
www.allitebooks.com

http://www.allitebooks.org

Programming
for the Absolute Beginner,

Second Edition

Jerry Lee Ford, Jr.

Cengage Learning PTR

Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States

00 ProgABS2E FM 2/23/15 8:30 PM Page i

www.allitebooks.com

http://www.allitebooks.org

© 2016 Cengage Learning PTR.

WCN: 01-100

CENGAGE and CENGAGE LEARNING are registered trademarks of Cengage
Learning, Inc., within the United States and certain other jurisdictions.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited
to photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems,
except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without the prior written permission of the publisher.

Microsoft and Windows are registered trademarks of Microsoft
Corporation in the United States and other countries. Just BASIC is
© Shoptalk Systems 2004.

All other trademarks are the property of their respective owners.

All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2014953142
ISBN-13: 978-1-305-50443-1
ISBN-10: 1-305-50443-7

Cengage Learning PTR
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United
Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region.

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit cengageptr.com.

Visit our corporate website at cengage.com.

Programming for the Absolute Beginner,
Second Edition
Jerry Lee Ford, Jr.

Publisher and General Manager,
Cengage Learning PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Senior Product Manager:
Mitzi Koontz

Project Editor/Copy Editor:
Karen A. Gill

Technical Reviewer:
Keith Davenport

Interior Layout:
Shawn Morningstar

Cover Designer:
Mike Tanamachi

Indexer:
Valerie Haynes Perry

Proofreader:
Jenny Davidson

Printed in the United States of America
1 2 3 4 5 6 7 17 16 15

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

00 ProgABS2E FM 2/23/15 8:30 PM Page ii

eISBN-10: 1-305-50445-3

www.allitebooks.com

http://www.cengage.com/permissions
http://www.cengage.com
http://www.cengageptr.com
http://www.international.cengage.com/region
http://www.allitebooks.org

To my father and my children, Alexander, William, and Molly,
and to my beautiful wife, Mary.

00 ProgABS2E FM 2/23/15 8:30 PM Page iii

www.allitebooks.com

http://www.allitebooks.org

iv

T
here are numerous individuals to whom I owe thanks for their help, guidance, and
assistance in the development of the second edition of this book. I should begin
thanking Mitzi Koontz who served as the book’s acquisitions editor. I wish to thank

Karen Gill for bringing her invaluable talents to bear as this book’s project editor. I also
want to thank the book’s technical editor, Keith Davenport, for his technical input and
advice. In addition, I would like to thank everyone else at Cengage Learning for all their
hard work.

Acknowledgments

Jerry Lee Ford, Jr. is an educator and IT professional with more than 25 years of experience
in information technology, including roles as an automation analyst, technical manager,
technical support analyst, automation engineer, and security analyst. He is the author of
40 books and the coauthor of two additional books. His published works include
Microsoft WSH and VBScript Programming for the Absolute Beginner; Microsoft Visual
Basic 2008 Express Programming for the Absolute Beginner; HTML, XHTML, and CSS for the
Absolute Beginner; XNA 3.1 Game Development for Teens; and Game Maker Programming for
Teens. Jerry has a master’s degree in business administration from Virginia Commonwealth
University in Richmond, Virginia, and has more than 5 years of experience as an adjunct
instructor teaching networking courses in information technology.

About the Author

00 ProgABS2E FM 2/23/15 8:30 PM Page iv

www.allitebooks.com

http://www.allitebooks.org

v

Introduction . xv

PART I
INTRODUCTION TO
COMPUTER PROGRAMMING

1
Introduction to Programming .3
Project Preview: The Knock Knock Joke Game . 4

Getting Started . 5

Programming Overview . 6

Deciding What Programming Language to Learn and Use . 6

Creating Your Own Solutions . 7

Mastering the Art of Program Logic . 7

Talking in a Language Computers Understand. 8

Machine Language . 8

Assembly Language . 9

Fortran and COBOL . 10

C . 10

C++ and Objective-C . 11

BASIC . 12

Java . 13

Table of Contents

00 ProgABS2E FM 2/23/15 8:30 PM Page v

www.allitebooks.com

http://www.allitebooks.org

Other Types of Programming Languages . 14

Scripting Languages . 14

Embedded Application Languages . 15

Web Development Languages . 16

Database Languages . 16

Finding the Right Programming Language. 17

Getting Started with Just BASIC . 17

Installing Just BASIC . 18

Setting Up Just BASIC Help . 20

Creating and Executing Your First BASIC Program . 20

Back to the Knock Knock Joke Game . 23

Designing the Game. 23

The Final Result . 29

Summary . 33

2
Creating Programs with Just BASIC 35
Project Preview: The Legend of Mighty Molly . 36

Tools of the Trade . 40

Working with Just BASIC . 41

The World of Just BASIC! Window . 41

The Code Editor Window . 46

Configuring Just BASIC Preferences . 51

Notification Settings . 52

Startup Settings . 52

Compiler Settings. 53

Environmental Settings . 53

Other Configuration Options . 54

Working with Applications . 55

Opening and Saving Programs . 55

Killing Programs . 57

Other Just BASIC Components . 58

Designing Forms . 58

The Just BASIC Debugger . 59

Building Standalone Applications . 60

Creating a Tokenized File . 60

Distributing Your Just BASIC Applications . 62

Programming for the Absolute Beginner, Second Editionvi

00 ProgABS2E FM 2/23/15 8:30 PM Page vi

www.allitebooks.com

http://www.allitebooks.org

Back to the Legend of Mighty Molly . 64

Designing the Game. 64

The Final Result . 70

Summary . 70

3
Creating Graphical User Interfaces .71
Project Preview: The BASIC Crazy 8 Ball Game. 72

Mainwin . 73

GUI Application Development. 76

Working with Application Windows . 76

Regular Windows . 77

Text Windows . 77

Graphics Windows. 78

Dialog Windows. 78

Window Variations . 78

Opening and Closing Windows . 80

Event Programming. 82

Specifying Windows Size and Location . 83

Setting Foreground and Background Colors. 84

Setting Font Attributes . 86

Adding Controls to Windows . 88

Reviewing Just BASIC Controls . 88

Setting Control Focus . 104

Enabling and Disabling Controls . 105

Specifying the Control Font and Color . 105

Building Application Menus. 106

Building Interfaces with FreeForm-J . 108

Designing an Application Window . 108

Using FreeForm-J to Build Window Menus . 111

Using FreeForm-J to Generate Source Code . 112

Taking Advantage of Built-In Dialogs . 114

Notice . 114

Confirm . 115

Prompt . 115

Filedialog. 116

viiTable of Contents

00 ProgABS2E FM 2/23/15 8:30 PM Page vii

www.allitebooks.com

http://www.allitebooks.org

Back to the BASIC Crazy 8 Ball Game. 118

Designing the Game . 118

The Final Result . 124

Summary . 124

PART II
LEARNING HOW TO WRITE
BASIC PROGRAMS

4
Working with Variables and Arrays 129
Project Preview: The Ask Genie Game . 130

Working with Program Data . 131

Exploring Different Ways of Storing Data . 132

Working with Different Types of Data. 135

Learning How to Work with Variables. 136

Declaring Variables . 137

Storing Data in Variables . 137

Understanding Scope. 138

Variable Naming Rules . 139

Converting Variables . 140

Working with Numeric Variables . 142

Functions That Manipulate Strings . 143

Storing Data in Arrays. 144

Creating an Array. 144

Retrieving Data from an Array . 145

Resizing an Array . 146

Reserved Words . 146

Back to the Ask Genie Game. 147

Designing the Game . 148

The Final Result . 157

Summary . 157

Programming for the Absolute Beginner, Second Editionviii

00 ProgABS2E FM 2/23/15 8:30 PM Page viii

www.allitebooks.com

http://www.allitebooks.org

5
Making Decisions with Conditional Logic 159
Project Preview: The Rock, Paper, Scissors Game. 160

Building Adaptive Applications with Conditional Logic . 161

Working with the if…then Statement . 164

Understanding if…then Syntax . 165

Creating Single Line if…then Statements . 165

Creating Multiple-Line if…then Statements . 166

Checking for Alternative Conditions . 167

Exploring the Power of Nesting if…then Statements. 168

Working with the select...case Statement. 169

Performing Different Types of Comparison Operations . 172

Performing Mathematic Calculations . 173

Order of Precedence . 174

Overriding the Rules of Precedence . 175

Combining and Negating Comparison Operations . 175

Back to the Rock, Paper, Scissors Game. 177

Designing the Game . 177

The Final Result . 187

Summary . 187

6
Using Loops to Process Data .189
Project Preview: The Guess My Number Game . 189

Using Loops to Repeat Statement Execution . 192

The do...while Loop . 194

The do...until Loop . 196

The for...next Loop. 197

The while…wend Loop . 199

Looking Out for Endless Loops . 200

Busting Out of Loops . 202

Back to the Guess My Number Game . 203

Designing the Game . 203

The Final Result . 212

Summary . 212

ixTable of Contents

00 ProgABS2E FM 2/23/15 8:30 PM Page ix

www.allitebooks.com

http://www.allitebooks.org

7
Improving Program Organization with Functions
and Subroutines .215
Project Preview: The BASIC BlackJack Game. 216

Working with Subroutines and Functions . 218

Defining Subroutines. 219

Prematurely Terminating a Subroutine . 222

Defining Functions . 223

Different Ways to Pass Arguments to Procedures . 226

Passing Arguments by Value . 226

Passing Arguments by Reference . 226

Taking Advantage of Built-In Function Libraries . 227

Back to the BASIC BlackJack Game . 228

Designing the Game . 228

The Final Result . 238

Summary . 239

PART III
ADVANCED PROGRAMMING TOPICS

8
Working with Text Files .243
Project Preview: The Tic Tac Toe Game . 243

Working with Files and Folders . 245

Retrieving Drive Information . 246

Retrieving Information About the Current Working Directory 248

Collecting Data About Files and Folders . 248

Ensuring That Files Exist. 250

Specifying Absolute File and Path Names . 251

Specifying Relative Path Names . 251

Using the filedialog Window to Allow the User to Select a File 252

Working with Files. 253

Opening Files . 254

Closing Files . 254

Programming for the Absolute Beginner, Second Editionx

00 ProgABS2E FM 2/23/15 8:30 PM Page x

Reading from Files . 255

Writing to Files . 257

File and Folder Administration . 259

Renaming Files . 259

Deleting Files . 259

Creating New Folders . 260

Deleting Folders . 260

Back to the Tic Tac Toe Game. 261

Designing the Game . 261

The Final Result . 273

Summary . 273

9
Working with Sound and Graphics 275
Project Preview: The Slot Machine Game . 276

Integrating Graphics and Sound into Applications . 277

Displaying Graphics Images . 278

Understanding How Just BASIC Manages Drawings . 278

Just BASIC’s Graphics Capabilities . 279

Drawing Graphics . 279

A Quick Review of Graphics Commands . 280

Working with the Graphics Window . 282

Working with the Graphicbox Control . 282

Using Different Colors. 284

Clearing Out a Drawing . 284

Setting Up Event Mouse and Keyboard Event Handlers . 284

Creating a Drawing Application. 285

Getting Your Applications to Make Some Noise. 289

Making Noise . 289

Playing Wave Files . 289

Playing MIDI Files . 292

Back to the Slot Machine Game . 293

Designing the Game . 293

The Final Result . 304

Summary . 304

xiTable of Contents

00 ProgABS2E FM 2/23/15 8:30 PM Page xi

10
Arcade-Style Computer Game Development 305
Project Preview: The Bricks Game . 306

Key Features Found in Computer Arcade Games. 307

Creating and Managing Sprites . 308

Managing Game State . 314

Controlling Gameplay with Loops . 315

Moving Things Around . 316

Managing Event Synchronization Controlling Animation Speed 318

Detecting Collisions. 318

Collecting Player Input . 321

Back to the Bricks Game . 324

Designing the Game . 324

Creating a Just BASIC Application File . 325

Initializing Game State . 326

Establishing and Maintaining Game State. 329

The Final Result . 345

Summary . 346

11
Debugging Your Applications .347
Project Preview: The Hangman Game. 348

Coping with Errors in Your Applications . 350

Understanding Syntax Errors . 351

Coping with Logical Errors . 352

Eliminating Runtime Errors . 353

What Is Just BASIC’s Error.log File?. 354

Debugging Your Just BASIC Applications . 355

Working with the Debugger Toolbar . 355

Examining Variable Values . 356

A Quick Demonstration of How to Use the Debugger. 357

Developing a Runtime Error Handler . 359

Back to the Hangman Game. 363

Designing the Game . 363

The Final Result . 376

Summary . 376

Programming for the Absolute Beginner, Second Editionxii

00 ProgABS2E FM 2/23/15 8:30 PM Page xii

PART IV
APPENDIXES

A
What’s on the Companion Website? 379

B
What’s Next? .381
Locating Just BASIC Resources Online . 382

The Just BASIC Forum . 382

The Just BASIC Files Archive . 382

Liberty BASIC . 382

Liberty BASIC Workshop . 383

Run BASIC . 383

Visual Basic. 383

Other BASIC Programming Languages. 384

Non-BASIC Programming Languages. 385

www.tech-publishing.com . 385

Glossary .387

Index .395

xiiiTable of Contents

00 ProgABS2E FM 2/23/15 8:30 PM Page xiii

This page intentionally left blank

W
elcome to the second edition of Programming for the Absolute Beginner. This
book is designed to provide a gentle and fun introduction to computer pro-
gramming. For many, the mere thought of attempting to learn how to become

a computer programmer is enough to make them turn and head for the hills. However,
as you will see, learning how to program really is not that hard, provided you have good
instruction and a little patience.

As this book will demonstrate, you do not have to be a computer genius to learn how to
program. Think of it this way. Most people have only a limited understanding of the
internal mechanics of a car or motorcycle, but they do not let that stop them from getting
behind the wheel and learning to drive. Nor do you have to know how to build a computer
from scratch or possess detailed understanding of the inner workings of your computer’s
motherboard, hard drive, or any other hardware component to be able to operate a com-
puter. The same is true of computer programming.

The first edition of this book was specifically written to help first-time programmers get
up and running quickly. The second edition expands on this approach through the addi-
tion of new examples and simplified explanations. At the same time, the book has been
updated to keep things current, and new material has been added that delves into arcade-
style computer game programming. You will be provided with enough background infor-
mation to make sure that you know what is going on without inundating you with an
overwhelming amount of technical jargon. Although you will not be a programming
guru by the end of this book, you will have learned the fundamentals of computer program-
ming and will have the knowledge required to determine which of the many possible paths
you want to pursue with your new programming skills.

Introduction

xv

00 ProgABS2E FM 2/23/15 8:30 PM Page xv

Programming for the Absolute Beginner, Second Editionxvi

What This Book Is All About
There are many programming languages available today, each with its own particular set of
strengths and weaknesses. These programming languages run on various operating systems and
can be very different from one another. Despite this, all programming languages operate using
the same basic set of rules. The purpose of this book is to teach you the rules that govern all
programming languages and to explain the steps involved in designing and creating computer
applications.

Rather than attempt to provide detailed instruction for a number of different programming
languages, I have chosen to focus on one specific language: BASIC. BASIC was originally created
as a language for teaching computer programming. As such, I have decided to adopt it as the
programming language that this book will use to teach you how to program. Specifically, I have
decided to use a version of BASIC called Just BASIC. It does not cost anything and can be down-
loaded from the Internet. Just BASIC provides a simple streamlined version of BASIC that is
easier for first-time programmers to learn than other BASIC programming languages, such as
Microsoft Visual Basic, which is a highly complex version of BASIC that is used throughout the
world to develop commercial software.

If you are looking for a good introduction to computer programming and are not sure yet
which programming language you ultimately want to work with, this book will serve you well.
It will give you the skills and knowledge you need to get started programming with Just BASIC.
If you are interested in learning an advanced programming language like Visual Basic, Java, or
C++, you will be well served by first learning the principles of BASIC programming prior to
moving on and tackling these more complex languages.

Who Should Read This Book?
This book is designed to teach you how to become a programmer. By the time you are done with
this book, you will not be a programming expert, but you will have a solid understanding of
how programming works. You will also have a good understanding of the strengths and weak-
nesses of different programming languages.

This book teaches you basic programming skills using the free implementation of the BASIC
programming language called Just BASIC. BASIC was designed as a programming language to
be used to teach beginner programmers. As such, it provides an excellent model through which
you can learn the basics of computer programming and will help you build a technical founda-
tion from which you can later make the jump to other programming languages, should that be
your goal.

00 ProgABS2E FM 2/23/15 8:30 PM Page xvi

Although previous programming experience is helpful, I wrote this book based on the assump-
tion that you do not have any previous programming experience with BASIC or any other pro-
gramming language. However, a good understanding of how to work with Microsoft Windows
is required.

This book has been specifically designed to help jump-start your programming career. By the
time you have finished the book, you will have laid down a strong programming foundation
that you can apply to other programming languages. This will help prepare you to learn more
advanced BASIC programming languages such as Visual Basic or non-BASIC programming
languages such as C#, C++, Java, JavaScript, Python, and Perl.

Regardless of which programming language you eventually decide to learn and master, the pur-
pose of this book is to provide you with a programming foundation that you can build on and
use as a starting point to achieve your goals. I believe that you will find this book very helpful
as you begin your programming career and that you will be pleased with what the book has in
store for you. This book’s unique game-based teaching approach will make your learning expe-
rience not only easier but a lot more fun.

What You Need to Begin
This book was written using Just BASIC on computers running Windows 7 and Windows 8.1.
Therefore, all the figures and examples you will see will show Just BASIC applications running
on these two operating systems. If you are running a different Windows operating system, you
may notice small differences in the way your applications look. However, these differences will
be purely cosmetic, and you should not have trouble following along with the examples pre-
sented in this book.

As of the writing of this book, the current version of Just BASIC is 1.01. You can download a
free copy of Just BASIC at the Just BASIC website located at www.justbasic.com. The download
is only 2.41MB, so it will not take long to download and install. You can install and run Just
BASIC on any of the Windows operating systems up through Windows 8.1.

Compared to most programming languages and applications, Just BASIC has modest hardware
requirements, as shown in Table I.1. These modest requirements, combined with Just BASIC’s
broad support for different Windows operating systems, allows you to create Just BASIC appli-
cations for any Windows operating system, including older operating systems that many other
programming languages no longer support. Of course, the minimum requirements shown in
Table I.1 are just that. For best performance, install Just BASIC and create Windows applications
on a computer that meets the table’s recommended requirements.

Introduction xviiIntroduction

00 ProgABS2E FM 2/23/15 8:30 PM Page xvii

http://www.justbasic.com

Hint

Many Windows applications contain graphics. This book supplies you with the graphics you need to create
all its sample applications. To create new graphics for your own Just BASIC applications, you need a paint or
graphics application. Windows comes with an image editor called Paint, which has basic image-creation
and manipulation capabilities. You may, however, prefer a more full-featured image editor, such as Adobe
Photoshop or GIMP for Windows, just to name two.

That’s it. As long as you are running a supported version of Microsoft Windows and can down-
load a free copy of Just BASIC, you have everything you need to take full advantage of the infor-
mation and material covered in this book. Everything you need to create Just BASIC
applications is provided as part of the programming language.

How This Book Is Organized
Programming for the Absolute Beginner, Second Edition, is organized into four major parts. I
have written this book based on the assumption that it will be read sequentially, from cover to
cover. If you are a first-time programmer, this is the approach you should take. However, if you
already have prior programming experience, you may want to skip around a bit, selecting those
topics that are of most interest to you.

Part I of this book consists of three chapters that will provide you with the background infor-
mation you need to know to get started. You will also learn the steps in creating BASIC appli-
cations using Just BASIC and the steps involved in the formulation of graphical user interfaces
(GUIs) made up of windows, buttons, and all sorts of other graphical controls.

Part II is made up of four chapters, from which you will learn a number of programming prin-
ciples and techniques. The topics covered include learning how to store and retrieve data and

xviii Programming for the Absolute Beginner, Second Edition

Requirement Minimum Recommended

Processor 486 or Pentium Pentium

Memory 24MB 64MB

Hard Disk 6MB 12MB

T A B L E I . 1   M I N I M U M R E Q U I R E M E N T S F O R

R U N N I N G J U S T B A S I C

© 2016 Shoptalk Systems

00 ProgABS2E FM 2/23/15 8:30 PM Page xviii

how to write programs that react differently based on the data input they receive using condi-
tional logic. You will learn how to create and use loops to perform repetitive actions and to
process large amounts of data. You will also learn how to improve the overall organization of
your BASIC applications using functions and subroutines.

Part III is made up of four chapters that cover a number of advanced topics. These topics include
learning how to work with text files, how to integrate sound and graphics into your BASIC
applications, and how to create arcade-style computer games. You will also learn the basic steps
involved in tracking down and fixing program bugs that inevitably occur as part of the applica-
tion development process.

Part IV is made up of two appendixes and a glossary. The appendixes outline the additional con-
tent that you will find on the book’s companion website and provide additional information
and guidance that is designed to help you further your programming knowledge and skills.

The basic outline of the book follows:

• Chapter 1, “Introduction to Programming.” This chapter provides you with a high-level
overview of BASIC as well as background information that you will need to know in
order to become an effective programmer. This will include a little historical background
information as well as a comparison of BASIC to other programming languages. You also
learn how to create your first BASIC application: the Knock Knock Joke game.

• Chapter 2, “Creating Programs with Just BASIC.” In this chapter, you will learn how to
work with the Just BASIC editor. You will discover how to navigate the editor’s menus
and toolbars. You will learn how to work with all of Just BASIC’s major features and to
customize its settings to suit your personal preferences. You will also learn how to create
standalone BASIC applications that can be run without requiring Just BASIC to be
installed on the computer.

• Chapter 3, “Creating Graphical User Interfaces.” This chapter will teach you the basic
steps involved in designing and creating graphical user interfaces. You will learn how to
create application windows and to populate them with all sorts of controls. You will also
learn how to create application menus. In addition, you will learn how to configure the
appearance of these controls and how to set them up to execute selected portions of your
application code.

• Chapter 4, “Working with Variables and Arrays.” This chapter will explain how pro-
gramming languages store and retrieve data. Specifically, you will learn how to define
data that never changes as well as how to store individual pieces or groups of related data
whose values may change throughout the execution of your applications. You will also
learn how to work mathematical and comparison operations and to perform basic text
string manipulation.

xixIntroduction

00 ProgABS2E FM 2/23/15 8:30 PM Page xix

• Chapter 5, “Making Decisions with Conditional Logic.” This chapter will teach you how to
develop programming logic that can analyze different values and alter its execution based
on the results of that analysis. Using this information, you will be able to create applications
that can modify their execution based on the data that they are presented with.

• Chapter 6, “Using Loops to Process Data.” In this chapter, you will learn how to develop
applications that are designed to repetitively perform a sequence of actions under the
control of loops. You will also learn how to use loops to process large collections of data
and to control the overall execution of BASIC applications and games.

• Chapter 7, “Improving Program Organization with Functions and Subroutines.” This
chapter will teach you how to make your applications easier to understand and maintain
by helping you organize program code into subroutines and procedures. You will learn
how to pass data into procedures and to return it from procedures.

• Chapter 8, “Working with Text Files.” In this chapter, you will learn how to create appli-
cations that interact with the Windows file system. You will also learn how to create, open,
and close text files as well as how to write data to and read data from them. Finally, you
will learn how to define and access simple database files.

• Chapter 9, “Working with Sound and Graphics.” In this chapter, you will learn how to
integrate sound and graphics into your BASIC applications. This will include displaying
animated graphics sequences, making sounds, and playing audio files.

• Chapter 10, “Arcade-Style Computer Game Development.” In this chapter, you will develop
an understanding of fundamental game development techniques, including learning
about key features found in most computer games, how to manage game state, and how
to control sprite movement and determine when collisions occur. This chapter also
reviews the fundamentals of capturing and processing player input.

• Chapter 11, “Debugging Your Applications.” In this chapter, you will discover how to find
and fix program bugs that prevent your applications from running or cause your applica-
tions to run inappropriately. You will learn how to locate and fix syntax and logical errors.
You will also learn how to use Just BASIC’s built-in debugger to locate and fix runtime
errors. This will include learning how to trace program execution and set up breakpoints
that pause application execution to allow you to check on the status of variable values.

• Appendix A, “What’s on the Companion Website?” This appendix has an outline of the
BASIC source code that you will find on this book’s companion website.

• Appendix B, “What’s Next?” This appendix has some final thoughts that are designed to
help you continue your programming education. The information provided in this
appendix includes links to websites where you can go to learn more about Just BASIC
and other BASIC programming languages. This appendix also has a list of recommended
reading that you may find helpful.

• Glossary. This unit offers a glossary of key terms that are used throughout the book.

Programming for the Absolute Beginner, Second Editionxx

00 ProgABS2E FM 2/23/15 8:30 PM Page xx

xxiIntroduction

Conventions Used in This Book
To help make the book easier to understand and read, I have incorporated a number of special
conventions to help make key points stand out so that they are easy to identify and understand.
These conventions are as follows.

HINT

As you read along, I will suggest different or better ways of doing things to help make you a better and
more efficient programmer.

TRAP

I will identify places where mistakes are sometimes made and provide advice to help you avoid them.

TRICK

Whenever possible, I will give you shortcuts and other techniques to help you make your work easier.

Companion Website Downloads
You may download the companion website files from www.cengageptr.com/downloads.

I will end each chapter by offering you a series of suggestions that you can follow up on to
enhance and improve the chapter’s game project and to advance your programming skills.

C
ha

lle
ng

es

00 ProgABS2E FM 2/23/15 8:30 PM Page xxi

http://www.cengageptr.com/downloads

This page intentionally left blank

IP
A

R
T

Introduction
to Computer
Programming

Chapter 1: Introduction to Programming

Chapter 2: Creating Programs with
Just BASIC

Chapter 3: Creating Graphical User
Interfaces

01 ProgABS2E ch01 2/23/15 8:33 PM Page 1

This page intentionally left blank

Introduction to
Programming

1
I

n addition to teaching you the basics of computer programming using Just
BASIC, this book seeks to provide you with the background information you
need to figure out your place within the grand scope of the programming

world. To help get you started, this chapter offers a gentle review of the evolution
of computer programming. You will learn about a number of different computer
languages and their relative strengths and weaknesses, as well as the types of tasks
to which various programming languages are applicable. Along the way, you will
pick up some basic terminology. You will discover the origins of the BASIC pro-
gramming language and create and execute your first BASIC application: the Knock
Knock Joke game. By the time you are done with this chapter, you will possess the
background knowledge you need to not only begin BASIC programming but start
thinking about which programming language or languages you ultimately want to
focus on.

Specifically, you will learn the following:

• A brief history of the evolution of computer programming

• Basic programming concepts and terms

• The strengths and weaknesses of various programming languages

• How to create and execute your first BASIC program

01 ProgABS2E ch01 2/23/15 8:33 PM Page 3

4

Project Preview: The Knock Knock Joke Game
In this chapter and in each chapter that follows, you will learn how to create a new BASIC appli-
cation. This chapter’s project, the Knock Knock Joke game, is a simple computer game that tells
the player a series of knock knock jokes. The game begins by displaying the opening prompt for
the first joke, as shown in Figure 1.1.

Programming for the Absolute Beginner, Second Edition

Figure 1.1 The player must respond by entering
Who is there? in response to the opening prompt.
© 2016 Cengage Learning®

To minimize the amount of effort required by the player, the game automatically displays the
required response in the text field of the pop-up dialog. Therefore, to answer the prompt and
proceed to the next part of the joke, all that the player has to do is click on the OK button.

After responding to the opening prompt for the first joke, the game displays the second part of
the joke, as shown in Figure 1.2.

Figure 1.2 The player must respond by entering
Disease who? to proceed to the end of the joke.
© 2016 Cengage Learning®

Figure 1.3 The punch line for the game’s first joke.
© 2016 Cengage Learning®

Once the game receives the correct response from the player, it displays the first joke’s punch line,
as shown in Figure 1.3.

01 ProgABS2E ch01 2/23/15 8:33 PM Page 4

The player then clicks on OK to dismiss the punch line and proceed to the next joke. All that the
player has to do to complete the rest of the game and view its jokes is to continue to click on the
OK button. However, if the player instead attempts to retype the correct response and makes a
typo in doing so, or if the player clicks on the Cancel button, an error message is displayed sim-
ilar to that shown in Figure 1.4.

The game automatically ends after the last joke has been told. As you can see, although this is not
a particularly challenging game from the player’s standpoint, it does possess a number of features
upon which you can build and later create more interesting and complex games. For example,
the Knock Knock Joke game demonstrates how to interact with the player via dialog windows
and how to collect and process input. It also demonstrates how to analyze and process that input.

Getting Started
There are any number of reasons that people decide to learn how to program. For starters, it can
be fun, and many people simply enjoy spending time working on challenging tasks and expressing
their own unique form of computerized creativity. Some people decide to jump into program-
ming to create an application for which they see a need that has not yet been met. For example,
a comic book author might decide to create his own custom word processor with features that
make comic book development easier. Of course, many people make the leap into programming
to earn more money by switching to or starting a new career.

Programming is a lucrative field, and there is no shortage of jobs for individuals with solid pro-
gramming skills. Colleges and universities around the world have developed computer sciences
degree programs designed to help fill the never-ending need for new programming talent, and
sites like Amazon are packed full of books designed to help programmers at all levels learn more
about their craft.

For many, taking the first step into programming is the hardest. That is where this book comes
into play. One of my objectives of this book was to assist first-time programmers in wading into

5Chapter 1 • Introduction to Programming

Figure 1.4 Error messages are displayed
if the anticipated response is not received.
© 2016 Cengage Learning®

01 ProgABS2E ch01 2/23/15 8:33 PM Page 5

the sometimes-murky programming waters. This book assumes that, as a beginner programmer,
you have not yet made a decision to learn a specific programming language, or you don’t have a
great deal of understanding as to what the many different programming languages today are
capable of or what makes them unique. In addition to teaching you how to program, this book
will provide the background you need so that, when you have finished this book, you’ll be able
to make a well-reasoned and intelligent choice about the next step to take as you continue your
programming career.

Programming Overview
All computer programs, regardless of what programming languages they are written in or what
operating system they run on, share certain similarities. They all consist of code statements that
give the computer instructions. These programs typically accept some type of input, process it in
some manner, and then produce output.

The input that is processed might be provided by the program itself, or it might be provided by
interacting with a user. Data might also come from files stored on the computer or, in the case of
Windows computers, from the Windows registry. Input might also come from data passed to the
program at execution time. What the program does with the data that it is given depends on what
the programmer designed the application to do. For example, a computer game might accept
input from the computer keyboard, mouse, or a joystick and then use this data to guide the
movement of an animated spaceship, which would then be displayed as output on the computer
screen as part of an arcade-styled game.

Deciding What Programming Language to Learn and Use
In most cases, there are several programming languages available for you to choose from to solve
a given problem. For example, you could write a desktop application for Windows using any of
several programming languages, including Visual Basic, C++, and Java. Although each of these
programming languages has its own particular set of strengths and weaknesses, chances are good
that you can create just about any desktop application you would want using any of these lan-
guages. In fact, the choice of what language is used is often more a matter of personal preference,
based on the programmer’s background rather than a technical requirement imposed by the
operating system or other external factors. The imagination and experience of the programmer
is far more important than the choice of programming language. As a result, in most cases the
choice of language is almost immaterial.

6 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 6

Creating Your Own Solutions
For most people, using their computer means running and working with their favorite applications,
which may include computer games or Microsoft Office applications like Word and Excel. These
applications are examples of software programs written by someone else, typically a commercial
software development company like Microsoft. Because commercial software developers want to
sell as many copies of their applications as possible, they try to make them appeal to as many people
as possible. As a result, compromises are sometimes made, such that a given application may meet
most but not all of the needs of every consumer.

Microsoft Word is a general-purpose word processor that is great for creating letters, reports, and all
sorts of documents. You can even use it to create resumes and perform desktop publishing. However,
it takes a little work to set up Word to perform these kinds of tasks, and the number of features it pro-
vides may not meet the needs of every user. Because resume writing and desktop publishing are
extremely popular activities, many companies have developed custom applications specifically designed
to address these tasks. As you would expect, resume and desktop publishing applications are specifically
designed to accomplish their respective tasks and, as such, are more feature rich than Microsoft Word
when it comes to polishing your resume or making the company newsletter look good.

Now suppose that you want an application that you can use to create your own electronic diary.
You might first look for a commercial application to address your needs. If you find such an
application, it might not have the specific set of features that you are looking for, or it might cost
more than you think is reasonable to pay. Another option worth pursuing is to visit one of the
many shareware websites on the Internet to see if you can find a shareware or freeware applica-
tion that somebody else has created that may meet your requirements. If this option does not pan
out, you may have to settle for using your word processor as your diary. Well, unless, of course,
you know how to program. In that case, you can create your own diary application that is per-
fectly suited to meet your needs. Best of all, once you are done, if you think the application is
something that other people might be able to use, you might consider giving it away or even dis-
tributing it as shareware. Maybe you can even make a little money from your hard work.

Mastering the Art of Program Logic
Contrary to most people’s perception, the programming logic that makes computer applications
work is not fundamentally different from the logic that people apply to different aspects of their
daily lives. Take, for example, a mother who has been asked by her child to teach him how to play
a game. In this scenario, the mother might provide instruction like this:

1. Open the game board and have everybody place their pieces on Go.

2. The first player then rolls the dice and moves his piece the number of spaces indicated by
the dice.

7Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 7

www.allitebooks.com

http://www.allitebooks.org

3. If a double is rolled, the player rolls again; otherwise, the next player rolls.

4. The player may buy any property he lands on as long as it is not already owned by some-
body else and he has the money to do so.

5. If a player lands on someone else’s property, he must pay rent.

6. Each time a player successfully makes it around the board, he is rewarded with $200.

7. Players are eliminated from the game as they run out of money.

8. The last player remaining in the game wins.

The logic used to develop a computer program is not fundamentally different from the logic in
this list. What makes writing a computer program a little more difficult is that computers do not
understand English or any other human language. Instead, to create a new computer program,
you must learn how to outline the logic required to perform a given task using a programming
language.

Just as there are many different human languages, there are many different computer languages.
These languages typically have unusual names like Visual Basic, Java, C#, C ++, and AppleScript.
These languages and many other computer languages like them have their own unique set of
strengths and weaknesses and are often better suited than other programming languages to per-
form certain types of tasks. Visual Basic, for example, only runs on Windows computers and is a
great language for creating Windows desktop applications. JavaScript, on the other hand, is a web
development language that runs inside web browsers and is a great programming language for
adding dynamic content and interactivity to websites.

Talking in a Language Computers Understand
Computer languages, like human languages, follow certain sets of rules that define the language
and use of specific language keywords. Like human languages, there are thousands of program-
ming languages. In addition, new programming languages are created every year. In the sections
that follow, you will learn a little about a great many different programming languages and will
come away with an understanding of what each language is used for and where it fits into the
grand scheme of computer programming.

Machine Language
Different computers have different types of central processing units (CPUs). Each CPU has its
own set of instructions that it understands. These sets of instructions are referred to as machine
language or machine code. Machine code is the only language that a computer can understand.
Other languages like BASIC are only intermediary languages that ultimately must be converted
into machine language before they can be executed.

8 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 8

Machine code languages consist of patterns of bits, which can take on either of two values—0s
or 1s, as demonstrated next. Different bit combinations represent different commands that the
CPU recognizes:

0011 1101 0001 1010

0010 1001 1000 0011

1111 0001 0101 1011

This example is intended to demonstrate that machine languages are enormously difficult program-
ming languages to learn. As such, few programmers know how to write machine code programs.
In fact, some of the most talented programmers in the world have never considered learning to
work with machine code.

Assembly Language
Programming in machine code is extremely difficult for human beings. As a solution to this
problem, assembly language was created in the 1950s. Assembly languages use mnemonic codes
to represent specific machine code commands. Unlike machine code, which consists of only 0s
and 1s, assembly languages are made up of a combination of simple words and numbers.

Assembly language is considered a low-level programming language that is linked to specific
CPUs. Therefore, the assembly language used on one type of computer will be slightly different
from the assembly language used on another type. When executed, assembly programs are trans-
lated line for line into corresponding machine language statements by a program known as an
assembler.

Assembly language was once widely used in the creation of operating systems such as MS-DOS
and applications like the original Lotus 1-2-3 spreadsheet application. Assembly programs were once
heavily used on mainframe computers. However, languages such as COBOL and Fortran eventu-
ally supplanted it on that platform. Starting in the 1970s, with the advent of the C programming
languages, the use of assembly language programs started to fade on personal computers.

Today, assembly languages are used only for specific tasks, such as the development of device dri-
vers where direct hardware access is required or on new computer systems for which high-level
languages have not been developed. Regardless, an understanding of assembly language pro-
gramming is still considered an essential part of a computer science degree in most colleges and
universities. Still, assembly language programming has proven to be quite difficult for the average
programmer. This, combined with a lack of portability between different types of computers, has
relegated assembly language programming to a small number of programmers.

9Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 9

Fortran and COBOL
Despite being a major improvement over machine language coding, assembly language left much
to be desired as a general-purpose programming language. Instead, new programming languages
were needed to facilitate the development of a new generation of business and scientific applica-
tions. In the late 1950s, a pair of new programming languages immerged to address these needs.

Fortran appeared first on the scene in 1957. Fortran, which is an acronym for FORmula TRANs-
lator, was designed to support complex mathematic calculations. Early versions of Fortran pro-
vided for the development of applications whose performance was roughly equivalent to that of
assembly programs but which were considerably easier to develop. By the early 1960s, several
dozen Fortran compilers had been created for various computing platforms, making it the first
truly portable programming language.

Fortran applications are still in use today in various technical areas, including weather and cli-
mate modeling and computational chemistry and physics. Once an arcane and difficult language
to master, Fortran has been updated and modified over the years and now incorporates many
features found in other modern programming languages, including updated syntax and object-
oriented features. Although still in use today by the scientific and engineering communities, For-
tran is generally regarded as a specialist language.

COBOL, which stands for Common Business-Oriented Language, was introduced in the late 1950s.
Designed to support the development of business applications, it is still used to support main-
frame application development today. In fact, the majority of the world’s business applications
are still written in COBOL. The current version of COBOL, COBOL 2002, includes many new
programming capabilities, such as support for object-oriented programming. Like Fortran,
COBOL is a portable programming language that can be written once and ported to other plat-
forms and run, usually with minimal modification.

C
Given that assembly language programming was so difficult to learn, assembly programs were
difficult to port from one computer to another, and languages like Fortran and COBOL served
specialized purposes, it was clear that an easier-to-learn and far more portable general program-
ming language was needed. This need was answered when C was introduced in the early 1970s.

C was developed at Bell Telephone Laboratories for use on UNIX operating systems. C is far eas-
ier to work with than assembly language and provides direct access to computer hardware. It
quickly became the most commonly used programming language for writing system and appli-
cation software.

To run a C program, a special program known as a compiler has to translate its source code into
machine code. A compiler, like an assembler, is a program that translates a computer program

10 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 10

into machine code. C is a relatively small programming language. When compiled, it generates a
few machine code statements for each line of C code. C compilers have been developed for just
about every computing platform; therefore, C is far easier to port from one computer to another
than assembly language programs, often requiring only minimal recoding.

One of C’s main features is its ability to directly access computer hardware. This has proven to be
a double-edged sword in that only the most experienced and accomplished programmers have
the programming skills required to safely use the language in this manner. In the hands of less
experienced programmers, C can be a time bomb waiting to go off and crash computers.

C is vastly powerful. As a result, many popular applications have been written using it (and spin-off
languages such as C++ and Objective-C), including Microsoft Windows, Linux, and Mac OS X.

To program with a language that was as portable and efficient as C but safer in terms of remov-
ing the language’s ability to access hardware, a whole new generation of programming languages
was created, including C++, Objective-C, Visual Basic, and Java.

C++ and Objective-C
C++ is a general-purpose programming language introduced in the 1980s. C++ is object oriented,
meaning that it uses an approach where system and key language resources are viewed as objects
that come equipped with everything needed to access and manipulate them. C++ was developed
out of Bell Telephone Laboratories as an enhancement to C.

Modern implementations of C++ are provided by companies like Microsoft. Microsoft C++ sup-
ports Rapid Application Development, allowing programmers to create full-featured Windows
applications in less time than while using other programming languages.

Hint

Rapid Application Development (RAD) is a programming technique in which programmers
begin application development using a drag-and-drop tool that facilitates the creation of graph-
ical user interfaces (GUIs). Once an application’s interface has been designed, programmers
add the program code required to finish building the application and make it respond when
the user interacts with its interface.

C++ incorporates all aspects of C and includes numerous enhancements. As such, it is consid-
ered a complicated programming language. Another derivative of C is Objective-C, which was
introduced in 1986. Like C++, Objective-C is an object-oriented programming language that is
built on top of C. However, unlike C++, Objective-C is relatively small, providing C programming
with a faster learning curve than C++. Objective-C applications run on UNIX operating systems,
including Mac OS X.

11Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 11

BASIC
Despite the vast improvements introduced by languages like C, C++, and Objective-C, many
people, especially first-time programmers, have found that learning how to program using C,
C++, and Objective-C is challenging. To reduce the learning curve required to learn how to pro-
gram, a new language was introduced in the early 1960s called BASIC. BASIC, which stands for
Beginner’s All-purpose Symbolic Instruction Code, was created as a programming language that
was designed to teach people how to program. However, it soon became obvious that the language
was well suited to more than just teaching basic programming concepts.

One of the fundamental design goals of BASIC was to keep things simple. As a result, BASIC soon
became the most popular programming language in the world and was ported over to just about
every operating system. BASIC programs are much easier to write and typically take less time to
create, test, and debug. BASIC programs are also highly portable.

Throughout the 1970s, numerous versions of BASIC were created and made available on various
home and desktop computers, including Atari, Apple, and the original IBM PC. As such, BASIC
programming was introduced to millions of first-time programmers who used it to create small
programs. However, in the 1980s third-party application development companies began to
spring up, delivering a host of ready-made applications that soon filled most of the needs of
desktop computer owners. As such, individual interest in BASIC programming declined.

BASIC’s fortunes began to change in 1991 when Microsoft released Visual Basic 1.0. Visual Basic
was a general-purpose RAD programming language. Microsoft has continued to work on and
enhance Visual Basic over the years. The current version, Visual Basic 2013, integrates Visual
Basic with Microsoft’s .NET framework. One particular version of Visual Basic of interest to new
programmers is Microsoft Visual Basic Express 2013, which is part of Microsoft Visual Studio
Express 2013 for Windows Desktop, shown in Figure 1.5. Microsoft makes this version of Visual
Basic available as a free download to attract new Visual Basic programmers.

Hint

The Microsoft .NET Framework is a collection of resources designed to support the develop-
ment and execution of Windows applications that run on desktop computers, local area networks
(LANs), and the Internet.

Visual Basic .NET supports desktop, network, and Internet application development as well as the
development of database applications. Visual Basic supports the development of software appli-
cations that can run on small appliances like handheld computers and cell phones. Visual Basic
is also used to develop business and commercial software applications.

12 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 12

Hint

To learn more about Visual Basic and other languages based on BASIC, check out Appendix B,
“What’s Next?”

Java
Another major programming language that has garnered a lot of attention and use in recent years
is Java, which Sun Microsystems developed in the early 1990s and first released in 1995. Syntac-
tically, Java is based heavily on C and C++ but lacks these languages’ low-level capabilities to
access and manipulate system resources. Java programs generally run in one of two forms: either
as standalone applications or as applets that can be executed inside web browsers. Standalone
applications run like any other software application. Java applets run as programs embedded
within web pages that are loaded and executed by a host web browser.

Java is a platform-independent programming language designed to support the development
and execution of computer programs that can be run on different operating systems without

13Chapter 1 • Introduction to Programming

Figure 1.5 Visual Basic Express 2013 is specifically tailored to meet the needs of first-time programmers.
Source: Microsoft Corporation

01 ProgABS2E ch01 2/23/15 8:33 PM Page 13

code modification. To accomplish this goal, Sun designed Java so that the code developed by the
program was compiled into an intermediary format known as bytecode (also known as p-code).
This partially compiled code is then loaded into a virtual machine running on the target operating
system. It was the job of the virtual machine to finish compiling the Java program into machine
language at execution time. For this development model to work, virtual machine programs had
to be developed for different operating systems, which Sun developed and made available for free.

Because it runs within a virtual machine, Java programs do not, by default, have a look and feel
that mirrors the default appearance of applications native to a particular operating system.
Although many programmers were critical of the performance of early versions of Java, improve-
ments have since reduced the amount of memory required while simultaneously increasing pro-
cessing speed, negating such concerns. Another issue with Java is that Microsoft does not ship it
as part of the Windows operating system, forcing individuals to take extra steps to download and
install it. However, in the age of the Internet where people are used to constantly downloading
and installing browser add-ons and system updates, this hurdle has proven easy to overcome.

Hint

To learn more about Java and to download and install it on your computer, visit www.java.com.
You will also find plenty of sample software applications for download.

Other Types of Programming Languages
In addition to the general-purpose, business, and scientific-specific languages already discussed,
there are many specialized programming languages in use today that are important to know
about. These include the following:

• Scripting languages

• Embedded application languages

• Web development languages

• Database languages

Scripting Languages
A scripting language is a computer language that is interpreted into machine code at execution
time as opposed to being compiled at development time into machine code. Therefore, whereas
an application written in C++ is compiled and converted into machine code just one time at the
end of the program processes and can then be executed over and over again, a script is a program

14 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 14

http://www.java.com

that must be reinterpreted and converted to machine code each time it is executed. As a result,
scripts take longer to start. In addition, the computers upon which they are executed must have
an interpreter installed that is capable of executing them.

Hint

An interpreter is a program that converts script statements into machine code at runtime.

There are many scripting languages to choose from, including Perl, Python, JavaScript, VBScript,
Ruby, Rexx, and AppleScript, just to name a few. Scripts are saved as plaintext files. As a result, when
distributed, the source code for the script is easily accessible by anyone who wants to view and copy
or modify it, thus raising concerns regarding a programmer’s ability to control the intellectual
property rights of his program. However, the trade-off for the lack of speed and visible source code
is the speed with which scripts can be developed. To write a script, a programmer typically opens a
blank text file, types in its code statements, and then saves and executes the script without ever hav-
ing to compile anything. As a result, a programmer who runs into an error can quickly open the
script’s file, fix the error, and run the script again to instantly see if the problem has been fixed.

Scripting is prevalent in most programming environments. For example, Windows computer
and network administrators develop scripts using languages like VBScript, Python, Ruby, and
Perl to automate a host of time-consuming activities, thus freeing up time to work on other tasks.
Web developers also embed scripts within web pages using languages like JavaScript to add
dynamic content to websites.

Embedded Application Languages
Many applications provide their own embedded programming language in the form of a script-
ing language. One such example is Microsoft VBA or Visual Basic for Applications. VBA is shipped
as a standard feature in Microsoft Office. It works with Microsoft Word, Excel, PowerPoint, and
Access. Microsoft has also added VBA support to other Windows applications such as Microsoft
Visio. In addition, third-party Windows application developers have integrated support for VBA
into their applications. For example, Corel has integrated VBA into WordPerfect Office X7.

A programmer who wants to create a new application that includes features found in Microsoft
Excel has a couple of options. One option is to create a new application from scratch. Another
option is to create a new application that works in conjunction with Microsoft Excel using VBA.
VBA allows programs to create custom GUIs and to automate the execution of its host applica-
tion. In the case of Microsoft Excel, this means that VBA can create a new spreadsheet, populate
it with data, perform calculations on that data, and present this data to the user using a cus-
tomized user interface that handles all the required interaction with Excel, providing the user
with a much simpler and more streamlined experience.

15Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 15

Web Development Languages
In its beginning, information on the Internet was delivered as plaintext. Although the Internet
certainly represented a great leap in communication, it was not until the introduction of HTML,
allowing for the development of the World Wide Web, that things truly became interesting. HTML
stands for Hypertext Markup Language. HTML lets web developers specify how data is displayed.
Modern web browsers like Internet Explorer, Opera, and Mozilla Firefox render web pages based
on HTML code.

HTML provides the ability to present static information that does not change. As more and more
people around the world started surfing the Internet and companies began to look at the Internet
as a means of generating revenue, the need for more powerful and robust web page programming
languages quickly became evident. In response, a host of new programming languages was cre-
ated. One of the first was JavaScript. JavaScript is a scripting language that lets you embed small
scripts inside HTML pages so you can provide interactive content on your web pages. Another
similarly named but completely different programming language, Java, came along allowing
small programs, referred to as Java applets, to be run within web browsers. Web developers use these
advanced programming languages to build web-based applications that enable web commerce.

Web-based programming languages give programmers access to hundreds of millions of Internet
users. Unfortunately, even though HTML today is supported by all major web browsers, incom-
patibilities between web browsers and programming languages create problems for web devel-
opers. As a result, there is no guarantee that Internet users surfing the Internet will have the
proper combination of software installed to allow them to visit and interact with every website,
leading to a unique set of challenges for web developers.

Database Languages
Modern database programs, such as Microsoft Access and Oracle, are designed to work with a
specialized programming language known as Structured Query Language (SQL). SQL is specifically
designed to support the creation, modification, and retrieval of data stored in a database.

Hint

A database is an application that is designed to facilitate the storage and retrieval of large
amounts of data.

The advantage of working with specialized database programming languages is that they are
optimized for interacting with databases and provide extremely efficient code. Typically, database-
specific programming languages allow database programmers to create database applications in

16 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 16

less time than general-purpose programming languages. A disadvantage of database programming
languages is that their use is tied to their respective database and, as such, they do not lend them-
selves to the development of other types of applications like general programming languages.

Most general programming languages, although not specifically optimized for database applica-
tion development, do support database access and, as such, are sometimes used in place of data-
base-specific languages. Databases are generally associated with specific operating systems. For
example, Microsoft Access only runs on Windows, so any applications developed in conjunction
with Microsoft access are restricted to Windows. This limits the portability of database programs.

Finding the Right Programming Language
There is no end of programming languages to choose from. Each programming language has its
own particular set of strengths and weaknesses. These languages are applicable to particular pro-
gramming environments. No one programming language can be used to develop applications
that can run on all platforms and operating systems. As such, there is no one best programming
language to learn.

Despite this obvious fact, you will find no shortage of individuals ready to argue that their
favorite programming language is the best. The truth is that for just about any programming
challenge, there are plenty of programming languages to choose from. Ultimately, the choice of
languages is less important than the creativity and talent of the programmer who wields it. As a
result, a good BASIC programmer can, for example, develop desktop software every bit as good
and useful as a C, C++, or Objective-C programmer.

Getting Started with Just BASIC
Just BASIC is a free BASIC programming language. Compared to other BASIC programming
languages like Visual Basic, Just BASIC is relatively simple. It does not require that you first learn
how to work with a complicated integrated development environment (IDE) or Microsoft’s .NET
Framework to be able to use it to create standalone Windows applications. Instead, Just BASIC
offers a simple editor and a simple BASIC dialect, making it much easier for the first-time pro-
grammer to focus on learning the fundamental elements of programming without getting lost in
the complexities of other high-end BASIC programming languages.

I selected Just BASIC as this book’s programming language because of its relative simplicity com-
pared to most other programming languages. Still, Just BASIC packs plenty of punch and can be
used to create Windows desktop applications. In addition to being free, it is backed by a sup-
portive online community of programmers that can help you learn more through online forums.

17Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 17

Hint

Check out Appendix B for a list of online resources where you can go to learn more about
Just BASIC, including online forums.

Once you have become comfortable with Just BASIC and are ready, you can make the transition
to one of the more advanced BASIC programming languages or perhaps to an entirely different
programming language.

Installing Just BASIC
Before you can begin creating new applications using Just BASIC, you must download and install
it. To get your free copy, go to www.justbasic.com, as shown in Figure 1.6, and click on the Down-
load tab at the top of the screen. This opens the download page, where you can click on the
Download link to download your copy of Just BASIC. At just 2.4MB in size, the download does
not take long to complete. When prompted, click on Save to download a copy of Just BASIC’s
install program to your computer.

18 Programming for the Absolute Beginner, Second Edition

Figure 1.6 Downloading a free copy of Just BASIC from www.justbasic.com.
© 2016 Shoptalk Systems

01 ProgABS2E ch01 2/23/15 8:33 PM Page 18

http://www.justbasic.com
http://www.justbasic.com

To begin the installation process, double-click on the installation program. Depending on your
version of Microsoft Windows, a User Account Control may appear prompting you to confirm
the execution of the Just BASIC install program. By default, if you are installing using a 64-bit
version of Windows, the Just BASIC install then prompts you for permission to install Just BASIC
in C:\Program Files (x86)\Just BASIC v1.1. Otherwise, you will be prompted to install Just BASIC in
C:\Program Files\Just BASIC v1.1. If you are installing Just BASIC on a computer running
Windows Vista or later, you do not want to accept the default location. If you do, you will get an
error message saying Runtime Error: “iniFilename” not understood each time you start Just
BASIC. This occurs because Just BASIC needs to be able to write files to its installation directory,
but Windows Vista and later versions of Microsoft Windows have protections around files stored
within the C:\Program Files (x86) or C:\Program Files directories, resulting in the error. To rem-
edy this situation, create a folder off the root of your computer’s disk and name it Basic. Once
you do this, replace the default install path suggested by Just BASIC’s install program with the
string C:\Basic Just BASIC v1.01 and click on the Start button.

A dialog appears showing the default installation folder for Just BASIC. During the installation
process, a number of files are copied to the Just BASIC folder. Once the installation process is
complete, you are prompted to click on OK to close the installation program. Just BASIC then
starts, as shown in Figure 1.7.

19Chapter 1 • Introduction to Programming

Figure 1.7 Just BASIC automatically starts at the end of its installation process.
© 2016 Shoptalk Systems

01 ProgABS2E ch01 2/23/15 8:33 PM Page 19

As you can see, two windows appear. The smaller window presents a series of links to online
resources. For now, just close this window. The second, larger window is Just BASIC’s program
editor and is the tool you will use to create and test your Just BASIC applications.

Setting Up Just BASIC Help
Just BASIC’s help system depends on the Windows Help (WinHlp.exe) program. However, start-
ing with Windows Vista, Microsoft stopped providing this program. If you have installed Just
BASIC on a computer running Microsoft Vista or a later version of Windows, you need to install
WinHlp.exe to access Just BASIC’s help files. The following procedure outlines the steps involved
in downloading and installing the Windows Help program.

1. Open the Download Center web page by opening your web browser and loading
www.microsoft.com/en-us/download.

2. Type WinHlp32.exe in the search file at the top-right corner of the Download Center web
page and press Enter.

3. A list of downloads for the WinHlp32.exe program is displayed. Click on the link repre-
senting the program that is appropriate for your version of Microsoft Windows.

4. A page providing detailed information about the version of WinHlp32.exe you have
selected is displayed. Click on the Download button.

5. Next, two options are displayed representing 32-bit and 64-bit installation files. Select the
option appropriate for your version of Microsoft Windows, and click on Next.

6. Follow the instructions that are then provided to download and install the Windows Help
program.

Creating and Executing Your First BASIC Program
Now that you have Just BASIC installed on your computer, let’s use it to create a simple computer
program. This program will consist of a single program statement that displays a text string mes-
sage. By developing and executing this program, you will learn the basic mechanics involved in
creating any Just BASIC computer program. The steps required to build your first Just BASIC
program are outlined here:

1. If Just BASIC is not already running, start it by clicking on Start, All Programs, Just BASIC
v1.01 and then Just BASIC v1.01. The Just BASIC Editor appears.

2. To begin creating a new Just BASIC program, click on the File menu and select the New
BASIC Source File option. In response, Just BASIC clears out the code editor pane, as
shown in Figure 1.8.

20 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 20

http://www.microsoft.com/en-us/download

3. Type print “Hello World!” in the code editor pane, as demonstrated in Figure 1.9.

21Chapter 1 • Introduction to Programming

Figure 1.8 Just BASIC applications are created by entering BASIC code statements in the code editor pane.
© 2016 Shoptalk Systems

Figure 1.9 Code statements are automatically color-coded by the Just BASIC code editor.
© 2016 Shoptalk Systems

01 ProgABS2E ch01 2/23/15 8:33 PM Page 21

22 Programming for the Absolute Beginner, Second Edition

4. Run your new Just BASIC program by clicking on the Run menu and selecting the Run
option. In response, Just BASIC compiles your new application and runs it, as shown in
Figure 1.10.

That is it. You have just created and executed your first Just BASIC application. In doing so, you
keyed in one code statement, which used the print command to display a text string in the appli-
cation’s window. By default, every Just BASIC application automatically displays a default window.
In the case of this program, text was displayed on this window using the print command.

Hint

The instructions that you write when developing a computer program are referred to as
statements. A program is a file containing code statements that, when executed, tell the
computer to do something. Within this book, the terms program and application are used
interchangeably. When saved to a file, the statements that make up a program are collec-
tively referred to as the program’s source code.

If you want, you can save your work so that you can load and re-execute it again later by clicking
on the code editor’s File menu and selecting the Save As option. This displays the Save As dialog,

Figure 1.10 By default, every Just BASIC application consists of a default window in which text can be displayed.
© 2016 Shoptalk Systems

01 ProgABS2E ch01 2/23/15 8:33 PM Page 22

allowing you to specify an application name as well as the location where you want to store your
BASIC application.

I suggest that you create a new folder named something like MyBasicApps somewhere on your
hard drive and that you use it as a repository for all your Just BASIC applications. This will help
you keep all your application files organized in one easy-to-find location.

Trick

The Hello World program is admittedly simple, but it does serve as an excellent example of
the steps involved in creating and executing a BASIC program. To see how this BASIC program
stacks up against the same type of program in other programming languages, visit
www.scriptol.com/programming/hello-world.php. Here you will find code examples of similar
Hello World programs written in other programming languages, including Assembly, COBOL,
Fortran, Visual Basic, C, C++, Java, and JavaScript, just to name a few.

Back to the Knock Knock Joke Game
Now it is time to turn your attention back to the development of this chapter’s game project:
the Knock Knock Joke game. The creation of this script will reinforce your understanding of the
mechanics involved in creating and executing Just BASIC programs. Later, down the road, you will
be able to apply this experience when developing and executing programs in other programming
languages.

As you follow along with the instructions that outline the steps involved in creating this program,
don’t worry if you do not understand everything that is going on. It is too early in the book to
expect to grasp the meaning and function of the BASIC language statements that make up this
game. There will be plenty of time, as you make your way through this book, to learn BASIC.

Designing the Game
Before beginning the development of any new computer program, it is a good idea to spend some
time planning the overall design of the application. Taking this approach will not only help to
ensure that the end product is a program that looks and works the way you want it to but will
also help reduce the possibility of running into problems and errors along the way.

As you saw at the beginning of this chapter, the Knock Knock Joke game executes by displaying
prompts in the form of pop-up dialog windows. Default responses are supplied for each part of
the jokes to minimize the effort required to complete the game. Each of the game’s three jokes is
presented in succession, and the game ends once the last of the three jokes has been told. If the

23Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 23

http://www.scriptol.com/programming/hello-world.php

user fails to provide the expected responses, the game should display an error message explain-
ing how to correctly formulate the expected response.

As you can see, the Knock Knock Joke game is straightforward. You will create it in six steps, as
outlined here:

1. Create a new BASIC file and disable the display of its default window.

2. Display the opening line for the first joke and collect the player’s response.

3. Analyze the player’s response and respond accordingly.

4. Tell the game’s second joke.

5. Tell the game’s third joke.

6. Terminate the program’s execution.

Creating a Just BASIC File

The first step in the development of the Knock Knock Joke game is to start Just BASIC and to
create a new BASIC file. Begin by starting Just BASIC by clicking on Start, All Programs, Just
BASIC v1.01, and then select Just BASIC v1.01. Just BASIC starts by displaying two default win-
dows. Dismiss the World of Just BASIC window by clicking on the Close button located in the
upper-right corner of the window. Next, create a new BASIC file by clicking on the File menu and
selecting the New BASIC Source file. In response, Just BASIC clears out the code editor pane,
making it ready to accept the code statements that will make the Knock Knock Joke game.

Even though you have not yet added the code required to create the game, save your BASIC file
by clicking on the File menu and then selecting Save As. In response, the Save As dialog appears.
Enter KnockKnock.bas as the application’s filename, specify the location where you would like to
save your new game, and click Save.

At this point, you have created a new empty BASIC file. Let’s document the purpose of the Knock
Knock game by entering the following code statements into the BASIC file:

‘ ***

‘

‘ Script Name: KnockKnock.bas (The Knock Knock Joke Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 1, 2015

‘

‘ Description: This Just BASIC game displays a series of interactive

‘ Knock Knock jokes.

‘

‘ ***

24 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 24

Each of these statements is actually a comment. In most BASIC programming languages, includ-
ing Just BASIC, comments begin with the ‘ character or the REM keyword.

Hint

As the preceding statements demonstrate, comments can be placed on their own line.
Comments can also be added to the end of code statements, as demonstrated here:

notice “Click on OK to continue.” : rem Display a message in a pop-up window

notice “Click on OK to continue.” ‘Display a message in a pop-up window

To use rem to add a comment to the end of a code statement, you must precede the comment
with a colon. The colon character is not required when using the apostrophe characters to
add a comment to the end of a statement.

You should make liberal use of comments in your program code to provide information about
your applications as well as to document the logic implemented by specific code statements.
Different programming languages use different characters to represent comments. For exam-
ple, in C++, the // character is used as the comment character.

Now that you have supplied a little documentation about your new application, add the follow-
ing statement to the bottom of your BASIC file:

nomainwin

This statement executes Just BASIC’s nomainwin command. This command is unique to Just
BASIC. Its purpose is to suppress the display of Just BASIC’s default window when a Just BASIC
application starts. This statement has been added because the Knock Knock Joke game is
designed to display text in pop-up dialogs instead of Just BASIC’s default window.

