Programming
Languages for MIS

Concepts and Practice

N\

Hal Wang
Shouhong Wang

AAAAAAAAAAAAAA

http://www.allitebooks.org

Programming
Languages for MIS

Concepts and Practice

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Programming
Languages for MIS

Concepts and Practice

Hal Wang
Shouhong Wang

oooooooooooooooooooooo

nnnnnnnnnnnnnnnn
AAAAAAAAAAAAAA

vww allitebooks.conl

http://www.allitebooks.org

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130925

International Standard Book Number-13: 978-1-4822-2267-8 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

vww allitebooks.conl

http://www.allitebooks.org

Contents

PREFACE

THE AUTHORS

ACKNOWLEDGMENTS

CHAPTER 1 INTRODUCTION

1.1
1.2

1.3
1.4

CHAPTER 2 C++
2.1
2.2

Computers

Computer Programming Languages

1.2.1 Role of Computer Programming Language

1.2.2 Software Systems

1.2.3 Taxonomies of Computer Programming Languages
Computing Architecture in the Internet Environment

Key Characteristics Shared by All Procedural Programming Languages
1.41 Syntax, Sentence, and Word

1.4.2 Variable

1.43 Arithmetic Operation

1.44 Execution Sequence

1.4.5 If-Then-Else Logic

1.46 Loop

1.4.7 Module

Introduction to Function-Oriented and Object-Oriented Programming
A Tour of C Language

221 Cand C++ Keyword and User-Defined Word

2.2.2 Comment Statements

2.2.3 Preprocessor

2.2.4 Namespace

2.2.5 Structure of a C Program, Functions, and Arguments
2.2.6 Statements and Semicolon

2.2.7 Data Type

2.2.8 Arithmetic Operations

229 for-Loop

vww allitebooks.conl

xi

Xv

xvii

NN OO U Ut A LN R R R

O O O

14
14
14
14
15
16
16
16
17

http://www.allitebooks.org

Vi

CHAPTER 3

2.2.10
2.2.11
2212

CONTENTS

printf() Statement with Conversion Specifier
if-Statement
String and String Processing

2.3 Functional Approach

231
232
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7

Functional Decomposition

A Simple Example of User-Defined Function
Declaration of User-Defined Function
Calling-Function and Called-Function
Structure Diagram

An Example of Two Functions

An Example of Multiple Functions

2.4 Object-Oriented Approach

241
242
243
244
2.4.5

Object and Class

Descriptions of Class

public and private Statements
Constructor

Use of Class—Declare Object and Message Sending

2.5 Design of Objected-Oriented Program

2.6 Connection between Classes—An Example with Two Classes

2.7 An Example of Inheritance

2.8 Identify Class

2.9 Debugging

Appendix 2.1: Commonly Used C and C++ Keywords
C and C++ Keywords

C++ Only Keywords

HTML, JavAScRriPT, AND CSS
3.1 Introduction to the Internet

3.2 Creating Web Pages Using HTML
3.3 Simple Container Tags

3.3.1 <HTML>

3.3.2 <HEAD> and <TITLE>

3.3.3 <BODY>

334 Comments <!-- ... -->

3.3.5 Headings <H1> <H2> ... <H6>

3.3.6 <P>

3.3.7 <I>

3.3.8 <TABLE>, <TH>, <TR>, and <TD>

339 <A>

3.3.10 <CENTER>

3.4 Empty Tags

341 <HR>

342

3.43

3.5 Complex Container Tags

3.5.1 <FORM>
3.5.1.1 Attribute ACTION
3.5.1.2 Attribute METHOD
3.5.1.3 <INPUT> and Its Attributes TYPE, NAME, SIZE, and

VALUE
3.52 FRAME and FRAMESET

3.6 Publish Web Page

vww allitebooks.conl

18
18
20
20
20
21
22
22
23
23
25
29
29
31
32
32
32
35
39
43
48
48
52
52
52

53
53
54
55
55
55
55
55
56
56
56
56
56
56
56
56
56
57
59
59
59
60

60
60
61

http://www.allitebooks.org

CONTENTS Vil

3.7 Introduction to JavaScript 61
3.8 Image Manipulation 62
3.8.1 Object Classes and Their Methods and Attributes 63

3.8.2 Event Handler 64

3.9 FORM Input Data Verification 64
3.9.1 Comparison of JavaScript with C and C++ 66

3.9.2 Function and Calling a Function 67

3.9.3 String Processing 68

3.9.4 if-Statement 68

3.9.5 alert-Statement 69

3.10 FORM Data Calculation 69
3.11 Cookies 71
3.12 Miscellaneous JavaScript Statements 74
3.12.1 new Statement 74

3.12.2 Miscellaneous Functions and Methods 74

3.13 Cascading Style Sheet 74
3.13.1 Inline CSS 75

3.13.2 Internal CSS 76

3.13.3 External CSS 79

3.14 Debugging Source Code of Web Pages 80
Appendix 3.1: List of HTML Commonly Used Tags 85
Appendix 3.2: JavaScript Reserved Words and Other Keywords 86
JavaScript Reserved Words 86
CHAPTER 4 VB.NET 87
4.1 Graphical User Interface 87
4.2 Microsoft Visual Studio and VB.NET Environment 87
4.3 Event Driven 90
4.4 Example of a Single Form 93
4.5 Multiple Forms 96
451 Design Forms 96

4.5.2 Module 98

4.5.3 Class 99

454 Coding 100

4.6 Programming with VB.NET 106
4.6.1 General Format of Code, Comments, and Keywords 106

4.6.2 Class and Object 108

4.6.3 Methods 108

4.6.4 Constant Variables 109

4.6.5 Data Types 109

4.6.6 Arithmetic Operations 109

4.6.7 If-Then-Else Statement 110

4.6.8 For-loop 110

4.6.9 String Processing and Format Statement 110

4.6.10 Print Document 110

4.6.11 Message Box 111

4.7 Debugging 111
CHAPTER 5 C#.NET 115
5.1 Microsoft Visual Studio and C# Programming Environment 115
5.2 C# Program Structure 117
5.3 Runa C# Console Application Program 117
5.4 C# Syntax 118

vww allitebooks.conl

http://www.allitebooks.org

Vil

CHAPTER 6

CHAPTER 7

CONTENTS
5.4.1 Arrays and foreach loop
5.4.2 Command Line Arguments
5.4.3 Functions
5.5 Examples of Console Application
5.6 Windows Forms Application
5.7 Examples of Windows Forms Application
5.8 Debugging
ASP.NET
6.1 Introduction to ASP.NET
6.2 ASP.NET with VB.NET
6.2.1 Structure of ASP.NET Program
6.2.2 HTML Controls Versus ASP.NET Web Controls
6.2.3 HTML Controls
6.2.3.1 Submit Button
6.2.3.2 Textbox
6.2.3.3 Checkbox
6.2.3.4 Radio Button
6.2.3.5 Select
6.2.4 Web Controls
6.2.5 Validation Controls
6.2.6 The Code-Behind Programming Framework
6.2.7 Server-Side File Processing
6.2.8 Accessory Features
6.2.8.1 Sending E-mail Message
6.2.8.2 Calendar
6.2.8.3 Redirect Method
6.2.8.4 Security
6.2.9 Web Application Design
6.2.10 ADO.NET—Server-Side Database Processing
6.2.10.1 Database Connection and SQL in ASP.NET
6.2.10.2 Search Database
6.2.10.3 Update Database
6.2.10.4 Use Data of Database for Decision
6.3 ASP.NET with CANET
6.3.1 C# Programming with ASPNET Web Controls
6.3.2 Code-Behind Programming
6.3.3 Server-Side File Processing
6.3.4 <asp:SglDataSources> Control for Database Processing
6.4 Debugging
PHP
7.1 Introduction to PHP and PHP Development Environment
7.2 Format of PHP Program
7.3 Structure of PHP Program
7.4 Activate PHP in Web Page and Process Form Data on Server
7.5 Programming in PHP
7.5.1 PHP Functions
7.5.2 if-Statement
7.5.3 Read Data File from Server
754 fopen() and fclose()

vww allitebooks.conl

119
120
121
123
127
130
138

145
145
146
147
149
149
150
150
151
152
153
154
156
157
159
162
162
163
164
166
168
172
173
175
177
177
179
179
184
185
192
195

201
201
202
205
206
207
207
209
209
210

http://www.allitebooks.org

CONTENTS 1X

7.5.5 feof() and fgets() 211

7.5.6 while-loop 211

7.5.7 Write Data File to Server and fputs() 211

7.6 Relay Data through Multiple Dynamic Web Pages Using Hidden Fields 212
7.7 Example of Web Application Design 215
7.8 PHP and MySQL Database 219
7.8.1 Set MySQL Database 219

7.8.2 Create and Delete Table in PHP Using SQL 221

7.8.3 Insert Data to Table 222

7.8.4 Access Database 222

7.8.5 Search Database 224

7.8.6 Use ODBC Connection 225

7.9 Debugging 225
CHAPTER 8 XML 229
8.1 Introduction to XML 229
8.1.1 HTML Documents Are Difficult to Process 229

8.1.2 Databases Need Common Data Format to Exchange Data 230

8.2 XML Documents Are Data Sheets 231
8.2.1 XML Instance Documents 231

8.2.2 Declaration 232

8.2.3 Tags and Element 232

8.2.4 Attribute 232

8.2.5 Comment Line and Editorial Style 233

8.3 Cascading Style Sheets 233
8.4 Extensible Style Language 234
84.1 <xsl:stylesheet> 235

842 <xsl:template> 235

8.4.3 HTML Presentation 235

8.4.4 <xsl:value-of> 235

8.45 Empty Tag 236

8.4.6 <xsl:for-each> 236

8.5 XML Data Tree 236
8.6 CSS Versus XSLT 237
8.7 Document Type Definition and Validation 239
8.7.1 Simple Example of Internal DTD 240

8.7.2 Simple Example of External DTD 240

8.7.3 <!DOCTYPE> 241

8.7.4 <!ELEMENT> 241

8.7.5 <!ATTLIST> 242

8.7.6 <!ENTITY> 242

8.8 XML Schema 242
8.8.1 Schema Element 243

8.8.2 Data Element, Attribute, and Data Type 244

8.8.3 complexType 244

8.8.4 sequence 244

8.8.5 Cardinality 244

8.8.6 Attribute 244

8.8.7 XML Validation 244

8.9 Summary of Application of XML 245
8.10 An Example of XML Application 246

vww allitebooks.conl

http://www.allitebooks.org

X CONTENTS

8.11 Advanced Subjects of XML 251
8.11.1 Conversion of Relational Database into XML Tree 251

8.11.2 xlinkand xsl:if 254
8.11.2.1 xlink 259

8.11.2.2 <xsl:if> 260

8.12 XHTML 260
8.13 XBRL 262
8.13.1 Comparison of XBRL with XML 262

8.13.2 Taxonomy 263

8.13.3 Prepare XBRL-Based Reports 263
CHaAaPTER 9 SQL 267
9.1 Introduction to SQL 267
9.2 CREATE and DROP 267
9.3 INSERT, UPDATE, DELETE 268
9.4 Query—SELECT 269
9.5 WHERE Clause and Comparison 271
9.6 ORDER BY Clause 272
9.7 Aggregate Functions 273
9.8 GROUP BY Clause and HAVING Clause 273
9.9 Joining Tables 274
9.10 Subquery 275
9.10.1 Subquery—Reducing Computational Workload of Join Operation 275

9.10.2 Subquery as an Alternative to GROUP BY 277

9.10.3 Subquery—Determining an Uncertain Criterion 277

9.11 Tactics for Writing Queries 278

9.12 SQL Embedded in Host Computer Programming Languages 278

Preface

There have been critical discussions on the management information systems (IMIS)
curriculum design during the last several years. The most notable trend in the MIS cur-
riculum renewal movement is to develop more new MIS courses to meet the needs
of the job market of MIS graduates. The needs of the job market have considerable
implications for the design of MIS courses to educate the next generation of MIS
professionals. MIS students must acquire the fundamental theories of MIS as well as
the essential practical skills of computer applications to develop the lifelong learning
ability in information technology. Technical skills should focus more on problem solv-
ing and practical applications. Regardless of changes in the MIS curricula over the
past years to meet the requirements of the job market, as well as the requirements of
accreditation organizations such as AACSB and ABET, programming remains a core
requirement in most MIS programs.

In the modern service-oriented age, development and maintenance of web-based
applications still rely heavily on applications of computer languages regardless of the
advances of a variety of software packages. To meet the challenges of the ever chang-
ing information technologies, educators need to offer courses in important program-
ming languages for their MIS majors. On the other hand, MIS majors cannot afford
to learn multiple computer languages on the one-language/one-course basis. The key
to the solution to this problem is to make a pedagogical paradigm shift and to develop
courses in multiple computer languages.

Few guidelines for MIS courses of computer programming can be found in the
literature or on the Internet. The selection of computer languages for programming
courses is a crucial task for the pedagogy design. The design components of such courses
are based on four considerations. First, the selected computer languages must be
representative and should cover essential concepts and features of all kinds of com-
puter languages that are used in business organizations. Second, the selected computer

X1

X1l PREFACE

languages must be commonly used in the industry. Third, the selected computer lan-
guages should not require additional computing resources in the ordinary computing
labs of the MIS programs. Fourth, the scope and the workload for MIS students to
learn these computer languages should be manageable.

Considering these factors, we selected the following computer programming lan-
guages for this book: C++, HTML, JavaScript, CSS, VB.NET, C#NET, ASP.NET,
PHP (with MySQL), XML (with XSLT, DTD, and XML Schema), and SQL.
Java is a full-scale computer programming language and has been widely used in the
industry. This book does not include Java because it requires the Java platform and
installation of the Java computing environment on computers with the Windows
platform, which could be demanding. In addition, .NET and Java, the two major
computer language platforms, share a great similarity of language characteristics.
The interested reader who wants to learn Java is referred to our book Programming
Languages for Business Problem Solving, published by Taylor & Francis, 2007 (ISBN
1-4200-6264-6), for its chapter on Java.

Due to time constraints, it is impossible for students to learn all these languages in
great detail. Nevertheless, students are expected to have general knowledge of com-
monly used computer languages and to be able to develop basic skills of program-
ming. Our methodology applied to the programming courses is to learn languages
through typical examples. Specifically, we teach typical problems of MIS applications
and their solutions through the use of these computer languages.

A course that uses this book usually consists of two distinct modules: the teaching
module and the project module. The teaching module provides an overview of rep-
resentative computer languages. The project module provides an opportunity for stu-
dents to practice the computer languages involving hands-on projects. The interested
instructor is referred to our pedagogical research papers for the relevant discussions on
teaching and learning multiple computer languages in a single course: “An Approach
to Teaching Multiple Computer Languages,” Journal of Information Systems Education,
12(4), 2002, 201-211; and “Design and Delivery of Multiple Server-Side Computer
Languages Course,” Journal of Information Systems Education, 22(2), 2011, 159-168.

'The book includes an introduction and eight chapters. The introduction discusses
basics of computer languages and the key characteristics of all procedural computer
languages. Chapter 2 introduces C++ and explains the fundamental concepts of
the two programming paradigms: function oriented and object oriented. Chapter 3
includes HTML, JavaScript, and CSS for web page development. Chapter 4 intro-
duces VB.NET for graphical user interface development. Chapter 5 introduces
C#NET, which is similar to Java. Chapter 6 explains ASP.NET, an important server-
side programming language for the Windows platform. ASPNET incorporates
VB.NET, C#NET, and ADO.NET. Chapter 7 introduces PHP, a popular open
source programming language, and explains the use of the MySQL database in PHP.
Chapter 8 discusses XML and its companion languages, including XSTL, DTD, and

PREFACE X111

XML Schema. Finally, Chapter 9 discusses SQL, which is a part of application of
server-side programming for database processing.

MIS students will be able to use the concepts and practices in this book as the start-
ing point in their journey to become successful information technology professionals.

Shouhong Wang, PhD
Uniwversity of Massachusetts, Dartmouth

Hai Wang, PhD
Saint Mary’s University, Halifax, Nova Scotia, Canada

The Authors

Hai Wang is an associate professor at the Sobey School of Business at Saint Mary’s
University, Halifax, Nova Scotia, Canada. He received his BSc in computer science
from the University of New Brunswick, and his MSc and PhD in computer science from
the University of Toronto. He has published more than 50 research articles in the
areas of MIS, big data, data mining, database management, knowledge management,
and e-business. His research has continuously been funded by the Natural Sciences
and Engineering Research Council of Canada in the past years.

Shouhong Wang is a professor at University of Massachusetts, Dartmouth. He
received his PhD in information systems from McMaster University. He has over
30 years’ experience of higher education in the MIS field. He has published more than
100 research papers in academic journals and several books on the subject of MIS.

XV

Acknowledgments

Windows, Notepad, WordPad, Windows Explorer, Internet Explorer, Visual Basic,
Excel, Access, VB.NET, C#, ASP.NET, Visual Studio.NET, and SQL Server are

trademarks of Microsoft Corporation.

Mozilla Firefox is copyrighted by Mozilla Corporation and Mozilla Foundation.
MySQL, Java, and JavaScript are trademarks of Oracle Corporation.

PHP is copyrighted by the PHP Group.

Apache is copyrighted by The Apache Software Foundation.

EasyPHP is copyrighted by EasyPHP and distributed under the general public
license.

CSS and XML are trademarks of World Wide Web Consortium (W3C).
Notepad++ is distributed as free software under the GNU general public license.

Dev-C++ is a free integrated development environment developed by Bloodshed
Software and distributed under the GNU general public license.

XVl

1

INTRODUCTION

1.1 Computers

A computer is a general purpose machine that can be programmed to carry out com-
putation and data processing operations. Since programs can be readily changed by
humans through programming, the computer can solve a variety of problems. A com-
puter has a central processing unit (CPU), which interprets and executes programs,
and primary memory, which stores programs and data. The components of a computer
system also include secondary memory, input device, and output device, as shown in
Figure 1.1. An input device converts human signals and data into the signals that can
be processed by the CPU. The keyboard and mouse are examples of input devices.
An output device converts the signals from the CPU into a form understandable to
a human. The monitor and printer are examples of output devices. A device, such as
the touch screen or network communication device, can be both an input and output
device. Similar to a primary memory, a secondary memory can also be used to store
programs and data. There are two main differences between primary memory and
second memory. First, primary memory is volatile in nature, while secondary memory
is nonvolatile. The programs and data that are stored in the primary memory cannot
be retained when the power is turned off. A secondary memory can retain the stored
programs and data even if the power is turned oft. Second, it is much faster for the
CPU to access programs and data in the primary memory than in the second memory.
'The programs or data stored in the secondary memory are read in batches into the
primary memory before they are used by the CPU.

1.2 Computer Programming Languages

1.2.1 Role of Computer Programming Language

A computer programming language is an artificial language designed to communicate
instructions to a computer. Programming languages are used to create programs that
control a computer to perform the tasks as designed. The tasks a computer can carry
out include:

* Manipulating data and information

* Reading data from and/or writing data to the secondary memory or other
input/output devices

* Presenting data for a human through the user—computer interface

2 PROGRAMMING LANGUAGES FOR MIS

Computer

Central Processing Unit
(CrU)

Input Device |« | Output Device

\i
A

Secondary
Memory

Figure 1.1 A computer system.

There are many computer programming languages. Each computer programming
language has its syntax. There is no single computer programming language that can
fit all types of applications.

1.2.2 Software Systems

The software systems in a computer are structured in layers, as illustrated in Figure 1.2.
As shown in the figure, application software is built by the software developer using
high-level programming languages that programmers can easily understand and use.
However, the programs in high-level programming languages cannot be executed by
the computer unless the programs are translated into the machine executable code
(i.e., specific strings of binary digits). To translate a program in a high-level pro-
gramming language into the machine executable code, a special program, called the
compiler or interpreter for that high-level language, must be applied, as shown in
Figure 1.3. Once a program in a high-level programming language is translated into
the machine-executable code, it can be used an infinite number of times.

Application Software (e.g., ERP system)

1gh—’Level Languageé‘

Operating System

Assembly Language

Hardware

Development Tools

Figure 1.2 The role of computer programming language.

INTRODUCTION 3

Programmer Computer
Compiler
g L (or interpreter) #
software

Edit program

using program editor ¢ T Execution

Programs in high-level
computer programming | Translation » Machine Code
languages

Figure 1.3 Translation of computer programs.

If a program in a high-level programming language has a syntax error, the transla-
tion will fail and machine-executable code will not be generated. On the other hand,
a program without a syntax error could have a logical error, or semantic error, and the
final execution result could be incorrect. To ensure that a program is executed cor-
rectly, the computer programmer must do the following three tasks.

1. Understand the application to be developed.
2. Design the program for the application.
3. Debug to fix all syntax errors as well as logical errors.

1.2.3 Taxonomies of Computer Programming Languages

There is no overarching classification scheme for programming languages. In this
book, we introduce three major classifications.

1. Procedural language versus markup language. A procedural language is capable
of commanding a computer to carry out arithmetic or logical operations. All
programming languages except for HTML and XML are procedural lan-
guages. A markup language is used for annotating a document (or a data set)
in a way that is syntactically distinguishable from the text. HTML and XML
are markup languages.

2. Function-oriented language versus object-oriented language. A function-oriented
language uses functions as modules. C is a typical function-oriented lan-
guage. An object-oriented language uses objects as modules. C++ is a typical
object-oriented language. A computer language can be a blended language
of function-oriented and object-oriented languages, such as JavaScript and
VB.NET.

3. Client-side language versus server-side language. A client-side language is used
to create the computer programs that are executed on the client side on the
web. JavaScript and HTML are typical client-side languages. In contrast,
programs in server-side languages such as PHP and ASPNET are executed
by the Web server and have greater access to the information and functional
resources available on the server in response to the client’s request.

4 PROGRAMMING LANGUAGES FOR MIS
1.3 Computing Architecture in the Internet Environment

Massive client—server networks are connected to build the Internet (or World Wide
Web). A general computing architecture in the Internet environment is illustrated in
Figure 1.4. Computers are linked to the Internet through the Internet providers.

Client is a computer that accesses a service made available by a server. It is
equipped with client-side programs.

Firewallis a computer with special software to protect the Web server, database
server, and the database from unauthorized access, viruses, and other suspi-
cious incoming code.

Web server stores the web portal, processes all applications (e.g., order process and
payment), and makes all responses to the Internet users’ requests. To support
applications, a web server has three important software components: API,
middleware, and ODBC:

API (application program interface) is a set of functions that allow data exchange
between the application software and the database.

Middleware s specialized software of server-side programs to access the database.

ODBC (open database connectivity) is a software interface to relational data-
bases. On a computer of the Windows platform, you can set ODBC for
a particular relational database (e.g., structured query language server) or
tabular data (e.g., Excel) through [Administrative Tools] in the
[Control Panel] of [Settings] in the Windows operating systems.
In the Java platform, JDBC (Java database connectivity) plays a similar role.

Database server is the dedicated server for the data retrieval and maintenance of
the database.

Clients

Client-Side

S T I) i
TCP/IP and HTTP
Firewall Web Server Database Server
1 icati 1
. p— Applications el I —
— f] = Centralized
— API | Middleware | ODBC
Server-Side
DMBS
Programs

Figure 1.4 Computing architecture in the Internet environment.

INTRODUCTION 5

1.4 Key Characteristics Shared by All Procedural Programming Languages

As discussed in the previous sections, a procedural programming language is used
to carry out arithmetic or logical operations. All procedural programming languages
share key characteristics, although individual procedural programming language can
have its unique features. Thus, the knowledge of the key characteristics learned from
one procedural programming language can be applied to other procedural program-
ming languages.

1.4.1 Syntax, Sentence, and Word

A computer programming language has its syntax—the rules that govern the struc-
ture of sentences of the programs written in the language. In a procedural program-
ming language, a sentence consists of words, numbers, and punctuation. There are
two types of words in a procedural programming language: keyword (or reserved
word) and user-defined word. A keyword represents a specific meaning of the lan-
guage (e.g., a specific instruction). A user-defined word is defined by the programmer
to name a variable or a module. A word used in a procedural programming language
must not contain a space and is usually case sensitive.

1.4.2 Variable

A variable is the name of a piece of CPU memory that holds data. A variable name is
defined by the programmer and must be a user-defined word. Clearly, variable names
are case sensitive; that is, AVariable is different from avariable. In addition, a
name of a variable must be a single user-defined word without a space. A variable has
its data type, such as integer, character, etc. The data held by the variable are called the
value of the variable. The original value of a variable could be a default value depend-
ing on its data type (such as O for an integer and space for a character). The value of a
variable can be changed through operations, but can never be lost unless the computer
program is terminated. Figure 1.5 shows examples of the basic property of variables.

Integers
B C
Original: default value ——| 0 | | 0 | | 0 ‘
! A b c
Operations: A=10;B=20; C=A; —= 10 | [20 | | 10 |
! A B c
Operations: A=B; B=C; C=A; —>| 20 | | 10 | | 20 ‘

Figure 1.5 Examples of the basic property of variables.

6 PROGRAMMING LANGUAGES FOR MIS

1.4.3 Arithmetic Operation

Arithmetic operations in procedural programming are similar to day-to-day arithme-
tic calculations, but use reverse expression. For instance, instead of A+B=C, C=A+B is
used in programming; this means: “Let C equal to A plus B.” Multiplication is denoted
by the asterisk symbol“*”, and division is denoted by the slash symbol “/”. The follow-
ing are several examples of arithmetic operations:

A=10 Let A equal to 10.
C=A+B Let C equal to A plus B.
B=A*10+(B/10) LetB equal to 10 times A plus 1/10 of the original value of B.

1.4.4 Execution Seguence

A computer program consists of a set of instructions. During the execution of the
procedure of a program, instructions are executed one after another in a sequence
(so-called execution sequence) in which they are encountered, but not in the order
in which they are listed in the program. Logical instructions (e.g., if-statement and
loops) can control the execution sequence of the program, as explained next.

1.4.5 If-Then-Else Logic

An if-then-else statement controls the computer execution sequence based on a con-
dition that is defined by the current value of a particular variable(s). The if-then-else
logic is illustrated in Figure 1.6.

1.4.6 Loop

A loop is a group of instructions that are specified once but are executed several times
in succession. A loop statement defines such an iteration procedure, as illustrated

If-then-else instruction with condition

y

True (Yes) Is the condition False (No)
true?
Then Else y
. Action 2
Action 1
cHon (Could be null)

!

Next instruction

Figure 1.6 If-then-else logic.

INTRODUCTION 7

For-loop instruction (declares a counter and control values)
do-loop instruction (declares a condition)

Test Continue

counter or condition

Next instruction

Figure 1.7 Loop.

in Figure 1.7. Loop is actually a variation of if-then-else logic. The common loops
include for-loop and do-loop. The variable used in a loop to control the execution of
the loop is called a counter.

1.4.7 Module

A large program must be divided into modules to make the program easy to debug.
Also, a module can be reused. Here, a module could be a paragraph of instructions,
an independent function, or a class, depending upon the specific language in discus-
sion. An instruction in a module can call another module to accomplish a specific task
carried out by the called module, as illustrated in Figure 1.8. A module has its name,
which is a single user-defined word. The communication between the calling module
and the called module can be implemented by passing the values of special variables
termed arguments or parameters. Argument and parameter are exchangeable terms
in this book.

Module A

Calling instruction
(declares arguments)

A

(1) Call and pass values (3) Pass the value of
of arguments execution result

] Module B

Called Module
(2) — Receive values of arguments
— Execute instructions
— Return execution result

Figure 1.8 Module.

8

PROGRAMMING LANGUAGES FOR MIS

Chapter 1 Exercises

1

921

. Discuss the general model of a computer system. Why does it include second-

ary memory?

. Discuss the role of computer programming languages.
. Discuss how a computer program in a high-level language can be executed by

the computer.

. Discuss the taxonomies of computer programming languages.
. Discuss the components of computing architecture in the Internet environment.
. Provide examples of user-defined words that can be used for programs written

in a procedural programming language.

7. Suppose that there are two variables: x and y. x stores “Beer” and y stores

10.

11.

“Water.” How can you swap the values of the two variables to let x store
“Water” and y store “Beer”?

. Suppose that there are three variables: Purchase, TaxRate, and Payment.

Purchase stores the money value of the purchased merchandise, and
TaxRate stores the state sales tax rate. Write an arithmetic operation to let
Payment store the payment amount after tax.

. Write an if-then-else statement using structured English for the GPA

scheme: Grade “A” = 4.0 points, grade “B” = 3.0 points, grade “C” = 2.0 points,
grade “D” = 1.0 point, and grade “F” = 0 points.

Write a loop statement using structured English to let the computer list 0.3,
0.6,09,1.2,15, ..., 30.

Discuss the advantages of the use of modules in programming.

C++

2.1 Introduction to Function-Oriented and Object-Oriented Programming

In the 1960s and 1970s, the structured program theorem was the main stream of
programming methodology. In structured programming, a computer program can be
expressed by a computable function or a combination of functions. In this book, the
structured program theorem is called function-oriented programming. C is a typical
function-oriented programming language.

Object-oriented programming (OOP) was first discussed in the late 1960s by peo-
ple who were working on the SIMULA language. OOP did not become a popular
method until the 1980s. Recently, the object-oriented philosophy has been extended
to systems development. The computational environments for networking, multime-
dia, cloud computing, and mobile computing all require object-oriented systems. C++
is a typical OOP language.

'This chapter will explain the basic concepts of function-oriented and object-oriented
approaches and provide necessary knowledge of both programming paradigms for stu-
dents. We will use examples to describe the characteristics of the two programming
theorems. Traditionally, C and C++ are two languages, although C++ was migrated
from C. Actually, C and C++ share many syntax features. Recently, C++ has become
nearly a superset of C. In this chapter of C++, we call a typical function-oriented pro-
gram a “C program” and a typical objected-oriented program a “C++ program.” Since
C and C++ languages have been the fundamental computer languages, we believe that
the benefit of knowing C and C++ languages would be far beyond what we initially
desired. Learning C and C++ together is the best way to gain a comparative view of
the two programming theorems. In fact, many commonly used computer program-
ming languages adhere to the concept and the characteristics of C and C++. Many
procedural programming languages have blended features of function-oriented and
object-oriented programs.

2.2 A Tour of C Language

C is a “mid-level” language. Compared to low-level languages (assembly languages),
C programs are easier to write and take fewer instructions. They allow the programmer
to take full advantage of the built-in capacities of the computer. Compared to high-
level languages (e.g., VB.NET), C programs are more compact and efficient; they

10 PROGRAMMING LANGUAGES FOR MIS

provide the programmer with flexibility in writing a set of programmed instructions
at a low level.

Let us examine the style of C program. Suppose we want to display the string
“Hello, World !” on the screen. The C program could be written as follows:

Listing 2.1: An Example of C Program (HelloWorld.cpp)

/* C Programming Example */
#include<iostreams>

using namespace std;

void main ()

{
}

printf ("Hello, world ! \n");

We use a Microsoft Visual Studio computing environment to run this program.
Start Microsoft Visual Studio. After the start page has been loaded, you may simply
close it and start to edit your own program (see Figure 2.1).

Click on [File] on the top menu and then [New Project];you will be allowed
to create a project. In the New Project window, select [Win32] on the left pane
in [Visual C++] and [Win32 Console Application] on the right pane. It
would be a good practice to choose your own folder (e.g., F:\Wang), which will hold
your project and the project name (e.g., C-Project), which will keep your programs
(see Figure 2.2).

Menu Project window
o8 Microsoft Visual Studio]
< Fae Edt View Deteg Team Oata Tooh Test Window belp

JoF - a GAlRI T2 -L 0y w a3y FIRALE 500,

O Obmoes | [y 0 Warnngs | L) 0 Messages

Description Fil line Column Pr

Error message window for debugging

Figure 2.1 Microsoft visual studio environment.

C++

88 MicsoroR Vigual Skadio

< Fie Edit View Detwg Tesm Dawa Tools Test Window Help
I“J‘J i s [T O, W . o 4 . =W ey

New Project
ST oo - soay e

=)

Installed Templates
- ;‘ Wind2 Consode Application Visual Ce+
Vicual Basic e
s Lﬂ:::::‘[l_\:’un E Wind? Project Vial e+
4 Visual Ces
ATL
CLR
General
MEC
Tesat
Wind2
Visual Fe

Type Visval T

A project for creating a 'WindZ conscle
apphcation

Narne: C-Project
Locatian: CAUsersilanguagesiCs s Programsy v | frowse. |
(Esror List Solution Aame C-Project /. Create ditectory for colution
D 0o ‘!
Deseription]

11

Figure 2.2 Create your project.

a8 Microsoft Visual Studio

—|E ®

<) File Edit View Debug]

e j - A DI &l winz2 Appiication Wizar - C-Project

“em | Avplication Setti
lon n
=3 =

D Appleatian typa: Add comiren huader fos far: :
| Application Sattings 1) ndowa applicaton |
@ cgnsoke application
10 gtavic library

Addional opbons:

[# Empty progect

Enror List
Q 0Emors | 1) 0 Wamings

Descriphion

= Frevious | | 1

| Fnish Cancel

Figure 2.3 Set your project.

Click on [OK] and you will see the Win32 Console Application Wizard
window. You choose [Application Setting] on the left pane and select
[Empty Project] (see Figure 2.3). Click on [Finish] and the environment cre-
ates your project in your folder. Right-click on your project name in the [Solution
Explore] pane; you will see a pop-up menu. Select [Add] on the menu and then

[New Item] on the second pop-up menu (see Figure 2.4).

vww allitebooks.conl

http://www.allitebooks.org

12 PROGRAMMING LANGUAGES FOR MIS

o8 C-Project - Microsaft Visual Studio)
<) File Edit ‘iew Project Build Debug Team Dats Tools Test Window Help

[l @k DAR[Z2 (9083 r u aFEaoen |G 0 350 R 30 -

Solution Exploser -3 X

5 Build

Rebuild

Clean

Praject Only »
Brofile Guided Optimization *

Build Customizations..

New item., Carl#Shift+A Add 3
Existing Item.. Cil+D References..
New Filtes Class Wizard.. CHrl+ Snifte X

1 Vhew Class Disgram

% Class.,

Fesource. Set as Startlp Project

-~ . PR

i3 Add Project to Sobrce Cartrl,, et Project Properties -
& o Ctrl+ =
. O Warr i % Pasie Cirisy =
@ oEnors || 0 warmings | (D) 0 Messages . bl Corojer |3
Description F BE kct Dep -
Rescan Solution
3 Open Felderin Windaws Explorer s the project name.

3 Properties AlLsEnter

Figure 2.4 Add your program.

o8 C-Project - Microsoft Visual Studio =il | 22
<} File Edit View Project Build Debug Team Data Toolks Test Window Help

B e S e W
At New Ttern - C-Projact =
3 . = - i %

4 Visual C++ /i
I Type: Visual C+=+
" * i €+ + File {.cpp) WVisual Co+ y .
Creates a file containing C++ source code

Installed Tamplates Sort by [[;d;m_

Etvoxproj. filters

Code Dependendies
Data h | Header File () Visual C++ Files
Rewource . : Rick
web o Midi File (i) Visual Co s las
Unility
S A—— @ Mocide-Definiticn file (def) Visual C++
,ﬂ Campanent Class Visual Cos
Jﬂ Installer Class Wisuad o+

et Properties -

Name: HellcWarld

Q 0Emos | 4

Description

ChJsers\Languages\C++Programs),

C-Project

Figure 2.5 Add HelloWorld.cpp to the project.

Once the [Add New Item] window shows up, you choose [Code] on the left
pane, choose [C++ File (.cpp)] on the central pane, and type the program name,
say, HelloWorld (see Figure 2.5). It is a good practice of programming that you do
not put space in any name of a program and variable. Click on the [Add] button after
entering the program name; you are allowed to edit the program now.

After you edit the program, click on the [Save] icon on the top menu to save the
program. Click on [Build] on the top menu and then click on [Build Project]

C++ 13

Save Build project
o C-Project - Microseft Visual Studio ey
i, Fie Edit View Project Buwild Detwg Team Data Took Test Window Help
IS 828 A2 (-0 -F-T 4 E [R5 ety ST AR E 40

| % maing) m]

printf({"Hello, world ! \n");

Q QErors | g 0 Wammgs (D) D Messages -
Mame] main

i o i Column Proj A
Description Fil Line Column Praject Chusersiswa e

Cre

liemis Saved

0 Errors — to run the program

Figure 2.6 Edit and compile Hel1loWorld.cpp.

0 C-Project - Microsoft Visual Studio =&
«l File Edit View Project Buld Debug Team Data Tools Test Window Help:

(e F-dd s as[AlZ29-0-0-0]r s amA%

HelloWorld.cpn

=] E
T C-Praject
® C-Projectvoproj filters
A Extemal Dependencies
i Header Files
A Resource Files
« & Source Files
%] HelloWoridcpp

(Glubal Scog B Clwindows\syster32\cmad.exe
/ P
#includ
using nf

Slvoid ma

{

prin
}

Figure 2.7 Execution result of HelloWorld.cpp.

on the pop-up menu to compile the program. If your program is correct, you should
have [0 Errors] onthe Error List (see Figure 2.6). Now the program is ready
to execute. You press [Ctrl] and [F5] keys simultaneously, and you will see the
execution window (see Figure 2.7). This environment allows the execution result to
stay on the screen until you press any key to close it.

Note that Microsoft Visual Studio is a project-based environment, and a project can
have only one .cpp program with the main() function.

Strictly speaking, C and C++ are two different programming languages: C is func-
tion oriented and C++ is object oriented. The extension used for the file name of a
C program should be .c, and .cpp is used for C++. Recently, however, many compil-
ers (such as Microsoft Visual Studio, used in this book) do not differentiate the two,
and .cpp can be used for C++ program files as well as C program files.

14 PROGRAMMING LANGUAGES FOR MIS
2.2.1 C and C++ Keyword and User-Defined Word

A C or C++ program is a set of C or C++ words and symbols. C and C++ are case sen-
sitive. For instance, “Word” and “word” are two different words in C and C++. C and
C++ have their reserved words, called keywords, that implement specific features and
may not be used as user-defined words such as variable names and function names.
Commonly used keywords in C and C++ are listed in Appendix 2.1.

To define variables and functions, the programmer must use user-defined words for
those variable names and function names. The programmer can use any words other
than keywords for the user-defined words. However, professional programmers usu-
ally use meaningful user-defined words to make the program easy to read and easy to
maintain. For example, CustomerPayment for a variable of a customer’s payment
seems to be much sounder than xyz for self~documentation.

2.2.2 Comment Statements

A comment statement is delimited by /* and */ or is placed after // (for C++) to
explain the logic of the program for human reading. Comment statements are not
translated by the compiler, and the program editor simply prints the comments for
the programmer.

2.2.3 Preprocessor

A #include statement is a preprocessor, which tells the C or C++ compiler to look
for a header file before processing the program. A header file is a file that allows
the program to use the resources stored in the C and C++ standard library. The
#include statement places the contents of the header file in the program. In the
HelloWorld.cpp example (Listing 2.1), the C++ compiler looks for the header file
named <iostreams for the input/output purpose. You may read manuals to deter-
mine which header files of the standard library should be included in your program.
As beginners, you may simply include <iostreams, <cstrings, and <cmath> in
any cases. Including unnecessary header files does not cause any problems other than
wasting the CPU memory.

2.2.4 Namespace

A large program can be assembled by many pieces of small programs written by many
programmers. Thus, it is inevitable that the same name of a module is used in differ-
ent small programs but represents different identifiers. Namespace is applied to avoid
confusion. A namespace is an abstract container created to hold a logical grouping of
names. Beginners may learn more about namespace later, but simply place the statement
using namespace std; right after the preprocessors, as shown in Listing 2.1.

C++ 15
2.2.5 Structure of a C Program, Functions, and Arguments

'The elemental module of a C program is a function. Listing 2.1 (HelloWorld.cpp)
shows a function named void main(). The function void main() is special.
Execution begins with the function void main(). As explained later in this chapter,
a function has its type depending upon the type of return data. In this example, the
main function does not return any data, and the type is void. Note that this book
uses the Microsoft Visual Studio environment for C and C++ in which the main
tunction could be of void type. However, in some development environments, int
main() is used for the main function, which must include a return statement such as
return(0); at the end of the int main() program, although it does not seem to
make much sense.

Every C or C++ program has one and only one main function. A function specifies
the operations the program will perform and its argument (or parameter). The argu-
ment is placed within the pair of parentheses after the function name and indicates
the data to be passed to the function from another function for processing. In this
case, there is no argument in the void main() function.

There are two types of functions in C. One type is the user-defined function. The
name of a user-defined function must be a user-defined word, except for the main()
function, which is a special user-defined function. We will explain more about user-
defined functions in general later in this chapter. The other type of function is C
standard function. The procedures of those standard functions have been built in the
C and C++ libraries, and the programmer is allowed to use them as instructions.
Clearly, the name of a standard function is a C and C++ keyword. In Listing 2.1,
printf() is a standard function, or an instruction. Note that the concepts of func-
tion and argument (or parameter) presented in this chapter are universally applicable
to all procedural computer languages.

A pair of braces indicates a functional body, a group of instructions. “{” is used to
begin the functional body, while “}” marks the end of the functional body. A func-
tional body (e.g., a loop) can be nested within another functional body. Braces must be
balanced to make a correct structure of the program (see Figure 2.8). The location of
a brace in a line is not important. If a function body is so simple that it has only one
statement, the pair of braces may be omitted.

— — &

|:{ {
} }
} }

Correct structure Incorrect structure

Figure 2.8 Structure of C and C++ programs.

16 PROGRAMMING LANGUAGES FOR MIS

2.2.6 Statements and Semicolon

.77

A complete C or C++ statement (instruction) ends in a semicolon “;”. However, a
semicolon after an end brace “}” might be omitted if the omission causes no ambiguity.

2.2.7 Data Type

'The data type must be declared before a variable is used in the program. Important
types of data include int for integers (e.g., 1, 2, 3), £loat for floating point num-
bers (e.g., 1.0, 3.14, 0.699), double for double precision floating point numbers, and
char for characters (e.g., “a,” “b,” “D”) or strings (e.g., “John Smith”). For example,

int a, b, c; defines the three variables a, b, ¢ as integers

float x; defines variable x as a floating point number
double y; defines variable y as a double precision floating point number
char k; defines variable k as a character

char CustomerName([32]; defines CustomerName as a string variable
that can hold up to 31 characters

We will learn more about strings later in this chapter.
'The data type for a variable can be declared anywhere in the program before the
variable is used for the first time.

2.2.8 Arithmetic Operations

'The symbols of arithmetic operations are similar to those in most other languages—

for example,

x=5; let x equal to 5

x=a+b; let x equal to the value of a plus b
x=a-b; let x equal to the value of a minus b
x=a*b; let x equal to the value of a times b
x=a/b; let x equal to the value of a divided by b
x=pow(a,b); let x equal to the value of a® (power)

There are some special operations in C and C++—for example,

YV=X++; means y=x+1
y=X--; means y=x-1

When making a user-defined word, avoid confusion with the minus sign and a
hyphen. For example, the word Customer-Payment could be interpreted as
“Customer minus Payment.” In this book, we use the so-called camel style for
user-defined words, such as CustomerPayment.

C++ 17
2.2.9 for-Loop

'The for-loop provides a repetition structure handling the details of counter-controlled
repetition. A typical for-loop structure is

for (int [counter]=1; [counter]<=[final value)]; [counter]++)
{ [repetition actions] };

'The following is an example of a for-loop. Note that the line numbers are used for
annotation and are not a part of the program:

Listing 2.2: An Example of a for-Loop (ForLoop.cpp)

1 #include<iostreams

2 using namespace std;

3 void main()

4 {

5 int i;

6 for (i=1; 1<=10; 1i++)

7 printf ("%4d %44 \n", i, i*i);
8

}

In this example, i is the for-loop control variable (counter). (i=1; i<=10; i++)
means that the initial value of i is set to 1, and the for-loop increments i by 1 (i.e., 1++)
each time. The repetition continues as long as i is less than or equal to 10. In other
words, the action (printf, in this case) repeats 10 times. The execution result is

exhibited in Figure 2.9.

o8 Forloop - Microsoft Visual Studio - lal

| File Edit View Project Build Debug Team Data Tools Test Window Help
Pl T~ R DR REZ0 -0 b i X (X3 Detwg e e R e

Forloopcpp ¥

(Global Scope) - -
i ream> +
g namespace std; .

void main()

", 1, 1*); F & ForLoopcpp

[Chywindows)|system3cmd sxe |]

0% = ¢

& OEmors | f 0 Waming]

Description

Figure 2.9 Execution result of ForLoop.cpp.

18 PROGRAMMING LANGUAGES FOR MIS

Corresponds to this

IR,

printf("%4d %4d \n", i, i*i);

Corresponds to this

Prints a 4-digit integer number

Figure 2.10 Argument of command print£().

2.2.10 printf() Statement with Conversion Specifier

In the printf() statement of Listing 2.2, the % symbol is called a conversion speci-
fier that indicates the format of input and output data:

o\°

d print an integer number; for example, $4d is to print an integer number up
to four digits

$f print a floating point number; for example, $4.2f is to print four digits
before the decimal point and two digits after the decimal point

%s print a character string

$u means free format

In the argument, \n means “advance the cursor to the beginning of the next line.”
'The relationship of the argument in the print£() statement is briefly illustrated in
Figure 2.10.

Note that simple commands cout (for screen output) and cin (for keyboard input)
for free format input—output operations are available in C++, as illustrated in C++
examples later in this chapter.

2.2.11 if-Statement

The if-statement is used to choose among alternative courses of actions. The general
syntax of the if-else structure is

if ([condition])
else

laction 11 ; }
laction 2] ; };

{
{

Note that an action in an if-statement can contain another if-statement, as shown
in the example in Listing 2.3 (IfStatement.cpp).

Listing 2.3: An Example (C++) of if-Statement (IfStatement.cpp)

1 #include<iostream>
2 using namespace std;

C++ 19

3 void main ()

4 {
5 double GrossIncome, StateTax, FederalTax;
6 cout << "Input a number for gross income ...\n";
cin >> GrossIncome;
8 if(GrossIncome==0.0)
9 FederalTax=StateTax=0.0;
10 else
11 {
12 if (GrossIncome<=10000.0)
13 {
14 FederalTax=GrossIncome*0.15;
15 StateTax= (GrossIncome-FederalTax) *0.05;
16 }
17 else
18 {
19 FederalTax=GrossIncome*0.25;
20 if ((GrossIncome<=25000.0) && (GrossIncome>10000.0)
21 StateTax= (GrossIncome-FederalTax) *0.08;
22 else
23 StateTax= (GrossIncome-FederalTax) *0.10;
24 }
25 }i

26 printf ("Federal tax is %5.2f \n", FederalTax) ;
27 printf ("State tax is %5.2f \n", StateTax);
28 }

The complex if-statements in Listing 2.3 implement the following decision logic:

CONDITIONS
GROSS INCOME =0 GROSS INCOME = (0,10K] GROSS INCOME = (10K,25K] GROSS INCOME > 25K
Federal tax rate 0 15% 25% 25%
State tax rate 0 5% 8% 10%

Note that, in the if-statement, the double equality (==) is used for testing the
equality condition (see line 8 of Listing 2.3). In the condition expression, operator &&
stands for logical AND of two conditions (see line 20 of Listing 2.3). Logical OR is
represented by operator ||.

Figure 2.11 shows the execution result of IfStatement .cpp given the user’s input.

o8 C-Project - Microsoft Visual Studio = [I
) Fike Edit View Project Build Debug Team Dats Tools Test Window Help

G-l & DR =29 =0 -5 b i 4 "B Devg

IfStatermentopp %

(Glokal Scope) -l % main(}
= #includeciostr

using namespe

B Cwindows\system3Ziemd.exe

§ Extemal Dependencies
4 Header Files

4 Resource Files

= [Source Fites

4 IfStatement.cop

= woid main()
double Gros:

cout << "Iny
cin »» Gros

if(GrossIn

Figure 2.11 Execution result of IfStatement.cpp.

20 PROGRAMMING LANGUAGES FOR MIS

2.2.12 String and String Processing

Data processing more often involves string (a set of characters) processing. A string is
stored as an array of data type char. Suppose we use a 15-character string; we need
to declare an array

char mystring[16];

because one space of the array is reserved for the null character in C and C++ to be
used for “pointer”—a unique feature of C++. Also, since the index of an array begins
with zero, which often causes confusion, one may declare an array two spaces longer
than what is needed. Two major operations are commonly used in string processing.
One is the string copy (strcpy) operation, and the other is the string comparison
(strcmp) operation. The syntax of strcpy is

strcpy ([destination string], [source stringl) ;

'This means to copy the source string to the destination string. Instead of strcpy,
strcpy s is commonly used to avoid buffer overflow, or a warning message will
appear after compiling. The strcmp operation returns a value, which is explained
as follows:

stremp ([string-1], [string-2]);

It returns O if the two strings are identical, 1 if string-1 is greater than string-2, and
-1 if string-1 is less than string-2.

A string can be passed to a function for processing or can be returned from a func-
tion. C and C++ have a unique feature of “pointer,” which is associated with a char
type variable. In this book, we do not discuss pointer in any detail, but use the * sym-
bol before the string argument of the returning function. You will see more examples
of string processing in the program examples later in this chapter.

2.3 Functional Approach

2.3.1 Functional Decomposition

A large complex program must be decomposed into modules for better program
design, easy maintenance, and reuse. There are two major types of decomposition
approaches: the functional approach and the object-oriented approach. Traditional
structured analysis and structured programming follow the functional decomposi-
tion approach, which is adopted in C. In C programming, a module is defined as
a function. Functional decomposition can be illustrated by the diagram shown in
Figure 2.12. The size of a function is usually small (e.g., about 20 lines) to maintain
readability of the program. A good programming practice never produces a large pro-
gram (e.g., hundreds of lines) without dividing it into readable functions.

C++ 21

System
(Program)

Function A Function B o Function X

Function B.1 | « « « | Function B.n

Figure 2.12 Functional decomposition.

2.3.2 A Simple Example of User-Defined Function

To explain how to write user-defined functions in C, we give a simple example in

Listing 2.4. In this program, the main program calls the function that calculates the

average value of two numbers and then prints the result.

Listing 2.4: A Simple Example of Function (SimpleFunction.cpp)

® 3 o Ul

11

12
13
14

15

16
17
18
19
20
21

#include<iostreams>
using namespace std;

/* function CalculateAvg is double type, and has two arguments */
double CalculateAvg(double, double) ;

void main ()

{

double FirstNumber, SecondNumber;
double Average;

FirstNumber=10;
SecondNumber=15;

/* call function CalculateAvg using two arguments */

Average=CalculateAvg (FirstNumber, SecondNumber) ;
printf ("The average of the two numbers is : %f . \n", Average);

1
/* function CalculateAvg() */

double CalculateAvg (double Numberl, double Number2)
{

double Answer; /* Local variable */

Answer= (Numberl + Number2) / 2;

return (Answer) ;

}

We examine how the program in Listing 2.4 works. Line 4 defines the prototype of
the function, named CalculateAvg, used by the main function. CalculateAvg

is the user-defined function name. Lines 5-14 are the main function. Lines 7 and 8

22 PROGRAMMING LANGUAGES FOR MIS

o8 C-Project - Microsoft Visual Studio = =
<1 File Edit WView Project Buld Debsg Team Data Tools Test Window Help
i G- h 2BA =229 -0 -F-03] 0 5 2 W0 0etyg M e e e

simpleFunctionepp 3

& Extemal Dependencies
= Header Fites

* functd 3 Resource Files

[source Hles
double Ca. 2 SimpleFunctien.cpp

douhle

A,

Figure 2.13 Execution result of SimpleFunction.cpp.

define the types of three variables, named FirstNumber, SecondNumber, and
Average, used in this main function. Lines 9 and 10 assign values to FirstNumber
and SecondNumber. Line 12 calls function CalculateAvg, bringing the values
of FirstNumber and SecondNumber to the called function. This line also lets the
value received from CalculateAvg pass back to Average.

Upon the calling, the computer execution sequence turns to line 16, the starting
point of the CalculateAvg function. The computer passes values of FirstNumber
to Numberl and SecondNumber to Number2 and executes lines 17 through 21.
Line 18 defines a local variable for this function. A local variable is only valid within
the function and is not accessible from an external module. Line 19 makes calcula-
tions. Line 20 returns the result value back to the calling function. The computer
execution sequence returns to line 12 (the main function) and passes the result back
to Average in the main function. Line 13 prints the value of Average. The execu-
tion result of this program is shown in Figure 2.13.

2.3.3 Declaration of User-Defined Function

'The declaration statement indicates the prototype of the function that is used in the
present function right after the preprocessor and before the main function. The gen-
eral syntax of declaration statement is

[function type] [function name] (data types of arguments) ;

'The type of the function must be the type of the data returned by the function. For
example, in Listing 2.4 (SimpleFunction.cpp), line 18 defines the data type of
Answer to be double. Answer is returned by the function (line 20). Hence, the
type of this function is double. If there is no return data from the function, the type
of the function is void. Each function can have arguments to receive data passed
from the calling-function.

2.3.4 Calling-Function and Called-Function

The statement that uses a function is termed the calling-function. In the example
of Listing 2.4, the statement CalculateAvg(FirstNumber, SecondNumber)

C++ 23

Calling-Function

Average = | CalculateAvg (FirstNumber, SecondNumber)

(1) Call
FirstNumber — Numberl
SecondNumber — Number2

Called-Function
(3) Return exectution result double CalculateAvg(double Numberl, double Number2) | (2) Execution of function

L return (Answer);

}

Figure 2.14 Function operations.

(line 12) in the main() function is the calling-function. The function used by
the calling-function is termed the called-function. In the example of Listing 2.4, the
CalculateAvg(double Numberl, double Number2) function is the called-
tunction. If a C program has two or more called-functions, the order of the called-
functions in the program is not important because the function names as their
identifiers are used in the program. The calling-function passes the corresponding
value for each of the arguments (or parameters) to the called-function for processing.
If the called-function returns a result to the calling-function, the type of the return
value is the type of the called-function. If there is no return value, the return type
(and thus the type of the function) is void. Note that the order of the arguments in
the calling-function must be the same as the order of the arguments in the called-
tunction, and the data type of the argument in the calling-function must match the
data type of the corresponding argument in the called-function. Figure 2.14 shows
how a user-defined function operates using this example.

2.3.5 Structure Diagram

There are many tools available to assist computer programmers in designing and
documenting programs. One of the tools for function-oriented (or structured) pro-
gramming is structure diagram. A structure diagram is a hierarchy chart on which
the functions are represented as modules and the sequence of the execution of these
modules can be traced from top to bottom and from left to right. The program in
Listing 2.4 can be represented by the structure diagram in Figure 2.15. This example
is simple, and only one function is used by the main function.

2.3.6 An Example of Two Functions

Practically, the programmer must design the program by drawing a diagram first,
and then do programming based on the design “blueprint.” It is not a good practice to
write a program without a clear design of the program.

24 PROGRAMMING LANGUAGES FOR MIS

Main
(Print the average
of two numbers)

CalculateAvg

Figure 2.15 Structure diagram of SimpleFunction.cpp.

Main
— Input WorkHour and WageRate
— Call two functions
— Print the result

CalWage CalTaxHolding

Figure 2.16 Structure diagram of TwoFunctions.cpp.

'This subsection presents an example of two functions. This program calculates the
payroll based on the employee’s work hours, the wage rate, and the tax withholding
formula. One function calculates the wage, and the other function calculates the tax
withholding. The main function allows the user to input the employee’s work hours
and the wage rate. It then calls the two functions and prints out the result. Figure 2.16
shows the structure of the program. The order of execution of the functions in a struc-
ture diagram is “top to bottom, left to right.”

Listing 2.5 exhibits the program. The program is rather straightforward. As
demonstrated by the example, the function-oriented program has advantages. For
example, if the tax withholding formula needs to change, only the function named
CalTaxHolding is relevant to the change. Such a property of a function-oriented
program makes programs easy to debug, easy to maintain, and easy to reuse. Figure 2.17

shows the execution result.

80 TwoFunctions - Microsoft Visual Studio =B ®
) File Edit View Project Build Debug Team Data Tfools Tes: Wlmu_w Help
e dad-dd 8 DAR=2(9-0-E-5[p U 4 LI Debug | e e L R
et]
TwoFunctions.cpg ' m
(Global Scope) a 3
cout << | [input TwoFunctions
cin >> W HIE B TwoFunctionsvexpro filters
cout << h = i@ External Dependencies
cin > W t afte | | & Header Files
[Rescurce Fites
TotalWage & Source Files
TaxHoldin 28 TwoFunctions.cpp
19§ | printf ("

Figure 2.17 Execution result of TwoFunctions.cpp.

C++ 25

Listing 2.5: An Example of Two Functions (TwoFunctions.cpp)

1 #include<iostream>
2 using namespace std;

w

double CalWage (double, double); /* Calculate Wage */
double CalTaxHolding(double); /* Calculate tax holding */

IS

void main ()

{

double WorkHour, WageRate, TotalWage;
double TaxHolding;

o 3 o U

9 cout << "Please input weekly work hours: \n";
10 cin >> WorkHour;
11 cout << "Please input wage rate: \n";
12 cin >> WageRate;

13 TotalWage=CalWage (WorkHour, WageRate) ;

14 TaxHolding=CalTaxHolding (TotalWage) ;

15 printf ("The total wage before tax holding is: $ %4.2f \n", TotalWage) ;

16 printf ("Payment after tax holding is: $ %4.2f \n",
TotalWage-TaxHolding) ;

17 }

18 /* function CalWage () */

19 double CalWage (double Hours, double Rate)
20 {

21 double Total; /* Local variable */

22 Total= Hours * Rate;

23 return(Total) ;

24 }

25 /* function CalTaxHolding() */

26 double CalTaxHolding (double Wage)

27 |

28 double Holding; /* Local variable */

29 if (Wage < 200) { Holding = Wage * 0.1; }
30 else

31 {if (Wage < 300) { Holding = Wage * 0.15; }
32 else { Holding = Wage * 0.2; }

33 };
34 return(Holding) ;
35 }

2.3.7 An Example of Multiple Functions

This subsection presents a C program with multiple functions that prints out a table
of monthly payments given the loan terms and the interest rates. It uses for-loop,
if-statement, and multiple function calls. The structure of the program is shown in
Figure 2.18. The main function calls the four functions from left to right in sequence.
'The two loops indicate the repetition of the execution of the four functions. The outer
loop repeats the entire procedure for a 3-year horizon, and the inner loop repeats the
procedure for the five interest levels. The program is listed in Listing 2.6.

26

PROGRAMMING LANGUAGES FOR MIS

Main

(Monthly loan payment)
— Assign the value of loan
— Print header

Loop for years

Loop for interest rates

GetLoanTerm GetMonthlyIntRate

— Convert year to month || — Convert annual interest

rate to monthly interest rate

CalculateMonthlyPayment
— Calculate monthly payment|

PrintMonthlyPayment
— Print monthly payment

Figure 2.18 Structure diagram of LoanPayment.cpp.

Listing 2.6: C Program with Multiple Functions (LoanPayment.cpp)

/* This is a C program to printout the monthly payment */
/* given a term loan and annual interest rates */

3 #include<iostream>

4 using namespace std;

5 int GetLoanTerm(int) ; /* These four are functions */

6 double GetMonthlyIntRate (double) ;

7 double CalculateMonthlyPayment (double, int, double) ;

8 void PrintMonthlyPayment (int, double, double, int);

9 void main()

10 {

11 int 1, j; /* for loop counters */

12 int LoanTermYears;

13 int LoanTermMonths;

14 double LoanAmount;

15 double AnnuallIntRate;

16 double MonthlyIntRate;

17 double MonthlyPayment;

18 /* Define the loan amount */

19 LoanAmount=1000;

20 /* Print out a heading */

21 printf ("** MONTHLY PAYMENT FOR $%5.0f LOAN ** \n", LoanAmount) ;

22 /* The main function uses two for loops x/

23 for (i=1; i<4; i++) { /* generates 3 years of loan term */

24 LoanTermYears=1i;

25 for (j=1; j<6; j++) { /* generates 5 annual interest rate */

26 AnnualIntRate=0.045+0.005%7;

27 /* Change years to months */

28

LoanTermMonths = GetLoanTerm(LoanTermYears) ;

29
30

31
32
33

34
35

36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64

65
66
67
68

69
70
71
72
73
74

C++ 27

/* Change annual interest rate to monthly interest rate */
MonthlyIntRate = GetMonthlyIntRate (AnnualIntRate) ;

/* Calculate monthly payment */

MonthlyPayment =
CalculateMonthlyPayment (LoanAmount, LoanTermMonths, MonthlyIntRate) ;
/* Printout the table, a line each time */

/* j is used as a flag to control the format */

PrintMonthlyPayment (LoanTermYears,AnnualIntRate,MonthlyPayment,j) ;
}

}

}

/* Four functions are defined below */
/* (1) Change years to months */

int GetLoanTerm(int Years)

{

int Months;

Months = 12 * Years;

return (Months) ;

}

/* (2) Change annual interest rate to monthly interest rate */
double GetMonthlyIntRate (double AnnualRate)
{

double MonthlyRate;

MonthlyRate = AnnualRate / 12;

return (MonthlyRate) ;

}

/* (3) Formula of the calculation of monthly payment */
double CalculateMonthlyPayment (double Loan,
int Term, double InterestRate)
{
double Payment;
Payment =
(Loan*pow ((1+InterestRate) , Term) *InterestRate) /
(pow ((1+InterestRate) ,Term)-1) ;
return (Payment) ;

}

/* (4) printout an item, the Flag controls the format */
void PrintMonthlyPayment (int Term, double InterestRate,
double Pay, int Flag)

if (Flag==1)
{printf(" %2d YEAR %1.4f %5.2f \n", Term, InterestRate, Pay);}
else

{printf (" %$1.4f %5.2f \n", InterestRate, Pay);};

}

/* END of the program */

We examine how the program in Listing 2.6 works. Lines 5-8 define the proto-

types of the four functions used in this program. Lines 9-39 are the main function.

28 PROGRAMMING LANGUAGES FOR MIS

Lines 11-17 define the types of all variables used in this main function. Line 19
assigns a value to LoanAmount. Line 21 prints a heading for the printout on the
screen. Lines 2338 are a for-loop. It generates data for the loan terms up to 3 years.
Lines 25-37 are another for-loop embedded in the first for-loop. This for-loop gen-
erates data for five different interest rate levels. Within this loop, line 26 generates
the annual interest rate. Since this program is to display the monthly payment for a
loan and the loan term is usually expressed in years, we must change the number of
years to the number of months. Line 28 calls the function GetLoanTerm to make
a conversion. The computer execution sequence turns to line 42. After lines 43-47,
the loan term has been changed to months, and the execution sequence returns to
line 30. Line 31 calls the function GetMonthlyInRate to convert the annual inter-
est rate to the monthly interest rate. The execution sequence turns to line 49. After
lines 50-54, the interest rate has been converted into the monthly interest rate, and
the execution sequence returns to line 32 (line 33 continues the instruction). The
instruction of lines 32 and 33 obtains the monthly payment by calling the function
CalculateMonthlyPayment, and the execution sequence jumps to line 56 (line 57
continues the instruction). Lines 58—64 complete the calculation and return the result
to MonthlyPayment (line 32). The execution sequence then turns back to line 36,
which calls the PrintMonthlyPayment function to print the monthly payment.
'The execution sequence turns to line 66 (line 67 continues the instruction). Note that
this function does not return any value and is of the void type. The logic defined in
lines 6972 is to make the printout formatted, corresponding to the for-loops in the
main function. For beginners, it might not be straightforward.

