounts.saveAsTextFiles("subreddit", "txt")   

      saveAsHadoopFiles[F <: OutputFormat[K, V]](prefix: String, suffix: String): 
Unit 

 Saves each RDD as a Hadoop file parameterized with  K, V  (see Listing  3-24 ). Use this function if custom 
types for  key  and  value  are used by the  DStream .  

   saveAsNewAPIHadoopFiles[F <: OutputFormat[K, V]](prefix: String, suffix: 
String): Unit 

 Same as  saveAsHadoopFiles() , but uses the new Hadoop API introduced in version 0.21 (see Listing  3-24 ). 

      Listing 3-24.    Output Operations Applied to Listing  3-21    

 1.   globalCount.saveAsHadoopFiles("subreddit", "hadoop",    
 2.       classOf[IntWritable], classOf[Text], classOf[TextOutputFormat[IntWritable, Text]])   
 3.   globalCount.saveAsNewAPIHadoopFiles("subreddit", "newhadoop",    
 4.       classOf[IntWritable], classOf[Text], classOf[NewTextOutputFormat[IntWritable, Text]]) 
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      foreachRDD(foreachFunc: (RDD[T]) ⇒ Unit): Unit 

 Applies an operation to each RDD in the  DStream . Used for enabling side effects such as writing to external 
data sinks or to maintain a global count. All actions listed previously use  foreachRDD  in some form. In 
contrast to  transform() , which applies an operation to each RDD but returns a  DStream ,  foreachRDD  
only emits side effects. Let’s assume that you want to emit the number of elements in each RDD to a log 
for auditing and monitoring. Listing  3-25  shows how you can achieve this by using a custom Logger and a 
 foreachRDD . 

     Listing 3-25.    Using a  foreachRDD  to Emit Data to a Logger   

 1.   val LOG = LogManager.getLogger( this .getClass)       
 2.   comments.foreachRDD(rdd => {   
 3.     LOG.info("RDD: %s, Count: %d".format(rdd.id, rdd.count()))   
 4.   })   

     foreachRDD    is a powerful external primitive. Chapter   6     analyzes more of its design patterns while 
looking at side effects.     

     Summary 
  DStream s constitute the basic building blocks of stream processing in Spark Streaming. They reside on 
top of RDDs and the underlying processing engine to enable streaming applications via the micro-batch 
processing model. Applications directly transform and manipulate  DStream s while the subsystem seamlessly 
applies these operations to RDDs under the hood. Data can be ingested from and written back to a large 
variety of solutions, including HDFS, sockets, and Akka actors. The simple transformations and abstractions 
provided by the API can be mixed and matched to create rich real-time processing pipelines. These pipelines 
achieve processing on the terabyte scale while driving the business processes of well-known companies 
including Netflix, Uber, Shazam, and Pinterest. 9  Now that you have a basic handle on Spark Streaming as a 
whole, the next step is to learn its best practices, which is the goal of the next chapter.      

   9  Tathagata Das, “Spark Streaming: What Is It and Who’s Using It?”  Datanami , November 30, 2015, 
   www.datanami.com/2015/11/30/spark-streaming-what-is-it-and-whos-using-it/     .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_6
http://www.datanami.com/2015/11/30/spark-streaming-what-is-it-and-whos-using-it/
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    CHAPTER 4   

 High-Velocity Streams: 
Parallelism and Other Stories                          

    If you wish to make an apple pie from scratch, you must first invent the universe.  

 —Carl Sagan,  Cosmos    

 To analyze data in motion, you must first invent the Big Data ecosystem. In this ecosystem, designing and 
implementing a streaming application is easy. Making it ready for prime time, on the other hand, is much 
harder due to the scale of the data, the complexity of the application, and the richness of the setup: every 
application has a plethora of moving parts. It is extremely nontrivial to optimize each application because 
of the plurality of knobs and their interplay. To engender applications that scale with the input and are 
production ready, you must have the right tools and the knowledge to use those tools, as well as insight 
into the inner wirings of the target system. Having gotten a taste for real-time data processing the Spark 
Streaming way, you are now ready to take a deep dive into its internals. 

 The previous chapter used hourly data dumps from Reddit to drive the discussion. Following the 
same mantra, this chapter has a scientific theme: analyzing streaming data from the Voyager 1 space 
probe. The chapter kicks off with the most important topic in distributed systems: parallelism. The various 
configuration parameters exposed by both Spark and its streaming layer are also on the menu. Most 
importantly, common design patterns and best practices come under discussion along the way. 

      One Giant Leap for Streaming Data 
 On August 25, 2012, Voyager 1 left the heliosphere 1  and became the first manmade object to cross the 
Rubicon of interstellar space. Like every NASA spacecraft, Voyager 1 is instrumented with hundreds of 
sensors that generate a large amount of  data  . These sensors include imaging systems, spectrometers, and 
plasma wave sensors. This data is relayed over 18 billion kilometers with a latency of close to a day. The size 
of the data directly generated by the sensors 2  and also post analysis is on the terabyte scale. 

   1  The spherical like region that defines the reach of plasma or “solar wind” from the Sun. Anything beyond that is 
interstellar space.  
   2  One of the most iconic images of Earth, “ Pale Blue Dot ”, was taken by Voyager 1:    https://en.wikipedia.org/
wiki/Pale_Blue_Dot     .  

https://en.wikipedia.org/wiki/Pale_Blue_Dot
https://en.wikipedia.org/wiki/Pale_Blue_Dot
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    Table 4-1.    Fields in the  Voyager 1 Dataset     

 #  Description  Unit 

 1  Year  Year 

 2  Seconds of the year  Seconds 

 3  Heliocentric distance  AU 4  

 4  Heliographic inertial (HGI) latitude of the spacecraft position at the start of the 
data interval 

 Degrees 

 5  HGI longitude of the spacecraft position at the start of the data interval  Degrees 

 6  B field magnitude  nT 5  

 7  Magnitude of the average field  nT 

 8  BR (radial magnetic field) in the radial-tangential-normal (RTN) coordinate 
system (without uncertainty) 

 nT 

 9  BR with uncertainty  nT 

 10  BT (tangential magnetic field) in the RTN coordinate system (without 
uncertainty) 

 nT 

 11  BT with uncertainty  nT 

 12  BN (normal magnetic field) in the RTN coordinate system (without uncertainty)  nT 

 13  BN with uncertainty  nT 

 14  Bulk flow speed  Km/s 

 15  THETA—elevation angle of the velocity vector (RTN)  Degrees 

 16  PHI—azimuth angle of the velocity vector (RTN)  Degrees 

 17  Proton density  Cc/n 

 18  Proton temperature  Kelvin 

   3     http://cdaweb.gsfc.nasa.gov/     .  
   4  Astronomical units: the mean distance between the Sun and Earth.  
   5  Nano Tesla: strength of the magnetic field.  

 In addition to entering interstellar space, other milestones for the probe include entering an asteroid 
belt and observation of Jupiter and Saturn. So how did NASA scientists figure out that Voyager 1 had exited 
the heliosphere? By analyzing the data relayed by its sensors. In the spirit of that momentous event in 
human history—and to pay homage to Carl Sagan, a personal hero of mine—this chapter uses data from 
Voyager 1 as a running data source. 

 The dataset spans roughly 37 years (1977–2014) and is available as open data from the NASA CDAWeb 
web site. 3  Each hourly record in the dataset contains 29 attributes including distance from the Sun, proton 
density, and azimuth angle (presented in Table  4-1 ). The data used in this chapter was downloaded from 
February 14 1990—the day Voyager 1 snapped the  Pale Blue Dot  picture—until December 31, 2014, in the 
form of a TSV. Although it only spans a few hundred megabytes, it is a good illustrative example of the sort of 
data and applications that the scientific community has to deal with on an almost daily basis. To appreciate 
the scale of some of these problems, consider the Square Kilometer Array project, which is slated to produce 
1 exabyte of data every day starting in 2020.   

(continued)

http://cdaweb.gsfc.nasa.gov/
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 #  Description  Unit 

 19  Proton flux 0.57—1.78 energy bins, MeV, 6  LECP 7   pfu 8  

 20  Proton flux 3.40—17.6 energy bins, MeV, LECP  pfu 

 21  Proton flux 22.0—31.0 energy bins, MeV, LECP  pfu 

 22  Proton flux 1.894—2.605 energy bins, MeV, CRS 9  (6-hr 10 )  pfu 

 23  Proton flux 4.200—6.240 energy bins, MeV, CRS (6-hr)  pfu 

 24  Proton flux 3.256—8.132 energy bins, MeV, CRS (6-hr)  pfu 

 25  Proton flux 3.276—8.097 energy bins, MeV (6-hr)  pfu 

 26  Proton flux 6.343—42.03 energy bins, MeV (6-hr)  pfu 

 27  Proton flux 17.88—26.81 energy bins, MeV (6-hr)  pfu 

 28  Proton flux 30.29—69.47 energy bins, MeV (6-hr)  pfu 

 29  Proton flux 132.8—242.0 energy bins, CRS (6-hr)  MeV 

Table 4-1. (continued)

      Parallelism 
 Recall from Chapter   2     that a Spark application consists of jobs that in turn are divided into stages. The actual 
entity that is executed on worker nodes is a task, which is a pipeline of multiple transforms in the same 
shuffle region. The natural question to ask is, “How do you control the number of instances of each entity?” 
And, more important, “How do you achieve an optimal value for each?” Let’s try to find the answer. 

      Worker 
 A   worker    is a control process that runs on a cluster node. Note that workers are only launched directly 
in standalone cluster mode. When using a cluster manager, such as YARN or Mesos, this functionality 
is delegated to its entities. For instance, under YARN, the  NodeManager  performs the role of the worker. 
Therefore, the following worker parallelism discussion only applies to standalone cluster mode. 

 By default, Spark executes one worker process per node. For most setups, this number suffices, but this 
is suboptimal in cases where workers have a large amount of memory. This is the case pre-Spark 1.4, 11  where 
it leads to two shortcomings: 12 

•    Frequent JVM garbage collection hurts performance.  

   6  Million electron volts: the energy of particles.  
   7  Low energy charged particle: galactic cosmic radiation at low energy.  
   8  Particle flux unit: the rate of transfer of particles through a unit area.  
   9  Cosmic ray subsystem: high-energy particles in plasma.  
   10  6-hour resolution.  
   11  Pre-Spark 1.4, a worker in standalone mode could execute only a single executor (   https://issues.apache.org/jira/
browse/SPARK-1706     ). Users of older versions also had to execute multiple workers per node to run multiple executors.  
   12  “Multiple Spark Worker Instances on a Single Node. Why More of Less Is More Than Less,” Sonra, June 3, 2015, 
   http://sonra.io/multiple-spark-worker-instances-on-a-single-node-why-more-of-less-is-more-than-less/     .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_2
https://issues.apache.org/jira/browse/SPARK-1706
https://issues.apache.org/jira/browse/SPARK-1706
http://sonra.io/multiple-spark-worker-instances-on-a-single-node-why-more-of-less-is-more-than-less/
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•   Compressed oops 13  cannot be used for heap size greater than 32 GB. In this situation, 
it is useful to run more than one worker JVM to amortize the cost of garbage collection 
across them and to enable compressed oops. The environment variable  SPARK_
WORKER_INSTANCES  dictates the number of worker processes per node. This can be set 
directly either in the terminal environment or in  $SPARK_HOME/conf/spark-env.sh .    

 If you choose to set  SPARK_WORKER_INSTANCES  to greater than 1, you also need to adjust the CPU 
assignment for each worker via  SPARK_WORKER_CORES . A good rule of thumb is to keep  SPARK_WORKER_CORES  
×  SPARK_WORKER_INSTANCES  equal to the total number of cores on each node; otherwise, workers may 
interfere with each other, because as by default each worker greedily uses all the available cores. Similarly, 
the memory allocation of each worker (decided by  SPARK_WORKER_MEMORY ) should be adjusted accordingly, 
because each worker is by default configured to use all the memory minus 1 GB. 14  

 Note that this is not a problem in Spark 1.4 and beyond, because multiple executors are executed in the 
same worker process.  

      Executor 
 An   executor    is a JVM process that executes on each worker. An executor is exclusive to an application, and a 
typical application runs many executors. In turn, a worker can execute multiple executor processes at a time. 
Table  4-2  enumerates the various configuration parameters that affect the number of executors and their 
resource allocation.  

   Table 4-2.    Setting Resource Allocation for Applications and Executors   

 Configuration Parameter  Description  Default Value (YARN)  Default Value (Standalone) 

  spark.executor.cores   Number of cores per 
executor 

 1  All cores 

  spark.executor.memory   Amount of memory per 
executor 

 512 MB  512 MB 

  spark.cores.max   Number of cores per 
application across the 
cluster 

 Not used   spark.deploy.
defaultCores  

  spark.deploy.
defaultCores  

 Number of cores per 
application across the 
cluster in standalone 
mode 

 Not used  All cores 

  spark.executor.
instances  

 Number of executors per 
application 

 2  Not used 

  spark.
dynamicAllocation.
enabled  

 Scales the number 
of executors for an 
application up and down 
based on workload 
heuristics 

 false  Not used 

   13  Compressed oops is a technique used by modern JVMs to compress ordinary object pointers, leading to efficient 
memory packing.  
   14  This memory is reserved for the OS and other services.  
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 In standalone mode, the number of executors is determined by  spark.cores.max  and  spark.executor.
cores . For instance, with a cluster of two machines where each machine has four cores and  spark.
executor.cores  is 2 and  spark.cores.max  is 4, each application gets two executors. 

      Choosing the Number of Executors 
 The following rules of thumb should be followed when carving the cluster into  executors: 15   

•    Leave some resources for the OS and other services on each node: at least 1 CPU 
and 1 GB.  

•   If running under YARN, also account for the application master.  

•   If using pre-1.4 Spark, do not create large executors, because they lead to frequent 
JVM garbage-collection pauses and other JVM issues. Similarly, try not to create very 
small executors, because broadcast variables are always executor local, leading to 
unnecessary data copying.  

•   Be mindful of the data requirements of each application. For instance, an application 
that processes 1 billion records per second should obviously have more resources 
than one that processes a few thousand. The data-ingestion rate should also be used 
as a proxy to work out the number of executors.     

      Dynamic Executor Allocation 
 In most cases, you do not know the resource requirements of applications up front. Therefore, it is 
nontrivial and also suboptimal to divvy up resources between executors. Overallocating resources leads 
to underutilization, whereas underallocation leads to data loss—especially in streaming applications, 
which are dynamic and have strict latency and quality-of-service requirements. For instance, a streaming 
application might experience traffic spikes that would require more resources to process. In such situations, 
elasticity is key. That is where the dynamic resource allocation service introduced in Spark 1.2 comes in. 
It enables Spark to dynamically scale the number of executors up and down in reaction to application 
semantics. Currently, this feature is only supported for YARN, but it is slated for standalone execution as well 
in a future release. 

  Dynamic executor allocation   can be enabled by setting the configuration parameter  spark.
dynamicAllocation.enabled  to  true . To explain the algorithm behind this allocation and its associated 
parameters, let’s look at an example. Imagine your streaming application is analyzing data from Voyager 1 
and it encounters a previously undiscovered celestial body. Also imagine that Voyager 1 is configured to turn 
on extra sensors when such an event takes place. Any increase in the data rate as well as data volume will 
start to stress your existing executors which will cause build up of tasks in the queue. 

 When tasks begin pending for  spark.dynamicAllocation.schedulerBacklogTimeout , a request 
for extra executors will be sent out. If there are still pending tasks after the first set of extra executors 
have been assigned, requests for executors will be fired off regularly at  spark.dynamicAllocation.
sustainedSchedulerBacklogTimeout . The metric for the number of requested executors is very similar to 
TCP slow start: the number of requested executors increases exponentially (1, 2, 4, 8, and so on). 

   15  Dedicate resources on one machine for the Spark master in case of standalone deployment and the resource manager in 
case of YARN.  
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 Once the spike in data from the unusual encounter has subsided, Voyager 1 will return to sending data 
at its normal rate. Executors that are idle for  spark.dynamicAllocation.executorIdleTimeout  time will 
simply be reclaimed by YARN. It is important to highlight that under normal circumstances, the shuffle 
operation is enabled by an executor. This is in tension with dynamic allocation/deallocation wherein 
executors are spawned and reaped on demand, which may lead to the output of  map  tasks being lost. 
Therefore, with dynamic executor allocation, an external shuffle service needs to be used. 16    

      Task 
  Tasks  in Spark are the unit of execution.  Tasks   execute as threads instead of processes in the executor, 
to enable in-memory RDDs. By default, there is a one-to-one mapping between a core and a task. This 
number can be increased via the configuration parameter  spark.task.cpus . Use this setting for heavy-duty, 
CPU-bound tasks. Examples of such operations include compression and matrix multiplication. Matrix 
multiplication has a number of applications, such as solving a system of linear equations. For instance, 
if your application needs to calculate the orbit of Voyager 1 based on its data, you need to use Lambert’s 
method of orbit determination using position and velocity (information available in the dataset). This boils 
down to a matrix multiplication problem. In such a case, you need to increase  spark.task.cpus  beyond 1. 

 On the flip side, to interleave the execution of multiple tasks atop the same CPU, you need to overcommit 
the CPU. This scenario is applicable to tasks that are I/O or memory bound. For instance, post-analysis, if you 
want to archive Voyager 1 data in, say, Amazon’s S3, the final  foreachRDD  tasks will be I/O bound, especially 
if your streaming application resides in a non-Amazon cluster due to network latency. If you want a CPU 
overcommit factor of 2, you set  SPARK_WORKER_CORES  ×  SPARK_WORKER_INSTANCES  to twice the number of cores. 

      Parallelism, Partitions, and Tasks 
 Task parallelism is the single most important factor when it comes to performance in Spark Streaming. 
Finding the optimum value is nontrivial: setting it too high leads to contention, whereas setting it too low 
results in underutilization of resources. 

 You know that each  DStream  is made up of RDDs that in turn are made up of partitions. Each partition 
is a self-contained piece of data, which is operated on by a task. Therefore, there is an almost one-to-one 
mapping between the number of partitions in an RDD and the number of tasks. In a typical setting, the 
number of partitions in a stage (and, in turn, its parallelism) remains the same. This is known as a   narrow 
dependency   : a partition gets its data from a single partition in the preceding transformation, leading to 
pipelined execution. This applies to  map() ,  flatMap() ,  filter() ,  union() , and so on.  coalesce()  with 
shuffle set to  false  also results in a narrow dependency even though it takes in multiple partitions. 

 The number of tasks across partitions can vary, which results in a  wide dependency : a partition reads 
in records from multiple partitions in the preceding transformation. This applies to all  *ByKey  operations, 
such as  groupByKey() and  reduceByKey() ; joining operations, such as  join() ,  cogroup() , and so on; and 
 repartition() . Let’s go through an example to drive home the point. 

 The code in Listing  4-1  enables you to gauge the presence of a solar particle event 17  based on the data from 
Voyager 1. Solar particle events are caused by accelerated particles, such as protons emitted by the Sun. A solar 
storm can disrupt communication and can become a radiation hazard to spaceships. Attributes 19 to 29 in 
Table  4-1  represent proton  flux   readings binned by energy. Your goal is to find the distribution of solar storms 
across years. Let’s use an overly sensitive threshold of 1.0 pfu for any one of the energy bins for storm detection. 
To minimize the amount of data per record up front, you perform a projection to keep only year and energy 
bins (lines 3–4). The next step is to filter out records that do not reach the threshold of 1.0 (line 5). Following this, 
records are grouped by year, aggregated, and sorted (lines 5–7). You finally write the output to a directory (line 7). 

   16  More details about using an external shuffle service are available at    https://spark.apache.org/docs/latest/
job-scheduling.html#dynamic-resource-allocation     .  
   17  “Solar Particle Event,”  Wikipedia ,    https://en.wikipedia.org/wiki/Solar_particle_event     .  

https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://en.wikipedia.org/wiki/Solar_particle_event
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          Listing 4-1.    Yearly Histogram of Proton Flux Events (pfu > 1.0)   

 1.   val voyager1 = ssc.textFileStream(inputPath)    
  2.   voyager1.map(rec => {    
  3.     val attrs = rec.split("\\s+")    
  4.     ((attrs(0).toInt), attrs.slice(18, 28).map(_.toDouble))    
  5.   }).filter(pflux => pflux._2.exists(_ > 1.0)).map(rec => (rec._1, 1))    
  6.     .reduceByKey(_ + _)    
  7.      .transform(rec => rec.sortByKey(ascending =  false , numPartitions = 1)).

saveAsTextFiles(outputPath)    

    Figure  4-1  presents the dependencies for the code in Listing  4-1 . Transforms with the same color reside 
in the same narrow dependency zone, and a color transition represents a wide dependency. For instance, 
partitions that constitute RDDs, which in turn reside in the  MappedDStream  emitted by the first  map , are 
filtered, as is by the  filter  operator. In contrast, each task of the  reduceByKey  operator needs all instances 
of the keys in its partition space, which could potentially be present in each partition of its preceding 
 MappedDStream . Note that this example ignores the internal transformations that are carried out by the input 
source and the output action.      

  Figure 4-1.    Dependency graph of the solar event distribution application.  DStream s with the same color reside 
in the same dependency zone. Additionally, straight arrows represent a narrow dependency, and crossed 
arrows represent a wide dependency (or a shuffle operation).       

   Task Parallelism 
 The number of partitions dictates the number of tasks assigned to each  DStream . Put differently,   DStream  
parallelism   is a function of the number of partitions. This number depends on the dependency type: the 
number of partitions across the  DStream s that fall in a narrow dependency zone remains the same, but it 
changes across a shuffle zone due to a wide dependency. This is illustrated in Figure  4-2  for the same sample 
code. The input  DStream  has eight partitions, each corresponding to an HDFS split. The same number of 
partitions propagates until  reduceByKey , which necessitates a shuffle operation. The number of partitions 
for shuffle operations is dictated by either  spark.default.parallelism  (details in Table  4-3 ) or the number 
of maximum partitions in the RDDs that constitute the parent  DStream  if  spark.default.parallelism  is not 
set. Additionally, this number can be tweaked by explicitly passing a parallelism value to the transformation. 
This is useful when you know that the amount of data after the transformation will expand or shrink. For 
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instance,  reduceByKey  in Listing  4-1  shrinks the number of data records to a number per year, and keeping 
four partitions for a handful of data records is a waste. Therefore, you explicitly pass a value of 1 to the 
 sortByKey  transform.   

 In some cases, it is also useful to increase the number of partitions, primarily because fewer partitions 
means more frequent garbage collection and regular spills to disk, leading to suboptimal performance. 18  
Increasing the number of partitions can be achieved either by passing an explicit parallelism value to the 
transformation or by invoking the  repartition()  transformation downstream. Alternatively, you can 
change the chunk size if you are reading from HDFS. 

 The next natural question to ask is, “How do you achieve the optimal parallelism for each 
transformation?” Unfortunately, there is no magic formula. The best way to achieve this is via trial and error 
by increasing this number in a controlled fashion, using the same method that is employed for regular Spark. 
This method, which is recommended by Cloudera, 19  specifies multiplying the number of partitions by 1.5 in 
each trial until performance stops improving. This can be gauged via the Spark UI, discussed briefly in the 
next section and in detail in Chapter   7    .    

  Figure 4-2.     DStream  task parallelism across the entire solar event application. Each small box in the  DStream  
represents a partition and, in turn, the number of tasks. Note how the number of tasks in a dependency zone 
remains the same.       

   Table 4-3.    Deciding the Parallelism of Transformations That Induce a Shuffle Operation   

 Configuration Parameter  Description  Default Value 

  spark.default.parallelism   Parallelism of operations that cause a 
shuffle, such as all  *ByKey  operations 
and  join ,  cogroup , and so on 

 The maximum number of 
partitions in the parent RDD 

   18  Sandy Ryza, “How-to: Tune Your Apache Spark Jobs (Part 2),”  Cloudera , March 30, 2015,    http://blog.cloudera.
com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/       
   19  Ibid.  

 

http://dx.doi.org/10.1007/978-1-4842-1479-4_7
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
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      Batch Intervals 
 The  batch interval   is another magical knob that directly affects performance. It determines the recurring 
period at which the transformation pipeline is invoked on streaming data. Put differently, it dictates the 
amount of data that is pushed through the graph of transformations in each micro-batch. For large-scale 
streaming applications, the goal is invariably to process data at  line rate : the rate at which data is received on 
the wire. A corollary is that the batch interval should be set to enable line-rate processing. Setting the batch 
interval too high means high latency in addition to extra memory footprint per batch. Setting it too low, on 
the other hand, means high scheduling overhead and potential underutilization of resources. Finding the 
sweet spot between the two is nontrivial. 

 For instance, if Voyager 1 sends data every 500 milliseconds, then the batch interval should be 
comparable. This statement is based on the assumption that the processing pipeline also has a latency of 
500 milliseconds; otherwise it will lead to backpressure and performance collapse. A mismatch will result 
in a situation similar to the one shown in Figure  4-3 , where the batch latency (total delay) is greater than the 
input data rate, leading to back pressure.  

  Figure 4-3.    Mismatch between the input data rate and batch latency (or the set batch interval)       

  Figure 4-4.    Breakdown of the processing delay of each stage per job in a batch. The last column contains the 
processing delay.       

 Spark Streaming internally represents the batch interval as a  Duration  object with units of milliseconds, 
seconds, and minutes, which is passed to  StreamingContext . The smallest value for the batch interval is 1 
millisecond, which means Spark Streaming does not enable latency on the microsecond scale. Fortunately, 
not many applications have that sort of latency requirements. Similar to choosing parallelism, the optimum 
value for the batch interval also needs to be calculated by trial and error. A good strategy is to start with 
a high value and then reduce it in steps (say, 1.5 times) each trial. The Spark log can be used to work out 
the stability of the system—that is, whether the batch interval is sufficient to keep up with the data rate. 
In the log, look for “Total delay.” If this value remains close to the batch interval, then the system is stable. 
Otherwise, try increasing the parallelism as described in the previous section or reducing the processing 
latency of the pipeline by using the optimizations that follow this section. 

 Consider the application from Listing  4-1  again. You start with a generous batch interval of 10 seconds. 
An inspection of the logs shows the following line: 

   JobScheduler: Total delay: 2.634 s for time 1453037340000 ms (execution: 2.545 s)  

    This means the total delay for this particular batch was ~3 seconds, which is smaller than the batch 
interval. Assuming there might be data spikes at some point, 10 seconds seems to be a good value. You can 
also get a breakdown of this delay by stage by going to the Spark UI; see Figure  4-4 .  
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 There is a single action in the code ( saveAsTextFiles ) and hence one job. From Figure  4-2 , you know 
that this job constitutes three stages. The first stage, which processes more data, naturally takes longer; 
the second and third, which only need to reduce and sort a small amount of data, take just ~0.1 second 
collectively. The Streaming tab in the UI can be used to gain more insight into your application. It contains 
information including the input rate, scheduling delay, processing time, and total delay, plus a timeline and 
histogram for each of these quantities. For stable applications, each should be less than the batch interval 
(you can figure this out by inspecting the histogram). Refer to Chapter   7     for more details. 

 The block interval is a sister configuration parameter that has implications for performance. It is 
introduced in Chapter   5     during the discussion of ingesting data using secondary solutions, such as Kafka. 

 ■   Note    The batch interval should be comparable to the total delay of the processing pipeline.   

      Scheduling 
 Because cluster resources are generally limited, and to use economies of scale, processing frameworks 
use schedulers to arbitrate resources between applications. Spark Streaming requires scheduling on three 
different levels among the following:

•    Applications  

•   Batches  

•   Jobs    

 The first and the third are taken care of by the underlying Spark core, and Spark Streaming manages 
batches. 

      Inter-application Scheduling 
 A typical deployment of Spark contains multiple applications. The cluster manager, such as standalone or 
YARN, for the deployment arbitrates resource allocation between them. The details of their schedulers are 
enumerated in Table  4-4 .   

   Table 4-4.    Inter-application Schedulers in  Spark     

 Scheduler  Policy  Resource Usage 

 Standalone  FIFO: first in, first out  Each application tries to grab all available resources. Use 
 spark.cores.max ,  spark.executor.cores  and  spark.
executor.memory  to control this behavior. 

 YARN  FIFO, Capacity, or Fair 20   Handled by YARN containers. 

   20     http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html     .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_7
http://dx.doi.org/10.1007/978-1-4842-1479-4_5
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
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      Batch Scheduling 
 This is handled by Streaming  JobScheduler , which generates jobs from  DStreamGraph  for every batch and 
publishes them to Spark.      

       Inter-job Scheduling   
 A Spark Streaming application typically consists of more than one job. These jobs share the resources 
allocated to the executors for the application. By default, Spark uses a FIFO policy to allocate resources to 
jobs: the first job grabs all resources, then the second one, and so on. A subsequent job can start scheduling 
tasks as the previous job begins releasing its resources. The downside of this approach is that if jobs at the 
head of the queue take a very long time, downstream jobs have to wait. This is undesirable for streaming 
applications where latency is key. 

 To remedy this, the default scheduler can be replaced with the Hadoop Fair scheduler, which tries 
to equally distribute resources across jobs. Therefore, actions in a streaming job can execute in parallel, 
improving application latency. This can be enabled by setting  spark.scheduler.mode  to  FAIR .  

       One Action, One Job 
 Each Spark Streaming  action   results in the execution of a separate job, even if the lineage graph of each has a 
common ancestor. This means jobs may end up repeating certain transformations. Consider the example in 
Figure  4-5 .  

  Figure 4-5.    Streaming application with two actions: T (transform) and A (action)       

 This results in the following schedule, as shown in Figure  4-6 :

•     Job0 :  T1 ,  T2 ,  T3 ,  A1   

•    Job1 :  T1 ,  T2 ,  T3 ,  A2      
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 To understand this behavior, you need to understand the RDD-centric, action-triggered scheduling in 
Spark. When action  A1  in a batch for the first job is triggered, the scheduler walks up its lineage graph until 
it finds an RDD that is materialized, which in this case is the input of  T1 . Due to microbatching behavior, 
all of these RDDs are reaped by garbage collection before the second job is spawned. When the second job 
executes, the same pattern takes place, because the RDD generated as output of  T3  is no longer available. To 
enable job 2 to have access to that RDD, you need to explicitly cache it by invoking  cache()  (or  persist()  
with a configurable persistence level) on it, as presented in Listing  4-2 . 

     Listing 4-2.    Caching the Output of One Job to Negate Redundant Execution   

 1.   val t3 = t2.map(x => func(x)).cache()    
  2.   t3.println(10) //A1    
  3.   t3.println(20) //A2  

    This enables job 2 to avoid redundant work, but it still executes only after job 1 has completed. 
This is because by default, only one job is executed by the streaming scheduler. This is controlled by the 
configuration parameter  spark.streaming.concurrentJobs , which is set to 1. Set this number to the 
number of actions across your jobs to achieve inter-streaming job parallelism. This is still an experimental 
parameter, so use it with caution. In addition, it can increase end-to-end latency due to resource contention 
between the parallel jobs. 

 This is also useful for other scenarios:

•     Batch parallelism:  Batches are pipelined, which means the batch at interval  T2  is 
scheduled only after the batch at  T1  has completed. But if batch 1 takes longer than 
the batch interval, the schedule of batch 2 will not be “batch interval” away from 
it. Increasing the number of concurrent jobs will result in interleaving of execution 
across batches.  

•    Parallel streams:  Some applications may ingest data from multiple sources with 
parallel processing branches and multiple actions. For instance, an application 
may read financial data as well as weather data and analyze both in tandem after 
performing a join of the two datasets. Parallel processing for these can also be 
triggered via the same configuration parameter.       

  Figure 4-6.    Execution schedule for two jobs in the same application         
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      Memory 
 The previous section looked at how explicitly caching RDDs can negate redundant processing—but there is 
no such thing as a free lunch. In this instance, the cost is memory or disk storage. Naively caching everything 
in memory can stress the heap and garbage collector. In cases where your application keeps running out of 
heap space, you can increase it by setting  spark.executor.memory . The format is the standard one used for 
the JVM. For instance, to set the heap size to 4 GB, just pass it  4096m . 21  

 In certain cases, Spark also uses off-heap data structures, such as byte buffers used by Java NIO. 22  Under 
YARN, this additional memory allocation is handled by  spark.yarn.executor.memoryOverhead  with a 
default value of  max(executorMemory * 0.10, 384) . If your application uses copious amounts of off-heap 
memory, you should increase this factor. In general, increasing the heap size or off-heap memory should be 
the last straw. Your foremost goal should be to reduce the memory footprint of the application. Let’s look at 
three options to achieve this. 

      Serialization 
  Keeping RDDs in  memory   in serialized form can reduce memory use and improve garbage collection. The 
latter is due to the fact that individual records are stored in a single serialized buffer. In addition, you can 
spit out the RDDs to disk at the expense of performance. Another option is to offload RDD management to 
Tachyon, as discussed in Chapter   7    . 

 Be default, Spark uses Java serialization, which is not the most efficient of implementations. This is 
exacerbated in the case of streaming applications, where tens of thousands of objects need to be marshaled 
and distributed across the cluster in a latency-sensitive fashion. Fortunately, Spark supports Kryo, which is 
almost an order of magnitude more efficient and performant than standard Java serialization. 23  Kryo can be 
turned on by setting  spark.serializer  to  org.apache.spark.serializer.KryoSerializer . I recommend 
that you always use Kryo for your streaming applications. Kryo contains serializers for most Java primitives 
out of the box. For custom classes, you need to register a custom serializer with Spark. Let’s tweak our 
running example to illustrate the use of Kryo. 

 Listing  4-3  presents the code for a custom  ProtonFlux  class. It basically gives structure to the proton flux 
fields in the dataset and also enables you to check for the presence of a solar storm. To use Kryo, you simply 
need to implement the  KryoSerializable  interface and override its  read  and  write  methods. 

     Listing 4-3.    Custom Serialization Class for  ProtonFlux  Objects   

 1.    import  com.esotericsoftware.kryo.{KryoSerializable,Kryo}    
  2.    import  com.esotericsoftware.kryo.io.{Output, Input}    
  3.       
  4.    class  ProtonFlux(    
  5.       var year: Int,    
  6.       var bin0_57to1_78: Double,    
  7.       var bin3_40to17_6: Double,    
  8.       var bin22_0to31_0: Double,    
  9.       var bin1_894to2_605: Double,    
  10.      var bin4_200to6_240: Double,    

   21  In local standalone mode, this can be achieved by directly using JVM options:  -Xmx 4906m .  
   22  This is done by Spark, for instance, to improve shuffle performance.  
   23     https://github.com/eishay/jvm-serializers/wiki     .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_7
https://github.com/eishay/jvm-serializers/wiki
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  11.      var bin3_256to8_132: Double,    
  12.      var bin3_276to8_097: Double,    
  13.      var bin6_343to42_03: Double,    
  14.      var bin17_88to26_81: Double,    
  15.      var bin30_29to69_47: Double,    
  16.      var bin132_8to242_0: Double    
  17.    )  extends  KryoSerializable {    
  18.        
  19.    def  this (year: String, bin0_57to1_78: String, bin3_40to17_6: String,     
  20.        bin22_0to31_0: String, bin1_894to2_605: String, bin4_200to6_240: String,     
  21.        bin3_256to8_132: String, bin3_276to8_097: String, bin6_343to42_03: String,    
  22.        bin17_88to26_81: String, bin30_29to69_47: String, bin132_8to242_0: String) {    
  23.       this (year.toInt, bin0_57to1_78.toDouble, bin3_40to17_6.toDouble,    
  24.          bin22_0to31_0.toDouble, bin1_894to2_605.toDouble, bin4_200to6_240.toDouble,     
  25.          bin3_256to8_132.toDouble, bin3_276to8_097.toDouble, bin6_343to42_03.toDouble,  
  26.          bin17_88to26_81.toDouble, bin30_29to69_47.toDouble, bin132_8to242_0.toDouble)  
  27.    }    
  28.        
  29.    def isSolarStorm = (bin0_57to1_78 > 1.0 || bin3_40to17_6 > 1.0     
  30.      || bin22_0to31_0 > 1.0 || bin1_894to2_605 > 1.0 || bin4_200to6_240 > 1.0     
  31.      || bin3_256to8_132 > 1.0 || bin3_276to8_097 > 1.0 || bin6_343to42_03 > 1.0    
  32.      || bin17_88to26_81 > 1.0 || bin30_29to69_47 > 1.0 || bin132_8to242_0 > 1.0)    
  33.      
  34.    override def write(kryo: Kryo, output: Output) {    
  35.      output.writeInt(year)    
  36.      output.writeDouble(bin0_57to1_78)    
  37.      output.writeDouble(bin3_40to17_6)    
  38.      output.writeDouble(bin22_0to31_0)    
  39.      output.writeDouble(bin1_894to2_605)    
  40.      output.writeDouble(bin4_200to6_240)    
  41.      output.writeDouble(bin3_256to8_132)    
  42.      output.writeDouble(bin3_276to8_097)    
  43.      output.writeDouble(bin6_343to42_03)    
  44.      output.writeDouble(bin17_88to26_81)    
  45.      output.writeDouble(bin30_29to69_47)    
  46.      output.writeDouble(bin132_8to242_0)    
  47.    }    
  48.      
  49.    override def read(kryo: Kryo, input: Input) {    
  50.      year = input.readInt()    
  51.      bin0_57to1_78 = input.readDouble()    
  52.      bin3_40to17_6 = input.readDouble()    
  53.      bin22_0to31_0 = input.readDouble()    
  54.      bin1_894to2_605 = input.readDouble()    
  55.      bin4_200to6_240 = input.readDouble()    
  56.      bin3_256to8_132 = input.readDouble()    
  57.      bin3_276to8_097 = input.readDouble()    
  58.      bin6_343to42_03 = input.readDouble()    
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  59.      bin17_88to26_81 = input.readDouble()    
  60.      bin30_29to69_47 = input.readDouble()    
  61.      bin132_8to242_0 = input.readDouble()    
  62.    }    
  63.      
  64.  }  

    You can use this class in your code by registering it with Spark. Listing  4-4  contains the code to achieve 
that. You first tell Spark to switch to Kryo serialization (line 4) and then register your custom serialization 
class (line 5). The rest of the code uses this class to simplify the application. This example highlights how 
simple it is to use Kryo while achieving rich dividends in terms of performance. 

     Listing 4-4.    Registering a Custom Kryo Serialization Class with Spark   

 1.   val conf =  new  SparkConf()    
  2.       .setAppName(appName)    
  3.       .setJars(SparkContext.jarOfClass( this .getClass).toSeq)    
  4.       .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")    
  5.       .registerKryoClasses(Array(classOf[ProtonFlux]))    
  6.       
  7.   val ssc =  new  StreamingContext(conf, Seconds(10))    
  8.       
  9.   val voyager1 = ssc.textFileStream(inputPath)    
  10.  val projected = voyager1.map(rec => {    
  11.          val attrs = rec.split("\\s+")    
  12.                   new  ProtonFlux(attrs(0), attrs(18), attrs(19), attrs(20), attrs(21),    
  13.                attrs(22), attrs(23), attrs(24), attrs(25), attrs(26), attrs(27),    
  14.                attrs(28))    
  15.      })    
  16.  val filtered = projected.filter(pflux => pflux.isSolarStorm)    
  17.  val yearlyBreakdown = filtered.map(rec => (rec.year, 1))    
  18.      .reduceByKey(_ + _)    
  19.      .transform(rec => rec.sortByKey(ascending =  false ))    
  20.      yearlyBreakdown.saveAsTextFiles(outputPath)  

            Compression   
 In addition to serializing RDDs, you can also compress them by setting  spark.rdd.compress  to  true . Doing 
so trades CPU cycles for memory.  

       Garbage Collection   
 As mentioned earlier, stream processing can stress the standard JVM garbage collection due to the sheer 
number of objects. This can increase the latency of real-time applications by causing frequent pauses. 
To negate this behavior, the use of the concurrent mark sweep (CMS) garbage collector is recommended 
for both the driver and the executors, which reduces pause time by running garbage collection 
concurrently with the application. Enable it for the driver program by passing  --driver-java-options 
-XX:+UseConcMarkSweepGC  to  spark-submit . For executors, CMS garbage collection is turned on by setting 
the parameter  spark.executor.extraJavaOptions  to  XX:+UseConcMarkSweepGC.    
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      Every Day I’m Shuffling 
 Every time you trigger a shuffle operation, you copy data back and forth across the cluster. Therefore, 
shuffling has very high disk and network I/O costs. There are a number of rules of thumb you should follow 
while designing a streaming application. 

      Early Projection and Filtering 
 Similar to standard database techniques, it is always a good idea to project and  filter   early to reduce the 
amount of data that is processed by downstream operators. For instance, in Listing  4-1 , line 4, you project 
the fields early on to confine yourself to fields that are actually required for the business logic.  

      Always Use a Combiner 
 Combiners are map-side aggregations that greatly reduce the amount of data that needs to be transferred 
across the wire during a shuffle. The streaming API contains a number of transformations that have  built-in 
combiners  . Let’s take the example of  reduceByKey() . Line 6 in Listing  4-1  could also have been implemented 
using  groupByKey().mapValues(_.sum) ; you use  reduceByKey(_ + _)  because it enables local aggregation 
at the partition level before the shuffle.  

       Generous Parallelism   
 Shuffle operations internally employ a hash map to separate the partition space of grouping operations. This 
can cause tasks to run out of heap space. You can avoid this by increasing the parallelism of  *ByKey()  tasks 
to reduce their working set (the amount of state they need to maintain in memory).  

      File Consolidation 
 In situations with a large number of  reduce  tasks, it is useful to consolidate intermediate files to improve 
disk seeks. Setting  spark.shuffle.   consolidateFiles    to  true  turns on this consolidation. This invariably 
improves performance in Ext4 and XFS file systems. For Ext3, in certain cases it may actually degrade 
performance, especially on machines with more than eight cores. 24   

      More Memory 
 The executor Java heap is shared between RDDs, shuffle, and application objects. By default, RDDs use 60% 
( spark.storage.memoryFraction ) of the memory, and shuffle has 20% at its disposal ( spark.shuffle.
memoryFraction ). Excessive use spills the contents of the aggregation phase of the shuffle to disk. If your 
application contains many shuffle steps, you should consider increasing the share of shuffle memory to 
reduce the number of spills to disk. This obviously trades RDD storage memory for shuffle memory.   

   24  Aaron Davidson and Andrew Or, “Optimizing Shuffle Performance in Spark,”    www.cs.berkeley.edu/~kubitron/
courses/cs262a-F13/projects/reports/project16_report.pdf     .  

http://www.cs.berkeley.edu/~kubitron/courses/cs262a-F13/projects/reports/project16_report.pdf
http://www.cs.berkeley.edu/~kubitron/courses/cs262a-F13/projects/reports/project16_report.pdf
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      Summary 
 The performance of a Spark Streaming application is a function of parallelism, the batch interval, 
scheduling, memory, and shuffle. To get the best out of the underlying system for your application, each 
one of these entities needs to be optimized. This is easier said than done, though, because each needs to be 
experimented with via trial and error. As a result, application development and maintenance is an evolving 
process that requires a lot of patience. This task can be simplified to a large extent by using some of the 
techniques outlined in this chapter. 

 So far, all the example applications have required reading data from file. In most real-world 
applications, however, data is received from external sources and processed directly. This source might be 
the API of a social network such as Twitter or a stream of log files emitted by machines in a large datacenter 
sent via Kafka. In the next chapter, you wean yourself away from file input and focus on more dynamic 
sources.      
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    CHAPTER 5   

 Real-Time Route 66: Linking 
External Data Sources                          

    If you want to go somewhere, goto is the best way to get there.  

 —Ken Thompson   

 Most data in the wild is dynamic and has a firm lifecycle: it is created, ingested, analyzed, and then culled or 
put in cold storage. This lifecycle generally has a strict time budget outside of which it is useless. The time 
budget for streaming data can be on a millisecond scale. Regardless of latency requirements, the first step 
is invariably transporting the data to a processing platform while perhaps traversing the entire Internet. 
Any pipelined architecture can only be as fast as its slowest link. For this reason, even before the data has 
landed in the data center, the choice of the transport solution—even though technically it is not part of your 
application—can substantially affect performance. With this in mind, this chapter is dedicated to ingesting 
data from solutions such as Kafka, Flume, and MQTT. In the process, you also write your own connector for 
HTTP to learn the ropes of connecting to external data sources. 

 Extending Ken Thompson’s  goto  philosophy, one of the best ways to go somewhere is to ride a bike. 
Toward this end, this chapter uses bike-sharing data from New York City to underscore the key features of 
different data-ingestion solutions and their connectors in Spark Streaming. Your initial stop is the most basic 
data connector possible: a simple socket. Once you have whetted your appetite for external connectors, the 
chapter moves on to more complex solutions including Kafka and Flume and also taps Twitter. To wrap up 
the chapter, you write a custom connector to get a handle on the status of bike stations in New York City in 
real time. 

      Smarter Cities, Smarter Planet, Smarter Everything 
 Earth’s resources are limited, but human needs have become virtually unlimited. This coupled with the 
drive toward urbanization is stressing the planet’s infrastructure, from transportation to electricity and 
utilities. Cognizant of this, urban planners and technologists have been pushing a “smart” agenda in the last 
few years. This entails instrumenting every aspect of the urban environment to achieve optimal resource 
utilization, sharing, capacity planning, and monitoring. Doing so involves using information from traffic 
signals, loop inductors, CCTV cameras, and onboard systems to predict congestion or using data from smart 
meters to tightly couple supply and demand in electricity generation. “Smarter everything” requires an 
entire ecosystem of sensors, data collectors, analyzers, and actioners. 
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 One of the key ingredients of smarter everything is a sharing economy wherein a plurality of players 
interact, collaborate, and share a particular resource. Examples include ride-sharing apps such as Uber, 
accommodation sharing via Airbnb, and P2P e-commerce enabled by the likes of Etsy. Some of these 
services are in the public sector and are subsidized by the government. One of the major success stories 
in this domain is bike sharing. Close to 1,000 cities around the world have bike-sharing programs, 1  which 
collectively have roughly 1 million bikes. 2  Just in New York City, which has the largest program in the United 
States, riders have accrued 100 million miles in 22 million trips 3  since the start of the program. 

 New York City also makes all bike-sharing  data   open. Of this data, this chapter uses two major datasets: 
trip histories 4  and station feed. 5  The former is released every month in a batch and contains the complete 
details of each trip undertaken during that period. Table  5-1  enumerates every field in this dataset and its 
units. To get a feel for real-time computation, you will use a custom program to replay this data. The station 
feed dataset is a live JSON stream of the status of each bike station in New York City. This status includes 
information about whether the station is functional and the number of free bikes. These fields are presented 
in Table  5-2 .     

   Table 5-1.    Fields in the NYC Bike Trip History Dataset   

 #  Field  Units 

 1  Trip duration  Seconds 

 2  Start time  MM/DD/YYYY H:mm 

 3  Stop time  MM/DD/YYYY H:mm 

 4  Start station ID 

 5  Start station name 

 6  Start station latitude  Degrees 

 7  Start station longitude  Degrees 

 8  End station ID 

 9  End station name 

 10  End station latitude  Degrees 

 11  End station longitude  Degrees 

 12  Bike ID 

 13  User type  Customer/Subscriber 6  

 14  Birth year  YYYY 

 15  Gender  0: Unknown, 1: Male, 2: Female 

   1  Felix Richter, “Bike-Sharing Is Taking Off Around the World,”  Statista , March 19, 2015,    www.statista.com/
chart/3325/bike-sharing-systems-worldwide/     .  
   2  “The Bike Sharing World - 2014 -Year End Data,” January 6, 2015,  The Bike-sharing Blog,     http://bike-sharing.
blogspot.com/2015/01/the-bike-sharing-world-2014-year-end.html     .  
   3  Citi Bike Data 2015 Q3,  Citi Bike ,    http://datawrapper.dwcdn.net/rNb8Y/30/     .  
   4     https://www.citibikenyc.com/system-data     .  
   5     https://www.citibikenyc.com/stations/json     .  
   6   Customer : holder of 24-hour or 7-day pass.  Subscriber : annual member.  

http://www.statista.com/chart/3325/bike-sharing-systems-worldwide/
http://www.statista.com/chart/3325/bike-sharing-systems-worldwide/
http://bike-sharing.blogspot.com/2015/01/the-bike-sharing-world-2014-year-end.html
http://bike-sharing.blogspot.com/2015/01/the-bike-sharing-world-2014-year-end.html
http://datawrapper.dwcdn.net/rNb8Y/30/
https://www.citibikenyc.com/system-data
https://www.citibikenyc.com/stations/json
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     ReceiverInputDStream 
 A typical Spark Streaming batch starts with the creation of an  InputDStream  and stops with a side effect. 
As shown in Figure  5-1 , currently  InputDStream s can be of five main types: 

     ConstantInputDStream   : Repeats the same RDD in every batch. Only used for 
testing.  