Displaying the Opening Prompt

Now it is time to add the code statements that will display the opening prompt for the first knock
knock joke, as shown here:

response$ = “Who is there?”

prompt “Knock Knock Joke Game” + chr$(13) + “Knock Knock!”; response$

The first statement assigns a text statement to a variable named response$. The contents of this
variable will be used to give the player a default response in the pop-up dialog window generated
by the second statement. In BASIC, a string is a series of zero or more characters surrounded by
double quotation marks, and a variable is a pointer to a location in memory where a value is stored.

25Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 25

The second statement uses the prompt command to display the first joke’s opening prompt in a
pop-up dialog window. The player will interact with the game by clicking on the pop-up dialog
window’s OK button to submit the required response.

Hint

You will learn more about strings and variables in Chapter 4, “Working with Variables and
Arrays.”

Analyzing Player Input

The next statements that you need to add to your BASIC program are shown next. These state-
ments are responsible for analyzing the response provided by the player and then taking the
appropriate actions (either proceeding to tell the rest of the joke or displaying an error message).
Because these statements have not been covered yet, I am not going to attempt to explain them
in any further detail. For now, just key them in exactly as shown:

if response$ = “” then

notice “Knock Knock Joke Game” + chr$(13) + _
“Error: You must respond by entering ‘Who is there?’”

else

response$ = “Disease who?”

prompt “Knock Knock Joke Game” + chr$(13) + “Disease!”; response$

if response$ = “” then

notice “Knock Knock Joke Game” + chr$(13) + _
“Error: You must respond by entering ‘Disease who?’”

else

notice “Knock Knock Joke Game” + chr$(13) + _
“Disease jokes seem funny to you?”

end if

end if

26 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 26

At this point, the programming logic required to tell the first joke has been defined.

Telling the Second Joke

The code statements required to tell the game’s second joke are listed next. As you can see, except
for the text that makes up the second joke, these code statements are identical to the statements
that made up the first joke:

response$ = “Who is there?”

prompt “Knock Knock Joke Game” + chr$(13) + “Knock Knock!”; response$

if response$ = “” then

Notice “Knock Knock Joke Game” + chr$(13) + _
“Error: You must respond by entering ‘Who is there?’”

else

response$ = “Butter who?”

prompt “Knock Knock Joke Game” + chr$(13) + “Butter!”; response$

if response$ = “” then

notice “Knock Knock Joke Game” + chr$(13) + _
“Error: You must respond by entering ‘Butter who?’”

else

notice “Knock Knock Joke Game” + chr$(13) + _
“You butter move on to the next joke.”

end if

end if

Telling the Last Joke

The code statements that tell the third joke are provided next. Again, except for the text that
makes up the actual joke, these statements are identical to the statements that made up the first
and second jokes:

27Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 27

www.allitebooks.com

http://www.allitebooks.org

response$ = “Who is there?”

prompt “Knock Knock Joke Game” + chr$(13) + “Knock Knock!”; response$

if response$ = “” then

notice “Knock Knock Joke Game” + chr$(13) + _
“Error: You must respond by entering ‘Who is there?’”

else

response$ = “Max who?”

prompt “Knock Knock Joke Game” + chr$(13) + “Max!”; response$

if response$ = “” then

notice “Knock Knock Joke Game” + chr$(13) + _
“Error: You must respond by entering ‘Max who?’”

else

notice “Knock Knock Joke Game” + chr$(13) + _
“BASIC, JAVA, C++, it max no difference to me!”

end if

end if

Terminating the Program

You need to add one last statement to the end of your program before calling it a day. This state-
ment consists of a single word.

end

end is a Just BASIC keyword that identifies the end of your application. Its purpose is to ensure
that Just BASIC properly terminates the application before closing any open windows or dialogs.
By failing to include this statement in your Just BASIC applications, you run the risk of your
applications continuing to run even after the application windows are closed, leaving you without
an easy way to terminate them. Including end at the appropriate location in Just BASIC applica-
tions is considered a good programming practice.

28 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 28

Trick

If you forget to add the end keyword to one of your Just BASIC applications and find that
your application is stuck in a state of limbo with all its application windows closed, you can
still terminate it. You accomplish this in Windows 7 by pressing Ctrl+Alt+Delete and then
selecting Start Task Manager. You can then select the name of your Just BASIC application
from the list of open applications in the Applications property sheet and click on the End
Task button. In Windows 8.1, you can terminate a Just BASIC application by pressing
Ctrl+Alt+Delete and then selecting Task Manager. You can then select the name of your Just
BASIC application from the list of open applications displayed in the Processes property
sheet and click on the End Task button.

The Final Result
Okay, that’s it. Assuming you followed along carefully and did not make any typing mistakes,
your new game should be ready to run. Given the step-by-step approach used to show you how
to develop the Knock Knock Joke game, I have gone ahead and provided a complete copy of the
application’s source code so that you can make sure you keyed in everything correctly and did so
in the required order. Also, I have added comments explaining what is going on throughout the
source code.

‘ ***

‘

‘ Script Name: KnockKnock.bas (The Knock Knock Joke Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 1, 2015

‘

‘ Description: This Just BASIC game displays a series of interactive

‘ Knock Knock jokes.

‘

‘ ***

‘Disable the default display of the main window

nomainwin

‘ ***

‘ Begin telling the first knock knock joke

‘ ***

29Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 29

‘Define the default response for the opening prompt

response$ = “Who is there?”

‘Display the opening prompt for the first joke

prompt “Knock Knock Joke Game” + chr$(13) + “Knock Knock!”; response$

‘Evaluate the player’s response

if response$ = “” then ‘No data was entered or the player clicked on Cancel

‘Display an error message

notice “Knock Knock Joke Game” + chr$(13) + _

“Error: You must respond by entering ‘Who is there?’”

else ‘Continue telling the joke

‘Define the default response for the second prompt

response$ = “Disease who?”

‘Display the follow-up prompt for the first joke

prompt “Knock Knock Joke Game” + chr$(13) + “Disease!”; response$

‘Evaluate the player’s response

if response$ = “” then ‘No data was entered or cancel was clicked

‘Display an error message

notice “Knock Knock Joke Game” + chr$(13) + _

“Error: You must respond by entering ‘Disease who?’”

else ‘Finish telling the joke

‘Display the joke’s punch line

notice “Knock Knock Joke Game” + chr$(13) + _

“Disease jokes seem funny to you?”

end if

end if

30 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 30

‘ ***

‘ Begin telling the second knock knock joke

‘ ***

‘Define the default response for the opening prompt

response$ = “Who is there?”

‘Display the opening prompt for the second joke

prompt “Knock Knock Joke Game” + chr$(13) + “Knock Knock!”; response$

‘Evaluate the player’s response

if response$ = “” then ‘No data was entered or the player clicked on Cancel

‘Display an error message

Notice “Knock Knock Joke Game” + chr$(13) + _

“Error: You must respond by entering ‘Who is there?’”

else ‘Continue telling the joke

‘Define the default response for the second prompt

response$ = “Butter who?”

‘Display the follow-up prompt for the second joke

prompt “Knock Knock Joke Game” + chr$(13) + “Butter!”; response$

‘Evaluate the player’s response

if response$ = “” then ‘No data was entered or cancel was clicked

‘Display an error message

notice “Knock Knock Joke Game” + chr$(13) + _

“Error: You must respond by entering ‘Butter who?’”

else ‘Finish telling the joke

‘Display the joke’s punch line

notice “Knock Knock Joke Game” + chr$(13) + _

“You butter move on to the next joke.”

end if

end if

31Chapter 1 • Introduction to Programming

01 ProgABS2E ch01 2/23/15 8:33 PM Page 31

‘ ***
‘ Begin telling the third knock knock joke

‘ ***

‘Define the default response for the opening prompt
response$ = “Who is there?”

‘Display the opening prompt for the third joke
prompt “Knock Knock Joke Game” + chr$(13) + “Knock Knock!”; response$

‘Evaluate the player’s response
if response$ = “” then ‘No data was entered or the player clicked on Cancel

‘Display an error message
notice “Knock Knock Joke Game” + chr$(13) + _

“Error: You must respond by entering ‘Who is there?’”

else ‘Continue telling the joke

‘Define the default response for the second prompt
response$ = “Max who?”

‘Display the follow-up prompt for the third joke
prompt “Knock Knock Joke Game” + chr$(13) + “Max!”; response$

‘Evaluate the player’s response
if response$ = “” then ‘No data was entered or cancel was clicked

‘Display an error message
notice “Knock Knock Joke Game” + chr$(13) + _

“Error: You must respond by entering ‘Max who?’”

else ‘Finish telling the joke

‘Display the joke’s punch line
notice “Knock Knock Joke Game” + chr$(13) + _

“BASIC, JAVA, C++, it max no difference to me!”

end if

end if

end

32 Programming for the Absolute Beginner, Second Edition

01 ProgABS2E ch01 2/23/15 8:33 PM Page 32

Go ahead and execute your copy of the Knock Knock Joke game and put it through its paces. If
instead of executing, you get an error, you have made at least one typo somewhere. Hopefully the
error message you see will provide you with a clue as to where the error lies. Otherwise, you will
need to go back and double-check each statement in the source code to find and eliminate all
your typing errors.

Summary
In this chapter, you learned background information that will help you as you work your way
through this book. This information includes the introduction of a number of key programming
terms. In addition to increasing your programming vocabulary, you learned about different pro-
gramming languages and how they compare against one another. You also learned about popu-
lar BASIC programming languages, including Just BASIC. Finally, you learned how to create and
execute your first BASIC program.

Now, before you move on to Chapter 2, “Creating Programs with Just BASIC,” I suggest you set
aside a few extra minutes to improve the Knock Knock Joke game by addressing the following list
of challenges.

33Chapter 1 • Introduction to Programming

1. As currently written, the Knock Knock Joke game tells only three jokes. Consider
improving the user’s experience by adding additional jokes.

2. The error messages displayed by the game when the user fails to provide the expected
response are somewhat cryptic. Consider enhancing them to make them easier to
understand.C

ha
lle

ng
es

01 ProgABS2E ch01 2/23/15 8:33 PM Page 33

This page intentionally left blank

Creating Programs with
Just BASIC

2
T

o work with any programming language, you need access to a set of software
tools that facilitate the software development process. These tools include such
things as a code editor, a compiler or interpreter, and a source code debugger.

This chapter introduces you to these types of resources using tools provided by Just
BASIC, demonstrating how these types of tools are employed to develop software
applications. In addition, you will receive a thorough overview of Just BASIC’s
code editor and learn how to configure it to suit your personal preferences and
work habits. You will also learn how to create and package standalone applications,
which you can then run on computers where Just BASIC is not installed. On top
of all this, you will learn how to create your second computer game: the Legend of
Mighty Molly.

Specifically, you will learn the following:

• The ins and outs of Just BASIC menu and toolbar commands

• The way to configure Just BASIC editor settings

• The different windows that make up Just BASIC

• The method to create and distribute Just BASIC applications

02 ProgABS2E ch02 2/23/15 9:14 PM Page 35

36

Project Preview: The Legend of Mighty Molly
In this chapter, you will learn how to create a new game that tells a mad-lib-styled story of the
Legend of Mighty Molly. Through the development of this game, you will learn how to interact
with the player using the default text window that is automatically generated as part of every Just
BASIC application. You will also learn how to clear out text displayed in the window and how to
pause program execution to collect player input.

Figure 2.1 shows the game as it appears when it’s started.

Programming for the Absolute Beginner, Second Edition

Figure 2.1 The opening screen for the Legend of Mighty Molly.
© 2016 Cengage Learning®

The player must press the Enter key to dismiss the opening welcome screen and advance to the
next part of the story. This results in the display of the screen shown in Figure 2.2, which notifies
the player that her participation is required to tell the story.

Next, as Figure 2.3 demonstrates, the player is presented with a series of questions. The answers
that the player provides are used in the telling of the game’s story.

02 ProgABS2E ch02 2/23/15 9:14 PM Page 36

37Chapter 2 • Creating Programs with Just BASIC

Figure 2.2 The player is given instructions on the interaction required to complete the story.
© 2016 Cengage Learning®

Figure 2.3 The player is asked to respond to a series of questions.
© 2016 Cengage Learning®

02 ProgABS2E ch02 2/23/15 9:14 PM Page 37

Once all questions have been answered, the game notifies the player that it is ready to begin
telling the story, as shown in Figure 2.4.

Because the story integrates player input, it varies slightly each time it is told. The story is told in
four parts. The text for the first part of the story is shown in Figure 2.5.

38 Programming for the Absolute Beginner, Second Edition

Figure 2.4 The game announces that it is ready to tell its story.
© 2016 Cengage Learning®

Figure 2.5 The game begins telling the story of the Legend of Mighty Molly.
© 2016 Cengage Learning®

02 ProgABS2E ch02 2/23/15 9:14 PM Page 38

An example of how the second part of the story might look is provided in Figure 2.6.

The game automatically pauses after each part of the story is displayed, allowing the player to
control the pace at which the story unfolds. Figure 2.7 shows an example of how the third part
of the story might go.

39Chapter 2 • Creating Programs with Just BASIC

Figure 2.6 The king calls upon Mighty Molly to save the day.
© 2016 Cengage Learning®

Figure 2.7 Mighty Molly defends the people by fighting the story’s antagonist.
© 2016 Cengage Learning®

02 ProgABS2E ch02 2/23/15 9:14 PM Page 39

Finally, the last part of the story is told, as demonstrated in Figure 2.8.

Tools of the Trade
To work with any programming language, a programmer needs access to a number of different
software development tools, including the following:

• Code editor. Used to enter and save program source code.

• Compiler or interpreter. Required to convert program source code into machine language
code for execution.

• Integrated debugger. Used to locate and analyze errors that occur during the application
development process.

Some programming languages come equipped with everything needed to develop software programs.
For example, Microsoft Visual C++ provides a complete integrated development environment
(IDE). The IDE includes a code editor, compiler, and debugger. In addition, the IDE includes tools
that enable Rapid Application Development (RAD) using drag-and-drop graphical user interface
(GUI) design. Other programming languages, especially scripting languages, require that you
provide your own code editor. In the case of Just BASIC, a code editor, compiler, and debugger
are provided.

40 Programming for the Absolute Beginner, Second Edition

Figure 2.8 Like most stories, the Legend of Mighty Molly has a happy ending.
© 2016 Cengage Learning®

02 ProgABS2E ch02 2/23/15 9:14 PM Page 40

Hint

Just BASIC’s distribution package also includes a drag-and-drop GUI forms designer called
FreeForm-J. You will learn how to create Just BASIC applications with GUIs in Chapter 3,
“Creating Graphical User Interfaces.”

Working with Just BASIC
As has already been stated, Just BASIC is a simple and straightforward BASIC dialect that gives
programmers the tools they need to develop standalone applications that can be executed on
Microsoft Windows. Just BASIC provides programmers with a number of helpful features,
including these:

• Statement color coding. Just BASIC’s code editor automatically color-codes language
keywords to make them stand out, which is an especially helpful visual queue for larger
programs that can significantly enhance source code readability.

• Automatic code indentation. Just BASIC’s code editor helps programmers write more
legible programs by automatically indenting code statements.

• Built-in source code debugger. Just BASIC provides a debugging facility that allows
programmers to pause program execution so they can check on the status of program
variables and trace program execution flow on a line-by-line basis.

• GUI forms editor. Included as part of the Just BASIC distribution is a form generator
that enables the drag-and-drop design of GUIs.

• Built-in sprite engine. Just BASIC’s sprite engine provides facilities for adding animated
graphical effects to Windows applications.

• Support for playing audio files. Just BASIC gives programmers the ability to play audio
files and MIDI music.

Each time Just BASIC is started, two windows are displayed: The World of Just BASIC! window
and the code editor window. The code editor window offers access to everything you need to cre-
ate and test Just BASIC programs. The World of Just BASIC! window includes access to a host of
Just BASIC resources.

The World of Just BASIC! Window
The World of Just BASIC! window, shown in Figure 2.9, is automatically displayed each time you
start Just BASIC.

41Chapter 2 • Creating Programs with Just BASIC

02 ProgABS2E ch02 2/23/15 9:14 PM Page 41

42 Programming for the Absolute Beginner, Second Edition

This window consists of six graphical links that provide access to the following resources:

• Community

• Liberty BASIC

• Links

• Tutorial

• Resources

• News

Each of these links is explained in detail in the sections that follow.

Community

The Community link offers access to the Community web page located on the Just BASIC web-
site, as shown in Figure 2.10. From here, programmers can access the Just BASIC Message Forum.
This forum provides an online location for Just BASIC programmers to congregate and share
information with one another and is a great source of information and help when you run into
programming problems that you are unable to figure out on your own.

Liberty BASIC

The Liberty BASIC link provides access to information about Liberty BASIC, which is posted at
the Just BASIC website, as shown in Figure 2.11. Liberty BASIC is the commercial upgrade to Just
BASIC.

Figure 2.9 The World of Just BASIC! window
provides single-click access to a number of helpful
programming resources.
© 2016 Cengage Learning®

02 ProgABS2E ch02 2/23/15 9:14 PM Page 42

43Chapter 2 • Creating Programs with Just BASIC

Figure 2.10 The Just BASIC website’s Community page provides access to the Just BASIC Message Forum.
© 2016 Shoptalk Systems

Figure 2.11 Liberty BASIC is the commercial upgrade to Just BASIC.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 43

Liberty BASIC supports Just BASIC code 100 percent. In addition, it provides a number of fea-
tures not found in Just BASIC, including the following:

• Additional debugging features

• Improved sprite commands

• The ability to access input/output (I/O) ports

• Additional commands for performing string and file operations

Links

The Links link offers access to a small collection of online Just BASIC websites and resources, as
shown in Figure 2.12.

Tutorial

The Tutorial link has quick access to Just BASIC’s help system. As shown in Figure 2.13, Just
BASIC’s help system includes a six-week tutorial as well as the ability to search for Just BASIC
information using search and find options.

44 Programming for the Absolute Beginner, Second Edition

Figure 2.12 Accessing additional online Just BASIC resources.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 44

Resources

The Resources link gives you easy access to a number of websites (as demonstrated in Figure 2.14)
where you can interact with other Just BASIC programmers as well as find sample programs.

45Chapter 2 • Creating Programs with Just BASIC

Figure 2.13 Access to help is also provided
from the Just BASIC code editor’s menu system.
© 2016 Shoptalk Systems

Figure 2.14 Use the Resources link to locate websites where you can go to find sample code
developed by other programmers.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 45

News

Click on the News link to find current information about what is going on with Just BASIC, as
demonstrated in Figure 2.15.

The Code Editor Window
The code editor window is where you will spend most of your time when developing Just BASIC
applications. As shown in Figure 2.16, Just BASIC’s code editor is organized into four main parts.

Like any good text editor, the code editor provides slider controls on the right and bottom of the
editor window that are enabled whenever the amount of source code exceeds the window’s visible
area.

By default, the code editor automatically opens and displays a basic program named
welcome.bas each time it is started. This program consists of a large collection of comments that
have instruction designed to help new Just BASIC programmers get started. If you scroll down
to the bottom of this file, you will find the following code statements:

nomainwin

run “winhlp32 justbasic.hlp”

end

46 Programming for the Absolute Beginner, Second Edition

Figure 2.15 Viewing Just BASIC news.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 46

When executed, this program opens Just BASIC’s help system. The first statement executes the
nomainwin command, which suppresses the display of the application’s default text window.

Hint

As you may remember, a default text window is automatically created for every Just BASIC
program. This window is named mainwin. You can use this window, as demonstrated later in
the Legend of Mighty Molly story, to display text and interact with users.

The second statement executes the run command and passes it two arguments for processing.
You use the run command to execute external programs. In this example, the first argument being
passed to the run command is winhelp32, which is the name of the program to be executed.

47Chapter 2 • Creating Programs with Just BASIC

Figure 2.16 Just BASIC’s code editor window.
© 2016 Shoptalk Systems

Toolbar

Code editor pane

Menu bar

Status bar

02 ProgABS2E ch02 2/23/15 9:14 PM Page 47

Winhlp32 is a Windows Help File viewer, which you were given instructions on how to install in
Chapter 1, “Introduction to Programming.” The second argument passed to the run command is
justbasic.hlp, which is the name of Just BASIC’s help file.

Hint

An argument is a piece of data passed to a program for processing.

The last statement executes the end command, which ensures that the program terminates in a
clean manner. If you want, you can run this program by opening the Run menu and clicking on
the Run command. Many Just BASIC programmers find that having Just BASIC automatically
load the welcome.bas program each time it starts is a nuisance and configure Just BASIC to prevent
this behavior from happening. You will learn how to do this later in the chapter in the section
titled “Configuring Just BASIC Preferences.”

Hint

The end statement forces the clean termination of an application, ensuring that any open files
and windows are properly closed.

Just BASIC’s Menu System

The Just BASIC code editor gives programmers access to numerous commands through its menu
system, located at the top of the editor window. As Figure 2.17 shows, the File menu provides
access to commands that allow you to create new BASIC programs, open existing programs, and
save and print their contents. In addition, a listing of recently edited programs is maintained,
allowing you to easily open them again.

48 Programming for the Absolute Beginner, Second Edition

Figure 2.17 The File menu provides commands
for creating and opening BASIC programs.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 48

The Edit menu, shown in Figure 2.18, contains commands that allow you to Copy, Cut, and Paste
code statements as well as to select or clear out code currently typed into the editor. The Edit
menu also provides access to Find and Replace commands, allowing you to perform code
searches and to make mass code changes.

The Run menu, shown in Figure 2.19, contains commands that allow you to run your Just BASIC
programs. The Run command runs your program normally, and the Debug command runs pro-
grams in debug mode, enabling you to track down and fix program errors. The Run menu also
has a Kill command that lets you forcibly terminate the execution of any Just BASIC applications
that are currently running.

Hint

Instruction on how to kill Just BASIC programs is provided later in this chapter.

As Figure 2.19 shows, the Run menu also provides access to a pair of commands that allow you to
make and run *.TKN files. A *.TKN file is a token file providing the basis for creating Just BASIC appli-
cations that can run as standalone applications and is the key to creating Just BASIC applications
that you can then distribute to other computers. You’ll learn the specific steps involved in creating
standalone applications later in this chapter in the section titled “Building Standalone Applications.”

49Chapter 2 • Creating Programs with Just BASIC

Figure 2.18 Accessing commands
located on the Just BASIC Edit menu.
© 2016 Shoptalk Systems

Figure 2.19 The Run menu provides access
to commands that execute BASIC programs.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 49

50 Programming for the Absolute Beginner, Second Edition

One additional command provided by the Run menu starts the FreeForm-J GUI Editor. FreeForm-J
is an external utility that you can use when laying out GUIs. FreeForm-J assists in designing
graphical windows interfaces using drag and drop to add and organize interface elements such as
text boxes and button controls. You will learn how to work with FreeForm-J in Chapter 3.

The Setup menu, shown in Figure 2.20, provides access to windows that you can use to modify
Just BASIC configuration settings. You can make changes to these settings to customize Just BASIC’s
configuration to suit your own personal preferences. You’ll find a detailed discussion of how to
configure Just BASIC later in this chapter.

Just BASIC’s last menu is its Help menu. As shown in Figure 2.21, it provides access to Just
BASIC’s help systems and to a Just BASIC tutorial. You can also access Just BASIC’s release notes
and online news and links from this menu.

Just BASIC’s Toolbar

Just BASIC’s toolbar, shown in Figure 2.22, has single-click access to a number of commonly used
editor commands.

Figure 2.20 The Setup menu provides access to
windows that control Just BASIC’s configuration settings.
© 2016 Shoptalk Systems

Figure 2.21 Just BASIC provides access
to extensive help information and resources.
© 2016 Shoptalk Systems

New file

Open file Print Cut Paste Debug Release NotesThe World of
Just BASIC

Figure 2.22 The Just BASIC toolbar provides single-click access to commonly used commands.
© 2016 Shoptalk Systems

Save file Find/Replace Copy Run Preferences Help

02 ProgABS2E ch02 2/23/15 9:14 PM Page 50

© 2016 Shoptalk Systems

Configuring Just BASIC Preferences
Like many programming languages, you can customize the look and operation of Just BASIC.
This is accomplished through its Preferences window, shown in Figure 2.23. You access the Pref-
erences window by clicking on Just BASIC’s Setup menu and selecting Preferences or by clicking
on the Preferences button on the Just BASIC toolbar.

51Chapter 2 • Creating Programs with Just BASIC

Toolbar Command Menu Equivalent Keyboard Shortcut

New File File, New BASIC File Alt+F+N

Open File File, Open Alt+F+O

Save File File, Save Alt+F+S

Print File, Print Alt+F+P

Find/Replace Edit, Find/Replace Ctrl+F

Cut Edit, Cut Ctrl+X

Copy Edit, Copy Ctrl+C

Paste Edit, Paste Ctrl+V

Run Run, Run Shift+F5

Debug Run, Debug Alt+F5

Preferences Setup, Preferences Alt+T+P

Help Help, Just BASIC Help Alt+H+L

Release Notes Help, Release Notes Alt+H+P

TA B L E 2 .1 J U S T BAS IC ’ S TO O L B A R S H O R T C U T S

Figure 2.23 Configuring Just
BASIC preference settings.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 51

Just BASIC Preferences are organized into the following major categories:

• Notification

• Starting up

• Compiling

• Environment

Notification Settings
Just BASIC’s notification settings allow you to specify how much information and interaction
you want when working with the code editor. Either of the following options can be configured:

• Confirm on Exit of Just BASIC. Instructs Just BASIC to display a prompt asking for con-
firmation before closing the Just BASIC code editor window.

• Display Execution Complete Notice. Instructs Just BASIC to display a message in the title
bar of a program’s main window indicating when program execution has completed. This
option is enabled by default.

Startup Settings
Just BASIC’s startup configuration settings give you control over the initial appearance of the
code editor window as well as the ability to specify which, if any, BASIC file should be automat-
ically located into the code editor at startup. Either of the following options can be configured:

• Start Just BASIC Editor full-screen. Instructs Just BASIC to open the code editor window
in full screen mode, filling the entire display area.

• Load on Startup. Controls which BASIC file, if any, is automatically loaded at startup.

The Load on Startup option can be useful when you’re working on a BASIC application that requires
a considerable amount of time to complete or when working on an application that must be fre-
quently modified. This option allows you to choose from any of the following three options:

• No File. Instructs Just BASIC to start without loading a BASIC file.

• Most Recent File. Instructs Just BASIC to load the most recently edited program at
startup.

• This File. Instructs Just BASIC to load the specified file.

As mentioned earlier in this chapter, Just BASIC automatically displays the welcome.bas file each
time it is started. You can alter this behavior by specifying No File as the setting for the Load on
Startup option.

52 Programming for the Absolute Beginner, Second Edition

02 ProgABS2E ch02 2/23/15 9:14 PM Page 52

Compiler Settings
Just BASIC lets you configure two compiler settings, both of which are enabled by default. The
Show Compile Progress Dialog setting instructs Just BASIC to display a graphic representation
of the compile process whenever you compile a program. Although it’s often barely noticeable for
small programs, this option can be useful for larger applications with a longer compile time,
allowing the programmer to cancel the compilation at any time during the process.

The Create *.BAK File on Run/Debug option allows you to instruct Just BASIC to maintain a
backup copy of any Just BASIC application every time you run it from within the code editor.
Just BASIC automatically saves backup files in its installation folder. The obvious advantage of
this option is that it allows you to recover the previous version of any Just BASIC application in
case something goes wrong with the most recent version. If you need it, all you have to do is nav-
igate to the specified backup folder and retrieve the appropriate backup file. Just rename its file
extension from .bak to .bas, and you can begin working with it.

Hint

You were advised in Chapter 1 to create a directory named Basic at the root of your com-
puter’s disk drive and to use that directory as your installation folder.

Environmental Settings
The next set of configuration settings that you can modify are the environmental settings. In
total, there are six environment settings that you can configure, as outlined here:

• Use Syntax Coloring. When enabled, this option instructs Just BASIC to apply different
colors to language keywords that make up code statements.

• Enable Auto Indenting. When enabled, this option instructs Just BASIC to repeat the pre-
vious level of indentation each time the Enter key is pressed when keying in code statements.

• Add ‘Kill BASIC Apps’ to All Windows. When enabled, this option instructs Just BASIC
to add a special Kill BASIC Apps menu item to each Just BASIC window, which you can
use to forcibly terminate any active Just BASIC application.

• Main Window Columns. Specifies the default window size for the default main window
of any Just BASIC program. The default values define a text window that is 80 columns
wide and 24 rows tall.

• Source Filename Extension. Defines the default filename extension for Just BASIC programs.
The default file extension is .BAS.

• Reload File on Activate. When enabled, this configuration option supports the execution
of Just BASIC applications being edited outside of the Just BASIC code editor.

53Chapter 2 • Creating Programs with Just BASIC

02 ProgABS2E ch02 2/23/15 9:14 PM Page 53

Trick

The Reload File on Activate environmental configuration setting deserves a little extra expla-
nation. Its purpose is to allow you to open the same file twice: once in the Just BASIC code
editor and a second time in a third-party editor of your choice. This allows you to write and
modify your application’s source code using your favorite editor and, if the Reload File on
Activate setting has been enabled, switch over to Just BASIC and run your application. Just
BASIC automatically reloads a fresh copy of your application running it in order, ensuring
that the most current version is executed.

Other Configuration Options
The Just BASIC Setup menu also lets you configure editor and printer font sizes for all text. Just
BASIC uses the Courier New font with a Regular style font size of 9 as the default for the code
editor. Just BASIC’s default for printed text is Courier New, Regular style font with a font size of 10.

The Setup menu also gives you the ability to configure Just BASIC to add entries for external pro-
grams to its Run menu. This is accomplished by clicking on the Setup menu’s External Programs
menu item, which displays the Setup External Programs window shown in Figure 2.24.

As you can see, there is an entry for the FreeForm-J GUI Editor by default, thus making it easy
to start this external program from within the Just BASIC code editor. Using the Setup External
Programs window, you can add entries for other software programs. For example, you might
want to add an entry for an alternative editor or a graphics drawing program. To do so, click on the
New button, type a descriptive name for the program being added, click on the Browse button,
specify the name and path of the program, and click on Open. When you click on Close to dismiss
the Setup External Programs window, a prompt appears informing you that you must stop and
restart Just BASIC for your modifications to become effective.

54 Programming for the Absolute Beginner, Second Edition

Figure 2.24 Adding entries to external
programs under the Just BASIC Run menu.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 54

Working with Applications
You have already learned how to use Just BASIC to create and execute new Windows desktop
applications. In the sections that follow, you will learn how to reopen saved Just BASIC programs
and how to kill the execution of a Just BASIC program that did not end properly on its own.

Trick

Unlike many other programming language IDEs, Just BASIC’s code editor only allows you to
edit one BASIC program at a time. However, you can start up as many different instances of
Just BASIC at a time as you want and edit multiple applications that way.

Opening and Saving Programs
You can reopen and edit any Just BASIC program by clicking on the File menu and selecting the
Open menu item. In response, the Open File window is displayed, as shown in Figure 2.25.

55Chapter 2 • Creating Programs with Just BASIC

Figure 2.25 Opening a BASIC file using Just BASIC.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 55

56 Programming for the Absolute Beginner, Second Edition

Using the Open File window, locate and select the BASIC file you want to edit and click on the
Open button. Just BASIC opens the file and displays its contents in the code editor pane. At this
point, you may edit the program or run it by clicking on the Run button. When Just BASIC’s Run
command is executed, be it from the Run menu or by clicking on the Run button on the toolbar,
it takes a few moments for your program to begin executing. In the background, Just BASIC must
first compile your program’s source code into machine code. Once this task has been completed,
Just BASIC runs your compiled program.

Hint

You can also run your BASIC application by pressing the Shift and the F5 key simultaneously.

Trick

You may have noticed that when the Open File window was first displayed, it showed the
contents of the Just BASIC folder. This folder contains dozens of sample programs supplied
as part of Just BASIC’s distribution package. These programs are generally small and demon-
strate how to perform a host of different tasks using various Just BASIC programming fea-
tures. You can learn much from studying these examples. For example, if you were to select
Lander.bas, you’d open a Just BASIC drawing application that when executed looks like the
application shown in Figure 2.26.

Figure 2.26 Executing the Lander.bas program supplied with Just BASIC.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 56

Killing Programs
Just BASIC provides a Kill command to assist you if you execute a Just BASIC program that fails
to terminate properly. To execute this command, click on the Run menu and select the Kill BASIC
Programs option. In response, Just BASIC displays a context menu that lists all currently running
Just BASIC programs, as demonstrated in Figure 2.27.

To forcibly terminate a Just BASIC application, click on its name. Also, take note that also
included in the context menu is a Kill All option. Selecting this option forces the termination of
all currently running Just BASIC programs.

Hint

Remember to add the end command to the end of your Just BASIC programs. This command
instructs Just BASIC to close any open resources prior to terminating an application and
helps prevent applications from getting hung up.

57Chapter 2 • Creating Programs with Just BASIC

Figure 2.27 Killing a Just BASIC program that has failed to properly terminate.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 57

58 Programming for the Absolute Beginner, Second Edition

Other Just BASIC Components
Just BASIC’s code editor is the only tool that you need to develop and test Just BASIC programs.
However, like many modern programming languages, Just BASIC gives programmers additional
tools that assist in the development of software applications. These programs include an external
Just BASIC application called FreeForm-J and Just BASIC’s built-in Debugger window.

Designing Forms
Using commands provided by Just BASIC, you can programmatically generate a window’s GUI
from code. However, the FreeForm-J program, supplied as part of Just BASIC’s distribution, lets
you lay out GUIs by dragging and dropping interface elements onto windows, as demonstrated
in Figure 2.28.

FreeForm-J is started by clicking on the FreeForm-J entry located on the Run menu. Once you
have used FreeForm-J to design a window’s layout, you can generate the underlying source code
required to re-create the interface. You can then add this code to your Just BASIC application to
enable it to generate the interface. Step-by-step instructions for using FreeForm-J are provided
in Chapter 3.

Figure 2.28 FreeFrom-J is an external program supplied with Just BASIC that assists in the development of GUIs.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 58

Trick

FreeForm-J is actually a software program written using Just BASIC. Its source code is shipped
with Just BASIC and can be found in the same folder as Just BASIC’s other sample programs.
If you want, you can modify and customize FreeForm-J to suit your own particular needs.

The Just BASIC Debugger
Every programmer experiences errors when developing software programs. Programmers com-
monly refer to such errors as bugs. With proper design and testing, programmers can eliminate
most program bugs. Unfortunately, some program errors are harder to track down and fix than
others. To assist you in performing this difficult task, most programming languages provide some
sort of debugging program or utility. Just BASIC is no exception, supplying programmers with
access to its own GUI debugger program.

You can start Just BASIC’s debugger by opening the Run menu and selecting the Debug menu
item or by clicking on the toolbar button that looks like a small beetle bug. Once started, the
debugger window appears, as demonstrated in Figure 2.29.

59Chapter 2 • Creating Programs with Just BASIC

Figure 2.29 Use Just BASIC’s built-in debugger to keep an eye on the inner workings of a
Just BASIC application as it executes.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 59

Using the debugger, you can track the internal execution of any Just BASIC program on a line-
by-line basis. In addition, you can keep an eye on the value of data as the application collects and
processes it. By providing you with a fine-tuned, internal view of your application’s execution,
application debuggers help you search for and find the needle in the haystack that is causing
problems in your application. Step-by-step instructions for using Just BASIC’s internal debugger
are provided in Chapter 11, “Debugging Your Applications.”

Building Standalone Applications
Many programming languages, like Microsoft C++ and Visual Basic, generate a single executable
file with an .exe file extension when you compile your application. To share your application,
you have to distribute this executable file to your customers and users. However, to create stand-
alone Just BASIC applications, you need to create a tokenized version of your application.

Creating a Tokenized File
To create a tokenized copy of an application file, you must load the application into the code edi-
tor and then select the Make *.TKN File menu item located on the Run menu. Just BASIC responds
by opening the Save *.TKN File As window, as shown in Figure 2.30. Just BASIC generates a file-
name for the tokenized file based on the current name of the BASIC file. If you want, you can
change this name before clicking on Save to generate a tokenized copy of the application file.

Trick

Tokenized files run faster than nontokenized files. Therefore, you might want to generate tok-
enized files for Just BASIC programs that you intend to run often within the Just BASIC code
editor or that you plan to add to Just BASIC’s Run menu.

Once you have saved your tokenized file, you can run it within the Just BASIC code editor by
clicking on the Run *.TKN File option located on the Run menu. In response, Just BASIC displays
the Run a *.TKN file window, as demonstrated in Figure 2.31.

Once loaded, the tokenized application immediately begins executing. If you have added an entry
to Just BASIC’s Run menu for the tokenized file, you can run it at any time by clicking on the Run
menu and selecting it.

60 Programming for the Absolute Beginner, Second Edition

02 ProgABS2E ch02 2/23/15 9:14 PM Page 60

61Chapter 2 • Creating Programs with Just BASIC

Figure 2.30 Saving a tokenized version of a Just BASIC program.
© 2016 Shoptalk Systems

Figure 2.31 Running the tokenized version of a Just BASIC program.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 61

Distributing Your Just BASIC Applications
To distribute copies of your Just BASIC applications, you need to perform the following tasks:

• Generate a tokenized file.

• Make a copy of Just BASIC’s runtime file and rename it to match the name assigned to the
tokenized file.

• Collect any additional files required to support the execution of your application.

Once you have finished creating and testing your Just BASIC application, you need to create a
tokenized copy of your application file to distribute and run the application on another com-
puter where Just BASIC may not be installed. For example, you might take the Knock Knock Joke
game created in Chapter 1 and create a tokenized version of that file called knockknock.tkn.

The next step in preparing to distribute your application is to make a copy of Just BASIC’s run-
time file, JBRUN101.exe, and rename it to match the name of your tokenized file. In the case of
the Knock Knock Joke game, you would assign knockknock.exe as the new name for the copy of
Just BASIC’s runtime file.

To execute a Just BASIC program as a standalone application on other computers, you also need
to assemble copies of the following Just BASIC system files:

• VBAS31W.SLL

• VGUI31W.SLL

• VOFLR31W.SLL

• VTHK31W.DLL

• VTK1631W.DLL

• VTK3231W.DLL

• VVM31W.DLL

• VVMT31W.DLL

You will find the files located in Just BASIC’s installation folder.

The last step in assembling your standalone application is to assemble a disk, CD-ROM, DVD, or
other type of package that contains the tokenized file, the renamed copy of Just BASIC’s runtime
file, and the Just BASIC systems files listed earlier. Once you have finished putting together your
package, as demonstrated in Figure 2.32, you are ready to begin distributing your application to
your friends, users, and customers. Of course, if your application uses any other external files,
such as a text or graphics file, you need to add them to your distribution package as well.

62 Programming for the Absolute Beginner, Second Edition

02 ProgABS2E ch02 2/23/15 9:14 PM Page 62

Trick

One convenient and simple way to distribute your Just BASIC application is to create a Zip
file containing your tokenized Just BASIC file along with the other files needed to run it as a
standalone program. This way, all that your users and customers need to do to run your pro-
gram is to unzip it into a folder on their computer. WinZip also provides a self-extraction fea-
ture that allows you to create a Zip file that unpacks itself when the user opens it, allowing
you to make things even easier for your users.

Another alternative that you may want to investigate is freeware and shareware software dis-
tribution programs that automate the software distribution and installation process. Examples
of these types of programs include Setup2Go (www.dev4pc.com/) and Agentix Installer
(www.aginstaller.com).

63Chapter 2 • Creating Programs with Just BASIC

Figure 2.32 The distribution files for the Knock Knock Joke game.
© 2016 Shoptalk Systems

02 ProgABS2E ch02 2/23/15 9:14 PM Page 63

http://www.dev4pc.com/
http://www.aginstaller.com

Back to the Legend of Mighty Molly
Now it is time to turn your attention back to the development of this chapter’s game project, the
Legend of Mighty Molly. In this game, data collected from the player is used in the creation of a
mad-lib styled story. Unlike the Knock Knock Joke game, which used pop-up dialogs to interact
with the player, this game uses the text window supplied as part of every Just BASIC application
to collect and display information.

Designing the Game
The design of the Legend of Mighty Molly game is pretty straightforward. The game relies mainly
on the print, input, and cls commands to control the data collection process and display the
game’s story.

As you learned in Chapter 1, you can use the print command to display text strings on the main-
win window. The input command displays a text message prompt and collects the user’s
response as input to your program. The cls command clears out any text displayed in mainwin.

Hint

The syntax for the input command is shown here:

input #Handle “String”; VariableName

#Handle is an optional argument that, when used, specifies a filename or device. String is an
optional placeholder representing a string that can be displayed. VariableName is the name of
a variable that will be used to store any input the user enters before pressing the Enter key.

The Legend of Mighty Molly game is created in eight steps, as outlined here:

1. Create a new BASIC file and document its purpose.

2. Display the game’s opening welcome screen.

3. Provide instructions to the player.

4. Display the game’s first question and collect the player’s input.

5. Display the rest of the game’s questions.

6. Tell the first part of the story.

7. Tell the rest of the story.

8. Clear the screen and prepare the game for termination.

64 Programming for the Absolute Beginner, Second Edition

02 ProgABS2E ch02 2/23/15 9:14 PM Page 64

Creating a Just BASIC File Script

You’ll begin the development of the Legend of Mighty Molly game by starting Just BASIC and
creating a new BASIC file. Next, you’ll document the purpose of the game by adding the follow-
ing code statements:

‘ ***

‘

‘ Script Name: MightyMolly.bas (The Legend of Mighty Molly)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 10, 2015

‘

‘ Description: This Just BASIC game displays a mad-lib styled story in

‘ which the player input is used to tell a humorous story.

‘

‘ ***

Before continuing, save your new Just BASIC file, assigning it a name of MightyMolly.bas.

Displaying a Welcome Screen

Now you’ll add the code statements that are responsible for displaying a welcome screen for the
game by adding the following statements to the program:

print

print

print

print

print

print

print “ W E L C O M E T O T H E L E G E N D O F M I G H T Y” _

+ “ M O L L Y”

print

print

print

print

print “ By Jerry Lee Ford, Jr.”

print

print

print

print

65Chapter 2 • Creating Programs with Just BASIC

02 ProgABS2E ch02 2/23/15 9:14 PM Page 65

print

print

print

print

print

input “ Press Enter to continue.”; input$

The last statement uses the input command to pause the execution of the application until the
player presses the Enter key.

Hint

Note that the input$ variable is automatically assigned an empty string (“”) as its value
when the player presses the Enter key. The program does not use the value assigned to
input$. It has been included only because the syntax of the input command requires a vari-
able assignment.

Providing Game Instructions

As straightforward as this game may be, it is still a good idea to provide the player with a little
direction at the beginning of the game. To do so, add the following statements to the end of your
program:

cls

print

print

print

print “ Your help is needed to tell the story of the Legend of Mighty”

print “ Molly. So, if you will, please answer a few simple questions.”

print

print

input “ Press Enter to continue.”; input$

As you can see, the cls command clears the screen, and then the game’s instructions are pre-
sented using a series of print commands followed by the input command to pause program exe-
cution until the player is ready to continue.

Prompting the Player for Input

It is now time to begin prompting the player to provide the game with the data needed to tell its
story. The code statements responsible for displaying the game’s first question are shown here:

66 Programming for the Absolute Beginner, Second Edition

02 ProgABS2E ch02 2/23/15 9:14 PM Page 66

cls

print

print

print

input “ Type the name of your favorite vacation spot. > “; location$

The input command is once again used to pause the execution of the program and wait for the
player to key in her input and then press the Enter key. The input the player provides is then
stored in a variable named location$ so that the program can display its value later.

Collecting Additional Player Input

The next set of statements to be added to your program is shown next. These statements are
responsible for collecting the three remaining pieces of information the game needs to tell its
story. Note that separate variables are used to store each of the three inputs the player provides.
Once the program has everything it needs, it announces that it is ready to tell its story:

cls

print

print

print

input “ Name something that scared you as a child. > “; creature$

cls

print

print

print

input “ Name a piece of sports equipment. > “; weapon$

cls

print

print

print

input “ Name a popular four-legged animal. > “; vehicle$

cls

print

print

print

input “ Excellent answers. Please press Enter to begin the story.”; input$

67Chapter 2 • Creating Programs with Just BASIC

02 ProgABS2E ch02 2/23/15 9:14 PM Page 67

Beginning the Story

The next set of statements clears the screen and displays the first part of the game’s story. The
input command pauses the program until the player has finished reading:

cls

print

print

print

print “ Once upon a time, there was a small town on the edge of nowhere,”

print “ called “ + location$ + “. One day, not long ago, an evil “

print “ “ + creature$ + “ appeared on the edge of town and began attacking”

print “ the good citizens of “ + location$ + “. Each evening, just before”

print “ dawn, the “ + creature$ + “ reappeared. It was not long before the”

print “ good people of “ + location$ + “ were afraid to leave their homes.”

print

print

input “ Press Enter to continue.”; input$

Telling the Rest of the Story

The code statements shown next finish telling the story by dividing its display into three parts,
each of which is displayed a screen at a time:

cls

print

print

print

print “ Word of this great tragedy soon reached good King William, lord”

print “ and ruler of all the lands around “ + location$ + “. This”

print “ injustice must be stopped, proclaimed King William. To save the”

print “ good people of “ + location$ + “, King William called upon his”

print “ greatest and bravest knight, Mighty Molly. For three days and”

print “ nights, Mighty Molly rode upon her “ + vehicle$ + “ as she”

print “ hurried to help the people of “ + location$ + “.”

print

print

input “ Press Enter to continue.”; input$

cls

68 Programming for the Absolute Beginner, Second Edition

02 ProgABS2E ch02 2/23/15 9:14 PM Page 68

print

print

print

print “ On the evening of the fourth day, Mighty Molly arrived at the”

print “ outskirts of “ + location$ + “. There was no one in sight, for”

print “ all the people were locked away in their homes, fearful of”

print “ another visit by the “ + creature$ + “. Suddenly and without”

print “ warning, the “ + creature$ + “ attacked the mighty one from”

print “ behind with a “ + weapon$ + “. Without hesitation, Mighty”

print “ Molly swung around and engaged the “ + creature$ + “ in a”

print “ fierce battle that raged on throughout the night and into”

print “ the next morning.”

print

print

input “ Press Enter to continue.”; input$

cls

print

print

print

print “ When daylight finally came, all was quiet and the people began to”

print “ emerge from their homes. To their delight, there stood Mighty”

print “ Molly over the dead body of the “ + creature$ + “. The grateful”

print “ people of “ + location$ + “ immediately declared Mighty Molly as”

print “ their hero and held a great party in her honor.”

print

print

input “ The End.”; input$

Preparing to End the Program

Now that the game’s story has been told, it is time for the program to terminate. Before doing so,
clear the screen with the cls command and then add the end command to the end of the pro-
gram to ensure that the program is ready for termination:

cls

end

69Chapter 2 • Creating Programs with Just BASIC

02 ProgABS2E ch02 2/23/15 9:14 PM Page 69

70 Programming for the Absolute Beginner, Second Edition

Hint

Although the game used the end command to identify the logical end of the program, the
program does not actually terminate until the player closes the application window. In Chapter
3, you will learn how to associate the end command with a window’s closing to better coor-
dinate the execution of the command with the actual end of the program.

The Final Result
Okay, that’s all there is to it. Assuming that you did not make typos as you keyed in the code for
the application, your new game should be ready to run. However, before you run it, take a few
minutes to look it over. Take note of the sequential manner in which the program code executes,
beginning with the first statement and then processing each statement that follows until the last
statement is executed. In future chapters, you will learn how to create programs that make use of
loops, conditional logic, and subroutines to create more complex programming logic that can
change the order in which statements are executed.

Summary
In this chapter, you learned about the different types of software tools programmers use to develop
new applications. In addition, you learned the ins and outs of working with the Just BASIC code
editor. You learned how to work with Just BASIC’s code editor to configure its configuration set-
tings. You also learned how to create and package standalone applications.

Before moving on to Chapter 3, why don’t you set aside a little time to improve the Legend of
Mighty Molly by tackling the following list of challenges.

1. As it is currently written, this program is lacking in internal documentation that helps
explain what is going on. Consider rectifying this situation by embedding comments at
key locations throughout the program file.

2. Consider increasing the length of the story and collecting additional user input to make
the story line even more dynamic.

3. Create a ZIP file distribution package for the Legend of Mighty Molly and use it to share
your new program with your friends.

C
ha

lle
ng

es

02 ProgABS2E ch02 2/23/15 9:14 PM Page 70

Creating Graphical
User Interfaces

3
O

ne of the most important features of any Windows desktop application is
its graphical user interface (GUI). As such, it is important that your appli-
cation windows be well organized and intuitive. In this chapter, you will

learn about the fundamental building blocks of Windows application GUIs. This
will include learning how to create different types of windows and work with dif-
ferent types of interface controls like buttons, textboxes, and comboboxes. You will
learn how to link interface controls to program code through the development of
event handlers. You will also learn how to programmatically interact with interface
controls and set properties like color and font type, and how to enable and disable
access to controls. Beyond all this, you will learn how to create your next game: the
BASIC Crazy 8 Ball game.

Specifically, you will learn the following:

• The different types of application windows supported by Just BASIC

• How to open and close windows and to set different windows properties
such as color and font type

• How to programmatically generate different interface controls

• How to set up control event handlers

• How to work with FreeForm-J so you can design GUIs

03 ProgABS2E ch03 2/23/15 8:41 PM Page 71

72

Project Preview: The BASIC Crazy 8 Ball Game
This chapter’s game project is the BASIC Crazy 8 Ball game. This game emulates the children’s
crazy 8 ball toy by displaying random answers to player questions. The creation of this game
requires you to design a GUI that consists of multiple windows using button, statictext, and
textbox controls. In addition to giving you experience in developing GUIs, the development of
this game introduces you to event-driven programming, in which program code is associated
with individual windows and controls and executed based on the manner in which the player
interacts with the game.

When it’s started, the BASIC Crazy 8 Ball game displays a window that includes a welcome mes-
sage and two button controls, as shown in Figure 3.1. If the player clicks on the Quit button, the
game ends. If the player clicks on the Play button, gameplay continues.

Programming for the Absolute Beginner, Second Edition

Figure 3.1 The opening window
for the BASIC Crazy 8 Ball game.
© 2016 Cengage Learning®

To ask the game a question, the player types her question in the text box field that is shown and
clicks on the Ask button, as shown in Figure 3.2.

The player must enter a question for the game to generate an answer. If the player clicks on the
Ask button without typing anything, an error message is displayed, as demonstrated in Figure 3.3.

To play the game, the player asks the game a series of questions that must be worded in such a
way as to work with yes/no-styled answers, as demonstrated in Figure 3.4.

In response to each question, the game displays a randomly generated answer of YES, NO, or
MAYBE, as demonstrated in Figure 3.5.

03 ProgABS2E ch03 2/23/15 8:41 PM Page 72

Mainwin
As you have already seen, Just BASIC automatically adds a text window, referred to as mainwin,
to every new application, as demonstrated in Figure 3.6. Once displayed, your application can
write text to this window using print commands and collect user data using the input command.

73Chapter 3 • Creating Graphical User Interfaces

Figure 3.5 The game provides
an answer to the player’s question.
© 2016 Cengage Learning®

Figure 3.4 The player’s questions need to support
yes/no answers.
© 2016 Cengage Learning®

Figure 3.2 The player is prompted to ask a question.
© 2016 Cengage Learning®

Figure 3.3 An error message is displayed
if the player fails to ask a question.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 73

As Figure 3.6 shows, this window offers programmers an abundance of built-in features that pro-
vide the basis upon which you can build a text-based Windows desktop application. With no
work on your part, Just BASIC automatically generates a text window that you can resize, maxi-
mize, minimize, and close. The File and Edit menus come with all the menu commands that you
would expect from any Windows application, including Open, Save, Cut, Copy, and Paste. This
functionality enables the user to open, display, modify, and save the contents of any text file.
However, not all Windows applications are text based. Most are GUI based. Therefore, if desired,
you can suppress the display of the mainwin by adding the nomainwin command to the begin-
ning of your Just BASIC applications.

If necessary, you can specify the initial size of mainwin by specifying the number of columns and
rows using the mainwin statement, which has the following syntax:

mainwin Columns Rows

Columns is a placeholder representing the number of columns the window should have, and Rows
is a placeholder representing the height of the window in terms of the number of rows displayed.

74 Programming for the Absolute Beginner, Second Edition

Figure 3.6 Every Just BASIC application is automatically assigned a default text window.
© 2016 Shoptalk Systems

Display
area

Vertical
slider
control

File and
Edit menus

Resize
control

Close control Control buttons

Horizontal slider control

Title bar

03 ProgABS2E ch03 2/23/15 8:41 PM Page 74

Using the previous command, you can instruct Just BASIC to modify the default size of the
mainwin window by adding a statement similar to the following to the beginning of any Just
BASIC application:

mainwin 40 20

Once opened, you work with the mainwin window by sending it commands. One commonly
used command is print, which, as you have seen, you can use to display text on mainwin.

Hint

The syntax of the print statement is outlined next. It consists of the keyword print followed
by an optional reference to a handle, which when specified identifies the window or control
to which the print command is directed. Next comes an optional comma, which is then fol-
lowed by one or more expressions representing the text to be displayed. If more than one
expression is provided, semicolons are used to separate them, and the text strings are dis-
played one after another.

print #handle, expression1 ; expression2 ; expression3…

The print command has many uses. In addition to displaying text on text windows and on inter-
face controls that accept text, it can send commands to windows and controls to control their
actions. In the following example, a text string is displayed on an application mainwin window:

print “Welcome to my Just BASIC application!”

Other commands that you can use when working with mainwin include input and cls. You use
the input command to prompt the user to provide input and the cls command to clear out the
window’s display area.

Hint

The syntax of the input command is outlined here:

input #handle “string”; variablename

It consists of the keyword input followed by an optional reference to a window name (for exam-
ple, #handle) and a string that is to be displayed. The display string is followed by a semi-
colon and then the name of a variable, which temporarily stores the input the user provides.

In the following example, the input command displays a prompt asking the user to enter her
name. Because there is no explicit reference to a particular window, the prompt is displayed
on the application’s mainwin window:

input “What is your name? “; username$

75Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 75

GUI Application Development
Modern programming languages, such as Visual Basic and C++, support desktop application
development through windows-based applications. These applications generate GUIs, which dis-
play information and interact with users through controls displayed on application windows.
Examples of window controls include buttons, textboxes, checkboxes, and listboxes.

Just BASIC is no different. It allows programmers to generate different types of windows and
populate those windows with an assortment of interface controls.

Working with Application Windows
Different operating systems support different types of application windows, each of which is
designed to suit a specific purpose or situation. Just BASIC supports four types of windows, listed
next. Just BASIC applications may consist of any number of these windows:

• Window. A regular window as used in most applications. This type of window can contain
interface controls and supports optional features such as resizing and menus.

• Text. A window designed specifically for displaying text. Text windows always display a
menu bar containing File and Edit menus but cannot contain other controls.

• Graphics. A window designed to display graphics and sprite animation. Only limited
support is included for controls. Window resizing is optional.

• Dialog. A special pop-up window designed to collect user information. This window can
contain other controls but cannot display menus.

Hint

You can commonly find each of these types of windows on applications that run on
Microsoft, Linux, and UNIX operating systems. Other operating systems, such as Mac OS X,
support additional types of windows not found elsewhere. For example, Mac OS X supports
sheet windows, from which another attached window is displayed using animation that
makes it look as if the additional window drops down from the parent window’s title bar. Mac
OS X also supports drawer windows, in which a child window is displayed using animation
that makes it look like the window is sliding out from underneath its parent window.

You saw an example of how to work with various dialog windows back in Chapter 1, “Introduc-
tion to Programming,” when you created the Knock Knock Joke game. In Chapter 2, “Creating
Programs with Just BASIC,” you learned how to work with text windows to tell the Legend of
Mighty Molly. In this chapter, you learn how to work with the graphics window so you can build

76 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 76

desktop applications that interact with users through controls. A graphics window, such as the one
shown in Figure 3.7, can spice up applications by displaying interesting backgrounds. Graphics
windows also provide the foundation upon which animation is performed. Later, in Chapter 9,
“Working with Sound and Graphics,” you learn more about the graphics window.

Regular Windows
Most applications use regular windows, as shown in Figure 3.8. These windows can contain any
number of interface controls. By default, a regular window contains a title bar and control buttons
located in the upper-right corner that allow you to minimize, maximize, and close the window.
You can also resize regular windows.

Text Windows
Text windows are highly specialized. They cannot contain other controls; they can only be used
to display and collect text data and allow text to be modified and saved. The mainwin window,
supplied as part of every Just BASIC application, is an example of a text window.

77Chapter 3 • Creating Graphical User Interfaces

Figure 3.7 An example of a graphics window displaying an image.
© 2016 Cengage Learning®

Figure 3.8 A regular window can contain any type of interface control.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 77

www.allitebooks.com

http://www.allitebooks.org

Graphics Windows
Graphics windows are another special form of window designed to display graphics images and
to support the execution of sprites. Although some controls are capable of working on graphics
windows, they are not intended for this purpose.

Hint

A sprite is an image that is integrated into a larger background scene and forms the basis of
computer animation.

Dialog Windows
Just BASIC provides dialog windows so you can interact with users. Dialog windows, also referred
to as pop-up dialogs, can optionally be set up to run as application modal. An application modal
window is a window that prevents other application windows from being accessed while it is
open. When this is the case, you can’t access any other application windows until you close the
dialog window. Dialog windows, therefore, are useful when you require information from the user
that must be collected before the application can continue running.

Like most programming languages, Just BASIC supports a number of different types of dialog
windows. These variations are listed and explained here:

• Notice. Displays a text string message and waits for the user to click on OK.

• Confirm. Displays a text string message and waits for the user to click on either Yes or No.

• Prompt. Displays a text string message and waits for the user to type in a response before
clicking on OK (or alternatively on Cancel).

• Filedialog. Displays a dialog window that allows the user to either specify a file to be
opened or the name and location of a file to be saved.

You will learn more about dialog windows, including how to generate them and use them to collect
user input, later in this chapter.

Window Variations
Just BASIC supports a number of variations of each of the previously listed windows. For example,
an application using a text window can open it in window or in full-screen mode. Alternatively,
a text window can be generated so that it does or does not support scrollbars. Alterations to appli-
cation windows are specified using style suffixes. A list of these suffixes is supplied in Table 3.1.

78 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 78

© 2016 Shoptalk Systems

Not all windows support all the different variations shown in Table 3.1. In some cases, Just BASIC
allows programmers to combine two or more suffixes. Table 3.2 provides a listing of the various
combinations of features supported by each window type.

79Chapter 3 • Creating Graphical User Interfaces

Suffix Description

_fs Opens a window in full screen

_nf Opens a window without a frame, preventing it from being resized

_nsb Prevents the display of window scrollbars

_ins Inserts an inset text editor

_modal Prevents other application windows from being accessed while the window is open

TA B L E 3 .1  W I N D O W S T Y L E S U F F I X E S

S U P P O R T E D B Y J U S T BAS IC

Window Supported Suffix

window _nf

text _fs

_nsb

_nsb_ins

graphics _fs

_nsb

_fs_nsb

_nf_nsb

Window Supported Suffix

dialog _nf

_fs

_modal

_nf_modal

_nf_fs

TA B L E 3 .2 S T Y L E S U F F I X E S S U P P O R T E D

B Y D I F F E R E N T W I N D O W S

© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 79

Hint

Over the years, most users have become accustomed to having applications look and act a
certain way. Failure to provide applications that look and feel intuitive can lead to disap-
pointment. Therefore, it is important for programmers to give serious attention to the devel-
opment of their application’s user interface. A programmer might build the world’s best
application only to find that no one wants to use it because its user interface is hard to fig-
ure out. One way of approaching this challenge is to spend a little time studying how the user
interfaces of popular applications have been constructed. Another option is to check out the
User Interface Design and Development page at http://msdn2.microsoft.com/en-us/library/
aa286531.aspx.

Opening and Closing Windows
With the exception of the mainwin window, you must explicitly open any other window that you
want to add to your Just BASIC applications. To display a new application window, you must use
the open command. The syntax of the open command is outlined here:

open device for purpose as #handle [LEN = n]

device is a parameter representing the resources to be opened. When you use it to open a win-
dow, you supply a caption to be displayed in the window’s title bar as this parameter. purpose is
a parameter that represents the type of window to be opened (text, window, graphics, or dialog),
and #handle is a parameter that specifies a handler (or reference) by which the windows can be
identified. Handle names must begin with the # character and can only be made up of letters and
numbers. Special characters and blank spaces are not allowed.

Hint

The open command is versatile. You can use it to communicate with hardware devices and
open a file or application window. This chapter limits discussion of this command to just the
opening of application windows.

An example of how to use the open command to open a new application window is shown here:

open “Sample Window” for window as #main

When you open a window, you must specify its type (window, text, graphics, dialog). Here, a new
application window is displayed. The text string “Sample Window” is displayed in its title bar. The
window has been opened as a regular window and has been assigned a handle of #main.

80 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 80

http://msdn2.microsoft.com/en-us/library/aa286531.aspx
http://msdn2.microsoft.com/en-us/library/aa286531.aspx

As with any programming language, you must remember to add programming logic to your
application to close any open resources, including windows, before allowing the applications to
terminate. In the case of open windows, this means using the close command, which has the fol-
lowing syntax:

close #handle

#handle identifies the handle of a previously opened window. Thus, you can use the following
statement to close a window named #main:

close #main

To get a better understanding of how to work with and control application windows, consider
the following example:

nomainwin

open “Sample Window” for text as #main

print #main, “Welcome to my Just BASIC application.”

print #main, “!trapclose [terminate]”

wait

[terminate]

close #main

end

In this small Just BASIC program, the display of the default text window has been suppressed.
Next, a new text window is opened and assigned a handle of #main. The next statement uses the
print command to display a text string on the window. The statement after that uses the print
statement in a new way. This time the print statement has been used to pass a command, instead
of a text string, to the window. Just BASIC knows that a command is being passed because the
text enclosed inside the double quotation marks begins with the ! character. The word that fol-
lows the ! command is trapclose. This instructs Just BASIC that whenever the window receives
instruction to close, such as when the user clicks on the Close button in the upper-right corner
of the text window, it should jump to the location within the program code labeled [terminate].
The wait statement is then executed, causing the program to pause execution and wait for the
user input.

81Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 81

Trap

You must precede any command passed to a windows or interface control with the ! char-
acter if that window or control accepts text. For example, windows of type text and interface
controls like the button and text box controls, discussed later in this chapter, display text that
is passed to them using the print command unless that text is preceded by the ! character,
in which case Just BASIC interprets the string passed by the print statement as a command
that must be executed. If, on the other hand, the window or control that you are working with
does not display text, which would be the case with a window of type window or a control
like the bmpbutton control, then including the ! character is optional. However, rather than
using the ! in some situations and not in others, it’s recommend that you use it anytime you
want to use the print command to pass a command to a control or window.

The code statement that follows the [terminate] label, also referred to as a switch label, is the
event handler for the window’s close event. An event is an action, generally initiated by the user.
For applications to communicate with the users, there must be a way of linking or associating
program code with different parts of the user interface. For example, when the user clicks on a
given button control, certain code statements should be executed; when a different button is
clicked, a different set of code statements should be executed. This connection between interface
controls and application code statements is established by defining event handlers.

Event Programming
Events occur when the user does something such as clicking on a button control, keying data into
a text box control, or closing an open window. Like other programming languages, Just BASIC
gives programmers a means of defining specific programming logic and associating it with spe-
cific events. Different types of events are associated with different types of windows and controls.
Button controls, for example, recognize click events. Windows, on the other hand, recognize close
events. Other controls respond to other types of events.

One way to set up a window or interface control to work with an event is to add a label to it as part
of its definition. If the event for the window or interface control occurs, the program jumps to the
location within the program where that label has been placed and executes any program state-
ments that it finds. In the case of the previous example, this meant jumping to the [terminate]
switch label and executing the close and end commands. This ensures that any time the user
closes the application window, Just BASIC makes sure that the application terminates cleanly by
closing any open resources; in this case, this is the window itself.

82 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 82

Hint

You can also implement event programming using functions in place of labels. You will learn how
to do this in Chapter 7, “Improving Program Organization with Functions and Subroutines.”

Specifying Windows Size and Location
By default, Just BASIC determines the initial size of application windows. In addition, if not other-
wise specified, Microsoft Windows determines the initial location where windows are displayed.
However, by setting any combination of the following four special variables, you can specify the
size and initial display location for any application window:

• WindowHeight. Sets the height of the window in pixels.

• WindowWidth. Sets the width of the window in pixels.

• UpperLeftX. Specifies the location of the upper-left corner of the window in relation to
the left side of the display area.

• UpperLeftY. Specifies the location of the upper-left corner of the window in relation to
the top of the display area.

To see how you might set these variables to control the display of an application window, consider
the following example:

nomainwin

UpperLeftX = 1

UpperLeftY = 1

WindowWidth = 200

WindowHeight = 200

open “Sample Window” for window as #main

wait

Here, a window of type window is opened that is 200 pixels wide by 200 pixels tall. When it’s ini-
tially opened, there is just one pixel between the top and left side of the window and the edge of
the display area.

83Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 83

Hint

A pixel (picture element) is the smallest addressable area that can be written to on the screen
or the window. Computer displays are measured in terms of the number of pixels displayed.

Trick

Just BASIC gives programmers access to two special variables that retrieve the current width
and height of the display area. These variables are named DisplayWidth and DisplayHeight,
and you can use them when calculating the desired value of WindowWidth and WindowHeight.
For example, you might create a window that fills most but not all of the display area, as
demonstrated here:

nomainwin

UpperLeftX = 1

UpperLeftY = 1

WindowWidth = DisplayWidth - 200

WindowHeight = DisplayHeight - 200

open “Sample Window” for window as #main

wait

Note that you must set the size of an application window prior to opening it.

Trap

UpperLeftX, UpperLeftY, WindowWidth, WindowHeight, DisplayWidth, and DisplayHeight
are all case sensitive and thus must be spelled exactly as shown here. Otherwise, Just BASIC
does not recognize them, and your results are not as expected.

Setting Foreground and Background Colors
Like most programming languages, Just BASIC applications by default assign colors consistent
with the Windows operating system’s currently assigned color scheme. However, if you prefer,
you can also change the foreground and background colors used in the display of application
windows by setting the value of the BackgroundColor$ and ForegroundColor$ special variables.

84 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 84

Hint

Foreground color refers to the color used to display text, and background color refers to the
color of the window’s background on which controls and text are displayed. The background
color setting also affects the display of the groupbox, statictext, radiobutton, and checkbox
controls.

Just BASIC allows you to set the value of both the BackgroundColor$ and ForegroundColor$
special variables to any of the following colors:

• Black

• Blue

• Brown

• Buttonface (represents the current default color scheme)

• Cyan

• Dark blue

• Dark cyan

• Dark gray

• Dark green

• Dark pink

• Dark red

• Green

• Light gray (same as pale gray)

• Pale gray (same as light gray)

• Pink

• Red

• White

• Yellow

To get a better understanding of how the specification of the BackgroundColor$ and ForegroundColor$
special variables affects the display of application windows, consider the following example:

nomainwin

WindowWidth = 400

WindowHeight = 400

85Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 85

86 Programming for the Absolute Beginner, Second Edition

BackgroundColor$ = “darkred”

ForegroundColor$ = “yellow”

statictext #main.static, “Yellow on Darkred”, 20, 20, 100, 50

open “Sample Window” for window as #main

wait

Here, a window that is 400 pixels wide by 400 pixels high is displayed with a dark red background,
and any text that is displayed appears in yellow. Figure 3.9 shows the window in black and white.

Trap

BackgroundColor$ and ForegroundColor$ are case sensitive and thus must be spelled
exactly as shown here. Otherwise, Just BASIC does not recognize them, and your results are
not as expected.

Setting Font Attributes
Just BASIC also gives you control over the type and size of the text font used to display text strings
on windows. In addition, Just BASIC gives you control over other font properties, including these:

• Bold

• Italic

• Strikeout

• Underscore

Figure 3.9 Setting window background and foreground color.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 86

Setting the font type and size for a window, by default, affects all text displayed on that window,
including the font type and size of text displayed on window controls. Font size and type can be
configured using the syntax outlined here:

print #handle, “font fonttype pointsize [italic, bold, strikeout, underscore]”

Using this syntax, font type is specified by supplying a value in place of fonttype, and font size
is specified using point size. You may also include any of four optional modifiers that affect font
appearance. For example, the following statement establishes a font type of Arial font size 14.

Hint

A point is 1/72 of an inch.

nomainwin

statictext #main.static, “Font demo”, 20, 20, 200, 50

open “Sample Window” for window as #main

print #main, “font Arial 14”

wait

Similarly, this next example establishes a font type of Courier New with a font size of 24 using
bold:

nomainwin

statictext #main.static, “Font demo”, 20, 20, 200, 50

open “Sample Window” for window as #main

print #main, “font Courier_New 24 bold”

wait

Hint

When specifying a font type whose name consists of multiple words, use the _ character to
substitute for blank space when keying in the font name. For example, instead of Times New
Roman, you must type Times_New_Roman. If the font you specify is not installed on the com-
puter, Just BASIC selects the closest available match.

87Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 87

Adding Controls to Windows
Most desktop application user interfaces consist of a collection of different interface controls like
buttons and text boxes. As the following list shows, Just BASIC allows programmers to add a
number of different graphical interface controls to application windows:

• Button

• Bmpbutton

• Checkbox

• Radiobutton

• Statictext

• Textbox

• Texteditor

• Listbox

• Combobox

• Groupbox

• Graphicbox

By adding instances of these types of controls to application windows, you can create complex
application GUIs. Each control has its own particular syntax that you must use when adding the
code required to generate an instance of the control on an application window. Alternatively, you
can use the FreeForm-J program, supplied with Just BASIC, to visually design your application
windows and then generate the required code statements needed to re-create the window’s user
interface for you.

Hint

As impressive as the list of controls provided by Just BASIC is, the collection of controls is
small compared to the list of controls provided by many other programming languages. For
example, programming languages like Microsoft C++ supply programmers with access to
dozens of different controls. Examples of controls not supplied by Just BASIC include the
progress bar, HTML Viewer, database, and toolbar controls.

Reviewing Just BASIC Controls
Desktop applications are made up of windows that display data and interact with users through
the use of controls placed on top of those windows. Just BASIC includes a number of predefined
interface controls. Each of these controls is designed to provide a different type of functionality

88 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 88

to your applications. A brief overview of these controls and their functionality is provided in the
sections that follow. As you work your way through the sample game application presented in
this book, you will get a chance to see working examples of a number of these controls.

Button Controls

The button control displays a graphical button that users can click to send a command to a program.
Button controls display a text string and are activated by clicking on them. You can program-
matically add buttons to windows using the following syntax:

button #handle.ext, “caption”, [label | subroutine] , corner, x, y [, width, height]

handle must refer to the handle of the window on which the control will be displayed, and .ext
is an optional extension that uniquely identifies the control, allowing it to be programmatically
referenced later in the program. caption represents the button control’s caption. label and sub-
routine are mutually exclusive and optional, meaning that you can supply one or neither but
never both. When supplied, Just BASIC jumps to the specified label or subroutine and begins
executing its code statements. You will learn more about how to work with labels later in this
chapter and learn how to work with subroutines in Chapter 7. corner specifies the corner of the
window used to anchor the button control. Possible choices include UL, UR, LL, and LR. x and y
specify the location of the button, in pixels, relative to the specified corner, and width and height
are optional parameters that specify the dimensions of the button (in pixels). If omitted, Just BASIC
makes the button just large enough to display its caption text.

Hint

UL refers to the upper-left corner of the window. UR refers to the upper-right corner of the
window. LL refers to the lower-left corner of the window, and LR refers to the lower-right corner
of the window.

Button controls are typically used to send commands to applications. For example, the following
code statements generate a window that displays a button control with a caption of Exit:

nomainwin

button #main.button1, “Exit”, [terminate], UL, 130, 150, 60, 40

open “Sample Window” for window as #main

wait

[terminate]

89Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 89

90 Programming for the Absolute Beginner, Second Edition

notice “Thanks for using my application!”

close #main

end

When executed, this program displays a window with a button control that is 60 pixels wide by
40 pixels tall, roughly in the center of the window, as shown in Figure 3.10. When clicked, the
button control’s click event executes. As a result, the program jumps to the [terminate] label
and executes the code that follows that label, which in this example displays a pop-up window
thanking the user for using the application before closing the window and terminating the pro-
gram’s execution.

Bmpbutton Controls

The bmpbutton control is similar to the button control—the only difference being that the bmp-
button control displays an image instead of a text string. Bmpbuttons let users execute a program
command. You can programmatically add bmpbuttons to windows using the following syntax:

bmpbutton #handle.ext, filename, [label | subroutine], corner, x, y

As you can see, the syntax for the bmpbutton control is similar to that of the button control. The
only differences are that you cannot specify a display string, and you must supply the full or relative
path of the bitmap image file to be displayed. You cannot set the width and height of bmpbutton
controls either. The size of a bmpbutton control is determined by the size of the image itself.

The following example is a modified copy of the previous example, replacing the button control
with a bmpbutton control:

nomainwin

bmpbutton #main.button1, “bmp\xoutbttn.bmp”, [terminate], UL, 140, 150

open “Sample Window” for window as #main

wait

[terminate]

notice “Thanks for using my application!”

close #main

end

Figure 3.10 Button controls provide single-click access to application commands.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 90

As you can see, the location of the bmpbutton control is specified as “bmp\xoutbttn.bmp”. This
is an example of a relative path specification; the location of a file is specified based on its loca-
tion to the current working directory. In this example, the location of the xoutbttn.bmp bitmap
image is found by looking in a subdirectory of the current working directory named bmp for the
image file. When executed, this example displays the window containing the bmpbutton shown
in Figure 3.11.

Hint

Just BASIC supplies you with access to a number of bitmap images that you can find in the
BMP folder located inside the Just BASIC installation folder.

Checkbox Controls

The checkbox control gives the user a choice between either of two options. Check boxes include
a text string that describes their function or value and can be set to either of two states: set or
reset (cleared). When set, a check box control displays a square filled with a graphic checkmark.
When cleared, a check box is displayed as an empty square. Check boxes are often used to collect
user preferences or to enable or disable certain application functions. You can add a check box to
an application window using the following syntax:

checkbox #handle.ext, “caption”, setHandler, resetHandler, x, y, width, height

As you can see, the syntax for the checkbox control is similar to that of the button control. The
only differences between the two controls are that you can specify two event handlers that will be
executed when the user sets or clears the checkbox control, and the width and height parameters
are required.

To better understand how to work with the checkbox control, take a look at the following example.
Here a window is opened that contains a checkbox and a button control. Clicking on the button
control when it is in a cleared state causes the execution of the code statements located under the
[set] switch label. When this occurs, a checkmark is displayed on the checkbox control. Click-
ing on the button control when it is in a set state causes the execution of the code statements
located under the [reset] switch label. When this occurs, the checkmark is removed from the
checkbox control. Lastly, when the button control is clicked, the current state of the checkbox
control is displayed in a pop-up dialog window.

91Chapter 3 • Creating Graphical User Interfaces

Figure 3.11 An example of a typical bmpbutton control.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 91

Hint

Note the use of the goto command as the last statement under the [set] and [reset]
switch labels. The goto command tells Just BASIC to jump to the specified switch label and
execute any statements found there. In most computer programming languages, use of the
goto command is considered to be a poor programming practice. Instead, most program-
ming languages use functions and subroutines to group collections of code statements that
can be called upon to execute and, once done, return to the code statement that called on
them. Just BASIC also supports the use of functions and subroutines. However, the goto
command is also commonly used, as evidenced in Just BASIC’s online help documentation.
You’ll read about the use of labels in this chapter because of their historical value and
because of Just BASIC’s support for them. However, the next chapter relies exclusively on
subroutines and functions in place of labels. You’ll find a detailed discussion of both subrou-
tines and functions in Chapter 7.

nomainwin

checkbox #main.checkbox1, “Enable Sound”, [set], [reset], 106, 50, 130, 20

button #main, “Get Checkbox Value”, [get_checkbox_value], UL, 65, 150

open “Checkbox test” for window as #main

print #main, “trapclose [terminate]”

[pause]

wait

[set]

print #main.checkbox1, “set”

goto [pause]

[reset]

print #main.checkbox1, “reset”

goto [pause]

[get_checkbox_value]

print #main.checkbox1, “value? cbstate$”

notice “The checkbox control is currently set to “; cbstate$

goto [pause]

[terminate]

close #main

end

92 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 92

When executed, this example displays the window shown in Figure 3.12.

Hint

Take note of the last print statement in bold in the preceding example. It retrieves the current
value of the checkbox control and assigns it to the cbstate$ variable.

Radiobutton Controls

The radiobutton control is used in groups of two or more as a means of giving users mutually
exclusive choices. Radiobutton controls display a text label just to the right of the control. When
selected, a radiobutton control’s circular image is filled in, and all other radiobutton controls are
cleared.

Trick

All radiobutton controls that are placed on a window are automatically treated as a group,
allowing only one radiobutton control to be selected at a time. However, by placing radiobut-
ton controls inside separate groupbox controls, you can define a separate set of radiobutton
controls.

You can add a radiobutton control to an application window using the following syntax:

radiobutton #handle.ext, “caption”, setHandler, resetHandler, x, y, width, height

As you can see, the syntax for the radiobutton control is the same as that used by the checkbox
control. To better understand how to work with the radiobutton control, take a look at the fol-
lowing example.

93Chapter 3 • Creating Graphical User Interfaces

Figure 3.12 An example of a checkbox control.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 93

Here a window is opened that contains three radiobutton controls:

nomainwin

statictext #main.statictext “Please specify your age:”, 60, 60, 120, 20

radiobutton #main.low, “17 or under”, [warning], [nil], 60, 85, 130, 20

radiobutton #main.medium, “18 - 65”, [reminder], [nil], 60, 115, 130, 20

radiobutton #main.high, “66 or older”, [disclaim], [nil], 60, 145, 130, 20

textbox #main.textbox, 30, 280, 250, 20

open “Age Confirmation” for window as #main

print #main, “trapclose [terminate]”

print #main.low, “set”

[warning]

#main.textbox, “You must be at least 18 years of age to continue.”

wait

[reminder]

#main.textbox, “Please have your credit card ready to proceed.”

wait

[disclaim]

#main.textbox, “Warning! This site is not for the faint of heart!”

wait

[nil]

wait

[terminate]

close #main

end

When executed, this example displays the window shown in Figure 3.13. Each time a different
radiobutton control is selected, the message displayed in the textbox control is updated.

As with the checkbox control, Just BASIC lets you retrieve a radiobutton control’s value (set or
reset), as demonstrated here:

print #main.low, “value? rbstate$”

94 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 94

Here, the value of the radiobutton control with a handle of #main.low is retrieved and assigned
to a variable named rbstate$.

Statictext Controls

A statictext control is used to display a text string on a window. Statictext controls are typically
used to display descriptive information about other controls and to offer users instructions and
other helpful information. You can add a statictext control to an application window using the
following syntax:

statictext #handle.ext, “caption”, x, y, width, height

As you can see, the syntax for the statictext control is straightforward. To better understand how
to work with the statictext control, look at the following example. Here, a window is opened that
displays the opening line of a story using the statictext control:

nomainwin

statictext #main.Statictext “Once upon a time…”, 40, 60, 210, 30

open “The Three Little Pigs” for window as #main

print #main, “font Garamond 12 bold”

wait

[terminate]

close #main

end

95Chapter 3 • Creating Graphical User Interfaces

Figure 3.13 An example of a group of radiobutton controls.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 95

Textbox Controls

The textbox control is a single-line input field that you can use to collect small amounts of text
input the user provides. You can also use the textbox control to display text. Finally, you can add
a textbox control to an application window using the following syntax:

textbox #handle.ext, x, y, width, height

To see how to add an instance of the textbox control to a window, take a look at the following
example:

nomainwin

statictext #main.statictext “Please type your name:”, 20, 30, 110, 30

textbox #main.Textbox, 20, 60, 200, 20

open “Textbox Control Demo” for window as #main

print #main, “trapclose [terminate]”

wait

[terminate]

close #main

end

96 Programming for the Absolute Beginner, Second Edition

Figure 3.14 An example of a statictext control used to display text on a window.
© 2016 Cengage Learning®

When executed, this example displays the window shown in Figure 3.14.

03 ProgABS2E ch03 2/23/15 8:41 PM Page 96

When the textbox control is executed, the user can type text into it. You can programmatically
retrieve any text keyed by the user into a textbox control using the following syntax:

print #handle.ext, “!contents? input$”;

Here, the text the user enters is stored in a variable named input$.

Texteditor Controls

The texteditor control provides a multiline text field that you can use to display text or to collect
the user’s text input. Using the texteditor control, programmers can create text-editing applica-
tions like Windows Notepad or FreeForm-J.

Scrollbars located on the right and bottom of the texteditor control allow users to edit text that
exceeds the visible display area of the control. The texteditor control allows text to be displayed
in different fonts and sizes. It also supports numerous text-editing capabilities such as the ability
to copy, cut, and paste a selected portion of text as well as the ability to select all displayed text.

You can add a texteditor control to an application window using the following syntax:

texteditor #handle.ext, x, y, width, height

97Chapter 3 • Creating Graphical User Interfaces

Figure 3.15 An example of a textbox control being used to collect user input.
© 2016 Cengage Learning®

Here, a textbox control that is 200 pixels long and 20 pixels high has been added to an applica-
tion window, as demonstrated in Figure 3.15.

03 ProgABS2E ch03 2/23/15 8:41 PM Page 97

98 Programming for the Absolute Beginner, Second Edition

To see an example of how to add an instance of the texteditor control to a window, take a look at
the following example:

nomainwin

texteditor #main.texteditor, 20, 20, 270, 250

open “Texteditor Control Demo” for window_nf as #main

print #main, “trapclose [terminate]”

wait

[terminate]

close #main

end

Here, a texteditor control that is 270 pixels long and 250 pixels high has been added to an appli-
cation window, as demonstrated in Figure 3.16.

When the texteditor control is executed, the user can type text into it. You can programmatically
retrieve any text keyed by the user into a texteditor control using the following syntax:

print #handle.ext, “!contents? input$”;

As with the textbox control, this statement takes any text the user enters and assign it to a vari-
able named input$.

Figure 3.16 An example of the texteditor control in action.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 98

Listbox Controls

The listbox control displays a list of items from which the user can make a selection. Once it’s
selected, you can navigate the list of items using the keyboard’s up and down keys. If the list of items
stored in the listbox is greater than what can be displayed, scrollbars are automatically added to the
listbox control. You can add a listbox control to an application window using the following syntax:

listbox #handle.ext, array$(), [label | subroutine], x, y, width, height

The listbox control is populated by associating an array with it through the array$() parameter.
To better understand how to work with the listbox control, take a look at the following example:

nomainwin

names$(0) = “Mary”

names$(1) = “William”

names$(2) = “Molly”

names$(3) = “Alexander”

names$(4) = “Jerry”

names$(5) = “Bridget”

names$(6) = “Lazlo”

names$(7) = “Dolly”

names$(8) = “Mike”

names$(9) = “Mark”

names$(10) = “Nick”

statictext #main.statictext “Select a name:”, 30, 30, 80, 20

listbox #main.listbox, names$(), [doubleclick], 30, 60, 100, 140

button #main.button, “OK”, [displaychoice], UL, 60, 220, 40, 30

open “Listbox Control Demo” for window as #main

print #main, “trapclose [terminate]”

wait

[doubleclick]

wait

[displaychoice]

print #main.listbox, “selection? selected$”

notice “You selected: “; selected$

[terminate]

close #main

end

99Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 99

100 Programming for the Absolute Beginner, Second Edition

Hint

This example creates an array, which is an indexed list of values, and uses it to populate the
contents of the combobox control. You will learn all about arrays in Chapter 4, “Working with
Variables and Arrays.”

When executed, this previous example displays the window shown in Figure 3.17.

Combobox Controls

The combobox control includes features provided by the listbox and textbox controls. You use
the combobox control to present users with a list of options from which to select, similar to a list-
box control. Alternatively, users can type in their own entry, similar to a textbox control. Com-
boboxes are often used when space is limited and there is insufficient room available to display
both listbox and textbox controls. You can add a combobox control to an application window
using the following syntax:

combobox #handle.ext, array$(), [label | subroutine], x, y, width, height

The combobox control is populated by associating an array with it. To get a better understanding
of how to create and populate a combobox control with items, take a look at the following sam-
ple program:

nomainwin

names$(0) = “Mary”

names$(1) = “William”

names$(2) = “Molly”

names$(3) = “Alexander”

names$(4) = “Jerry”

Figure 3.17 An example of the listbox control preloaded with items.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 100

names$(5) = “Bridget”

names$(6) = “Lazlo”

names$(7) = “Dolly”

names$(8) = “Mike”

names$(9) = “Mark”

names$(10) = “Nick”

statictext #main.statictext “Select a name:”, 30, 30, 80, 20

combobox #main.combobox, names$(), [select], 30, 60, 100, 140

button #main.button, “OK”, [displaychoice], UL, 60, 240, 40, 30

open “Combobox Control Demo” for window as #main

print #main, “trapclose [terminate]”

wait

[select]

wait

[displaychoice]

print #main.combobox, “selection? selected$”

notice “You selected: “; selected$

[terminate]

close #main

end

When executed, this example displays a window with a combobox and a button control. Click-
ing on the combobox control’s down arrow displays a list of items, as shown in Figure 3.18.

101Chapter 3 • Creating Graphical User Interfaces

Figure 3.18 An example of a combobox control loaded with items.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 101

Groupbox Controls

The groupbox control is used to group controls on a window. A groupbox control consists of a
box with a label displayed in the upper-left corner. You can use groupbox controls to visually organize
other controls. However, groupbox controls are typically used to group radiobutton controls,
allowing different groups of radiobutton controls to operate independently of each other.

You can add a groupbox control to an application window using the following syntax:

groupbox #handle.ext, “caption”, x, y, width, height

As you can see, the syntax for the groupbox control is straightforward. To better understand how
to work with the groupbox control, take a look at the following example:

nomainwin

groupbox #main, “Please specify your age:”, 40, 60, 200, 120

radiobutton #main.low, “17 or under”, [warning], [nil], 60, 85, 130, 20

radiobutton #main.medium, “18 through 65”, [reminder], [nil], 60, 115, 130, 20

radiobutton #main.high, “66 or older”, [disclaimer], [nil], 60, 145, 130, 20

textbox #main.textbox, 30, 280, 250, 20

open “Age Confirmation” for window as #main

print #main, “trapclose [terminate]”

print #main.low, “set”

[warning]

#main.textbox, “You must be at least 18 years of age to continue.”

wait

[reminder]

#main.textbox, “Please have your credit card ready to proceed.”

wait

[disclaimer]

#main.textbox, “Warning! This site is not for the faint of heart!”

wait

[nil]

wait

[terminate]

close #main

end

102 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 102

This example is almost identical to the one presented earlier when the radiobutton control was
introduced. The only difference is that instead of preceding the list of radiobutton controls with
a statictext control, the controls are organized and presented inside a groupbox control, as shown
in Figure 3.19. As such, each of these three radiobutton control functions is part of a group. Any
other radiobutton control that might be added to the application window outside of the group-
box control are treated as part of a separate group.

Graphicbox Controls

The graphicbox control gives programmers the ability to display bitmap images. Alternatively,
the graphicbox control also allows programmers to draw shapes such as squares, circles, and text
characters.

You can add a graphicbox control to an application window using the following syntax:

graphicbox #handle.ext, x, y, width, height

As you can see, the syntax for the graphicbox control is straightforward. Once it’s added, you can
use it to display graphics and draw graphic shapes using graphics commands. To better under-
stand how to work with the graphicbox control, take a look at the following example:

nomainwin

graphicbox #handle.gbox, 30, 30, 200, 200

open “Drawing” for window as #handle

print #handle.gbox, “home” ‘Center the pen

print #handle.gbox, “down” ‘Ready to draw

print #handle.gbox, “fill yellow” ‘Fill the graphics area yellow

103Chapter 3 • Creating Graphical User Interfaces

Figure 3.19 An example of the groupbox control
used to group a list of radiobutton controls.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 103

print #handle.gbox, “circle 80” ‘Draw a circle

print #handle.gbox, “flush” ‘Make the graphics stick

wait

In this example, a graphicbox control is added to a window that is 200 pixels wide by 200 pixels
high. A series of print commands is then executed that locate the center of the control, prepare
it for drawing, fill in the background color with yellow, and then draw a circle with a radius of 80
pixels, as shown in Figure 3.20. Finally, the flush command is executed, ensuring that the image
is not overwritten if the window is covered or temporarily minimized. You will learn more about
graphics commands later in Chapter 9.

Setting Control Focus
When the user clicks on an interface control, such as a textbox control, that control is said to have
focus. This means that any keyboard input is sent to the control. Therefore, a textbox or texted-
itor control with focus accepts as input any text the user keys in. Likewise, a control such as but-
ton that has focus responds if the user presses the Enter key, which is equivalent to clicking on
the control using the mouse. You can programmatically assign focus to a given control using the
setfocus command, as demonstrated here:

print #main.textbox, “!setfocus”

Here, focus is set to a textbox control whose handle is #main.textbox on a window whose handle
is #main. Because the textbox control accepts text input, you must precede the setfocus command
with the ! character to prevent the command from being displayed as a string in the control instead
of being executed.

104 Programming for the Absolute Beginner, Second Edition

Figure 3.20 An example of the graphicbox control
used to draw a circle on a yellow background.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 104

Enabling and Disabling Controls
If necessary, you can manage the availability of a control by enabling and disabling it during pro-
gram execution. A disabled control is visible on the application window but is grayed out and
cannot be accessed. You might want to disable a control that saves a file until the application
opens a file. Once it’s opened, you can enable the control, and when the file is closed, you might
want to again disable the control.

To disable a control, all you have to do is pass the disable command to it, as demonstrated here:

print #main.button “!disable”

Here, a button control is disabled. The button control accepts text input passed to it from the
print command as its caption. Adding the ! character to the beginning of the disable command
instructs Just BASIC to instead execute the disable command. As you might guess, you can
enable any control using the enable command, as demonstrated here:

Print #main.button “!enable”

Specifying the Control Font and Color
Earlier in the chapter, you learned how to use the font command to specify the font type and size
for an application window and its controls. Just BASIC allows you to override this font setting on
a control-by-control basis. You accomplish this by using the print command to send the font
command to a specific control by referencing that control’s handler, as demonstrated here:

print #main.button, “!font Arial 14”

Here, the button control’s font type has been set to Arial size 14. This statement only sets the font
type and size for the specified control and has no effect on the rest of the window or on any other
controls that have been added to the window.

Earlier in the chapter, you also learned how to set a window’s background and foreground colors
by modifying the value of the BackgroundColor$ and ForegroundColor$ special variables. If you
want, you can change the background color assigned to the textbox, combobox, listbox, and
texteditor controls by assigning a color to the following special variables:

• ComboboxColor$

• ListboxColor$

• TextboxColor$

• TexteditorColor$

105Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 105

106 Programming for the Absolute Beginner, Second Edition

For example, the following statement sets the background color of any textbox controls to yellow
(regardless of what the window’s background color may be set to):

TextboxColor$ = “yellow”

Building Application Menus
Menus are drop-down lists located at the top of the window, just underneath the window’s title
bar. Menus consist of menu items. The user interacts with menus by clicking on them and then
selecting the appropriate menu item, which in turn sends a command to the application. Menus
are defined using the menu command, which has the following syntax:

menu #handle, “title”, “menuitem1”, [label | subroutine], [|], _

[“menuitem2”, [label | subroutine]]

title sets the name of the menu (File, View, Settings, Help, and so on). menuitem specifies the
name of a menu item (Open, Save, Close, Exit, and so on). You can add as many menu items as
necessary to a menu. You can also include an optional | character between menu items to insert
a separator line. A separator line helps you visually organize related groups of menu items, as
demonstrated in Figure 3.21.

Hint

In Just BASIC, menus are added to application windows programmatically via code statements.
Other programming languages like Visual Basic give programmers the option of creating
application menus visually. For example, Visual Basic provides an interface control that facil-
itates the addition of application menus.

You can set up accelerator keys for menus and menu items by inserting the & character at the
appropriate location in the title or menuitem name. When inserted, the character following the
& character becomes the menu or menu item’s accelerator key. You can easily identify accelerator
keys when the application is run because they are underlined. Accelerator keys are activated by
holding down the Alt key and then pressing the specified accelerator key (for example Alt+P to
print or Alt+S to save). Using accelerator keys, users can access menus and menu items using only
the keyboard.

Figure 3.21 A separator line can help visually organize menu items into logical groupings.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 106

Just like window interface controls, you must define any menus prior to opening the windows
that will contain them. For a better understanding of how to add menus to your Just BASIC
applications, consider the following example:

nomainwin

menu #main, “&File”, “&Open”, [openfile], |, “&Save”, [savefile], _

“&Save As”, [saveas], |, “&Exit”, [terminate]

menu #main, “&Help”, “App&lication Help”, [apphelp], |, “&About My Application”, _

[aboutapp]

open “Menu Demonstration” for Window as #main

wait

Hint

To create desktop applications that meet the needs and expectations of today’s users, your
Windows applications need to follow certain standards. In regards to menus, this means
using familiar titles when naming menus (File, View, Help, and so on). Users also expect to
have the option of using accelerator keys. You should follow standard conventions when
assigning accelerator keys to menus and menu items. Otherwise, users become confused. For
example, the accelerator key for File menu items like Open should be the letter O, whereas
the accelerator key for the Help menu is always the letter H.

Here, two menus have been added to the window: File and Help. The File menu has been
assigned an accelerator key of Alt+F, and the Help menu has an accelerator key of Alt+H. The
File menu contains four menu items, each of which has been configured to call upon a different
label, and the Help menu contains two menu items. If executed, the previous example produces
the menus shown in Figure 3.22.

107Chapter 3 • Creating Graphical User Interfaces

Figure 3.22 An example of a window application with two menus.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 107

Hint

Any windows to which you add a textbox or texteditor control automatically inherit an Edit
menu. By default, the Edit menu appears to the right of any other menus that you may have
added to a window. If you want, you may specify the location of the Edit menu using the menu
command, as demonstrated here:

menu #main, “&File”, “&Open”, [openfile]

menu #main, “edit”

menu #main, “&Help”, “App&lication Help”, [apphelp]

You must specify the menu command for the Edit menu exactly as shown here. Do not include
the & character or attempt to specify or modify the contents of the Edit menu; otherwise,
things do not work properly.

Building Interfaces with FreeForm-J
FreeForm-J is a Just BASIC application supplied as part of Just BASIC’s distribution package.
FreeForm-J assists Just BASIC programmers in visually designing GUIs. It allows programmers
to add instances of controls to a window and then move and resize them and modify their prop-
erties. FreeForm-J also facilitates the creation of menus and can be used to specify a window’s
title bar, type, and handle and color scheme. Once you have used FreeForm-J to design an appli-
cation window, you can instruct it to generate the program code required to regenerate the win-
dow for you. You can then copy and paste this code into your Just BASIC application.

Designing an Application Window
Most modern Windows programming languages that support desktop application development
provide a Rapid Application Development (RAD) window development capability, allowing pro-
grammers to design application windows using prebuilt controls that are dragged and dropped
onto windows. For example, Visual Basic Express 2013 gives programmers an assortment of con-
trols that can be dragged and dropped onto the application windows and then rearranged and
resized as necessary, as demonstrated in Figure 3.23.

Just BASIC only supports the generation of application windows from code. However, an appli-
cation named FreeForm-J, written in Just BASIC, is shipped with the programming language and
goes a long way toward providing Just BASIC with a visual application window development tool.

To start FreeForm-J, click on Just BASIC’s Run menu and select the FreeForm-J GUI Editor menu
item. FreeForm-J automatically opens a new blank application window when you start, as
demonstrated in Figure 3.24.

108 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 108

109Chapter 3 • Creating Graphical User Interfaces

Figure 3.23 Visual Basic Express 2013 assists programmers by providing alignment indicators that automatically
appear as programmers use drag and drop to build application windows.
Source: Microsoft Corporation

Figure 3.24 FreeForm-J is provided for free as part of Just BASIC’s distribution package.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 109

110 Programming for the Absolute Beginner, Second Edition

To design an application window using FreeForm-J, you click on an image representing a Just
BASIC control from the Toolbox pane. In response, FreeForm-J places an instance of that control
on the application window and opens a property window that displays a list of properties asso-
ciated with that control, as demonstrated in Figure 3.25. In some cases, such as when a button
control is added, you are first prompted to provide some additional information such as the name
of the caption to be displayed on the control.

Once the control is added, you can make changes to it. For example, using the resize button han-
dlers that appear when you click on the control, you can change the size of the control. You can
also drag it to a different location on the window. Finally, you can modify the control by making
changes to the text fields displayed in the control’s Properties window.

You can set the window’s title bar string or change the window’s type, handle, and color scheme
by opening FreeForm-J’s Window menu and selecting the appropriate menu option, as shown in
Figure 3.26. Each of the menu items opens a pop-up window that lets you specify the appropri-
ate window setting.

Figure 3.25 A textbox control has been added to the application window.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 110

Using FreeForm-J to Build Window Menus
FreeForm-J also assists programmers in developing application menus. To do so, just click on the
Add a Menu option on FreeForm-J’s Menu menu. In response, the Add a Menu window is dis-
played. To add a menu to the application window, enter a name for it in the Enter New Menu
Name field and click on Accept. You may include the & character to assign an accelerator key to
the menu, as demonstrated in Figure 3.27.

You can add as many menus as you want to the application window. Once you have finished
adding all the menus needed on the application window, you can edit each menu to assign its
menu items. You do this by clicking on the Edit Menus option located on the Menu menu. This
opens the Edit Menus window, as shown in Figure 3.28.

111Chapter 3 • Creating Graphical User Interfaces

Figure 3.26 Using FreeForm-J to configure window properties.
© 2016 Shoptalk Systems

Figure 3.27 Adding a menu to a Just BASIC application window.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 111

To edit a menu, select it from the list of menus that you have added to the window and then click
on the New Item button. This opens the Menu Item Properties window, which prompts you to
supply a name and label for the menu item, as demonstrated in Figure 3.29.

Using FreeForm-J to Generate Source Code
Once you have completed the design of your new application window, you can tell FreeForm-J
to generate the code statements required to programmatically regenerate the window for you by
clicking on the Output menu and selecting either the Produce Code or Produce Code + Outline
menu items. Selecting the Produce Code menu item instructs FreeForm-J to generate and display
the source code required to re-create the application window, as demonstrated in Figure 3.30.

Selecting the Produce Code + Outline menu item instructs FreeForm-J to not only provide the
program code required to regenerate the application window but include labels as part of the
program code, as demonstrated in Figure 3.31.

112 Programming for the Absolute Beginner, Second Edition

Figure 3.28 The Edit Menus window lets programmers visually design application menus.
© 2016 Shoptalk Systems

Figure 3.29 Adding a menu item for the selected menu.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 112

Once you have designed an application window, have everything looking like you want it to,
and have generated the program code required to regenerate it, you can copy the program code and
paste it into your Just BASIC application. This saves you the time and effort required to otherwise
programmatically develop the source code to create the application window yourself.

113Chapter 3 • Creating Graphical User Interfaces

Figure 3.30 Instructing FreeForm-J to provide you with the program code
required to regenerate the newly designed application window.
© 2016 Shoptalk Systems

Figure 3.31 FreeForm-J can also generate labels for each control that requires them.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 113

114 Programming for the Absolute Beginner, Second Edition

Taking Advantage of Built-In Dialogs
It is not always necessary to add new windows to your Just BASIC applications in order to inter-
act with the user. Like many programming languages, such as Visual Basic and VBScript, Just
BASIC gives programmers access to a number of prebuilt dialogs that can be used to communi-
cate with users and to collect small amounts of information. These dialogs include the following:

• Notice

• Confirm

• Prompt

• Filedialog

By taking advantage of these dialog windows, you can reduce the number of windows your appli-
cation needs and simplify your program code.

Notice
You use the notice command to display pop-up dialogs that display a text string and an OK but-
ton. Programmers can use this dialog to display small amounts of information and pause pro-
gram execution until the user closes the dialog. To display a Notice dialog, you use the notice
command, which has the following syntax:

notice “string”

To see the notice command in action, look at the following example:

notice “Your report is ready.”

When executed, this statement produces the pop-up dialog shown in Figure 3.32.

Figure 3.32 Using the notice command to display a short message.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 114

Trick

If you insert the carriage return character (chr$(13)) between two strings, as demonstrated
next, you can display a message in the title bar of a Notice dialog:

notice “Reminder!” + chr$(13) + “Your report is ready.”

In this example, the string “Reminder!” is displayed in the Notice dialog’s title bar, and the
second string is displayed as a message inside the dialog. If you add three or more carriage
return character-separated strings to a notice command, Just BASIC displays the first string
in the dialog’s title bar, and the rest of the strings are displayed as a multiline message. You
can also use the carriage return character to display title bar messages and to display mul-
tiline messages when working with the confirm and prompt commands.

Confirm
The Confirm dialog is similar to the Notice dialog. However, the Confirm dialog displays two but-
tons, Yes and No, allowing programmers to display a question and to collect either of two answers.
The Confirm dialog is generated using the confirm command, which has the following syntax:

confirm “string”; response$

response$ is used to collect the user’s input. To see the confirm command in action, look at the
following example:

confirm “Would you like to continue?”; response$

When executed, this statement produces the pop-up dialog shown in Figure 3.33.

Prompt
The Prompt dialog displays a pop-up dialog that prompts the user to enter a small amount of
text. This dialog displays two buttons: OK and Cancel. The Prompt dialog is generated using the
prompt command, which has the following syntax:

prompt “string”; response$

115Chapter 3 • Creating Graphical User Interfaces

Figure 3.33 Using the Confirm dialog to
prompt the user to pick between two choices.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 115

response$ is used to collect the user’s input. If the user clicks on the Cancel button without
entering input, an empty string (“”) is returned. If you assign a value to the response$ variable
prior to displaying a Prompt dialog, the value of response$ is displayed as the default response
inside the pop-up dialog, allowing the user to accept this value by clicking on the OK button.

To see the prompt command in action, look at the following example:

prompt “Enter your age:”; response$

When executed, this statement produces the pop-up dialog shown in Figure 3.34.

Filedialog
The Filedialog dialog is used to display the Windows Common Filedialog window. This window
lets you navigate the Windows file system to either locate a file or specify the name and location
where a file should be saved. The Filedialog dialog is generated using the filedialog command,
which has the following syntax:

filedialog “title”, “template”, response$

title represents a string to be displayed in the dialog’s title bar. template is a string that identi-
fies the type of file to be opened. For example, specifying “*.txt” tells the application to only
show files with a .txt file extension. You can set the dialog to display more than one file type by
setting template equal to two or more file extensions separated by semicolons (“*.txt; *.doc;

*.wtf”). response$ represents the name of a variable to be used to store the full file and path
name of the file.

The following example demonstrates how to use the Filedialog window to allow the user to select
a file to be opened:

filedialog “Select a File to Open”, “*.txt”, filename$

When executed, this statement produces the pop-up dialog shown in Figure 3.35, and the name
of the file the user selects is stored in a variable named filename$.

If you include the word “save” somewhere in the string representing the title bar message, the save
style of the dialog will be displayed instead, as demonstrated here:

filedialog “Save Your File”, “*.txt”, filename$

116 Programming for the Absolute Beginner, Second Edition

Figure 3.34 Prompting the user to provide a
small amount of input using the Prompt dialog.
© 2016 Cengage Learning®

03 ProgABS2E ch03 2/23/15 8:41 PM Page 116

When executed, this statement produces the pop-up dialog shown in Figure 3.36, allowing the
user to specify the directory to be used to store its file output (for example, the data stored in
the filename$ variable).

117Chapter 3 • Creating Graphical User Interfaces

Figure 3.35 Using the
Filedialog to locate a file
to open.
© 2016 Shoptalk Systems

Figure 3.36 Using the Filedialog to specify the name and path of a file to be saved.
© 2016 Shoptalk Systems

03 ProgABS2E ch03 2/23/15 8:41 PM Page 117

Back to the BASIC Crazy 8 Ball Game
Okay, now it’s time to turn your attention back to the development of this chapter’s game pro-
ject, the BASIC Crazy 8 Ball game. The development of this game gives you firsthand experience
with GUI development. Rather than develop the game’s GUI windows using FreeForm-J, the
instructions provided focus on the programmatic development of those windows. This approach
gives you a better understanding of the programming logic required to build application inter-
faces. It also encourages your appreciation for programming languages like Visual Basic and
Visual C++ should you decide to switch over to them down the road. Later, once you feel you
have a solid understanding of the mechanics involved in GUI development, you can take advan-
tage of FreeForm-J if you want to speed up window development.

Designing the Game
The design of the BASIC Crazy 8 Ball game follows the same patterns used in previous chapters to
develop chapter projects. The BASIC Crazy 8 Ball game is created in seven steps, as outlined here:

1. Create a new BASIC file and document its purpose.

2. Display the game’s opening welcome screen.

3. Initiate gameplay.

4. Close the game if the user decides not to play.

5. Collect the player’s question.

6. Generate an answer.

7. Close the game when the player finishes asking questions.

Creating a Just BASIC File Script

The first step in the creation of the BASIC Crazy 8 Ball game is to create a new BASIC file and add
the following statements to it so you can provide a little information about the game and its author:

‘ ***

‘

‘ Script Name: Crazy8Ball.bas (The BASIC Crazy 8 Ball Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 20, 2015

‘

‘ Description: This Just BASIC game imitates a Crazy 8 fortune telling

‘ ball

‘

‘ ***

118 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 118

Displaying a Welcome Screen

The next step in the development of the game is to display a window that welcomes the player to
the game and prompts the player to begin gameplay. This is achieved by adding the following
statements to the end of the program file:

nomainwin ‘Suppress the display of the default text window

WindowWidth = 500 ‘Set the width of all application windows to 500 pixels

WindowHeight = 400 ‘Set the height of all application windows to 400 pixels

BackgroundColor$ = “Black” ‘Set the window’s background color to black

ForegroundColor$ = “Yellow” ‘Set the window’s foreground color to yellow

‘Use variables to store text strings displayed in the window

IntroMsg1$ = “W E L C O M E T O T H E C R A Z Y 8 B A L L”

IntroMsg2$ = “F O R T U N E T E L L I N G G A M E”

IntroMsg3$ = “Copyright 2015”

IntroMsg4$ = “Jerry Lee Ford, Jr,”

‘Define the format of statictext controls displayed on the window

statictext #main.statictext, IntroMsg1$, 120, 50, 300, 14

statictext #main.statictext, IntroMsg2$, 147, 80, 300, 14

statictext #main.statictext, IntroMsg3$, 210, 160, 300, 14

statictext #main.statictext, IntroMsg4$, 204, 190, 300, 14

‘Define the format of button controls displayed on the window

button #main.button “ Play “, [PrepareGame], UL, 174, 300

button #main.button “ Quit “, [CloseMain], UL, 260, 300

‘Open the window with no frame and a handle of #main

open “BASIC Crazy 8 Ball” for window_nf as #main

‘Pause the application to wait for the player’s instruction

Wait

As you can see, the first statement executes the nomainwin command to prevent the display of the
mainwin window. The next two statements set the value of WindowWidth and WindowHeight to
500 and 400, respectively, thus determining the size of the application window. Next, the values of
BackgroundColor$ and ForegroundColor$ are set to black and yellow, respectively. The next set
of statements assigns text strings to a series of variables, which are used in the four statements

119Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 119

that follow. These statements add statictext controls to the window to display the text that introduces
the game to the player. The two statements that follow add two button controls to the window:
one labeled Play and the other labeled Quit. When the application is run, clicking on the Play
button executes the code statements located after the [PrepareGame] label, and clicking on the
Quit button executes the code statements located after the [CloseMain] label. The next statement
displays the application window using the open command. Finally, the last statement executes the
wait command, pausing the application to wait for the player to click on one of the button controls.

Initiating Gameplay

The next step in the development of the BASIC Crazy 8 Ball game is to add the code statements
associated with the [PrepareGame] label, shown next, to the end of the program:

‘This static handle is executed when the player clicks on the button

‘control labeled Play located on the #main window. It closes the

‘#main window and initiates gameplay by switching to the [PlayGame]

‘static handler

[PrepareGame]

close #main ‘Close the #main window

goto [PlayGame] ‘Switch to the [PlayGame] static handler

The code statements located under the [PrepareGame] label execute when the player clicks on the
button control labeled Play. The first statement closes the opening window using the close com-
mand, passing it the window’s handle. The second statement used the goto command to execute
the code statements associated with the [PlayGame] label.

Controlling Game Termination from the Welcome Screen

Now it is time to add the code statements for the [CloseMain] label, which are shown next, to
the end of the program file. These statements are responsible for terminating the application if
the player clicks on the button control labeled Quit.

‘This static handle is executed when the player clicks on the button

‘control labeled Quit. It closes the #main window and then terminates

‘the execution of the game

[CloseMain]

close #main

end

The first statement closes the application window, and the second statement executes the end
command, which stops the application’s execution.

120 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 120

Prompting the Player to Ask a Question

Now it is time to add the code statements for the [PlayGame] label, shown next, to the end of the
program file. When executed, the code statements that follow the [PlayGame] label are responsi-
ble for displaying an application window that collects the player’s question:

‘When executed, this static handler displays a window that collects the

‘player’s question.

[PlayGame]

BackgroundColor$ = “White” ‘Set the window’s background color to white

ForegroundColor$ = “Black” ‘Set the window’s foreground color to black

‘Use variables to store text strings displayed in the window

Instructions1$ = “Type your question in the entry field provided below”

Instructions2$ = “and click on the Ask button to have your fortune told!”

‘Define the format of statictext controls displayed on the window

statictext #play.statictext, Instructions1$, 120, 50, 300, 14

statictext #play.statictext, Instructions2$, 116, 80, 300, 14

‘Define the format of button controls displayed on the window

button #play.button “ Ask “, [AskQuestion], UL, 174, 300

button #play.button “ Quit “, [ClosePlay], UL, 260, 300

textbox #play.textbox 30, 140, 430, 25

‘Open the window with no frame and a handle of #play

open “BASIC Crazy 8 Ball” for window_nf as #play

‘Set focus to the textbox control

print #play.textbox, “!setfocus”

‘Pause the application to wait for the player’s instruction

wait

The first two statements set the background and foreground color of the new window. The next
two statements assign a text string to two variables. Two statictext controls are then added to the
window, displaying the values assigned to Instructions1$ and Instructions2$. Next, two button
controls labeled Ask and Quit are added to the window. When clicked, the button control labeled
Ask causes statement execution to jump to the [AskQuestion] label. Likewise, if the button control
labeled Quit is clicked, the statement following the [ClosePlay] label is executed.

121Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 121

Next, a textbox control is added to collect the player’s input. Finally, the open command is used
to display the application window, focus is assigned to the textbox control, and the wait com-
mand is executed, pausing the application until the player does something.

Generating Answers

Next, you’ll add the code statements associated with the [AskQuestion] label, shown next, to the
end of the BASIC file. These statements are responsible for generating and displaying an answer
to the player’s question.

‘This static handler is called from the #play window when the player clicks

‘on the Ask button. Its job is to process the player’s input and respond

‘appropriately.

[AskQuestion]

‘Retrieve the text string stored in the textbox control

print #play.textbox, “!contents?”

‘Assign the text string to a variable named question$

input #play.textbox, question$

close #play ‘Close the #play window

‘Displays an error message in the event the player did not enter anything

if question$ = “” then

‘Display an error message in a popup dialog

notice “BASIC Crazy 8 Ball” + chr$(13) + _

“Error: You forgot to type a question!”

‘Switch back to the [PlayGame] handle to allow the player to ask a new

‘question

goto [PlayGame]

else ‘Generate a random answer to the player’s question

‘Use the rnd() function to retrieve a random number between 1 and 3 and

‘assign the result to a variable named RandomNumber

RandomNumber = int(rnd(1)*3) + 1

122 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 122

‘Select an answer based on the value assigned to the RandomNumber

‘variable

if RandomNumber = 1 then answer$ = “YES”

if RandomNumber = 2 then answer$ = “MAYBE”

if RandomNumber = 3 then answer$ = “NO”

‘Display the answer to the player’s question in a popup dialog

notice “BASIC Crazy 8 Ball” + chr$(13) + “The answer is “ + _

answer$ + “.”

‘Switch back to the [PlayGame] handle to allow the player to ask a new

‘question

goto [PlayGame]

end if

The first statement following the [AskQuestion] label retrieves the contents of the textbox con-
trol, and the statement that follows places a copy of the data that is retrieved into a variable
named question$. Next, the window containing the player’s question is closed. The rest of the
code statements located under this label are wrapped inside if…then…else code blocks. The
if…then…else statements are used to implement conditional logic, which you will learn about in
Chapter 5, “Making Decisions with Conditional Logic.” The logic contained in these statements
first checks to see if the player keyed in a question before clicking on the Ask button, displaying
an error message if this is the case. Assuming that the player provided input, a random number
between 1 and 3 is generated and, based on the number that is selected, a value of YES, MAYBE,
or NO is selected and displayed as the answer to the player’s question.

Hint

To generate the game’s random number, two built-in Just BASIC functions are used: int()
and rnd(). A function is a collection of code statements that can be called on and executed as
a unit. The int() function takes a number as input and returns an integer. The rnd() function
returns a random number between 0 and 1. Therefore, the statement

RandomNumber = int(rnd(1)*3) + 1

uses the rnd() function to generate a number between 0 and 1, multiplies that number by 3,
and then adds 1. The result is a number between 1.0 and 3.99. The int() function then
processes this value, resulting in a value of 1, 2, or 3. This value is then assigned to the
RandomNumber variable.

123Chapter 3 • Creating Graphical User Interfaces

03 ProgABS2E ch03 2/23/15 8:41 PM Page 123

The notice command displays messages in a pop-up dialog window. In addition, the goto com-
mand is used to jump the program back to the [PlayGame] label, thus preparing the game to
redisplay the #play window and allowing the player to ask another question.

Terminating Gameplay

The final set of statements to be added to the end of the BASIC file are those associated with the
[ClosePlay] label. These statements are shown here:

‘This static handle is executed when the player clicks on the button

‘control labeled Quit. It closes the #play window and then terminates

‘the execution of the game

[ClosePlay]

close #play

end

When called, these statements close the application window and then terminate application exe-
cution by running the end command.

The Final Result
That’s it. Assuming that you have not made any typos when keying in the source code for the
game, everything should be ready. So go ahead and run the game a few times to see if everything
works as expected. When testing the game, make sure that you try every feature by taking the
time to click on every control and window button. Also, try submitting a question without actu-
ally typing anything to make sure that the game correctly informs you that an error has occurred.

Summary
In this chapter you learned how to create graphical user interfaces for Windows applications.
This included learning how to create different types of application windows as well as how to add
different interface controls, such as button and textbox controls, to application windows. You
learned how to implement event-driven programming in order to associate specific code state-
ments with specific windows and interface controls. You learned how to set window and control
properties such as font size and type and foreground and background color. On top of all this,
you also learned how to work with FreeForm-J in order to visually create graphical user inter-
faces and to generate source code that goes along with them.

Before moving on to Chapter 4, why don’t you set aside some time to improve the BASIC Crazy
8 Ball game by tackling the following list of challenges.

124 Programming for the Absolute Beginner, Second Edition

03 ProgABS2E ch03 2/23/15 8:41 PM Page 124

125Chapter 3 • Creating Graphical User Interfaces

1. As currently written, the instructions provided by the game are a little sparse. Consider
adding additional text to give the player a better set of instructions. You might also want
to make the text displayed in the game’s pop-up dialogs a little more user friendly.

2. As designed, the BASIC Crazy 8 Ball game has only three possible answers from which
to draw. Consider expanding the range of answers available to the game. For example,
you might want to add answers such as NEVER, ABSOLUTELY, or THAT’S NOT GOING TO
HAPPEN.

3. Create a distribution package for your game and use it to install the game on another
Windows computer and make sure that it still runs (for example, that you have not for-
gotten to include one or more required supporting Just BASIC files).

C
ha

lle
ng

es

03 ProgABS2E ch03 2/23/15 8:41 PM Page 125

This page intentionally left blank

IIP
A

R
T

Learning How
to Write Basic
Programs

Chapter 4: Working with Variables and
Arrays

Chapter 5: Making Decisions with
Conditional Logic

Chapter 6: Using Loops to Process Data

Chapter 7: Improving Program Organization
with Functions and Subroutines

04 ProgABS2E ch04 2/23/15 8:37 PM Page 127

This page intentionally left blank

Working with Variables
and Arrays

4
A

ll computer programs process some kind of data. This data may be embed-
ded inside the program, or the user may supply it—from external files or
from the computer itself. Regardless of where it originates, programmers

need a means of storing and later retrieving data used during application execution.
You have already seen examples of how this works in the game programs you’ve
created in this book. In this chapter, you will learn how the retrieval and storage of
data in computer memory really works, both in Just BASIC and other programming
languages. In addition, you will learn how to create your next computer application,
the Ask Genie game.

Specifically, you will learn the following:

• How to store and retrieve individual pieces of data in variables

• How to store groups of data using arrays

• The rules to follow when naming variables and arrays

• How some programming languages use constants

• The different types of data that can be stored

• How to convert numbers to strings and vice versa

04 ProgABS2E ch04 2/23/15 8:37 PM Page 129

130

Project Preview: The Ask Genie Game
In this chapter, you will learn how to create a new computer game called Ask Genie. Tabethia is
a good genie who lives in a small lamp. She does not like to be disturbed and won’t respond if
you rub her lamp. However, she has one weakness: she cannot bear to be asked the same request
three times in a row.

The game begins by welcoming the player and providing a little background information, as
shown in Figure 4.1.

The player must click on the Play button to continue, displaying the screen shown in Figure 4.2.
A list of questions that can be asked of Tabethia is provided in a listbox control located at the
lower-left corner of the window. Once a question has been selected, Tabethia’s answer is displayed
in a texteditor control located in the lower-right corner of the window.

Programming for the Absolute Beginner, Second Edition

Figure 4.1 By specifying different font sizes, you can
emphasize different text elements.
© 2016 Cengage Learning®

Figure 4.2 To ask Tabethia a question, the player must
double-click on one of the questions shown in the listbox
control.
© 2016 Cengage Learning®

The trick to winning the game is to remember that Tabethia will answer any question asked of
her three times in a row. If the player forgets this fact, a hint can be displayed by clicking on the
Hint button. In response, the pop-up dialog shown in Figure 4.3 is displayed.

If the player insists on seeing the hint (by clicking on the Yes button), the pop-up dialog shown
in Figure 4.4 is displayed.

Once asked the same question three times in a row, Tabethia gives up and grants the player’s
every wish, as shown in Figure 4.5.

04 ProgABS2E ch04 2/23/15 8:37 PM Page 130

Working with Program Data
All computer programs process data in some manner. Data is information that your application
collects, stores, processes, and modifies during execution. This data may be embedded within the
programs. For example, you might create a word guessing game in which you embed a dozen words
used to play the game in the program code. Data can also be retrieved from the computer on which
your programs run. For example, a program that processes financial transactions may depend
on the system clock to generate date/time stamps for each record that is generated. That same final
program will also depend on data input from other sources. For example, it might look for data
files stored on your computer, or it might allow users to key input into a graphical user interface.

Any data your computer programs use must be stored in computer memory. The location in
memory where a particular piece of data is stored is referred to as an address. To retrieve a piece
of data and work with it again later in a program, the program must reference the address where

131Chapter 4 • Working with Variables and Arrays

Figure 4.3 The player is discouraged from
asking for help.
© 2016 Cengage Learning®

Figure 4.4 A clue is provided to help remind the
player of Tabethia’s weakness.
© 2016 Cengage Learning®

Figure 4.5 After promising to grant the player’s
wish, Tabethia asks to be left undisturbed.
© 2016 Cengage Learning®

04 ProgABS2E ch04 2/23/15 8:37 PM Page 131

the data is stored. Some programming languages, including assembly languages and C++, allow
programmers to directly manipulate specific memory addresses. This requires extra care on the part
of the programmer because any error can have disastrous consequences, potentially corrupting
other programs’ data or even causing the computer to crash. This is why most programming lan-
guages insulate programmers from the complexities of dealing directly with memory addresses.

Most programming languages, including Just BASIC, allow you to store individual pieces of data
in variables. Rather than allow you to access specific memory addresses, these languages allow
you to refer to a variable by name and then manage the storage and retrieval process for you. You
have seen many examples of this in applications that you have already developed.

Exploring Different Ways of Storing Data
Programming languages offer different ways of storing and retrieving data. One way to store data
within a program is to hard-code it as a literal value, as demonstrated here:

print “I am 42 years old.”

Here, a numeric value of 42 has been embedded within a text string. Although it’s certainly use-
ful as a means of displaying static information, using data in this manner is limited. You cannot,
for example, alter this value or use it to perform calculations.

In addition to supporting literal values, all programming languages let you store individual pieces
of data in variables and groups of related data in arrays. In addition, most programming lan-
guages support the use of constants to store data whose value is known at development time and
does not change during program execution. Each of these data storage options has its own
unique characteristics and is suited to specific situations. Which ones you use will depend on the
programming language you are using as well as the type of data you are working with.

Defining Constants

A constant is a descriptive name assigned to a known value that does not change throughout the
execution of a program. Programmers use constants when the data an application uses is known
in advance and not subject to change. For example, a mathematical application might store the
value of pi (3.14) in a constant at the beginning of the program and then reference it in various
locations throughout the rest of the application. Because pi is a numeric constant and is not sub-
ject to change, it is a good candidate for assignment to a constant.

By assigning a value to a constant, as opposed to a variable, you eliminate the possibility of acci-
dentally modifying it when the application is run. In addition, constants generally require less
memory than variables, making programs slightly more efficient in terms of resources con-
sumed. Simpler BASIC dialects, including Just BASIC, do not support the use of constants. How-
ever, more robust BASIC dialects, like Visual Basic, do.

132 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 132

Trick

To define a constant in programming languages such as Visual Basic and C++, you use the
const keyword:

const defaultScore As Integer = 100

Here, a constant named defaultScore has been defined as an integer and assigned a value
of 100. Because you can assign a descriptive name to a constant, the program code is easi-
er to understand. For example, you might use the preceding statement to set the default
score assigned to players at the beginning of a computer game. By referencing this descrip-
tive name, you help to document your document whenever this value is used. This is a lot
more meaningful than simply embedding the number 100 over and over again in different
code statements. In addition, code maintenance is simplified through the use of constants.
In this scenario, all a programmer would have to do to change the default score is modify this
value one time in the const declaration statement.

Many programming languages, such as Visual Basic, also give programmers access to a collection
of predefined constants. For example, instead of controlling the display of text using carriage
returns by inserting Chr$(13) into strings as is done in Just BASIC, Visual Basic lets programmers
reference built-in constants like ControlChars.Cr (carriage return) and ControlChars.CrLf
(carriage return and line feed).

Declaring Variables

Any time you have a piece of data to keep track of and modify, such as the value of a player’s score
during gameplay, you need to store it in a variable. A variable is a pointer to a location in mem-
ory (address) where a value is stored. In most programming languages, including Just BASIC, a
value (string or numeric) is assigned to a variable using the equals operator (=), as demonstrated
here:

initialScore = 0

confirmMsg$ = “Are you sure you want to quit?”