Remember that the computer is under the control of the two embedded loops. The
computer repeats the calculations and printing 15 times. After each time of the itera-
tion, the computer updates the values of the control counters, and new data are gen-
erated and printed on the screen. The order of these functions in the program is not
important. As long as a necessary function is included in the program, the computer
can find it anywhere by searching the function name in accordance with the program
logic. The execution result of this program is shown in Figure 2.19.

Using function-oriented programming languages, one is able to implement a large
software system through functional decomposition. Function-oriented program-
ming has been widely used in the stand-alone computer environment for calculations.
However, in the software engineering field, people have found that the functional
decomposition approach has disadvantages, including:

1. Interfaces between functions are often too complicated.

2. Modules are often difficult to reuse because the partition of functions is very
much an arbitrary one.

3. The separation of data from the processing makes the computation in the
networking environment inefhicient.

C++ 29

e® C-Project - Microsoft Visual Studio

| File Edit View Project Build Debug Team Data Tools Test Window Help
i Je G- dd| % 2AAI=2(9-¢-8-5(p u 2=

il

LoanPayment.cpp X

(Global Si e
(Hiokal Scops) N Ch\windows\system32\cmd.exe

WS IRICEEEN. . MONTHLY PAYMENT FOR $ 1008 LOAN xx

} 1 YEAR ©.0500 85.61

©.8550 85.8Y4

/* (4) printod 0.0600 86.07

-lvoid PrintMont 0.0650 86.30

0.07060 86.53

if(Flag==1) 0.8500 43.87

{printf(" 8.8550 44.10
a1ep 0.0600 44.
{printf(" 0.0650 44,

0.0700 44.7
B.0500 29.
0.0558 30.:
0.0600 30.
0.0650 30.

}
/* END of tH

.0700 30.88
Press any key to continue

100% ~ 4|

Figure 2.19 Execution result of LoanPayment.cpp.

2.4 Object-Oriented Approach

2.4.1 Object and Class

'The elementary unit in the object-oriented programming theorem is object. People

found that decomposition of a system based on objects is more natural than functional

decomposition. Object-oriented programming is effective in the Internet computing

environment or user interface development. Examples of object include:

A customer—physically existing body

An inventory item—physically existing good

A ticket—a document

A game—an event

A button on a screen—a widget representing a program

A set of objects that have common characteristics is defined as a class. Follow the

above examples of object:

CUSTOMER—-class of customers
INVENTORY—class of inventory items
TICKET—class of tickets
GAME—class of games
BUTTON—class of buttons

30 PROGRAMMING LANGUAGES FOR MIS

Actually, OOP is about programming for classes. Precisely, OOP is class-based
programming. Object and class are often used interchangeably when talking about
OOQP, but they are different: An object is an individual entity of its class.

An object encapsulates its data descriptions (or attributes) and the operations that
apply to it. There are two types of operations in the object. An operation that manipu-
lates the encapsulated data in the object is called a method. The operation procedure
that sends messages to other object(s) is called a request for service. Conceptually,
method in OOP is not much different from function in function-oriented program-
ming, and message sending in OOP is not much different from calling-function in
tunction-oriented programming. However, people use different terminology to dif-
ferentiate the programming paradigms. In OOP, the module unit is class, which rep-
resents the set of objects encapsulating the attributes and the operations.

Classes can be organized into hierarchies in which the subclasses inherit the
properties of their superclass(es). For example, the INVENTORY class can have its
subclasses—say, COMPUTER, PRINTER, PAPER, etc. Inheritance provides an
explicit method for identifying and representing common attributes. Suppose we have
already written some programs for the parent class (e.g., INVENTORY); then we do
not need to write similar programs for the child class (subclass) (e.g., COMPUTER) for
the same manipulations (e.g., order processing). This is the importance of inheritance.

To analyze, design, and make documentation of the organizations of object-
oriented programs, system specialists need diagrammatic tools for OOP similar to
structure diagrams for function-oriented programs. The universal modeling language
(UML) is promoted to become a “standard” tool for object-oriented analysis and
design. However, the complete version of UML is hard for beginners to learn. In
this book, we use a simplified version of OOP design diagram symbols, as shown
in Figure 2.20. The figure shows the elementary constructs representing object class,
attributes, method, message sending, and inheritance.

C++ is one of the first OOP languages that have been widely used for software
development. It is typical and standardized, although it is not perfect.

Class Name
Attributes
Class Name Class Name Class Name Methods
Attributes Attributes Attributes é
MessageName,
Methods Methods » Methods Subclass Subclass
Subclass Subclass
Class Message Sending Attributes Attributes
Subclass Subclass
Methods Methods
Inheritance

Figure 2.20 0O0P diagram constructs.

C++ 31

2.4.2 Descriptions of Class

In C++,

the general description of class construction is shown in Listing 2.7 (it is not

a program).

Listing 2.7: A Class Description Formatin C++

class ClassNameIdentifier

{

private: // Data and methods cannot be accessed directly from outside

Data;
Methods;

public: // Data and methods can be accessed directly from outside

}:

Data;
Methods;

Listing 2.8 is an example of a C++ program that describes the class named
INVENTORY. A class is saved as a header file with extension .h, which means a part
of library.

Listing 2.8: The INVENTORY Class Description (inventory.h)

<N o0 Uk W N

0]

11
12
13
14
15

// This code defines the class named INVENTORY
// File inventory.h

class INVENTORY

{

private:

// Attributes of the class

unsigned int InventoryValue;

public:
// A constructor initializes the value to 4

INVENTORY () { InventoryValue=4; };

// Methods of class

void Increment () { InventoryValue++; };
void Decrement () { InventoryValue--; };
unsigned int AccessValue () { return InventoryValue;};

In the simple example of Listing 2.8, line 3 defines the name of the class. This class

has only one attribute, InventoryValue. In the public section, the class is initial-

ized by the constructor, and InventoryValue is assigned 4 in this example (line
10). There are three methods in this class. The first method is named Increment

(line 12) for stocking up. Its process is to increase the value of the object by 1. The sec-

ond method is named Decrement (line 13) for selling. Its process is to decrease the

value by 1. The third method simply returns the value of InventoryValue. Note

vww allitebooks.conl

http://www.allitebooks.org

32 PROGRAMMING LANGUAGES FOR MIS

that a class is ended with “};”—a close bracket plus a semicolon. Several new concepts
are discussed further.

2.4.3 public and private Statements

public means that the attributes (data) or methods in this part are accessible to
objects of any other class, and private means that the attributes (data) or method
in this part is accessible only to objects created from the current class. Commonly,
attributes (data) are placed in private, and methods are placed in public.

2.4.4 Constructor

Constructor is a specific method that always has the same name as the class. A
constructor can have its own operation, as shown in Listing 2.8, or can turn to an
independent method as shown later in other examples. The constructor initializes
the values of the attributes of the object declared. Generally, there are three ways to
implement a constructor:

1. Assign values directly by using assign statements in the program.
2. Accept values from the users (keyboard).
3. Read disk files/database.

To focus on the major features of C++, we do not discuss disk files/database in
this chapter.
2.4.5 Use of Class—Declare Object and Message Sending

Once a class has been defined in a header file, a program (the main program or other
classes) can declare an object of this class using a statement

CLASSNAME ObjectName;
for example,
INVENTORY Iteml;

A class module allows another module to use its individual methods (i.e., not neces-
sarily all of the methods) through the message sending defined by a statement

ObjectName.MethodName;
for example,

Iteml.Increment () ;

Note that the private data and method of an object cannot be accessed or modified
by another object without sending a message.

C++ 33

The program in Listing 2.9 shows how to declare objects and how a program sends a
message to an object and acquires information from the object. Remember that a C++
program has one and only one main program. The main program is stored in a pro-
gram file with extension .cpp.

Listing 2.9: Program Uses the INVENTORY Class (InventoryProcess.cpp)

1 // C++ program that uses the class INVENTORY
2 #include<iostream>

3 #include"inventory.h"

4 using namespace std;

5 void main()

6

7 INVENTORY Iteml; // Iteml is an object of INVENTORY
8 INVENTORY Item2; // Item2 is another object of INVENTORY
9 Iteml.Increment () ; // Messages

10 Item2.Decrement () ;

11 printf ("Inventory item-1's value is %u \n", Iteml.AccessValue());
12 printf ("Inventory item-2's value is %u \n", Item2.AccessValue());
13 }

We examine how the C++ program in Listing 2.9 (InventoryProcess.cpp)
works with the class defined in Listing 2.8 (inventory.h). Line 3 instructs the
computer to find the header file for the class used by this program. When writing a
program to use a defined class, one has to include the file that contains the class. In
this example, the inventory.h header file of the INVENTORY class is included.
Note that this header file is developed by the user (i.e., it is not a standard library
header file), and is cited by using quotation marks. Line 7 declares an object of the
class INVENTORY. It is named Iteml. The computer execution sequence turns to
the INVENTORY class (see Listing 2.8). The program creates an object of the class
and names it Tteml. Conceptually, object Iteml has its own value of the attributes
and can perform operations independently. Upon the creation of the Iteml object,
the computer executes the constructor of the class for this object. In this example, the
initial value of the attribute InventoryValue is set to 4 (see line 10 of Listing 2.8).

'The computer execution sequence returns back to line 8 in Listing 2.9. Similarly
to line 7, line 8 declares another object, named Item2. In this example, the initial
value of the attribute InventoryValue of Item2 is also set to 4. At this point, the
computer holds two objects of the INVENTORY class.

Line 9 in Listing 2.9 is a message sent to object Iteml, requesting to execute the
method Increment. The computer execution sequence turns to line 12 in Listing 2.8
for this object. Remember that the attribute InventoryValue of Iteml is initially
set to 4. After the execution of line 12 in Listing 2.8, InventoryValue of Iteml
becomes 5.

The computer execution sequence returns back to line 10 in Listing 2.9. It sends
a message to object Item2, requesting to execute the method Decrement. The

34 PROGRAMMING LANGUAGES FOR MIS

computer execution sequence turns to line 13 in Listing 2.8 for object Item2. As its
initial value of InventoryValue is 4, InventoryValue of Item2 becomes 3
after the Decrement operation.

Line 11 in Listing 2.9 is to print data on the screen. It contains a message to object
Iteml requesting to execute AccessValue. The computer execution sequence turns
to line 14 in Listing 2.8 and returns InventoryValue of object Iteml to the
message sender for printing. Line 12 in Listing 2.9 does a similar job as line 11, but
requests to execute AccessValue for object Item2 and prints the returned value of
InventoryValue of Item2 on the screen.

The preceding execution process can be depicted in a walkthrough diagram as
shown in Figure 2.21.

To run a C++ program in the Microsoft Visual Studio environment, one needs to
add one main program (.cpp) and all the header files (.h) used by the main program
to the project. The execution result of this example is shown in Figure 2.22.

Main

Create object ltem1
Initialize the value Create object Item2
Inventory Item1 Initialize the value
Inventory Item2

Request for Increment
Item1.Increment

Item2.Decrement()

Request for Decrement

Request for AccessValue Item1.AccessValue

Request for AccessValue

A Item2.AccessValue
InventoryProcess.cpp(Listing 2.9)
Object Object
= Item1 Item2 -
5] (3]

InventoryValue [5] InventoryValue [3]
»| Inventory () 4‘[Inventory () —T =1
| Increment () _ Increment ()

Decrement() Decrement() —— -
- AccessValue() L AccessValue() -

Inventory.h(Listing 2.8)

Figure 2.21 Walk through InventoryProcess.cpp and inventory.h.

00 C++Project - Microsoft Visual Studio = B %
o) hle Edit View Froject Bwld Debug Jeam Data Topls Test Window Help
Bl G- @ 8B Z2(-0 -5 p 0 2 WA Detug) et e R W
E=ImER
inver] B Cwindows\system3Zicmd.exe
(Global Scope) ; '_t !
1 Cre| = il T+ projpeat
#inclu | 3 C+ +Projactvcxproj filters
#inclu Extemnal Dependencies
using
—woid md
{ 4 & Source Files
INVEN & InventoryProcess.cpp
INVEN

Figure 2.22 Execution result of InventoryProcess.cpp and inventory.h.

C++

Main Grocery
Flyer format GroceryNumber
i (AutoNumber) GroceryName
DiscountRate GroceryPrice
InPut DiscountRate Gr oceryOnHand
Print headings GroceryUnit
Generate GroceryNumber InitGrocery
Print flyer using Request for Grocery Data ReturnGroceryName
GroceryName > R ;
. Grocery Discount eturnGroceryPrice
GroceryPrice Y GroceryDiscount
GroceryUnit GrocerylnventoryProcess
DiscountPrice

35

Figure 2.23 0O0P design for the grocery store example.

2.5 Design of Objected-Oriented Program

This section provides an example of application of OOP. In this simple example of

a grocery store, the user is supposed to input a discount rate for the grocery store
and to print out a flyer. As pointed out earlier in this chapter, the programmer must

design the program before working on the program. The OOP design diagram for this

example is shown in Figure 2.23.
‘The main program for this example, named Flyer.cpp, is shown in Listing 2.10(a),
and the class GROCERY (grocery.h) is shown in Listing 2.10(b).

Listing 2.10(a): Example—Flyer.cpp

Bw N

10
11
12
13
14

15
16
17
18
19

20
21

[/ xEx*E C++ program for flyers (file: Flyer.cpp) ****

#include<iostreams>
#include<fstreams>
#include"grocery.h"

using namespace std;

// The header file of the class GROCERY used is included
// The main program is to manipulate the GROCERY objects
// and print a flyer based on the current discount rate

void main ()

{

double DiscountRate; // for discount rate

// The program asks the user to input the current discount rate

cout<<"Please input discount rate ... in percentage. \n";

cin>> DiscountRate;

// Display the headlines of the flyer
printf ("\n \n");

printf (" My Small Grocery Store \n") ;
printf (" Khkkkkkkkhkkkkhkkhkkkhkkkkkkkhkkk*k* \n \n");
printf (" Regular Price Sale Price \n \n");

// Manipulates the available Grocery objects

// In this case, we assume we have only 5 items

36

22
23
24
25
26
27
28
29
30
31
32

PROGRAMMING LANGUAGES FOR MIS

for (int i=1; i<=5; i++) {
GROCERY Grocery;
Grocery.InitGrocery (i) ;
// Notice the spaces for align in the following printf statements

printf ("%s", Grocery.ReturnGroceryName ()) ;

printf ("%4.2f ", Grocery.ReturnGroceryPrice()) ;

printf ("/ %s ", Grocery.ReturnGroceryUnit ()) ;
printf ("%$4.2f ", Grocery.GroceryDiscount (DiscountRate)) ;
printf("/ %s \n", Grocery.ReturnGroceryUnit()) ;

}
}

Listing 2.10(b): Example—grocery.h

P O W W J o0 Ul b W N P

R

12
13
14
15
16
17
18

19
20
21
22

23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

// **** (Class GROCERY definition ***x*
// File is "grocery.h"
class GROCERY

{

private:

// Attributes

int GroceryNumber;
char GroceryName [20] ;
double GroceryPrice;
double GroceryOnHand;
char GroceryUnit [5];
public:

// Constructor

GROCERY ()

{

// Constructor is actually implemented by method
// void InitGrocery (int) depending on AutoNumber

}i

// The following procedure simulates the system to read a

// database/data file which records information of the

// grocery products.

// One may substitute this procedure by using database/files

void InitGrocery (int AutoNumber) {
GroceryNumber=AutoNumber ;

if (GroceryNumber==1)
{ strcpy s(GroceryName, "Milk ") ;
// Add spaces to align all grocery names
GroceryPrice=2.59;
GroceryOnHand=300;
strcpy s (GroceryUnit, "Oz ");
// Add spaces to align all grocery units
i
if (GroceryNumber==2)
{ strcpy s(GroceryName, "Egg "); // Add spaces
GroceryPrice=1.89;
GroceryOnHand=800;
strcpy s (GroceryUnit, "Dzn");
i
if (GroceryNumber==3)
{ strcpy s(GroceryName, "Beef "); // Add spaces

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60

61
62

63
64

65
66
67
68
69
70
71

72
73
74
75
76
77

C++ 37

GroceryPrice=2.99;
GroceryOnHand=150;
strcpy s (GroceryUnit, "Lb "); // Add a space
}i
if (GroceryNumber==4)
{ strcpy s(GroceryName, "Bean " ; // Add spaces
GroceryPrice=1.09;
GroceryOnHand=100;
strcpy s (GroceryUnit, "Lb "); // Add a space
Vi
if (GroceryNumber==5)
{ strcpy s(GroceryName, "Melon " ; // Add spaces
GroceryPrice=1.59;
GroceryOnHand=100;
strcpy s (GroceryUnit, "Pc "); // Add a space

i

// Next are methods of the GROCERY class
// Return Name
char *ReturnGroceryName () {return GroceryName;};

// Return Unit
char *ReturnGroceryUnit () {return GroceryUnit;};

// Return Price
double ReturnGroceryPrice () {return GroceryPrice;};

// Calculate Price after discount
double GroceryDiscount (double DiscountRate) {
double PriceAfterDiscount;
PriceAfterDiscount=
GroceryPrice* (1-DiscountRate*0.01) ;
return (PriceAfterDiscount) ;

}i

// Process Inventory
double GroceryInventoryProcess (double InventoryChange)
{ GroceryOnHand=GroceryOnHand+InventoryChange;
return (GroceryOnHand) ;
}i
i

We examine how the program of the GROCERY class in Listing 2.10(b) works
first, and then we examine how the main program in Listing 2.10(a) uses the class.
Lines 7-11 define attributes of the GROCERY class. Lines 15-18 are the construc-
tor, which is empty in this example. The actual “constructor” is implemented by an

independent method named InitGrocery to initialize the values of attributes for
the created objects of this class. It is specified in line 23 through line 57. As discussed
earlier in this chapter, there are several ways to initialize the object. Typical business

applications use disk data files or databases. In this example, we simplify the problem

and use the program to assign values to these attributes based on the identification

of each object created. Line 24 assigns the GroceryNumber with AutoNumber,

which is brought up by the request message to the object. Lines 25-32 mean that if the

38 PROGRAMMING LANGUAGES FOR MIS

value of GroceryNumber is 1, then a string that starts with “Mi1lk” is assigned to
GroceryName using strcpy s, and so on. Line 27 is a notation to explain that
spaces are added to the string to make all the product names have the same length
for printing. Similarly, lines 33—38 initialize the values of attributes for the object
the value of GroceryNumber, which is 2, and so on. In this small example, the
GROCERY class can have five objects.

In addition to InitGrocery, there are five methods in this class. Line 60 defines
the method char *ReturnGroceryName(). As the type of returned value
(GroceryName) is char, the type of ReturnGroceryName() is char. Here,
the “*” symbol is used for the simplicity in dealing with “pointer,” which is a unique
teature of C and C++. In this book, we do not discuss pointer in any detail, but use
the * symbol in any functions or methods of the char type. The remaining parts of
these methods are all easy to follow. As explained before, the order of these methods
in the program of the class is not important.

We now examine the program in Listing 2.10(a) to understand its operations. Line 4
includes the program file grocery.h for the GROCERY class. Line 11 defines a vari-
able for the discount rate. Lines 13 and 14 allow the user to input the discount rate.
Lines 16—19 print out the heading for the discount flyer. Lines 22-31 define a for-
loop. The for-loop instructs the computer to do five times. For each time, it creates an
object of Grocery (line 23). When the computer encounters line 24, the execution
sequence turns to line 23 of grocery.h in Listing 2.10(b). Line 24 in Listing 2.10(b)
means that the identification of the object (GroceryNumber) is assigned the value
of AutoNumber, which is brought by i, the control counter of the for-loop in the
main program (line 24 in Listing 2.10a).

Return to the main program in Listing 2.10(a). Within the for-loop, line 26 prints
the GroceryName, which is obtained through the message. Line 27 prints the price
before the discount. Line 28 prints the unit. Line 29 prints the price after the dis-
count. The price after discount is obtained through the message that is sent to the
object, and the object calculates the discount price and sends it back (see line 66 through
line 71 in Listing 2.10b). The execution result of the program in Listing 2.10(a) and
Listing 2.10(b) is shown in Figure 2.24.

Note that, in this example, method GroceryInventoryProcess of the
GROCERY class is never used by the main program. In other words, a method built in
a class may not be used by a particular program, but is ready for use. As an exercise, stu-
dents may expand this main program by using this method for inventory processing.

We have learned the differences and relationships between function-oriented and
object-oriented programming approaches, summarized as follows:

1. Using the object-oriented programming approach, a module is a class that
encapsulates data and methods into a single software fragment. In the
tunction-oriented approach, data and functions are separated. Definitions of
object classes are natural, but definitions of functions are more or less artificial.

C++ 39

©® C-Project - Microsoft Visual Studio

<) File Edit View Project Build Debug Team Data Tools Test Window Help
NSl @ 8B RA[=2(9 - -8-5 (b w4 BE 5 Debug

Flyercpp X

'

(Global Scope)

BN C\windows\system32\cmd.exe
printf

Pc A1 / Pe
continue .

pri
pri

; Please input discount rate ... in percentage.
printf 20
B 3
printf
=// Manipu Small Grocer
f// In thi <3
for (ind
GRO(Regular Price Sale Price
Gral
// Notice 2 / 0z ; / 0z
pri 1 / Dzn .32 / Dzn
pri £ / Lb .€ " Lb
ol 1 / Lb 3.76 / Lb
1 &
y

Press any ke

Figure 2.24 Execution result of Flyer.cpp and grocery.h.

2. In OOP, a method is actually a “function” within the class. Within a method,
we still use principles of function-oriented programming. From this view, the
object-oriented paradigm encompasses the function-oriented paradigm. It is
not terribly wrong to set a “function” in the format of “object” for OOP, but
the central concept of OOP is lost in those poor OOP programs.

3. From the view of computer execution, a called-function in function-oriented
programming must be executed from beginning to end of the function mod-
ule, but a message-evoked class might be used partially. In other words, in
object-oriented programming, not every method built in a class must be used
for a particular application. This feature makes the object-oriented programs
flexible for software reuse.

2.6 Connection between Classes—An Example with Two Classes

In this section we present an example with two object classes. This example explains
how classes can be related to each other through their identifiers and attributes
(or keys and foreign keys in the database terminology). The example is supposed to
produce an invoice of the book order upon the user types in an order number. There
are two classes in this program: order.h and book.h. The two classes are related
because an order must include the book number for the ordered book. Thus, the book
identification (book number) plays the bond between the two classes. Using an OOP
design diagram, the program is represented in Figure 2.25. Note the attributes and
the methods in bold in the two classes.

40 PROGRAMMING LANGUAGES FOR MIS

Order
OrderNumber
CustomerName
CustomerAdd
Main BookNumber
- OrderQuantity
Invoice format
OrderID Request for order data InitOrder
p ReturnCustomerName
Input OrderID . —O ReturnCustomerAdd
(do-loop for checking)
BookNumber ReturnBookNumber
Print invoice O:rderID ReturnOrderQuantity
— Request order data
from ORDER
— Request book data Book
from BOOK
— Calculate payment due O— BookNumber
BookNumber ggztgﬁg;
Request for book data
» InitBook
ReturnBookTitle
ReturnBookPrice

Figure 2.25 0OP design for the invoicing example.

As shown in Figure 2.25, the main program obtains information of the order to
be invoiced from the ORDER class, and then it finds the book information pertinent
to this order from the BOOK class. The association between the two classes is the
data linkage BookNumber conveyed by the messages, as shown in the figure by
the shaded data items. This linkage is implemented by the instruction of line 26 in the
main program shown in Listing 2.11(a) (Invoice.cpp).

In this example, a do-loop is used to ensure that the user’s input is correct (see
lines 11 through 15 in Listing 2.11a). The syntax of do-loop is

do { Action } while (condition);

Other parts of this example are rather straightforward. Figure 2.26 shows the execu-
tion result of this example.

Listing 2.11(a): Example of Two Classes—Invoice.cpp

// **** Print invoices for book orders: Invoice.cpp ****
#include<iostreams>

#include<cstrings>

#include"order.h"

#include"book.h"

using namespace std;

o U W N

void main ()

{

9 unsigned int OrderID=0; // for order number

© 3

C++ 41

e® C-Project - Microsoft Visual Studio
&) File Edit View Project Build Debug Team Data Tools Test Window Help

_D‘_J._J'di’|£—d$ A =T29- -5 b0 0 @ =m(E 'E'_Debug v

Invoice.cpp X

(Global Scope)

r
& C\windows\system32\cmd.exe

// This illustrg
do { Please input order ID (Only 2 or 3) for inuoicing...
cout<<"Pleas @

cin>> Order}

cout<< "\n"

} while ((Of

Inuoice

// Display the §

pr%ntf(:\n Customer Name: Liz
Dr?“t{(_ Customer Address: Eastport
printf(" Book Title: Systems Analy

Book Price:

// The following ([SSEVGMETELTSRATE
ORDER Orderj [SETRIET SEIT-H
Order.InitOdq
StisaGas APress any key to continue
printf("Cus}

1AA DL -

Figure 2.26 Execution result of Invoice.cpp with order.h and book.h.

10 // This illustrative example includes only 3 orders

11 do {

12 cout<<"Please input order ID (Only 1 or 2 or 3) for invoicing... \n";
13 cin>> OrderID;

14 cout<< "\n";

15 } while ((OrderID==0) || (OrderID>3));

16 // Display the headings of the invoice

17 printf ("\n \n");
18 printf (" Small Book Store Invoice \n") ;
19 printf (" hohkkkkhkkhhhhkhhkhhkhhkhkkhhhkkhhkkkkkkx \n \n") ;

20 // The following procedure manipulates the ORDER and BOOK objects

21 ORDER Order;

22 Order.InitOrder (OrderID) ;

23 printf ("Customer Name: %s \n", Order.ReturnCustomerName ()) ;
24 printf ("Customer Address: %s \n", Order.ReturnCustomerAdd()) ;
25 BOOK Book;

26 Book.InitBook (Order.ReturnBookNumber()) ;

27 printf ("Book Title: %s \n", Book.ReturnBookTitle()) ;

28 printf ("Book Price: $%4.2f \n", Book.ReturnBookPrice()) ;
29 printf ("Order Quantity: $u \n", Order.ReturnOrderQuantity());
30 printf ("Payment Due: $%4.2f \n \n",

31 Order.ReturnOrderQuantity () *Book .ReturnBookPrice ()) ;

32 }

Listing 2.11(b): Example of Class—order.h

1 // **** (Class ORDER definition: File is "order.h" **%*%*
2 class ORDER

3

PROGRAMMING LANGUAGES FOR MIS

4 private:

5 int OrderNumber ;

6 char CustomerName [20] ;

7 char CustomerAdd [20] ;

8 int BookNumber ;

9 int OrderQuantity;
10 public:
11 ORDER()
12 { // Constructor is void InitOrder (int)
13 };

14 // The following procedure simulates the system to read
15 // database/data file which records data of the orders.
16 void InitOrder (int OrderNo) {

17 OrderNumber=0rderNo;

18 if (OrderNumber==1)

19 { strcpy s(CustomerName, "John ") ;
20 strcpy_s (CustomerAdd, "Westport ") ;
21 BookNumber=1234;

22 OrderQuantity=10;

23 }

24 if (OrderNumber==2)

25 { strcpy s(CustomerName, "Liz ") ;
26 strcpy_s(CustomerAdd, "Eastport ")
27 BookNumber=3456;

28 OrderQuantity=5;

29 }

30 if (OrderNumber==3)
31 { strcpy s(CustomerName, "Bill "

32 strcpy s (CustomerAdd, "Southport ");
33 BookNumber=2345;

34 OrderQuantity=20;

35 }

36}

37 // Return data

38 char *ReturnCustomerName () {return CustomerName;};
39 char *ReturnCustomerAdd() {return CustomerAdd;};
40 int ReturnBookNumber () {return BookNumber;};

41 int ReturnOrderQuantity() {return OrderQuantity;};
a2 };

Listing 2.11(c): Example of Class—book.h

1 // **** Class BOOK definition: File is "book.h" ***x
2 class BOOK

3 {

4 private:

5 int BookNumber ;

6 char BookTitle [30] ;

7 double BookPrice;

8 public:

9 BOOK ()

10 { // Constructor is void InitBook (int)
11 };

C++ 43

12 // The following procedure simulates the system to read a
13 // database/data file which records data of the books.
14 void InitBook (int ANumber) {

15 BookNumber=ANumber;

16 if (BookNumber==1234)

17 { strcpy s(BookTitle, "Programming ") ;

18 BookPrice=49.59;

19 }

20 if (BookNumber==2345)

21 { strcpy s(BookTitle, "Computers ");

22 BookPrice=39.59;

23 }

24 if (BookNumber==3456)

25 { strcpy s(BookTitle, "Systems Analysis ");
26 BookPrice=69.59;

27 }

28 if (BookNumber==4567)

29 { strcpy s (BookTitle, "Databases ");

30 BookPrice=59.59;

31 }

32}

33 // Return data

34 char *ReturnBookTitle() {return BookTitle;};
35 double ReturnBookPrice() {return BookPrice;};
36 };

2.7 An Example of Inheritance

In this section, we present an example of inheritance. This example is a payroll sys-
tem. The system is supposed to produce a payroll advice note. There are two types of
employee: full time and part time. The system determines the wages based on the
work hours for the part-time employees, but based on the flat pay rates for the full-
time employees. Using the OOP design method, the diagram of the payroll example
is shown in Figure 2.27. Listing 2.12(a) is the main program Payroll.cpp, and
Listing 2.12(b) is the class EMPLOYEE (in employee.h), which has two subclasses
named FULLTIMEEMPLOYEE and PARTTIMEEMPLOYEE.

Listing 2.12(a): Example of Inheritance—Payroll.cpp

1 // **** Payroll advice note (file: Payroll.cpp) ****
2 #include<iostreams>

3 #include<cstring>

4 #include"employee.h"

5 using namespace std;

6 void main()

7 {

8 char EmployeeNumber [5] ;

9 double GrossPay, TaxHolding, NetPay;

10 // Ensure a legal employee number
11 do {

44

PROGRAMMING LANGUAGES FOR MIS

Employee
EmployeeNumber
EmployeeName
EmployeeAddress
Main EmployeeCategory
EmployeeNumber InitEmployee
GrossPay, NetPay Recl[uest ﬁ)rt ReturnEm)I;loyeeNumber
TaxHolding cHpoyee @ = ReturnEmployeeName
Payroll advice format ReturnEmployeeAdd
. ReturnEmployeeCategory
do loop to check input
Request for employee data 4
Calculate NetPay based | |
on EmployeeCategory
(full-time or part-time) FullTimeEmployee PartTimeEmployee
Print payroll advice note
FlatPayRate HourlyPayRate
WorkHour
InitFlatPayRate InitHourlyPay
ReturnFlatPayRate ReturnHourlyPayRate
ReturnWorkHour

Figure 2.27 0O0P design for the payroll example.

12
13
14
15
16
17
18

19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37

38
39

cout<<"Please type 3 digit employee ID for payroll advice note:\n";
cin>>EmployeeNumber;

} while ((strcmp (EmployeeNumber, "123")!=0)
&& (strcmp (EmployeeNumber, "234") !=0)
&& (strcmp (EmployeeNumber, "345") !=0)
&& (strcmp (EmployeeNumber, "456") !=0)
&& (strcmp (EmployeeNumber, "567") !=0));

//Create an employee object
EMPLOYEE Employee;
Employee.InitEmployee (EmployeeNumber) ;

//Different payroll schemes for full-time vs. part-time

if (strcmp (Employee.ReturnEmployeeCategory (), "F")==0)

{ FULLTIMEEMPLOYEE FullTimeEmployee;
FullTimeEmployee.InitFlatPayRate (EmployeeNumber) ;
GrossPay=FullTimeEmployee.ReturnFlatPayRate () ;

}

else

{ PARTTIMEEMPLOYEE PartTimeEmployee;
PartTimeEmployee.InitHourlyPay (EmployeeNumber) ;
GrossPay=PartTimeEmployee.ReturnHourlyPayRate () *

PartTimeEmployee.ReturnWorkHour () ;

}i

//Calculate tax holding and net pay

if (GrossPay>=2500) { TaxHolding=GrossPay*0.25; }
else {TaxHolding=GrossPay*0.15; };
NetPay=GrossPay-TaxHolding;

//Print payroll advice note
printf ("\n===

C++ 45

40 printf("\n THE COMPANY PAYROLL ADVICE NOTE ")

41 printf("\n mmmmmm e oo \n") ;

42 printf ("Employee No.: $%s \n", EmployeeNumber) ;

43 printf ("Name: %s \n", Employee.ReturnEmployeeName ()) ;

44 printf ("Address: %s \n", Employee.ReturnEmployeeAdd()) ;

45 printf ("Gross Pay: $%5.2f \n", GrossPay) ;

46 printf ("Tax Holding: $%5.2f \n", TaxHolding) ;

47 printf ("Net Payment: $%5.2f \n", NetPay) ;
48 printf("s==\n") ;
49 }

Listing 2.12(b): Example of Inheritance—employee.h

1 // **** (Class EMPLOYEE and its subclasses:
2 //FULLTIMEEMPLOYEE and PARTTIMEEMPLOYEE - File is "employee.h"
3 class EMPLOYEE
4
5 // protected attributes may be used by subclasses (derived class)
6 protected:
7 char EmployeeNumber [5] ;
8 char EmployeeName [30];
9 char EmployeeAddress[30];
10 char EmployeeCategory[5]; //"F" for full-time, "P" for part-time

11 public:

12 EMPLOYEE ()

13 {

14 // The constructor is defined by void InitEmployee (int) ;
15 I

16 // The following procedure simulates a database or data file
17 void InitEmployee (char *EmpID) {

18 if (strcmp (EmpID, "123")==0)

19 strcpy_ s (EmployeeNumber, "123");

20 strcpy_ s (EmployeeName, "Ann");

21 strcpy_ s (EmployeeAddress, "A Street");
22 strcpy s (EmployeeCategory, "F"); };
23 if (strcmp (EmpID, "234")==0) {

24 strcpy_ s (EmployeeNumber, "234");

25 strcpy s (EmployeeName, "Bill");

26 strcpy_ s (EmployeeAddress, "B Street");
27 strcpy s (EmployeeCategory, "P"); };
28 if (strcmp (EmpID, "345")==0)

29 strcpy_ s (EmployeeNumber, "345");

30 strcpy s (EmployeeName, "Connie");

31 strcpy_s (EmployeeAddress, "C Street");
32 strcpy s (EmployeeCategory, "F"); };
33 if (strcmp (EmpID, "456")==0)

34 strcpy_ s (EmployeeNumber, "456");

35 strcpy_ s (EmployeeName, "Dany") ;

36 strcpy_ s (EmployeeAddress, "D Street");
37 strcpy s (EmployeeCategory, "P"); };
38 if (strcmp (EmpID, "567")==0)

39 strcpy_ s (EmployeeNumber, "567");

40 strcpy_ s (EmployeeName, "Ed");

41 strcpy_ s (EmployeeAddress, "E Street");
42 strcpy s (EmployeeCategory, "F"); };

43 I

PROGRAMMING LANGUAGES FOR MIS

44 // Methods

45 char *ReturnEmployeeNumber () { return EmployeeNumber; };

46 char *ReturnEmployeeName () { return EmployeeName; };

47 char *ReturnEmployeeAdd () { return EmployeeAddress; };

48 char *ReturnEmployeeCategory () { return EmployeeCategory; };
49 };

50 // Subclass FULLTIMEEMPLOYEE. Its superclass is EMPLOYEE
51 class FULLTIMEEMPLOYEE : public EMPLOYEE

52

53 private:

54 double FlatPayRate;
55 public:

56 FULLTIMEEMPLOYEE ()
57 {

58 // The constructor is defined by void InitFullPayRate (char) ;
59 }i

60 // Initialize flat pay rate for full time employee
61 void InitFlatPayRate (char *EmployeeNumber) {

62 if (strcmp (EmployeeNumber, "123")==0) FlatPayRate=2000;
63 if (strcmp (EmployeeNumber, "345")==0) FlatPayRate=2500;
64 if (strcmp (EmployeeNumber, "567")==0) FlatPayRate=3000;
65 };

66 // Methods
67 double ReturnFlatPayRate () { return FlatPayRate; };
68 };

69 // Subclass PARTTIMEEMPLOYEE. Its superclass is EMPLOYEE
70 class PARTTIMEEMPLOYEE : public EMPLOYEE

71 {

72 private:

73 double HourlyPayRate;
74 int WorkHour;

75 public:

76 PARTTIMEEMPLOYEE ()

77 {

78 // The constructor is defined by void InitHourlyPay (char) ;
79 }i

80 void InitHourlyPay (char *EmployeeNumber) {

81 if (strcmp (EmployeeNumber, "234")==0)
82 { HourlyPayRate=12;

83 WorkHour=30; };

84 if (strcmp (EmployeeNumber, "456")==0)
85 { HourlyPayRate=15;

86 WorkHour=20; };

87 }i

88 double ReturnHourlyPayRate() { return HourlyPayRate; };
89 int ReturnWorkHour () { return WorkHour; };

C++ 47

The class in Listing 2.12(b) shows the implementation of inheritance. Line 51,
class FULLTIMEEMPLOYEE : public EMPLOYEE, defines a subclass named
FULLTIMEEMPLOYEE within the EMPLOYEE class This subclass shares all com-
mon attributes and methods for the superclass EMPLOYEE, but has a unique attribute
named FlatPayRate (line 54) and unique methods including InitFlatPayRate
(line 60) and ReturnFlatPayRate (line 67). Similarly, line 70 defines another
subclass named PARTTIMEEMPLOYEE within the EMPLOYEE class. This subclass
also shares the same attributes and methods of class EMPLOYEE, but has unique attri-
butes (HourlyPayRate and WorkHour) and unique methods (InitHourlyPay,
ReturnHourlyPayRate, and ReturnWorkHour).

Other minor features of C++ can also be observed in Listings 2.12(a) and 2.12(b)—

for example,

* To compare strings, strcmp is used many times in the program.

* Because EMPLOYEE has subclasses, its attributes are placed in the pro-
tected section (Listing 2.12(b), line 6).

* When the type of argument is char in a method (or function), the
“*” symbol is used. Line 17 in Listing 2.12(b) is an example (void
InitEmployee(char *EmpID)).

The rest of the program is straightforward. This example makes it clear that the OOP
approach has the advantage of inheritance over the function-oriented programming
approach. In this example, both PARTTIMEEMPLOYEE and FULLTIMEEMPLOYEE
could belong to the class EMPLOYEE and share the common data attributes and oper-
ations. Figure 2.28 shows the execution result of this example.

o8 C-Project - Microsoft Visual Sudio =GBl &
] file Edit View Project Build. Debug Team Data Tops Test Wirdow Help

WS- AR =29 -850 b 4 2 TS Devwg TR A0 8 408

[EERES | N

4 External Dependencies

& Header Files
1 employeen

4 Resource Files

&= Source Files
< Payrollcon

w0 v

@ oEmors || 1 oW

Description

Figure 2.28 Execution result of Payroll.cpp with employee.h.

48 PROGRAMMING LANGUAGES FOR MIS

2.8 Identify Class

In designing OOP, one must identify classes. The general rules for the identification
of classes can be summarized as follows:

1. Physiomorphic class—physically existing entities (e.g., customer, book,
and inventory)

2. Event class—events of routine operations (e.g., purchasing and credit approving)

3. Document class—information entities that enter the business process (e.g., order)
or information entities produced by the business process (e.g., bill)

4. Microclass—in software development, widgets (e.g., button, check-box, etc.)
are microclasses at the user—computer interface level.

An attribute is not a class. For example, “student name” is not a class, but can be
an attribute of a class—say, STUDENT. A generic function is not a class. For example,
“calculation of payment” is not a class, but could be a method of a class—say, BILL.

A beginner of programming is often confused about the difference between object
oriented and function oriented. A simply or poorly designed object-oriented program
can be just one method that is equivalent to a function. For example, one can use the
C++ object-oriented form to rewrite the function CalculateAvg in the C program
in Listing 2.4 and name it as an object—say, AvgCalculator. In principle, any
function-oriented program can be converted into its object-oriented form. Although
such an object-oriented program works well, the concept of object oriented is mis-
understood. In fact, a good object-oriented program is “class oriented”; that is, it is
designed for a class instead of a single object.

2.9 Debugging

Debugging C or C++ programs is a difficult task. After compiling (or building) a
C or C++ program, the compiler will show error or warning messages if the program
has a syntax error or an imperfect statement. A warning message does not prevent
the program from executing but it might cause problems (e.g., loss of information
when converting data types). Any error could be fatal. The programming environ-
ment (e.g., Microsoft Visual Studio) can show the error locations, and, if you click on
an error item in the error message window, the cursor will move to the place in the
program where the error occurs. The following tips are for debugging:

1. Start with the first error in the program to debug.

2. An error message could be vague. For beginners, do not attempt to interpret
the meaning of an error message, but pay attention to the error line itself.

3. An error line identified by the compiler may seem to be correct, but is actually
affected by a real error in a related line. Thus, you need to inspect all lines that
can be related to the indicated error line.

4. Fix one error at a time and recompile the program after making a change.

C++ 49

5. Do not attempt to make the number of errors detected by the compiler smaller
by making irrational changes.

Common syntax errors include:

* Typos or misspelling a word

* Omitting a symbol (e.g., missing one side of brace or parenthesis)
* Violating format

* Using an undefined user-defined variable

The compiler can detect syntax errors. The syntax error-free condition is necessary
for execution, but it does not guarantee the correctives of the logic of the program.
Logical errors or runtime errors often occur when the computer performs wrong
operations, not as predicted. To debug logical errors, one should use data samples to
test the program based on the output of the program:

1. Make the design of modules clear and logical. Do not use a “goto” or any jump
statement (e.g., “return” in the middle of the module) because this tends to
cause bugs and to make debugging difficult.

2. Exercise every possible option to check the computer outputs to see if the pro-
gram does only as expected. Examine all if-statements to follow possible actions.

3. A program might cause a crash. Usually, this can be caused by wrong data
types, wrong calculations (e.g., a number is divided by zero), wrong size of an
array, or wrong data file operations.

4. If a program is “dead,” you must terminate it through interruption. A “dead”
program is more likely caused by an endless loop. You need to examine loop
statements and if-statements thoroughly.

Warning messages often appear after the compiling. For example, if the program
involves data type conversion (e.g., converting a variable from integer to floating), the
compiler will give a warning that some information might be lost during the conversion.

Chapter 2 Exercises

1. Read the following C program and complete it by filling in the blanks:

<iostreams>

using namespace std;
CommissionCalculation () ;
void main ()

i;
double sales;
double i
for (i=1 i<=3 i++)

{

O OV 0 J o0 Ul B W N R

=

50 PROGRAMMING LANGUAGES FOR MIS

11
12
13
14
15
16
17
18
19
20
21
22
23
24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

P O W 0 J 0 Ul b W NR

o

sales=10*1i;

CommissionRate=CommissionCalculation(sales) ;

printf ("The commission rate for sales of %2.2f is : 2.2f. \n",
sales, CommissionRate) ;

}
double CommissionCalculation (double S)
{
Commission;
if (S<=15) {Commission=0.01; };
if ((S>15) && (S<=25)) {Commission=0.02; };
if (S>25) {Commission=0.01; };
(Commission) ;

2. Draw a structure diagram for the preceding C program.
3. Write the expected print result generated by the preceding C program.
4. Read the following C++ program and complete it by filling in the blanks:

#include<iostream>

#include<cstrings>

#include"customer.h"

using namespace std;

//The header file of the class CUSTOMER used is included
void main ()

{
Credit;
printf ("Customer Name Payment Due \n") ;
printf ("\n") ;
Credit=100.0;

for (int i=1; i<=3; i++) {

CUSTOMER Customer;
.ConstCustomer (1) ;
printf ("%s", Customer.ReturnCustomerName ()) ;
printf (" %4 .2f \n", Customer.CustomerDue (Credit)) ;
}
// **** (Class CUSTOMER definition ***%*
// File is "customer.h"
class CUSTOMER
// Class declaration
{
private:
// Attributes
int CustomerNumber;
CustomerName [20] ;
CustomerBalance;
char CustomerPhone [15];

12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41

42
43

44
45

46
47
48
49
50
51
52
53
54

C++ 51

public:

CUSTOMER ()

{

// Constructor is actually implemented by the method
// void ConstCustomer (int)

}i

// Operations
// The following procedure simulates the system to read a
//database/data file which records information of customer
void ConstCustomer (int CN) {
CustomerNumber=CN;
if (CustomerNumber==1)
{ strcpy_ s (CustomerName, "John ") ;
CustomerBalance=-200.05;
strcpy_ s (CustomerPhone, "123 1234 ");
}
if (CustomerNumber==2)
{ strcpy_ s (CustomerName, "Anne ") ;
CustomerBalance=-200;
strcpy_ s (CustomerPhone, "123 2345 ");
}
if (CustomerNumber==3)
{ strcpy s(CustomerName, "Greg ") ;
CustomerBalance=100.78;
strcpy_ s (CustomerPhone, "123 7890 ");

}

// Next are methods of the CUSTOMER class...

{return CustomerName;};

*ReturnCustomerPhone ()
{return CustomerPhone;};

double ReturnCustomerBalance ()
{return CustomerBalance;};

double CustomerDue (double CR) {

if ((CustomerBalance+CR)<0)
{ DueAmount= (CustomerBalance+CR)*-1; }
else
{ DueAmount=0; };
(Duelmount) ;

52

5.

PROGRAMMING LANGUAGES FOR MIS

Draw an object-oriented programming design diagram for the preceding
C++ program.

6. Write the expected print result generated by the preceding C++ program.

7.

Run the C++ programs in Listings 2.10(a) and 2.10(b). Has the
GroceryInventoryProcess method of the GROCERY class ever been
used in this program? Discuss the advantages of object-oriented mod-
ules. Expand the programs in Listings 2.10(a) and 2.10(b) to use the
GroceryInventoryProcess method.

. Develop a C project that contains one main function and two or more func-

tions used by the main function. The document of your project includes:
* Brief description of your project

* A structure diagram for your program

* Source code of your project

* Execution results

. Develop a C++ project that contains one main program and two or more

classes. The document of your project includes:

* Brief description of your project

* An object-oriented programming design diagram for your programs
* Source code of your project

* Execution results

Appendix 2.1: Commonly Used C and C++ Keywords

C and C++ Keywords

auto do if static
break double int struct
case else long typedef
char enum register union
const float return unsigned
continue for short void
default goto signed while
C++ Only Keywords

catch friend public try

class new static_cast typeid
dynamic_cast operator template typename
explicit private this using
false protected true

3

HTML, JAvAScRIPT, aAND CSS

3.1 Introduction to the Internet

The Internet has had a remarkable impact on business and organizations globally.
Using the Internet, people create innovative ways of doing business. This chapter
provides essential knowledge for understanding the process of creating web pages.
The Internet is a network of networks. It is a linkage of smaller networks, each of
which agrees to use the same communication rules (called a protocol) for exchang-
ing information. The Internet protocol is a transmission control protocol/Internet
protocol (TCP/IP). The Internet is a great place to acquire information from across
the world. The user can also acquire computer software or work online. The cloud
computing technology allows the user to access computing resources (hardware and
software) that are delivered as services over the Internet.

To access the Internet, the computer must be linked to the Internet through an
Internet provider (usually a local telephone company). Computers on the Internet play
two types of roles: server and client. A server is a computer that manages its data,
including text, images, video clips, and sound. A server computer is set up by an
individual or organization and it allows other computers to access its data and ser-
vice resources. A client is a PC that can access data and services provided by servers.
On the Internet, the software supporting the client operations is called a browser.
Microsoft Internet Explorer and Mozilla Firefox are the two popular web browsers
of the Windows platform. A browser uses a graphical user interface (GUI), which is
supported by a local operating system—for example, Microsoft Windows.

'The first page encountered when one visits a website is the home page of the site.
From the home page one can explore other web pages and other websites that have
been linked to it. A web home page is accessed by an address. The address of a web
page is referred to as its uniform resource locator (URL), because a URL is a standard
means of consistently locating the web page no matter where it is physically stored on
the Internet. A URL for a web page is defined by the letters http, which stand for
hypertext transfer protocol. The documents available on the Internet make wide use
of hypertext and multimedia. Using hypertext, the user can move from document to
document by following hyperlinks. Hypertext and multimedia are often combined to
create hypermedia. With hypermedia, a user can have an in-depth look at a web page
by clicking on a graphic image and hearing an audio or seeing a video clip, or clicking
on a word and seeing animation.

53

54 PROGRAMMING LANGUAGES FOR MIS

3.2 Creating Web Pages Using HTML

There are many software packages available for creating web pages. Like word pro-
cessing software, these web page authoring tools allow the user to use menus and
tunction buttons to create static web pages, thereby releasing the user from tedious
programming work. In fact, many word processing software packages (e.g., Microsoft
Word) can translate an ordinary document into a web page. However, the basic tool,
the hypertext markup language (HTML), must be used when constructing a dynamic
web page through the use of server-side programming. In addition, HTML allows
the web page developer to better control the appearance of the web page.

HTML is the main markup language for presenting web pages that can be dis-
played in a web browser. To use HTML to create a web page, one needs to follow the
following steps.

1. Create your own folder. Later, save your web pages and other material (such
as images) in this folder.

2. Edit a text of HT'ML for the web page. Notepad in the Accessories group
in the Windows operating system can be used for editing. Open source
Notepad++ is also a good editor. As the web page developer you can write
an HTML text (see an example of HTML in Listing 3.1) and save it to your
folder as a file with extension .html (e.g., MyFirstPage.html). If you
use Notepad, make sure you choose [A1l Files] for [Save as typel
before you save the file.

3. Reopen the HTML text file in a web browser. In Microsoft Internet Explorer,
click [File], [Open] to open the HTML file (e.g., MyFirstPage.html)
you saved. The HT'ML file is read by the browser. The web page described by
the HTML is then displayed on the screen. You can also open a web page
by clicking on the icon of the web page file you saved.

4. Make changes. If modification is required, the original HTML text file
should be called up in the editor (Notepad). After making modifications, you
must save it before reopening it in the web browser.

HTML is written in the form of HTML elements that consist of tags that tell the
browser how to display the data. HTML container tags are used in pairs to indicate
the start and end of a structure. For example:

<TITLE>John Smith's Web Page</TITLE>

The tags <TITLE> and </TITLE> around the text inform the browser that these
words are the title of the web page. An empty tag does not surround any components.
For example, <HR> causes a horizontal line and does not hold text. HTML tags are
not case sensitive.

HTML, JAVASCRIPT, AND CSS 55
A web page has a particular structure as follows:

<HTML >
<HEAD>

</HEAD>
<BODY >

</BODY>
</HTML>

'This chapter introduces the most commonly used HTML tags.

3.3 Simple Container Tags

3.3.1 <HTML>

<HTML> indicates the document written in HTIML. A web page has only one pair of
<HTML> and </HTML> tags.

3.3.2 <HEAD> and <TITLE>

'The <HEAD> and <TITLE> tags are used to identify the title of the document. The
title of the web page will be displayed on the top of the browser window. A web page
has only one pair of <HEAD> and </HEAD> tags and only one pair of <TITLE> and
</TITLE> tags.

3.3.3 <BODY>

<BODY> is used to contain the main portion of an HTML document. The <BODY>
tag can have its attributes. The BGCOLOR attribute controls the background color
of the page. For example, <BODY BGCOLOR=LIGHTBLUE> makes a light blue
background. One can also use a code to define the background color (e.g., <BODY
BGCOLOR=#0FFFF>). The BACKGROUND attribute brings a background image for
the web page. For example, <BODY BACKGROUND="Marble.gif"> makes the
image “Marble.gif” as the background if the image file is stored with the web page
in this example. A web page has only one pair of <BODY> and </BODY> tags.

3.3.4 Comments <\-- ... -->

A comment line is delimited by <!-- and -->. The comments are not displayed by
the browser.

56 PROGRAMMING LANGUAGES FOR MIS

3.3.5 Headings <H1> <H2> ... <H6>

A heading tag indicates a heading. HTML allows six different levels of headings.
<H1> has the biggest font, and <H6> has the smallest font.

3.3.6 <P>

<P> indicates a new paragraph. The <P> tag can have attributes. For example, <P
ALIGN=CENTERS> is used for centering a paragraph.

3.3.7 <I>

The text between <I> and </I> is displayed in italics.

3.3.8 <TABLE>, <TH>, <TR>, and <TD>

<TABLE> defines a table. Its attribute BORDER defines the type of table border. <TH>
defines the table header. <TR> defines a table row. <TD> describes a table data cell.

3.3.9 <A>

The anchor tag <A> creates a link to another website. Its attribute HREF (hypertext
reference) defines the target of the link to the URL. For example,

UMD

means that the user is allowed to access to “http://www.umassd.edu” by clicking on
“UMD” on the web page.

3.3.10 <CENTER>

All text and images within a <CENTER> container will be centered on the page.

3.4 Empty Tags

Major empty tags are presented next.

3.4.1 <HR>

<HR> causes a horizontal rule.

3.4.2

 adds a line break into the text.

HTML, JAVASCRIPT, AND CSS 57
3.4.3

One of the attractions of web pages is the integration of text and images. Web brows-
ers support a wide variety of image formats. The most popular formats are GIF
(.gif files), PNG (.png files), and JPEG (.jpg files). JPEG files have a higher qual-
ity, but GIF files can be “animated” images. An animated GIF file has a series of
images that are displayed in an order to form animation (e.g., rotation and motion).
You can download images from the Internet by right-clicking the image you want to
download and then clicking [Save As] on the displayed menu to save it. Be aware
of copyright protection laws. Images can be inserted into an HTML document by
using the tag. When using this tag, its attributes must be included in the tag.
The ALIGN attribute indicates the position of the image. The SRC attribute defines
the source of the image. The ALT (alternate) attribute contains a text that is displayed
when the browser is unable to display the actual image because of an invalid image file
name. The WIDTH and HEIGHT attributes define the size, in pixels, of the image on
the web page.

Listing 3.1 shows a simple web page example. The line numbers are used for expla-
nation and are not a part of the web page. Clearly, this web page is not well designed
and merely shows the basic features of some tags. Students are encouraged to learn
more about the HTML through further reading the source code of well-designed
web pages by clicking on [View] and [Source] in the browser to design a fancy web
page for their projects.

Listing 3.1: An Example of HTML Code for a Web Page (MyFirstPage.html)

1 <HTML>

2 <HEAD>

3 <TITLE>A Web Page</TITLE>
4 < /HEAD>

5 <BODY BGCOLOR="#FFFFF">
6 <H1>My First Web Page - The Largest Heading</H1>
7 <H6>for practice - The Smallest Heading</H6>

8

9

0

<HR>
This page is not well designed, but just to show how HTML works.
1 <P>
11 I make a table in this paragraph:
12 <TABLE BORDER=2>
13 <TR>
14 <TD>MIS</TD>
15 <TD>Programming</TD>
-13 </TR>
16 <TR>
17 <TD>Marketing</TD>
18 <TD>Advertising</TD>
-16 </TR>
-12 </TABLE>
-10 </P>
19 <P>
20 The real power of Web pages is the ability to create links.

21

58 PROGRAMMING LANGUAGES FOR MIS

22 To learn about <I>links</I>, I create a link to

23 Saint Mary's University</As>.

-19 </P>

24 I can also put images and email addresses on my Web page.

25 <P ALIGN=CENTER>

26 <IMG ALIGN=MIDDLE ALT="An Image" WIDTH=150 HEIGHT=150

27 SRC="http://smu-facweb.smu.ca/~hwang/example.gif">

28 demo@Provider.com
-25 </P>

29 <P ALIGN=RIGHT>

30 Finally, I include icons and links to facebook and twitter...
31

32 <IMG ALT="An Icon" WIDTH=30 HEIGHT=20

-31 SRC="http://smu-facweb.smu.ca/~hwang/facebookicon.png">
33

34 <IMG ALT="An Icon" WIDTH=30 HEIGHT=20

-33 SRC="http://smu-facweb.smu.ca/~hwang/twittericon.png">
-29 </P>

-5 </BODY>

-1 </HTML>

The presentation of the preceding HTML web page in Microsoft Internet Explorer
is shown in Figure 3.1. It is easy to match the presentation of the web page with the
HTML code. Only a few lines need to be explained. Line 28 is included here just for
demonstration of e-mail in a web page, and it may not function even when the e-mail
address is valid because your e-mail system setting does not allow an insecure e-mail
source. Lines 26 and 27 define an image that does not have a hyperlink. Lines 31

==a x|
4| @) commumyFstPagenim P~ & X | @ awes page x u i T
File Edit View Favorites Tools Help

My First Web Page - The Largest Heading

for practice - The Smallest Heading

This page is not well designed, but just to show how HTML works.

I make a table in this paragraph:
MIS [Programming
Marketing | Advertising

The real power of Web pages is the ability to create links.
To learn about links, I create a link to Saint Mary’s University.

I can also pul images and email addresses on my Web page.

demo(@Provider.com

Tabsbit o Dk

Finally, I include icons and links to facebook and twitter... _

Figure 3.1 Presentation of the example web page (MyFirstPage.html).

HTML, JAVASCRIPT, AND CSS 59

through -31 define an image that has a hyperlink, and the anchor (<A>) tags must be
used surrounding the tag.

3.5 Complex Container Tags

3.5.1 <FORM>

One of the most useful features of HTML is FORM. A form allows the user to fill out
data and to send the data from the filled form to the server that hosts the web page.
To process the data sent from the form, the server must run a server-side program, as
discussed in Chapters 6 and 7. This chapter deals with the client side only and assumes
that the form data are sent back to the host server through e-mail. Again, your e-mail
system may refuse to process an insecure e-mail even when the e-mail address is valid.
Listing 3.2 shows an example of form in HTML (Form.htm1l). Also, you may insert
lines 5 through -8 of Listing 3.2 into the HTML document in Listing 3.1 at the line
right before </BODY> (line -5) to merge the two web pages.

Listing 3.2: HTML Code of Form (Form.htm1)

1 <HTML>

2 <HEAD>

3 <TITLE> Form Web Page </TITLE>

-2 </HEAD>

4 <BODY>

5 <H2> SEND YOUR COMMENTS! </H2>

6 Please fill the form and submit it :

7

8 <FORM ACTION = "mailto:MyEmail@auniversity.edu" METHOD=POST>
Your Name:

1 <INPUT TYPE=TEXT NAME="name" SIZE=50>

11 Your Email Address:

12 <INPUT TYPE=TEXT NAME="email" SIZE=50>

13 Your Brief Comments:

14 <TEXTAREA NAME="comm" ROWS=4 COLS=50> </TEXTAREA>

15 <INPUT TYPE=SUBMIT VALUE="Submit the Data">

16 <INPUT TYPE=RESET VALUE="Start Over Again">

-8 </FORM>

-4 </BODY>

-1 </HTML>

9
0

Figure 3.2 shows the presentation of Form.html. Several attributes of FORM and
related tags are explained next.

3.5.1.1 Attribute ACTION 'The attribute ACTION (see line 8 in Listing 3.2) points
to the application that is to capture the data. The value of this attribute could be a
program on the remote server specified by a URL or simply an e-mail address. You

can learn more about form data processing on the server in the chapters on server-side
programming (ASP.NET and PHP) of this book. In this chapter, the simple e-mail

60 PROGRAMMING LANGUAGES FOR MIS

= n:;|;}_ CAHTML\Form.htmi P-0X :l (22 Form Web Page ® L

File Edit View Favorites Tools Help

SEND YOUR COMMENTS!

Please fill the form and submit it :

Your Name:
Your Email Address:

Your Brief Comments:

[Submitthe Data | [Start Over Again |

Figure 3.2 Presentation of Form.html.

approach is used for ACTION. If the e-mail system has been set by the e-mail system
administrator to capture the form data from your exercise web page, the location of
the captured data on the receiver’s side is specified by the e-mail system.

3.5.1.2 Attribute METHOD 'The attribute METHOD instructs the browser to send the
data back to the server. The value of the attribute could be GET or POST. GET has not
been recommended recently. In general cases, POST should be used.

3.5.1.3 <INPUT> and Its Attributes TYPE, NAME, SIZE, and VALUE 'The INPUT tag is
the tool to create input fields on a form. It has attributes such as TYPE, NAME, SIZE,
and VALUE. The TYPE attribute specifies the type of the input field. TEXT is used
for text entry. SUBMIT is used to create a submission command button, and RESET
is used to create a reset command button. The VALUE attributes give the labels on
these command buttons. Other types of input include RADIO (for radio buttons) and
CHECKBOX (for checkboxes). TEXTBOX is a special input type and has its tags (see
line 14 in Listing 3.2).

The NAME attribute of the INPUT tag specifies the name of the input field. The
names can be passed on to the relevant JavaScript programs or the relevant server-
side programs as discussed later in this book. The SIZE attribute specifies the size of
the entry field.

3.5.2 FRAME and FRAMESET

One HTML web page can host several subpages. The space on the screen for a sub-
page is called a frame. Using the <FRAMESET> and <FRAME> tags, the web page
designer sets frames and defines the source of each frame, as shown in an example in
Listing 3.3 (Frame.html).

HTML, JAVASCRIPT, AND CSS 61

Listing 3.3: HTML Code for Setting Frames (Frame.htm1l)

<HTML>

<FRAMESET COLS="25%, *'">
<FRAME SRC="Framel.html">
<FRAME SRC="Frame2.html">

</FRAMESET>

</HTML>

In Listing 3.3, the frames are set in columns. The left column occupies 25% of
the entire screen width. The asterisk sign means that the rest of the screen is allo-
cated to the right column. A frame can be set in rows if attribute ROWS is used in
the tag. Within the <FRAMESET> container, the two frames are defined by using the
<FRAME> tags. The SRC attribute defines the two source web pages for the subpages.
Clearly, you need to have the two subpages (i.e., Framel.html and Frame2.html)
to view the presentation of Frame.html.

Appendix 3.1 lists commonly used HTML tags.

3.6 Publish Web Page

To develop a large web page, it is a good practice to develop smaller web pages and then
to merge them into a large web page. For example, you can combine Listing 3.1 and
Listing 3.2 into a single HTML document by copying lines 5 through -8 of Listing 3.2
and pasting them anywhere in Listing 3.1 after <BODY> and before </BODY>.

To publish a web page on the Internet, you need to acquire a space on a web server.
You may rent a space from a Web hosting provider (e.g., a local telephone company).
Some web hosting providers have their own web standards and guidelines. If the web
is crucial for your business, you can create your own web server by connecting a dedi-
cated computer to the Internet through a service provider (e.g., a telephone company).

3.7 Introduction to JavaScript

A script language is a computer programming language with limited functions, and
it can be embedded in another programming language. JavaScript is a script language
and is directly interspersed with HTML statements. Originally, as HTML does not
possess any computational capacity, JavaScript was used to validate user inputs. Later,
JavaScript was widely used to accomplish a variety of tasks, including client-side cal-
culations, client-side lookup databases, creating image maps, and personalizing docu-
ments before they are displayed. In terms of syntax, JavaScript is very similar to C and
C++. A JavaScript program is contained between the <SCRIPT> and </SCRIPT>
tags in the HTML program, with the exceptions of the event handlers discussed
later. JavaScript is entirely interpreted when the host web page is displayed by the
web browser. JavaScript can be put in either of the two places in an HTML pro-
gram: between <HEAD> and </HEAD> or between <BODY> and </BODY>. However,

62 PROGRAMMING LANGUAGES FOR MIS

placing JavaScript between <HEAD> and </HEAD> could protect the presentation of
the web page if the JavaScript contains errors.

JavaScript is case sensitive. Listing 3.4 is a simple example of a JavaScript program
(FirstJavaScript.html) that displays a line of message in the web page cre-
ated by HTML. For illustration purposes, we use bold font for the part of JavaScript
in the example. Note that if your computer Internet security is set to “high,” your
web browser may block the JavaScript program because the JavaScript program could
access your computer. Then you need to click on the [Allow blocked content]
button to allow the known JavaScript program to run.