    FileInputDStream    : Generates RDDs from files present on a file system. 
Examples include  textFileStream .  

   ReceiverInputDStream : Places a receiver on each node, and generates RDDs 
from incoming data.  

    QueueInputDStream   : Converts data from a Scala queue to a  DStream .  

    DirectKafkaInputDStream   : Represents a stream of  KafkaRDD  wherein each RDD 
corresponds to a Kafka partition.    

   Table 5-2.    Fields in the NYC Bike Station Feed   

 #  Field  Units 

 1  Station ID 

 2  Station name 

 3  Number of available docks 

 4  Total number of docks 

 5  Latitude  Degrees 

 6  Longitude  Degrees 

 7  Status 

 8  Status key  1: In Service, 2: Planned, 3: Not In Service, and 4: De-registered 

 9  Number of available bikes 

 10  Street address 

 11  Street address 2 

 12  City 

 13  Postal Code 

 14  Location 

 15  Altitude 

 16  Test station  True/False 

 17  Last communication time  YYYY-MM-DD HH:mm:ss AM/PM 

 18  Land mark 
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 Unlike a standard  InputDStream , which is executed on a single node,  ReceiverInputDStream s are 
generated by placing receivers on worker nodes. This is necessary for high-data-volume solutions such as 
Kafka, which can easily overwhelm a single node. With  ReceiverInputDStream s, a single node does not 
become the bottleneck, because network reception is distributed across many workers. Spark 1.3 also added 
support for a receiver-less “direct”  DStream  for Kafka to ensure better end-to-end reliability guarantees. 

 A standard  InputDStream  exposes  start()        and   stop()  methods      and inherits a   compute()  method      from 
 DStream . These need to be extended by any concrete implementation of a connector. As the names suggest, 
 start()  and  stop()  sign-post the beginning and the end of an  InputDStream . The  compute()  method is in 
charge of returning new RDDs in every batch. For instance,  FileInputDStream  returns newly added files 
from a directory in every batch in its  compute()  method. The service/thread for this method is executed on 
the driver node. 

  ReceiverInputDStream  extends this interface with a   getReceiver()  method     , which is expected 
to return a  Receiver  object that is executed on worker nodes. This receiver connects to input sources 
and fetches data to store in the Spark block store. Receivers can be both reliable and unreliable. 
You drill down into the details of  Receiver s toward the end of this chapter when you implement 
your own  ReceiverInputDStream  for HTTP. For now, you have enough insight to jump to some 
 ReceiverInputDStream  implementations, starting with  SocketInputDStream .  

     Sockets 
 TCP sockets are the simplest type of network data sources, because flow control and congestion control 
are directly delegated to the underlying TCP protocol layer.  StreamingContext  out of the box exposes two 
functions to create a  SocketInputDStream . The first of these is  socketStream() , which creates a raw TCP 
socket. Its signature is presented in Listing  5-1 . 

     Listing 5-1.    Function to  Create   a Raw  SocketInputDStream    

 socketStream[T: ClassTag](hostname: String, port: Int, converter: (InputStream) => 
Iterator[T], storageLevel: StorageLevel) 

  Figure 5-1.     Hierarchical view   of different  DStream s       
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    hostname  and  port  represent the  hostname:port  pair of the TCP source. You need to explicitly 
parameterize the generic  SocketInputDStream  with the type of the input ( T ), similar to any other generic 
class in Scala, such as  Collections . An iterator of the same type needs to be returned by the  convertor  
function passed as the third argument. This function receives a Java  InputStream  as input and is expected 
to read data from the input stream and convert it to an  Iterator  with objects of type  T . The last argument, 
 storageLevel , dictates the persistence level of the received data objects. 

 A concrete example is the second socket function exposed by  StreamingContext : 
 socketTextStream(hostname: String, port: Int) , which converts a raw socket into a 
 SocketInputDStream  of newline ( \n ) delimited UTF-8  String s. Under the hood, it invokes  socketStream()  
as shown in Listing  5-2 . 

     Listing 5-2.     Inner Wiring   of  socketTextStream    

 storageLevel = StorageLevel.MEMORY_AND_DISK_SER_2  
 socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel) 

   By default, it uses a persistence level of  MEMORY_AND_DISK_SER_2 , which you may recall persists the 
input data objects in memory and on disk in serialized form on two nodes. This can be overridden by 
passing a third  StorageLevel  object to  socketTextStream() . The function is parameterized with the  String  
type. The  convertor function   for  SocketReceiver  is presented in Listing  5-3 . As expected, it returns an 
 Iterator  that converts an input stream to UTF-8  String s. 

     Listing 5-3.    Function to Convert a Raw Input Stream to a  String Iterator    

 1.   def bytesToLines(inputStream: InputStream): Iterator[String] = {   
 2.     val dataInputStream =  new  BufferedReader( new  InputStreamReader(inputStream, "UTF-8"))   
 3.      new  NextIterator[String] {   
 4.        protected  override def getNext() = {   
 5.         val nextValue = dataInputStream.readLine()   
 6.          if  (nextValue ==  null ) {   
 7.           finished =  true    
 8.         }   
 9.         nextValue   
 10.      }   
 11.    
 12.       protected  override def close() {   
 13.        dataInputStream.close()   
 14.      }   
 15.    }   
 16.  }   

   Behind the scenes,  SocketInputDStream  uses a  SocketReceiver  object, which extends the  Receiver  
interface and simply runs a thread to store objects read from the socket to the block store in the worker’s 
memory heap. 

  Let’s move on to a concrete example, which uses  SocketInputDStream  and the New York City trip 
history dataset. Your goal is to determine the breakdown of journey lengths by year of birth: that is, whether 
people from a certain age group travel more via shared bikes in New York City. You first employ a custom 
driver program in Java that reads zipped trip history files from HDFS and feeds them to a socket. Your 
Spark Streaming application then acts as a socket client and performs the actual calculation. You need a 
driver program for three data sources covered in this chapter: socket, MQTT, and Kafka. Therefore, you first 
structure it in the form of an abstract class, dubbed   AbstractDriver   , which is extended by all three of the 
target systems. The Java implementation is presented in Listing  5-4 . 
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     Listing 5-4.    Abstract Driver Program That Feeds a Data-Transport System   

 1.    import  java.io.BufferedReader;   
 2.    import  java.io.File;   
 3.    import  java.io.IOException;   
 4.    import  java.io.InputStreamReader;   
 5.    import  java.util.Enumeration;   
 6.    import  java.util.zip.ZipEntry;   
 7.    import  java.util.zip.ZipFile;   
 8.    
 9.    import  org.apache.log4j.LogManager;   
 10.   import  org.apache.log4j.Logger;   
 11.   
 12.   public abstract class  AbstractDriver {   
 13.   
 14.       private static final  Logger LOG = LogManager.getLogger(AbstractDriver. class );   
 15.   
 16.       private  String path;   
 17.   
 18.       public  AbstractDriver(String path) {   
 19.           this .path = path;   
 20.      }   
 21.   
 22.       public abstract void  init()  throws  Exception;   
 23.   
 24.       public abstract void  close()  throws  Exception;   
 25.   
 26.       public abstract void  sendRecord(String record)  throws  Exception;   
 27.   
 28.       public void  execute()  throws  Exception {   
 29.   
 30.           try  {   
 31.              init();   
 32.              File dirPath =  new  File(path);   
 33.               if  (dirPath.isDirectory()) {   
 34.                  File[] files =  new  File(path).listFiles();   
 35.                   for  (File f : files) {   
 36.                      LOG.info(String.format("Feeding zipped file %s", f.getName()));   
 37.                      ZipFile zFile =  null ;   
 38.                       try  {   
 39.                          zFile =  new  ZipFile(f);   
 40.                          Enumeration<?  extends  ZipEntry> zEntries = zFile.entries();   
 41.   
 42.                           while  (zEntries.hasMoreElements()) {   
 43.                              ZipEntry zEntry = zEntries.nextElement();   
 44.                               LOG.info(String.format("Feeding file %s", zEntry.

getName()));   
 45.                               try  (BufferedReader br =  new  BufferedReader(   
 46.                                        new  InputStreamReader(zFile.

getInputStream(zEntry)))) {   
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 47.                                  // skip header   
 48.                                  br.readLine();   
 49.                                  String line;   
 50.                                   while  ((line = br.readLine()) !=  null ) {   
 51.                                      sendRecord(line);   
 52.                                  }   
 53.                              }   
 54.                          }   
 55.                      }  catch  (IOException e) {   
 56.                          LOG.error(e.getMessage());   
 57.                      }  finally  {   
 58.                           if  (zFile !=  null ) {   
 59.                               try  {   
 60.                                  zFile.close();   
 61.                              }  catch  (IOException e) {   
 62.                                  LOG.error(e.getMessage());   
 63.                              }   
 64.                          }   
 65.                      }   
 66.                  }   
 67.              }  else  {   
 68.                  LOG.error(String.format("Path %s is not a directory", path));   
 69.              }   
 70.          }  finally  {   
 71.              close();   
 72.          }   
 73.      }   
 74.  }   

     The  AbstractDriver program   takes as input a path to the directory containing all the zipped files from 
the dataset. This is then used to read each line (line 50) from each file (line 42) in the zip and feed it to 
the data-transfer mechanism (line 51) of a concrete data-transport system in the form of a string. Each 
implementation also needs to provide initialization ( init() ) and shutdown ( close() ) code. 

 The driver implementation for a socket is shown in Listing  5-5 . Internally, it employs a custom 
 SocketStream  class (line 49) to feed the socket. In turn,  SocketStream  uses  ServerSocketChannel  (line 53) 
from NIO to launch a socket server in a thread. It also exposes a   sendMsg()  function   (line 89) that sends a 
UTF-8 encoded, new-line delimited string through the socket (line 91-92). This enables you to directly use 
 socketTextStream()  to ingest data into a Spark Streaming application at the other end. 

     Listing 5-5.    Socket Driver Program   

 1.    import  java.io.IOException;   
 2.    import  java.net.InetSocketAddress;   
 3.    import  java.nio.ByteBuffer;   
 4.    import  java.nio.channels.ServerSocketChannel;   
 5.    import  java.nio.channels.SocketChannel;   
 6.    import  java.nio.charset.StandardCharsets;   
 7.    import  java.util.concurrent.ExecutionException; 
 8.    
 9.    import  org.apache.log4j.LogManager;   
 10.   import  org.apache.log4j.Logger;   
 11.   
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 12.   public class  SocketDriver  extends  AbstractDriver {   
 13.   
 14.       private static final  Logger LOG = LogManager.getLogger(SocketDriver. class );   
 15.   
 16.       private  String hostname;   
 17.       private int  port;   
 18.       private  SocketStream socketStream;   
 19.   
 20.       public  SocketDriver(String path, String hostname,  int  port) {   
 21.           super (path);   
 22.           this .hostname = hostname;   
 23.           this .port = port;   
 24.      }   
 25.   
 26.      @Override   
 27.       public void  init()  throws  Exception {   
 28.          socketStream =  new  SocketStream(hostname, port);   
 29.          LOG.info(String.format("Waiting for client to connect on port %d", port));   
 30.          SocketChannel socketChan = socketStream.init();   
 31.           LOG.info(String.format("Client %s connected on port %d", socketChan.

getRemoteAddress(), port));   
 32.          socketStream.kickOff(socketChan);   
 33.          socketStream.start();   
 34.      }   
 35.   
 36.      @Override   
 37.       public void  close()  throws  IOException {   
 38.          socketStream.done();   
 39.           if  (socketStream !=  null ) {   
 40.              socketStream.close();   
 41.          }   
 42.      }   
 43.   
 44.      @Override   
 45.       public void  sendRecord(String record)  throws  Exception {   
 46.          socketStream.sendMsg(record + "\n");   
 47.      }   
 48.   
 49.       static class  SocketStream  extends  Thread {   
 50.   
 51.           private  String hostname;   
 52.           private int  port;   
 53.           private  ServerSocketChannel server;   
 54.           private volatile boolean  isDone =  false ;   
 55.           private  SocketChannel socket =  null ;   
 56.           private long  totalBytes;   
 57.           private long  totalLines;   
 58.   
 59.           public  SocketStream(String hostname,  int  port) {   
 60.               this .hostname = hostname;   
 61.               this .port = port;   
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 62.              totalBytes = 0;   
 63.              totalLines = 0;   
 64.          }   
 65.   
 66.           public  SocketChannel init()  throws  IOException {   
 67.              server = ServerSocketChannel.open();   
 68.              server.bind( new  InetSocketAddress(hostname, port));   
 69.              LOG.info(String.format("Listening on %s", server.getLocalAddress()));   
 70.               return  server.accept();   
 71.          }   
 72.   
 73.           public void  kickOff(SocketChannel socket) {   
 74.              LOG.info("Kicking off data transfer");   
 75.               this .socket = socket;   
 76.          }   
 77.   
 78.          @Override   
 79.           public void  run() {   
 80.               try  {   
 81.                   while  (!isDone)  { 
 82.                      Thread.sleep(1000); 
 83.                  } 
 84.              }  catch  (Exception e) {   
 85.                  LOG.error(e);   
 86.              }   
 87.          }   
 88.   
 89.            public void  sendMsg(String msg)  throws  IOException, InterruptedException, 

ExecutionException {   
 90.               if  (socket !=  null ) {   
 91.                   ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes(StandardCharsets.

UTF_8));   
 92.                   int  bytesWritten = socket.write(buffer);   
 93.                  totalBytes += bytesWritten;   
 94.              }  else  {   
 95.                   throw new  IOException("Client hasn't connected yet!");   
 96.              }   
 97.              totalLines++;   
 98.          }   
 99.   
 100.          public void  done() {   
 101.             isDone =  true ;   
 102.         }   
 103.  
 104.          public void  close()  throws  IOException {   
 105.              if  (socket !=  null ) {   
 106.                 socket.close();   
 107.                 socket =  null ;   
 108.             }   
 109.              LOG.info(String.format("SocketStream is closing after writing %d bytes and 

%d lines", totalBytes,   



CHAPTER 5 ■ REAL-TIME ROUTE 66: LINKING EXTERNAL DATA SOURCES

78

 110.                     totalLines));   
 111.         }   
 112.     }   
 113.  
 114.      public static void  main(String[] args)  throws  Exception {   
 115.  
 116.          if  (args.length != 3) {   
 117.              System.err.println("Usage: SocketDriver <path_to_input_folder> <hostname> 

<port>");   
 118.             System.exit(-1);   
 119.         }   
 120.  
 121.         String path = args[0];   
 122.         String hostname = args[1];   
 123.          int  port = Integer.parseInt(args[2]);   
 124.  
 125.         SocketDriver driver =  new  SocketDriver(path, hostname, port);   
 126.          try  {   
 127.             driver.execute();   
 128.         }  finally  {   
 129.             driver.close();   
 130.         }   
 131.     }   
 132. }   

     At the other end of the socket, the  Spark Streaming application   (Listing  5-6 ) reads from the socket 
(line 26) and tokenizes each line into attribute fields (line 27). You only need the year of birth (field 13) and 
journey length (field 0), so you project those fields (line 28) into a key-value pair with year of birth as the key. 
You then aggregate journey lengths by year of birth (line 29). Line 30 performs two tasks:

•     Year of birth is converted to age (by subtracting it from the current year using the 
function  normalizeYear ).  

•   Key-values are swapped to enable sorting by journey length, which takes place on 
the next line.    

 You finally save the output to an HDFS file (line 32); it shows that people in their late 20s and early 30s 
account for the longest trips. 

 This application sorts journey time by age at every batch interval. As you can see, using a 
 SocketInputDStream  is only a matter of passing a hostname and port to helper functions while the 
underlying Spark Streaming subsystem takes care of the rest. 

    Listing 5-6.    Spark Streaming Application Using  SocketInputDStream  to Break Down Journey Length in the 
NYC Bike Trip History Dataset by Birth Year   

  1.    import  org.apache.spark.SparkContext   
 2.    import  org.apache.spark.SparkConf   
 3.    
   4.    import  org.apache.spark.streaming.{ Seconds, StreamingContext }   
 5.    import  org.apache.spark.streaming.dstream.PairDStreamFunctions   
 6.    
   7.    import  java.util.Calendar   
 8.    
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   9.   object TripByYearApp {   
 10.     def main(args: Array[String]) {   
 11.        if  (args.length < 4) {   
 12.         System.err.println(   
 13.           "Usage: TripByYearApp <master> <appname> <hostname> <port>" +   
 14.             " In local mode, <master> should be 'local[n]' with n > 1")   
 15.         System.exit(1)   
 16.       }   
 17.       val Seq(master, appName, hostname, port) = args.toSeq   
 18.    
   19.       val conf =  new  SparkConf()   
 20.         .setAppName(appName)   
 21.         .setMaster(master)   
 22.         .setJars(SparkContext.jarOfClass( this .getClass).toSeq)   
 23.    
   24.       val ssc =  new  StreamingContext(conf, Seconds(10))   
 25.    
   26.       ssc.socketTextStream(hostname, port.toInt)   
 27.         .map(rec => rec.split(","))   
 28.         .map(rec => (rec(13), rec(0).toInt))   
 29.         .reduceByKey(_ + _)   
 30.         .map(pair => (pair._2, normalizeYear(pair._1)))   
 31.         .transform(rec => rec.sortByKey(ascending =  false ))   
 32.         .saveAsTextFiles("TripByYear")   
 33.    
   34.       ssc.start()   
 35.       ssc.awaitTermination()   
 36.     }   
 37.    
   38.     def normalizeYear(s: String): String = {   
 39.        try  {   
 40.         (Calendar.getInstance().get(Calendar.YEAR) - s.toInt).toString   
 41.       }  catch  {   
 42.          case  e: Exception => s   
 43.       }   
 44.     }   
 45.   }   

     In certain scenarios where the ingest rate is much slower in comparison to batch execution, it is 
recommended that you create multiple  SocketInputDStream s. 7  This load-balances receivers across multiple 
workers. Your data source also needs to push data to multiple sockets, resulting in one  SocketInputDStream  
per socket at the Spark Streaming end. 

 To achieve this, consider the snippet of code in Listing  5-7 .  nSockets  is the total number of 
 SocketInputDStreams  that need to be created. The code assumes that the ports for the sockets are 
sequential starting at  basePort . These  SocketInputDStream s are then merged into a single one (line 2) to 
enable a common chain of transformations. Recall that  union  is only a logical operation, not a physical one, 
which keeps the parallelism of the merged streams intact. 

   7  In fact, this concept is applicable to all  ReceiverInputDStream s.  
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      Listing 5-7.    Creating Multiple   SocketInputDStream s   to Load-Balance Receivers Across Workers   

 1.    val streams = (0 to nSockets.toInt - 1).map(i => ssc.socketTextStream(hostname, 
basePort.toInt + i))   

 2.   val uniStream = ssc.union(streams)  

   Although sockets are a convenient and simple abstraction to transport data, they are too low level: they 
have no notion of structure, fault tolerance, semantics, or partitioning. These features are generally provided 
by application-level frameworks layered on top of storage and the network, including log aggregators, 
message queues, and pipes. One such system is MQTT.  

     MQTT 
 Message Queue Telemetry Transport ( MQTT)   is an example of a traditional pub/sub-based message queue 
 protocol   wherein producers publish messages to a topic while consumers read from it. 8  A broker server 
handles storage, relay, and arbitration. Targeted toward machine-to-machine communication, MQTT has 
been designed for IoT, which makes it lightweight, low latency, and delay tolerant. It supports the entire 
spectrum of message-guarantee options: at-most-once, at-least-once, and exactly once. A wide range of 
message brokers including ActiveMQ, IBM Websphere MQ, RabbitMQ, and Mosquitto support MQTT. 

 The MQTT connector in Spark Streaming is implemented in a separate library. It uses the Eclipse Paho 
MQTT client. 9  As a result, the following two dependencies need to be added to your  sbt  file: 

   library Dependencies += "org.apache.spark" %% "spark-streaming-mqtt" % "1.4.0" 
 library Dependencies += "org.eclipse.paho" % "org.eclipse.paho.client.mqttv3" % "1.0.1" 

   Creating an  MQTTInputDStream  is a matter of invoking  MQTTUtils.createStream(ssc: 
StreamingContext, brokerUrl: String, topic: String, storageLevel: StorageLevel) , where  ssc  is a 
 StreamingContext  instance,  brokerUrl  is the URL of the MQTT broker in the format  tcp://hostname:port , 
 topic  is the name of the pub/sub topic, and  storageLevel  is the persistence level for the blocks of the 
 InputDStream . 

 To illustrate the use of  MQTTInputDStream , let’s consider another example: working out the yearly 
distribution of bike trips per day. Similar to sockets, you extend the  AbstractDriver , which replays the bike 
trip dataset via MQTT. The code for the driver is given in Listing  5-8 . 

      Listing 5-8.     Custom Driver Program   to Publish Messages from a Folder with Zipped Files to MQTT   

 1.    import  java.nio.charset.StandardCharsets;   
 2.    
 3.    import  org.apache.log4j.LogManager;   
 4.    import  org.apache.log4j.Logger;   
 5.    import  org.eclipse.paho.client.mqttv3.MqttClient;   
 6.    import  org.eclipse.paho.client.mqttv3.MqttException;   
 7.    import  org.eclipse.paho.client.mqttv3.MqttMessage;   
 8.    import  org.eclipse.paho.client.mqttv3.MqttTopic;   
 9.    import  org.eclipse.paho.client.mqttv3.persist.MemoryPersistence;   
 10.   

   8  Valerie Lampkin et al. “Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry,” 
IBM Redbooks.  
   9     www.eclipse.org/paho/     .  

http://www.eclipse.org/paho/
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 11.   public class  MqttDriver  extends  AbstractDriver {   
 12.   
 13.       private static final  Logger LOG = LogManager.getLogger(MqttDriver. class );   
 14.   
 15.       private final  String brokerUrl;   
 16.       private final  String topic;   
 17.       private  MqttClient client;   
 18.       private  MqttTopic mqttTopic;   
 19.   
 20.       public  MqttDriver(String path, String brokerUrl, String topic) {   
 21.           super (path);   
 22.           this .brokerUrl = brokerUrl;   
 23.           this .topic = topic;   
 24.      }   
 25.   
 26.      @Override   
 27.       public void  init()  throws  Exception {   
 28.           client =  new  MqttClient(brokerUrl, MqttClient.generateClientId(),  new  

MemoryPersistence());   
 29.          LOG.info(String.format("Attempting to connect to broker %s", brokerUrl));   
 30.          client.connect();   
 31.          mqttTopic = client.getTopic(topic);   
 32.          LOG.info(String.format("Connected to broker %s", brokerUrl));   
 33.      }   
 34.   
 35.      @Override   
 36.       public void  close()  throws  Exception {   
 37.           if  (client !=  null ) {   
 38.              client.disconnect();   
 39.          }   
 40.      }   
 41.   
 42.      @Override   
 43.       public void  sendRecord(String record)  throws  Exception {   
 44.           try  {   
 45.               mqttTopic.publish( new  MqttMessage(record.getBytes(StandardCharsets.

UTF_8)));   
 46.          }  catch  (MqttException e) {   
 47.               if  (e.getReasonCode() == MqttException.REASON_CODE_MAX_INFLIGHT) {   
 48.                  Thread.sleep(10);   
 49.              }   
 50.          }   
 51.      }   
 52.   
 53.       public static void  main(String[] args)  throws  Exception {   
 54.   
 55.           if  (args.length != 3) {   
 56.               System.err.println("Usage:MqttDriver <path_to_input_folder> <broker_url> 

<topic>");   
 57.              System.exit(-1);   
 58.          }   
 59.   



CHAPTER 5 ■ REAL-TIME ROUTE 66: LINKING EXTERNAL DATA SOURCES

82

 60.          String path = args[0];   
 61.          String brokerUrl = args[1];   
 62.          String topic = args[2];   
 63.   
 64.          MqttDriver driver =  new  MqttDriver(path, brokerUrl, topic);   
 65.           try  {   
 66.              driver.execute();   
 67.          }  finally  {   
 68.              driver.close();   
 69.          }   
 70.      }   
 71.    
 72.  }   

    Notice that this code is very similar to the socket driver code. The main difference is that the 
custom  SocketStream  thread is replaced with  MqttClient , which takes as input the URL of the MQTT 
broker in the format  tcp://hostname:port  for its initialization (line 28). In addition, it requires an 
 MqttClientPersistence  object, which is used to store in-flight incoming and outgoing messages 
depending on the quality of service. The client library implements two— MqttDefaultFilePersistence  and 
 MemoryPersistence —which as the names suggest, persist in-flight messages either on disk or in memory. 
You then create a topic object for your user-defined topic (line 31). 

 After creating the topic, you are ready to publish messages, which is exactly what takes place on line 45. 
Each message first needs to be converted to an  MqttMessage  object. MQTT supports three QoS options, which 
are listed in Table  5-3 . This value can be configured for each  MqttMessage  object via its  setQoS  method.  

   Table 5-3.     QoS Options   for MQTT   

 #  QoS  Description 

 0  At-most-once  Similar to UDP in essence. Messages are sent over the wire and may be dropped if 
there is a failure along the way. 

 1  At-least-once  Messages need to be acknowledged by the client. In case of a failure, messages 
may be repeated, which means they need to be stored at the sender end. This is 
the default QoS. 

 2  Exactly once  Messages are sent only once due to an internal deduplication mechanism. 
Similar to at-least-once semantics, messages need to be cached at the sender end 
while the client has not acknowledged them. 

 MQTT brokers also enforce a limit on the number of in-flight messages. Therefore, publishers need to 
be mindful of this limit and back off every time it is hit. You achieve this on lines 46–48, where the driver goes 
to sleep briefly, allowing the consumer to drain the topic. 

 The Spark Streaming consumer application (Listing  5-9 ) is very similar to  TripByYearApp . The only 
major difference is that now you want to keep a running count throughout the lifetime of the application, 
to maintain batch-invariant state. Toward this end, you use  updateStateByKey()  (line 29) instead of 
 reduceByKey()  and pass it a stateful count function (line 38). 

www.allitebooks.com

http://www.allitebooks.org
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      Listing 5-9.    Spark Streaming Application That Ingests Data from MQTT and Determines the  Daily Trip 
Distribution     

 1.    import  org.apache.spark.SparkConf   
 2.    import  org.apache.spark.SparkContext   
 3.    import  org.apache.spark.rdd.RDD.rddToOrderedRDDFunctions   
 4.    import  org.apache.spark.storage.StorageLevel   
 5.    import  org.apache.spark.streaming.Seconds   
 6.    import  org.apache.spark.streaming.StreamingContext   
 7.    import  org.apache.spark.streaming.dstream.DStream.toPairDStreamFunctions   
 8.    import  org.apache.spark.streaming.mqtt.MQTTUtils   
 9.    
 10.  object YearlyDistributionApp {   
 11.    def main(args: Array[String]) {   
 12.       if  (args.length != 4) {   
 13.        System.err.println(   
 14.          "Usage: YearlyDistributionApp <appname> <brokerUrl> <topic> <checkpointDir>")   
 15.        System.exit(1)   
 16.      }   
 17.      val Seq(appName, brokerUrl, topic, checkpointDir) = args.toSeq   
 18.   
 19.      val conf =  new  SparkConf()   
 20.        .setAppName(appName)   
 21.        .setJars(SparkContext.jarOfClass( this .getClass).toSeq)   
 22.   
 23.      val ssc =  new  StreamingContext(conf, Seconds(10))   
 24.      ssc.checkpoint(checkpointDir)   
 25.   
 26.      MQTTUtils.createStream(ssc, brokerUrl, topic, StorageLevel.MEMORY_ONLY_SER_2)   
 27.        .map(rec => rec.split(","))   
 28.        .map(rec => (rec(1).split(" ")(0), 1))   
 29.        .updateStateByKey(statefulCount)   
 30.        .map(pair => (pair._2, pair._1))   
 31.        .transform(rec => rec.sortByKey(ascending =  false ))   
 32.        .saveAsTextFiles("YearlyDistribution")   
 33.   
 34.      ssc.start()   
 35.      ssc.awaitTermination()   
 36.    }   
 37.   
 38.     val statefulCount = (values: Seq[Int], state: Option[Int]) => Some(values.sum + 

state.getOrElse(0))   
 39.   
 40.  }  

   MQTT is really useful for use cases that entail diversity and plurality in consumers and topics. A good 
example is IoT data that needs to be, say, partitioned into topics based on sensor type and needs to be 
consumed by a number of downstream systems, such as a real-time processing app and a data warehouse 
for long-term storage. 

 A different class of applications requires shipping large swathes of log data from one location to another. 
This data generally is not broken down semantically into topics. Consequently, using a message-queue 
system like MQTT is overkill. Such applications are better served by log aggregation systems, such as Flume, 
which is the next target system.  
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     Flume 
  Flume 10  is a   distributed log-aggregation system with a dataflow architecture. Data, in the form of  events,  
flows from  sources  to  sinks  via  channels . Channels dictate the reliability semantics of the connection. Out 
of the box, Flume provides memory, file, JDBC, and Kafka-based channels. The routing policy of channels, 
including setting up backup routes, is also configurable. All of these entities execute asynchronously 
in  agents  (JVM processes) on worker nodes. Events flow through channels in the form of hop-by-hop 
transactions: a channel forgets an event only after it has been acknowledged by the next channel in 
the pipeline or the sink endpoint. The serialization of events can be customized to follow application 
requirements, with default support for a number of formats including Avro and Thrift. Flume flows are set up 
through a Java-style key-value configuration file. 

 Listing  5-10  shows a  sample Flume configuration file  . It consists of a single flow: source ➤ channel ➤ 
sink. The library source  spooldir  monitors a local file system directory and turns each line from each input 
file into an event. The configuration employs an  Avro  sink that encodes each event into an Avro record and 
makes it available on the specified hostname and port. These two components are connected via a memory 
channel.  capacity  is the size of the memory channel event buffer, and  transactionCapacity  specifies the 
number of events that are copied in one transaction from the source to the sink. 

       Listing 5-10.    Sample Flume Configuration with a Single Source, Channel, and Sink   

 1.   # components on this agent   
 2.   a1.sources = src-1   
 3.   a1.sinks = snk-1   
 4.   a1.channels = ch-1   
 5.    
 6.   # source   
 7.   a1.sources.src-1.type = spooldir   
 8.   a1.sources.src-1.channels = ch-1   
 9.   a1.sources.src-1.spoolDir = <path_dir> 
 10.   
 11.  # sink   
 12.  a1.sinks.snk-1.type = avro   
 13.  a1.sinks.snk-1.hostname = localhost   
 14.  a1.sinks.snk-1.port = 44444   
 15.   
 16.  # channel   
 17.  a1.channels.ch-1.type = memory   
 18.  a1.channels.ch-1.capacity = 10000   
 19.  a1.channels.ch-1.transactionCapacity = 1000   
 20.   
 21.  # bind source, sink, and channel   
 22.  a1.sources.src-1.channels = ch-1   
 23.  a1.sinks.snk-1.channel = ch-1     

   Connecting to Flume from a Spark Streaming application requires the following dependency: 

   libraryDependencies += "org.apache.spark" %% "spark-streaming-flume" % "1.4.0" 

   10     https://flume.apache.org/     .  

https://flume.apache.org/
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   Similar to MQTT, using a  FlumeInputDStream  requires only a single line 

   FlumeUtils.createStream(ssc: StreamingContext, sinkHostname: String, sinkPort: Int, 
storageLevel: StorageLevel) 

   where  ssc  is a  StreamingContext  instance,  sinkHostname  is the hostname of the Flume sink,  sinkPort  is its 
port, and  storageLevel  is the persistence level for the blocks of the  InputDStream . 

 Spark Streaming supports two modes for ingesting data from Flume: push and pull. In the former, a 
receiver acts as a Flume agent to connect to an Avro sink, which pushes data to it. In the pull-based model, 
a custom Flume sink needs to be registered in your Flume configuration to buffer events. This data is 
periodically ingested by a reliable Flume receiver, which acknowledges these events. The latter provides 
better reliability and fault-tolerance guarantees because a Flume transaction is marked successful only after 
its data has been stored and replicated by Spark. 

 Let’s look at using the push-based approach first. In this setup, the Spark Streaming application needs 
to be running before the Flume agent is executed. 

      Push-Based Flume Ingestion 
 In  your   Spark Streaming application, you want to determine the daily distribution of each user type: how 
many trips customers and subscribers undertake in a day. Listing  5-11  contains the main snippet of code 
for this application. On line 1, you provide the hostname and port of the Flume Avro sink. You project only 
the date (position 1) and user type (position 12) on line 2 along with a unit value to allow a subsequent 
aggregation. You may not receive all the data for a date in a batch, so you need to maintain counts across 
batches. Therefore, you use  updateStateByKey  instead of  reduceByKey . You use the same stateful count 
function as the one in Listing  5-9 . To ensure that user-type counts from the same date end up in the same 
partition, you repartition to 1 (line 5). The number of records in each partition is small (only two per day), 
so this does not degrade concurrent performance. Sorting the data by key, which is a  date - userType  pair, 
ensures that records are temporally monotonic (line 6). Note that for brevity, boilerplate code is omitted. 

      Listing 5-11.    Push-Based Flume Application to Segment the Bike Trips Dataset by User Type Every Day.   

 1.   FlumeUtils.createStream(ssc, hostname, port.toInt, StorageLevel.MEMORY_ONLY_SER_2)   
 2.         .map(rec =>  new  String(rec.event.getBody().array()).split(","))   
 3.         .map(rec => ((rec(1).split(" ")(0), rec(12)), 1))   
 4.         .updateStateByKey(statefulCount)   
 5.         .repartition(1)   
 6.         .transform(rdd => rdd.sortByKey(ascending =  false ))   
 7.         .saveAsTextFiles(outputPath)  

   Once the Spark Streaming application is up and running, you need to set up a Flume application with 
the configuration (saved in, say,  flumePush.conf ) from Listing  5-10 . Note that  a1.sources.src-1.spoolDir  
needs to be set to the folder containing the New York City bike trips data. The last step is to execute the 
Flume agent: 

   $FLUME_HOME/bin/flume-ng agent -n a1 -c flumeConf -f flumeConf/flumePush.conf 
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          Pull-Based Flume Ingestion 
 In this model,    the roles are reversed: a custom Spark Flume agent acts as the server, and the Spark Streaming 
application connects to it. You need to make two changes to the setup from the previous section: use a Spark 
Avro sink, and use a polling Flume connector in the Spark Streaming application. 

 In the Flume configuration in Listing  5-10 , replace  avro  for  a1.sinks.snk-1.type  with  org.apache.
spark.streaming.flume.sink.SparkSink  (saving the file as  flumePull.conf ). In addition, you need to 
have the Spark Flume connector, 11  Scala lib, 12  and Apache Language Commons 13  on the classpath of your 
Flume agent. To do this, create the directory path  $FLUME_HOME/plugins.d/snk-1/lib  and copy the three 
dependency JARs to it. Execute Flume as before: 

   $FLUME_HOME/bin/flume-ng agent -n a1 -c flumeConf -f flumeConf/flumePull.conf 

   In the Spark Streaming code (Listing  5-11 ), replace line 1 with 

   FlumeUtils.createPollingStream(ssc, hostname, port.toInt, StorageLevel.MEMORY_ONLY_SER_2) 

   You are now running the same application with stronger reliability and fault-tolerance guarantees. 
Under these guarantees, for instance, RDDs can be recovered from the block store in case of a worker failure.    

     Kafka 
  Kafka is a   cross between a log aggregator and a pub/sub messaging system. 14  It couples the scalability and 
recovery properties of the former with the interface and reliability properties of the latter. As a result, Kafka 
looks and smells like a messaging system on the surface but is actually a log aggregator under the hood. It 
uses partitioned write-ahead commit logs to maintain all data. Data is semantically grouped under a topic, 
which is just a logical tag for a queue to which producers write and from which consumers read. 

 Each topic is sharded into partitions of fixed size and stored on broker machines, where each partition 
is a self-contained, append-only commit log. Each partition is also replicated across brokers with one 
broker acting as the replica leader. Instead of an explicit timestamp or ID, the relative position of a message 
in the log determines its location and temporal order. Consumers are clubbed into a consumer group 
and jointly consume a topic. Each consumer in a consumer group exclusively reads from a partition. 15  
Another interesting feature of Kafka is that the system itself does not maintain any state information 
about consumers. It is the job of the consumer to update and checkpoint its offset. This means in case of a 
failure, the consumer may replay messages that it has already consumed. Therefore, Kafka provides at-
least-once semantics by default. At-most-once delivery is achieved by disabling retries at the producer end 
and committing the offset of a batch of messages prior to consuming it. Ensuring exactly once semantics 
is a more involved process because it requires deduplication of messages at both the producer and the 
consumer ends. Kafka simplifies this by providing the offset. 

   11     http://search.maven.org/remotecontent?filepath=org/apache/spark/spark-streaming-flume-
sink_2.10/1.4.0/spark-streaming-flume-sink_2.10-1.4.0.jar     .  
   12     http://search.maven.org/remotecontent?filepath=org/scala-lang/scala-library/2.10.4/
scala-library-2.10.4.jar     .  
   13     http://search.maven.org/remotecontent?filepath=org/apache/commons/commons-lang3/3.3.2/
commons-lang3-3.3.2.jar     .  
   14  J. Kreps, N. Narkhede, and J. Rao, “Kafka: A Distributed Messaging System for Log Processing,”  Proceedings of 
NetDB , 2011.  
   15  No such coordination exists across consumer groups.  

http://search.maven.org/remotecontent?filepath=org/apache/spark/spark-streaming-flume-sink_2.10/1.4.0/spark-streaming-flume-sink_2.10-1.4.0.jar
http://search.maven.org/remotecontent?filepath=org/apache/spark/spark-streaming-flume-sink_2.10/1.4.0/spark-streaming-flume-sink_2.10-1.4.0.jar
http://search.maven.org/remotecontent?filepath=org/scala-lang/scala-library/2.10.4/scala-library-2.10.4.jar
http://search.maven.org/remotecontent?filepath=org/scala-lang/scala-library/2.10.4/scala-library-2.10.4.jar
http://search.maven.org/remotecontent?filepath=org/apache/commons/commons-lang3/3.3.2/commons-lang3-3.3.2.jar
http://search.maven.org/remotecontent?filepath=org/apache/commons/commons-lang3/3.3.2/commons-lang3-3.3.2.jar
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 Another consequence of obliviousness to consumers is that Kafka does not know whether all 
consumers of a topic have completed processing. As a result, it cannot use a consumer reference counter 
to garbage-collect messages. Instead, it uses a temporal timeout to remove messages. A nice side effect of 
this approach is that consumers can rewind and replay messages explicitly in case of failure. For instance, 
if messages are being consumed by a Hadoop mapper, then in case of a failure, a respawned mapper can 
replay its input from the beginning. State information, such as consumer group mappings and active 
brokers, is maintained in ZooKeeper. 

 Spark Streaming has two flavors of connectors for Kafka. One uses the high-level Kafka consumer API in 
concert with a receiver, write-ahead log, and ZooKeeper to provide at-least-once semantics, and the second 
(direct version) uses the simple Kafka consumer API 16  in tandem with checkpoint-based offset tracking to 
ensure exactly once semantics. Both require adding the following to your  sbt  configuration. 

   libraryDependencies += "org.apache.spark" %% "spark-streaming-kafka" % "1.4.0"  

   The application you will use to dissect Kafka, tallies the number of journeys undertaken between every pair 
of stations in each interval. To highlight hotspots in real time, these pairs are sorted by popularity. Listing  5-12  
shows the code for the Kafka driver. It uses a  Producer  object to set up a connection (line 16) to a Kafka broker. It 
then sends lines from the dataset to the broker with the specified topic (line 30). Configuration information for 
the producer is provided via a configuration file. For this particular example, you set only two properties:

•      metadata.broker.list    contains comma-separated pairs of broker locations 
(hostname1:port1, hostname2:port2, ….).  

•     serializer.class    decides the serialization for the message and the topic (if  key.
serializer  is not set), for which you use  StringEncoder : the type of the message 
body.    

 Other relevant parameters are listed in Table  5-4 .  

      Listing 5-12.     Kafka Driver Program     

 1.    import  java.util.Properties;   
 2.    
 3.    import  kafka.javaapi.producer.Producer;   
 4.    import  kafka.producer.KeyedMessage;   
 5.    import  kafka.producer.ProducerConfig;   
 6.    
 7.    public class  KafkaDriver  extends  AbstractDriver {   
 8.    
 9.        private final  String topic;   
 10.       private  Producer<String, String> producer;   
 11.   
 12.       public  KafkaDriver(String path, String topic, Properties props) {   
 13.           super (path);   
 14.           this .topic = topic;   

   16  The high-level API has additional features such as offset tracking, load-balancing across consumer groups, and 
partition-subscription tracking over the simple API.  
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 15.          ProducerConfig config =  new  ProducerConfig(props);   
 16.          producer =  new  Producer<String, String>(config);   
 17.      }   
 18.     
 19.      @Override   
 20.       public void  init()  throws  Exception {   
 21.      }   
 22.   
 23.      @Override   
 24.       public void  close()  throws  Exception {   
 25.          producer.close();   
 26.      }   
 27.   
 28.      @Override   
 29.       public void  sendRecord(String record)  throws  Exception {   
 30.          producer.send( new  KeyedMessage<String, String>(topic, record));   
 31.      }   
 32.     
 33.       public static void  main(String[] args)  throws  Exception {   
 34.   
 35.           if  (args.length != 3) {   
 36.               System.err.println("Usage: KafkaDriver <path_to_input_folder> <brokerUrl> 

<topic>");   
 37.              System.exit(-1);   
 38.          }   
 39.     
 40.          String path = args[0];   
 41.          String brokerUrl = args[1];   
 42.          String topic = args[2];   
 43.   
 44.          Properties props =  new  Properties();   
 45.          props.put("metadata.broker.list", brokerUrl);   
 46.          props.put("serializer.class", "kafka.serializer.StringEncoder");   
 47.   
 48.          KafkaDriver driver =  new  KafkaDriver(path, topic, props);   
 49.           try  {   
 50.              driver.execute();   
 51.          }  finally  {   
 52.              driver.close();   
 53.          }   
 54.      }   
 55.  }   
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         Receiver-Based Kafka Consumer 
 A  KafkaInputDStream  can be created as follows: 

   KafkaUtils.createStream(ssc: StreamingContext, zkQuorum: String, consumerGroupId: String, 
topics: Map[String, Int], storageLevel: StorageLevel) 

    zkQuorum  is the URL of ZooKeeper,    which is used by the receiver to store message offsets and locate the 
broker.  consumerGroupId  is the consumer group to which this application belongs.  topics  is a hash map of 
 topicId  ➤  num_of_consumer_threads . Note that  num_of_consumer_threads  per  topicId  only decides how 
many threads are used by the receiver to consume data from Kafka, not Spark parallelism—this value has 
no bearing on the number of partitions. At the same time,  num_of_consumer_threads  should be less than or 
equal to the number of partitions in the topic; otherwise, some threads will remain idle. 

 This use is illustrated in Listing  5-13 . By default, under this setup, data can be lost if the driver program 
restarts, because the executors are killed as well and their in-memory buffers are lost. This can be remedied 
by using write-ahead logs, wherein the transaction is written to a durable log before it is applied. This 
ensures zero data loss in the face of failure: the pending data is flushed from the log on a restart, and any 
lost buffered data is replayed from the source. 17  To enable this feature, you need to set  spark.streaming.
receiver.writeAheadLog.enable  to  true  in the Spark configuration and also provide a checkpoint directory 
( ssc.checkpoint() ) for the write-ahead log. 

   Table 5-4.    Major Kafka  Producer Configuration Parameters     

 Parameter  Default  Description 

  request.required.acks   0  Controls the acknowledgement behavior of the 
producer. 
 0: No wait for acknowledgements (latency: low, 
durability: low). 
 1: Only wait for acknowledgement from the leader 
(latency: medium, durability: medium). 
 -1: Wait for acknowledgement from all in-sync 
replicas (latency: high, durability: high). 

  request.timeout.ms   10000  The timeout associated with  request.required.
acks : how long the broker should wait to satisfy the 
specified  required.required.acks . 

  producer.type   sync  Whether messages should be sent synchronously or 
asynchronously (with batching). 

  compression.codec   none  The compression codec to use. Possible values: none, 
gzip, and snappy. 

  key.serializer.class    serializer.class   The serializer to use for the key. 

   17  Tathagata Das, “Improved Fault-tolerance and Zero Data Loss in Spark Streaming,”  Databricks , January 5, 2015, 
   https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-
spark-streaming.html     .  

https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html
https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html


CHAPTER 5 ■ REAL-TIME ROUTE 66: LINKING EXTERNAL DATA SOURCES

90

       Listing 5-13.    Receiver-Based Spark Streaming Kafka Consumer   

 1.   val topics = Map[String, Int](   
 2.     topic -> 1)   
 3.    KafkaUtils.createStream(ssc, zkQuorum, consumerGroupId, topics, StorageLevel.MEMORY_

ONLY_SER).map(_._2)   
 4.     .map(rec => rec.split(","))   
 5.     .map(rec => ((rec(3), rec(7)), 1))   
 6.     .reduceByKey(_ + _)   
 7.     .repartition(1)   
 8.     .map(rec => (rec._2, rec._1))   
 9.     .transform(rdd => rdd.sortByKey(ascending =  false ))   
 10.    .saveAsTextFiles(outputPath) 

   The first thing to note in Listing  5-13  is that the persistence level is set to  MEMORY_ONLY_SER  (line 3) 
instead of  MEMORY_ONLY_SER_2 . This is to ensure that data is not replicated twice. The write-ahead log on 
HDFS is already replicated, so setting  MEMORY_ONLY_SER_2  will replicate the data twice: once in the log and 
once in the block store. 

 The application counts the frequency of start and end station pairs (line 4–6) and orders them by that 
frequency (lines 8–9). The results show that some of the most frequent journeys are ones where the same 
station is the start and end point. 

 Under the hood, the address of the ZooKeeper quorum ( zookeeper.connect ) and consumer group ID 
( group.id ) are passed as properties to the Kafka consumer API. The API internally also hardcodes a value of 
10,000 for  zookeeper.connection.timeout.ms . 

 Outside of these three configuration parameters, you may wish to customize other parts of the system. 
A variant of  KafkaUtils.createStream()  also accepts a map of configuration parameters in this format: 

   KafkaUtils.createStream[K,V,KeyDecoder,ValueDecoder](ssc: StreamingContext, kafkaParameters: 
Map[String, String], topics: Map[String, Int], storageLevel: StorageLevel) 

   For instance, if you explicitly wanted to provide a consumer ID—by default, one is generated 
automatically—you would need to do something similar to Listing  5-14 . Table  5-5  lists other relevant 
configuration parameters.   

     Listing 5-14.    Kafka Consumer with  Custom Configuration     

 1.   val params = Map[String, String](   
 2.     "zookeeper.connect" -> zkQuorum,   
 3.     "group.id" -> consumerGroupId,   
 4.     "consumer.id" -> consumerId)   
 5.    KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](ssc, params, 

topics, StorageLevel.MEMORY_ONLY_SER).map(_._2)  
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   There are two major ways to control parallelism while reading from Kafka:

•    Increase  num_of_consumer_threads  to the number of topic partitions.  

•   Create multiple topics, and load-balance messages across them. These multiple 
 KafkaInputDStream s can then be merged in a  union()  operation (along the same 
lines as Listing  5-7 ).    

 Under certain circumstances, this approach does not ensure exactly once semantics and falls back on 
at-least-once: for instance, if the receiver has received messages and crashes before the offsets have been 
updated in ZooKeeper. In addition, maintaining a write-ahead log affects performance because messages 
need to be written to HDFS before they can be consumed. Let’s move on to the direct Kafka consumer, which 
rectifies these problems.  

     Direct Kafka Consumer 
  As the name suggests, the  direct Kafka consumer   skips receivers and ZooKeeper and uses the simple API 
directly to consume messages. This means it needs to track offsets internally. To do so, at the beginning of 
each batch, the connector reads the partition offsets for each topic from Kafka and uses them to ingest data. 18  
To ensure exactly once semantics, it tracks offset information in Spark Streaming checkpoints. It also has two 
further advantages over the receiver-based approach:

•     Performance:  Unlike the receiver approach, in which data is replicated twice (once by 
Kafka and then by the write-ahead log), the data-replication buck in the direct model 
is passed to Kafka. The Spark Streaming application only maintains offsets.  