The first statement shown creates a variable named initialScore and assigns it a numeric value
of 0. The second statement creates a string variable named confirmMsg$ and assigns a text string
of “Are you sure you want to quit?” to it. In addition to allowing you to create your own vari-
ables, many programming languages provide programmers with access to special variables. A
special variable is one that is predefined by the programming languages and can be referenced at
any time during program execution. Table 4.1 is a listing of Just BASIC special variables.

133Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 133

134 Programming for the Absolute Beginner, Second Edition

© 2016 Shoptalk Systems

You may remember from Chapter 3, “Creating Graphical User Interfaces,” that special variables
like BackgroundColor$, ListboxColor$, ComboboxColor$, TextboxColor$, TexteditorColor$,
and ForegroundColor$ let you specify the colors used when rendering windows and controls and
that DisplayHeight, DisplayWidth, WindowHeight, and WindowWidth can be used to affect the
size of application windows.

Creating Arrays

Variables are generally all that you need to effectively define and manipulate a few pieces of data
at a time. However, some applications involve the manipulation and storage of a large amount of
related information. For these applications, arrays are typically used to handle data storage. An
array is an index list of data stored and managed as a unit. Data stored in an array is accessed by
specifying the name of the array and the index position of the data to be stored or retrieved.

Suppose you want to create an online contact list for all your friends and associates. One way of
doing this is to save a list of contacts and their phone numbers in a text file and then write a pro-
gram that opens that file and reads this list into an array. Once the information is loaded into an
array, you can use data stored in the array to populate a combobox or listbox control.

Just BASIC has support for single-dimension and double-dimension arrays. A single-dimension
array is a list of data, such as usernames. A two-dimensional array is like a table or an Excel
spreadsheet with rows and columns. Other programming languages like Visual Basic and C++
support arrays with even more dimensions.

BackgroundColor$ Joy1x ListboxColor$

ComboboxColor$ Joy1y Platform$

CommandLine$ Joy1z PrinterFont$

DefaultDir$ Joy1button1 TextboxColor$

DisplayHeight Joy1button2 TexteditorColor$

DisplayWidth Joy2x Version$

Drives$ Joy2y WindowHeight

Err Joy2z WindowWidth

Err$ Joy2button1 UpperLeftX

ForegroundColor$ Joy2button2 UpperRightY

TA B L E 4 .1  J U S T BAS IC S P E C I A L VA R I A B L E S

04 ProgABS2E ch04 2/23/15 8:37 PM Page 134

Other Data Storage Options

Although Just BASIC support for data manipulation is limited to variables and one- or two-
dimensional arrays, other programming languages offer additional ways of storing and retrieving
data. For example, Perl allows programmers to define hashes, sometimes referred to as associated
arrays, in which data is stored in key-value pairs, and each data element stored in a hash is
assigned a unique key. You can then retrieve data from the hash by referencing its associated key.

Other programming languages, like Visual Basic and C++, support the use of structures. Struc-
tures allow programmers to define a collection of related variables stored within an array. This
allows loosely related data such as customer names, phone numbers, and addresses to be stored
together and referenced individually or as a group. Object-oriented programming languages, like
C++ and Visual Basic, also allow programmers to store data using custom classes, which can be
used as a template to create objects where data can be stored.

In short, different programming languages support different data storage and retrieval options
over and above variables and arrays. Still, variables and arrays are by far the most commonly used
means of storing and manipulating data. As such, Just BASIC supplies an excellent platform from
which to experience and learn to work with both.

Working with Different Types of Data
A key concept to understand when developing computer programs is that types of data are
treated differently. For example, various types of numbers require different amounts of storage
in memory. Similarly, you can do certain things to some types of data that you cannot do to oth-
ers. As an example, consider numbers and strings. You can add, subtract, multiply, and divide
numbers. You cannot do the same with strings. However, you can concatenate strings together to
create larger strings. Simpler programming languages like Just BASIC support two types of val-
ues: string and numeric. More industrial-strength programming languages like Visual Basic sup-
port a much broader range of data types. For example, the following list shows just a portion of
the different data types that Visual Basic supports.

• Boolean A value of True or False

• Date A value representing date and time

• Decimal A numerical value up to 79,228,162,514,264,337,593,543,950,335

• Double A numeric value in the range of –1.79769313486231570E+308
to –4.94065645841246544E-324 for negative numbers and
4.94065645841246544E-324 to 1.79769313486231570E+308 for
positive numbers

• Integer A numeric value in the range of –32,768 to 32,767

• Long A numeric value in the range of –2,147,483,648 to 2,147,483,647

135Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 135

• Single A numeric value in the range of –3.402823E+38 to –1.401298E-45 for nega-
tive numbers and 1.401298E-45 to 3.4028235E+E38 for positive numbers

• String A string value in the range of up to two billion characters

In programming languages that support different data types, specifying the appropriate data type
associated with a variable or array is important because it impacts the amount of memory ded-
icated to storing different variables. In addition, data type definitions restrict the types of oper-
ations that can be performed on values.

As has been stated, Just BASIC only supports string and numeric data types. In Just BASIC, as in most
programming languages, a string is anything enclosed within matching double quotation marks.
In Just BASIC, strings can contain up to 2,000,000 characters. Just BASIC also distinguishes between
two types of numbers: integer and floating point (for example, numbers containing decimals).

Trick

Although Just BASIC does not support date and time data types, it does give programmers
access to two built-in functions that retrieve date and time data from the computer in the
form of a number or a string. Depending on how the Date$() function is used, it returns
either a string or a numeric value, as demonstrated here:

print date$() ‘Returns January 15, 2015 as a string

print date$(“mm/dd/yyyy”) ‘Returns 01/15/2015 as a string

print date$(“mm/dd/yy”) ‘Returns 01/15/15 as a string

print date$(“yyyy/mm/dd”) ‘Returns 2015/01/15 as a string

print date$(“days”) ‘Returns 99999 (days since Jan. 1, 1901) as a number

Depending on how the Time$() function is used, it returns either a string or a numeric value,
as demonstrated here:

print time$() ‘Returns “12:55:04” as a string

print time$(“seconds”) ‘Returns 28456 as a number (seconds past midnight)

print time$(“milliseconds”) ‘Returns 99999999 as a number

‘(milliseconds past midnight)

Learning How to Work with Variables
As has been already stated, variables allow you to store individual pieces of data during program
execution. Some programming languages, such as C, require that you formally declare a variable
and its type before allowing you to assign data to it or work with it. Other programming languages,

136 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 136

such as Just BASIC and JavaScript, let you create variables on the fly, without declaring them in
advance or specifying data. Still other programming languages, such as Visual Basic, allow you to
enable or disable the requirement to explicitly define variables before using them.

Trick

By default, Visual Basic allows for variable creation on the fly just like Just BASIC. However,
by adding the following statement at the beginning of a Visual Basic program, you can
instruct Visual Basic to enforce strict variable declaration:

Option Explicit

Declaring Variables
Just BASIC does not require programmers to declare variables prior to their use, instead allow-
ing variables to be created and used on the fly. Although this brings about flexibility, it also tol-
erates sloppy programming and errors. Therefore, it is important that you take great care to
check the spelling of all your variable names. Otherwise, a small typo can lead to errors. Consider
the following example:

round1Score = 10

round2Score = 20

totalScore = round1Score + Round2Score

print totalScore

In this example, the intention was to take the values assigned to round1Score and round2Score,
add them together, and assign the result to totalScore. However, instead of assigning a value of
30 to totalScore, this example assigned a value of 10. The reason for this unexpected turn of
events was the change in spelling of the round2Score variable in the third statement. If you look
carefully, you will see that the first character of this variable name has been capitalized. Just
BASIC is a case-sensitive programming language, meaning that variable names in different case
are viewed as being different variables.

Storing Data in Variables
Like most programming languages, if you do not assign an initial value to a variable, Just BASIC
will assign a default value for you. By default, numeric values are assigned a value of 0. String
variables, on the other hand, are assigned an empty string, equivalent to “”. If you do not want
these defaults, you need to make sure that you assign an initial value to your variables.

137Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 137

In most programming languages, including Just BASIC, the = operator is used to assign data to
variables, as demonstrated here:

name$ = “William”

age = 8

However, some languages differ. For example, AppleScript uses the keyword “To” to assign a
value to a variable.

Understanding Scope
One important concept for you to understand is variable scope. Scope defines the area within a
program where a variable can be accessed. Just BASIC supports two levels of variable scope:

• Local. Local variables are ones that are only accessible from within the function or
subroutine in which they were created. (Functions and subroutines are blocks of code that
perform a specific task. Both are covered in Chapter 7, “Improving Program Organization
with Functions and Subroutines.”

• Global. Variables accessible throughout the program.

Hint

Some programming languages, like Visual Basic, support additional levels of scope, giving
programmers additional degrees of control over variable access.

Working with Local Variables

A local variable can only be accessed within the scope in which it has been created. For example,
a variable used inside a subroutine can only be accessed from within that subroutine. By default,
variables used outside of functions and subroutines in Just BASIC programs are not visible inside
functions and subroutines. Likewise, a variable used inside a function or subroutine is not acces-
sible outside of that function or subroutine. The following example demonstrates how to create
a local variable within a subroutine:

sub TestSub

msg$ = “Hi!”

notice msg$

end sub

A local variable only exists within the scope in which it is created. If two subroutines are added
to the same program and both contain a reference to variables named msg$, Just BASIC treats
each instance of that variable in both subroutines as being entirely different variables. If you want

138 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 138

both subroutines to be able to access the same variable, you must declare that variable as being
global, as explained in the next section.

Working with Global Variables

Variables declared as global can be accessed from anywhere within a Just BASIC program.

Hint

Special variables, such as BackgroundColor$, ForegroundColor$, DisplayHeight,
DisplayWidth, WindowHeight, and WindowWidth, are always global; they’re accessible from
anywhere in your Just BASIC programs.

To declare a variable as global, you use the global command, which has the following syntax:

global variable1, variable2,... variableN

As you can see, you can declare any number of variables as being global by specifying a comma-
separated list of variable names. For example, the following statements declare a variable named
totalScore as being global and then assign a value to that variable:

global totalScore

totalScore = 0

Trick

In general, it is a good idea to limit the scope of your variables whenever possible. This con-
serves memory and eliminates the possibility of accidentally changing a variable’s value from
a different location within your application (which can happen when using global variables).

Variable Naming Rules
All programming languages impose certain rules on programmers when it comes to naming
variables. Some programming languages are case sensitive, meaning that they will view two iden-
tically named variables with differing case as being different. Other programming languages are
case insensitive, meaning that they ignore case and consider any identically named variables to
be the same. Some programming languages prohibit the use of certain characters in variable
names. Failure to follow variable naming rules will result in errors.

Just BASIC variable names can be of any length. However, you will want to keep them reasonably
short and descriptive. Just BASIC variable names are case sensitive. In Just BASIC, variables named
userage and USERAGE represent two different variables.

139Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 139

The following list outlines a few rules that you must follow when assigning names to Just BASIC
variables:

• Variable names must begin with a letter.

• Variable names can only contain letters, numbers, and the dot (.) and dollar sign ($)
characters.

• String variable names must end with the $ character.

• Variable names cannot include blank spaces.

• Variable names cannot be reserved words.

Trick

Make sure you give descriptive names to your variables. This will make them easier to iden-
tify and make your program code self-documenting.

Converting Variables
In many programming languages, specifying a variable data type is required. These languages are
said to be strongly typed. Programming languages like Just BASIC, which allow you to create
variables without formally declaring them or specifying their data type, are considered to be
loosely typed.

From time to time, you may find that you need to convert data from one data type to another.
Just BASIC gives you access to conversation functions that you can use to convert data from one
type to another. These operators include the following:

• val()

• str$()

Converting from String to Numeric Values

Using the val() function, you can convert a string that contains a number into a numeric value.
If the string being analyzed cannot be evaluated to a number, a value of 0 is returned. The val()
function has the following syntax:

val(expression)

140 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 140

expression can be a literal string or a variable. To get a better understanding of how the val()
function works, take a look at the following example:

apples$ = “25”

oranges = 5

apples = val(apples$)

fruit = apples + oranges

print “You have “; fruit; “ pieces of fruit.”

Here, a string variable named apples$ has been assigned a string value of 25 and a numeric vari-
able named oranges has been assigned a value of 5. Next, the val() function is used to convert
the string value assigned to apples$ to its numeric equivalent. The numeric values of apples and
oranges are then added together and the results assigned to a variable named fruit, whose value
is then displayed.

Converting from Numeric to String Values

Using the str$() function, you can convert a numeric value into its string equivalent. The
str$() function has the following syntax:

str$(expression)

To get a better understanding of how the str$() function works, take a look at the following
example:

oranges = 20

oranges$ = str$(oranges)

print “You have “ + oranges$ + “ oranges” ‘error

Here, a numeric variable named oranges is assigned a value of 20. Next, the str$() function is
used to convert the numeric value assigned to oranges to a string value of “20”, which is then
assigned to oranges$. This value is then displayed as part of a concatenated string in the last
statement.

Hint

Concatenation is the process of joining two or more strings to create a new string. Different
programming languages use different concatenation characters. For example, in Visual Basic,
the & character is used to concatenate strings. Just BASIC, on the other hand, uses the +
character to perform concatenation.

141Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 141

Trick

Strings are created by enclosing text within a pair of matching double-quotation marks. If
you need to include a double-quotation mark within a string, you might be tempted to try
something like the following:

print “Tom told Bob to “run” but he wouldn’t.”

However, Just BASIC will flag this statement as a syntax error. The workaround for this situ-
ation in Just BASIC is to use the chr$() function, as demonstrated here:

print “Tom told Bob to “ + chr$(34) + “run” + chr$(34) + “ but he wouldn’t.”

As you can see, chr$(34) evaluates to a value of a double quote, thus allowing you to insert
double quotation marks within your text strings.

Other programming languages provide different ways of inserting special characters into
text strings. For example, when displaying a text string in a Perl script, you can precede any
character that you want to be interpreted literally with the \ character.

Working with Numeric Variables
Unlike string variables, Just BASIC does not allow you to add a $ as the last character in a numeric
variable’s name. Just BASIC numeric variables can store both integers and double-precision
floating-point numbers, as demonstrated here:

x = 2 ‘Integer

y = 1.99 ‘Floating point number

Trap

If you attempt to add the $ character to the end of a numeric variable name, Just BASIC will
generate a Type Mismatch error.

Like many programming languages, Just BASIC gives programmers access to a host of built-in
functions, which can be used in conjunction with numeric data. The following list, which should
look familiar to any Visual Basic programmer, shows the numeric functions that Just BASIC pro-
vides:

• ABS(). Returns the absolute value of a number

• SQR(). Returns the square root of a number

• EXP(). Returns the exponent of a number

142 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 142

• LOG(). Returns the natural log of a number

• INT(). Returns the integer portion of a number

• RND(). Returns a random number between 0 and 1

By using built-in numeric functions, you save yourself the trouble of having to develop your own
programming logic to perform the same types of calculations, thus simplifying your program
code. All that you have to do to use these functions is enclose a numeric value within the numeric
function’s parentheses, as demonstrated here:

playerScore = 10.5

playerScore = int(playerScore) ‘value is now 10

Here, a floating-point number, 10.5, is converted to an integer using the int() function.

Functions That Manipulate Strings
Most programming languages also provide built-in functions that you can use to manipulate text
strings. In the case of Just BASIC, you will find functions that you can use to search strings, extract
portions of strings, or convert characters from lower- to uppercase or vice versa. The following
list, which again should look familiar to any Visual Basic programmer, shows the complete col-
lection of Just BASIC’s string functions:

• InStr(). Performs a search, looking for one string within another string, specifying the
starting character location of the string if found

• Left$(). Returns a specified number of characters from a string, sometimes referred to as
a substring, starting from the left side of the string

• Len(). Returns a value showing the number of characters in a string

• Lower$(). Returns a string that has been converted to all lowercase

• Mid$(). Extracts a specific number of characters from a string (if found), beginning at the
specified character position

• Right$(). Returns a specified number of characters from a string, sometimes referred to
as a substring, starting from the right side of the string

• Space$(). Returns a string made up of a specified number of characters

• Trim$(). Removes leading blank spaces from the beginning and the end of a string

• Upper$(). Returns a string that has been converted to all uppercase

To see an example of a number of these string manipulation functions in action, take a look at
the following example:

storyText$ = “ Once upon a time…”

storyText$ = trim$(storyText$) ‘Returns “Once upon a time…”

143Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 143

storyText$ = upper$(storyText$) ‘Returns “ONCE UPON A TIME…”

storyText$ = lower$(storyText$) ‘Returns “once upon a time…”

x = len(storyText$) ‘X equals 17

Here, a variable named storyText$ is assigned a text string that includes three blank spaces fol-
lowed by four words and three period characters. The second statement uses the trim$() func-
tion to reassign a string with no leading or trailing spaces back to storyText$. The third
statement uses the upper$() function to reassign an all-uppercase string to storyText$. The
fourth statement converts the string assigned to storyText$ to all lowercase characters. Finally,
the last statement uses the len() function to return a numeric value representing the number of
characters of the value assigned to storyText$.

Storing Data in Arrays
As handy as variables are for storing individual pieces of data, they lose some value when you
need to create programs that must handle large amounts of data. In most cases, the data
processed by an application is closely related. For example, an address book application might
need to manage a list of names. One way to handle the storage and retrieval of related data is
through arrays. An array is an indexed list of data. Just BASIC arrays are zero-based, meaning that
the first element stored in an array is assigned an index number of 0, the second element in the
array has an index position of 1, and so on.

Virtually every major programming language supports the use of arrays. Although many pro-
gramming languages, like Visual Basic, support the creation of arrays with numerous dimen-
sions, Just BASIC’s support for arrays is limited to single- and double-dimension arrays. As with
variables, you can use arrays to store string and numeric data.

Creating an Array
You can create small, single-dimension arrays of fewer than ten elements by simply assigning
nine or fewer elements to a like-named array, as demonstrated here:

names$(0) = “Alexander”

names$(1) = “William”

names$(2) = “Molly”

names$(3) = “Jerry”

names$(4) = “Mary”

Here I’ve created an array containing five elements. For arrays with ten or more elements, Just
BASIC requires that you use the dim command to first declare the array. This command has the
following syntax:

dim ArrayName(dimensions)

144 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 144

dimensions is a comma-separated list of values, representing the different dimensions of an
array. Just BASIC arrays can have either one or two dimensions. The following statement demon-
strates how to define an array that can store up to 20 elements:

dim names$(20)

Once the array has been defined, you can begin assigning data to it, as shown here:

names$(0) = “Alexander”

names$(1) = “William”

names$(2) = “Molly”

names$(3) = “Jerry”

names$(4) = “Mary”

.

.

names$(19) = “Mike”

Hint

Just like variables, Just BASIC requires that you add a $ character to the end of array names
that will be used to store string data.

Retrieving Data from an Array
Once you have created an array and populated it with data, you can reference elements stored
there by specifying the name of the array followed by the index number of the element to be
retrieved, as shown here:

notice names$(4)

Here, the fifth element stored in an array named names$() is retrieved and displayed in a pop-up
dialog.

Hint

Referencing array contents an element at a time is okay for small arrays, but for arrays that
contain dozens, hundreds, or thousands of elements; it is just not practical. Instead, you will want
to set up a loop to process all the contents of the array. Loops are covered in Chapter 6,
“Using Loops to Process Data.”

145Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 145

146 Programming for the Absolute Beginner, Second Edition

Resizing an Array
You can resize any Just BASIC array using the redim statement. Using this statement, you can
change the size of an array:

redim userNames$(9)

Here, the size of the userNames$() array is changed so that it can hold ten elements (0–9).

Two-dimensional arrays can also be resized, as demonstrated here:

redim addressBook$(9, 9)

Here a two-dimensional array has been resized so that it can hold 20 elements of data.

Trap

There is one major drawback to using the redim statement to resize arrays in Just BASIC. Any
data already stored in the arrays is automatically deleted. Other programming languages,
such as Visual Basic, allow you to retain data stored in arrays when resizing them.

Reserved Words
Every programming language has a list of reserved words—sometimes referred to as keywords—
that have special meaning to the language. These reserved words can only be used as documented
by the programming languages in accordance with specific syntax requirements. An example of
a Just BASIC reserved word is button. As you know, button is the name of a Just BASIC interface
control. Because it is a reserved word, you can only use it when defining a button control on a user
interface. If you attempt to use it as the name of a variable or array, you will run into problems.

Table 4.2 is a listing of Just BASIC’s reserved words. Take a few minutes to scan it. You may want
to bookmark this page and refer back to it any time you are thinking about assigning a name to
a variable or array that you think might sound like a reserved word, just to make sure it’s not.

Hint

Just BASIC also considers built-in functions and variables to be reserved words. Just BASIC’s
collection of built-in functions includes the following: ABS(), ACS(), ASC(), ASN(), ATN(),
CHR$(), COS(), DATE$(), EOF(), EXP(), INPUT$(), INSTR(), INT(), LEFT$(), LEN(), LOF(),
LOG(), LOWER$(), MIDIPOS(), MID$(), MKDIR(), NOT(), RIGHT$(), RMDIR(), RND(), SIN(),
SPACE$(), SQR(), STR$(), TAB(), TAN(), TIME$(), TRIM$(), TXCOUNT(), UPPER$(), USING(),
VAL(), and WORD$().

04 ProgABS2E ch04 2/23/15 8:37 PM Page 146

Hint

Just BASIC’s collection of built-in variables includes the following: BackgroundColor$,
ComboboxColor$, CommandLine$, DefaultDir$, DisplayHeight, DisplayWidth, Drives$,
Err, Err$, ForegroundColor$, Joy1x, Joy1y, Joy1z, Joy1button1, Joy1button2, Joy2x,
Joy2y, Joy2z, Joy2button1, Joy2button2, ListboxColor$, Platform$, PrinterFont$,
TextboxColor$, TexteditorColor$, UpperLeftX, UpperLeftY, Version$, WindowHeight,
and WindowWidth.

Back to the Ask Genie Game
Okay, let’s turn our attention back to the development of this book’s next game project, the Ask
Genie game. In this game you will get additional hands-on experience working with variables
and arrays. You will also get the chance to work with the listbox and texteditor controls.

147Chapter 4 • Working with Variables and Arrays

And Data Gosub

Append Dialog Goto

As Dim Graphicbox

Beep Do Graphics

Bmpbutton Dump Groupbox

Bmpsave Else If

Boolean End Input

Button Error Kill

Byref Exit Let

Call Field Line

Case Filedialog Listbox

Checkbox Files Loadbmp

Close For Long

Cls Function Loop

Combobox Get Lprint

Confirm Global Mainwin

Maphandle Put Sub

Menu Radiobutton Text

Name Random Textbox

Next Randomize Texteditor

Nomainwin Read Then

None Readjoystick Timer

Notice Redim Unloadbmp

On Rem Until

Oncomerror Restore Wait

Open Return Wend

Or Run While

Output Scan Window

Playmidi Select Word

Playwave Statictext Xor

Print Stop

Prompt Stopmidi

TA B L E 4 .2 J U S T BAS IC R E S E R V E D WO R D S

© 2016 Shoptalk Systems

04 ProgABS2E ch04 2/23/15 8:37 PM Page 147

Designing the Game
The design of the Ask Genie game is relatively straightforward. The Ask Genie game will be cre-
ated in eight steps, as outlined here:

1. Create a new BASIC file and document its purpose.

2. Display a welcome screen.

3. Start gameplay.

4. Close the #main window.

5. Accept player questions.

6. Generate answers to questions.

7. Provide the player with a hint.

8. Terminate gameplay.

The applications that you are developing in this book are getting more complicated as you move
from chapter to chapter. In the previous chapter, you learned how to use labels as a way to orga-
nize groups of statements that you could call upon from anywhere within a program. In this
chapter’s game project, you will use subroutines instead.

Hint

A subroutine is a collection of related statements that are called and executed as a unit. Once
it’s executed, a subroutine returns processing control back to the statement that called on it
to execute. More information about subroutines and how to work with them is available in
Chapter 7.

Creating a Just BASIC File Script

As with all the previous Just BASIC applications that you have worked on in this book, let’s begin
by adding a few comment statements to the beginning of the program file in order to document
the overall purpose of the application and provide a little information about its author:

‘ ***

‘

‘ Script Name: AskGenie.bas (The Ask Genie Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 20, 2015

‘

‘ Description: In this Just BASIC game the player is challenged to

148 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 148

‘ convince Tabethia, a powerful but somewhat temperamental

‘ genie, to grant wishes.

‘

‘ ***

Because this application does not use a text window, let’s also add the following statement to the
end of the program file to instruct Just BASIC not to generate the default mainwin window.

nomainwin ‘Suppress the display of the default text window

Welcoming the Player

The Ask Genie game will begin by displaying a welcome screen that introduces the game and
gives the player a little background information. Add the following code statements to the end of
the program file to generate this window and manage its interaction with the player.

Hint

Even though you may be tempted not to key in the comment statements that are provided
as part of the code statements shown next, go ahead and do so. These statements provide
detailed step-by-step documentation of every code statement and make the program code
easier to read and understand.

‘Define two global variables to keep track of player wishes

global previousSelection$, consecutiveWishes

WindowWidth = 600 ‘Set the width of the application windows to 600 pixels

WindowHeight = 480 ‘Set the height of the application windows to 480 pixels

BackgroundColor$ = “white” ‘Set the window’s background color to white

ForegroundColor$ = “black” ‘Set the window’s foreground color to black

‘Use variables to store text strings displayed in the window

IntroMsg1$ = “A S K G E N I E”

IntroMsg2$ = “Copyright 2015”

IntroMsg3$ = “Welcome to the Ask Genie game. In this game, the “ _

+ “objective is to get the game’s genie, Tabethia, to grant your “ _

+ “wishes. She will resist you. Your task is to wear her down “ _

+ “until she is willing to cooperate and grant any wish that “ _

+ “you present to her.”

149Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 149

‘Define the format of statictext controls displayed on the window

statictext #main.statictext1, IntroMsg1$, 160, 50, 330, 32

statictext #main.statictext2, IntroMsg2$, 380, 90, 300, 14

statictext #main.statictext3, IntroMsg3$, 100, 180, 400, 110

‘Define the format of button controls displayed on the window

button #main.button “ Play “, PrepareGame, UL, 220, 360

button #main.button “ Quit “, CloseMain, UL, 305, 360

‘Open the window with no frame and a handle of #main

open “Ask Genie” for window_nf as #main

‘Set the font type, size, and properties for each of the static controls

print #main.statictext1, “!font Arial 22 bold”

print #main.statictext2, “!font Arial 8”

print #main.statictext3, “!font Arial 11”

‘Pause the application to wait for the player’s instruction

wait

The first code statement just shown declares two global variables: previousSelection$ and
consecutiveWishes. These variables will be used to keep track of the player’s last wish (so that it
can be compared against her current wish) and to keep count of the number of times in a row
that the most recently asked wish has been requested.

The next four statements set the width and height of the application window as well as its fore-
ground and background colors. The next three statements assign text strings to three string vari-
ables. The value of these variables is then displayed in three static text controls that follow. Next,
two button controls are defined: one labeled Play and the other labeled Quit. A subroutine
named PrepareGame is called whenever the player clicks on the button labeled Play, and a sub-
routine named CloseMain is called when the player clicks on the Quit button.

The open command is then used to open a window with a handle of #main. Next, three print
statements are executed, specifying different font type, size, and property characteristics for each
of the window’s statictext controls. Finally, the wait command is executed, pausing the game to
wait for the player’s input.

Starting Gameplay

The code statements that make up the PrepareGame subroutine are shown next and should be
added to the end of the program file. This subroutine is called and executed whenever the player
clicks on the button labeled Play located on the #main window:

150 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 150

‘This subroutine is called when the Play button is clicked and is

‘responsible for starting gameplay

sub PrepareGame handle$

close #main ‘Close the #main window

call PlayGame ‘Switch to the [PlayGame] static handle

end sub

As you can see, this subroutine begins with the keyword sub followed by the name assigned to
the subroutine (PrepareGame) and then a parameter named handle$. This parameter represents
the name of the control that has called the subroutine.

The subroutine itself consists of two statements. The first statement closes the #main window,
and the second statement uses the call command to execute a subroutine named PlayGame.
The PlayGame subroutine is responsible for collecting player guesses and determining Tabethia’s
responses.

Closing the Opening Window

The code statements that make up the CloseMain subroutine are shown next and should be
added to the end of the program file. This subroutine is called whenever the player clicks on the
Quit button located on the #main window. It consists of a single statement that uses the close
command to close the #main window:

‘When called, this subroutine closes the application’s #main window

sub CloseMain handle$

close #main

end sub

Accepting Player Input

The PlayGame subroutine, shown next, is responsible for displaying the #play window, which is
where the game is actually played. It lists wishes from which the player can select and displays
responses provided on behalf of Tabethia:

‘This subroutine accepts player wishes and displays Tabethia’s responses

sub PlayGame

WindowWidth = 600 ‘Set the width of the window to 600 pixels

WindowHeight = 480 ‘Set the height of the window to 480 pixels

151Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 151

BackgroundColor$ = “White” ‘Set the window’s background color to white

ForegroundColor$ = “Black” ‘Set the window’s foreground color to black

‘The following array contains a list of wishes that the player can ask

‘Tabethia to answer

wishes$(0) = “Can I have a million dollars?”

wishes$(1) = “I would like fame. Make me a Hollywood movie star!”

wishes$(2) = “I want power. Make me emperor of the world!”

wishes$(3) = “I want to explore the universe. Give me a spaceship “ _

+ “so that I can blast off.”

wishes$(4) = “I want to be young. Give me a potion that will keep “ _

+ “me young forever.”

wishes$(5) = “Can I have an unlimited number of wishes?”

loadbmp “copyimage”, “C:\images\lamp.bmp” ‘Load the specified bitmap

‘file into memory

‘Add a graphicbox control to the #play window

graphicbox #play.gbox, 300, 20, 270, 216

‘Use variables to store text strings displayed in the window

Instructions1$ = chr$(34) + “It does not matter what you ask for! I “ _

+ “will not grant any wishes, you impudent son of a goat!” + chr$(13) _

+ chr$(13) + “I can withstand hours of begging without” _

+ “ breaking a sweat.” + chr$(13) + chr$(13) + “Go ahead, present” _

+ “ your wishes. But it won’t do you any good.” + chr$(34)

Instructions2$ = “Select a wish:”

Instructions3$ = “Tabethia’s Answer:”

‘Define the format of statictext controls displayed on the window

statictext #play.statictext4 Instructions1$, 20, 40, 280, 170

statictext #play.statictext5 Instructions2$, 20, 260, 280, 14

statictext #play.statictext6 Instructions3$, 330, 260, 280, 14

‘Add a listbox control to the #play window and load the contents of

‘the wishes$() array into it

listbox #play.listbox, wishes$(), doubleClick, 20, 280, 300, 80

‘Define the format of button controls displayed on the window

button #play.button1 “ Hint “, GetHint, UL, 220, 380

button #play.button2 “ Quit “, ClosePlay, UL, 305, 380

152 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 152

‘Add a texteditor control to the #play window (used to display Tabethia’s

‘responses)

texteditor #play.texteditor, 330, 280, 240, 80

‘Open the window with no frame and a handle of #play

open “Ask Genie” for window_nf as #play

‘Set the font type and size for the specified statictext control

print #play.statictext4, “!font Arial 11”

‘Use the flush command to prevent the contents of the graphicbox control

‘from being overwritten when the window is first generated

print #play.gbox, “flush”

‘Display the pre-loaded bitmap image in the graphicbox control

print #play.gbox, “drawbmp copyimage 1 1”

‘Use the flush command to prevent the contents of the graphicbox control

‘from being overwritten if the user opens or moves another window on top

‘of the #play window

print #play.gbox, “flush”

‘Pause the application to wait for the player’s instruction

wait

end sub

The first four statements set the window’s width, height, background, and foreground colors. An
array named wishes$() is then created and populated with six items. Each item represents a
question that the player can select. The loadbmp command is then used to load a bitmap image
into memory. This image will be used at the end of the subroutine to display a picture of a magic
genie’s lamp on the application window. Next, a series of three string variables are created and
then used by three statictext controls to display text.

Hint

You will find a copy of the lamp.bmp image file along with the source code for the Ask Genie
game on this book’s companion website (www.cengageptr.com/downloads).

153Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 153

http://www.cengageptr.com/downloads

Next, a listbox control is added to the #play window. The elements stored in the wishes$() array
are loaded into this control. To select one of the wishes listed in the control (to ask Tabethia a
question), the player must double-click on it. When this occurs, the doubleClick subroutine is
called. Next, two button controls and a texteditor control are added to the window, which is then
opened. A series of print statements follow that set font size and type and display the bitmap
image previously loaded into computer memory. To display the bitmap image, the drawbmp com-
mand is used. In addition, the flush command is used. This command prevents the bitmap image
from disappearing if the player opens or moves another window on top of the bitmap image.

Hint

loadbmp, drawbmp, and flush are examples of graphics commands. You will learn more about
how to work with graphics in Chapter 9, “Working with Sound and Graphics.”

Answering Player Questions

The doubleClick subroutine, shown next, is responsible for keeping track of each wish asked by
the player and generating answers on behalf of Tabethia:

‘This subroutine processes player wishes and generates Tabethia’s

‘responses

sub doubleClick handle$

‘Retrieve the wish selected by the player

#play.listbox “selection? choice$”

‘check to see if this is the first time in a row that this wish has

‘been asked

if previousSelection$ <> choice$ then

print #play.texteditor, “!cls” ‘Clear the texteditor control

‘Display the specified response

print #play.texteditor, “Stop submitting wishes. I will not grant them!”

consecutiveWishes = 1 ‘Reset the variable used to keep track of

‘consecutively asked wishes to 1

else ‘The wish has been asked at least twice in a row

print #play.texteditor, “!cls” ‘Clear the texteditor control

‘Display the specified answer

154 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 154

print #play.texteditor, “Your requests are making my head hurt. “ _

+ chr$(13) + “I beg you to stop!”

consecutiveWishes = consecutiveWishes + 1 ‘Increment the variable

‘used to keep track of

‘consecutively asked

‘wishes by 1

if consecutiveWishes = 3 then ‘The player has asked the same wish

‘3 times in a row

print #play.texteditor, “!cls” ‘Clear the texteditor control

‘Display the specified answer

print #play.texteditor, “All right, I can’t take it anymore! Your “ _

+ “wish “ + chr$(13) + “is granted. Please leave me alone now.”

end if

end if

previousSelection$ = choice$ ‘Save the player’s choice so that it can

‘be compared against when the player

‘makes a new request

wait

end sub

The first statement in this subroutine determines which listbox entry the player selected and
assigns its value to a variable named choice$. Next, an if…else…end if code block executes. It is
responsible for analyzing the value of previousSelection$ and choice$ to see if they are differ-
ent. If their values are not equal, this is the first time in a row that the player has asked for this
wish. If these two variables’ values are equal, the wish has been asked at least twice in a row. If
this is the case, the value of consecutiveWishes is checked to see if it is equal to 3, in which case
it is time for Tabethia to break down and grant the wish. If this is only the second time in a row
that the same wish has been asked, Tabethia instead responds by telling the player that her head
is beginning to hurt (indicating that the player’s line of questioning is starting to have an effect).
Tabethia’s answers are displayed inside the texteditor control using play statements.

155Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 155

Hint

You will learn all about if…else…end if code blocks in Chapter 5, “Making Decisions with
Conditional Logic.”

Providing the Player with a Hint

If, after playing for a while, the player cannot figure out how to get Tabethia to relent and grant
wishes, she can get a hint by clicking on the button labeled Hint (located on the #play window).
When this happens, the code statements located inside the GetHint subroutine are executed. The
code statements for this subroutine are shown here and should be added to the end of the pro-
gram file:

‘This subroutine is called when the player clicks on the Hint button

sub GetHint handle$

‘Get confirmation before displaying a hint

confirm “Hints are for wimps! Are you sure you want one?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

‘Display the hint

notice “Ask Genie” + chr$(13) + “Tabethia hates repetition. Ask “ _

+ “her for the same wish over again and she’ll start giving in “ _

+ “to you.”

end if

end sub

Before displaying the hint, the subroutine executes the confirm command, displaying a pop-up
dialog window that requires the player to reconfirm his decision to see the hint message. If the
player clicks on the button labeled Yes, the notice command is used to display the hint in a pop-
up dialog window. Otherwise, the hint is not shown and gameplay resumes.

Terminating Gameplay

The last subroutine in the program file is the ClosePlay subroutine. It is called when the player
clicks on the button labeled Quit (located on the #play window).

156 Programming for the Absolute Beginner, Second Edition

04 ProgABS2E ch04 2/23/15 8:37 PM Page 156

‘This subroutine is called when the Quit button is clicked and is

‘responsible for closing the #play window and ending the game

sub ClosePlay handle$

close #play

end

end sub

This subroutine consists of two statements. The first statement closes the #play window, and the
second statement executes the end command, terminating the application’s execution.

The Final Result
Okay, that’s it. You have finished the development of your next computer application. Assuming
that you did not accidentally make typos or skip steps, you should be ready to test the Ask Genie
game and put it through its paces. Remember to check out the operation of all the interface con-
trols and to feed the application both valid and invalid data to make sure it reacts appropriately.
Once you have everything working, create a distribution package and ask your friends to try it
out and give you their feedback.

Summary
In this chapter you learned how to store and retrieve data using variables and arrays. You also
learned a little about constants and how you can use them to store data whose value never
changes. You discovered the rules that must be followed when naming variables and arrays in Just
BASIC. In addition, you read about different data types and how to convert data from strings to
numbers and vice versa. You saw examples of different types of functions that are provided by
most programming languages for the purpose of manipulating data in various ways. Finally, you
learned about Just BASIC reserved words and the importance of not using them as variable and
array names.

Before moving on to Chapter 5, set aside a little extra time to work on the Ask Genie game by
tackling the following list of challenges.

157Chapter 4 • Working with Variables and Arrays

04 ProgABS2E ch04 2/23/15 8:37 PM Page 157

158 Programming for the Absolute Beginner, Second Edition

1. Although the Ask Genie game does provide the player with a Hint option, it does not
provide access to any substantive help. Consider adding a Help window to your appli-
cation that supplies the player with more detailed instruction.

2. As currently written, the game only provides the player with six questions from which
to choose. Consider expanding the number of questions. Also, just for fun, consider
replacing the listbox control with a combobox control, thus also allowing the player to
type in his or her own silly question.

3. Because the texteditor control is used to display Tabethia’s responses, an Edit menu is
automatically added to the game’s #play window. Consider replacing the editor control
with a statictext control, thus eliminating the Edit menu.

C
ha

lle
ng

es

04 ProgABS2E ch04 2/23/15 8:37 PM Page 158

Making Decisions with
Conditional Logic

5
A

s you have already seen in numerous examples in this book, to create appli-
cations of any degree of complexity, a computer program needs a way of
evaluating different values to determine a logical direction in which to pro-

ceed. This is done through the use of conditional programming statements that
use mathematical, comparison, and logical operators to compare different values
and decide upon a course of action. By implementing conditional logic, you can
create applications that react differently based on the data they are presented with.
This not only provides an interactive user experience but also results in programs
that are adaptive enough to handle various situations. In addition to learning the
fundamentals of conditional programming logic, you step through the development
of your next computer game: the Rock, Paper, Scissors game.

Specifically, you will learn the following:

• How to use the if…then statement to set up different types of logical tests

• How to use if…then statements within one another to create more complex
logic

• How to use the select case statement to compare one condition against a
range of possible values

• How to compare numeric data using comparison operators

• How to use mathematical operators to perform arithmetic calculations

• How to use logical operators to combine comparison operations

05 ProgABS2E ch05 2/23/15 8:38 PM Page 159

160

Project Preview: The Rock, Paper, Scissors Game
In this chapter, you will learn how to create a new computer game called Rock, Paper, Scissors.
This game is a computerized implementation of a classic children’s game. In this game, the player
is pitted against the computer. Valid moves are Rock, Paper, and Scissors. The player chooses her
move from a selection in a combobox control and then clicks on a button control labeled Go. As
soon as the player’s turn has been completed, the game generates the computer’s move by ran-
domly generating a number between 1 and 3 and then associating that number with a move. The
winner of each game is determined according to the following set of rules:

• Rock crushes Scissors to win the game

• Paper covers Rock to win the game

• Scissors cut Paper to win the game

• Matching moves result in a tied game

Figure 5.1 shows how the game appears when it’s first started. The game is played on a single win-
dow containing two graphicbox controls and a combobox control, as well as five textbox controls
and a button control.

The player moves by selecting one of three choices from the game’s combobox control, as
demonstrated in Figure 5.2. Notice that the Go button is disabled. The game will enable it as soon
as the player selects a move.

Programming for the Absolute Beginner, Second Edition

Figure 5.1 Examining the layout of the Rock, Paper,
Scissors game’s user interface.
© 2016 Cengage Learning®

Figure 5.2 The player is unable to click on the Go
button until a valid move has been selected.
© 2016 Cengage Learning®

05 ProgABS2E ch05 2/23/15 8:38 PM Page 160

161Chapter 5 • Making Decisions with Conditional Logic

Figure 5.3 A pop-up dialog window informing
the player that she has won the game.
© 2016 Cengage Learning®

Figure 5.4 The game keeps track of the number of
games won, lost, and tied.
© 2016 Cengage Learning®

As soon as the player completes her move, the game generates the computer’s move and then
analyzes and displays the result of the game in a pop-up dialog, as demonstrated in Figure 5.3.

As you can see in Figure 5.4, graphics images are displayed that visually identify both the player’s
and the computer’s move each time a new game is played.

Building Adaptive Applications with Conditional Logic
In Chapter 3, “Creating Graphical User Interfaces,” you developed the Legend of Mighty Molly
game. Every programming statement in that game’s program file was executed sequentially,
starting with the first statement in the program and ending with the last statement. This worked
well for that game because there was no complex logic involved. The game simply asked the player
a few questions and then plugged whatever input was provided into text strings that were then
displayed a screen at a time as the story was told. Although appropriate for simple programs,
sequential processing is insufficient for applications that have any level of complexity or that
need to interact with the user.

05 ProgABS2E ch05 2/23/15 8:38 PM Page 161

162 Programming for the Absolute Beginner, Second Edition

Most applications require some level of conditional execution. For example, a program that dis-
plays a graphical user interface (GUI) and accepts user input may need to analyze that input and
validate it. If the data is good, the program then executes a given set of programming statements.
However, if there is something wrong with the data input, a different set of programming state-
ments might be executed. Another example of how conditional logic might be applied is a program
that retrieves data from a file and then processes that data in some way. The program statements
that are executed after the file is opened might vary based on whether the file had any data in it
as well as the different types of data found inside the file.

Conditional logic is a relatively easy concept to understand because we use it all the time in our
everyday lives. For example, any time you visit the grocery store and consider which of two
brands of peanut butter to purchase, you are deciding between two distinct courses of action, as
depicted in Figure 5.5.

Based on the value of the condition being tested (whether or not to buy plain peanut butter),
either of two possible courses of action is outlined. Fundamentally, you can apply this same type
of logic to a computer program, as demonstrated in Figure 5.6.

Figure 5.5 Choosing between
two courses of action.
© 2016 Cengage Learning®

Figure 5.6 An example of the programming logic
used to determine when to terminate an application.
© 2016 Cengage Learning®

05 ProgABS2E ch05 2/23/15 8:38 PM Page 162

Hint

Figures 5.5 and 5.6 are examples of simple flowcharts. A flowchart is a graphical depiction
of all or part of a program’s logical flow. Programmers often use flowcharts to outline the
overall design of the logic involved in designing a computer program. This gives them a high-
level overview of the overall logic involved and provides an opportunity to discover poten-
tial logical errors before any mistakes are made in writing program code.

Flowcharts are also useful for large projects that involve more than one programmer because
they can be used to identify different parts of an application that can then be more easily
divided up, with each programmer having a good understanding of the work that is expected
of him.

Here, either of two distinct courses of action is outlined based on the user’s decision of whether or
not to quit the application. This flowchart view of the logic behind the decision of whether to ter-
minate a computer program can be directly translated into program code, as demonstrated here:

confirm “Are you sure you want to quit?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

close #play ‘Close the #play window

end ‘Terminate the game

else

noOfTurns = 0

call startNewGame

end if

Here, the confirm command is used to display a text message in a pop-up dialog window that
prompts the player for confirmation before terminating the application. The player indicates her
decision to quit playing by clicking on the Yes button, in which case the close and end commands
are then executed. Alternatively, the player can click on the No button, in which case the applica-
tion continues to execute.

The key to understanding how programming languages apply conditional logic when analyzing
data and determining which particular course of action should be taken is that, at its core, con-
ditional logic involves an evaluation as to whether a condition is true or not. Based on the result
of this analysis, conditional logic results in the execution of either of two possible outcomes (one
for true and one for false).

163Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:38 PM Page 163

164 Programming for the Absolute Beginner, Second Edition

Just BASIC supplies programmers with access to two different conditional logic statements, listed
next, each of which is designed to address specific types of situations:

• if…then. This statement tests a condition and then alters the execution flow of an applica-
tion based on the result of its analysis.

• select case. This statement sets up a series of conditional tests, each of which is compared
to a single value. The programming statements associated with a test that evaluates as being
true are executed, and the programming statements associated with tests that evaluate as
being false are not processed.

Working with the if…then Statement
The if…then statement is so fundamental to the development of software programs that it is
virtually impossible to write any but the most simple program without using it. In fact, you have
already seen assorted variations of the if…then statement at work in the computer games that
you have developed in this book. To get a good understanding of the mechanics involved in the
application of the if…then statement, consider the following example:

if The big game comes on at 8pm then

I’ll stay up and watch it

else

I’ll read for a while

I’ll try to get to sleep by 9pm

end if

This pseudo code (English-like outline) shows how you can apply the if…then statement to ana-
lyzing a typical everyday situation. Here, the opening statement defines the condition being eval-
uated. The second statement shows the action to be taken if the condition evaluates as being
true. The statements following the else keyword outline the actions to be taken if the condition
evaluates as false.

Hint

Pseudo code is a term that refers to an English-like outline of all or part of the programming
logic that makes up a computer program. By outlining the high-level programming logic
required in pseudo code, programmers develop an outline they can follow when writing actual
program code. As such, pseudo code gives programmers the chance to focus on the logic
required to solve a problem without having to worry about the specific programming state-
ments required to implement it. When used this way, a pseudo code outline can simplify appli-
cation development and help to reduce programming logic errors.

05 ProgABS2E ch05 2/23/15 8:38 PM Page 164

Understanding if…then Syntax
The if…then statement has a flexible syntax that allows programmers to implement it in many dif-
ferent formats. The syntax of the if…then statement, as implemented in Just BASIC, is outlined here:

if condition then

statements

else

end if

condition represents the expression to be tested. statements represents one or more code state-
ments that will be executed based on the truth or falseness of the test. else is an optional keyword
that, when used, allows programmers to specify an alternate set of programming statements to
be executed when the condition being tested evaluates as false. The if…then statement can be
used in many different variations, including these:

• Single line if…then statements

• Multiple line if…then blocks

• if…then…else blocks

Hint

Some programming languages, like Visual Basic, also support an optional elseif keyword,
which allows programmers to specify alternative conditions to be tested if the condition
specified by the opening if…then statement evaluates as false.

Creating Single Line if…then Statements
In its most basic form, you can write the if…then statement on a single line, as demonstrated
here:

x = 10

if x = 10 Then notice “We have a match.”

Here a numeric variable named x is assigned a value of 10. Next, an if…then statement is set up
that checks to see if x equals 10, which of course it does. Therefore, the notice command is exe-
cuted. If the value of x is changed prior to the if…then statement to something other than a value
of 10, the if…then statement evaluates as false and the notice command is not executed.

You have already seen the single-line version of the if…then statement used in this book. For
example, back in Chapter 3 when you created the BASIC Crazy 8 Ball game, you used a series of

165Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:38 PM Page 165

single-line if…then statements to analyze the value of the game’s randomly generated number, as
shown here:

RandomNumber = int(rnd(1)*3) + 1

if RandomNumber = 1 then answer$ = “YES”

if RandomNumber = 2 then answer$ = “MAYBE”

if RandomNumber = 3 then answer$ = “NO”

Here, a random value was assigned to a variable name RandomNumber. Three if…then statements
were then executed to determine whether the value assigned to RandomNumber was 1, 2, or 3. Only
one of these three statements will result in a value of true. The matching test results in the assign-
ment of a value to a variable named answer$.

Trap

Take note that the closing end if keywords are not included at the end of each of these three
if…then statements shown above. This is because in the single-line version of the if…then
statement, adding the closing end if keywords results in an error.

An advantage of using the single-line if…then statement is that it allows you to set up simple con-
ditional tests that do not require the specification of an action if they evaluate as false. This
helps to streamline your program code and make it easier to read.

Creating Multiple-Line if…then Statements
The single-line version of the if…then statement is good for writing streamlined code that only
needs to perform a single action when a given conditional evaluates as true. However, the mul-
tiline version of the if…then statement allows you to define a code block made up of as many
code statements as you want that will be executed if the condition being evaluated proves true,
as demonstrated here:

x = 10

if x = 10 Then

x = x + 1

notice “x equals “; x

end if

Here, two programming statements are executed when x evaluates as being equal to 10. The first
statement increments the value of x by 1, and the second statement displays x’s new value in a
pop-up dialog.

166 Programming for the Absolute Beginner, Second Edition

05 ProgABS2E ch05 2/23/15 8:38 PM Page 166

Hint

Instead of identifying the code block associated with an if…then statement using the then
and end if keywords, some programming languages, such as Perl and C++, use curly braces,
as demonstrated here:

if (x = 10) {

Code block statements go here

}

You have seen other examples of the multiline if…then statement in action already in this book.
For example, in Chapter 4, “Working with Variables and Arrays,” when you developed the Ask
Genie game, you used a multiline if…then statement to conditionally display a hint. The hint was
displayed only after the confirm command was used to prompt the player to click on the Yes but-
ton to reconfirm the request to display the game’s hint, as shown here:

confirm “Hints are for wimps! Are you sure you want one?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

notice “Ask Tabethia” + chr$(13) + “Tabethia hates repetition. Ask “ _

+ “her the same question over again and she’ll start giving you “ _

+ “the information you want.”

end if

Checking for Alternative Conditions
The single and multiline version of the if…then statements that were just examined were set up
to only execute code statements if the tested conditions evaluate as being true. However, the
if…then statement becomes even more useful when you add the optional else keyword, thus
specifying an alternative set of code statements to be executed when the tested conditional eval-
uates as false. An example of this type of if…then statement is provided here:

prompt “How old are you?”; age

if age < 18 then

notice “You must have your parent’s permission to play.”

end

else

167Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:38 PM Page 167

notice “Thanks for choosing to play this game!”

‘Insert additional programming statements here

end if

Here, the prompt command has been used to query the user for her age. If the user responds by
entering a number less than 18, she is informed that she needs her parent’s permission to play.
Once the user closes the pop-up dialog, the end command is executed, terminating the applica-
tion. If, on the other hand, the player responds by entering a value of 18 or more, a thank-you
message is displayed.

Exploring the Power of Nesting if…then Statements
Unfortunately, not every situation can adequately be addressed using the various combinations
of the if…then statement that you have just examined. Sometimes you’ll need to perform one test
and, based on the results of that test, perform another test and so on. Fortunately, programming
languages easily accommodate this need by letting you embed or nest if…then statements, as
demonstrated here:

if x = 10 then

if y = 20 then

if z = 30 then

notice “All the stars are aligned! “

end if

end if

end if

In this example, a series of three conditional if…then statements have been set up. If the first
statement evaluates as false, the nested if…then statements are skipped. If the second if…then
statement evaluates as false, the third if…then statement is skipped.

Trap

You might be wondering if there is a limitation to the number of conditional statements that you
can nest within one another. The answer is no. However, the deeper you nest statements with-
in one another, the more difficult your application will be to read, understand, and maintain.

Nested if…then statements are really quite common. In fact, you used them in this book back in
Chapter 1, “Introduction to Programming,” when you developed the Knock Knock Joke game.

168 Programming for the Absolute Beginner, Second Edition

05 ProgABS2E ch05 2/23/15 8:38 PM Page 168

As shown next, the Knock Knock Joke game used an embedded if…then…else statement to con-
ditionally execute the display of error messages, based on whether the player provided an expected
response:

if response$ = “” then

notice “Knock Knock Joke Game” + chr$(13) + _

“Error: You must respond by entering ‘Who is there?’”

else

response$ = “Disease who?”

prompt “Knock Knock Joke Game” + chr$(13) + “Disease!”; response$

if response$ = “” then

notice “Knock Knock Joke Game” + chr$(13) + _

“Error: You must respond by entering ‘Disease who?’”

else

notice “Knock Knock Joke Game” + chr$(13) + _

“Disease jokes seem funny to you?”

end if

end if

Working with the select...case Statement
In addition to the if…then statement, Just BASIC supports the use of the select case statement.
Although you can accomplish the same thing through the use of multiple if…then statements,
the select case statement is better suited to situations in which you want to compare a single
value or condition to a whole range of possible matching values. The syntax for the select case

statement is shown here:

select case expression

case value

statements

.

.

.

case value

statements

169Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:38 PM Page 169

case else

statements

end select

As you can see, the select…case statement is used to create a code block that includes one or
more case statements. The condition to be tested is specified at the end of the opening select
case statement, and each case statement specifies a unique value against which the select case

statement’s expression is compared. If a match occurs in one of the case statements, the state-
ments associated with that case statement are then executed. If none of the case statements
matches the expression or value being evaluated, any statements associated with an optional case
else statement are executed, if this statement was included.

Hint

Some programming languages, like C and C++, don’t support the use of the select case
statement, instead providing a switch statement. Other programming languages, including
Perl and AppleScript, do not have an equivalent statement and instead rely solely on varia-
tions of the if…then statement to implement conditional logic.

To get a feel for the logic behind a typical select…case statement, look at the following pseudo
code example:

select case game-time

case If the big game comes on at 8pm, stay up and watch it

case If the big game comes on at 9pm, stay up and watch the first half

case If the big game comes on at 10pm, stay up and just watch the pre-game show

case else Read for a while and get to sleep by 10pm

end select

In this pseudo code example, you can see that three case statements have been set up to evaluate
different conditions against a single value (game-time). If one of the case statements proves to
be true, its associated code block is executed. If none of the case statements results in a match,
the case else statement executes.

Typically, you’ll need fewer code statements to lay out a select case statement than you will to
lay out the equivalent series of tests using if…then statements. As a result, your program code will
be easier to understand and maintain.

You will get the opportunity to work with the select case statement again in this chapter when you
develop the Rock, Paper, Scissors game. Specifically, you will use three select case statements to
analyze the game’s results and determine a winner. As a sneak peak, take a look at the following
statements, which analyze the results of a game in which the player selects Rock as her move:

170 Programming for the Absolute Beginner, Second Edition

05 ProgABS2E ch05 2/23/15 8:38 PM Page 170

if playerMove$ = “Rock” then

select case

case computerMove$ = “Rock”

result$ = “Tie!”

ties = ties + 1

print #play.textbox4, ties

case computerMove$ = “Paper”

result$ = “The computer wins!”

losses = losses + 1

print #play.textbox3, losses

case computerMove$ = “Scissors”

result$ = “The player wins!”

wins = wins + 1

print #play.textbox2, wins

end select

end if

As you can see, the select case statement has been set up inside an if…then statement that exe-
cutes only when the player’s move is a Rock. This select case statement has been set up a little
differently this time. Instead of specifying an expression or value at the end of the select case

statement, each case statement has been set up to evaluate its own expression. This example
demonstrates the versatility of the select case command. If you prefer, you can rewrite the pre-
ceding code statements as shown next and achieve the same result:

if playerMove$ = “Rock” then

select case computerMove$

case “Rock”

result$ = “Tie!”

ties = ties + 1

print #play.textbox4, ties

case “Paper”

result$ = “The computer wins!”

losses = losses + 1

print #play.textbox3, losses

case “Scissors”

result$ = “The player wins!”

wins = wins + 1

print #play.textbox2, wins

end select

end if

171Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:38 PM Page 171

172 Programming for the Absolute Beginner, Second Edition

Here, the variable computerMove$ has been added to the end of the select case statement, and
each case statement has been rewritten to check for a specific string match.

Performing Different Types of Comparison Operations
So far, I have restricted all the comparison operations that you have seen in this book to equality
tests using the = operator. Like all programming languages, Just BASIC offers a number of dif-
ferent comparison operators, allowing programmers to set up comparisons for ranges of data.
For example, rather than set up a test to determine if the value of x was equal to the value of y,
you might instead want to check whether the value of x was greater than y. This type of com-
parison is achieved through comparison operators. Just BASIC supports a number of different
comparison operators, as outlined in Table 5.1.

© 2016 Shoptalk Systems

Hint

Most programming languages, including Just BASIC, use the equals (=) sign to perform an
equals comparison. However, some programming languages, including C++ and Perl, use two
equals signs (==).

To see a few examples of how you might use the different comparison operators listed in Table
5.1, look at the following examples:

x= 10

y = 20

Operator Description

= Equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Not equal

TA B L E 5 .1  J U S T BAS IC C O M PA R I S O N O P E R AT O R S

05 ProgABS2E ch05 2/23/15 8:38 PM Page 172

if x = y then notice “x equals y” ‘false

if x > y then notice “x is greater than y” ‘false

if x <= y then notice “x is less than or equal to y” ‘true

if x <> y then notice “x and y are not equal” ‘true

Here, two numeric variables have been defined and assigned values. Next, four if…then state-
ments have been set up that perform a number of different comparisons.

Performing Mathematic Calculations
Like other programming languages, Just BASIC supplies programmers with a collection of math-
ematic operators that can be used to perform calculations on numeric data. For example, using
the + operator, you can add any two numbers together, as demonstrated here:

x = 5 + 10 ‘x now equals 15

You can also use Just BASIC’s mathematic operators to work with numeric variables just as eas-
ily as literal numeric data, as shown here:

x = 5

y = 10

z = y – 5 ‘z now equals 5

Anyone who has ever worked with a calculator should easily recognize Just BASIC’s mathemati-
cal operators, which are outlined in Table 5.2.

173Chapter 5 • Making Decisions with Conditional Logic

Operator Description Example

+ Addition x = 5 + 10

- Subtraction x = 10 – 5

* Multiplication x = 5 * 10

/ Division x = 10 / 5

^ Exponentiation x = 5 ^ 2

TA B L E 5 .2 J U S T BAS IC M AT H E M AT I C A L O P E R AT O R S

© 2016 Shoptalk Systems

05 ProgABS2E ch05 2/23/15 8:38 PM Page 173

174 Programming for the Absolute Beginner, Second Edition

Hint

Just BASIC only supports binary operators. However, many programming languages such as
C++ and Visual Basic also support unary operators. A unary operator is an operator that works
with a single value. For example, two of the most commonly used unary variables are the ++
and -- operators. These operators are used to decrement and increment the value of a numer-
ic variable by 1. For example, in Just BASIC, you increment the value assigned to a numeric
variable using the + binary operator, as demonstrated here:

x = x + 1

Although you can increment the value assigned to a variable the same way in a Visual Basic
application, it’s more common to instead use the ++ unary operator, as shown here:

x = x++

Order of Precedence
Like all programming languages, Just BASIC evaluates numeric expression based on a predefined
set of rules, often referred to as order of precedence. Table 5.3 outlines the order of precedence that
Just BASIC follows.

Just BASIC calculates operators starting from left to right when cases of equal precedence occur.
To help you understand how Just BASIC’s operator precedence works, consider the following
statement:

x = 5 + 10 * 3 / 2 – 4 * 2

Operator Description

^ Exponentiation occurs first

*, / Multiplication and division occur second

+, - Addition and subtraction occur last

TA B L E 5 .3 J U S T BAS IC O R D E R O F P R E C E D E N C E

© 2016 Shoptalk Systems

05 ProgABS2E ch05 2/23/15 8:38 PM Page 174

When executed, Just BASIC processes this statement as shown here:

1. Working from left to right, all multiplication and division operations are completed, so 10
is multiplied by 3 yielding a value of 30. This value is then divided by 2 yielding a value of
15. Next, 4 is multiplied by 2 yielding a value of 8.

2. At this point, based on the calculations already performed by Just BASIC, the statement
has been processed and simplified as shown here:

x = 5 + 15 - 8

3. Next, addition and subtraction occur, so 5 is added to 15 yielding 20, from which 8 is then
subtracted. The final result is that x is assigned a value of 12.

Overriding the Rules of Precedence
Sometimes programmers need to be able to control the order in which expressions are evaluated
in a manner that is contrary to a programming language’s predefined order of precedence. Using
parentheses to identify portions of an expression that you want to be calculated first does this. To
see how this works, look at the following statement:

x = (5 + 10) * 3 / (2 - 4 * 2)

As you can see, this statement is almost identical to the previous example, except that two sets of
parentheses have been added. As a result, the expression is evaluated differently, resulting in a
completely different answer, as explained next.

1. Working from left to right, anything embedded inside parentheses is calculated first. So 5
is added to 10 yielding 15, and then 4 is multiplied by 2 and subtracted from 2 yielding –6.

2. At this point, based on the calculations just performed, the statement has been processed
and simplified as shown here:

x = 15 * 3 / (-6)

3. Once everything within parentheses has been calculated, multiplication and division are
performed on a left to right basis. As a result, 15 is multiplied by 3 yielding 45, which is
then divided by –6, yielding a final value of –7.5.

Combining and Negating Comparison Operations
In addition to comparison and mathematic operators, most computer languages support a group
of operators known as logical operators. Just BASIC supports four logical operators, as outlined
in Table 5.4.

175Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:38 PM Page 175

176 Programming for the Absolute Beginner, Second Edition

The first three operators listed in Table 5.4 give programmers the ability to combine different
comparison operations. For example, the following set of comparison operations uses two
if…then statements:

if x = 1000000 then

if y = 2000000 then

notice “We are rich!”

end if

end if

Using the and comparison operator, you can rewrite the preceding example as shown here:

if x = 10000000 and y = 2000000 then

notice “We are rich!”

end if

Because of using the logical and operator, two lines of code have been removed, and the overall
logic being implemented is easier to read and understand.