Listing 3.4: A Simple JavaScript Example (FirstJavaScript.html)

<HTML>
<HEAD>
<TITLE> Hello World Example of JavaScript </TITLE>
<SCRIPT>
document.write("Hello, World! I am learning JavaScript!")
</SCRIPT>
</HEAD>
<BODY >

<H3>The rest part is the HTML presentation.... </H3>
</BODY>
</HTML>

'The major reason for the use of JavaScript is to inject the capability of data pro-
cessing for the web page on the client-side because HTML is just to present the web
page. Four typical applications of JavaScript in web pages are illustrated in this sec-
tion through examples: image manipulation, FORM input data verification, FORM data
calculation, and cookie processing. Note that JavaScript is a client-side programming
language and JavaScript programs run on the client computer for the data processing.

3.8 Image Manipulation

Listing 3.5 shows a simple example (Image.html) of image manipulation. Assume
that there are two images, named photol.jpg and photo2.jpg, in the JPEG for-
mat. In this example, these two images are placed in the folder named images, which
is stored with the Image.html program in the same folder. This JavaScript program
implements an image rollover task described as follows. After opening the web page,
the user can see the image originally displayed on the web page (i.e., photol.jpg). The
user may click on the image to load the linked web home page. When the user moves
the mouse (or cursor) out from photol.jpg, the image rolls over to photo2.jpg.
When the mouse is moved back to the image, the image rolls over back to the original.
Clearly, to test this program, you must make (or copy) two images in the JPEG format
and place them into the images folder. If you have incorrect image names or you

HTML, JAVASCRIPT, AND CSS 63

have put the images in the wrong place, the program does not function. More details
of the JavaScript related to this example are discussed next.

Listing 3.5: Use JavaScript to Manipulate Images (Image.htm1)

1 <HTML>

2 <HEAD>

3 <TITLE>My Web Page of Image Rollover</TITLE>

-2 </HEAD>

4 <BODY>

5 <A HREF = "http://www.smu.ca"

6 onMouseOver = "document.photo.src = 'images/photol.jpg' "
7 onMouseOut = "document.photo.src = 'images/photo2.jpg' ">
8
-5

-4 </BODY>

-1 </HTML>

3.8.1 Object Classes and Their Methods and Attributes

JavaScript is a mixture of function-oriented and object-oriented paradigms. JavaScript
has many predefined object classes that have been built in the JavaScript inter-
preter. These classes have built-in methods (equivalent to functions). In Listing 3.4
(FirstJavaScript.html), document is an object that means the current web
page, and write is its method. Arguments (or parameters) are placed within the
pair of parentheses after the method name. The JavaScript sentence in Listing 3.4
(FirstJavaScript.html) directs the web page (document) to write a message,
“Hello, World! ...".

In Listing 3.5 (Image.html), document is an object, photo is an image object
within the object document, and src (source) is an attribute of the object photo.
Note that this image name (photo) is defined in the HTML tag <IMG...NAME...>
(see line 8 in Listing 3.5). value is an attribute commonly used in various objects, as
can be seen in the next several examples. A basic hierarchy of predefined object classes
of JavaScript is shown in Figure 3.3.

Window
Par|ent Fralme Document Hisltory Location
hnlge IiLk Form An!hor
Sublmit Racllio Checkbox Telxt Passx!vord

Figure 3.3 A basic hierarchy of object classes of JavaScript.

64 PROGRAMMING LANGUAGES FOR MIS

Very much like C++, the general syntax of JavaScript statements related to the
built-in classes is

[Object Namel . [Sub-object Namel .[...].[Attribute Name or Method
Name ()]

for example, document.write() in Listing 3.4 (FirstJavaScript.html) and
document.photo.src in Listing 3.5 (Image.html).

3.8.2 Ewvent Handler

An event is an action the user performs while visiting the web page. Moving the
mouse and submitting a form are examples of an event. JavaScript deals with events
with commands called event handlers. An event handler is usually applied within an

HTML tag. Commonly used event handlers are

EVENT HANDLER EVENT

onMouseOver The mouse is moved over an object.
onMouseOut The mouse is moved off an object.
onSubmit The user submits a form.

onBlur The user closes the object.
onClick The user clicks the object.
onFocus The object becomes active.
onSelect The content of the object is selected.

onMouseOver and onMouseOut are used in the JavaScript program in Listing 3.5
(Image.html). They instruct the computer to swap the images on the screen in
accordance with the user’s cursor movement. Note that some event handlers may not
work if the web browser is not set properly.

3.9 FORM Input Data Verification

A major utility of JavaScript is to verify the input of the user. Listing 3.6 (VarifyData.

html) exhibits a JavaScript program that verifies the e-mail address typed by the user
when he or she submits a FORM back to the web server. The program assumes that if
the textbox for the e-mail address on the FORM has not been filled or the typed e-mail
address string contains any illegal characters, such as slash (/), comma (,), space,
colon (:), and semicolon (;), then the computer displays an error message and asks the
user to retype the e-mail address.

Listing 3.6: Use JavaScript to Verify Typed E-mail Address (VerifyData.html)

1 <HTML>
2 <HEAD>
3 <TITLE> Verify FORM data </TITLE>

o J o Ul B

9
10
11
12
13
-9
14
-6

15
16
17
18
19
-18

20
21
22
23
24
25
26
27
-24
28
29
-16
-4
-2

30
31
32
33
34
35
36
37
38
39
40
41
42
43
-34
-30
-1

HTML, JAVASCRIPT, AND CSS 65

<SCRIPT>

// Define a function for the action after verify the email address
function VerifyForm(form) {

// If VerifyEmailAdd function returns false (wrong address),

// then signals alert. Move the cursor back and highlight for retyping.

if (!VerifyEmailAdd(form.email.value)) {
alert ("OOPS! Invalid email address. Please input again!™")
form.email. focus ()
form.email.select ()
return false
}
return true // Otherwise, it is OK.
}
// Define a function to verify the email address types on the form

function VerifyEmailAdd (EmailString) {
// If the email address is empty, then gives false
if (EmailString == "") {

return false

// Define five bad characters (incl. space) in illegal email address
BadChars = "/, :;"
// For each of the 5 bad characters (including a space), check the typed
// email address. If a bad character has been found, then gives false
for (i=0; i<=4; i++) {
aBadChar=BadChars.charAt (i)
if (EmailString.indexOf (aBadChar,0) >= 0) {
return false }
}
// Otherwise (i.e., the above two errors are not found), gives true
return true
}
</SCRIPT>
</HEAD>

<BODY >
<H2> SEND YOUR COMMENTS! </H2>
Please fill the form and submit it

<FORM onSubmit="return VerifyForm(this)"
ACTION = "mailto:MyEmail@auniversity.edu" METHOD=POST>
Your Name:

<INPUT TYPE=TEXT NAME="name" SIZE=50>

Your Email Address:

<INPUT TYPE=TEXT NAME="email" SIZE=50>

Your Brief Comments:

<TEXTAREA NAME="comm" ROWS=4 COLS=50> </TEXTAREA>

<INPUT TYPE=SUBMIT VALUE="Submit the Data">
<INPUT TYPE=RESET VALUE="Start Over Again"s>
</FORM>
</BODY>
</HTML>

We examine how VerifyData.html works. The JavaScript program is high-

lighted in bold in Listing 3.6. Line 6 defines a function named VerifyForm. This

function has one argument named form. This means that this function works on

66 PROGRAMMING LANGUAGES FOR MIS

the form assigned by the calling function in line 34. Lines 9 through -9 are an if-
statement. This statement calls another function named VerifyEmailAdd. Line 9
means that if VerifyEmailAdd returns “false,” then the computer signals an alert
(line 10), moves the cursor back to the e-mail textbox, and allows the user to retype
an e-mail address (lines 11 and 12). If the VerifyEmailAdd returns “true,” then
this function returns “true” back to the calling function (line 14). In this example,
“true” represents “no error has been detected” and “false” represents “an error has
been detected.”

Lines 16 through -16 implement the function VerifyEmailAdd that verifies the
e-mail address typed in the e-mail textbox on the FORM. The argument of this func-
tion is EmailString, which is supposed to be replaced by the value of the textbox
named “email” (see the argument in line 9 and its source in line 39). Lines 18 and
19 let the function return “false” if the string is empty. Line 21 defines all illegal
characters for any e-mail address. As an example, five bad characters (including space)
are defined. Lines 24 through -24 are a search procedure to find whether there is any
bad character in the e-mail address string. Since we have defined five bad characters,
the for-loop repeats five times. For each time, one character is selected for checking
(line 25). Lines 26 and 27 instruct the computer that if the selected bad character is
found in EmailString, then return “false.” We will explain line 26 in detail shortly.
If the e-mail string is not empty and contains no bad characters, then the computer
executes line 29 and returns “true” to the calling function.

Now we examine line 34. 'This line means that when FORM is submitted, the com-
puter passes “this” (which means the current form) to the VerifyForm function
and executes the function. In line 34, “return” means the computer keeps calling
the function until the called function returns “true.” In other words, the “return”
keyword in line 34 has a meaning different from that of the “return” keyword in func-
tions (e.g., line 29).

Figure 3.4 shows the execution result when an error in the e-mail address has been
detected and the alert signal generated by the JavaScript program appears on the
screen. You may see other alert signals sent by the Windows operating system or the
e-mail system warning that the insecure e-mail sent by this web page does not go
through, but those alert signals are not part of JavaScript and should be ignored in
learning this example.

3.9.1 Comparison of JavaScript with C and C++

'The syntax of JavaScript is very similar to C and C++. In terms of function declaration
and calling, JavaScript is of the style of C language. On the other hand, JavaScript has
many built-in object classes, and the use of the built-in object classes is of the style of
C++ language. JavaScript is case sensitive. A comment line in a JavaScript program is

placed after // or is delimited by /* and */.

HTML, JAVASCRIPT, AND CSS 67

o ———
b i | 8] CAHTMUWerifyData tmi P = & X || 2 verity FoRM data “L—J

SEND YOUR COMMENTS!

Please fill the form and submit it :

Message from webpage =5
Your Name: 1
John Smith y
Your Email Address: _l_a‘1 O0RS! Invalid email address. Please input again!
John Smith:email com
Your Brief Comments: |
This is just a teat measage... - O ||

 Submitihe Daiz | [Stari Cver dgan__|

Figure 3.4 JavaScript (VerifyData.html) verifies input data.

A few features of JavaScript programs are different from those of C/C++. In
JavaScript, data types of variables do not need to be declared. The type of a variable
is automatically determined based on the assigned value. For instance, in Listing 3.6,
BadChars = "/, :;" means that a string is assigned to the variable BadChars,
and the type of this variable automatically becomes string.

In JavaScript, a semicolon (;) is not needed after a sentence. JavaScript has its key-
words or reserved words—that is, words that are not recommended for user-defined
words (see Appendix 3.2).

In JavaScript, you can use “function” to define a user-defined object class. Compared
with C++, JavaScript is weak in the object-oriented feature.

3.9.2 Function and Calling a Function

Similar to C, a function of JavaScript is a set of JavaScript statements that perform a
specific task. A function can be called by an external JavaScript statement. The format
of a JavaScript function is

function [user-defined function name] (arguments) {
[statements of the functiomn]

}

In Listing 3.6, VerifyEmailAdd is a function name, and EmailString is its
argument. Similarly to C, a JavaScript function can return a value back to the call-
ing function. The value returned can be numerical or Boolean (i.e., “true” or “false”).
There are usually two ways to call a function. One is to call a function within another
function, using

[called function name] (passing arguments)

68 PROGRAMMING LANGUAGES FOR MIS

In Listing 3.6, function VerifyForm calls VerifyEmailAdd by passing the
value of form.email.value to substitute EmailString. The other way of calling
a function is the use of an event handler:

[event handler]="[called function name] (passing arguments)"

In Listing 3.6, onSubmit (line 34) calls function VerifyForm by passing the
argument this. this represents the current active object. In this example, the cur-
rent active object is the FORM. Since the VerifyForm function has argument form
(line 6), this (i.e., the current FORM) substitutes form in VerifyForm in line 6.

3.9.3 String Processing

JavaScript has string (character) object class that has many built-in methods of string
processing. In Listing 3.6, BadChars (line 21) is a string object, and charAt()
(line 25) is the method that identifies the character at the position specified in paren-
theses. In JavaScript, the index of the position of a character in the string starts
with 0. EmailString is also a string object, and indexOf() (line 26) is another
built-in method that finds the location of a substring in the string. EmailString.
indexOf (aBadChar,0) means “to search EmailString from position O to find
the location of the substring specified in aBadChar and to return the value of the
location.” If the search fails to find the substring, the entire string processing returns
value -1.

Strings can be added together. There will be an example of a cookie later in
Listing 3.8, where it is to be observed that

document .cookie = "UserName=" + UserName + ";expires="
+ expireDate.toGMTString ()

This means that the string operation (+) adds the four strings together and hands
over the long string to document.cookie. Note the difference between string and
string name. A specific string is placed in a pair of quotation marks (" "), while a
string name is a variable name and must not have quotation marks.

3.9.4 if-Statement

The format of if-statement of JavaScript is very similar to that of C. In Listing 3.6,
if(IVerifyEmailAdd(form.email.value)) (line 9) means that if the func-
tion VerifyEmailAdd based on form.email.value is not “true” (i.e., it returns
“false”), then the actions specified in the action statements will be executed. Here, the

“Wy»
!

symbol is used to specify the negative condition.

HTML, JAVASCRIPT, AND CSS 69

3.9.5 alert-Statement

alert is used to alert the user with a warning message. It results in an alert window.
The user can click on the [OK] button to close the alert window.

3.10 FORM Data Calculation

In this section, we examine the third typical JavaScript application: client-side calcu-
lation. JavaScript allows the user on the client side to find more information from the
web page based on the input data on the FORM. In this example, the user is allowed to
input the weight of a package for delivery, the days needed for transportation, and the
destination, and then to find the delivery service charge.

Listing 3.7: Use JavaScript to Make Calculation on Client Side (Delivery.html)

1

2 <HEAD>

3 <TITLE>Delivery fee </TITLE>

4 <SCRIPT>

5 function CalPayment (form)

6 { form.Payment.value = "";

7 DeliveryWeight=eval (form.Delivery.value) ;
8 DeliveryDays=eval (form.Days.value) ;

9 if (form.State[0] .checked) {
10 form.Payment.value = DeliveryWeight * DeliveryDays * 1;
-9 }
11 if (form.State[l] .checked) {
12 form.Payment.value = DeliveryWeight * DeliveryDays * 2;
-11 }
-6 }
-4 </SCRIPT»>
-2 </HEAD>
13 <BODY>

14 <H2>Estimate the delivery charge by yourself.</H2>
15 <FORM NAME="PAY">

16 <P> Input the weight of package for the delivery:
17 <INPUT TYPE=TEXT SIZE=10 NAME="Delivery"s> 1lb

-16 </P>

18 <P>Input the days needed for transportation:

19 <INPUT TYPE=TEXT SIZE=10 NAME="Days">

-18 </P>

20 <P>Choose the destination State:</P>

21 <INPUT TYPE=RADIO NAME="State">In State

22 <INPUT TYPE=RADIO NAME="State">Out State

-20
</P>

23 <INPUT TYPE=BUTTON VALUE="Estimate Payment",

24 onClick="CalPayment (PAY) ">

25 <INPUT TYPE=RESET VALUE="Reset">

26 <P>The delivery charge would be: $

27 <INPUT TYPE=TEXT SIZE=10 NAME="Payment">

-26 </P>

70 PROGRAMMING LANGUAGES FOR MIS

-15 </FORM>
-13 </BODY>
-1 </HTML>

In Listing 3.7, lines 15 through -15 implement the FORM. There are three text-
boxes. In the first textbox (line 17), the user inputs the weight of the package. The
second one (line 19) is used for the user to input the days for the delivery. The third
(line 27) is used to display the calculation result of the delivery charge. There are two
radio buttons (lines 21 and 22). The user is expected to select the delivery destination.
The name of the radio buttons is “State” and only one of them can be activated.
Thus, the JavaScript automatically assigns State[0] to the first radio button and
State[1] to the second radio button. Lines 23 and 24 implement a command but-
ton. On clicking this button, the CalPayment () function is called. Note that, as the
FORM has its specific name (PAY) (line 15), the name of the argument of the calling
function is PAY.

Now we examine function CalPayment (), programmed in lines 5 through -6.
Line 5 declares the function name. Line 6 cleans up the textbox for the new answer.
Line 7 captures the weight of the package for the delivery. Note the argument name,
Delivery, in line 7, which is the name of the textbox in line 17. The eval internal
function converts the string in the textbox into a numerical number. Line 8 captures
the days permitted for the delivery. Lines 9 through -9 calculate the delivery charge if
the user selects “In State” using the radio button. Lines 11 through -11 calculate the
delivery charge if the user selects “Out State.”

Figure 3.5 shows an execution result of Delivery.html. It also shows the source
code, which the client can view through clicking [View] and [Source] in the
browser. If the web page owner does not want to reveal the formulas of calculation
to the user, she or he must create a JavaScript program in a protected folder on the
server that contains the formulas and can be called by the web page for execution. For
complex web application tasks such as manipulating data on the server and producing

DeliveryDays=eval(form, Days value);
if(form.State[8].checked) {
form. Payment.value = DeliveryWeight * DeliveryDays * 1;

S I
& _C"\H'IMI_I"Jr‘Iiwry.n'.rr.i . _p - &)(I (2 Delivery fee a 3
Estimate the delivery charge by yourself.
Input the weight of package for the delivery: w0 Ib
Input the days needed for transportation: 3] flefAC/HTML/Delivery.html - Original Source
Fite Edit Format
Choose the destination State: 1| kHTHL>
2| <HEAD>
In State 3| <TILEcLivery foe +/TITLES
& Out State 5| function CalPayment(form}
6 { form.Fayment.value = °%; _
- ; Deliveryieight-eval{form.Delivery, value);
g
10

The delivery charge would be: § &

1

12 if(farm.State[1].checked) {

13 form, Payment ., value = DeliveryWeight * DeliveryDays * 2;
1

16| </SCAIFTS

Figure 3.5 JavaScript (Delivery.html) calculate data on client side.

HTML, JAVASCRIPT, AND CSS 71

dynamic web pages, one must use server-side programs as discussed in the chapters

on ASP.NET and PHP.

3.11 Cookies

In web applications, a cookie is a piece of information that a web page gives to the
user’s browser when the two first meet. It is a small file containing information about
the web server and the web pages visited, and it is stored on the client-side computer
hard disk as a plain text file. On the server side, the remote server saves its part of
the cookie and information about the user. The issue of cookies is controversial, since
people prefer anonymous access of websites. To control the computer’s behavior with
respect to cookies, the web browser can be set to allow or disallow a computer to send
a cookie to the server. Nevertheless, cookies exist, and a JavaScript programmer can
perform many useful tasks with cookies. For instance, a web server can remember the
visitor’s name. A cookie is a text string with the following format:

[Cookie Namel] =[Value of the cookiel;
expires=expirationDateGMT;

path=[URL path];

domain=[site domain]

Only the first two lines are mandatory. The first line defines the cookie’s name and
its value. The second line defines the expiration date (the standard Internet time based
upon Greenwich Mean Time [GMT]) after which the browser will automatically
delete the cookie. The next two lines allow the programmer to store a URL and a
domain value in the cookie.

'The following JavaScript example of cookie manipulations involves two web pages
with HTML and JavaScript programs. The first web page (WriteCookie.html in
Listing 3.8) allows the user to input his or her name. The input user’s name is then
written to a cookie that is in turn stored on the web page’s server. The second web page
(ReadCookie.html in Listing 3.9) uses the cookie created by WriteCookie.html.
In this example, when the user downloads ReadCookie.html (note that it must be
stored with WriteCookie.html on the same server), it will retrieve the user’s name
from the cookie and display it for the user.

Listing 3.8: Use JavaScript to Write Cookie to the Server (WriteCookie.html)

1 <HTML>

2 <HEAD>

3 <TITLE> Write a cookie </TITLE>

4 <SCRIPT>

5 expireDate = new Date

6 expireDate.setTime (expireDate.getTime() + (24*60*60*1000*365))
7 // Write a cookie function

8 function WriteCookie() {

72 PROGRAMMING LANGUAGES FOR MIS

9 UserName = ""
10 // If the cookie is not empty, then retrieve the cookie

11 if (document.cookie != "v) {

12 UserName = document.cookie.split("=") [1]

-11 3}

13 // If the NameBox is not empty then obtain the user name from the box
14 if (document.CustomerForm.NameBox != "") {

15 UserName = document.CustomerForm.NameBox.value

-14 3}

16 // Write cookie

17 document.cookie = "UserName=" + UserName + ";expires="
18 + expireDate.toGMTString()

-8 }

-4 </SCRIPT>

-2 </HEAD>

19 <BODY>

20 <H3>Customer relationships: </H3>

21 <FORM NAME=CustomerForm>

22 Please enter your name for cookie:

23 <INPUT TYPE=TEXT NAME=NameBox onBlur="WriteCookie() ">
-21 </FORM»>

24 <P>After you close the Web page, please visit

25 (ReadCookie.html) to view warmest greetings!

-24 </P>

-19 </BODY>

-1 </HTML>

We examine how WriteCookie.html in Listing 3.8 works. Line 5 defines vari-
able expireDate, which is an object of Date class. The Date class is a built-in
class in the JavaScript library. There are many standard methods of the Date class.
Line 6 uses two of these methods: setTime (to set a new time) and getTime (to
get the current time). In JavaScript, time is measured in milliseconds. Line 6 sets
the expire time 1 year ahead (i.e., 365 days per year, 24 hours per day, 60 minutes per
hour, 60 seconds per minute, and 1,000 milliseconds per second). Line 8 starts the
WriteCookie function. Line 9 defines variable UserName. Lines 11 through -11
retrieve the user name if the cookie for the user is not empty. This ensures that the
user’s name previously stored in the cookie is not lost if the user does not input his
or her name this time. Lines 14 through -14 obtain the user’s name from the textbox
(note the FORM name CustomerForm in line 21 and the textbox name NameBox
in line 23). Lines 17 and 18 generate a string and write the string to the cookie. In
line 23, the onBlur command instructs the computer to write a cookie when the user
leaves the web page.

Listing 3.9 shows the JavaScript program (ReadCookie.html) that retrieves
the cookie.

Listing 3.9: Use JavaScript to Read Cookie from the Server (ReadCookie.html)

<HTML>

<HEAD>

<TITLE> Read a cookie </TITLE>
<SCRIPT>

HTML, JAVASCRIPT, AND CSS 73

if (document.cookie != "w) {
document.write("Hello, " + document.cookie.split("=")[1] + "!")

}

</SCRIPT>

</HEAD>

<BODY >

<H4> Welcome back!</H4>
</BODY>

</HTML>

The lines in bold in Listing 3.9 (ReadCookie.html) are the JavaScript program
that retrieves the user’s name stored in the cookie and displays it on the web page. If
you understand WriteCookie.html in Listing 3.8, this program is straightforward.

The execution results of Listings 3.8 and 3.9 are shown in Figures 3.6 and 3.7.
Again, you need to click on the [Allow blocked content] button in the browser
every time to allow the JavaScript program to run. In addition, a setting of your com-
puter (and the browser) might block the JavaScript programs completely unless the
web page with the JavaScript is reloaded after [Allow blocked content] is
activated. This is because cookies are stored on your computer and the browser does
not allow an unsafe program to access your computer. If you run the program in
Listing 3.8 on your local computer, you can view the cookie in a folder on the C: drive,

' ;}' CAHTML\WriteCookie html p - C| X || j Write a cookie L_J

File Edit View Favorites Tools Help

Customer relationships:
Please enter your name for cookie: John SmitH

After you close the Web page, please visit (ReadCookie html) to view warmest greetings!

Figure 3.6 JavaScript (WriteCookie.html) writes cookie.

\ s]| & | CA\HTML\ReadCookie.html ,O v O X ll \‘3 Read a cookie X L

File Edit View Favorites Tools Help

Hello, John Smith!

Welcome back!

Figure 3.7 JavaScript (ReadCookie.html) reads cookie.

74 PROGRAMMING LANGUAGES FOR MIS

depending on the setting of the browser. Various JavaScript statements used in the
previous examples are further explained next.

3.12 Miscellaneous JavaScript Statements

3.12.1 new Statement

JavaScript is a multiparadigm language, supporting object-oriented and function-
oriented programming styles. It uses function as modules and uses objects of
the built-in classes. new statement creates a new object of the specified class. In
Listing 3.8, line 5, Date is a JavaScript predefined object class, and expireDate
is a user-defined new object of Date. Its data type is time string.

3.12.2 Miscellaneous Functions and Methods

JavaScript provides a variety of methods of built-in classes. In Listing 3.6
(VerifyData.html), line 11, focus() is a method of the textbox class that moves
the cursor to the textbox. In line 12, select() is also a method of the textbox class
that highlights the textbox.

In lines 7 and 8 of Listing 3.7 (Delivery.html), the eval() function evaluates
the string in the input textbox and converts it to a numerical value. For instance, if you
input “200+300” in the Delivery textbox, DeliveryWeight ends up with 500.
'This feature is powerful.

In line 6 of Listing 3.8 (WriteCookie.html), getTime() is to get the cur-
rent time from the time string. setTime() is to set a time string. In line 18,
toGMTString() is a method of Date that converts the expireDate into the
standard Internet time string.

In line 12 of Listing 3.8 (WriteCookie.html), split("=") is a method

”»

of cookie. It splits a cookie record into fields based on the “=” symbol in the
cookie (see the cookie format discussed right before Listing 3.8). After split-
ting the cookie, [0] represents the first field of the cookie or the cookie’s name
(ie., "UserName" in WriteCookie.html), and [1] represents the second field
of the cookie or the value of the cookie (i.e., the string typed in the textbox in
WriteCookie.html). The operation of line 12, document.cookie.split("=")
[1], finds the value of the cookie. The operation of line 17, document.cookie =

..., actually writes the cookie to the client’s disk and to the server.

3.13 Cascading Style Sheet

Cascading style sheet (CSS) is a language for expressing the presentation of structured
documents in HTML and other markup languages. CSS is often used with HTML

HTML, JAVASCRIPT, AND CSS 75

to describe the presentation semantics (i.e., the appearance and formatting) of web
pages. The use of CSS offers several advantages:

1. CSS enables the separation of web page contents expressed in HTML from
document presentation.

2. CSS is able to change the default settings of the web browser for displaying
HTML documents.

3. CSS supports rich instructions of typographical styles that are not supported
by HTML.

'The main criticism of CSS is a lack of uniform support by different web browsers.

'There are three methods to embed CSS codes in HTML: inline CSS, internal
CSS, and external CSS. For inline CSS, the CSS code is specified for and applied to a
single HTML tag. For internal CSS, the CSS code is specified in the head section of
an HTML document and allows the same formatting style to be applied to multiple
HTML tags within the web page. For external CSS, the CSS code is stored in a sepa-
rate text file that can be linked by an HTML document. Like internal CSS, external
CSS also allows the same formatting style to be applied to multiple HTML tags in
the web page.

3.13.1 Inline CSS

To specify inline CSS, the style attribute must be added to the HTML tag as
follows:

<tag-name style="propertyl:valuel; property2:value2;
propertyN:valueN; ">

where the value of the style attribute contains the CSS properties that specified the
formatting style associated with the HTML tag. Listing 3.10 shows an example of
the CSS code of style.

Listing 3.10: Example of CSS Code of style

<p style="background-color:#FF0000; color:#FFFFO0O;
font-family:'Times New Roman', Arial, Courier;
font-size:xx-large; ">

<p style="background-color:#FF0000; color:#FFFFO0O0;
font-family:'Times New Roman'; font-size:20pt;">

In the example of Listing 3.10, the CSS property “color” specifies the text color,
and the CSS property “background-color” specifies the background color. The
color code #FF0000 represents the red color, and #FFFF00 represents the yellow color.

76 PROGRAMMING LANGUAGES FOR MIS

You can find the color code from the Internet. The CSS property “font-family”
specifies the list of fonts. A font is a collection of similar characters with a specific
design. For the list of fonts specified as the value of the CSS “font-family” prop-
erty, the browser uses the first font in the list if it supports it. If the browser does not
support any of the specified fonts, the browser will use its default font. If the font
name has more than one word, it should be delimited by single quotes. The CSS
property “font-size” specifies the size of the text in terms of either an absolute
value or a relative value. Absolute values of the font size are measured in points (pt)
or pixels (px), such as 20pt and 20px. A point is 1/72 of an inch, and a pixel is a
tiny dot on the monitor screen that displays a single color. Relative values of the font

» « » «

size include “xx-small,” “x-small,” “small,” “medium,” “large,” “x-large,”’

“xx-large,” etc.

To apply inline CSS to a group of HTML tags, the HT ML tags should be nested
inside <div>and </div> orinside and . Both <div> and
are HTML tags for grouping multiple HTML tags together without signifying spe-
cific meaning. The inline CSS specified in <div> or will be applied to all
HTML tags inside <div> and </div> or inside and . Listing 3.11
shows simple examples of <div> and <spans.

Listing 3.11: Example of CSS Code with <div> and

<html>

<div style="background-color:#FF8000; color:#FFFFFF;
font-family:'Microsoft Sans Serif'; font-size:24pt;">

<hls> div: </hl>

<p> Style for an entire section of the page. </p>

<p> The same format style is applied to the entire block. </p>
<p> (The block is ended here...) </p>

</div>

<span style="background-color:#FF8000; color:#FFFFFF;
font-family: 'Microsoft Sans Serif'; font-size:20pt;">
<h2> span: </h2>

<p> Style for surrounding text. </p>

<p> The same formatting style is applied to lines.</p>
<p> (These lines are highlighted...) </p>

</html>

The only difference between <div> and <spans> is that <div> divides the web
page into sections with the same formatting styles, while highlights text
lines. Figure 3.8 is the presentation of Listing 3.11 and shows the difference between
<div> and <spans.

3.13.2 Internal CSS

Internal CSS is specified in the head section of an HTML document with the syntax

HTML, JAVASCRIPT, AND CSS 77

NS -
I v-)l'{.-:ﬂg' CACSS\Listing3-11htrl P-GX || (22 eACsSilisting3-11h. %
File Edit View Favorites Tools Help

tyle for an entire section of the page.

he same format style is applied to the entire block.

The block is ended here...
span:]

Figure 3.8 Presentation of CSS with <div> and .

<head>
<style type="text/css">
selectorl {propertyl:valuel; property2:value2;
propertyN:valueN; }
selector2 {...}

</style>
</heads>

where a selector refers to the HTML tags to which the style will be applied. If the
value of a property has more than one word, it should be delimited by double quotes,
such as "Times New Roman'".

There are five different types of selectors defined in CSS:

1. Simple selector—corresponding to a single HTML tag, such as

<head>
<style type=="text/css">
hl {font-size: 30pt;}
h2 {font-size: 20pt;}
</style>
</head>

This CSS code means that all <h1> tags in the HTML document will use the
font size of 30 points and all <h2> tags in the HTML document will use
the font size of 20 points, regardless of the default settings of the web browser.

2. Contextual selector—corresponding to a sequence of HTML tags, such as

<head>

<style type=="text/css">

hl b {color:#FF0000; font-size: 20pt;}
</style>

</head>

78

PROGRAMMING LANGUAGES FOR MIS

This CSS code means that all texts within <hl> and </hl>
throughout the HTML document will use the font size of 20 points and
appear in the red color.

. Class selector—specifying different classes for a single HT'ML tag, such as

<head>
<style type=="text/css">
p.normal {font-size:20pt;}
p.warning {font-size: 24pt; color: #FF0000;}
</style>
</head>

This CSS code implies that there are two different classes of the <p> tag in
the HTML document: "normal" and "warning". To refer to a particular
class in the HTML document, the <p> tag should include a “class” attri-
bute. For example,

<p class="normal"> texts with the 20pt font size </p>
<p class="warning"> texts with the 24pt font size and the red
color </p>

. Generic class selector—specifying classes for multiple HT ML tags, such as

<head>
<style type=="text/css">
.warning {color:#FF0000;}
</style>
</head>

This CSS code implies that any HTML tag in the web page can refer to the
class "warning" in order to change the associated texts to the red color.
For example,

<p class="warning"> a paragraph in the red color</p>
<hl class="warning">a heading in the red color </hl>

. Pseudo class selector—specifying special mouse effects to other types of selec-

tors; the syntax is

selector:pseudo-class {propertyl:valuel; property2:value2;
propertyN:valueN; }

Currently, most pseudo classes defined in CSS, except for the “hover” pseudo
class, are not uniformly supported by different browsers. The hover
pseudo class specifies the formatting style to be applied when the mouse
pointer hovers over a particular selector. For example,

<head>
<style type=="text/css">
a:hover {background-color:#FF0000; }

HTML, JAVASCRIPT, AND CSS 79

input:hover {background-color:#FFFF00; }
hl b:hover{background-color:#FF0000; }
p.important:hover{background-color:#FFFF00; }
.warning:hover {background-color:#FF0000;}
</style>
</head>

implies that the background will change when the mouse pointer hovers over
any link defined by the <a> tag, any textbox defined by the <input> tag,
the texts within <hl> and </hl>, any paragraph defined by the
<p class="important"> tag,and any HTML tags of the class "warning"
such as <p class="warning"s and <hl class="warning"s.

Listing 3.12 is an example of the hover pseudo class. Note that <!DOCTYPE>
must be declared for the hover pseudo class to work in Microsoft Internet Explorer.

Listing 3.12: Example of CSS Code with hover Pseudo Class

<!DOCTYPE htmls>
<htmls>
<head><title>CSS-hover Example</title>
<style type="text/css">
a:hover {background-color:#FFFFO00;}
a.important:hover {background-color:#FF0000;color:#0000FF;}
input:hover {background-color:#FFFF00;}
hl b:hover{background-color:#FF0000; }
</style>
</heads>
<body>
<hl>Pseudo class selector</hl>
<form action="mailto:demo@Provider.com" method="post">
University of Massachusetts
Dartmouth

Saint Mary's
University

<input type="text">
</form></body></html>

3.13.3 External CSS

The syntax for external CSS is the same as that for internal CSS. External CSS allows
multiple HTML documents to share the same CSS codes. For external CSS, the actual
CSS codes between the <style> and </style> tags for internal CSS are stored in a
separate text file, which normally has a file name with extension .css. For example, the
following CSS code can be stored in a text file named “FileName.css”™

p.normal {font-size:20pt;}
p.warning {font-size: 24pt; color: #FF0000;}

For any HTML document to use the CSS code, it should link to this text file in
the head section as follows:

80 PROGRAMMING LANGUAGES FOR MIS

<head>
<link rel="stylesheet" href="FileName.css">
</head>

3.14 Debugging Source Code of Web Pages

Web page browsers are more tolerant of errors in the HTML and JavaScript programs
than other language compilers or interpreters. Usually, the browser can continue to
interpret and execute the HTML and JavaScript programs when an error is encoun-
tered. In many cases of error, the browser dumps compromised results on the web
page (e.g., a broken icon for an image) without fatal interruptions.

When designing a large web page, it is a good practice to develop a small HTML
document for each of the components of the web page. Test all the small components
and then assemble them into a large web page.

A browser can provide built-in debugger functions. Common errors in HTML and
JavaScript programming include:

* Misspelling words

* Missing a tag

* Onmitting symbols

* Violation of formats

* Incorrect URL

* Incorrect folders for images

* Incorrect image format (JPG or GIF)

After debugging a web page written in HTML, JavaScript, and CSS, one should
reopen the web page file in the browser, instead of clicking on the web page icon or
clicking on the “refresh” button, to discharge the old programs completely.

Chapter 3 Exercises

1. Access an interesting web page on the Internet, and view the HTML source
code.

2. Create a web page by using the HTML language. Include tags that are not
mentioned in the book examples.

3. Create an electronic document by using a software package (e.g., Microsoft
Word) and then convert it into an HTML document. View the HTML code
and give comments.

4. Fill blanks in the following HTML and JavaScript program. Sketch the web

page and discuss how this page works:
<HTML>

3 <TITLE> Web Page with JavaScript </TITLE>

0 J O Ul o

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

HTML, JAVASCRIPT, AND CSS 81

<SCRIPT>
// Define a function to verify the name types on the form
function VerifyName (NameString) {
// If the name is empty, then give false
if == nm)
return false
}
// Define 7 bad characters which are illegal in names
IllegalChar = "/, :;[1"
// For each of the 7 bad characters, check the typed name
// If a bad character has been found, then give false
for (i=0; i<= ;o1++) {
aBadChar= .charAt (1)
if | .indexOf (aBadChar, 0) >= 0) {
return false

}

}

// Otherwise (the above two errors are not found), give true
return

}

// Define a function for the action after verify the name
function SubmitForm () |

// If the verification returns false based on typed address
// then signals alert

// and move the cursor back to the name box and highlight it
// and return true (move on to the next task)

if (!VerifyName (form. .value)) {
alert ("Ha-ha! Invalid name. Please input again!")
form. .focus ()
.name. ()
false

}

return true

</HEAD>

<H3> SEND YOUR INFORMATION! </H3>

Please fill the form and submit it

<FORM onSubmit="return (this)"

ACTION="mailto:MyEmail@U.edu" METHOD=POSTs>

Your Name:

<INPUT TYPE=TEXT NAME="name" SIZE=50>

Your Address:

<INPUT TYPE=TEXT ="address" SIZE=50>

Your Request:

<INPUT =TEXT NAME="request" =100>

vww allitebooks.conl

http://www.allitebooks.org

82 PROGRAMMING LANGUAGES FOR MIS

52 <INPUT TYPE=SUBMIT ="Submit Information">
53 <INPUT TYPE=RESET VALUE="Reset the Form">
54

55 </BODY>
56 </HTML>

5. Fill blanks in the following HTML and JavaScript program. Sketch the web

page and discuss how this page works:

1 <HTML>

2 <HEAD>

3 <TITLE> Housing Expenses </TITLE>

4

5 function (form)

6 { form.HousingExpense. = nn,

7 Months=eval (form. .value) ;

8 Meals=eval (form.MealsPerDay.value) ;

9 if (form. [0] .checked) {

10 form.HousingExpense. = Months * (1000 + Meals * 300) ;
11

12 if (form. [1] .checked) {

13 form.HousingExpense. = Months * (800 + Meals * 300);
14 }

15 }

16 </SCRIPT>

17

18 <BODY>

19 <H2>Estimate the Housing Expenses.</H2>
20 < NAME="Housing" >
21 <P>How many months do you want to rent?
22 <INPUT TYPE=TEXT SIZE=10 NAME="Duration"> Months

23 </P>
24 <P>How many meals per day would you order?
25 <INPUT TYPE=TEXT SIZE=10 NAME="MealsPerDay">

26 </P>
27 <P>Choose the type of dorm:</P>
28 <INPUT TYPE=RADIO NAME="Type">Single

29 <INPUT TYPE=RADIO NAME="Type">Shared
</P>
30 <INPUT TYPE=BUTTON VALUE="Estimate Housing Expenses",
31 onClick="HousingEstimation () ">
32 <INPUT TYPE=RESET VALUE="Reset">
33 <P>The total expenses would be: 3
34 <INPUT TYPE=TEXT SIZE=10 NAME="HousingExpense">

35 </P>

36 </FORM>
37 </BODY>
38 </HTML>

6

HTML, JAVASCRIPT, AND CSS 83

. Use a web browser to open the completed web page in question 5. The user
types two numbers in the first two textboxes (12 and 3, respectively), clicks
on the first radio button, and clicks on the first command button. What is the
calculation result and where will it show up?

7. Fill blanks in the following HTML and JavaScript program. Discuss how to

W 3 0 Ul W N

[\SIN SR \O R \O R SR \C R SR T i e s e e B e T e e)
O U1 W N E O WOWwWJOo0 Ul d WDNPRE OV

use this program.

<HTML>
<HEAD>
<TITLE> Set a cookie based on a form

expireDate = new Date
expireDate.setTime (expireDate.getTime () + (24*60*60*1000*365))
StudentAddress = ""

if (document.cookie != "") {
StudentAddress = document.cookie.split ("=") [1]
function SetCookie () {
StudentAddress = document. .AddressBox.value
document.cookie = "StudentAddress=" +
+ ",expires=" +
</SCRIPT>
<BODY>
<H4>We will keep your address updated!
</H4>
<FORM =StudentForm>

Please Enter Your Address:
<INPUT TYPE=TEXT NAME=AddressBox onBlur="SetCookie()">
</FORM>

</HTML>

. Use JavaScript to verify a form.

9. Use JavaScript to manipulate an image.

10.
11.

U W

Use JavaScript to read a cookie.
Fill blanks in the following demonstration document of CSS. Sketch the
appearance of each line of the web page:

<html>

<head>
<title>CSS Assignment</titlex>
<style type=" /css">

hl {font-size:medium;}

84

w J O

9
10
11
12

13
14
15

16
17
18
19

20

21
22
23
24

25
26

PROGRAMMING LANGUAGES FOR MIS
h3 b {color:#FF0000;}
p.important {background- :#FFFF00; }
p.large {font- :large; }
.myColor {color:#FF0000;}
< >
</head>
<body>

<hl>Welcome to CSS!</hl>
<h3>CSS: < >Cascading Style Sheet describes the
document presentation semantics.</h3>

<p class="important">One can highlight parts of the Web page
based on a criterion across the entire Web page.</p>
<p ="large">0r, one can set a particular font for a type

of paragraph across the entire Web page.</p>
<p ="myColor">The color of this line is "myColor."</p>
<div =" -color:#00FFFF; font-family:Arial; font-size:large; ">
<p>One can also<u>divide</u> the Web page into blocks.</p>

<p> (Note: #FF0000 is Red. #FFFF00 is Yellow. #00FFO0O is Green.)

< >

</body>
</html>

12. Use HTML and CSS to implement the following table as a menu of links to

the websites: blue color font, 16 pt, light color background.

Google
eBay

Amazon.com

SMU

13. Develop a web page with business contents to meet the following minimum

requirements:

* Well-designed contents and hyperlinks
* Well-designed images and colors

* At least one well-designed form

* JavaScript for verifying the form

* JavaScript for client-side calculation

* CSS components

HTML, JAVASCRIPT, AND CSS

85

Appendix 3.1: List of HTML Commonly Used Tags

<l--

-->

<A> . . .

<APPLET> </APPLET>
 . .

<BASE>

<BIG> </BIG>
<BLINK> </BLINK>
<BODY> </BODY>

<CAPTION> . . </CAPTION>
<CENTER> </CENTER>
<DD> </DD>

<DT> </DT>

<FORM> </FORM>
<FRAME> </FRAME>
<FRAMESET>.</FRAMESET>
<Hx> </Hx>

<HEAD> </HEAD>
<HR>

<HTML> </HTML>

<I> . </I>

<INPUT TYPE=CHECKBOX>
<INPUT TYPE=RADIO>
<INPUT TYPE=IMAGE>
<INPUT TYPE=SUBMIT>
<ISINDEX>

<LINK>

<P> . . </P>

<PARAM>

<S> . . </S>

<SELECT> </SELECT>

Comments

Anchor; creates a hyperlink (att: HREF)

Define and trigger a Java applet

Bold font

Defines the base URL for all relative URLSs in
the current document

Big font

Cause annoying blink text

Defines the body of an HTML document (att:
BGCOLOR, BACKGROUND)

Break line

Creates a caption for a table

Centers the text

'The text is the definition part of a definition-list

The text is the term part of a definition-list

Set font (att: COLOR, SIZE)

Delimits a form

Delimits a frame

Set multiple frames

Headers, where x is a number 1-6 for the level

Delimits the document’s head

Horizontal rule

Contains the HTML document

Italic font

Inserts image (att: ALIGN, ALT, SRC, HEIGHT,
WIDTH)

Creates a checkbox-input within a form

Creates a radio button within a form

Creates an image input element within a form

Creates a submit button within a form (att:
NAME, VALUE)

Creates a searchable HTML document (att:
ACTION and PROMPT)

List

Establishes a link

Delimits a paragraph (att: ALIGN)

Set parameters for Java applets

Causes struck

Creates a multiple-choice menu

86 PROGRAMMING LANGUAGES FOR MIS

<TABLE> . . . </TABLE> Delimits a table (att: ALIGN, BORDER,
VALIGN, WIDTH)

<TD> . . . </TD> Describes a table data cell

<TH> . . . </TH> Table header

<TR> . . . </TR> A table row

<TITLE> . . . </TITLE> Creates the title

<Us . . . </U> Underlines

Appendix 3.2: JavaScript Reserved Words and Other Keywords

JavaScript Reserved Words

break false if null true while
continue for in return var with
else function new this void

The following words are not reserved, but are not recommended to use as user-defined

words:

alert Date getClass name onSubmit status
Anchor defaultStatus history navigator open String
Area document Image netscape Option Submit
Array Element JavaClass Number parent sun
assign focus length Object Password prompt Text
blur Form Link onClick Radio top
Button Frame location onError Reset valueOf
Checkbox frames Location onFocus scroll window

close function Math onl.oad Select WINDOW

VB.NET

4.1 Graphical User Interface

In business computer applications such as order processing, payroll program, and bill-
ing, the users of computer programs require customized applications to accommodate
the needs of the business processes in the organization as well as the individuals’ pref-
erences. One of the important aspects in business computer applications is the design
of the graphical user interface (GUI).

A GUTI allows the user to click on boxes for entering text, to click on buttons to
initiate a process, and so forth. By using a GUI, the user can better control the execu-
tion of the computer application program. Figure 4.1 shows an example of an online
price quote GUI. The GUI allows the user to interact with the system to receive
needed information.

Visual Basic is Microsoft’s product. It provides tools that make it easier for the pro-
grammer to create good GUI. As most business applications require frequent modi-
fication, the programmer can change the user interface and the code behind the user
interface promptly. Visual Basic has several versions. In this chapter, we introduce
the recent version VB.NET, which is not totally compatible with the old versions
of Visual Basic. VB.NET is one part of the .NET framework that is a complete
set of development tools for building comprehensive business applications including
web applications.

4.2 Microsoft Visual Studio and VB.NET Environment
VB.NET is a part of the Microsoft NET framework and is supported by the

Microsoft Visual Studio programming environment—the software tool specifically
designed to facilitate the development of applications in the .NET platform. One can
use it to construct and test applications easily. Figure 4.2 shows the instruction to use
the Microsoft Visual Studio environment to create a VB.NET project. Note that you
should create a folder for your project to avoid misplacing the project. The folder holds
many files that are used for the project. You can copy or move the entire folder, but
are not supposed to make a change to the folder unless you know exactly what will
happen. To open a project that has been already created, you access the folder and find
the project solution file (with extension .sln) to open.

87

88 PROGRAMMING LANGUAGES FOR MIS

| 85 Campus Bookstore [3]

Online Bookstore

Category MIS -
Book Title Database Design ~
o New () Used
I Price Quote
Price $31.45

Figure 4.1 Anexample of GUI.

Once a VB.NET project is created in the Microsoft Visual Studio environment,
the VB.NET programming environment starts to operate. VB.NET provides two
major facilities to the programmer:

1. A set of development tools that enable the programmer to create the GUI by
including control elements such as command button, radio button, etc.

2.'The VB.NET programming language, which enables the programmer to
specify how the computer performs the tasks required by the control elements

of the GUI
Figure 4.3 shows the major components in the VB.NET environment.

1. Menu bar: 'This gives many functions needed to develop projects. The menu
bar is similar to those in other Microsoft software.

2. Tool bar: 'This contains icons for most frequently used functions specified in
the menu bar.

3. Form window: A VB.NET project has two modes. In the design mode, the
form window is a working space for the design of form, a GUI unit. In the run
mode (when you click on [Debug] and [Start] in the menu bar), the entire
GUTI is executed.

4. Toolbox: 'This is a collection of tools for the design of a GUI at design time. It
allows the programmer to place control elements on the form.

5. Properties window: This is used at the design time to examine and change the
settings for the properties of each element on the GUI.

6. Coding window: 'This allows the programmer to view and write VB.NET
code for any element on the form. If it is not visible, one can double click on
an element on the form.

VB.NET 89

Create your own folder for your project.

Start Microsoft Visual Studio.

Click on [File].

Choose [New Project].

In the Templates Window:

choose [Visual Basic] in left pane;

choose [Windows Forms Application]

in right pane;

click on [OK] button.

"‘1'.'!‘
Rl igl
Ve]
|
H

PP TRARTRY KD

You will see the project created.

Click on [File]. I
Choose [Save All].

In the Save Project window:
P
B
N L T e L L b

EEFETL PR

find your own folder using
[Browse...] button;
confirm project name; |

click on [OK] button. T rr—

Figure 4.2 Create VB.NET project in Microsoft Visual Studio environment.

7. Solution explorer window: This lists all the forms, classes, code modules, and
resource files of the VB.NET project.

8. Errormessage window: This shows messages of error and warning for the program.

It a window discussed here is not visible, you may click [View] on the menu bar to
bring it up.

90 PROGRAMMING LANGUAGES FOR MIS

Toolbox Menu (Debug for execution) Form window Project window
o GLI] - Wi -.J,.+ Wibiasl Studicn I [-
Fie Edt "view Project Duild Deteg Tesm D Format Took Test Winoow Hell

de2d-da =2l ¥ B Mo - HEAEE SO,

5, Campue Bonksiom I I 5 |

Online Bookstore 1 fomivn

Category MIS
Book Title Database Design =
a New Used

Price Cuote

53145

Description

Error message window Coding window Properties window

Figure 4.3 VB.NET environment.

4.3 Event Driven

In VB.NET, a GUI unit is a form. A form is a class, which can have attributes, meth-
ods, and subclasses. One of the major tasks of developing a GUI application using
VB.NET is to write event-driven programs for these classes. In this section, we will
learn how VB.NET works implementing GUIL. We use a toy example to show the
essential steps to designing a GUI by using VB.NET. Suppose we are designing a
GUI so that when the user clicks on a button, the window displays a message “Hello,
World!” on the screen. We implement this example by performing the following steps:

1. Create a VB.NET project, named HelloWorld, by following the procedure
shown in Figure 4.2.

2.In the VB.NET environment (see Figure 4.3), work on [Forml.vb

[Design]]. Click on the “Label” control element on the toolbox (the con-
trol element marked “A Label”) and drag a space on the form to indicate
where the message is supposed to be displayed.

3. Bring the Properties Window up by clicking the icon on the toolbar if it is
not visible. Work on the Properties Window and change the label Text
to nothing by deleting “Label1.” This label has its default name “Labell”
but does not have any text now (see Figure 4.4). Note that you may change
the label name (e.g., to “MsgLabel”), using the Property Window. For
programming, the programmer needs to cite the name correctly. For simplic-
ity, we always use the default names of the control elements in our examples.
Continue to work on Properties Window and set the Font of the label
to a larger font (e.g., 16 point) if the default font is small.

VB.NET 91

B - Microsaft Visual Studio =] x|
) File Edit View Project Buid Debug Team Data Topls Test Window Help
e Gcl-dd|as SRR =2(9-0-L-3(F 0 4 BET o -[|AFZJ20B J0-8
e o)
Taclhax Mkl FormLvh [Design] % = Sclution Explorer > X
All Windows Forms I = bl Y (2 EE
4 Common Controls o Form1 =8 Mol Ex] | 3 HelloWarid
& Pointer 5 My Project
(®] Button o B FormLyvi
[Chocdox
I2 CheckedlistBox
H ComboBax 3
B DateTimeicker T
AL
N Get a Message
A LinkLabe:
32 ListBox
i Listview Properties X
= MaskedTextBox | | [Label SyssemWindowsFanmsLabel .

S MonthCalendar

| 5]

- F
= tifylcon P
18 NumericlpDown MisimunStee ni
i Madifiers Friend
Jl Pictues o Padding 6.0.0.0
i ProgressBar RightToLeft Na
@ RadioButton - Size 0,32
S RichTexttiox D 0Emors | _f 0Wamnings ||i) 0 Messages Tabindex 0 :
@ TextBex Diescription File Line Column Project Tag 3

Be ToolTip Text

Figure 4.4 Create label and button.

4. Click on the [Button] control element on the toolbox (shown as Button).
Draw a button on the form below the label. You can resize the button. The
command button has its default name “Buttonl.” In its Properties
Window, change the Text to “Get a Message”; its caption is now “Get
a Message” (see Figure 4.4). Change the font of the text in the Property
Window as you like. Again, you may change the name of the button (e.g., to
“MsgButton”) in the Property Window, but we do not do this in our
examples to avoid confusion.

5. Double click on the “Get a Message” button (Buttonl) on the form to
bring the code window up. Now you can write an event-driven program in
the code window for the “Get a Message” button (Buttonl) to specify
what will happen if the user clicks on this button. You may find that the
VB.NET environment has formatted the program and has templates similar
to the following:

Public Class Forml
Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Buttonl Click (ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Buttonl.Click

End Sub
End Class

92

PROGRAMMING LANGUAGES FOR MIS

&8 HelloWorld - Microsoft Visual Sudo e (5D
) File Edit View Project Buld Debug Team Data Tools Tess Window Help
e G- & 2B |RIT2(9-M-E-0(0) 4 5% (X 2 | Debug)7 e e T S m
s P 18
U Formlvo X
Sl (General) | 1) {Declarations)
1 =Public Class Forml =0 &y

Private Sub Forml_Load{ByVal sender As System.Object, _
ByVal e As System.Eventirgs) Handles MyBase.load

End Sub

Private Sub Buttonl_Click(ByVal sender As System.Object, _
ByVal e As System_Eventérgs) Handles Buttonl.Click
18 Labell.Text = "Hello, World!"
11 End Sub
End (lass

Error List

@ OEmors | g 0 Wamings | 1) 0 Messages

Description File Line Column Project

Figure 4.5 Write event-driven program in the coding window.

Since we want the GUI to display a message “Hello, World!” in the label,
we simply add a statement in the template of Buttonl _ Click, as shown
in Listing 4.1 by the bold line. We will return to explain the template later in
this chapter.

Listing 4.1: Code for Buttonl Click

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click
Labell.Text = "Hello, World!"
End Sub

'The coding window is shown in Figure 4.5. Note that, in the added statement,
Labell is an object, Text is the property (or attribute) of “Labell,” and the
command statement assigns “Hello, World!” to the Text of Labell.

. Run the program by clicking on [Debug] on the menu bar and then [Start

Debugging]. Now the form starts to execute in the run mode. If you click on
the “Get a Message” button, then the GUI displays “Hello, World!” in the
label, as shown in Figure 4.6. Notice the differences between the design mode
and the run mode. If you want to make changes to the GUI (e.g., the font for the
message), you have to return to the design mode by closing the execution window.

. Quit the run mode by closing the execution window. Save the project by click-

ing on [File] and then [Save Al11l]. The next time you can retrieve the proj-
ect after logging into the VB.NET environment. To do so, access the folder,
find the project solution file (with extension .sln), and open it.

VB.NET 93

o0 HelloWorld (Runnng) - Msrosolt Visual Studio = |z
) Fike FEdit View Project Build Debug Team Data format Tools Test Window Help

@G -l @a DAJRITE[D-0 L0 b 0 QTR ety AR GERE 30 2 0330
i =
Tanibhn MRl FormLvh [Design] X = Solution Ceplorer -2 x
“Geneed " y =iRallal
ki = 0) -
There ate no eabie ol 2 HEE ;Hum:m
controds in this group. Drag | . ;-!y -rlc;.-.'LI
an item onto this teat to |—) & Form Lvb
add i 1o the toolbox. _-r.J Forml =)
i l Hello, World!
Get a M¢

i Get a Message

o List -0 x
EEe oo Booo: %G B o mm Bou D souon [N

Figure 4.6 Execution of VB.NET project.

In fact, once you successfully run the project, the project has been compiled into execut-
able code that can run without the support of the VB.NET programming environment.
You go to the folder where you saved the project and go to the [bin] folder and then the

[Debug] folder; you will see the executable code HelloWorld.exe in this example.

4.4 Example of a Single Form

In this section, we learn more features of VB.NET. Suppose the project, named
LoanPayment, is to calculate the monthly payment based on the amount and the
term of the loan. The GUI accepts these data from the user, allows the user to select
a current interest rate from a combo menu, and then calculates the monthly payment
for the user. The design of Form1 is shown in Figure 4.7. On this form, five labels are
created to display headings including “STUDENT TRUST CO.,” “Loan Amount $,”

» «

“Term(year),” “Annual Interest Rate,” and “Monthly Payment.” Two
textboxes are created to catch the data, and the third textbox is used to display the
calculated monthly payment result. The difference between textbox and label is that a
textbox can catch data as well as display data, but a label can only display text. Close
to the “Annual Interest Rate”label, a combobox is created to show the alterna-
tive interest rates applied. Finally, a command button is created for the user to find the
answer. To write a VB.NET program, you must remember the names of these control
element objects (e.g., Labell, TextBox2, ComboBox1, and so on).

Double click on the body of Forml (other than any objects on the form) to bring
the coding window up. Type in the code in bold in Listing 4.2 in the Forml Load

subroutine that will add items to ComboBox1 when the form is loaded.

94 PROGRAMMING LANGUAGES FOR MIS

8 LoanPayment - Microsoft Visual Studio ol x|
<\ File Edit View Project Build Debug Team Data Format Tools Test Window Help
(DG -dd s 2B R=2]9-0-L-0 1 sBP 0w | DI ZAXE 50)
= E=an
Fostbos SR O 1 [Design] ~ Soltiol e = x
All Windews Farms e) - . — 0
Common Contrals &5 Forml = ILg]_ i LoanPayment
k Pointer 24 My Project
@ Button E; (: = FarmLib
W tudent Trust Co.
£2 CheckedListBox
W Combolox |2 Loan Amount $
™ DateTimePicker
A Labe
Term (Year)
A Linklabe!
= ListBox -
R it Annual Interest Rate Choose Rate
i Listview : Properties v 1 x
- MaskedTengor | Calculate Monthly Payment Form.. System Windows Forms.Forn »
= MonthCalendar) . S| 7
- §A o]
= Notifyleon :
RightToleftlay False
e Monthly Payment i
d PictureBox ShowlnTaschar True
= ProgressBar Size 692, 383
@ RadioButton , " . SizeGripStile Auto
%] RichTextBon © otrors || 1) OWarnings (D) 0 Messages StartPostion WindowsDefault
% TextBox Description File Line Column Project Tag =
B ToolTip Tet Forml

Figure 4.7 Design of form for LoanPayment project.

Listing 4.2: Visual Basic Codes for the Combo Menu

1 Private Sub Forml Load(ByVal sender As System.Object,
2 ByVal e As System.EventArgs) Handles MyBase.Load
3 Dim InterestRate As Decimal

4 For InterestRate = 0.05 To 0.12 Step 0.005

5 ComboBox1l.Items.Add (InterestRate)

6 Next InterestRate
7 End Sub

The program in Listing 4.2 shows us how to load a combobox and how to write
a for-loop in VB.NET. Lines 1 and 2 are the declaration of method Forml Load
and are actually a part of the template displayed by the programming environment
to allow you to define anything you want the computer to execute during loading
the form. In VB.NET, if a method does not return a value, it is called subroutine,
and if a method returns a value, it is called a function. A subroutine or function can
have parameters (or arguments) to communicate with the request. We do not explain
the parameters in this example because beginners do not use them. In VB.NET, if a
line of code is too long to print on paper, you may use a space followed by the under-
score sign “_” to divide the line. Practically, you do not really need to divide a line in
the programming environment. Line 3 declares a variable used by this program. We
will explain data types later in this chapter. Lines 4—6 are a for-loop. InterestRate
is the loop controller. It is set initially to 0.05 and increases 0.005 each step. The for-
loop is ended when the value of InterestRate reaches 0.12. Line 5 instructs the

VB.NET 95

computer to add an item to the combobox with the value of InterestRate for
each step. Line 6 defines the boundary of the for-loop.

Go back to Form1, double click on the designed command button in Form1l, and
bring the coding window up for the button. Type the program in bold in Listing 4.3 in
the Buttonl Click subroutine. This program is to catch the data from the textboxes
and the combobox and to calculate the payment by using a built-in function named Pmt.

Listing 4.3: VB.NET Code for the Button

1 Private Sub Buttonl Click(ByVal sender As System.Object, _

2 ByVal e As System.EventArgs) Handles Buttonl.Click

3 Dim LoanAmount, LoanTerm, InterestRate, MonthlyPayment As Double
4 LoanAmount = Val (TextBoxl.Text)

5 LoanTerm = Val (TextBox2.Text)

6 InterestRate = Val (ComboBoxl.Text)

7 MonthlyPayment = -Pmt(InterestRate / 12,

8 LoanTerm * 12, LoanAmount, 0, 0)

9 TextBox3.Text = Format (MonthlyPayment, "Currency")
10 End Sub

We examine how the program in Listing 4.3 works. Lines 1 and 2 are a part of
the template displayed by the programming environment. It allows you to define the
subroutine when the user clicks the command button. Line 3 declares four variables
used in this program. Line 4 catches a value from TextBox1 for LoanAmount.
Line 5 catches a value from TextBox2 for LoanTerm. Line 6 catches a value from
ComboBox1 for InterestRate. Lines 7 and 8 are one statement that calculates
the monthly payment using function Pmt. Pmt is a built-in function in VB.NET that
returns the monthly payment based on the monthly interest rate, terms in months, loan
amount, etc. If one wants to show the payment without a sign, a negative sign must
be applied because a payment is always negative in terms of balance. Finally, line 9
displays the monthly payment in TextBox3 in the currency format (e.g., $30.08).
Note that Format () is a function that specifies the format of the data item.

VB.NET provides many built-in calculation functions such as Pmt. To make it
easier for the user to learn a variety of topics and functions, the .NET environment
provides online help. Using online help, the user is allowed to use keywords to search
relevant topics. (Click on [Help] in Visual Studio, select [View Help], and then
search Pmt in the Visual Studio online help site.) Figure 4.8 shows a screenshot of
online help for the explanation of the Pmt function.

Now you are ready to test the program. Press the [F5] key. If there is no typo in the
program, an execution result similar to the one shown in Figure 4.9 is expected. The
user of the GUI is allowed to input data of loan amount and term in the respective
textboxes, and to select the annual interest rate by clicking on the combo menu. Upon
clicking on the [Calculate Monthly Payment] button, the program will give
the number of monthly payments in the textbox for “MonthlyPayment.”

96 PROGRAMMING LANGUAGES FOR MIS

mcrosflcomyer

s X || @emenncion xf]

File ew Favorites Tools Help

Office and SharePoint a
development ! Pmt Functlon J

Office client development

L Offica 2013 (Other Versions = This topic has not yet been rated - Rate this topic
Office 2013
Office 2013 Returns a Double specifying the payment for an annuity based on periodic, fixed
Visual Basic for Applications payments and a fixed interest rate.
language reference for Office Syntax
2013

Visual Basic language reference Pmt(rate, nper, pvi, fvl. typel)

* Functions The Pmt function has these named arguments:

Abs Function

Array Function s Hptiar

Asc Function rate Required. Double specifying interest rate per period. For example, if you
- et a car loan at an annual percentage rate (APR) of 10 percent and make

Atn Function 9 P 9 P

manthly payments, the rate per period is 0.1/12, or 0.0083.

CallByMName Function

nper Required. Integer specifying total number of payment periods in the

Choose Function E Z
annuity. For example, if you make monthly payments on a four-year car
' \ . L faaan a S

Figure 4.8 Online help for Pmt function.

oy Forml = =l
Student Trust Co.

Loan Amount $ 1000
Term (Year) 3

Annual Interest Rate 0.070 ¥
| Calculate Monthly Payment |

Monthly Payment $30.88

Figure 4.9 Execution result of LoanPayment project.