   Table 5-5.    Major Kafka  Consumer Configuration Parameters     

 Parameter  Default  Description 

  fetch.message.max.bytes   1048576  The maximum number of bytes read by the 
consumer in one fetch request for each partition 
for a topic. It must be at least as large as the largest 
message in your data stream. Play with this value 
if your Kafka driver generates  kafka.common.
FailedToSendMessageException  exceptions. 

  auto.commit.interval.ms   60000  How often to commit consumer offsets to ZooKeeper 
in ms. A lower value is useful when, for enhanced 
durability, you would like to commit to ZooKeeper 
more often. 

  auto.offset.reset    largest   Which offset to jump to if there is no initial offset for 
this consumer in ZooKeeper. Possible values: 
  largest : Only fetch the most recent data. 
  smallest : Fetch data from the smallest offset onward. 

  partition.assignment.strategy    range   The partition-assignment strategy for consumers. 
Possible values:  range  and  roundrobin . 

  zookeeper.session.timeout.ms   6000  The expected heartbeat interval for the consumer. 

   18  Cody Koeninger, Davies Liu, and Tathagata Das, “Improvements to Kafka Integration of Spark Streaming,”  Databricks , 
March 30, 2015,    https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-
streaming.html     .  

https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-streaming.html
https://databricks.com/blog/2015/03/30/improvements-to-kafka-integration-of-spark-streaming.html
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•    Parallelism:  There is a one-to-one mapping between Kafka partitions and RDD 
partitions. This means you do not need to load-balance data across topics and 
consumers or create multiple  KafkaInputDStream s to take advantage of parallelism.    

 At the Spark Streaming application’s end, only the stream-creation method from  KafkaUtils  needs to 
be replaced; the rest of the code remains the same. Listing  5-15  showcases the changes you need to make to 
the code from Listing  5-13 .  topics  (line 1) is now a  Set  instead of a map, because the direct consumer does 
not need to use additional threads. Additionally, because you are skipping ZooKeeper, you need to directly 
provide the consumer with a comma-separated list of the URLs of Kafka brokers for bootstrapping (line 5). 
Note that because these brokers are used only for bootstrapping, not all brokers need be referenced in the 
list. Finally, you do not need to provide a persistence level because rereading data directly from Kafka ensures 
fault tolerance. 

     Listing 5-15.    Using a Direct  KafkaInputDStream    

 1.   val topics = Set(topic)   
 2.   val params = Map[String, String](   
 3.     "zookeeper.connect" -> zkQuorum,   
 4.     "group.id" -> consumerGroupId,   
 5.     "bootstrap.servers" -> brokerUrl)   
 6.    KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder]

(ssc, params, topics).map(_._2) 

   Having explored solutions that are typically deployed in-house by organizations—MQTT, Flume, and 
Kafka—let’s now use a fully managed data source, Twitter, to deliver data to Spark Streaming.    

      Twitter 
 Since its inception,  Twitter   has become one of the largest social media web sites in the world, with over 
300 million monthly active users who send 500 million tweets per day .  19  These tweets cover a wide range 
of topics, from celebrity gossip and stock market prospects to social media activism and soggy fries. 20  As 
a result, Twitter has also become a huge repository of information of business interest. For instance, an 
organization can in real time work out the public perception of its products via sentiment analysis of tweets. 
To facilitate this, Twitter has a public API that enables users to gain access to the Twitter firehose. This API 
has clients in a number of languages. 21  In the case of Java, Twitter4J is arguably the most popular choice. 

 Twitter4J is also used by the Twitter connector for Spark Streaming. This connector has the following 
signature: 22  

   TwitterUtils.createStream(ssc: StreamingContext, twitterAuth: Option[Authorization], 
filters: Seq[String], storageLevel: StorageLevel) 

   Here,  twitterAuth  is a Twitter4J  Authorization  object with security credentials and  filters  is a 
sequence of strings to match against the Twitter firehose. The target application searches for New York City 
bike-related tweets and makes them actionable by printing their count to stdout and their content to file. 
Listing  5-16  contains the code for this application. 

   19     https://about.twitter.com/company     .  
   20  Stuart Dredge, “Twitter: Why #SoggyFries Make for a Tasty Future in Big-Data Revenue,”  The Guardian , November 5, 
2014,    www.theguardian.com/technology/2014/nov/05/twitter-soggyfries-big-data-advertising     .  
   21     https://dev.twitter.com/overview/api/twitter-libraries     .  
   22  Sbt dependency:  libraryDependencies += "org.apache.spark" %% "spark-streaming-twitter" % "1.4.0" .  

https://about.twitter.com/company
http://www.theguardian.com/technology/2014/nov/05/twitter-soggyfries-big-data-advertising
https://dev.twitter.com/overview/api/twitter-libraries
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     Listing 5-16.    Using the Twitter API Connector to Read Tweets That Mention New York City Bikes   

 1.   val cb =  new  ConfigurationBuilder()   
 2.   cb.setOAuthConsumerKey(consumerKey)   
 3.   cb.setOAuthConsumerSecret(consumerSecret)   
 4.   cb.setOAuthAccessToken(accessToken)   
 5.   cb.setOAuthAccessTokenSecret(accessTokenSecret)   
 6.    
 7.   val twitterAuth =  new  TwitterFactory(cb.build()).getInstance().getAuthorization()   
 8.    
 9.    val tweetStream = TwitterUtils.createStream(ssc, Some(twitterAuth), Array("nyc citi 

bike", "nyc bike share"))   
 10.  tweetStream.count().print()   
 11.  tweetStream.saveAsTextFiles(outputPath)   

   To access the Twitter API, you first need to provide it with your Twitter credentials (lines 1–7). These 
credentials can be obtained by registering the application as a Twitter app. 23  The credentials are passed to 
the  createStream  method along with an array of keywords that serve as a filter to match tweets against. If 
this filter is not provided, the API falls back on randomly sampling a subset of the firehose. The output of this 
application prints the count of the tweets per interval (line 10) and saves their content to secondary storage 
(line 11).   

     Block Interval 
 Recall that the number of partitions in the input stream decides the parallelism of first-level tasks. For an 
input stream generated by reading data from HDFS, each partition corresponds to an HDFS block. What 
about input streams generated from receivers? Enter the block interval. It dictates the duration of data 
coalescence into a block before it is registered in the block store.   spark.streaming.blockInterval    has a 
default value of 200 ms. Block interval and batch interval go hand in glove: the number of blocks per interval 
(and hence map-like transform parallelism) is decided by  batchInterval / blockInterval . For instance, 
using the default block interval for a batch interval of 1 s (1000 ms/200 ms), the number of blocks is five. 

 For good resource utilization, the number of tasks should at least match the number of cores per node. 
Therefore, the value of  blockInterval  should be set accordingly. It is generally recommended that you keep 
the block interval set to at least 50 ms to amortize the cost of task launch.  

     Custom Receiver 
 Any  InputDStream  that connects to an external data source needs to implement the  Receiver  interface. This 
receiver resides on worker nodes and is in charge of ingesting external data and writing it to the block store. 
Table  5-6  lists methods from this interface.  

   23     https://apps.twitter.com/app/     .  

https://apps.twitter.com/app/
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 The reliability of a receiver is dictated by the flavor of the  store()  method it uses. Unreliable receivers 
store one item at a time whose state can be lost in case of a failure. Reliable receivers, on the other hand, 
store an  ArrayBuffer  of items via a blocking call that returns only after all items have been replicated by 
Spark. This ensures better fault tolerance. The receiver also needs to send acknowledgements to the data 
sender, which makes the design of a reliable receiver more involved. 

       HttpInputDStream   
 Spark Streaming out of the box has no connector for HTTP. In light of that, Listing  5-17  implements one to 
help you get the hang of the receiver API. 

     Listing 5-17.    Custom  HttpInputDStream  and  HttpReceiver  to Ingest Data from HTTP Sources   

 1.    import  java.util.Timer   
 2.    import  java.util.TimerTask   
 3.    
 4.    import  scala.reflect.ClassTag   
 5.    
 6.    import  org.apache.http.client.methods.HttpGet   
 7.    import  org.apache.http.impl.client.CloseableHttpClient   
 8.    import  org.apache.http.impl.client.HttpClients   
 9.    import  org.apache.http.util.EntityUtils   

    Table 5-6.    Methods from the  Receiver   Interface     

 Method  Description 

  onStart()   Invoked when the receiver starts. Generally used to initialize 
state and spawn threads. This should be kept lightweight and 
should never be made blocking. 

  onStop()   Called when the receiver needs to exit. Operation is generally 
the reverse of  onStart : used to stop threads and deallocate 
state. The same nonblocking stipulation applies. 

  store(dataItem: T)   Saves  dataItem  to Spark’s memory. Used to implement 
unreliable receivers. 

  store(dataBuffer: ArrayBuffer[T])   Saves an  ArrayBuffer  of items to Spark’s memory in a blocking 
call. Used to implement reliable receivers. 

  restart(message: String, 
throwable: Throwable)  

 Restarts the receiver: in the background,  onStop()  and 
 onStart()  are called. The restart delay is dictated by  spark.
streaming.receiverRestartDelay . 

  stop(message: String, throwable: 
Throwable)  

 Stops the receiver. 

  reportError(message: String, 
throwable: Throwable)  

 Reports errors to the driver. Does not change the state of the 
receiver. 

  preferredLocation : Option[String]   Specifies a preferred node for this receiver. Should return a 
hostname. 

  isStarted()   Can be used to check whether the receiver has started. 

  isStopped()   Same as the previous, but for stop state. 
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 10.   import  org.apache.spark.Logging   
 11.   import  org.apache.spark.storage.StorageLevel   
 12.   import  org.apache.spark.streaming.StreamingContext   
 13.   import  org.apache.spark.streaming.api.java.JavaDStream   
 14.   import  org.apache.spark.streaming.api.java.JavaDStream.fromDStream   
 15.   import  org.apache.spark.streaming.api.java.JavaStreamingContext   
 16.   import  org.apache.spark.streaming.dstream.DStream   
 17.   import  org.apache.spark.streaming.dstream.ReceiverInputDStream   
 18.   import  org.apache.spark.streaming.receiver.Receiver   
 19.   
 20.   class  HttpInputDStream(   
 21.      @transient ssc_ : StreamingContext,   
 22.      storageLevel: StorageLevel,   
 23.      url: String,   
 24.      interval: Long)  extends  ReceiverInputDStream[String](ssc_) with Logging {   
 25.   
 26.    def getReceiver(): Receiver[String] = {   
 27.       new  HttpReceiver(storageLevel, url, interval)   
 28.    }   
 29.  }   
 30.   
 31.   class  HttpReceiver(   
 32.      storageLevel: StorageLevel,   
 33.      url: String,   
 34.      interval: Long)  extends  Receiver[String](storageLevel) with Logging {   
 35.   
 36.    var httpClient: CloseableHttpClient = _   
 37.    var trigger: Timer = _   
 38.   
 39.    def onStop() {   
 40.      httpClient.close()   
 41.      logInfo("Disconnected from Http Server")   
 42.    }   
 43.   
 44.    def onStart() {   
 45.      httpClient = HttpClients.createDefault()   
 46.      trigger =  new  Timer()   
 47.      trigger.scheduleAtFixedRate( new  TimerTask {   
 48.        def run() = doGet()   
 49.      }, 0, interval * 1000)   
 50.   
 51.      logInfo("Http Receiver initiated")   
 52.    }   
 53.   
 54.    def doGet() {   
 55.      logInfo("Fetching data from Http source")   
 56.      val response = httpClient.execute( new  HttpGet(url))   
 57.       try  {   
 58.        val content = EntityUtils.toString(response.getEntity())   
 59.        store(content)   
 60.      }  catch  {   
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 61.         case  e: Exception => restart("Error! Problems while connecting", e)   
 62.      }  finally  {   
 63.        response.close()   
 64.      }   
 65.   
 66.    }   
 67.   
 68.  }   
 69.   
 70.  object HttpUtils {   
 71.    def createStream(   
 72.      ssc: StreamingContext,   
 73.      storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2,   
 74.      url: String,   
 75.      interval: Long): DStream[String] = {   
 76.       new  HttpInputDStream(ssc, storageLevel, url, interval)   
 77.    }   
 78.   
 79.    def createStream(   
 80.      jssc: JavaStreamingContext,   
 81.      storageLevel: StorageLevel,   
 82.      url: String,   
 83.      interval: Long): JavaDStream[String] = {   
 84.      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[String]]   
 85.      createStream(jssc.ssc, storageLevel, url, interval)   
 86.    }   
 87.  }   

   You first implement an  HttpInputDStream  that takes as input the URL of the source in its constructor 
(line 20). The  ReceiverInputDStream  abstract class requires that you implement a custom receiver, which in 
this case is an  HttpReceiver  (line 31).  HttpReceiver  is implemented following the interface listed in Table  5-6  
and uses the Apache  HttpClient  library for Java 24  (line 36). In a nutshell, the library exposes methods to initiate 
blocking HTTP requests. Because HTTP calls are stateless, 25  recurring calls need to be made to the target 
endpoint in each interval. To enable this, a  Timer  (line 46) is used to schedule the request at a regular interval 
(line 47). This interval is assumed to be the same as the batch interval in Spark Streaming. 

 The actual request is initiated in a custom function (line 54) that makes a blocking call and stores 
the content of the response in the block store (line 59). In case of an exception, the receiver is restarted 
(line 61). Note that this is an unreliable receiver, because HTTP servers in general have no concept of 
acknowledgement. Finally, you implement a couple of helper functions to simplify the creation of an 
 HttpInputDStream  from Scala (line 71) and Java (line 79). 

 The Spark Streaming consumer application to test the  InputDStream  you just created consists of 
ingesting the New York City bike station status feed (   www.citibikenyc.com/stations/json     ) over HTTP and 
spitting out the details of out-of-order stations to file. This is shown in Listing  5-18 . 

   24     https://hc.apache.org/httpcomponents-client-4.5.x/     .  
   25  This is not necessarily true in every case. Starting with HTTP 1.1, data chunks of unknown length can be transferred 
in the same session (see    http://tools.ietf.org/html/rfc7230#section-4.1     ). This means HTTP servers can 
asynchronously stream data to clients. A Spark Streaming receiver can therefore initiate a connection and then receive 
data asynchronously. An example of such a receiver is at    https://github.com/actions/meetup-stream/blob/
master/src/main/scala/receiver/MeetupReceiver.scala     .  

http://www.citibikenyc.com/stations/json
https://hc.apache.org/httpcomponents-client-4.5.x/
http://tools.ietf.org/html/rfc7230#section-4.1
https://github.com/actions/meetup-stream/blob/master/src/main/scala/receiver/MeetupReceiver.scala
https://github.com/actions/meetup-stream/blob/master/src/main/scala/receiver/MeetupReceiver.scala
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     Listing 5-18.    Ingesting the NYC Bike Station Status Feed via the Custom HTTP Connector and Logging 
Nonfunctional Stations   

 1.    HttpUtils.createStream(ssc, url = "https://www.citibikenyc.com/stations/json", interval 
= batchInterval)   

 2.   .flatMap(rec => (parse(rec) \ "stationBeanList").children)   
 3.     .filter(rec => {   
 4.       implicit val formats = DefaultFormats   
 5.       (rec \ "statusKey").extract[Integer] != 1   
 6.     })   
 7.     .map(rec => rec.filterField {   
 8.        case  JField("id", _) =>  true    
 9.        case  JField("stationName", _) =>  true    
 10.       case  JField("statusValue", _) =>  true    
 11.       case  _ =>  false    
 12.    })   
 13.    .map(rec => {   
 14.      implicit val formats = DefaultFormats   
 15.      (rec(0)._2.extract[Integer], rec(1)._2.extract[String], rec(2)._2.extract[String])   
 16.    })   
 17.    .saveAsTextFiles(outputPath)   

   The application connects to the HTTP source using the custom  HttpInputDStream . The data at the 
source is in the form of a large JSON object with nested JSON objects for each bike station. This is parsed 
into individual objects in line 2. The application then filters out stations that are functional (line 3). 
Subsequently, you keep only three fields:  id ,  stationName , and  statusValue  (line 7). Before writing them 
to an HDFS directory on line 17, you unJSONify their types (line 13). City administrators and bike users can 
now use this application to avoid bike stations that aren’t functional.    

     Summary 
 Pretty much everything is a potential source of data. This data may hold the cure for cancer, the signs of 
global warming, or the next billion-dollar idea. But before it can be analyzed and made actionable, it needs 
to be transported to a data center or a private cluster. A number of solutions explore different points in the 
design space that spans fault tolerance, latency, throughput, simplicity, and API semantics. This chapter was 
dedicated to exploring these options. Your journey down Route 66 of Spark Streaming data ingestion has 
taken you from using Kafka to ingest New York City shared bike data to using Twitter to ingest tweets in real 
time. En route, you learned how to write your own custom receiver to consume data from HTTP sources. 
Your journey is by no means over: the next chapter, among other topics, looks at emitting data from Spark 
Streaming to external sinks.      
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    CHAPTER 6   

 The Art of Side Effects                          

    He who performs not practical work nor makes experiments will never attain to the least 
degree of mastery.  

 —Jabir ibn Hayyan (Geber)   

 Spark Streaming applications by design are stateless and side-effect free: running the same application 
an infinite number of times results in the same behavior and output. Similar to functional programming, 
this simplifies debugging and reasoning about the state of a program, because input and output paths are 
deterministic. Although side-effect-free applications have many advantages, in distributed systems side 
effects cannot be completely avoided, especially when interfacing with external systems. For this reason, 
Spark Streaming provides a primitive called  foreachRDD , which is the Swiss Army Knife of side effects for 
micro-batch processing. 

 This chapter introduces design patterns for enabling side effects in Spark Streaming applications. 
Along the way, you look at emitting output to external solutions such as HBase, Cassandra, and Redis and at 
maintaining state across batches. You use real-time financial feeds as a dataset. One of the main goals is to 
minimize the overhead of making frequent use of  foreachRDD . In addition, you gain hands-on knowledge 
of using industry-standard solutions, such as HBase, as a storage solution. To attain mastery of  foreachRDD , 
this practical work is necessary. 

     Taking Stock of the Stock Market 
  The global stock market experienced little innovation since its inception in the 12 th  century until the 
middle of the 20 th  century. Then the information age happened, fueled initially by the computer and then 
by the Internet. The timescale of buying and selling actions on the market went from hours to milliseconds, 
engendering stock market 2.0. In addition, human intervention began to diminish due to algorithmic 
trading, wherein machines supported by mathematical models and AI make decisions. In a similar vein, 
both real-time data and historical data from all major international markets can be accessed through APIs. 
Overall, these trends have lowered the barrier to entry for individuals to jump in to the online trading 
domain. Stocks can now be traded and fortunes made and lost with the click of a button. 
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  Stock market   2.0 is driven by access to real-time stock market tickers and feeds. A number of licensed 
and free APIs expose these feeds: free ones include Yahoo Finance 1  and MSN Money. 2  These feeds are 
used by propriety solutions, such as Bloomberg Terminal, 3  Thomson Reuters Eikon, 4  and custom tools. 5  In 
a similar vein, this chapter pairs real-time data from Yahoo Finance with Spark Streaming to create stock-
market-centric applications. 

  One of the world’s foremost services in this domain, Yahoo Finance, exposes both a web service and 
an advanced querying service enabled by Yahoo Query Language (YQL). 6  YQL provides a SQL-like interface 
to query data from Yahoo APIs. It can be used to query any data on the Internet that follows the Open Data 
Table format. 7  Let’s try to grab the current stock value for IBM using the web service in JSON format. Pasting 
the following URL in a browser results in the response shown in Listing  6-1 : 

    http://finance.yahoo.com/webservice/v1/symbols/IBM/quote?format=json&view=detail 

      Listing 6-1.    Response of the Current Stock Value Web Request for IBM via Yahoo Finance   

 1.   {   
 2.     "list": {   
 3.       "meta": {   
 4.         "type": "resource-list",   
 5.         "start": 0,   
 6.         "count": 1   
 7.       },   
 8.       "resources": [   
 9.         {   
 10.          "resource": {   
 11.            "classname": "Quote",   
 12.            "fields": {   
 13.              "change": "-1.520004",   
 14.              "chg_percent": "-1.005693",   
 15.              "day_high": "150.779999",   
 16.              "day_low": "149.179993",   
 17.              "issuer_name": "International Business Machines Corporation",   
 18.              "issuer_name_lang": "International Business Machines Corporation",   
 19.              "name": "International Business Machines",   
 20.              "price": "149.619995",   
 21.              "symbol": "IBM",   
 22.              "ts": "1444766537",   
 23.              "type": "equity",   
 24.              "utctime": "2015-10-13T20:02:17+0000",   
 25.              "volume": "3915707",   
 26.              "year_high": "183.790000",   
 27.              "year_low": "140.560000"   
 28.            }   

   1     http://finance.yahoo.com/     .  
   2     www.msn.com/en-us/money     .  
   3     www.bloomberg.com/professional/     .  
   4     http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/
eikon-trading-software.html     .  
   5     https://github.com/brymck/finansu     .  
   6     https://developer.yahoo.com/yql/     .  
   7     www.datatables.org/     .  

http://finance.yahoo.com/
http://www.msn.com/en-us/money
http://www.bloomberg.com/professional/
http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/eikon-trading-software.html
http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/eikon-trading-software.html
https://github.com/brymck/finansu
https://developer.yahoo.com/yql/
http://www.datatables.org/
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 29.          }   
 30.        }   
 31.      ]   
 32.    }   
 33.  } 

   A similar request using YQL ( select * from yahoo.finance.quotes where symbol in ("IBM") ) 
is as follows. Its response is omitted for brevity, because it has substantially more fields (close to 80). 8  This 
list of columns can be accessed online, though. 9  This is a far richer dataset, so you use it in the applications 
throughout this chapter: 

    https://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20yahoo.finance.quotes%20
where%20symbol%20in%20(%22IBM%22)%0A%09%09&format=json&diagnostics=true&env=http%3A%2F%2Fdat
atables.org%2Falltables.env        

     foreachRDD 
  foreachRDD , as the name suggests, is applied as an output action to each RDD in a  DStream . All operations 
in the function or closure passed to it are invoked in the driver program. Typically, this function invokes an 
action on an RDD, which is scheduled on worker nodes. To understand this behavior, consider the standard 
 saveAsTextFiles  action from the Spark codebase (Listing  6-2 ), which can be applied to any  DStream  to write 
its partitions to an HDFS-like file system. 

     Listing 6-2.     Anatomy of   a Typical  foreachRDD -Enabled Action   

 1.   def saveAsTextFiles(prefix: String, suffix: String = ""): Unit = ssc.withScope {   
 2.     val saveFunc = (rdd: RDD[T], time: Time) => {   
 3.       val file = rddToFileName(prefix, suffix, time)   
 4.       rdd.saveAsTextFile(file)   
 5.     }   
 6.      this .foreachRDD(saveFunc)   
 7.   }   

   This creates a function to call  saveAsTestFile  on each RDD and provides it with a formatted filename. 
This means line 4 is actually scheduled on worker nodes, whereas the rest of the code is executed on the 
driver stack, as shown in Figure  6-1 . This bifurcation in the execution path has implications for the design, 
performance, and utility of such actions. To drive home the point, let’s look at a concrete example.  

   8  YQL queries can also be executed via its console:    https://developer.yahoo.com/yql/console/     .  
   9     www.datatables.org/yahoo/finance/yahoo.finance.quotes.xml     .  

https://query.yahooapis.com/v1/public/yql?q=select * from yahoo.finance.quotes where symbol in ("IBM")
		&format=json&diagnostics=true&env=http://datatables.org/alltables.envPlease break this and other long highlighted code lines.
https://query.yahooapis.com/v1/public/yql?q=select * from yahoo.finance.quotes where symbol in ("IBM")
		&format=json&diagnostics=true&env=http://datatables.org/alltables.envPlease break this and other long highlighted code lines.
https://query.yahooapis.com/v1/public/yql?q=select * from yahoo.finance.quotes where symbol in ("IBM")
		&format=json&diagnostics=true&env=http://datatables.org/alltables.envPlease break this and other long highlighted code lines.
https://developer.yahoo.com/yql/console/
http://www.datatables.org/yahoo/finance/yahoo.finance.quotes.xml
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 The example application publishes stock information to MQTT. Specifically, the goal is to grab the stock 
values of ten technology companies from Yahoo Finance, transform them, and then publish them to an 
MQTT topic (Listing  6-3 ). 

     Listing 6-3.    Naïve Implementation of Publishing Yahoo Finance Stock Data to an  MQTT   Sink   

 1.    HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/
yql?q=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%22IBM,GOOG,MSF
T,AAPL,FB,ORCL,YHOO,TWTR,LNKD,INTC%22)%0A%09%09&format=json&diagnostics=true&env=http%3
A%2F%2Fdatatables.org%2Falltables.env", interval = batchInterval)   

 2.   .flatMap(rec => {   
 3.     val query = parse(rec) \ "query"   
 4.      ((query \ "results" \ "quote").children).map(rec => JObject(JField("Timestamp", query 

\ "created")).merge(rec))   
 5.   })   
 6.   .map(rec => {   
 7.     implicit val formats = DefaultFormats   
 8.     rec.children.map(f => f.extract[String]) mkString ","   
 9.   })   
 10.  .foreachRDD { rdd =>   
 11.     val client =  new  MqttClient(outputBrokerUrl, MqttClient.generateClientId(),  new  

MemoryPersistence())   
 12.    client.connect()   
 13.     rdd.foreach(rec => client.publish(topic,  new  MqttMessage(rec.

getBytes(StandardCharsets.UTF_8))))   

  Figure 6-1.     Scheduling   a  foreachRDD  action       
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 14.    client.disconnect()   
 15.    client.close()   
 16.  }   

   The application uses the HTTP receiver from the last chapter (line 1) to fetch the current stock value of 
IBM, Google, Microsoft, Apple, Facebook, Oracle, Yahoo, Twitter, LinkedIn, and Intel. The lookup is enabled 
by a YQL query wrapped in an HTTP  GET  call. The data is in the form of nested JSON, so you first flatten 
it into a per-company record and add a timestamp (lines 2–5). This is then converted to a CSV record for 
simplified consumer-side processing (lines 6–9). Once the data has been fetched and massaged, the next 
step is to emit it to MQTT. Using  foreachRDD , you design the sink so that the MQTT client connection is 
created (lines 11–12) and reaped (lines 14–15) in the driver JVM while it is used to publish messages in the 
worker (line 13). 

 On the surface, this code looks fine—but the devil is in the details. Running this application raises an 
 org.apache.spark.SparkException: Task not serializable  exception caused by  java.
io.NotSerializableException: org.eclipse.paho.client.mqttv3.MqttClient . This is because the 
MQTT client connection object, which needs to be shipped out to worker nodes, is not serializable. In fact, 
this non-serializable property applies to most connection objects, whether database connections or simple 
sockets—anything that needs to be shipped to worker nodes needs to be serializable. Bearing this in mind, 
let’s improve the code. 

      Per-Record Connection 
 The second version of  the    foreachRDD  sink (Listing  6-4 ) mitigates the serialization problem by using a 
per-record connection object at the worker: an MQTT client connection is created (lines 4–5), used (line 6), 
and reaped (line 7–8) for each output record. 

     Listing 6-4.    Per-Record Stateful Connection Creation in  foreachRDD    

 1.   .foreachRDD { rdd =>   
 2.     rdd.foreach { rec =>   
 3.       {   
 4.          val client =  new  MqttClient(outputBrokerUrl, MqttClient.generateClientId(),  new  

MemoryPersistence())   
 5.         client.connect()   
 6.         client.publish(topic,  new  MqttMessage(rec.getBytes(StandardCharsets.UTF_8)))   
 7.         client.disconnect()   
 8.         client.close()   
 9.       }   
 10.    }   
 11.  }   

   This code works fine in theory, but in production it is very inefficient, because it is overkill to establish 
a per-record connection. It would be more efficient to amortize this cost over many records. This mantra 
drives the next iteration of the sink.   

     Per-Partition Connection 
 The key improvement in Listing  6-5  is to tease out the creation of the connection from the per-record  foreach  
and move it to a  foreachPartition  (line 2) construct. This enables a per-partition connection model. This 
connection is re-created for each partition, which can be further improved on by maintaining a partition-
invariant static connection object. This static connection is reused as long as the executor JVM is up. 
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     Listing 6-5.    Per-Partition Stateful  Connection   Creation in  foreachRDD    

 1.   .foreachRDD { rdd =>   
 2.     rdd.foreachPartition { par =>   
 3.        val client =  new  MqttClient(outputBrokerUrl, MqttClient.generateClientId(),  new  

MemoryPersistence())   
 4.       client.connect()   
 5.        par.foreach(rec => client.publish(topic,  new  MqttMessage(rec.

getBytes(StandardCharsets.UTF_8))))   
 6.       client.disconnect()   
 7.       client.close()   
 8.     }   
 9.   }   

   The use of a static connection also has the implication that it is used concurrently by tasks in the same 
executor. Therefore, the connection object should be thread-safe. This design is more involved, because it 
entails instance objects and automatic decommission; it is at the center of the next iteration of the sink.  

      Static Connection   
 The first order of the day is to create a static object for the sink using the built-in Scala  apply  10  method to 
return a concrete singleton implementation (Listing  6-6 ). The MQTT client singleton is created and initiated 
first (lines 3–4). Now that the client object is a singleton, you have no control over its lifecycle. In other 
words, you want to keep reusing the same static connection, perhaps forever. The only time the connection 
needs to be closed is when the executor is exiting. So, you register a JVM shutdown hook to release the 
connection state (lines 5–7). 

      Listing 6-6.    Singleton Object Instance for the MQTT Client Connection   

 1.   object MqttSink {   
 2.     val brokerUrl = "tcp://localhost:1883"    
 3.      val client =  new  MqttClient(brokerUrl, MqttClient.generateClientId(),  new  

MemoryPersistence())   
 4.     client.connect()   
 5.     sys.addShutdownHook {   
 6.       client.disconnect()   
 7.       client.close()   
 8.     }   
 9.      
 10.    def apply(): MqttClient = {   
 11.      client   
 12.    }   
 13.  }   

   This sink can then directly be invoked in  foreachPartition , nested in a  foreachRDD  as shown in 
Listing  6-7 . This serves the purpose of keeping static connections on the worker nodes. 

   10  Typically used in Scala to return a concrete instance of a class.  
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     Listing 6-7.    Using a Static Connection in  foreachRDD    

 1.   .foreachRDD { rdd =>   
 2.     rdd.foreachPartition { par =>   
 3.        par.foreach(message => MqttSink().publish(topic,  new  MqttMessage(message.

getBytes(StandardCharsets.UTF_8))))   
 4.     }   
 5.   } 

   This solution has a minor drawback: the connection to the remote server is established regardless of 
whether the client is referenced: for instance, if no data is ever received at the executors. Let’s try to remedy 
that by using lazy evaluation to establish the connection only the first time it is referenced.  

      Lazy Static Connection 
 The implementation  in   Listing  6-8  is very similar to the one in Listing  6-6 , except that the creation of 
the connection object is performed in a lazy fashion (line 2) in a custom serializable class. That is, the 
connection is established only when it is referenced the very first time (in the executor). This enables you to 
create the singleton in the driver and only pass a creation template to the worker. 11  

     Listing 6-8.    Creating an MQTT Client Connection Singleton Using Lazy Evaluation   

 1.    class  MqttSinkLazy(brokerUrl: String)  extends  Serializable {   
 2.     lazy val client = {   
 3.        val client =  new  MqttClient(brokerUrl, MqttClient.generateClientId(),  new  

MemoryPersistence())   
 4.       client.connect()   
 5.       sys.addShutdownHook {   
 6.         client.disconnect()   
 7.         client.close()   
 8.       }   
 9.       client   
 10.    }   
 11.  }   
 12.     
 13.  object MqttSinkLazy {   
 14.    val brokerUrl = "tcp://localhost:1883"   
 15.    val client =  new  MqttSinkLazy(brokerUrl)   
 16.     
 17.    def apply(brokerUrl: String): MqttSinkLazy = {   
 18.      client   
 19.    }   
 20.  }   

   At the Spark Streaming end (Listing  6-9 ), to ensure that the object is sent only once to the workers, 
you send it via a broadcast variable (line 1). In the  foreachRDD , you simply use that broadcasted variable to 
publish messages to MQTT (line 4). 

   11  Marcin Kuthan, “Spark and Kafka Integration Patterns,”  Allegro Tech , August 6, 2015, 
   http://allegro.tech/2015/08/spark-kafka-integration.html     .  

http://allegro.tech/2015/08/spark-kafka-integration.html
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     Listing 6-9.    Using a Broadcast Variable to Create a Connection Object in the Driver and Use It in  foreachRDD    

 1.   val mqttSink = ssc.sparkContext.broadcast(MqttSinkLazy(outputBrokerUrl))   
 2.   .... 
 3.   .foreachRDD { rdd =>   
 4.      rdd.foreachPartition { par => par.foreach(message => mqttSink.value.client.

publish(topic,  new  MqttMessage(message.getBytes(StandardCharsets.UTF_8))))   
 5.    
 6.     }   
 7.   }   

   This design may lead to contention between tasks in an executor because they all rely on a single 
instance of an object. Let’s try to reduce this overhead by maintaining a pool of static connection objects 
that each partition can use across batches. 12  You use the Apache Commons Pool library 13  to perform the 
actual pooling.   

      Static Connection Pool 
  BasePooledObjectFactory  is  the   basic base class for pooled objects under Apache Commons. Listing  6-10  
extends it to support  MqttClient  objects (line 15). This involves providing hooks for the lifecycle of the 
connection object. You then create a static pool for pooled objects (line 4), with the appropriate hook for 
reclamation (lines 6–8). The maximum number of objects in the pool is also controllable and should be set 
to the number of cores (or vcores in the case of YARN) per executor (line 5). Recall from Chapter   4     that the 
maximum number of tasks per executor is dictated by the number of cores assigned to that executor. As a 
result, the maximum size of the connection pool should reflect this number. The pool instance singleton is 
accessible via the  apply  method (lines 10–12). 

     Listing 6-10.    Implementing a Static Pool to Amortize the Cost of  MqttClient  Connection Objects   

 1.   object MqttSinkPool {   
 2.     val poolSize = 8   
 3.     val brokerUrl = "tcp://localhost:1883"   
 4.     val mqttPool =  new  GenericObjectPool[MqttClient]( new  MqttClientFactory(brokerUrl))   
 5.     mqttPool.setMaxTotal(poolSize)   
 6.     sys.addShutdownHook {   
 7.       mqttPool.close()   
 8.     }   
 9.        
 10.    def apply(): GenericObjectPool[MqttClient] = {   
 11.      mqttPool   
 12.    }   
 13.  }   
 14.     
 15.   class  MqttClientFactory(brokerUrl: String)  extends  BasePooledObjectFactory[MqttClient] {   
 16.    override def create() = {   
 17.       val client =  new  MqttClient(brokerUrl, MqttClient.generateClientId(),  new  

MemoryPersistence())   

   12     https://gist.github.com/koen-dejonghe/39c10357607c698c0b04     .  
   13     https://commons.apache.org/proper/commons-pool/     .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_4
https://gist.github.com/koen-dejonghe/39c10357607c698c0b04
https://commons.apache.org/proper/commons-pool/
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 18.      client.connect()   
 19.      client   
 20.    }   
 21.    override def wrap(client: MqttClient) =  new  DefaultPooledObject[MqttClient](client)   
 22.    override def validateObject(pObj: PooledObject[MqttClient]) = pObj.getObject.isConnected()   
 23.    override def destroyObject(pObj: PooledObject[MqttClient]) = {   
 24.      pObj.getObject.disconnect()   
 25.      pObj.getObject.close()   
 26.    }   
 27.    override def passivateObject(pObj: PooledObject[MqttClient]) = {}   
 28.  }   

   In the  foreachRDD  construct (Listing  6-11 ), you borrow a connection object for each partition (line 3) 
and return it once all the records in a partition have been processed (line 5). 

     Listing 6-11.    Using a Static Pool Object in a  foreachRDD    

 1.   .foreachRDD { rdd =>   
 2.     rdd.foreachPartition { par =>   
 3.       val mqttSink = MqttSinkPool().borrowObject()   
 4.        par.foreach(message => mqttSink.publish(topic,  new  MqttMessage(message.

getBytes(StandardCharsets.UTF_8))))   
 5.       MqttSinkPool().returnObject(mqttSink)   
 6.     }   
 7.   }   

   The use of the various design patterns outlined in this section depends on the particular requirements 
of your application (see Table  6-1 ). One thing should be clear, though: connection objects should be reused 
as aggressively as possible.  

   Table 6-1.    Comparison of Design Patterns for Maintaining Connection Objects   

 Design Pattern  Advantage  Disadvantage 

 Per-record connection  Does not need to be serialized and 
sent over to executors from the driver. 

 Very inefficient because a connection 
per record is created and destroyed. 

 Per-partition connection  Extends the lifecycle of a connection 
to cover an entire partition instead of 
a record. 

 Begins stressing resources when the 
number of partitions increases. 

 Static connection  A single connection per JVM is 
maintained. 

 The connection is established 
regardless of whether it is used. 

 Lazy static connection  A connection is established only the 
first time the client object is used. 

 Thread-safety leads to resource 
contention turning the connection 
into a bottleneck. 

 Static connection pool  A pool of static connections is used 
throughout. 

 Now that you have had a deep dive into  foreachRDD  operations, the next section looks at emitting data 
to two popular NoSQL stores: HBase and Cassandra.      
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     Scalable Streaming Storage 
 One of the most common use cases for streaming applications is to drive business-critical dashboards. 
In the case of stock market analysis, a typical example is to provide a moving-average price of securities. 
The average is calculated over a specific number of time intervals to smooth out any noise and to observe 
long-term trends. This trend is then relayed to a dashboard to enable an investor to make a buy/sell decision. 

 This can easily be implemented using a Spark Streaming application. A simple design consists of 
calculating the moving average in the application and emitting its result to a socket. At the other end of the 
socket, a dashboard can read data via a  select  call and display the contents. This design is shown 
in Figure  6-2 .  

  Figure 6-3.     Stock market dashboard   powered by Spark Streaming and HBase       

  Figure 6-2.     Stock market dashboard   powered by Spark Streaming       

 This design has two major shortcomings: it lacks fault tolerance, so data will be lost if either the Spark 
application or the dashboard crashes; and it only provides instantaneous analysis, so historical data cannot 
be analyzed. The first shortcoming can be resolved by using a message queue solution such as Kafka. The 
second, on the other hand, requires using a persistent store. You can use HBase to act as a buffer and a 
store to hold historical data: Spark Streaming writes its output to HBase, and the dashboard reads data from 
HBase only after the data has been replicated (Figure  6-3 ).  

   14  Fay Chang et al., “Bigtable: A Distributed Storage System for Structured Data,”  Proceedings of OSDI ‘06 , 7 (USENIX 
Association, 2006).  

      HBase 
  HBase   can be thought of as a distributed, persisted, and sorted multidimensional map. It is the open source 
variant of Google's Bigtable. 14  In HBase, data is laid out in tables, in the form of cells, which are indexed by 
row and column keys. Row keys are sorted in alphabetical order. Therefore, the choice of row key can affect 
performance, as you see shortly. All operations—reads and writes—are atomic at the row-key level. Columns 
are grouped into column families, which is the unit of access control and compression. 

 

 



CHAPTER 6 ■ THE ART OF SIDE EFFECTS

109

 Columns that need to be accessed together are typically stored in the same column family for efficient 
access. Each cell also has an associated timestamp, which either is generated by the system at insertion time 
or is user defined. This means a cell may have many temporal versions. Older versions are garbage-collected 
by the system based on a predefined policy. Any sort of data can be persisted in a cell, ranging from strings 
and counters to complex types. The HBase subsystem stores all records as byte arrays, so any type that can 
be converted to a byte array can be persisted. The API consists of simple key-based  get  and  put  operations, 
although other complex operations, such as  scan  and  append , are also supported. 

 Under the hood, HBase slices rows into regions, each of which stores a range of rows. A region is the 
basic unit of distribution, replication, and fault-tolerance. HBase uses HDFS behind the scenes to store all of 
its control and user data. As a result, replication and fault-tolerance are delegated to HDFS. Architecturally, 
HBase consists of a central  HMaster , which is in charge of region distribution, slave coordination, and HDFS 
file management. At any given time, only a single  HMaster  is active, whereas a number of them may be 
running in passive mode to ensure high availability. Inter- HMaster  coordination is implemented via 
ZooKeeper. Each region is entrusted to an  HRegionServer , which arbitrates reads and writes to regions 
and is co-located with HDFS data nodes.  HRegionServer s also cache data to ensure good performance. 
A log-structure merge-tree-based representation enables efficient writes. 

 To understand the data layout design of HBase in concrete terms, let’s walk through a real-world example. 
Suppose you want to store stock information for all the companies on Yahoo Finance. In financial applications, 
stocks from each industry vertical—technology, finance, e-commerce, and so on—are typically accessed 
together. Therefore, you exploit this property by prepending an abbreviation of the vertical to the name of the 
company, delimited by a period: for example,  tech.ibm  and  tech.goog . This ensures that companies from the 
same vertical end up in the same region. In addition, you group similar values into column entities. All values 
related to price—last trade price, price paid, and so on—are stored in the  price  column family, and all volume-
centric values are stored in the  volume  column family. This layout is shown in Table  6-2 .   

   Table 6-2.    Schema of Yahoo Finance Data in HBase   

 Row key  Column Family: Price  Column Family: Volume 

  LastTrade  
  PriceOnly  

  PriceSales    Volume    AverageDaily  
  Volume  

 fin.gs  187.01  2.42  2573727  3216030 

 fin.jpm  63.90  2.65  13880244  16479900 

 fin.ms  32.55  1.80  10952312  13008400 

 ...  ...  ... 

 tech.appl  115.28  3.03  66340901  59367800 

 tech.fb  103.77  19.67  25962155  32084300 

 tech.goog  712.78  6.73  2716615  2342240 

 ...  ...  ... 
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      Stock Market Dashboard 
 Before  your   Spark Streaming application can be triggered, you need to set up HBase. 15  The goal is to emit 
data to a table, so the first task is to create a table named  stock  with column family  avgprice . This can be 
done via the HBase shell using this command: 

   create 'stock', 'avgprice' 

   Next, the following dependencies need to be added to the  .sbt  file for the application project for client 
dependencies: 

   libraryDependencies += "org.apache.hbase" % "hbase-client" % "1.1.2" 
 libraryDependencies += "org.apache.hbase" % "hbase-server" % "1.1.2" 
 libraryDependencies += "org.apache.hbase" % "hbase-common" % "1.1.2" 

   You are now ready to begin implementing Spark code to calculate a moving average for the ten technology 
companies mentioned earlier using your custom HTTP receiver. This code is presented in Listing  6-12 . 

      Listing 6-12.    Calculating a Moving Average for Stock Price Values and Emitting Them to HBase   

 1.    HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/
yql?q=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%22IBM,GOOG,MS
FT,AAPL,FB,ORCL,YHOO,TWTR,LNKD,INTC%22)%0A%09%09&format=json&diagnostics=true&env=http
%3A%2F%2Fdatatables.org%2Falltables.env",   

 2.     interval = batchInterval)   
 3.     .flatMap(rec => {   
 4.       implicit val formats = DefaultFormats   
 5.       val query = parse(rec) \ "query"   
 6.       ((query \ "results" \ "quote").children)   
 7.          .map(rec => ((rec \ "symbol").extract[String], (rec \ "LastTradePriceOnly").

extract[String].toFloat))   
 8.     })   
 9.      .reduceByKeyAndWindow((x: Float, y: Float) => (x + y), Seconds(windowSize), 

Seconds(slideInterval))   
 10.    .foreachRDD(rdd => {   
 11.      val hbaseConf = HBaseConfiguration.create()   
 12.      hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tableName)   
 13.      hbaseConf.set("hbase.master", hbaseMaster);   
 14.      val jobConf =  new  Configuration(hbaseConf)   
 15.      jobConf.set("mapreduce.job.outputformat.class", classOf[TableOutputFormat[Text]].getName)   
 16.      rdd.map(rec => {   
 17.        val put =  new  Put(rec._1.getBytes)   
 18.         put.addColumn(columnFamilyName.getBytes, columnName.getBytes, Bytes.

toBytes(rec._2 / (windowSize / batchInterval)))   
 19.        (rec._1, put)   
 20.      }).saveAsNewAPIHadoopDataset(jobConf)   
 21.    }) 

   15  Download HBase (ver 1.1.2) from    https://hbase.apache.org/      and run it via  $HBASE_HOME/bin/start_hbase.sh . 
The shell can be accessed via  $HBASE_HOME/bin/hbase shell . Note that the default settings constitute a test setup and 
should not be used in production. For details of a multinode production-grade installation, please consult the HBase 
documentation.  

https://hbase.apache.org/
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   Of the 80+ fields, only  LastTradePriceOnly  is required to calculate a moving average; therefore you 
extract and project only this field, along with the stock symbol name (lines 3–8). You then perform a moving-
sum calculation using a  reduceByKeyAndWindow  operation.  windowSize  dictates the length of the moving 
sum, and  slideInterval  its granularity (line 9). This sum is now ready to be pushed to HBase (after dividing 
it by  windowSize , of course). This requires the use of your trusted friend  foreachRDD . The actual flush to 
HBase is enabled by  saveAsNewAPIHadoopDataset()  for each RDD. 

  saveAsNewAPIHadoopDataset() , if you recall from Chapter 2, can be used to emit data to any Hadoop-
compatible store, including HBase. This function takes as input a Hadoop configuration file (line 14), 
which contains details about the HBase  HMaster  (line 13) and table (line 12) and the output format 
(line 15).  TableOutputFormat  16  describes an HBase table, and its parameterization dictates the format 
of the row key: Text, in this case. The default output format for the value is  ImmutableBytesWritable , 
which means you need to convert your output  float  to a byte array. Because you are inserting records 
into HBase, you use the  Put  mutation (line 17) and provide it with the row key. For each column, you also 
need to specify the column family name, qualifier, and value (line 18). Note that the sum is converted to 
an average by dividing it by the window size (the temporal value of the window normalized by the batch 
interval) just before it is written to the table. This operation needs to be repeated for each record in the RDD 
(lines 16–20). Once data starts landing in HBase, its presence can be verified by performing a  scan  of the 
stock table, as shown in Listing  6-13 . 

    Listing 6-13.    Performing a Scan of the Stock Table in HBase   

 1.   hbase(main):002:0> scan 'stock'   
 2.   ROW                                COLUMN +CELL                                                                                      
 3.    AAPL                               column =avgprice:price,  timestamp =1446095400305, 

value=A\x8F\x1F\xBE                              
 4.    FB                                 column =avgprice:price,  timestamp =1446095400305, 

value=Az\x14z                                    
 5.    GOOG                               column =avgprice:price,  timestamp =1446095400305, 

value=B\xD5\xE2\x90                              
 6.    IBM                                column =avgprice:price,  timestamp =1446095400305, 

value=A\xA8\xFE\xFA                              
 7.    INTC                               column =avgprice:price,  timestamp =1446095400305, 

value=@\xA6\x9B\xA6                              
 8.    LNKD                               column =avgprice:price,  timestamp =1446095400288, 

value=A\xFF\xDA\x1D                              
 9.    MSFT                               column =avgprice:price,  timestamp =1446095400305, 

value=A\x01\x8DP                                 
 10.   ORCL                               column =avgprice:price,  timestamp =1446095400305, 

value=@\xBA\x9F\xBE                              
 11.   TWTR                               column =avgprice:price,  timestamp =1446095400288, 

value=@\x94-\x0E                                 
 12.   YHOO                               column =avgprice:price,  timestamp =1446095400288, 

value=@\xA8\xE3U                                 
 13.  10 row(s) in 0.0360 seconds   

   16   org.apache.hadoop.hbase.mapreduce.TableOutputFormat .  
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          SparkOnHBase 
 Using HBase as a Hadoop-compatible file system permits you to read from and write to it in a Spark 
Streaming application, but this is a loose coupling at best. The API is very verbose, and the RDDs and 
 DStream s are HBase agnostic. SparkOnHBase 17  a project from Cloudera, aims to remedy this by providing 
native support for HBase.  SparkOnHBase   enables the creation of RDDs from HBase scans; bulk-load,  put , 
 get , and  delete  operations from RDDs and  DStream s; and per-partition  map  and  foreach  operations with 
access to an HBase connection, among others. Let’s try to simplify the implementation of the previous 
example using SparkOnHBase (see Listing  6-14 ). 