Hint

Programming languages may use different characters to represent logical operators. For
example, in C and C++, the && characters are equivalent to the and operator in BASIC. Perl,
on the other hand, works with both the && and and operators.

Operator Type Example

and Both comparisons must be true for x > 5 and x < 10
the evaluation to be true

or One or both comparisons must be x = 5 or x = 10
true for the comparison to be true

xor To evaluate as being true, only one x = 5 xor x = 10
comparison can evaluate as being true

not Reverses the value of a comparison not (x > 5)

TA B L E 5 .4 J U S T BAS IC LO G I C A L O P E R AT O R S

© 2016 Shoptalk Systems

05 ProgABS2E ch05 2/23/15 8:38 PM Page 176

The fourth logical operator supported by Just BASIC allows programmers to set up logical com-
parison operators that reverse the test being performed, as demonstrated here:

if not (x = 1000000) then

notice “I need a job.”

end if

Here, instead of checking to see if x is equal to 1000000, the if…then statement has been modi-
fied to reverse the condition being tested, looking to see if x is not equal to 1000000.

Back to the Rock, Paper, Scissors Game
Okay. Now it is time to turn your attention back to the development of this chapter’s game pro-
ject: the Rock, Paper, Scissors game. In this game, you will develop a player-versus-computer ver-
sion of the Rock, Paper, Scissors game. In doing so, you will get your first opportunity to put the
combobox and groupbox controls to use. You will also make ample use of both the if…then and
select case statements.

Designing the Game
The design of the Rock, Paper, Scissors game will follow the same basic pattern we have been
using for all preceding games. Namely, we’ll build it in a series of steps. This game will use several
bitmap images representing different moves that the computer and player can make. Figure 5.7
shows what these three bitmap images look like. You will find copies of them available as part of the
source code download file on this book’s companion website at www.cengageptr.com/downloads.

You will create the development of the Rock, Paper, Scissors game in five steps, as outlined here:

1. Create a new BASIC file and document its purpose.

2. Display the game’s user interface.

3. Set up control over when the player may make a move.

4. Add the programming logic needed to manage gameplay.

5. Terminate the game’s execution.

177Chapter 5 • Making Decisions with Conditional Logic

Figure 5.7 Bitmap images used in the generation of
the graphics displayed in the Rock, Paper, Scissors game.
© 2016 Cengage Learning®

05 ProgABS2E ch05 2/23/15 8:38 PM Page 177

http://www.cengageptr.com/downloads

Creating a Just BASIC File Script

The first step in creating the Rock, Paper, Scissors game is to create a new Just BASIC file and add
the following statements to it. The first 11 lines shown next are comments that document the
name of the application, its author’s name and creation date, and a brief description of the game.
The last statement executes the nomainwin command to suppress the display of the mainwin win-
dow, which is not needed by Rock, Paper, Scissors.

‘ ***

‘

‘ Script Name: RockPaperScissors.bas (The Rock, Paper, Scissors Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 20, 2015

‘

‘ Description: This game is a Just BASIC version of the classic children’s

‘ Rock, Paper, Scissors game.

‘

‘ ***

nomainwin ‘Suppress the display of the default text window

Designing the Application’s User Interface

The next step in the development of the Rock, Paper, Scissors game is the setup of a few global
variables followed by the design of the game’s user interface. The code to accomplish this is
shown next and should be added to the end of the script file:

‘Declare three global variables used to keep track of game statistics

global wins, losses, ties

WindowWidth = 500 ‘Set the width of the window to 500 pixels

WindowHeight = 480 ‘Set the height of the window to 480 pixels

‘The following array contains a list of valid game moves that will be

‘displayed in the game’s combobox control

moves$(0) = “Rock”

moves$(1) = “Paper”

moves$(2) = “Scissors”

‘Load rock, paper, and scissors bitmap files into memory

loadbmp “rockImage”, “C:\images\rock.bmp”

178 Programming for the Absolute Beginner, Second Edition

05 ProgABS2E ch05 2/23/15 8:38 PM Page 178

loadbmp “paperImage”, “C:\images\paper.bmp”

loadbmp “scissorsImage”, “C:\images\scissors.bmp”

‘Add a graphicbox control in order to graphically represent the player’s

‘and computer’s moves

graphicbox #play.gboxPlayer, 45, 70, 144, 144

graphicbox #play.gboxComputer, 300, 70, 144, 144

‘Use variables to store text strings displayed in the window

Instructions1$ = “Player:”

Instructions2$ = “Computer:”

Instructions3$ = “Select a Move:”

Instructions4$ = “Computer Move:”

‘Define the format of statictext controls displayed on the window

statictext #play.statictext1, Instructions1$, 90, 40, 90, 20

statictext #play.statictext2, Instructions2$, 335, 40, 90, 20

statictext #play.statictext3, Instructions3$, 20, 260, 80, 20

statictext #play.statictext4, Instructions4$, 270, 260, 80, 20

‘Add a combobox control to the window and load the contents of the

‘moves$() array into it

combobox #play.combobox, moves$(), doubleClick, 20, 280, 200, 80

‘Add a button control to the window

button #play.button1 “Go”, PlayHand, UL, 70, 345, 100, 50

‘Add a textbox control to the window (to display the computer’s move)

textbox #play.textbox, 270, 280, 200, 22

‘Add a groupbox control to the window (to group a collection of

‘textbox controls)

groupbox #play.groupbox, “Game Statistics:”, 270, 310, 200, 105

‘Define the format of statictext controls displayed inside the groupbox

‘control

statictext #play.statictext5, “Player Wins:”, 285, 330, 70, 14

statictext #play.statictext6, “Player Losses:”, 285, 360, 70, 14

statictext #play.statictext7, “Ties:”, 285, 390, 70, 14

179Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:38 PM Page 179

‘Add three textbox controls and place them inside the groupbox control

textbox #play.textbox2, 365, 325, 90, 22

textbox #play.textbox3, 365, 355, 90, 22

textbox #play.textbox4, 365, 385, 90, 22

‘Open the window with no frame and a handle of #play

open “Rock, Paper, Scissors” for window_nf as #play

‘Set up the trapclose event for the window

print #play, “trapclose ClosePlay”

‘Disable the button control to prevent the player from clicking on it

‘until the player has selected a valid move

print #play.button1, “!disable”

‘Set the font type and size for the specified statictext controls

print #play.statictext1, “!font Arial 11” ‘Player label

print #play.statictext2, “!font Arial 11” ‘Computer label

‘Pause the application to wait for the player’s instruction

wait

The first statement shown here defines three global variables: wins, losses, and ties. These vari-
ables are used throughout the application to keep track of and display game statistics. Next, the
special variables WindowWidth and WindowHeight are set to specify the dimension of the game
window. An array named moves$(), made up of three items, is then defined. The contents of this
array will be used later in the application to populate the contents of the game’s combobox control.

Next, three bitmap image files are loaded into memory using the loadbmp command. These
image files are stored in the C:\Images folder. You will need to modify this file path if you decide
to store them elsewhere. These image files will be displayed in either of two graphicbox controls
when the game is run. The statements required to add the graphicbox controls are followed by
the specification of four string variables, which are then used by four statictext controls that serve
as labels for other interface controls.

The user interface’s combobox control is added next. Note that it has been set up to load the con-
tents of the moves$() array and to call on a subroutine named doubleClick whenever the player
selects a combobox item. A button control is then added and assigned a label of Go and an event
handler of PlayHand. When clicked, this button’s event handler will generate the computer’s move
and then compare it to the player’s move to determine who won the game.

180 Programming for the Absolute Beginner, Second Edition

05 ProgABS2E ch05 2/23/15 8:38 PM Page 180

Next, a textbox control is added; it will be used to display a text string identifying the computer’s
moves. After that, a groupbox control is added to the user interface; it will be used to store three
statictext controls, which are defined next. These controls will display win, loss, and tie game sta-
tistics while the game is running. The open command is then used to display the game’s window,
displaying a title bar string of Rock, Paper, Scissors. The window has no frame, so the player will
not be able to resize it. It is assigned a handle of #play.

The next statement sets up a trapclose event for the window, which will execute whenever the
player tries to close the game. A print command is then used to disable the game’s button control.
This control will remain disabled until the player selects a move from the combobox control to
prevent the player from attempting to make a move without first selecting Rock, Paper, or Scissors.
The print command is used to set the font type and the size of the statictext controls over the
two graphicbox controls (which graphically display images representing the player and computer
turns). Lastly, the wait command is executed to pause application execution and give the player
the chance to make a move.

Set Up Control Over Player Moves

To make a move, the player must select Rock, Paper, or Scissors from the combobox control drop-
down list and then click on the Go button. To prevent the player from clicking on the button
control without first making a valid move selection, the button control is disabled when the user
interface is first loaded. It remains in this state until the player selects a move from the combo-
box, at which time the combobox control’s doubleClick event handler executes, calling on the
doubleClick subroutine to execute. The code statements for this subroutine are shown next and
should be added to the end of the program file:

‘This subroutine enables the button control labeled Go whenever the

‘player selects a valid move

sub doubleClick handle$

‘Enable the game’s button control

print #play.button1, “!enable”

end sub

When called, this subroutine uses the print command to enable the button control, thus allow-
ing the player to submit a move. Once the player’s move is made, the PlayHand subroutine is
called (by the button control’s event handler). This handler is responsible for again disabling the
button control, thus preventing the player from clicking on it until a new move is selected.

181Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:38 PM Page 181

Managing Gameplay

The code statements that compose the PlayHand subroutine are shown next and should be added
to the end of the program file. This subroutine is responsible for retrieving the player’s move,
generating a move on behalf of the computer, and then analyzing the result.

Hint

The PlayHand subroutine is a rather large subroutine. To help make it more understandable, I
have embedded comments liberally throughout. In Chapter 7, “Improving Program Organization
with Functions and Subroutines,” you will learn all about subroutines and functions, after which
you will learn how to further organize programming logic into more manageable chunks of
related programming logic.

‘This subroutine is called when the player clicks on the Go button

sub PlayHand handle$

‘Retrieve the player’s move

#play.combobox “selection? playerMove$”

‘Use the flush command to prevent graphics images from being overridden

print #play.gboxPlayer, “flush”

print #play.gboxComputer, “flush”

‘Display a bitmap image representing the player’s move

if playerMove$ = “Rock” then

print #play.gboxPlayer, “drawbmp rockImage 1 1”

end if

if playerMove$ = “Paper” then

print #play.gboxPlayer, “drawbmp paperImage 1 1”

end if

if playerMove$ = “Scissors” then

print #play.gboxPlayer, “drawbmp scissorsImage 1 1”

end if

‘Use the rnd() function to retrieve a random number between 1 and 3 and

‘assign the result to a variable named RandomNumber

RandomNumber = int(rnd(1)*3) + 1

182 Programming for the Absolute Beginner, Second Edition

05 ProgABS2E ch05 2/23/15 8:38 PM Page 182

‘Select the computer’s move based on the value assigned to the

‘RandomNumber variable and display the appropriate bitmap image

if RandomNumber = 1 then

computerMove$ = “Rock”

print #play.gboxComputer, “drawbmp rockImage 1 1”

end if

if RandomNumber = 2 then

computerMove$ = “Paper”

print #play.gboxComputer, “drawbmp paperImage 1 1”

end if

if RandomNumber = 3 then

computerMove$ = “Scissors”

print #play.gboxComputer, “drawbmp scissorsImage 1 1”

end if

‘Use the flush command to prevent graphics images from being overridden

print #play.gboxPlayer, “flush”

print #play.gboxComputer, “flush”

‘Display a text string identifying the computer’s move in the textbox

‘control

print #play.textbox, computerMove$

‘See who won if the player picked Rock

if playerMove$ = “Rock” then

select case

case computerMove$ = “Rock”

result$ = “Tie!”

ties = ties + 1

print #play.textbox4, ties

case computerMove$ = “Paper”

result$ = “The computer wins!”

losses = losses + 1

print #play.textbox3, losses

case computerMove$ = “Scissors”

result$ = “The player wins!”

wins = wins + 1

183Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:39 PM Page 183

print #play.textbox2, wins

end select

end if

‘See who won if the player picked Paper

if playerMove$ = “Paper” then

select case

case computerMove$ = “Rock”

result$ = “The player wins!”

wins = wins + 1

print #play.textbox2, wins

case computerMove$ = “Paper”

result$ = “Tie!”

ties = ties + 1

print #play.textbox4, ties

case computerMove$ = “Scissors”

result$ = “The computer wins!”

losses = losses + 1

print #play.textbox3, losses

end select

end if

‘See who won if the player picked Scissors

if playerMove$ = “Scissors” then

select case

case computerMove$ = “Rock”

result$ = “The computer wins!”

losses = losses + 1

print #play.textbox3, losses

case computerMove$ = “Paper”

result$ = “The player wins!”

wins = wins + 1

print #play.textbox2, wins

case computerMove$ = “Scissors”

result$ = “Tie!”

ties = ties + 1

print #play.textbox4, ties

end select

end if

184 Programming for the Absolute Beginner, Second Edition

05 ProgABS2E ch05 2/23/15 8:39 PM Page 184

‘Announce the winner

notice “Rock, Paper, Scissors” + chr$(13) + result$

print #play.button1, “!disable” ‘Disable the button labeled Go

print #play.combobox, “selectindex 0” ‘Clear out the previous move

end sub

The PlayHand subroutine begins by retrieving the player’s move. This is done using the follow-
ing command, which assigns the currently selected combobox item (string) to a variable named
playerMove$:

#play.combobox “selection? playerMove$”

Now that the game knows the player’s move, it is time to generate the computer’s move and to
display graphics representing both moves. These next two statements use the print command to
execute the flush command for the game’s graphicbox controls; this prevents the image from
being overwritten if the player moves another application window over the game’s window.

To determine which bitmap image to display to represent the player’s move, the game must ana-
lyze the player’s move. This is accomplished using a series of three if…then statements, each of
which checks for a different move. Only one of these if…then statements will execute, displaying
the appropriate bitmap image.

A random number between 1 and 3 is then generated and assigned to a variable named
RandomNumber. Following that, a series of three if…then statements is executed that examines the
value assigned to RandomNumber and assigns a string to a variable named computerMove$, identi-
fying the computer-assigned move. If RandomNumber equals 1, the computer is assigned a move of
Rock. If RandomNumber equals 2, the computer is assigned a move of Paper. If RandomNumber equals
3, the computer is assigned a move of Scissors. In addition, the corresponding bitmap image is
loaded using the print statement and the drawbmp command. To make sure that the graphics
images representing the player’s and the computer’s move stick, the flush command is executed
again for each graphicbox control. Also, the value assigned to the computerMove$ variable is dis-
played in a textbox control, thus explicitly identifying the computer’s assigned move.

At this point, both the player’s and the computer’s moves have been displayed. It is time to com-
pare the two moves and determine a result. This analysis is accomplished using three if…then
statements, each of which contains a select case statement. The first if…then statement is
responsible for performing an analysis if the player’s move was Rock. The second if…then state-
ment is responsible for performing an analysis if the player’s move was Paper, and the third
if…then statement is responsible for performing an analysis if the player’s move was Scissors. The

185Chapter 5 • Making Decisions with Conditional Logic

05 ProgABS2E ch05 2/23/15 8:39 PM Page 185

select case statements located within each if…then statement are responsible for comparing the
computer’s assigned move against the player’s move to determine a winner. The following rules
are applied when performing this analysis:

• Rock crushes Scissors to win the game.

• Paper covers Rock to win the game.

• Scissors cut Paper to win the game.

• Matching moves result in a tied game.

Each time a win, loss, or tie occurs, the appropriate global variable is incremented (wins, losses,
or ties), and the print statement is used to update the appropriate textbox control. Finally, the
notice command is used to display a pop-up dialog that informs the player of the results of the
game. The Go button is again disabled, and the combobox control is reset by setting its index to
zero, setting the game up for a new round of play.

Terminating Application Execution

The last set of statements to be added to the program file are those associated with the applica-
tion’s trapclose event. These statements compose the ClosePlay subroutine, which is executed
whenever the player attempts to close the application window:

‘This subroutine is called when the player closes the #play window

‘and is responsible for ending the game

sub ClosePlay handle$

‘Get confirmation before terminating program execution

confirm “Are you sure you want to quit?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

close #play ‘Close the #play window

end ‘Terminate the game

end if

end sub

As you can see, the purpose of the ClosePlay subroutine is to get confirmation from the player
before terminating the game. The confirm command is used to display a message requiring con-
firmation. If the player clicks on the pop-up dialog’s Yes button, the close command is used to
close the #play window, and the application is terminated using the end command. Otherwise,
if the player clicks on the pop-up dialog’s No button, gameplay continues.

186 Programming for the Absolute Beginner, Second Edition

05 ProgABS2E ch05 2/23/15 8:39 PM Page 186

The Final Result
All right, if you have followed along with all the steps, then your copy of the Rock, Paper,
Scissors game should be ready to go. Go ahead and test it. As you play, make sure that the game
correctly displays the appropriate graphics for both the player’s and the computer’s moves. In
addition, make sure that the data displayed in the groupbox control is being correctly tabulated.
Once you are 100 percent confident that everything is working as it should, build a distribution
package for your latest creation and give it to a few friends. Ask them to test it as well and to pro-
vide you with feedback as to what you might be able to do to make the game more enjoyable.

Summary
In this chapter, you learned how to work with different variations of the if statement and the
select case statement to implement conditional programming logic. You also saw how to nest
conditional statements within one another to develop more complex programming logic. In
addition, you discovered how to use mathematic operators to perform numeric calculations. You
learned how to use comparison operators to perform conditional tests based on different types
of equality. Finally, you discovered how to work with logical operators to set up programming logic
that evaluates the combined results of different comparison operations before taking an action.

Before moving on to Chapter 6, “Using Loops to Process Data,” take a little extra time to work on
the Rock, Paper, Scissors game by tackling the following list of challenges.

187Chapter 5 • Making Decisions with Conditional Logic

1. The Rock, Paper, Scissors game assumes that players already know the basic rules for
playing the game. Rather than taking this assumption for granted, provide access to
another application window where players can go to learn about the rules of the game.

2. As currently designed, the player has to click on the button control labeled Go to make
a move. Consider simplifying the user interface by using the combobox control’s event
handler as the trigger for making moves.

3. Consider enhancing the information provided in the Game Statistics groupbox control
by calculating and displaying the percentage of games won, lost, and tied.

4. Consider using the prompt command to collect the player’s name when the game is
started. That way you could address the player by name in any pop-up dialogs. You
might also want to display the player’s name over the left-hand graphicbox control.

C
ha

lle
ng

es

05 ProgABS2E ch05 2/23/15 8:39 PM Page 187

This page intentionally left blank

Using Loops to
Process Data

6
I

n this chapter, you will learn how to create and work with loops. Loops are code
blocks that repeat a series of programming statements over and over again. As
such, they facilitate the development of applications that can process large

amounts of data, using a minimum number of programming statements. You can
use loops to process the contents of arrays and text files. You can also use loops to
control an application’s interaction with the user, repeatedly executing the same
process until instructed not to. This chapter will teach you how to use a number of
different loops and will explain the types of situations to which each type of loop
is best applied. This chapter will also show you how to create your next computer
game: the Guess My Number game.

Specifically, you will learn the following:

• How to set up do…while, do…until, for…next, and while…wend loops

• How to avoid creating endless loops

• How to prematurely exit out of loops

• How to terminate programs caught up in a loop

Project Preview: The Guess My Number Game
In this chapter, you will learn how to create a new computer game called Guess My
Number. This game challenges the player to guess a number between 1 and 100 in
as few guesses as possible. The player submits guesses by typing a number into the
designated textbox control and then clicking on a button control labeled Guess.

06 ProgABS2E ch06 2/23/15 8:42 PM Page 189

190

When the game starts, these two controls are disabled, preventing the player from entering a
guess until the Start Game button is clicked, as shown in Figure 6.1.

A random number is generated when the player clicks on the Start Game button. In addition, the
textbox input control and the Guess button are enabled, allowing the player to start making
guesses. The Start Game button is then disabled and stays that way until the player manages to
guess the game’s secret number, as shown in Figure 6.2.

Programming for the Absolute Beginner, Second Edition

Figure 6.1 A new game is started when the player
clicks on the Start Game button.
© 2016 Cengage Learning®

Figure 6.2 To control player input, the game enables
and disables its button controls.
© 2016 Cengage Learning®

Figure 6.3 shows an example of what the game looks like as the player enters a guess.

Each time a guess is made, the game responds by displaying a hint that the player can use to
guide her next guess, as demonstrated in Figure 6.4.

Help is available at any time. To access it, all the player has to do is click on the Help button. In
response, the game displays the Help window shown in Figure 6.5.

Gameplay continues until the player guesses the secret number, at which time the pop-up dialog
shown in Figure 6.6 is displayed.

06 ProgABS2E ch06 2/23/15 8:42 PM Page 190

191Chapter 6 • Using Loops to Process Data

Figure 6.3 A guess of 66 has been entered, but it will not
be processed until the player clicks on the Guess button.
© 2016 Cengage Learning®

Figure 6.4 Hints help the player hone in on the
game’s secret number.
© 2016 Cengage Learning®

Figure 6.5 The Help window provides the player
with instruction on how to play the game.
© 2016 Cengage Learning®

Figure 6.6 A pop-up dialog window notifies the
player when the game’s secret number has been guessed.
© 2016 Cengage Learning®

After clicking on OK to dismiss the pop-up dialog, the player can start a new game by clicking
on the now re-enabled Start Game button again.

06 ProgABS2E ch06 2/23/15 8:42 PM Page 191

Using Loops to Repeat Statement Execution
A loop is a set of programming statements that are repeatedly executed within a computer pro-
gram. Without loops, programmers would have to write enormous programs to be able to
process large amounts of data. Likewise, without loops, performing repetitive actions, such as
processing a collection of records stored in a file, would become a tedious chore. The power of
loops can be easily demonstrated in even small programs. Take, for example, the following Just
BASIC program:

print 1

print 2

print 3

print 4

print 5

print 6

print 7

print 8

print 9

print 10

As you can see in this example, things were done the hard way. To count to 10, ten separate print
statements were used. Suppose you wanted to count to 100, 1,000, or 1,000,000. The number of
print statements required to count this many times is clearly prohibitive. However, using loops,
you can write a program that can count to any number you want using just a handful of state-
ments. For example, consider the following:

i = 1

do

print i

i = i + 1

loop while i <= 10

Here, a do…while loop has been set up to print out ten numbers (see Figure 6.7), displaying the
same output as the previous example.

By changing the value of 10 to 1,000,000 in the previous statement, you can modify the loop to
count to a million without adding a single line of code.

192 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 192

Obviously, using fewer programming statements to get something done makes for more stream-
lined and easier to support applications. Without loops, the programmer’s job would be a lot
harder. You can use loops to process the contents of arrays or to control an interactive applica-
tion that repeatedly prompts the user to provide input. You can also use loops when processing
files by extracting records a line at a time. As you have just witnessed, you can also use loops
whenever you need to repeat a series of statements over and over again, as when displaying com-
puter animation.

Like other programming languages, Just BASIC offers a number of different ways that you can
construct loops, including these:

• Do…While. Creates a loop that executes at least once and repeats as long as a specified con-
dition is true.

• Do…Until. Creates a loop that executes at least once and repeats until a specified condition
is true.

• For…Next. Creates a loop that repeats a set number of times.

• While…Wend. Creates a loop that repeats for as long as a specified condition is true.

This chapter will teach you how to formulate and work with each of these types of loops.

Hint

You will find examples of similar types of loops in most programming languages, like C++ and
Visual Basic. However, some programming languages, such as AppleScript, go a slightly dif-
ferent direction, using the repeat statement to create different types of loops. For example,
in AppleScript, the repeat while and repeat until loops are roughly the equivalent of the
do…while and do…until loops, and the repeat with loop is pretty similar to Just BASIC’s
for…next loop.

193Chapter 6 • Using Loops to Process Data

Figure 6.7 Setting up a do…while loop that counts to 10.
© 2016 Cengage Learning®

06 ProgABS2E ch06 2/23/15 8:42 PM Page 193

The do...while Loop
The do…while loop is designed to repeat a code block as long as a specified condition remains
true. To set up a do…while loop, you must know in advance what condition must occur for the
loop to terminate (for example, what will cause the condition to evaluate as false). You might,
for example, set up a do…while loop that allows the user to enter an unlimited amount of input,
terminating only when the user enters a command signaling the end of input. The syntax of the
do…while loop is outlined here:

do

statements

loop while condition

statements is a set of one of more program statements that are to be executed each time the loop
repeats. condition is an expression that is evaluated at the end of each iteration of the loop and
must resolve to a value of true or false. Because the condition being tested is defined at the end
of the loop, do…while loops always execute at least one time, even if the value of condition is false.

Hint

As you can see from the syntax of the do…while loop, the expression being tested is located
at the end of the loop, ensuring that the loop executes at least one time. In many other pro-
gramming languages, such as Visual Basic, the do…while loop supports a second format in
which the condition is moved to the opening do statement, as shown here:

do while condition

statements

loop

This form of the do…while loop only executes if the value of the tested condition is true. If
that is not the case, the loop never executes.

You have already seen an example of a do…while loop that counted to 10 earlier in this chapter.
To become more familiar with the do…while loop, take a look at the following example:

displayString$ = “”

name$ = “”

do

name$ = “”

prompt “Enter a name.”; name$

name$ = upper$(name$)

194 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 194

if name$ <> “” and name$ <> “QUIT” then

displayString$ = displayString$ + name$ + chr$(13)

end if

loop while upper$(name$) <> “QUIT”

notice “Names” + chr$(13) + displayString$

Here, a do…while loop has been set up to allow the user to input a series of names, each of which
is appended to a string. As each new name is added, it is appended to the end of the displayString$
variable followed by a linefeed character. The user may input as many names as desired. The pro-
gram stops accepting input only when the user enters the quit command. Note the use of the
upper$() function, which converts any input presented by the user to all uppercase characters.
This simplifies things by eliminating the requirement that the user enter the quit command in a
particular format, allowing any use of case when keying in the command.

Figure 6.8 shows an example of the pop-up dialog that is repeatedly displayed, prompting the
user to enter another name.

Figure 6.9 demonstrates how this example’s output might look if the user enters five names and
then types quit.

195Chapter 6 • Using Loops to Process Data

Figure 6.8 Using a loop to collect user input.
© 2016 Cengage Learning®

Figure 6.9 Displaying the output generated by a do…while loop.
© 2016 Cengage Learning®

06 ProgABS2E ch06 2/23/15 8:42 PM Page 195

Hint

Almost all programming languages have an equivalent set of statements that serve the same
purpose as Just BASIC’s do…while loop. For example, in C++ and Perl, the do…while loop has
the following syntax, using curly brackets to enclose the code block portion of the loop:

do {

statements

} while (condition);

The do...until Loop
The do…until loop is similar to the do…while loop—the only difference being that the do…until
loop executes as long the tested condition is false instead of true. The syntax of the do…until
loop is shown here:

do

statements

loop until condition

Hint

As you can see from the syntax of the do…until loop, the condition being tested is located
at the end of the loop, ensuring that the loop executes at least one time. In many other pro-
gramming languages, including Visual Basic, the do…until loop supports a second format in
which the condition is moved to the opening do statement, as shown here:

do until condition

statements

loop

This form of the do…until loop only executes if the value of the tested condition is false. If
that is not the case, the loop never executes.

statements is a set of one or more program statements that are executed each time the loop repeats.
condition is the expression that is evaluated at the end of each iteration of the loop and must
resolve to a value of true or false. Because the condition being tested is defined at the end of
the loop, do…until loops always execute at least one time, even if the value of the condition is
true.

196 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 196

To get a better appreciation of the do…until loop, take a look at the following example:

i = 1

do

print i

i = i + 1

loop until i > 10

As you can see, this example is similar to the do…while loop that was presented earlier. Both loops
have been set up to count from 1 to 10. Instead of being set up to count from 1 to 10 while i is
less than or equal to 10, this example has been set up to repeat until i is greater than 10. As this
example demonstrates, the do…until and do…while loops are pretty much interchangeable.

Hint

Like the do…while loop, other programming languages provide an equivalent set of state-
ments that perform the same basic function as Just BASIC’s do…while loop. For example, the
following syntax outlines C++ and Perl’s do…while statement:

do {

statements

} until (condition);

The for...next Loop
The for…next loop is typically when you know in advance the number of times that a loop must
repeat. The loop keeps track of the number of times that it has executed using a counter, which is
just a numeric variable that is automatically incremented each time the loop repeats. The syntax
of the for…next statement is outlined here:

for counter = begin to end [step StepValue]

statements

next counter

statements is a set of one of more program statements that will be executed each time the loop
repeats. counter is a numeric variable that keeps track of the number of times the loop executes.
begin sets the counter variable’s initial value, and end sets its ending value, which, when reached,
terminates the loop’s execution. StepValue is an optional parameter that, when used, sets the

197Chapter 6 • Using Loops to Process Data

06 ProgABS2E ch06 2/23/15 8:42 PM Page 197

incremental value to be used to increase the value of counter each time the loop repeats itself. If
not specified, a value of 1 is assumed for StepValue.

Trick

Note that in Just BASIC, you must add counter to the end of the next statement. Not all
BASIC programming languages have this same requirement.

Hint

The for…next loop is common among other programming languages. For example, in C++
and Perl, it has the following syntax:

for (initialization; condition; increment) {

statements

}

To get a better feel of how the for…next loop works, take a look at the following example:

for i = 1 to 10

print i

next i

Here, a for…next loop has been set up that counts from 1 to 10, just as was previously done with
the do…until and do…while loops. As this example demonstrates, you can often use the for…next
loop in place of the do…while or do…until loops. The for…next loop is often used in conjunction
with arrays, as demonstrated here:

dim merchandise$(9)

merchandise$(0) = “Nails”

merchandise$(1) = “Screws”

merchandise$(2) = “Bolts”

merchandise$(3) = “Nuts”

merchandise$(4) = “Wire”

merchandise$(5) = “Hammers”

merchandise$(6) = “Paint”

merchandise$(7) = “Wood”

merchandise$(8) = “Washers”

merchandise$(9) = “Levels”

198 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 198

for i = 0 To 9

notice “Inventory” + chr$(13) + merchandise$(i)

next i

Here, an array named merchandise$() has been created and populated with 10 items. Rather
than process each item in the array a statement at a time, a for…next loop has been set up that
processes the entire loop.

If necessary, you can include the StepValue parameter and specify a numeric value other than 1.
For example, if you added it to the previous example and assigned it a value of 2, every other item
in the merchandise$() array would be displayed. You can also assign a negative number as the
StepValue, which, in the case of the previous example, could be modified to process the contents
of the array in reverse order, as demonstrated here:

dim merchandise$(9)

merchandise$(0) = “Nails”

merchandise$(1) = “Screws”

merchandise$(2) = “Bolts”

merchandise$(3) = “Nuts”

merchandise$(4) = “Wire”

merchandise$(5) = “Hammers”

merchandise$(6) = “Paint”

merchandise$(7) = “Wood”

merchandise$(8) = “Washers”

merchandise$(9) = “Levels”

for i = 9 To 0 step -1

notice “Inventory” + chr$(13) + merchandise$(i)

next i

The while…wend Loop
Just BASIC also supports the use of while…wend loops. A while…wend loop is one that repeats as
long as a specified condition remains true. The syntax of the while…wend loop is outlined here:

while condition

statements

wend

condition is an expression that is evaluated and must resolve to a value of true or false. statements
is a set of one or more program statements that is to be executed each time the loop repeats.

199Chapter 6 • Using Loops to Process Data

06 ProgABS2E ch06 2/23/15 8:42 PM Page 199

Hint

Many other programming languages provide an equivalent functionality to BASIC’s while…wend
loop. For example, an equivalent loop in C++ and Perl has the following syntax:

while (condition) {

statements

}

To see an example of the while…wend loop in action, take a look at the following example:

i = 1

while i <= 10

print i

i = i + 1

wend

When executed, this example counts from 1 to 10.

Hint

In Visual Basic, the while loop is the equivalent of the while…wend loop and has the following
syntax:

while expression

statements

end while

However, the use of this type of loop is discouraged. Instead, the do…until and do…while
loops are preferred because they provide equivalent capabilities and the tested condition to
be added to either the beginning of the loop or the end of it, making these statements far
more flexible than the while…wend loop.

Looking Out for Endless Loops
One situation that all programmers must constantly be on the lookout for when working with
loops is endless loops. An endless loop is one that never ends. Endless loops occur because of mis-
takes made when setting up loops. For example, you might want to create a loop that that counts
from 1 to 10 as shown here:

200 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 200

201Chapter 6 • Using Loops to Process Data

i = 1

do

print i

i = i + 1

loop while i <= 10

However, suppose you accidentally type a minus sign in place of the plus sign, like so:

i = 1

do

print i

i = i - 1

loop while i <= 10

In this example, the loop counts backward starting at 1 and never stops because the value of i
never reaches 10.

The point that you need to take from this example is to take extra care when working with loops
in your applications. A loop is a powerful programming technique. However, its power can be
turned against you when the loop is miscoded. Besides being careful when writing your program
code, you need to test your applications thoroughly. Test every line of code—even code for parts
of the application you may not often use.

Trick

If, despite your best efforts, you realize when testing the execution of one of your Just BASIC
programs within the Just BASIC code editor that your program has gotten stuck in an end-
less loop, all hope is not lost. In many situations, you can terminate the program’s execution.
To do so, click on the Run menu and select the Kill BASIC Programs menu item. In response,
Just BASIC will display a context menu listing any of the Just BASIC programs currently exe-
cuting, as demonstrated in Figure 6.10.

To force the termination of a particular Just BASIC program, select its name from the list and
then click on Yes when prompted to terminate its execution. If this does not work or if you
are running a standalone copy of your application outside of the Just BASIC editor, you can
still stop your program by using the Task Manager window, which you can access by press-
ing the Ctrl+Alt+Del keys simultaneously. Once it’s opened, you can select your application
and then click on the End Task button. Windows will then display a pop-up dialog asking for
confirmation before forcing the application’s termination.

Figure 6.10 Killing a Just BASIC program that is stuck in an endless loop.
© 2016 Shoptalk Systems

06 ProgABS2E ch06 2/23/15 8:42 PM Page 201

Busting Out of Loops
Sometimes something happens in a loop that requires the loop to stop executing. For example,
you might set up a loop that is designed to collect a series of names from the user. One way that
you might handle this situation is to set up a do…while loop that executes until the user enters a
command such as quit. When this occurs, you use the exit command to terminate the loop.
Once the exit command has been executed, processing resumes with the program statement that
follows the loop.

You can use the exit command to break out of do…until, do…while, while…wend, and for…next
loops. The following list shows the syntax the exit command uses to break out of each of the
aforementioned loops:

• exit do

• exit while

• exit for

Note

You can also use the exit command to break out of subroutines and functions. When you
use it to break out of a subroutine, you use the following syntax:

exit sub

When you use the exit command to break out of a function, you use this syntax:

exit function

To get a better understanding of how to work with the exit command, take a look at this example:

nomainwin

dim names$(100)

i = 0

do while i <= 100

prompt “Enter a new name. “; inputName$

if inputName$ = “quit” then

exit do

202 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 202

else

names$(i) = inputName$

inputName$ = “”

i = i + 1

end if

loop

Here, a loop has been set up to collect and populate an array with up to 101 names. Each time the
user enters a new name in the pop-up dialog and clicks on the OK button, a new name is added
to the names$() array. In this example, the do…while loop has been set up to terminate only under
two conditions. The first is when the value of i becomes equal to 100, at which time the array has
been filled. The other condition occurs when the user enters quit into the pop-up dialog.

Back to the Guess My Number Game
All right, now that you have learned all about loops and the steps involved in setting them up,
let’s turn your attention back to the development of this chapter’s game project. As you work
your way through this project, you will gain hands-on experience in controlling interface con-
trols, including modifying their attributes and controlling their availability. You will also learn
how to create and control a Help window and to programmatically terminate the application
when one or both application windows are open.

Designing the Game
The design of the Guess My Number game will follow the same pattern already established
through the development of earlier programming projects. In total, you will create the develop-
ment of the Guess My Number game in seven steps, as outlined here:

1. Create a new BASIC file and add initial comment statements.

2. Design the Guess My Number game’s user interface.

3. Analyze player guesses and determine whether the game has been won.

4. Start a new game.

5. Create and display a Help window.

6. Close the Help window.

7. Terminate the game’s execution.

203Chapter 6 • Using Loops to Process Data

06 ProgABS2E ch06 2/23/15 8:42 PM Page 203

Creating a Just BASIC File

Let’s begin the creation of the Guess My Number game by setting up a new BASIC file and adding
the code statements shown here:

‘ ***

‘

‘ Script Name: GuessMyNumber.bas (The Guess My Number Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 25, 2015

‘

‘ Description: This game is a Just BASIC number guessing game that

‘ challenges players to guess a number between 1 and 100 in

‘ as few guesses as possible.

‘

‘ ***

nomainwin ‘Suppress the display of the default text window

As you can see, there is nothing new here—just a few opening comments followed by the nomainwin
command, which suppresses the display of the application’s default mainwin text window.

Designing the Game’s User Interface

The next step in the development of the Guess My Number game is to set up the game’s primary
window, from which the game is played. This is accomplished by adding the programming state-
ments shown here to the end of the program file:

‘Declare global variables used to keep track of game statistics

global secretNumber, avgNoGuesses, noOfGamesPlayed, guessCount, helpOpen$

‘Assign default values to global variables

secretNumber = 0 ‘Keeps track of the game’s randomly generated number

avgNoGuesses= 0 ‘Stores the calculated average number of moves per game

noOfGamesPlayed = 0 ‘Keeps track of the total number of games played

guessCount = 0 ‘Keeps track of the total number of guesses made

helpOpen$ = “False” ‘Keeps track of when the #help window is open

WindowWidth = 510 ‘Set the width of the window to 510 pixels

WindowHeight = 500 ‘Set the height of the window to 500 pixels

ForegroundColor$ = “Darkblue” ‘Set the window font color to dark blue

204 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 204

‘Define the format of statictext controls displayed on the window

statictext #play.statictext1, “G U E S S M Y N U M B E R”, _

30, 50, 460, 40

statictext #play.statictext2, “Copyright 2015”, 395, 90, 100, 20

statictext #play.statictext3, “Games Played:”, 40, 400, 80, 20

statictext #play.statictext4, “Avg. No. Guesses:”, 265, 400, 90, 20

statictext #play.statictext5, “Enter Your Guess:”, 200, 140, 120, 20

statictext #play.statictext6, “Hint:”, 42, 300, 30, 20

‘Add button controls to the window

button #play.button1 “Guess”, AnalyzeGuess, UL, 210, 225, 80, 30

button #play.button2 “Help”, DisplayHelp, UL, 400, 318, 70, 25

button #play.button3 “Start Game”, StartGame, UL, 400, 288, 70, 25

‘Add four textbox controls and place them inside the groupbox control

textbox #play.textbox1, 200, 160, 110, 50

textbox #play.textbox2, 130, 395, 90, 22

textbox #play.textbox3, 370, 395, 90, 22

textbox #play.textbox4, 40, 320, 340, 22

‘Open the window with no frame and a handle of #play

open “Guess My Number” for window_nf as #play

‘Set up the trapclose event for the window

print #play, “trapclose ClosePlay”

‘Display the appropriate variable values in the following textbox controls

print #play.textbox3, avgNoGuesses

print #play.textbox2, noOfGamesPlayed

‘Set the font type, size, and properties for each of the static controls

print #play.statictext1, “!font Arial 20 bold”

print #play.statictext2, “!font Arial 8”

print #play.statictext5, “!font Arial 8 bold”

print #play.statictext6, “!font Arial 8 bold”

print #play.textbox1, “!font Arial 24”;

print #play.button3, “!setfocus” ‘Set focus to the Start Game button

print #play.button1, “!disable” ‘Disable the Guess button

205Chapter 6 • Using Loops to Process Data

06 ProgABS2E ch06 2/23/15 8:42 PM Page 205

print #play.textbox1, “!disable” ‘Disable the input textbox

‘Pause the application to wait for the player’s instruction

wait

As you can see, the first thing that happens is the definition of five global variables that will be
used to keep track of data used throughout the application. Each of these five variables is then
assigned an initial value. Note that the purpose of each variable is documented in comments
embedded within the program code. The last variable, helpOpen$, merits additional discussion.
It will be used to keep track of the status of the game’s Help window. Because the Help window
is not opened by default, an initial status of “False” is assigned to helpOpen$. Later, should the
player open the Help window, its value will be changed to “True”. If the player decides to stop
playing the Guess My Number game, the value assigned to helpOpen$ will be checked to deter-
mine if the application needs to close the Help window before terminating its execution.

The next several statements set the height and width of the window and its foreground color to
dark blue. Six statictext controls are then added to the window. These controls will be used to dis-
play the game’s name and copyright information and to provide labels for other controls.

Next, three button controls are added to the window and assigned labels of Guess, Help, and Start
Game. When the player clicks on the Guess button, the AnalyzeGuess subroutine is called. This
subroutine compares the player’s guess to the game’s randomly generated number to see if the
player has won. If this is not the case, a hint is provided. Clicking on the Help button calls on the
DisplayHelp subroutine, which displays the game’s Help window. Clicking on the Start Game
button executes the StartGame subroutine, which allows the player to start up a new round of play.

Four textbox controls are then added to the window. The first textbox control will be used to
allow the player to type in and submit guesses. The other three textbox controls will be used to
display a hint that helps to guide the player’s next guess as well as display game statistics, show-
ing the number of games played and the average number of guesses made per game.

The next statement displays the window using the open command, assigning it a handle of #play.
The window’s trapclose event handler is then set up, calling on the ClosePlay subroutine
whenever the player attempts to close the #play window (requiring confirmation before closing
any open windows and executing the end command).

The next seven statements use the print command to display the values assigned to the
avgNoGuesses and noOfGamesPlayed variables (both are initially assigned a value of 0) and to set
the font size, type, and attributes of various statictext and textbox controls. The last three print
statements set focus to the Start Game button and disable access to the Guess button and its asso-
ciated input textbox control. Finally, the wait command is executed, pausing application execu-
tion to await user interaction.

206 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 206

Analyzing the Player’s Guesses

The AnalyzeGuess subroutine is responsible for analyzing player guesses. It provides hints based
on player input and determines when the game has been won. The code statements that make up
the AnalyzeGuess subroutine are shown next and should be added to the end of the program file:

‘This subroutine analyzes player guesses and determines when the game

‘has been won

sub AnalyzeGuess handle$

‘Retrieve the player’s guess and assign it to a variable

print #play.textbox1, “!contents? playerGuess”

‘Validate that an acceptable value has been entered

if playerGuess < 1 or playerGuess > 100 then

‘Inform the user that an invalid guess has been made

print #play.textbox4, “Your guess must be between 1 and 100. Try again.”

print #play.textbox1, “” ‘Clear out the input textbox

print #play.textbox1, “!setfocus” ‘Set focus to the input textbox

exit sub ‘Exit the subroutine without processing any remaining

‘subroutine statements

end if

‘Determine if the player’s guess is too low

if playerGuess < secretNumber then

‘Increment the variable that tracks the total number of guesses made

guessCount = guessCount + 1

‘Inform the user that the guess was too low

print #play.textbox4, “Your guess was too low. Try again.”

print #play.textbox1, “” ‘Clear out the input textbox

print #play.textbox1, “!setfocus” ‘Set focus to the input textbox

exit sub ‘Exit the subroutine without processing any remaining

‘subroutine statements

end if

207Chapter 6 • Using Loops to Process Data

06 ProgABS2E ch06 2/23/15 8:42 PM Page 207

‘Determine if the player’s guess is too high

if playerGuess > secretNumber then

‘Increment the variable that tracks the total number of guesses made

guessCount = guessCount + 1

‘Inform the user that the guess was too high

print #play.textbox4, “Your guess was too high. Try again.”

print #play.textbox1, “” ‘Clear out the input textbox

print #play.textbox1, “!setfocus” ‘Set focus to the input textbox

exit sub ‘Exit the subroutine without processing any remaining

‘subroutine statements

end if

‘Determine if the player’s guess was correct

if playerGuess = secretNumber then

‘Let the player know he has won the game

notice “Guess My Number” + chr$(13) + “Game over! You win!”

‘Increment the variable that tracks the total number of guesses made

guessCount = guessCount + 1

‘Increment the variable that tracks the total number of games played

noOfGamesPlayed = noOfGamesPlayed + 1

‘Calculate the average number of guesses per game

avgNoGuesses = guessCount / noOfGamesPlayed

‘Display the appropriate variable values in the following textbox

‘controls

print #play.textbox3, avgNoGuesses

print #play.textbox2, noOfGamesPlayed

print #play.textbox1, “” ‘Clear out the input textbox

print #play.button3, “!enable” ‘Enable the Start Game button

print #play.button3, “!setfocus” ‘Set focus to the Start Game button

print #play.textbox1, “!disable” ‘Disable the input textbox

208 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 208

print #play.button1, “!disable” ‘Disable the Guess button

print #play.textbox4, “” ‘Clear out the Hint textbox control

exit sub ‘Exit the subroutine without processing any remaining

‘subroutine statements

end if

end sub

This subroutine begins by storing the player’s guess in a variable named playerGuess. It then
uses an if…then statement to determine if the player’s guess is valid (that is, it is not less than 1
or greater than 100). Note the use of the or operator, which allows the if statement to perform
two separate comparison operations. If the player’s guess is invalid, an error message is displayed
and the input textbox control is cleared and assigned focus, preparing it for the player’s next guess.

If the player’s guess is valid (that is, it is greater than or equal to 1 and less than or equal to 100),
three separate if…then statements are executed. The first if…then statement executes when the
player’s guess is too low. The second if…then statement executes when the player’s guess is too
high, and the last if…then statement executes when the player’s guess matches the game’s secret
number. The first two if…then statements increment the value of guessCount by 1 and display
an appropriate hint message. The last if…then statement also increments the value of guessCount
as well as the value of noOfGamesPlayed by 1. It then divides the value of guessCount by
noOfGamesPlayed to calculate the value assigned to avgNoGuesses. Next, a series of print state-
ments is executed to enable the Start Game button and assign it focus as well as to disable the
Guess button and the input textbox control.

Starting a New Game

The StartGame subroutine, shown next, is called when the player clicks on the Start Game but-
ton. It is responsible for generating the game’s random number (in the range of 1 to 100) and for
enabling the Guess button and input textbox controls:

‘This subroutine is called when the player clicks on the Start Game button

sub StartGame handle$

‘Generate a new random number for the game

secretNumber = int(rnd(1)*100) + 1

print #play.button1, “!enable” ‘Enable the Guess button

print #play.textbox1, “!enable” ‘Enable the input textbox

209Chapter 6 • Using Loops to Process Data

06 ProgABS2E ch06 2/23/15 8:42 PM Page 209

print #play.button3, “!disable” ‘Disable the Start Game button

print #play.textbox1, “!setfocus” ‘Set focus to the input textbox

end sub

Creating a Help Window

The code statements responsible for generating and displaying the game’s Help window are
shown next and should be added to the end of the program file. This subroutine is called when
the player clicks on the Help button:

sub DisplayHelp handle$

helpOpen$ = “True” ‘Identify the #help window as being open

WindowWidth = 400 ‘Set the width of the window to 400 pixels

WindowHeight = 400 ‘Set the height of the window to 400 pixels

‘Use variables to store text strings displayed in the window

HelpHeader$ = “Game Instructions”

helpText1$ = “The object of this game is to guess a randomly generated” _

+ “ number in the range of 1 to 100 in as few guesses as possible. “ _

+ “To make a guess, type in a number and click on the Guess button. “ _

+ “A hint will be provided after each move to assist you in making “ _

+ “your next guess. Once you have correctly guessed the game’s secret” _

+ “ number, a popup message will be displayed.”

helpText2$ = “At the end of each round of play game statistics are “ _

+ “displayed at the bottom of the game window as an indication of “ _

+ “your progress.”

‘Define the format of statictext controls displayed on the window

statictext #help.helptext1, HelpHeader$, 30, 40, 140, 20

statictext #help.helptext2, helpText1$, 30, 70, 330, 80

statictext #help.helptext3, helpText2$, 30, 160, 330, 50

‘Add button controls to the window

button #help.button “Close”, CloseHelpWindow, UL, 280, 310, 80, 30

‘Open the window with no frame and a handle of #play

open “Guess My Number Help” for window_nf as #help

210 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 210

‘Set the font type, size, and properties for specified statictext control

print #help.helptext1, “!font Arial 12 bold”

end sub

As you can see, the code statements in this subroutine are pretty straightforward. However, there
is one statement that you should pay particular attention to. It is the first statement in the sub-
routine. This statement assigns a value of “True” to the helpOpen$ string variable. This identifies
the Help window as being open. Later, when the player tries to terminate the Guess My Number
game, the game’s trapclose event handler will examine the value assigned to helpOpen$ to deter-
mine whether the Help window needs to be closed before executing the end command and ter-
minating application execution.

Closing the Help Window

The CloseHelpWindow subroutine, shown next, is executed whenever the player closes the game’s
Help window. As you can see, it executes two statements. The first statement sets the value of
helpOpen$ to “False”, and the second statement closes the window:

‘This subroutine is called when the player closes the #help window

sub CloseHelpWindow handle$

helpOpen$ = “False” ‘Identify the #help window as being closed

close #help ‘Close the #help window

end sub

Terminating Application Execution

The application’s last subroutine is ClosePlay. Its job is to get confirmation from the player
before terminating the game. If confirmation is provided, the subroutine closes the #play win-
dow and, if open, it also closes the game’s Help window (#help) and then executes the end com-
mand, neatly terminating application execution:

‘This subroutine is called when the player closes the #play window

‘and is responsible for ending the game

sub ClosePlay handle$

‘Get confirmation before terminating program execution

confirm “Are you sure you want to quit?”; answer$

211Chapter 6 • Using Loops to Process Data

06 ProgABS2E ch06 2/23/15 8:42 PM Page 211

if answer$ = “yes” then ‘The player clicked on Yes

close #play ‘Close the #play window

‘See if the #help window is open and close it if it is

if helpOpen$ = “True” then

call CloseHelpWindow “X” ‘Close the #help window

end if

end ‘Terminate the game

end if

end sub

The Final Result
That’s it. Assuming that you have followed along carefully without missing any steps, your copy
of the Guess My Number game should be ready to test. As you put the game through its paces,
try entering both valid and invalid data to ensure that the application handles it correctly. Keep
an eye on the game statistics provided at the bottom of the game window, and validate that they
are being properly tabulated. Lastly, make sure that the Guess and Start Game button controls are
appropriately enabled and disabled as the game progresses and that the hints that are provided
are consistent with the number that the game generates.

Summary
In this chapter you learned how to work with different types of loops, including the do…while,
do…until, for…next, and while…wend loops. This chapter also guided you in terms of which loops
are best applied for various situations. In addition, you discovered how to use the exit command
to break out of loops and terminate programs that have become hung up in loops. By learning
how to work with loops, you have laid the foundation required to develop applications that can
process huge amounts of data or repeat any set of program statements over and over again as
required to perform a particular task.

Before moving on to Chapter 7, “Improving Program Organization with Functions and Subroutines,”
take a little extra time to work on the Guess My Number game by tackling the following list of
challenges.

212 Programming for the Absolute Beginner, Second Edition

06 ProgABS2E ch06 2/23/15 8:42 PM Page 212

213Chapter 6 • Using Loops to Process Data

1. The Help window belonging to the Guess My Number game provides only a minimal
amount of useful information. Consider spending a little time beefing up the content
this window offers.

2. Currently, the game has only two hints, stating whether the player’s guess is too high or
too low. Consider adding programming logic that supplies additional hints. For example,
you might want to display a different hint message when the player’s guesses begin to
get close to the game’s secret number.

3. Consider enforcing a limit on the number of guesses that the player can make and then
end gameplay when that limit is reached. You might also want to track and display the
number of games lost as an additional game statistic.

C
ha

lle
ng

es

06 ProgABS2E ch06 2/23/15 8:42 PM Page 213

This page intentionally left blank

Improving Program
Organization with

Functions and Subroutines

7
T

he larger your applications become, the more complicated your program
code becomes and the more difficult things are to maintain. One effective
way of making your programs easier to create and maintain is to break them

up into small parts, which you can then use as building blocks to create a larger
program. One way of accomplishing this is through procedures. You’ve used pro-
cedures in the development of most of the game applications you’ve already cre-
ated in this book. In this chapter, you will discover how to work with two types of
procedures: subroutines and functions. You will learn how to pass data to your
subroutines and functions for processing. You will also learn how to return data
back from functions. You will also get the opportunity to put your newfound
understanding of subroutines and functions to use in this chapter’s game project:
the BASIC BlackJack game.

Specifically, you will learn the following:

• How to improve the overall organization and manageability of your appli-
cations through subroutines and functions

• How to streamline program code by placing reusable code within subrou-
tines and functions

• How to pass data to subroutines and functions for processing

• How to return data from functions back to calling statements

07 ProgABS2E ch07 2/23/15 8:43 PM Page 215

216

Project Preview: The BASIC BlackJack Game
This chapter’s game project is the BASIC BlackJack game. This game is a lite version of the pop-
ular BlackJack casino game that pits the player against the dealer (computer) in a virtual card
game whose object is to come as close as possible to 21 without going over. This game, like many
applications, begins by displaying a splash screen, as shown in Figure 7.1.

After a four-second delay, the splash screen closes and the game’s main window is displayed. An
initial hand is automatically dealt for both the player and the dealer, as shown in Figure 7.2.

Programming for the Absolute Beginner, Second Edition

Figure 7.1 The splash screen is displayed for
four seconds and then automatically disappears.
© 2016 Cengage Learning®

Figure 7.2 In this game, the player must complete
his hand before the dealer plays out its hand.
© 2016 Cengage Learning®

The object of the game is to get the highest possible hand without going over 21, which would
cause the player to bust and automatically make the dealer a winner. The player is required to
always play out her hand first. To get additional cards, the player must click on the Hit Me but-
ton. The value of the player’s hand is automatically updated each time the Hit Me button is
clicked, as demonstrated in Figure 7.3.

The player may ask for as many cards as she wants, provided the value of her hand does not
exceed 21. If the player’s hand goes over 21, she automatically busts and loses that hand. The
player may stop adding cards to her hand at any time and allow the dealer to play out its hand
by clicking on the Stay button. The dealer’s method of play is simple: it will continue to ask for
a card as long as its hand is less than 17 or until it busts. Once its hand exceeds 17, assuming it
has not busted, it stops adding new cards to its hand and holds.

07 ProgABS2E ch07 2/23/15 8:43 PM Page 216

217Chapter 7 • Improving Program Organization with Functions and Subroutines

Figure 7.3 The player’s turn ends when she
clicks on the Stay button or when she goes bust.
© 2016 Cengage Learning®

Figure 7.4 The results of each hand are displayed
at the bottom of the window.
© 2016 Cengage Learning®

If neither the player nor the dealer has busted, the game compares both hands to determine the
results of the game. Figure 7.4 shows an example of a hand in which the player and the dealer
have tied.

The player can start a new hand at the end of each round of play by clicking on the Play Again
button. Again, play continues until the player or dealer busts or stays. Figure 7.5 shows an example
of a hand in which the dealer has gone bust.

Figure 7.5 Any hand over 21 results in an automatic loss.
© 2016 Cengage Learning®

07 ProgABS2E ch07 2/23/15 8:43 PM Page 217

Working with Subroutines and Functions
As your applications become larger, they become more complicated and difficult to maintain.
One way of making your programs easier to create and maintain is to organize them into small
parts, which can then be used as building blocks in the creation of a larger program. This is where
procedures come into play.

A procedure is a collection of programming statements that can be called upon to execute from
different locations within an application. Most programming languages support two types of
procedures: subroutines and functions. A subroutine is a collection of one or more code state-
ments that can be called upon to execute. A function is similar to a subroutine except that a func-
tion also can return a value to the statement that called upon it. Subroutines and functions help
to make application development easier by allowing you to break down an application into man-
ageable sections, which you can develop one at a time.

Hint

In Chapter 3, “Creating Graphical User Interfaces,” you were introduced to the use of labels
as a means of identifying locations within program code. By specifying a label as the event
handler for a user interface control or by using the goto or gosub commands, you learned
how to group and execute collections of code statements. However, as was stated in that
chapter, this method of programming is frowned upon. Instead, professional programmers
rely on subroutines and functions to group and execute related code statements.

Procedures give programmers several advantages. For starters, they make program development
easier by letting programmers build programs in small chunks, each of which is designed to
accomplish a specific task. Secondly, procedures allow programmers to reduce the amount of
code required to develop applications by providing the ability to group commonly executed
statements into a named collection, which can then be called upon to run over and over again as
necessary. Organizing programming logic into separate procedures also helps to streamline pro-
gramming logic and create modular code. This can reduce errors, too.

Suppose, for example, that you created a program for a retail store that performs a number of
different tasks, including the calculation of sales tax for each sale made in the store. You now need
to modify the program because the sales tax rate had changed. If you did not use procedures
when initially developing the program, your job will be more difficult, especially if you are work-
ing on a large program. By organizing the program into procedures, you simplify its maintenance
by grouping related code statements. To change the part of the program that calculates the sales
tax, all that you have to do is locate the procedure where the sales tax calculation is performed
and make the appropriate modification. Thus, by placing related code statements into subroutines

218 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 218

and functions, programmers can isolate different logical processes and reduce the chances that a
change made in one part of a program might affect another part.

Defining Subroutines
Subroutines begin with a declaration statement (sub) and end with an end sub statement. When
called, subroutines execute, and, when complete, they return control to the statement that called upon
them. To define a subroutine within a Just BASIC application, you must use the following syntax:

sub SubroutineName Parameter1,... ParameterN

statements

end sub

SubroutineName represents the name of the subroutine being defined. Subroutines can accept
and process any number of arguments passed to them when called, as represented by Parameter1
… ParameterN (that is, Parameter1 “through” ParameterN). statements represents the statements
that will be executed each time the subroutine is called.

Trap

Procedure names for both subroutines and functions must be unique throughout an applica-
tion. You cannot assign the same name to more than one subroutine or function. Nor can you
assign a subroutine or function name to a variable.

In many programming languages, including C++ and Just BASIC, programmers are required to
declare the data type of any parameters defined in a procedure. Because Just BASIC supports only
two data types—numeric and string—data type is identified by the absence or presence of the $
character at the end of the parameter name.

The following statements define a small subroutine that accepts two arguments and uses them in
the formulation of a string, which is then displayed in a pop-up window:

sub HappyBirthday name$, age

notice “Happy birthday, “ + name$ + “! Today you are “ + str$(age) _

+ “ years old.”

end sub

As you can see, the name assigned to the subroutine is HappyBirthday. The first parameter
defined by the subroutine is a string variable named name$. The second parameter is a numeri-
cal variable named age.

219Chapter 7 • Improving Program Organization with Functions and Subroutines

07 ProgABS2E ch07 2/23/15 8:43 PM Page 219

Within Just BASIC, subroutines can be called in either of two ways. The first way of calling a sub-
routine is as an event handler. The second is to explicitly call the subroutine using the call com-
mand. Both of these options are explained in the sections that follow.

Using a Subroutine as an Event Handler

You have used procedures in most of the game projects that you have worked on so far. For exam-
ple, in most of the chapter game projects, you have set up subroutines as event handlers that exe-
cute whenever the player clicks on user interface controls.

When defining a subroutine that will be used as the event handler for an interface control, you
must always define at least one parameter. That’s because, when called in this manner, the sub-
routine is passed an argument containing a string representing the name of the control that
called the subroutine. If you forget to add a parameter representing this argument, you’ll get an
error. For example, in the Guess My Number game that you created in Chapter 6, “Using Loops
to Process Data,” you created a subroutine called ClosePlay, as shown next. As you can see, this
subroutine includes a parameter definition named handle$. handle$ is really just a string vari-
able that receives the name of the user interface control whose event triggered the execution of
the subroutine:

sub ClosePlay handle$

‘Get confirmation before terminating program execution

confirm “Are you sure you want to quit?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

close #play ‘Close the #play window

‘See if the #help window is open and close it if it is

if helpOpen$ = “True” then

call CloseHelpWindow “X” ‘Close the #help window

end if

end ‘Terminate the game

end if

end sub

220 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 220

If you did not include the required parameter as part of this subroutine’s definition, your pro-
gram would crash and generate an error similar to the one shown in Figure 7.6.

Programmatically Calling a Subroutine

In addition to setting up procedures as event handlers for window and user interface controls, you
can execute them using the call command. The syntax for the call command is outlined here:

call ProcedureName Parameter1, ... ParameterN

ProcedureName represents the procedure to be executed, and Parameter1,... ParameterN rep-
resents one or more optional arguments that may be passed to the procedure. For example, you
could use the following statement to call on a procedure named HappyBirthday and pass it two
arguments (a string and a number), as demonstrated here:

call HappyBirthday “William”, 9

Hint

An argument is a value, literal or variable, that is passed to a subroutine or function for pro-
cessing. A parameter is a variable defined within a subroutine or function that maps up to an
argument that the subroutine or function is passed.

When executed, the HappyBirthday subroutine maps each argument that is passed to it to one of
its parameters. The data type of each argument that is passed must match the data type of each
parameter defined by the subroutine or function; otherwise, an error will occur:

sub HappyBirthday name$, age

notice “Happy birthday “ + name$ + “! Today you are “ + str$(age) _

+ “ years old.”

end sub

221Chapter 7 • Improving Program Organization with Functions and Subroutines

Figure 7.6 Just BASIC has generated an error
because a subroutine was called and passed an
argument for which it did not have a corresponding
parameter defined.
© 2016 Cengage Learning®

07 ProgABS2E ch07 2/23/15 8:43 PM Page 221

Hint

In many programming languages, including Visual Basic, you can call on a procedure by sim-
ply keying in its name, as demonstrated here:

HappyAnniversary()

Here, a function named HappyAnniversary() has been called upon to execute. In Visual
Basic, the call command is regarded as a legacy statement that is seldom used anymore.
However, Just BASIC still requires it.