4.5 Multiple Forms

This section gives an example of a VB.NET project, named FastLunch, with mul-
tiple forms. The GUI of this example allows the user to choose the food items and
input the purchase for lunch, to view the purchase summary, and to print the receipt
on the default printer.

4.5.1 Design Forms

'The programmer designs Form1 for the primary GUI as shown in Figure 4.10. To make
the GUI attractive, the form is decorated with a color background. Note that when you
download images from the Internet, you must be aware of the copyright laws. Forml
has three comboboxes and three textboxes created to accept inputs from the user. It also
has a pair of radio buttons to allow the user to indicate the club membership. In their

VB.NET 97

o0 Fastlunch - Micrasaft Visysl Studic

A1 File Bt View Project Build Debug Tearn Dala Formal Tools. Test Window Help

eG4 B8RS2[9 -0-E-0 0 0 3O nebwg || ATRH 40
i

[l Formlvb [Design]

b B | s

All Windows Farms

o o Loy e ol | & rastrunch
& Pointer 8 My Project
@ Button Welcome to Student Fast Lunch =2 Formivb
[F CheckBox
8 CheckedListBox Menu Guantity
8 ComboBox =
™ DateTimePicker Choose Hamburger ~ 0
A lave
A Liniklabe Choose Sandwich -~ 0
3 ListBox
e Listview Choose Drink - 0 Properties
& MaskedTextBox Forml System Windows,Forms.Forr =
= MomthCalend, M |
- Nz_"[m:“ < Club Member & Non-Member ~HEVE =
=1 Iiyice
x RightToLeftLay False
I8 NumericlpDown
Showlcon True
l PiclwreBox Show Order ShowlnTaskbas True
PragressBar N s 745, 437
B R ton 0 ™ » SizgeGripstye Aulo

s RichTexiBoo

StartPosition WindowsDefault
Tag =
Text Forml

Emor List -

@ 0Erors | 0Warnings | (i) O Massages

i
-

- 1

& TaxtBox
e

. Toollip

Figure 4.10 Design Form1.vb.

default setting, these two radio buttons belong to the same group and have exclusive
choices. If the user wants to have a number of groups of radio buttons, group setting
must be applied. The form has a button to allow the user to view the order.

To display order information on the screen, you need another form. Click on
[PROJECT] on the menu and then [Add Windows Form..]; the templates pane
shows up. Choose [Windows Form] in the templates pane, click on the [Add] button,
and Form2 will be added to the project. Figure 4.11 shows the design of Form2 for this

w8 Fastunch-Misosot VisiStodo e)
i Fie Edit View Project Build Debuy Team Data Format Tools. Test Window Help

Nl D d & B R =2 (- -SSP U A ey -SRI PR E J0 S

[] :

Ll FormZvh [Design] ¢ EEEEERUERRETELN

All Windows Farms = S] [#] [
4 Commaon Controls =7 Formg m 3 Fastiunch

k Fointer Ba My Project

@ Button Thank you for your order! = FormLyb

) ety 7 Formaab

= dlisticx ftem Brica Quantity

& ComboBax -

W DataTineRiing Label5 Label6 Label7

A labe

A LinkLabe! Labeld Label® Label10 |

o Ligthon Label11 Label12 Label13

i Listview

- MaskedTextBox Labeli4

Form2 System Windows.Forms.Form =

ManthCalendar

= Notifylcon Label1s Label16 Labell17 a0l fum o
T NumericlpDawn RightToLeftLay False

@ . Showlcon True
s Go Back to Re-Order | Confirm and Print Receipt | stewrasan Tre
= ProgressBar Ik Size 737,457
® RadioBution L i ; SizeGripStyle Auto
%1 RichTextSox StartPosition WindowsDefault
& TextBox Error List Tag B
= ToolTip Q 0Erors | f 0Warnings | (i) O Maztages Texd Form2

Figure 4.11 Design Form2.vb.

98 PROGRAMMING LANGUAGES FOR MIS

project. Several labels are employed to display information on the screen. To allow the
user to go back to Form1 and hide Form2, one command button named [Go Back to
Order] is created. The second command button is to print a receipt for the user.

4.5.2 Module

Module is a special class in VB.NET to define global constants, variables, or subrou-
tines that can be shared by all classes of the project. In the current example, prices of
food items, membership fee, and sales tax rate are all global constants that can be used
by all control elements of the project. Placing global constants in a module not only
makes the programming easier, but also is useful for system maintenance because one
fact is stored in the project in just one place. Click on [PROJECT] on the menu and
then [Add Module..]; the templates pane shows up. Choose [Module] in the tem-
plates pane, click on the [Add] button, and Modulel will be added to the project.
Figure 4.12 shows the coding window of Modulel for this project. Listing 4.4 is the
code of Modulel. Note that you must use the keyword Public to define any shared
constant and variable. As shown in Listing 4.4, you can use the apostrophe sign “!” for
a comment line for self~-documentation.

Listing 4.4: Code of Modulel.vb

1 Module Modulel

2 ' At the Module level one can define constants or
o8 Fastlunch - Microsolt Visual Studi []
| File Cdit View Project Duld Debug Team Data Tooh Test Window Help
NSl | &2 R =20 -0 -G b 4 WS Do -lEHF AR R 308
(eSS
X RESCVTHDRRTI F0rm1l vh [Design g
General 32 Modulel |5 . | :,l LIS

Module Modulel 4+l & Fastlunch
A n define constants or - & My Project

oll closses 3 Formlvb

v T Form2vb

Public Const Cheeselurger - 1.79 =] Modulelve

Public Const ChickenBurger - 5.69 -

Public Const BBQTurkey = 4.49

Public Const ItalionSousoge = 5.39

Public Const SpringWater = 0.99

Public Const Soda = 1.35

Public Canst NonHemberFee = 2.8

sales tax rate might be applied
Public Const SalesTaxRate = 8.85

o build a reference to share =l

Sub main()
Dim FormZ = New Forml
Formd, ShowDialog()
Fl: End Sub -
Wo% = + "

Errer List -0 %

Q teror | OWenings | (D) 0 Messages

Figure 4.12 Write code for module.

VB.NET 99

3 ' global variables shared by all classes

4 ' The prices

5 Public Const CheeseBurger = 3.79

6 Public Const ChickenBurger = 5.69

7 Public Const BBQTurkey = 4.49

8 Public Const ItalianSausage = 5.39

9 Public Const SpringWater = 0.99
10 Public Const Soda = 1.35
11 Public Const NonMemberFee = 2.0

12 ' Sales tax rate might be applied

13 Public Const SalesTaxRate = 0.05

14 ' Module can also be used to build a reference to share
15 ' In this case, this allows to change Form2 from other forms
16 Sub main()

17 Dim Form2 = New Form2

18 Form2.ShowDialog ()

19 End Sub
20 End Module

In Listing 4.4, lines 1 and 20 are the pregenerated template. Lines 2—4 are nota-

“'”

tions. A notation line starts with the apostrophe “'” sign. Lines 5-13 define the prices
of food items, membership fee, and tax rate for all classes to share.

Note Sub main() inline 16. In VB.NET, the control elements (labels, textboxes,
etc.) on a form are unable to be accessed from an external entity unless a dialog refer-
ence is built. Lines 16—19 serve this purpose so that the components of Form2 can
be addressed from Forml for making changes. Thus, modules are also often used to

store subroutines and functions that can be requested by any class within the project.

4.5.3 Class

A form is a class. However, in VB.NET, two forms do not share information unless a
superclass is created to make sure that the two forms are shared throughout the appli-
cation project. To create a class, click on [PROJECT] on the menu and then [Add
Class..]; the templates pane shows up. Choose [Class] in the templates pane,
click on the [Add] button, and Classl will be added to the project. Figure 4.13
shows the coding window of Classl for this project. The code in Listing 4.5 for
Classl is to make sure the two forms share each other so that one form can access
the other form.

Listing 4.5: Code for Classl.vb

1 Public Class Classl

2 ' To create a class and make objects shared within the class

3 ' In this case, share Forml and Form2 throughout the application
4 Public Shared Forml As Form

5 Public Shared Form2 As Form

6 End Class

100 PROGRAMMING LANGUAGES FOR MIS

©0 Fastlunch - Microsoft Visual Studia =
o\ File Edit View Project Buld Debug Team Data Topls Test Window Help
[Jedd-dals e R e R I
e el 2T

Toolbox bl Classivi x LIRS Fo] Form1vb nj

Seneral 1) (General) -}H(ﬂmmmn A el
1 EPublic Class Clessl =0 2 Fastlunch
] = ' To create a class and make objects shared within thi - = My Project
* In this case, share Forml and Form2 throughout the app ¥ Classivb
Public Shared Forml As Form I Formilvb
Public Shared Form2 As Form 3 Form2vb
End Class H Modidel vt

Properties

@ 0Fmors | g\ 0Wamings | i) 0 Messages

Figure 4.13 Write code for class.
4.5.4 Coding

Now we return to Forml to write code for the class. Double click on the body of the

form or Buttonl in the design mode, enter the coding window for the form, and

write code as shown in Figure 4.14. Note that it is unnecessary to type the templates;

simply double click on the concerned control element to obtain its template. The entire

program for Form1 is shown in Listing 4.6.
% Fastlunch - MO Vs Stk

| File Ecit View Project Buld Debug Team Data Topls Tex Window Help
(G- R BA[A T2 (9 -+-8-0(b 1 a0 (| P08 405

==l
Tacibax Rl Formlvh o RENESEY -~ Soltion Explorer -0 x
ronwhl U] (General) -‘:d" JEl S EIEIE R
Private Sub Forml_Lcad(ByVal sender As System.Object, 0 (7 Fastlunch
ByVal e As System_Eventirgs) Handles MyBase.load - W My Project

]) Classiv
11 Class1.Forml = Me ‘This allows to access Forml in Form2. = Formlyt
12 = 3 Form2vb
* Initialize comboBoxes when loading the Form ¥ Modudelvh
14 ComboBox1. Itess Add("Cheese Burger®
1 ComboBox1. Items . Add(“Chicken Burger®)
ComboBox2. Ttems . Add("B8Q Turkey")
12§ ComboBox2. Ttems Add(“Italian Sausage")
b= " = Properties -3 x
2 ComboBox3, Ttess Add("Spring Water™)
21 ComboBox3. Ttems . Add("Soda™)
5]
F End Sub
4 | End Class
25

100 % "

Error List * 3 X

Q 0Emors | fy 0Warnings | (L) 0 Messages

Ready Ln 25 ol 1 1

Figure 4.14 Write code for form.

VB.NET 101

Listing 4.6: Code for Forml.vb

1 Public Class Forml

2 Private Sub Forml Load(ByVal sender As System.Object,
3 ByVal e As System.EventArgs) Handles MyBase.Load

4 Classl.Forml = Me 'This allows to access Forml in Form2.

5 ' Initialize comboBoxes when loading the Form
6 ComboBoxl.Items.Add("Cheese Burger")
7 ComboBoxl.Items.Add ("Chicken Burger")

8 ComboBox2.Items.Add ("BBQ Turkey")
9 ComboBox2.Items.Add("Italian Sausage")

10 ComboBox3.Items.Add("Spring Water")
11 ComboBox3.Items.Add("Soda")

12 End Sub

13 Private Sub Buttonl Click(ByVal sender As System.Object,

14 ByVal e As System.EventArgs) Handles Buttonl.Click
15 ' Build references to use Form2

16 Dim Form2 As New Form2

17 ' Declare variables
18 Dim Hamburger As Double
19 Dim Sandwich As Double
20 Dim Drink As Double
21 Dim MemberFee As Double
22 Dim Total As Double

23 ' Find prices

24 If ComboBoxl.Text = "Choose Hamburger" Then
25 Hamburger = 0.0

26 Else

27 If ComboBoxl.Text = "Cheese Burger" Then
28 Hamburger = CheeseBurger

29 End If

30 If ComboBoxl.Text = "Chicken Burger" Then
31 Hamburger = ChickenBurger

32 End If

33 End If

34 If ComboBox2.Text = "Choose Sandwich" Then

35 Sandwich = 0.0

36 Else

37 If ComboBox2.Text = "BBQ Turkey" Then

38 Sandwich = BBQTurkey

39 End If

40 If ComboBox2.Text = "Italian Sausage" Then
41 Sandwich = ItalianSausage

42 End If

43 End If

44 If ComboBox3.Text = "Choose Drink" Then
45 Drink = 0.0
46 Else

47 If ComboBox3.Text = "Spring Water" Then

102

48
49
50
51
52
53

54
55
56
57
58

59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100

101
102

1

PROGRAMMING LANGUAGES FOR MIS

Drink = SpringWater

End If
If ComboBox3.Text = "Soda" Then
Drink = Soda
End If
End If

If RadioButtonl.Checked = True Then
MemberFee = 0

Else
MemberFee = NonMemberFee

End If

Calculate Total
Total = (Hamburger * Val (TextBoxl.Text) + _
Sandwich * Val (TextBox2.Text) + _

Drink * Val (TextBox3.Text)) * (1 + SalesTaxRate)

MemberFee

Fill Form2

If ComboBoxl.Text = "Choose Hamburger" Then
Form2.Label5.Text "No Hamburger"
Form2.Label6.Text = ""

Form2.Label7.Text = "0"

Else
Form2.Label5.Text = ComboBoxl.Text
Form2.Label6.Text = Format (Hamburger, "Currency")
Form2.Label7.Text = TextBoxl.Text

End If

If ComboBox2.Text = "Choose Sandwich" Then
Form2.Label8.Text = "No Sandwich"
Form2.Label9.Text = ""
Form2.Labell0.Text = "0O"

Else
Form2.Label8.Text = ComboBox2.Text
Form2.Label9.Text = Format (Sandwich, "Currency")
Form2.Labell0.Text = TextBox2.Text

End If

If ComboBox3.Text = "Choose Drink" Then
Form2.Labelll.Text = "No Drink"
Form2.Labell2.Text = ""
Form2.Labell3.Text = "0O"

Else

Form2.Labelll.Text = ComboBox3.Text
Form2.Labell2.Text = Format (Drink, "Currency")
Form2.Labell3.Text = TextBox3.Text

End If

Form2.Labell4.Text = _

If RadioButtonl.Checked = True Then

Form2.Labell5.Text = "Club member: No fee."
Else

Form2.Labell5.Text = "Non-Member: $2 fee."
End If

Form2.Labell6.Text "TOTAL"
Form2.Labell7.Text = Format (Total, "Currency")

Use message box
If ComboBoxl.Text = "Choose Hamburger" And _

VB.NET 103

103 ComboBox2.Text = "Choose Sandwich" And _
104 ComboBox3.Text = "Choose Drink" Then
105 MsgBox ("You haven't chosen anything!", , "Choose Items")

106 End If

107 'Show Form2
108 Form2 . Show ()
109 End Sub

110 End Class

We examine how the program for Forml in Listing 4.6 works. Line 1 declares
class Forml and is paired with the last line, 110, as the class template generated by
the environment. Lines 2 and 3 declare the method Forml Load and are paired
with line 12 as the method template. Line 4 allows Form1 to be accessible from other
forms. Here, the Me keyword means the current object. In this example, it makes
Forml a shared form for other forms. Lines 6—11 load the three comboboxes.

Lines 13 and 14 declare the Buttonl _ Click method for Buttonl and are
paired with line 109 as the method template. Line 16 declares Form2 as a shared
form for this button. As will be shown later, Form2 is a summary of the order and
allows the user to print a receipt. Lines 18-22 declare variables for this method.

Lines 24-33 are one if-then-else statement that in turn has nested if-then-else
statements to obtain the prices for food items of hamburger. Lines 34-43 and 44-53
do similar work for other types of food. Lines 60—63 calculate the total price of the
chosen food items after sales tax plus fees. A space and the underscore sign “_” must
be used if one sentence is divided into more than one line.

Lines 65-73 are one if-then-else sentence that fills information of the hamburger
order to the corresponding labels (Label5 through Label7) in Form2. Lines 74—-82
and 83-91 do similar work for other labels of Form2.

Lines 92 and 93 fill a line to the label of Form2. Lines 94-98 fill Lalbel15 for the
membership fee. Line 100 fills the total field on Form2. Lines 102-106 show a mes-
sage box for warning the user if no food item has been chosen for the order. Finally,
line 108 brings Form2 up to the screen.

'The next program is made for Form2, as listed in Listing 4.7. There are two buttons
on Form2. One is to hide Form2 and allow the user to go back to Form1l to make
changes to the order, and the other is to print the receipt. There are two ways to print.
From the Windows operating system, the user can press the [PrintScrn] key on
the computer keyboard and then paste it in Word to print a form window. However,
this method is ineflicient. First, a form image is used for screen display, but is dark on
paper and consumes much ink. Second, a form image is small and is unable to contain
many lines for a large report. To print a good report for users, one needs to use a print

method as shown in this example. As shown in Listing 4.7, printing a document in
VB.NET is rather tedious.

104

PROGRAMMING LANGUAGES FOR MIS

Listing 4.7: Code for Form2.vb

1

Imports System.Drawing.Printing

IS

Public Class Form2
' Declare an array of labels to make printing code shorter
Dim LabelArray (3, 3) As Label

O 0 3 o Ul

Private Sub Form2 Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

' To make Form2 a shared by other forms to show/hide it

Classl.Form2 = Me

End Sub

10
11
12
13

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Classl.Form2.Hide ()

End Sub

14
15

' Declare a print document as an object
Private WithEvents myDocument As PrintDocument

16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

31
32
33

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

' This button is to print document

' Retrieve data in all labels into LabelArray

LabelArray (1, 1) = Labels
LabelArray (1, 2) = Labelé6
LabelArray (1, 3) = Label?7
LabelArray (2, 1) = Label8
LabelArray (2, 2) = Label9
LabelArray (2, 3) = LabellO
LabelArray (3, 1) = Labelll
LabelArray (3, 2) = Labell2
LabelArray (3, 3) = Labell3l

' Initialize the print document
myDocument = New PrintDocument

' Use the Print method (_ PrintPage) to print the document
myDocument . Print ()
End Sub

34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49

' Specific methods for printing the document
Private Sub myDocument PrintPage (ByVal sender As Object,
ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles myDocument.PrintPage
' Declare a string line
Dim myText As String
' Declare number of lines
Dim N As Integer = 1
' Declare counters
Dim I, J As Integer
' Declare font for the print document
Dim myFont As New Font ("Courier New", 12, FontStyle.Regular,
GraphicsUnit.Point)

' Print the heading with margin starting at (50, 50) point
e.Graphics.DrawString (Labell.Text, myFont, _
Brushes.Black, (50 + 50), 50)

VB.NET 105
50 ' Print today date starting at (150, 74) point
51 e.Graphics.DrawString (Date.Today (), myFont,
52 Brushes.Black, (50 + 100), (50 + 24))
53 ' Use for-loops to print all items
54 For I = 1 To 3
55 ' Screen out non-selected items (0 Quantity)
56 If Val (LabelArray (I, 3).Text) <> 0 Then
57 N =N+ 1 'Next line
58 ' Print three fields at the corresponding location
59 For J =1 To 3
60 e.Graphics.DrawString (LabelArray (I, J).Text, myFont,
61 Brushes.Black, (50 + (J - 1) * 480 / J), (50 + N * 24))
62 Next
63 End If
64 Next
65 ' Print member fee
66 myText = Labell5.Text
67 N=N+1
68 e.Graphics.DrawString (myText, myFont, _
69 Brushes.Black, 50, (50 + N * 24))
70 ' Print a line
71 myText = "-------"---"-"-"-"-"-"-"-"-"-~-"-“"—“~—“~“—~"—~—-~—-—-—-- - "
72 N=N+1
73 e.Graphics.DrawString (myText, myFont, _
74 Brushes.Black, 50, (50 + N * 24))
75 ' Print the Total. Note the space
76 myText = Labell6.Text + " " + Labell7.Text
77 N=N+1
78 e.Graphics.DrawString (myText, myFont,
79 Brushes.Black, 50, (50 + N * 24))
80 End Sub
81 ' You can make page setting
82 Private Sub PrintDocumentl QueryPageSettings (ByVal sender _
83 As Object, ByVal e As
84 System.Drawing.Printing.QueryPageSettingsEventArgs)
85 Handles myDocument .QueryPageSettings
86 e.PageSettings.Landscape = False
87 End Sub
88 End Class

We examine how the program in Listing 4.7 for Form2 works. Line 1 imports

the library for printing. Generally, a programming manual is needed to determine

what library is needed for a particular task. Line 2 declares class Form2 and is paired

with the last line, 88, as the class template generated by the environment. Line 4

declares an array, named LabelArray (3, 3), to hold information in the labels for

food items in Form2. This would make the code for printing concise.

Lines 5-9 define the task for loading Form2. In this example, line 8 makes Form2

accessible to other forms.
Lines 10-13 define the task for Buttonl. In line 12, Classl is used as a super-
class in order to hide Form?2.

106 PROGRAMMING LANGUAGES FOR MIS

The program after line 14 is to print a receipt. Line 15 declares myDocument as a
PrintDocument object for printing

Lines 16—33 define the task for Button2. Lines 20-28 retrieve information from
the labels to the array in order to use one for-loop to print all food items. Line 30
initializes the PrintDocument object (myDocument) and makes it ready to use.
Line 32 applies the Print method to print the document. This method is imple-
mented in a separate subroutine named myDocument PrintPage because the
object is named myDocument.

Lines 35-80 specify the task of subroutine myDocument PrintPage. Note
that, in lines 35-37, the subroutine name must be the document object name followed
by PrintPage, and the handled event is the document object name followed by
.PrintPage.

Lines 38—46 declare variables for printing. Line 45 declares the font used for print-
ing. Courier New is a fixed-width font and makes words easy to line up.

Lines 48 and 49 draw a line for the heading, which is stored in Label1. Note that
the margin is defined by the start position of the line (x-y coordinates in numbers of
pixels). In VB.NET, anything for printing is treated as graphics. Lines 51 and 52 draw
a line for the current date. Lines 54—64 are nested for-loops that print out all data
from the two-dimensional array LabelArray (I, J). Line 56 screens out all food
items with no order quantity. In line 61, the locations of fields are defined by the x-y
coordinates, which may not be straightforward. Lines 66—69 print the member fee.
Lines 71-79 print a line and the total for the receipt.

Lines 82—87 show how to set the page orientation to landscape or portrait.

An example of execution of the Fast Lunch project is shown in Figure 4.15, which
includes examples of Forml and Form2 in the run mode and printed document.

4.6 Programming with VB.NET

'This section provides detailed explanations of essential VB.NET programming tech-
niques and instructions.

4.6.1 General Format of Code, Comments, and Keywords

The VB.NET coding environment automatically provides formats and pull-down
lists of available attributes and methods for coding. In the editor window, if a line
is too long to be displayed, the window rolls automatically. For printing the source
code, one can use a space followed by the line divider sign “ ” to divide a code line.
Programmers insert comments to document programs and make the programs read-
able. A comment line begins with the apostrophe “'” sign. VB.NET has its keywords,

such as Public, Private, Sub, End, Buttonl Click,Me, ByVal,Dim, As, etc.

VB.NET 107

5 Forml l.:; [-
Welcome to Student Fast Lunch
Menu Quantity
Cheese Burger v 2
BBQ Turkey - 1
Soda . 2
Club Member @ Non-Member
Show Order
| & rorm2 SS[E X
Thank you for your order!
Item Price Quantity
Cheese Burger $§3.79 2
BBQ Turkey $4.49 i
Soda §1.35 2
Mon-Member: $2fee. TOTAL $17.51
il_ GoBackto Re-Order | Confirm and Print Receipt

L] — - p—

Thank you for your order!

1/6/2017
Cheese Burger $3.79 2
BBQ Turkey $4.49 1
Soda $1.35 2

Non-Member: $2 fee.

Figure 4.15 Execution result of Fast Lunch project.

Each keyword represents its specific meaning and cannot be used as a user-defined
word. A practical approach is to use application-specific words for user-defined words
(e.g., NonMemberFee). The Me keyword is difficult for beginners to understand.
Generally, the Me keyword refers to the current instance of an object. We will explain
most commonly used keywords in the following subsections.

108 PROGRAMMING LANGUAGES FOR MIS

4.6.2 Class and Object

VB.NET is a blended language of object oriented and function oriented. A form is
a class, a module is a class, a data type is a class, etc. Many classes (e.g., data types)
have been built into VB.NET. The programmer can use the following syntax to define
a user-defined object of a built-in class:

[access-modifier] Class [class identifier]
[Inherits class-name]

[class body]
End Class

See Listing 4.5 for an example of class. The access modifier is typically the key-
word Public, which means the class can be accessed globally. The inheritance part
is optional. In VB.NET, there are many built-in classes. To make an actual class
instance, or object, the programmer must declare the object. Two steps are needed to
instantiate an object:

Step 1. Declare the object by writing an access modifier and an instance of the
class—for example,

Private WithEvents myDocument As PrintDocument

where PrintDocument is a class and myDocument is the declared object
of this class

Dim myText As String

where String is a class; the myText is the declared object of this class.
Step 2. Allocate memory for the object using the New keyword for example,

myDocument = New PrintDocument

'The two steps can be combined into a single line—for example,

Dim T As New Date

4.6.3 Methods

VB.NET code for a method is written between the procedure definition header and
the end of the method (subroutine or function). The environment generates a predis-
played template with the header and end for each event handler such as Button _
Click and Form _Ioad. The procedure definition header

Private Sub [sub name] (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles [event namel

defines the parameters for the method.

VB.NET 109

An event handler has two parameters. The first parameter is of the object type and
controls the event. It is called sender. The second parameter is of the EventArgs
class type, and it passes information about the event. The method is appended with
the Handles keyword followed by the event name. VB.NET differentiates between
passing parameters by value (ByVal) and passing parameters by reference (ByRef).
ByVal is commonly considered by beginners.

4.6.4 Constant Variables

Programmers can create variables whose values do not change during the program
execution. These variables, called constant variables, are defined by the const key-
word. The use of constant variables makes the program easy to maintain.

4.6.5 Data Types

VB.NET provides many data types, including:

Boolean True or false

Char unicode character

DateTime for example, 12/31/2099
Decimal Decimal number

Double Double-precision floating point
Integer Integer

String A sequences of characters

The Dim (stands for dimension) and As keywords are used to define the data type
for a user-defined class, variable, or array. One can also assign the initial value to a
variable. In VB.NET, the default value of a numerical variable is zero.

Textboxes can be used to receive numerical data from the user. In principle, the data
type of text string is different from that of numeric data. The Val() function converts
a string in the textbox to a number (e.g., Listing 4.3, line 4).

4.6.6 Arithmetic Operations

The arithmetic operations of VB.NET are similar to those of C. For instance:

AssignValue 50

TotalAmount = Amountl + Amount2
DifferenceAmount = Amountl - Amount?2
MultiplyAmount = Amountl * Amount2
DivideAmount = Amountl / Amount?2

110 PROGRAMMING LANGUAGES FOR MIS

4.6.7 1f-Then-Else Statement

The if-then-else statement has the following syntax and format:

If [condition] Then
[action block 1]
Else
[action block 2]
End If

The condition is a logical expression. Note that the format is rigidly defined; that
is, the three subsentences (If ... Else ... End If) must not be written in
the same line. There are variations of the if-then-else statement in VB.NET, such
as the if-then-elseif-then and IIF (if and only if) statements, which might not be easy
to use by beginners.

4.6.8 For-loop

For-loop is used when the times of iteration are predetermined. The syntax of the for-
loop statement is

For [counter] = [start] To [end] I[step]
[action blockl]
Next [counter]

See an example in Listing 4.2. In the Next phrase, [counter] can be omitted.
If [step] is omitted, the counter increases by 1 on each iteration.

4.6.9 String Processing and Format Statement

In VB.NET, there are many methods for string manipulation, such as concatenat-
ing, testing, finding substrings, etc. In our examples (see line 76, Listing 4.7), we use
the plus sign “+” for concatenating strings. One may use the “&” sign to join strings
and numbers to avoid a plus operation. The programmer can use the format func-
tion Format () to control the appearance of string that is displayed or printed (see
an example in Listing 4.3). The format function specifies exactly how the string

should appear.

4.6.10 Print Document

Printing a document in VB.NET seems to be tedious. The syntax used for the state-
ments for printing a document is not straightforward. As shown in Listing 4.7, three
basic steps are involved in printing a document:

VB.NET 111

Step 1. Declare a PrintDocument object. The syntax is

Private WithEvents [document name] As PrintDocument

Step 2. In the subroutine of the button that is to print the document, initial-
ize the PrintDocument object, and trigger the Print() method. The
syntax is

Private Sub [button] Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles [button] .Click

[document name] = New PrintDocument
[document name] .Print ()

End Sub
Step 3. Write a subroutine to print the document. The general structure is
Private Sub [document name] PrintPage (ByVal sender As Object,

ByVal e As System.Drawing.Printing.PrintPageEventArgs)
Handles myDocument.PrintPage

Dim [string name] As String

Dim [font name] As New Font (" [font typel", [font sizel,
FontStyle.Regular, GraphicsUnit.Point)

e.Graphics.DrawString([string name], [font name], _
Brushes. [color], [x-coordinate]l, [y-coordinate])

End Sub
Note that in these methods we use e as the print event argument to pass the parameters.

4.6.11 Message Box

'The MsgBox statement displays a message window to the user when it is executed. Its
syntax is

MsgBox [message bodyl, [message box typel, [message titlel

4.7 Debugging

Traditional Visual Basic programs are easy to debug. However, since Visual Basic
migrated to VB.NET, debugging VB.NET programs becomes difficult. First, unlike

112 PROGRAMMING LANGUAGES FOR MIS

other object-oriented languages such as C++, the structure of the entire VB.NET
project is rather disjointed. Although the VB.NET environment can help one to avoid
syntax errors by showing available properties and methods for a class and automati-
cally placing the cursor at the location of a syntax error, it does not provide much
help for debugging logical errors (or semantic errors). Common syntax errors include
a misuse of user-defined variables, mismatching between the class name defined in
the program and the actual control element on the GUI, and references among the
classes. The coordination of the control elements of the entire VB.NET project is

crucial for avoiding logical errors.

Chapter 4 Exercises

1. Given the VB.NET window in the “run mode,” describe how you would
design this GUI (Form1) by filling the table:

NAME OF THE GUI OBJECT

PROPERTIES: (INDICATE “TEXT” ONLY)

Labell

o Form1
Online Auction
Auction Item Choose Item
MyBid $
|_ BID
' Find Bidding Resuit |

2. Read the flowing VB.NET program for the preceding GUI and fill the blanks.

Note that your answers must be consistent with your table in question 1.

1 Public Class Forml

2 Inherits System.Windows.

.Form

VB.NET 113

3 Private Sub Forml Load (ByVal sender As System.Object,

4 ByVal e As System.EventArgs) Handles MyBase.Load
5

6 ComboBox1 . ("Computer")

7 ComboBox1. ("Cell Phone")

8 ComboBox1. ("Web Camera")

9 ComboBox1. ("Laser Printer")

10 End Sub

11 Private Sub Buttonl Click(ByVal sender As System.Object,

12 e As System.EventArgs) Handles Buttonl.Click
13 If (Val(TextBoxl.Text) = 0) _

14 Or (ComboBoxl.Text = "Choose Item")

15 MsgBox ("Please Input your bid!", , "Missing input data")
16 Else

17 MsgBox ("Offer is accepted. Please find the result!")

18

19 End Sub

20 Private Sub Button2 Click(ByVal sender As System.Object,

21 ByVal e As System.EventArgs) Handles
22 Dim CurrentHighestBid As

23 If ComboBoxl.Text = "Computer" Then

24 CurrentHighestBid = 1000

25

26 If ComboBoxl.Text = "Cell Phone" Then

27 CurrentHighestBid = 200

28 End If

29 If ComboBoxl.Text = "Web Camera" Then

30 CurrentHighestBid = 100

31 End If

32 If ComboBoxl.Text = "Laser Printer" Then
33 CurrentHighestBid = 400

34 End If

35 If (TextBoxl.Text) > CurrentHighestBid Then
36 MsgBox ("You win!", , "You win!")

37 Else

38 MsgBox ("Sorry, your bid is not high enough. Bid again!")
39 End If

40 End Sub

41

3. In the “run mode” of the preceding VB.NET program, if the user selects
“Computer” using the combos, inputs 900 in the textbox, and then clicks
on the “Bid” and “Find Bidding Result” buttons, what is the expected
result and where does it appear?

114 PROGRAMMING LANGUAGES FOR MIS

4. In the “run mode” of the preceding VB.NET program, if the user selects
“Computer” using the combos, inputs nothing in the textbox, and then clicks
on the “Bid” button, what is the expected result and where does it appear?

5. In the “run mode” of the preceding VB.NET program, if the user selects
“Web Camera” using the combos, inputs 200 in the textbox, and then clicks
on the “Bid” and “Find Bidding Result” buttons, what is the expected
result and where does it appear?

6. Learn more features of VB.NET from online help. Create a VB.NET project
that uses features of VB.NET that are not fully explained in the book.

7. Develop a VB.NET project that has one form, one combo box, three to five
labels or textboxes, and two to four buttons.

8. Develop a VB.NET project that has two forms with good design and
interactions, at least three buttons, several labels or textboxes, at least two
comboboxes, one module, one class, and message boxes. One of the buttons is
to print a report on the default printer.

C#.NET

C#NET, or simply C#, is a modern, general-purpose, object-oriented program-
ming language developed by Microsoft within the .NET initiative. Like C++, C#
is also derived from C. The name C# is inspired by the musical notation #, which
indicates the written note should be made a semitone higher in pitch. C# has been
standardized by the international standardization organizations ECMA (European
Computer Manufacturers Association) and ISO (International Organization for
Standardization). To make the book concise, we assume that the reader has basic

knowledge of C and C++ (presented in Chapter 2) as a prerequisite of this chapter.

5.1 Microsoft Visual Studio and C# Programming Environment

Like VB.NET and other .NET programming languages, C# is supported by the
Microsoft Visual Studio programming environment. C# supports console applica-
tion and Windows forms application. A console application is a computer program
designed to be used via a text-only computer interface. The user typically interacts
with a console application using only a keyboard and display screen. A Windows
forms application is a graphical user interface (GUI), which normally requires the use
of a mouse or other pointing device.

Figure 5.1 shows the instruction to use the Microsoft Visual Studio environment
to create a C# console application program. Once the C# console application project
is created, you will see the initial automatically generated source code as shown in
Listing 5.1, which you can continue to work on.

Listing 5.1: Initial Automatically Generated C# Source Code

1 wusing System;

2 using System.Collections.Generic;
3 using System.Ling;

4 using System.Text;

5 namespace ConsoleApplicationl

6 |

7 class Program

8 {

9 static void Main(string[] args)
10 {

11 }

12 }

13 }

116 PROGRAMMING LANGUAGES FOR MIS

Start Microsoft Visual Studio

Click on [File]

Choose [New Project]

In New Project Window:

choose [Visual C#]-[Windows]
in the left pane;

choose [Console Application]
in the right pane;

specify the name of project or
use the default name;

e

click on [OK].

Source Code Editor Window
will be launched.

Figure 5.1 Create C# project in Microsoft Visual Studio environment.

C#.NET 117
5.2 C# Program Structure

In C#, a large program can consist of many pieces of small programs (or modules),
which can be written by different programmers. Hence, the same name may be
used in different small programs but actually correspond to different identifiers.
Namespace in C# is used to avoid confusion. A namespace is an abstract container
created to hold a logical grouping of names. A C# program contains one or more
namespaces. In Listing 5.1, the C# program defines one default namespace called
“ConsoleApplicationl” as shown in line 5.

To access the identifiers from other namespaces, the C# program must declare these
namespaces through the “using” statements as shown in lines 1 through 4 of Listing 5.1.
'The identifiers following the “using” keyword are the namespaces to be used.

A C# namespace can contain one or more classes. Line 7 in Listing 5.1 indicates
that the namespace contains only one class named “Program.” In a C# console appli-
cation project, only one namespace and only one class with this namespace can have a
special method called Main. This Main method is the entry point of the C# program.
As shown in line 9 of Listing 5.1, the Main method must be static, its return data type
must be void, and its parameter must be “string[] args.”

In C#, a static method or attribute is not associated with any instance of the class.
A static method is always callable even when no instance of the class has been created.
Static methods and static attributes are often used to represent data or calculations
that do not change in response to object state. For instance, a math class may include
static methods for calculating absolute value and logarithm.

The parameter string[] args of the Main method enables command line argu-
ments once the program has been compiled and is executed directly under the operat-
ing system environment. Section 5.4.2 will explain command line arguments in detail.

5.3 Runa C# Console Application Program

As an example, edit the following simplest C# program by inserting a line (line 11 in
Listing 5.2) into the automatically generated code:

Listing 5.2: Example of a Simple C# Program

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

S W N R

namespace ConsoleApplicationl

{

class Program

{

w0 W J o Ul

static void Main(string[] args)

118 PROGRAMMING LANGUAGES FOR MIS

E C\windows\system32\cmd.exe | E_E&hj

Hello World!
Press any key to continue . . . I

Figure 5.2 Execution result of C# program in Listing 5.2.

10 {

11 Console.WriteLine ("Hello World!");
12 }

13 }

14 }

In line 11 of Listing 5.2, “Console” is a predefined class in the System name-
space, and “WriteLine” is one of its static methods that prints “Hello World!”
on the screen. The “Console.WriteLine” method can print out a value of any data
type as a text string on the screen.

After editing the program, click on the [Save] icon on the top menu to save
the program. The default class name “Program” is the name of the program file
(i.e., “Program.cs” under the default project folder). You may change the program
name in the Solution Explorer window, and the class name in the program will
be changed to the program name automatically. To compile the program, click on

[Build] on the top menu and then click on [Build Project]. If your program is
correct, you should have [0 Errors] on the error list. Now the program is ready to
execute. Press the [Ctrl] and [F5] keys simultaneously, and you will see the execu-
tion window as shown in Figure 5.2. Alternatively, you click on [Debug] on the
top menu and then click on [Start Without Debugging] to see the execution
window. Visual Studio allows the execution result to stay on the screen until you press
any key to close it.

5.4 C# Syntax

Much of C# syntax is very similar, if not identical, to that of C and C++. The syntax
of comments, data types, operators, statements, decisions, loops, classes and objects,
attributes and methods, and public and private are the same as in C and C++, as dis-
cussed in Chapter 2.

There are a few differences between C# and C and C++ programs. They are
described in the following subsections.

C#.NET 119

5.4.1 Arrays and foreach loop

Array is a data structure that contains a collection of elements of the same data type.
The size of the array is the number of elements in the array. Each element in the array
can be used as a variable to store a value for computation. To declare an array in C#,
the square brackets [] must be included after the data type. For example,

int [] numbers; // declare an integer array named numbers
string[] names; // declare a string array named names

Once the array is declared, you must initialize it before using it in your program,
such as

numbers = new int[3]{10,9,8}; // numbers is a 3 element array with
// initial wvalues 10, 9, and 8

names = new string([3]{"John", "Jane", "James"};
// names is a 3 element array with initial wvalues
// "John", "Jane", and "James".

Array declaration and initialization may be combined into a single statement.
For example,

int [] numbers = new int[3]{10, 9, 8};
string[] names = new string[3]{"John","Jane", "James"};

Once the array is initialized, array index is used to access the elements in the array.
The array index is specified inside the square brackets [] after the array name to refer
to a particular array element. The index of the first element in an array is zero. Each
element is equivalent to a variable. For example,

numbers [0] = 100;
numbers [1] = numbers[0] + 1;
numbers [2] = numbers([2] + 1;
for (int 1 = 0; i <= 2; i++) {
Console.WriteLine (numbers[i]); // print out the array element

When you declare an array, you may only reserve the space without initial values,
but you have to initialize each element before using the element. For example,

numbers = new int [5]; // numbers is a 5 element array
numbers [0] = 1;
numbers [1] numbers [0] + 1;

120 PROGRAMMING LANGUAGES FOR MIS

numbers [2] = numbers[1l] + 1;
numbers [3] = numbers([2] + 1;
numbers [4] = numbers[3] + 1;

Arrays are actually objects belonging to the “Array” class in the “System”
namespace. You can access all attributes and methods defined in the “System.
Array” class once you declare an array. An example is to get the length of an array
through the “Length” attribute as follows:

int [] numbers = new int[5] {10, 9, 8, 7, 6};
for (int i = 0; i < numbers.Length; i++) { // numbers.Length is 5
Console.WriteLine (numbers[i]) ;

Note that the “Length” attribute is read-only and it is automatically set by C#
once you declare an array. The “System.Array” class also provides many useful
methods, such as methods for sorting, searching, and copying arrays.

In addition to using a for-loop statement to iterate through an array, you may use a
foreach loop statement. For example,

int [] numbers = new int[5] {10, 9, 8, 7, 6};
foreach (var x in numbers)
Console.WriteLine (x); // x corresponds to an element

In this example, the variable x is a temporary variable that corresponds to an array
element. The data type of x is automatically determined by that of the array named
“numbers.” In the first iteration of the foreach loop, x corresponds to the first
array element. In the second iteration, it corresponds to the second array element, and

SO On.

5.4.2 Command Line Arguments

The parameter string[] args of the Main method is an array of the string data
type. It enables command line arguments once the program has been compiled and is
executed directly under the Microsoft Windows operating system environment. The
command line arguments are the optional text strings after the executable program
name. The advantage of command line arguments is that any .NET program to meet
a particular need by defining specific arguments can call the compiled C# program.
'This feature would make C# programs more flexible for reuse. Calling a compiled C#
program with different command line arguments has the same eftect as calling a func-
tion with different parameters. The program in Listing 5.3 shows how the command
line arguments are processed.

C#.NET 121

Listing 5.3: Example of Processing Command Line Arguments

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

s W N R

5 namespace ConsoleApplicationl

6 |

7 class Program

g

9 static void Main(string[] args)

10 {

11 Console.WriteLine ("Number of command line arguments: "+
12 args.Length) ;

13 Console.WriteLine ("Command line arguments are:");
14 foreach (var x in args)

15 {

16 Console.WriteLine (x) ;

17 }

18 }

19 }

20 }

In line 12 of Listing 5.3, “args.Length” corresponds to the length of the string
array “args” automatically set by C#. It is the number of command line arguments
after the program name. If there is no command line argument, then it is zero. The
foreach loop between lines 14 and 17 prints all command line arguments.

Once the project has been built, the command line arguments can be added in
Microsoft Visual Studio for testing the program with different command line argu-
ments. To do so, go to the “Solution Explorer” window, right-click on the
project name (e.g., “ConsoleApplicationl’), click on [Properties], and
the “Project Properties” window will appear. Click on [Debug] in the
“Project Properties” window, in the “Command line arguments” text
area; enter the command line arguments (e.g., a b ¢). Save the changes and run the
program. The output will be displayed in the console window, as shown in Figure 5.3.
You may repeat this test procedure for other command line arguments.

Alternatively, you can use the Windows Command Prompt to execute the pro-
gram with different command line arguments. However, you need to find the .exe
program by tracing the path of the program.

5.4.3 Functions

A function is a module that performs a calculation task. However, unlike C language,
functions in C# do not exist by themselves. They are part of a class because C# is an
object-oriented programming language. In C#, a function is a member of the class and
is actually a method of the class.

122 PROGRAMMING LANGUAGES FOR MIS

o0 ConsoleApplication] - Microsoft Visual Studio

File Edit View OProject Build Debuy Team Data Topks Tem Window Help
Pl e G- Haal =2 S < | 5B (3 °E etug || P T B 0.
s s 5

ConsoleApplication] x

a2

Application]
Configuration: [Active (Debugy | Piatiom: [Active (i) P 7 Cansolefpplicationl

Build

Build Events Start Action

Detiug B St prcsct

5 B Chwindows\system32\emd.exe

AeschIeEs Start external program;

S

- Start browser with LIRL:

Settings

Heterenca patns | 0 URUOMS

Siwias Command line arguments: a b ny key to continue . . .
Sexurity

Publish

Working directory:

Use remate machine

& 0Emors | 1 0'Wamings | i) 0 Messages

Description

Figure 5.3 Example outputs of program in Listing 5.3.

There are two types of functions: instance function and static function. Further
discussion on the two types of functions is beyond the scope of this book, and we
study static functions in this chapter. C# has two approaches to parameter passing,
and parameters can be passed either by value or by reference. The default parameter
passing in C# is passing by value. The actual value of the parameter is passed into the
tunction. Any changes made to the parameter passed into the function will be dis-
carded when the function terminates. The value of the parameter before and after the
tunction call will be the same. Listing 5.4 shows an example.

Listing 5.4: Value Parameter Passing

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace ConsoleApplicationl

{
class Program
{
static void fun(int a, int b)
{
a=a + 1;
b=Db+ 1;
}
static void Main(string[] args)
{
int x, y;
x = 1;
y = 2;

C#.NET 123

Console.WriteLine ("x=" + x + " y=" + y);

}

'The output of this example will be “x=1 y=2". C# also supports passing parameter
by reference. In reference parameter passing, the reference (memory address) of the
parameter is passed into the function. Any changes made to the parameter in the
tunction will be permanent. Listing 5.5 shows an example.

Listing 5.5: Reference Parameter Passing

1 using System;

2 using System.Collections.Generic;

3 using System.Ling;

4 using System.Text;

5 namespace ConsoleApplicationl

6 {

7 class Program

8 {

9 static void swap(ref int a, ref int b)
10 {

11 int ¢ = a;

12 a = b;

13 b = ¢;

14 }

15 static void Main(string[] args)
16 {

17 int x, y;

18 x =1;

19 v = 2;

20 swap (ref x, ref y);

21 Console.WriteLine ("x=" + x + " y=" + y);
22 }

23 }

24 }

For passing by reference, the parameter must be preceded by “ref.” When calling
the function, the corresponding function argument must be a variable and must also
be preceded by “ref.” In addition, the function argument must be initialized before
calling the function. For this example, the output is “x=2 y=1,” which means the

“_»

values of “x” and “y” have been exchanged.

5.5 Examples of Console Application

'This section presents examples of C# console application. In the first example, the
program (named ArrayFun.cs) in Listing 5.6 allows the user to input three num-
bers for grade points and prints out the GPA. The Main function accepts the user’s
input numbers and places them into an array named Numbers. It then calls a func-
tion, named Avg, which has an array argument, named AR, and returns the average
of the numbers in the array. Finally, the Main function prints the GPA based on the

124 PROGRAMMING LANGUAGES FOR MIS

input grade points. The logic of the program is rather straightforward if the reader
possesses prerequisite knowledge of C and C++ and has learned the previous sections
of this chapter. The emphasis of this example to learn includes:

* Array and foreach

* Function and parameter passing

* Similarity and dissimilarity of syntax between C# and C++

* Other miscellaneous commands (e.g., C# equivalent of “cin” and “cout”)

Listing 5.6: An Example of Console Application (ArrayFun.cs)

1 using System;
2 using System.Collections.Generic;
3 using System.Ling;
4 using System.Text;
5 namespace ArrayFunction
6
7 class ArrayFun
8 |
9 static double Avg(ref double[] AR)
10 {
11 double Total=0;
12 for (int i = 0; i < AR.Length; i++)
13 {
14 Total=Total + ARI[i];
15 }
16 Total=Total/AR.Length;
17 return (Total) ;
18 }
19 static void Main(string[] args)
20 {
21 double[] Numbers;
22 Numbers = new double[3];
23 Console.WriteLine ("Enter first grade point:");
24 string line = Console.ReadLine() ;
25 Numbers [0] = Convert.ToDouble (line) ;
26 Console.WriteLine ("Enter second grade point:");
27 line = Console.ReadLine () ;
28 Numbers[1] = Convert.ToDouble (line) ;
29 Console.WriteLine ("Enter third grade point:");
30 line = Console.ReadLine() ;
31 Numbers [2] = Convert.ToDouble (line) ;
32 foreach (var ANumber in Numbers)
33 { // numbers.Length is 3
34 Console.WriteLine ("Entered grade point is:" + ANumber) ;
35 }
36 double GPA=Avg(ref Numbers) ;
37 Console.WriteLine ("GPA is:" + GPA);
38 }
39}

C#.NET 125

o0 ArayFunction - Microsoft Visual Studio

. Fite Edit View Refactor Project Buidd Debug Team [Cata Tools Test Window Help

e dd-d @ & QAR Z2 (-0 S5 b i "B (R Debug | b o e S S e
] o s =

Arrayfuncs

2% ArayFunctionAira

[el |~ a2 =1y
2 ArrayFunction
e 4 Properties
a References
A AnayFuncs

=

Figure 5.4 Execution result of ArrayFun.cs.

Figure 5.4 shows the execution result of ArrayFun.cs in Listing 5.6.

'The second example of C# console applications is batch file processing, where the
program processes multiple disk files without interaction with the user. The C# pro-
gram (FileProcessing.cs) in Listing 5.7 merges two data files into one file. In
this example, the two input files are named filel.txt and file2.txt, and the
generated (output) file is named £ile3.txt. Suppose filel.txt contains the fol-
lowing computer log entries in a text editor (e.g., Notepad):

John, 7:37
Jack, 7:58
James, 8:23

and that file2.txt contains the following computer log entries in a text editor

(e.g., Notepad):

Smith, 9:34
Smile, 10:50

After merging, file3.txt will contain the following text once the program is
executed successfully:

John, 7:37
Jack, 7:58
James, 8:23
Smith, 9:34
Smile, 10:50

To test FileProcessing.cs, you need to create filel.txt and file2.txt
using Notepad and then save the two files in the [\bin\debug] folder in the project
folder of the C# console applications project created for this program. After execution
of this program, you can see file3.txt in the same [\bin\debug] folder.

126 PROGRAMMING LANGUAGES FOR MIS

Listing 5.7: Example of Console Application for File
Processing (FileProcessing.cs)

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

W N

5 using System.IO;

6 namespace FileProcessing
7 {
8 <class FileProcessing

s {

10 static void Main(string[] args)

11 {

12 string FileNamel = "filel.txt";

13 string FileName2 = "file2.txt";

14 string FileName3 = "file3.txt";

15 int FailureFlag = 0; // Flag used for process status

16 // Open all three files

17 StreamWriter OutputFile;

18 FileInfo File3Info = new FileInfo (FileName3) ;

19 if (File3Info.Exists == false)

20 { OutputFile = File.CreateText (FileName3); }

21 else

22 {

23 Console.WriteLine ("The original merged file is overwritten!");
24 OutputFile = File.CreateText (FileName3); // Overwrite file
25 }

26 StreamReader InputFilel, InputFile2;

27 FileInfo InputFilelInfo = new FileInfo (FileNamel) ;

28 FileInfo InputFile2Info = new FileInfo (FileName2) ;

29 if (InputFilelInfo.Exists == true)

30 {

31 InputFilel = File.OpenText (FileNamel) ;

32 // Write the contents of the input file to the output file
33 while (InputFilel.Peek() > 0)

34 { outputFile.WriteLine (InputFilel.ReadLine()); }

35 InputFilel.Close(); // Close the input file

36 }

37 else

38 {

39 Console.WriteLine ("The input file #1 does not exist!");
40 FailureFlag = 1;

41 }

42 if (InputFile2Info.Exists == true)

43 {

44 InputFile2 = File.OpenText (FileName2) ;

45 // Write the contents of the input file to the output file
46 while (InputFile2.Peek() > 0)

47 { OutputFile.WriteLine (InputFile2.ReadLine()); }

48 InputFile2.Close() ; // Close the input file

49 }

50 else

C#.NET 127

51 {

52 Console.WriteLine ("The input file #2 does not exist!");

53 FailureFlag = 1;

54 }

55 OutputFile.Close(); // Close the output file

56 if (FailureFlag == 0)

57 Console.WriteLine ("Two files have been merged into output filel!");
58 else

59 Console.WriteLine ("The operation failed due to incorrect files!");
60 }

61 }

62 }

For file processing, the program needs to import the System.IO namespace, as
shown in line 5 of Listing 5.7. Four classes are required for file processing in C#, as
shown in Listing 5.7 and discussed next:

1. The StreamwWriter (line 17) and StreamReader (line 26) classes rep-
resent the files for writing and reading, respectively. The WriteLine()
method of StreamWriter (lines 34 and 47) writes a line to the file. The
ReadLine() method of StreamReader (lines 34 and 47) reads a line
tfrom the file. Before calling the ReadLine() method, the Peek() method
(lines 33 and 46) must be called to make sure that the end of the file has not
already been reached.

2. 'The File class (lines 20, 24, 31, and 44) defines the operations for open-
ing the data file. The File.CreateText() method (lines 20 and 24) cre-
ates the file for writing. The File.OpenText () method (lines 31 and 44)
opens the file for reading.

3. The FileInfo class (line 18 and lines 27 and 28) holds information about
the files, such as whether they exist, to avoid errors.

5.6 Windows Forms Application

In addition to console application, C# also supports Windows forms application, which
enables GUI design and programming user interface. To create a C# Windows forms
application, you follow the steps in Figure 5.1 except for choosing [Windows Forms
Application] instead of [Console Application] in the New Project win-
dow. Once a Windows forms application is created, a GUI design environment similar
to the one in VB.NET will be launched and you can create GUI for your program.
The interested reader is referred to Chapter 4 to learn more about the GUI design
environment. Figure 5.5 shows a GUI design example.

Double-clicking the “Submit” button in “Form1” will launch the Source Code
Editor window shown in Figure 5.6.

128 PROGRAMMING LANGUAGES FOR MIS

Form window

Toolbox &= Properties

(to select H window

element) (to set
properties
of element)

Output window

Figure 5.5 GUI design of C# Windows forms application.

Windownl ormadpplication? - Micresoll Visusl Studse
(P BB Vew fwiwtn Frod Dk et Teem Dets Tovh ek fewiver Wk el .
s e e e - e e - S,
b T e A A L SR R T G
o Tocks = 0 [EEPRE . £,

IndtialiseConpanentiis

private vols Burtenl _Click(stject sender, framtirgs €)
{

Lebwla.Tent = “weloome! = 4 textBend.Test;

Figure 5.6 Source code editor window for Windows forms application.

The Source Code Editor window contains the initial automatically generated
source code shown in Listing 5.8.

Listing 5.8: Initial Automatically Generated Source Code

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

C#.NET 129

using System.Text;
using System.Windows.Forms;

namespace WindowsFormsApplicationl

{

public partial class Forml : Form

{

public Forml ()

{
}

InitializeComponent () ;

private void buttonl Click(object sender, EventArgs e)

{
}
}

In the initial automatically generated code template, the function “buttonl
Click” corresponds to the event that the user clicks on the “Submit” button on
“Forml.” The programmer can add the code inside this function. For example, one
can add the code shown in Listing 5.9 to display a greeting message, which includes
the user’s input in textBox1, in label2 below the Submit button. One can change
the properties (such as font, color, etc.) of these control elements in the Properties
window.

Listing 5.9: Example of Windows Forms Application

private void buttonl Click (object sender, EventArgs e)

{
}

label2.Text = "Welcome! " + textBoxl.Text;

Click on [Build] on the top menu of the environment and choose [Build
Project] to compile the program. If there is no error, click on [Debug] and then
choose [Start ..], or simply press the [F5] key, to run the application. Figure 5.7
shows the result of the program in Listing 5.9, given certain settings of the properties
of the elements of the GUI (e.g., the color of the text of Label2 is set to red).

B Farmi FEx

Name: John Smith

Submit

Welcome! John Smith

Figure 5.7 Example output of C# Windows forms application.

130 PROGRAMMING LANGUAGES FOR MIS

©8 LoanPayment - Microsoft Visua! Studio el W
o, File Edit View Project Budd Debug Team Data Formal Tools Test Window Help
(e Bu-ddla wald|=2(9-0-8-Gr u 4P -|IFPRBRH 40)
[l=t=1EE
Toalbox X Formles FormLes [Design] % > Sl Explorer = § %
All Windows Farms . Ria | B EIEIE &
A Common Controls 5 Forml = e = 7l LoanPayment
k FPointer i P
4 Properties
@ Buton Student Trust Co. 4 References
E CheckBox + &l Formlcs
9 Checkeolistlox '4) Forml. Designer.cs.
S ComboBax 2 Loan Amount $ M Fomireh
T DateTimePicker Programes
A Label Term (Year) 2
A Linkiabel i
*d ListBox -
g Annual Interest Rate Choose Rate
-l MaskedTextBox
Forml System WindowsF -
) ManthCalendar Calculate Monthly Payment e
= tifylcon
- I“D . Y RightToLe False *
1 MumencUpDown Monthly Payment Showlcon True
il PictureBox ShowinTa True
= ProgressBar = Size 659, 432
@ RadioButton SizeGrips Auto
®1 RichTextBox StartPosit WindowsDi
W TextBox @ 0&rors | g 0Wamings [(1) 0 Messages Teg E
I,L‘ toalllp - Description File Ling | Consrin Project Im_. fuml =

Figure 5.8 Design of form for C# LoanPayment project.

5.7 Examples of Windows Forms Application

In this section, we learn more features of C# of Windows forms application by using
examples. The first example, named LoanPayment, is to calculate the monthly pay-
ment based on the amount and the term of the loan. The GUI accepts these data
from the user, allows the user to select a current interest rate from a combo menu,
and then calculates the monthly payment for the user. The design of Form1 is shown
in Figure 5.8. On this form, five labels are created to display headings: “STUDENT
TRUST CO.,” “Loan Amount $,” “Term(year),” “Annual Interest Rate,)
and “Monthly Payment.” Two textBoxes are created to catch the data, and the
third textBox is used to display the calculated monthly payment result. Close to
the “Annual Interest Rate”label, a comboBox is created to show the alterna-
tive interest rates applied. Finally, a command button is created for the user to find the
answer. To write a C# program for Windows forms application, you must remember
the names of these control element objects (e.g., textBox1, comboBox1, buttonl, etc.).

You double-click on the form, enter the coding window, and write the C# code as
shown in the lines in bold in Listing 5.10.

Listing 5.10: C# Code for LoanPayment Project

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

[N O R A

C#.NET 131
6 using System.Ling;
7 using System.Text;

8 using System.Windows.Forms;

9 namespace LoanPayment

10 {

11 public partial class Forml : Form

12 {

13 public Forml ()

14 {

15 InitializeComponent () ;

16 }

17 private void buttonl Click (object sender, EventArgs e)
18 {

19 double LoanAmount, LoanTerm, InterestRate, MonthlyPayment;
20 LoanAmount = Convert.ToDouble (textBoxl.Text) ;

21 LoanTerm = Convert.ToDouble (textBox2.Text) ;

22 InterestRate = Convert.ToDouble (comboBoxl.Text) ;

23 MonthlyPayment = (LoanAmount * Math.Pow((1 +

24 InterestRate/12), (LoanTerm*12))

25 * InterestRate/12) / (Math.Pow((1 +
26 InterestRate/12), (LoanTerm*12)) - 1);
27 textBox3.Text = MonthlyPayment.ToString("c2");

28 }

29 private void Forml Load(object sender, EventArgs e)

30 {

31 for (int i = 0; i < 7; i++)

32 {

33 comboBoxl.Items.Add(0.040 + 5*i*0.001);

34 }

35 }

36 }

37 }

As shown in Listing 5.10, the structure of C# code for Windows forms application
is very similar to the structure of VB.NET code presented in Listings 4.2 and 4.3. As
the syntax of C# is similar to C++, there are differences of features between C# and
VB.NET that can be learned through a comparison of Listing 5.10 and Listings 4.2
and 4.3, including:

* Data type conversion (e.g., line 20)

LoanAmount = Convert.ToDouble (textBoxl.Text) ;

This converts a string to a double type number.
* Data format for output (e.g., line 27)

textBox3.Text = MonthlyPayment.ToString("c2") ;

This passes the format of currency (with two digits after the decimal point) to the
ToString method. Similarly, ToString("0.00"); or ToString("n2");
can be used to display ordinary numbers.

132 PROGRAMMING LANGUAGES FOR MIS

% Form1 o) |
Student Trust Co.

Loan Amount $ 1000
Term (Year) 3

Annual Interest Rate 0.07 i

| Calculate Monthly Payment |

Monthly Payment $30.88

Figure 5.9 Execution result of C# LoanPayment project.

* Format of the for-loop statement (e.g., line 31)

* Many built-in business calculation functions in VB.NET, such as Pmt, are
not available in C# (e.g., lines 23-26); apply arithmetic operators (include
Math.Pow) to calculate the payment.

Figure 5.9 shows an example of the execution result, which is almost identical with
the VB.NET example in Section 4.4. As demonstrated in this example, C# Windows
forms application is very similar to VB.NET.

The second example, named SignatureDesign, is to demonstrate the use of
multiple forms. The project is to allow the user to input a name and to choose options
for designing a personal signature. This example employs two forms: One is to collect
the user’s input and the other is to display the designed personal signature based on the
user’s input. The GUI design and example execution results are shown in Figure 5.10.

The first form, named Form1, contains two TextBox controls to collect the user’s
first name and last name, respectively. A GroupBox control is used to contain two
radio buttons for the signature options, which include the full name signature and
initial-only signature. The GroupBox control ensures that only one radio button in
the group can be selected by the user at a time, and the previously selected radio
button will be automatically unselected if the user selects another radio button. A
ListBox control is used to allow the user to select a design option for the personal
signature. The design options are various types of font design. Once the user clicks
on the [Generate Signature] button on Forml, validation will be performed
to ensure the presence and correctness of the user’s input. For example, as shown in
Figure 5.11, the first and last names must contain only alphabetical letters. Once all
validation tests have been successfully passed, the second form, named Form2, will
be displayed (Figure 5.10). It shows the designed personal signature using a Label

? !S. ﬂ'm@ .

First Name: John
Last Name: Smith

Signature Options:

Design Options:
Segoe Script
Vladimir Script

¢ Full Name ° Initials Only

Jottn itk

‘ Go Back

[Generate Signature }

133

Figure 5.10 The GUI design and execution result of C# SignatureDesign project.

I

First Name: John
Last Name: $mith

Signature Options:

@ Full Name © Initials Only

Design Options:
Segoe Script
Vladimir Script

[" |
| Generate Signature |

The name must contain only alphabetic letters

Figure 5.11 Example validation result of C# SignatureDesign project.

control and a [Go Back] button, which closes the Form2 window and returns the

execution to the Forml window.
To add a form (e.g., Form2) in the C# project development environment, right-
click on the project name in the Solution Explorer window, point to [Add] in

the menu, and then click on [Windows Form], as shown in Figure 5.12.

134 PROGRAMMING LANGUAGES FOR MIS

Solution Explores

o | ¥ (2] ey
A cignatureDesign
Buitd il Properties
Rebuild h References
Clean Forml.cs
Program.cs

% Publish..
Run Code Analysis

Calculate Code Metrics

New Item... Ctrl+ Shift A Add L
Basting ftem.., Shift+Alt+A Add Reference... e = :
New Folder Add Service Reference... Kelcign Soprd Frpedng

Windows Form.. View Class Diagram =

User Control... Debug 3

ject File SignatureDesign.c
pject Folder 9

Component... j Add Project to Source Control...

§ Classs

Rename
Open Folder in Windows Explorer
= Properties

Figure 5.12 Steps to adding a new form in C# Windows forms application.

'The source code associated with Form1 is shown in Listing 5.11.