     Listing 6-14.    Using SparkOnHBase to Perform a Bulk HBase  put  Operation   

  1.   val hbaseConf = HBaseConfiguration.create()   
 2.   val hContext =  new  HBaseContext(ssc.sparkContext, hbaseConf)   
 3.     
   4.    val windowed = HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/

yql?q=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%22IBM,GOOG,MSFT
,AAPL,FB,ORCL,YHOO,TWTR,LNKD,INTC%22)%0A%09%09&format=json&diagnostics=true&env=http%3A%
2F%2Fdatatables.org%2Falltables.env",   

 5.     interval = batchInterval)   
 6.     .flatMap(rec => {   
 7.       implicit val formats = DefaultFormats   
 8.       val query = parse(rec) \ "query"   
 9.       ((query \ "results" \ "quote").children)   
 10.          .map(rec => ((rec \ "symbol").extract[String], (rec \ "LastTradePriceOnly").

extract[String].toFloat))   
 11.     })   
 12.      .reduceByKeyAndWindow((x: Float, y: Float) => (x + y), Seconds(windowSize), 

Seconds(slideInterval))   
 13.     
   14.   hContext.streamBulkPut[(String, Float)](windowed, TableName.valueOf(tableName), rec => {   
 15.     val put =  new  Put(rec._1.getBytes)   
 16.      put.addColumn(columnFamilyName.getBytes, columnName.getBytes, Bytes.toBytes(rec._2 / 

(windowSize / batchInterval)))   
 17.     put   
 18.   })   

    The entry point for SparkOnHBase is an  HBaseContext  (line 2) object that requires a  SparkContext  
and an  HBaseConfiguration  for initialization. This can be used to perform most operations included in the 
library. For instance, instead of relying on copious amounts of boilerplate code in a  foreachRDD  transform, 
a single  streamBulkPut  (line 14) transform can be used to spit out data to HBase. The third argument to 
 streamBulkPut  needs to be a function that is given records from the  DStream  as input and is required to 
return a  Put  object. 

 SparkOnHBase was merged upstream into the HBase codebase in 2015 18  but is available only in the 
 2.0.0-SNAPSHOT  version of HBase at the time of writing. Therefore, to use it, add the following to your build 
definition file: 

   17  Ted Malaska, “New in Cloudera Labs: SparkOnHBase,”  Cloudera , December 18, 2014,    http://blog.cloudera.com/
blog/2014/12/new-in-cloudera-labs-sparkonhbase/     .  
   18  Ted Malaska, “Apache Spark Comes to Apache HBase with HBase-Spark Module,”  Cloudera , August 13, 2015, 
   http://blog.cloudera.com/blog/2015/08/apache-spark-comes-to-apache-hbase-with-hbase-spark-module/     .  

http://blog.cloudera.com/blog/2014/12/new-in-cloudera-labs-sparkonhbase/
http://blog.cloudera.com/blog/2014/12/new-in-cloudera-labs-sparkonhbase/
http://blog.cloudera.com/blog/2015/08/apache-spark-comes-to-apache-hbase-with-hbase-spark-module/
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   libraryDependencies += "org.apache.hbase" % " hbase -client" % "2.0.0-SNAPSHOT" 
 libraryDependencies += "org.apache.hbase" % " hbase -server" % "2.0.0-SNAPSHOT" 
 libraryDependencies += "org.apache.hbase" % " hbase -common" % "2.0.0-SNAPSHOT" 
 libraryDependencies += "org.apache.hbase" % " hbase -spark" % "2.0.0-SNAPSHOT" 
 resolvers += "Apache Snapshot Repository" at "https://repository.apache.org/content/
repositories/snapshots" 

   HBase has strong consistency guarantees. These at times can affect write performance, whereas reads 
are extremely fast. Depending on the use case and the data semantics, Cassandra, another NoSQL store, can 
achieve better write performance. This is not always true, though; the best method to choose a data store is 
to base the decision on benchmarks and application and data requirements. 

 For completeness, let’s emit data to Cassandra instead of HBase.   

      Cassandra 
 Similar to HBase,  Cassandra   is also a distributed, multidimensional sorted map in which values are indexed 
by key. Unlike HBase, which relies on HDFS, Cassandra implements its own replication strategy for fault 
tolerance and high availability. As a result, write operations are atomic at the key level for each replica. 
Tables in Cassandra are called  column families , which are nested sorted maps: the outer map is indexed by 
row key, and the inner one is indexed by column key. This makes lookups very efficient. Column families 
reside in  keyspaces , which are similar to the concept of a database. Cassandra also supports super-column 
families, which are just nested columns—a third-level map. The use of multidimensional maps also 
simplifies the API: typical operations are  set ,  get ,  update , and  del . 

 Cassandra has a completely decentralized model wherein each request is routed to any node in the 
cluster, which in turn determines the final hop: the node, which holds a replica for the request key. The 
selection of this replica is dictated by the read/write semantics of the requests. It uses consistent hashing 
(over a hypothetical ring) to partition data across nodes. The replication factor is configurable per keyspace. 
Due to its decentralized model, there is no central node orchestration mechanism. Instead, nodes use a 
gossip-based technique to share cluster-membership information. Data is stored on the local file system at 
each node, supported by log-structured merge-trees (similar to HBase). 

 You now have enough background information about Cassandra to get your hands dirty. Let’s start by 
setting up the environment 19  to dump data from the stock market application using Cassandra’s Thrift 
API-based CLI (Listing  6-15 ). 

     Listing 6-15.    Creating a Column Family in Cassandra   

 1.    create  keyspace stock;   
 2.   use stock;   
 3.    create column  family avgprice  with  comparator = UTF8Type;   
 4.     update column  family avgprice  with  column_metadata = [{column_name: price, 

validation_class: FloatType}];   
 5.   assume avgprice keys  as  utf8; 

   The commands create a keyspace called  stock  with a single column family dubbed  avgprice . The data 
type for the column name is a simple UTF string. 20  The next step is to add a  price  column with type  float  to 
the  avgprice  family. This column family is now ready to receive data. 

   19  Cassandra (ver 2.1.11) can be downloaded from    http://cassandra.apache.org/     . To start using the default single-
node configuration, use  $CASSANDRA_HOME/bin/cassandra start . The Cassandra CLI can be started via  $CASSANDRA_
HOME/bin/cassandra-cli .  
   20  Data types for column values are called  validators , and data types for column names are called  comparators .  

http://cassandra.apache.org/
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 Using Cassandra libraries in Spark Streaming requires adding the following line to your  .sbt  file: 
   libraryDependencies += "org.apache.cassandra" % "cassandra-all" % "2.1.11" 

   Listing  6-16  lists a  foreachRDD  transform for Cassandra to replace the HBase one in Listing  6-12 . 

     Listing 6-16.    Emitting Data to a Cassandra Column Family   

 1.   .foreachRDD(rdd => {   
 2.           val jobConf = new Configuration()   
 3.           ConfigHelper.setOutputRpcPort(jobConf, cassandraPort)   
 4.           ConfigHelper.setOutputInitialAddress(jobConf, cassandraHost)   
 5.           ConfigHelper.setOutputColumnFamily(jobConf, keyspace, columnFamilyName)   
 6.           ConfigHelper.setOutputPartitioner(jobConf, "Murmur3Partitioner")   
 7.           rdd.map(rec => {   
 8.             val c = new column()   
 9.             c.setName(ByteBufferUtil.bytes(columnName))   
 10.            c.setValue(ByteBufferUtil.bytes(rec._2 / (windowSize / batchInterval)))   
 11.            c.setTimestamp(System.currentTimeMillis)   
 12.            val m = new Mutation()   
 13.            m.setColumn_or_supercolumn(new ColumnOrSuperColumn())   
 14.            m.column_or_supercolumn.setColumn(c)   
 15.            (ByteBufferUtil.bytes(rec._1), Arrays.asList(m))   
 16.           }).saveAsNewAPIHadoopFile(keyspace, classOf[ByteBuffer], 

classOf[List[Mutation]], classOf[ColumnFamilyOutputFormat], jobConf)   
 17.        })   

   Similar to HBase, the first order of the day is to set up configuration parameters (lines 2–6) that set the 
location of the Cassandra cluster, the name of the keyspace and column family, and the output partitioner 
(which decides how to divvy up data across the cluster). You use the  MurmurHash -based partitioner, which 
uniformly distributes the data across nodes. Mutations to each column in a row need to be specified 
explicitly. The column family only has a single column, for which you need to specify a name, value, and 
timestamp (lines 8–11). It then needs to be wrapped in a mutation object (lines 12–14) and returned as the 
value in a  PairRDD foreachRDD  operation (line 15). You finally invoke  saveAsNewAPIHadoopFile  on each 
RDD to emit it to Cassandra, where it lands in the avgprice column family. Listing  6-17  shows the output of a 
 list  operation on this column family via the Cassandra Thrift CLI. 

     Listing 6-17.    Stock Ticker Application Output in Cassandra   

 1.   [default@stock] list avgprice;   
 2.   Using default limit of 100   
 3.   Using default cell limit of 100   
 4.   -------------------   
 5.   RowKey: TWTR => (name=price, value=29.06, timestamp=1446175330214)   
 6.   -------------------   
 7.   RowKey: AAPL => (name=price, value=120.53, timestamp=1446175330215)   
 8.   -------------------   
 9.   RowKey: FB => (name=price, value=104.88, timestamp=1446175330215)   
 10.  -------------------   
 11.  RowKey: ORCL => (name=price, value=38.86, timestamp=1446175330214)   
 12.  -------------------   
 13.  RowKey: INTC => (name=price, value=34.03, timestamp=1446175330213)   
 14.  -------------------   
 15.  RowKey: YHOO => (name=price, value=35.05, timestamp=1446175330214)   
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 16.  -------------------   
 17.  RowKey: IBM => (name=price, value=140.55, timestamp=1446175330214)   
 18.  -------------------   
 19.  RowKey: GOOG => (name=price, value=716.92, timestamp=1446175330215)   
 20.  -------------------   
 21.  RowKey: LNKD => (name=price, value=217.0, timestamp=1446175330214)   
 22.  -------------------   
 23.  RowKey: MSFT => (name=price, value=53.36, timestamp=1446175330214)   
 24.  10 Rows Returned. 
 25.  Elapsed time: 6.76 msec(s). 

          Spark Cassandra Connector 
 The explicit   foreachRDD    based approach to spit out data to Cassandra (or any other Hadoop-compatible 
data store) is very involved: it requires you to reason about the output format, data types, and mutations. 
Fortunately, in the case of Cassandra, DataStax (the startup that provides commercial support for 
Cassandra) has a connector for Spark that greatly simplifies the ingress and egress process. 21  To use it, add 
the following to your build definition file: 

   libraryDependencies += "com.datastax.spark" %% "spark-cassandra-connector" % "1.4.0" 

   You also need to import  com.datastax.spark.connector.streaming._  and  com.datastax.spark.
connector._  into your Spark application. The location of the Cassandra cluster is specified by setting  spark.
cassandra.connection.host  and  spark.cassandra.connection.port  in  SparkConf . 

 The Thrift API for Cassandra is almost deprecated; the new interface revolves around  Cassandra Query 
Language (CQL)  . CQL provides a SQL-like interface to query Cassandra and ships with a command-line 
tool, cqlsh, which is similar in spirit to the previous CLI. Be mindful of the port, though, when setting  spark.
cassandra.connection.port , because the CQL interface (default port: 9042) has a different port than the 
Thrift API (default: 9160). 

 The DataStax connector also enables you to directly invoke CQL. This is extremely useful for tasks such 
as creating tables. 22  Listing  6-18  contains the updated code, which uses this connector. In lines 1–4, you set 
up the keyspace and table for your application.  conf  is the  SparkConf  object. Lines 6–14 are identical to the 
previous two examples and are only provided for completeness. Emitting data to Cassandra is just a matter 
of invoking the   saveToCassandra  method   and giving it the keyspace and table name (line 16). 

     Listing 6-18.    Emitting Data to Cassandra Using the Spark Cassandra Connector from DataStax   

 1.   CassandraConnector(conf).withSessionDo { session =>   
 2.      session.execute(s"CREATE KEYSPACE IF NOT EXISTS %s WITH REPLICATION = {'class': 

'SimpleStrategy', 'replication_factor': 1 }".format(keyspace))   
 3.      session.execute(s"CREATE TABLE IF NOT EXISTS %s.%s (key TEXT PRIMARY KEY, %s FLOAT)".

format(keyspace, tableName, columnName))   
 4.   }   
 5.      
 6.    HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/

yql?q=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%22IBM,GOOG,MSF
T,AAPL,FB,ORCL,YHOO,TWTR,LNKD,INTC%22)%0A%09%09&format=json&diagnostics=true&env=http%3
A%2F%2Fdatatables.org%2Falltables.env",   

   21     https://github.com/datastax/spark-cassandra-connector     .  
   22  In the CQL world, Cassandra column families are now called  tables .  

https://github.com/datastax/spark-cassandra-connector
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 7.     interval = batchInterval)   
 8.     .flatMap(rec => {   
 9.       implicit val formats = DefaultFormats   
 10.      val query = parse(rec) \ "query"   
 11.      ((query \ "results" \ "quote").children)   
 12.         .map(rec => ((rec \ "symbol").extract[String], (rec \ "LastTradePriceOnly").

extract[String].toFloat))   
 13.    })   
 14.     .reduceByKeyAndWindow((x: Float, y: Float) => (x + y), Seconds(windowSize), 

Seconds(slideInterval))   
 15.    .map(stock => (stock._1, stock._2 / (windowSize / batchInterval)))   
 16.    .saveToCassandra(keyspace, tableName) 

   Listing  6-19  shows the output table via CQL. 

     Listing 6-19.    Displaying the Stock Ticker Application Output Table in Cassandra via CQL   

 1.   cqlsh:stock> SELECT * FROM avgprice2;   
 2.      
 3.    key  | price   
 4.   ------+--------   
 5.    TWTR |  28.46   
 6.    AAPL |  119.5   
 7.      FB | 101.97   
 8.    ORCL |  38.84   
 9.    INTC |  33.86   
 10.   YHOO |  35.62   
 11.    IBM | 140.08   
 12.   GOOG | 710.81   
 13.   LNKD | 240.87   
 14.   MSFT |  52.64   
 15.     
 16.  (10 rows)  

          Global State 
 Spark Streaming batches are by design stateless: all transformations during a batch affect only the RDDs in 
that batch. The only exception to this rule is  updateStateByKey() , which maintains state across RDDs. The 
downside is that only state for data, which occurs in the data stream itself, can be manipulated. This section 
sketches some recipes that apply stateful operations to batch-invariant RDDs. 

      Static Variables 
 The simplest state is in  the   form of counters. For instance, how can you keep track of the maximum and 
minimum stock volume across all securities, count the number of times any stock price has hit 500, and 
print a message when this counter has reached 1,000? You can use static variables in the driver program in 
tandem with  foreachRDD . Specifically, you can take advantage of the fact that  foreachRDD  is invoked in the 
driver program, so if you update the value of any static variables, the state is applicable across RDDs. 
Listing  6-20  provides code that uses this approach. 
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      Listing 6-20.    Using Static Counters and  foreachRDD  to Maintain Statistics Across RDDs/Batches   

 1.   var globalMax: AtomicLong =  new  AtomicLong(Long.MinValue)   
 2.   var globalMin: AtomicLong =  new  AtomicLong(Long.MaxValue)   
 3.   var globalCounter500: AtomicLong =  new  AtomicLong(0)   
 4.      
 5.    HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/

yql?q=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%22IBM,GOOG,MSF
T,AAPL,FB,ORCL,YHOO,TWTR,LNKD,INTC%22)%0A%09%09&format=json&diagnostics=true&env=http%3
A%2F%2Fdatatables.org%2Falltables.env",   

 6.     interval = batchInterval)   
 7.     .flatMap(rec => {   
 8.       implicit val formats = DefaultFormats   
 9.       val query = parse(rec) \ "query"   
 10.      ((query \ "results" \ "quote").children)   
 11.         .map(rec => ((rec \ "symbol").extract[String], (rec \ "LastTradePriceOnly").

extract[String].toFloat, (rec \ "Volume").extract[String].toLong))   
 12.    })   
 13.    .foreachRDD(rdd => {   
 14.      val stocks = rdd.take(10)   
 15.      stocks.foreach(stock => {   
 16.        val price = stock._2   
 17.        val volume = stock._3   
 18.         if  (volume > globalMax.get()) {   
 19.          globalMax.set(volume)   
 20.        }   
 21.         if  (volume < globalMin.get()) {   
 22.          globalMin.set(volume)   
 23.        }   
 24.         if  (price > 500) {   
 25.          globalCounter500.incrementAndGet()   
 26.        }   
 27.      })   
 28.       if  (globalCounter500.get() > 1000L) {   
 29.        println("Global counter has reached 1000")   
 30.        println("Max ----> " + globalMax.get)   
 31.        println("Min ----> " + globalMin.get)   
 32.        globalCounter500.set(0)   
 33.      }   
 34.    })   

   This code has two noteworthy aspects:

•    It uses atomic variables to ensure that calculations remain atomic even in the face of 
concurrent access and modification.  

•   Projected data is ingested into the driver process (line 14). This works because 
you know the number of stock records and the amount of data is small enough 
to not overwhelm the driver node heap. Note that because all the data has been 
materialized in the driver program, the inner  foreach  (line 15) is executed in the 
driver JVM, not on the worker executors. That is why you can maintain global 
numbers.    
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 This approach works well if you know the number of counters upfront and the amount of global state 
is small enough to fit in the driver JVM memory. What happens when one or both of these statements is not 
true? For instance, what if you wanted to keep the maximum and minimum for each stock value in the data 
stream but did not know the stock symbols of interest beforehand? Let’s look at some alternatives.   

      updateStateByKey() 
 The most obvious choice is   updateStateByKey()   , which allows you to track the state of keys across RDDs. 
Using a custom  update  function, you can re-perform the  max ,  min , and  count  calculation in each invocation 
(see Listing  6-21 ). 23  In contrast to the previous example, all state manipulation takes place in the  update  
function (lines 12–22). The batch-invariant variable for each key is a tuple of the form  (min, max, count) . 
The current value of this tuple is passed to the  update  function as the second argument. This can be 
enhanced further to perform any arbitrary computation and hold any collection, such as a map. 

     Listing 6-21.    Using  updateStateByKey()  for Per-Key Statistics Across RDDs   

 1.    HttpUtils.createStream(ssc, url = "https://query.yahooapis.com/v1/public/
yql?q=select%20*%20from%20yahoo.finance.quotes%20where%20symbol%20in%20(%22IBM,GOOG,MSF
T,AAPL,FB,ORCL,YHOO,TWTR,LNKD,INTC%22)%0A%09%09&format=json&diagnostics=true&env=http%3
A%2F%2Fdatatables.org%2Falltables.env",   

 2.     interval = batchInterval)   
 3.     .flatMap(rec => {   
 4.       implicit val formats = DefaultFormats   
 5.       val query = parse(rec) \ "query"   
 6.       ((query \ "results" \ "quote").children)   
 7.          .map(rec => ((rec \ "symbol").extract[String], ((rec \ "LastTradePriceOnly").

extract[String].toFloat, (rec \ "Volume").extract[String].toLong)))   
 8.     })   
 9.     .updateStateByKey(updateState)   
 10.    .print()   
 11.     
 12.   def updateState(values: Seq[(Float, Long)], state: Option[(Long, Long, Long)]): 

Option[(Long, Long, Long)] = {   
 13.    val volumes = values.map(s => s._2)   
 14.    val localMin = volumes.min   
 15.    val localMax = volumes.max   
 16.    val localCount500 = values.map(s => s._1).count(price => price > 500)   
 17.     val globalValues = state.getOrElse((Long.MaxValue, Long.MinValue, 0L)).

asInstanceOf[(Long, Long, Long)]   
 18.    val newMin =  if  (localMin < globalValues._1) localMin  else  globalValues._1   
 19.    val newMax =  if  (localMax > globalValues._2) localMax  else  globalValues._2   
 20.    val newCount500 = globalValues._3 + localCount500   
 21.     return  Some(newMin, newMax, newCount500)   
 22.  }  

   23  Don’t forget to set a checkpoint directory.  
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    updateStateByKey()  works well if the number of keys and the amount of RDD-invariant state is small. 
This is primarily because RDDs and  DStream s are immutable. On the plus side, this simplifies fault-
tolerance: Spark can regenerate any lost RDD by replaying data from the checkpoint. On the downside, 
this means any state maintained via  StateDStream  (the  DStream  that makes  updateStateByKey  operations 
possible) needs to be regenerated in every batch. Imagine if you are tracking a million keys but only a 
handful of them need to be updated in every micro-batch. It is clearly overkill and suboptimal to create new 
copies of keys that have not been mutated. Can you do better?   

      Accumulators 
  Accumulators  , if you recall, are shared variables that support associative operations. This enables them to 
perform operations in parallel. One key property of accumulators is that only the driver program can read 
the value of an accumulator; workers can only add to it. They are extremely useful for calculating counts and 
sums across RDDs. In addition to these simple operations, accumulators can also contain Scala collections. 
For instance, you can create a  HashMap -based accumulator as follows 

   mapAcc  = StreamingContext#sparkContext.accumulableCollection(mutable.HashMap[String, Int]()) 

   and then add items to it: 

   mapAcc += (keyStr -> valInt) 

   This insertion of values is typically performed in a  foreachRDD . 
 In the example use case, you need to keep track of a few statistics. So rather than embedding this logic 

in the core streaming flow, let’s create a custom accumulator to provide this functionality. Spark provides 
two interfaces for implementing custom accumulators:  AccumulatorParam  and  AccumulableParam . The 
former is used when the value to be added to the accumulator is the same as the accumulated value. For 
example, if the accumulator is a 2-tuple of  int s, then only 2-tuple  int s can be added to it. In contrast, 
 AccumulableParam  allows a different type for the added value. In fact, under the hood,  AccumulatorParam  is 
just syntactic sugar on top of  AccumulableParam . 

 You need to use  AccumulableParam , because the input value ( "stockPrice": Float, "stockVolume": 
Long ) is different than the values you need to accumulate ( "maxVolume": Long, "minVolume": Long, 
"priceCounter": Long ). In addition, these metrics need to be maintained per stock symbol. 

 Each concrete implementation of  AccumulableParam  needs to override the following three methods:

•     zero() : The identity value of the accumulator.  

•    addAccumulator() : Adds a single value.  

•    addInPlace() : Merges two accumulators. Invoked each time the values of sharded 
accumulators from different tasks need to be aggregated.    

 The code for the custom  StockAccum  accumulator is presented in Listing  6-22 . Internally, it 
maintains a hash map indexed by the stock symbol to hold per-stock stats. The second  type  parameter to 
 AccumulableParam  needs to represent the value to be added, which in this case is a 2-tuple of this form: 

    (String, (Float, Long)): ("stockSym", ("stockPrice", "stockVolume")) 
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   In the identity-initialization method (line 2), you create a new  HashMap . To enable two accumulators 
to be merged, the   addInPlace  method   (line 5) compares each stock symbol in the two maps and copies 
over the  max  and  min  of the two to the first map, respectively. For the counter, it simply adds the values 
from the maps. Finally, the   addAccumulator  method   (line 15) adds the values to the previous set of values 
for a particular stock symbol (or initializes it if the symbol is encountered for the first time). The counter is 
incremented by checking whether the current stock price exceeds 500 (line 19). 

    Listing 6-22.    Custom Accumulator to Keep Track of Global Stock Stats   

 1.    object StockAccum  extends  AccumulableParam[mutable.HashMap[String, (Long, Long, Long)], 
(String, (Float, Long))] {   

 2.      def zero(t: mutable.HashMap[String, (Long, Long, Long)]): mutable.HashMap[String, 
(Long, Long, Long)] = {   

 3.        new  mutable.HashMap[String, (Long, Long, Long)]()   
 4.     }   
 5.      def addInPlace(t1: mutable.HashMap[String, (Long, Long, Long)], t2: mutable.

HashMap[String, (Long, Long, Long)]): mutable.HashMap[String, (Long, Long, Long)] = {   
 6.       t1 ++ t2.map {   
 7.          case  (k, v2) => (k -> {   
 8.           val v1 = t1.getOrElse(k, (Long.MaxValue, Long.MinValue, 0L))   
 9.           val newMin =  if  (v2._1 < v1._1) v2._1  else  v1._1   
 10.          val newMax =  if  (v2._2 > v1._2) v2._2  else  v1._2   
 11.          (newMin, newMax, v1._3 + v2._3)   
 12.        })   
 13.      }   
 14.    }   
 15.     def addAccumulator(t1: mutable.HashMap[String, (Long, Long, Long)], t2: 

(String, (Float, Long))): mutable.HashMap[String, (Long, Long, Long)] = {   
 16.      val prevStats = t1.getOrElse(t2._1, (Long.MaxValue, Long.MinValue, 0L))   
 17.      val newVals = t2._2   
 18.      var newCount = prevStats._3   
 19.       if  (newVals._1 > 500.0) {   
 20.        newCount += 1   
 21.      }   
 22.      val newMin =  if  (newVals._2 < prevStats._1) newVals._2  else  prevStats._1   
 23.      val newMax =  if  (newVals._2 > prevStats._2) newVals._2  else  prevStats._2   
 24.      t1 += t2._1 -> (newMin, newMax, newCount)   
 25.    }   
 26.  }   

   Listing  6-23  shows the use of the accumulator. It replaces the  foreachRDD  transform in Listing  6-20 . 
In the inner  foreach  (which is executed on worker nodes), you add values to the accumulator (line 4). 
These values are subsequently displayed in the driver process by printing the hash map from the 
accumulator (line 7). 
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     Listing 6-23.    Adding Values to an Accumulator   

 1.    val stateAccum = ssc.sparkContext.accumulable( new  mutable.HashMap[String, 
(Long, Long, Long)]())(StockAccum)   

 2.   ... 
 3.   .foreachRDD(rdd => {   
 4.     rdd.foreach({ stock =>   
 5.       stateAccum += (stock._1, (stock._2._1, stock._2._2))   
 6.     })   
 7.       for  ((sym, stats) <- stateAccum.value.to) printf("Symbol: %s, Stats: %s\n", 

sym, stats)   
 8.   })   

   As you can see, accumulators are very easy to use and reason about. But at the same time, their 
functionality is limited: only the driver process can read from them, and only associative operations can be 
performed. What if the application needs to keep arbitrary state and operations?   

     External Solutions 
 One option for storing global values is to explicitly turn them into side effects and keep them in external 
storage. With this design, in each batch, previous state is read from external storage, transformed, and then 
written back. At the same time, this external storage needs to ensure low latency to match the performance 
of native in-JVM data structures. One such option is Redis, an in-memory key-value store. 

    Redis 
  Redis   (REmote DIctionary Server) is simply an in-memory data-structure directory. It supports a wide 
range of common data types including lists, sets, and hash maps. In addition, Redis contains out-of-the-
box implementations of advanced structures such as bitmaps and HyperLogLogs. It also enables direct 
manipulation of these data types. For instance, the hash data structure supports  set  and  get  operations. All 
of these structures are stored in memory for efficient lookup. To ensure fault-tolerance, they are periodically 
synced with disk. 

 Transactions are atomic at the command level, but different commands can be clumped explicitly into 
a single atomic transaction. Redis uses the asynchronous master-slave replication mode for redundancy and 
scalability. Furthermore, it supports a cluster mode wherein data is sharded across nodes. 

 Continuing the example application, you can use Redis to store stock volume and price metrics. For 
each stock symbol, the application will store the minimum and maximum volume and the price counter in 
a hash map. Client libraries for Redis exist for all major programming languages. For Java, the package of 
choice is Jedis. Once Redis has been set up, 24  add the following to your build definition file: 

   libraryDependencies += "redis.clients" % "jedis" % "2.7.3" 

   24  Download Redis (ver 3.0.5) from    http://redis.io/download     , and build the project ( make ). Post-build run it with 
 $REDIS_HOME/src/redis-server . To access the console, use  $REDIS_HOME/src/redis-cli .  

http://redis.io/download
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   Listing  6-24  shows how Redis can be used to store arbitrary data structures from Spark Streaming 
applications. In the per-partition  foreach  (line 2), you connect to the Redis server using a Jedis client 
connection object that takes the hostname of the server as input (line 3). Then, for each record, you first 
need to check whether the stock symbol key exists in Redis (lines 4–5). If it does not, the  value  tuple is 
initialized with default values. Otherwise, the previous values stored in Redis are updated (lines 8–17) and 
written back (line 18). In each batch interval, these values are also emitted to standard output in the driver 
JVM (lines 24–26). If the number of keys is small, it may be more efficient to batch (or partition) them in a 
single pipelined call to Redis (obtained via  Jedis#pipelined() ). Wrapping Redis operations in a  foreachRDD  
operation allows you to use the former to store boundless, batch-invariant state. 

    Listing 6-24.    Keeping Spark Streaming Application State in Redis   

 1.   .foreachRDD(rdd => {   
 2.     rdd.foreachPartition({ part =>   
 3.       val jedis =  new  Jedis(hostname)   
 4.       part.foreach(f => {   
 5.         val prev = jedis.hmget(f._1, "min", "max", "count")   
 6.          if  (prev(0) ==  null ) {   
 7.            jedis.hmset(f._1, mutable.HashMap("min" -> Long.MaxValue.toString, 

"max" -> Long.MinValue.toString, "count" -> 0.toString))   
 8.         }  else  {   
 9.           val prevLong = prev.toList.map(v => v.toLong)   
 10.          var newCount = prevLong(2)   
 11.          val newPrice = f._2._1   
 12.          val newVolume = f._2._2   
 13.           if  (newPrice > 500.0) {   
 14.            newCount += 1   
 15.          }   
 16.          val newMin =  if  (newVolume < prevLong(0)) newVolume  else  prevLong(0)   
 17.          val newMax =  if  (newVolume > prevLong(1)) newVolume  else  prevLong(1)   
 18.           jedis.hmset(f._1, mutable.HashMap("min" -> newMin.toString, "max" -> 

newMax.toString, "count" -> newCount.toString))   
 19.        }   
 20.      })   
 21.      jedis.close()   
 22.    })   
 23.     
 24.    val jedis =  new  Jedis(hostname)   
 25.     jedis.scan(0).getResult.foreach(sym => println("Symbol: %s, Stats: %s".format

(sym, jedis.hmget(sym, "min", "max", "count").toString)))   
 26.    jedis.close()   
 27.  }) 
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           Summary 
 In Spark Streaming, side effects facilitated by  foreachRDD  signpost explicit points in the data flow to talk 
to external services and maintain cross-RDD state. The same interface can be used to integrate streaming 
applications with HBase, Cassandra, and Redis, among many others. Combined with the ability to ingest 
data from disparate sources, this empowers Spark Streaming to be the centerpiece of real-time processing 
pipelines from any domain. The use of external NoSQL solutions permits applications to persist their output 
while achieving high scalability, throughput, and availability. 

 Having examined different ingress and egress options for Spark Streaming, you can move on to the next 
leg of writing scalable streaming applications: logging, monitoring, and general optimizations.      
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    CHAPTER 7   

 Getting Ready for Prime Time                          

    Given enough eyeballs, all bugs are shallow.  

 —Linus’s Law   

 Application development is an incremental and continuous process: once an application has been designed, 
implemented, and deployed, it needs to be constantly monitored and improved. The same applies to real-
time pipelines, with additional variables: scalability and capacity. There may be an increase in the volume 
and velocity of the incoming data or lower latency requirements. Over time, as requirements change, initial 
design choices need to be reevaluated. Developers and infrastructure engineers clamor to squeeze the last 
bit of performance out of both the software stack and the hardware. Regardless of the cause and effect, all 
such projects require rigorous and generous instrumentation—from logging and monitoring to alerting and 
metrics. 

 This chapter equips you with frameworks, tools, and techniques to master Spark Streaming application 
instrumentation and management. The example is a clickstream analysis of data from Wikipedia. You kick 
off the chapter by offloading RDD management from executors to Tachyon, a general-purpose, in-memory 
file system. A deep dive into the Spark UI, as an enabler of application optimization, is also on the menu. 
Subsequent sections introduce and hone the instrumentation-first mantra. Now, let’s make all bugs shallow. 

      Every Click Counts 
 Online businesses are interested in learning the behavior, habits, and wants of their visitors. This enables 
them to provide a personalized experience to each customer with the goal of increasing conversions via both 
targeting and re-targeting. Clickstream data (mashed up with third-party sources) underpins this category 
of analytics. A clickstream, as the name suggests, is a detailed timeline of the interaction of a user with the 
artifacts on a web site. Traditionally, these were stored in server logs for offline analysis; but in recent years, 
thanks to solutions like Kafka, Flume, and Scribe, to name a few, this event stream coupled with direct data 
from JavaScript code is transported in real-time to analytics solutions. 

 Clickstream data is cobbled together to construct a complete profile of a user. The ensuing micro-
segmentation drives user engagement, predictive analytics, and server and web site design optimization. A 
typical record in the stream contains a timestamp, details about the event (click, purchase, form entry, and 
so on), the ingress and egress points, and user machine information (device type, operating system, and so 
on). Ingress information is important because it permits a web site to reason about how visitors land on a 
certain page—who the referrers are. For instance, if the top referrals come from Google, then search engine 
optimization (SEO) is working well and should be given more resources. On the other hand, if most visitors 
(or lack therefore) come via social media—which has definitely turned into a force to be reckoned with on 
this front—then that should drive future strategy. 
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 Detailed clickstream data generally does not reside in the public/open data sphere for proprietary and 
privacy reasons. Fortunately, Wikipedia released two months (January and February 2015) of clickstream 
data from its request logs. 1  Table  7-1  lists the six fields in the dataset.   

   Table 7-1.    Fields in the Wikipedia  Clickstream Dataset     

 Field #  Name  Description 

 1   prev_id (referrer)   The ID of the previous Wikipedia article the user was on. Empty if a non-
Wikipedia source. 

 2   curr_id (resource)   The ID of the current page. 

 3   n   The number of occurrences of this referrer, resource pair. 

 4   prev_title   The title of the referrer English Wikipedia article, or marked as  other-
wikipedia ,  other-empty ,  other-internal ,  other-google ,  other-yahoo , 
 other-bing ,  other-facebook ,  other-twitter , or  other-other . 

 5   curr_title   The title of the current article. 

 6   type   The type of the referrer: 

•   link : Both the referrer and resource are Wikipedia articles. 

•   redlink : The referrer is a Wikipedia page, but the target 
does not exist. 

•   other : The referrer and target are both Wikipedia articles, 
but the referral came through an external source or a search. 

      Tachyon (Alluxio) 
 RDDs and other application state in Spark are co-located in executor JVMs. Because executors are per-
application entities, this prevents applications from sharing RDDs. A corollary is that no cross-platform state 
(for example, between Spark and Hadoop) can be shared. More important, RDDs consume the lion’s share 
of the heap space, thus potentially competing with other objects. The previous chapter looked at how Spark 
Streaming state can be offloaded to an in-memory solution like Redis. But this is not a general-purpose 
solution, because storing elements that constitute a  DStream  and in turn an RDD in external storage kills the 
utility of RDDs, especially the lineage and checkpointing-based fault-tolerance model. Enter Tachyon. 

  Tachyon   is a general-purpose RDD store. Similar to native Spark, it uses a combination of lineage and 
checkpointing to ensure availability in the face of failure. 2  Unlike Spark, which uses job semantics (end 
of a batch, for example) to checkpoint files to negate unbounded recomputation, Tachyon has no such 
application-level information. Instead, it selectively and asynchronously checkpoints files at the leaves of 
the lineage graph while bearing priority in mind. Additionally, it uses a resource-allocation strategy that is 
application-level job-scheduler aware to allocate resources for recomputation. 

 Feature wise, Tachyon works out of the box with a number of frameworks including Hadoop, Spark, and 
Flink, while using a wide range of storage systems including HDFS, Amazon S3, and the local file system. 
For general-purpose applications, Tachyon has a native API that mimics the standard Java  java.io.File  
interface. Furthermore, it takes advantage of I/O performance differences between memory, SSD, and HDD 
to realize tiered block storage. 

   1  Ellery Wulczyn and Dario Taraborelli, “Wikipedia Clickstream,”  Figshare , January 4, 2016,    http://figshare.com/
articles/Wikipedia_Clickstream/1305770     .  
   2  Haoyuan Li et al., “Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks,”  Proceedings of 
SOCC ’14  (ACM, 2014).  

http://figshare.com/articles/Wikipedia_Clickstream/1305770
http://figshare.com/articles/Wikipedia_Clickstream/1305770
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 As always, let’s use a real example to understand the dynamics of RDD storage in Tachyon. As 
mentioned earlier, understanding the details of the channels through which a user lands on a web site has 
tremendous business value. In light of this, the example ranks the referrers to all Wikipedia articles in the 
dataset by frequency. It also ranks the different referrers for the Apache Spark Wikipedia article. First things 
first: set up Tachyon 0.6.4, 3  which is the version that works out of the box with Spark 1.4.0. 

 Download the Wikipedia dataset to your local machine/cluster. Use the custom socket driver program 
from Chapter   5     to feed the dataset to Spark Streaming. Only a single change is required: the original driver 
program expects the data to be in zipped form, whereas the Wikipedia data is gzipped. Simply insert the 
code from Listing  7-1  at line 67 of Listing 5-4. 

     Listing 7-1.    Tweaking the Socket Driver to Support Gzipped Files   

 1.    else if  (ext.equals("gz")) {   
 2.       LOG.info(String.format("Feeding file %s", f.getName()));   
 3.        try  (BufferedReader br =  new  BufferedReader(   
 4.            new  InputStreamReader( new  GZIPInputStream( new  FileInputStream(f))))) {   
 5.       // skip header   
 6.       br.readLine();   
 7.       String line;   
 8.        while  ((line = br.readLine()) !=  null ) {   
 9.           sendRecord(line);   
 10.      }   
 11.  }   

   Once Tachyon is up and running, execute the snippet of code from Listing  7-2 . It reads clickstream 
data from a socket (line 1) and tokenizes its fields, which are tab separated. You need to process this stream 
twice—once to rank the referrals for all articles and then for referrals to the Apache Spark article—so it 
makes sense to persist the records in memory. Recall from Chapter   4     that each output action results in a 
separate job starting from the bifurcation point. If you do not persist the output of the map function on 
line 2, it will be executed twice. Rather than persist it in the same JVM as the Spark application, you offload it 
to Tachyon. This is as simple as providing a storage level of  OFF_HEAP  to the  persist  function. Make sure you 
set  spark.externalBlockStore.url  to your Tachyon server with the format  tachyon://hostname:port  in 
your configuration object. 

 The rest of the code maps the occurrence of referrals for all articles 4  (lines 5–12) and  Apache_Spark  
(lines 14–16). The code uses a helper function  saveTopKeys  to aggregate ranked keys across batches and 
write them to secondary storage (lines 18 and 20). The code for the helper function is provided in Listing  7-3 . 

     Listing 7-2.    Offloading RDDs from a Clickstream Analysis Application to Tachyon   

 1.   val clickstream = ssc.socketTextStream(hostname, port.toInt)   
 2.     .map(rec => rec.split("\\t"))   
 3.     .persist(StorageLevel.OFF_HEAP)   
 4.      
 5.   val topRefStream = clickstream   

   3  Download Tachyon version 0.6.4, and fill in  $TACHYON_HOME/conf/tachyon-env.sh  with values appropriate for your 
setup. If running it on top of the local file system, make sure  TACHYON_UNDERFS_ADDRESS  is set to a local file system 
folder, such as  /tmp . Like any other file system, Tachyon first needs to be formatted via  $TACHYON_HOME/bin/tachyon 
format  before being executed:  $TACHYON_HOME/bin/tachyon-start.sh [all|local] .  
   4  Instead of keeping track of each individual article, the code aggregates all of them under the key “wikipedia”.  

http://dx.doi.org/10.1007/978-1-4842-1479-4_5
http://dx.doi.org/10.1007/978-1-4842-1479-4_4
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 6.     .map(rec => {   
 7.       var prev_title = rec(3)   
 8.        if  (!prev_title.startsWith("other")) {   
 9.         prev_title = "wikipedia"   
 10.      }   
 11.      (prev_title, rec(2).toInt)   
 12.    })   
 13.     
 14.  val topSparkStream = clickstream   
 15.    .filter(rec => rec(4).equals("Apache_Spark"))   
 16.    .map(rec => (rec(3), rec(2).toInt))   
 17.     
 18.  saveTopKeys(topRefStream, outputPathTop)   
 19.     
 20.  saveTopKeys(topSparkStream, outputPathSpark)   

       Listing 7-3.    Helper Function for Clickstream Analysis   

 1.   def saveTopKeys(clickstream: DStream[(String, Int)], outputPath: String) {   
 2.      clickstream.updateStateByKey((values, state: Option[Int]) => Some(values.sum + 

state.getOrElse(0))) 
 3.       .repartition(1)   
 4.       .map(rec => (rec._2, rec._1))   
 5.       .transform(rec => rec.sortByKey(ascending =  false ))   
 6.       .saveAsTextFiles(outputPath)   
 7.   }   

   As per the results, the top five referrers overall include Wikipedia, other-empty, other-google, other-
wikipedia, and other. The referrers for  Apache_Spark  are related to different Apache-centric articles 
including Apache_Hadoop, MapReduce, and other-google. It makes sense that users would jump from one 
Wikipedia article to another from the same domain: Big Data systems, in this case. other-google is by far the 
top referrer, which means most people land on the Wikipedia page for Spark via Google. 

 Tachyon can also be useful if RDDs need to be shared across different applications, even outside of 
Spark. Other applications can use the native Java API for Tachyon to access these files. Additionally, it comes 
packed with a command-line tool to manipulate the data store. It can be accessed via  $TACHYON_HOME/bin/
tachyon tfs , which enables simple file system operations. For instance, use this to copy an RDD generated 
by the application that you just executed 5  to the local file system: 

   $TACHYON_HOME/bin/tachyon tfs copyToLocal /tmp_spark_tachyon/spark-b5ad8845-eb30-4e9c-94e9-
1d772bd151ee/0/spark-tachyon-20151120000110-1009/20/rdd_81_9/ ./rdd_81_9 

   Note that  tmp_spark_tachyon  is the default block-store location and can be set via 
 spark.externalBlockStore.baseDir .      

     Spark Web UI 
 The Spark UI is the central portal for drilling down into the details of applications. It can be really handy for 
diagnosing problems and improving performance. You can use it to, say, check whether the chosen batch interval 
is appropriate. Listing  7-4  contains example code for an application that this section dissects using the UI. 

   5  The application id and rdd id would obviously vary from execution to execution.  
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 Online businesses are always interested in knowing whether more users come to their web site via 
social media or a search engine. This enables them to figure out which channel to focus on to increase 
traffic. This application keeps track of the number of exclusive social media and search engine referrers—
that is, articles for which the referrers are from either social media or a search engine but not both. 

        Listing 7-4.    Referrer Channel Division Application   

 1.   val countSearch =  new  AtomicLong(0)   
 2.   val countSocial =  new  AtomicLong(0)   
 3.      
 4.   val titleStream = ssc.socketTextStream(hostname, port.toInt)   
 5.     .map(rec => rec.split("\\t"))   
 6.     .filter(_(3) match {   
 7.         case  "other-google" | "other-bing" | "other-yahoo" | "other-facebook" | "other-

twitter" =>  true    
 8.        case  _ =>  false    
 9.     })   
 10.    .map(rec => (rec(3), rec(4)))   
 11.    .cache()   
 12.     
 13.  val searchStream = titleStream.filter(_._1 match {   
 14.     case  "other-google" | "other-bing" | "other-yahoo" =>  true    
 15.     case  _ =>  false    
 16.  })   
 17.    .map(rec => rec._2)   
 18.     
 19.  val socialStream = titleStream.filter(_._1 match {   
 20.     case  "other-facebook" | "other-twitter" => true   
 21.     case  _ =>  false    
 22.  })   
 23.    .map(rec => rec._2)   
 24.     
 25.  val exclusiveSearch = searchStream.transformWith(socialStream,   
 26.    (searchRDD: RDD[String], socialRDD: RDD[String]) => searchRDD.subtract(socialRDD))   
 27.    .foreachRDD(rdd => {   
 28.      countSearch.addAndGet(rdd.count())   
 29.      println("Exclusive count search engines: " + countSearch)   
 30.    })   
 31.     
 32.  val exclusiveSocial = socialStream.transformWith(searchStream,   
 33.    (socialRDD: RDD[String], searchRDD: RDD[String]) => socialRDD.subtract(searchRDD))   
 34.    .foreachRDD(rdd => {   
 35.      countSocial.addAndGet(rdd.count())   
 36.      println("Exclusive count social media: " + countSocial)   
 37.    })  

    Following the mantra of early projection, you cull the dataset early on by only keeping records for social 
media and search engines, and retaining only those fields that you need:  prev_title  and  curr_title  (lines 
6–11). Because the application has to treat the social and search streams differently, you need to bifurcate 
the input stream. You achieve this via two filter transformations (lines 13–17 and 19–23) and only keep 
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article names in both streams.  DStream s out of the box do not have a set difference operation, but RDDs 
do. One way to use it is to invoke the  transformWith  transformation on  DStream s; it takes as input another 
 DStream  and enables RDD-wise operations. In this transformation, you subtract the elements of each RDD 
(essentially article titles) separately to achieve set-difference operations (lines 25–26 and 32–33). Finally, to 
maintain a global count of these differences across RDDs, you keep this running tally in two static atomic 
variables and print it every batch (lines 27–30 and 34–37). The results show that for the Wikipedia dataset, 
search engine referrers exceed social media ones by many orders of magnitude. 

 ■   Note     transformWith  only allows two-way  DStream  operations. For an  n -way operation, use  Streaming
Context#transform(seq[Dstream[T]], transformFunc) .  

 Now let’s use the Spark UI to study the behavior of this application. After launching the application, go 
to your browser and enter the location of the UI. The UI typically runs on port 8080 on the same machine as 
the Spark master. The main page holds cluster-wide information such as the details of connected workers 
and running and completed applications. You can click each of these entities to access more in-depth 
information. For instance, to drill down into the details of the social media versus search engine referrals 
app, click its application ID or name as shown in Figure  7-1 .  

  Figure 7-1.     Running Applications   in the Spark UI       

  Figure 7-2.     Summary page   for an application       

 The summary page for each application lists its status and its launched executors, as shown in 
Figure  7-2 . You can also jump to application details via the Application Detail UI link. Each  SparkContext  
launches a separate Application Detail UI with ports starting with 4040.  

 Let’s go to the application detail UI (Figure  7-3 ). It gives the constantly increasing job breakdown for 
the application. Each job is represented by the title of its last stage. In this case, the last stage ends with a 
 foreachRDD  action. Jobs are grouped as active or completed. This page gives you some useful information 
about the application. For starters, each job has three stages: one each for the two parallel streams (social 
and search) and one for the  subtract  operation. This is because the former entails a shuffle. A job called 
 start  runs continuously to execute the streaming scheduler. In addition, only a single user code job is active 
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at a time. This is due to  spark.streaming.concurrentJobs  being set to 1 by default. Increase this number 
to 2 to enable more than one job to execute in parallel, as described in Chapter   4    . Remember, each output 
action results in a separate job.  

 The last column in the table contains the overall task progress for each job. Note that the number, 150 
in this case, is across all stages. This application has three stages, which means the number of tasks per stage 
is 50. As you saw in Chapter   4    , the number of tasks in a stage is equal to the number of partitions in the last 
RDD in that stage. The number of partitions in an RDD, on the other hand, is determined by the number of 
partitions in its input RDD (or the output of the previous stage). If you walk up the stage graph, you reach 
the application input stream, which is a  SocketInputDStream . Recall from Chapter   5     that the number of 
partitions of any receiver-based  InputDStream  is decided by the batch interval and the block interval. The 
application was executed with a batch interval of 10 seconds and a block interval of 200 ms (the default 
value), which gives you 50 (10 s/200 ms). 

 The Duration column in the table gives you the time taken by each job. To decide on optimum values 
for both batch and block intervals, play with their values and see how they affect the stage duration. This 
obviously depends on application complexity, data properties, and the cluster setup. 

  Figure 7-3.     Detailed job information   for an application       

 You can use the tabs at the top of this page to jump to different status pages. The Storage tab gives 
RDD-level information, the Environment tab displays configuration information, and the Executors tab gives 
details of each executor for this application. All of these tabs apply equally to Spark and Spark Streaming 
except the Streaming tab. 