Prematurely Terminating a Subroutine
If necessary, you can terminate the execution of a subroutine at any time using the following
statement:

exit sub

For example, the following subroutine, taken from the Guess My Number game, used the exit
sub command in a number of different places to terminate the execution of the AnalyzeGuess
subroutine when validating and processing the player’s guess:

sub AnalyzeGuess handle$

print #play.textbox1, “!contents? playerGuess”

if playerGuess < 1 or playerGuess > 100 then

print #play.textbox4, “Your guess must be between 1 and 100. Try again.”

print #play.textbox1, “”

print #play.textbox1, “!setfocus”

exit sub

end if

if playerGuess < secretNumber then

guessCount = guessCount + 1

print #play.textbox4, “Your guess was too low. Try again.”

print #play.textbox1, “”

print #play.textbox1, “!setfocus”

exit sub

end if

222 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 222

if playerGuess > secretNumber then

guessCount = guessCount + 1

print #play.textbox4, “Your guess was too high. Try again.”

print #play.textbox1, “”

print #play.textbox1, “!setfocus”

exit sub

end if

if playerGuess = secretNumber then

notice “Guess My Number” + chr$(13) + “Game over! You win!”

guessCount = guessCount + 1

noOfGamesPlayed = noOfGamesPlayed + 1

avgNoGuesses = guessCount / noOfGamesPlayed

print #play.textbox3, avgNoGuesses

print #play.textbox2, noOfGamesPlayed

print #play.textbox1, “”

print #play.button3, “!enable”

print #play.button3, “!setfocus”

print #play.textbox1, “!disable”

print #play.button1, “!disable”

print #play.textbox4, “”

exit sub

end if

end sub

As you can see, the exit sub command was used four times in four separate if…then statements
to terminate the subroutine’s execution as soon as any of the tested conditions evaluated as being
true.

Defining Functions
As has already been stated, a function is almost the same thing as a subroutine except that functions
also allow programmers to return a value to the statement that called upon them to execute. To
define a function within a Just BASIC application, you must use the following syntax:

function FunctionName(Parameter1,... ParameterN)

statements

end sub

223Chapter 7 • Improving Program Organization with Functions and Subroutines

07 ProgABS2E ch07 2/23/15 8:43 PM Page 223

FunctionName represents the name of the function being defined. A function can accept and process
any number of arguments passed to it, as represented by Parameter1 through ParameterN.
statements represents the statements that will be executed each time the function is executed.

You can pass as many arguments to your subroutines and functions as you want, provided that you
have the same number of corresponding parameters defined inside the subroutine or function.

The following statements are an example of a function that generates a random number in the
range of 1 to 10 and then returns the number that is generated to the statement that called upon
the function to execute:

function GetRandomNumber()

RandomNumber = int(rnd(1)*10) + 1

GetRandomNumber = RandomNumber

end function

As the previous example demonstrates, to return a value from a function, you must create a vari-
able within the function that has the same name as the function and assign it the value that you
want returned.

Hint

Different programming languages have different ways of returning values from functions. For
example, in Visual Basic, you can return a value from a function using the same approach as
Just BASIC (for example, creating a variable with the same name as the function and assigning
the value to be returned to it). C++, on the other hand, uses the return command to explic-
itly specify the value that is to be returned. Languages like Perl and Ruby will automatically
return the last expression that was evaluated if the return statement is not specified.

Executing Functions

Using the following statement, you can call upon the GetRandomNumber function shown in the
previous example from anywhere inside the application that contains it:

gameNumber = GetRandomNumber()

224 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 224

Of course, instead of returning values to and from functions, you can use global variables, accessing
them whenever necessary from within your subroutines and functions. However, it is a much better
programming practice to limit the scope of your variables as much as possible, pass arguments
to your functions, and return any required result to calling statements. Limiting variable scope in
this manner helps to prevent the unintentional modification of variable values and helps make
your program code easier to maintain.

Prematurely Terminating a Function

As with subroutines, you can terminate the execution of a function at any time using the following
statement:

exit function

As an example of how to use the exit function statement, consider the following example:

prompt “Give me a number and I’ll double it!”; x

notice DoubleNumber(x)

function DoubleNumber(x)

DoubleNumber = x + x

if DoubleNumber > 100 then

notice “Sorry, I don’t like large numbers! How about 2 + 2 instead?”

DoubleNumber = 4

exit function

end if

end function

Here, in this somewhat silly example, a function named DoubleNumber has been defined. It accepts
a single argument in the form of a numeric value, which is mapped to a parameter named x.
Next, the function adds the value of x to itself, thus creating a new numeric value that is twice
the value of the argument that was passed to the function. By assigning this new value to a vari-
able with the same name as the function, this value is passed back to the statement that called
upon the function so long as the if…then statement that follows proves false. The if…then state-
ment executes only if the value being returned is greater than 100. If this is the case, the notice
command is used to inform the user that it does not appreciate being asked to calculate a large
number, and the value of DoubleNumber is instead reassigned an arbitrary value of 4, which is
then returned to the statement that called upon the function.

225Chapter 7 • Improving Program Organization with Functions and Subroutines

07 ProgABS2E ch07 2/23/15 8:43 PM Page 225

Different Ways to Pass Arguments to Procedures
Variables defined within a subroutine or function are local in scope, meaning they cannot be
accessed outside of the subroutine or function where they are defined. However, you can share
access to data throughout your Just BASIC applications by declaring your variables as global.
Alternatively, you can pass variables as arguments to subroutines and functions where they can
then be acted upon. You can also pass arguments by reference, in which case your subroutine or
function can modify the value assigned to any argument that is passed to it.

Passing Arguments by Value
By default, any argument passed to a subroutine or function is passed by value, meaning that the
subroutine or function may do whatever it wants to the value of the argument within itself, but
any modification of the value is not visible outside the procedure. To get a better feeling for how
this works, consider the following example:

age = 10

call ChangeValue age

notice “You are “ + str$(age) + “ years old.”

sub ChangeValue x

x = x + 5

end sub

Here, a numeric variable named age is defined and assigned a value of 10. Next, the call command
is used to execute a subroutine named ChangeValue, to which age is passed as an argument.
Within the subroutine, the value of age is mapped to a variable named x. The value of x is then
increased by 5. However, because the argument passed to the subroutine was passed by value, the
modification of x’s value had no effect on the value of age, as proven when the subroutine ends
and the notice statement is executed, showing that the value assigned to age is still 5.

Passing Arguments by Reference
Arguments passed by reference affect the value of the argument passed, both within the proce-
dure and outside of it. To see how this works, take a look at the following example:

age = 10

call ChangeValue age

notice “You are “ + str$(age) + “ years old.”

sub ChangeValue byref x

x = x + 5

end sub

226 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 226

227Chapter 7 • Improving Program Organization with Functions and Subroutines

As you can see, in this example the subroutine definition includes the byref keyword. As a result,
any change made to the value of x inside the subroutine is also reflected outside the subroutine
in the value of age, which is proved when the notice statement executes and age is shown to have
a value of 15 and not 10.

Taking Advantage of Built-In Function Libraries
Although you can certainly create your own custom functions to perform all kinds of operations,
you will find that most programming languages include their own collection of predefined func-
tions that you can call upon to execute commonly performed calculations or tasks. By taking
advantage of these built-in functions, you reduce the size and complexity of your programs. You
also reduce the time required to create your applications.

You have already seen a number of Just BASIC’s functions in action. For example, you have used
the rnd() function to generate random numbers, the int() function to convert a floating-point
number to an integer, and the str$() function to convert a numeric value to a string value. Table 7.1
shows a list of functions that Just BASIC provides. You’ll see a number of these functions in use
throughout this book. For any function that is not covered, you can learn more about it by ref-
erencing Just BASIC’s Help.

Function Name Function Name Function Name

abs() left() sin()

acs() len() space()

asn() loc() sqr()

atn() lof() str$()

chr$() log() tab()

cos() lower$() tan()

date$() mid$() time$()

eof() midipos() trim$()

exp() mkdir() upper$()

input$() right$() using()

instr() rmdir() val()

int() rnd()

TA B L E 7.1 J U S T BAS IC ’ S B U I LT- I N F U N C T I O N S

© 2016 Shoptalk Systems

07 ProgABS2E ch07 2/23/15 8:43 PM Page 227

228 Programming for the Absolute Beginner, Second Edition

Back to the BASIC BlackJack Game
All right, that is enough about subroutines and functions for now. Let’s turn your attention back
to the development of this chapter’s game project: the BASIC BlackJack game. This game will
consist of two windows—one will serve as a splash screen, and the other will serve as the main
window. To create the splash screen, you need to download copies of the two bitmap image files
shown in Figure 7.7 from this book’s companion website.

Hint

You can download copies of these two bitmap images along with the source code for this
application from this book’s companion website, at www.cengageptr.com/downloads.

Designing the Game
The design of the BASIC BlackJack game relies heavily on the use of subroutines and functions.
You will follow the same pattern already established through the development of previous game
projects. In total, you will create the BASIC BlackJack game in 12 steps, as outlined here:

1. Create a new BASIC file.

2. Initiate the game by defining global variables and executing the DisplaySplash subroutine.

3. Create the DisplaySplash subroutine.

4. Create the CloseSplashWindow subroutine.

5. Create the ManageGamePlay subroutine.

6. Create the DealCard subroutine.

7. Create the DealerTurn subroutine.

8. Create the RestartGame subroutine.

9. Create the DealOpeningHand subroutine.

10. Create the GetRandomNumber function.

11. Create the ResetGame subroutine.

12. Create the ClosePlay subroutine.

Figure 7.7 Reviewing copies of the two bitmap images
displayed on the game’s opening splash screen window.
© 2016 Cengage Learning®

07 ProgABS2E ch07 2/23/15 8:43 PM Page 228

http://www.cengageptr.com/downloads

Creating a Just BASIC File Script

Following the same pattern that has been established with the creation of all Just BASIC game
applications that you have worked on in this book, let’s begin by adding a few comment state-
ments to the beginning of the program file:

‘ ***

‘

‘ Script Name: BlackJack.bas (The BASIC BlackJack Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 25, 2015

‘

‘ Description: This game is a Just BASIC implementation of the BlackJack

‘ casino card game which pits the player against the

‘ computer (dealer).

‘

‘ ***

Next, because the application will not make use of its default text window, add the following
statement to the end of the program file telling Just BASIC to suppress its display at runtime:

nomainwin ‘Suppress the display of the default text window

Initializing the Game

The next step in the development of the BASIC BlackJack game is to define a pair of global vari-
ables. The dealerCard variable will be used to keep track of the numeric value of the dealer’s
hand during gameplay. Likewise, the playerCard variable is used to keep track of the value of the
player’s hand. Next, the call command is used to execute the DisplaySplash subroutine. This
subroutine is responsible for displaying the game’s splash screen and then initializing gameplay:

global dealerCard, playerCard ‘Assign default values to global variables

call DisplaySplash ‘Call on the subroutine that displays the game’s

‘splash screen

wait ‘Pause the application and wait for the player’s instruction

229Chapter 7 • Improving Program Organization with Functions and Subroutines

07 ProgABS2E ch07 2/23/15 8:43 PM Page 229

Creating the DisplaySplash Subroutine

The code statements that make up the DisplaySplash subroutine are shown next and should be
added to the end of the program file:

‘This subroutine displays a splash screen at game start-up

sub DisplaySplash

loadbmp “AceImage”, “C:\images\Ace.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “JackImage”, “C:\images\Jack.bmp” ‘Load the specified bitmap

‘file into memory

‘Define the format of statictext controls displayed on the window

statictext #splash.statictext1, “B A S I C B L A C K J A C K”, _

5, 30, 440, 30

statictext #splash.statictext2, “Copyright 2015”, 230, 60, 80, 20

‘Add two graphicbox controls to the #splash window

graphicbox #splash.gboxAce, 65, 120, 77, 116

graphicbox #splash.gboxJack, 175, 120, 77, 116

‘Open the window with no frame and a handle of #splash

open “BASIC BlackJack” for window_nf as #splash

‘Set the font type, size, and attributes

print #splash.statictext1, “!font Arial 14 bold”

‘Use the flush command to prevent the contents of the graphicbox control

‘from being overwritten when the window is first generated

print #splash.gboxAce, “flush”

print #splash.gboxJack, “flush”

‘Display the preloaded bitmap images in the graphicbox control

print #splash.gboxAce, “drawbmp AceImage 1 1”

print #splash.gboxJack, “drawbmp JackImage 1 1”

‘Use the flush command to prevent the contents of the graphicbox controls

‘from being overwritten if the user opens or moves another window on top

‘of the #splash window

print #splash.gboxAce, “flush”

print #splash.gboxJack, “flush”

230 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 230

‘Wait 4 thousand milliseconds (4 seconds) and then call upon the

‘subroutine that closes the game’s splash screen

timer 4000, CloseSplashWindow

end sub

The DisplaySplash subroutine begins by using the loadbmp command to preload graphics
bitmap files into memory. Statictext and graphicbox controls are then added to the window. After
that, the window is displayed using the open command and assigned a handle of #splash. The
rest of the subroutine consists of statements that perform the following set of actions:

• Set the window’s font type, size, and attributes.

• Use the flush command to prevent bitmap files from being overwritten.

• Use the drawbmp command to display the bitmap images.

• Use the timer command to pause the subroutine’s execution for four seconds before call-
ing on the CloseSplashWindow subroutine.

Hint

The timer command uses the computer’s internal hardware timer to allow programmers to
implement programming logic that relies on the passage of time. For example, you might use
the timer command to drive the execution of programming statements that control the dis-
play of animation in a computer game.

The syntax of the timer command is shown here:

timer delay, EventHandler

delay is a placeholder that represents the amount of time, in milliseconds, that the timer
command will wait before executing the specified EventHandler (for example, call to a sub-
routine, function, or label). One second is equivalent to 1,000 milliseconds. So, to tell the
time to wait 5 seconds, you would specify a value of 5,000 for delay.

Creating the CloseSplashWindow Subroutine

The CloseSplashWindow subroutine, shown next, is responsible for closing the game’s splash
screen window:

‘This subroutine closes the game’s splash screen window

sub CloseSplashWindow

timer 0 ‘Turn the timer off

231Chapter 7 • Improving Program Organization with Functions and Subroutines

07 ProgABS2E ch07 2/23/15 8:43 PM Page 231

close #splash ‘Close the #splash window

call ManageGamePlay ‘Call on the subroutine that manages gameplay

end sub

The first statement in the subroutine disables the execution of the timer command by passing a
value of zero. Next, the close command is used to close the #splash window. Finally, the call
command is used to execute the ManageGamePlay subroutine, which is responsible for initializing
gameplay.

Creating the ManageGamePlay Subroutine

The code statements that make up the ManageGamePlay subroutine are shown next and should
be added to the end of the program file. This subroutine will display the game’s main window
and facilitate gameplay:

‘This subroutine displays the game board and controls interaction with the

‘player

sub ManageGamePlay

WindowWidth = 400 ‘Set the width of the window to 400 pixels

WindowHeight = 400 ‘Set the height of the window to 400 pixels

‘Define the format of statictext controls displayed on the window

statictext #play.statictext1, “B A S I C B L A C K J A C K”, _

12, 20, 440, 30

statictext #play.statictext2, “Copyright 2015”, 310, 60, 80, 20

statictext #play.statictext3, “Player’s Hand”, 50, 110, 70, 20

statictext #play.statictext4, “Dealer’s Hand”, 270, 110, 70, 20

‘Define textbox control that will be used to display data

textbox #play.textbox1, 50, 140, 70, 50

textbox #play.textbox2, 270, 140, 70, 50

textbox #play.textbox3, 50, 280, 290, 50

‘Add button controls to the window

button #play.button1 “Hit Me!”, DealCard, UL, 30, 210, 50, 30

button #play.button2 “Stay!”, DealerTurn, UL, 90, 210, 50, 30

button #play.button3 “Play Again”, RestartGame, UL, 270, 210, 70, 30

232 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 232

‘Open the window with no frame and a handle of #play

open “BASIC BlackJack” for window_nf as #play

‘Set up the trapclose event for the window

print #play, “trapclose ClosePlay”

Call DealOpeningHand ‘Call the subroutine that deals the player’s and

‘dealer’s initial hands

‘Set the font type, size, and attributes

print #play.statictext1, “!font Arial 16 bold”

print #play.textbox1, “!font Arial 24 bold”

print #play.textbox2, “!font Arial 24 bold”

print #play.textbox3, “!font Arial 18 bold”

print #play.button1, “!setfocus”; ‘Set focus to the Hit Me button

print #play.button3, “!disable” ‘Disable the Play Again button

‘Pause the application and wait for the player’s instruction

wait

end sub

The first two statements specify the window’s dimensions. Then a series of statictext, textbox, and
button controls are added to the window. Each of the button controls calls on a different sub-
routine as its event handler. The Hit Me button calls on the DealCard subroutine, which adds
another card to the player’s hand when executed. The Stay button calls on the DealerTurn sub-
routine, which is responsible for managing the dealer’s hand. The Play Again button calls on the
RestartGame subroutine, which resets the game board and resets the game’s variables, readying
the game to play a new hand.

The open command is used next to display the window, which is assigned a handle of #play.
Next, the window’s trapclose event handler is set up to call on the ClosePlay subroutine when-
ever the player attempts to close the #play window. The DealOpeningHand subroutine is then
called. This subroutine sets font type, size, and attributes for various interface controls. Lastly, the
Hit Me button is assigned focus, and the Play Again button is disabled and will stay that way until
the end of the current hand.

233Chapter 7 • Improving Program Organization with Functions and Subroutines

07 ProgABS2E ch07 2/23/15 8:43 PM Page 233

Creating the DealCard Subroutine

The code statements that make up the DealCard subroutine are provided next and should be
added to the end of the program file. This subroutine is responsible for adding a new card to the
player’s hand when called. This is accomplished by calling on the GetRandomNumber function and
adding the number that is returned to the current value assigned to the playerCard variable:

‘This subroutine is called when the player clicks on the Hit Me button

sub DealCard handle$

‘Add another card to the player’s hand

playerCard = playerCard + GetRandomNumber()

‘The player busts if his hand exceeds 21

if playerCard > 21 then

print #play.textbox1, playerCard ‘Display the player’s card

print #play.textbox3, “You have busted!” ‘Display a summary of the

‘results

print #play.button1, “!disable” ‘Disable the Hit Me button

print #play.button2, “!disable” ‘Disable the Stay button

print #play.button3, “!enable” ‘Enable the Play Again button

else

print #play.textbox1, playerCard ‘Display the player’s card

end if

end sub

Next, an if…then…else statement is set up to analyze the value of the player’s hand. If it is over
21, the player has gone bust, losing the game. If this is the case, the value of the player’s hand is
updated, a message is displayed explaining what has happened, and the Hit Me and Stay buttons
are disabled while the Play Again button is enabled. This prevents the player from doing anything
else at this point other than starting a new game. If, however, the player’s hand is less than 21, all
that happens is that the display of the player’s score is updated.

Creating the DealerTurn Subroutine

The code statements that make up the DealerTurn subroutine are shown next and should be
added to the end of the program file:

‘This subroutine manages the dealer’s turn

sub DealerTurn handle$

234 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 234

print #play.button1, “!disable” ‘Disable the Hit Me button

print #play.button2, “!disable” ‘Disable the Stay button

print #play.button3, “!enable” ‘Enable the Play Again button

do

‘Add another card to the dealer’s hand

dealerCard = dealerCard + GetRandomNumber()

print #play.textbox2, dealerCard ‘Display the player’s card

‘The dealer busts if its hand exceeds 21

if dealerCard > 21 then

print #play.textbox3, “The dealer busts!” ‘Display a summary of the

‘results

exit sub ‘Exit out of the subroutine

end if

loop while dealerCard < 17 ‘Keep looping as long as the dealer’s hand

‘is less than 17

‘Analyze the results of the game once both the player and dealer have

‘rested

if playerCard = dealerCard then ‘Check for a tie

print #play.textbox3, “Tie!”

end if

if playerCard < dealerCard then ‘See if the dealer has won

print #play.textbox3, “You lose!”

end if

if playerCard > dealerCard then ‘See if the player has won

print #play.textbox3, “You win!”

end if

end sub

235Chapter 7 • Improving Program Organization with Functions and Subroutines

07 ProgABS2E ch07 2/23/15 8:43 PM Page 235

This subroutine begins by disabling the Hit Me and Stay buttons and enabling the Play Again but-
ton. Next, a do…while loop is set up. This loop is responsible for adding new cards to the dealer’s
hand, stopping only when the value of the dealer’s hand (the value assigned to the dealerCard
variable) exceeds 17. New cards are added to the dealer’s hand by calling on the GetRandomNumber()
function and adding the value that is returned to dealerCard. The display of the dealer’s hand is
then updated. Each time the loop repeats, the value of dealerCard is checked to see if it exceeds
21, in which case the dealer has busted. Note that if the dealer has busted, the exit sub command
is executed, immediately terminating the execution of the DealerTurn subroutine. If the
do…while loop ends without the dealer going bust, three if…then statements are executed. These
statements compare the player’s and the dealer’s hands to determine the result of the game.

Creating the RestartGame Subroutine

The RestartGame subroutine is shown next. When called, this subroutine calls on the ResetGame
subroutine and enables the Hit Me and Stay buttons, allowing the player to begin adding new
cards to her hand or to elect to hold onto her current hand. The last statement in this subroutine
calls on the DealOpeningHand subroutine, which deals an initial card for the player and the dealer.

‘This subroutine gets the game ready to play a new hand

sub RestartGame handle$

call ResetGame ‘call on the subroutine that resets the game

print #play.button1, “!enable” ‘Enable the Hit Me button

print #play.button2, “!enable” ‘Enable the Stay button

print #play.button3, “!disable” ‘Disable the Play Again button

call DealOpeningHand ‘Call on the subroutine that deals the player’s

‘and dealer’s opening hands

end sub

Creating the DealOpeningHand Subroutine

The code statements that make up the DealOpeningHand subroutine are shown next and should
be added to the end of the program file:

‘This subroutine deals the player’s and dealer’s opening hands

sub DealOpeningHand

playerCard = GetRandomNumber() ‘Retrieve the player’s first card

dealerCard = GetRandomNumber() ‘Retrieve the dealer’s first card

236 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 236

print #play.textbox1, playerCard ‘Display the player’s card

print #play.textbox2, dealerCard ‘Display the dealer’s card

end sub

The first statement adds a card to the player’s and computer’s hands by assigning the value
returned by the GetRandomNumber() function. Two print statements then update the display of
the player’s and the computer’s hands.

Creating the GetRandomNumber Function

The GetRandomNumber() function, shown next, is responsible for generating a numeric value and
returning it to the statement that called upon the function:

‘This function generates and returns cards

function GetRandomNumber()

RandomNumber = int(rnd(1)*13) + 1 ‘Retrieve a number between 1 and 13

if RandomNumber = 1 then RandomNumber = 11 ‘A 1 is converted to 11 (ace)

if RandomNumber > 10 then RandomNumber = 10 ‘11, 12, and 13 are equivalent

‘to jacks, queens, and kings,

‘which have a value of 10

GetRandomNumber = RandomNumber ‘Return the selected card

end function

As you can see, random numbers are generated in the range of 1 to 13. If a value of 1 is gener-
ated, it is considered to be an ace, and a value of 11 is returned in its place. Any number greater
than 10 represents a face card (jack, queen, or king), and a value of 10 is returned. Any other value
(2–10) is returned without modification or replacement.

Creating the ResetGame Subroutine

The code statements that make up the ResetGame subroutine are shown next and should be
added to the end of the program file. When called, this subroutine resets the value of dealerCard
and playerCard back to zero and clears out any numbers or text displayed in the game’s textbox
controls, readying the game to play a new hand:

‘This subroutine resets the player’s and dealer’s hands and clears out

‘the game board

sub ResetGame

237Chapter 7 • Improving Program Organization with Functions and Subroutines

07 ProgABS2E ch07 2/23/15 8:43 PM Page 237

dealerCard = 0 ‘Reset the dealer’s hand to zero

playerCard = 0 ‘Reset the player’s hand to zero

‘Clear out the textbox controls on the game board

print #play.textbox1, “”

print #play.textbox2, “”

print #play.textbox3, “”

end sub

Creating the ClosePlay Subroutine

The last procedure to be added to the BASIC BlackJack game is the ClosePlay subroutine, whose
code statements are shown next. This subroutine is called when the #play window’s trapclose
event handler is executed:

‘This subroutine is called when the player closes the #play window

‘and is responsible for ending the game

sub ClosePlay handle$

‘Get confirmation before terminating program execution

confirm “Are you sure you want to quit?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

close #play ‘Close the #play window

end ‘Terminate the game

end if

end sub

When called, this subroutine uses the confirm command to display a pop-up window that
requires the player to reconfirm her intention to terminate the game. If the player responds by
clicking on the Yes button, the close command is executed, followed by the end command.

The Final Result
Okay, you have seen all the steps involved in the creation of the BASIC BlackJack game. Assum-
ing that you didn’t make any typos or miss keying in any statement, the game should be ready to
run. So put it through its paces and see how well you fare when playing against the computer.

238 Programming for the Absolute Beginner, Second Edition

07 ProgABS2E ch07 2/23/15 8:43 PM Page 238

Summary
In this chapter, you learned how to work with subroutines and functions. This included defining
them and setting them up to process arguments. You discovered how to create functions that
could return a result. In addition, you read about variable scope within subroutines and functions.
Using this information, you will be able to develop applications whose source code is better orga-
nized and more manageable.

Before moving on to Chapter 8, “Working with Text Files,” take a little extra time to work on the
BASIC BlackJack game by addressing the following list of challenges.

239Chapter 7 • Improving Program Organization with Functions and Subroutines

1. The BASIC BlackJack game’s splash screen currently displays the game’s name and a
copyright statement. It also displays two graphics images of playing cards. However, to
truly leverage the usefulness of the splash screen, you should consider displaying addi-
tional information on it. For example, you might want to display the URL of your website.

2. Consider tracking the number of games won, lost, and tied. Also, think about making
this information available to the player by displaying it either on the main window as
the game is played or in a separate window that the user can open at her discretion.

3. Consider making the game a little more exciting by giving the player an arbitrary amount
of money when the game is started, say $10, and adding or subtracting a dollar from this
amount for each game won or lost. You would want to terminate the game if the player
goes broke.

C
ha

lle
ng

es

07 ProgABS2E ch07 2/23/15 8:43 PM Page 239

This page intentionally left blank

IIIP
A

R
T

Advanced
Programming
Topics

Chapter 8: Working with Text Files

Chapter 9: Working with Sound and
Graphics

Chapter 10: Arcade-Style Computer Game
Development

Chapter 11: Debugging Your Applications

08 ProgABS2E ch08 2/23/15 8:44 PM Page 241

This page intentionally left blank

Working with Text Files

8
L

ike most other programming languages, Just BASIC allows programmers to
interact with the computer’s file system, creating and deleting files and folders.
It can also be used to build applications that can create and work with external

files. As such, it gives you the ability to create reports, documents, and log files. In
addition to teaching you the basics of working with files and folders, this chapter
will show you how to create your next application project: the Tic Tac Toe game.

Specifically, you will learn the following:

• How to indicate absolute and relative path and filenames

• How to open and close files

• How to read from and write to text files

• How to perform file administration tasks

Project Preview: The Tic Tac Toe Game
In this chapter, you will learn how to create a new computerized Tic Tac Toe game.
Individual game board squares will be represented by bmpbutton controls because
they are well suited to this task. Using each bmpbutton control’s click event, the
game will be able to respond to player clicks and then display bitmap images (of
Xs and Os) representing each player’s move.

08 ProgABS2E ch08 2/23/15 8:44 PM Page 243

244

In total, nine bmpbutton controls will be used and will be lined up in three consecutive rows. Fig-
ure 8.1 shows how these controls will appear when the game is started.

Initially a blank (all white) bitmap image is loaded onto each bmpbutton control to represent an
unselected game board square. As Figure 8.2 demonstrates, as gameplay continues, bitmap images
representing Xs and Os are displayed on bmpbutton controls as Player X and Player O select them.

Programming for the Absolute Beginner, Second Edition

Figure 8.1 Player X starts each game by clicking
on one of the available game board squares.
© 2016 Cengage Learning®

Figure 8.2 Player X and Player O alternate turns
when selecting squares.
© 2016 Cengage Learning®

Players are only allowed to choose from unselected squares. If a player attempts to select a square
that has already been chosen, the pop-up dialog shown in Figure 8.3 is displayed, informing the
player of her mistake.

Gameplay continues until one of the players wins or until all nine game board squares have been
selected without either player having won. At the end of each game, a pop-up dialog is displayed
that informs the players of the result. For example, Figure 8.4 shows the pop-up dialog that is
displayed when Player X wins.

After dismissing the pop-up dialog showing the results of the game, the game board continues
to display the results of the previous game, as demonstrated in Figure 8.5. At this point, the play-
ers can click on the Start New Game button to play another round, or they can click on the close
button (X) located in the upper-right corner of the window to terminate the game.

08 ProgABS2E ch08 2/23/15 8:44 PM Page 244

245Chapter 8 • Working with Text Files

Figure 8.3 Any attempt to click on a square that
has already been selected results in an error.
© 2016 Cengage Learning®

Figure 8.4 At the conclusion of each
round of play, a pop-up dialog is displayed
announcing the result.
© 2016 Cengage Learning®

Working with Files and Folders
Some programming languages such as JavaScript have limited execution environments. In the
case of JavaScript, this means that it can only be used to create scripts that run within web
browsers. As a result, these programming languages cannot interface with the Windows file sys-
tem and thus cannot be used to create text files or reports. However, desktop programming lan-
guages like Visual Basic, C++, and Just BASIC do not have this restriction.

Figure 8.5 Player X has won by
lining up three squares diagonally.
© 2016 Cengage Learning®

08 ProgABS2E ch08 2/23/15 8:44 PM Page 245

Hint

Today, many programming languages have been expanded to the point at which they are
capable of developing applications that can be run on many different platforms. One of the
best examples of this is Visual Basic, which can be used to create desktop applications as
well as web-based applications. Visual Basic also supports application development on a
range of portable devices, including PDAs and cell phones.

In this chapter, you will learn how to create Just BASIC applications that are capable of interacting
with the Windows file system. The programming techniques presented here, although specific to
Just BASIC, can be generally applied to other programming languages and will give you a solid
understanding of the basic steps involved in developing applications that interact with the Windows
file system.

Retrieving Drive Information
To work with files and folders, you must understand how to interact with the Windows file sys-
tem, which consists of one or more disk drives represented by a letter followed by a colon. For
example, C: is the standard designation for a computer’s primary disk drive. Many computers
today have more than one drive. With Just BASIC, you can retrieve a string representing all the
drives available on a computer using the Drives$ special variable. For example, the following
statement uses the print command to display the value of Drives$:

print Drives$

When it’s executed, output similar to the following is displayed:

c: d: e: f:

As you can see, the computer on which this example was executed contains four drives. Using the
Drives$ special variable you could, as the following example demonstrates, populate a com-
bobox (or a listbox) control with a list of all the drives available on a computer and then allow
the user to select one:

nomainwin

global selection$

dim mydrives$(10)

call GenerateDriveList

call DisplayWindow

wait

246 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 246

sub GenerateDriveList

i = 0

do

mydrives$(i) = word$(Drives$, i + 1)

i = i + 1

loop until word$(Drives$, i + 1) = “”

end sub

sub DisplayWindow

combobox #main.combobox, mydrives$(), DisplaySelection, 100, 100, 100, 100

open “Select Drive” for window_nf as #main

wait

end sub

sub DisplaySelection handle$

print #main.combobox, “contents? selection$”

notice “You picked “ + selection$

close #main

end

end sub

In this example, an array named mydrives$ is defined that is capable of storing up to 11 elements.
Next, a subroutine called GenerateDriveList is called. This subroutine uses a do…until loop to
iterate through the list of drives stored in the Drives$ special variable to populate the mydrives$()
array.

Hint

Note the use of the word$() function in the GenerateDriveList subroutine. This function
returns a specified word from a string based on the word’s position in the string and has the
following syntax:

word$(string, i [,delimiter])

string represents the string that is parsed. The variable i is used to keep track of each word
in the string. delimiter is optional; when used, it specifies the character in the string that is
used to delimit words. If delimiter is omitted, blank spaces are used as delimiters.

247Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 247

Once the GenerateDriveList subroutine is done, the DisplayWindow subroutine is called. This
subroutine displays a window that contains a combobox control. The combobox control has
been set up to display the contents of the mydrives$() array. In addition, the combobox control
has been set up to execute the program’s remaining subroutine, DisplaySelection. When called,
this subroutine retrieves the drive letter that the user has selected from the combobox control
and displays it.

Retrieving Information About the Current Working Directory
In Just BASIC, if you specify a filename without also providing path information, Just BASIC
looks to the special variable DefaultDir$ to determine which folder to look in to find the file. By
default, DefaultDir$ contains a text string identifying the absolute path and name of the folder
where the Just BASIC application being executed resides. For example, suppose you created a new
Just BASIC program named text1.bas that contains the following statement:

print DefaultDir$

If you save this program in C:\Basic\Just BASIC v1.01 and then execute it, the following out-
put is displayed:

c:\Basic\Just BASIC v1.01

Collecting Data About Files and Folders
Programmers can use the files command to retrieve information about files and folders. To use
this statement, you must first create a two-dimensional array, which you will use to store the data
returned by the files command, as demonstrated here:

dim folderInfo$(3, 3)

files “C:\temp”, folderInfo$()

Here, a two-dimensional array named folderInfo$() has been defined that can store up to four
pairs of entries. Next, the files command is executed and passed two arguments. The first argu-
ment is the path of the folder for which information is to be retrieved. The second argument is
the name of the array that will be used to store this information. Once the command is executed,
you can retrieve information about the specified folder by examining the information that has
been stored in the array, as demonstrated here:

print “Files: “ + folderInfo$(0, 0) ‘Retrieves the number of files

print “Folders: “ + folderInfo$(0, 1) ‘Retrieves the number of folders

print “Drive: “ + folderInfo$(0, 2) ‘Retrieves the drive

print “Path: “ + folderInfo$(0, 3) ‘Retrieves the path

248 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 248

Hint

As was discussed back in Chapter 4, “Working with Variables and Arrays,” a one-dimensional
array is an indexed list of values. A two-dimensional array is like a table or a spreadsheet, made
up of rows and columns. When using the files command to retrieve information about a
folder, you retrieve the information from the first column of the array, which has an index value
of 0. Because data is retrieved from a two-dimensional array by specifying a pair of numbers,
when retrieving folder data, you always use 0 as the first number when specifying array coor-
dinates. Thus, the value representing the number of files found in a folder is located at (0,0),
whereas the number of subfolders found in the folder is found at (0,1). File information, on the
other hand, is stored in the second column of the array and thus is retrieved by specifying a
value of 1 as the first coordinate. For example, the name of the file is stored at coordinates
(1,0), and the size of the file is found at (1,1).

When executed, these statements generate output similar to the following:

Files: 2

Folders: 2

Drive: c:\

Path: temp\

You can just as easily use the files command to collect information about individual files, as
demonstrated here:

dim fileInfo$(2, 2)

files “C:\temp\”, “Application.log”, fileInfo$()

print “File name: “ + fileInfo$(1, 0) ‘Retrieves the file’s name

print “File size: “ + fileInfo$(1, 1) ‘Retrieves the file’s size

print “Date/time: “ + fileInfo$(1, 2) ‘Retrieves the file’s date and time

Here, the files command has been used to retrieve information about a file named Application.log
stored in C:\temp. The data retrieved from the command is stored in the fileInfo$() array and
then displayed using a series of print commands.

249Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 249

Trick

You can also use wildcard characters when specifying filenames for the files command. For
example, you can use the ? wildcard character to substitute any single character, whereas you
can use the * wildcard character to substitute any number of characters. To better understand
what all this means, take a look at the following example:

dim fileInfo$(2, 2)

files “C:\temp\”, “*.log”, fileInfo$()

for i = 1 to val(fileInfo$(0, 0))

print “File name: “ +fileInfo$(i, 0)

next i

Here, the * wildcard character has been used to tell the files command to add information
about every file found in the C:\temp folder that has a .log file extension. A string showing
the number of files found will be stored in fileInfo$(0, 0). You can convert this to a numeric
value using the val() function. As such, you can use it to control the execution of a for…next
loop that iterates through all the output stored in the fileInfo$() array, displaying output
similar to that shown here:

File name: Application.log

File name: Error.log

File name: System.log

As you can see, three files with a .log file extension were found in C:\temp.

Ensuring That Files Exist
If you write a program that needs to work with a specific file and that file is not present when the
program attempts to access it, an error occurs. To avoid this problem, you can use the files com-
mand to determine whether the file exists. If it does, your program can go ahead and open it. If
the file does not exist, your program could create and then open it. To see how you might do this,
take a look at the following example:

dim fileInfo$(0, 0)

files “C:\temp\”, “Application.log”, fileInfo$()

if val(fileInfo$(0, 0)) = 0 then

print “File not found!”

end if

250 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 250

Here, an array named fileInfo$() has been defined to hold a single pair of items. The files com-
mand is then executed. Next, an if…then statement has been set up to examine fileInfo$(0, 0).
If a value of 0 is found, the file does not exist. At this point, you can insert additional program-
ming statements to handle the situation as appropriate.

Specifying Absolute File and Path Names
Like most programming languages, Just BASIC allows you to specify the location of files and
folders using either absolute or relative paths. An absolute path is one that specifies the complete
path to a file or folder, including the drive specification and any folders included in the path
between the drive specification and the target file or folder. For example, the following statement
specifies the absolute path of the temp folder (C:\temp):

dim fileInfo$(0, 0)

files “C:\temp\”, “Application.log”, fileInfo$()

Use of absolute path when specifying file and folder names is convenient when you can count on the
location of the files and folders being where you expect them to be, which is the case on your own
desktop computer. This might also be the case in a tightly controlled corporate environment where
desktop computers are controlled and monitored by a central desktop support team. However, often
you cannot count on knowing the exact location of a file of folder. For example, if you create a dis-
tribution package for one of your Just BASIC games and share it with your friends, there is no guar-
anteeing that they will install the game in the location you expect when they set it up on their
computer. In these types of situations, using relative path names is usually the better way to go.

Specifying Relative Path Names
With relative paths, you identify the location of a file or folder relative to the location of the cur-
rent working directory (folder). For example, if you have created an application that works with
a text file that is located within the same location as the application itself, you can specify its name
and location as demonstrated here:

open “CustomerData.txt” for input as #1

Because your Just BASIC program and the text file reside in the same folder, it is not necessary
to specify the absolute path of the text. Instead, by simply specifying the name of the text file, Just
BASIC knows to look in the current working directory.

Now let’s suppose that when your application is installed, your installation package automatically
adds a number of files and folders to the computer. Using relative paths, you can navigate back-
ward and forward within this file structure. For example, consider the following statement:

open “inventory\PartsList.txt” for input as #1

251Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 251

252 Programming for the Absolute Beginner, Second Edition

Here, the open command has been instructed to look in a subfolder of the current working direc-
tory named inventory and to open a file named PartsList.txt. Using relative paths, you can
also navigate your way backward, as demonstrated here:

open “..\SystemCodes.txt” for input as #1

Here, using the .. characters, the open command has been instructed to look in the parent folder
of the current working directory for a file named SystemCodes.txt. If necessary, you can go
backward an additional level, as demonstrated here:

open “..\..\Accounting.txt” for input as #1

Here, the open command has been instructed to go back to the parent folder of the parent folder
of the current working directory and open a file named Accounting.txt. You can get as creative
as necessary using relative paths to specify the location of a file:

open “..\..\..\books\ISBNS.txt” for input as #1

Here, the open command has been told to back up three levels from the current working direc-
tory and then to go forward one level into a folder named books to find and open a file named
ISBNS.txt.

Using the filedialog Window to Allow the User to Select a File
You can use the filedialog command to display a dialog window that allows the user to select
a file using a standard Windows Explorer dialog window. The dialog window will return a string
representing the absolute path and filename of the file the user selects. For example, take a look
at the following statement:

filedialog “Open a File”, “C:\temp*.txt”, selectedFile$

Here, a filedialog window is opened and configured to display a list of all text files located in
the C:\temp folder, as demonstrated in Figure 8.6.

In this example, a string representing the absolute file and path name of the file selected by the
user is then captured and stored in a variable name selectedFile$.

Note

You can find more information on how to work with the filedialog command in Chapter 3,
“Creating Graphical User Interfaces.”

08 ProgABS2E ch08 2/23/15 8:44 PM Page 252

Working with Files
Just BASIC allows programmers to store data in and read it back from different types of files,
including sequential, binary, and random access files. In this chapter, you will learn the basic steps
involved in storing and retrieving data in sequential files.

Hint

A sequential file is one that contains plain text. Sequential files are processed sequentially,
from beginning to end. A binary file is one that contains more than plain text. Binary files are
capable of storing graphics files, sound files, and more. A random access file is one that can
be read from or written to at any location within the file. To learn more about how to work
with binary and random access files, consult Just BASIC’s help system.

253Chapter 8 • Working with Text Files

Figure 8.6 Using the filedialog command to display a pop-up dialog that allows the user to select a file.
© 2016 Shoptalk Systems

08 ProgABS2E ch08 2/23/15 8:44 PM Page 253

Opening Files
To work with a sequential file, you must first open it. In Just BASIC, files are opened using the
open command, which has the following syntax:

open resource for purpose as #handle [len = n]

The open command is an extremely powerful and flexible command that can perform a number
of different actions, including opening files, windows, and serial communications. With respect
to opening files, resource identifies the file to be opened, and the purpose is input. The last
parameter, [len = n], is used only when working with random access files.

As an example of how to use the open command, take a look at the following example:

open “C:\temp\Sample.txt” for input as #targetFile

Here, the open command has been set up to open a file named Sample.txt located in C:\temp.
Once it’s opened, the file can be referenced within the program as #targetFile.

Hint

Remember, it is always a good idea to first check whether a file exists before trying to open it.

Closing Files
Any file that is opened should be closed when the program is finished working with it. You
accomplish this using the close command, which has the following syntax:

close #reference

#reference is the handle assigned to the file when it was opened using the open command. To
avoid errors, it is critical that you always remember to close a file previously opened by your
application, as demonstrated in the following example:

open “C:\temp\Sample.txt” for input as #targetFile

‘Add statements here that process the contents of the file

close #targetFile

If you forget to close a previously opened file, an error is generated when you try to terminate the
execution of your program, as demonstrated in Figure 8.7.

254 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 254

255Chapter 8 • Working with Text Files

Reading from Files
Once you have opened a text file, you can read from it and write to it. Just BASIC processes text
files sequentially, starting at the beginning of the file and moving to its end. You cannot open a
text file and begin reading it anywhere other than at the beginning. To read from a text file, you
can use the input and line input commands.

The input command reads from the text file, stopping at the first comma or carriage return that
it finds. A subsequent input command resumes reading where the previous command stopped,
terminating at the first comma or carriage return that it runs into. When used to read from a text
file, the input command has the following syntax:

input #handle, variableName

Hint

You can effectively use the input command when reading from a text file that has been orga-
nized into records separated by commands.

#handle is the reference previously set up for the file by the open command, and variableName
is the name of a variable into which the contents of the text file are to be copied. For example,
the following statements open a file named Sample.txt and read the first line from it (assuming
that the first line does not have a comma in it):

open “C:\temp\Sample.txt” for input as #targetFile

input #targetFile, variableName$

print variableName$

close #targetFile

Once the input command has been used to read the first line and store its contents, the print
command is used to display what was read in the default mainwin window.

Figure 8.7 Errors result when a program
is stopped while files remain open.
© 2016 Shoptalk Systems

08 ProgABS2E ch08 2/23/15 8:44 PM Page 255

256 Programming for the Absolute Beginner, Second Edition

Using the line input command, you can read from a file a line at a time, ignoring any commas
that may be found along the way. The syntax of the line input command is shown here:

line input #handle, variablename

To get a better feel for how this command works, suppose you have a text file named Story.txt
that contains the text shown in Figure 8.8.

Using the line input command within a loop, you can create a program that reads through and
processes every line in the text file, as demonstrated here:

nomainwin

WindowWidth = 360

WindowHeight = 300

texteditor #main.texteditor1, 10, 10, 335, 230

open “Story” for window_nf as #main

call DisplayStory

wait

sub DisplayStory

open “C:\temp\Story.txt” for input as #targetFile

Figure 8.8 An example
of a small text file.
© 2016 Cengage Learning®

08 ProgABS2E ch08 2/23/15 8:44 PM Page 256

while eof(#targetFile) = 0

line input #targetFile, variableName$

print #main.texteditor1, variableName$

wend

close #targetFile

end sub

As you can see, this example starts by displaying a small application window that contains a text-
editor control. The texteditor control has been sized so that it fills up most of the window. A call
is then made to a subroutine named DisplayStory, which uses a while…wend loop and the line
input command to copy the contents of the text file into the texteditor control. When it’s executed,
the contents of the text file are visible to the user, as demonstrated in Figure 8.9.

Trick

To read a file a line at a time from beginning to end as demonstrated earlier, you need to use
the eof() function. You use this function to determine when the end of the file that is being
read has been reached. If the end of the file is not reached, the function returns a value of –1.
When the end of the file has been reached, the function returns a value of 0.

Writing to Files
Writing to a text file is just about as easy as reading from one. Just BASIC gives you two options
for doing so, as outlined here:

• output. Opens a new file and writes to the beginning of it.

• append. Opens an existing file and writes to the end of it.

257Chapter 8 • Working with Text Files

Figure 8.9 Using a text file to populate
the contents of a texteditor control.
© 2016 Cengage Learning®

08 ProgABS2E ch08 2/23/15 8:44 PM Page 257

Creating and Writing to New Files

To create a new file and write to it, you need to open the file for output, as demonstrated here:

open “C:\temp\Story.txt” for output as #targetFile

When you open a file in this manner, any text written to the file starts at the beginning of the file.
Once you have opened the file in for output mode, text is written to the file using print com-
mands. If a file of the same name already exists, it is replaced by a new empty file to which text
is then written. It is a good idea to first check whether the file that you want to write to already
exists. If this is the case and you want to preserve any text that may have already been written to
the file, you will want to instead open the file for append, as discussed in the next section.

To get a good feel for how to write output to a file, take a look at the following example:

open “C:\temp\Story.txt” for output as #x

print #x, “Once upon a time in a faraway land, there lived a little boy”

print #x, “named Alexander the Great. One hot summer day an evil monster”

print #x, “appeared in the small town where Alexander lived and began to”

print #x, “terrorize everyone who lived there. No one dared to try to”

print #x, “fight the monster. No one, that is, except for Alexander.”

close #x

As with the reading of files, any file opened for writing must be closed to prevent an error from
occurring. As each line of output is written to the file, Just BASIC automatically adds a carriage
return to the end of the line. When executed, this example creates the Story.txt file that you
worked with earlier in the chapter when learning how to read from text files.

Appending Text to the End of an Existing File

As was alluded to in the previous section, you can open a file in for append mode to preserve its
current contents. Once opened in this manner, any print statements that write output to the file
are added to the end of the file instead of to the beginning of it, as demonstrated in the following
example:

open “C:\temp\Story.txt” for append as #x

print #x, “”

print #x, “The End”

close #x

When executed, this example opens the Story.txt file that you created previously and adds a
blank line followed by a second line that reads The End to the end of the text file.

258 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 258

File and Folder Administration
You have already learned how to create and write to new files. Just BASIC also gives you a num-
ber of commands that you can use to interact with and control the Windows file system. Using
these commands, you can rename and delete files. You can also create and delete folders.

Renaming Files
To rename a file, use the name command, which has the following syntax:

name CurrentName as NewName

CurrentName is the name of the file that you want to rename. NewName is the new filename. For
example, you could use the following statement to rename a file named mini-parts.txt located
in the current working directory to small-parts.txt:

name “mini-parts.txt” as “small-parts.txt”

Trap

Be careful not to assign the file a name the same as another file. Otherwise, you’ll get an error.

Deleting Files
Provided that you have the appropriate security permissions, you can use the kill command to
delete a file from the computer. The kill command has the following syntax:

kill FileName

FileName is the name of the file to be removed. For example, you can use the following statement
to delete a file named small-parts.txt from the current working directory:

kill small-parts.txt

Trap

Be careful when working with the kill command. Once you’ve executed that command, you
cannot reverse its effects. The file is permanently deleted from the computer; you will not
find a copy of it in the Recycle Bin.

259Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 259

Creating New Folders
In addition to creating new files, Just BASIC lets you programmatically create new folders. This
is achieved through the mkdir() function, which has the following syntax:

mkdir(“FolderName”)

FolderName is a text string that specifies the name and path of the folder to be created. For exam-
ple, the following statement creates a new folder named WorkPapers in the C:\Temp folder:

result = mkdir(“C:\Temp\WorkPapers”)

if result <> 0 then

notice “Something went wrong. C:\temp\WorkPapers was not created.”

end if

When executed, the mkdir() function returns a numeric value indicating the success or failure of
its operation. A value of zero indicates that the folder was successfully created. A nonzero value
indicates that an error occurred and the folder was not created, which would be the case if a
folder of the same name already existed at the specified location.

Deleting Folders
Just BASIC also lets you delete empty folders using the rmdir() function. If the delete operation
is successful, the function returns a value of zero. The rmdir() function has the following syntax:

rmdir(“FolderName”)

Using this command, you can programmatically delete any folder from the computer for which
you have the appropriate set of security permissions, as demonstrated here:

result = rmdir(“C:\temp\WorkPapers”)

if result <> 0 then

notice “Something went wrong. C:\temp\WorkPapers was not deleted.”

end if

In this example, the WorkPapers folder is deleted from the C:\temp folder if it is found and if it
is empty. It the folder is not found or if the folder is not empty, an error occurs.

Trap

Be careful when working with the rmdir() function. Once you’ve executed it, you cannot
reverse its effects. The folder is permanently deleted from the computer; you will not find a
copy of it in the Recycle Bin.

260 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 260

Back to the Tic Tac Toe Game
Okay, it is time to turn your attention back to the development of this chapter’s game project. In
developing this application, you will gain experience working with the bmpbutton control. You
will use it to display different bitmap images. Specifically, this application will display various
combinations of the three graphics bitmap images shown in Figure 8.10 as the players play the
game. You can download copies of all three of these files from this book’s companion website at
www.cengageptr.com/downloads.

Designing the Game
The design of the Tic Tac Toe game will rely on the use of subroutines. In total, you will create
the Tic Tac Toe game in eight steps, as outlined here:

1. Create a new BASIC file and add initial comment statements.

2. Define global variables and start the gameplay.

3. Create the ManageGamePlay subroutine.

4. Create the ProcessMove subroutine.

5. Create the SwitchPlayerTurn subroutine.

6. Create the LookForEndOfGame subroutine.

7. Create the ResetGameBoard subroutine.

8. Create the ClosePlay subroutine.

Creating a Just BASIC File Script

The first step is to create a new BASIC file. After creating the program file, add the following
statements to it:

‘ ***

‘

‘ Script Name: TicTacToe.bas (The Tic Tac Toe Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 31, 2015

‘

261Chapter 8 • Working with Text Files

Figure 8.10 Copies of the three bitmap images used to represent available
game board squares as well as squares selected by Player X and Player Y.
© 2016 Cengage Learning®

08 ProgABS2E ch08 2/23/15 8:44 PM Page 261

http://www.cengageptr.com/downloads

‘ Description: This game is a Just BASIC implementation of the classic

‘ children’s Tic Tac Toe game. This game pits two players

‘ against one another to see who can line up three

‘ consecutive characters in a row.

‘

‘ ***

nomainwin ‘Suppress the display of the default text window

The first 13 lines are introductory comment statements that help to document the program and
its purpose. The last statement executes the nomainwin command to prevent the mainwin window
from being displayed when the application is started.

Defining Global Variables and Initiating Gameplay

The next step in the development of the Tic Tac Toe game is to define the game’s global variables
and to call upon the subroutine that displays the game board window. This is accomplished by
adding the following statements to the end of the program file:

‘Assign default values to global variables

global currentPlayer$, noMoves

global a1$, a2$, a3$, b1$, b2$, b3$, c1$, c2$, c3$

currentPlayer$ = “X” ‘Player X always starts off each game

call ManageGamePlay ‘Call the subroutine responsible for managing gameplay

wait ‘Pause the application and wait for the player’s instruction

In this version of Tic Tac Toe, Player X starts each new game by going first. Players take turns
making moves. The game keeps track of whose turn it is based on the value assigned to cur-
rentPlayer$, which is set to “X” at the beginning of each new game.

The game board will consist of nine bmpbutton controls named A1, A2, A3, B1, B2, B3, C1, C2,
and C3. As players take turns selecting game board squares, a graphic is displayed on each bmp-
button identifying when it has been selected and which player has selected it. The game keeps
track of the status of each game board square (bmpbutton) by assigning a value of “X” or “O” to
variables named a1$, a2$, a3$, b1$, b2$, b3$, c1$, c2$, and c3$. Part of knowing when a game has
ended is knowing how many moves the players have made, which is tracked using the noMoves
variable. Finally, gameplay is started by calling the ManageGamePlay subroutine.

262 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 262

Displaying the Game Board

The Tic Tac Toe game consists of a single window, which displays the game board. The Man-
ageGamePlay subroutine, shown next, is responsible for creating and displaying the game’s main
window (#play). You should add these statements to the end of the program file:

‘This subroutine displays the game board and controls interaction with the

‘player

sub ManageGamePlay

WindowWidth = 400 ‘Set the width of the window to 400 pixels

WindowHeight = 500 ‘Set the height of the window to 500 pixels

loadbmp “_”, “C:\images_.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “O”, “C:\images\o.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “X”, “C:\images\x.bmp” ‘Load the specified bitmap

‘file into memory

‘Define the format of statictext controls displayed on the window

statictext #play.statictext1, “T I C T A C T O E”, 45, 20, 440, 35

statictext #play.statictext2, “Copyright 2015”, 265, 62, 80, 20

‘Add nine bmpbutton controls representing the game board to the window

‘First row

bmpbutton #play.a1, “C:\images_.bmp”, ProcessMove, UL, 45, 90

bmpbutton #play.a2, “C:\images_.bmp”, ProcessMove, UL, 150, 90

bmpbutton #play.a3, “C:\images_.bmp”, ProcessMove, UL, 255, 90

‘Second row

bmpbutton #play.b1, “C:\images_.bmp”, ProcessMove, UL, 45, 194

bmpbutton #play.b2, “C:\images_.bmp”, ProcessMove, UL, 150, 194

bmpbutton #play.b3, “C:\images_.bmp”, ProcessMove, UL, 255, 194

‘Third row

bmpbutton #play.c1, “C:\images_.bmp”, ProcessMove, UL, 45, 298

bmpbutton #play.c2, “C:\images_.bmp”, ProcessMove, UL, 150, 298

bmpbutton #play.c3, “C:\images_.bmp”, ProcessMove, UL, 255, 298

263Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 263

‘Add the game’s button control to the window

button #play.button1 “Start New Game”, ResetGameBoard, UL, _

147, 420, 100, 30

‘Open the window with no frame and a handle of #play

open “Tic Tac Toe” for window_nf as #play

‘Set up the trapclose event for the window

print #play, “trapclose ClosePlay”

‘Set the font type, size, and attributes

print #play.statictext1, “!font Arial 20 bold”

print #play.button1, “!setfocus”; ‘Set focus to the button control

‘Pause the application and wait for the player’s instruction

wait

end sub

The ManageGamePlay subroutine begins by defining the height and width of the game’s window
and preloading three images, representing Player X, Player Y, and an unselected (blank) game
board square. Next, the game defines the controls that make up its user interface. These controls
include two statictext controls used to display the game’s name and copyright information as well
as nine bmpbutton controls, representing each of the game’s nine game board squares. The last
control to be added to the window is a button control, which allows the players to clear the game
board and start a new game at any time during gameplay.

Next, the open statement is used to display the window, and the window’s trapclose event han-
dler is defined. The last few statements set the font type, size, and attributes of the statictext con-
trol that displays the name of the game and sets focus to the Start New Game button. The wait
command is then executed, pausing the game to allow Player X to make the first move.

Processing Player Moves

Players make their moves by clicking on one of the bmpbutton controls. Each bmpbutton con-
trol has the ProcessMove subroutine set up as its event handler. The code statements that make
up this subroutine are shown next and should be added to the end of the program file:

‘This subroutine processes player moves, deciding when moves are

‘valid and invalid and assigning game board squares accordingly

sub ProcessMove handle$

264 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 264

‘Set up a select case code block to process player moves

select case handle$

case “#play.a1” ‘The player selects the 1st square on the 1st row

if a1$ = “” then ‘Let the player have the square if it’s available

a1$ = currentPlayer$ ‘Assign the square to the current player

print #play.a1, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

case “#play.a2” ‘The player selects the 2nd square on the 1st row

if a2$ = “” then ‘Let the player have the square if it’s available

a2$ = currentPlayer$ ‘Assign the square to the current player

print #play.a2, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

case “#play.a3” ‘The player selects the 3rd square on the 1st row

if a3$ = “” then ‘Let the player have the square if it’s available

a3$ = currentPlayer$ ‘Assign the square to the current player

print #play.a3, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

case “#play.b1” ‘The player selects the 1st square on the 2nd row

if b1$ = “” then ‘Let the player have the square if it’s available

b1$ = currentPlayer$ ‘Assign the square to the current player

print #play.b1, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

265Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 265

case “#play.b2” ‘The player selects the 2nd square on the 2nd row

if b2$ = “” then ‘Let the player have the square if it’s available

b2$ = currentPlayer$ ‘Assign the square to the current player

print #play.b2, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

case “#play.b3” ‘The player selects the 3rd square on the 2nd row

if b3$ = “” then ‘Let the player have the square if it’s available

b3$ = currentPlayer$ ‘Assign the square to the current player

print #play.b3, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

case “#play.c1” ‘The player selects the 1st square on the 3rd row

if c1$ = “” then ‘Let the player have the square if it’s available

c1$ = currentPlayer$ ‘Assign the square to the current player

print #play.c1, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

case “#play.c2” ‘The player selects the 2nd square on the 3rd row

if c2$ = “” then ‘Let the player have the square if it’s available

c2$ = currentPlayer$ ‘Assign the square to the current player

print #play.c2, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

case “#play.c3” ‘The player selects the 3rd square on the 3rd row

if c3$ = “” then ‘Let the player have the square if it’s available

c3$ = currentPlayer$ ‘Assign the square to the current player

266 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 266

print #play.c3, “bitmap “ + currentPlayer$ ‘Display bitmap image

else

notice “Sorry, but this square is already assigned. Try again!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

end select

noMoves = noMoves + 1 ‘Increment the variable representing the number of

‘moves made so far in this game

‘Call the subroutine responsible for determining when the game is over

call LookForEndOfGame

‘Call the subroutine responsible for controlling whose turn it is

call SwitchPlayerTurn

end sub

As you can see, this subroutine mainly consists of a Select Case statement that contains nine
case statements, each of which sets up a code block that’s designed to process a specific game
board square (bmpbutton). The first case statement is set up to execute when one of the players
clicks on the bmpbutton control named #play.a1 (when the value of handle$ is equal to
“play.a1”).

Hint

Remember, a subroutine set up as an event handler is automatically passed an argument,
which is a text string that identifies the name of the window or control whose event has trig-
gered the subroutine’s execution.

The first thing that each case statement’s code block does when executed is examine the value of its
associated global variable, which in the case of #play.a1 is a1$. If a1$ is equal to an empty string(“”),
then it has not been chosen yet, and the next statement assigns the value of currentPlayer$
(either Player “X” or Player “O”) to a1$. Next, the bitmap image associated with the current
player is displayed on the bmpbutton control.

267Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 267

Hint

The game’s three bitmap images were preloaded into memory earlier in the program file. To
display them on a bitmap control, you must use the print command to pass a string to the
control for processing. This string consists of two parts. The first part is the keyword bitmap.
The second part of the string is a reference to the file that was established earlier by the
loadbmp commands to preload each bitmap file (_ represents a blank bitmap file. O represents
a bitmap file that displays the letter O, and X represents a bitmap file that displays the letter X).

If the value of a1$ is not equal to an empty string, the game board square has already been
assigned to one of the players, and it cannot be reassigned again. The player is then notified of the
selection error via a pop-up dialog, and the exit sub statement is executed (because no further
action needs to be taken when an invalid move is made).

The next eight case statement code blocks operate identically to the first case statement code
block except that each is set up to process the move associated with different game board squares.
At the end of the subroutine are a few additional code statements, which are executed only if the
player selected an available game board square when making a turn. The first of these statements
increments the value of noMoves by 1, allowing the games to keep track of the number of valid
moves made so far. Next, the LookForEndOfGame subroutine is executed. The subroutine scans the
game board and determines when either player has won the game by managing to line up three
squares in a row. The SwitchPlayerTurn subroutine is called next. This subroutine is responsi-
ble for controlling when each player gets to take a turn.

Controlling Player Turns

The code statements that make up the SwitchPlayerTurn subroutine are shown next and should
be added to the end of the program file:

‘This subroutine is responsible for switching between Player X and

‘Player O’s turns

sub SwitchPlayerTurn

‘If Player X just went, then it is Player O’s turn

if currentPlayer$ = “X” then

currentPlayer$ = “O” ‘Make Player O the current player

exit sub ‘There is no need to keep going, so exit the subroutine

end if

‘If Player O just went, then it is Player X’s turn

if currentPlayer$ = “O” then

currentPlayer$ = “X” ‘Make Player X the current player

268 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 268

exit sub ‘There is no need to keep going, so exit the subroutine

end if

end sub

As you can see, this subroutine consists of two if…then code blocks. The first code block executes
if Player X has just completed a turn, assigning a value of “O” to currentPlayer$ and then exiting
the subroutine. If, however, Player O just moved, the first code block is skipped and the second
if…then code block is executed, assigning “X” to currentPlayer$. Thus, by assigning a string
value of “X” or “O” to currentPlayer$, the game is able to keep track of player turns.