Listing 5.11: C# Code for Forml of the SignatureDesign Project

1 using System;

2 using System.Collections.Generic;
3 using System.ComponentModel;

4 using System.Data;

5 using System.Drawing;

6 using System.Ling;

7 using System.Text;

8 using System.Windows.Forms;

9 namespace SignatureDesign

10

11 public partial class Forml : Form

12 {

13 public Forml ()

14 {

15 InitializeComponent () ;

16 }

17 private void buttonl Click (object sender, EventArgs e)
18 {

19 label5.Text = "";

20 // check if the user has entered the first name

21 if (string.IsNullOrEmpty (textBoxl.Text))

22
23
24

25
26
27
28
29

30
31
32
33
34
35

36
37
38
39
40

41
42
43

44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61

62
63

64
65
66
67
68
69

70

C#.NET 135

label5.Text = "Warning: Please input your first name";

}

// check if the user has entered the last name
else if (string.IsNullOrEmpty (textBox2.Text))

{
}

label5.Text = "Warning: Please input your last name";

// check if the user has selected a signature option

else if ((radioButtonl.Checked == false) &&
(radioButton2.Checked == false))
{
label5.Text = "Warning: Please select a signature option";

}

// check if the user has selected a design option
else if (listBoxl.SelectedIndex == -1)

{

label5.Text = "Warning: Please select a design option";

else

bool flag = true;

// check if the first name contains only alphabetic letters

for (int i = 0; 1 < textBoxl.Text.Length; i++)
if (!char.IsLetter (textBoxl.Text[1]))
label5.Text = "The name must be alphabetic letters";

flag = false;

}
}

// check if the first name contains only alphabetic letters
for (int 1 = 0; i < textBox2.Text.Length; i++)
{
if (!char.IsLetter (textBox2.Text[i]))
{
label5.Text = "The name must be alphabetic letters";
flag = false;
}
}

if (flag == true) // validation tests have been passed

{

// make sure the first chars of the first and last

// names are always capital letters

textBoxl.Text = char.ToUpper (textBoxl.Text [0]) +
textBoxl.Text.Substring (1) ;

textBox2.Text = char.ToUpper (textBox2.Text [0]) +
textBox2.Text.Substring (1) ;

string signatureText, designOption;

136 PROGRAMMING LANGUAGES FOR MIS

71 if (radioButtonl.Checked == true)

72 { signatureText = textBoxl.Text + " " +

73 textBox2.Text;

74 }

75 else // 1f (radioButton2.Checked == true)
76 {

77 signatureText = textBoxl.Text[0].ToString() +
78 textBox2.Text [0] .ToString() ;
79 }

80 if (listBoxl.SelectedIndex == 0)

81 {

82 designOption = "Kunstler Script";

83 }

84 else if (listBoxl.SelectedIndex == 1)

85 {

86 designOption = "Segoe Script";

87 }

88 else // 1f (listBoxl.SelectedIndex == 2)
89 {

90 designOption = "Vladimir Script";

91 }

92 // create and show the second form

93 // pass signatureText and designOption to the second form
94 Form2 showForm = new Form2 (signatureText, designOption) ;
95 showForm. ShowDialog () ;

-63 }

-42 }

-18 }

-12 }

-10 }

'The user’s input in a textbox is always a text string. This program contains several vali-
dation methods. In lines 21 and 26 of Listing 5.11, the string.IsNullOrEmpty ()
function tests whether the user has entered a text string in a textbox. Line 37 shows
that the value of the SelectedIndex property of the listbox is -1 if no item
in the listbox has been selected. If the user selects an item in the listbox, the value
of the SelectedIndex property of the listbox is the index of the selected item
(e.g., line 80 deals with the case when the user selects the first item). In lines 47 and
56, the char.IsLetter() function tests whether a character in the user’s input is
an alphabetic letter. To assist the validation, line 43 declares a Boolean variable named
flag to record the validation status. Lines 31-35 and 71-79 examine the user’s selec-
tion for the group of radio buttons, while lines 37-40 and 80-91 examine the user’s
selection for the 1istBox.

As shown in lines 26, 31, 37, and 84 of Listing 5.11, else 1if statements are
applied. The syntax of the else 1if statement is

if (condition 1)
{ action block 1 }
else if (condition 2)

C#.NET 137

{ action block 2 }
else
{ action block 3 }

'This is the same as the following standard nested if-then statement:

if (condition 1)
{ action block 1 }
else
{ 4if (condition 2)
{ action block 2 }
else
{ action block 3 }

As shown in lines 66-79 of Listing 5.11, the first character of a string is indexed
at the position 0, and it is of the char data type, not of the string data type. C#
treats the char data type and the string data type differently. The ToString()
method of any character will convert the character into the st ring data type so that
it can concatenate with other strings. The SubString(x) method of any string will
extract a substring from the original string, starting at the position x. For example,
SubString(1) will result in a new string, without the first character of the origi-
nal string.

As shown in line 94 of Listing 5.11, Form2 is dynamically created in the source
code of Form1l, and the data to be passed from Forml to Form2 are the parameters
of the constructor of Form2. In line 95 of Listing 5.11, the ShowDialog() method
will display this newly created Form2 and transfer the execution of the program
to Form2.

The source code of Form2 is shown in Listing 5.12, where line 13 indicates
that the data passed from Forml are the parameters of the constructor of Form2.
Line 18 shows that the font and font size of 1abell can be dynamically changed
in the program so that the text associated with the label will be displayed difterently.
Line 22 shows that once the user clicks on the [Go back] button on Form2, the
Form2 window will be closed and the execution of the program will be returned
to Forml.

Listing 5.12: C# Code for Form2 of the SignatureDesign Project

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

o J o0 U1 W N

138 PROGRAMMING LANGUAGES FOR MIS

9 namespace SignatureDesign

10 {

11 public partial class Form2 : Form

12 {

13 public Form2 (string signatureText, string fontName)

14 {

15 InitializeComponent () ;

16 // signatureText and fontName are passed from Forml
17 labell.Text = signatureText;

18 labell.Font = new Font (fontName, labell.Font.Size);
19 }

20 private void buttonl Click (object sender, EventArgs e)
21 {

22 this.Close() ;

23 }

24 }

25 }

The interested reader is referred to Chapter 4, “VB.NET,” for examples of GUI
with advanced features such as printing documents and others.

5.8 Debugging
Debugging C# programs could be time consuming. After compiling (or building)

a C# program, the compiler will show error or warning messages if the program
has a syntax error or an imperfect statement. A warning message does not prevent
the program from executing, but it might cause problems (e.g., loss of information
when converting data types). Any error could be fatal. The programming environ-
ment (e.g., Microsoft Visual Studio) can show the error locations, and, if you click on
an error item in the error message window, the cursor will move to the place in the
program where the error occurs. The following tips are for debugging:

1. Start with the first error in the program to debug.

2. An error message could be vague. For beginners, do not attempt to interpret
the meaning of an error message, but pay attention to the error line itself.

3. An error line identified by the compiler may seem to be correct, but is actually
affected by a real error in a related line. Thus, you need to inspect all lines that
can be related to the indicated error line.

4. Fix one error a time and recompile the program after making a change.

5. Do not attempt to make the number of errors detected by the compiler smaller
by making irrational changes.

'The compiler can detect syntax errors. The syntax error-free condition is necessary
for execution, but it does not guarantee the correctives of the logic of the program.

C#.NET 139

Logical errors or runtime errors often occur when the computer performs wrong oper-
ations, not as predicted. To debug logical errors, one should use data samples to test
the program based on the output of the program.

1. Make the design of modules clear and logical. Avoid using a “goto” or any
jump statement (e.g., “return” in the middle of the module) because it tends to
cause bugs and to make debugging difficult.

2. Exercise every possible option to check the computer outputs to see if the pro-
gram does only as expected. Examine all if-statements to follow possible actions.

3. A program might cause a crash. Usually, it could be caused by wrong data
types, wrong calculations (e.g., a number is divided by zero), wrong size of an
array, or wrong data file operations.

4. If a program is “dead,” you must terminate it through interruption. A dead
program is more likely caused by an endless loop. You need to examine loop
statements and if-statements thoroughly.

Chapter 5 Exercises

1. Create a C# console application that defines a function and calls this function
from the main function. The function takes three parameters, all of the integer
data type, and returns the value of the smallest among the three parameters.
Test the program with the following combinations of the function arguments:
0,2,1
1,2,3
5,4,3

and display the results in the console window.

2. Create a C# console application that defines a user-defined void function and
calls this function from the main function. The user-defined void function
takes two parameters, x and y, both of which are of the integer data type
and of passing by reference parameter passing. In this function, the following
computation will be executed:

X=X+Yy
y=x=y
X=X—Yy

Test the program and display the values of two variables before and after
calling this function in the console window. Explain the effect of this user-
defined function.

3. Fill blanks in the following C# console application program. Sketch the exe-
cution result of the program if the user inputs two numbers: 5 and 6.

140 PROGRAMMING LANGUAGES FOR MIS

sw NN R

o J o Ul

9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace AreaFunction
{class AreaFun
{
static double (ref double[] Dimensions)
{double = 1;
for (int i = 0; 1 < Dimensions. ; oi+4)
{ Product = Product * Dimensions | 1;

}

return (Product) ;

}

static void Main(stringl[] args)
{
double[] Measurements;
Measurements = new double[1;
Console.WriteLine ("Enter length:");
string Side = Console.ReadLine () ;
Measurements [0] = Convert. () ;
Console.WriteLine ("Enter width:") ;
Side = Console.ReadLine() ;
Measurements [1] = Convert. () ;

double Area = CalArea(Measurements) ;
Console.WritelLine ("Area 1is:" + Area) ;

}
}
}

4. (a) Given the following execution window, describe how you would design

this GUI (Form1) by filling the table:

7 foeml e

Name: John
Class Year; 2018

Validate User Input

Everything is correct!

C#.NET

141

NAME OF THE GUI OBJECT

PROPERTIES: (INDICATE “TEXT” ONLY)

Labell

0 J 0 Ul w N

9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

(b) Read the flowing C# program for the preceding GUI and fill the blanks.

Note that your answers must be consistent with your table in question 4(a).

using
using
using
using
using
using
using
using

System;
System.
System.
System.
System.
System.
System.
System.

Collections.Generic;
ComponentModel;
Data;

Drawing;

Ling;

Text;

Windows.Forms;

namespace WindowsFormsApplicationl

{

public partial class Forml : Form

{

public Forml ()

{

InitializeComponent () ;

}

private void buttonl Click (object sender, EventArgs e)

{

label3.Text = "";

int

OKFlag = 0;

// Check whether the user has entered the name and GPA
if (string.IsNullOrEmpty (
{ MessageBox.Show ("Please input your name!") ;

OKFlag = 1;

.Text))

if (string.IsNullOrEmpty (textBox2.Text))
{ MessageBox.Show ("Please input your Class Year!");
OKFlag = 1;

}

// Check whether the name contains only alphabetic letters
(int 1 = 0; 1 < textBoxl.Text.Length; i++)

for

{

142

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58 }

5.

PROGRAMMING LANGUAGES FOR MIS

if (!char.IsLetter (textBoxl.Text[1]))

{ MessageBox. ("The name must be alph. letters!");
OKFlag = 1;

}

}

// Check class year is an integer between 1900-2020
for (i = 0; i < textBox2.Text.Length; i++)
{ if (!char.IsDigit (textBox2.Text[i]))
{ MessageBox.Show ("Year must be integer 1900-2020!");
OKFlag = 2; }

if (OKFlag==0)
{ int year = Convert.ToInt32 (textBox2.Text) ;

if ((year < 1900) || (year > 2020)

{ MessageBox.Show (“Year must be integer 1900-2020!");
OKFlag=1; }

}
// Validation had been passed
if (OKFlag==0)

.Text = "Everything is correct!";

private void Forml Load(object sender, EventArgs e)

{
}

(¢) During the test of the preceding C# program, if the user does not input
anything but clicks on the “Validate User Input” button, what is
the expected result and where does it appear?

(d) During the test of the preceding C# program, if the user inputs $100
in the first textbox, 2010 in the second textbox, and then clicks on the
“Validate User Input” button, what is the expected result and where
does it appear?

(e) During the test of the preceding C# program, if the user inputs Smith
in the first textbox, 2030 in the second textbox, and then clicks on the
“Validate User Input” button, what is the expected result and where
does it appear?

(f) Discuss validation of user inputs in C#.

Create a C# Windows forms application that contains the following form:
Once the user clicks on the submit button, the user’s input should be dis-
played below the submit button for confirmation. For example,

Credit card: Visa
Name on Credit Card: John Smith

C#.NET 143

Credit Card Number: 1234567890123456

Expiration Date: 01/2020
If the user has missed any data item before clicking on the submit button,
a warning message will be displayed.

6. Learn more features of C# from the online help. Create a C# project that uses
teatures that are not fully explained in the book.

7. Develop a C# project that has one form, one combobox, three to five labels or
textboxes, and two to four buttons.

8. Develop a C# project that has two forms with good design and interactions,
at least three buttons, several labels or textboxes, at least two comboboxes,
one group of radio box, one class, and message boxes. One of the buttons is to
print a report on the default printer.

©

ASP.NET

6.1 Introduction to ASP.NET

ASP.NET is a framework for building web applications. It is a server-side program-
ming technology. Its predecessor is ASP. ASP.NET supports all NET programming
languages for web application development, including VB.NET and C#NET. To
publish an ASP.NET web application on the web, an IIS (Internet information
services) server and the Microsoft NET framework are required. In terms of the
roles of web applications, ASP.NET is not much different from other server-side pro-
gramming languages such as PHP. A general process of a web application supported
by ASP.NET is illustrated in Figure 6.1. The user on the client side sends a request,
which might include data, over the Internet to the web server. The request and data
received by the web server are used as the input for an ASP.NET program. The ASP.
NET program processes the request and generates a dynamic HTML web page. A
dynamic web page is different from a static web page in that a dynamic web page does
not reside at a URL and its contents can vary depending on the request of a user or
a computer program. The dynamic web page generated by the ASP.NET program is
sent back to the client side. The web browser on the client-side computer presents the
dynamic web page to the user.

The Microsoft Visual Studio development environment allows the programmer to
develop ASP.NET programs on a personal computer without having a remote web
server. It creates a local server on a personal computer to emulate the remote server
for testing ASP.NET programs. The local server can also be a database server if the
database is connected to the server through ODBC (open database connectivity).
One can set the database connectivity in the Windows operating system using
Administrative Tools in Control Panel. If a Microsoft Access database is
used for ASP.NET as demonstrated in the examples in this chapter, it is more likely
that the connectivity has been set by the system already.

This chapter includes two parts: ASPNET with VB.NET and ASP.NET with
C#.NET. Clearly, the two parts share many common characteristics. Each part needs
its prerequisite of VB.NET or CANET. APS.NET with VB.NET and APS.NET
with C#NET are very similar. The concept and knowledge learned from one part can
be straightforwardly applied to the other part. This chapter highlights the important
features of ASP.NET without unnecessary replications of material. For example, the
use of ADO.NET for a database process is mainly presented in the part of ASPNET
with VB.NET, and the use of the <asp:SglDataSources control is presented in

145

146 PROGRAMMING LANGUAGES FOR MIS

Request Request |:|

Results Results ASPNET
] (ASPNET (ASPNET
Web dynamic Web page) dynamic Web page)
browser Database
Client Web Server

Figure 6.1 Execution cycle of an ASP.NET program.

the part of ASP.NET with C#NET. However, either of the two features is applicable
to any APS.NET application.

6.2 ASP.NET with VB.NET

One may use Microsoft Visual Studio to create an ASP.NET web application project
in the Visual Basic template. The project created by the environment contains many
predeveloped modules, resources, and structured query language (SQL—pronounced
“sequel”) server connections. However, an application of ASPNET with VB.NET
can be created in a simple way without using a website project. To avoid the distrac-
tion of those automatically generated modules and code lines, we use program files
of ASPNET with VB.NET in this section to learn and understand how ASP.NET
with VB.NET programs works. In other words, we edit ASPNET with VB.NET
programs in Microsoft Visual Studio or Notepad and use the Microsoft Visual Studio
environment to compile and execute the programs. The following steps are the general
procedure of editing a program of ASPNET with VB.NET and viewing the execu-

tion result:

1. Create a folder on your computer to store all ASP.NET programs. The folder
name must not contain the # sign.

2. Start Microsoft Visual Studio. Click on [File] and choose [New File].In
the New File pane on the left [Installed Template], choose [Web]-
[Visual Basic];in the right pane, choose [Web Form]. Click on the [OK]
button. When the editing window comes up, click on the [Source] button
at the bottom of the editing window. You may delete the template code alto-
gether and start editing your own ASP.NET program here (see Listing 6.1
for an example). After editing, save the program to your folder as FileName.
aspx (e.g., HollowWorld.aspx). Alternatively, you may use Notepad to
edit your ASPNET program and save it to the folder. Make sure that you
choose [All Files] for [Save as typel before you save the file as
FileName.aspX.

ASP.NET 147

Menu - [Open File...] [View in Browser]...
| 00 HelioWorid asps - Microsoft Visual Studio i
¢} File Edit View Project Debug Team Data Format Took Test Window Halp

Pl Tl P &AL Z 205) 4 13 % 7 B 1

HellcWorld.aspn = = Solution Explorer

Server Objects & Events = [N Events)
<&@ Page Language="VB" %3
H<script runat="server"»

Public Sub Page_Load()
labell.text="Helle, Worldl"
End Sub 3

5 chody»

2 = <form idea"fored®

Properties * X
DOCUMENT
ol

ALink

. Backgrouna

] G Design o S5plit |& Source Batolor
Class
Culture

Q 0Emors | f 0Wamnings || L} O Messages Disbuin

Description
1 active links in the document

O AP

TN = T | 1 7 T
SRR AR
Error messages

Switch Design and Source Local Server Starts

Figure 6.2 Microsoft visual studio environment for ASP.NET.

3. In the menu of Microsoft Visual Studio, click on [File] and then on [Open
File ..] to open your ASP.NET program file.

4. After opening the APS.NET program file, you can see error messages if there
is an error.

5. If the program is error free, click on [View in Browser] in [File]. You
will see the local server start and then the execution result presented by the
browser on the client side will show up.

In case [View in Browser] is notin the [File] menu, it can be added to the
menu by clicking on [Tools] on the Menu Bar, choosing [Customize], clicking on
the [Commands] tab, and then adding [View in Browser] tothe [File] menu.

Figure 6.2 shows the important features of the Microsoft Visual Studio environ-

ment for using ASP.NET files.

6.2.1 Structure of ASP.NET Program

Generally speaking, an ASP.NET program includes two parts: the user interface logic
and the web form. In this part, we use VB.NET for user interface logic. We present a
simple ASPNET program, named HelloWorld.aspx, in Listing 6.1. As usual, the
line numbers are added for explanation and should not be included in the program.

148 PROGRAMMING LANGUAGES FOR MIS

Bold font is used for highlighting some important words that connect the user inter-
face logic and the web form.

Listing 6.1: Example of ASP.NET with VB.NET (HelloWorld.aspx)

1 <%@ Page Language="VB" %>

2 <script runat="server"s>

3 Public Sub Page Load()

4 labell.text="Hello, World!"
-3 End Sub

-2 </script>

5 <html><heads><title></title></head>

6 <body>

7 <form id="forml" method="post" runat="server"s>

8 <asp:Label id="labell" runat="server"></asp:Label>
-7 </form>

-6 </body>

-5 </html>

As shown in Listing 6.1, the ASPNET program has one heading line (line 1)
and two parts. The heading line informs the web browser that this is an ASPNET
program and uses VB.NET language. The first part (lines 2 through -2) is a script
block containing the VB.NET code that is used for the second part of the ASP.
NET program. The second part (lines 5 through -5) is an HTML web form that
holds all ASP.NET instructions for the server to execute. These instructions are called
server controls. Lines 2 and -2 are the pair of tags of the VB.NET script block. We
always use the attribute runat="server" for the script tag. Lines 3 through -3
are the VB.NET code that instructs the web browser to load the page and display
the "Hello, World!" string in the label named labell. The Page _ Load()
subroutine runs every time when the page, which is defined by the HTML block,
is loaded. We will return to the VB.NET code after explaining the HTML part.
Lines 5 and -5 contain the pair of tags for the HTML block. Lines 7 through -7
define the form. Line 7 uses several attributes. The id attribute specifies the name
of the form. The other two attributes are quite standardized; that is, when creating
a web form, we always specify runat="server" and method="post" for the
attributes. Note that there are no NAME and ACTION attributes, which are normally
used in the HTML FORM tag, here. Line 8 defines an ASP.NET control that outputs
plain text (as label). You can use / in the open tag (i.e., <asp:Label ... />)to
replace the closing tag (e.g., </asp:Labels) if there is nothing in the container. The
entire line outputs plain text (label). When creating an ASP.NET control, we always
need the id attribute, which assigns a unique name to the control. Again, we use the
runat="server" attribute for ASP.NET control. This specifies that your control is
based on the server and allows your code to interact with the server directly.

Now we return to the first part and examine the VB.NET code in detail. In line 3,
Page Load() is a special subroutine defined by ASP.NET that will be executed
when the ASPNET program is requested (i.e., when the dynamic web page is loaded

ASP.NET 149

e
2 nitpy/localhastss 753 ASPNET /Hellowond aspx L-BOX || B tocainest x U

i."'_".l." a F

Hello, World!

& ET, - Original Sauree 1 1 =llet <
File Edit Format

1]

2

3 chimlzcheadz<titlese/Litlere/heals

4 <hody>

5 <form method="post™ action="HelloWorld.aspx™ id="formi™>

6 <div class="aspletHidden">

7 <input type="hidden" name="__ VIEWSTATE™ id="_ VIEWSTATE"
value="/WEPDWULLTE200AZNZUZNDYP ZBYCAZE P ZBY L AGEPDx YCHERUZXhBEGL L ZWvs bywgh 20y bG0h ZGRENZ Lr 1Ch TeoCat ROkD
QhOAASYTHOS hmuMpH-+a+p faVlig=" /3

8 </divy

9

1@ <span id="labell®:Hello, Worldls/spans
11 </Forms

12 </body>

13 </html>

(| 14

1
1
—

Figure 6.3 Dynamic web page generated by HelloWorld.aspx.

into the web browser). In line 4, 1albel1l is bounded to the <asp:Labels> control by
the identical identification name labell.

The entire execution process can be described as follows. When a user requests
HelloWorld.aspx through the browser, the server passes this request to ASP.NET.
ASP.NET will compile the HelloWorld.aspx file and run the Page _ Load()
subroutine. Upon the execution, ASP.NET transforms the control to the HTML
tags and generates an HTML document (a dynamic web page) as specified in the web
form block. The HT'ML document is sent back to the client side and is displayed by
the web browser. Figure 6.3 shows the result and the source of the dynamic web page
generated by HelloWorld.aspx in the browser on the client side.

6.2.2 HTML Controls Versus ASP.NET Web Controls

An ASP.NET program instructs the server to execute a certain sequence of actions.
The instructions are called server controls. A server control is a tag that can be exe-
cuted by the server. Server controls specified by the HTML form object tags are called
HTML controls, and server controls specified in the ASPNET <asp> tag are called
web controls. Some web controls can do the jobs that HT' ML controls are unable to
do, and others do jobs similar to those that HTML controls do but support more
built-in features. For example, in Listing 6.1, line 8 is an example of the label web
control, which is more flexible to use than the label HT ML control. Next, we learn
the two types of server controls through typical examples.

6.2.3 HTML Controls

In this section, we learn several typical HT ML server control tools.

150 PROGRAMMING LANGUAGES FOR MIS

6.2.3.1 Submit Button Listing 6.2 shows an ASPNET program that generates a
submit button through the HTML block. Running this ASPNET program, the user

can receive a message “Hello, World!” by clicking the submit button on the screen.

Listing 6.2: ASP.NET Program (SubmitButton.aspx)
with HTML Submit Button Control

1 <%@ Page Language="VB" %>
2 <script runat="server"s>

3 Public Sub Page_Load()
-3 End Sub

Public Sub HelloWorld (sender As Object, e As EventArgs)
labell.text="Hello, World!™"
-4 End Sub
-2 </scripts>
6 <html><heads<titles></title></heads>
7 <body>
8 <form id="forml" method="post" runat="server"s
9 «<input id="submitl" type="submit" value="Greeting"

10 runat="server" onserverclick="HelloWorld" />
11 <asp:Label id="labell" font-names ="Forte"

12 font-size ="48" runat="server"s</asp:Label>
-8 </form>

-7 </body>

-6 </html>

We examine the HTML part first. Line 8 defines a form, and lines 9 and 10
define the submit button on the form. Note line 9, where an HTML submit button
control is implemented. It specifies the subroutine to be run through the use of the
onserverclick attribute of the server control. The button click will trigger a so-
called postback process that runs the VB.NET program on the server, and it will post
the execution result back to the same page on the client side. Lines 11 and 12 define
an ASP.NET web control that outputs plain text as labels with specific font name and
font size.

Now we examine the VB.NET block. The Page Load() subroutine (lines 3 and
-3) is always included even though it has no specific action except for loading the page
defined by the HTML block. In this example, the VB.NET block has a subroutine
with the same name as the HTMUL control instructs to run; that is, He11loWorld()
(see lines 4 and 10). The subroutine must be declared as Public. The argument of the
subroutine must be (sender As Object, e As EventArgs).

6.2.3.2 Textbox 'The ASPNET web page in Listing 6.3 implements a postback pro-
cess so that the user is allowed to type the user’s name in the textbox; the server then
posts a greeting in the label back to the client side.

ASP.NET 151

9 _';ar‘ vitp:/flocathostads INET Textbox.aspx G w8 \3 hizp:/flocalhost:49600/ ASPNET Textbow.aspx

File Edit View Favorites Tools Help File Edit View Favorites Took Help
Your Name: Your Name: John Smih
| Subma | Screen is updated | | -Submi |

—_— Hello, John Smith!

Figure 6.4 Screen updating (Textbox.aspx).

Listing 6.3: ASP.NET Program (Textbox.aspx)
with HTML Textbox Control

o

1 <%@ Page Language="VB" %>
2 <script runat="server">

3 Public Sub Page Load()

-3 End Sub

4 Public Sub Greeting(sender As Object, e As EventArgs)
5 labell.text="Hello, " + textboxl.value + "!"

-4 End Sub

-2 </scripts>

6 <htmls><heads><title></title></head>

7 <body>

8 <form id="forml" method="post" runat="server"s

9 Your Name:
10 <input type="text" id="textboxl" runat="server" />
11

12 <input type="submit" id="submitl" value="Submit"
13 runat="server" onserverclick="Greeting" />

14 <asp:Label id="labell" runat="server"s></asp:Label>
-8 </form>
-7 </body>
-6 </htmls>

In Listing 6.3, line 4 corresponds to lines 12 and 13 for the submit button control.
Lines 5 and 10 correspond to the HTML textbox control. Here, Value is the prop-
erty of the HTML textbox control. The label control is specified in line 14. On the
client side, the label appears after the submit button, which is specified in line 12.
Note in line 5 that the “+” symbol is used to join the strings. When you run the ASP.
NET program, you can see that the screen is updated after clicking the submit button
without losing the original form on the screen, as shown in Figure 6.4.

6.2.3.3 Checkbox Listing 6.4 lists an example (Checkbox.aspx) of checkbox con-
trol. By activating this ASP.NET program, the user is allowed to choose merchan-
dise by checking on a checkbox and then clicking on the submit button to find the
total price. The server then calculates the total price and posts it back to the client

side. The connection elements between the VB.NET part and the HTML form part

152 PROGRAMMING LANGUAGES FOR MIS

are highlighted in Listing 6.4. Note that an empty HTML tag (e.g.,
) needs to
include “/” to avoid warning messages in ASP.NET. In line 13, the “&” sign is used
to join a string and a double type number.

Listing 6.4: ASP.NET Program (Checkbox.aspx)
with HTML Checkbox Control

1 <%@ Page Language="VB" %>

2 <script runat="server"s>
3 Public Sub Page Load()

-3 End Sub
4 Public Sub CheckOut (sender As Object, e As EventArgs)
5 Dim TotalPrice As Integer
6 labell.text = ""
7 1f (chkl.checked) then
8 TotalPrice = TotalPrice + 10
-7 end if
9 1f (chk2.checked) then
10 TotalPrice = TotalPrice + 20
-9 end if
11 1if (chk3.checked) then
12 TotalPrice = TotalPrice + 30
-11 end if
13 labell.text="Total Price is: $" & TotalPrice
-4 End Sub

-2 </scripts>

14 <htmls<heads><title></title></head>

15 <bodys>

16 <form id="forml" method="post" runat="server"s>

17 Check

18 <input id="chkl" type="checkbox" name="checkboxl" runat="server" />
19 CD

20 <input id="chk2" type="checkbox" name="checkboxl" runat="server" />
21 DVD

22 <input id="chk3" type="checkbox" name="checkboxl" runat="server" />
23 TV

24

25 <input id="submitl" type="submit"

26 value="View total price" runat="server" onserverclick="CheckOut" />
27

28 <asp:Label id="labell" runat="server'"s></asp:Label>

-16 </form>

-15 </body>

-14 </htmls>

6.2.3.4 Radio Button A group of radio buttons allows the user to make just one choice.
An example of HTML radio button control is shown in Listing 6.5 (Radiobutton.
aspx). The connection elements between the VB.NET part and the HTML form
part are highlighted in Listing 6.5.

ASP.NET 153

Listing 6.5: ASP.NET Program (Radiobutton.aspx)
with HTML Radio Button Control

1 <%@ Page Language="VB" %>
2 <script runat="server"s

3 Public Sub Page Load()
-3 End Sub

4 Public Sub FindOut (sender As Object, e As EventArgs)
5 Dim Price As Double

6 labell.text = ""

7 if (radl.checked) then

8 Price = 20.50

-7

end 1if

9 1if (rad2.checked) then
10 Price = 30.50

-9 end if
11 if (rad3.checked) then
12 Price = 100.50
-11 end if
13 labell.text = "The Price is: $" & Price
-4 End Sub

-2 </script>

14 <htmls<heads<title></title></head>

15 <body>

16 <form id="forml" method="post" runat="server"s

17 Choose:

18 «<input id="radl" type="radio" name="radiol" runat="server" />

19 CD

20 <input id="rad2" type="radio" name="radiol" runat="server" />
21 DVD

22 <input id="rad3" type="radio" name="radiol" runat="server" />
23 TV

24

25 <input id="submitl" type="submit" value="Submit"

26 runat="server" onserverclick="FindOut" />

27

28 <asp:Label id="labell" runat="server"s></asp:Label>

-16 </form>

-15 </body>

-1 </html>

6.2.3.5 Select 'The HTMUL select control allows the user to view a dropdown (com-
bobox) menu and select a menu item for an action. An example of HTML select
control is shown in Listing 6.6 (Select.aspx). The connection elements between

the VB.NET part and the HTML form part are highlighted.

Listing 6.6: ASP.NET Program (Select.aspx) with HTML Select Control

<%@ Page Language="VB" %>

<script runat="server'"s>
Public Sub Page_ Load()
End Sub

154 PROGRAMMING LANGUAGES FOR MIS

Public Sub Choice (ByVal sender As Object, ByVal e As EventArgs)
labell.text = "Thank you for purchasing " & listl.value
End Sub
</script>

<html><head><title></title></head>
<body>
<form id="forml" method="post" runat="server"s
Select:
<select id="1listl" runat="server"s
<option>CD</option>
<option>DVD</option>
<option>TV</option>
</select>

<input id="submitl" type="submit" value="Submit"
runat="server" onserverclick="Choice" />

<asp:Label id="labell" runat="server'"s></asp:Label>
</form>
</body>
</html>

6.2.4 Web Controls

A web control is specified in the <asp> tag. A web control is a programmed object. As
you can see in this section, some web controls can do the jobs HTML controls are
unable to do, and others do jobs similar to those that HT ML controls do but support
more features (attributes or properties) that HI'ML controls do not have. Listing 6.7
lists major web controls of ASP.NET.

Listing 6.7: List of Web Controls

Label <asp:Label>

Button <asp:Button>

TextBox <asp:TextBox>

CheckBox <asp:CheckBox>
RadioButton <asp:RadioButton>
ListBox <asp:ListBox>
DropDownlList <asp:DropDownList>
CheckBoxList <asp:CheckBoxList>
RadioButtonList <asp:RadioButtonList>

A web control can have several attributes depending on the needs. Only the id attri-
bute and the runat attribute are required. We do not go through every web control
tool, but give one example to explain the use of web controls, as listed in Listing 6.8.

Listing 6.8: Example of ASP.NET Web Controls (ShippingCost.aspx)

1 <%@ Page Language="VB" %>
2 <script runat="server"s>

ASP.NET 155

3 Public Sub Page Load()
-3 End Sub

4 Public Sub ShippingCost (sender as Object, e as EventArgs)
5 DropDownListl.visible=false

6 RadioButtonListl.visible=false

7 Buttonl.visible=false

8 labell.text="Ship to " & _

9 DropDownListl.SelectedItem.text & " by " & _
10 RadioButtonListl.SelectedItem.text
11 label2.text="Shipping Cost is: $" & _
12 (Val (DropDownListl.SelectedItem.value) *
13 Val (RadioButtonListl.SelectedItem.value))
-4 End Sub

-2 </script>

14 <htmls<heads><title></title></head>

15 <body>

16 <form id="forml" method="post" runat="server"s

17 <asp:DropDownList id="DropDownListl" runat="server"s
18 <asp:ListItem Value="0" Selected="True">

-18 Select Country</asp:ListItem>

10 <asp:ListItem Value="50">Canada</asp:ListItem>

20 <asp:ListItem Value="100">USA</asp:ListItem>

-17 </asp:DropDownList>
21

22 <asp:RadioButtonList id="RadioButtonListl" runat="server"s
23 <asp:ListItem Value="2" Selected="True">Express</asp:ListItem>
24 <asp:ListItem Value="1">Regular</asp:ListItem>

-22 </asp:RadioButtonList>

25

26 <asp:Button id="Buttonl" onclick="ShippingCost" runat="server"
27 Text="Find Shipping Cost" />

28

29 <asp:Label id="labell" runat="server" />

30 <asp:Label id="label2" runat="server" />

-16 </form>

-15 </body>

-1 </html>

The ASPNET program in Listing 6.8 (ShippingCost.aspx) provides infor-
mation for the consumer to find out the cost of a shipping transaction. The user is
allowed to select a shipping destination and choose a shipping class, and then click on
the button to get an answer. Lines 17 through -17 define the dropdown list web control
(DropDownList). There are a number of list items (ListItem) within the dropdown
list. The Value attribute of ListItem assigns a value to the selected item that will be
used for processing. The Selected="True" attribute means the default choice. Lines
22 through -22 define a radio button list (RadioButtonList). The features of the
RadioButtonList web control are similar to those of the DropDownList web con-
trol. Line 26 triggers the ShippingCost subroutine declared in line 5. Lines 5-7 make
the dropdown list, the radio button list, and the command button invisible (i.e., set the
object’s attribute to visible=false) when the calculated shipping cost is displayed.

156

PROGRAMMING LANGUAGES FOR MIS

6.2.5 Validation Controls

ASP.NET provides various validation control tools that validate the user’s input.
In ASP.NET, all validations are performed on the server side. Listing 6.9 lists the

important validation controls.

Listing 6.9: Important Validation Controls

RequiredFieldvalidator Ensure that a field fills with data
CompareValidator Compare the values of two entries
RangeValidator Ensure that an entry falls within a defined range

RegularExpressionValidator Ensure thatan entry follows a particular pattern

CustomValidator Validate user’s input using a program subroutine

Listing 6.10 is an example of validation controls. In this example, the user is

allowed to select merchandise to buy and input a number for the purchase quantity.
The ASPNET web page validates the user’s input to ensure that the user has chosen
an item and that the quantity is an integer and its value is no greater than 10.

Listing 6.10: Examples of Validation Control (Validation.aspx)

1 1
NNNNENNRERRRERPERRPRRP R i
Ul W N oOoHEH O WO®®NOoO Ul ok WNhNE O WO WJOo0 Ul & w N -

-22
26
27

<%@ Page Language="VB" %>
<html><head><title></title></head>
<body>
<form id="forml" method="post" runat="server"s
Choose to buy:
<asp:RequiredFieldValidator id="RequiredFieldValidatorl™"
runat="server" ControlToValidate="RadioButtonListl"

ErrorMessage="You must select one!" forecolor="Red">
</asp:RequiredFieldvalidator>

<asp:RadioButtonList id="RadioButtonListl" runat="server"
RepeatDirection="Horizontal">
<asp:ListItem Value="CD">CD</asp:ListItem>
<asp:ListItem Value="DVD">DVD</asp:ListItem>
<asp:ListItem Value="TV">TV</asp:ListItem>
</asp:RadioButtonList>

Quantity to buy:
<asp:TextBox id="TextBoxl" runat="server'"></asp:TextBox>

<asp:CompareValidator id="CompareValidatorl" runat="server"
ErrorMessage="Input must be an integer." forecolor="Red"
ControlToValidate="TextBoxl" Operator="DataTypeCheck"
Type="Integer">
</asp:CompareValidator>

<asp:RangeValidator id="RangeValidatorl" runat="server"
MinimumvValue="0" MaximumValue="10"
ControlToValidate="TextBoxl" Type="Integer"
ErrorMessage="Must be no more than 10." forecolor="Red">
</asp:RangeValidator>

<asp:Button id="Button" runat="server" Text="Buy"></asp:Button>
</form></body></html>

ASP.NET 157

As shown in Listing 6.10 (Validation.aspx), no VB.NET program is
needed in this example. The ASPNET program contains three validation controls:
RequiredFieldValidator (line 6) for validating whether the required fields are
filled, Comparevalidator (line 18) for validating the data type of the input, and
RangeValidator (line 22) for validating the range of the data. Each validation
control must have required attributes including id, ControlTovalidate, and
ErrorMessage. Some attributes, such as Operator and Type, are only required
for some validation controls.

You might remember that JavaScript is commonly used to validate a user’s input
on the client side. Compared with JavaScript, ASP.NET validation controls are slow
since they are executed on the server side. However, ASPNET programs are more
secure since the code is invisible on the client side.

6.2.6 Ihe Code-Behind Programming Framework

The ASP.NET framework supports code-behind programming that allows the pro-
grammer to reuse a separate code file. By doing so, the ASPNET program contains
the user interface implemented by a series of HTML and ASP.NET tags only and calls
an independent VB.NET program for data processing. Listing 6.11(a) is an example
of a code-behind programming ASP.NET program (Greeting.aspx). It allows the
user to input her or his name and calls a VB.NET program named Greeting.vb to
post a greeting message in a green color on the client side.

Listing 6.11(a): Example of Code-Behind Programming (Greeting.aspx)

<%@ Page Language="VB" Inherits="DisplayMessage"
CodeFile="Greeting.vb" %>
<html><head><title></title></head>
<body>
<form runat="server"s>
Name :
<input id="textboxl" type="text" runat="server" />

<input id="submitl" type="submit" value="Submit"
runat="server" onserverclick="Greeting" />

<asp:Label id="labell" runat="server"
forecolor="Green"></asp:Label>
</form>
</body></html>

The VB.NET code (Greeting.vb) used by Greeting.aspx is listed in
Listing 6.11(b).

Listing 6.11(b): VB.NET Code (Greeting.vb) Called by Greeting.aspx

Imports System
Public Class DisplayMessage
Inherits System.Web.UI.Page

158 PROGRAMMING LANGUAGES FOR MIS

Public Sub Greeting(sender As Object, e As EventArgs)
labell.Text = "Hello, " & textboxl.value & "!"
End Sub
End Class

Compare Listings 6.11(a) (ASP.NET code) and 6.11(b) (VB.NET code) by noting
the highlighted connection elements. In the ASPNET heading tag, the Inherits
attribute specifies the class name (DisplayMessage in this example) that must also
be used in the Public Class statement of the VB.NET program. The CodeFile
attribute specifies the name of the VB.NET part. Even in this simple example, there
are many parameters that connect the ASPNET web page and the VB.NET pro-
gram, including Greeting (for the subroutine), labell (for the label), textbox1
(for the textbox), and submitl (for the submit button).

An advantage of code-behind programming is that the user interface is sepa-
rated from the procedural codes. The programmer may change only the codes in the
VB.NET part without touching the user interface in the .aspx part. However, in the
example of Listings 6.11(a) and 6.11(b), if the programmer wants to change the sub-
routine name Greeting to, say, ABC, then she has to make changes in both .aspx
and .vb parts. One can avoid such hassles by using AutoEventWireup, as shown
in Listings 6.12(a) and 6.12(b).

Listing 6.12(a): Code-Behind Programming Using
AutoEventWireup (Greeting2.aspx)

1 <%@ Page Language="VB" Inherits="DisplayMessage"

2 CodeFile="Greeting2.vb" AutoEventWireup="False" %>
3 <htmls<heads<title></title></head>

4 <body>

5 <form runat="server'"s>

6 Name:

7 <input id="textboxl" type="text" runat="server" />

8 <input id="submitl" type="submit" value="Submit"
9 runat="server" />

10 <asp:Label id="labell" runat="server"
11 forecolor="Green"></asp:Label>
12 </form>
13 </body></html>

Listing 6.12(b): VB.NET Code (Greeting2.vb) Called by Greeting2.aspx

1 Imports System

2 Public Class DisplayMessage

3 Inherits System.Web.UI.Page

4 Public Sub ABC(sender As Object, e As EventArgs) Handles _
5 submitl.ServerClick

6 labell.Text = "Hello, " & textboxl.value & "!"

7 End Sub

8 End Class

ASP.NET 159

In Listing 6.12(a) (Greeting2.aspx), the AutoEventWireup attribute is
set to False in line 2. The default value of AutoEventWireup is True. When
AutoEventWireup is set to False, ASPNET will rely only on the Handles key-
word in the .vb part to connect the event to the event handler subroutine, as shown
in lines 4 and 5 of Listing 6.12(b) (Greeting2.vb). Line 5 is the continuation of
line 4, and it specifies that the ServerClick event of the submit1 button will be
handled by the subroutine ABC. Correspondingly, we do not specify any subroutine
name in the Greeting2.aspx part.

6.2.7 Server-Side File Processing

One of the advantages of server-side programming is the data processing on the web
server to allow the client to process information over the Internet. In this subsection,
we examine how ASPNET programs access and update data files that are stored on
the web server. We use an example of an ASPNET program that allows the user to
input his or her e-mail address to join a group. The e-mail address will be added to the
e-mail list that is permanently stored on the disk of the web server. After the user adds
the e-mail address, the entire group e-mail list is then displayed on the screen for the
user to view. The ASP.NET program (FileProcess.aspx) is shown in Listing 6.13.

Listing 6.13: ASP.NET Program (FileProcess.aspx)
for Writing and Reading Data File Stored on Server

o

<%@ Page Language="VB" %>

<%@ import Namespace="System" %>
<%@ import Namespace="System.IO" %>
<script runat="server'"s>

Public Sub Page Load()

End Sub

uroulos W N

[e))

Public Sub WriteAndRead (sender As Object, e As EventArgs)
7 WriteToFile ()

ReadFromFile ()
-6 End Sub

9 Public Sub WriteToFile ()

10 Dim StreamWriterl As StreamWriter

11 Dim FileName As String = Request.MapPath ("InputOutput.txt")
12 Dim FileInfol As FileInfo = New FileInfo(FileName)

13 If FileInfol.Exists = False Then

14 StreamWriterl = File.CreateText (FileName)
15 StreamWriterl.WriteLine (Textboxl.Text)
16 Else

17 StreamWriterl = File.AppendText (FileName)

160 PROGRAMMING LANGUAGES FOR MIS

18 StreamWriterl.WriteLine (Textboxl.Text)
-13 End If

19 StreamWriterl.Close()

-9 End Sub

20 Public Sub ReadFromFile ()

21 Dim StreamReaderl As StreamReader

22 Dim FileName As String = Request.MapPath ("InputOutput.txt")
23 Dim FileInfo2 As FileInfo = New FileInfo (FileName)

24 ListBoxl.Items.Clear

25 If FileInfo2.Exists = True Then

26 StreamReaderl = File.OpenText (FileName)

27 Do While StreamReaderl.Peek() > 0

28 ListBoxl.Items.Add (StreamReaderl.ReadLine())
-27 Loop

29 StreamReaderl.Close ()

30 Else

31 MsgBox ("Unexpected error!", , "Error")

-25 End If

-20 End Sub

-4 </scripts>

32 <htmls><heads><title></title></head>

33 <body>

34 <form id="forml" method="post" runat="server'"s

35 Add your email address to join the group:

36

37 <asp:TextBox id="TextBoxl" runat="server"s

-37 </asp:TextBox>

38

39 <asp:Button id="Buttonl" onclick="WriteAndRead" runat="server"
40 text="View the email list of the group"s>
-39 </asp:Button>

41

42 <asp:ListBox id="ListBoxl" runat="server"

43 forecolor="Red">

-42 </asp:ListBox>

-34 </form>

-33 </body>

-32 </htmls>

After the client loads the ASP.NET program (FileProcess.aspx) in
Listing 6.13, the browser displays one textbox (line 37), one button (line 39), and
one list box (line 42). The textbox accepts the user’s input. Note that the textbox is
defined as a web control here, and its Text property (equivalent to the Value prop-
erty of an HTML textbox control) is used in lines 15 and 18. The list box displays
the e-mail list of the entire group. When the user clicks on the button (line 39), the
WriteAndRead() subroutine (line 6) is called. This subroutine in turn calls two sub-
routines: WriteToFile(), for writing data to the server file, and ReadFromFile()
for reading data from the server file.

As shown in lines 10-12 and 21-23, three variables are generally needed for pro-

cessing a disk file on the server:

ASP.NET 161

1. The first variable is StreamWriter (line 10) or StreamReader (line 21),
depending on whether the process is writing or reading, which represents the
disk data file.

2. The second variable is FileName (lines 11 and 22), which defines the file name
on the server. In this example, the physical name of the file is InputOutput.
txt, a plain text file. If you place the data file with the ASP.NET program,
Request.MapPath() (lines 11 and 22) is applied without specifying the
access path of the data file.

3. The third variable is FileInfo (lines 12 and 23), which holds information
about the data file, such as whether it exists, to avoid errors.

To create these three variables, the ASP.NET program needs to import two name-
spaces: the System namespace and the System.IO namespace, as shown in lines 2
and 3.

In the WriteToFile() subroutine, lines 13 through -13 are an if-then-else state-
ment, which means that if the file does not exist, then the program creates the file on
the disk and writes the e-mail address received from the textbox to the disk on the
server; otherwise, the program appends the e-mail address to the existing group list.
After the process, the file must be closed (line 19).

In the ReadFromFile() subroutine, line 24 clears anything in the list box that
might be left over from the previous operation. Lines 25 through -25 are an if-then-
else statement to handle an exceptional case where the data file does not exist. Line 26
opens the file for reading. Lines 27 through -27 are a do-loop to make actions as long
as the data file has not reached the end. As the result of the action (line 28), the server
reads a record from the data file and adds it to the list box. Line 29 closes the file. Line
31 signals an error message when the data file does not exist.

If the original InputOutput.txt file contains the following e-mail list, the exe-
cution result of FileProcess.aspx appears similar to that shown in Figure 6.5.

g@ I @ htmlﬂocalhostwSYIIASPNET-\.*BIF|1eProces&aspx p

File Edit View Favorites Tools Help

Add your email address to join the group:

smith@smu.ca

| View the email list of the group |
who@abc.com -

some@bcd.net E|
swang@umassd.edu

smith@smu.ca >,

Figure 6.5 Write and read data file stored on server (FileProcess.aspx).

162 PROGRAMMING LANGUAGES FOR MIS

who@abc . com
some@bcd.net
swang@umassd.edu

Flat text file is the simplest form of data set. However, processing a flat text file
could be tedious. Flat text files are fine for simple record keeping (e.g., retaining logs),
but are poor for searching or updating. To deal with a relational database directly from
ASP.NET, one must apply a database connection, as discussed later in this section.

6.2.8 Accessory Features

In this subsection, we introduce several other useful features of ASP.NET.

6.2.8.1 Sending E-mail Message ASP.NET supports email sending in a simple way.
Listing 6.14 provides a template of an ASP.NET program that allows the user to type an
e-mailreceiver’saddressand send amessage. Note that Listing 6.14 (EmailTemplate.
aspx) is not an operational program. To make EmailTemplate.aspx work, the
e-mail server must be valid and set properly.

Listing 6.14: Template (EmailTemplate.aspx) for Sending E-mail

<%@ Page Language="VB" %>
<script runat="server'"s>
Public Sub Page_ Load()
End Sub

Public Sub SendEmail (sender As Object, e As EventArgs)
'Textboxl.text must not be empty
'There are two parameters for MailMessage:
! From address and To address
Dim myMsg As New
System.Net .Mail.MailMessage ("sender@provider.com", TextBoxl.text)
Dim mySmtpClient As New System.Net.Mail.SmtpClient ()

myMsg.Subject = "Email subject ..."
myMsg.Body = "Email message body ..."
'set your own email smtp server here
mySmtpClient .Host = "smtp.smu.ca"
mySmtpClient .Send (myMsg)

End Sub

</scripts>

<html><head><title></title></head>
<body>
<form id="forml" method="post" runat="server"s

<p>

Email Address:

<asp:TextBox id="TextBoxl" runat="server"></asp:TextBox>
</p>

<p>

<asp:Button id="Buttonl" onclick="SendEmail" runat="server"

Text="Send Email"></asp:Button>
</p>
</form></body></html>

ASP.NET 163

6.2.8.2 Calendar ASP.NET has the calendar web control that displays the calendar.
The example in Listing 6.15 (Calendar.aspx) allows the user to click a date on the
calendar and view the date in the long date string format (see Figure 6.6). The date
information generated by the calendar web control can be useful for many business
applications, such as hotel reservations and event planning.

Listing 6.15: ASP.NET Program (Calendar.aspx) for Showing Calendar

<%@ Page Language="VB" %>

<script runat="server"s>
Public Sub Page Load()
End Sub

Public Sub CalendarDate (sender As Object, e As EventArgs)

labell.text = Calendarl.SelectedDate.ToLongDateString/()
End Sub
</script>

<html><head><title></title></head>

<body>

<form id="forml" method="post" runat="server"s>

<asp:Calendar id="Calendarl" runat="server" forecolor="Blue" />

<asp:Button id="buttonl" runat="server" onclick="CalendarDate"
text="Find Long Date String" />

<asp:Label id="labell" runat="server" forecolor="Red" />
</form></body></html>

&= @- http://localhost:58675/ASPNET/Calendar.aspx jol

File Edit View Favorites Tools Help

="

Sun Mon Tue Wed Thu Fri Sa

28 20 30 [l 2 3
4 3 6 I 8 9 W
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
1 4 3 4 3 & 2
| Find Long Date Stning |

Thursday, January 01, 2015

Figure 6.6 Example of calendar web control (Calendar.aspx).

164 PROGRAMMING LANGUAGES FOR MIS

TocalhostZL5/ASPNET RedirectSimpi p-ROX [¢ @ I et ¢ 0

Fite Edit View Favorites Tools Help Fide Edit View Favorites Tools Help

You are leaving this Web site and redirected to another page. Welcome to new Web site!

Reduect |
— Redirect

—

Figure 6.7 Execution result of RedirectSimple.aspx.

6.2.8.3 Redirect Method As demonstrated in the previous examples, an ASPNET
program allows the user to work on the dynamic web page interactively. However, if
the application redirects the user to another ASPNET program or a new website,
the Redirect method must be applied. Listing 6.16 (RedirectSimple.aspx)
shows an example of the Redirect method, which is a method of the Response
object. The instruction Response.Redirect("RedirectedPageSimple.
aspx") redirects the user on the client side to another ASP.NET program, named
RedirectedPageSimple.aspx, which is listed in Listing 6.17. Figure 6.7 shows
the execution results. A URL of the website can be used for the redirected destination.

Listing 6.16: Example of Redirect Method (RedirectSimple.aspx)

<%@ Page Language="VB" %>
<script runat="server">

Public Sub Page_ Load()

labell.text="You are leaving this Web site and redirected to another page."
End Sub

Public Sub RedirectTo (sender As Object, e As EventArgs)

Response.Redirect ("RedirectedPageSimple.aspx")

End Sub

</script>

<html><heads><title></title></head>
<body>
<form id="forml" method="post" runat="server"s
<asp:Label id="labell" runat="server"s></asp:Label>

<input type="submit" id="submitl" value="Redirect"
runat="server" onserverclick="RedirectTo" />
</form>
</body>
</html>

Listing 6.17: RedirectedPageSimple.aspx Used by RedirectSimple.aspx

<%@ Page Language="VB" %>

<script runat="server'"s>

Public Sub Page_Load ()
labell.text="Welcome to new Web site!"

End Sub

</script>

ASP.NET 165

<html><heads><title></title></head>
<body>
<form id="forml" method="post" runat="server"s
<asp:Label id="labell" runat="server" font-size="20"
></asp:Label>
</form></body></html>

Note that the simple redirect approach demonstrated here does not pass any param-
eter from the source web page to the directed web page. More often, the application
needs to pass information from the source web page to the directed web page. For
example, the directed web page might want to know the validated user ID, which has
been input on the source web page so that it can follow up a specific process.

There are several techniques for passing parameters when using the Redirect
method. The use of query string is an easy technique. Originally, a query string is the
part of a URL that contains data to be passed to web applications. ASP.NET uses this
approach to implement the parameter transfer between the source program and the
directed program. Listing 6.18 (RedirectWithPara.aspx) shows an example of
the Redirect method with passing a parameter. In this example, the user inputs the
user’s name and redirects to the target web page. The source web page passes the user
name (in SenderName) to the directed program, named RedirectedPagePara.
aspx. Note the syntax of line 7 for passing a parameter.

Listing 6.18: Example of Redirect Method with Passing Parameter
(RedirectWithPara.aspx)

1 <%@ Page Language="VB" %>

2 <script runat="server"s>

3 Public Sub Page Load()

4 labell.text="You are redirected to another page."

5 End Sub

6 Public Sub RedirectTo (sender As Object, e As EventArgs)

7 Response.Redirect ("RedirectedPagePara.aspx?SenderName=" + textboxl.value)
8 End Sub

9 </scripts>

10 <htmls<heads<title></title></head>

11 <body>

12 <form id="forml" method="post" runat="server"s

13 <asp:Label id="labell" runat="server"s</asp:Label>

14

15 Your Name:

16 <input type="text" id="textboxl" runat="server" />

17

18 <input type="submit" id="submitl" value="Redirect"
19 runat="server" onserverclick="RedirectTo" />

20 </form></body></html>

Listing 6.19 (RedirectedPagePara.aspx) is the redirected program that
receives the data passed from RedirectWithPara.aspx. Note the syntax of line 5
for the communication between the two programs. Figure 6.8 shows the execution

166 PROGRAMMING LANGUAGES FOR MIS

locahost A ediractWithdara.a f# 3 hitp/Mocalhost A P ap P B G
File Edit View Favorites Tools Help File Edit View Favarites Tools Help
You are redirected to another page. Welcome to new Web site. Hello, John Smith!
Redirect
Your Name: John Smen with parameter
Redrec] — -

Figure 6.8 Execution result of RedirectWithPara.aspx.

result of RedirectWithPara.aspx. In this example, the user’s name is passed to
the new web page.

Listing 6.19: RedirectedPagePara.aspx Used by RedirectWithPara.aspx

1 <%@ Page Language="VB" %>

2 <script runat="server"s>

3 Public Sub Page Load()

4 Dim Sender As String

5 Sender = Request.QueryString("SenderName")

6 labell.text="Welcome to new Web site. Hello, " + Sender + "!I"
7 End Sub

8 </scripts>

9 <htmls><head><title></title></head>

10 <body>
11 <form id="forml" method="post" runat="server"s
12 <asp:Label id="labell" runat="server" font-size="20"></asp:Label>

13 </form></body></html>

6.2.8.4 Security Security is an important issue in web applications. At the commu-
nication level, encryption technologies are used to encrypt communication between a
web client and a web server. Secure sockets layer (SSL) is one of the popular encryp-
tion technologies to transmit private or sensitive information between the authenti-
cated client and the web server. Both the web client and the web server must have
certificates that are installed on the computers. To access a page through SSL, the
user simply types the URL with a preceding “https://” instead of “http://” At
the application level, authentication and authorization ensure the application security.
Authentication is the process that enables the determination of a user’s identity by
asking the user to prove it. A user’s name and password and or IP address are com-
monly used in authentication. Authorization is the process that determines which
resources an authenticated user can access and how those resources can be used. For
example, the user must use a password to access restricted files.

ASPNET provides various approaches to security. ASP.NET supports three types
of authentication: windows authentication, passport authentication, and form authen-
tication. When using windows authentication, the ASP.NET web page calls 1IS
(Internet information service) at the operating system level for authentication. The goal
of windows authentication is to verify the user against the accounts on the web server.

ASP.NET 167

(@ tesitoaastssnoneramascsosm D OV (& o rcien
e EoRT e e RN SRR THeR e e il
Please Log In Welcome to new Web site!
Redirect
—
UserID anne

Password seses

| Login-Case sensivel

Figure 6.9 Execution result of Authentication.aspx.

Passport authentication is carried out through Microsoft Passport, which is maintained
by Microsoft to authenticate registered users. Form authentication is the commonly used
approach for authentication that uses log-in forms in web pages. ASPNET has built-in
utilities for form authentication. To use these built-in utilities, you need to specify the
requirements through the web.config files provided by the ASPNET development
environment. For beginners, this may not be straightforward. Here, we provide a simple
example that implements customized form authentication within the ASP.NET pro-
gram in Listing 6.20 (Authentication.aspx). To simplify the program, the user
IDs and passwords are stored in the program. Practically, they should be stored in the
database, and SQL is used for processing, as discussed later in this section. Note that,
in Listing 6.20, textmode="password" is used for textbox2 for password mode.
Figure 6.9 shows an example of the execution result of Authentication.aspx.

Listing 6.20: Example of Form Authentication (Authentication.aspx)

<%@ Page Language="VB" %>
<script runat="server"s
Public Sub PasswordCheck (sender As Object, e As EventArgs)

If (((textBoxl.text="anne") AND (textBox2.text="12345")) OR _
((textBoxl.text="john") AND (textBox2.text="23456")) OR _
((textBoxl.text="peter") AND (textBox2.text="34567"))) Then

Response.Redirect ("RedirectedPageSimple.aspx")
Else
labell.Text = "Your ID and password do not match. Try again!"
End If
End Sub
</script>

<html><head><title></title></head>
<body>
<form id="forml" method="post" runat="server"s
<h2>Please Log In</h2>
<hr />

<table>
<tr>
<td>User ID</td>
<td><asp:TextBox id="textBoxl" runat="server" /></td>
</tr>

168 PROGRAMMING LANGUAGES FOR MIS

<tr>
<td>Password</td>
<td><asp:TextBox id="textBox2" runat="server" textmode="password"/></td>
</tr>
</table>

<asp:Button id="buttonl" onclick="PasswordCheck" runat="server"
Text="Login - Case sensitive!"></asp:Button>

<asp:Label id="labell" runat="server" />
</form></body></html>

6.2.9 Web Application Design
'There are many types of web applications, including

* Information presentation

* Access authentication

* Information search

* Business transaction

* Notification, reporting, or confirmation
» User interaction, etc.

To facilitate web application design, we use scenario design diagram as a tool to
articulate the web application project in the aspects of

1. Features of each of the web pages

2. Interaction between the client and the web server
3. Data on the server

4. Logic of the entire process

5. Major outcomes of the process

In this section, we present an example of toy-scale web application to explain the
use of scenario design diagram and the implementation of a web application project
using ASP.NET. The example is a hotel reservation system. In this example, the home
page introduces the user to making a reservation. The user is allowed to search the
prices of different types of rooms. The data used for search are stored on the server.
When the user decides to make a reservation, she can input her contact information
and reservation request on the form and send the form back to the server. The reserva-
tion data are recorded on the server for the hotel for further processing.

Figure 6.10 shows a scenario design diagram for the preceding example. Apparently,
the diagram in Figure 6.10 includes screenshots of the execution results of the pro-
grams. Practically, the program designer draws a draft for the design of the applica-
tion before writing the programs.

Listing 6.21(a) is the home page (ReservationHome.html), which triggers
Search.aspx (see Listing 6.21(b)). The Search.aspx program allows the user to

Home page

ASP.NET

‘Web Application Scenario Design — Hotel Reservation

D _"1-:...;!
Welcome to Magic Hotel!

l(Triggers)

Start reservation

Search prices

Search for lowest price

i

Room Reservation

S e

Room Reservation

(Same page)

l (Redirect)

Booking

o

Keserve rooms for vour trip:

Your Email Address

 Room for Reservation

ou Newd

Room Reservation

169

(Database or text file)
" Ratedata)

Search for highest price

A

e

nput booking information

1t

Reserve rooms for yeur trip:

Yotr Emad Addeess:

v

(Database or text file)

Reservation data

Confirmation

(Same page)

g

(Same page)

Reserve nimis for Your irip:

Vi Need

T R for Resorvataon

Figure 6.10 Example of scenario design.

find the room types with the lowest price or the highest price. This search process uses
a data file on the server named RateData.txt (see Listing 6.21(c)). The Search.
aspx program also allows the user to make a reservation by redirecting the user to

the Book.aspx program. The Book.aspx program (Listing 6.21(d)) allows the user

to input contact information and booking information to reserve rooms. These data

of contact information and booking information are sent back to the server and are

stored in a data file named Reservation.txt. Upon the completion of the booking

transaction, the user will receive a confirmation message on the screen.