 You can also get stage-level information by clicking each job. The information for a particular job 
is shown in Figure  7-4 . For each stage, it shows the submission time, duration, and data size. Stages are 
grouped by the name of the last transformation. It is obvious that more time is taken by stages that read the 
 SocketInputDStream  and bifurcate it into search engine and social media referral streams in relation to 
other stages. Stage boundaries are also revealed by shuffle behavior. The  transformWith  stage writes shuffle 
data, which is read by the subsequent  foreachRDD  stage. Column 5 shows that, as mentioned earlier, each 
stage consists of 50 tasks.  

 

http://dx.doi.org/10.1007/978-1-4842-1479-4_4
http://dx.doi.org/10.1007/978-1-4842-1479-4_4
http://dx.doi.org/10.1007/978-1-4842-1479-4_5
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 The code-level trigger for a stage (a shuffle boundary) can also be viewed by clicking the details option, 
as shown in Figure  7-5 .  

  Figure 7-5.     Code-level information   for a stage       

  Figure 7-4.     Detailed stage information   for a job       

 There is also an option to view the graph for each job by clicking DAG Visualization (the link above 
Completed Stages). The DAG for one representative job for this application is shown in Figure  7-6 . Each blue 
box represents a transformation, and the arrows represent the flow. Each black dot is an RDD. Notice the 
single green dot on each of the  transformWith  stages: these are RDDs that you explicitly cached to negate 
redundant processing. You can also see that Spark pipelines non-shuffle triggering transformations in the 
same task to reduce interprocess communication. 6  Because both subtract operations rely on the same input 
data (social minus search and search minus social), they are pipelined into the same stage.  

   6  Andrew Or, “Understanding Your Spark Application through Visualization,”  Databricks , June 22, 2015, 
   https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html     .  

 

 

https://databricks.com/blog/2015/06/22/understanding-your-spark-application-through-visualization.html
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 You can also display the RDD-level flow for each stage as shown in Figure  7-7 . In the stage flow on the 
left, you can see that the RDDs for the  InputDStream  reside in the block store—hence the name  BlockRDD . 
The rest of the flow emits and consumes  MapPartitionsRDD s. The  foreachRDD  stage on the right, on the 
other hand, creates a  SubtractedRDD  based on the subtract operation in the  transformWith  transformation.  

  Figure 7-6.     DAG visualization   for a job       
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  Figure 7-7.     RDD flow visualization           

 The other visualization enabled by the UI is timeline based; it allows you to see a temporal flow of 
events. These events include the addition and removal of executors, and scheduling of jobs, stages, and 
tasks. Let’s first analyze the job-level timeline graph. To generate it, click the Event Timeline link in 
Figure  7-3 . As shown in Figure  7-8 , it provides a complete timeline for the life cycle of executors and jobs.  

 The legend on the left of the timeline in Figure  7-8  signposts the color coding of the different events. 
A number of things stand out. First, as expected, the executors for the application are launched before 
everything else. Second, the “start at” job keeps running throughout, because it is in charge of scheduling 
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 A more telling and useful timeline is for each task in a stage. You can view the graph in Figure  7-10  
by clicking any stage in the event timeline visualization (or by directly jumping to any stage via the Stages 
tab). The spectrum of colors in each task reflects the cost of the different phases in its execution. This 
visual provides a number of insights. First and foremost, all the tasks are CPU bound, because Executor 
Computing Time takes the lion’s share of their duration. In addition, toward the tail end of the stage, tasks 
start experiencing longer Scheduler Delay, which suggests that throwing more machines (and, in turn, 
executors) at them will help improve performance. The same page also contains summary metrics for this 
stage in tabular form (see Figure  7-11 ). In addition, aggregated task-execution statistics and shuffle metrics 
per executor are shown. This view also provides information such as the fact that garbage-collection time is 
not a dominant factor in the application, which means the number of JVM heap objects is under control.   

  Figure 7-8.     Event timeline   of jobs       

  Figure 7-9.     Event timeline   of stages in a job       

  Figure 7-10.     Task execution state timeline         

jobs across batches. Finally, jobs are scheduled in series, one after the other. Clicking a particular job takes 
you to the stage timeline, similar to the one in Figure  7-9 . As expected, the two  transformWith  stages execute 
in parallel, and upon their completion, the  foreachRDD  stage is kicked off.  
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 The metrics highlighted in Figure  7-11  can be enriched with more attributes by clicking the Show 
Additional Metrics option and selecting appropriate metrics, as shown in Figure  7-12 .  

  Figure 7-11.     Summary metrics   for tasks in a stage       

  Figure 7-12.     Additional   task-level summary metrics       

  Scrolling down on the same page provides  individual task-level metrics   (Figure  7-13 ). These are helpful 
for learning that, for instance, the shuffle read size is similar across tasks, which suggests that the data 
distribution is fairly even.   
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 Now let’s explore some other tabs from the top menu bar, beginning with Storage. It contains details of 
RDDs that have a configured storage level other than the default (which triggers regeneration under failure). 
As shown in Figure  7-14 , you see a complete breakdown of its caching properties. For instance, the two RDDs 
shown in the figure have a storage level of  StorageLevel.MEMORY_ONLY_SER . This is due to the  cache  operation 
on line 11 of the code (Listing  7-4 ). That is why the RDDs are stored entirely in memory. If disk-based or 
 OFF_HEAP  storage had been chosen, it would have been reflected in the last two columns in this table.  

  Figure 7-13.    Metrics for individual tasks       

  Figure 7-14.    Storage properties of cached  RDDs         

 Clicking any RDD in the table takes you to the detailed per-partition breakdown in Figure  7-15 . You can 
see that each RDD contains 50 partitions, which is what you expect due to the selected block interval and 
batch interval.  
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 The Executors tab displays statistics about each running executor (Figure  7-16 ). It is important to 
highlight that the Memory Used tab does not reflect the memory used by the executor but rather the 
memory used by cached RDDs (obtained by invoking  cache()  or  persist() ). The same table allows you to 
obtain a thread-level dump of the executor (Figure  7-17 ).   

  Figure 7-16.     High-level executor metrics         

  Figure 7-15.    Partition breakdown of an  RDD         

 The thread-level dump is handy for figuring out the status of each thread. For custom threads, you can 
check their behavior in order to avoid deadlocks. 
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 The Environment tag is useful for figuring out whether configurable parameters are being properly set 
and their default values. In addition, you can get system-wide information such as JVM version (as shown in 
Figure  7-18 ) and the JARs on the classpath.  

  Figure 7-17.    Thread  dump   for a running executor       

  Figure 7-18.    Snippet of the  environment information page         

 The Spark Streaming micro-batch-processing model imposes an additional burden in terms of choosing 
the batch interval (and block interval, for receiver-based streaming). If there is a mismatch between the 
batch interval and input data rate, the application will be unhealthy and may crash due to queue pressure. 
A useful utility to aid you in choosing these settings is Streaming Statistics; Figure  7-19  shows the graphs 
for the example clickstream application. The Input Rate 7  and Processing Time trends are similar, which 
indicates that the chosen batch interval of 10 seconds is appropriate. But the Total Delay on average is 
greater than 10 seconds, which means the application is lagging behind by more than a second on average. 
Moreover, Processing Time has a horizontal “stable” application marker: on average, the trend should be 
below it, but in this case every batch misses the line. 

 For healthy, stable applications, Scheduling Delay (the amount of time RDDs stay in the queue before 
being processed) should be close to zero on average, and Total Delay should be less than the batch interval 
on average. The histograms for Processing Time and Total Delay also tell you that the distribution of these 
times is toward the high end: both numbers are near or greater than 10 seconds most of the time. For a stable 
application, the distribution should be lopsided toward the low end—the histogram should be laterally 
flipped. 

   7  You can click Input Rate to see a breakdown per receiver.   
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 Recall from Chapter   4     that increasing the batch interval increases latency but reduces task/RDD setup 
time. On the other hand, lowering the value decreases end-to-end latency but leads to higher scheduling 
and RDD-creation overheads. Therefore, for optimum performance, you need to find the sweet spot 
between the pipeline’s batch interval and processing time. In Figure  7-19 , you can see that RDDs spend time 
in the queue waiting to be processed, which indicates that the data is created at a much faster rate than it 
can be processed by the application. To reduce this delay, you need to decrease the number of partitions the 
application has to process in each batch; you can do this by reducing the batch interval. 

 Let’s try to achieve that by lowering the batch interval to 1 second. The Streaming Statistics are shown in 
Figure  7-20 .  

  Figure 7-19.    Streaming Statistics for an unhealthy  application         

 

http://dx.doi.org/10.1007/978-1-4842-1479-4_4
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  Figure 7-20.    Streaming Statistics for a healthy  application         

 You can see that both the processing time and total delay are well below 1 second on average. In 
addition, the scheduling delay is on the order of tens of milliseconds for most batches. Additional positive 
indicators are the histograms for processing time and total delay, which are now concentrated toward lower 
values. Just by knowing that reducing the number of partitions leads to lower processing time, and therefore 
reducing the batch interval, you have stabilized a misconfigured application. 
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      Historical Analysis 
 By default,    detailed statistics (those you can see by clicking Application Detail UI) for applications are lost 
after the application finishes its execution. That means no after-the-fact analysis is possible—but don’t 
panic. Spark has a logging mechanism to enable historical analysis that is very easy to use: set  spark.
eventLog.enabled  to  true  to start logging events. The location for the log is determined by  spark.eventLog.
dir , which has a default value of  file:/tmp/spark-events . You can then use the standard Application 
Detail UI to view the metrics for these instrumented applications. This only applies to standalone mode. 

 For operation under Mesos and YARN, Spark has a historical server you can use to replay events from 
the log. To analyze these logs post hoc, run the historical server via  $SPARK_HOME/sbin/start-history-
server.sh . This runs a web server at port 18080 ( spark.history.ui.port ) on that particular machine. The 
interface of this tool is almost identical to the real-time UI. Other useful configuration parameters include 
 spark.history.retainedApplications , which has a default value of 50 and determines the number of 
applications for which events are retained;  spark.history.fs.update.interval  (default: 10 seconds), 
which dictates the event-logging interval; and  spark.history.fs.logDirectory  (default:  file:/tmp/
spark-events ), which is the directory from which the history server loads event logs.   

      RESTful Metrics 
 All the numbers in the UI are also exposed as a  RESTful   API in JSON format to enable external applications 
to consume and visualize them in different ways. The base URL for the REST API is  http://<master_node_
hostname>:4040/api/v1 . For the history server, the URL is  http://<history_server_hostname>:18080/
api/v1 . Listing  7-5  shows how to access a list of all applications. 

 The same information is also shown in tabular form on the same page, as shown in Figure  7-21 . Overall, 
the Spark UI is an extremely useful tool for debugging and optimizing applications. It makes a number of 
systemwide statistics readily available.  

  Figure 7-21.    Streaming Statistics in tabular  form         
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     Listing 7-5.    Accessing the RESTful API for Spark Metrics   

 1.   $ curl http://localhost:4040/api/v1/applications   
 2.   [ {   
 3.     "id" : "socialsearchapp",   
 4.     "name" : "socialsearchapp",   
 5.     "attempts" : [ {   
 6.       "startTime" : "2015-11-26T16:46:04.363GMT",   
 7.       "endTime" : "1969-12-31T23:59:59.999GMT",   
 8.       "sparkUser" : "",   
 9.       "completed" : false   
 10.    } ]   
 11.  } ]  

   Table  7-2  lists some of the important endpoint paths that are available. Instead of describing them, 
the table links to information from the earlier UI figures. In addition to these, you can download the logs 
for an application in a zipped file from  /applications/<app_id>/logs . For YARN applications, all of these 
application paths contain an additional segment,  attempt_id , because YARN applications can be 
attempted more than once. For instance, the location of the zipped file under YARN is  /applications/
<app_id>/<attempt_id>/logs .    

   Table 7-2.    REST API for Spark Application Metrics   

 Path  Information in This Figure 

  /applications/<app_id>/jobs   7-3 

  /applications/<app_id>/jobs/<job_id>   7-4 

  /applications/<app_id>/stages/<stage_id>/<stage_attempt_id>/
taskSummary  

 7-12 

  /applications/<app_id>/stages/<stage_id>/<stage_attempt_id>/
taskList  

 7-13 

  /applications/<app_id>/storage/rdd   7-14 

  /applications/<app_id>/storage/rdd/<rdd_id>   7-15 

  /applications/<app_id>/executors   7-16 

      Logging 
 It is always a good idea to instrument applications to generate detailed logs for debugging and auditing, But 
obviously there is no such thing as a free lunch—or free storage, in this case. It is very easy to run out of space 
on your cluster once logs begin to fill up. To circumvent this problem, logs should be rolled periodically. 
Spark provides this functionality out of the box via the configuration parameters listed in Table  7-3 .  
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 Logging in Spark applications by default is very chatty, which causes useful information such as the 
output from the running application to be lost in the clutter. Spark uses Log4j, which means its log behavior 
can easily be configured. A reasonable setup is to suppress  DEBUG  and  INFO  messages and log the rest to an 
external file. The configuration in Listing  7-6  does just that. Copy it over to  $SPARK_HOME/conf  on all your 
machines. By default, it logs messages to  /tmp/spark.log . Change  log4j.appender.FILE.File  to another 
location if desired. 

     Listing 7-6.    Log4j Configuration to Make Spark Applications Less Chatty   

 1.   log4j.rootLogger=WARN, FILE   
 2.   log4j.rootCategory=WARN, FILE   
 3.      
 4.   log4j.appender.FILE=org.apache.log4j.FileAppender   
 5.   log4j.appender.FILE.File=/tmp/spark.log   
 6.   log4j.appender.FILE.layout=org.apache.log4j.PatternLayout   
 7.   log4j.appender.FILE.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n   
 8.      
 9.   log4j.logger.org.spark-project.jetty=WARN   
 10.  log4j.logger.org.spark-project.jetty.util.component.AbstractLifeCycle=ERROR   
 11.  log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO   
 12.  log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO   

        External Metrics 
 Along with UI-enabled metrics, Spark can optionally emit metrics to a number of external sinks. The 
mechanism works out of the box with some popular metrics consumers such as JMX and Graphite. This is 
enabled via the Dropwizard metrics library. 8  Metrics to zero or more sinks are emitted for different processes 
including master, workers, executors, applications, and drivers. 

   Table 7-3.     Logging   Configuration Parameters   

 Parameter  Details 

  spark.executor.logs.rolling.strategy   The strategy to use for rolling. Options include  time  and 
 size . For  size , set  spark.executor.logs.rolling.
maxSize ; and for  time , set  spark.executor.logs.
rolling.time.interval . 

  spark.executor.logs.rolling.
maxRetainedFiles  

 The maximum number of log files to retain. 

  spark.executor.logs.rolling.maxSize   The maximum size of a log file in bytes after which 
rolling kicks in. 

  spark.executor.logs.rolling.time.interval   The rolling interval. Possible values include  daily , 
 hourly ,  minutely , and any second interval. 

   8     http://metrics.dropwizard.io/3.1.0/     .  

http://metrics.dropwizard.io/3.1.0/
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 Metrics configuration resides at  $SPARK_HOME/conf/metrics.properties . To turn on the Graphite sink, 
for example, add the configuration information from Listing  7-7  to the  metrics.properties  file and fill in 
 graphite_hostname  and  graphite_port . 

      Listing 7-7.     Graphite Metrics   Sink Configuration   

 1.   *.sink.graphite.class=org.apache.spark.metrics.sink.GraphiteSink   
 2.   *.sink.graphite.host= <graphite_hostname>    
 3.   *.sink.graphite.port= <graphite_port>    
 4.   *.sink.graphite.period=10   

   Let’s view Graphite metrics for the application from Listing  7-4 . Graphite 9  is a system for storing and 
visualizing metrics from various applications. It consists of three major components: Carbon, a series of 
daemons to collect data; Whisper, a database to store time series; and web-app, a Python web service to 
render metrics. Graphite is great at collecting and storing data, but its visualization features are limited. To 
overcome this, you can use Grafana, 10  which has richer graphing and aggregation options and lets you create 
dynamic dashboards. Grafana seamlessly integrates with data sources including Graphite, which permits 
you to publish metrics to Graphite but visualize them via Grafana. 

 Both Graphite and Grafana have a number of dependencies (the former is in Python, and the latter 
is in Go), so setting them up is nontrivial. Instead of taking the tedious manual-installation route, let’s 
use a Docker image with Graphite and Grafana preinstalled. Docker 11  images simplify the deployment of 
applications because each image is self contained and runs cross-platform. 12  These images are hosted in a 
central repository from where they are fetched and executed. 

 Let’s use a publicly available Graphite + Grafana image. 13  Execute it by running 

   docker run -v /data/graphite:/var/lib/graphite/storage/whisper -p 80:80 -p 3000:3000 -p 
2003:2003 -p 2004:2004 -p 7002:7002 -p 8125:8125/udp -p 8126:8126 -d nickstenning/graphite 

   The command fetches and launches the image and also sets up iptables forwarding rules on the 
host machine. The various ports, which are exposed in the host machine, belong to the running services. 
Note that the  <graphite_hostname>  in Listing  7-7  should be the IP of the Docker container. 14  The image 
comes fully loaded, and only Grafana needs to be configured to consume Graphite data. 15  Start the Spark 
application, head over to the Grafana web app running on  container_hostname:3000  in your browser, and 
sign in (default login and password: admin). 

 Setting up graphs to view different Spark metrics requires the creation of at least one dashboard in 
Grafana. Create a dashboard, and add a graph to it. The format for all metrics for streaming applications 
is  app_id.process.app_name.StreamingMetrics.streaming.metric . Figure  7-22  shows the graph for 
 totalDelay . Use a wildcard ( app_id.process.app_name.StreamingMetrics.streaming.* ) to enlist all the 
available metrics.   

   9     http://graphite.readthedocs.org/en/latest/index.html     .  
   10     http://grafana.org/     .  
   11     www.docker.com/     .  
   12  Install Docker on a *nix system by running  wget -qO-     https://get.docker.com/       | sh . Warm up Docker by 
executing  docker-machine env default  followed by  eval "$(docker-machine env default)" .  
   13     https://github.com/SamSaffron/graphite_docker     .  
   14  Find out the IP of a container via  docker-machine ip <container_id> .  
   15  Use your browser to jump to the Grafana dashboard on port 3000, and choose Data Sources from the menu on the 
extreme left. Then click Add New, and enter http://localhost:80 as the URL.  

http://graphite.readthedocs.org/en/latest/index.html
http://grafana.org/
http://www.docker.com/
https://get.docker.com/
https://github.com/SamSaffron/graphite_docker
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      System Metrics 
 The  system  -resource utilization of applications can also give you a window into their dynamics and 
behavior. A number of tools exist for collecting and visualizing these system-wide numbers and they have 
their own dependencies. It is always a good idea to keep centralized dashboards for all types of metrics. So, 
let’s visualize system metrics in Grafana as well. How do you collect and send these metrics to Grafana? 

 collectd 16  is a lightweight Unix daemon that collects and ships out various configurable system stats. 17  
Each type of metric is collected via a plug-in. For instance, standalone plug-ins exist for CPU, memory, and 
network metrics. In addition, these numbers can be sent to external systems, such as Graphite/Grafana 
for visualization, also via plug-ins. For example, to send metrics to Graphite/Grafana, you need to enable 
the plug-in for it, 18  point it to your Grafana setup as shown in Listing  7-8 , and fill in  grafana_docker_ip . In 
addition, let’s configure collectd to send CPU and memory numbers to Grafana for visualization: just add 
 LoadPlugin cpu  and  LoadPlugin memory  to  collectd.conf . 

     Listing 7-8.    Graphite/Grafana Plug-in Configuration for collectd   

 1.    <Plugin  write_graphite >    
 2.      <Node  "example" >    
 3.       Host grafana_docker_ip   
 4.       Port "2003"   
 5.       Protocol "tcp"   
 6.       LogSendErrors true   
 7.       Prefix "collectd"   
 8.       Postfix "collectd"   
 9.       StoreRates true   
 10.      AlwaysAppendDS false   
 11.      EscapeCharacter "_"   
 12.     </Node>    
 13.   </Plugin>    

   Figure  7-23  shows the CPU and memory graphs for the social versus search referral application. The 
application was kicked off at 12:13; hence the decrease in CPU idle type and an increase in system and user 
time. System-resource utilization can be useful for working out whether an application is CPU or IO bound 
and taking the appropriate action: for instance, scaling out by adding machines with more memory.    

  Figure 7-22.    Grafana graph for a Spark Streaming application time series       

   16     https://collectd.org/     .  
   17  To set up collectd, download it from    https://collectd.org/download.shtml      and install it on all machines in your 
cluster via  ./configure; make all install .  
   18  Add  LoadPlugin write_graphite  to your  collectd.conf , which is typically located at  /etc/collectd.conf .  

 

https://collectd.org/
https://collectd.org/download.shtml
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      Monitoring and Alerting 
 The last piece of the puzzle is monitoring and alerting. Systems and applications fail all the time—especially 
in cluster environments where commodity off-the-shelf components have been cobbled together. Automatic 
monitoring tools can be configured to raise a flag when something is amiss and alert you. The de facto 
standard for monitoring and alerting in a distributed environment is Nagios. 19  It comes prepackaged with 
a number of checks, including ping, number of total processes, and swap usage. 20  In addition, Nagios 
Exchange contains hundreds of plug-ins customized for each individual system/service, 21  including Big Data 
systems, databases, and web servers. It can also run arbitrary Perl scripts for service checks. Fortunately, the 
exchange also contains a service check script for Spark. 22  It simply uses the Spark HTTP interface to check for 
master, worker, and application status. 

 To configure Nagios to monitor Spark, you first need to add the  script  23  command (Listing  7-9 ) to 
 command.cfg , which is typically located at  /etc/nagios/objects/commands.cfg . 

   19     https://www.nagios.org/     .  
   20  Download Nagios Core from    https://www.nagios.org/downloads/nagios-core     . The installation process is pretty 
standard:  ./configure  followed by  make all  and  make install . Please refer to the Nagios web site for more 
information.  
   21     https://exchange.nagios.org/directory/Plugins     .  
   22     https://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/
check_spark_cluster-2Epl-(Advanced-Nagios-Plugins-Collection)/details     .  
   23   git clone     https://github.com/harisekhon/nagios-plugins     .  

  Figure 7-23.    Grafana screenshot of system metrics collected via collectd       

 

https://www.nagios.org/
https://www.nagios.org/downloads/nagios-core
https://exchange.nagios.org/directory/Plugins
https://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_spark_cluster-2Epl-(Advanced-Nagios-Plugins-Collection)/details
https://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_spark_cluster-2Epl-(Advanced-Nagios-Plugins-Collection)/details
https://github.com/harisekhon/nagios-plugins
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     Listing 7-9.    Nagios Command Configuration for Spark   

 1.   define command{   
 2.           command_name    check_spark_cluster   
 3.            command_line    perl -T <path/to>/nagios-plugins/check_spark_cluster.pl -H 

$ARG1$   
 4.           }   

    Each host in a Nagios cluster needs to have a configuration file wherein it lists all the services and 
commands for which it needs to be monitored. This file is typically located at  /etc/nagios/objects/
localhost.cfg . Let’s configure one machine to invoke the Spark script, as shown in  Listing  7-10 .

   Listing 7-10.    Nagios Spark Command Configuration for a Host   

 1.   define service{   
 2.           use                             local-service          
 3.           host_name                       localhost   
 4.           service_description             Spark   
 5.           check_command                   check_spark_cluster!localhost   
 6.           notifications_enabled           1   
 7.           }   

   You can now use Nagios to monitor and raise alerts for Spark. Figure  7-24  shows service monitoring for 
a host. To access this page, go to the Nagios web service 24  and select Services from the menu. You can see 
that Spark is running correctly but the machine seems to be running out of swap space and is not responding 
to pings. These alerts are priceless for diagnosing machine failure.  

  Figure 7-24.     Nagios service monitoring   for a host       

 You can drill down into the details of a service by clicking its name. Figure  7-25  shows the Service 
State Information page for Spark. You can see that it is running as expected and all checks have passed. In 
a production-grade Spark environment, monitoring and alerting should be enabled for all components 
including HDFS, any data sources such as Kafka, and individual applications.    

   24   http://<nagios_host>/nagios .  

 



CHAPTER 7 ■ GETTING READY FOR PRIME TIME

149

     Summary 
 Stream-processing applications have become mission critical for a number of industry verticals. But to 
have business value, each application needs to be optimized for a particular use case. Once it has been 
deployed, it also needs to be monitored to ensure application availability and stability. In case of failure, the 
appropriate alerts must be sent out so that the right action can be taken for service recovery. This chapter 
explored all of these topics, ranging from application performance and optimization through the use of 
Tachyon and the Spark UI to metrics visualization via Grafana and collectd, and monitoring and alerting 
through Nagios. 

 So far in this book, you have employed the Spark Scala API to implement applications. Although it is an 
extremely powerful mechanism to manipulate RDDs to realize user logic, it is still too low-level for common 
ETL and statistical tasks. Data scientists prefer an interface that simplifies data cleaning and analysis. 
Additionally, data-mining and machine-learning applications are common. So, the next chapter introduces 
SparkSQL and SparkR.      

  Figure 7-25.    Spark Service State Information via Nagios       
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    CHAPTER 8   

 Real-Time ETL and Analytics 
Magic                          

    When Jeff has trouble sleeping, he MapReduces sheep.  

 —Jeff Dean Facts   

 Data (big or otherwise) has been woven into the fabric of most businesses. The world is at a stage where 
Big Data directly drives corporate strategy. To maintain a competitive edge, most businesses try to run their 
analytics pipeline in near real-time. Although this captures the behavior of a large class of applications that 
rely on unstructured data, it is not exhaustive: a significant chunk of data sources are structured, and their 
analysis applications require data-warehousing capabilities. One way to handle these requirements is to 
blend the existing Spark API with an external warehousing solution such as Hive, but this is a marriage of 
convenience rather than a natural fit: data must be copied back and forth, not to mention the burden of 
maintaining two different APIs. A better solution is Spark SQL. 

 Spark SQL, as the name suggests, is Spark’s interface for analyzing structured data. This data resides in 
  data frames   , which are relational tables optimized for Spark. It also works out of the box with SQL, Hive, and 
R. Spark SQL by design permits you to blend declarative queries with existing Spark code in Scala. It is the 
topic of discussion in this chapter. The dataset you use in the chapter represents one of the major success 
stories for Big Data: telecommunications. You begin by getting your hands dirty with the DataFrame API 
followed by a primer in using traditional SQL to analyze streaming data. Once you’ve gotten a hang of Spark 
SQL, you interface it with Hive before using SparkR. The latter will whet your appetite for analytics before 
you tackle data science in detail in the next chapter. 

        The Power of Transaction Data Records 
 The most powerful and richest source of data lurks right under your nose. You use, generate, and contribute 
to it on an almost minute-by-minute basis. What is this fabled data? 

 Every time you make a call, send an SMS, or browse the Internet, you generate a transaction data record 
(TDR) or  call data record (CDR)  . Each record typically contains information about the transaction metadata, 
network conditions, application status, and location. This rich set of details can be used to determine 
the network experience of each user. For instance, a telco can predict when a user is going to experience 
deteriorated performance while browsing the Internet. Based on this, the customer care department can 
proactively reach out to the customer. Similarly, another application can predict when a user is thinking of 
churning (switching to another network carrier). The action on part of the telco in this case can be to, say, 
offer the user a discount. 
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 The potential of  CDRs   applies beyond network-quality improvement and customer care applications. 
Their diverse array of attributes are useful outside the telco world. This is primarily because 50% percent 
of the world’s population now lives in urban areas, 1  and the number of cell phones exceeds the number of 
people on Earth. 2  This makes CDRs one of the most representative and inclusive datasets of people around 
the world. The location information from these CDRs has been used to implement applications that can 
predict disease outbreaks, analyze mobility patterns, study crowd dynamics, and help with transportation 
planning, to name a few. And this data can be married with other datasets to achieve novel use cases. For 
example, CDR mobility data coupled with social media data can aid in working out the geography of social 
networks, such as how online behavior results in purchasing in the real world. Another class of applications 
revolves around analyzing the browsing, search, and social interaction behavior of users based on their 
CDRs and micro-segmenting them based on these patterns. This information can then be used to improve 
the accuracy of customized ad serving. 

 The dataset used in this chapter is from Telecom Italia. In 2014, Telecom Italia organized a Big Data 
Challenge using data from CDR, grid, and other sources from November and December, 2013, spanning the 
cities of Milan and Trento. 3  Each tab-separated record in the CDR set has eight fields, as listed in Table  8-1 . 

   Table 8-1.     Attributes in Each Record in the Telecom Italia Call Data Record Dataset    

 Field #  Name  Description 

 1   square_id   Grid ID. All data is spatially aggregated into a grid whose 
exact coordinates are presented in a separate grid dataset. 

 2   time_interval   The Unix epoch timestamp of the event. Events are 
aggregated into temporal windows of 10 minutes. The 
end time interval can be obtained by adding 600,000 
milliseconds to this value. 

 3   country_code   The country calling code of the event (either in or out). 

 4   sms_in_activity   The incoming SMS activity. 

 5   sms_out_activity   The outgoing SMS activity. 

 6   call_in_activity   The incoming call activity. 

 7   call_out_activity   The outgoing call activity. 

 8   internet_traffic_activity   The Internet upload and download activity. 

 Note that the dataset has been both spatially aggregated (into a grid) and temporally aggregated (into 
10-minute windows). For obvious anonymity reasons, the activity values do not represent an exact volume but 
rather a normalized value. A CDR is generated each time an SMS is sent or received or a call is placed or received. 
On the other hand, a CDR for Internet activity is generated each time a session is started or ended. In addition, an 
Internet activity CDR is generated every 15 minutes or every 5 MB of download/upload in a session. The mapping 
of grid ID to coordinates is available in another dataset in the same repository. For each grid ID, it encodes the 
coordinates in the form of a polygon in GeoJSON 4  format. You focus on the Milan dataset in this chapter.   

 Without further adieu, let’s implement your first streaming Spark SQL application.  

   1  Charles Clover, “Urban Population to Exceed 50 Percent,”  The Telegraph , June 27, 2007, "   www.telegraph.co.uk/
news/earth/earthnews/3298527/Urban-population-to-exceed-50-per-cent.html     .  
   2  Joshua Pramis, “Number of Mobile Phones to Exceed World Population by 2014,” Digital Trends, February 28, 2013, 
   www.digitaltrends.com/mobile/mobile-phone-world-population-2014/     .  
   3  Open Big Data,  Dandelion ,    https://dandelion.eu/datamine/open-big-data/     .  
   4     http://geojson.org/     .  

http://www.telegraph.co.uk/news/earth/earthnews/3298527/Urban-population-to-exceed-50-per-cent.html
http://www.telegraph.co.uk/news/earth/earthnews/3298527/Urban-population-to-exceed-50-per-cent.html
http://www.digitaltrends.com/mobile/mobile-phone-world-population-2014/
https://dandelion.eu/datamine/open-big-data/
http://geojson.org/
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      First Streaming Spark SQL Application 
 Inter-country communication is generally more expensive than local communication. To determine 
whether users are placing international calls and sending international texts, telcos are interested in a real-
time dashboard where they can get this information. This is exactly what the Spark SQL code in Listing  8-1  
achieves. Note that the application expects its input stream via a socket. To feed the socket, use your trusty 
friend  SocketDriver , from Chapter   5    . It reads the zipped CDR files and replays them over the socket to the 
 streaming application   (Listing  8-1 ) at the other end. 

                Listing-8-1.        Using Data Frames to Analyze Streaming CDRs    

 1.    package  org.apress.prospark   
 2.      
 3.    import  scala.reflect.runtime.universe   
 4.      
 5.    import  org.apache.spark.SparkConf   
 6.    import  org.apache.spark.SparkContext   
 7.    import  org.apache.spark.rdd.RDD   
 8.    import  org.apache.spark.sql.SQLContext   
 9.    import  org.apache.spark.sql.functions.desc   
 10.   import  org.apache.spark.streaming.Seconds   
 11.   import  org.apache.spark.streaming.StreamingContext   
 12.     
 13.  object CdrDataframeApp {   
 14.     
 15.     case class  Cdr(squareId: Int, timeInterval: Long, countryCode: Int,   
 16.      smsInActivity: Float, smsOutActivity: Float, callInActivity: Float,   
 17.      callOutActivity: Float, internetTrafficActivity: Float)   
 18.     
 19.    def main(args: Array[String]) {   
 20.       if  (args.length != 4) {   
 21.        System.err.println(   
 22.          "Usage: CdrDataframeApp <appname> <batchInterval> <hostname> <port>")   
 23.        System.exit(1)   
 24.      }   
 25.      val Seq(appName, batchInterval, hostname, port) = args.toSeq   
 26.     
 27.      val conf =  new  SparkConf()   
 28.        .setAppName(appName)   
 29.        .setJars(SparkContext.jarOfClass( this .getClass).toSeq)   
 30.     
 31.      val ssc =  new  StreamingContext(conf, Seconds(batchInterval.toInt))   
 32.     
 33.      val sqlC =  new  SQLContext(ssc.sparkContext)   
 34.       import  sqlC.implicits._   
 35.     
 36.      val cdrStream = ssc.socketTextStream(hostname, port.toInt)   
 37.        .map(_.split("\\t", -1))   
 38.        .foreachRDD(rdd => {   
 39.          val cdrs = seqToCdr(rdd).toDF()   
 40.     

http://dx.doi.org/10.1007/978-1-4842-1479-4_5
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 41.          cdrs.groupBy("countryCode").count().orderBy(desc("count")).show(5)   
 42.        })   
 43.     
 44.      ssc.start()   
 45.      ssc.awaitTermination()   
 46.    }   
 47.     
 48.    def seqToCdr(rdd: RDD[Array[String]]): RDD[Cdr] = {   
 49.      rdd.map(c => c.map(f => f match {   
 50.         case  x  if  x.isEmpty() => "0"   
 51.         case  x => x   
 52.      })).map(c => Cdr(c(0).toInt, c(1).toLong, c(2).toInt, c(3).toFloat,   
 53.        c(4).toFloat, c(5).toFloat, c(6).toFloat, c(7).toFloat))   
 54.    }   
 55.  }   

   The application starts by creating a  StreamingContext  (line 31), because you need to consume streaming 
data. The SQL interface is driven by the  SQLContext , which takes as input a  SparkContext  object (line 33). 
The application listens on the socket for CDRs (line 36) and parses the fields of each tab-delimited record. It is 
important to mention that if any activity type is missing during a time interval, the dataset adds an empty string 
for it. To preserve these empty strings in the tokenized array, you pass -1 to the String  split  method (line 37). 

 Individual RDDs can be converted directly into data frames via implicit conversions (line 34), but the API 
does not provide any functionality for the conversion of  DStream s. To overcome this, a  foreachRDD  action can be 
used to convert each RDD in the stream to a data frame prior to further processing (line 38). You also preprocess 
the fields to make sure you replace each empty field with a value of 0 (lines 49–51) in a custom function so that 
type conversion can be simplified in the next step. Records in data frames need to be structured—that is, they 
need to have typed key-value semantics. To achieve this, the application creates a Scala  case class  to represent 
a CDR (line 15). Each record on the wire is converted to this format (line 52). The   toDF  method   is used to 
convert an RDD to a data frame (line 39). Under the hood, Spark SQL infers the column types via reflection. 

 All this can be considered job setup boilerplate code, because the core logic of the application is 
encapsulated in a single line. Line 41 performs a  groupBy  operation on the data frame with  countryCode  as 
the grouping key. You then invoke the  count  method to count the frequency of each  countryCode  before 
ordering the records by  count  in descending order. You peek into these ordered rows by viewing the top five 
(Listing  8-2 ).  show  is an output action that causes the entire query to be executed. 

  Listing 8-2.    Output of One Batch Interval for the Country Code Ranking Application   

 1.   +-----------+------+    
  2.   |countryCode| count|    
  3.   +-----------+------+    
  4.   |         39|157323|    
  5.   |          0|125838|    
  6.   |         46| 27309|    
  7.   |         33| 18145|    
  8.   |         49| 14939|    
  9.   +-----------+------+ 

 That’s it! It really is that simple to use data frames to manipulate structured data. But the DataFrame 
API is not the only way to analyze structured data. In fact, Spark SQL enables you to directly invoke standard 
SQL, as you see shortly. 

 To run the application, add the following to the simple build-tool definition file: 

   libraryDependencies += "org.apache.spark" %% "spark-sql" % "1.4.0"  
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    The execution mechanism remains the same as that for standard Spark applications. The results are as 
expected: the top five codes are all in Europe, and the lion’s share of calls are intra-Italy (country code: 39). 

        Now let’s get friendly with  SQLContext .  

      SQLContext 
   SQLContext    is to Spark SQL as   SparkContext    is to batch Spark and   StreamingContext    is to streaming data. 
This means it is the central entity to create data frames. These data frames can be converted from RDDs, 
various Hive table formats, and external databases.  SQLContext  is also in charge of query scheduling and 
execution. You walk through the many facets of  SQLContext  next. 

      Data Frame Creation 
 Data frames constitute the recommended and optimum mechanism to manipulate structured data in Spark. 
Data frames can be created from various other formats using  SQLContext . In addition to direct conversion 
from RDDs, as illustrated in Listing  8-1 , the following options are available. 

       Existing RDDs   

   createDataFrame[A <: Product](rdd: RDD[A]): DataFrame  

    Explicitly converts an RDD to a data frame, as shown in Listing  8-3 . It is a drop-in replacement for line 
39 in Listing  8-1 . 

     Listing 8-3.    Explicitly Converting an RDD to a Data Frame   

 1.   val cdrs = sqlC.createDataFrame(seqToCdr(rdd))  

            Dynamic Schemas   

   createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame  

    Transforms an RDD of type  Row  to a data frame.  Row  is a generic representation of a row in a data frame. 
The most powerful feature of this variant of  createDataFrame  is that it can be provided with a schema on 
the fly. This is useful for scenarios where you do not know the schema of the input data up front and hence 
cannot create a case class for it as you did in Listing  8-1 . This schema needs to be a special Spark SQL type: 
 StructType . Listing  8-4  illustrates how you can read a JSON schema from a file (line 1) and convert it to a 
 StructType  object (line 2). You can then use this schema to dynamically create data frames (line 7). 
Listing  8-5  contains the JSON schema for the CDR data. 

     Listing 8-4.    Dynamically Supplying the Schema of a Data Frame   

 1.   val schemaJson = scala.io.Source.fromFile(schemaFile).mkString   
 2.   val schema = DataType.fromJson(schemaJson).asInstanceOf[StructType]   
 3.      
 4.   val cdrStream = ssc.socketTextStream(hostname, port.toInt)   
 5.     .map(_.split("\\t", -1))   
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 6.     .foreachRDD(rdd => {   
 7.       val cdrs = sqlC.createDataFrame(rdd.map(c => Row(c: _*)), schema)   
 8.          
 9.       cdrs.groupBy("countryCode").count().orderBy(desc("count")).show(5)   
 10.    })   

       Listing 8-5.    JSON Schema of the CDR Dataset   

 1.   {   
 2.     "type": "struct",   
 3.     "fields": [   
 4.       {   
 5.         "name": "squareId",   
 6.         "nullable": false,   
 7.         "type": "integer"   
 8.       },   
 9.       {   
 10.        "name": "timeInterval",   
 11.        "nullable": false,   
 12.        "type": "long"   
 13.      },   
 14.      {   
 15.        "name": "countryCode",   
 16.        "nullable": true,   
 17.        "type": "string"   
 18.      },   
 19.      {   
 20.        "name": "smsInActivity",   
 21.        "nullable": true,   
 22.        "type": "float"   
 23.      },   
 24.      {   
 25.        "name": "smsOutActivity",   
 26.        "nullable": true,   
 27.        "type": "float"   
 28.      },   
 29.      {   
 30.        "name": "callInActivity",   
 31.        "nullable": true,   
 32.        "type": "float"   
 33.      },   
 34.      {   
 35.        "name": "callOutActivity",   
 36.        "nullable": true,   
 37.        "type": "float"   
 38.      },   
 39.      {   
 40.        "name": "internetTrafficActivity",   
 41.        "nullable": true,   
 42.        "type": "float"   
 43.      }   
 44.    ]   
 45.  }   
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 In this example, you read the JSON schema from a file; in practice, it could dynamically come from 
another input stream. This highlights the fact that the data in the main stream can change on the fly, and you 
can switch its schema in every batch interval. At any point in the lifecycle of a data frame, its schema can be 
printed by calling the   printSchema()  function  . 

           Scala Sequence 
   createDataFrame[A <: Product](data: Seq[A]): DataFrame  

    Turns a  Scala sequence      into a data frame (see Listing  8-6 ). Note that this snippet of code is only for 
illustrative purposes. It should not be used in production, because it reads an entire RDD into the driver 
memory before converting it to a data frame. 

     Listing 8-6.    Creating a Data Frame from a Scala Sequence   

 1.   val cdrs = sqlC.createDataFrame(seqToCdr(rdd).collect())    

            RDDs with JSON   

   read.json(jsonRDD: RDD[String]): DataFrame  

    Converts an RDD of stringified JSON objects to a data frame (see Listing  8-7 ). Another drop-in 
replacement for Listing  8-1 , line 39. 

     Listing 8-7.    Converting an RDD of JSON Objects to a Data Frame   

 1.   val cdrsJson = seqToCdr(rdd).map(r => {   
 2.     implicit val formats = DefaultFormats   
 3.     write(r)   
 4.   })   
 5.   val cdrs = sqlC.read.json(cdrsJson)   

  read  returns a  DataFrameReader  object, which can be used to create data frames from many input 
sources. More examples follow. 

            External Database   
   read.jdbc(url: String, table: String, properties: Properties): DataFrame  

    Connects to the database located at  url  via JDBC while using connection  properties . Converts the 
referenced  table  to a data frame.  

      Parquet 
   read.parquet(paths: String*): DataFrame  

    Returns the  Parquet file   located at  paths  5  as a data frame. Parquet is a compressed columnar data 
representation used by a number of Hadoop projects include Hive and Pig.  

   5  A Parquet table is typically made up of more than one file, which may be located at multiple locations.  
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       Hive Table   

   read.table(tableName: String): DataFrame  

    Fetches the table  tableName  from the Hive metastore and returns it as a data frame. Note that this feature 
requires the use of a  HiveContext  object, which inherits from  SQLContext , as described later in this chapter.   

        SQL Execution   
 Data frames provide natural primitives for manipulating structured data, but some analysts prefer to use SQL 
directly. This may also be preferable for legacy reasons: an organization may have hundreds of SQL queries, and 
it could require a bit of engineering effort to translate them to the data frame API. For such scenarios and more, 
 SQLContext  lets you invoke SQL queries via  SQLContext#sql("<sql query>") . Listing  8-8  contains replacement 
code for line 41 in Listing  8-1 . Instead of using the DataFrame API to achieve application logic, it uses SQL while 
keeping the output semantics the same. Note that because SQL can only be executed against an existing table, 
you save the CDRs data frame (line 39 in Listing  8-1 ) as a temporary in-memory table (line 1) first. You can then 
reference it as table  cdrs  in the SQL (line 2). In the next section, you learn how to save tables externally. 

       Listing 8-8.    Running a SQL Query Using  Spark SQL     

 1.   cdrs.registerTempTable("cdrs")    
  2.    sqlC.sql("SELECT countryCode, COUNT(countryCode) AS cCount FROM cdrs GROUP BY 

countryCode ORDER BY cCount DESC LIMIT 5").show()    

    Providing the same name to  registerTempTable  in every batch causes it to overwrite the previous table. 
If your logic requires you to maintain an individual table for each interval, give it a unique name by, say, using 

   cdrs.registerTempTable("cdrs" + rdd.id)  

    Be cautious with the fact that temporary tables remain in memory and can overwhelm the JVM heap. To 
negate that,  SQLContext  allows tables to be dropped via 

   dropTempTable(tableName: String): Unit  

    Listing  8-9  shows how you can drop the temporary table that you created for SQL analysis in Listing  8-8  
after you are done with it in every batch interval. 

     Listing 8-9.    Dropping a Temporary, In-Memory Table   

 1.   sqlC.dropTempTable("cdrs")    

           Configuration 
 Configuration parameters for  Spark SQL   can be set ( setConf(key: String, value: String): Unit ) and 
retrieved ( getConf(key: String): String ) via  SQLContext . In general, none of the Spark SQL configuration 
parameters need to be manually tweaked, because Spark SQL performs most optimizations under the hood, as 
you see shortly. The only parameter that may need to be explicitly tweaked is  spark.sql.shuffle.partitions , 
which controls the number of partitions used for joins and aggregations (default value: 200). If you perform 
frequent joins, you should also play with  spark.sql.autoBroadcastJoinThreshold  (default value: 10 MB), 
which controls the use of broadcast hash joins by the underlying query optimizer for smaller tables. 
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 Other potential targets are parameters that relate to the Parquet format. Look for  spark.sql.parquet.*  
configuration keys.  

        User-Defined Functions 
 In most applications, SQL and the DataFrame API do not suffice to realize user logic. For instance, in the 
previous example, you tallied the top five countries by their SMS, call, and Internet usage activity. The 
dataset only contains country-calling codes, so an analyst going through the results needs to manually look 
up the country associated with each code. It would be handy to somehow convert these codes to country 
names. SQL allows user-defined functions ( UDF     s) to be embedded in a query. These user-defined functions 
are pushed down into the database layer for efficient processing.  SQLContext  also permits the registration 
and application of UDFs: 

   udf.register(name: String, func: ())  

     name  can then be used in the SQL query to refer to the UDF. Note that  func  can have up to 22 arguments. 
Listing  8-10  contains code for creating and registering a UDF to map country-calling codes to country names. 

     Listing 8-10.    Creating and Registering a UDF   

 1.   def getCountryCodeMapping() = {   
 2.     implicit val formats = org.json4s.DefaultFormats   
 3.      parse(Source.fromURL("http://country.io/phone.json").mkString).extract[Map[String, 

String]].map(_.swap)   
 4.   }   
 5.      
 6.   def getCountryNameMapping() = {   
 7.     implicit val formats = org.json4s.DefaultFormats   
 8.      parse(Source.fromURL("http://country.io/names.json").mkString).extract[Map[String, 

String]]   
 9.   }   
 10.     
 11.   def getCountryName(mappingPhone: Map[String, String], mappingName: Map[String, String], 

code: Int) = {   
 12.    mappingName.getOrElse(mappingPhone.getOrElse(code.toString, "NotFound"), "NotFound")   
 13.  }   
 14.     
 15.   val getCountryNamePartial = getCountryName(getCountryCodeMapping(), 

getCountryNameMapping(), _: Int)   
 16.     
 17.  sqlC.udf.register("getCountryNamePartial", getCountryNamePartial)   

 The code first uses a function to retrieve a mapping of country codes to country-name abbreviations 
from an online source (lines 1–4). It also contains another function to map country-name abbreviations to 
full country names, again using an online source (lines 6–9). The  getCountryName  method takes as input the 
previous two maps and a country code and returns the name of the country that corresponds to that code 
(line 11–13). Invoking this method for each output row is very inefficient, because it requires two downloads 
per invocation. To remedy this, you create a partially applied version of the function that is prepopulated 
with the two maps (line 15). You finally register this function as a UDF with  SQLContext  with the name 
 getCountryNamePartial  (line 17). 

    Listing  8-11  updates the SQL query from Listing  8-8  to use the UDF, resulting in output tables of the 
form shown in Listing  8-12 . 
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     Listing 8-11.    Invoking a UDF in a SQL Query   

 1.    sqlC.sql("SELECT getCountryNamePartial(countryCode) AS countryName, COUNT(countryCode) 
AS cCount FROM cdrs GROUP BY countryCode ORDER BY cCount DESC LIMIT 5").show()    

        Listing 8-12.    Output for One Batch of the Country Activity-Ranking Application   

 1.   +-----------+------+    
  2.   |countryName|cCount|    
  3.   +-----------+------+    
  4.   |      Italy|180653|    
  5.   |   NotFound|139872|    
  6.   |     Sweden| 28130|    
  7.   |     France| 16970|    
  8.   |    Germany| 16528|    
  9.   +-----------+------+    

    UDFs are extremely powerful for pushing down simple logic into the database layer for execution, but 
their utility is limited in cases with more complex transformation scenarios. For such applications, Spark 
SQL lets you blend data frames seamlessly with RDD operations, as you see shortly.    