Looking for the End of the Game

The code statements for the LookForEndOfGame subroutine are shown next. This subroutine is
called at the end of each player’s turn to determine if the current player has won the game:

‘This subroutine is called at the end of each player’s turn and is

‘responsible for determining if the game is over

sub LookForEndOfGame

‘Look horizontally for a winner

‘Check the first row

if (a1$ = currentPlayer$) and (a2$ = currentPlayer$) and _

(a3$ = currentPlayer$) then

notice “Player “ + currentPlayer$ + “ has won!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

‘Check the second row

if (b1$ = currentPlayer$) and (b2$ = currentPlayer$) and _

(b3$ = currentPlayer$) then

notice “Player “ + currentPlayer$ + “ has won!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

‘Check the third row

if (c1$ = currentPlayer$) and (c2$ = currentPlayer$) and _

(c3$ = currentPlayer$) then

notice “Player “ + currentPlayer$ + “ has won!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

269Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 269

‘Look vertically for a winner

‘Check the first column

if (a1$ = currentPlayer$) and (b1$ = currentPlayer$) and _

(c1$ = currentPlayer$) then

notice “Player “ + currentPlayer$ + “ has won!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

‘Check the second column

if (a2$ = currentPlayer$) and (b2$ = currentPlayer$) and _

(c2$ = currentPlayer$) then

notice “Player “ + currentPlayer$ + “ has won!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

‘Check the third column

if (a3$ = currentPlayer$) and (b3$ = currentPlayer$) and _

(c3$ = currentPlayer$) then

notice “Player “ + currentPlayer$ + “ has won!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

‘Look diagonally for a winner

‘Check from the top-left corner down to the lower-right corner

if (a1$ = currentPlayer$) and (b2$ = currentPlayer$) and _

(c3$ = currentPlayer$) then

notice “Player “ + currentPlayer$ + “ has won!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

‘Check from the top-right corner down to the lower-left corner

if (a3$ = currentPlayer$) and (b2$ = currentPlayer$) and _

(c1$ = currentPlayer$) then

notice “Player “ + currentPlayer$ + “ has won!”

exit sub ‘There is no need to keep going, so exit the subroutine

end if

‘If neither player has won and all squares have been chosen the game

‘ends in a tie

270 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 270

if noMoves = 9 then

notice “Tie. There was no winner this time!”

end if

end sub

As you can see, this subroutine consists of a series of if…then statements that determine if the
game is over. The first if…then statement checks to see if the current player has won by selecting
all three squares in the first row (a1, a2, a3). It does this by checking to see if a1$, a2$, and a3$
are all assigned to the current player. Note the use of the and operator, which simplifies the logic
involved in making these comparisons by allowing one if…then statement to be created instead
of three if…then statements. If the player has won, a message is displayed in a pop-up dialog noti-
fying the players of the results of the game, after which the exit sub statement executes, termi-
nating the execution of this subroutine.

The next two if…then statements check the second and third rows. The three if…then statements
that follow check each column of the game board. The next two if…then statements check diag-
onally in both directions for a winner. If no winner is found, the last if…then statement executes,
checking the value assigned to noMoves to see if it is equal to 9. If it is, the game has ended in a
tie with neither player having lined up three consecutive squares and all squares having been cho-
sen. If, on the other hand, the value of noMoves is less than 9, the subroutine ends without taking
action, allowing the game to continue.

Preparing for a New Game

The ResetGameBoard subroutine, whose code statements are shown next, is responsible for
readying the game for a new round of play. This is achieved by displaying the blank bitmap image
file (_.bmp) on each bmpbutton control and then clearing out any assignments made to the game
board squares by assigning an empty string to a1$, a2$, a3$, b1$, b2$, b3$, c1$, c2$, and c3$. The
subroutine concludes by resetting the value of noMoves to 0 and making Player X the current
player in the new game:

‘This subroutine resets the game board and global variables to

‘ready the game for a new round of play

sub ResetGameBoard handle$

‘Display a blank bitmap image in each game board square

print #play.a1, “bitmap _”

print #play.a2, “bitmap _”

print #play.a3, “bitmap _”

print #play.b1, “bitmap _”

print #play.b2, “bitmap _”

271Chapter 8 • Working with Text Files

08 ProgABS2E ch08 2/23/15 8:44 PM Page 271

print #play.b3, “bitmap _”

print #play.c1, “bitmap _”

print #play.c2, “bitmap _”

print #play.c3, “bitmap _”

‘Clear out any game board square assignments

a1$ = “”

a2$ = “”

a3$ = “”

b1$ = “”

b2$ = “”

b3$ = “”

c1$ = “”

c2$ = “”

c3$ = “”

noMoves = 0 ‘Reset the variable used to keep track of the total number

‘of moves made per game to zero

currentPlayer$ = “X” ‘Set Player X as the current player

end sub

Terminating Gameplay

The last subroutine in the Tic Tac Toe game is ClosePlay, which should look pretty familiar to
you by now. This subroutine should be added to the end of the program file and is responsible
for getting player confirmation before terminating the execution of the game:

‘This subroutine is called when the player closes the #play window

‘and is responsible for ending the game

sub ClosePlay handle$

‘Get confirmation before terminating program execution

confirm “Are you sure you want to quit?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

close #play ‘Close the #play window

272 Programming for the Absolute Beginner, Second Edition

08 ProgABS2E ch08 2/23/15 8:44 PM Page 272

end ‘Terminate the game

end if

end sub

The Final Result
All right, that is all there is to the development of the Tic Tac Toe game. Assuming that you have
not made typing mistakes, everything should be ready for you to test. As you put your new program
through its paces, keep an eye on the overall flow of the game, ensuring that the game manages
the switching of player moves and the assignment of game board squares correctly.

Summary
In this chapter, you learned how to programmatically interact with the Windows file system. This
included accessing information about files and folders and specifying the location of files using
absolute and relative path and filenames. You also discovered how to open, close, read from, and
write to text files sequentially. Finally, you learned how to create and delete files and folders to
perform basic file and folder administration tasks.

Before moving on to Chapter 9, “Working with Sound and Graphics,” take a little extra time to
work on the Tic Tac Toe game by tackling the following list of challenges.

273Chapter 8 • Working with Text Files

1. As currently written, the game counts on both players remembering whose turn it is.
Although this is certainly not an unreasonable expectation, you might want to consider
displaying a text message somewhere on the game board that reminds the players whose
turn it is.

2. Consider making the Tic Tac Toe game a little more full featured by giving it a splash
screen and setting up a Help window that explains the rules for playing the game.

3. Consider making the game a little more user friendly by not only informing players who
has won the game but also telling them how the game was won (horizontally, vertically,
or diagonally).

4. As currently written, the Tic Tac Toe game does not terminate gameplay when there is
a winner. Modify the program to prevent this behavior, forcing players to start a new game
before allowing either player to move again.

C
ha

lle
ng

es

08 ProgABS2E ch08 2/23/15 8:44 PM Page 273

This page intentionally left blank

Working with Sound
and Graphics

9
M

any programming languages, like C++ and Visual Basic, support the devel-
opment of graphical user interfaces (GUIs) that give users a stimulating
interactive experience. In addition, these programming languages allow

programmers to take things a step further by integrating sound and graphics into
desktop applications. Just BASIC offers this same basic set of capabilities. In this chap-
ter, you will learn how to incorporate wave and MIDI sounds into your Windows
applications. You will also learn how to draw custom graphics.

Specifically, you will learn the following:

• How to work with the pen to draw lines and shapes

• How to configure pen color and size

• How to add text to your drawings

• How to play wave and MIDI files

09 ProgABS2E ch09 2/23/15 8:45 PM Page 275

276

Project Preview: The Slot Machine Game
In this chapter, you will learn how to create a new game that imitates the operation of a Las Vegas
slot machine. The player is assigned a bank account with a $20 balance, and you play the virtual
slot machine by clicking on a button labeled Spin. Figure 9.1 shows how the BASIC Slot Machine
game looks when it’s started.

Programming for the Absolute Beginner, Second Edition

Figure 9.1 You initiate gameplay by clicking on the
Spin button.
© 2016 Cengage Learning®

Figure 9.2 The player receives a payout when a match
occurs.
© 2016 Cengage Learning®

As you can see, the player’s account balance is displayed in a textbox control located at the
bottom-right corner of the window. Each time the player clicks on the Spin button, the slot
machine runs a brief animation sequence simulating the mechanical spinning of dials in the
game’s three graphicbox controls. At the end of each spin, a random selection of three fruit is
displayed, as demonstrated in Figure 9.2.

The result of the spin is then analyzed and the player’s account adjusted accordingly. A jackpot
wins the player $3. Two of a kind wins $1. A spin with no matches costs the player $5.

Figure 9.3 shows an example of how the game looks when the player gets a jackpot.

Figure 9.4 provides an example of a losing spin.

Gameplay can potentially last forever as long as the player continues to grow the balance in her
account. However, play is immediately halted if the player goes broke.

09 ProgABS2E ch09 2/23/15 8:45 PM Page 276

277Chapter 9 • Working with Sound and Graphics

Figure 9.3 Three matching fruit result in a jackpot.
© 2016 Cengage Learning®

Figure 9.4 Five dollars is deducted from the player’s
account if a spin ends with no matching fruit.
© 2016 Cengage Learning®

Integrating Graphics and Sound into Applications
In programming languages like Visual Basic and C++, access to graphics commands is provided
through the instantiation of a graphics object. (These are object-oriented programming lan-
guages.) Using methods (functions) and properties (attributes) associated with the graphics
object and other related objects, programmers can incorporate custom graphics and animation
into their applications. In the same manner, these programming languages allow programmers
to instantiate objects whose methods and properties have sound capabilities.

Just BASIC manages the display of graphics using a coordinate system that employs pixels to set
the location and size of drawn images. This system of coordinates begins at 0,0, which is located
in the upper-left corner of the graphics window or graphicbox control, as depicted in Figure 9.5.

Figure 9.5 A depiction of Just BASIC’s
graphics coordinate system.
© 2016 Cengage Learning®

09 ProgABS2E ch09 2/23/15 8:45 PM Page 277

Hint

The term pixel, which stands for picture element, is the smallest addressable area on a control
or window.

Just BASIC implements graphics support in the form of graphics commands that can be used in
conjunction with the graphics window and the graphicbox control. In addition, Just BASIC has
a number of commands specifically tailored to playing and controlling the execution of wave and
MIDI files.

Displaying Graphics Images
You have already seen numerous examples of how to use the graphicbox control to display graphic
bitmap files on Windows applications. This is accomplished by preloading images that are to be
displayed into the computer’s memory using the loadbmp command, as demonstrated here:

loadbmp “Star”, “C:\images\Star.bmp”

Here a bitmap file named Star.bmp is loaded into memory and assigned a reference of Star.

Once loaded into memory, bitmap files can be displayed using graphicbox controls, as shown
here:

graphicbox #play.Star, 100, 80, 93, 93

Here, the previously loaded bitmap file is displayed in a graphicbox control by referencing the
file’s handle and specifying the starting coordinates (100, 80) and then its size in pixels (93, 93).

You have also learned that, to make a graphics image stick after it has been displayed, you must
execute the flush command:

print #play.Star, “flush”

Understanding How Just BASIC Manages Drawings
In Just BASIC, drawing occurs in segments. A segment is a collection of drawing operations that
have been executed since the last flush command. Once flushed, a segment can be redrawn if a
graphics window or graphicbox control needs to be repainted, as is the case when a window is
minimized and later restored or when a window or control is temporarily overlaid by another
window. Segments accumulate over time. Each time the flush command is executed, a new seg-
ment is generated. The first segment generated is assigned a segment ID of 1, and the segment
ID assigned to each subsequent segment is incremented by 1.

278 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/23/15 8:45 PM Page 278

You can retrieve the segment ID of the current segment using the segment command, as shown
here:

print #handle “segment”; segmentID

Here, the segment ID of the current segment is retrieved and stored in a variable named segmentID.
Once this command has been executed, you can delete the previously drawn segments using the
delsegment command, as demonstrated here:

print #handle “delsegment”; segmentID - 1

By periodically removing unnecessary segments from computer memory, you can prevent need-
less loss of resources and help keep the computer running efficiently.

Just BASIC’s Graphics Capabilities
Just BASIC supports several types of drawing options, including these:

• Turtle Graphics. This type of graphic involves the creation of custom images drawn using
Just BASIC graphics commands. These commands move a virtualized pen around a
graphics window or graphicbox control.

• Shapes. This type of graphic involves the drawing of shapes by calling on Just BASIC’s
graphic commands and passing them command coordinates representing the shape’s
location and dimensions.

• Text. This type of graphic involves the drawing of text on a graphics window or graphicbox
control.

Turtle graphics, shapes, and text are drawn using a pen. A pen has two states: up and down. When
the pen is down, any drawing operations result in the generation of a graphic. When the pen is
up, you may still execute drawing commands, but no drawing will occur. The pen has two attrib-
utes that can be programmatically set: size and color. In addition to specifying pen size and color,
Just BASIC allows you to specify the background color displayed on the graphics window and
graphicbox control.

Drawing Graphics
To draw in a Just BASIC application, you need a surface upon which to draw. In Just BASIC,
either the graphics window or the graphicbox control provides this surface. You also need to be
familiar with the many graphics commands that Just BASIC provides.

279Chapter 9 • Working with Sound and Graphics

09 ProgABS2E ch09 2/23/15 8:45 PM Page 279

A Quick Review of Graphics Commands
Just BASIC’s collection of graphics commands is extensive. Table 9.1 is a list of commonly used
graphics commands and their purpose. Note that although most commands are applicable to
both the graphics window and the graphicbox control, some commands work only with one of
these resources.

280 Programming for the Absolute Beginner, Second Edition

Command Description

“autoresize” Sets a control to resize if its window is resized

“backcolor COLOR” Sets the background color of the window or graphicbox control

“box x y” Draws a box from the pen’s current position to position x, y

“boxfilled x y” Draws a filled-in box from the pen’s current position to position x, y

“circle r” Draws a circle using the specified radius

“circlefilled r” Draws a filled-in circle using the specified radius

“cls” Clears the graphicbox or window

“color COLOR” Sets the pen’s color

“delsegment n” Deletes the specified segment number

“delsegment segmentName” Deletes the specified segment name

“direction” Sets the current direction (north = 270, south = 90, east = 0,
west = 180)

“disable” Disables the control (graphicbox only)

“discard” Discards anything drawn in the last flush

“down” Places the pen in drawing mode

“drawbmp bmpname x y” Draws the specified bitmap file

“ellipse w h” Draws an ellipse using the specified width and height

“ellipsefilled w h” Draws a filled-in ellipse using the specified width and height

“enable” Enables the control (graphicbox only)

“fill COLOR” Fills the window or graphicbox control with the specified color

“flush” Ensures a drawing is redrawn if a window is resized or temporarily
overlaid

“flush segmentName” Flushes the window or control and assigns a segment name

“font facename pointSize” Specifies the pen’s type and size

“getbmp bmpName x y w h” Creates a bitmap copy of a portion of a graphics windows using the
specified coordinates

TA B L E 9 .1 J U S T BAS IC D R AW I N G C O M M A N D S

09 ProgABS2E ch09 2/23/15 8:45 PM Page 280

© 2016 Shoptalk Systems

Hint

Note that the double quotation marks are a required part of each command listed in Table
9.1 because graphics commands are formatted as strings.

281Chapter 9 • Working with Sound and Graphics

Command Description

“go d” Advances the pen the specified distance

“goto x y” Moves the pen to the specified coordinates

“home” Centers the pen in the graphicbox control or graphics window

“horizscrollbar on/off [min max]” Enables or disables the horizontal scrollbar

“line x1 y1 x2 y2” Draws a line between two points

“locate x y w h” Repositions the graphicbox control in its window
(graphicbox only)

“northpie w h angle 1 angle2” Draws a pie slice

“place x y” Positions the pen at the specific location

“posxy x y” Sets the pen’s position to x, y

“print” Prints the graphics window

“redraw” Redraws a previously flushed segment

“segment segmentName” Assigns a variable representing the current segment ID

“set x y” Draws a point at x, y

“setfocus” Sets focus to the control (graphicbox only)

“size s” Sets the pen size

“\text” Draws text at the current pen position

“trapclose label” (window only) Sets up the trapclose event (graphics window only)

“turn angle” Turns the pen to the specified angle

“up” Turns off the pen’s drawing mode

“vertscrollbar on/off [min max]” Enables or disables the vertical scrollbar

“when event EventHandler” Instructs the window to respond to the specified event handler

TA B L E 9 .1 J U S T BAS IC D R AW I N G C O M M A N D S (C O N T I N U E D)

09 ProgABS2E ch09 2/23/15 8:45 PM Page 281

As you can see from the list of commands in Table 9.1, Just BASIC has commands allowing you
to draw points, lines, circles, boxes (squares and rectangles), pie shapes, and so on. In addition, it
has commands that allow you to draw filled-in shapes. Other commands are used to control the
movement and availability of the pen and to set up event handlers.

Working with the Graphics Window
To draw in a graphics window, you must first open the window using the open command, as
demonstrated here:

open “Drawing Demo” for graphics as #canvas

Once the window is open, you can use the print statement to submit drawing commands to the
window, as shown here:

nomainwin

open “Drawing Demo” for graphics as #canvas

print #canvas, “backcolor red”

print #canvas, “place 110, 110”

print #canvas, “down”

print #canvas, “boxfilled 200, 200”

print #canvas, “flush”

wait

Here, five graphic commands are applied to the graphics window. The first command uses the
backcolor command to specify a color of red. The second command moves the pen to a location
of 110 pixels down and 110 pixels to the right of the upper-left corner of the graphicbox control.
Next, the down command is executed, which places the pen in a down position, readying it for
drawing. The boxfilled command is executed next, drawing a filled-in box shape that starts at
the current pen location and ends at coordinates 200, 200. The last command flushes the draw-
ing, ensuring that it sticks. Figure 9.6 shows the resulting graphic that is generated when this
example is executed.

Working with the Graphicbox Control
Working with the graphicbox control is just as easy as working with the graphics window. To do
so, you must add an instance of the control to a window and then open the window using the
open command. Once you’ve accomplished this, you can send graphics commands to the graphic-
box control using the print command, as demonstrated in the next code:

282 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/24/15 8:53 AM Page 282

nomainwin

graphicbox #main.canvas, 10, 10, 300, 300

open “Drawing Demo” for window as #main

print #main.canvas, “home”

print #main.canvas, “down”

print #main.canvas, “\Hello there!”

print #main.canvas, “flush”

wait

Here, you use the home command to move the pen to the center of the graphicbox control. Next,
the pen is put into a down position, and a text string is drawn using the \text command. With the
\text command, any text that is entered after the \ character is drawn starting at the current pen
position. Figure 9.7 shows the resulting graphic that is generated when this example is executed.

283Chapter 9 • Working with Sound and Graphics

Figure 9.6 Drawing a filled-in red square
using graphics commands and the pen.
© 2016 Cengage Learning®

Figure 9.7 Text can be drawn just as easily as a graphic.
© 2016 Cengage Learning®

09 ProgABS2E ch09 2/23/15 8:45 PM Page 283

284 Programming for the Absolute Beginner, Second Edition

Trap

Graphics commands only work with the graphics window or the graphicbox control. In addi-
tion, not all graphics commands work with both the graphics window and the graphicbox
control.

Using Different Colors
As you saw in a previous example where a red square was drawn, you can specify different colors
to be used in drawing operations. By default, Just BASIC sets the pen’s color to black and the sur-
face area of the graphics window and the graphicbox control to white. However, you can specify
any of the colors listed here when setting background and pen color attributes:

Black Darkblue Darkpink Pink

Blue Darkcyan Darkred Red

Brown Darkgray Green White

Cyan Darkgreen Lightgray Yellow

Clearing Out a Drawing
You can clear out any drawing in a graphics window or graphicbox control using the cls com-
mand, which has the following syntax:

print #handle, “cls”

Clearing out a graphics window or graphicbox control removes the drawing from the computer’s
memory and prepares the drawing area to be reused.

Setting Up Event Mouse and Keyboard Event Handlers
By setting up event handlers that respond to mouse and keyboard input, you can create applica-
tions that allow the user to provide input that can be used in drawing operations. Just BASIC sup-
ports a large number of mouse and keyboard events for which event handlers can be set up, as
shown in Figure 9.2.

By taking advantage of Just BASIC’s ability to intercept and react to different mouse and key-
board events, you can, for example, create an interactive drawing application, as demonstrated in
the next section.

09 ProgABS2E ch09 2/23/15 8:45 PM Page 284

Creating a Drawing Application
As an example of how to work with various drawing commands as well as how to set up an event
handler to process mouse input, let’s take a look at how to create a small drawing application
called BASIC Doodle. The code for this application is shown here:

nomainwin

WindowWidth = 500

WindowHeight = 500

dim colors$(15)

colors$(0) = “Red”

colors$(1) = “Blue”

colors$(2) = “Yellow”

285Chapter 9 • Working with Sound and Graphics

© 2016 Shoptalk Systems

Event Description

characterInput Executes when a key is pressed while the graphics window or graphicbox
control has focus

leftButtonDouble Executes when the left mouse button is double-clicked

leftButtonDown Executes when the left mouse button is pressed

leftButtonMove Executes when the mouse is moved while the left button is pressed

leftButtonUp Executes when the left mouse button is released

middleButtonDouble Executes when the middle mouse button is double-clicked

middleButtonDown Executes when the middle mouse button is pressed

middleButtonMove Executes when the mouse is moved while the middle button is pressed

middleButtonUp Executes when the middle mouse button is released

mouseMove Executes when the mouse is moved

rightButtonDouble Executes when the right mouse button is double-clicked

rightButtonDown Executes when the right mouse button is pressed

rightButtonMove Executes when the mouse is moved while the right button is pressed

rightButtonUp Executes when the right mouse button is released

TA B L E 9 .2 J U S T BAS IC E V E N T S

09 ProgABS2E ch09 2/23/15 8:45 PM Page 285

colors$(3) = “Brown”

colors$(4) = “Pink”

colors$(5) = “Green”

colors$(6) = “Cyan”

colors$(7) = “White”

colors$(8) = “Black”

colors$(9) = “Darkred”

colors$(10) = “Darkblue”

colors$(11) = “Darkpink”

colors$(12) = “Darkgreen”

colors$(13) = “Darkcyan”

colors$(14) = “Darkgray”

colors$(15) = “Lightgray”

dim pensize$(5)

pensize$(0) = “1”

pensize$(1) = “3”

pensize$(2) = “5”

pensize$(3) = “7”

pensize$(4) = “9”

statictext #main.statictext1, “Pick a color:”, 10, 10, 60, 12

statictext #main.statictext1, “Pick a pen size:”, 10, 270, 60, 12

combobox #main.combobox1, colors$(), SetColor, 10, 30, 75, 70

combobox #main.combobox2, pensize$(), SetPenSize, 10, 290, 75, 50

graphicbox #main.graphicbox1, 95, 10, 390, 450

button #main.button1, “Clear”, ClearArea, UL, 10, 400, 75, 30

open “BASIC Doodle” for window_nf as #main

print #main.combobox1, “select Blue”

print #main.combobox2, “select 7”

print #main.graphicbox1, “color Blue”

print #main.graphicbox1, “size 7”

print #main.graphicbox1, “down”

print #main.graphicbox1, “when leftButtonMove draw”

wait

286 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/23/15 8:45 PM Page 286

287Chapter 9 • Working with Sound and Graphics

sub draw handle$, x, y

#handle$, “set “; x; “ “; y

end sub

sub SetColor handler$

print #main.combobox1, “selection? selected$”

print #main.graphicbox1, “color “ + selected$

end sub

sub SetPenSize handler$

print #main.combobox2, “selection? selected$”

print #main.graphicbox1, “size “ + selected$

end sub

sub ClearArea handle$

#main.graphicbox1, “cls”

end sub

Here, a window has been set up that is 500 pixels wide by 500 pixels tall. The window contains
two statictext controls, which provide labels for the window’s two combobox controls. The first
combobox control is loaded with a list of colors stored in the colors$() array, and the second
combobox control is loaded with a list of values (saved as strings) from the pensize$() array.
Each of the pen size values corresponds to a different pen size. By clicking on entries stored in
these two comboboxes, the user can specify the color and pen size used in drawing operations.

The next control added to the window is a graphicbox control, which will provide the virtualized
canvas upon which the user will draw. The last control added to the window is a button control
labeled Clear that calls upon a subroutine named ClearArea when it’s clicked.

Default selections are made for both combobox controls. These color and pen specifications are
also assigned to the graphicbox control. This is accomplished using the print command to exe-
cute the color blue and size 7 graphics commands. Next, the pen is set up to draw by execut-
ing the down graphic command, and an event handler is set up to call upon a subroutine named
Draw whenever the user moves and holds down the left mouse button.

Take note of the construction of the draw subroutine. It consists of a single statement that exe-
cutes the set graphic command. The set command takes two arguments that are automatically
passed to it by the leftButtonMove event. These arguments are used to draw a point at the spec-
ified coordinates. (For example, x and y specify the location of the pointer when the left mouse
button is depressed.) If the user continues to hold down the left mouse button and move the
mouse around the graphicbox control, the draw subroutine is repeatedly executed and will draw
whatever freehand design the user wants.

09 ProgABS2E ch09 2/23/15 8:45 PM Page 287

288 Programming for the Absolute Beginner, Second Edition

Hint

The set command works with strings. It can be passed a pair of literal values, as demon-
strated here:

#handle “set 50 100”

However, when the set command is passed variable data, you just reformat the command as
shown here:

x = 50

y = 100

#handle “set “; x” “ “; y

This format of the set command ensures that a string is processed as required by the command.

The SetColor subroutine, which follows the draw subroutine, is called whenever the user clicks
on a value in the first combobox control and uses the color graphic command to assign a color
to the pen. Likewise, the SetPenSize subroutine is called whenever the user clicks on an item in
the second combobox control. This subroutine uses the size graphics command to set the pen’s
size.

The last procedure in the application is the ClearArea subroutine. It is called whenever the user
clicks on the Clear button and executes the cls graphic command. This clears out the graphicbox
control, allowing the user to begin a new drawing.

Figure 9.8 demonstrates how this application looks when running.

Figure 9.8 Using the BASIC Doodle
program to draw a funny face.
© 2016 Cengage Learning®

09 ProgABS2E ch09 2/23/15 8:45 PM Page 288

Getting Your Applications to Make Some Noise
Applications often use sound when communicating with users. For example, some applications
use sound to indicate when a long-running process has finished running or to signal when an
error has occurred. Like other programming languages, Just BASIC allows programmers to make
noise in several different ways, including these:

• Making a beep sound

• Playing wave files

• Playing MIDI files

To facilitate the playing of each of these types of sounds and sound files, Just BASIC supplies you
with access to the following commands and functions:

• beep. A command used to play the operating system’s default wave file, which usually
makes a “ding” sound.

• playwave. A command used to play, stop, and loop while playing wave audio files.

• playmidi. A command used to play MIDI music files.

• stopmidi. A command used to stop the playback of MIDI music files.

• midipos(). A function used to determine the current location of a MIDI file that is being
played.

Making Noise
The simplest way to add sound to a Just BASIC application is with the beep command, which has
the following syntax:

beep

When executed, the beep command plays the operating system’s default wave file, which, unless
you have changed it, makes a “ding” sound.

Playing Wave Files
A wave file is a digital audio file that stores uncompressed raw audio data. To play a wave file, you
need to work with the playwave command, which has the following syntax:

playwave “file” [, mode]

289Chapter 9 • Working with Sound and Graphics

09 ProgABS2E ch09 2/23/15 8:45 PM Page 289

file is a placeholder representing the name and path of the wave file to be played, and mode is
one of the following options:

• async. Continues execution without waiting for the wave file to finish playing.

• sync. Waits for the wave file to finish playing.

• loop. Repeats the playback of a wave file.

The following statements demonstrate how to use different forms of the playwave command:

playwave “ding.wav”, async ‘Continues program execution

playwave “ding.wav”, synch ‘Waits for the wave file to finish

playwave “ding.wav”, loop ‘Repeatedly plays the wave file

playwave “” ‘Stops wave file playback

Take note of the last statement shown in the preceding code, which passes an empty string to the
playwave command. This stops the playback of any wave file that might be playing currently. To
get a better idea of how to work with the playwave command, take a look at the following appli-
cation:

nomainwin

global selectedFile$

WindowWidth = 400

WindowHeight = 200

statictext #play.statictext1, “W A V E P L A Y E R”, 50, 20, 440, 30

statictext #play.statictext2, “Copyright 2015”, 250, 70, 80, 20

button #play.button1 “Open”, GetWaveFile, UL, 40, 100, 60, 30

button #play.button1 “Play”, PlayWaveFile, UL, 125, 100, 60, 30

button #play.button1 “Loop”, LoopWaveFile, UL, 210, 100, 60, 30

button #play.button1 “Stop”, StopWaveFile, UL, 295, 100, 60, 30

open “WAVE Player” for window_nf as #play

print #play.statictext1, “!font Arial 18 bold”

wait

290 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/23/15 8:45 PM Page 290

sub GetWaveFile handle$

filedialog “Open a File”, “c:\Windows\media*.wav”, selectedFile$

end sub

sub PlayWaveFile handle$

playwave selectedFile$, async

end sub

sub LoopWaveFile handle$

playwave selectedFile$, loop

end sub

sub StopWaveFile handle$

playwave “”

end sub

When executed, this application displays a window with four button controls labeled Open,
Play, Loop, and Stop. Each of these button controls has been set up to execute a subroutine. The
GetWaveFile subroutine uses the filedialog command to display a list of wave files from which the
user can select. The PlayWaveFile subroutine plays the wave file the user selects. The LoopWaveFile
subroutine repeatedly plays the selected wave file, and the StopWaveFile subroutine stops the
playing of the currently playing wave file. If no wave file is being played, clicking on the Stop button
has no effect. Figure 9.9 shows how this application looks when it’s executed.

Trick

A number of wave files are supplied as part of Windows. For example, you will find a large col-
lection of wave files on a computer running Windows 7 or Windows 8.1 in C:\Windows\Media.
You can also find any number of wave files on the Internet. Beyond all this, you can create your
own wave files using the Sound Recorder utility that Microsoft Windows supplies.

291Chapter 9 • Working with Sound and Graphics

Figure 9.9 Using the playwave
command to play wave files.
© 2016 Cengage Learning®

09 ProgABS2E ch09 2/23/15 8:45 PM Page 291

Playing MIDI Files
In addition to playing wave files, Just BASIC allows programmers to play MIDI files. MIDI (musical
instrument digital interface) is a communications protocol that enables electronic musical instru-
ments and computers to communicate. MIDI files are music files that store MIDI music. Just
BASIC gives programmers the following commands for playing MIDI files:

• playmidi. Plays the specified MIDI file.

• stopmidi. Stops the currently playing MIDI file.

• midipos(). Returns the current position of the MIDI file being played.

To see how to work with each of these commands and functions, take a look at the following
example. Here, a small program has been written that plays a specified MIDI file and then ends
once the file has finished playing:

nomainwin

playmidi “c:\Sounds\OneMoreTime.mid”, duration

timer 1000, CheckForDone

wait

sub CheckForDone

if duration = midipos() then

stopmidi

timer 0

end

end if

end sub

This example begins by using the playmidi command to play a specific MIDI file. The timer
command is then used to run a subroutine every second. This subroutine uses the midipos()
function to retrieve a value representing the current playback location in the MIDI file. This
value is then compared against the value stored in duration. These two values will become equal
once the end of the MIDI file has been reached, in which case the stopmidi command is executed
and the timer command is turned off.

292 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/23/15 8:45 PM Page 292

Hint

To use the playmidi command, you need to supply it with two pieces of information: the name
and path of the MIDI file to be played and a variable that the command will use to store the
length of the MIDI file. In the case of the previous example, this variable was named duration.

Back to the Slot Machine Game
Okay, now it is time to turn your attention back to the development of the BASIC Slot Machine
game. This game simulates a Las Vegas slot machine in which the player initiates a virtual pull of
the slot machine’s lever by clicking on the game’s Spin button. During each spin, an animated
simulation is executed that imitates the spinning of mechanical dials in the slot machine. The end
of the animation sequence is followed by the selection and display of three values, representing
the slot machine’s final result. Based on this result, the amount of money in the player’s account
is increased or decreased.

Designing the Game
The Slot Machine game relies on three global variables and a subroutine that is responsible for
generating the game’s GUI. Interaction with the player occurs when the player clicks on the Spin
button, at which time a series of additional subroutine calls are made that analyze the results of
the spin and adjust the player’s account balance accordingly.

The Slot Machine game uses a cherry, an apple, and a pear image, as depicted in Figure 9.10.
Copies of the bitmap image files are available for download on this book’s companion website
located at www.cengageptr.com/downloads.

In total, you will create the Slot Machine game in eight steps, as outlined here:

1. Create a new BASIC file and document it.

2. Define global variables and initiate gameplay.

3. Create the ManageGamePlay subroutine.

4. Create the AnimateDisplay subroutine.

5. Create the DisplayImages subroutine.

6. Create the UpdateDisplay subroutine.

293Chapter 9 • Working with Sound and Graphics

Figure 9.10 Slot machine values are represented
by images of different types of fruit.
© 2016 Cengage Learning®

09 ProgABS2E ch09 2/23/15 8:45 PM Page 293

http://www.cengageptr.com/downloads

7. Create the RandomSelection subroutine.

8. Create the ClosePlay subroutine.

Creating a Just BASIC File Script

The first step in the creation of the Slot Machine game is to create a new basic file named
SlotMachine.bas and add the following statements to it:

‘ ***

‘

‘ Script Name: SlotMachine.bas (The Slot Machine Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: February 1, 2015

‘

‘ Description: This game is a simulation of a Las Vegas-style slot

‘ machine. The objective of the game is for the player to

‘ win as much money as possible and not go broke.

‘

‘ ***

nomainwin ‘Suppress the display of the default text window

In addition to documenting the overall purpose of the application using comment statements,
the nomainwin command is executed, suppressing the display of the window.

Initializing Gameplay

The next step in the development of the Slot Machine game is to define and assign starting values
for a few global variables and to make a call to the subroutine responsible for displaying the game’s
user interface. This is accomplished by adding the following statements to the end of the program
file:

‘Assign default values to global variables

global iteration, account, gamesPlayed

iteration = 0 ‘Used to control the display of animation

account = 20 ‘Represents the amount of money in the player’s account

gamesPlayed = 0 ‘Keeps track of the total number of games played

call ManageGamePlay ‘Call the subroutine responsible for managing gameplay

wait ‘Pause the application and wait for the player’s instruction

294 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/23/15 8:45 PM Page 294

The Slot Machine game utilizes three global variables to manage the game’s animation sequence
and to track the amount of money in the player’s account and the number of games played.
Gameplay is controlled by the ManageGamePlay subroutine, which is called next. This subroutine
is responsible for displaying the window representing the game’s slot machine and for calling on
other subroutines.

Designing the Game’s User Interface

The code statements that make up the ManageGamePlay subroutine are shown next and should
be added to the end of the program file:

‘This subroutine displays the game board and controls interaction with the

‘player

sub ManageGamePlay

WindowWidth = 500 ‘Set the width of the window to 500 pixels

WindowHeight = 500 ‘Set the height of the window to 500 pixels

loadbmp “Cherry”, “C:\images\Cherry.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “Apple”, “C:\images\Apple.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “Pear”, “C:\images\Pear.bmp” ‘Load the specified bitmap

‘file into memory

‘Define the format of statictext controls displayed on the window

statictext #play.statictext1, “S L O T M A C H I N E”, 35, 20, 440, 50

statictext #play.statictext2, “Copyright 2015”, 380, 70, 80, 20

‘Add the controls used to graphically display slot machine values

graphicbox #play.pic1, 50, 100, 93, 93

graphicbox #play.pic2, 200, 100, 93, 93

graphicbox #play.pic3, 350, 100, 93, 93

‘Add a control that will be used to announce the results of each play

textbox #play.textbox1 130, 230, 240, 50

‘Add a button control to operate the slot machine

button #play.button1 “Spin”, AnimateDisplay, UL, 200, 300, 100, 30

‘Add a groupbox control at the bottom of the window

groupbox #play.groupbox1 “Stats:”, 60, 350, 380, 100

295Chapter 9 • Working with Sound and Graphics

09 ProgABS2E ch09 2/23/15 8:45 PM Page 295

‘Use statictext controls to display two labels inside the groupbox control

statictext #play.statictext3, “No of Games Played:”, 90, 372, 105, 20

statictext #play.statictext4, “Account:”, 290, 372, 50, 20

‘Add two textbox controls inside the groupbox control for displaying

‘game statistics

textbox #play.textbox2 90, 395, 100, 20

textbox #play.textbox3 290, 395, 100, 20

‘Open the window with no frame and a handle of #play

open “Slot Machine” for window_nf as #play

‘Set up the trapclose event for the window

print #play, “trapclose ClosePlay”

‘Set the font type, size, and attributes

print #play.statictext1, “!font Arial 24 bold”

print #play.textbox1, “!font Arial 18 bold”

‘Display the initial values representing the number of games played and

‘the value of the player’s account

print #play.textbox3, str$(account)

print #play.textbox2, str$(gamesPlayed)

print #play.button1, “!setfocus”; ‘Set focus to the button control

‘Pause the application and wait for the player’s instruction

wait

end sub

This subroutine begins by specifying the dimensions of the game window. Next, three bitmap
image files, containing images representing a cherry, an apple, and a pear, are preloaded into
memory using the loadbmp command. Two statictext controls are then added that display the
game’s name and copyright statement. Three graphicbox controls are added next and will be used
to represent the dials displayed on the slot machine. A textbox control is then added and will be
used to display status information at the end of each spin. Spins are initiated when the player
clicks on the button control labeled Spin, which is defined next. When clicked, this control will call
upon a subroutine named AnimateDisplay. As the name implies, the AnimateDisplay subroutine
simulates the spinning of mechanical dials that display slot machine values. Finally, a groupbox

296 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/23/15 8:45 PM Page 296

control is added to the bottom of the window, into which two statictext and two textbox controls
are added. The textbox controls will be used to display information regarding the number of
games played and the current amount of money in the player’s account.

With all its graphic controls now specified, the #play window is opened as a regular window with
the string “Slot Machine” displayed in its title bar. A series of print statements are executed next.
These statements set font type, size, and attributes for various statictext and textbox controls and
display the starting values in the two textbox controls located at the bottom of the window. The
last print statement assigns focus to the Spin button, and then the wait command is executed,
pausing the application to give the player the chance to begin playing the game.

Controlling Game Automation

The AnimateDisplay subroutine, shown here, is called whenever the player clicks on the game’s
Play button. Its purpose is to call on the DisplayImages subroutine every third of a second. When
called, the DisplayImages subroutine displays a different set of bitmap image files, thus simulat-
ing the spinning of slot machine dials:

‘This subroutine is responsible for controlling the timing involved in

‘displaying the slot machine’s animation

sub AnimateDisplay handle$

timer 333, DisplayImages ‘Call the DisplayImages subroutine every

‘.333 seconds

end sub

Animating the Slot Machine’s Spin

The code statements that make up the DisplayImages subroutine are shown next and should be
added to the end of the program file:

‘This subroutine displays a different set of bitmap image files in the

‘game’s three bmpbutton controls each time it is called.

sub DisplayImages

iteration = iteration + 1 ‘Keep track of how many times this subroutine

‘has been called

‘Display a different set of bitmap images upon each call

if iteration = 1 then call UpdateDisplay “Apple”, “Cherry”, “Pear”

if iteration = 2 then call UpdateDisplay “Cherry”, “Pear”, “Cherry”

if iteration = 3 then call UpdateDisplay “Pear”, “Apple”, “Pear”

if iteration = 4 then call UpdateDisplay “Apple”, “Pear”, “Cherry”

if iteration = 5 then call UpdateDisplay “Pear”, “Cherry”, “Apple”

297Chapter 9 • Working with Sound and Graphics

09 ProgABS2E ch09 2/23/15 8:45 PM Page 297

‘Turn the timer control off on the sixth iteration

if iteration = 6 then

timer 0 ‘Turn the timer off

iteration = 0 ‘Reset this value to zero

call RandomSelection ‘Call the subroutine that generates the slot

‘machine’s sixth spin

end if

end sub

Each time this subroutine is called upon to execute, it increments the value of a variable named
iteration by one. iteration is a global variable, thus allowing its value to be maintained across dif-
ferent executions of the subroutine. As you can see, depending on the value assigned to iteration,
the UpdateDisplay subroutine is called and passed different sets of arguments, representing dif-
ferent slot machine values. Because this subroutine is called every third of a second, the net effect
of its execution is to simulate the spinning of values in the slot machine’s three dials.

Upon the sixth execution of the subroutine, the timer is turned off, and the value of iteration
is reset to zero. Finally, the RandomSelection subroutine is called. The RandomSelection subrou-
tine is responsible for generating and displaying a random set of three slot machine values, thus
ending the spin animation sequence.

Displaying Slot Machine Graphics

The code statements for the UpdateDisplay subroutine, shown next, take three arguments and
use them along with the drawbmp command to display bitmap images representing different slot
machine values. After being drawn, the flush command is used to make the images stick, and
then the Windows ding.wav file is played using the playwave command:

‘This subroutine loads the specified bitmap files into the game’s three

‘bmpbutton controls

sub UpdateDisplay x$, y$, z$

print #play.pic1, “drawbmp “ + x$ + “ 1 1” ‘Load first image

print #play.pic2, “drawbmp “ + y$ + “ 1 1” ‘Load second image

print #play.pic3, “drawbmp “ + z$ + “ 1 1” ‘Load third image

‘Use the flush command to make sure the images stick

print #play.pic1, “flush”

print #play.pic2, “flush”

print #play.pic3, “flush”

298 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/24/15 8:55 AM Page 298

‘Let’s make a little noise at the end of each spin

playwave “ding.wav”, asynch

end sub

Hint

The ding.wav wave file is provided by default as part of Windows XP’s installation and can
be found along with a collection of other wave files in C:\Windows\Media.

Selecting the Slot Machine’s Ultimate Result

The RandomSelection subroutine, shown here, is responsible for generating the sixth and final
iteration of the slot machine’s spin animation sequence:

‘This subroutine is responsible for determining which bitmap images should

‘be displayed for the slot machine’s sixth and final spin

sub RandomSelection

RandomNumber = int(rnd(1)*3) + 1 ‘Retrieve a number between 1 and 3

‘Select the image to be displayed on the first bmpbutton control

SELECT CASE RandomNumber

CASE 1

print #play.pic1, “drawbmp Cherry 1 1” ‘Display the Cherry bitmap

firstPic = 1 ‘Set a numeric value representing the selection

CASE 2

print #play.pic1, “drawbmp Apple 1 1” ‘Display the Apple bitmap

firstPic = 2 ‘Set a numeric value representing the selection

CASE 3

print #play.pic1, “drawbmp Pear 1 1” ‘Display the Pear bitmap

firstPic = 3 ‘Set a numeric value representing the selection

END SELECT

RandomNumber = int(rnd(1)*3) + 1 ‘Retrieve a number between 1 and 3

‘Select the image to be displayed on the second bmpbutton control

SELECT CASE RandomNumber

CASE 1

299Chapter 9 • Working with Sound and Graphics

09 ProgABS2E ch09 2/23/15 8:45 PM Page 299

print #play.pic2, “drawbmp Cherry 1 1” ‘Display the Cherry bitmap

secondPic = 1 ‘Set a numeric value representing the selection

CASE 2

print #play.pic2, “drawbmp Apple 1 1” ‘Display the Apple bitmap

secondPic = 2 ‘Set a numeric value representing the selection

CASE 3

print #play.pic2, “drawbmp Pear 1 1” ‘Display the Pear bitmap

secondPic = 3 ‘Set a numeric value representing the selection

END SELECT

RandomNumber = int(rnd(1)*3) + 1 ‘Retrieve a number between 1 and 3

‘Select the image to be displayed on the third bmpbutton control

SELECT CASE RandomNumber

CASE 1

print #play.pic3, “drawbmp Cherry 1 1” ‘Display the Cherry bitmap

thirdPic = 1 ‘Set a numeric value representing the selection

CASE 2

print #play.pic3, “drawbmp Apple 1 1” ‘Display the Apple bitmap

thirdPic = 2 ‘Set a numeric value representing the selection

CASE 3

print #play.pic3, “drawbmp Pear 1 1” ‘Display the Pear bitmap

thirdPic = 3 ‘Set a numeric value representing the selection

END SELECT

‘Let’s make a little noise and display the results of the game

playwave “ding.wav”, asynch

‘Tabulate the value representing the results of the sixth spin

result = firstPic + secondPic + thirdPic

‘Look to see if three cherries or three pears were displayed

if (result = 3) or (result = 9) then

print #play.textbox1, “Jackpot!”

account = account + 3 ‘Add 3 dollars to the player’s account

end if

300 Programming for the Absolute Beginner, Second Edition

09 ProgABS2E ch09 2/23/15 8:45 PM Page 300

‘A value of 6 means either three apples were displayed or three separate

‘values were displayed

if result = 6 then

if firstPic = secondPic then ‘Look for three apples

print #play.textbox1, “Jackpot!”

account = account + 3 ‘Add 3 dollars to the player’s account

else

‘A cherry, apple, and pear were displayed

print #play.textbox1, “You lose!”

account = account - 5 ‘Subtract 5 dollars from the player’s account

end if

end if

‘A value other than 3, 6, or 9 means that two of a kind was displayed

if (result <> 3) and (result <> 6) and (result <> 9) then

print #play.textbox1, “Two of a kind!”

account = account + 1 ‘Add 1 dollar to the player’s account

end if

if account < 0 then ‘End the game if the player goes broke

notice “You have gone broke. Game Over!” ‘Tell the player first

close #play ‘Close the window

end ‘Terminate the game

end if

‘Keep track of the total number of games played

gamesPlayed = gamesPlayed + 1

‘Update the display of game statistics

print #play.textbox2, str$(gamesPlayed)

print #play.textbox3, str$(account)

end sub

As you can see, the subroutine starts off by generating a random number between 1 and 3. Next,
the select…case statement is used to set up a code block that determines the value assigned to the
slot machine’s first dial. A random value of 1 equates to a cherry. A value of 2 equates to an apple,
and a value of 3 equates to a pear. Note that a numeric value is added to the firstPic variable rep-
resenting the value assigned to the first dial. A new random number is then generated and processed
by another select…case statement to generate and assign a value to the slot machine’s second dial.

301Chapter 9 • Working with Sound and Graphics

09 ProgABS2E ch09 2/23/15 8:45 PM Page 301

302 Programming for the Absolute Beginner, Second Edition

Note that a numeric value is added to the secondPic variable representing the value assigned to
the second dial. The preceding process is repeated a third time to generate a value for the slot
machine’s third dial. This time a numeric value is added to a thirdPic variable representing the
value assigned to the third dial.

Once values have been assigned to all the dials, the playwave command is used to play the
ding.wav file, thus notifying the user that her spin has been completed. The rest of the subrou-
tine tabulates the results of the spin to determine how much to add or deduct from the player’s
account. This is accomplished by adding the value of firstPic, secondPic, and thirdPic
together to establish the total value for the spin and then using a series of conditional tests to ana-
lyze the result.

Table 9.3 lists every possible outcome that the lottery machine can generate. If you look closely
at the Total column, you will see that the only time a value of 3 or 9 is generated is when three of
a kind has been selected. In addition, the only time a value of 6 is generated is when either three
of a kind has been generated or when no matches have occurred. To determine which situation
applies when a total value of 6 is generated, all you have to do is compare the value of any two
dials and determine if they match. If they do, then a jackpot occurred. Otherwise, a set with no
matches has to have been generated.

In addition to analyzing the results of each spin, the conditional code blocks are responsible for
adding or deducting money as appropriate from the player’s account and for displaying a text
message informing the player of the result of each spin. In addition, one last if…then statement
is used to check on the amount of money left in the player’s account. If the player has run out of
money, the player is informed that she has gone broke and the game is immediately terminated.

The last few statements in the subroutine increment the value of gamesPlayed by 1 and then
update the display of the statistics being tracked by the game (for example, the total number of
games played and the value of the player’s account).

Terminating Gameplay

The final subroutine in the Slot Machine game is ClosePlay, which is responsible for getting
player confirmation before terminating the execution of the game:

‘This subroutine is called when the player closes the #play window

‘and is responsible for ending the game

sub ClosePlay handle$

‘Get confirmation before terminating program execution

confirm “Are you sure you want to quit?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

09 ProgABS2E ch09 2/23/15 8:45 PM Page 302

close #play ‘Close the #play window

end ‘Terminate the game

end if

end sub

303Chapter 9 • Working with Sound and Graphics

First Value Second Value Third Value Total Results Transaction

1 1 1 3 Jackpot + 3 dollars

2 2 2 6 Jackpot + 3 dollars

3 3 3 9 Jackpot + 3 dollars

1 1 2 4 Two of a kind + 1 dollar

1 1 3 5 Two of a kind + 1 dollar

2 2 1 5 Two of a kind + 1 dollar

2 2 3 7 Two of a kind + 1 dollar

3 3 1 7 Two of a kind + 1 dollar

3 3 2 8 Two of a kind + 1 dollar

1 2 1 4 Two of a kind + 1 dollar

1 3 1 5 Two of a kind + 1 dollar

2 1 2 5 Two of a kind + 1 dollar

2 3 2 7 Two of a kind + 1 dollar

3 1 3 7 Two of a kind + 1 dollar

3 2 3 8 Two of a kind + 1 dollar

1 2 3 6 No match – 5 dollars

1 3 2 6 No match – 5 dollars

2 3 1 6 No match – 5 dollars

2 1 3 6 No match – 5 dollars

3 1 2 6 No match – 5 dollars

3 2 1 6 No match – 5 dollars

TA B L E 9 .3 S L O T M A C H I N E VA L U E S A N D R E S U LT S

© 2016 Shoptalk Systems

09 ProgABS2E ch09 2/23/15 8:45 PM Page 303

The Final Result
That’s everything! Assuming that you followed along carefully and did not leave anything out or
make typos along the way, your version of the BASIC Slot Machine game should be ready to go.
As with previous games, you’ll be well served to spend a little time playing the game yourself
before sharing it with others. As you play, keep an eye on the game’s statistics, and make sure that
they are being correctly tabulated. In addition, make sure that the game is consistently analyzing
the results of each spin.

Summary
In this chapter, you discovered how to spruce up your Windows applications by incorporating
sound and graphics. This included learning how to play wave and MIDI files and learning how
to work with Just BASIC’s pen so you could draw lines and shapes. Using the information pro-
vided, you saw how to create a wave file player and a small drawing application. In developing
the drawing program, you demonstrated your ability to configure pen size and color and to control
pen availability by moving it up and down. You also learned how to add drawn text to your graphics.

Before moving on to Chapter 10, “Arcade-Style Computer Game Development,” consider setting
aside a little extra time to improve the BASIC Slot Machine game by tackling the following list of
challenges.

304 Programming for the Absolute Beginner, Second Edition

1. To liven things up a bit, consider playing a MIDI file in the background while the appli-
cation is running to help set the right mood for the game. If you do not have a MIDI file
that seems to fit, you should be able to find something on the web to play with.

2. You might want to further spice things up by giving the game a splash screen. Given
that not everyone may be familiar with the operation of slot machines, it might also be
a good idea to add a Help window to the game.

3. Consider expanding on the amount of information presented to the player at the end of
each spin. For example, you might include a brief explanation of the amount of money
that was just added or deducted from the player’s account.

4. You might also want to add programming logic to the game that differentiates types of
jackpots, paying out different sums for three cherries versus three apples or three pears.

C
ha

lle
ng

es

09 ProgABS2E ch09 2/23/15 8:45 PM Page 304

Arcade-Style Computer
Game Development

10
S

o far you have learned how to work with the Just BASIC development envi-
ronment and been introduced to the fundamentals of application development.
In this chapter, the focus changes to the development of good old fashioned

arcade-style games. As a result, you will learn a number of new development tech-
niques. Everything you will learn will then be tied together through the development
of this chapter’s game project: the Bricks game.

Specifically, you will learn the following:

• Key features found in most computer games

• How to manage sprites in computer games

• How to manage game state and control gameplay with loops

• How to manage event synchronization and game pace

• The fundamentals of capturing and processing player input

10 ProgABS2E ch10 2/23/15 8:45 PM Page 305

306

Project Preview: The Bricks Game
In the second half of this chapter, you will learn how to create the Bricks game. This game is a
close cousin of the classic Atari Breakout game developed back in the 1970s. In this arcade game,
the player is challenged to use a paddle and a bouncing ball to clear the screen of bricks while
preventing the ball from dropping off the bottom of the play area. Figure 10.1 provides a first
look at the Bricks game.

Programming for the Absolute Beginner, Second Edition

Figure 10.1 The Bricks
game when it’s started.
© 2016 Cengage Learning®

Figure 10.2 An example of one of
the Bricks game’s dialog windows.
© 2016 Cengage Learning®

As you can see, in addition to the ball and paddle, the Bricks game consists of thirty colored bricks
(three rows of ten). In addition to keeping the ball in play by bouncing it around the screen, the
player is challenged to score as many points as possible by knocking out the bricks. In addition to
the primary gaming window, the Bricks game consists of a number of dialog windows, as demon-
strated in Figure 10.2, which are used to display game information and collect player input.

10 ProgABS2E ch10 2/23/15 8:45 PM Page 306

Figure 10.3 provides another look at the Bricks game as it is being played. As you can see, the
player has cleared out close to half the bricks from the screen. Once all thirty bricks have been
removed, a new set of bricks is redrawn on the screen, allowing the player to continue to rack up
more points. Gameplay ends when the player loses all three of his assigned lives.

Key Features Found in Computer Arcade Games
Arcade-style games are fast-paced action-oriented computer games that challenge players to com-
pete against each other or a computer opponent. These games typically require good eye-hand
coordination. They incorporate and combine many different facets of computer programming,
including complex programming logic and the integration of graphics and sounds.

At this point, you should have a good understanding of how to display text, draw and position
sprites, and integrate sound effects into your Just BASIC applications. These are essential ele-
ments of computer game development. However, before you’re ready to begin creating your own
computer games, you need to learn a few more things, including these:

• Working with sprites using new commands

• Managing game state

• Controlling gameplay with loops

• Controlling the movement of sprites

307Chapter 10 • Arcade-Style Computer Game Development

Figure 10.3 An example
of the Bricks game in action.
© 2016 Cengage Learning®

10 ProgABS2E ch10 2/23/15 8:46 PM Page 307

• Detecting collisions between sprites

• Managing event synchronization

• Capturing user input

Each of these topics is explored in this chapter. In addition, many of them are demonstrated in
the development of the Bricks game.

Creating and Managing Sprites
As you learned in Chapter 3, “Creating Graphical User Interfaces,” Just BASIC includes a built-in
sprite engine that facilitates the management of sprites in Windows applications. Sprites are two-
dimensional graphics objects that can be displayed and managed individually. Just BASIC has
two graphics environments that work with its sprite engine to support the use of sprites: the
graphics window and the graphicbox control.

Sprites are used to represent things like spaceships, tanks, and missiles in computer games.
Gameplay involves interaction with and control over game sprites. For example, in a tank versus
tank shoot-’em-up game, each tank would graphically be represented by a sprite. Bullets that
tanks fire at each other are sprites as well, as are other game objects that the tanks may run into
or be able to run over and destroy. Sprites can be programmatically moved around the screen
under either player or computer control.

Displaying Bitmap Images

In Just BASIC, sprites are generated from bitmap or BMP files. A bitmap file is a collection of bits
that represents a graphics image. You can add bitmaps to your Just BASIC applications by loading
them from external graphics files into memory using the loadbmp command, which has the fol-
lowing syntax:

loadbmp “BitmapFileName”, “PathFileName”

Here, BitmapFileName represents the name of the bitmap file to be loaded into memory. The fol-
lowing example demonstrates how to use this command to load and display a bitmap image
named BlueTank.bmp that is stored in a C:\images\ directory on the local computer:

nomainwin

loadbmp “tank”, “C:\images\BlueTank.bmp”

open “Bitmap Demo” for graphics as #main

print #main, “drawbmp tank 1 1”

wait

unloadbmp(“tank”)

308 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 308

Once loaded into memory by the loadbmp command, the drawbmp command is used to display
the bitmap in the upper-left corner of the graphics window. This command has the following
syntax:

print #handle, “drawbmp bmpname x y”

Here, bmpname represents the name of the bitmap file image to be displayed (drawn) at the spec-
ified x and y coordinates. Figure 10.4 shows the output generated when the previous example is
executed.

Hint

Note the use of the unloadbmp command in the previous example. This command removed the
specified bitmap file from computer memory, freeing memory resources. It is a good program-
ming practice to free up resources in this manner. This command has the following syntax:

UNLOADBMP “name”

Here, name represents the name assigned to the bitmap image.

Creating New Bitmap Images from Existing Ones

Another way of working with bitmap files is to create them yourself from images already dis-
played in the graphics windows or graphicbox control. This is accomplished using the getbmp
command, which has the following syntax:

print #handle, “getbmp filename x y w h”

309Chapter 10 • Arcade-Style Computer Game Development

Figure 10.4 Using the loadbmp and drawbmp
commands to load and display a bitmap image.
© 2016 Cengage Learning®

10 ProgABS2E ch10 2/23/15 8:46 PM Page 309

Here, filename represents the name of the bitmap file to be loaded into memory. x and y repre-
sent the coordinate location where the bitmap is to be placed, and w and h represent the width
and height (in pixels) that the bitmap is to be drawn. As an example, consider the following state-
ment, which loads a bitmap image and displays it in the upper-left corner of the graphics win-
dow of the graphics control and then uses the getbmp command to make a copy of the bitmap.
Each copy is drawn on the graphics window at staggered intervals, creating a row of four identi-
cal images, as demonstrated in Figure 10.5:

nomainwin

loadbmp “brick1”, “C:\images\brick.bmp”

open “Bitmap Demo” for graphics as #main

print #main, “drawbmp brick1 20 40”

print #main, “getbmp brick2 20 40 40 20”

print #main, “drawbmp brick2 80 40”

print #main, “getbmp brick3 20 40 40 20”

print #main, “drawbmp brick3 140 40”

print #main, “getbmp brick4 20 40 40 20”

print #main, “drawbmp brick4 200 40”

wait

unloadbmp(“brick1”)

unloadbmp(“brick2”)

unloadbmp(“brick3”)

unloadbmp(“brick4”)

310 Programming for the Absolute Beginner, Second Edition

Figure 10.5 Using the getbmp command to
generate new bitmap images in computer memory.
© 2016 Cengage Learning®

10 ProgABS2E ch10 2/23/15 8:46 PM Page 310

Creating a Sprite

Sprites, which are key elements in arcade games, are generated from bitmaps. Just BASIC offers a
large number of commands for managing and controlling sprites. These commands are listed here:

• addsprite. Generates a sprite based on a specified bitmap.

• background. Generates a background for a graphics window or graphicbox control.

• cyclesprite. Cycles a sprite through its image list. Refer to Just BASIC Help for additional
information.

• drawsprite. Displays all visible sprites on a graphics windows or graphicbox control.

• removesprite. Deletes a specified sprite.

• spritecollides. Generates a list of sprites with which a specified sprite has collided.

• spriteimage. Displays one of a list of images stored in a sprite image list. Refer to Just
BASIC Help for additional information.

• spritemovexy. Moves a sprite a specified number of pixels along the x and y coordinates.

• spriteorient. Orientates a sprite in one of four directions (normal, flip, mirror, or rotate 180).

• spritescale. Scales the displayed size of a sprite based on a specified percentage.

• spritevisible. Controls the visibility or invisibility of a sprite.

• spritexy. Moves a sprite to the specified coordinates.

• spritexy?. Retrieves the current x and y coordinates of the specified sprite.

You will learn how to work with many of these commands in this chapter. For those that are not
covered, you can learn more about them using Just BASIC Help. You will want to review the syntax
requirements for each of the commands in Just BASIC Help. The following example demonstrates
how to add a sprite to an application using the addsprite, spritexy, and drawsprites commands:

nomainwin

open “Create Sprite Demo” for graphics as #main

print #main, “down”

print #main, “place 1 1; backColor darkgreen; boxfilled 42 84”

print #main, “getbmp ball 1 1 42 84”

print #main, “addsprite gameBall ball”

print #main, “spritexy gameBall 100 100”

print #main, “drawsprites”

wait

unloadbmp(“ball”)

311Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 311

In this example, a bitmap file is drawn from scratch using Just BASIC graphics commands. These
commands use the down and place drawing commands (covered in Chapter 9, “Working with
Sound and Graphics”) to draw a dark green box on the graphics window. The getbmp command
is then used to generate a bitmap image in memory, consisting of a copy of the image that was
previously drawn. The addsprite command is then used to generate a sprite named gameBall,
which is a copy of the ball bitmap. The spritexy command places the sprite on the graphics
window at coordinates 100, 100. Finally, the drawsprites command makes the sprite visible. Fig-
ure 10.6 shows the output that is generated when this example is executed.