170 PROGRAMMING LANGUAGES FOR MIS

Listing 6.21(a): Example of Application Design:
Home Page (ReservationHome.html)

<htmls>
<head>
<title>Online Hotel Reservation</titles>
</head>
<body>
<img alt="HotelPicture" src="Hotel.png"
width="150" height="200" />
<h2>Welcome to Magic Hotel!</h2>

<form action="Search.aspx" method="post">
<input type="submit" value="Reservation" />
</form>
</body>
</html>

Listing 6.21(b): Example of Application Design: Search (Search.aspx)

<%@ Page Language="VB" %>
<%@ import Namespace="System" %>
<%@ import Namespace="System.IO" %>
<script runat="server">

Public Sub Page Load()

End Sub

Private Sub LowestRate (sender as Object, e as EventArgs)
Dim SR As StreamReader
Dim RateFile As String = Request.MapPath("RateData.txt")
Dim FI As FileInfo = New FileInfo(RateFile)
Dim RoomType, LowestRoomType As String
Dim Rate, LowestRate As Double
LowestRate = 999
LowestRoomType = ""
If FI.Exists = True Then
SR = File.OpenText (RateFile)
Do While SR.Peek() > 0
RoomType=SR.ReadLine ()
Rate = SR.ReadLine ()
If (Rate<LowestRate) Then
LowestRate = Rate
LowestRoomType = RoomType

End If

Loop

SR.Close ()
Else

MsgBox ("Unexpected error!", , "Error")
End If
labell.text = "The Type of Room with the lowest rate is: " &

LowestRoomType

label2.text
End Sub

"The Rate of This type Rooms is: $" & LowestRate

Private Sub HighestRate (sender as Object, e as EventArgs)
Dim SR As StreamReader

Dim RateFile As String = Request.MapPath ("RateData.txt")
Dim FI As FileInfo = New FileInfo(RateFile)

ASP.NET

Dim RoomType, HighestRoomType As String
Dim Rate, HighestRate As Double

HighestRate = 0
HighestRoomType = ""

If FI.Exists = True Then

SR = File.OpenText (RateFile)

Do While SR.Peek() > 0
RoomType=SR.ReadLine ()
Rate = SR.ReadLine ()

If (Rates>HighestRate)
HighestRate = Rate

HighestRoomType = RoomType

End If
Loop
SR.Close ()
Else

MsgBox ("Unexpected error!",

End If

labell.text = "The Type of Room with the highest rate is:

HighestRoomType

label2.text
End Sub

Private Sub Booking (sender as Object,
Response.Redirect ("Booking.aspx")

End Sub
</script>

<html><head><title></title></head>

<body>
<h3>Room Reservation</h3>

<form id="forml" method="post" runat="server"s

<asp:Button id="buttonl" onclick="LowestRate"
runat="server" text="View Lowest Room Rate"></asp:Buttons>
<asp:Button id="button2" onclick="HighestRate"

"The Rate of This type Rooms is: $" & HighestRate

e as EventArgs)

171

runat="server" text="View Lowest Room Rate"s></asp:Button>

<asp:Label id="labell" runat="server"s</asp:Label>

<asp:Label id="label2" runat="server"s></asp:Label>

<asp:Button id="button3" onclick="Booking" runat="server"
text="Make Your Room Reservation"s</asp:Button>

</form>
</body></html>

Listing 6.21(c): Example of Application Design: Data on Server (RateData.txt)

EastRoom
199.99
WestRoom
235.99
SouthRoom
245.99
NorthRoom
189.99
SunshineRoom
356.99
LuxRoom
283.99

172 PROGRAMMING LANGUAGES FOR MIS

Listing 6.21(d): Example of Application Design: Transaction (Booking.aspx)

<%@ Page Language="VB" %>

<%@ import Namespace="System" %>
<%@ import Namespace="System.IO" %>
<script runat="server'"s>

Public Sub Page Load()

End Sub

Public Sub MakeReserve (sender As Object, e As EventArgs)
Dim SR As StreamWriter
Dim ReserveFile As String = Request.MapPath("Reservation.txt")
SR = File.AppendText (ReserveFile)
SR.WriteLine (textboxl.Text)
SR.WriteLine (textbox2.Text)
SR.WriteLine (textbox3.Text)
SR.Close ()
labell.Text = "Your reservation has been recorded!"
End Sub

</script>

<html><head><title></title></head>

<body>

<h4>Reserve rooms for your trip:</h4s>

<form id="forml" method="post" runat="server"s

Your Email Address:

<asp:TextBox id="textBoxl" runat:"server"></asp:TextBox>

Confirm the Type of Room for Reservation:

<asp:TextBox id="textBox2" runat="server'"s</asp:TextBox>

Number of Rooms You Need:

<asp:TextBox id="textBox3" runat="server"></asp:TextBox>

<asp:Button id="buttonl" onclick="MakeReserve"

runat="server" text="Confirm!"></asp:Button>

<input type="reset" value="Reset Form" />

<asp:Label id="labell" forecolor="blue" runat="server"></asp:Label>

</form>

</body></html>

6.2.10 ADO.NET—Server-Side Database Processing

A practical web application can deal with relational databases directly from a web
page. One may create an ASP.NET web application project in the Microsoft Visual
Studio environment and use the default SQL server connection and predeveloped
modules and resources to practice database processing in a limited scope. To under-
stand the concept of database connection and database processing on a large scale, one
needs to create her or his own database.

To make a connection to databases, database connection software must be integrated
into the web application development tool. ASPNET has the <asp:SglDataSource>
control that allows the ASP.NET program to connect to a database and to use the

ASP.NET 173

[E thiStudent
StudentlD ~ IStudentNamt - _'StudentAddr(~ |StudentEnrol ~ | Click to Add ~
(B 01234567 lohn 285 Westport 2015
: [02345678 Anne 287 Eastport 2016
& 03456789 Robert 324 Northport 2017

Figure 6.11 Sample data sheet of tblStudent for ADO.NET examples.

database in a simple way. However, in the Microsoft .NET framework, ADO.NET
(ADO stands for ActiveX Data Objects) provides a general framework for database
connection and manipulation for any databases in a variety of platforms. The ADO.
NET framework is considered to be more flexible than the <asp:SglDataSource>
control, although they can do similar jobs for simple applications. In fact, the
<asp:SglDataSource> control inside ASPNET uses ADO.NET classes to
interact with any database supported by ADO.NET. In this section, we study ADO.
NET to learn a broad view of the NET framework relating to database process-
ing. In the next section of ASPNET with C#NET, we will discuss the use of the
<asp:SglDataSource> control. We assume students have basic knowledge of
database and SQL for studying this section. The subject of SQL is discussed in detail
in Chapter 9.

In this section, as an example, a Microsoft Access database named StudentDB.
accdb is used for the ASPNET program. This database has a table named
tblStudent that has four attributes:

tblStudent
StudentID (Key, Text)
StudentName (Text)
StudentAddress (Text)
StudentEnrolYear (Number).

A sample data sheet of the table is shown in Figure 6.11.

A database used by ASPNET must be created by using the database management
system (DBMS), although the database could be empty, so ASP.NET is to use data-
bases through SQL.

6.2.10.1 Database Connection and SQL in ASP.NET Listing 6.22 (ADOAccess.aspx)
is an example of web application that uses SQL to access the Microsoft Access data-
base in the ADO.NET environment. In this example, the Access database is named
StudentDB.accdb and is stored in the same folder as this ASPNET web page.

Particular lines that are relevant to the database connection and SQL are highlighted
in bold.

174 PROGRAMMING LANGUAGES FOR MIS

Listing 6.22: Access Database Using ADO.NET (ADOAccess.aspx)

<%@ Page Language="VB" %>
<%@ import Namespace="System.Data.OleDb" %>
<script runat="server">

w N

Public Sub Page Load()
Dim sqgl As String
Dim dbconn=New OleDbConnection _
("Provider=Microsoft.ACE.OLEDB.12.0; data source=" & _
server.mappath ("StudentDB.accdb"))
dbconn.Open ()

W W 3 0 U

10 sgql="SELECT * FROM tblStudent"

11 Dim dbcomm=New OleDbCommand (sql,dbconn)
12 Dim dbread=dbcomm.ExecuteReader ()

13 tblStudent.DataSource=dbread

14 tblStudent.DataBind()

15 dbread.Close()

16 dbconn.Close()

-4 End Sub

-3 </script>

17 <htmls<heads><title></title></head>

18 <body>

19 <form runat="server'"s

20 <h3>Student Records</h3>

21 <asp:Repeater id="tblStudent" runat="server"s>

22 <HeaderTemplate>

23 <table border="1" width="100%">

24 <trs>

25 <th>Student ID</th>

26 <th>Student Name</th>

27 <th>Student Address</ths>

28 <th>Student Year</th>

-24 </tr>

-22 </HeaderTemplate>

29 <ItemTemplate>

30 <tr>

31 <td><%#Container.Dataltem("StudentID") $></td>
32 <td><%#Container.Dataltem("StudentName") $></td>
33 <td><%#Container.Dataltem("StudentAddress") $></td>
34 <td><%#Container.Dataltem("StudentEnrolYear") %$></td>
-30 </tr>

-29 </ItemTemplates>

35 <FooterTemplates>

-23 </table>

-35 </FooterTemplate>

-21 </asp:Repeater>

-19 </form>

36 </body></html>

In Listing 6.22, lines 1 and 2 are heading lines of the ASPNET program that
claims to use VB.NET and ADO.NET. Lines 3 through -3 are the VB.NET part.
Line 5 defines a variable for the SQL string. Lines 6—8 are a single sentence that makes
the database connection. The database name is specified in line 8. When editing the

ASP.NET 175

.ﬁf(:- _9] BB hitp/ocalRost 55377/ ASPNET/ADDAC RIS AR P-aG Xﬂ 2 tovalhost x H P ok
File Edit View Favorites Tools Help
| Student Records
Student ID Student Name Student Address Student Year
01234567 John 285 Westport 2015
02345678 Anne 287 Eastport 2016
03456789 Robert 324 Northport 2017

Figure 6.12 Web application with ADO.NET and SQL (ADOAccess.aspx).

program in practice, try to avoid any line break and type the sentence in a single line
without the line break sign. Line 9 opens the database connection. Apparently, a
beginner of ADO.NET may simply follow these lines except for the database name.

Line 10 is the SQL for this example that selects all fields from the table
tblstudent. Note the quotation marks for the SQL string. Lines 11-14 read the
table using the SQL and make data binding. Lines 15 and 16 stop the access and
close the database connection. Again, a beginner might use these lines for a simple
application except for the database name in line 8 and the table name in lines 13 and 14.

In the web page part, line 21 specifies database connection control. Commonly,
there are two connection control methods in ASP.NET: Repeater and DataList.
In this example, the Repeater control is applied. The table of the database is also
declared here. Lines 23 through -23 create an HTML table to present the data to the
client. Lines 31-34 place the data items into the table cells. The syntax of the ASP.
NET sentences in these lines looks unfamiliar. Again, a beginner may simply follow
these sentences but specify the particular data item names here. Another new fea-
ture is the templates defined in lines 22, -22, 29, -29, 35, and -35. Without including
these templates, the table does not work. Figure 6.12 shows the execution result of
ADOAccess.aspx.

6.2.10.2 Search Database 'The program in Listing 6.23 (ADOSearch.aspx) is an
extension of ADOAccess.aspx and allows the client to input a student number to
search a specific student record. Note the SQL string in bold and the use of the quo-
tation marks in particular. An example of a database search is shown in Figure 6.13.

_ AN [SSfol X

eé;[:e hitplocalhost 55507/ ASPNET(ADOSearchasp p-2 @‘_’E_H@m'""" xu frﬁ'w {ol

File Edit View Favorites Tools Help
| Type the student number for inquiry: w24ssra

(Searcn]

The inquired record for 02345678 is:

| Student ID Student Name | Student Address Student Year

02345678 |Anne 1287 Eastport 2016

Figure 6.13 Search database (ADOSearch.aspx).

176 PROGRAMMING LANGUAGES FOR MIS

Listing 6.23: Search Database Using ADO.NET (ADOSearch.aspx)

<%@ Page Language="VB" %>

<%@ import Namespace="System.Data.OleDb" %>
<script runat="server"s

Public Sub Page Load()

End Sub

Public Sub SearchStudent (sender As Object, e As EventArgs)
labell.text="The inquired record for " + textboxl.value + " is:"
Dim StudentID As String
StudentID=textboxl.value

Dim sgl As String
Dim dbconn=New OleDbConnection _
("Provider=Microsoft .ACE.OLEDB.12.0; data source=" & _
server.mappath ("StudentDB.accdb"))
dbconn.Open ()

sql="SELECT * FROM tblStudent WHERE StudentID=" & "'" & StudentID & "'"

Dim dbcomm=New OleDbCommand (sqgl, dbconn)
Dim dbread=dbcomm.ExecuteReader ()
tblStudent .DataSource=dbread
tblStudent .DataBind ()
dbread.Close()
dbconn.Close ()
End Sub
</scripts>
<html><head><titles></title></head>
<body>
<form runat="server'"s>
Type the student number for inquiry:
<input id="textboxl" type="text" runat="server" />

<input id="submitl" type="submit" value="Search" runat="server"
onserverclick="SearchStudent" />

<asp:Label id="labell" runat="server'"s></asp:Label>
<asp:Repeater id="tblStudent" runat="server"s>

<HeaderTemplate>
<table border="1" width="100%">
<tr>

<th>Student ID</th>
<th>Student Name</th>
<th>Student Address</th>
<th>Student Year</ths
</tr>
</HeaderTemplate>
<ItemTemplate>
<tr>
<td><%#Container.Dataltem("StudentID") $></td>
<td><%#Container.Dataltem("StudentName")%$></td>
<td><%#Container.Dataltem("StudentAddress") $></td>
<td><%#Container.Dataltem("StudentEnrolYear") $></td>
</tr>
</ItemTemplate>
<FooterTemplate>
</table>
</FooterTemplate>

ASP.NET 177

</asp:Repeaters>
</form>
</body></html>

6.2.10.3 Update Database Listing 6.24 (ADOUpdate.aspx) is an example of data-
base updating using ASP.NET with ADO.NET. Again, note the SQL string in bold

and the use of the quotation marks in particular.

Listing 6.24: Update Database Using ADO.NET (ADOUpdate.aspx)

o

<%@ Page Language="VB" %>

<%@ import Namespace="System.Data.OleDb" %>
<script runat="server">

Public Sub Page Load()

End Sub

Public Sub Updating(sender As Object, e As EventArgs)
Dim StudentID As String
Dim NewAddress As String
StudentID = textboxl.Value
NewAddress = textbox2.Value
Dim sgl As String
Dim dbconn=New OleDbConnection _
("Provider=Microsoft .ACE.OLEDB.12.0; data source=" & _
server .mappath ("StudentDB.accdb"))
dbconn.Open ()

sql = "UPDATE tblStudent SET StudentAddress=" & _
"'" & NewAddress & "'" & " " &
"WHERE StudentID=" & "'" & StudentID & "'"

Dim dbcomm=New OleDbCommand (sqgl, dbconn)
Dim dbread=dbcomm.ExecuteReader ()
dbread.Close()

dbconn.Close ()

labell.Text = "Thank you for updating"
End Sub
</scripts>
<html><head><title></title></head>
<body>

<form runat="server"s>

Type the student number for updating:

<input id="textboxl" type="text" runat="server" />

Type the new address for the student:

<input id="textbox2" type ="text" runat ="server" />

<input id="submitl" type="submit" value="Change" runat="server"

onserverclick="Updating" />

<asp:Label id="labell" runat="server"s></asp:Label>

</form></body></html>

6.2.10.4 Use Data of Database for Decision Listing 6.25 (ADODecision.aspx) is an
example to demonstrate the use of data in the database for decision making. In this
application, the system can help the decision maker to make an action of the gradua-
tion auditing process depending on the enrollment year of a particular student.

178 PROGRAMMING LANGUAGES FOR MIS

Listing 6.25: Use Database for Decision Making (ADODecision.aspx)

<%@ Page Language="VB" %>
<%@ import Namespace="System.Data.OleDb" %>
<script runat="server'"s>

Public Sub Page_ Load()

End Sub

Public Sub Decision (ByVal sender As Object, ByVal e As EventArgs)

Dim sgl As String

Dim StudentID As String

Dim StudentYear As Integer

StudentID = textboxl.Value

Dim dbconn=New OleDbConnection _
("Provider=Microsoft .ACE.OLEDB.12.0; data source=" & _
server.mappath ("StudentDB.accdb"))

dbconn.Open ()

sqgql = "SELECT * FROM tblStudent WHERE StudentID =" &
minm & StudentID & "'"

Dim dbcomm=New OleDbCommand (sqgl, dbconn)
Dim dbread=dbcomm.ExecuteReader ()

While dbread.Read()
StudentYear = Val (dbread("StudentEnrolYear") .ToString())
End While

dbread.Close ()
dbconn.Close ()

If (StudentYear = 0) Then
labell.Text = " "
label2.Text = "Sorry, the record is not found.... Try again....

Else
If (StudentYear < 2016) Then

Optionl ()
Else
Option2 ()
End If
End If
End Sub

Public Sub Optionl ()
labell.Text = "This student is subject to graduation auditing!"
label2.Text = " "

End Sub

Public Sub Option2 ()
labell.Text "

label2.Text = "This student is not graduating!"
End Sub
</script>
<html><heads><title></title></head>
<body>

<form runat="server">
Type the student number for process:
<input id="textboxl" type="text" runat="server" />

ASP.NET 179

<input id="submitl" type="submit" value="Find Action" runat="server"
onserverclick="Decision" />

<asp:Label id="labell" ForeColor="Red" runat="server"s</asp:Label>

<asp:Label id="label2" ForeColor="Green" runat="server"s</asp:Label>
</form></body></html>

6.3 ASP.NET with CANET

'This section introduces ASPNET with CENET (or C#). One can edit, compile, and
execute an ASPNET with C#NET program in the Microsoft Visual Studio envi-
ronment. The interested reader is referred to the part of ASP.NET with VB.NET for
the steps of the general procedure of editing an ASP.NET with a CANET program
and viewing the execution result. Note that the name of the folder storing the ASP.
NET programs must not contain the # sign.

Alternatively, when the application project is large, one might want to create a
website project for the application in the Microsoft Visual Studio programming envi-
ronment to involve various resources. Figure 6.14 shows the instruction to use the
Microsoft Visual Studio environment to create and to view the execution result of a

website application of ASPNET with C£NET.

6.3.1 C# Programming with ASP.NET Web Controls

'The structure of ASP.NET programs with C# is the same as that with VB.NET. In

Microsoft Visual Studio, the user interface design/creation for ASP.NET programs

with C# is the same as for ASP.NET programs with VB.NET. The concept of HTML

control and web control discussed in ASP.NET with VB.NET is applicable to ASP.

NET with C#. The only difference is that the actual code is C# instead of VB.NET.
Listing 6.26 is the C# version of HelloWorld.aspx in Listing 6.1.

Listing 6.26: Example of ASP.NET with C# (HelloWorld.aspx)

o

1 <%@ Page Language="C#" %>
<script runat="server'"s>

3 public void Page_ Load ()
4 {
5 labell.Text="Hello World - ASP.NET with C#.NET!";
6 }
</scripts>
<html><head><title></title></head>
<body>
10 <form id="forml" method="post" runat="server"s
11 <asp:Label id="labell" runat="server"s></asp:Label>
12 </form>
13 </body>

14 </htmls>

180 PROGRAMMING LANGUAGES FOR MIS

Start Microsoft Visual Studio
Click on [File]

Choose [New Web Site...]
or [Open Web Site...]
for an existing Web Site

In New Web Site Window:
choose [Visual C#]

choose [ASP .NET Web Site]

specify your folder for the Web Site

or use the default name;
click on [OK].

In Add New Item window:

choose [Visual C#]

choose [Web Form]

specify the name for the Web site

click on [Add]

Launch Source Code Editor window

(You may delete the pre-developed
template code and type your
own program, and Save it.)

Click on [View in Browser]

to view the execution result
(If [View in Browser] is not shown,
see the instruction in the section of
ASP.NET with VB.NET to add it.)

Right-click on the name of the
Web Site folder name in the
Solution Explore window

Choose [Add New Item...]

Figure 6.14 Create and execute website application of ASP.NET with C#.NET.

ASP.NET 181

The main differences between the C# version in Listing 6.26 and the VB.NET
version in Listing 6.1 are:

1. In Listing 6.26, the first line, <¥@ Page Language="C#" %>, indicates that
the programming language to be used is C#. In Listing 6.1, the first line, <%@
Page Language="VB" %>,indicates the programming language is VB.NET.

2.'The Page _ Load() defined in Listing 6.26 runs every time when the page,
which is defined by the HTML block, is loaded. The C# Page _ Load()
in Listing 6.26 is a void function, while the VB.NET Page Load() in
Listing 6.1 is a subroutine.

3. In Listing 6.26, the letters “P” and “L” in “Page ~ Load” in line 3 and the letter
“T” in “Text” in line 5 must be capital letters. In ASPNET with C#, the first
letter of all control properties must be uppercase. This rule is not for VB.NET.

Listing 6.27 is the C# version of the example in Listing 6.2.

Listing 6.27: ASP.NET Program (SubmitButton.aspx)
with HTML Submit Button Control

1 <%@ Page Language="CH#" %>

2 <script runat="server"s

3 public void Page_ Load ()

4 {

5 }

6 public void HelloWorld(Object sender, EventArgs e)
7 {

8 labell.Text="Hello World!";

e }

10 </scripts>

11 <htmls><head><title></title></head>

12 <body>

13 <form id="forml" method="post" runat="server"s

14 <input id="submitl" type="submit" value="Greeting"

15 runat="server" onserverclick="HelloWorld" />
16 <asp:Label id="labell" font-names ="Forte"

17 font-size ="48" runat="server'"s></asp:Label>
18 </form>

19 </body>

20 </htmls>

In line 6 of Listing 6.27, the function corresponding to the button-click of the button
“Greeting” must be the fixed arguments (Object sender, EventArgs e).The
name of the function in line 6 must be identical to the value of the onserverclick
attribute in line 15. Since the Page Load() function in lines 3-5 is empty, it
is optional.

182 PROGRAMMING LANGUAGES FOR MIS

Listing 6.28 shows an example of ASP.NET with C# that involves various HTML
controls, including the HTML submit button, textbox, checkbox, and radio but-
ton controls. As a comparison, Listing 6.29 shows a similar example that employs
various web controls, including the Button, TextBox, CheckBoxList, and
RadioButtonList web controls. It demonstrates that web controls can have more
advanced features than HTML controls do.

Listing 6.28: ASP.NET Program (Coffeel.aspx) with HTML Controls

<%@ Page Language="C#" %>
<script runat="server'"s>

public void Order (Object sender, EventArgs e)

{

labell.Text = "Thank you! " + textboxl.Value + ". ";

if ((chkl.Checked) && (chk2.Checked))
{ labell.Text = labell.Text + "You have ordered coffee with sugar and milk.";}
else if (chkl.Checked)
{ labell.Text = labell.Text + "You have ordered coffee with sugar. ";}
else if (chk2.Checked)
{labell.Text = labell.Text + "You have ordered coffee with milk. ";}
else
{labell.Text = labell.Text + "You have ordered black coffee. ";}

if (radl.Checked)

{labell.Text = labell.Text + "You will pay with cash.";}

else if (rad2.Checked)
{labell.Text = labell.Text + "You will pay with debit card.";}
else
{labell.Text

labell.Text + "You will pay with other method.";}

}

</script>
<html><head><title></title></head>
<body>
<form id="forml" method="post" runat="server"s
<p>
Name :
<input id="textboxl" type="text" runat="server" />
</p>
<p>
How do you like your coffee:
<input id="chkl" type="checkbox" name="checkboxl" runat="server" />
With sugar
<input id="chk2" type="checkbox" name="checkboxl" runat="server" />
With milk
</p>
<p>
Payment Methods:
<input id="radl" type="radio" name="radiol" runat="server" />
Cash
<input id="rad2" type="radio" name="radiol" runat="server" />
Debit card
</p>
<p>
<input id="submitl" type="submit" value="Submit" runat="server"

ASP.NET 183

onserverclick="Order" />
</p>
<p>
<asp:Label id="labell" runat="server'"s></asp:Label>
</p>
</form>
</body>
</html>

Listing 6.29: ASP.NET Program (Coffee2.aspx) with Web Controls

<%@ Page Language="C#" %>
<script runat="server'"s>

public void Order (Object sender, EventArgs e)
{
TextBoxl.Visible = false;
Label2.Visible = false;
CheckBoxListl.Visible = false;
Label3.Visible = false;
RadioButtonListl.Visible = false;
Buttonl.Visible = false;

Labell.Text = "Thank you! " + TextBoxl.Text + ". ";

if ((CheckBoxListl.Items[0].Selected) &&

(CheckBoxListl.Items[1] .Selected))
{Labell.Text = Labell.Text + "You have ordered coffee with sugar and milk.";}
else if (CheckBoxListl.Items[0].Selected)

{Labell.Text = Labell.Text + "You have ordered coffee with sugar. ";}
else if (CheckBoxListl.Items[1].Selected)
{Labell.Text = Labell.Text + "You have ordered coffee with milk. ";}
else
{Labell.Text = Labell.Text + "You have ordered black coffee. ";}

Labell.Text = Labell.Text + "You will pay with " +
RadioButtonListl.SelectedItem.Text + ".";

</script>

<html><head><title></title></head>

<body>
<form id="forml" method="post" runat="server"s
<p>
<asp:Label id="Labell" runat="server"sName:</asp:Label>
<asp:TextBox id="TextBoxl" runat="server'"></asp:TextBox>
</p>

<p>

<asp:Label id="Label2" runat="server"sHow do you like your coffee:
</asp:Label>

<asp:CheckBoxList id="CheckBoxListl" runat="server"s
<asp:ListItem Value="Sugar">Sugar</asp:ListItem>

<asp:ListItem Value="Milk">Milk</asp:ListItem>
</asp:CheckBoxList>
</p>
<p>
<asp:Label id="Label3" runat="server">Payment Methods:

184 PROGRAMMING LANGUAGES FOR MIS

</asp:Label>
<asp:RadioButtonList id="RadioButtonListl" runat="server"s
<asp:ListItem Value="cash" Selected="True">Cash</asp:ListItem>
<asp:ListItem Value="debit card"s>Debit Card</asp:ListItem>
</asp:RadioButtonList>
</p>
<p>
<asp:Button id="Buttonl" onclick="Order" runat="server" Text="Button"s>
</asp:Button>
</p>
</form>
</body>
</html>

In Listing 6.29, once the user clicks on the button, the Order function, which
is specified in the onclick attribute of the Button control, will be executed. In
the Order function, all web controls, except for Labell, have the Visible prop-
erty set to false to make them invisible. Labell will display the user’s selections
for the CheckBoxList and RadioButtonList controls. Each list item in the
CheckBoxList control can be accessed through an array index, such as [0] and
[1]. Each list item includes the Selected property, the Text property, and the
Value property. The SelectedItem object of the RadioButtonList control
corresponds to the selected list item in the RadioButtonList list and includes the
Selected property, which is always true; the Text property; and the Value prop-
erty. For all list items of the CheckBoxList and RadioButtonList controls, the
property Selected="True" means the default choice. For a RadioButtonList
control, at most one list item can be set to the default choice (Selected="True").

As with ASPNET with VB.NET, validation controls can be used in the same
fashion in ASP.NET with C#.

6.3.2 Code-Behind Programming

Currently, C# only supports ASPNET code-behind programming for the ASP.
NET default setting AutoEventWireup="True". Code-behind programming
separates the user interface and the C# source codes. The user interface design is
specified in the .aspx file and the corresponding C# source code is in the .cs file.
Listing 6.30(a) shows an example of the .aspx file for code-behind programming,
and Listing 6.30(b) shows the corresponding .cs file.

Listing 6.30(a): Example of Code-Behind Programming (Greeting2.aspx)

<%@ Page Language="C#" Inherits="DisplayMessage"
CodeFile="Greeting2.cs" %>
<html><head><title></title></head>
<body>
<form runat="server"s>
Name :
<input id="textboxl" type="text" runat="server" />

<input id="submitl" type="submit" value="Submit"

ASP.NET 185

runat="server" onserverclick="Greeting" />

<asp:Label id="labell" runat="server"
forecolor="Green"></asp:Label>
</form>
</body></html>

Listing 6.30(b): C# Code (Greeting2.cs) Called by Greeting2.aspx

1 using System;
2 public partial class DisplayMessage: System.Web.UI.Page
3

public void Greeting(object sender, EventArgs e)

{

4
5
6 labell.Text = "Hello, " + textboxl.Value + "!";
ey

The Greeting2.aspx program is almost identical to the Greeting.aspx pro-
gram in Listing 6.12(a), except that the Page Language attribute in the first line
is C#. In the first line of the Greeting2.aspx program, the CodeFile attribute
specifies the file name of the C# source code, and the Inherits attribute spec-
ifies the class name defined in C#. As shown in line 2 of the Greeting2.cs pro-
gram, the class DisplayMessage must be public as well as partial, and it
must inherit the class System.Web.UI.Page in the System namespace. Line 1
of the Greeting2.cs program indicates the System namespace will be used in
this program. The function named Greeting specified in the onserverclick
attribute of the submit button in the Greeting2.aspx program must be a public
method of the class defined in the Greeting2.cs program.

The main advantage of code-behind programming is that the user interface is sepa-
rated from the C# source codes. The programmer may change the C# source codes
only, without touching the user interface.

6.3.3 Server-Side File Processing

Server-side programming often involves data processing on the web server. In this
subsection, we examine how ASP.NET with C# accesses and updates data files stored
on the web server. We use an example of an ASP.NET program that allows the user to
input feedback on a web page and to view the summary of all previous feedback stored
in a data file. The ASP.NET program (Feedbackl.aspx) is shown in Listing 6.31.

Listing 6.31: ASP.NET Program of Server-Side File Processing (Feedbackl.aspx)

<%@ Page Language="C#" %>
<%@ import Namespace="System" %>
<%@ import Namespace="System.IO" %>

<script runat="server">

NI SR

ul

public void WriteToFile (Object sender, EventArgs e)

{

[0}

186 PROGRAMMING LANGUAGES FOR MIS
7 // Set the file folder to that of this .aspx file
8 string folder = AppDomain.CurrentDomain.BaseDirectory;
9 // Open file, write user's feedback to file, and close file
10 StreamWriter write file;
11 string file_name = folder + "feedback.txt";
12 FileInfo file info = new FileInfo(file name) ;
13 if (file_info.Exists == false)
14 {
15 write file = File.CreateText (file_name) ;
16 }
17 else
18 {
19 write file = File.AppendText (file name) ;
20 }
21 write file.WriteLine("Time:" + DateTime.Now.ToString()) ;
22 write file.WriteLine ("Feedback Type:" +
RadioButtonListl.SelectedItem.Text) ;
23 write file.WriteLine ("Name:" + TextBoxl.Text) ;
24 write file.WriteLine ("Email:" + TextBox2.Text);
25 write file.WriteLine("Message:");
26 write file.WriteLine (TextBox3.Text) ;
27 write file.WriteLine("-------------"---~-~--~-~-~-~-~—~-—-~—~—- ") ;
28 write file.Close();
29 // Display the confirmation message and hide all other controls
30 Label2.Visible = false;
31 Label3.Visible = false;
32 Label4 .Visible = false;
33 Label5.Visible = false;
34 Label6.Visible = false;
35 RadioButtonListl.Visible = false;
36 TextBoxl.Visible = false;
37 TextBox2.Visible = false;
38 TextBox3.Visible = false;
39 Buttonl.Visible = false;
40 Button2.Visible = false;
41 Labell.Text = "Thank you for your feedback! " +
42 "Your following feedback has been recorded:
" +
43 "Name:" + TextBoxl.Text + "
" + "Email:" + TextBox2.Text + "
" +
44 "Feedback Type:" + RadioButtonListl.SelectedItem.Text + "
" +
45 "Message:
" + TextBox3.Text;
46 }
47 public void ReadFromFile (Object sender, EventArgs e)
48 {
49 // Set the file folder to that of this .aspx file
50 string folder = AppDomain.CurrentDomain.BaseDirectory;
51 // Open the file, read all users' feedbacks from the file,
52 // Display only time and feedback type of each feedback message
53 StreamReader read file;
54 string file name = folder + "feedback.txt";
55 FileInfo file info = new FileInfo(file name) ;
56 string line;
57 if (file_info.Exists == true)
58 {
59 read file = File.OpenText (file_name) ;

ASP.NET 187

60 Labell.Text = "";

61 while (read file.Peek() > 0)

62 {

63 line = read_file.ReadLine() ;
64 if (line.StartsWith("Time:") || line.StartsWith ("Feedback Type:"))
65 {

66 Labell.Text = Labell.Text + line + "
";
67 }

68 }

69 read file.Close();

70 }

71 // Hide all other controls

72 Label2.Visible = false;

73 Labell3.Visible = false;

74 Label4 .Visible = false;

75 Label5.Visible = false;

76 Label6.Visible = false;

77 RadioButtonListl.Visible = false;
78 TextBoxl.Visible = false;

79 TextBox2.Visible = false;

80 TextBox3.Visible = false;

81 Buttonl.Visible = false;

82 Button2.Visible = false;

83 }

84 </scripts>

85 <htmls>

86 <heads><title></title></head>

87 <body>

88 <form method="post" runat="server"s>

89 <asp:Label ID="Labell" runat="server" Text="Feedback Form"
Font-Size="Large">

90 </asp:Label>

91

92 <asp:Label ID="Label2" runat="server" Text="Your feedback is very

93 important to us and we read every message that we receive."

Font-Size="Large">

94 </asp:Label>

95

96 <asp:Label ID="Label3" runat="server" Text="Feedback Type:">

97 </asp:Label>

98 <asp:RadioButtonList ID="RadioButtonListl" runat="server"

99 RepeatDirection="Horizontal">

100 <asp:ListItem>Request</asp:ListItem>

101 <asp:ListItem>Complaint</asp:ListItem>

102 <asp:ListItem>Comment</asp:ListItem>

103 </asp:RadioButtonList>

104

105 <asp:Label ID="Label4" runat="server" Text="Name:'">

106 </asp:Label>

107 <asp:TextBox id="TextBoxl" runat="server"s

108 </asp:TextBox>

109

110 <asp:Label ID="Label5" runat="server" Text="Email:">

111 </asp:Label>

112 <asp:TextBox ID="TextBox2" runat="server">

113 </asp:TextBox>

188 PROGRAMMING LANGUAGES FOR MIS

114

115 <asp:Label ID="Label6" runat="server" Text="Message:">

116 </asp:Label>

117

118 <asp:TextBox ID="TextBox3" runat="server" Columns="50" Rows="10"
119 TextMode="MultiLine">

120 </asp:TextBox>

121

122 <asp:Button id="Buttonl" onclick="WriteToFile" runat="server"
123 Text="Submit Feedback"s>

124 </asp:Button>

125 <asp:Button id="Button2" onclick="ReadFromFile" runat="server"
126 Text="Display Previous Feedback Summary">

127 </asp:Button>

128 </form>

129 </body>
130 </html>

After the client loads the ASPNET program (Feedbackl.aspx) in Listing
6.31, the browser displays the interface in Figure 6.15 for the user to input. When
the user clicks the Submit Feedback button (lines 122-124), the subroutine
WriteToFile() (line 5) is called. This subroutine writes the user’s input to the
file and displays a confirmation message while hiding all other controls, as shown
in Figure 6.16. The data stored in the file include the time and type of the user feed-
back as well as the user’s name, e-mail, and message. When the user clicks on the
Display Previous Feedback Summary button (lines 125-127), the subroutine

& http://localhost54¢ O ~ B & f| & localhost

Feedback Form

Your feedback is very important to us and we read every message that we receive.

Feedback Type:
® Request O Complaint O Comment

Name: |John Smith |

Email: |johnsmith@5mu.ca |

Message:

Pleasze =send me the marketing package of your
COmMpany.

| Submit Feedback | | Display Previous Feedback Summary

Figure 6.15 User interface of Feedback1.aspx.

ASP.NET 189

mﬁ hitp://localhost:5at © ~ B Gﬂ &2 localhost * l_] i ﬁ
Thank you for your feedback! Your following feedback has been recorded:
Name:John Smith

Email:johnsmith@smu.ca

Feedback Type:Request

Message:

Please send me the marketing package of your company.

Figure 6.16 Output of Feedbackl.aspx after the user clicks on the Submit Feedback button.

°®|e hitp://localhost54L © - B C Eé:ulhnst
Time:20/06/20202:39:59 PM ~
Feedback Type:Complaint
Time:20/06/20202:40:21 PM
Feedback Type:Complaint
Time:20/06/2020 3:07:06 PM
Feedback Type:Complaint
Time:20/06/2020 10:38:16 PM
Feedback Type:Comment
Time:20/06/2020 10:40:24 PM
Feedback Type:Request

Figure 6.17 Output of Feedback1.aspx when the user clicks on the Display Previous Feedback
Summary button.

ReadFromFile() (line 47) is called. This subroutine reads all previous users’ feed-
back from the file and displays the feedback type and time, as shown in Figure 6.17.
As shown in lines 5-83, four classes are needed for server-side file processing.

* Classes StreamWriter (line 10) and StreamReader (line 53) represent
the data file for writing and reading, respectively. The WriteLine() method
of StreamWriter (lines 21-28) writes a line to the file. The ReadLine()
method of StreamReader (line 63) reads a line from the file. Before calling
the ReadLine() method, the Peek() method (line 61) must be called to
make sure that the end of the file has not already been reached.

* Class File (lines 15,19, and 59) defines the operations for opening the data
file. The File.CreateText () method (line 15) creates the file for writing
if it does not exist. The File.AppendText() method (line 19) opens the
file for appending, where the existing content of the file will be kept and new
content will be written at the end of the file. The File.OpenText () method
(line 59) opens the file for reading. All of these three methods require the full
file path of the file to be opened. The folder where the ASPNET program
Feedbackl.aspx and data file locate can be obtained from AppDomain.
CurrentDomain.BaseDirectory (lines 8 and 50).

* Class FileInfo (lines 12 and 25) holds information about the data file, such
as whether it exists, to avoid errors.

190 PROGRAMMING LANGUAGES FOR MIS

To access these four classes, the ASPNET program needs to import the System
namespace and the System.IO namespace, as shown in lines 2 and 3.

Listings 6.32(a) and 6.32(b) are the code-behind version of the ASPNET pro-
gram Feedbackl.aspx. The ASPNET program Feedback2.aspx shown in
Listing 6.32(a) contains the user interface and calls the source code in Feedback2.cs,
shown in Listing 6.32(b).

Listing 6.32(a): Code-Behind: User Interface for Server-Side File Processing
(Feedback2.aspx)

<%@ Page Language="C#" Inherits="FileProcessingClass"
CodeFile="feedback2.cs" %>
<html>
<head><title></title></head>
<body>
<form method="post" runat="server'"s>
<asp:Label ID="Labell" runat="server" Text="Feedback Form"
Font-Size="Large">
</asp:Label>

<asp:Label ID="Label2" runat="server" Text="Your feedback is very
important to us and we read every message that we receive."
Font-Size="Large">
</asp:Label>

<asp:Label ID="Label3" runat="server" Text="Feedback Type:">
</asp:Label>
<asp:RadioButtonList ID="RadioButtonListl" runat="server"
RepeatDirection="Horizontal">
<asp:ListItem>Request</asp:ListItem>
<asp:ListItem>Complaint</asp:ListItem>
<asp:ListItem>Comment</asp:ListItem>
</asp:RadioButtonList>

<asp:Label ID="Label4" runat="server" Text="Name:'">
</asp:Label>
<asp:TextBox id="TextBoxl" runat="server"s>
</asp:TextBox>

<asp:Label ID="Label5" runat="server" Text="Email:">
</asp:Label>
<asp:TextBox ID="TextBox2" runat="server"s>
</asp:TextBox>

<asp:Label ID="Labelé6" runat="server" Text="Message:">
</asp:Label>

<asp:TextBox ID="TextBox3" runat="server" Columns="50" Rows="10"
TextMode="MultiLine">
</asp:TextBox>

<asp:Button id="Buttonl" onclick="WriteToFile" runat="server"
Text="Submit Feedback">
</asp:Button>
<asp:Button id="Button2" onclick="ReadFromFile" runat="server"

ASP.NET 191

Text="Display Previous Feedback Summary"s>
</asp:Button>
</form>
</body>
</html>

Listing 6.32(b): C# Code (Feedback2.cs) Called by Feedback2.aspx

using System;
using System.IO;

public partial class FileProcessingClass: System.Web.UI.Page

{

public void Page Load ()

{
}

public void WriteToFile (Object sender, EventArgs e)

{

// Set the file folder to that of this .aspx file
string folder = AppDomain.CurrentDomain.BaseDirectory;

// Open file, write user's feedback to file, and close file
StreamWriter write file;

string file name = folder + "feedback.txt";
FileInfo file info = new FileInfo(file name) ;
if (file_info.Exists == false)

{
}

else

{

write file = File.CreateText (file name) ;

write file = File.AppendText (file name) ;

}

write file.WriteLine("Time:" + DateTime.Now.ToString()) ;
write file.WriteLine ("Feedback Type:" +
RadioButtonListl.SelectedItem.Text) ;

write file.WriteLine ("Name:" + TextBoxl.Text) ;
write file.WriteLine ("Email:" + TextBox2.Text) ;
write file.WriteLine ("Message:");

write file.WriteLine (TextBox3.Text) ;
write file.WriteLine

write file.Close();

// Display the confirmation message and hide all other controls
Label2.Visible = false;

Label3.Visible = false;

Label4 .Visible = false;

Label5.Visible = false;

Label6.Visible = false;
RadioButtonListl.Visible = false;
TextBoxl.Visible = false;

TextBox2.Visible = false;

TextBox3.Visible = false;

Buttonl.Visible = false;

Button2.Visible = false;

Labell.Text = "Thank you for your feedback! "+

192

public void ReadFromFile (Object sender,

{

PROGRAMMING LANGUAGES FOR MIS

"Your following feedback has been recorded:
" +

"Name:" + TextBoxl.Text + "
" + "Email:" + TextBox2.Text +
"
" + "Feedback Type:" + RadioButtonListl.SelectedItem.Text
+ "
" + "Message:
" + TextBox3.Text;

EventArgs e)

// Set the file folder to that of this .aspx file
string folder = AppDomain.CurrentDomain.BaseDirectory;

// Open the file, read all users' feedbacks from the file,

// Display only time and feedback type of each feedback message
StreamReader read file;

string file name = folder + "feedback.txt";

FileInfo file info = new FileInfo(file name) ;

string line;

if (file_info.Exists

{

== true)

read file = File.OpenText (file name) ;
Labell.Text = "";

while (read file.Peek() > 0)

{

line = read_file.ReadLine() ;
if (line.StartsWith("Time:") ||
line.StartsWith ("Feedback Type:"))

{
}

Labell.Text = Labell.Text + line + "
";

}

read_file.Close();

// Hide all other controls

Label2.Visible = false;
Label3.Visible = false;
Label4 .Visible = false;
Label5.Visible = false;
Label6.Visible = false;
RadioButtonListl.Visible = false;
TextBox1l.Visible = false;
TextBox2.Visible = false;
TextBox3.Visible = false;
Buttonl.Visible false;
Button2.Visible false;

6.3.4 <asp:SqlDataSources Control for Database Processing

In the ASP.NET with VB.NET section, we have introduced ADO.NET for data-
base processing. Clearly, ADO.NET can also be incorporated in an application of
APS.NET with C#NET. To avoid unnecessary replications of features of APS.
NET, we discuss the <asp:SglDataSources> control for database processing in
this section. This control uses ADO.NET to interact with any database supported

ASP.NET 193

by ADO.NET. The <asp:SglDataSources control allows the programmer to
develop an ASP.NET application to access and manipulate the database for simple
applications without using ADO.NET explicitly. The default DBMS used for the
<asp:SqglDataSource> control is the SQL server. The Microsoft Visual Studio
environment might have built in limited components of the SQL server for demonstra-
tive practices, but does not support its essential features unless the SQL server DBMS
(database management system) is fully installed. In this section, we use a Microsoft
Access database as an example to explain the use of the <asp:SglDataSources
control because Microsoft Access is commonly available in comparison with the SQL
server. As Microsoft Access is not the default DBMS of ASP.NET, one needs to set
the connection specifically for a Microsoft Access database. Clearly, the knowledge
learned here can be applied to setting connections for any other DBMS.

The Microsoft Access database used in the present example is the one used in
Subsection 6.2.10 and is displayed in Figure 6.11. This small database is named
StudentDB.accdb and contains a table of student data named tblStudent.
The following are the steps to creating an ASP.NET application with the
<asp:SglDataSources control to access the Microsoft Access database:

Step 1. Create a website project, say, ASP-CS, following the procedure shown
in Figure 6.14.

Step 2. In the Solution Explorer window of the website project, find
the App Data directory. Right-click on the [App Datal] directory
and choose [Open Folder in Windows Explorer]. You can add
your Microsoft Access database, say, StudentDB.accdb, as illustrated in
Figure 6.18.

0 ASP-LS (2] - Micrasalt Visual Stuia o L -
Tile Tt View Wabails Rl Debg Team XM Data Teoli Ted Window Heip

Solution Explorer
window

— Directory of server
| Add database to
[App_Data] directory

Open [Web.config]
t—and add name of
connection string

Usscadse {UTF-Z}

CyPrageam Fled (86)\Micrase)

Add name of connection string for database connection

Figure 6.18 Set and connect database for <asp:SglDataSources control.

194 PROGRAMMING LANGUAGES FOR MIS

=
b L T
L\rj)‘@l@ http://localhostS0823/ASP-CS/AccessStudentDB.aspx P~-BOX]l (2 ASP.NET SqiDataSo... xh
File Edit View Favorites Tools Help

Students list

Anne
Robert

Figure 6.19 Execution result of AccessStudentDB.aspx. (The sample data of the Access database are dis-
played in Figure 6.11.)

Step 3. In the Solution Explorer window of the website project, find the
Web.config file (see Figure 6.18) and double-click on it to open it. Find
the <connectionStringss> tag and insert the program shown in Listing
6.33 to set the database connection. If the <connectionStrings> tag is
not found, you can add one along with its closing tag.

Step 4. Right-click on the root directory of the project (C:\ASP-CS\ in this
example) in the Solution Explorer window, choose [Add New Item..],
and add your ASP.NET program, say, AccessStudentDB.aspx, as listed
in Listing 6.34.

Step 5. View the execution result of the ASPNET program by clicking on
[View in Browser]. The result of this example is shown in Figure 6.19.

Listing 6.33: Edit Web.config File to Set Connection
to Microsoft Access Database

1 <connectionStringss>

2 <add name="StudentDBApplication"

3 connectionString="Provider=Microsoft.ACE.OLEDB.12.0;

4 Data Source=|DataDirectory|StudentDB.accdb;"
5 providerName="System.Data.OleDb" />

6 </connectionStringss>

Listing 6.34: Example of <asp:SqlDataSource> Control
(AccessStudentDB.aspx)

<%@ Page language="C#" %>
<htmls>
<head>
<title>ASP.NET SglDataSource Example</titlex
</head>
<body>

N oUW N

<form id="forml" runat="server"s>

ASP.NET 195

8 <asp:SglDataSource

9 ID="StudentDB"
10 runat="server"
11 ConnectionString="<%$ ConnectionStrings:StudentDBApplication%>"
12 ProviderName="<%$ ConnectionStrings:StudentDBApplication.ProviderName %$>"
13 SelectCommand="SELECT * FROM tblStudent">
14 </asp:SglDataSources>

15 <h2>Students list</h2>

16 <asp:ListBox

17 id="ListBox1l"

18 runat="server"

19 Font-Names="Verdana" Font-Size="18pt" ForeColor="Blue"
20 DataTextField="StudentName"

21 DataSourceID="StudentDB" >

22 </asp:ListBox>
23 </form></body></html>

Listing 6.33 is to configure a SglDataSource control. Line 2 adds the name of
a connectionStrings element. This allows any ASPNET program in the project
to use the connectionStrings element. In this example, the element is named
StudentDBApplication. Lines 3 and 4 are a single sentence to set the value
of connectionString for the Microsoft Access database. Here, StudentDB.
accdb is the name of the Microsoft Access database used for the SglDataSource
control. Finally, line 5 sets the value of providerName to System.Data.OleDb
for a Microsoft Access database.

Listing 6.34 is the ASPNET program with the <asp:SglDataSources> con-
trol, which is configured as StudentDBApplication in the Web.config file.
Line 9 declares the data source ID (StudentDB in this example), which is used in
line 21 for data access. Lines 11 and 12 apply the name of the connectionStrings
element stored in the Web.config file. Line 13 declares the SQL code for the pro-
gram. In this example, the tbleStudent table is retrieved. As a simple example,
this ASPNET program uses the <asp:ListBox> control to present a list of the
student names that are retrieved by the SQL code. Line 20 declares the attribute
name (StudentName) of the data table for the data presentation. Other lines of
the program are rather straightforward.

6.4 Debugging

Debugging ASPNET programs is a little different from that for other languages
as both server controls and VB.NET/C#NET are involved. In addition, debug-
ging an ASPNET program in the Microsoft Visual Studio environment is not easy
for beginners.

Common syntax errors include:

* Typos or misspelling a word
* Omitting a symbol (e.g., missing one side of parentheses)

196 PROGRAMMING LANGUAGES FOR MIS

* Violating format
* Using an undefined user-defined variable

Logical errors or runtime errors often occur when the computer performs wrong
operations or does not perform as expected. To debug logical errors, you should use
data samples to test the program based on the output of the program:

1. Ensure the setting of the data file and database used in the program is correct.
2. Exercise every possible option to check the computer outputs to see if the pro-
gram does only as expected. Examine all if-statements to find possible options.
3. Ifaprogramis “dead,” you must terminate it by closing the web page. This is more
likely caused by an endless loop. You should check for loop and if-statements.
4. When debugging ASP.NET as server-side programs, you need to save your
programs once you make changes to the program and reopen it. In Microsoft
Internet Explorer, you might need to delete browsing history from time to time.

Chapter 6 Exercises
1. Fill blanks in the following ASP.NET program and sketch the screenshots of

the page and its execution:

1 <%@ Page >

2 <script ="server"s>

3 Public Sub Page Load()

4 End Sub

5 Public Sub (sender As Object, e As EventArgs)
6 Dim TotalPrice As Integer

7 labell.text = ""

8 if | .checked) then

9 TotalPrice = TotalPrice + 10

10 end if

11 if (.checked) then

12 TotalPrice = TotalPrice + 20

13 end if

14 if | .checked) then

15 TotalPrice = TotalPrice + 30

16 end if

17 labell.text="Total Price is: $" & TotalPrice
18 End Sub

19

20 <htmls><heads><title></title></head>

21 <bodys>

22 <form id="forml" method="post" runat="server"s>

23 Select:

24 <input id="checkl" type="checkbox" name="checkboxl"

25 runat="server" />

ASP.NET 197

26 Computer

27 <input id="check2" type="checkbox" name="checkboxl"
28 runat="server" />

29 Printer

30 <input id="check3" type="checkbox" name="checkboxl"
31 runat="server" />

32 Laptop

33

34 <input id="submitl" type="submit"

35 value="Submit to view the total price"

36 runat="server" onserverclick="abc" />

37

38 <asp:Label id=" " runat="server"></asp:Label>
39

40 </body>

41 </htmls>

2. Fill blanks in the following ASP.NET program and the called VB.NET code

and sketch the screenshots of the page and its execution:

1 <%@ Page Language="VB" Inherits=" "

2 CodeFile=" %>

3 <htmls><head><title></title></head>

4 <body>

5 <form id="forml" method="post" runat="server">

6

7 Add your email address to join the group:

8

9 < id="TextBoxl" runat="server" />
10

11 <asp:Button id="Buttonl" onclick="joingroup"

12 runat="server"

13 text="Join the group" />

14

15 <asp:Label id="Labell" runat="server" forecolor="Red" />
16 </form>

17 </body>

18 </htmls>

1 Imports System

2 Class JoinGroup

3 System.Web.UI.Page

4 Public Sub (sender As Object, e As EventArgs)
5 Textboxl.visible=false

6 Buttonl. =false

7 Labell. ="The email address " & _

8 Textboxl. & "has been added " &
9 "to the group"

10 End Sub

11

198 PROGRAMMING LANGUAGES FOR MIS

3. Use ASPNET with VB.NET or CANET to develop the following web

application project for hotel reservations.

Online Reservation
Reservation Information

Check-In Date:
Check-Cnt Date:

Contact Information

Last Hame: | l

First Hame: | |

Street Mumber: |
City: | |

Province/State: I:l

conr
PostalCode | |

Fhone Mumber: |

E-mail Address: | |

Credit Card Information

Credit Card: O\ﬁsa O IMasterCard O American Express O Discover
Name on Credit Card: | |

Credit Card Mumber: | | (Mo spaces or dashes, please)

ExpintionDate: | |(MMAYYY)

[Submit Form | [Clear Form |

The following server-based validations will be performed on the user input of
this form when the “submit form” button is clicked:

+ All fields on the form must be entered (i.e., all fields are required).

* 'The check-out date should be greater than the check-in date.

* 'The last name, first name, city, province/state, and credit card holder’s
name should not contain the following characters:

i @#EFHNAT 2

ASP.NET 199

* 'The country should be either Canada or the United States.

* If the country is Canada, then the postal code must be a valid Canadian
postal code.

* If the country is the United States, then the postal code must be a valid
US zip code.

* 'The phone number is a valid US/Canadian phone number.

* 'The e-mail address is a valid Internet e-mail address.

* 'The type of the credit card must be selected.

* 'The credit card number should consist of digits only and must have the
following properties:

CREDIT CARD PREFIX LENGTH
MasterCard 51-55 16
Visa 4 16
American Express 34 or 37 15
Discover 6011 16

* 'The format of the expiration date should be MM/YYYY, where MM
means month and YYYY means year. Both M and Y represent a single
digit. The range of MM is between 01 and 12, and YYYY is between
2017 and 2027 (inclusively).

» All validations described here should be server based (i.e., these valida-
tions are performed on the server side).

* When the form is validated and submitted, a new web page will be gener-
ated to display the customer’s input and ask for the customer’s confirma-
tion. Once the customer confirms, another new web page will be generated
to inform the customer that the reservation is being processed, and the
reservation information will be recorded in a file on the server to allow the
hotel manager to process the reservation. Draw a scenario design diagram
before writing the programs.

4. Search the Internet to learn the features of ASP.NET beyond the examples in
this chapter.

5. Using ASP.NET with C#, rewrite the ASP.NET with VB.NET program in
Listing 6.13.

6. Follow question 5 and employ code-behind programming to separate the C#
source from the user interface design in the .aspx file.

7. Use ASPNET with VB.NET or C#NET to develop a web application proj-
ect for the online auction of a precious gemstone. The user interface should
allow users to input their e-mail addresses and bid for the gemstone. If the
user’s bid is currently the highest bid, then an indication message will be
displayed to the user. All users’ bids will be recorded in a file or a database on
the server. For simplicity, there is no ending time for this online auction.

200 PROGRAMMING LANGUAGES FOR MIS

8. Develop a web application project (using either ASP.NET with VB.NET, or
ASP.NET with C#). The minimum requirements are:

* An HTML home page starts an ASP.NET program, followed by at
least three times of interaction between the client and server imple-
mented by ASPNET

* Use the Redirect method at least one time.

* Use at least three validation controls.

» Atleast one data file (.txt file) and one database table (IMS Access) are used
for the programs for data storage, search, and updating.

'This project emphasizes the interaction between the client and server, but

de-emphasizes the static web page itself (such as hyperlinks, client-side

calculations, and image manipulations through JavaScript). The project

report should include:

— Description of your project

— Scenario design diagram

— Artifact of the project (html document, asp.net programs, text files
and ms access database, and images)

PHP

7.1 Introduction to PHP and PHP Development Environment

PHP script was developed in 1994. Originally it was called personal home page, and
now it is referred to as PHP hypertext preprocessor. As a server-side programming
tool, PHP script can print dynamic web pages in HTML. A dynamic web page is dif-
ferent from a static web page in that a dynamic web page does not reside at a URL and
its contents can vary depending on the request of a user or a computer program. PHP
has been popular for several major reasons. First, PHP is easy to use. Its syntax is sim-
ilar to C language. Second, PHP is free software. Supported by the Apache Software
Foundation, <http://www.apache.orgs, an open source software development
community, PHP can be downloaded for free from the PHP Group at <http://www.
php.net>. Third, PHP can be installed on different platforms, including UNIX,
Windows, and others. Fourth, the PHP community has developed many PHP library
programs for MySQL, an open-source DBMS (database management system). This
makes PHP even more popular for small or medium-sized organizations.

In terms of the roles of web applications, PHP is not much different from other
server-side programming tools such as ASPNET. Figure 7.1 shows a general pro-
cess for a web application supported by PHP. The user on the client side sends a
request, which might include data, over the Internet to the server. The request and
data received by the web server are used as input for a PHP program. The PHP pro-
gram processes the request and generates a dynamic web page in HTML. The web
server then sends the dynamic web page back to the client side, where it is shown on
the client computer by the web browser.

To build a PHP web application, you need a server to run PHP. You can install a
PHP server by using free software packages provided by PHP (<http://www.php.
org> and Apache <http://www.apache.orgs) websites. With a PHP server, you
can upload PHP programs to the server and run them though the Internet. However,
installation of a real server may not be feasible for students. Alternatively, it is more fea-
sible to download a free PHP development environment software package that is able
to create a local server on your personal computer for testing PHP applications. In this
book, EasyPHP, a PHP development environment software package from <http://
www.easyphp.orgs, is used for examples. EasyPHP is not a production server, but
rather is a developing server to test web applications in PHP before moving them on

201

202 PROGRAMMING LANGUAGES FOR MIS

Request Request |:|

—/4
—
Results Results
namic Web page namic Web page

[] (Dynamic Web page) (Dynamic Web page)

Web

browser Database

Client Web Server

Figure 7.1 Execution cycle of PHP program.

a web hosting server. EasyPHP is able to install a personal server on your computer
that emulates a real server to test PHP programs. EasyPHP can be easily installed by
following the instructions provided by its website. The following steps are the general
procedure of editing a PHP program and viewing the execution result in EasyPHP:

1. Install EasyPHP on your computer. Find the local server folder in the folder
of EasyPHP (e.g., E:\EasyPHP\www, or E:\EasyPHP\data\localweb,
depending on the version). This folder will contain all PHP applications for
the default server.

2. Open Notepad, edit your PHP program (see Listing 7.1 for an example), and
then save it to the local server folder as FileName.php (e.g., HollowWorld.
php). Make sure that you choose [All Files] for [Save as typel
before you save the file in Notepad.

3. Start the EasyPHP environment (e.g., E:\EasyPHP\EasyPHP.exe).

4. Once EasyPHP is launched, you can see the EasyPHP Window (see
Figure 7.2). Click on the logo icon and a menu shows up that allows you to
start and stop the local server and other procedures.

5. On the menu, select [Local Web]. You will see the local server (see
Figure 7.2), which is supposed to be <http://localhost/> or <http://
PortNumber/>; this contains all programs and data stored on the local server.
If Microsoft Internet Explorer is the browser for testing PHP programs,
you often need to delete [Browsing history] under [Tools] and then

[Internet option].

6. Select the PHP program or the web page on the local server (e.g.,
HollowWorld.php); you will see the execution result presented by the browser
on the client side.

7.2 Format of PHP Program

We present a simple PHP program, named HelloWorld.php, in Listing 7.1. The
line numbers are added for explanation and should not be included in the program.

Start EasyPHP

Click on logo icon

Menu

View local server

Start server

Stop server

Local server starts

I

Local server folder

Select PHP program
(e.g., HelloWorld.php)

Execution result
presented by
‘Web browser on
client side

PA54PHR

Condem phe 0130000 1955 T
e W01TE T
Purcbasalats td W3 0T 9% W
Sofware pho 130107 1928 1K
SoMware prg W30007 19T 1AM
Sofwarshoma iml 20030807 19 4D
soifpaciags b wnoren n

€ ®

I @ hitpy/127.000 HelloWord pho
View Fovorites Tools Help

p-BEX

| File Edit

Hello, PHP World!

203

Figure 7.2 EasyPHP development environment.

204 PROGRAMMING LANGUAGES FOR MIS

Listing 7.1: Example of PHP Program (HelloWorld.php)

1 <htmls>

<body>

<?php print ("Hello, PHP World!");
?>

</body>

</html>

o Ul b W N

If you installed the PHP system correctly, the execution result of Listing 7.1 pre-
sented in the web browser for the client is shown in Figure 7.2.

There are a number of formats of PHP program. Instead of using <? and ?>, you
may use <scripts> tag for a PHP script, as shown in Listing 7.2.

Listing 7.2: Use <script> Tag for PHP Program

<html>
<body>
<script language="PHP">
print ("Hello again, PHP World!");
</script>
</body>
</html>

'The format of Listing 7.2 makes PHP look similar to JavaScript, but, actually, PHP
may not be embedded within HTML. Rather, PHP can print HTML documents as
other server-side programming tools do. Listing 7.3 shows another format of PHP.
'This format shows the major characteristics of PHP that a PHP program responds the
client’s request by simply printing an HT ML document for the client. In the remain-
ing part of this chapter, we use this format for all PHP programs.

Listing 7.3: Standard Format of PHP

<?php
print ("<htmls><body>") ;
print ("Again, hello, PHP World!");
print ("</body></html>") ;

?>

In principle, every time a dynamic web page printed by PHP is sent back to the
client, the web browser on the client side repaints the screen to present the dynamic
web page. Apparently, in comparison with the postback feature of ASP.NET, PHP is
simple, but does not support postback automatically. This weakness makes the inter-
actions between the client and server look discontinuous unless the programmer does
more programming or uses a certain PHP library. For example, suppose the client fills
a form with data and requests a PHP program to process it. If the PHP program is
simple, it sends merely the processed result back to the client. The client can see the
processed result, but is unable to see the original form that has been filled before send-
ing the request because the screen has been repainted. To keep the original form along
with the processed result for the client, the programmer must add code to reprint the

PHP 205

original form along with the original form data in the PHP program. We will return
to this issue later in this chapter and demonstrate examples.

7.3 Structure of PHP Program

To explain the structure of a PHP program, Listing 7.4 shows an example (Date.
php) that displays the current date in several formats (Figure 7.3).

Listing 7.4: Example of PHP Program (Date.php)

1 <?php

2 print ("<html><body>") ;

3 // This is to show the day of month
4 Sday=date ("d") ;

5 print ("Day=$day") ;

6 print ("
") ;

7 // This is to show the current month of year
8 smonth=date ("M") ;

print ("Month=$month") ;
10 print ("<brs") ;

11 // This is to show today date

12 print (date("F d, Y"));
13 print ("</body></html>") ;
14 ?>

The syntax and structure of PHP is similar to those of C language. A PHP state-
ment ends with a semicolon “;”. “//” indicates a comment line. The first character of
a user-defined variable name must be the dollar sign “$.” In Listing 7.4, $day and
$month are user-defined variables. PHP is a function-oriented language that has

many built-in functions. The general syntax of a PHP built-in function is

function name(arguments)

In Listing 7.4, print () is a built-in function, and its argument is a string. date()
is also a built-in function, and its argument is the format of the date, including many

g@| @ ntpy/127001/Datephp

File Edit View Favaorites Tools Help

Day=11
Month=Jan
January 11, 2018

Figure 7.3 Execution result of Date.php.

206 PROGRAMMING LANGUAGES FOR MIS

formats such as d for numerical day of month, D for day of week, M for current month
in short form, F for current month in long form, m for current month in number, Y for
current year, etc.

7.4 Activate PHP in Web Page and Process Form Data on Server

In this section, we present an example to show how a PHP program responds to
a request sent from the client side by a form. Listing 7.5 is an HTML web page
(Request.html). On the web page, the user is allowed to input data, including
delivery weight, days needed for transportation, and location, and to send the form
to the server to find out the delivery charge. Listing 7.6 is a PHP program, named
DeliveryCharge.php, that responds to the form input and prints a dynamic web
page for the client.

Listing 7.5: Web Page to Activate PHP Program (Request.html)

1 <HTML>

2 <HEAD>

3 <TITLE> Delivery Charge Calculation </TITLE>

4 < /HEAD>

5 <BODY>

6 <H2>Find the delivery charge.</H2>

7 <FORM ACTION="DeliveryCharge.php" METHOD="POST">
8 <P> Input the weight of package for the delivery:
9 <INPUT TYPE=TEXT SIZE=10 NAME="Weight"> 1b

10 </P>
11 <P>Input the days needed for transportation:
12 <INPUT TYPE=TEXT SIZE=10 NAME="Days">

13 </P>

14 <P>Choose the destination State:</P>

15 <INPUT TYPE=RADIO NAME="State"

16 VALUE="Yes" checked>In State

17 <INPUT TYPE=RADIO NAME="State" VALUE="No">Out State
18
</P>

19 <INPUT TYPE="SUBMIT" VALUE="Find Out Delivery Charge">
20 <INPUT TYPE="RESET" VALUE="Reset">
21 </FORM>
22 </BODY>
23 </HTML>

Listing 7.6: PHP Program (DeliveryCharge.php) Activated by Request.html

1 <?php
2 print ("<html><body>") ;
3 print ("Thank you for your request!
");

4 S$Weight=$ POST ["Weight"];
$Days=$_ POST ["Days"] ;
6 $State:$_POST["State"];
7 $SCharge=CalculateCharge ($State, S$Weight, $Days);

8 print ("The delivery charge is: $ $Charge");

PHP 207
9 print ("</body></html>") ;

10 function CalculateCharge ($ST, SWT, $DS) {

11 if ($ST=="Yes")

12 { $CH=$WT * $DS * 1; }
13 else

14 { $CH=SWT * $DS * 2; };
15 return (SCH) ;

16 }

17 2>

This example is quite similar to the example of Listing 3.7 of JavaScript in Chapter 3.
The difference between JavaScript and PHP in this case is that JavaScript performs
calculations on the client side, while the PHP script performs calculations on the
server side.