      Catalyst: Query Execution and Optimization 
  SQLContext  under the hood uses an optimizer dubbed  Catalyst   that converts queries into logical plans. 
For a given query, it can generate a number of physical plans from the logical plan, out of which it selects 
one as the optimum physical plan based on a cost model. This physical plan is then sent off to the Spark 
processing engine. Catalyst uses features of Scala to generate byte code for queries. It also tries to enforce 
predicate pushdown to improve performance. By design, it is extensible: users can add support for different 
data sources and new data types. This interface has been used to add external support for various sources 
including Avro and CSV. 6   

        HiveContext 
   HiveContext       is an extension of  SQLContext  that gives you access to HiveQL in addition to all the features 
provided by  SQLContext : it is a drop-in replacement for  SQLContext . Including  spark-hive  as a build 
dependency can enable it. In fact, it is the recommended choice, because it contains a superset of the 
features of  SQLContext  in addition to the rich features of HiveQL, existing Hive UDFs, and access to 
existing Hive data tables. To explore some of these extra features, let’s write code that implements another 
application to tap the telco dataset. 

 Cellular networks rely on accurate traffic-demand numbers to optimize current systems and plan for 
future capacity. In the short term, traffic volume can drive, say, bandwidth distribution and power-supply 
management. This can be done on an hourly scale due to the availability of real-time network data. In the 
long term, these statistics can be used to increase the number of base stations and overall network coverage. 
Bearing this mind, let’s use HiveQL to determine the hourly network activity (call + SMS + Internet) in the 
Telecom Italia data (Listing  8-13 ). 

   6     http://spark-packages.org/package/databricks/spark-csv     .  

http://spark-packages.org/package/databricks/spark-csv
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     Listing 8-13.    Calculating Hourly Network Activity Using HiveQL   

 1.   val cl = Thread.currentThread().getContextClassLoader()   
 2.   val hiveC =  new  HiveContext(ssc.sparkContext)   
 3.   Thread.currentThread().setContextClassLoader(cl)   
 4.      
 5.    import  hiveC.implicits._   
 6.      
 7.   val cdrStream = ssc.socketTextStream(hostname, port.toInt)   
 8.     .map(_.split("\\t", -1))   
 9.     .foreachRDD(rdd => {   
 10.      seqToCdr(rdd).toDF().registerTempTable("cdrs")   
 11.     
 12.      hiveC.sql("SET DATE_FMT='yy-MM-dd|HH'")   
 13.       hiveC.sql("SELECT from_unixtime(timeInterval, ${hiveconf:DATE_FMT}) AS TS, 

SUM(smsInActivity + smsOutActivity + callInActivity + callOutActivity + 
internetTrafficActivity) AS Activity FROM cdrs GROUP BY from_unixtime(timeInterval, 
${hiveconf:DATE_FMT}) ORDER BY Activity DESC").show()   

 14.    })    

    The first order of the day is to create a  HiveContext  from a   SparkContext    (line 2). Note that you 
deliberately save and reload the context class loader around  HiveContext  due to a subtle bug in Spark 1.4.0. 7  
The rest of the application setup is the same as that in the previous examples: reading data from a socket 
(line 7) and doing the conversion to data frames (line 10) in a  foreachRDD  clause (line 9). 

 The key update is the use of HiveQL to implement the application logic. You need to aggregate activity 
by hour, so you must convert the Unix timestamp for each record into a human-readable representation. 
The code uses a function from the rich suite of UDFs provided by Hive to perform the timestamp 
standardization. You need to perform the conversion more than once (in the  SELECT  clause and 
then in the  GROUP BY ), so it makes sense to define the format up front and then reuse it. The  from_
unixtime(bigint unixtime[, string format])  UDF takes as input an optional Java format string. Hive 
also allows you to set variables that can be reused in the same context. Using this feature, you first define 
the date format on line 12. You then use standard HiveQL (in fact, SQL) syntax to aggregate network 
activity by hour (line 13). 

 Note that using  HiveContext  also gives you the freedom to read from and write to Hive tables. This also 
enables applications outside of Spark to use the same data. You will look at saving tables when the chapter 
drills down into the details of data frames.     

      Data Frame 
 Inspired by  data frames   in Pandas and R, Spark SQL data frames expose the same widely used interface 
loved by data scientists while using the powerful Spark processing engine underneath. This results in a 
marriage between the best of both worlds. Conceptually a data frame is just an RDD of  Row  objects. Data 
frames are interoperable with other data-storage models such as RDDs. In fact, under the hood, a data frame 
simply maintains a reference to the underlying RDD and can access its fields in place without the need for a 
verbatim data copy. Similar to RDDs and  DStream s, data frames are evaluated in a lazy fashion: an action is 
the only trigger for the execution of a physical plan. Logical plans, on the other hand, are eagerly evaluated 
to catch errors early, such as a mismatch between column names. 

   7     https://issues.apache.org/jira/browse/SPARK-8368     .  

https://issues.apache.org/jira/browse/SPARK-8368
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 Data frames are also interoperable with  MLlib     , as you see in the next chapter, which means they can be 
used as a common substrate for both ETL as well as sophisticated machine learning. Let’s look at some of 
the features of data frames in detail. 

      Types 
 The data model mimics the nested one from Hive with a number of native and complex  types  . Primitive 
types include  BooleanType ,  ByteType ,  DoubleType ,  FloatType ,  IntegerType ,  LongType ,  ShortType , and 
 StringType . The grammar also contains a few domain-specific primitive types:  BinaryType  (an array 
of bytes),  DateType  (year, month, and day),  DecimalType  (equivalent to  java.math.BigDecimal ), and 
 Timestamp  (year, month, day, hour, minute, and second). Finally, the complex types provided by data frames 
are  ArrayType ,  MapType , and  StructType  (a structure with elements of type  StructField ).  

      Query Transformations 
 Each query transformation mimics a SQL statement. In the average case, these transformations suffice to 
implement user logic. Let’s start with the simplest and the most ubiquitous one:  select . 

 For all transformations, this section also presents illustrative examples. Each snippet of code assumes 
the existence of a CDR data frame similar to the one at line 39 of Listing  8-1 . So far, you have seen only one 
data frame output action,  show . Use it to view the output for the following queries if desired. You look at more 
output actions in the next section. 

      select(col: String, cols: String*)   : Data Frame 
 Selects one or more columns from a data frame. Listing  8-14  projects three columns from the CDR dataset. 

      Listing 8-14.    Using a  select  to Project Three Columns from a Data Frame   

 1.   cdrs.select("squareId", "timeInterval", "countryCode")    

    Another variant of  select  uses expressions to perform the selection instead of column names:  

      select(cols: Column*)   : DataFrame 
 Under the hood, each expression is a  Column  object. Listing  8-15  implements the same logic as Listing  8-14  
using expressions. An expression starts with a dollar sign ( $ ) and can also be turned into a Boolean 
condition, as you see shortly. 

      Listing 8-15.    Column Selection Based on Expressions   

 1.   cdrs.select($"squareId", $"timeInterval", $"countryCode")    

          filter(conditionExpr: String)   : DataFrame 
 Only keeps rows that match  conditionExpr . Listing  8-16  uses it to restrict the data frame to records that 
originate from  squareId: 5 . Multiple conditions can be clumped together using logical expressions in the 
condition or by chaining multiple filter operations. 
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      Listing 8-16.    Filtering a Data Frame Based on a Specific Condition   

 1.   cdrs.filter("squareId = 5")    

          drop(colName: String)   : DataFrame 
 Drops a column  colName  from the data frame, as shown in Listing  8-17 . 

     Listing 8-17.    Dropping a Column from an Existing Data Frame   

 1.   cdrs.drop("countryCode")    

          where(condition: Column)   : DataFrame 
 A variant of filter that relies on column-based conditions. Under the hood, it makes a call to  filter() . For 
instance, the code in Listing  8-18  achieves the combined effect of Listings  8-15  and  8-16 . 

     Listing 8-18.    Chaining Projection and Filtering Together   

 1.   cdrs.select($"squareId", $"timeInterval", $"countryCode").where($"squareId" === 5)    

          limit(n: Int)   : DataFrame 
 Limits the number of rows in the output data frame to  n  (Listing  8-19 ). 

     Listing 8-19.    Limiting the Number of Rows in a Data Frame to a Specific Number   

 1.   cdrs.limit(5)    

          withColumn(colName: String, col: Column)   : DataFrame 
 Adds  col  with  colName  to an existing data frame. To illustrate the use of this operation, the code in 
Listing  8-20  adds a column to the CDRs dataset with the end time of each record. 

     Listing 8-20.    Adding a Column to an Existing Data Frame   

 1.   cdrs.withColumn("endTime", cdrs("timeInterval") + 600000)    

           groupBy(col1: String, cols: String: GroupedData 
 Groups data based on one or more columns and returns a  GroupedData  object, which allows different 
aggregations. Listing  8-21  uses a  groupBy  operation followed by a  count  aggregation to count the frequency 
of each square/grid. Table  8-2  lists all aggregation functions that can be invoked on   GroupedData   .

   Listing 8-21.     groupBy  Followed by an Aggregation   

 1.   cdrs.groupBy("squareId").count()      
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   Table 8-2.    Aggregation Functions for  GroupedData    

 Method  Description  Example 

  avg(colNames: String*): 
DataFrame  

 Calculates the average value of 
 colNames  in a group. All columns 
are used if no  colNames  is 
specified. 

  cdrs.groupBy("countryCode").avg
("internetTrafficActivity")  

  mean(colNames: String*): 
DataFrame  

 An alias for  avg() .  Same as above 

  max(colNames: String*): 
DataFrame  

 Finds the max of each column in 
 colNames . 

  cdrs.groupBy("countryCode").max
("callOutActivity")  

  min(colNames: String*): 
DataFrame  

 Same as the previous but 
calculates  min . 

  cdrs.groupBy("countryCode").min
("callOutActivity")  

  sum(colNames: String*): 
DataFrame  

 Calculates the sum of columns in 
 colNames . 

  cdrs.groupBy("squareId").sum
("internetTrafficActivity")  

  agg(aggExpr: (String, 
String), aggExprs: (String, 
String)*): DataFrame  

 Invokes all  aggExprs  ( org.
apache.spark.sql.functions ). 

  cdrs.groupBy("squareId").
agg(sum("callOutActivity"), 
sum("callInActivity"), 
sum("smsOutActivity"), 
sum("smsInActivity"), sum("inte
rnetTrafficActivity"))  

              agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame 
 Applies one or more  aggregation expression  s to the data frame. This is similar in spirit to the  agg()  function 
for  GroupedData , but instead of aggregated grouped data, this is applied to columns in their current form 
across all rows. See Listing  8-22  for an example. 

     Listing 8-22.    Applying Aggregation Expressions across All Rows   

 1.    cdrs.agg(sum("callOutActivity"), sum("callInActivity"), sum("smsOutActivity"), 
sum("smsInActivity"), sum("internetTrafficActivity"))    

           orderBy(sortCol: String, sortCols: String*): DataFrame 
 Sorts the data frame by one or more columns in ascending order. To order the data in descending order, 
wrap up the column name in  org.apache.spark.sql.functions.desc  as shown in Listing  8-23 . Note that 
 orderBy  is just an alias for  sort(sortCol: String, sortCols: String*): DataFrame . 

     Listing 8-23.    Ordering the Results of a  groupBy  in  Descending Order     

 1.    cdrs.groupBy("countryCode").sum("internetTrafficActivity").orderBy(desc("SUM(internet
TrafficActivity)"))    
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          rollup(col1: String, cols: String*): GroupedData 
 Similar to a  groupBy  operation, but a subsequent aggregation also spits out a cumulative aggregation for the 
passed columns. For instance, the snippet of code in Listing  8-24  groups square IDs and country codes and 
calculates the number of rows in each group (similar to a standard  groupBy ). In addition, for each square ID, 
it also contains a cumulative group and subsequently a count for all country codes. The order of the input 
columns matters in this case, because switching them would create the cumulative group based on country 
code instead of square ID. 

     Listing 8-24.    Performing a   rollup  Operation   for Cumulative Grouping   

 1.   cdrs.rollup("squareId", "countryCode").count()    

          cube(col1: String, cols: String*): GroupedData 
 Similar to a rollup but creates groups for all permutations of columns. As a result, the order of the input 
columns does not matter. See Listing  8-25  for an example. 

     Listing 8-25.    Performing a   cube  Operation   for Grouping across All Columns   

 1.   cdrs.cube("squareId", "countryCode").count()    

          dropDuplicates(colNames: Seq[String]): DataFrame 
 Drops rows in which the row values in the provided columns,  colNames , are the same. For example, 
Listing  8-26  drops all rows where the incoming and outgoing call activity are the same. 

     Listing 8-26.    Using   dropDuplicates    to Cull Rows Where the Columns Have the Same Value   

 1.   cdrs.dropDuplicates(Array("callOutActivity", "callInActivity"))    

          sample(withReplacement: Boolean, fraction: Double): DataFrame 
 Returns a data frame with a random  fraction  of the rows from the current data frame, as shown in Listing  8-27 . 

     Listing 8-27.    Taking a  Random Sample   of Rows from a Data Frame   

 1.   cdrs.sample( true , 0.01)    

          except(other: DataFrame)   : DataFrame 
 Only returns rows that are present in the calling data frame but not in  other . Listing  8-28  compares the RDD 
from the current and previous batches. Your goal is to print only the square ID, country code pairs that have 
occurred in the current batch interval but not in the previous one. 

       Listing 8-28.    Subtracting One Data Frame Row from Another   

 1.   var previousCdrs: Option[DataFrame] = None   
 2.      
 3.   val cdrStream = ssc.socketTextStream(hostname, port.toInt)   



CHAPTER 8 ■ REAL-TIME ETL AND ANALYTICS MAGIC 

166

 4.     .map(_.split("\\t", -1))   
 5.     .foreachRDD(rdd => {   
 6.       val cdrs = seqToCdr(rdd).toDF().select("squareId", "countryCode").dropDuplicates()   
 7.       previousCdrs match {   
 8.          case  Some(prevCdrs) => cdrs.except(prevCdrs).show()   
 9.          case  None => Unit   
 10.      }   
 11.      previousCdrs = Some(cdrs)   
 12.    })    

          intersect(other: DataFrame): DataFrame 
 As the name suggests, this operation performs a  set   intersection   on the calling data frame and  other . 
Replace  except  on line 8 in Listing  8-28  to get a hang of its usage.  

      unionAll(other: DataFrame)   : DataFrame 
 Performs a union between the rows of this data frame and  other . Tweak Listing  8-28  to see an example.  

      join(right: DataFrame, joinExprs: Column): DataFrame 
 Similar to a database join, allows you to perform an  inner join   between this and the  right  data frame. 
 joinExprs  specifies the join column from either data frame. Let’s join the CDR dataset with the grid dataset 
using the square ID as the joining column. The grid dataset is encoded in GeoJSON, which you read in the driver 
program (line 1) in Listing  8-29  and then flatten to extract polygon coordinates (lines 2–7). After converting it to 
a data frame (line 9), you join it with the per-interval CDRs data frame in line 15, using the square ID as the key. 

     Listing 8-29.    Inner Join Between Two Data Frames   

 1.   val gridFile = scala.io.Source.fromFile(gridJsonPath).mkString   
 2.   val gridGeo = (parse(gridFile) \ "features")   
 3.   val gridStr = gridGeo.children.map(r => {   
 4.      val c = (r \ "geometry" \ "coordinates").extract[List[List[List[Float]]]].flatten.

flatten.map(r => JDouble(r))   
 5.      val l = List(("id", r \ "id"), ("x1", c(0)), ("y1", c(1)), ("x2", c(2)), ("y2", 

c(3)), ("x3", c(4)), ("y3", c(5)), ("x4", c(6)), ("y4", c(7)))   
 6.     compact(render(JObject(l)))   
 7.   })   
 8.      
 9.   val gridDF = sqlC.read.json(ssc.sparkContext.makeRDD(gridStr))   
 10.     
 11.  val cdrStream = ssc.socketTextStream(hostname, port.toInt)   
 12.    .map(_.split("\\t", -1))   
 13.    .foreachRDD(rdd => {   
 14.      val cdrs = seqToCdr(rdd).toDF()   
 15.      cdrs.join(gridDF, $"squareId" === $"id").show()   
 16.    })    
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            na 
 Returns a   DataFrameNaFunctions       object for manipulating missing data. Table  8-3  contains functions 
provided by this object along with examples. 

   Table 8-3.     DataFrameNaFunctions  Functions for Working with Missing Data in Data Frames   

 Method  Description  Example 

  drop(how: String): DataFrame   Drops rows with a null value based on 
the  how  criteria. A value of  all  and  any  for 
 how  dictates whether all or any columns 
should be considered. Other variants of 
this function also allow column selection. 

  cdrs.na.drop("any")  

  fill(value: String, cols: 
Seq[String]): DataFrame  

 Fills in nulls in  cols  with  value . Variants 
exist for filling in numeric values and 
specific columns. 

  cdrs.na.fill
(0, Array("squareId"))  

  replace[T](cols: Seq[String], 
replacement: Map[T, T]): 
DataFrame  

 Replaces specific values in  cols. 
replacement  contains the replacement 
values in which the key is the value 
to be replaced, and the value is the 
replacement. 

  cdrs.na.replace
("squareId", 
Map(0 -> 1))  

      stats 
 Returns a   DataFrameStatFunctions       object to perform various statistical analyses. Refer to Table  8-4  for 
examples and a list of methods. 

   Table 8-4.     DataFrameStatFunctions  Functions for Performing Various Statistical Analyses   

 Method  Description  Example 

  corr(col1: String, col2: 
String): Double  

 Finds the correlation between 
 col1  and  col2  using the Pearson 
correlation coefficient. 

  cdrs.stat.corr
("smsOutActivity", 
"callOutActivity")  

  cov(col1: String, col2: 
String): Double  

 Calculates the covariance between 
 col1  and  col2 . 

  cdrs.stat.cov
("smsInActivity", 
"callInActivity")  

  crosstab(col1: String, col2: 
String): DataFrame  

 Works out the cross tabulation of 
 col1  and  col2 . Also known as a 
contingency table. 

  cdrs.stat.crosstab
("squareId", "countryCode")  

  freqItems(cols: Seq[String], 
support: Double): DataFrame  

 Calculates frequent items in the 
sequence of  cols , where  support  
is the minimum frequency for a 
column to be considered. 

  cdrs.stat.freqItems
(Array("squareId", 
"countryCode"), 0.1)  
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      Actions 
 As you saw earlier, data frames are lazily evaluated: an  action   causes a chain of data-frame operations to be 
shipped off for execution. Along the same lines as RDDs and  DStream s, these actions are of two types: those 
that ingest data into the driver program and those that send output to external storage. Table  8-5  lists the 
former category of actions. Test these by replacing  show()  on line 41 in Listing  8-1 . 

   Table 8-5.    Internal Actions for Data Frames   

 Method  Description 

  show(numRows: Int): Unit   Prints the first  numRows  in the data frame in a tabular form. 

  show(): Unit   Alias for  show(20) . 

  head(n: Int): Array[Row]   Returns the first  n  rows in the data frame as an array. 

  take(n: Int): Array[Row]   Alias for  head(n) . 

  head(): Row   Returns the first row in the data frame. 

  first(): Row   Alias for  head() . 

  count(): Long   Returns the count of rows. 

  collect(): Array[Row]   Converts the data frame into an array and returns it. 

  collectAsList(): List[Row]   Similar to  collect()  but returns a list instead of an array. 

  describe(cols: String*): DataFrame   Returns a new data frame, which contains the count, mean, 
standard deviation, minimum, and maximum of numerical 
 cols . For instance,  cdrs.describe("smsInActivity", 
"smsOutActivity", "callInActivity", 
"callOutActivity", "internetTrafficActivity") . 

 Output actions for external storage are provided by  DataFrameWriter , which can be obtained by 
invoking  write  on any data frame. Let’s walk through its functions. 

      format(source: String): DataFrameWriter 
 Sets the output  format   for the writer.  source  can be set to  json  or  parquet , with  parquet  as the default 
(see Listing  8-30 ). 

     Listing 8-30.    Setting the Output Format for a Data Frame to JSON   

 1.   cdrs.groupBy("countryCode").count().orderBy(desc("count")).write.format("json")    

          save(path: String): Unit 
  Saves   the data frame at  path . Listing  8-31  shows how you can use the combination of  format()  and  save()  
to save a data frame in JSON format to any Hadoop-compatible file system. 

     Listing 8-31.    Saving a Data Frame in JSON Format   

 1.   cdrs.groupBy("countryCode").count().orderBy(desc("count")).write.format("json").save(path)    
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          parquet(path: String)   : Unit 
 Convenience function for  format("parquet").save(path) .  

      json(path: String)   : Unit 
 Convenience function for  format("json").save(path) .  

      saveAsTable(tableName: String): Unit 
  Saves   the data frame as a persistent table with  tableName  in the Hive metastore. Be sure to use  HiveContext  
for this. Listing  8-32  saves the country counts of CDRs as a table. 

     Listing 8-32.    Saving a Data Frame as a Hive Table   

 1.    cdrs.groupBy("countryCode").count().orderBy(desc("count")).write.format("parquet").
saveAsTable("count_table")    

           mode(saveMode: SaveMode): DataFrameWriter 
 Decides the behavior if the output  table   (when using  saveAsTable() ) or file (when using  save() ) already 
exists.  saveMode  can be  Ignore ,  Append ,  Overwrite , or  ErrorIfExists . Listing  8-33  appends data-frame 
output to the same output file(s). This is handy for streaming applications where incremental output is 
created in each batch. 

     Listing 8-33.    Setting the Output Mode for the Writer   

 1.    cdrs.groupBy("countryCode").count().orderBy(desc("count")).write.mode(SaveMode.Append).
save(path)    

           partitionBy(colNames: String*)   : DataFrameWriter 
 Partitions the data frame by  colNames  before writing it.  

      insertInto(tableName: String)   : Unit 
 Inserts the data frame into an existing table. Note that the table should have the same schema as the 
data frame.  

      jdbc(url: String, table: String, connectionProperties: Properties): Unit 
 Ships out the data frame to  table  over a JDBC connection  url  using  connectionProperties , as shown in 
Listing  8-34 . 

     Listing 8-34.    Writing a Data Frame to an  External Database over JDBC     

 1.   val prop: java.util.Properties =  new  java.util.Properties()    
  2.   counts.write.jdbc("jdbc:mysql://hostname:port/cdrsdb", "count_table", prop)    
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            RDD Operations   
 Each data-frame object also has associated RDD operations enabled by the method  rdd , which returns an 
RDD of  Row s. The first time it is called, it creates the RDD, which is memoized, so subsequent calls return this 
cached instance. All standard RDD operations can then be applied. Let’s mix RDD operations with data-
frame queries to determine the disparity between SMS usage and calls. Specifically, you need to bifurcate the 
dataset by whether there was more SMS activity or call activity. Then, for either dataset, you need square ID 
and country-code pairs that are exclusive to that data frame. The snippet of code in Listing  8-35  does just that. 

     Listing 8-35.    Mixing RDD Operations with Data-Frame Operations   

 1.    val highInternet = sqlC.createDataFrame(cdrs.rdd.filter(r => r.getFloat(3) + 
r.getFloat(4) >= r.getFloat(5) + r.getFloat(6)), schema)    

  2.   val highOther = cdrs.except(highInternet)    
  3.   val highInternetGrid = highInternet.select("squareId", "countryCode").dropDuplicates()    

  4.   val highOtherGrid = highOther.select("squareId", "countryCode").dropDuplicates()    
  5.   highOtherGrid.except(highInternetGrid).show()    
  6.   highInternetGrid.except(highOtherGrid).show()    

          Persistence 
 The  persistence   level of data frames can also be configured via calls to familiar functions:  cache()     and 
 persist(newLevel: StorageLevel) . If so desired, a previously persisted data frame can be uncached via a 
call to  unpersist() .  

      Best Practices 
•       Avoid shuffling    .  As you saw in Chapter   4    , shuffling is one of the most expensive steps 

in distributed computing. Therefore, if possible, you should avoid it at all costs. The 
same applies to Spark SQL and data frames. When performing joins, make copious 
use of broadcast hash joins to minimize shuffle time.  

•     Use code generation    .  For complex or recurring queries, it is generally more efficient 
to convert them to byte code for faster execution. This can be achieved by setting 
 spark.sql.codegen  to  true .  

•     Cache aggressively    .  Similar to RDDs and  DStream s, if a data frame needs to be 
accessed multiple times, it should be cached in memory. This has a number of 
advantages including efficient column lookups, compression, and minimal garbage-
collection pressure.    

 This brings you to the end of the discussion of data frames. Data frames are not the only mechanism 
enabled by Spark for analytics. There is another that’s dearly loved by data scientists: R.   

       SparkR   
 R is the language of choice for most data scientists. It is geared toward statistical analysis and graphical 
visualization of data. R is an interpreted, scripted language with its own shell. The functionality of the core 
runtime can be extended using external packages. Although R is an extremely powerful tool for data analysis, 
its utility is limited by the capabilities of the machine it is running on. A number of enhancements are available 
to enable R to take advantage of parallel and distributed execution, 8  but none of them have the muscle to turn 
R into a general-purpose distributed environment for Big Data analysis. That is where SparkR comes in. 

http://dx.doi.org/10.1007/978-1-4842-1479-4_4
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  SparkR is   an R package that acts as a bridge between R and Spark. You can manipulate RDDs and data 
frames in R while using the full capabilities of Spark. It is part of the standard Spark distribution and can 
easily be spun up to get the best of both worlds. Let’s kill the suspense and set up SparkR. 

 INSTALLING SPARKR

 Download R, and install it if you have not done so already. 

 Run R. If you are running from the command line, simply type  R . 

 SparkR relies on   rJava    as the glue between R and Spark and  devtools  for package installation. Install 
both using  install.packages("rJava")  and  install.packages("devtools")  in the R shell. 

 Check that both dependencies have been installed properly by loading them:  library(rJava)  and 
 library(devtools) . 

 Outside of the R shell, jump to the  $SPARK_HOME/R/lib/SparkR  folder and execute the following: 

   R -e "devtools::install('.')"  

    This installs SparkR as an R package. 

 To verify that the installation is correct, load the package:  library(SparkR) . 

 This also gives you access to SparkR from within RStudio if that is your weapon of choice for data science.   

      First SparkR Application 
 To get your hands dirty with SparkR, let’s reimplement the very first application from this chapter (Listing  8-1 ) 
in R, with a caveat: SparkR does not support Spark Streaming out of the box. To account for that, the 
application reads data directly from the CDR dataset TSVs. Don’t panic, though; in the next section, you 
analyze a design pattern that lets you handle streaming data in SparkR. For now, let’s go back to the first 
example, the code for which is shown in Listing  8-36 . 

      Listing 8-36.    First SparkR  Application     

 1.   args <- commandArgs(trailingOnly = TRUE)   
 2.   if(length(args) != 2) {   
 3.       stop("Usage: CdrSparkRApp <master> <filepath>")   
 4.   }   
 5.   library(SparkR)   
 6.    Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.3.0" 

"sparkr-shell"')   
 7.   sc <- sparkR.init(master = args[1])   
 8.   sqlContext <- sparkRSQL.init(sc)   

   8     https://cran.r-project.org/web/views/HighPerformanceComputing.html     .  

https://cran.r-project.org/web/views/HighPerformanceComputing.html
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 9.    df <- read.df(sqlContext, args[2], source = "com.databricks.spark.csv", inferSchema = 
"true", delimiter = "\t")   

 10.   cnames <- c("squareId", "timeInterval", "countryCode", "smsInActivity", 
"smsOutActivity", "callInActivity", "callOutActivity", "internetTrafficActivity")    

 11.  for (i in 1:NROW(cnames)) {   
 12.      df <- withColumnRenamed(df, paste0("C", i - 1), cnames[i])   
 13.  }   
 14.  counts <- count(groupBy(df, "countryCode"))   
 15.  showDF(orderBy(counts, desc(counts$count)), numRows = 5)   
 16.  sparkR.stop()    

 The first four lines are boilerplate code to ensure that you provide the correct command-line arguments 
while line 5 loads the SparkR package. The input file from the  Milan CDR dataset   is a tab-separated 
collection of lines (after you unzip the archive). To read one of the files, you use the  spark-csv  package from 
 Databricks  . This package is included on line 6. Note that Spark also downloads and makes this package 
available automatically if it is not already available locally. The next order of the day is to initialize the Spark 
context (line 7) and Spark SQL context (line 8). The former requires the location of the  Spark master  , and the 
latter requires  SparkContext  for initialization. Now you are ready to create data frames, which is what you do 
in line 9. The  read.df  function requires a reference to  SQLContext  as well as the path to the file. In addition, 
it requires the name of the input source, which in this case is a CSV. The rest of the arguments contain 
formatting information, which is passed down to the input source. 

 Once you have a data frame in hand, you manually  add column names  , because the input CSV does 
not have header information. Repeated execution of  withColumnRenamed()  helps you to replace the generic 
column names with those specific to the logic (lines 10–13). Similar to the vanilla DataFrame API (used in 
Listing  8-1 ), the actual query is implemented in only two lines (lines 14–15) in which you rank the top five 
country codes by frequency. Note that each data-frame operation has an equivalent in Spark. Once the 
application has completed,   sparkR.stop()    enables you to bring down the driver program. 

           Execution   
 Save the code from Listing  8-36  in a file, and name it, say,  CdrSparkRApp.R . You can then execute it from the 
command line: 

   Rscript CdrSparkRApp.R spark_master path_to_cdr_file_txt  

    You should obtain output similar to that in Listing  8-37 . 

     Listing 8-37.    Output of Your First SparkR Application   

 1.   +-----------+-------+    
  2.   |countryCode|  count|    
  3.   +-----------+-------+    
  4.   |         39|1439981|    
  5.   |          0|1159632|    
  6.   |         33| 210334|    
  7.   |         46| 208713|    
  8.   |         49| 165341|    
  9.   +-----------+-------+    
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              Streaming   SparkR 
 As you saw in the last application, SparkR does not support Spark Streaming out of the box, but that does 
not mean you cannot use various other features of Spark to implement real-time applications. The design 
pattern in this section contains the following two key components:

•    A Spark Streaming application that preprocesses the data and writes a new Hive 
table in every batch  

•   A stateless SparkR script that is invoked by the streaming application in each batch 
and that processes the per-batch Hive table    

 Listing  8-38  lists the main logic of the Spark Streaming end of the application. 

     Listing 8-38.    Streaming Application That Creates a Per-Batch Data Frame and Invokes a SparkR Script to 
Consume It   

 1.   ssc.sparkContext.addFile(rScriptPath)   
 2.   val rScriptName = SparkFiles.get(Paths.get(rScriptPath).getFileName.toString)   
 3.   val master = hiveC.sparkContext.getConf.get("spark.master")   
 4.      
 5.   val cdrStream = ssc.socketTextStream(hostname, port.toInt)   
 6.     .map(_.split("\\t", -1))   
 7.     .foreachRDD((rdd, time) => {   
 8.       val iTableName = tableName + time.milliseconds   
 9.       seqToCdr(rdd).toDF().write.saveAsTable(iTableName)   
 10.       hiveC.sparkContext.parallelize(Array(iTableName)).pipe("%s %s".format(rScriptName, 

master)).saveAsTextFile(Paths.get(logsPath, iTableName).toString)   
 11.    })    

 The application ingests the CDR data from a socket and writes it out to a Hive table per batch (line 9). 
You append a batch timestamp, which you obtain from the  foreachRDD  operation (line 7), to each table 
name to temporally segregate the data (line 8). The fun part starts on line 10. You use a  PipedRDD  to kick 
off the SparkR script. Specifically, you create an RDD with just the per-batch table name and pipe it to 
the external script via a  pipe  call. The script requires the location of the Spark master as a command-line 
argument, so you provide it. Finally, the output ( stdout ) of the external script is piped back to the caller, 
which you save to a file. You see shortly that the SparkR script writes only log information to standard output, 
not actual data. 

    The SparkR side of the application (Listing  8-39 ) reads the name of the data frame from standard 
input (lines 9–11) and loads the corresponding data frame using a  HiveContext  (line 15). Once the top five 
country codes by occurrence have been obtained, the resulting data frame is written as a new output table 
to Hive (line 19). 

     Listing 8-39.    SparkR Script That Is Invoked by the Streaming Application Every Interval to Manipulate 
Data Frames   

 1.   #!/usr/local/bin/Rscript   
 2.   args <- commandArgs(trailingOnly = TRUE)   
 3.    if (length(args) != 1) {   
 4.       stop("Usage: CdrStreamingSparkRApp <master>")   
 5.   }   
 6.   library(SparkR)   
 7.   sc <- sparkR.init(master = args[1])   
 8.   hiveContext <- sparkRHive.init(sc)   
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 9.   f <- file("stdin")   
 10.  open(f)   
 11.   while (length(tableName <- readLines(f, n = 1)) > 0) {   
 12.      tryCatch({   
 13.          tableName <- trimws(tableName)   
 14.          write(paste0("Processing table: ", tableName), stderr())   
 15.          df <- table(hiveContext, tableName)   
 16.          counts <- count(groupBy(df, "countryCode"))   
 17.          outputTable <- paste0(tableName, "processed")   
 18.          write(paste0("Output written to: ", outputTable), stderr())   
 19.           saveAsTable(limit(orderBy(counts, desc(counts$count)), 5), outputTable, 

"parquet", "error")   
 20.      }, error = function(e) {stop(e)})   
 21.  }   
 22.  close(f)   
 23.  sparkR.stop()    

    Note that in order for this application to work, you need to run an external metastore for Hive. Specifically, 
the embedded Derby metastore in Spark SQL only supports single user/application operations. As a result, 
the SparkR script raises an exception telling you “Another instance of Derby may have already booted the 
database.” This can be remedied either by running a network service version of Derby or by using a MySQL 
or Postgres instance as the metastore database. The following guides you through setting up the former. 

 INSTALLING AND RUNNING APACHE DERBY FOR HIVE

 Download Derby version 10.10.1.1, 9  and unzip it in a suitable location:  DERBY_HOME . 

 Edit  $JAVA_HOME/jre/lib/security/java.policy , and add the following to it: 

   grant { permission java.net.SocketPermission "localhost:1527", "listen"; };  

    Create a  data  folder at  $DERBY_HOME/data , and jump to it. 

 Execute the following: 

   ../bin/startNetworkServer -h 0.0.0.0  

    You have Derby running as a network service on this machine. 

 If not already present, create  hive-site.xml  at  $SPARK_HOME/conf/hive.site.xml , add the following 
configuration parameters to it, and replace  localhost  with the IP of the machine running the Derby server: 

   <configuration>  
    <property>  
      <name>javax.jdo.option.ConnectionURL</name>  
      <value>jdbc:derby://localhost:1527/metastore_db;create=true</value>  
    </property>  
    <property>  

   9     https://db.apache.org/derby/releases/release-10.10.1.1.html     .  

https://db.apache.org/derby/releases/release-10.10.1.1.html
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      <name>javax.jdo.option.ConnectionDriverName</name>  
      <value>org.apache.derby.jdbc.ClientDriver</value>  
    </property>  
  </configuration>  

    Add the Derby client JAR to the Spark classpath. Specifically, edit  $SPARK_HOME/conf/spark-env.sh , 
and add 

   SPARK_CLASSPATH=$DERBY_HOME/lib/derbyclient.jar  

     It is important to highlight that this example is not for production use, because it creates a large number 
of tables in the Hive metastore. There are a number of ways to make this design pattern more robust and 
efficient. One method consists of writing the output of the Spark Streaming application to temporary files 
and then performing a bulk load into Hive for consumption by R. This obviously comes at the cost of higher 
latency. Alternatively, instead of creating a per-batch table in the Hive metastore, you can create a single 
table and keep appending to it in every batch interval with an additional timestamp column. At the R end, 
only records with a specific range of timestamps are processed each time the script is invoked. 

 Using this simple but effective design paradigm, you can analyze streaming data using R. The exciting 
prospect is the ability to use standard R packages and constructs for data science. You can use the entire 
suite of machine learning, data mining, and graphing tools enabled by R to suit your needs. The combination 
of Spark and R is just what the doctor ordered for large-scale Big Data processing and data science.      

      Summary 
 Spark SQL simplifies the analysis of structured data using Spark. In this chapter, you saw how to use it to 
perform ETL for streaming data via data frames: RDDs for structured data. The support for HiveQL allows 
you to use the trusted suite of Hive queries and UDFs and run your existing queries almost untouched. The 
cherry on top is SparkR, which completes the trio of choice for data science: SQL, Hive, and R. You looked at 
multiple design patterns to extend the applicability of these tools to real-time data. But you only scratched 
the surface in terms of hardcore data science, which revolves around machine learning. This chapter 
mentioned that data frames are also used by MLlib: the equivalent of Mahout for Spark, to which Chapter   9     
is dedicated.      

http://dx.doi.org/10.1007/978-1-4842-1479-4_9
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    CHAPTER 9   

 Machine Learning at Scale                          

    There is an art to flying. The knack lies in learning how to throw yourself at the ground 
and miss.  

 —Douglas Adams,  Life, the Universe and Everything    

 Data by itself is a static, lifeless entity. You need analytics to breathe life into it and make it talk or even 
sing. The most sophisticated and popular class of such analytics revolves around nowcasting, forecasting, 
and recommendations, more generally known as  machine learning  and   data mining   .  Machine-learning   
algorithms learn patterns in data and can then be used to make predictions, whereas data mining helps 
extract structure from unstructured data. Using the power of both, electricity providers can predict the 
network load and control power generation accordingly, a clothing line can figure out the standard t-shirt 
sizes for a new market, oil companies can choose the location of their next drilling operation, and health 
practitioners can diagnose diseases without a physical checkup. This is easier said than done, though, 
because of the sheer size of the data: in some cases, the dataset can exceed  petabytes     . Consequently, 
machine learning at scale is the key to practical predictions and recommendations, which are essential to 
drive the needs of consumers: commercial, academic, or scientific. 

 The  scale and complexity   of some of these analytics is magnified in real-time scenarios where an 
answer is needed as soon as possible, exposing the inherent trade-off between accuracy and training time 
in statistical models. Fortunately, MLlib—the suite of machine-learning algorithms for Spark—supports 
streaming analytics out of the box. In this chapter, you use some of these analytics to model IoT data. You 
start off with statistical analysis to learn the distribution of data and get a feel for its attributes, followed by 
feature-selection algorithms. The bulk of the chapter is dedicated to various learning algorithms covering 
regression, classification, clustering, recommendation systems, and frequent pattern matching. The chapter 
wraps up with the Spark ML package, which simplifies the implementation of end-to-end learning pipelines. 

      Sensor Data Storm      
 By 2020, 50 billion sensors will be connected to the Internet. 1  This  Internet of Things (IoT)   revolution has 
already started. Today, GE receives 50 million readings from 10 million sensors deployed atop devices 
and machinery worth more than $1 trillion. 2  These sensors are used to instrument devices as diverse as 
toothbrushes and bulldozers. In these devices, sensors monitor a rich constellation of phenomena: the 
environment, movement, weather, you name it. A single device can have hundreds of sensors, which generate 

   1  Plamen Nedeltchev, “The Internet of Everything Is the New Economy,”  Cisco , September 29, 2015,    www.cisco.com/c/
en/us/solutions/collateral/enterprise/cisco-on-cisco/Cisco_IT_Trends_IoE_Is_the_New_Economy.html     .  
   2  Heather Clancy, “How GE Generates $1 Billion from Data,”  Fortune , October 10, 2014,    http://fortune.com/
2014/10/10/ge-data-robotics-sensors/     .  

http://www.cisco.com/c/en/us/solutions/collateral/enterprise/cisco-on-cisco/Cisco_IT_Trends_IoE_Is_the_New_Economy.html
http://www.cisco.com/c/en/us/solutions/collateral/enterprise/cisco-on-cisco/Cisco_IT_Trends_IoE_Is_the_New_Economy.html
http://fortune.com/2014/10/10/ge-data-robotics-sensors/
http://fortune.com/2014/10/10/ge-data-robotics-sensors/
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hundreds of thousands of data points per time interval. Typically, the applications that consume this data 
have a strict Service Level Agreement (SLA) and need to produce results with a specific latency. This is more 
pronounced in online learning scenarios, which have both a time budget and an accuracy requirement for 
predictive models. 

 One major class of sensor-based analytics uses data from the rich set of sensors in smartphones to 
improve the wellness of users: for instance, predicting how much a user will walk over the course of a year 
and recommending an appropriate diet for them. Similarly, another application can cluster users based on 
their heart rate and other vitals and notify them when their health profile changes. Sensor-based healthcare 
analytics have become prevalent due to the popularity of devices such as Fitbit and Apple Watch. For 
obvious privacy reasons, the data from these devices is locked away behind multiple layers of safeguards. 
Fortunately, a number of such datasets are available in the public domain, albeit from limited, controlled 
environments. 

 One such dataset, which you use in this chapter, logs the physical activity of nine individuals via 
inertial and heart-rate monitoring sensors. 3  Each individual wore three  inertial measurement units (IMUs)  , 
located on different parts of the body: hand, chest, and ankle. Each IMU contains four 3D sensors: two 
accelerometers, a gyroscope, and a magnetometer. 

 In total, ten hours of activity is recorded in the data. The physical activities are categorized using 18 
labels, which include walking, running, cycling, lying down, sitting, standing, and so on. The dataset is 
divided into nine text files (with  .dat  extension), one per subject. Each space-separated record consists of 52 
attributes, 1 timestamp, and 1 label, which are summarized in Table  9-1 .   

   Table 9-1.    Summary of the Fields in the Sensor Activity Dataset   

 Field #  Name  Description 

 1  Timestamp  The timestamp of the record in seconds 

 2  Activity ID  The tag assigned to the activity: 1. Lying, 2. Sitting, 3. Standing, 4. 
Walking, 5. Running, 6. Cycling, 7. Nordic walking, 9. Watching 
TV, 10. Using a Computer, 11. Driving, 12. Ascending stairs, 13. 
Descending stairs, 16. Vacuum cleaning, 17. Ironing, 18. Folding 
laundry, 19. House cleaning, 20. Playing soccer, 21. Rope jumping, 
and 0. Invalid 

 3  Heart rate  The heart rate in beats per minute 

 4–20  IMU Hand  The inertial measurement unit attached to the hand (detailed 
breakdown in Table  9-2 ) 

 21–37  IMU Chest  Self-explanatory 

 38-54  IMU Ankle  Self-explanatory 

   3  PAMAP2 Physical Activity Monitoring Data Set,  UC Irvine Machine Learning Repository ,   https://archive.ics.
uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring    .  

https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
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 This dataset is a good representative of a plurality of sensors that can be used to gauge human activity. 
Let’s get going.    

      Streaming MLlib Application 
 Listing  9-1  contains the code for your very first machine-learning application. The goal is to use linear 
regression to model the target sensor data by using heart rate, temperature, and acceleration. 

         Listing 9-1.     First Streaming MLlib Application     

  1.    package  org.apress.prospark   
 2.      
 3.    import  org.apache.spark.SparkConf   
 4.    import  org.apache.spark.SparkContext   
 5.    import  org.apache.spark.mllib.linalg.Vectors   
 6.    import  org.apache.spark.mllib.regression.LabeledPoint   
 7.    import  org.apache.spark.mllib.regression.StreamingLinearRegressionWithSGD   
 8.    import  org.apache.spark.rdd.RDD   
 9.    import  org.apache.spark.rdd.RDD.doubleRDDToDoubleRDDFunctions   
 10.   import  org.apache.spark.streaming.Seconds   
 11.   import  org.apache.spark.streaming.StreamingContext   
 12.     
 13.  object LinearRegressionApp {   
 14.     
 15.    def main(args: Array[String]) {   
 16.       if  (args.length != 4) {   
 17.        System.err.println(   
 18.          "Usage: LinearRegressionApp <appname> <batchInterval> <hostname> <port>")   
 19.        System.exit(1)   
 20.      }   
 21.      val Seq(appName, batchInterval, hostname, port) = args.toSeq   
 22.     

 The breakdown of the attributes of each IMU is presented in Table  9-2 . 

    Table 9-2.    Summary of the  IMU   Attributes   

 Field #  Name  Description 

 1  Temperature  The temperature in Celsius 

 2–4  3D Accelerometer  Speed in m/s with a range of 16 g (g-force) 

 5–7  3D Accelerometer  Speed in m/s with a range of 6 g 4  

 8–10  3D Gyroscope  Orientation of the device in radians per second 

 11–13  3D Magnetometer  Magnetic field sensor with micro Tesla units 

 14–17  Orientation  Skipped in this dataset 

   4  This sensor was not calibrated properly while taking measurements, so the use of the 16 g attribute is recommended for 
any analytics.  
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 23.      val conf =  new  SparkConf()   
 24.        .setAppName(appName)   
 25.        .setJars(SparkContext.jarOfClass( this .getClass).toSeq)   
 26.     
 27.      val ssc =  new  StreamingContext(conf, Seconds(batchInterval.toInt))   
 28.     
 29.      val substream = ssc.socketTextStream(hostname, port.toInt)   
 30.        .filter(!_.contains("NaN"))   
 31.        .map(_.split(" "))   
 32.        .filter(f => f(1) != "0")   
 33.     
 34.       val datastream = substream.map(f => Array(f(2).toDouble, f(3).toDouble, f(4).

toDouble, f(5).toDouble, f(6).toDouble))   
 35.        .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))   
 36.      val test = datastream.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))   
 37.       val train = datastream.transformWith(test, (r1: RDD[LabeledPoint], r2: 

RDD[LabeledPoint]) => r1.subtract(r2)).cache()   
 38.      val model =  new  StreamingLinearRegressionWithSGD()   
 39.        .setInitialWeights(Vectors.zeros(4))   
 40.        .setStepSize(0.0001)   
 41.        .setNumIterations(1)   
 42.     
 43.      model.trainOn(train)   
 44.       model.predictOnValues(test.map(v => (v.label, v.features))).foreachRDD(rdd => 

println("MSE: %f".format(rdd   
 45.        .map(v => math.pow((v._1 - v._2), 2)).mean())))   
 46.     
 47.      ssc.start()   
 48.      ssc.awaitTermination()   
 49.    }   
 50.     
 51.  }   

    Once the model has been trained using temperature and accelerometer attributes, you can use it to 
predict the heart rate for each record. In each batch, the application uses 70% of the dataset for training and 
30% for testing. The first order of business is to push data to Spark, for which you again repurpose your trusted 
 SocketDriver  from Chapter   5     by augmenting  AbstractDriver  with Listing  9-2  to read plain-text files. 

     Listing 9-2.    Augmenting  AbstractDriver  from Chapter   5     to Support  .dat  files   

 1.    else if  (ext.equals("dat")) {   
 2.       LOG.info(String.format("Feeding dat file %s", f.getName()));   
 3.         try  (BufferedReader br =  new  BufferedReader( new  InputStreamReader( new  

FileInputStream(f)))) {   
 4.           String line;   
 5.            while  ((line = br.readLine()) !=  null ) {   
 6.               sendRecord(line);   
 7.           }   
 8.       }   
 9.   }   

http://dx.doi.org/10.1007/978-1-4842-1479-4_5
http://dx.doi.org/10.1007/978-1-4842-1479-4_5
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   Feed the socket before running the Spark Streaming from Listing  9-1 . You read records from the socket 
(line 29) and filter out records that have invalid numbers ( NaN ) or where the activity itself is invalid (0) on 
lines 30–32. You need to predict the heart rate based on temperature and acceleration, so you project fields 
that might be handy for this purpose: the heart rate (index 2), temperature (index 3), and 16 g accelerometer 
(index 4–6). MLlib algorithms require data in the form of a  Vector  type with each feature as a  Double . For 
training, each record needs to be converted to a  LabeledPoint  whose first parameter is a label for the record 
and second is a  Vector  type (line 35). In this case, the label is the heart rate and the rest are features. 

 Once each record has been converted to  LabeledPoint , the input stream needs to be divided into 
training and test. For this you use the   randomSplit  method   for RDDs with a  transform  operation to divide 
the stream and get the  test  stream (line 36). The code then uses another  transform  operation over the  test  
stream and the original stream to get the difference of the two, which carves out the  train  stream (line 37). 
You cache this dataset because it will be used across iterations. The data is now ready for training. 

 The dataset has continuous values, so you use a streaming regression model: 
  StreamingLinearRegressionWithSGD   . The model requires a few configuration parameters including the 
initial weight of the features, the step size (learning rate for stochastic gradient descent [SGD]   ), and the 
number of iterations. You assign initial values of zero for the features (line 39). The step size and the number 
of iterations along with other parameters are very sensitive to the data being modeled. The values were 
selected via trial and error. For other datasets, they might be very different. Refer to Table  9-3  for more 
parameters and their default values.  