In Listing 7.5 (Request.html), line 7 specifies the action when the user clicks
on the submit button on the form. It instructs the server to activate the PHP program
DeliveryCharge.php. In this example, the PHP program and the HTML web
page are placed in the same folder on the server so that a directory path name is not
needed; otherwise, you must define the access path here. Line 7 also instructs the
POST method used by the web browser to send the data back to the server. Actually,
POST is always used for the method attribute for server-side programs.

In Listing 7.6 (DeliveryCharge.php), lines 4—6 receive the values from the
form that activates the PHP program. Note that, to improve the PHP performance,
the PHP version of EasyPHP uses $ POST["variable-name"] to receive the
input values from the corresponding variables on the form through the POST method.
'This rule may not be applied in many other versions of PHP, where the global variable
in the form of $variable-name is used directly. You need to check the reference
manual of a particular version of PHP to learn how to pass the values of form data from
the web page to the PHP program. Line 7 calls the CalculateCharge() function
for calculation. Lines 10—16 are the user-defined function CalculateCharge().
The structure of user-defined functions is similar to that of C. There is an if-statement
in lines 11-14. We explain them in detail in the following section.

Figure 7.4 shows the execution results of Request.html and DeliveryCharge.
php. It also shows the code of the dynamic web page on the client side. Apparently,
this dynamic web page is simple without postback of the original form. To include the
original filled form on the dynamic web page, the PHP program needs to print the
form, as demonstrated in an example later in this chapter.

7.5 Programming in PHP
7.5.1 PHP Functions

'The general syntax of a PHP built-in function is

Function-name(arguments)

208 PROGRAMMING LANGUAGES FOR MIS

-
B % _
l@ httpy//127.0.01/Request htmi P-BO X|
File Edit View Favorites Tools Help

Find the delivery charge.
Input the weight of package for the delivery: a0 Ib
Input the days needed for transportation: 2

Choose the destination State:

= In State
= Qut State

'\ T =
e-\f,_ﬂ@ http://127.0:0.1/DeliveryCharge php P-BOX i| & 1700 x H

Thank you for your request!
The delivery charge is: § 120

&) hts//127.00.1/DeliveryCharge php - Original Souree LW
| File Edit Format
1 khtal><body>Thank you for your request]
The delivery charge is: § 128</body></html>

Figure 7.4 Execution results of Request.html and DeliveryCharge.php.

As shown in the previous examples of PHP program, print() is a built-in func-
tion, and its argument is a string. The print() function is probably the most used
tunction in PHP programs. Note that single and double quotation marks have differ-
ent outcomes if there is a variable with the $ sign in the printed string. Single quotes
will print the variable name, while double quotes will print the value of the variable.

You will see the echo() function later in some examples of PHP programs.
echo() does the same job as print() does, although their internal implementations

are different. date() is also a built-in function. Other commonly used PHP func-
tions and their arguments include:

* rand(low limit, high Iimit)—generating random numbers in the
defined range

* substr(string, start position, end position)—extracting a
portion of the characters from the defined string

trim(string)—removing blanks from the beginning and end of the defined
string

The syntax of the user-defined function is

function function-name(arguments)
{ lactions] ;
return(variable); }

PHP 209

For example, in function CalculateCharge(s$ST, SWT, $DS),
CalculateCharge() is a user-defined function, and ($ST, SWT, $DS) are the
function arguments. The location of the user-defined function is not important; in
other words, the programmer can place a user-defined function anywhere in the
PHP program.

7.5.2 if-Statement

The syntax of if-statement of PHP is similar to C; that is,

if ([condition]) { [action 1] ; }
else { laction 2] ; };

PHP also provides an 1f-elseif controlling statement, which could be confusing
for beginners.

7.5.3 Read Data File from Server

In this subsection, we present an example of how a PHP program reads data from a
file on the server. Listing 7.7 shows a brief HTIML web page, named Travel.html,
for travelers to check air-ticket prices on the server through the Internet.

Listing 7.7: Web Page (Travel.html) to Access Server Data

<HTML><BODY >

<FORM ACTION="Airticket.php" METHOD=POST>
<H2>Welcome to Spring Travel Agency!</H2>
<INPUT TYPE=SUBMIT VALUE="Check the Prices">
</FORM></BODY></HTML>

Suppose there has been a text file (ASCII file), named Airticket.txt, on the
server disk, as shown in Listing 7.8. The PHP program, named Airticket.php, is
supposed to read the disk file and to send the requested data back to the client.

Listing 7.8: Text Data File (Airticket.txt) Used for Airtickets.php

New York - Boston

$99.90

Toronto - Las Vegas
$155.50

Halifax - Providence
$109.50

'The PHP program Airticket.php activated by Travel.html to access the
server data of air-ticket prices is listed in Listing 7.9.

210 PROGRAMMING LANGUAGES FOR MIS

Listing 7.9: PHP Program (Airticket.php) Reads Data File on Server

1 <?php
2 print ("<html><body>") ;
3 print("<h3s>Airticket Price Table</h3>");
4 SFileName='Airticket.txt';
5 $File=fopen($FileName, 'r') or die("Cannot open filel!l");
6 print ("<table border=1>");
while (!feof ($File))

$linel=fgets($File, 120) ;

Sline2=fgets ($File, 120) ;
10 print ("<tr><td>$linel</td><td>$line2</td></tr>");
11 };

12 fclose($File);

13 print("</table>");

14 print ("</body></html>") ;
15 72>

In Listing 7.9 (Airticket.php), line 4 stores the name of the external data file on
the server (Airticket.txt) to a variable for the external file name ($FileName).
Line 5 opens the data file for read-only. It uses the variable of external data file name
($FileName) and defines the internal file name ($File) for the program. Lines 6
and 13 define a table to present the data to the client. Lines 7 through 11 are a while-
loop. Line 7 means that, although the data file has not reached the end, execute the
instructions included in the loop. For each time of the loop, lines 8 and 9 read two
lines from the disk file (Airticket.php), and line 10 prints them into the table.
Here, 120 is the size (in bytes) of the buffer to hold the data read from the server.
Once the process reaches the end of the file, line 12 closes the file. Several important
PHP functions are described next.

7.5.4 fopen() and fclose()

'The fopen() function is to open a disk file on the server using the external file name
(or the variable that stores the external file name), and the fclose() function is to
close the opened file using the internal file name. The syntax of these functions is

fopen ($VariableOfExternalFileName, 'open mode') ;
fclose ($InternalFileName) ;

Note that, in PHP, the external data file name and the internal file name are differ-
ent, as shown in Listing 7.9 (Airticket.php). The file open mode could be 'r' for
read-only, 'w' for overwrite-only, 'r+' for read and write, 'a' for append, or 'a+'
for read and append. The die() function often follows fopen() and gives instruc-
tions when the open process fails (e.g., the file is missing on the server).

PHP 211

7.5.5 feof() and fgets|()

The feof () function indicates the end of a file. Its argument is the internal file name.
(Ifeof ($InternalFileName)) is often used for the condition that the file has not
been reached to the end.

The f£get () function reads one line from the disk file. Its syntax is

fgets (SInternalFileName, maximum bytes) ;

7.5.6 while-loop

while implements a loop to execute a set of instructions repeatedly while the speci-
fied condition is true. The syntax of a while-loop is

while(condition) { actioms; };

'The condition could contain operators such as ! for NOT, && for AND, and ||
for OR.

7.5.7 Write Data File to Server and fputs ()

In this subsection we show how PHP saves the data sent by a form and writes them
to the server disk. Listing 7.10 is an HTML web page (Order.html) that contains
the user’s input and activates a PHP program to save the data. Listing 7.11 is the PHP
program (SaveForm.php) that receives the data of the form and appends them to
the disk file on the server.

Listing 7.10: Web Page (Order.html) to Save Data on Server

1 <HTML> <BODY>

2 <H3> PHP saves data of FORM, and write them to a file </H3>
3 <FORM ACTION="SaveForm.php" METHOD=POST>

4 Your Last Name:

5 <INPUT TYPE=TEXT NAME="LName" SIZE=50>

6 Your First Name:

7 <INPUT TYPE=TEXT NAME="FName" SIZE=50>

8 Your Email Address:

9 <INPUT TYPE=TEXT NAME="Email" SIZE=50>

10 Your Orders:

11 TItem: <INPUT TYPE=TEXT NAME="Item" SIZE=10>

12 Quantity: <INPUT TYPE=TEXT NAME="Quantity" SIZE=5>

13

14 <INPUT TYPE=SUBMIT VALUE="Process the data">

15 <INPUT TYPE=RESET VALUE="Start Over Again'"s>

16 </FORM>

17 </BODY></HTML>

212 PROGRAMMING LANGUAGES FOR MIS

Listing 7.11: PHP Program Writes Data to Disk File on Server (SaveForm.php)

<?php

print ("<html><body>") ;
$lname=$_ POST["LName"] ;
$fname=$ POST ["FName"] ;
Semail=$ POST["Email"]
Sitem=$ POST["Item"];
Squant=$ POST["Quantity"];

7

N oy U W R

8 S$FileName='FormData.txt';

9 sSFile=fopen($FileName, 'a+') or die("Cannot open file!");
10 fputs(sFile, "$lname\r\n");
11 fputs(SFile, "$fname\r\n");
12 fputs(SFile, "$Semail\r\n");
13 fputs(SFile, "$item\r\n");
14 fputs($File, "$quant\r\n");
15 fclose($File);
16 print ("<h2>Thank you for sending the order form!</h2>");
17 print("</body></html>") ;
18 ?>

In Listing 7.11, lines 3 through 7 receive the values of the variables from the form.
Line 8 stores the server file name to the external disk file name. After the execution
of this program, you will find a disk file named FormData.txt on the server (i.e., in
the local server folder of the EasyPHP environment). Line 9 opens the file in the
append and read mode. Lines 10—14 write the data received from the form to the disk
file. Note that \r\n indicates a return key and a new line to separate these data items
in the text file. Function fputs() writes a record to the file. Its syntax is:

fputs (SInternalFileName, "string name") ;

Finally, line 15 closes the file. The execution results of Order.html and SaveForm.
php are shown in Figure 7.5.

7.6 Relay Data through Multiple Dynamic Web Pages Using Hidden Fields

When a PHP program sends a dynamic web back to the client in response to the
request through a form, the data of the form might be lost if they are not stored
on the server. In cases where several interactions are involved in a process, such as
online shopping, it is important to pass data from one dynamic web page to another.
However, if the PHP program saves these data to the server every time, then the
programming becomes complicated and the execution time becomes long. In addi-
tion, some pieces of data are used for interactions but are unnecessary to be saved on
the server. Here, we present a simple way to relay data through multiple dynamic web
pages using hidden fields of form. The user on the client side would not see the data in
the hidden fields on the web page unless its source code is viewed.

PHP 213

G@]@ httpy//127.001/Order htmi pP~BGX ||

File Edit View Favorites Tools Help

PHP saves data of FORM, and write them to a file

Your Last Name:
Smith

Your First Name:
John

Your Email Address:
i@ provider.com

Your Orders:
Ttem: Computer Quantity: 3

[_Processthedata | [Start Over Again |

- record data on server

@ Aclivate PHP program to
- send message back to client

a@|@ '\RD:.’.-‘iﬂ?ﬂ.O.L’Fcmeata; e@@ hllpc,l‘,fl?]’.D.D.lfSaveFDrm.;F:p p-Elix|a
File Edit View Favorites Tools Help File Edit View Favorites Tools Help

g Thank you for sending the order form!
j@provider.com

Computer

3

Figure 7.5 Execution results of Order.html and SaveForm.php.

The following three programs show how one can relay data through two dynamic web
pages using hidden fields without interrupting a user’s view. Listing 7.12 is a static web
page (Email.html) with a form that allows the user to input her or his e-mail address.
Note that line 5 catches the input and stores it in a variable named hiddenemail.
'The submit button in Listing 7.12 activates the PHP program in Listing 7.13, named
AirticketEmail.php. This PHP program (AirticketEmail.php) is a varia-
tion of the PHP program in Listing 7.9 (Airticket.php). The difference between
the two programs is shown in lines 14 through 18 in Listing 7.13.

Line 14 receives the data (e-mail address) sent by the form in Listing 7.12 (Email.
html). Line 15 defines a new form for sending back to the client. Line 16 defines a
hidden field that contains the e-mail address. This e-mail address is not displayed at
this time, but is passed on to the next dynamic web page. Line 18 defines a button
to activate another PHP program in Listing 7.14, named AirticketConfirm.
php. In Listing 7.14, line 3 receives the e-mail address from the hidden field of the
form sent by AlrticketEmail.php, and line 5 displays it to the client. Note that
the hidden field name (hiddenemail) should be consistent in all programs; that is,
line 5 in Listing 7.12, lines 14 and 16 in Listing 7.13, and line 3 in Listing 7.14 should
all use the same hidden field name hiddenemail. Figure 7.6 illustrates the data
relay through dynamic web pages using a hidden field.

214 PROGRAMMING LANGUAGES FOR MIS

‘3’ @ nitpy/127001

File Edit View Favorites Tools Help

Welcome to Spring Travel Agency

Please enter your email address

JSmith@prowvider com

R
==l ‘3] 127001
Receive data Fie Edit View Favorites Tools Help
Activate Airticket Price Table
¥ New York - Boston $99.90

Toronto - Las Vegas $155.50

Relay to - Fdrnn 5
AirticketEmail.php hiddezﬁeld Hailtah-Pm\u!\,m«; $109.50 e
idden fiel
Please confirm: T .
Receive data from
0K hidden field

a B hetp//127.0017A

Activate File Edit View Favorites Tools Help

Information will be sent to:

Relay data

and
AirticketConfirm.php display e .
———"p» JSmith(a prn\'ldcl'.t‘lml

Figure 7.6 Example of data replay using hidden field.

Listing 7.12: Web Page (Email.html) Activates PHP Program
(AirticketEmail.php)

<HTML><BODY >

<FORM ACTION="AirticketEmail.php" METHOD=POST>
<H3>Welcome to Spring Travel Agency</H3>
<H4>Please enter your email address</H4>

<INPUT TYPE=TEXT NAME=hiddenemail SIZE=20>

<INPUT TYPE=SUBMIT VALUE="Check the Prices">
</FORM></BODY></HTML>

N oUW N

Listing 7.13: PHP Program (AirticketEmail.php)
That Uses Hidden Field to Relay Data

<?php
print ("<html><body>") ;
print ("<h3>Airticket Price Table</h3>");
SFileName='Airticket.txt';
SFile=fopen($FileName, 'r') or die("Cannot open file!");
print ("<table border=1>") ;
while (!feof ($File))
$linel=fgets ($File, 120);
$line2=fgets ($File, 120);
print ("<tr><td>$linel</td><td>$1line2</td></tr>");

}i

P O w oo Jo0 U WwN R

RoR

12
13
14
15
16
17
18
19
20

PHP 215

fclose ($File) ;

print ("</table>") ;

$e=$ POST["hiddenemail"];

print ("<form action=AirticketConfirm.php method=post>");
print ("<input type=hidden name=hiddenemail value=$e>");
print ("Please confirm:

");

print ('<input type="submit" value="OK">') ;

print ("</form></body></html>") ;

?>

Listing 7.14: PHP Program (AirticketConfirm.php)
That Receives and Displays the Relayed Data

<N o0 U W N R

<?php

print ("<html><body>") ;

$e=$ POST["hiddenemail"];

print ("<h3>Information will be sent to:</h3>

");
print ("<h3> $e</h3>");

print ("</body></html>") ;

?>

7.7 Example of Web Application Design

There are many types of web applications, including:

* Information presentation

* Access authentication

* Information search

* Business transaction

* Notification, reporting, or confirmation

» User interaction, etc.

To facilitate web application design, we use a scenario design diagram as a tool to
articulate the web application project in the aspect of

1. Features of each of the web pages
2. Interaction between the client and the web server

3. Data on the server

4. 'The logic of the entire process

5. Major outcomes of the process

In this section, we present an example of a toy-scale web application to explain the
use of a scenario design diagram and the implementation of a web application project
using PHP. The example is an online software shopping system. In this example, the
home page introduces the user to search the prices of software packages. The user is
allowed to type in the name of a software package and the version for the search. The

data used for search are stored on the server. The server of the online store makes a
response to the user by notifying her whether the online shop has the requested soft-
ware package or not. To make the search easy, the original form with the user’s inputs

216 PROGRAMMING LANGUAGES FOR MIS

‘Web Application Scenario Design — Online Software Store

Home page (€] ” T, (Database or text file)
o .Snrr.\'. the pn(kug‘r is not available m
e Search for

Welcome to Online Software Store!

A

Software Package:
software Woveon

- package BT Version (Year).
H 00
< Fail Your Email Address

sckage Naine Coples you need:

o (Vew) Camierd

[T

Back to Home Page

(Postback)

€3

File Ednt Veew Fa

ools Help

Succeed | The price is: § 999,95
(Database or text file)

Software Package:
S0 0am

Version (Year):

2017

Your Email Address:

SIS ovder com

Copies you need
1
Condermd

Back to Home Page

(Postback)

Confirmation

Purchase has been submitted .
Your package will be sent to you by email ...

Back to Homs Page

Figure 7.7 Example of scenario design.

must appear on the screen on the client side, along with the response. In other words,
the PHP program has to make the “postback” feature. Once the user finds the right
software package to purchase, she can input her e-mail address along with other pur-
chasing data and click on a button to make a purchase. All data used for the purchase
are recorded on the server for the online store for further processing.

Figure 7.7 shows a scenario design diagram. Apparently, the diagram in Figure 7.7
includes screenshots of the execution results of the programs. Practically, the program
designer draws a draft for the design of the application before writing the programs.

Listing 7.15(a) is the home page (SoftwareHome.html), which activates
Software.php (see Listing 7.15b). The Software.php program allows the user
to search a software package. This search process uses a data file on the server, named
Softpackage.txt (see Listing 7.15¢). The Software.php program searches the
data file on the server and makes a response to the client’s request depending on
the search outcome. If the search fails, Software.php sends a message back to the

PHP 217

user and allows the user to go back to the home page to redo the search. If the search
succeeds, it posts a form that contains the user’s original inputs back to the client side
and asks the user to input additional purchasing data, including contact informa-
tion and copies of the software package. The command button on the postback form
activates Confirm.php program. The Confirm.php program (Listing 7.15(d))
receives all purchasing data from the client and writes them to a data file named
PurchaseData.txt on the server. The data file can be used by the online store
for further processing. Upon the completion of the purchasing transaction, the client
receives a confirmation message on the screen.

Listing 7.15(a): Example of Application Design: Home Page
(SoftwareHome.html)

<HTML><HEAD><TITLE>Online Software Store</TITLE></HEAD>
<BODY><H3> Welcome to Online Software Store! </H3>
<IMG ALT="Software" SRC="Software.png"
width="100" height="100" />

<FORM ACTION="Software.php" METHOD=POST>

Software Package Name:

<INPUT TYPE=TEXT NAME="SoftwarePackage" SIZE=50>

Version (Year) :

<INPUT TYPE=TEXT NAME="VersionYear" SIZE=50>

<INPUT TYPE=SUBMIT VALUE="Find the Price">
</FORM></BODY></HTML>

Listing 7.15(b): Example of Application Design: Search (Software.php)

<?php
print ("<htmls><body>") ;
$Package = $_POST["SoftwarePackage"];
$Version = $_ POST["VersionYear"];

$PackageFile="'Softpackage.txt';
$File=fopen ($PackageFile, 'r') or die("Cannot open filel!l");

$record=fgets ($File, 120);
Spg="";
Svy="";
$pc="";
SPrice="";
SFound="no";
while (!feof ($File))
Spg = trim(S$Srecord) ;
//trim() function deletes spaces before and after a string
Svy = trim(fgets($File, 120));
Spc = trim(fgets($File, 120));

if (($pg==SPackage) && ($vy==$Version))
{ $Found = "yes";
SPrice=$pc;
Srecord = "";

}

else { Srecord=fgets($File, 120); };

PROGRAMMING LANGUAGES FOR MIS
i
if ($Found=="no")
{print ("<H3>Sorry, the package is not available</H3>"); }
else {
print ("<H4>The price is: $ $Price </H4>");
i
print ("
");
fclose($File) ;
print ("<form action=Confirm.php method=post>");
print ("Software Package:
");
print ("<input type=text name=SoftwarePackage size=50 value=$Packages>") ;
print ("
") ;
print ("Version (Year):
");
print ("<input type=text name=VersionYear size=50 value=$Versions>") ;
print ("
") ;
print ("Your Email Address:
");
print ("<input type=text name=email size=50>");
print ("
") ;
print ("Copies you need:
");
print ("<input type=text name=Copies size=3>");
print ("
");
print ("<input type=submit value=Confirm!>");
print ("</form>") ;
print ("<p>Back to Home Page");
print ("</body></html>") ;
?>

Listing 7.15(c): Example of Application Design: Data on Server
(Softpackage.txt)

ISDream

2017

999.95
WonderManager
2018

505.05
OnlineFlyer
2019

50.98

Listing 7.15(d): Example of Application Design: Transaction (Confirm.php)
<?php

$Package = $_POST["SoftwarePackage"];
$Version = $ POST["VersionYear"];
Semail = $ POST["email"];

$Copies = $_POST["Copies"];

if (strlen(Semail) >0)
//strlen() function determines the length of a string
{print("<h3>Purchase has been submitted....</h3>");

$PurchaseFile="'PurchaseData.txt’';
SFile=fopen ($SPurchaseFile, 'a+') or die("Cannot open file!");

PHP 219

fputs ($File, "$Package\r\n");

fputs ($File, "$Version\r\n") ;

fputs ($File, "$Semaill\r\n");

fputs ($File, "$Copies\r\n");

fclose($File) ;

print ("<h3>Your package will be sent to you by email ...</h3>");

}

else { print("Missing email address...."); };

print ("<p>Back to Home Page") ;
?>

7.8 PHP and MySQL Database

Practical web applications deal with relational databases directly from a web page.
MySQL is the most used open source relational database management system. PHP
and MySQL is a common combination for web application development. First, both
are open-source software systems and are platform independent. Second, many devel-
opment tools, such as the EasyPHP used for this chapter, have integrated PHP and
MySQL into the development environments. Thus, no substantial work for database
connection setting would be required for the web application development stage.
'Third, the PHP community has developed many PHP libraries for MySQL already.
'This makes the combination of PHP and MySQL even stronger in the future. Because
of these reasons, we use MySQL for PHP in this book for learning web application
development with databases. We assume students have basic knowledge of database
and SQL (structured query language) for studying this section. The subject of SQL is
discussed in detail in Chapter 9.

7.8.1 Set MySQL Database

PHP programs can use databases, but cannot create a database. A database used by PHP
must be created by using the DBMS, although the database could be empty (i.c., with
no data). The EasyPHP development environment is able to create a MySQL database
that can be connected to PHP without a need for database connection setting at the
operating system level. Figure 7.8 demonstrates the steps to setting an empty MySQL
database, named studentdb, in EasyPHP that will be used for the PHP programs
to create tables and to access the tables from the database within the development
environment. When setting a database in EasyPHP, the [Local Web] window must
be closed.

To make sure the database has been created by the EasyPHP [Administration]
window, you can check the data folder on the local server (e.g., E:\EasyPHP\
mysgl\data) on your computer, as shown in the last step in Figure 7.8.

Again, if the browser is Microsoft Internet Explorer, you need to delete browsing
history from time to time in order to run PHP programs in EasyPHP.

220 PROGRAMMING LANGUAGES FOR MIS

Start EasyPHP

Click on logo icon

Select [Administration]

Administration
Home window:

Click on [Open] in
MODULES

MODULES
window:

Select [Databases]

Databases 3
Wiﬂdow: A o —
yooreery e §
LR TVEE Wl 1 __WCT__ WL W WA
et o) _ =
e Databases
Type in database name AR Cruae duste o
e Cotmion = e
Click on [Create]
| A DTG .
" g® # Raghented o Chah Privinges
-mu—_
4 Chack Al [Unchach AT W saiscet 1 Drop
& Enatie Susatcy
Mate Lra
e WS v
EasyPHP server: =
(E:\EasyPHP)
\mysql\data folder [Fhe= e Vow ook)
Organize = Sharewith® Bum New foider
Name 5 Date modied Type
b mysql 12/13/2012 R43 A File fokder
L. pedormance schema 12132012 $A3 A File folder
). phomyadrin 12132012 PAIA. File folder
Database created — | studentan V12013448 PM__ File folder
L wangan 12/13/2012 501 PM File folder
| FP-S04323-MGT.err VIVI013 1008 A ERR File

Figure 7.8 Set MySQL database (studentdb) in EasyPHP.

PHP 221
7.8.2 Create and Delete Tuable in PHP Using SQL

One may create tables in the EasyPHP [Administration] window directly.
However, we have found it easy to use PHP programs to create and delete tables.
Listing 7.16 is a PHP program (CreateTable.php) to create a table named
tblStudent. The tblStudent table has four attributes:

tblStudent
StudentID (Key, 8 char)
StudentName (30 char)
StudentAddress (40 char)
StudentEnrolYear (4 integer)

In Listing 7.16 (CreateTable.php), line 3 connects to the server. Here, "root"
is the default user, and "" means there is no password. You may change these param-
eters in the MySQL setting. Line 4 selects the database used for this program.
Line 5 shows a message to indicate the database has been connected successfully. The
echo() function does the same job as print() does. We use a simple programming
convention here: echo() is used for displaying messages for the programmer, and
print() is used for print lines for the client. Lines 7-12 are the SQL part, which
is straightforward, given Chapter 9. Line 13 executes the SQL. Line 14 closes the

server connection.

Listing 7.16: PHP Program (CreateTable.php)
Creates Table in MySQL Database

1 <?php

2 // Make a MySQL connection and select database

3 $conn=mysqgl connect ("localhost", "root", "") or die(mysqgl_ error());
4 mysqgl_select_db("studentdb") or die(mysgl error());

5 echo("studentdb has been selected!");

6 echo("
") ;

~

$sgl="CREATE TABLE tblStudent

8 (StudentID char(8) NOT NULL,
StudentName char (30) NOT NULL,

10 StudentAddress char (40) NOT NULL,

11 StudentYear int (4) NOT NULL,

12 PRIMARY KEY (StudentID))";

13 mysql query($sql);
14 mysqgl_close($conn) ;
15 echo("Table tblStudent has been created!");
16 ?>
Listing 7.17 is a PHP program (DeleteTable.php) to delete the tblStudent
table. The logic of this program is similar to that for CreateTable.php.

Listing 7.17: PHP Program (DeleteTable.php) Deletes Table

<?php
// Make a MySQL connection and select database

222 PROGRAMMING LANGUAGES FOR MIS

Sconn=mysqgl_connect ("localhost", "root", "") or die(mysgl error());
mysqgl_select_db("studentdb") or die(mysgl error());

echo ("studentdb has been selected!");

echo ("
") ;

$sgl="DROP TABLE tblStudent";

mysqgl_query ($sqgl) ;

mysgl close ($conn) ;

echo ("Table tblStudent has been deleted!");

?>

7.8.3 Insert Data to Table

Once the table is created, you can add data to the table by using PHP programs.
Listing 7.18 is an example of a PHP program (InsertData.php) to insert three
records of student data in the tblStudent table. The mysgl query() function is
used to process the SQL script. The script used here is slightly different from the stan-
dard format in that the attributes of the table are listed here (see lines 9, 13, and 17).

Listing 7.18: PHP Program (InsertData.php) Inserts Data to Table

1 <?php

2 // Make a MySQL Connection and select database

3 $conn=mysqgl_connect ("localhost", "root", "") or die(mysql error());
4 mysqgl_select_db("studentdb") or die(mysqgl_error());

5 echo("studentdb has been selected!");

6 echo("
") ;

7 // Insert rows of information into tblStudent

8 mysql query ("INSERT INTO tblStudent

9 (StudentID, StudentName, StudentAddress, StudentYear)
10 VALUES('01234567', 'John', '285 Westport', 2015)")
11 or die(mysqgl error());

12 mysqgl query ("INSERT INTO tblStudent

13 (StudentID, StudentName, StudentAddress, StudentYear)
14 VALUES('02345678', 'Anne', '287 Eastport', 2016)")
15 or die(mysqgl error());

16 mysqgl query ("INSERT INTO tblStudent

17 (StudentID, StudentName, StudentAddress, StudentYear)
18 VALUES('03456789', 'Robert', '324 Northport',K 2017)")
19 or die(mysql error());

20 mysgl close($conn) ;
21 echo ("Data Inserted!");
22 ?>

7.8.4 Access Database

Listing 7.19 is a PHP Program (StudentData.php) to access the MySQL data-
base and place the data into a table for the client. In PHP, the mysgl query()
function (line 6) returns the query result in the form of a single long string. The

PHP 223

. W
P -2 X|Ewon ><|

Y
|
e@ | @ hitpy127001500entDataphp

File Edit View Favorites Tools Help

Student Data

Student ID |Student Name Student Address iStudent Enrollment Year|
01234567 [John 285 Westport 2015

02345678 [Anne 287 Eastport 2016

03456789 |Robcn 324 Northport 2017

Figure 7.9 PHP program (StudentData.php) to access MySQL database.

mysgl fetch assoc() function (line 14) is used to process the long string by
extracting a row from the long string as an associative array. The while-loop (line 14
through line 21) generates all rows extracted from the long string. Lines 16—19 print
these rows to the table. Note that the attribute names of the table are used for the
associate array. The dot sign “.” used in the print() function (see line 16) links
the strings for printing. Figure 7.9 is the execution outcome of StudentData.php

given the data inserted by InsertData.php.

Listing 7.19: PHP Program (StudentData.php) to Access MySQL Database

1 <?php

2 // Make a MySQL connection and select database

3 $conn=mysqgl connect ("localhost", "root", "") or die(mysqgl error());
4 mysqgl select db("studentdb") or die(mysgl error());

5 print ("<h3>Student Data</h3>");
6 S$Result=mysqgl query ("SELECT * FROM tblStudent");

7 print ("<table border='1"'>
8 <tr>
<th>Student ID</th>
10 <ths>Student Name</th>
11 <ths>Student Address</th>
12 <thes>Student Enrollment Year</ths>

13 </tr>");

14 while ($row = mysql fetch assoc ($Result)) {

15 print("<tr>");

16 print("<td>" . Srow['StudentID'] . "</td>");

17 print("<td>" . S$row['StudentName'] . "</td>");

18 print("<td>" . S$Srow['StudentAddress'] . "</td>");
19 print("<td>" . S$row['StudentYear'] . "</td>");

20 print("</tr>");

21 }

22 print ("</table>");
23 mysqgl close($conn) ;
24 ?>

224 PROGRAMMING LANGUAGES FOR MIS

eo | @ hitp://127.0.0.1/StudentSearch.himl

File FEdit View Favorites Tools Help

Please input student ID for search:

03456789
Find Student
?{;]7 Search
al::}”@ hitp://127.0,0.1/StudentSearch.php D-BGX @ 127001 X @

File Edit View Favorites Tools Help

Student Data

Student ID Student Name Student Address |Student Enrollment Year
03456789 Robert 324 Northport 2017

Figure 7.10 Search MySQL database using PHP (StudentSearch.php).

7.8.5 Search Database

The client might want to search the database using a search criterion. Listing 7.20 is a
web page (StudentSearch.html) that allows the user to input a student ID num-
ber to search the database. Listing 7.21 is the PHP program (StudentSearch.php)
used by the web page to perform the search task. The logic of the program is straight-
torward. Figure 7.10 shows an example of search.

Listing 7.20: Web Page (StudentSearch.html) to Activate PHP Program
(StudentSearch.php)

<HTML>

<BODY >

<H4>Please input student ID for search:</H4>
<FORM ACTION="StudentSearch.php" METHOD="POST">
<INPUT TYPE=TEXT SIZE=10 NAME="StudentID">

<INPUT TYPE="SUBMIT" VALUE="Find Student"s>
</FORM></BODY></HTML>

Listing 7.21: PHP Program (StudentSearch.php) to Search MySQL Database

<?php
// Make a MySQL connection and select database
$conn=mysqgl_connect ("localhost", "root", "") or die(mysgl_error());

mysqgl_select_db("studentdb") or die(mysql_error());

sSt ID:$7POST ["StudentID"] ;
print ("<h3>Student Data</h3>");

PHP 225

SResult=mysql query ("SELECT * FROM tblStudent
WHERE StudentID=$StID");

print ("<table border='1"'>
<tr>
<th>Student ID</th>
<th>Student Name</ths>
<th>Student Address</ths>
<th>Student Enrollment Year</ths>
</tr>");

while ($row = mysqgl fetch assoc($Result)) {
print ("<tr>");

print ("<td>" . $row['StudentID'] . "</td>");
print ("<td>" . $row['StudentName'] . "</td>");
print ("<td>" . Srow['StudentAddress'] . "</td>");
print ("<td>" . $row['StudentYear'] . "</td>");
print ("</tr>");

1
print ("</table>") ;
mysgl_close ($conn) ;

?>

7.8.6 Use ODBC Connection

As PHP and MySQL is a commonly applied combination for web applica-
tion development, PHP has built-in MySQL database process functions such as
mysgl connect(). More generally, one may use ODBC (open database connec-
tivity) for other database systems of the Windows platform (such as Microsoft SQL
Server). The syntax of functions used for ODBC-related processes is slightly different
from that shown in the preceding programs with MySQL. Listing 7.22 (which is not
a production program) shows a simple template for ODBC-related database processes.

Listing 7.22: Template of Database Processing through ODBC

<?php

$vl=odbc_connect ("DatabaseName", "User", "Password");
$v2="SELECT * FROM TableName";

$v3=odbc_exec ($v1, $v2);

while (odbc_fetch row($v3))

{

$vé4=odbc_ result ($v3, "AttributeName") ;
print ($v4) ;

}
odbc_close ($vl) ;

?>

7.9 Debugging

Since PHP is simple, the debugging task is not difficult. When you run a PHP pro-
gram in the development environment (e.g., EasyPHP), you will see the PHP running
error messages on the screen if the program has errors. Common syntax errors include:

226 PROGRAMMING LANGUAGES FOR MIS

* Typos or misspelling a word

* Omitting a symbol (e.g., missing one side of parentheses)
* Violating format

* Using an undefined user-defined variable or function

Logical errors or runtime errors often occur when the computer performs wrong

operations or not as expected. To debug logical errors, you should use data samples to

test the program based on the output of the program:

1. Exercise every possible option to check the computer outputs to see if the pro-
gram does only as expected. Examine all if-statements to find possible options.
2. If a program is “dead,” you must terminate it by closing the web page. This is most
likely caused by an endless loop. You should check while-loop and all if-statements.

Chapter 7 Exercises

=

10
11
12
13
14
15
16
17

1
2
3
4

1. Fill blanks in the following PHP program and sketch the screenshot of its
execution results:
<?php
("<htmls> ")
print ("Example") ;

$Weight=3 ["Weight"];
$Days=$ POST ["Days"] ;
$State:$_POST["State"];

S = ($State, $Weight, $Days);

print ("The payment is: $ $Payment");
print ("</body></html>") ;

function CalPayment ($ST, SWT, $DS)
if ($ST=="Yes")
{ $CH=S$WT * $DS * 1; }
else
{ $CH=SWT * $DS * 2; };
return (SCH) ;

>

2. Fill blanks in the following PHP program and sketch the screenshots of the
page and its execution result:

<?php

print ("<html><body>") ;

print ("<h3>Airticket Price Table</h3>");
S ='air-tickets.txt';

10
11

12
13
14
15

PHP 227

SFile= ($FileName, 'r') or die("Cannot open file!");
print ("<table border=1>");
while (! feof ($)) |
Slinel=fgets($, 120);
Sline2= (s , 120);
print ("<tr><td>$linel</td><td>$1line2</td></tr>");
}i
fclose (s)i
print (" ")
print ("</body></html>") ;
?>

3. Develop a web-based application project by using PHP, with a scenario design
diagram for the project. The project has a web page with a form. On the cli-
ent side, the user can submit the form with input data. On the server side, the
submitted data are stored and cumulated on a disk file. This disk file is further
processed by Excel in batch.

4. Develop a web-based application project by using PHP to pass data through
three forms using hidden fields.

5. Implement the following scenario using PHP:

a. The company has its website (home page in HTML) on the server and
allows any clients to access the website using its URL.

b. The home page is a log-in page that asks the client to enter her or his user
ID (e-mail address) and password. After the client enters the user ID and
password and clicks the log-in button, the server will check the user ID
and password on the server to see whether the user is permitted to enter
the system.

c. 'The client will receive an error message if the user ID and password do
not match. Otherwise, the client will see an online auction window with
a greeting message and the auction item image. The dynamic web page is
generated by PHP.

d. After the client enters the online auction by clicking a button, a window
that tells the current highest bid will show up. The client is allowed to
enter his or her bid.

e. After bidding, the server will record the bidding data on the disk and send
back a confirmation message to the client.

The requirements of this project include:

* Application scenario design diagram

At least one text file used

At least one table of a MySQL database used

* Programmed “postback” feature for the client

6. Discuss the advantages and disadvantages of PHP compared with ASP.NET.

XML

8.1 Introduction to XML

XML (extensible markup language) is a computer language designed to provide a
standard information description framework used for Internet computing. XML and
HTML both are derived from the standard generalized markup language (SGML),
which was defined in 1986 as an international standard for document markup. XML
was completed in early 1998 by the World Wide Web Consortium (W3C). However,
the implementation of the XML standard is far from over and depends upon the
progress of the entire information technology industry. Also, the XML technology is
somehow more complicated than any other computer language because several com-
panion languages must be applied in order to use XML correctly. Two major reasons
why XML is needed are discussed here: HTML documents are difficult to process by

computers, and different databases need a common data format.

8.1.1 HTML Documents Are Difficult to Process

HTML has been discussed earlier in this book. Web pages written in HTML can
be presented by a web browser for human users. However, HTML documents are
difficult to use for data processing by computers. Specifically, information hiding in
HTML documents is hard for computers to extract. We use an example to illustrate
this. Suppose we have the HTML document in Listing 8.1 for online auctions.

Listing 8.1: Example of HTML Document

<HTML>
<HEAD>
<TITLE>Online Auction</TITLE>
</HEAD>
<BODY >
<H2>ABC Online Auction Web Page</H2>
<TABLE BORDER=1>
<TR><TD>Merchandise on Auction</TD>
<TD>Current Highest Bid</TD>
</TR>
<TR><TD>ThinkPad</TD>
<TD>$200</TD>
</TR>
<TR><TD>HP Laser Printer</TD>
<TD>$100</TD>
</TR>

229

230 PROGRAMMING LANGUAGES FOR MIS

l‘\:j@|9* CAXMLALL0-Lhtmi o-0 x]

File Edit View Favorites Tools Help

ABC Online Auction Web Page

|Merchandise on Auction :9urrent Highest B_ld

ThinkPad $200
HP Laser Printer $100
[Kodak Camera $50

Figure 8.1 The presentation of the HTML document.

<TR><TD>Kodak Camera</TD>
<TD>$50</TD>
</TR>
</TABLE>
</BODY>
</HTML>

Figure 8.1 shows the presentation of this HTML document. This presentation is
perfect for the user to read.

Suppose one wants to use a computer program to extract the bidding information
from the HTML documents every hour, and then store the data on computers with-
out retyping. The extracting task for the programmer is quite tedious and difficult. A
programmer might consider that the bidding data start from line 11 in the HTML
document. However, if the auctioneer’s web master changes the HTML document
format, such an extracting method will not work. Another programmer might con-
sider that the tag <TABLE> is a reference point to find these bidding data. However,
if another table is added to this HTML document, the programmer must redo the
programming. The issue raised here is the so-called independence of data and pre-
sentation. Later we will see that XIVIL provides a uniform data format for web docu-
ments so that documents circulated on the Internet can be searched and processed by
computers easily and accurately. The cost for achieving this objective is that the data
documents must be formatted in XML, and additional techniques for presentation are
needed as discussed in this chapter.

8.1.2 Databases Need Common Data Format to Exchange Data

'The second major reason why we need XML is the requirement for a uniform data
format for different databases. There have been many database systems commonly
used in the information industry. Although SQL (structured query language) is a
standard language for processing databases, the data formats are all platform depen-
dent. To transfer data from one database to another, usually one needs an interface
implemented by programs to describe the data format (see Figure 8.2a). To make
data transfers on the Internet efficient, we need a common data format description

XML 231

Database A Database A
(Oracle) (Oracle)
Interface
AC AB
AD c
Database C Interface Database B Database C (;(rrlt/r[r]ldon Database B
(SQL Server) BC (MySQL) (SQL Server) data format (MySQL)
Interface Interface
CD BD
Legacy Legacy
System D System D
(a) No common data transfer interface (b) XML is the common data format

Figure 8.2 Databases need common data format for data transfer.

framework so that each database can understand exactly what is requested or what
is received from the Internet. The cost for this is that each database must support
the XML standard (so-called XML-enabled database) to exchange data in the com-
mon XML format (see Figure 8.2b).

Furthermore, traditional relational databases are typically used for processing
numerical data and character data. However, the formats of data available on the
Internet are rich, including audio, video, complex documents, and international char-
acters. Using XML, these rich data formats can be easily implemented.

8.2 XML Documents Are Data Sheets

For simplicity, we use Notepad (or Notepad++) for editing XML programs. However,
there are many commercial XML editors with more functions. These editors can help
programmers to format and validate the programs.

8.2.1 XML Instance Documents

Use Notepad to edit the XML document in Listing 8.2. In Notepad, click [File],
[Save As], choose file type [A11l files], and save the document of Listing 8.2 as
file-name.xml—say, greeting.xml—in the user’s folder.

Listing 8.2: First XML Example (greeting.xml)

<?xml version="1.0" standalone="yes"?>
<GREETING>

Hello, XML World!

</GREETING>

Using Microsoft Internet Explorer, open the XML document file to view it
(Figure 8.3). You will find that the browser simply displays the document, but does
not show a meaningful presentation. This means that XML makes data independent
of presentation. An XML document containing data is called an instance document

232 PROGRAMMING LANGUAGES FOR MIS

k\;\)@“g CAXML\greeting.xml PD-OX ‘L@

File Edit View Favorites Tools Help

<?xml version="1.0" standalone="true"?>
<GREETING> Hello, XML World! </GREETING>

Figure 8.3 XML instance document is viewed in the web browser.

and is stored on the computer with extension .xml. To present an instance document
in a meaningful form, a program, called style sheet, must be applied, as discussed later
in this chapter.

8.2.2 Declaration

The first line of an XML instance document is a processing instruction, enclosed
by pair <? and ?>. The first word xm1 after <? is the name of the instruction. In
this case, the first line of the document is XML declaration. A declaration statement
always starts at the first column without any space before it.

8.2.3 Tags and Element

XML uses tags to describe data. For example, <GREETING> is a start tag, and
</GREETING> is an end tag. Unlike HTML, XML tags are named by the program-
mer for the data items. A pair of tags defines an element. In this example, the pair
of tags defines the GREETING element, and “Hello, XML World!” is the content of
this element. A well-formed XML document represents data in a tree structure, and
the tree must have one root element. The root element contains every other element
in the document. Later we will learn more about how XML tags are used to designate
a tree data structure.

8.2.4 Attribute
An XML element can have attributes and their values—for example:

<CAR COLOR="Red">
</CAR>

COLOCR is the attribute of the CAR element, and "Red" is the unique value of the
COLOR attribute. In principle, one can use either an attribute or an element (e.g.,
<COLOR>Red</COLOR>) to contain a piece of data. However, the value of an attribute
is unique for the element, while an element can be repeated with different contents.

XML 233

Thus, using attributes, one can describe the element in a concise way, as seen in the
examples later in this chapter.

8.2.5 Comment Line and Editorial Style

Like HTML, a comment line in the XML program is delimited by <!-- and -->.
However, XML is case sensitive. A good programmer applies a consistent program-
ming style of uppercase and lowercase for the XML document.

8.3 Cascading Style Sheets

To instruct the web browser on how the contents of XML tags (or the data) are dis-
played, one may use cascading style sheets (CSS). CSS is well supported by web brows-
ers. As an exercise of CSS, open Notepad and type the following CSS document:

Listing 8.3: Example of CSS (greeting.css) for the XML Document
in Listing 8.2

GREETING {display: block; font-size: 30pt; font-weight: bold;}

Save the CSS program in Listing 8.3 as file-name.css—say, greeting.
css—in the same folder with greeting.xml. Reopen greeting.xml in
Notepad, re-edit it as shown in Listing 8.4, and save it as greetingcss.xml. Note
the bold lines for processing instructions that associate the XML document with the

CSS document.

Listing 8.4: XML Document (greetingcss.xml) Associated
to the CSS (greeting.css)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="greeting.css"?>
<GREETING>

Hello, XML World!

</GREETING>

Open greetingess.xml in Internet Explorer. The content of the XML docu-
ment is presented as instructed by greeting.css, as shown in Figure 8.4.

K‘:D@“a' CAXML\greetingcssxml P-EX [@

File Edit View Favorites Tools Help

ello, XML World!

Figure 8.4 Present greetingcss.xml with greeting.css.

234 PROGRAMMING LANGUAGES FOR MIS

8.4 Extensible Style Language

One can also use extensible style language (XSL), instead of CSS, to detail instruc-
tions on how to display the contents of XML tags. XSL has two specific technologies:
XSL formatting objects (XSL-FO) and XSL transformation (XSLT). XSLT enables
the programmer to use HTML to present data, to reorder elements in the XML
document, and to add additional contents. XSL-FO enables the programmer to define
a powerful view of the document as pages by specifying appearance and layout of the
page. XSLT is discussed in this chapter.

As an exercise, edit the XSLT style sheet of Listing 8.5 in Notepad. The line num-
bers are used for explanation only and must not be typed in the program. Also, the
first line always starts at the first column without any spacing.

Listing 8.5: Example of XSLT Style Sheet (greeting.xsl) for XML Document
in Listing 8.2

1 <?xml version="1.0" ?>
2 <xsl:stylesheet
3 xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:template match="/GREETING" >
<HTML>
<BODY >
We are learning XML and XSLT!
<H2>
<xsl:value-of select="."/>
1 </H2>
11 </BODY>
12 </HTML>
13 </xsl:template>
14 </xsl:stylesheet>

O OV W J o Ul

Save this XSLT style sheet as file-name.xsl—say, greeting.xsl—in the
same folder with greeting.xml.
Reopen greeting.xml in Notepad, re-edit it as shown in Listing 8.6, and save it

as greetingxsl.xml. Note the bold line that associates the XML document with
the XSLT style sheet.

Listing 8.6: XML Document (greetingxsl.xml) Associated
to the XSLT Program (greeting.xsl)

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="greeting.xsl"?>
<GREETING>

Hello, XML World!

</GREETING>

Open greetingxsl.xml in Internet Explorer, and you will see the presentation
as shown in Figure 8.5, which is slightly different from Figure 8.4 in that a line is
added by the XSLT program for presentation.

Now, we examine the XSLT program in Listing 8.5.

XML 235

/_‘“‘___
(‘_'ﬁ)n-.heﬁ)[@ CAXML\greetingxsl.xml D~
File Edit View Favorites Tools Help

We are learning XML and XSLT!

Hello, XML World!

Figure 8.5 Present greetingxsl.xml withgreeting.xsl.

84.1 <xsl:stylesheet>

XSLT performs its tasks with numerous elements and their attributes. The syntax of
the XSLT element is <xsl:[element-name] [attribute]=value>.

The very first element in an XSLT style sheet is <xsl:stylesheet> (see the tag
pair lines 2 and 14 in Listing 8.5). It indicates that the document is an XSLT style
sheet. The element has a mandatory attribute: a namespace declaration for the XSLT
namespace (see line 3 in Listing 8.5). Namespace is a technique that ensures that the
element names are unique and will not lead to confusion.

8§4.2 <xsl:template>

'The data contained in the XML document are organized into a tree. The data tree has
a root and many nodes. To match the data tree, we need a template. Every style sheet
must contain a template, which is declared with the <xsl:template> element (see
lines 4 and 13 in Listing 8.5). This element has attributes, and the match attribute
is almost always necessary. In line 4, the / character is shorthand for the root of the
tree. Thus, the value of the match attributes is "/" (or "/root"; e.g., "/GREETING"
in this example).

8.4.3 HTML Presentation

When transforming an XML document for presentation, XSLT uses HT ML’ fea-
tures to control the appearance of the data on the screen. See lines 5 and 12, lines 6

and 11, and lines 8 and 10 for the HTML tag pairs in Listing 8.5.

84.4 <xsl:value-of>

To display the value of a data item as a string, the element <xsl:value-of> along
with its attribute select is used. Its general syntax is

<xsl:value-of select="expression" />

236 PROGRAMMING LANGUAGES FOR MIS

In the example of Listing 8.5, the expression "." represents the current data node
(i.e., <GREETING>). The slash character in the tag is used for the empty tag.

8.4.5 Empty Tag

If an element has no content, one can use an empty tag as short cut. An empty tag
oes not have a corresponding end tag, but ends with /> instead of just >. For exam-

d th d d tag, but ends with /> instead of just >. Fi

ple, <xsl:value-of select="expression" /> isan empty tag.

84.6 <xsl:for-each>

The example of Listing 8.5 is so simple that it contains only one data item. For a
complex XML document, a <xsl:for-each> element can be used to implement a
loop to avoid repeating a search path for the <xsl:value-of> element. It operates
on a collection of nodes of the data tree designated by the expression of its select
attribute. The selected node becomes the current node. Examples of the <xsl:for-
each> element will be shown later in the chapter.

8.5 XML Data Tree

The structure of an XML data document can be represented by a tree model.
Figure 8.6 shows an example of a simple data tree. A data tree has one root element
and one or many subelements (or nodes). A subelement can have its subelement(s). An
element can have attribute(s). A plus sign (+) means that the subelement can have one
or more instances.

Listing 8.7 is an example of an XML document that is represented by the data tree
in Figure 8.6.

Listing 8.7: XML Document (Message.xml) Represented
by the Data Tree in Figure 8.6

<?xml version="1.0" standalone="yes"?>
<Message From="XML">

<Greeting>

Hello, World!

Root Element — Message ~+— Attribute

+ +
Subelements —#| Greeting GreetingAgain

Figure 8.6 Example of simple data tree.

XML 237

</Greeting>
<GreetingAgain>
Hello Again!
</GreetingAgain>
</Message>

In Listing 8.7, Message is the root element with attribute From. The root con-
tains two elements: Greeting and GreetingAgain.

8.6 CSS Versus XSLT

CSS can only change the format of a particular element based on the chosen tag. In
other words, CSS implements styles on an element-wide basis, but does not change
these elements. On the other hand, XSLT can choose style based on tag, contents
and attributes of tag, position of tag in the document relative to other elements, and
so on. XSLT can rearrange and reorder the data, and it can incorporate HTML tags
for enhanced presentation. The relationships between XML, XSLT, and HTML for
XML data presentations are summarized in Figure 8.7. Apparently, XSLT is more
flexible in defining and controlling the presentation.

The following two examples are exercised to further compare CSS and XSLT in
presenting XML data with the tree structure. Open Message.xml in Listing 8.7
in Notepad, add <?xml-stylesheet type="text/css" href="message.
css"?> after the first line, and save the new XML document as Messagecss.xml.
Open Notepad and edit the CSS document in Listing 8.8 and save it as message.
css. In Listing 8.8, the first line means “display the content in the From attribute
before the contents of the elements Greeting and GreetingAgain.” The rest of
Listing 8.8 is straightforward. Open Messagecss.xml in Internet Explorer; the
presentation is shown in Figure 8.8.

4. Display

Presentation

1. Open

 / 2. Associate 3. Generate
XML XSLT
Document > Document > D(];Lix]gn ¢
(Data) (Style sheet)

Figure 8.7 XML, XSLT, HTML, and data presentation.

238 PROGRAMMING LANGUAGES FOR MIS

B -

'K\ \-)@“d CAXML\Messagecssxml eI
File Edit View Favorites Tools Help

XML

Hello, World!
Hello Again!

Figure 8.8 Present messagecss.xml with message.css.

Listing 8.8: CSS (message.css) forMessagecss.xml

Message:before { content: attr (From); font-family:Consolas;
line-height:3;}

Greeting {display: block; font-size: 30pt;
background: pink; color: green; font-weight: bold;}

GreetingAgain {display: block; font-size: 30pt;
background: lightblue; color: red; font-weight: bold;}

Open Message.xml in Listing 8.7 in Notepad, add <?xml-stylesheet
type="text/xsl" href="message.xsl"?> after the first line, and save the
new XML document as Messagexsl.xml. Open Notepad and edit the XSLT style
sheet in Listing 8.9 and save it as message.xs1. Note the line in bold in Listing 8.9.
<xsl:value-of select="@From" /> displays the data in the From attribute.
'The @ symbol is used for an attribute. The rest is straightforward. Open Messagecss.
xml in Internet Explorer; the presentation is shown in Figure 8.9. Apparently, XSLT
makes data presentation more flexible.

Listing 8.9: XSLT (message.xsl) for Messagexsl.xml

<?xml version="1.0" ?>
<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:template match="/">
<HTML>
<BODY >
<xsl:for-each select="Message">
<H3>
Greetings from <xsl:value-of select="@From" />
</H3>
<H1>
<xsl:value-of select="Greeting"/>
</H1l>
<H2>

XML 239

(;}@ |[8 c\xMuMessagexstmi o

File Edit View Favorites Tools Help

Greetings from XML

Hello, World!
Hello Again!

Figure 8.9 Present Messagexsl.xml with message.xsl.

<xsl:value-of select="GreetingAgain"/>
</H2>
</xsl:for-each>
</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

8.7 Document Type Definition and Validation

An XML document is supposed to be used in the Internet environment for data
sharing. If an XML document does not comply with the data structure (i.e., the tree)
as designed, the document may contain significant errors. To ensure that people can
share the data in an XML document correctly and accurately, the document must be
validated before it is posted on the Internet. Two techniques can be used for XML
document validation: document type definition (DTD) and XML schema. This sec-
tion introduces DTD. A DTD document describes the XIML data structure by pro-
viding a list of elements, attributes, notations, and entities contained in the XML
document as well as their hierarchical relationships. DTD ensures the described
XML document to comply with the described data structure.

A DTD document can be embedded in the corresponding XML document (called
internal DTD), or it can be an independent file stored at an external URL (called exter-
nal DTD). To ensure that an XML document meets the specification defined by the
DTD, one must validate the document against the D'TD. The validation of the XML
document includes two aspects: formats and semantics. Many commercial DTD vali-
dating parsers (or validators) have been available on the software market. Open-source
DTD validators are also available on the Internet (e.g., <http:/www.xmlvalidation.
com> and <http://validatorw3.org/>), but may not be so user friendly.

Note that web browsers do not check XML documents for validity automatically.
An invalidated XML document could cause unpredictable and serious mistakes, espe-
cially when the data are going to be used for updating a database. It is ultimately the
responsibility of the user of the XML document to validate it with the DTD.

240 PROGRAMMING LANGUAGES FOR MIS

8.7.1 Simple Example of Internal DTD

Open the XML document Message.xml in Listing 8.5. Re-edit the document, as
shown in Listing 8.10, and save it as Messagedtd.xml. Note the DTD part in bold
in Listing 8.10, which will be explained later in this section.

Listing 8.10: Example of XML Document (Messagedtd.xml)
with Internal DTD

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE Message [
<!ELEMENT Message (Greeting+, GreetingAgain+) >
<!ELEMENT Greeting (#PCDATA) >
<!ELEMENT GreetingAgain (#PCDATA) >
<!ATTLIST Message
From CDATA #IMPLIED >
1>

<Message From="XML">
<Greeting>
Hello, World!
</Greeting>
<GreetingAgains>
Hello Again!
</GreetingAgain>

</Message>

8.7.2 Simple Example of External DTD

Open the XML document Message.xml in Listing 8.5. Re-edit the document,
as shown in Listing 8.11, and save it as Messagedtd-ex.xml. Note the two lines
in bold in Listing 8.11. The first bold line, standalone="no", declares that the
current XML document is not standalone and is associated with an external DTD
document—message.dtd in this example. The second line in bold will be explained
in the next subsection.

Listing 8.11: Example of XML Document (Messagedtd-ex.xml)
with External DTD (message.dtd)

<?xml version="1.0" standalone="no"?>
<!DOCTYPE Message SYSTEM "message.dtd">

<Message From="XML">
<Greeting>
Hello, World!
</Greeting>
<GreetingAgains>
Hello Again!
</GreetingAgain>

</Message>

XML 241

Open Notepad, edit the program as shown in Listing 8.12, and save it as
message.dtd.

Listing 8.12: External DTD (message.dtd) for XML Document
Messagedtd-ex.xml

<!ELEMENT Message (Greeting+, GreetingAgain+)>
<!ELEMENT Greeting (#PCDATA) >
<!ELEMENT GreetingAgain (#PCDATA) >
<!ATTLIST Message
From CDATA #IMPLIED >

Clearly, the external DTD document is exactly the same as the DTD declaration
body in the internal DTD document.

8.7.3 <!DOCTYPE>

A DTD document begins with the <!DOCTYPE> clause. It declares the root element
of the XML document and starts the D'TD declarations. The syntax of !DOCTYPE
for internal DTD is

<!DOCTYPE root-element [DTD declarations 1]>

'The syntax of !DOCTYPE for external DTD is

<!DOCTYPE root-element SYSTEM "DTD-URL">

"DTD-URL" declares the location of the D'T'D document, which is separated from
the XML document.

8.7.4 <!ELEMENT>

<!ELEMENT> declares the name of an XML element and its permissible sub-
elements. For example, <!ELEMENT Message (Greeting+, GreetingAgain+)>
means that Message is the root element and has two subelements: Greeting and
GreetingAgain. The plus sign (+), called cardinality operator, means that the sub-
element can have one or more instances. Note that there is no space before the + sign.
If one uses * as the cardinality operator, it means that the subelement can have one,
more than one, or no instance.

Next, an element at the lowest level in the data tree, called a leaf element, could
have its data. <!ELEMENT Greeting (#PCDATA)> means that Greetingisaleaf
of the data tree and has the #PCDATA (parsed character data) type of data. It defines
that Greeting can have only textual data. An element could have an attribute(s), as
explained next. If a leaf element does not contain data, <!ELEMENT LeafElement
EMPTY> is applied.

242 PROGRAMMING LANGUAGES FOR MIS

8.7.5 <!ATTLIST>

The <!ATTLIST> declaration declares element attributes and their permissible val-
ues. For example, <!ATTLIST Message From CDATA #IMPLIED > means that
From is an attribute of the Message element, its type is character data, and optional.
'The #IMPLIED keyword means optional. If #REQUIRED is applied, the attribute must
appear. <!ATTLIST> declarations are placed after all <!ELEMENT> declarations.

8.7.6 <!\ENTITY>

The <!ENTITY> declaration declares special character references, text macros, and
other content from external sources. The <!ENTITY> declaration provides reference
mechanisms for any non-ASCII characters (such as international characters) that
do not have a direct input method on a keyboard. It can also provide references to
prestored texts or image files. Listing 8.13 is a simple XML document with DTD
entity declarations.

Listing 8.13: Example of XML Document (Credit.xml)
with DTD Entity Declarations

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE CREDIT [

<!ENTITY copy "©">

<!ENTITY author "Shouhong Wang">

<!ENTITY copyright "© 2014 &author;">
<!ELEMENT CREDIT (#PCDATA) >

1>

<CREDIT>
©right;
</CREDIT>

In Listing 8.13, the first entity declaration defines the reference to a special character
© using the Unicode standard hex value. An entity reference begins with ampersand (&)
and ends with semicolon (;), and it contains the Unicode code value or the cited entity’s
name between these two characters. The second entity declaration defines the prestored
text. The third entity declaration defines the text macro named copyright that in
turn cites the two declared entities. In the XML document part, the copyright
entity is cited. Open this document (Credit.xml) without a style sheet in Internet
Explorer and the entity references are expanded, as shown in Figure 8.10.

8.8 XML Schema

There have been critiques of DTD, although it is still popular and easy to use. DTD has

its unique syntax. It has limited functionality. XML schema is one of the alternatives

XML 243

(\g@m CAXMI\Creditand p-ox|

File Edit View Favorites Tools Help

<?xml version="1.0" standalone="true"?>
<!DOCTYPE CREDIT>
<CREDIT> © 2014 Shouhong Wang </CREDIT>

Figure 8.10 Entity references are expanded.

to DTD. XML schema standard was released by W3C in 2001 and has become a
main language for XML document validation. An XML schema document is an
XML document and is normally saved with extension .xsd. For an XML document,
the way to describe the data tree using XML schema may not be unique. In the XML
document, one can declare the association with the XML schema; however, such an
association is not mandatory. More often, other indications for the association, which
is specified by the validation parser, can be provided at the validation time.

Open Notepad, edit the XML schema program in Listing 8.14, and save it as
message.xsd, which is the XML schema for the XML data tree in Figure 8.6
and the XML document in Listing 8.7 (Message.xml). Again, the line numbers in
Listing 8.14 are for explanation and should not be typed in the program, and the first
line always starts at the first column without any spacing.

Listing 8.14: XML Schema (message.xsd) for Data Tree
in Figure 8.6 and Message.xml in Listing 8.5

1 <?xml version="1.0"?>

2 <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
3 <xs:element name="Message'>

4 <xs:complexType>

5 <Xs:sequence>

6 <xs:element name="Greeting" type="xs:string"

7 minOccurs="0" maxOccurs="unbounded" />

8 <xs:element name="GreetingAgain" type="xs:string"
9 minOccurs="0" maxOccurs="unbounded" />

-5 </Xs:sequences>
10 <xs:attribute name="From" type="xs:string"/>

-4 </xs:complexType>
-3 </xs:element>
-2 </xs:schema>

8.8.1 Schema Element

In Listing 8.14, line 2 is the schema element. It defines the target namespace. xs: is
the name of the namespace prefix. Line -2 is the end tag.

244 PROGRAMMING LANGUAGES FOR MIS

8.8.2 Data Element, Attribute, and Data Type

The element tag is used to define a data element of the data tree (e.g., line 3 in
Listing 8.14). The name attribute defines the name of the element. If the data element
has its subelements, complexType is used to define them. If the data element has a
simple data type, it is defined by the type attribute in the element tag (e.g., line 6).
xs:string means the data type is string. In fact, one can use XML schema to define
specific data types, such as date, zip, etc.

8.8.3 complexType

If an element has its attribute(s) or subelement(s), then the data type of the element
is complex. The complexType tags are used to describe these attributes and sub-
elements, which are included within the tag pair (e.g., lines 4 and -4).

8.8.4 sequence

The sequence tags are a compositor that defines the ordered sequence of the sub-
elements of the present element. Line 5 and line -5 shows an example. Sequence could
be empty if there are no subelements of the present element, but the sequence tags
remain, as shown later in other examples.

8.8.5 Cardinality

As designed in Figure 8.6, the Greeting element can repeat. In the XML schema,
minOccurs and maxOccurs (line 7) are used to define its cardinality. In this
example, the number of Greeting can range from zero to infinite.

8.8.6 Attribute

An attribute of the element is declared in an attribute tag. The declarations of
attributes (e.g., <xs:attribute name="From" type="xs:string"/>)always
come after the declarations of all subelements of the present element. Generally, the
declarations are put right after the end tag </xs:sequence> (see line -5) and before
the end tag </xs:complexType> for the present element (see line -4).