 After the model has been calibrated with various parameters, it is ready to receive training data (line 43). 
As mentioned earlier, the application uses 70% of the input stream for training and then validates the 
learning by predicting the activity label of the other 30%.  predictOnValues  uses the model to predict the 
label of the new data. In this case, because you already know the activity types of the 30% streams as well, 
you can use it to come up with an error rate for the prediction via  mean square error (MSE)  ; this basically 
gives you the mismatch between the actual value and the predicted value.  predictOnValues  performs the 
prediction but keeps the actual activity label (the key) intact. You use this functionality to calculate a per-
batch-interval MSE (lines 44–45). When you run the application, notice that this error goes down over time, 
as the model starts accurately predicting the regression line. This is due to the online, accumulative nature of 
this algorithm, which is updated in each microbatch based on  miniBatchFraction . 

 Build and run it like any standard Spark Streaming application. 5  

   Table 9-3.    Parameters to Calibrate Streaming Linear Regression   

 Parameter  Set  Default  Description 

  initialWeights    setInitialWeights
(initialWeights: Vector)  

 na  The initial weight for each feature 
vector. This is typically initialized to 0 
unless you have performed an advance 
analysis to precalculate a value. 

  miniBatchFraction    setMiniBatchFraction
(miniBatchFraction: Double)  

 1.0  The fraction of the data in each batch 
to use to update the model. 

  numIterations    setNumIterations
(numIterations: Int)  

 50  The number of iterations per update. 

  stepSize    setStepSize(stepSize: 
Double)  

 0.1  The gradient descent step size. 

   5  Make sure you add  libraryDependencies += "org.apache.spark" %% "spark-mllib" % "1.4.0"  to your build 
specification file.  
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 MLlib is self-contained in the  org.apache.spark.mllib  package. Let’s explore its other features in depth.   

     MLlib 
 MLlib covers the entire spectrum of machine-learning algorithms and tools to enable predictions, 
recommendations, and feature extraction at scale. The list of supported algorithms includes classification, 
clustering, collaborative filtering, dimensionality reduction, frequent pattern mining, and regression. 
Another suite of machine-learning tools was introduced in Spark 1.2 in the  org.apache.spark.ml  package 
to facilitate the creation of machine-learning pipelines. The next section introduces it, so for now let’s focus 
on the core MLlib library. The  functionality of      MLlib can be grouped into three main categories: statistical 
analysis and preprocessing, feature selection and extraction, and learning algorithms. Before you look at 
each in turn, let’s begin with the data types inherent to MLlib. 

      Data Types      
 Similar to Mahout and other machine-learning libraries, MLlib has two major data types: vectors and 
matrices. As the names suggest, a vector is a one-dimensional representation of  Double s, and a matrix covers 
two dimensions. These data types are either stored in a single executor process or distributed across many 
executors in a cluster. This leads to a combination of types, as listed in Table  9-4 . For each example, assume 
that the input stream is the same as that on line 29 in Listing  9-1 .   

   Table 9-4.    Examples of the Data Types Provided by MLlib   

 Type  Description  Example 

 Local dense vector  Stored locally as an array of 
 double s. Use this vector when 
your data does not have many 
zero values. 

  Signature:   Vectors.dense(values: 
Array[Double]): Vector  

  val denseV = substream.map(f => 
Vectors.dense(f.slice(1, 5)))  

 Local sparse vector  Stored locally as two parallel 
arrays: one for indexes and 
the other for actual values. 
Zero values are skipped in this 
representation. Use this type if 
your data contains many zero 
values. 

  Signature:   Vectors.sparse(size: Int, 
elements: Seq[(Int, Double)]): Vector  

  val sparseV = substream.map(f => 
f.slice(1, 5).toList).map(f => 
f.zipWithIndex.map { case (s, i) => (i, 
s) }) .map(f => f.filter(v => v._2 != 
0)).map(l => Vectors.sparse(l.size, l))  

 Labeled point  Attaches a label to a vector 
(dense or sparse). This is used 
for learning algorithms in which 
the label trains the model for the 
provided attributes. 

  Signature:   new LabeledPoint(label: 
Double, features: Vector)  

  val labeledP = substream.map(f => 
LabeledPoint(f(0), Vectors.dense(f.
slice(1, 5))))  

 Local matrix  A dense matrix with integer row 
and column indexes and  double  
values. 

  Signature:   Matrices.dense(numRows: Int, 
numCols: Int, values: Array[Double]): 
Matrix  

  val denseM = substream.map(f => 
Matrices.dense(3, 16, f.slice(3, 19) ++ 
f.slice(20, 36) ++ f.slice(37, 53)))  

(continued)
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Table 9-4. (continued)

 Type  Description  Example 

 Distributed  RowMatrix   A matrix that is distributed across 
the cluster. Each row is a local 
vector. 

  Signature:   new RowMatrix(rows: 
RDD[Vector])  

  denseV.foreachRDD(rdd => {  
              val rowM = new RowMatrix(rdd)  
  })  

 Distributed 
 IndexedRowMatrix  

 Similar to a distributed 
 RowMatrix , with  long  type 
column indexes. Each row is an 
 IndexedRow  type, which is a two 
tuple of  (Long, Vector) . 

  Signature:   new IndexedRowMatrix(rows: 
RDD[IndexedRow])  

  denseV.foreachRDD(rdd => {  
               val iRdd = rdd.zipWithIndex.map(v 

=> new IndexedRow(v._2, v._1))  
               val iRowM = new 

IndexedRowMatrix(iRdd)  
  })  

 Distributed 
 CoordinateMatrix  

 Similar to a distributed 
 IndexedRowMatrix  with column 
indexes. Under the hood, it 
is an RDD of  MatrixEntry , 
where  MatrixEntry  is a 3-tuple 
of  (Long, Long, Vector) . 
This is useful to store high-
dimensionality, sparse data. 

  Signature:   new CoordinateMatrix(entries: 
RDD[MatrixEntry])  

  substream.foreachRDD(rdd => {  
               val entries = rdd.zipWithIndex.

flatMap(v => List(3, 20, 37).
zipWithIndex.map(i => (i._2.toLong, 
v._2, v._1.slice(i._1, i._1 + 16).
toList))) .map(v => v._3.map(d => 
new MatrixEntry(v._1, v._2, d))).
flatMap(x => x)     val cRowM = new 
CoordinateMatrix(entries)  

  })  

 Distributed 
 BlockMatrix  

 Arranges the matrix as an RDD 
of type  MatrixBlock . Each 
MatrixBlock is a sub-matrix with 
row and column indexes of the 
sub-matrix and the contents of 
the sub-matrix itself. It can be 
created by directly converting 
from an  IndexedRowMatrix  or a 
 CoordinateMatrix . 

  Signature:   new BlockMatrix(blocks: 
RDD[((Int, Int), Matrix)], 
rowsPerBlock: Int, colsPerBlock: Int)  

  Or  
 CoordinateMatrix#toBlockMatrix(): 
BlockMatrix  
  substream.foreachRDD(rdd => {  
               val entries = rdd.zipWithIndex.

flatMap(v => List(3, 20, 37).
zipWithIndex.map(i => (i._2.toLong, 
v._2, v._1.slice(i._1, i._1 + 16).
toList))) .map(v => v._3.map(d => 
new MatrixEntry(v._1, v._2, d))).
flatMap(x => x)  

               val blockM = new 
CoordinateMatrix(entries).
toBlockMatrix  

  })  
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       Statistical  Analysis      
 MLlib enables a number of statistics over vectors and matrices. These are useful for understanding the 
distribution and layout of the input dataset: for instance, finding correlations between different attributes 
can assist in feature selection for learning. Helper functions are provided in the  org.apache.spark.mllib.
stat.Statistics  package. One of the most basic operations is to study the distribution of the attributes of 
a dataset in terms of their mean, maximum, minimum, and so on. This is typically the first step for any data 
scientist, because it enables you to get a feel for the data. Listing  9-3  shows how to perform these calculations 
for the sensor-readings dataset. Once again, assume that  substream  comes from line 29 in Listing  9-1 . 
 colStats  takes an RDD of vectors as input. 

     Listing 9-3.    Calculating Basic Statistics for a  DStream  of Vectors   

 1.   substream.map(f => Vectors.dense(f.slice(1, 5))).foreachRDD(rdd => {   
 2.     val stats = Statistics.colStats(rdd)   
 3.     println("Count: " + stats.count)   
 4.     println("Max: " + stats.max.toArray.mkString(" "))   
 5.     println("Min: " + stats.min.toArray.mkString(" "))   
 6.     println("Mean: " + stats.mean.toArray.mkString(" "))   
 7.     println("L1-Norm: " + stats.normL1.toArray.mkString(" "))   
 8.     println("L2-Norm: " + stats.normL2.toArray.mkString(" "))   
 9.     println("Number of non-zeros: " + stats.numNonzeros.toArray.mkString(" "))   
 10.    println("Varience: " + stats.variance.toArray.mkString(" "))   
 11.  })   

   Another useful operation is finding the correlation between different attributes. This is handy for feature 
selection: you can leave out attributes that are not correlated with the outcome. Correlations in MLlib can be 
calculated using either Pearson or Spearman correlation coefficients. The use of both is illustrated in 
Listing  9-4 . Note that the output of the correlation is in the form of a matrix, as shown in Table  9-5 . The first 
column contains the heart rate, and the other three contain acceleration across the three axes. The same 
goes for rows. Self-correlation obviously results in a positive correlation of 1. From this output, for instance, 
you can see that heart rate and acceleration across the z-axis are negatively correlated.  

     Listing 9-4.    Finding the Correlation Between Different Attributes in a Vector   

 1.   substream.map(f => Vectors.dense(f.slice(1, 5))).foreachRDD(rdd => {   
 2.     val corrSpearman = Statistics.corr(rdd, "spearman")   
 3.     val corrPearson = Statistics.corr(rdd, "pearson")   
 4.     println("Correlation Spearman: \n" + corrSpearman)   
 5.     println("Correlation Pearson: \n" + corrPearson)   
 6.   })   
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   Correlations highlight the relationships among variables, which are useful for determining how a trend 
in one variable affects another. These can be compounded with hypothesis testing, which tells you whether 
the results are statistically significant or happened by pure chance. For instance, can the sensor data actually 
help you predict whether a subject is running or walking, or are the outcomes simply random? The chi-
square test is widely used for two main functions: goodness of fit (does the model reflect the data?), and 
independence (are two variables related?). These are enabled by the  Statistics.chiSqTest()  method. 
The type of the input decides whether you are testing for independence (vector or RDD of  LabeledPoint ) or 
goodness of fit ( Matrix ). Listing  9-5  uses it to determine the column-wise independence values. 

     Listing 9-5.    Performing the Chi-Square Test for Independence   

 1.    substream.map(f => Array(f(1).toDouble, f(2).toDouble, f(4).toDouble, f(5).toDouble, 
f(6).toDouble))   

 2.     .filter(f => f(0) == 4.0 || f(0) == 5.0)   
 3.     .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))   
 4.     .foreachRDD(rdd => {   
 5.        Statistics.chiSqTest(rdd).zipWithIndex.foreach(v => println("%s, column no. %d".

format(v._1, v._2)))   
 6.     })   

            Preprocessing 
 In a large number of cases, data needs to be  preprocessed      before it can be used for learning. A common 
task is to normalize and scale the data to negate the effect of features with high variance. This also enables 
some learning algorithms to perform better. One of the most prevalent preprocessing algorithms is 
 StandardScaler , which scales the variance and/or mean of numerical data. The snippet of code in Listing  9-6  
uses  StandardScaler  to scale the sensor dataset readings to unit standard deviation.  StandardScaler  by 
default scales by standard deviation. Scaling by mean can be enabled by passing  withMean = true  to the 
constructor.   StandardScaler      has two phases: fitting the data (line 5) and transforming the data based on the 
fit (line 6). The scaled data can then be fed to any machine-learning algorithm for modeling. 

   Table 9-5.    Spearman and Pearson Correlation Matrices from One Microbatch   

 Correlation Spearman 

 1.0  0.17973751928417933  0.1636219656601942  -0.47253208575624295 

 0.17973751928417933  1.0  0.012457932551072698  -0.3863339273787353 

 0.1636219656601942  0.012457932551072698  1.0  0.0780129101161669 

 -0.47253208575624295  -0.3863339273787353  0.0780129101161669  1.0 

  Correlation Pearson  

 1.0  0.152651154439714  0.27941329240545676  -0.4661000937754152 

 0.152651154439714  1.0  -0.2771174159022592  -0.42022123940447803 

 0.27941329240545676  -0.2771174159022592  1.0  -0.03222384704608242 

 -0.4661000937754152  -0.42022123940447803  -0.03222384704608242  1.0 
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     Listing 9-6.    Using  StandardScaler  to Scale Data to Unit Standard Deviation   

 1.   substream.map(f => Array(f(2), f(4), f(5), f(6)))   
 2.     .map(f => f.map(v => v.toDouble))   
 3.     .map(f => Vectors.dense(f))   
 4.     .foreachRDD(rdd => {   
 5.       val scalerModel =  new  StandardScaler().fit(rdd)   
 6.       val scaledRDD = scalerModel.transform(rdd)   
 7.     })   

         Feature Selection and Extraction 
  Datasets   in general have a large number of features or attributes. Not all of them may be relevant or even 
useful for learning. For instance, a timestamp field may not be relevant for figuring out whether a specific 
item is defective in manufacturing data, or two attributes may be very similar and thus one can be dropped. 
Having extra fields can affect both the quality of the prediction and the performance of the learning 
algorithm. This is exacerbated in real-time processing of Big Data because it can adversely affect client SLAs. 
Let’s look first at a technique for feature selection (chi-square selection) followed by extraction (principal 
component analysis). 

      Chi-Square Selection      
  Feature selection  is the process of reducing the number of features in a dataset. One such methodology 
is feature ranking, in which all the features are ranked via an algorithm and only the top k features are 
kept intact. The chi-square test can also be used for feature selection because it can find the degree of 
dependence between features and the target variable. Features with a low degree can be culled. Note that 
chi-square selection only applies to categorical data. Therefore, all continuous data must be discretized via 
binning or some other mechanism. 

 In the case of streaming data, the effectiveness of features can dynamically change over time: a feature 
that is essential right now may be irrelevant 30 minutes later. Therefore, feature selection needs to be a 
constantly evolving process. Fortunately, the  microbatch processing   model in Spark Streaming simplifies 
this process by enabling you to select features in every batch. Listing  9-7  shows how you can use chi-square 
selection for streaming data. This example is confined to the three 16 g accelerometers attached to the hand, 
chest, and ankle of the subjects and uses the activity as the predicted feature (line 1).   ChiSqSelector  fits the 
model   on  LabeledPoint  objects, so you convert the data stream to that format (lines 2–3). To discretize the 
accelerometer data, you split it into 2,048 buckets. For the 16 g accelerometer limit, the sensitivity (or range) 
is 2,048. You use that information to perform the binning in line 3. 

  ChiSqSelector  takes as input the number of required features, which you set to a modest value of 5 
(line 6). It exposes a  fit  method, which takes as input an RDD of  LabeledPoint s. You use a  foreachRDD  
operation to fit an RDD for selection in every batch. Once the model has been trained (line 7), it can be used 
to filter values from the input RDD (line 8). The filtered data can readily be used to perform learning using 
any model. 

     Listing 9-7.    Using Chi-Square for Feature Selection   

  1.    val datastream = substream.map(f => Array(f(1), f(4), f(5), f(6), f(20), f(21), f(22), 
f(36), f(37), f(38)))   

 2.     .map(f => f.map(v => v.toDouble))   
 3.     .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length).map(f => f / 2048))))   
 4.      
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 5.   datastream.foreachRDD(rdd => {   
 6.     val selector =  new  ChiSqSelector(5)   
 7.     val model = selector.fit(rdd)   
 8.     val filtered = rdd.map(p => LabeledPoint(p.label, model.transform(p.features)))   
 9.   })     

           Principal Component Analysis 
 Feature extraction is another dimensionality reduction mechanism in which data is transformed from one 
coordinate system or space to another. One of the most popular algorithms for feature extraction is  principal 
component analysis (PCA)  . As the name suggests,  PCA   aims to bring out the features that have the most 
variance by transforming them into a new space: that is, the features with the most variance are the principal 
components. In contrast to feature selection, à la chi-square, feature extraction not only reduces the number 
of features but also enhances the effect of the reduced feature set. 

 As Listing  9-8  shows, similar to any learning algorithm, for PCA you first need to convert the data to 
 LabeledPoint s (lines 1–3). PCA takes the number of expected principal components as input. You set this 
to half of the total number of features from the accelerometer readings (line 5). You then train PCA to fit the 
features from the input data stream (line 6). As before, the data is split into 70% training and 30% testing. 
This PCA model can now be used to transform the split data (lines 9–10). This data, which requires less 
space, can now readily be used as input to a learning algorithm for better accuracy and performance. 

     Listing 9-8.    Transforming Features into Their Principal Components Using PCA   

  1.    val datastream = substream.map(f => Array(f(1), f(4), f(5), f(6), f(20), f(21), f(22), 
f(36), f(37), f(38)))   

 2.     .map(f => f.map(v => v.toDouble))   
 3.     .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length))))   
 4.      
 5.   datastream.foreachRDD(rdd => {   
 6.     val pca =  new  PCA(rdd.first().features.size / 2)   
 7.       .fit(rdd.map(_.features))   
 8.     val testTrain = rdd.randomSplit(Array(0.3, 0.7))   
 9.     val test = testTrain(0).map(lp => lp.copy(features = pca.transform(lp.features)))   
 10.    val train = testTrain(1).map(lp => lp.copy(features = pca.transform(lp.features)))   
 11.  })     

            Learning Algorithms 
 The machine-learning universe contains a plethora of learning algorithms, each with a varying set of 
accuracy, performance, and amenability to parallelism and online learning. Their  applicability   also depends 
on the type of input data (discrete or continuous) and whether the use case is supervised or unsupervised. 
In supervised learning, you know upfront what you are looking for as you train the model based on past 
observations. For example, assume that your input data stream consists of pictures of sports balls. Under 
supervised learning, you provide the learning algorithm a set of prelabeled balls—say, marked as golf, 
cricket, soccer, football, and baseball. The algorithm then scores new incoming data based on various 
attributes, such as size, shape, and color. In contrast, under unsupervised learning, you have no advance 
information about any classification. Based on each attribute in the dataset, the unsupervised learning 
algorithm groups the data. It can figure out that a golf ball is radically different than a football but can’t 
assign it a human-readable tag. 
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 Another set of methods is applicable to recommendation systems, which, as the name suggests, try to 
match users with items, such as products, or people, such as potential friends: for instance, recommending 
which sports balls a user should buy. The algorithms used for such systems can broadly be put into two 
categories:  collaborative filtering   and  content-based filtering  . Collaborative filtering uses the past behavior 
of a user or a set of users to make the recommendation: for example, the ball-purchasing history of similar 
users. Content-based filtering, on the other hand, uses the user’s profile and preferences to drive the 
recommender. An example of content-based filtering would be recommendations fueled by the type of 
sports columns, Facebook pages, and blogs the user follows. 

 Finally,  frequent pattern mining   represents an important strand of  data mining   that is essential for 
association rule mining. These are itemsets, sequences, and substructures that appear to have an interesting 
relationship: for instance, in a supermarket, items that are frequently purchased together in the same 
transaction, such as penne pasta and pesto sauce. Frequent sequences, on the other hand, occur over 
more than one transaction, For example, buying a smartphone, then a tablet, followed by a smart watch, 
constitutes a sequence. Such analysis is imperative for inventory management and shopping-cart analysis. 

 Note that MLlib currently has limited support for  streaming/online-learning algorithms  . Support exists 
only for streaming linear regression, logistic regression, and k-means clustering. This does not necessarily 
mean other algorithms cannot be used, though. In fact, any model from MLlib can be used as long as the 
application only requires per-batch modeling. This is achieved by invoking a stateless training/scoring cycle 
in each batch in a  foreachRDD  construct. You use this design for recommendation systems and frequent 
pattern mining in this chapter, because these methods do not have streaming variants in MLlib. 

  Supervised learning      is divided into two classes based on whether the data is continuous (regression) or 
discrete (classification). You have already seen an example of regression, so let’s look at classification next. 

      Classification   
 Linear regression is applicable to scenarios where the value to be predicted is continuous, such as heart rate 
in the chapter’s first example. In cases where the predicted variable has a limited set of values, such as on 
and off or low, medium, and high, you need to use classification algorithms. One such algorithm is   logistic 
regression   , which is the classification equivalent of linear regression. Let’s use it to predict the activity type—
walking or running—of the sensor data. The snippet of code in Listing  9-9  uses streaming logistic regression 
to enable this prediction application. 

     Listing 9-9.    Logistic Regression Application to Predict Whether a User Is Walking or Running   

  1.    val datastream = substream.map(f => Array(f(1).toDouble, f(2).toDouble, f(4).toDouble, 
f(5).toDouble, f(6).toDouble))   

 2.      
 3.    val walkingOrRunning = datastream.filter(f => f(0) == 4.0 || f(0) == 5.0).map(f => 

LabeledPoint(f(0), Vectors.dense(f.slice(1, 5))))   
 4.   val test = walkingOrRunning.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))   
 5.    val train = walkingOrRunning.transformWith(test, (r1: RDD[LabeledPoint], r2: 

RDD[LabeledPoint]) => r1.subtract(r2)).cache()   
 6.   val model =  new  StreamingLogisticRegressionWithSGD()   
 7.     .setInitialWeights(Vectors.zeros(4))   
 8.     .setStepSize(0.0001)   
 9.     .setNumIterations(1)   
 10.     
 11.  model.trainOn(train)   
 12.   model.predictOnValues(test.map(v => (v.label, v.features))).foreachRDD(rdd => 

println("MSE: %f".format(rdd   
 13.    .map(v => math.pow((v._1 - v._2), 2)).mean())))        
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 As a first step, the code projects relevant fields: activity ID, heart rate, and acceleration (line 1). You 
are interested only in walking and running activity, so you only keep records that represent those two types 
and convert them to  LabeledPoint s (line 3). The rest of the code is identical to Listing  9-1 , with the only 
difference being the use of logistic regression instead of its linear counterpart. As with the previous example, 
the MSE decreases over time as the model improves its accuracy.   

       Clustering 
  Clustering   is a prime example of unsupervised learning in which data points are placed into clusters based 
on certain attributes. For instance, baseballs and cricket balls might end up in the same cluster because 
of their similar size. One of the most popular algorithms for clustering is  k-means . In k-means clustering, 
each data point is assigned to a cluster based on some distance metric, and the center of the cluster is 
recomputed. This process is iteratively computed until the points converge or a specific number of steps 
have been completed.  K  is the number of clusters, which you need to specify up front. 

 The streaming version of  k-means      in MLlib works in a similar fashion with one caveat: the notion of 
forgetfulness. 6  This parameter accounts for the dynamic nature of streaming data, in which newer data may 
have radically different properties than data, say, 10 minutes ago. This may lead to an abrupt recalibration 
of the cluster centers. Forgetfulness controls the weight that the model assigns to newer data as opposed 
to older data points. You can use this setting to treat all data points since the beginning of time equally 
(value of 0) or to consider only the most recent data (value of 1). In addition, the algorithm exposes another 
parameter to set forgetfulness, called the  half-life . The half-life value determines how many batches or data 
points it would take for the impact of the past set of data points to drop to half its vaue. This value is set via 
 setHalfLife(halfLife: Double, timeUnit: String) , where  timeUnit  can either be  batches  or  points . 

 The physical activity monitoring dataset includes accelerometer and gyroscope readings from three 
sensors (attached to the hand, chest, and ankle of the subject). Each accelerometer and gyroscope notes 
acceleration and orientation along the three axes: x, y, and z. Let’s use these features to determine whether a 
record represents a user in the lying down, sitting, or standing position. At the outset you do not know which 
readings represent which outcome, so you rely on k-means clustering to group data points into clusters. 
Note that k-means clustering still cannot tell you which cluster represents, say, lying down, only that all data 
points in a cluster represent similar activity. Without any further delay, let’s get clustering (Listing  9-10 ). 

     Listing 9-10.    K-means to Gauge Whether a User Is Lying Down, Sitting, or Standing Based on Data from the 
Three Orientation Sensors   

  1.   val orientationStream = substream   
 2.      .map(f => Seq(1, 4, 5, 6, 10, 11, 12, 20, 21, 22, 26, 27, 28, 36, 37, 38, 42, 43, 

44).map(i => f(i)).toArray)   
 3.     .map(arr => arr.map(_.toDouble))   
 4.     .filter(f => f(0) == 1.0 || f(0) == 2.0 || f(0) == 3.0)   
 5.     .map(f => LabeledPoint(f(0), Vectors.dense(f.slice(1, f.length))))   
 6.   val test = orientationStream.transform(rdd => rdd.randomSplit(Array(0.3, 0.7))(0))   
 7.    val train = orientationStream.transformWith(test, (r1: RDD[LabeledPoint], r2: 

RDD[LabeledPoint]) => r1.subtract(r2)).cache() 
 8.   val model =  new  StreamingKMeans()   
 9.     .setK(3)   

   6  Jeremy Freeman, “Introducing Streaming k-means in Spark 1.2,”  Databricks , January 28, 2015,    https://databricks.
com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html     .  

https://databricks.com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html
https://databricks.com/blog/2015/01/28/introducing-streaming-k-means-in-spark-1-2.html
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 10.    .setDecayFactor(0)   
 11.    .setRandomCenters(18, 0.0)   
 12.  model.trainOn(train.map(v => v.features))   
 13.  val prediction = model.predictOnValues(test.map(v => (v.label, v.features)))   

    The application first projects accelerometer and gyroscope readings and converts them into  double  
values (lines 1–3). You are only interested in three activities—lying down, standing up, and sitting down—so 
the code then filters out records representing those activities (line 4). After converting the data points to 
 LabeledPoint s and splitting the stream for testing and training, you initialize a   StreamingKMeans  model  , 
which requires a few parameters for tuning.  K  is set to the number of expected clusters: 3, in this case, for 
each activity. The data does not change drastically over time, so you set the forgetfulness or decay factor to 0, 
which forces the model to consider all points from the beginning of time equally (line 10). You also need to 
initialize the cluster center for each feature (18 total), which is what you do on line 11. (Table  9-6  discusses 
all the parameters.) After the application is executed,  prediction  contains the cluster ID as the label and the 
attributes as features (line 14).   

   Table 9-6.    Parameters for Streaming K-means  clustering    

 Parameter  Set  Default  Description 

  decayFactor    setDecayFactor(a: Double)   1.0  The weight to assign to newer data 
points in comparison to older ones: 
the forgetfulness value 

  halfLife    setHalfLife(halfLife: Double, 
timeUnit: String)  

 na  The decay factor as a half-life value: 
the number of batches or data points 
it would take for the impact of the 
past set of data points to drop to half 
its value 

  centers    setInitialCenters(centers: 
Array[Vector], weights: 
Array[Double])  

 na  The initial cluster center for each 
feature vector 

  centers    setRandomCenters(dim: Int, 
weight: Double, seed: Long = 
Utils.random.nextLong)  

 na  Instead of setting exact centers, 
populates them with random values 

  k    setK(k: Int)   2  The number of clusters to create 

       Recommendation Systems 
 Recommender systems have achieved wide traction due to the popularity of e-commerce and online retailing. 
Some of the recommendations are responsible for billions of dollars’ worth of sales for some of the top brands 
in the world. From LinkedIn connection suggestions to Facebook newsfeed prioritization and from Amazon 
and Netflix product recommendations to YouTube content matching, all of these rely on recommendation 
systems (recsys) in some form.  Collaborative filtering      is one of the most popular methods for recsys because 
of its reliance on crowd-sourced behavior. One class of collaborative filtering algorithms, aptly called the 
  model-based approach   , uses machine-learning techniques for training and predictions. Most algorithms can 
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be broken down into matrix-decomposition problems in which the job of the algorithm is to minimize a loss 
function. MLlib uses the   alternating least squares  (ALS)   algorithm for collaborative filtering, which minimizes 
the loss function using a simple repeated technique: fix half the parameters, and optimize the other half. 

 The ALS implementation in  MLlib   has two modes: explicit and implicit. The explicit model can be 
used when the dataset contains an explicit user rating for each item. Unfortunately, that rating is not always 
available in the real world. To account for such scenarios, implicit feedback uses observed preferences and 
confidence values. 

 At first glance, the physical activity dataset does not seem amenable to recsys: there are no items or 
ratings in the data. You can remedy that with a little preprocessing, using activity ID as a product and the 
number of times a user has performed it as its rating. The snippet of Spark code in Listing  9-11  performs 
this preprocessing by reading all input files and manipulating their data.  iPath  needs to point to the folder 
with the  .dat  data files. The data is divvied up into one file per subject, so the code needs to dynamically 
add the name of each input file to each record. You use the   mapPartitionsWithInputSplit  method   
provided by  HadoopRDD , which provides the  map  function with a reference to the input split and an iterator 
for the data in the partition (line 6). 7  The path to each input can be acquired from the input split, which can 
then be parsed to get only the filename (line 7). From each record, you only need to extract the activity ID 
(line 7). The next series of transforms removes invalid activities (line 8) and counts the frequency of each 
subject-activity pair (lines 9–10). To add some semblance of randomness to the data, you sample 70% of it 
(line 12) and write it to a file. 

      Listing 9-11.    Preprocessing the Physical Activity Dataset to Enable Collaborative Filtering   

  1.   val delim = " "   
 2.      
 3.   val sc =  new  SparkContext(conf)   
 4.    sc.hadoopFile(iPath, classOf[TextInputFormat], classOf[LongWritable], classOf[Text], 

sc.defaultMinPartitions)   
 5.     .asInstanceOf[HadoopRDD[LongWritable, Text]]   
 6.     .mapPartitionsWithInputSplit((iSplit, iter) =>   
 7.        iter.map(splitAndLine => (Files.getNameWithoutExtension(iSplit.

asInstanceOf[FileSplit].getPath.toString), splitAndLine._2.toString.split(" ")
(1))))   

 8.     .filter(r => r._2 != "0")   
 9.     .map(r => ((r._1, r._2), 1))   
 10.    .reduceByKey(_ + _)   
 11.    .map(r => r._1._1.replace("subject", "") + delim + r._1._2 + delim + r._2)   
 12.    .sample( false , 0.7)   
 13.    .coalesce(1)   
 14.    .saveAsTextFile(oPath)     

    Once you have preprocessed the data, you can use ALS to drive recommendations. As shown in 
Listing  9-12 , you first read the preprocessed data stream and convert each record to a  Rating  type with three 
fields:  subject ,  activity , and  frequency . These represent user, item, and rating, respectively.  ALS   requires 
each data point to conform to this class. Similar to other machine-learning methods, you divide the dataset 
for testing and training and use the latter to fine-tune and calibrate the model. The ALS model requires the 
rank of the factorization, the number of iterations to perform, and the regularization parameter lambda for 
configuration. The rest of the tunable parameters are listed in Table  9-7 .  

   7  “Getting the Current Filename with Spark and HDFS,”  The Modern Life , September 28, 2014, 
   http://themodernlife.github.io/scala/spark/hadoop/hdfs/2014/09/28/spark-input-filename/     .  

http://themodernlife.github.io/scala/spark/hadoop/hdfs/2014/09/28/spark-input-filename/
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      Listing 9-12.    ALS-Powered, Collaborative, Filtering-Based Recommendations   

  1.   val ratingStream = ssc.textFileStream(iPath).map(_.split(" ") match {   
 2.      case  Array(subject, activity, freq) =>   
 3.       Rating(subject.toInt, activity.toInt, freq.toDouble)   
 4.   })   
 5.      
 6.   val rank = 10   
 7.   val numIterations = 10   
 8.   val lambda = 0.01   
 9.   ratingStream.foreachRDD(ratingRDD => {   
 10.    val testTrain = ratingRDD.randomSplit(Array(0.3, 0.7))   
 11.    val model = ALS.train(testTrain(1), rank, numIterations, lambda)   
 12.    val test = testTrain(0).map {   
 13.       case  Rating(subject, activity, freq) =>   
 14.        (subject, activity)   
 15.    }   
 16.    val prediction = model.predict(test)   
 17.  })     

    Notice that the recommendation in each batch is independent of the other batches due to the stateless 
nature of Spark Streaming. This means  ALS   in MLlib is not true online learning. If your application logic can 
tolerate per-batch stateless modeling, then this current design will work well for you. Having said that, future 
releases of MLlib will hopefully contain native support for online ALS. 8   

   Table 9-7.    Configuration Parameters for  ALS  -Based Collaborative Filtering   

 Parameter  Set  Default  Description 

  alpha    setAlpha(value: Double)   1.0  Rate of increase of the confidence 
level in the case of implicit feedback. 

  implicitPrefs    setImplicitPrefs(value: Boolean)   false  Whether to use implicit or explicit 
feedback. Explicit by default. 

  maxIter    setMaxIter(value: Int)   10  The maximum number of iterations 
to run. 

  nonnegative    setNonnegative(value: Boolean)   false  Enables non-negative constraints. 

  numBlocks    setNumBlocks(value: Int)   -1  The number of user and product 
blocks for parallelism. -1 enables 
auto-tuning. 

  rank    setRank(value: Int)   10  The number of latent factors. 

  regParam/lambda    setRegParam(value: Double)   0.01  The regularization factor. 

   8     https://issues.apache.org/jira/browse/SPARK-6407     .  

https://issues.apache.org/jira/browse/SPARK-6407
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      Frequent Pattern Mining 
  Frequent pattern mining   has very rapidly become the most sought-after application of data mining due to its 
direct influence on sales. A number of algorithms discover such patterns. For instance, the Apriori family of 
algorithms uses a “ downward closure property  ”; sub-item sets of an itemset are also frequent. For example, 
if books, tea, and gin are frequent itemsets, then so are books and tea, and tea and gin. This property is used 
to quickly build itemsets: performing a scan of the data and first finding one-itemsets, then two-itemsets, 
and so on. This process requires multiple scans of the data. The  FP-growth technique   remedies this by first 
finding item frequencies and then generating a prefix tree of transactions. This prefix tree is used to generate 
candidate sets. MLlib contains a parallel FP-growth approach, which achieves parallelism by partitioning 
the transaction prefix space. 

 As with recommendation systems, the physical activity sensor dataset out of the box does not seem like 
a good candidate for frequent pattern mining. You need to make a few cosmetic changes to it before you can 
apply FP-growth, but do not despair: this book has another trick up its sleeve. This example finds frequent 
activities. The code in Listing  9-13  does so by preprocessing the dataset to emit the sequence of activities 
performed by each user. The code is very similar to Listing  9-11 , with the difference that instead of  <user, 
activity, frequency>  triples, each line contains unique activity IDs per subject. You can feed this data to 
an FP-growth model, which is what you do in the snippet of code in Listing  9-14 . 

     Listing 9-13.    Preprocessing the Sensor Activity Dataset for Frequent Itemset Mining   

 1.    sc.hadoopFile(iPath, classOf[TextInputFormat], classOf[LongWritable], classOf[Text], 
sc.defaultMinPartitions)   

 2.     .asInstanceOf[HadoopRDD[LongWritable, Text]]   
 3.     .mapPartitionsWithInputSplit((iSplit, iter) =>   
 4.        iter.map(splitAndLine => (Files.getNameWithoutExtension(iSplit.

asInstanceOf[FileSplit].getPath.toString), splitAndLine._2.toString.split(" ")
(1))))   

 5.     .filter(r => r._2 != "0")   
 6.     .map(r => (r._1, r._2))   
 7.     .distinct()   
 8.     .groupByKey()   
 9.     .map(r => r._2.mkString(" "))   
 10.    .sample(false, 0.7)   
 11.    .coalesce(1)   
 12.    .saveAsTextFile(oPath)   

   Similar to Listing  9-12 , the FP-growth-based code in 9-14 also refreshes its model in every batch 
interval. Minimum support dictates how many transactions an item needs to occur in before it can be 
considered frequent (lines 1 and 7). You pass the per interval transactions RDD to the  FPGrowth#run  
method, which returns the frequent itemsets (line 8). The rest of the code simply prints these itemsets and 
their frequencies (lines 10–13). 

     Listing 9-14.    FP-Growth-Based Mining to Determine Frequent Activities in the Physical Activity Dataset   

  1.   val minSupport = 0.4   
 2.      
 3.   ssc.textFileStream(iPath)   
 4.     .map(r => r.split(" "))   
 5.     .foreachRDD(transactionRDD => {   
 6.       val fpg =  new  FPGrowth()   
 7.         .setMinSupport(minSupport)   
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 8.       val model = fpg.run(transactionRDD)   
 9.      
 10.      model.freqItemsets   
 11.        .collect()   
 12.         .foreach(itemset => println("Items: %s, Frequency: %s".format(itemset.items.

mkString(" "), itemset.freq)))   
 13.    })     

    So far, you have only looked at machine-learning tasks—preprocessing, feature extraction, prediction, 
and so on—in isolation. In the real world, these need to be executed as a pipeline of tasks: one following the 
other. Spark 1.2 introduced a new package, ML, which simplifies the construction of such pipelines. Let’s see 
what it has to offer.    

      Streaming ML  Pipeline Application   
 To get your hands dirty with ML, let’s revisit one of the examples you implemented earlier: predicting 
whether a sensor reading represents walking or running. The end-to-end ML version of the code is 
presented in Listing  9-15 . 

        Listing 9-15.    First Streaming ML Pipeline Application   

 1.    package  org.apress.prospark   
 2.      
 3.    import  scala.reflect.runtime.universe   
 4.      
 5.    import  org.apache.spark.SparkConf   
 6.    import  org.apache.spark.SparkContext   
 7.    import  org.apache.spark.ml.Pipeline   
 8.    import  org.apache.spark.ml.feature.Normalizer   
 9.    import  org.apache.spark.ml.feature.VectorAssembler   
 10.   import  org.apache.spark.ml.regression.RandomForestRegressor   
 11.   import  org.apache.spark.sql.SQLContext   
 12.   import  org.apache.spark.streaming.Seconds   
 13.   import  org.apache.spark.streaming.StreamingContext   
 14.     
 15.  object MLPipelineApp {   
 16.     
 17.     case class  Activity(label: Double,   
 18.      accelXHand: Double, accelYHand: Double, accelZHand: Double,   
 19.      accelXChest: Double, accelYChest: Double, accelZChest: Double,   
 20.      accelXAnkle: Double, accelYAnkle: Double, accelZAnkle: Double)   
 21.     
 22.    def main(args: Array[String]) {   
 23.       if  (args.length != 4) {   
 24.        System.err.println(   
 25.          "Usage: MLPipelineApp <appname> <batchInterval> <hostname> <port>")   
 26.        System.exit(1)   
 27.      }   
 28.      val Seq(appName, batchInterval, hostname, port) = args.toSeq   
 29.     
 30.      val conf =  new  SparkConf()   
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 31.        .setAppName(appName)   
 32.        .setJars(SparkContext.jarOfClass( this .getClass).toSeq)   
 33.     
 34.      val ssc =  new  StreamingContext(conf, Seconds(batchInterval.toInt))   
 35.     
 36.      val sqlC =  new  SQLContext(ssc.sparkContext)   
 37.       import  sqlC.implicits._   
 38.    
 39.      val substream = ssc.socketTextStream(hostname, port.toInt)   
 40.        .filter(!_.contains("NaN"))   
 41.        .map(_.split(" "))   
 42.        .filter(f => f(1) == "4" || f(1) == "5")   
 43.        .map(f => Array(f(1), f(4), f(5), f(6), f(20), f(21), f(22), f(36), f(37), f(38)))   
 44.        .map(f => f.map(v => v.toDouble))   
 45.        .foreachRDD(rdd => {   
 46.           if  (!rdd.isEmpty) {   
 47.             val accelerometer = rdd.map(x => Activity(x(0), x(1), x(2), x(3), x(4), x(5), 

x(6), x(7), x(8), x(9))).toDF()   
 48.            val split = accelerometer.randomSplit(Array(0.3, 0.7))   
 49.            val test = split(0)   
 50.            val train = split(1)   
 51.     
 52.            val assembler =  new  VectorAssembler()   
 53.              .setInputCols(Array(   
 54.                "accelXHand", "accelYHand", "accelZHand",   
 55.                "accelXChest", "accelYChest", "accelZChest",   
 56.                "accelXAnkle", "accelYAnkle", "accelZAnkle"))   
 57.              .setOutputCol("vectors")   
 58.            val normalizer =  new  Normalizer()   
 59.              .setInputCol(assembler.getOutputCol)   
 60.              .setOutputCol("features")   
 61.            val regressor =  new  RandomForestRegressor()   
 62.     
 63.            val pipeline =  new  Pipeline()   
 64.              .setStages(Array(assembler, normalizer, regressor))   
 65.            val model = pipeline.fit(train)   
 66.            val prediction = model.transform(test)   
 67.            prediction.show()   
 68.          }   
 69.        })   
 70.     
 71.      ssc.start()   
 72.      ssc.awaitTermination()   
 73.    }   
 74.     
 75.  }   

   You have already seen variants of lines 39–44 in the other examples in this chapter, so they should be 
fairly familiar. The real magic happens in the  foreachRDD  block. ML relies on data frames as the common 
data substrate. Therefore, the first order of the day is to convert the input records to a data frame. The 
application uses the implicit conversion from a  case-class method   as described in Chapter   8     (line 47). 

http://dx.doi.org/10.1007/978-1-4842-1479-4_8
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The conversion to a data frame has a positive side effect that you can now use data frame methods to 
manipulate the data. For instance, this example uses the  randomSplit  data frame method to divide the 
dataset for testing and training. 

 The application has three stages: conversion to vector, normalization, and prediction. Each needs to 
be initialized separately. For the first part of the pipeline, you use  VectorAssembler , which takes as input 
an array of data-frame columns and clumps them together into a vector column (lines 52–57). Note that all 
components in a pipeline operate on the same data frame—more columns are added to it as it moves down 
the pipeline. In the example pipeline, the next task is to normalize the data to ensure similar ranges across 
the three accelerometers. The input to the normalizer is the output of the assembler. Learning algorithms in 
ML expect an input column called  features  in the data frame; so, the name  features  for the output column 
of the normalizer is intentional. Similarly, learning algorithms require a  label  column during the training 
phase; that is why the  Activity  case class for the main data frame contains a  label  variable for the activity. 

 The learning algorithm uses a random forest of regression trees (line 61), because they tend to perform 
better due to their ensemble approach as opposed to a single regression model. Now that all three parts are 
ready, they need to be cobbled together to form a pipeline. The  Pipeline  object (line 63) accepts as argument 
the different stages it needs to run (line 64) and executes them from left to right in the array. The  fit  method 
for the  Pipeline  object takes as input a data frame for training (line 65). Once the learning is complete, you 
can start scoring test data (line 66) via the  transform  method of the model. That’s it. It is that easy to create 
and execute an end-to-end ML pipeline. The next section fleshes out some details of the ML package.   

     ML 
 The ML package is designed for complete workflows of machine-learning tasks. These workflows encompass 
end-to-end processing of machine-learning pipelines. From normalization and feature extraction to learning 
and recommendations, ML covers the entire spectrum. Some of these components are built on top of MLlib 
building blocks. To get a handle on the different concepts involved, let’s revisit the example from Listing  9-15 . 
Figure  9-1  shows the same example in the form of a block flow. Each arrow represents a data frame. There 
are two types of high-level components in ML: transformers and estimators (represented by red and green 
boxes, respectively, in Figure  9-1 ).  Transformers   and  estimators   in ML-speak are called  pipeline stages , and a 
pipeline is defined as a  flow  of stages. So what are transformers and estimators, exactly?  

  Figure 9-1.    Block diagram of the ML application       
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  Transformers  , intuitively, transform a data frame by appending one or more columns to it. For instance, 
the  VectorAssembler  transforms one or more columns by converting them into a single-vector column. 
Similarly, the  Normalizer  transforms a single-vector column into a new column where the values have 
been normalized. Under the hood, each transformer implements a  transform  method that is invoked 
by the pipeline. In contrast, estimators are trained on data to create transformers. All learning models 
are estimators. For instance,  RandomForestRegressor  trains on the data frame  features  column and 
produces a  PipelineModel  object, which can be used for scoring new data. In essence, the  PipelineModel  
reimplements the entire pipeline by turning all estimators into transformers (the bottom set of blocks 
in Figure  9-1 ). Each estimator implements a  fit  method to fit a data frame. The ML package contains a 
number of transformers and estimators to enable a wide range of machine-learning applications, covering 
feature selection, classification, regression, and recommendations. 

 Both transformers and  estimators   use a common API for parameters, where each parameter has the 
type  Param . Parameters to them can be supplied via traditional setters on their objects: for instance, in 
Listing  9-15 , if you wanted to set the value of  P  for the normalizer, you could invoke  setP(Double)  on its 
object. The alternative is to use a  ParamMap , which as the name suggests is a map of parameters; it can be 
passed to the  fit()  method as shown in Listing  9-16 . 

     Listing 9-16.    Setting ML Parameters via  ParamMap       

 1.   val pMap =  ParamMap(normalizer.p -> 1.0)   
 2.   val model = pipeline.fit(train, pMap)   

         Cross-Validation of Pipelines 
  Cross-   validation    is the process of measuring how well a model will predict unseen data. In addition 
to pipelined execution, ML can be used to cross-validate parameters and settings for a pipeline and 
automatically select the best set of settings based on an evaluator. Sticking to the example-first approach, 
let’s jump into code to learn the ropes. Listing  9-17  extends the previous example (Listing  9-15 ) with cross-
validation. You create a pipeline as before (line 19). The  CrossValidator  (line 22) needs to be given the 
estimator (pipeline in this case) under evaluation and a metric for evaluation. The latter is provided by an 
 Evaluator , which takes as input a data frame with labels and predictions and returns a scalar metric to 
rate the quality of the prediction. ML provides two evaluators out of the box that cater to regression and 
classification, respectively:  RegressionEvaluator  and  BinaryClassificationEvaluator . 

  CrossValidator  validates a complete pipeline by accepting a series of parameters and evaluating the 
provided estimator. ML uses the k-folds cross-validation methodology, which divides the dataset into k 
equal-sized chunks. Out of these k samples, k-1 are used for training and one is used for testing. This is done 
iteratively k times (hence the name  k-folds ) so that each of the k samples is used as a testing dataset. The 
parameter exploration space is provided to  CrossValidator  via an array of  ParamMap , for which you can use 
a builder ( ParamGridBuilder ); its use is shown on lines 25–28. Your evaluation space spans the  Normalizer  
P-value and  RandomForestRegressor  number of trees, so you provide an array of values for each. You also 
set the value of  k  to 5 (line 30). Fitting the validator returns the best-performing calibrated pipeline (line 32), 
which can then be used to score new data (line 33). 

     Listing 9-17.    Using ML Cross-Validation for Calibrated Model Selection   

  1.   .foreachRDD(rdd => {   
 2.      if  (!rdd.isEmpty) {   
 3.        val accelerometer = rdd.map(x => Activity(x(0), x(1), x(2), x(3), x(4), x(5), x(6), 

x(7), x(8), x(9))).toDF()   
 4.       val split = accelerometer.randomSplit(Array(0.3, 0.7))   
 5.       val test = split(0)   
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 6.       val train = split(1)   
 7.      
 8.       val assembler =  new  VectorAssembler()   
 9.         .setInputCols(Array(   
 10.          "accelXHand", "accelYHand", "accelZHand",   
 11.          "accelXChest", "accelYChest", "accelZChest",   
 12.          "accelXAnkle", "accelYAnkle", "accelZAnkle"))   
 13.        .setOutputCol("vectors")   
 14.      val normalizer =  new  Normalizer()   
 15.        .setInputCol(assembler.getOutputCol)   
 16.        .setOutputCol("features")   
 17.      val regressor =  new  RandomForestRegressor()   
 18.     
 19.      val pipeline =  new  Pipeline()   
 20.        .setStages(Array(assembler, normalizer, regressor))   
 21.     
 22.      val validator =  new  CrossValidator()   
 23.        .setEstimator(pipeline)   
 24.        .setEvaluator( new  RegressionEvaluator)   
 25.      val pGrid =  new  ParamGridBuilder()   
 26.        .addGrid(normalizer.p, Array(1.0, 5.0, 10.0))   
 27.        .addGrid(regressor.numTrees, Array(10, 50, 100))   
 28.        .build()   
 29.      validator.setEstimatorParamMaps(pGrid)   
 30.      validator.setNumFolds(5)   
 31.     
 32.      val bestModel = validator.fit(train)   
 33.      val prediction = bestModel.transform(test)   
 34.      prediction.show()   
 35.    }   
 36.  })     

    This was a primer in Spark ML. The package itself has a lot to offer. Now that you’ve had a taste of its 
use, you can implement your own machine-learning pipelines for real-time data.   

     Summary 
 Machine learning fuels data-driven operations across businesses and operations. Every time you surf the 
Internet, an entire battery of machine-learning algorithms behind the scenes enhances your experience. 
They control everything from your Facebook newsfeed to the Amazon main page and from personalized ads 
on any web site to spam email filtering. 

 This chapter looked at using Spark MLlib and ML to implement scalable predictive analytics and 
learning patterns from the data. Feature selection enabled you to reduce the number of features from the 
dataset as well as to enhance the impact of features. The majority of the chapter walked you through the 
implementation of machine-learning applications encompassing a number of learning algorithms and data 
properties. You finished the chapter with the Spark ML package to architect end-to-end machine-learning 
pipelines and their calibration and selection. 

 You are almost at the end of your Spark Streaming journey. The final chapter of this book takes you into 
the land of clouds and lambdas. Buckle up.       
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    CHAPTER 10   

 Of Clouds, Lambdas, and Pythons                          

    Clouds come floating into my life, no longer to carry rain or usher storm, but to add color 
to my sunset sky.  

 —Rabindranath Tagore   

 In the real world, deployments of Big Data systems fit into a larger ecosystem that consists of managed 
cloud instances, cluster managers, data stores and warehouses, and so on. Cloud deployments enable 
organizations to pass the buck of DevOps to the cloud service provider and thus free them to focus on 
application development and business operations. Along with economies of scale, this provides on-demand 
horizontal elasticity and simplified scheduling. Similar to other systems, Spark can work in the cloud with 
fully managed instances provided by a number of companies including Google (Dataproc), Databricks, and 
IBM (Bluemix). No book about Spark would be complete without a discussion of running it in the cloud. In 
a similar vein, applications in an organization evolve over time and vary widely in terms of programming 
languages and models. This may be for legacy reasons (dragging an old stack), practitioner preference (data 
scientists love Python), or system limitations (a platform may only have an API in a particular language). For 
these reasons and more, Scala may not be the language of choice for Spark applications across the board. In 
this chapter, you also get your hands dirty with the Spark Python API. 

 Applications running in the cloud do not follow one monolithic design or ingest a single type of data. 
An increasingly large class of applications requires blending data in motion (real-time data) with data at rest 
(historical batch data). Examples of such applications include training a machine-learning model in batch 
mode with historical data and then using it in real time to score streaming data, filtering streaming data 
before landing it in a data warehouse for business intelligence, and serving requests from a real-time system 
while the batch system recalculates the view. The last example constitutes a popular paradigm known as the 
 Lambda Architecture , which is another topic of discussion in this chapter. 

 Finally, many relations and datasets in the wild can be represented as large graphs and their applications 
as graph problems. All of Facebook can be turned into a massive graph of users and pages. Similarly, search 
engines like Google map the World Wide Web to a graph with 30 billion nodes. Algorithms similar to PageRank 
are then used to determine the popularity and relevance of every web page. The sizes of some of these graphs 
are on the order of petabytes, which means analyzing them requires the use of distributed Big Data platforms 
like Spark. To cater to such applications, this chapter wraps up by analyzing streaming graphs. 

 The very last set of applications in the book involve location-based services and, in particular, how they 
blend the offline and online worlds. For instance, a single star improvement in the rating of a small business 
on Yelp leads to a 5% to 9% increase in revenue. 1  To enable such analytics, in this chapter you use a publicly 
available dataset from Yelp with rich data for businesses, check-ins, users, tips, and reviews. 

   1  Brad Plumer, “How Yelp Is Killing Chain Restaurants,”  The Washington Post , October 3, 2011,    https://www.
washingtonpost.com/blogs/ezra-klein/post/how-yelp-is-killing-chain-restaurants/2011/10/03/
gIQAokJvHL_blog.html     .  

https://www.washingtonpost.com/blogs/ezra-klein/post/how-yelp-is-killing-chain-restaurants/2011/10/03/gIQAokJvHL_blog.html
https://www.washingtonpost.com/blogs/ezra-klein/post/how-yelp-is-killing-chain-restaurants/2011/10/03/gIQAokJvHL_blog.html
https://www.washingtonpost.com/blogs/ezra-klein/post/how-yelp-is-killing-chain-restaurants/2011/10/03/gIQAokJvHL_blog.html
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    A Good Review Is Worth a Thousand Ads 
 Online social media is on course to replace traditional media as the focal point for marketing and 
advertising. This is due to its wider reach, richer semantics for microsegmentation, and dynamic 
personalization. In addition, review platforms such as Yelp have changed the face of how marketing works: 
rather than putting ads up, businesses can rely on the good word (hopefully) of ordinary users to attract 
more customers to their establishments. These reviews follow a five-star rating model along with more 
detailed freestyle textual reviews. Even simple check-ins are an effective medium for creating buzz about a 
business. 

  Yelp   has been sharing a limited set of its data with the research community for crowd-sourced analytics 
as part of the Yelp Dataset Challenge. The data from the current round (7) of the challenge spans 10 cities 
across 4 countries (listed in Table  10-1 ). 2  The dataset consists of 5 files, each of which contains JSON records 
for 2.2 million reviews, 591,000 tips, 552,000 users, 77,000 businesses, and check-ins, respectively. It also 
cumulatively includes 566,000 attributes (for instance, being child friendly) for the businesses. Finally, 
because Yelp is also a social network, the data includes 3.5 million connections among the users. An 
auxiliary dataset also contains 200,000 pictures for the businesses in the main dataset. You drill down into 
the attributes of each data file as you use them over the course of this chapter. 

   Table 10-1.    Cities Represented in the Yelp Dataset Challenge   

 Country  Cities 

 Scotland  Edinburgh 

 Germany  Karlsruhe 

 Canada  Montreal and Waterloo 

 United States  Charlotte, Las Vegas, Madison, Phoenix, Pittsburgh, Urbana-Champaign 

      Google Dataproc 
 Dataproc is Google’s YARN-as-a-service platform. It has out-of-the-box support for Hadoop, Hive, Pig, and 
Spark. The unit of allocation in Dataproc is a   cluster   , which is a self-contained environment with a YARN 
resource manager and node managers. These are executed on Google Compute Engine virtual machine 
instances, which are provisioned on demand. Dataproc applications can also integrate with other Google 
cloud services such as Cloud Storage, BigQuery, and Cloud Bigtable. 

 Dataproc is one of the many services offered in the Google Cloud Platform, as listed in Table  10-2 . 
Google Cloud Platform is rapidly turning into a one-stop shop for everything cloud related. Let’s set up a 
Dataproc project and then run an application on top of it. 

   2     https://www.yelp.com/dataset_challenge/     .  

https://www.yelp.com/dataset_challenge/


CHAPTER 10 ■ OF CLOUDS, LAMBDAS, AND PYTHONS

201

   Table 10-2.    Brief introduction to some of the  services   in Google Cloud Platform   

 Service  Category  Description 

 App Engine  Compute  Platform as a service for web apps and back ends 

 Compute Engine  Compute  Infrastructure as a service with virtual machines to run 
arbitrary applications 

 Container Engine  Compute  Docker container execution as a service built on top of 
Kubernetes 

 HTTP load balancing  Network  Load balancing for HTTP traffic among Compute Engine/
Container Engine instances/containers 

 Network load balancing  Network  Load balancing for arbitrary TCP/UDP traffic 

 Cloud DNS  Network  Global DNS as a service 

 Cloud Bigtable  Storage  Bigtable (HBase) NoSQL data storage as a service 

 Datastore  Storage  ACID transactions on top of Bigtable 

 Cloud Storage  Storage  Cloud-based, durable, flat object storage 

 Cloud SQL  Storage  MySQL as a service 

 BigQuery  Big Data  SQL queries against petabyte-scale, append-only tables 

 Pub/Sub  Big Data  High-throughput messaging using the publisher/
subscriber model 

 Dataproc  Big Data  Hadoop, Spark, Pig, and Hive on top of YARN as a service 

 Dataflow  Big Data  Combined batch processing and stream processing with a 
FlumeJava-like API 

 Genomics  Big Data  Storage and processing of Genomics data using other 
services including BigQuery and Bigtable 

 SETTING UP GOOGLE CLOUD PLATFORM DATAPROC

 Go to    https://cloud.google.com/dataproc/     , and click Try It Free. 

 Log in using your Google account credentials. 

  Sign   up for a free Google Cloud Platform Account. 3  You need to provide debit/credit card details. 

 Install the  gcloud  command-line tool: 

   $ curl https://sdk.cloud.google.com | bash  
  $ exec -l $SHELL  
  $ gcloud init  

    Go to    https://console.cloud.google.com/     , and click the Products & Services tab (represented by 
three horizontal lines) as shown in Figure  10-1 .  

   3  At the time of writing, Google is offering $300 of free credit for 60 days for new accounts.  

https://cloud.google.com/dataproc/
https://console.cloud.google.com/
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 Clicking the button displays a scrollable menu, as shown in Figure  10-2 .  

  Figure 10-1.    Accessing the Products &  Services   menu for Google Cloud Platform       

  Figure 10-2.    GCP Products & Services menu       
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 Scroll down to the Big Data part of the menu, and select Dataproc (Figure  10-3 ).  

 Selecting Dataproc takes you to the screen in Figure  10-4 , which tells you to enable billing before you 
can use Dataproc. If you are using a preconfigured GCP project, you can skip the next two steps.  

 Click Enable Billing to go to the Billing Account setup screen (Figure  10-5 ).  

  Figure 10-3.    Selecting Dataproc from the  Big Data services   provided by Google Cloud Platform       

  Figure 10-4.     Billing   needs to be enabled before using Dataproc       
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 Go back to the Dataproc dashboard, and you should be able to create a cluster, as shown in Figure  10-6 .  

 Clicking Create Cluster takes you to the screen in Figure  10-7 , because the Compute Engine API needs 
to be enabled first. Go to the Compute Engine dashboard to enable it.  

 You should now be able to create a Dataproc cluster.    

  Figure 10-5.    Enabling a billing account for your  GCP project         

  Figure 10-6.    Dataproc  cluster-creation screen         

  Figure 10-7.    The  Compute Engine API   needs to be enabled before you can use Dataproc       
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   First Spark on Dataproc Application 
 The Yelp dataset also contains a number of features about businesses. 4  For each business, these features 
include its location, full address, and the reviews it has received. For restaurants, the dataset also contains 
qualitative information such as whether the location is child friendly and whether it accepts credit cards. 
Listing  10-1  contains the JSON template for this dataset. 

      Listing 10-1.     JSON Blueprint   of the Business Dataset   

 1.   {     
 2.      "business_id":"<anonymized_id>",   
 3.      "full_address":"<street_address>",   
 4.      "hours":{     
 5.         "<day_of_week>":{     
 6.            "close":"<HH:MM>",   
 7.            "open":"<HH:MM>"   
 8.         }   
 9.      },   
 10.     "open":< true / false >,   
 11.     "categories":[     
 12.        <list_of_categories_such_as_restaurant>   
 13.     ],   
 14.     "city":"<self_explanatory>",   
 15.     "review_count":<number_of_reviews>,   
 16.     "name":"<self_explanatory>",   
 17.     "neighborhoods":[     
 18.        <list_of_neigborhood_names>   
 19.     ],   
 20.     "longitude":<self_explanatory>,   
 21.     "state":"<self_explanatory>",   
 22.     "stars":<star_count>,   
 23.     "latitude":<self_explanatory>,   
 24.     "attributes":{     
 25.        <key_value_pairs_of_attributes>   
 26.     },   
 27.     "type":"business"   
 28.  }   

     One of the attributes is   Wi-Fi   , with three fairly obvious values:  no ,  free , and  paid . An interesting 
application would be to figure out whether there is any correlation between having WiFi access and the 
rating of an establishment. The code for this application is in Listing  10-2 . It reads data from a socket (line 32) 
and converts each record to a JSON object (line 35). The application requires only two features, WiFi 
presence and star rating, so you confine yourself to records that contain the latter (lines 37–39) and convert 
them into key-value pairs where the key is the WiFi type and the value is the star rating (lines 40–43). 

 To calculate the average rating per WiFi type, you exercise a custom  combineByKey  transform to get an 
overall sum and count and a subsequent  map  operation to perform the actual average (recall Listing 3-18 
in Chapter   3    ). 

   4  Contained in  yelp_academic_dataset_business.json .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_3
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       Listing 10-2.    First Spark on Dataproc Application to Compare the Ratings of Restaurants With and Without 
Free WiFi   

 1.    package  org.apress.prospark   
 2.      
 3.    import  org.apache.spark.HashPartitioner   
 4.    import  org.apache.spark.SparkConf   
 5.    import  org.apache.spark.SparkContext   
 6.    import  org.apache.spark.streaming.Seconds   
 7.    import  org.apache.spark.streaming.StreamingContext   
 8.    import  org.apache.spark.streaming.dstream.DStream.toPairDStreamFunctions   
 9.    import  org.json4s.DefaultFormats   
 10.   import  org.json4s.JsonAST.JNothing   
 11.   import  org.json4s.jvalue2extractable   
 12.   import  org.json4s.jvalue2monadic   
 13.   import  org.json4s. native .JsonMethods.parse   
 14.   import  org.json4s.string2JsonInput   
 15.     
 16.  object DataProcApp {   
 17.     
 18.    def main(args: Array[String]) {   
 19.       if  (args.length != 4) {   
 20.        System.err.println(   
 21.          "Usage: DataProcApp <appname> <batchInterval> <hostname> <port>")   
 22.        System.exit(1)   
 23.      }   
 24.      val Seq(appName, batchInterval, hostname, port) = args.toSeq   
 25.     
 26.      val conf =  new  SparkConf()   
 27.        .setAppName(appName)   
 28.        .setJars(SparkContext.jarOfClass( this .getClass).toSeq)   
 29.     
 30.      val ssc =  new  StreamingContext(conf, Seconds(batchInterval.toInt))   
 31.     
 32.      ssc.socketTextStream(hostname, port.toInt)   
 33.        .map(r => {   
 34.          implicit val formats = DefaultFormats   
 35.          parse(r)   
 36.        })   
 37.        .filter(jvalue => {   
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 38.          jvalue \ "attributes" \ "Wi-Fi" != JNothing   
 39.        })   
 40.        .map(jvalue => {   
 41.          implicit val formats = DefaultFormats   
 42.           ((jvalue \ "attributes" \ "Wi-Fi").extract[String], (jvalue \ "stars").

extract[Int])   
 43.        })   
 44.        .combineByKey(   
 45.          (v) => (v, 1),   
 46.          (accValue: (Int, Int), v) => (accValue._1 + v, accValue._2 + 1),   
 47.           (accCombine1: (Int, Int), accCombine2: (Int, Int)) => (accCombine1._1 + 

accCombine2._1, accCombine1._2 + accCombine2._2),   
 48.           new  HashPartitioner(ssc.sparkContext.defaultParallelism))   
 49.        .map({  case  (k, v) => (k, v._1 / v._2.toFloat) })   
 50.        .print()   
 51.     
 52.      ssc.start()   
 53.      ssc.awaitTermination()   
 54.    }   
 55.     
 56.  }   

    This application consumes the Yelp businesses JSON data via the  SocketDriver . The only minor 
change you need to make is to replace line 1 in Listing 9-2 ( AbstractDriver ) with this: 

   else if (ext.equals("dat") || ext.equals("json"))  

    To run the application on Dataproc, create a JAR from it using  sbt assembly . To complete the story, let’s 
create a Dataproc cluster. 
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  Figure 10-8.    Creating a bare minimum cluster on Dataproc       

 CREATING A DATAPROC CLUSTER

  Go to the Google Cloud Platform dashboard, and from the Big Data section of the Products & Services 
menu, select Dataproc. Finally, click Create cluster (Figure  10-6 ). 

 Create a  cluster   based on your requirements. Figure  10-8  shows the configuration for a bare minimum cluster.  
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 This creates and launches a cluster and takes you to a screen similar to the one in Figure  10-9 .  

 Clicking the name of the cluster leads you to the dashboard for that cluster (Figure  10-10 ). In this 
dashboard, you can see the resource consumption (CPU, disk, and memory) of the cluster at different 
time scales in the form of graphs. In addition, you can get details of running jobs, VM instances that 
constitute the cluster, and the configuration.  

 The VM Instances tab lists all the instances in the cluster, as shown in Figure  10-11 . As mentioned 
earlier, all of these VMs are Compute Engine instances. Therefore, selecting an instance takes you to its 
Compute Engine dashboard. You can see the three instances (one master plus two workers) that you 
just created.    

  Figure 10-9.    Details of a running Dataproc cluster       

  Figure 10-10.    Central dashboard for a Dataproc cluster       

  Figure 10-11.    VM instances in a Dataproc cluster       
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 RUNNING A SPARK APPLICATION ON DATAPROC

  After creating a Dataproc cluster, you are ready to execute your Spark application on top of it. There are 
three ways to run an  application   on Dataproc:

•    Dataproc console  

•    gcloud  command-line tool  

•   REST API    

 To begin, let’s use the console. 

 After creating a JAR from the application, you need to copy it over to the cluster. There are three 
locations to provide the JAR for execution:

•    GCS  

•   HDFS  

•   Local FS on the cluster    

 This example takes the HDFS route. The first step is to copy the JAR to the cluster, for which you use the 
 gcloud  command-line tool. You simply transfer it to the master node ( first-spark-cluster-m  in this 
case) using 

   gcloud compute copy-files Chap10-assembly-1.0.jar first-spark-cluster-m:~/  

    Once the JAR has been uploaded to the cluster, you need to transfer it to HDFS. Let’s first SSH into the 
master node: 

   gcloud compute --project "<your_gcloud_project_id>" ssh --zone "us-central1-b" "first-
spark-cluster-m"  

    Then, from that master node, you can transfer the JAR to HDFS: 

   hdfs dfs -copyFromLocal Chap10-assembly-1.0.jar /  

    You also execute the  SocketDriver  on the master node to feed data to your Spark Streaming 
application. Execute the  SocketDriver  before running the Spark application. You obviously first need to 
copy the data to the master node: 

   gcloud compute copy-files yelp_academic_dataset_business.json first-spark-cluster-m:~/  

    Now that everything has been set up, you can run the job. In the Dataproc dashboard, click the Jobs 
button on the left, and then click Submit Job. This is shown in Figure  10-12 .  
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 Fill out the prompt with parameters to run the JAR, as shown in Figure  10-13 , and then click Submit.  

  Figure 10-12.    Submitting a job to Dataproc       

  Figure 10-13.    Entering details for the Spark job       
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 After the job is submitted, you are taken to the screen in Figure  10-14 .  

 Click the job ID to jump to the console output of the Spark application. You see output similar to that in 
Figure  10-15 . As it turns out, restaurants where the WiFi is paid have a lower rating than establishments 
with no WiFi at all! This may be because customers believe the price of the WiFi should be factored 
into the price of the food, for instance. On the other hand, restaurants with free WiFi have the best star 
ratings on average.   

 This was a first taste of Dataproc. In the next section, you kill two birds with one stone by using Dataproc 
to execute a Spark Streaming Python application.   

        PySpark   
 Although Spark is implemented in Scala, it has bindings for a number of languages include Java, Python, 
and C#. Of these, Python is a very popular choice especially in the data science community, due to its 
succinct syntax and rich set of powerful libraries such as NumPy, SciPy, matplotlib, and pandas. These 
libraries are limited by the capabilities of a single machine, whereas most datasets require parallel 
processing for timely and accurate results. That is where PySpark comes in. As the name suggests, PySpark 
is a Python front end for Spark. Under the hood, it uses py4j 5  to directly invoke Java objects from the 
Python interpreter. As a result, there is an almost one-to-one mapping between the Scala API and its 
equivalent in Python. As an example, let’s reimplement the Scala code from Listing  10-2  in Python. The 
Python port is shown in Listing  10-3 . 

 As you can see, the code is almost identical to the Scala version. The only two major differences are the 
lack of a fluent API in Python and the difference in lambda functions. 

  Figure 10-14.    List of running Dataproc jobs       

  Figure 10-15.    Output of the WiFi and star rating Spark application       

   5     https://www.py4j.org/     .  

 

 

https://www.py4j.org/
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      Listing 10-3.    Your First PySpark Application   

 1.    from  pyspark  import  SparkContext   
 2.    from  pyspark.streaming  import  StreamingContext   
 3.    from  sys  import  argv, exit   
 4.    try :  import  simplejson as json   
 5.    except  ImportError:  import  json   
 6.      
 7.    if  len(argv) != 5:   
 8.        print  'Usage: yelp_pyspark.py <appname> <batchInterval> <hostname> <port>'   
 9.       exit(-1)   
 10.     
 11.  appname = argv[1]   
 12.  batch_interval = int(argv[2])   
 13.  hostname = argv[3]   
 14.  port = int(argv[4])   
 15.     
 16.  sc = SparkContext(appName=appname)   
 17.  ssc = StreamingContext(sc, batch_interval)   
 18.     
 19.  records = ssc.socketTextStream(hostname, port)   
 20.  json_records = records.map( lambda  rec: json.loads(rec))   
 21.   restaurant_records = json_records.filter( lambda  rec: 'attributes'  in  rec  and  'Wi-Fi'  in  

rec['attributes'])   
 22.   wifi_pairs = restaurant_records.map( lambda  rec: (rec['attributes']['Wi-Fi'], 

rec['stars']))   
 23.  wifi_counts = wifi_pairs.combineByKey( lambda  v: (v, 1),   
 24.                                lambda  x, value: (x[0] + value, x[1] + 1),   
 25.                                lambda  x, y: (x[0] + y[0], x[1] + y[1]))   
 26.  avg_stars = wifi_counts.map( lambda  (key, (sum_, count)): (key, sum_ / count))   
 27.  avg_stars.pprint()   
 28.     
 29.  ssc.start()   
 30.  ssc.awaitTermination() 

   You are going to deploy this application to Dataproc for execution using the  gcloud  command-line tool. 
Copy the code from Listing  10-3  to a file, say,  yelp_pyspark.py . As before, run the  SocketDriver  on the 
master node first. Once it is up and running, submit the application to Dataproc using the following on your 
local machine: 

   gcloud beta dataproc jobs submit pyspark --cluster first-spark-cluster yelp_pyspark.py 
first-pyspark-dataproc-app 1 first-spark-cluster-m 9000  

    The  gcloud  command-line tool takes care of transferring the Python code to the cluster and also 
connecting the output of the Spark console with your terminal. 

 You can alternatively run this application on a local cluster. You first need to install Py4J by using  pip  
and then add PySpark to the  PYTHONPATH : 

   pip install py4j  
  export PYTHONPATH=$SPARK_HOME/python/:$PYTHONPATH  
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    Once PySpark is set up, submit the application by using the  spark-submit  script: 

   $SPARK_HOME/bin/spark-submit yelp_pyspark.py first-pyspark-dataproc-app 1 <hostname_of_
machine_running_socketdriver> 9000  

    It was that simple to write a Spark Streaming application in Python and execute it on top of a Dataproc 
cluster. This was just an introduction to both topics—both have much more to offer.   

      Lambda Architecture 
 Imagine you are working on an application, which will allow anyone to query the Yelp rating of a business 
broken down by a given timestamp. The granularity of  timestamps   can vary from minutes to days depending 
on the SLA. Let’s assume that there is only one type of  query  : the number of positive or negative ratings for 
a given business ID. Considering that 30,000 reviews are posted every minute on Yelp and 25,000 pictures 
are uploaded each day, 6  the queries would be very expensive to compute on the fly. To remedy this, queries 
need to be precomputed. 

 In Chapter   1    , you briefly touched upon the CAP theorem, which unpins the design of most 
contemporary distributed systems. Under its 2 out of 3 (consistency, availability, and partition tolerance) 
rule, users have to explicitly incorporate these trade-offs. Considering that partition tolerance is a given due 
to the commodity off the shelf hardware-based design of distributed systems, the actual trade-off is between 
 consistency   and availability. Going back to your example, if you focus on consistency that means all the 
queries will always get the correct rating but considering the sheer size of the data, precomputing views 
will take a very long time leading to bouts of service unavailability. On the other hand, implementing for 
availability would mean that some queries may not reflect the most recent ratings. 

 For web scale applications, the choice is obvious:  availability  . This has the implication that the system 
will be eventually consistent, that is, when all distributed replicas of data are able to talk to each other they 
will agree on a state of the system. But achieving consensus is easier said than done. Just like humans, it 
is non-trivial to get systems to agree on an answer as well. Should the most recent answer be considered? 
Or the average of all answers? Or the one with the highest cardinality? Clearly this cannot be decided 
upon by the storage system itself and the buck needs to be passed back to the user application. In turn the 
application would perform read or write repair in a lazy fashion using various algorithms, such as vector 
clocks. Unfortunately, these mechanisms are very hard to implement and maintain in user applications. 

 Most inconsistencies stem from the fact that applications perform append, update, and delete 
operations. What if you could relax those conditions to only allow append operations, essentially make the 
data immutable, wherein records are incrementally added to the data store. In this model, an update is 
implemented by appending a new record that supersedes the previous one by say maintaining an ordering via 
timestamps. The same goes for deletions: if an event is no longer valid, say that Barack Obama is the President 
of the US, rather than deleting its record, you can just append another record with the name of the new 
President. You can achieve eventual consistency by rerunning the query over the entire dataset periodically, 
that is, the only inconsistency would occur when new data arrives while you are in the precomputation phase. 

 Let’s look at two different ends of the design spectrum for implementing such an application.  Batch 
processing      à la Hadoop fits the bill very well. It can process bulk data in a scalable fashion. As more data is 
appended, you can rerun the MapReduce job on the entire dataset, which in essence is a transaction. In case 
of failure, missing state can be recovered by re-executing failed tasks. The downside is that the query will 
become stale eventually. At the opposite end of the spectrum is  stream processing     , which can potentially 
bring down the latency of the query to near real time. This comes at a cost, though: the entire state must be 
maintained in memory, which requires an almost untenable amount of memory. What if you could get the 
best of both worlds? One such design is sketched out in Figure  10-16 .  

   6  Craig Smith, “By the Numbers: 50 Amazing Yelp Statistics,”  DMR , April 1, 2016,    http://expandedramblings.com/
index.php/yelp-statistics/     .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_1
http://expandedramblings.com/index.php/yelp-statistics/
http://expandedramblings.com/index.php/yelp-statistics/
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 The architecture in Figure  10-16  has three layers: the real-time or  speed    layer   , which computes results 
for a specific number of time units; the   batch layer   , which computes results for the entire dataset (starting at 
T=0) periodically with newly appended data; and the   serving layer   , which serves queries by merging results 
from the online and offline views. Every time a new record is generated by the data source (the grey box in 
the figure), it makes its way to both layers. For the real-time layer, it is instantly consumed, and the result is 
written to a data store optimized for real-time computation. On the batch layer, the data is first written to an 
append-only distributed filesystem. A batch-processing job is kicked off periodically to recompute the view 
over the entire dataset and write it to a batch data store. The real-time layer is refreshed every time the batch 
job completes. Every time a user query comes in (at extreme right in the figure) the results for a key—the 
Yelp business ID in this case—is computed on the fly by merging values from the real-time and batch data 
stores. In essence, the real-time view masks away the latency of the batch layer. 

 This design is known as the Lambda Architecture. 7  It was conceived by Nathan Marz, the creator of 
the popular Apache Storm stream-processing system. Let’s implement the Lambda Architecture using 
a combination of Spark Streaming and Google Cloud Platform. Spark is a great system to implement the 
Lambda Architecture because it provides a unified API and execution engine for both batch and real-time 
processing. In addition, Spark SQL simplifies the implementation of typical queries, which revolve around 
aggregations, rollups, and cubes. Finally, the integration of Spark with other Big Data systems, such as 
message queues, key value stores, and distributed file systems, enables end-to-end applications. 

      Lambda Architecture using Spark Streaming on Google Cloud Platform 
  Listing  10-4  provides the  code    for this implementation. For the real-time layer, you use Spark Streaming 
in concert with Cloud BigTable. The batch layer, on the other hand, is implemented using BigQuery. The 
application uses the Yelp reviews dataset to determine the positive and negative ratings of a business ID at 
different aggregation levels (basically, a SQL rollup operation). The application is ready to be deployed to 
Dataproc for execution. 

 Let’s walk through the code to understand the specifics. 

  Figure 10-16.    Blending real-time processing with batch processing to implement a data-querying system       

   7  Nathan Marz, “How to Beat the CAP Theorom,”  Thoughts from the Red Planet , October 13, 2011,    http://nathan-
marz.com/blog/how-to-beat-the-cap-theorem.html     .  

 

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
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      Listing 10-4.    Lambda Architecture Using Spark Streaming, Cloud BigTable, BigQuery, and Dataproc   

 1.    package  org.apress.prospark   
 2.      
 3.    import  org.apache.hadoop.conf.Configuration   
 4.    import  org.apache.hadoop.hbase.HBaseConfiguration   
 5.    import  org.apache.hadoop.hbase.client.Put   
 6.    import  org.apache.hadoop.hbase.mapreduce.TableOutputFormat   
 7.    import  org.apache.hadoop.hbase.util.Bytes   
 8.    import  org.apache.spark.SparkConf   
 9.    import  org.apache.spark.SparkContext   
 10.   import  org.apache.spark.rdd.RDD.rddToPairRDDFunctions   
 11.   import  org.apache.spark.streaming.Seconds   
 12.   import  org.apache.spark.streaming.StreamingContext   
 13.   import  org.apache.spark.streaming.dstream.DStream.toPairDStreamFunctions   
 14.   import  org.json4s.DefaultFormats   
 15.   import  org.json4s.jvalue2extractable   
 16.   import  org.json4s.jvalue2monadic   
 17.   import  org.json4s. native .JsonMethods.parse   
 18.   import  org.json4s.string2JsonInput   
 19.   import  com.google.cloud.hadoop.io.bigquery.BigQueryConfiguration   
 20.   import  com.google.gson.JsonObject   
 21.   import  com.google.cloud.hadoop.io.bigquery.BigQueryOutputFormat   
 22.   import  org.apache.hadoop.io.Text   
 23.     
 24.  object LambdaDataprocApp {   
 25.     
 26.    def main(args: Array[String]) {   
 27.       if  (args.length != 14) {   
 28.        System.err.println(   
 29.           "Usage: LambdaDataprocApp <appname> <batchInterval> <hostname> <port> 

<projectid>"   
 30.             + " <zone> <cluster> <tableName> <columnFamilyName> <columnName> 

<checkpointDir>"   
 31.            + " <sessionLength> <bqDatasetId> <bqTableId>")   
 32.        System.exit(1)   
 33.      }   
 34.      val Seq(appName, batchInterval, hostname, port, projectId, zone, clusterId,   
 35.        tableName, columnFamilyName, columnName, checkpointDir, sessionLength,   
 36.        bqDatasetId, bqTableId) = args.toSeq   
 37.     
 38.      val conf =  new  SparkConf()   
 39.        .setAppName(appName)   
 40.        .setJars(SparkContext.jarOfClass( this .getClass).toSeq)   
 41.     
 42.      val ssc =  new  StreamingContext(conf, Seconds(batchInterval.toInt))   
 43.      ssc.checkpoint(checkpointDir)   
 44.     
 45.      val statefulCount = (values: Seq[(Int, Long)], state: Option[(Int, Long)]) => {   
 46.        val prevState = state.getOrElse(0, System.currentTimeMillis())   
 47.         if  ((System.currentTimeMillis() - prevState._2) > sessionLength.toLong) {   
 48.          None   
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 49.        }  else  {   
 50.          Some(values.map(v => v._1).sum + prevState._1, values.map(v => v._2).max)   
 51.        }   
 52.      }   
 53.     
 54.      val ratings = ssc.socketTextStream(hostname, port.toInt)   
 55.        .map(r => {   
 56.          implicit val formats = DefaultFormats   
 57.          parse(r)   
 58.        })   
 59.        .map(jvalue => {   
 60.          implicit val formats = DefaultFormats   
 61.           ((jvalue \ "business_id").extract[String], (jvalue \ "date").extract[String], 

(jvalue \ "stars").extract[Int])   
 62.        })   
 63.        .map(rec => (rec._1, rec._2,  if  (rec._3 > 3) "good"  else  "bad"))   
 64.     
 65.       ratings.map(rec => (rec.productIterator.mkString(":"), (1, System.

currentTimeMillis())))   
 66.        .updateStateByKey(statefulCount)   
 67.        .foreachRDD(rdd => {   
 68.          val hbaseConf = HBaseConfiguration.create()   
 69.           hbaseConf.set("hbase.client.connection.impl", "com.google.cloud.bigtable.

hbase1_1.BigtableConnection")   
 70.          hbaseConf.set("google.bigtable.project.id", projectId)   
 71.          hbaseConf.set("google.bigtable.zone.name", zone)   
 72.          hbaseConf.set("google.bigtable.cluster.name", clusterId)   
 73.          hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tableName)   
 74.          val jobConf =  new  Configuration(hbaseConf)   
 75.           jobConf.set("mapreduce.job.outputformat.class", classOf[TableOutputFormat[Te

xt]].getName)   
 76.          rdd.mapPartitions(it => {   
 77.            it.map(rec => {   
 78.              val put =  new  Put(rec._1.getBytes)   
 79.               put.addColumn(columnFamilyName.getBytes, columnName.getBytes, Bytes.

toBytes(rec._2._1))   
 80.              (rec._1, put)   
 81.            })   
 82.          }).saveAsNewAPIHadoopDataset(jobConf)   
 83.        })   
 84.     
 85.      ratings.foreachRDD(rdd => {   
 86.        val bqConf =  new  Configuration()   
 87.     
 88.        val bqTableSchema =   
 89.           "[{'name': 'timestamp', 'type': 'STRING'}, {'name': 'business_id', 'type': 

'STRING'}, {'name': 'rating', 'type': 'STRING'}]"   
 90.        BigQueryConfiguration.configureBigQueryOutput(   
 91.          bqConf, projectId, bqDatasetId, bqTableId, bqTableSchema)   
 92.        bqConf.set("mapreduce.job.outputformat.class",   
 93.          classOf[BigQueryOutputFormat[_, _]].getName)   
 94.        rdd.mapPartitions(it => {   
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 95.          it.map(rec => ( null , {   
 96.            val j =  new  JsonObject()   
 97.            j.addProperty("timestamp", rec._1)   
 98.            j.addProperty("business_id", rec._2)   
 99.            j.addProperty("rating", rec._3)   
 100.           j   
 101.         }))   
 102.       }).saveAsNewAPIHadoopDataset(bqConf)   
 103.     })   
 104.    
 105.     ssc.start()   
 106.     ssc.awaitTermination()   
 107.    
 108.   }   
 109.    
 110. }   

   Similar to Listing  10-2 , the application relies on the  SocketDriver  for data production. Therefore, before 
running the application, feed the   SocketDriver    the review dataset ( yelp_academic_dataset_review.json ). 
The structure of the JSON object in the review dataset is outlined in Listing  10-5 . 

     Listing 10-5.     JSON Blueprint   of the Review Dataset   

 1.   {   
 2.      "votes": {   
 3.         "funny":  <count> ,   
 4.         "useful":  <count> ,   
 5.         "cool":  <count>    
 6.      },   
 7.      "user_id": " <anonymized_id> ",   
 8.      "review_id": " <anonymized_id> ",   
 9.      "stars":  <count> ,   
 10.     "date": " <YYYY:MM:DD> ",   
 11.     "text": " <free  form text > ",   
 12.     "type": "review",   
 13.     "business_id": " <anonymized_id> "   
 14.  }    

    The application reads this data from a socket (line 54) and projects the  business_id ,  date , and  stars  
fields from the JSON object (lines 55–62). You then categorize records as  good  if the number of stars is 
greater than three or  bad  otherwise (line 63). This resulting stream is divided into two flows: one for real-
time processing and the other for batch processing. 

 The real-time pipeline puts its data in Cloud  BigTable  , which is a fully managed, cloud-based version 
of BigTable from Google with an HBase-compatible API. You model the layout such that the row key is a 
concatenation of the business ID, timestamp, and rating category ( good  or  bad ) (line 65). With each key, you 
also need to maintain the count across batches, for which you use an  updateStateByKey  operation. The 
real-time pipeline needs to be flushed every time the batch view has been updated in BigQuery. Specifically, 
you need to remove keys from the  updateStateByKey . So, you associate a session-length value with each 
record, which is simply the time before you expire a key. To implement this, you insert the current system 
time into each record (line 65) and remove the key if it has exceeded the session length (lines 47–49) in the 
  statefulCount  function  . Ideally, this session-length value should be equal to the latency of the batch layer. 
For instance, if the batch job is kicked off every hour, the value of the session length should be 3600. 
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 CREATING A CLOUD BIGTABLE CLUSTER

  Log in to the Google Cloud Platform dashboard, and, from the Storage section of the Products & 
Services menu, select Bigtable. Click Create Cluster in the next screen. 

 Use Figure  10-17  as reference to set up your cluster.  

  Figure 10-17.    Creating a Cloud BigTable cluster       
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 Go to the API Manager in the Products & Services menu, and enable the API for Cloud Bigtable. 

 You can also configure the HBase shell to talk to the Bigtable deployment. 8    

 The rest of the real-time layer code writes the row keys and values to Bigtable using the HBase API. 
Notice that the code is almost identical to Listing 6-12 in Chapter   6    . The only difference is in terms of 
additional configuration parameters for Bigtable, such as the project ID, cluster ID, and cluster zone 
(lines 69–72). 

 The batch part of the application relies on  BigQuery  , which is another fully managed storage 
service from Google that allows SQL queries against append-only tables. It achieves performance 
and scalability by using aggregation trees and columnar storage. The unit of creation in BigQuery 
is a dataset, which can contain many tables. The batch layer in Listing  10-4  (lines 88–103) simply 
writes each record verbatim to BigQuery. The BigQuery execution layer in SQL can then be used to 
periodically re-create precomputed views. 

 The BigQuery connector for Spark treats BigQuery as just another Hadoop-compatible storage system. 
This means you can use  saveAsNewAPIHadoopDataset  to write to BigQuery. The only thing you need to do in 
the  foreachRDD  clause is to provide a schema for the BigQuery table (line 89) and configuration information 
(lines 90–93). You follow a simple schema with a column each for business ID, timestamp, and rating type. 
For BigQuery, each record needs to be converted to JSON, which is what you do in lines 96–99. Voilà—your 
Lambda Architecture application is ready for execution. 

 To execute the application, first add the dependencies from Listing  10-6  to your  sbt  build definition file. 
Make sure you have enabled the APIs for both BigQuery and Bigtable in the GCP console. In addition, you 
need to create a table with a single column family in Bigtable. You can do so by executing the following in the 
HBase shell: 

   create 'ratingstable', 'ratingscf'  

        Listing 10-6.     Dependencies   Required for the Lambda Architecture Application   

 1.   libraryDependencies += "org.json4s" %% "json4s-native" % "3.2.10"    
  2.    libraryDependencies += "com.google.cloud.bigtable" % "bigtable-hbase-1.1" % "0.2.3" 

exclude("com.google.guava", "guava")    
  3.   libraryDependencies += "org.apache.hbase" % "hbase-server" % "1.1.2"    
  4.   libraryDependencies += "org.apache.hbase" % "hbase-common" % "1.1.2"    
  5.   libraryDependencies += "com.google.guava" % "guava" % "16.0"    
  6.   libraryDependencies += "org.mortbay.jetty.alpn" % "alpn-boot" % "8.1.6.v20151105"    
  7.    libraryDependencies += "com.google.cloud.bigdataoss" % "bigquery-connector" % 

"0.7.4-hadoop2"    

    As before, create a JAR for the application, copy it to the HDFS deployment on your Dataproc cluster, 
and run it from the Dataproc UI. Refer to Figure  10-18  for  command-line parameters   that need to be passed 
to the application.  

   8     https://cloud.google.com/bigtable/docs/installing-hbase-shell     .  

http://dx.doi.org/10.1007/978-1-4842-1479-4_6
https://cloud.google.com/bigtable/docs/installing-hbase-shell
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 Once the application has started executing, you can run the query from Listing  10-7  periodically to 
 create rollup values  . 

  Figure 10-18.    Arguments required by the Lambda Architecture application on top of Dataproc       
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     Listing 10-7.    BigQuery SQL Query to Calculate Rollups for the Lambda Architecture Application   

 1.    SELECT    
 2.     timestamp,   
 3.     business_id,   
 4.     rating,   
 5.     COUNT(1)  AS  COUNT   
 6.    FROM    
 7.     [<your_dataset_id>.<your_table_id>]   
 8.    GROUP BY    
 9.      ROLLUP (timestamp, business_id, rating) 

   And just like that, you have implemented a Lambda Architecture application to realize a highly 
available and eventually consistent query-serving system. Note that this application uses a common pipeline 
to generate real-time views as well as to route data to the batch layer. In a real-world deployment, these 
would need to be separated into two self-contained applications for fault-tolerance and performance. For 
instance, instead of publishing data to a socket, it can be published to a Kafka topic, and then these two 
separate applications can consume the topic via individual subscriptions.   

        Streaming Graph Analytics   
 Any dataset with relationships between entities can be modeled as a graph, and its analysis can be mapped 
onto graph problems. The Web is a graph of machines connected via the Internet, Facebook is a graph of 
users connected via friends, and locations on Google Maps lend themselves to a graph with connections 
provided by modes of transportation. The sheer size of some of these graphs negates the use of single-
machine libraries. At the other end of the spectrum, standard Big Data systems such as Hadoop or Spark 
are too low level to capture the expressiveness required for graph processing.  GraphX   was designed to fill 
this gap by enabling graph-parallel computation on top of Spark. Like the rest of the book, this last topic is 
illustrated using an example. 

     Listing 10-8.    JSON Structure of the Yelp User Dataset   

 1.   {     
 2.      "yelping_since":" <YYYY-MM> ",   
 3.      "votes":{     
 4.         "funny": <count> ,   
 5.         "useful": <count> ,   
 6.         "cool": <count>    
 7.      },   
 8.      "review_count": <count> ,   
 9.      "name":" <first_name_of_user> ",   
 10.     "user_id":" <anonymized_id> ",   
 11.      "friends":[     
 12.         " <list_of_user_ids> "   
 13.      ],   
 14.      "fans": <count> ,   
 15.      "average_stars": <average_star_count> ,   
 16.      "type":"user",   
 17.      "compliments":{     
 18.         "photos": <count> ,   
 19.         "hot": <count> ,   
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 20.         "cool": <count> ,   
 21.         "plain": <count>    
 22.      },   
 23.      "elite":[     
 24.            <list_of_years>    
 25.      ]   
 26.   }   

   Finding influential users in social networks is an interesting topic due to its implications for online 
advertising. For instance, posts shared by influential users are widely disseminated in comparison to those 
of ordinary users. The Yelp dataset also contains friendship information for users (JSON attributes in Listing 
 10-8 ). This can be used to build a graph of relationships on Yelp. A number of algorithms such as PageRank 
and HITS can then be used to pinpoint influential users. The PageRank-based approach using GraphX is 
shown in Listing  10-9 . 

     Listing 10-9.    First Streaming  GraphX   Application   

 1.    package  org.apress.prospark    
  2.       
  3.    import  org.apache.spark.SparkConf    
  4.    import  org.apache.spark.SparkContext    
  5.    import  org.apache.spark.graphx.Edge    
  6.    import  org.apache.spark.graphx.Graph    
  7.    import  org.apache.spark.graphx.Graph.graphToGraphOps    
  8.    import  org.apache.spark.streaming.Seconds    
  9.    import  org.apache.spark.streaming.StreamingContext    
  10.   import  org.json4s.DefaultFormats    
  11.   import  org.json4s.jvalue2extractable    
  12.   import  org.json4s.jvalue2monadic    
  13.   import  org.json4s. native .JsonMethods.parse    
  14.   import  org.json4s.string2JsonInput    
  15.       
  16.   object UserRankApp {    
  17.       
  18.     def main(args: Array[String]) {    
  19.        if  (args.length != 4) {    
  20.         System.err.println(    
  21.           "Usage: UserRankApp <appname> <batchInterval> <hostname> <port>")    
  22.         System.exit(1)    
  23.       }    
  24.       val Seq(appName, batchInterval, hostname, port) = args.toSeq    
  25.       
  26.       val conf =  new  SparkConf()    
  27.         .setAppName(appName)    
  28.         .setJars(SparkContext.jarOfClass( this .getClass).toSeq)    
  29.       
  30.       val ssc =  new  StreamingContext(conf, Seconds(batchInterval.toInt))    
  31.       
  32.       ssc.socketTextStream(hostname, port.toInt)    
  33.         .map(r => {    
  34.           implicit val formats = DefaultFormats    
  35.           parse(r)    



CHAPTER 10 ■ OF CLOUDS, LAMBDAS, AND PYTHONS

224

  36.         })    
  37.         .foreachRDD(rdd => {    
  38.           val edges = rdd.map(jvalue => {    
  39.             implicit val formats = DefaultFormats    
  40.              ((jvalue \ "user_id").extract[String], (jvalue \ "friends").

extract[Array[String]])    
  41.           })    
  42.           .flatMap(r => r._2.map(f => Edge(r._1.hashCode.toLong, f.hashCode.toLong, 1.0)))    
  43.       
  44.           val vertices = rdd.map(jvalue => {    
  45.             implicit val formats = DefaultFormats    
  46.             ((jvalue \ "user_id").extract[String])    
  47.           })    
  48.             .map(r => (r.hashCode.toLong, r))    
  49.       
  50.           val tolerance = 0.0001    
  51.           val graph = Graph(vertices, edges, "defaultUser")    
  52.             .subgraph(vpred = (id, idStr) => idStr != "defaultUser")    
  53.           val pr = graph.pageRank(tolerance).cache    
  54.       
  55.           graph.outerJoinVertices(pr.vertices) {    
  56.              (userId, attrs, rank) => (rank.getOrElse(0.0).asInstanceOf[Number].

doubleValue, attrs)    
  57.           }.vertices.top(10) {    
  58.             Ordering.by(_._2._1)    
  59.            }.foreach(rec => println("User id: %s, Rank: %f".format(rec._2._2, 

rec._2._1)))    
  60.         })    
  61.       
  62.       ssc.start()    
  63.       ssc.awaitTermination()    
  64.       
  65.     }    
  66.       
  67.   }    

    After reading the data from the socket and converting each record to JSON (lines 32–36), you implement 
the core logic of the application in a  foreachRDD  transform.  GraphX   does not have native support for online 
graph analysis, so using this approach means the state of analysis is confined to individual batches. This 
per-batch implementation is useful for a large class of applications, which only rely on the current state of 
the network. 

 As with other graph libraries, you need to create separate vertex and edge objects, which must be 
combined to generate the graph. Specifically, you need to create edge and vertex RDDs to spawn a graph 
object. For the edge records, you create  user_id:user_id  pairs from each JSON object, where each pair 
represents a friendship connection between users (lines 38–42). GraphX requires vertex IDs to be in the 
form of  long  values. Therefore, the application takes the hash code of user IDs and uses it for this purpose. In 
addition, you assign a weight of 1 to each friendship edge (line 42). Similarly, for the vertex RDDs, you emit 
the user ID hash as a  long  and its value in  string  form (lines 44–48). Both RDDs (edge and vertex) can then 
be used to create a graph object (line 51) with  defaultUser  as the default user ID for missing values. Because 
these default values are meaningless from your perspective (the influence of a  defaultUser  is useless), the 
 subgraph  method is used to filter by edges and vertices (line 52). 
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  GraphX   out of the box contains an implementation of PageRank, which you use on the graph with a 
convergence tolerance of 0.0001 (line 53). This returns vertex ID:rank pairs. These need to be joined with the 
original graph to get back the original user ID (lines 55–57). You then get the top 10 most influential users 
ordered by rank by iterating over the vertices of the graph (line 57-59). Finally, you print these values to 
standard output. 

 This example should have whetted your appetite for graph processing the Spark way. This was just the 
tip of the iceberg, though; GraphX is far richer in terms of algorithms, features, and transforms than were 
presented here. Refer to the official documentation for a deeper dive.   

      Summary 
 The days of on-premises data centers are numbered. Fully managed systems deployments are all the 
rage due to their simple cost model, elasticity, scalability, and out-of-the-box integration with the wider 
Big Data ecosystem. A number of such solutions also exist for Spark, and this chapter explored Dataproc. 
Python aficionados also got their hands dirty with the Spark Python API. To support low latency and highly 
available data querying, another topic of discussion in this chapter was the Lambda Architecture. Using a 
combination of Spark Streaming, Cloud Bigtable, and BigQuery, the nitty-gritty of the Lambda Architecture 
was laid bare. To wrap up the chapter as well as the book, graph processing using GraphX in tandem with 
Spark Streaming was introduced. 

 That’s all, folks. With that, you come to the end of this “sparkling” journey!      
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