8.8.7 XML Validation

Similar to DTD, an XML schema program is used to verify that an XML docu-
ment complies with the designed data structure. To ensure that the XML document
meets the specification defined by the data structure, one must validate the XML
document against the XML schema program. The Microsoft Visual Studio environ-
ment is able to validate an XML document against the XML schema program, as

XML 245

Open File (Message.xml) Add XML Schema (message.xsd)
in Properties pane

80 Message.ami - Micrgsoft Visial Studio o ()]

. Fite Edit View Frogect Debug Team XML Date Tools Test Window Help

AdelFd-Wded | KR AZ2 (9 -0-E- TR e DFEAAE 50

Solution Explorer

<hl version="1.0" standalone="yes®?s L1 P

<fGreetingy =

G i

Hello Againl

</Greetinghgainy
«/Message y

XML Document

100% * ¢ m |
Sl

Error List Encoding Unicode (UTF-8)
@ OEmors | _f DWamings | Li) D Messages Qutput
i : < Schemas message.xsd —
Description File Line Column Praject Stylasheat
Schemas

Schemas used 10 validate the document.

Iiem(z) Saved

Error or Warning appears if
XML document is not valid

Figure 8.11 Validate XML document against its XML schema program in Microsoft Visual Studio.

shown in Figure 8.11. However, the validation in the Microsoft Visual Studio envi-
ronment is a “one-way” validation; that is, the XML schema must be correct, and the
validation is to validate the XML document against the correct XML schema. There
have been many commercial and open-source (e.g., <http:/xmltools.corefiling.com/
schemaValidate/>) XML schema validators available on the software market. A good
validator for beginners is capable of “two-way” validation; that is, the validator can
detect possible errors in the XML schema program.

8.9 Summary of Application of XML

XML itself is easy to learn. However, as discussed in the previous sections, the correct
use of XML is not straightforward because it involves many companion techniques.
Figure 8.12 shows general relationships between XML and its companions, including
data structure diagram, CSS or XSLT, and DTD or XML schema. CSS and DTD
are still used in many data systems, but XSLT and XML schema have become more
common since they are compatible with the style of XML.

Although XML has been with us for many years, it has unsolved problems.
Generally, XML follows the hierarchical model, but databases today are relational.
Theoretically, the mapping between a relational database and XML could be prob-
lematic. This issue will be further discussed later in this chapter. Also, the develop-
ment of XML and its companion languages is a somewhat piecemeal style.

246 PROGRAMMING LANGUAGES FOR MIS

Design of

data structure

. Cﬁ
document for

data sharing ¢
Describe the DTD XML
data structure (dtd) | OR | Schemas
(.xsd)
Use a validator to
validate .
XML document Validator
that is to be
shared on
the internet
XML document XML
that must comply document
with the designed (Data)
data structure
(.xml)
Y \ Y
XSLT for XML XSLT for XML XSLT for XML
User Type A| | document User Type B| | document User Type X| | document
(:xsl) H linked to (.xsl) H linked to (:xsl) H linked to
OR XSLT or OR XSLT or OR XSLT or
CSS for o CSS for o CSS for o
User Type A User Type B User Type X
(.css) (.css) (.css)

Internet

User Type-A User Type-B User Type-X

Figure 8.12 XML and companions for web applications.

8.10 An Example of XML Application

This section provides a comprehensive example of XML application that involves
hierarchical data structure, DTD, XML schema, and XSLT programs. Suppose an
auction house keeps all records of online auctions. Figure 8.13 shows the data tree
diagram for the auction data structure. In this example, several attributes are used for
the Ttem element because the value of each of these attributes is unique for the Item
element. Listing 8.15 is an XML document with the internal DTD (in bold) that
presents the data structure tree. Note that there is no content in the Item element,
and thus <!ELEMENT Item EMPTY> is used in the DTD. In the XML document,
the open tag of Ttem must be followed by the close tag strictly without any space
between, as shown in the lines in bold in the XML document.

XML 247

Auction

T
Item

l

Figure 8.13 Data structure of online auction example.

Listing 8.15: XML Document (Auction.xm1l) for the Data Tree in Figure 8.13

ReservedPrice

<?xml version="1.0" standalone="yes"?>

<!DOCTYPE Auction [

<!ELEMENT Auction (Item+)>

<!ELEMENT Item EMPTY>

<!ATTLIST Item

ItemName CDATA #REQUIRED
Seller CDATA #REQUIRED
ClosingTime CDATA #REQUIRED
ReservedPrice CDATA #IMPLIED
CurrentBid CDATA #IMPLIED >

1>

<Auction>
<Item
ItemName="Dell Computer"
Seller="0Office Equipment"
ClosingTime="8:00pm 02/10"
ReservedPrice="$400"
CurrentBid="$300" ></Item>
<Item
ItemName="Honda Motorcycle"
Seller="Motor Dealer"
ClosingTime="4:00pm 01/10"
ReservedPrice="$4000"
CurrentBid="$4500" ></Item>
<Item
ItemName="Sony DVD Player"
Seller="Best Purchase"
ClosingTime="10:00am 03/10"
ReservedPrice="$150"
CurrentBid="$200" ></Item>
<Item
ItemName="Dartmouth Concert Ticket"
Seller="A Charity"
ClosingTime="8:00pm 04/10"
ReservedPrice="$25"
CurrentBid="332" ></Item>
</Auctions>

The XML document with internal DTD in Listing 8.15 (Auction.xml) is
validated by <http://validatorw3.org/>. For exercise, an XML schema program
(auction.xsd) for the data tree in Figure 8.13 is also developed, as shown in
Listing 8.16. Auction.xml is validated against auction.xsd in Microsoft

248 PROGRAMMING LANGUAGES FOR MIS

Visual Studio as well as the open-source validator at <http://xmltools.corefiling.
com/schemaValidate/>).

Listing 8.16: XML Schema (auction.xsd) of
the Data Structure in Figure 8.13

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="Auction">
<xs:complexType>
<XS:sequence>
<xs:element name="Item" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<XS:sequences>
</Xs:sequence>
<xs:attribute name="ItemName" type="xs:string"/>
<xs:attribute name="Seller" type="xs:string"/>
<xs:attribute name="ClosingTime" type="xs:string"/>
<xs:attribute name="ReservedPrice" type="xs:string"/>
<xs:attribute name="CurrentBid" type="xs:string"/>
</xs:complexType>
</xs:element>
</Xs:sequences>
</xs:complexType>
</xs:element>
</xs:schema>

Next, we present an illustrative example of the use of XML documents for business
applications to share the XML data. Suppose the auction managers are interested
in all attributes except for “seller.” The XSLT style sheet in Listing 8.17 is used for

the managers.

Listing 8.17: XSLT Style Sheet (auction-manager.xsl) for Managers

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:template match="/">
<HTML>
<BODY >
<H2>Auction Items Listed for the Manager</H2>

<TABLE BORDER="1">

<THEAD>

<TR BGCOLOR="PINK">

<TH>Item Name</TH>
<TH>Closing Time</TH>
<TH>Reserved Price</TH>
<TH>Current Highest Bid</TH>
</TR>

</THEAD>

<TBODY>
<xsl:for-each select="Auction/Item">
<TR>
<TD><xsl:value-of select="@ItemName"/></TD>

XML 249

<TD ALIGN="RIGHT">
<xsl:value-of select="@ClosingTime"/></TD>
<TD ALIGN="RIGHT">
<xsl:value-of select="@ReservedPrice"/></TD>
<TD ALIGN="RIGHT"><xsl:value-of select="@CurrentBid"/></TD>
</TR>
</xsl:for-each>
</TBODY >
</TABLE>

</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

Clearly, to use auction-manager.xsl for presenting the XML data in Listing
8.15, a line like

<?xml-stylesheet type="text/xsl" href="auction-manager.xsl"?>

must be added after the first line of the XML document in Listing 8.15. Practically,
the XML document associated with auction-manager.xsl is renamed as, say,
Auction-manager.xml. Figure 8.14 shows the data presentation for Auction-
manager.xml managers.

Suppose the auction bidders are not supposed to view any value of the
ReservedPrice attribute. Accordingly, the XSLT style sheet in Listing 8.18 is
applied to all bidders.

Listing 8.18: XSLT Style Sheet (auction-bidder.xsl) for Bidders

<xsl:stylesheet
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:template match="/">
<HTML>
<BODY >
<H2>Auction Items Listed for Bidders</H2>

P) B
i;\\;_-\){@]@ CAXMLAuction-managerxm| . P-CX i@C\XML\Auction-ma... % H

File Edit View Favorites Tools Help

Auction Items Listed for the Manager

I Item Name Closing Time Reserved Price Current Highest Bid
Dell Computer 8:00pm 02/10 | $400 $300
Honda Motorcycle 4:00pm 01/10 $4000 $4500
'Sony DVD Player 10:00am 03/ 10i $150 $200
Dartmouth Concert Ticket| 8:00pm 04/10 $25 $32

Figure 8.14 The auction data are presented for managers.

250 PROGRAMMING LANGUAGES FOR MIS

<TABLE BORDER="1">

<THEAD>

<TR BGCOLOR="#9acd32">
<TH>Item Name</TH>
<TH>Seller</TH>

<TH>Closing Time</TH>
<TH>Current Highest Bid</TH>
</TR>

</THEAD>

<TBODY>
<xsl:for-each select="Auction/Item">
<TR>
<TD><xsl:value-of select="@ItemName"/></TD>
<TD><xsl:value-of select="@Seller"/></TD>
<TD ALIGN="RIGHT">
<xsl:value-of select="@ClosingTime"/></TD>
<TD ALIGN="RIGHT"><xsl:value-of select="@CurrentBid"/></TD>
</TR>
</xsl:for-each>
</TBODY >
</TABLE>

</BODY>
</HTML>
</xsl:template>
</xsl:stylesheet>

Again, touse auction-bidder.xsl for presenting the XML datain Listing 8.15,
a line like

<?xml-stylesheet type="text/xsl" href="auction-bidder.xsl"?>

must be added after the first line of the XML document in Listing 8.15. Practically,
the XML document associated with auction-bidder.xsl is renamed as, say,
Auction-bidder.xml. Figure 8.15 shows the data presentation for Auction-
bidder.xml managers.

; |@ CAXMLAuction-bidderam P-OX [@ commauction bia.. x E

File Edit View Favorites Tools Help

Auction Items Listed for Bidders

Dell Computer |Office Equipment| 8:00pm 02/10 ~ $300
Honda Motorcycle Motor Dealer | 4:00pm 01/10 $4500
Sony DVD Player Best Purchase ~ 10:00am 03/10 $200
Dartmouth Concert Ticket |A Charity | 8:00pm 04/10 $32

Figure 8.15 The auction data are presented for bidders.

XML 251

From the illustrative examples presented earlier, we can see that a single XML
document can easily be used dynamically for a variety of clients. An XML docu-
ment can be viewed as a database that contains numerical numbers, texts, images, and
sound clips to be shared by all clients on the Internet. More advantages of XML can
be observed if one incorporates XML with database technologies.

8.11 Advanced Subjects of XML
8.11.1 Conwversion of Relational Database into XML Tree

Suppose we have a database of a retail company as shown by the ER (entity—relation-
ship) diagram in Figure 8.16. The ER diagram describes the semantics of the database

as follows:

* 'There are entities CUSTOMER, PRODUCT, ORDER, and associative
entity ORDERLINE.

* Each customer can make many orders.

* Each order can contain several order lines, and each order line specifies the
product ordered.

This ER diagram can be converted into an XML data tree, as shown in Figure 8.17.

A conversion from a relational database to an XML tree might not be as straight-
forward as thought, because the structures of the XML data tree and relational data-
base model are incompatible. In this example, in the relational database, ORDERLINE
must have OrderID, which is the foreign key from ORDER; however, in the XML
tree, Orderline inherits OrderID from Order due to the explicit tree struc-
ture. Thus, it is unnecessary to repeat OrderID in Orderline. To differentiate the
order lines within Orderline, OrderlineNo is then introduced as an attribute
for Orderline.

Listing 8.19 shows a sample XML document for the XML data tree in Figure 8.17.
Note that if an element does not have a subelements, there is nothing between the
open tag and the close tag. For example, the element Customer does not have its
subelements, so the close tag </Customer> follows the open tag closely without
even a space.

Customer Order Orderline Product
* CustomerID @ e * OrderID I I ||< * OrderID >|| I I * ProductID
CustomerName OrderData * ProductID * ProductName
CustomerAddress CustomerID OrderQuantity ProductCost

Figure 8.16 Example of relational database model.

252 PROGRAMMING LANGUAGES FOR MIS

RetailCompany

+ +
Customer Product
Customer Product
Address Name +

Orderline

i Order
Orderline No.

Figure 8.17 XML data tree converted from relational database represented by Figure 8.16.

Listing 8.19: A Sample XML Document of the XML Data Tree in Figure 8.17

<?xml version="1.0" standalone="yes"?>
<RetailCompany>

<Customer

CustomerID="001"

CustomerName="John"

CustomerAddress="30 Westport"></Customers>
<Customer

CustomerID="002"

CustomerName="Anne"

CustomerAddress="20 Northport"s></Customers>

<Product
ProductID="A1"
ProductName="Computer"
ProductCost="1000"></Product>
<Product
ProductID="B1"
ProductName="Printer"
ProductCost="100"></Product>
<Product
ProductID="B2"
ProductName="TV"
ProductCost="500"></Product>

<Order
OrderID="0001"
OrderDate="Jan.20"
CustomerID="001">
<Orderline
OrderlineNo="1"
ProductID="B2"
OrderQuantity="3"></Orderline>

<Orderline
OrderlineNo="2"
ProductID="A1"
OrderQuantity="2"></Orderline>
</Order>
<Order
OrderID="0002"
OrderDate="Mar.18"

XML

CustomerID="002">
<Orderline
OrderlineNo="1"
ProductID="A1"
OrderQuantity="3"></Orderline>
<Orderline
OrderlineNo="2"
ProductID="B1"
OrderQuantity="4"></Orderline>

</Order>

</RetailCompany>

Listing 8.20 is the XML schema of the XML data tree in Figure 8.17.

Listing 8.20: XML Schema of the XML Data Tree in Figure 8.17

1
2

w 3 0 Ul W

O

10
11
12
-8
-6

13
14
15
16
-16
17
18
19
-15
-13

20
21
22
23

24
25
26
27
-27
28

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="RetailCompany">
<xs:complexType>
<xs:sequence>

<xs:element name="Customer" minOccurs="0"
maxOccurs="unbounded" >
<xs:complexType>
<Xs:sequence>
</xs:sequence>
<xs:attribute name="CustomerID" type="xs:string"/>

<xs:attribute name="CustomerName" type="xs:string"/>
<xs:attribute name="CustomerAddress" type="xs:string"/>

</%xs:complexType>
</xs:element>

<xs:element name="Product" minOccurs="0"
maxOccurs="unbounded" >
<xs:complexType>
<xS:sequences>
</Xs:sequence>
<xs:attribute name="ProductID" type="xs:string"/>
<xs:attribute name="ProductName" type="xs:string"/>
<xs:attribute name="ProductCost" type="xs:string"/>
</xs:complexType>
</xs:element>

<xs:element name="Order" minOccurs="0"
maxOccurs="unbounded" >
<xs:complexType>
<XS:sequence>

<xs:element name="Orderline" minOccurs="0"
maxOccurs="unbounded" >
<xs:complexType>
<Xs:sequence>
</xs:sequences>

<xs:attribute name="OrderlineNo" type="xs:string"/>

253

254 PROGRAMMING LANGUAGES FOR MIS

29 <xs:attribute name="ProductID" type="xs:string"/>

30 <xs:attribute name="OrderQuantity" type="xs:string"/>
-26 </xs:complexType>

-24 </xs:element>

-23 </Xs:sequence>

31 <xs:attribute name="OrderID" type="xs:string"/>

32 <xs:attribute name="OrderDate" type="xs:string"/>

33 <xs:attribute name="CustomerID" type="xs:string"/>

-22 </xs:complexType>

-20 </xs:element>

-5 </xs:sequence>
-4 </xs:complexType>
-3 </xs:elements>

-2 </xs:schema>

8.11.2 x1ink and xsl:if

XML and its companion languages are still under innovation over time. In this
subsection, we introduce two advanced features of XML and XSLT—x1ink and
xsl:if—through examples. x1ink implements hyperlinks in an XML document,
and xs1:if implements a data presentation condition in an XSLT style sheet.

Suppose we have a data tree for an order data system as shown in Figure 8.18. The
order data system has multiple orders. Each Order has its attribute named OrderID.
Each Order has subelements: CustomerName, multiple Item, and ShipTo.
Each Item has its subelements: TtemID, TtemName, and Quantity. Note that
ItemName has a hyperlink. For demonstration, we use the hyperlinks to access sev-
eral stable URL of universities.

The schema of the data tree is listed in Listing 8.21 and is named order.xsd.
Note the lines in bold for the hyperlinks modeled in the data tree.

OrderList
¥
Order OrderID
+
CostomerName Item ShipTo
ItemName .
ItemID (Hyperlink) Quantity

Figure 8.18 Data tree of example of order system.

XML 255

Listing 8.21: Schemas (order.xsd) for the Data Tree in Figure 8.18

<?xml version="1.0"?>
<xs:schema

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xlink="http://www.w3.0rg/1999/x1link">

<xs:element name="OrderList">

<xs:complexType>
<XS:sequence>

<xs:element name="Order" minOccurs="0"

maxOccurs="unbounded" >

<xs:complexType>
<XS:sequence>

<xs:element name="CustomerName" type="xs:string"/>

<xs:element name="ShipTo" type="xs:string"/>

<xs:element name="Item" minOccurs="0"

maxOccurs="unbounded" >

<xs:complexType>

<XS

<xS:
:element name="ItemName" xlink:type="simple"/>
:element name="Quantity" type="xs:string"/>

<XS
<XS

:sequence>

element name="ItemID" type="xs:string"/>

</Xs:sequence>
</xs:complexType>
</xs:element>
</Xs:sequences>
<xs:attribute name="OrderID" type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

A sample XML document of the data tree in Figure 8.18 is listed in Listing 8.22
and is named Order.xml. Note the lines in bold in Listing 8.22. The x1ink clauses
in Order.xml allow the corresponding data items to become hyperlink entries.

Order.xml is validated against order.xsd in Microsoft Visual Studio as well as

the open-source validator at <http:/xmltools.corefiling.com/schemaValidate/>).

Listing 8.22: An XML Document (Order.xml) for Data Tree in Figure 8.18

<?xml version="1.0"?>

<OrderList xmlns:xlink="http://www.w3.0rg/1999/xlink">
<Order OrderID="A1234">
<CustomerName>John Smith</CustomerName>
<ShipTo>285 Westport</ShipTo>

<Item>

<ItemID>C-105</ItemID>

<ItemName xlink:href="http://www.umassd.edu" xlink:type="simple">
Book</ItemName>

<Quantity>30</Quantity>

</Item>
<Item>

<ItemID>T-298</ItemID>

256 PROGRAMMING LANGUAGES FOR MIS

<ItemName xlink:href="http://www.smu.ca" xlink:type="simple">
Television</ItemName>
<Quantity>50</Quantity>
</Item>
</Order>

<Order OrderID="B2345">
<CustomerName>Matt Jones</CustomerName>
<ShipTo>120 Eastport</ShipTo>
<Item>
<ItemID>K-23</ItemID>
<ItemName xlink:href="http://www.mcmaster.ca" xlink:type="simple">

GPS</ItemName>
<Quantity>20</Quantity>
</Item>
<Item>

<ItemID>R-101</ItemID>
<ItemName xlink:href="http://www.uwo.ca" xlink:type="simple">
Cell Phone</ItemName>
<Quantity>25</Quantity>
</Item>
</Order>

<Order OrderID="C5678">
<CustomerName>Anne Kerry</CustomerName>
<ShipTo>45 Northport</ShipTo>
<Item>
<ItemID>U-200</ItemID>
<ItemName xlink:href="http://www.unb.ca" xlink:type="simple">
Printer</ItemName>
<Quantity>100</Quantity>
</Item>
<Item>
<ItemID>"E-28"</ItemID>
<ItemName xlink:href="http://www.essec.edu" xlink:type="simple">

iPod</ItemName>
<Quantity>80</Quantity>
</Item>
</Order>
</OrderList>

Suppose that the data in Order.xml are used for inventory processing, and only
data about the items are presented for the application. The XSLT style sheet for this
application is listed in Listing 8.23 and is named order-inventory.xsl. All spe-
cial lines in bold are related to x1ink presentation.

Listing 8.23: XSLT Style Sheet (order-inventory.xsl) for Order.xml

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xlink="http://www.w3.0rg/1999/x1link"
exclude-result-prefixes="xlink">

<xsl:template match="/">
<HTML>
<BODY>
<H3>Orders Listed for Inventory Department</H3>

XML 257

<TABLE BORDER="1">
<THEAD>
<TR BGCOLOR="PINK">
<TH>Order ID</TH>
<TH>Item ID</TH>
<TH>Item Name</TH>
<TH>Quantity</TH>
</TR>
</THEAD>

<TBODY>
<xsl:for-each select="OrderList/Order">

<TR>
<TD><xsl:value-of select="@0rderID"/></TD>
<xsl:for-each select="Item">
<TR>
<TD> </TD>
<TD><xsl:value-of select="ItemID"/></TD>
<xsl:for-each select="ItemName">
<TD><xsl:value-of select="."/>
</TD>
</xsl:for-each>
<TD ALIGN="RIGHT"><xsl:value-of select="Quantity"/></TD>
</TR>
</xsl:for-each>
</TR>

</xsl:for-each>
</TBODY>
</TABLE>
</BODY>
</HTML>
</xsl:templates>

</xsl:stylesheet>

To associate the order-inventory.xsl to the XML document, a line

<?xml-stylesheet type="text/xsl" href="order-inventory.xsl"?>

must be added to the XML document after the first line in Listing 8.22 and then
the XML document saved as, say, Order-inventory.xml. The data presentation

for Order-inventory.xml is shown in Figure 8.19. Click on a hyperlink on the

screen; the linked website will show up.

Suppose the order system is used for shipping, and only special customers’ data are
presented for the delivery group. The XSLT style sheet for this application is listed
in Listing 8.24 and is named order-shipping.xsl. All special lines in bold are
related to the <xs:1f> condition for data presentation.

Listing 8.24: XSLT Style Sheet (order-shipping.xsl) for Order.xml

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">

258 PROGRAMMING LANGUAGES FOR MIS

. e
s ‘_a)@ﬂé CAXML\Order-inventory.xm o-ox|
File Edit View Favorites Tools Help

| Orders Listed for Inventory Department

Order ID Item ID Item Name Quantity
A1234
|C-105 Book 30
T-298 Television | 50
B2345
K-23 GPS j 20
R-101 Cell Phone 25
C5678
U-200 Printer | 100
"E-28" [iPod) 80

Figure 8.19 Order data with hyperlinks are presented for inventory processing.

<HTML>

<BODY >

<H3>Orders Listed for Shipping Department</H3>

<TABLE BORDER="1">
<THEAD>
<TR BGCOLOR="Azure">
<TH>Order ID</TH>
<TH>Customer Name</TH>
<TH>Shipping Address</TH>
</TR>
</THEAD>

<TBODY>
<xsl:for-each select="OrderList/Order">
<xsl:if test="CustomerName='John Smith'">
<TR>
<TD><xsl:value-of select="@0rderID"/></TD>
<TD><xsl:value-of select="CustomerName"/></TD>
<TD><xsl:value-of select="ShipTo"/></TD>
</TR>
</xsl:if>
</xsl:for-each>
</TBODY >
</TABLE>
</BODY>
</HTML>
</xsl:templates>
</xsl:stylesheet>

To associate the order-shipping.xsl to the XML document, a line
<?xml-stylesheet type="text/xsl" href="order-shipping.xsl"?>

must be added to the XML document after the first line in Listing 8.22 and then the
XML document saved as, say, Order-shipping.xml. The data presentation for

XML 259

G:)@| [CAXML\Order-Shippingxmi - D~

File Edit View Favorites Tools Help

Orders Listed for Shipping Department

‘Order 1D ‘Custnmer Name ;Shipping Address
A1234 |John Smith 285 Westport

Figure 8.20 The order data are selected through conditions for shipping.

Order-shipping.xml is shown in Figure 8.20. Only the customer’s data related
to shipping are displayed.

811.2.1 x1ink xlink implements hyperlinks between the data and the corre-
sponding websites. To use x1link, the following steps in programming XML,
schema, and XSLT style sheets are applied.

Step 1. In the schema document (order.xsd), specify special attribute in the
<xs:schema> tag, as shown in Listing 8.21:

xmlns:xlink="http://www.w3.0rg/1999/x1ink"

Step 2. In the schema document, specify special attribute in the <xs:element>
tag for the element with hyperlink, as shown in Listing 8.21:

<xs:element name="ItemName" xlink:type="simple"/>

Step 3. In the XML document, specify the special attribute for x1ink in the
top element, as shown in Listing 8.22:

<OrderList xmlns:xlink="http://www.w3.0rg/1999/x1link">

Step 4. In the XML document, specify the special attribute in the element for
hyperlink, as shown in Listing 8.22:

<ItemName xlink:href="http://www.umassd.edu" xlink:type="simple">

Step 5. In the XSLT style sheet, specify the special attribute for x1ink in the
<xsl:stylesheet>, as shown in Listing 8.23:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
exclude-result-prefixes="xlink">

260 PROGRAMMING LANGUAGES FOR MIS

Step 6. In the XSLT style sheet, use <xsl:for-eachs> to select the node with
hyperlink, and use the <a> tag to specify x1ink, as shown in Listing 8.23:

<xsl:for-each select="ItemName">
<xsl:value-of select="."/>
</xsl:for-each>

Here, <xsl:value-of select="."/> applies the value of the currently
selected element (TtemName in this example).

8.11.2.2 <xsl:if> 'The XSLT condition tag <xsl:1f> can vary the data presen-
tation. To use <xsl:1f>, the following two steps are applied in programming the

XSLT style sheet:

Step 1. Specify the special attribute in the <xsl:stylesheet> for the name-
space as shown in Listing 8.24:

<xgl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" >

Step 2. Use the <xsl:for-eachs> tag to select the parent element (OrderList/
Order in this example) of the subject element (CustomerName in this example)
for the condition, and then use the <xs1:1if> tag to specify the condition for the
subject element (CustomerName in this example), as shown in Listing 8.24:

<xsl:for-each select="OrderList/Order">
<xgl:1if test="CustomerName='John Smith'">
</xsl:if>

</xsl:for-each>

8.12 XHTML

As shown in this chapter, HTML and XML are not compatible. Nevertheless, it is
quite straightforward to convert an HTML document to an XML document, since
the tags in HTML can be defined as elements in XML. XHTML is such a lan-
guage that keeps the feature of HTML and makes the markup document compatible
with XML.

One can use structured steps to convert an HTML document to its XHTML
document. For example, suppose we have an HT'ML document in Listing 8.25.

Listing 8.25: Example of HTML Document

<HTML>
<HEAD>
<TITLE>Convert HTML to XHTML</TITLE>

XML 261

</HEAD>

<BODY >

<P>

<H2>Hello, XHTML!</H2>

</BODY>

</HTML>

To convert the HTML document to an XHTML document, one performs the
following steps:

Step 1. Add DOCTYPE declaration:

<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

Step 2. Add the XHTML namespace to the root element:

<html xmlns="http://www.w3.0org/1999/xhtml" xml:lang="en" lang="en">

Step 3. Use the following rules to create a well-formed XML document:

1. Change tags to lowercase.

2. 'There should be no missing close tag.

3. Make up proper syntax for empty elements.

4. 'There should be no missing values and quotation marks in all attributes.

The XHTML document for Listing 8.25 is listed in Listing 8.26. You can practice
the preceding steps and check the conversion result.

Listing 8.26: XHTML Document for the HTML Document in Listing 8.25

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<html>

<head>

<title>Convert HTML to XHTML</title>

</heads>

<body>

<p>

<h2>Hello, XHTML!</h2>

</p>

</body>

</html>

You may use Notepad to edit the XHML document in Listing 8.26, save it as
a file with the extension .html, and then open it in the web browser to view the

262 PROGRAMMING LANGUAGES FOR MIS

presentation. As shown in this example, XHTML is merely to make an HTML
document well formatted and compatible with XML.

8.13 XBRL

eXtensible business reporting language (XBRL) is an extension of XML that has
been defined specifically for business accounting and financial reports. Under XML,
tags are applied to items of business accounting and financial data so that they can be
read and processed by computers. It enables unique identifying tags to be applied to
items of business data. For example, the <tax> tag would identify the data of tax
in a business document. The true power of XBRL is more than simple identifiers. As
XML can provide links to relative information about the data item, the XBRL can
link the business data item to various sources in the business domain. More impor-
tantly, XBRL can be easily extended to meet a variety of special needs in business
document processing. XBRL has been in practical use internationally and is still
under development. The use of XBRL is to support all aspects of business reporting in
different countries and industries.

8.13.1 Comparison of XBRL with XML

Similarly to XML, XBRL has three basic concepts: schema (taxonomy in XBRL

terms), instant document of the data, and style sheets for presentation.

Compared with XML, XBRL has the following major extensions to XML:

1. XBRL provides a framework for defining and extending business data dic-
tionaries that make business report processes and exchanges more efficient.
2. XBRL provides the ability to define and validate specific semantics (or busi-
ness rules) for the business reporting domain. For instance, for the numeric
accounting data set {Assets, Liability, Equity}, XBRL can validate whether
“Assets = Liability + Equity.” Such business domain-based semantics are

beyond the XML schema.

3. XBRL provides application features such as comparison and extension. For
example, a financial report from company A—say, “Assets of Fiscal Year 2014
of Company A”—can be directly compared with a financial report from com-
pany B—say, “Assets of Fiscal Year 2014 of Company B.”

4. XBRL supports multiple hierarchies, such as content, calculation, and defini-
tion, while XML supports one hierarchy of content.

Because of the extensions of XBRL, XML parser or other XML software is unable
to handle XBRL. One must use XBRL software to convert business reports into
XBRL documents through computerized mapping processes. However, XBRL does
not address formatting for presentation. The existing tools and standards for present-
ing data (e.g., XSLT) are intended to be used for XBRL document presentation.

XML 263
8.13.2 laxonomy

Taxonomy is an important concept of XBRL. XBRL taxonomies are the dictionar-
ies that XBRL uses. These dictionaries define the specific tags for individual items
of data (e.g., NetIncome). Since countries have different accounting documentation
regulations, each country may have its own taxonomy for business reporting. The gov-
ernments, industries, or even companies may also have taxonomies to meet their own
business needs. Taxonomies enforce standardization of terminologies used in business
reports—for instance:

<element name="NetIncome" />
<element name="netprofit" />
<element name="netProfit" />

describe the same figure of net income, but use different element names. Taxonomy is
to make the meaning of data less ambiguous for processing.

8.13.3 Prepare XBRL-Based Reports
'The following steps are needed to create an XBRL-based business report:

1. Select, create, or extend a taxonomy for the report.

2. Using specific software, translate the data from their current form or applica-
tion to an XBRL instance document that complies with the XBRL taxonomy.

3. Validate the taxonomy and instance document against external or internal
measures.

4. Create style sheets for document presentation.

5. Publish the three components (taxonomy, instance document, and style sheets)
on the Internet.

To provide technical support of XBRL, many countries have established XBRL

organizations. You may check the website at <http://www.xbrl.org/> and its links to

find technical details of XBRL.

Chapter 8 Exercises
1. Fill the blanks in the following XML document:

<?xml version="1.0" standalone= >
<?xml-stylesheet ="text/xsl" ="cd.xsl"?>

< >

1

2

3

4 < >

5 <Title>Soulsville<
6 <Artist>Jorn Hoel<

7 <Country>Norway< >
8 <Publisher>WEA< >

264 PROGRAMMING LANGUAGES FOR MIS

9 <RegularPrice>8.90< >
10 <SalePrice>7.85</ >

11 <Year>1996< >

12 </CD>

13 <CD>

14 < >Empire Burlesque</Title>
15 < >Bob Dylan</Artists>

16 < >USA</Country>

17 < >Columbia</Publisher>
18 < >11.90</RegularPrice>
19 < >9.99</SalePrice>

20 < >1985</Years>

21 < >

22 <CD>

23 <Title>Hide your heart</Title>

24 <Artist>Bonnie Tyler</Artists>

25 <Country>UK</Country>

26 <Publisher>CBS Records</Publishers>
27 <RegularPrice>10.90</RegularPrices>
28 <SalePrice>8.95</SalePrice>

29 <Year>1988</Years>

30 < >

31 </CATALOG>

2. Draw the data tree for the XML document in question 1.

. Write the DTD for the XML document in question 1 and validate it.

4. Write the XML schema for the XML document in question 1 and validate it
using a validation parser.

5. Fill the blanks in the following XSLT style sheet that is applied to the XML
document in question 1. Applying this XSLT, what is the expected presenta-

w

tion output of the XML document in question 1?

1 <xsl:stylesheet

2 _ :xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
3 <xsl:template ="/ns

4 < >

5 <BODY >

6 <H2>0Online CD Catalog</H2>

7 <TABLE BORDER="1">

8 <TR>

9 <TH>Titlec< >

10 <TH>Artist< >

11 <TH>Pricec< >

12 </TR>

13 <xsl:for-each select="CATALOG/CD">

14 <TR>

15 <TD><xsl: select=" "/></TD>
16 <TD><xsl: select="Artist"/></TD>

17 <TD><xsl: select="RegularPrice"/></TD>

18
19
20
21
22
23
24

XML 265

</TR>
< >
</TABLE>

</BODY>
</HTML>

<

</xsl:stylesheet>

6. Change the XSLT style sheet in question 5 so that the data of RegularPrice
are not displayed, but the data of SalePrice are displayed.
7. Develop an XML document and a CSS style sheet for it.
8. Develop an XML document and an XSLT style sheet for it.
9. Develop an XML document and its internal and external DTD documents
with !ELEMENT, !ATTLIST, and !ENTITY.
10. Develop an XML document and its XML schema and use a validator for
validation.
11. Develop an XML project for electronic commerce applications, including:

A short description of your project

A data tree diagram that has three levels with mixture of elements and
attributes

XML schema for the data tree

A sample XML document of the data tree

A screenshot that indicates the validation of the XML document against
the XML schema

Two XSL style sheets for two groups of application users. x1ink and
<xsl:1f> might be included.

12. Convert an HTML document to an XHTML document.
13. Check the website at <http://www.xbrl.org/> to write a short essay about XBRL.

SQL

9.1 Introduction to SQL

SQL (structured query language) is a universal language for creating, updating, and
querying databases. As SQL is a small language, the SQL program is often called
SQL script. SQL can be used for all database management systems (DBMSs) (DB2,
Oracle, MySQL, etc.) as well as all computer language platforms (PHP, .NET, etc.).
SQL was developed under the name SEQUEL by IBM in the mid-1970s. That is why
people pronounce SQL as “sequel” more often than as “ess-que-ell.” SQL has been
standardized by ANSI (American National Standard Institute).

A particular database management system can have its query development environ-
ment, the so-called QBE (query by examples), to create queries without using SQL.
In the query development environments of QBE, the database management system
generates the query code in SQL. This gives an impression that one might not need to
write SQL code. However, there are two major reasons for learning SQL:

1. SQL integrates features of data definition languages (DDLs) and data manip-
ulation languages (DMLs). QBE itself does not possess any features of DDL,
such as CREATE and DELETE tables. Also, QBE is unable to implement
sophisticated features of DML. Thus, complicated queries are always imple-
mented by SQL.

2. QBE relies on the particular DBMS environment (e.g., Microsoft Access).
When using a large computer language (such as C++ or .NET, PHP) to
develop a business application program connected to databases (Oracle,
MySQL, etc.), one must write SQL code that is embedded into the program

in the large computer language to access and update the databases.

'The syntax of SQL is quite simple. A SQL script contains a command along with
needed clauses and ends with a semicolon. This chapter explains how SQL scripts can
be used to define and create tables, to insert and update instances of records, retrieve
data, and manipulate the data. To explain SQL, suppose we have the design of a tiny
database with 4NF tables, as shown in Figure 9.1.

9.2 CREATE and DROP

CREATE TABLE is used to create a table with all attributes and their data types.
For example, the SQL script in Listing 9.1 creates a table named tblStudent with

267

268 PROGRAMMING LANGUAGES FOR MIS

STUDENT GRADING COURSE
*StudentID * CourselD
StudentName 1 \ * StudentID | 1 CourseName
StudentAddress I l * CourselD l I CourseEnrollment
StudentYear Grade

Figure 9.1 The 4NF tables for SQL examples in this chapter.

its four attributes, including the primary key. There might be variations of this SQL
script depending on the specific DBMS.

Listing 9.1: CREATE TABLE

CREATE TABLE tblStudent
(StudentID CHAR(9),
StudentName CHAR (30),
StudentAddress CHAR (40),
StudentEnrolYear INT (4),
PRIMARY KEY (StudentID)) ;

Common data types used in the standard SQL are

CHAR (n) —character string (text), at most n characters long
DATE—date data
DECIMAL (p, g)—decimal number p digits long and g digits after the decimal
point
INT—integer
The PRIMARY KEY clause is used to define the primary key of the table. A combi-
nation primary key could have more than one attribute—for example:

PRIMARY KEY (StudentID, CourselD)

defines the two-attribute combination key.
DROP TABLE is used to delete a table. The SQL script in Listing 9.2 deletes
tblStudent.

Listing 9.2: DROP TABLE

DROP TABLE tblStudent;

9.3 INSERT, UPDATE, DELETE

INSERT is used to add one record to the table. The SQL script in Listing 9.3 appends
one student record to tblStudent.

SQL 269

Listing 9.3: INSERT a Record

INSERT INTO tblStudent
VALUES ('01234567', 'John', '285 Westport', 2016) ;

UPDATE is used to change the value(s) of the record with a certain key value.
The SQL script in Listing 9.4 changes the address of the student record with key
'01234567".

Listing 9.4: UPDATE a Record

UPDATE tblStudent
SET StudentAddress = '300 Eastport'
WHERE StudentID='01234567";

DELETE is used to delete a record with a certain key value. The SQL script in
Listing 9.5 deletes the student record with key '01234567".

Listing 9.5: DELETE a Record

DELETE FROM tblStudent
WHERE StudentID='01234567";

In the preceding two examples, condition of the query is defined in the WHERE clause,
which we will discuss in more detail later.

The preceding SQL commands that we have learned are used for database con-
struction and maintenance. These SQL commands fit in the category of database
DDL. The SQL scripts with these commands can be embedded in large computer
programs to allow the user to update the database. Apparently, it is not convenient to
use these SQL commands to build a database from scratch. Practically, a DBMS can
have a user-friendly interface that allows the database designer to create tables and
to maintain the tables without using tedious SQL scripts.

Suppose we use the previous SQL commands to create the database as modeled in
Figure 9.1, which contains the three tables with their instances as shown in Figure 9.2.
We use these data for demonstrating the rest of the examples of SQL scripts that fit
in the category of DML or query.

9.4 Query—SELECT

A query is a piece of script that commands the DBMS to retrieve needed data from
the database. Queries can generate integrated data from the normalized tables.

In SQL, the SELECT command is used to implement queries. The general struc-
ture of SELECT query is

SELECT [attributes] [built-in functions]
FROM [tables]

WHERE [conditions]

AND [conditions] ;

270 PROGRAMMING LANGUAGES FOR MIS

StudentID StudentName | StudentAddress | StudentEnrolYear |
01234567 John 285 Westport 2018
02345678 Anne 287 Eastport 2020
03456789 Robert 324 Northport 2019

CourselD i CourseName i CourseEnrolli i
ACT211 Financial Accounting 35
ACT212 Cost Accounting 28
MIS315 Information Systems 40
MIs322 Systems Analysis & Design 38
MIs432 Database Design 30
MKT311 Principles of Marketing 25
MGT490 Special Topics 20

StudentiD CourselD | Grade
01234567 ACT211 A+
01234567 ACT212 A
01234567 MIS315 B
02345678 ACT211 B+
02345678 MIS322 c
03456789 ACT212 B
03456789 MI5432 A
03456789 MKT311 A

Figure 9.2 Sample database.

Listing 9.6 is an example of a simple query that finds the student’s name and address
of student ID 01234567 from the student table.

Listing 9.6: Select Specified Data from a Table

SELECT StudentName, StudentAddress | StudentName ‘ StudentAddress
FROM tblStudent o
WHERE StudentID = '01234567'; JJUh" 285 Westport

Listing 9.7 is a query that finds the student’s entire record of student ID 01234567 from
the student table. The “*” sign represents all attributes of the table.

Listing 9.7: Select an Entire Record from a Table

SELECT *
FROM tblStudent
WHERE StudentID = '01234567';

| StudentName iStudentAddress éStudentEnrolYear
| 01234567 John 285 Westport 2018

The WHERE clause is used to define the conditions. If it is omitted, the query is to
retrieve the entire table.

SQL 271

In some cases, the result of a query may contain duplicated data items. To screen
these out, DISTINCT is used. Consider the query find distinctive student enrollment
years from the student table.

Listing 9.8: DISTINCT Eliminates Duplications

SELECT DISTINCT StudentEnrolYear StudentEnrolYear
FROM tblStudent; 2018

2019
2020

9.5 WHERE Clause and Comparison

As shown in the previous examples, the WHERE clause defines the conditions for data
selection. In addition to “=” (equal), comparison operations “>” (greater than), “<” (less
than), “>=" (greater than or equal to), “<=" (less than or equal to), and “<>” (not equal
to) can be applied in the WHERE clause. Listing 9.9 is the query that /ists the names of

those students who enroll to the program after 2017.

Listing 9.9: Comparison—Greater Than

SELECT StudentName StudentName
FROM tblStudent John
WHERE StudentEnrolYear > 2017; Anne

Robert

A WHERE clause can have a combination of multiple conditions connected through
the Boolean operators AND and OR. If the AND operator is applied, the two condi-
tions must be true in order for the combination condition to be true. If the OR operator
is applied, at least one of the two conditions must be true in order for the combination
condition to be true. When ANDs and ORs are used in the same WHERE clause, ANDs
are considered before ORs are considered. To avoid mistakes, it is recommended to
use pairs of parentheses to indicate the consideration priorities. Listing 9.10 is a query
that /ists the names of those students whose ID numbers are greater than 00234567 and who
enroll in the program after 2017 or before 2005.

Listing 9.10: AND and OR Operators

SELECT StudentName StudentName

FROM tblStudent John

WHERE StudentID > '00234567'

AND (StudentEnrolYear > 2017 OR
StudentEnrolYear < 2005) ; Robert

Anne

Character strings can also be compared using unequal signs because they are repre-
sented by internal code (e.g., ASCII code).

For strings of characters (text), the LIKE operator and a “wildcard” are used to test
for a pattern match. Listing 9.11 is a query that finds the student records for those students

272 PROGRAMMING LANGUAGES FOR MIS

whose street names contain “Westport.” Here, the percent sign “$” is a wildcard to repre-

sent any collection of characters.

Listing 9.11: LIKE Operator and Wildcard “%”

SELECT *
FROM tblStudent
WHERE StudentAddress LIKE '$Westport%';

| | StudentName ‘StudentAddress ‘StudentEnrolYear
!01234567 John 285 Westport 2018

Listing 9.12 is a query that [finds the student record for each student whose name has
the letter “0” as the second letter of the name. Here, the wildcard sign “_ 7 represents any

one character.

Listing 9.12: LIKE Operator and Wildcard “_”

SELECT *
FROM tblStudent
WHERE StudentName LIKE ' o%';

_ StudentID ‘ StudentName StudentAddress | StudentEnrolYear
§01234567 John 285 Westport 2018
103456789 Robert 324 Northport 2019

The IN operator allows you to specify a list of character strings to be included in a
search. Listing 9.13 is a query that finds the student whose ID is ‘01234567, “00234567,”

or “00034567.”

Listing 9.13: IN Operator

SELECT StudentName

FROM tblStudent StudentName
WHERE StudentID IN ('01234567', John
100234567', '00034567');

9.6 ORDER BY Clause

'The ORDER BY clause is used to list the data in a particular order based on the values
of an attribute. The default order is ascending. The ASC operator makes ascending
explicit. The DESC operator is used to sort data in the descending order. Listing 9.14

is a query that /ists all student records in the reverse alphabetic order by student name.

Listing 9.14: ORDER BY Clause

SELECT *
FROM tblStudent
ORDER BY StudentName DESC;

SQL 273

StudentID StudentName | StudentAddress StudentEnrolYear
03456789 Robert 324 Northport 2019
01234567 John 285 Westport 2018
02345678 Anne 287 Eastport 2020

9.7 Aggregate Functions

A database stores raw data—not secondary (or processed) data such as average, total,
etc.—to avoid data redundancy. One of the important roles of queries is to provide
secondary data as information for the user. SQL uses aggregate functions to calculate
sums (SUM), averages (AVG), counts (COUNT), maximum values (MAX), and minimum
values (MIN). Listing 9.15 is a query that finds the total number of student records in the
student table. If you want to name the result (e.g., CountOfStudents, you use AS
keyword; otherwise, the DBMS uses a default name for the result.

Listing 9.15: COUNT Function

SELECT COUNT (*) AS CountOfStudents CountOfStudents
FROM tblStudent; 3

Listing 9.16 answers the query what are the smallest enrollment number, largest enroll-
ment number, total enrollment number, and average enrollment number in the course table?

Listing 9.16: MIN, MAX, SUM, and AVG Functions

SELECT MIN (CourseEnrollment), MAX (CourseEnrollment),
SUM (CourseEnrollment), AVG (CourseEnrollment)
FROM tblCourse;

Expr1000 | Expr1001 | Expr1002 Expr1003
20 40 216 30.8571428571429

Note that “aggregate functions” is not allowed to be used in a WHERE clause directly.
For instance, a clause such as WHERE COUNT (*)>1000 is not allowed.

9.8 GROUP BY Clause and HAVING Clause

When an aggregate function is used, one might want to find the calculated value for
each group. The GROUP BY clause is used to calculate results based on each group.
If a condition on the calculated results is needed, the HAVING clause can be added.
Listing 9.17 is a query to find the total number of courses taken by each student, and only
include students who have taken at least 2 courses. Two points are worth noting in this
query: First, the query with the GROUP BY clause matches “each” in English. Second,
the HAVING clause is different from the condition in the WHERE clause in that the
HAVING clause goes with the GROUP BY clause and must use an aggregate function.

274 PROGRAMMING LANGUAGES FOR MIS

Listing 9.17: GROUP BY Clause and HAVING Clause

SELECT StudentID, COUNT (*)
FROM tblGrading

GROUP BY StudentID
HAVING COUNT (*) > 1;

9.9 Joining Tables

'The queries we have examined thus far deal with a single table. If two or more tables
are involved in a query, the join operation can be applied. Suppose we are going to
list the names of those students who receive ‘A” or A+" in any course. Apparently, two
tables—namely, tblStudent and tblGrading—are involved. To process the
query, the query processor merges the two tables into a single large (denormalized)
table. Listing 9.18 shows the query.

Listing 9.18: Join Two Tables

SELECT DISTINCT tblStudent.StudentName StudentN
FROM tblGrading, tblStudent CEnE s
WHERE tblStudent.StudentID=tblGrading.StudentID John
AND (tblGradi .Grade="A+' OR
(ra 1ng rade + Robert
tblGrading.Grade="'A") ;

The SQL script in Listing 9.19 joins the three normalized tables—tblStudent,
tblCourse, and tblGrading—to integrate all related data in a denormalized
form for the user to view.

Listing 9.19: Join Multiple Tables to Integrate Related Data

SELECT *

FROM tblStudent, tblCourse, tblGrading

WHERE tblStudent.StudentID = tblGrading.StudentID
AND tblCourse.CourseID = tblGrading.CourselD;

thiStudent.5t StudentNar ISludenLAddre |StudentEnn thlCourse.(CourseName CourseEnr tblGrading. tblGrading = Grade

101234567 John 285 Westport 2018 ACT211 Financial Accoul 3501234567 ACT211 A+
101234567 John 285 Westport 2018 MIS315 Information Sys 4001234567 MIS315 B
02345678 Anne 287 Eastport 2020 ACT211 Financial Accou 3502345678 ACT211 B+
02345678 Anne 287 Eastport 2020 Mis322 Systems Analysi 3802345678 MIS322 C
| 03456789 Robert 324 Northport 2019 MI5432 Database Desigr 3003456789 MIS432 A
103456789 Robert 324 Northport 2019 ACT212 Cost Accounting 28 03456789 ACT212 B
03456789 Robert 324 Northport 2019 MKT311 Principles of Ma 2503456789 MKT311 A
101234567 lohn 285 Westport 2018 ACT212 Cost Accounting 28 01234567 ACT212 A

In the preceding example, tables are joined by using the WHERE clause with condi-
tions. Three general rules are applied in a query with joining tables:

1. The general format of a condition that associates two tables is

[TableOn-1-Sidel . [PrimaryKey] = [TableOn-M-Side] . [ForeignKey]

SQL 275

2. If n tables are joined in the query, then 7z — 1 conditions are needed. These 7 —
1 conditions are tied by the AND operator.

3. To differentiate the same names in different tables, the table name followed by
a period sign is used for an attribute name (e.g., tb1Student.StudentID)
to qualify the attribute name. That is, the table name must be quoted as quali-
fier to specify the table to which the attribute belongs if the query involves
multiple tables.

Listing 9.20 shows another example of a query with multiple tables: Who (student
ID and name) receives an ‘A+" or ‘A’ grade in which course (course ID and course name)? List
the results in order of student ID.

Listing 9.20: Query with Multiple Tables

SELECT tblGrading.StudentID, tblStudent.StudentName,
tblGrading.CourseID, tblCourse.CourseName,
tblGrading.Grade

FROM tblGrading, tblStudent, tblCourse

WHERE tblStudent.StudentID=tblGrading.StudentID

AND tblCourse.CourseID=tblGrading.CourseID

AND (tblGrading.Grade='A+' OR tblGrading.Grade='A")

ORDER BY tblStudent.StudentID;

StudentID StudentName | CourselD I CourseName | Grade
01234567 John ACT212 Cost Accounting A
01234567 John ACT211 Financial Accounting A+
03456789 Robert MKT311 Principles of Marketing A
03456789 Robert MIS432 Database Design A

9.10 Subquery

A SELECT query can embed another SELECT query, which is called subquery. A
subquery can have its subquery, and so on. The execution sequence of the query is from
inside to outside, which means that the most interior subquery is executed first. There
are several reasons for using subquery, as explained next.

9.10.1 Subquery—Reducing Computational Workload of Join Operation

A subquery can be used as an alternative to a join operation in a simple situation when
the retrieved data are not integrated. Revisit the query in Listing 9.18, which is to /isz
all students who receive A” or ‘A+” in any course. One can write a subquery as shown in

Listing 9.21.

Listing 9.21: Example of Subquery That Avoids Join Operation

SELECT tblStudent.StudentName
FROM tblStudent StudentName
WHERE tblStudent.StudentID IN John

(SELECT tblGrading.StudentID

FROM tblGrading Robert

276 PROGRAMMING LANGUAGES FOR MIS

WHERE (tblGrading.Grade="A+"
OR tblGrading.Grade='A"'));

In Listing 9.21, there are two SELECT commands. The second SELECT command
finds student IDs that receive “A” or “A+” from tblGrading. The query processor
then finds the matched student IDs in tblStudent (by the first WHERE clause).
Finally, the top SELECT command finds the corresponding student names.

The SQL query with a subquery in Listing 9.21 finds the same data as the query
in Listing 9.18 does, but avoids the join operation, which takes significantly more
computation resources than a subquery does. However, in cases where integrated
data from two or more tables are going to display concurrently, this type of subquery
becomes incapable, and a join operation must be applied.

If the joining tables are large and the needed data from the joining tables do not
involve all attributes, a subquery in the FROM clause can reduce the computational
workload of the join operation. For example, the query in Listing 9.22 is to /st all
student grade records, including only the student numbers, the student names, the course
numbers, and the grades. As Student Address, StudentYear, CourseName, and
CourseEnrollment are not involved in the query, the tables in the first FROM
clause become smaller. Note the new table names in the top-level FROM clause
(i.e., tblStudentSmall and tblCourseSmall) and these table names in the
WHERE clause for the join operation.

Listing 9.22: Example of Subquery in the FROM Clause

SELECT tblStudent.StudentID, tblStudent.StudentName,
tblCourse.CourselID, tblGrading.Grade
FROM
(SELECT tblStudent.StudentID, tblStudent.StudentName
FROM tblStudent) tblStudentSmall,
(SELECT tblCourse.CourselID
FROM tblCourse) tblCourseSmall,
tblGrading
WHERE tblStudentSmall.StudentID=tblGrading.StudentID
AND tblCourseSmall.CourseID=tblGrading.CourselD;

StudentlD StudentName CourselD Grade
01234567 John ACT211 A+
01234567 John MIS315 B
02345678 Anne ACT211 B+
02345678 Anne MIS322 C
03456789 Robert MI5432 A
03456789 Robert ACT212 B
03456789 Robert MKT311 A
01234567 John ACT212 A

SQL 277
9.10.2 Subquery as an Alternative to GROUP BY

A subquery can be used as an alternative to the GROUP BY clause. For example, the
query in Listing 9.23 is to show each student’s name along with the number of courses
she/he has taken using a subquery.

Listing 9.23: Subquery for Groups

SELECT tblStudent.StudentName,
(SELECT COUNT (*)
FROM tblGrading
WHERE tblStudent.StudentID=tblGrading.StudentID)
AS NumberOfCourses
FROM tblStudent;

'The use of subquery for groups could cause confusion if the design of the subquery
is incorrect. For the beginner, the GROUP BY clause would be better than this type
of subquery.

9.10.3 Subquery—Determining an Uncertain Criterion

A subquery is used to determine an uncertain criterion. Suppose we want to know
which students with ID numbers greater than “02000000” have the earliest enrollment year
of such students. Beginners of SQL often have the following wrong answer:

SELECT StudentName

FROM tblStudent

WHERE StudentID > '02000000'

AND StudentEnrolYear = MIN(StudentEnrolYear) ;

This query does not work. The fact is that SQL does not allow an uncertain term on
the right side in the WHERE clause because of its ambiguity. In the preceding wrong
SQL, the WHERE clause is equivalent to

WHERE StudentEnrolYear=?

because MIN(StudentEnrolYear) is unknown in terms of its specific condition.
To make a correct WHERE clause, you need to put either a certain value or a subquery
on the right side of the WHERE clause. Thus, the correct SQL for the preceding query is
Listing 9.24.

Listing 9.24: Example of Subquery for Uncertain Condition

SELECT StudentName
FROM tblStudent StudentName
WHERE StudentID > '02000000" Robert
AND StudentEnrolYear=

(SELECT MIN(StudentEnrolYear)

FROM tblStudent

WHERE StudentID > '02000000');

278 PROGRAMMING LANGUAGES FOR MIS

Two points in writing subquery that determine uncertain criteria in the WHERE
clause are worth noting:

1. When the right side of the WHERE clause is uncertain (e.g., MIN, MAX, SUM,
AVG, COUNT), you must use a subquery to replace the uncertain condition.

2. In Listing 9.24, you can see that the condition StudentID>'02000000"
in the host WHERE clause repeats in the condition in the subquery WHERE
clause. If this condition is not repeated in the two WHERE clauses, then the
meaning of the query is quite different. For example, if the first WHERE clause
is omitted, the query represents which students (in the entire population) have the
earliest enrollment year of those students with ID number greater than ‘02000000."
On the other hand, if the second WHERE clause is omitted, the query repre-
sents which students with ID numbers greater than 02000000’ have the earliest
enrollment year of all students.

9.11 Tactics for Writing Queries
'The following are general tactics for writing SQL scripts in SELECT statements:

1. Read the query carefully. Determine which data are to be retrieved and which
attributes are to be included in the SELECT command.

2. If a variable is needed, use a subquery as the variable.

. Determine which tables will be used in the FROM clause.

4. If two or more tables are involved, use join operation(s) (match the primary
key in one table with the foreign key in another table) in the WHERE clause.

5. Construct the WHERE clause by including all conditions that are linked by
AND or OR. Never use any aggregate function in the WHERE clause directly.

6. If a condition has an uncertain criterion (MAX, MIN, AVG, SUM, COUNT) on
the right side of the condition, use a subquery.

7. Consider GROUP BY (for each group) with HAVING condition, ORDER BY
clauses, and other operators (e.g., DISTINCT) if needed.

8. For hands-on practices, you may construct test tables with a limited number

W

of test samples to test the SQL script to see if it generates the expected result.
p p g P

9.12 SQL Embedded in Host Computer Programming Languages

Computer application programs in large languages (e.g., C++, PHP, and .NET) often
host SQL scripts to deal with relational databases directly. These programs, typically
called middleware, implement the user interface, retrieve the needed data through
the SQL scripts, and then perform manipulations on the retrieved data for the busi-
ness applications.

To make a connection to the databases and to process the embedded SQL in the host
language, specific database connection software must be integrated into the system,

sSQL 279

as discussed in the ASPNET and PHP chapters. The format of SQL scripts in a
host computer programming language depends on the syntax of the host language.
Generally, a SQL script is a text string and is placed between the double quotation
mark pairs linked by the “&” signs. Note that an unnecessary space in the SQL script
string could cause problems in compiling the program. Also, each cycle of database
connections open and close can execute only one SQL script. In other words, if there
are multiple SQL scripts in a program, the server must open and close the database
connection multiple times.

Chapter 9 Exercises

Consider the following tables of a database:

HOUSE

*HouseAddress | HouseOwner | Insurance |
HEATING UNIT

*HeatingUnitID | UnitName | UnitType | Manufactory |

| DateOfBuilt | Capacity | HouseAddress |

TECHNICIAN

*EmployeeNumber | EmployeeName | Title | YearHired |
SERVICE

*HeatingUnitID *EmployeeNumber | ServiceType *Date *Time

a. Find the owner of the house at 285 Westport Rd.

b. List the heating unit names and numbers of the gas heating units built in the
285 Westport Rd. house.

c. The types of heating units include gas, electric, solar, and many models of
hybrid. List the heating unit number, date built, and manufacturer of all heat-
ing units other than hybrid models with capacity between 3000 and 4000
cubic feet from largest to smallest.

d. List the names of technicians who maintained a heating unit in 285 Westport
Rd. along with the service type performed.

e. Find the name and number of the largest gas heating unit.

t. What percent is the total capacity of gas heating units out of the total capacity
of all types of heating units?

Information Technology / Programming Languages

Programming Languages for MIS: Concepts and Practice supplies a synopsis of
the major computer programming languages, including C++ HTML, JavaScript, CSS,
VB.NET, C#NET, ASPNET, PHP (with MySQL), XML (with XSLT, DTD, and XML
Schema), and SQL. Ideal for undergraduate students in IS and IT programs, this textbook
and its previous versions have been used in the authors’ classes for the past 15 years.

Focused on web application development, the book considers client-side computing,
server-side computing, and database applications. It emphasizes programming techniques,
including structured programming, object-oriented programming, client-side programming,
server-side programming, and graphical user interface.

* Introduces the basics of computer languages along with the key characteristics
of all procedural computer languages

* Covers C++ and the fundamental concepts of the two programming paradigms:
function-oriented and object-oriented

* Considers HTML, JavaScript, and CSS for web page development
* Presents VB.NET for graphical user interface development

* Introduces PHP, a popular open source programming language, and explains
the use of the MySQL database in PHP

* Discusses XML and its companion languages, including XSTL, DTD,
and XML Schema

With this book, students learn the concepts shared by all computer languages as well
as the unique features of each language. This self-contained text includes exercise
questions, project requirements, report formats, and operational manuals of programming
environments. A test bank and answers to exercise questions are also available upon
qualified course adoption.

This book supplies professors with the opportunity to structure a course consisting of
two distinct modules: the teaching module and the project module. The teaching module
supplies an overview of representative computer languages. The project module provides
students with the opportunity to gain hands-on experience with the various computer
languages through projects.

6000 Broken So
CRC Press | suite 300, Boca Raionsfi334
~ 711l
Taylor-&Francis f:.roup New York, NY 10017
an informa SUSINgEsS 2 Park Square, Milton Park

WWW.CFcpress.com Abingdon, Oxon OX14 4RN, UK

K22290

ISBN: 978-1-4822-22kk-1
‘ 90000

97781482"222kk1 ‘” m

_5’ www.auerbach-pub

	CONTENTS
	PREFACE
	THE AUTHORS
	ACKNOWLEDGEMENTS
	CHAPTER 1 INTRODUCTION
	1.1 Computers
	1.2 Computer Programming Languages
	1.3 Computing Architecture in the Internet Environment
	1.4 Key Characteristics Shared by All Procedural Programming Languages

	CHAPTER 2 C++
	2.1 Introduction to Function- Oriented and Object- Oriented Programming
	2.2 A Tour of C Language
	2.3 Functional Approach
	2.4 Object- Oriented Approach
	2.5 Design of Objected- Oriented Program
	2.6 Connection between Classes—An Example with Two Classes
	2.7 An Example of Inheritance
	2.8 Identify Class
	2.9 Debugging
	Appendix 2.1: Commonly Used C and C++ Keywords
	C and C++ Keywords
	C++ Only Keywords

	CHAPTER 3 HTML, JAVASCRIPT, AND CSS
	3.1 Introduction to the Internet
	3.2 Creating Web Pages Using HTML
	3.3 Simple Container Tags
	3.4 Empty Tags
	3.5 Complex Container Tags
	3.6 Publish Web Page
	3.7 Introduction to JavaScript
	3.8 Image Manipulation
	3.9 FORM Input Data Verification
	3.10 FORM Data Calculation
	3.11 Cookies
	3.12 Miscellaneous JavaScript Statements
	3.13 Cascading Style Sheet
	3.14 Debugging Source Code of Web Pages
	Appendix 3.1: List of HTML Commonly Used Tags
	Appendix 3.2: JavaScript Reserved Words and Other Keywords
	JavaScript Reserved Words

	CHAPTER 4 VB.NET
	4.1 Graphical User Interface
	4.2 Microsoft Visual Studio and VB.NET Environment
	4.3 Event Driven
	4.4 Example of a Single Form
	4.5 Multiple Forms
	4.6 Programming with VB.NET
	4.7 Debugging

	CHAPTER 5 C#.NET
	5.1 Microsoft Visual Studio and C# Programming Environment
	5.2 C# Program Structure
	5.3 Run a C# Console Application Program
	5.4 C# Syntax
	5.5 Examples of Console Application
	5.6 Windows Forms Application
	5.7 Examples of Windows Forms Application
	5.8 Debugging

	CHAPTER 6 ASP.NET
	6.1 Introduction to ASP.NET
	6.2 ASP.NET with VB.NET
	6.3 ASP.NET with C#.NET
	6.4 Debugging

	CHAPTER 7 PHP
	7.1 Introduction to PHP and PHP Development Environment
	7.2 Format of PHP Program
	7.3 Structure of PHP Program
	7.4 Activate PHP in Web Page and Process Form Data on Server
	7.5 Programming in PHP
	7.6 Relay Data through Multiple Dynamic Web Pages Using Hidden Fields
	7.7 Example of Web Application Design
	7.8 PHP and MySQL Database
	7.9 Debugging

	CHAPTER 8 XML
	8.1 Introduction to XML
	8.2 XML Documents Are Data Sheets
	8.3 Cascading Style Sheets
	8.4 Extensible Style Language
	8.5 XML Data Tree
	8.6 CSS Versus XSLT
	8.7 Document Type Definition and Validation
	8.8 XML Schema
	8.9 Summary of Application of XML
	8.10 An Example of XML Application
	8.11 Advanced Subjects of XML
	8.12 XHTML
	8.13 XBRL

	CHAPTER 9 SQL
	9.1 Introduction to SQL
	9.2 CREATE and DROP
	9.3 INSERT, UPDATE, DELETE
	9.4 Query—SELECT
	9.5 WHERE Clause and Comparison
	9.6 ORDER BY Clause
	9.7 Aggregate Functions
	9.8 GROUP BY Clause and HAVING Clause
	9.9 Joining Tables
	9.10 Subquery
	9.11 Tactics for Writing Queries
	9.12 SQL Embedded in Host Computer Programming Languages