Using Sprites Within a Graphicbox Control

As the following example demonstrates, sprites are also supported by the graphicbox control.
This allows you to use sprites in applications whose window does not have to be completely ded-
icated to graphics support. In other words, you can take a regular window, add any controls you
want to it, and then work with sprites on a portion of that window where a graphicbox control
has been placed:

nomainwin

WindowWidth = 305

WindowHeight = 330

graphicbox #main.draw, 10, 10, 280, 280

open “Graphic Demo” for window_nf as #main

print #main.draw, “down”

print #main.draw, “place 1 1; backColor darkgreen; boxfilled 42 84”

print #main.draw, “getbmp ball 1 1 42 84”

312 Programming for the Absolute Beginner, Second Edition

Figure 10.6 An example of a sprite
displayed on a graphics window.
© 2016 Cengage Learning®

10 ProgABS2E ch10 2/23/15 8:46 PM Page 312

print #main.draw, “addsprite gameBall ball”

print #main.draw, “spritexy gameBall 100 100”

print #main.draw, “drawsprites”

wait

unloadbmp(“tank”)

In this example, a window with no frame is opened, and a graphicbox control is placed on it. A
sprite is then created and displayed within the graphicbox control.

Providing a Background

In addition to drawing images and adding sprites to graphics windows and graphicbox controls,
you can spice up your games by adding colorful and creative backgrounds. One way of doing this
is to take a suitable bitmap graphics file and use it to draw a background, as demonstrated here:

nomainwin

loadbmp “tank”, “C:\images\BlueTank.bmp”

open “Bitmap Demo” for graphics as #main

print #main, “background tank”

print #main, “drawsprites”

wait

unloadbmp(“tank”)

Here, a bitmap image named tank is loaded into memory using the loadbmp command to access
a bitmap file located in C:\images\BlueTank.bmp, and then a graphics windows is opened. Next,
the background command uses the tank bitmap as the background for the application window.

Another way of spicing up a graphics window or graphicbox control background is to paint the
background a certain color, as demonstrated in the following example:

nomainwin

graphicbox #main.draw, 10, 10, 295, 310

open “Bitmap Demo” for window_nf as #main

313Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 313

314 Programming for the Absolute Beginner, Second Edition

print #main.draw, “down”

print #main.draw, “color 255 255 204”

print #main.draw, “line 0 0 1 1”

print #main.draw, “getbmp windowBackground 0 0 1 1”

print #main.draw, “background windowBackground”

print #main.draw, “drawsprites”

wait

Here, a graphicbox control has been added to the application window. Next, a pixel-sized line is
drawn. The color of the line is set using the color command. Lastly, the getbmp command is used
to generate a bitmap image of the line, and the background command is used to draw that image
as the graphicbox control’s background, stretching it as necessary to fill the control.

Managing Game State
Computer games typically have different states. They often start by displaying a welcome screen
with instructions or a series of menu options. Games may transition between states when play-
ers click on a menu item, keyboard key, or sprite. Many computer games also support a paused
state, which allows players to temporarily halt gameplay and then resume play when ready. These
are just a few examples of the different types of states that computer games often support.

The following example demonstrates how you can implement and control game state within a
Just BASIC gaming application:

nomainwin

MENU #main, “File”, “New Game”, ResetGame, “Exit”, EndGame ‘Create File menu

MENU #main, “Help”, “Help”, GameHelp, “About”, AboutGame ‘Create Help menu

graphicbox #main.draw, 10, 10, 762, 450

button #main.startButton, “&Launch Ball”, StartGameLoop, UL, 672, 470, 100, 25

open “Bricks” for window_nf as #main

print #main, “trapclose ExitGame”

print #main.draw, “when characterInput ManagePaddleMovement”

‘Add call to subroutines that further initialize the game

wait

10 ProgABS2E ch10 2/23/15 8:46 PM Page 314

In this example, the opening statements of a small Just BASIC game are displayed. This particu-
lar game begins by drawing the game board and then entering into a paused state. Gameplay is
begun when the player clicks on a button control and pauses at the end of each round of play.
Only a portion of the game’s source code is shown in this example, but it is sufficient to demon-
strate the management and control of game state.

This example begins by defining a series of menus for the application window. Menus, when
clicked during gameplay, pause the game and thus change game state. Next, a graphicbox control
and a button control are added to the application. Gameplay occurs as sprites, added later in the
program, interact with one another. Gameplay does not begin when the application is started.
Instead, the game board is displayed. Gameplay itself is initiated by clicking on the button con-
trol labeled Launch Ball. Clicking on the button control therefore changes game state by setting
gameplay into motion, which it accomplishes when the button control executes the StartGameLoop
subroutine. As already stated, the player can pause game state at any time by clicking on a menu
command. In addition, game state can be changed by instructing the game to terminate. This is
achieved by executing the trapclose command, which in turn executes a subroutine named
ExitGame. The trapclose command was introduced and demonstrated in Chapter 9.

You can also programmatically control game state during gameplay. For example, you can pause
gameplay between different rounds of play in an arcade game. You can also terminate it if a player
is killed. For example, in a game in which the player is assigned a certain number of lives, you can
track the lives using a variable; when the value of the variable becomes zero, you can terminate
gameplay.

Finally, you can restore a terminated game’s state back to initial start-up mode by giving the player
a way of starting a new game. You can do this via a menu command or an interface control. You
will see examples of all these game state management techniques employed later in this chapter’s
game project: the Bricks game.

Controlling Gameplay with Loops
Computer games are interactive computer applications. Games must be able to collect and process
player input. For example, in a tank versus tank game that pits one player against another, the game
has to be able to collect and process a constant flow of player input directing where players want
to move their tanks. The game must also capture player input that tells it when each player wants to
shoot. The game must continually integrate player input to keep the game updated and display
any changes on the graphics windows or graphicbox control. The key to making everything work
is the game’s main game loop.

315Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 315

The following example shows the statements that make up a small game loop:

do until noOfBricks = 30

call MoveTheBall

call CollisionCheck

call AnalyzeAndUpdateBallLocation

call RegulateGameSpeed

loop

In this example, a do…until loop is used to control gameplay. It has been configured to execute
until the value assigned to a variable named noOfBricks is set to 30. Within the game loop, a
series of calls is made to subroutines that perform repetitive procedure calls, which in this case
control game ball movement, check for sprite collisions, change ball direction in the event of a
collision, and manage a process that controls the rate of gameplay.

As this example demonstrates, game loops are typically set up to run until a specific condition
occurs, terminating only when a player wins or loses or when the player has signaled a decision
to stop gameplay. You will see another example of how to set up a game loop when you work on
the Bricks game.

Moving Things Around
As has been stated, arcade-style computer games developed using Just BASIC involve the move-
ment and interaction of sprites on the graphics window or a graphicbox control. For example, in
an arcade game like Pong, three sprites are used. Two sprites represent player paddles, and a third
sprite represents the game ball. Once the game loop starts gameplay, the ball begins moving. In
addition, it must be made to bounce around in different directions as it collides with player pad-
dles and the edges of the game field.

The following example demonstrates how to programmatically move a sprite from the left side
to the right side of a graphicbox control:

nomainwin

WindowWidth = 305

WindowHeight = 330

graphicbox #main.draw, 10, 10, 250, 250

open “Graphic Demo” for graphics as #main

316 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 316

317Chapter 10 • Arcade-Style Computer Game Development

print #main.draw, “down”

print #main.draw, “place 1 1; backColor darkgreen; boxfilled 42 84”

print #main.draw, “getbmp ball 1 1 42 84”

print #main.draw, “addsprite gameBall ball”

print #main.draw, “drawsprites”

for i = 1 to 205

call RegulateTiming

print #main.draw, “spritexy gameBall “; i; “ “; 100

print #main.draw, “drawsprites”

next i

wait

unloadbmp(“ball”)

sub RegulateTiming

scan

timeStamp = time$(“milliseconds”)

do

loop until time$(“milliseconds”) > timeStamp + 20

end sub

In this example, a small window is created that has a single control: a graphicbox that takes up
most of the space in the window. Then a dark green bitmap image is created and used as the basis
for creating a sprite. A for…next loop is then used to place and move the sprite from one side of
the graphicbox control to the other. As you can see, the sprite is moved by repeatedly redrawing
it using the spritexy and the drawsprite commands. Each time the spritexy command is exe-
cuted, the value assigned to its x coordinate is increased by a value of 1, thus moving it in a
straight line across the graphicbox control.

Note the call to the RegulateTiming subroutine that occurs at the beginning of each iteration of
the loop. The addition of this subroutine is required to slow down or throttle the speed at which
the application executes. Without this subroutine, Just BASIC executes the for…next loop as fast
as possible—so fast that you cannot see the animated movement of the sprite. Instead, the sprite
moves so quickly to the right side of the graphicbox control that it appears to have started there
and not been moved. Details regarding this subroutine are provided in the next section.

10 ProgABS2E ch10 2/23/15 8:46 PM Page 317

318 Programming for the Absolute Beginner, Second Edition

Managing Event Synchronization Controlling Animation Speed
As just mentioned, by default Just BASIC executes your applications as fast as your computer is
capable of processing them. In the case of many applications, this is just what you want. But when
it comes to games, sometimes you need to slow things down and keep events going at a steady
pace. You can use the following subroutine as the basis for accomplishing this task:

sub RegulateTiming

scan

timeStamp = time$(“milliseconds”)

do

loop until time$(“milliseconds”) > timeStamp + 20

end sub

As you can see, this subroutine is not very large or complex. It begins by executing the scan com-
mand, which instructs Just BASIC to pause for an instance to collect and process any keyboard
or mouse input that the user may have provided. Then the current time, in milliseconds, is
retrieved using a special built-in Just BASIC function named time$. Next, a do…until loop is set
up that loops until the current time, stored in a variable named timeStamp, becomes greater than
the timeStamp plus 20 (that is, until 20 milliseconds have passed).

Hint

Although it’s not part of the synchronization and control process that this section discusses,
execution of the scan command is an essential part of any Just BASIC arcade-style game,
and it is in a procedure like this where the scan command belongs.

The end result is that when this subroutine is executed, it slows down (or regulates) game speed,
ensuring that 20 milliseconds pass before program code resumes execution. The end result is that
the game executes at a consistent speed. It does not go faster than players can keep up with, regard-
less of the computer where it is being executed.

Detecting Collisions
In addition to managing game state, setting up a game loop, controlling game speed, and syn-
chronizing events, another required programming technique required by many computer arcade
games is collision detection. A collision is an event that occurs whenever two sprites run into one
another. For example, a collision occurs in a tank versus tank game whenever one tank rams
another or when one tank shoots and hits another tank.

10 ProgABS2E ch10 2/23/15 8:46 PM Page 318

The following example demonstrates how to incorporate collision detection in a Just BASIC
game:

for i = 1 to 205

call RegulateTiming

print #main.draw, “spritexy gameBall2 200 100”

print #main.draw, “spritexy gameBall “; i; “ “; 100

print #main.draw, “drawsprites”

call CollisionCheck

if demoOver = 0 then

exit for

end if

next i

playwave “Miss.wav”, asynch

wait

sub CollisionCheck

print #main.draw, “spritecollides gameBall collision$”

if collision$ <> “” then

demoOver = 0

end if

end sub

Hint

Sound effects are another critical component of many computer games, as demonstrated
in this example. You learned how to add sound effects to your Just BASIC application in
Chapter 9.

319Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 319

In this example, the loop that was previously used to move a sprite from one side of a graphicbox
control to the other has been modified so that, in addition to calling on the RegulateTiming
subroutine and drawing and moving the sprite, it now includes a call to a new subroutine called
CollisionCheck. In addition, a second sprite has been created and placed in the graphicbox control.
As before, each time the loop iterates, the gameBall sprite is moved. Also, the CollisionCheck
subroutine is called.

Each time the CollisionCheck subroutine is called, it executes the spritecollides command,
which populates a list called collision$ with a list of any sprites that the gameBall sprite has col-
lided with. A check is then made to see if the collision$ list contains any entries (that is, it is not
empty), which if true indicates that the sprite has collided with another sprite. If a collision has
occurred, the value assigned to demoOver is set to 0. Once the CollisionCheck subroutine has
finished executing, the value of demoOver is examined and, if set to 0, the example terminates.

Because the second sprite was placed directly in the path of the gameBall sprite, the end result is
that the gameBall sprite eventually collides with it and then immediately halts its movement.

Hint

In the case of a computer arcade game like Pong, collisions occur all the time, such as when the
game ball collides with the player’s paddle. When a collision occurs in a game like Pong,
the direction at which the game ball is traveling is altered upon impact. For example, Figure 10.7
shows three possible directions that a ball might be deflected in a Pong game after colliding
with the left player’s paddle. Changing the game ball’s direction in this manner involves
reversing the values of the ball’s x and y coordinates. For example, changing the value of the
x coordinate from 3 to –3 or from –3 to 3 reverses its horizontal direction. Likewise, changing
the value of the y coordinate from 3 to –3 or from –3 to 3 reverses its vertical direction. You
will see a detailed example of how this is done when you complete the Bricks game.

320 Programming for the Absolute Beginner, Second Edition

Figure 10.7 Examples of different types of directions
that an object’s directions might be set to after a collision.
© 2016 Cengage Learning®

10 ProgABS2E ch10 2/23/15 8:46 PM Page 320

Collecting Player Input
To play a game, players must be able to provide it with input. The type of input required will vary,
of course, depending on the type of game. For example, while keyboard input is typically best
used when playing a word guessing game, a strategy game might be better designed to incorporate
mouse input, allowing players to select and control objects, and a computer arcade game may
need to work with either the keyboard or a mouse.

In Chapter 9, you learned how to set up mouse and keyboard event handlers. In addition,
through the creation of that chapter’s drawing application, you received hands-on experience
setting up a mouse event handler and using it to collect and process mouse input. In a similar
fashion, the next example demonstrates how to set up a keyboard event handler and use it to col-
lect and process keyboard input. To be specific, the example is designed to capture up, down,
right, and left key events, which are keyboard keys commonly used to control computer games:

nomainwin

WindowWidth = 305

WindowHeight = 330

graphicbox #main.draw, 10, 10, 250, 250

open “Graphic Demo” for graphics as #main

print #main.draw, “when characterInput BallControl”

print #main.draw, “down”

print #main.draw, “place 1 1; backColor darkgreen; boxfilled 42 84”

print #main.draw, “getbmp ball 1 1 42 84”

print #main.draw, “addsprite gameBall ball”

print #main.draw, “drawsprites”

print #main.draw, “spritexy gameBall 100 100”

do

call RegulateTiming

print #main.draw, “drawsprites”

loop until i = 1

321Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 321

wait

unloadbmp(“ball”)

sub RegulateTiming

scan

timeStamp = time$(“milliseconds”)

do

loop until time$(“milliseconds”) > timeStamp + 50

end sub

sub BallControl handle$, Inkey$

userInput$ = right$(left$(Inkey$,2),1)

select case userInput$

case “%”

playwave “Miss.wav”, asynch

print #main.draw, “spritexy? gameBall x y”

print #main.draw, “spritexy gameBall “; x - 10; “ “; y;

case “‘“

playwave “Miss.wav”, asynch

print #main.draw, “spritexy? gameBall x y”

print #main.draw, “spritexy gameBall “; x + 10; “ “; y;

end select

end sub

Hint

Mouse and keyboard events, like graphics commands, are only valid when you use them with-
in the confines of a graphics window or graphicbox control.

In this example, an event handler has been created to call on a subroutine named BallControl
whenever characterInput (for example, keyboard) input is captured. The BallControl subroutine
has been set up to process two arguments: handle$ and Inkey$. The handle$ argument represents

322 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 322

the handle of the graphics window or graphicbox control, and the Inkey$ argument specifies the
character input that has been captured.

When pressed, most keyboard keys result in a single character being passed when a characterInput
occurs. For example, pressing the 1 key passes a character of 1, and pressing the h key passes the
h character. However, other key events pass multiple characters when their associated keys are
pressed. The up, down, left, and right arrow keys pass two characters when pressed: a blank space
followed by a character that indicates the arrow key that was pressed. When the up arrow key is
pressed, a blank space and the & key are captured. The down arrow key generates a blank space
followed by the (character. The left arrow key generates a blank space followed by the % charac-
ter, and the right arrow key generates a blank space and the ‘ character.

Hint

In most keyboard-controlled computer games, the space bar and the up, down, left, and right
arrow keys are the most common. However, some games, like first-person shooters, use w, a,
s, and d keys instead of the arrow keys to allow the player to use his right hand to work with
and control the mouse.

Therefore, the first thing the BallControl subroutine does is use the right$ and left$ functions
to strip away the first (blank) character. Then a select…case statement is used to determine if
either the left or the right arrow key has been pressed. If a match occurs, a wave file is played, and
the location of the gameBall sprite is changed. Pressing the left arrow key therefore moves the
sprite 10 pixels to the left, and pressing the right arrow key moves the sprite 10 pixels to the right.
Using logic similar to this in this chapter’s Bricks game, you will develop the programming logic
required to control the game’s paddle control.

Hint

In addition to keyboard input, Just BASIC supports the ability to capture and respond to
both mouse and joystick input. For mouse input, Just BASIC can respond to both left and right
mouse button clicks and retrieve mouse x and y coordinates. To learn more about Just BASIC’s
support for mouse input, access Just BASIC’s “Reading Mouse Events and Keystrokes” Help
file. Just BASIC can support up to two joysticks at a time, retrieving coordinate data as well
as button input. To learn more about Just BASIC’s support for joysticks, access Just BASIC’s
“READJOYSTICK” Help file.

323Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 323

Back to the Bricks Game
Okay, now that you have learned the fundamentals of arcade-style game development, it is time
to put your newfound knowledge to the test through the development of the Bricks game. As you
work on the different parts of this program, you will gain valuable game development experience
managing sprites, controlling game state, setting up a game loop, and detecting and responding
to collisions while also managing event synchronization, user input collection, and ultimately
game termination.

Designing the Game
The Bricks game is considerably more complicated than the other game programs you have
worked on so far in this book. The structure chart shown in Figure 10.8 has been provided to
help you understand the organization of the programming logic that makes up the Bricks game.

324 Programming for the Absolute Beginner, Second Edition

Figure 10.8 A structure chart outlining the relationship of the subroutines that make up the Bricks game.
© 2016 Cengage Learning®

10 ProgABS2E ch10 2/23/15 8:46 PM Page 324

Hint

A structure chart is a visual depiction of the organization of the computer application.
Structure charts visually outline the relationship of the procedures that make up computer
applications. In a structure chart, each procedure is represented by a box that shows the pro-
cedure’s name and its relationship to other procedures.

In total, the Bricks game consists of 22 subroutines, several of which are called upon from dif-
ferent locations within the program file to execute. The reused subroutines are identified in Figure
10.8 by a dotted line box. In addition, the application’s game loop is called out in the diagram,
being surrounded by four arrows, highlighting the critical nature of its execution in controlling
gameplay. Finally, four of the boxes in the structure chart have been filled in with light gray, which
is intended to identify them as subroutines that are called on for execution exclusively through
an application’s menu commands.

The application’s opening statements and its subroutines are covered one at a time in the sections
that follow, where they are grouped based on their relationship to one another and common
functionality.

Creating a Just BASIC Application File
As with previous chapter projects, begin the creation of the Bricks game by setting up a new
BASIC file and adding the code statements that document its purpose, as shown here:

‘ ***

‘

‘ Script Name: Bricks

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: January 25, 2015

‘

‘ Description: This is a breakout style computer game. The goal of the game

‘ is to keep the ball in play as long as possible and to knock

‘ out as many bricks as possible by using the game paddle to

‘ deflect the bouncing ball and keep it from dropping out of

‘ the play area. The player is given three game balls and an

‘ unlimited number of bricks. Gameplay ends when the player

‘ runs out of balls.

‘

‘ ***

325Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 325

Next, add the following statement to the code file:

nomainwin ‘Suppress the display of the default text window

call InitializeVariables ‘Call subroutine that defines key game variables

call ManageGamePlay ‘Call the subroutine responsible for managing gameplay

wait ‘Pause the application and wait for the player’s instruction

These statements execute the nomainwin command, suppressing the display of the application’s
default mainwin text window, and then execute two subroutines that initialize application vari-
ables and establish initial game state.

Initializing Game State
The first two subroutines of the Bricks application are responsible for initializing a variable’s val-
ues and establishing initial game state. Instructions for developing these two subroutines are pro-
vided in the sections that follow.

Define and Assign Initial Values to Global Variables

The InitializeVariables subroutine, shown here, is responsible for defining global variables
used throughout the application and for assigning initial values to most of the variables:

‘This subroutine defines and assigns initial values for key variables

sub InitializeVariables

‘Define global variables

global ballX ‘Location of the game ball’s x-axis current coordinate

global ballY ‘Location of the game ball’s y-axis current coordinate

global newX ‘Location of the game ball’s x-axis next coordinate

global newY ‘Location of the game ball’s y-axis next coordinate

global playerScore ‘Keep track of the player’s score

global noOfBricks ‘Count bricks for level change

global noOfLives ‘Keep count of the number of player lives

global ballSpeed ‘Change speed to make call go faster

global ballStartX ‘Location of the game ball’s starting x-axis coordinate

global ballStartY ‘Location of the game ball’s starting y-axis coordinate

global paddleStartX ‘Location of the game paddle’s starting x-axis coordinate

global paddleStartY ‘Location of the game paddle’s starting y-axis coordinate

326 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 326

‘Assign initial variable values

playerScore = 0 ‘Set player score equal to zero

noOfBricks = 0 ‘Set number of bricks to zero

noOfLives = 3 ‘Set the number of player lives equal to three

ballSpeed = 20 ‘Set the number of pixels used when moving the ball

‘Set game ball’s starting coordinates

ballStartX = 362 ‘Set starting x-axis coordinate for the game ball

ballStartY = 380 ‘Set starting y-axis coordinate for the game ball

‘Set game paddle’s starting coordinates

paddleStartX = 338 ‘Set starting x-axis coordinate for the game paddle

paddleStartY = 410 ‘Set starting y-axis coordinate for the game paddle

end sub

Details regarding the purpose of each variable are documented in comments embedded in the
code statements.

Create the Subroutine That Establishes Initial Game State

The ManageGamePlay subroutine, shown here, is responsible for establishing initial game state.
This includes setting application window’s size, setting up its menu system, and defining interface
controls. This subroutine also establishes the application’s trapclose event and sets up keyboard
input data collection using the characterInput event. The subroutine then ends after making a
series of procedure calls to subroutines that complete the establishment of game state by setting
starting game ball direction, generating sprites, drawing the application background, adding
game bricks and the game ball, and then finally setting ball and paddle starting location. Once
again, additional explanation for each programming statement is provided in comments through-
out the subroutine:

‘This subroutine displays the game board and interaction with the player

sub ManageGamePlay

WindowWidth = 790 ‘Special variable that sets window width (in pixels)

WindowHeight = 570 ‘Special variable that sets window height (in pixels)

MENU #main, “File”, “New Game”, ResetGame, “Exit”, EndGame ‘Create File menu

MENU #main, “Help”, “Help”, GameHelp, “About”, AboutGame ‘Create Help menu

327Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 327

‘Add a graphicbox control to be used to display the playing area

graphicbox #main.draw, 10, 10, 762, 450

‘Add statictext controls to be used to display player lives and score

statictext #main.lives, (“Lives = “; str$(noOfLives)), 10, 470, 250, 20

statictext #main.score, (“Score = “; str$(playerScore)), 100, 470, 200, 25

‘Add a button control to be used to initiate a round of play

button #main.startButton, “&Launch Ball”, StartGameLoop, UL, 672, 470, 100, 25

‘Open the window with no frame and a handle of #main

open “Bricks” for window_nf as #main

‘Set up the trapclose event for the window

print #main, “trapclose ExitGame”

‘Set the font type, size, and attributes for statictext controls

print #main.lives,”!font arial 11 bold”

print #main.score,”!font arial 11 bold”

‘Instruct the window to process keyboard events

print #main.draw, “when characterInput ManagePaddleMovement”

‘Put the graphicsbox in draw mode

print #main.draw, “down”

‘Call subroutine that randomly sets ball direction

Call SetStartingBallDirection

‘Call subroutine that generates sprites (bricks, paddle, game over message)

call GenerateGameSprites

‘Call subroutine that draws the background for the graphicbox control

call DrawBackground

‘Call subroutine that adds a new set of bricks to the game

call AddBricksToGame

‘Call subroutine that adds the game ball to the game

328 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 328

call AddBallToGame

‘Call subroutine that centers the game ball and paddle

call RepositionBallAndPaddle

end sub

Establishing and Maintaining Game State
The next 12 subroutines that make up the Bricks application work together to establish and
maintain game state. Each of these subroutines performs a separate, discrete task and is covered
in the sections that follow.

Create the Subroutine That Resets Gameplay

The first of the subroutines that help establish game state is ResetGame. It is executed whenever
the player selects the New Game command located on the application’s File menu:

‘This subroutine resets variables, enables the Start button, and updates

‘displayed text

sub ResetGame

‘Reset variables to their starting values

noOfBricks = 0

playerScore = 0

noOfLives = 3

‘Enable the Start button

print #main.startButton, “!enable” ‘Enable the Start Button

‘Remove the End of Game message from view

print #main.draw, “spritexy EndOfGameMsg 0 -50”

‘Update the display of player lives and score

print #main.lives, “Lives = “; str$(noOfLives)

print #main.score, “Score = “; str$(playerScore)

‘Call subroutine that adds a new set of bricks to the game

call AddBricksToGame

‘Call subroutine that adds the game ball to the game

329Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 329

call AddBallToGame

‘Call subroutine that centers the game ball and paddle

call RepositionBallAndPaddle

end sub

When called, this subroutine reinitializes the starting values assigned to variables that keep track
of the total number of bricks that have been removed from the game window as well as player
score and lives. The subroutine also enables the button control labeled Launch Ball and hides the
end of game message (if it is visible) by moving it out of view of the graphicbox control. Next,
this subroutine displays the value of the now-updated player score and live variables and calls
upon three subroutines that refill the graphicbox control with bricks, add a ball to the game, and
reposition the ball and paddle.

Create the Subroutine That Allows the Player to End the Game

The EndGame subroutine, shown here, comes next. It is run only when the player executes the
ExitGame command, located on the application’s File menu. When executed, this subroutine calls
the ExitGame subroutine, passing it an empty string as an argument:

‘This subroutine is executed when the player selects the Exit menu’s Exit

‘command. It then turns around and executes the ExitGame subroutine.

sub EndGame

call ExitGame “”

end sub

The ExitGame subroutine, discussed here, ensures an orderly shutdown of the application. It is
also called automatically by Just BASIC if the player closes the game by clicking on the game win-
dow’s Close button. When called this way, the subroutine is passed an argument. Because the
ExitGame subroutine has to be able to process an argument, an empty string satisfies this require-
ment. The empty string, other than allowing the ExitGame subroutine to be repurposed, has no
other value.

Create the Subroutine That Displays Help

The GameHelp subroutine, shown here, displays a Help window using the Notice dialog, telling the
user how to play the game. This subroutine is executed when the player clicks on the Help command
located on the application’s Help menu:

330 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 330

‘This subroutine displays the game’s Help menu

sub GameHelp

notice “Bricks Help” + Chr$(13) + _

“Use the left and right arrow keys to move the paddle.” + Chr$(13) + _

“Click on the Launch Ball button to begin gameplay. You “ + Chr$(13) + _

“have three lives at the end of which gameplay ends. “ + Chr$(13) + _

“Points are scored by clearing the screen of bricks.” + Chr$(13) + _

Chr$(13) + “Click on File > New Game to play again or “ + Chr$(13) + _

“click on File > Exit to end the game.”

end sub

Create the Subroutine That Displays Information About the Game

The AboutGame subroutine, shown here, uses the Notice dialog to display additional information
about the game. It is called when the player clicks on the About command located on the Help menu:

‘This subroutine displays the game’s About menu

sub AboutGame

notice “About” + Chr$(13) + _

“Bricks Version 1” + Chr$(13) + _

“Copyright Cengage, 2015”

end sub

Create the Subroutine That Manages Overall Gameplay

The StartGameLoop subroutine, shown here, comes next. It is executed when the player clicks on
the button control labeled Launch Ball. The first thing it does is disable the button control, pre-
venting it from being clicked again. The subroutine then sets the game ball’s starting direction
back to its initial default settings. The rest of the subroutine consists of a loop that iterates until
all 30 of the game bricks have been cleared from the play area. The four procedure calls that make
up this loop constitute the application’s game loop. Together, they keep the game ball in contin-
uous motion, monitoring for collisions and player misses, while also regulating the speed at
which gameplay occurs and ensuring that the game has sufficient time to collect and process key-
board input:

‘This subroutine manages overall gameplay

sub StartGameLoop handle$

331Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 331

332 Programming for the Absolute Beginner, Second Edition

print #main.startButton, “!disable” ‘Disable the Start Button

‘Set the ball’s starting x-axis coordinate to the default starting location

ballX = ballStartX

ballY = ballStartY

‘Execute this loop until all the game bricks have been eliminated

do until noOfBricks = 30

call MoveTheBall ‘Move and update the position of the ball

call CollisionCheck ‘Check for collisions

‘Call subroutine that manages nonball/paddle collisions and player misses

call AnalyzeAndUpdateBallLocation

call RegulateGameSpeed ‘Call subroutine that pauses game execution just

‘long enough to allow the game to collect and

‘process keyboard input

loop

end sub

Create the Subroutine That Manages Paddle Movement

The next subroutine to be added to the application is the ManagePaddleMovement subroutine,
shown here. It is called whenever keyboard input is captured, and its job is to parse through that
input and then move the player paddle right or left based on the player’s instruction:

‘This subroutine processes paddle movement when the player presses

‘the left and right arrow keys

sub ManagePaddleMovement handle$, Inkey$ ‘Inkey$ is a special

‘variable containing

‘information on the last

‘key pressed

‘Inkey$ contains multiple characters. The key pressed is specified

‘in the second character stored in Inkey$. A value of % indicates

‘that the left arrow has been pressed. A value of ‘ indicates that

‘the right arrow has been pressed.

userInput$ = right$(left$(Inkey$,2),1)

10 ProgABS2E ch10 2/23/15 8:46 PM Page 332

select case userInput$ ‘Process keyboard input

case “%” ‘Execute if the left arrow key was pressed

‘Retrieve current sprite location coordinates

print #main.draw, “spritexy? playerPaddle x y”

‘Determine if paddle still has space to move left (e.g., make

‘sure it has not reached the left side of the graphics window)

if x > 0 then

x = x - 8 ‘There is room, so move paddle left by 8 pixels

print #main.draw, “spritexy playerPaddle “; x; “ “; y; ‘Redraw paddle

end if

‘If player has pressed right arrow key, make sure the paddle has

‘not gone past the right edge of the window

case “‘“ ‘Execute if the right arrow key was pressed

‘Retrieve current sprite location coordinates

print #main.draw, “spritexy? playerPaddle x y”

‘Determine if paddle still has space to move right (e.g., make

‘sure it has not reached the right side of the graphics window)

if x < 680 then

x = x + 8 ‘There is room, so move paddle right by 8 pixels

print #main.draw, “spritexy playerPaddle “; x; “ “; y; ‘Redraw paddle

end if

case else

end select

end sub

Any captured keyboard data is passed to the subroutine’s Inkey$ argument and then analyzed. If
the left arrow key is pressed and the location of the game paddle is greater than zero (meaning
that it has not started to move off the left side of the graphicbox control, the paddle is moved 8
pixels to the left. If the paddle has reached the left side of the graphicbox control, its position will
remain unchanged. A similar process is followed if the right arrow key is pressed. This time the
value of the game ball’s x coordinate is checked to see if it is less than 680, in which case it is
moved 8 pixels to the right. Anything above 680 indicates that the paddle has reached the right
side of the graphicbox control.

Create the Subroutine That Sets Starting Ball Direction

The SetStartingBallDirection subroutine, shown here, is responsible for setting the direction
that the game ball moves when the player initiates gameplay. It does so by randomly setting the

333Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 333

direction of the game ball on both its x- and its y-axis. By varying the value of the game ball’s
coordinates, the subroutine effectively sets ball direction randomly across a range of different
angles:

‘This subroutine randomly sets ball direction left or right at different angles

sub SetStartingBallDirection

verticalDirection = int(rnd(1) * 2) ‘Generate a random number from one to two

‘Use the random number to set the game ball’s initial vertical axis direction

if verticalDirection = 1 then

newX = (int(rnd(1) * 3) + 2) ‘Set direction of ball on the x-axis

else

newX = (int(rnd(1) * 3) + 2) * -1 ‘Set direction of ball on the x-axis

end if

‘Generate another random number and use it to set the ball’s direction

‘on its y-axis

newY = (int(rnd(1) * 3) + 2) * -1

end sub

Create the Subroutine That Generate Sprites

The GenerateGameSprites subroutine, shown here, generates sprites used to play the game,
including the game paddle and the sprite used to display the game’s GAME OVER message. Note that
the game ball sprite is generated elsewhere:

‘This subroutine generates sprites (bricks, paddle, GAME OVER message)

sub GenerateGameSprites

open “temp” for graphics as #tempSprites ‘Create temporary graphics object

print #tempSprites, “down” ‘Start drawing mode

‘Create a dark green colored brick to be used when creating game bricks

print #tempSprites, “place 0 1; backColor darkgreen; boxfilled 42 42”

‘Create red colored, filled brick to be used to create the game paddle

print #tempSprites, “place 42 1; backColor blue; boxfilled 117 42”

‘Create black colored, filled ball to be used to create the game ball

334 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 334

print #tempSprites, “place 118 1; backColor black; boxfilled 148 60”

‘Create text-based sprites to be used to display a GAME OVER message

print #tempSprites, “place 149 20; font arial bold”

print #tempSprites, “|G A M E O V E R “

print #tempSprites, “place 149 40; backColor red; color yellow”

print #tempSprites, “|G A M E O V E R “

‘Use the sprites to establish bitmaps to be used in sprite animation

print #tempSprites, “getbmp brick 0 1 42 42”

print #tempSprites, “getbmp paddle 42 1 75 42”

print #tempSprites, “getbmp game_ball 118 1 25 50”

print #tempSprites, “getbmp EndOfGameMsg 149 1 170 45”

‘Create sprites using the now established bitmaps

print #main.draw, “addsprite playerPaddle paddle”

print #main.draw, “addsprite EndOfGameMsg EndOfGameMsg”

print #main.draw, “spritexy EndOfGameMsg 0 -50” ‘Hide this sprite from view

close #tempSprites ‘Remove the temporary sprites after creating the bitmaps

end sub

The subroutine ends by using the addsprite command to generate the playerPaddle and
EndOfGameMsg sprites. It then hides the EndOfGameMsg sprite from view. Note that the brick
sprites are added later in the AddBricksToGame subroutine.

Create the Subroutine That Draws the Window’s Background

The DrawBackground subroutine, shown here, is responsible for drawing and displaying the back-
ground displayed in the graphicbox control. It accomplishes this by drawing a small cream colored
line, which it then uses as the basis for creating a bitmap in computer memory. The background
command is then executed, setting the bitmap image as the background:

‘This subroutine creates a bitmap image in memory to be used as the

‘background in the game window

sub DrawBackground

‘Draw a suitable background for the game

print #main.draw, “color 255 255 204” ‘Make it cream colored

print #main.draw, “line 0 0 1 1” ‘Draw a small line

335Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 335

‘Take what was just drawn, name it, and make a bitmap of it in memory

print #main.draw, “getbmp gameBackground 0 0 1 1”

print #main.draw, “background gameBackground” ‘Set bitmap as the background

print #main.draw, “cls” ‘Clear the mainwin of any text

end sub

Create the Subroutine That Adds Bricks to the Game

The AddBricksToGame subroutine, shown here, is responsible for drawing and displaying the
three rows of bricks across the top of the play area. It accomplishes this by executing a for…next
loop 30 times while executing the addsprite command upon each iteration. Note that each time
the addsprite command is executed, a new sprite is created and incrementally named by
appending the numeric value assigned to the local i variable to the end of the brick string.

Next, a second for…next loop is used to place the brick sprites, three at a time (one per row),
along the top of the play area. The drawsprites command is then executed to draw and display
the brick sprites. Finally, the button control labeled Launch Ball is enabled, allowing the player
to start a new round of play:

‘This subroutine draws three rows of bricks across the top of the game window

sub AddBricksToGame

noOfBricks = 0 ‘Reset variable value to zero

‘Add 30 sprites named brick0, brick1,... brick29 using the brick bitmap

for i = 0 to 29

print #main.draw, “addsprite brick”; i; “ brick”

next i

for i = 0 to 9

upperRow = (80 + i * 62)

print #main.draw, “spritexy brick”; i; “ “; upperRow; “ 50”

middleRow = (80 + i * 62)

print #main.draw, “spritexy brick”; 10 + i; “ “; middleRow; “ 80”

lowerRow = (80 + i * 62)

print #main.draw, “spritexy brick”; 20 + i; “ “; lowerRow; “ 110”

next i

‘Draw all the sprites on the background and update the display

336 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 336

print #main.draw, “drawsprites”

print #main.startButton, “!enable” ‘Enable the Start button

end sub

Create the Subroutine That Adds the Ball to the Game

The AddBallToGame subroutine, shown here, executes the addsprite command to create a new
sprite representing the game ball. As with the creation of the brick sprites, the game ball sprite is
created using a bitmap image that was created earlier in the application:

‘This subroutine adds the game ball to the game

sub AddBallToGame

‘Add a sprite representing the game ball using the game_ball bitmap

print #main.draw, “addsprite ball game_ball”

end sub

Create the Subroutine That Repositions the Ball and Paddle

The RepositionBallAndPaddle subroutine, shown here, is responsible for positioning the game
ball and paddle at the bottom, center of the play area. This is done using the spritexy command
and prespecified x and y coordinate values (stored in global variables). Both sprites are then
drawn and displayed using the drawsprites command, and a value of –3 is assigned to newY to
ensure that the game ball’s starting direction is set upward:

‘This subroutine places the game ball at the bottom center of the play

‘area just above the paddle, readying it for a new round of play

sub RepositionBallAndPaddle

‘Draw the game ball

print #main.draw, “spritexy ball “; ballStartX; “ “; ballStartY

‘Place the game paddle just beneath the game ball and draw it

print #main.draw, “spritexy playerPaddle “; paddleStartX; “ “; paddleStartY

‘Update the display

print #main.draw, “drawsprites”

‘Make sure the ball’s direction on the y-axis is upward

337Chapter 10 • Arcade-Style Computer Game Development

10 ProgABS2E ch10 2/23/15 8:46 PM Page 337

newY = -3

‘Halt the game and wait for the user to provide input

wait

end sub

Create the Subroutine That Manages Ball Movement

The MoveTheBall subroutine, shown here, moves the game ball around the play area. Each time
the subroutine is called, it updates the game ball’s location by adding the values of newX and newY
to ballX and ballY, respectively. The drawsprites command is then executed, drawing and dis-
playing the ball sprite at its new location (new coordinates):

‘This subroutine is responsible for moving the ball around the screen

sub MoveTheBall

‘Update the position of the ball

ballX = ballX + newX

ballY = ballY + newY

‘Draw the ball at its new location

print #main.draw, “spritexy ball “; ballX; “ “; ballY;

print #main.draw, “drawsprites”

end sub

Create the Subroutine That Checks for Collisions

The CollisionCheck subroutine, shown here, monitors for collisions between the game ball and
other sprites (excluding the paddle) and then calls on other subroutines that are designed to
process and handle collisions. It begins by using the spritecollides command to capture a list
named collision$ made up of the names of any sprites that the ball sprite is in contact with.

The collision$ list is then analyzed to see if it contains any entries. If the ball sprite has collided
with a sprite other than the playerPaddle sprite, it has collided with a brick, and a call is made to
the MonitorForBrickCollisions subroutine, passing it the name of the sprite that the ball sprite has
come into contact with. If the ball sprite has instead come into contact with the playerPaddle
sprite, a call is made to the BallAndPaddleHaveCollided subroutine. There is no need to pass an
argument to the BallAndPaddleHaveCollided subroutine because it has already been deter-
mined that the ball sprite has collided with the playerPaddle sprite:

Programming for the Absolute Beginner, Second Edition338

10 ProgABS2E ch10 2/23/15 8:46 PM Page 338

Chapter 10 • Arcade-Style Computer Game Development

‘This subroutine determines if the ball has collided with anything

sub CollisionCheck

‘Retrieve a list that contains the names of any sprites that may be overlap-

ping

‘the ball sprite, and store that list in the collision$ variable

print #main.draw, “spritecollides ball collision$”

‘This statement executes when the ball collides with anything other than

‘the paddle

if (collision$ <> “”) and (instr(collision$, “playerPaddle”)= 0) then

‘Call subroutine that handles collisions with bricks

call MonitorForBrickCollisions collision$

else

‘This statement executes when the ball collides with the player paddle

if instr(collision$, “playerPaddle”) > 0 then call BallAndPaddleHaveCollided

end if

end sub

Create the Subroutine That Changes Ball Direction After a Collision

The AnalyzeAndUpdateBallLocation subroutine, shown here, changes the direction that the ball
sprite is traveling when it reaches the right, left, or top of the play area. It determines if the ball
sprite has reached the top of the play area (for example, graphicbox control) by checking to see
if its y coordinate, stored in ballY, is less than or equal to zero. In similar fashion, the value of
ballX is checked to determine if the ball sprite has reached the left or right side of the play area.
Any time one of the preceding cases evaluates as true, an audio file named Collision.wav is
played. In addition, the direction that the ball is traveling is modified to deflect the ball’s move-
ment away from its current location.

Hint

The Collision.wav file is a small audio file that makes a short ping-like sound when played.
A copy of the wave file can be downloaded along with a copy of the Bricks application source
code from the book’s companion website, located at www.cengageptr.com/downloads.

339

10 ProgABS2E ch10 2/23/15 8:46 PM Page 339

http://www.cengageptr.com/downloads

A fourth check is made to see if the ball sprite’s y coordinate is greater than or equal to 400, which
indicates that it has dropped below the height of the playerPaddle sprite. If this turns out to be
the case, the current round of play has ended. An audio file named Miss.wav is played, and a call
is made to the ManageLives subroutine:

‘This subroutine changes ball direction when the ball reaches the right, left,

‘or top wall; it also manages player misses

sub AnalyzeAndUpdateBallLocation

‘Check to see if the ball has reached the top of the window (thus colliding

‘with the top wall)

if (ballY <= 0) then ‘Has the top of the window been reached?

newY = 3 ‘Move the ball’s y coordinate three pixels downward

playwave “Collision.wav”, asynch ‘Play the Collision.wav wave file

end if

‘Check to see if the ball has reached the left side of the window (thus

‘colliding with the left wall)

if (ballX <= 0) then ‘Has the left side been reached?

newX = 3 ‘Move the ball’s x coordinate three pixels to the right

playwave “Collision.wav”, asynch ‘Play the Collision.wav wave file

end if

‘Check to see if the ball has reached the right side of the window (thus

‘colliding with the right wall)

if (ballX >= 736) then ‘Has the right side been reached?

newX = -3 ‘Move the ball’s x coordinate three pixels to the left

playwave “Collision.wav”, asynch ‘Play the Collision.wav wave file

end if

‘Check to see if the ball has dropped below the height of the game paddle

if (ballY >= 400) then ‘Has the ball dropped below the paddle?

playwave “Miss”, asynch ‘Play the Miss.wav wave file

call ManageLives ‘Call subroutine that keep track of player lives

end if

end sub

Programming for the Absolute Beginner, Second Edition340

10 ProgABS2E ch10 2/23/15 8:46 PM Page 340

Chapter 10 • Arcade-Style Computer Game Development

Create the Subroutine That Controls Game Pace

The RegulateGameSpeed subroutine, shown here, facilitates the collection of keyboard input and
regulates game speed to ensure it runs at an acceptable pace. This is achieved by executing the
scan command to allow for input collection followed by the execution of a do…until loop that
moderates the speed of the game:

‘This subroutine pauses game execution just long enough to allow the

‘game to collect and process mouse and keyboard input and ensure the

‘game executes at an appropriate pace

sub RegulateGameSpeed

scan ‘Briefly pause execution to allow collection of keyboard/mouse input

timeStamp = time$(“milliseconds”) ‘Get number of milliseconds since midnight

‘Loop until an amount of time greater than the speed of the ball has passed

do

loop until time$(“milliseconds”) > timeStamp + ballSpeed

end sub

Create the Subroutine That Processes Collisions with Bricks

As mentioned earlier, the MonitorForBrickCollisions subroutine is called whenever the ball
sprite collides with an object other than the playerPaddle sprite. The name of the sprite that the
ball sprite has collided with is passed to the subroutine as an argument. The subroutine changes
the direction the ball sprite is moving based on whether it comes into contact with the left, right,
top, or bottom of the other sprite. Bricks involved in collision are deleted from the game using
the removesprite command, and the Collision.wav file is played, adding an essential sound
effect to the game. Every time a brick is eliminated, the player’s score must be increased. This is
accomplished by calling the UpdatePlayerScore subroutine:

‘This subroutine processes collisions between the ball and bricks

sub MonitorForBrickCollisions object$

‘Retrieve the x, y coordinates of the sprite that has collided with the ball

print #main.draw, “spritexy? “; object$; “ objectX objectY”

‘Change the ball’s direction on its x-axis when it collides with the

‘left side of the other object

if ballX < (objectX - 12) then newX = -5

341

10 ProgABS2E ch10 2/23/15 8:46 PM Page 341

‘Change the ball’s direction on its x-axis when it collides with the

‘right side of the other object

if (ballX > (objectX + 20)) and (ballX < (objectX + 40)) then newX = 3

‘Change the ball’s direction on its y-axis depending on whether it collides

‘with the top or bottom of the other object

if (ballY + 12) > (objectY + 5) then

newY = 3

else

newY = -3

end if

‘The ball has collided with a brick, so remove the brick

print #main.draw, “removesprite “; object$

playwave “Collision.wav”, asynch ‘Play wave file that signals a player miss

call UpdatePlayerScore ‘Call the subroutine that updates the player’s score

end sub

Create the Subroutine That Processes Collisions with the Paddle

The BallAndPaddleHaveCollided subroutine, shown here, is called whenever the ball sprite col-
lides with the playerPaddle sprite. When this occurs, the ball sprite direction on its y-axis is
reversed. This deflects the ball sprite away from the playerPaddle. Lastly, the Collision.wav file
is played:

‘This subroutine manages collisions between the player paddle and the game ball

sub BallAndPaddleHaveCollided

if newY = 3 then

newY = -3

else

newY = 3

end if

playwave “Collision.wav”, asynch ‘Play wave file when ball collides

‘with the paddle

end sub

Programming for the Absolute Beginner, Second Edition342

10 ProgABS2E ch10 2/23/15 8:46 PM Page 342

Chapter 10 • Arcade-Style Computer Game Development

Create the Subroutine That Updates the Player’s Score

The UpdatePlayerScore subroutine is responsible for incrementing the value assigned to the player’s
score, stored in the playerScore variable, by one every time the subroutine is called. The subrou-
tine is also responsible for keeping count of the number of bricks removed from the game. Every
time it is called, the subroutine also refreshes the display of both the playerScore and noOfLives
variables. If the subroutine determines that all 30 bricks have been removed from the screen, the
current round of play has ended and calls are made to the AddBricksToGame, AddBallToGame, and
RepositionBallAndPaddle subroutines to ready the game for a new round of play:

‘This subroutine is called whenever the player scores a point

sub UpdatePlayerScore

playerScore = playerScore + 1 ‘Increment player score by one

noOfBricks = noOfBricks + 1 ‘Increment variable value by one

‘Display the number of lives remaining and the player’s score

print #main.lives, “Lives = “; str$(noOfLives)

print #main.score, “Score = “; str$(playerScore)

if noOfBricks = 30 then ‘If all 30 bricks have been eliminated

‘Call subroutine that adds a new set of bricks to the game

call AddBricksToGame

‘Call subroutine that adds the game ball to the game

call AddBallToGame

‘Call subroutine that centers the game ball and paddle

call RepositionBallAndPaddle

end if

end sub

Create the Subroutine That Keeps Track of Player Lives

The ManageLives subroutine is responsible for keeping track of the number of lives the player
has left in the game and for decrementing that value, stored in the noOfLives variable, by one
every time the subroutine is called. Every time it is called, the subroutine also refreshes the dis-
play of both the playerScore and noOfLives variables. The subroutine is also responsible for
determining when the game has ended, which occurs when the value of noOfLives becomes zero.

343

10 ProgABS2E ch10 2/23/15 8:46 PM Page 343

When this occurs, the DisplayGameOverMessage subroutine is called. Otherwise, while a round of
play has just ended, the game continues because the player still has at least one life remaining. If this
is the case, the button control labeled Launchl Ball is re-enabled, and the RepositionBallAndPaddle
subroutine is called:

‘This subroutine is called whenever the player loses a life

sub ManageLives

noOfLives = noOfLives - 1 ‘Take away one of the player’s lives

‘Display number of lives remaining

print #main.lives, “Lives = “; str$(noOfLives)

print #main.score, “Score = “; str$(playerScore)

‘Analyze the number of lives that the player has remaining

if noOfLives = 0 then

call DisplayGameOverMessage ‘Call game over if there are no lives left

else

print #main.startButton, “!enable” ‘Enable the Start button

call RepositionBallAndPaddle ‘Continue play if player has any lives left

end if

end sub

Create the Subroutine That Displays the Game Over Message

The DisplayGameOverMessage subroutine is called at the end of gameplay, after the player has
lost all three of his lives. The subroutine repositions the EndOfGameMsg sprite in the play area (in
the graphicbox control) and then draws and displays it. It then disables the button control labeled
Launch Ball, preventing the current game from continuing:

‘This subroutine displays the End of Game message

sub DisplayGameOverMessage

print #main.draw, “spritexy EndOfGameMsg 300 250” ‘Draw End of Game sprite

print #main.draw, “drawsprites” ‘Display the sprite

print #main.startButton, “!disable” ‘Disable the Start button

wait ‘Stop program execution

end sub

Programming for the Absolute Beginner, Second Edition344

10 ProgABS2E ch10 2/23/15 8:46 PM Page 344

Chapter 10 • Arcade-Style Computer Game Development

Create the Subroutine That Terminates Game Execution

The last subroutine that makes up the Bricks application is the ExitGame subroutine. Its job is to
display a pop-up dialog window that requests the player confirm his intention to terminate
gameplay. If the player responds in the affirmative, the game’s bitmap files are unloaded from
memory, the game window is closed, and the application ends:

‘This subroutine prompts for confirmation and handles game termination

sub ExitGame handle$

‘Display confirmation message in pop-up dialog window

confirm “Are you sure you wish to stop playing?”; userResponse$

if userResponse$ = “yes” then ‘User has provided confirmation

‘Keep things clean and free up resources by unloading graphics files

‘from memory

unloadbmp “paddle”

unloadbmp “game_ball”

unloadbmp “brick”

unloadbmp “gameBackground”

close #main ‘Close the game window

wait ‘Stop program execution

end if

end sub

The Final Result
Okay, assuming that you followed all the steps that have been outlined without making typos,
your copy of the Bricks game should be ready to go. Take a little time to test the game and put it
through its paces. While you are at it, make sure that you enter both valid and invalid data to ensure
the game handles it correctly. Keep an eye on the player score and live data that is displayed at the
bottom of the game window and validate that it is being tabulated correctly. Last but not least, make
sure that the game window’s menus and the button control labeled Launch Ball are operating
and that the Help and About windows display correctly.

345

10 ProgABS2E ch10 2/24/15 8:59 AM Page 345

Summary
In this chapter, you learned the basics of arcade-style game development. This included creating
and managing sprites, managing game state, and controlling gameplay using loops. You also
learned how to control the timing of events and to incorporate the collection and processing of
keyboard input. Finally, you discovered how to perform collision detection and to execute a con-
trolled termination of gameplay.

Before you move on to Chapter 11, “Debugging Your Applications,” consider setting aside a little
time to improve the Bricks game by addressing the following list of challenges.

1. As currently designed, the game ball travels at a consistent pace during gameplay.
Consider modifying the application to slowly increase ball speed as the player’s score
increases.

2. To make gameplay more challenging, consider modifying it by adding additional layers
of bricks to the game, making it more difficult to clear the game board.

3. Consider adding a menu option to the game that allows the player to specify paddle
sizes of small, medium, and large and them modify the game accordingly to provide
paddles of these sizes. In this manner, you can add different levels of game difficulty.

4. Finally, to spice things up a bit, consider randomly changing brick color each time the
screen is cleared of bricks.

C
ha

lle
ng

es
346 Programming for the Absolute Beginner, Second Edition

10 ProgABS2E ch10 2/23/15 8:46 PM Page 346

Debugging Your
Applications

11
In this final chapter of the book, you will learn how to track down and deal with

the errors that inevitably occur when developing a new software application.
Program errors can occur for any number of reasons, including typos, inap-

propriately applied command syntax, and faulty programming logic. This chapter
is designed to help teach you the fundamental steps involved in identifying and
correcting these types of errors. Discussion will also include the development of
error-handling procedures as well as the use of Just BASIC’s debugger as a means
of keeping an eye on the internal operation of your programs, allowing you to track
down and spot errors that might otherwise be difficult to locate. In addition to all
this, you will get the chance to develop the book’s final application: the Hangman
game.

Specifically, you will learn the following:

• The differences between syntax, logical, and runtime errors

• How to execute a program using a debugger

• How to control program execution and monitor variable values when
debugging applications

• How to set up error handlers

11 ProgABS2E ch11 2/23/15 8:47 PM Page 347

348

Project Preview: The Hangman Game
In this chapter, you will learn how to develop the book’s final Just BASIC application: the Hang-
man game. In this game, the player is challenged to try to guess a mystery word without making
more than five incorrect guesses. Figure 11.1 shows how the game looks when it’s started.

Programming for the Absolute Beginner, Second Edition

Figure 11.1 Underscore characters are
used to represent the letters that make
up the mystery word.
© 2016 Cengage Learning®

Figure 11.2 The player has
made six correct guesses so far.
© 2016 Cengage Learning®

The player submits guesses by typing a letter into the Enter a Guess and Click on Submit field
and then clicking on the Submit button. If the letter that is guessed is used in the mystery word,
the letter is displayed in the appropriate textbox control at the top of the window, as demon-
strated in Figure 11.2.

Each time the player enters a guess, whether it is right or wrong, the letter is added to the list of
letters shown in the Guesses field, making it easy for the player to keep track of the guesses made
so far. A graphical depiction, located on the right side of the window, shows how many misses
the player has made so far.

11 ProgABS2E ch11 2/23/15 8:47 PM Page 348

Each guess submitted by the player is validated. First, the game prevents the player from entering
the same letter twice. Second, it prevents the player from entering a number or a special charac-
ter. Third, it prevents the player from entering more than one character at a time. For example,
Figure 11.3 shows an example of the message that the game displays if the player clicks on the
Submit button without first keying in a guess.

Figure 11.4 shows an example of a game that has been won by the player. As you can see from the
Guesses field, it took the player several guesses to determine the game’s mystery word. However,
the player made only three incorrect guesses, as depicted by the partially drawn hangman image.

Figure 11.5 shows an example of a game in which the player has lost and the hangman is com-
plete. As the figure shows, the Submit button is disabled at the end of each game to stop game-
play. At the same time, the New Game button is enabled, allowing the player to start a new game.

349Chapter 11 • Debugging Your Applications

Figure 11.4 Mystery words are randomly selected from an array
of words stored inside the game.
© 2016 Cengage Learning®

Figure 11.3 Invalid guesses are not
counted against the player.
© 2016 Cengage Learning®

Figure 11.5 The player failed to
guess the game’s mystery word.
© 2016 Cengage Learning®

11 ProgABS2E ch11 2/23/15 8:47 PM Page 349

Coping with Errors in Your Applications
Every programmer, no matter how proficient and talented he may be, runs into errors when
developing computer applications. The number of errors and problems that you run into grows
based on the size and complexity of your applications. Unfortunately, there is no way around this
inevitability. Errors will happen. The purpose of this chapter is to give you an overall understand-
ing of the types of errors that you will run into and offer guidance on how to go about finding,
fixing, and handling them.

Computer applications are subject to different types of errors. Errors can wreak havoc on an appli-
cation and result in unpredictable results. Sometimes the bugs are easy to find and eliminate.
Other times, they are hidden deep within your program code and surface only on rare occasions
to drive both programmers and users crazy. Many programmers refer to errors as bugs. Your job
as a programmer is to seek out and exterminate or debug all the errors from your applications.

As this chapter demonstrates, there are a number of steps that you can take to reduce errors in
your applications. One of the most obvious steps is to take time before you start writing your
program to plan out its overall organization and design as opposed to just sitting down at the
keyboard and making things up as you go along. You should also make liberal use of subroutines
and functions to develop modular program code that can be created and tested a section at a
time. Another step that you should always include is properly testing your applications. This
includes testing to make sure they operate as expected as well as trying to feed your application
inappropriate data to see if the program handles it correctly.

Along with these programming practices, there are additional steps you can take to ensure that
your applications will operate as expected, including these:

• Carefully laying out a clear and easy-to-use user interface

• Making sure that you provide users with access to clear instructions and help information
so that they will know how to properly operate the application

• Adding program code to your application that will validate all input, whether it is supplied
from an external file or directly from the user

• Using a consistent naming scheme for all your variables, arrays, subroutines, and functions,
and ensuring that names are as descriptive as possible

In addition to following the preceding advice, you should determine which parts of your appli-
cations are most subject to errors and add programming logic to attempt to deal with them. As
previously discussed, one way of doing this is through data validation. Another way of handling
errors is to develop error-handling routines, as discussed later in this chapter.

350 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 350

Regardless of which programming language you are working with, you will run into three distinct
types of programming errors, as listed here:

• Syntax errors

• Logical errors

• Runtime errors

Understanding Syntax Errors
The most obvious and common type of error that you will come across is a syntax error. A syntax
error occurs when the programmer fails to write a code statement that follows the syntax rules
specified by the programming language. The most common cause of syntax errors is typos. For
example, a syntax error will occur if you misspell a command or inappropriately format a code
statement, which would be the case if you left out a key parameter.

Programming languages notify programmers of errors in many different ways. A text-based
scripting language like Perl, Python, or Ruby will display a text error message. Rapid Application
Development (RAD) programming languages like Visual Basic and Liberty BASIC will sometimes
display error messages in the code editor’s status bar or in pop-up dialogs. Regardless of the pro-
gramming language used, error messages generally provide the same type of information, which
includes a brief description of the error and an error number. A text-based scripting language may
also supply the line number where the error was detected, and RAD programming languages often
highlight the offending programming statement in the integrated development environment (IDE).

Syntax errors prevent an application from compiling. In Just BASIC, the compiler stops executing
if it comes across a syntax error. To see an example of a syntax error, take a look at the following
statement:

print “Hello world!

There is a double-quote missing from the end of the text string in this statement. In addition to
halting the compile process, Just BASIC highlights the statement that contains the syntax error in
the code editor and displays a text message describing the error in the status bar at the bottom of

the code editor window, as demonstrated in Figure 11.6.

As you can see, the text message displayed in the status bar clearly identifies the problem as being
an unfinished string (that is, it’s missing its closing double-quotation mark). To fix this error, all

351Chapter 11 • Debugging Your Applications

Figure 11.6 An example of a syntax error
caused by an unfinished string.
© 2016 Shoptalk Systems

11 ProgABS2E ch11 2/23/15 8:47 PM Page 351

you have to do is add the closing quotation mark to the end of the string being displayed, as
shown here:

print “Hello world!”

Upon fixing the syntax error, you can perform the compile process again. Just BASIC will either
compile your program or, if it comes across another syntax error, pause and display information
about the error.

An example of another common type of syntax error is shown here:

sampleString = “Hello world!”

Here a type mismatch syntax error has occurred because a string is being assigned to a numeric
variable. Remember that string variable names must end with the $ character, as shown here:

sampleString$ = “Hello world!”

Because Just BASIC clearly identifies the program statement that generates a syntax error and
provides a descriptive error message, it is generally easy to identify and fix syntax errors. If, after
examining the statement in question, you are unable to locate the source of the error, you can
always use Just BASIC’s Help file to look up the syntax of the command in question and double-
check your syntax usage that way.

Coping with Logical Errors
Sometimes errors occur because of a mistake on your part in the logic being applied to solve a
problem or to perform a particular task. These types of errors are usually referred to as logical
errors. For example, you may have meant to take two numbers provided by the user and multiply
them together to create a third number. However, when you sat down and wrote the program,
you may have inadvertently added these two numbers together. As a result, your application
might run just fine, doing exactly what it was told to do. The problem is that this is not what you
wanted the program to do.

The best way to guard against logical errors is to carefully outline and review the programming
logic required to develop a program before you write it and then extensively test your application
once it has been written to ensure that it is operating as expected. One way of executing your pro-
gram is to use the Just BASIC debugger, covered later in this chapter, to keep an eye on the exe-
cution flow of program statements and to monitor the values being assigned to program
variables and arrays.

Unfortunately, because Just BASIC does not see any problems with the programming logic, it is
not able to flag logical errors. But don’t fret; all hope is not lost. There are ways to track down and
fix logical errors. The first step is to realize that your program is not operating as expected. You

352 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 352

can then sit down and review your application’s source code to see if you can spot the error that
way. If you cannot find the error this way, your next step might be to embed a few print state-
ments or notice commands at different locations within your program to identify when partic-
ular parts of the program are being executed. This gives you a rudimentary way of keeping track
of the logical execution flow of your program. You can even expand the usefulness of the print
statements and notice commands by displaying the values of any variables that you think are rel-
evant to the problem you are trying to track down. In the case of the previous example, you
would want to display the value of the three variables at different locations within the application
to keep an eye on them. In this manner, you’d be able to identify the problem as soon as you saw
the two values were being added together instead of being multiplied.

Embedding extra print statements and notice commands inside your programs is a sufficient
approach for debugging and finding problems in small programs. However, as your programs
grow in size, this debugging technique becomes difficult to implement. This is where Just BASIC’s
built-in debugger comes into play. Using the debugger, as described later in this chapter, you can
trace program execution flow and monitor variable values while also exercising detailed line-by-
line control over the execution of your program.

Eliminating Runtime Errors
To run your application, it must be free of syntax errors. However, your application is still suscep-
tible to another type of error, referred to as a runtime error. Runtime errors occur when a program
statement attempts to perform an illegal action. For example, your program might attempt to
access a local disk drive that has crashed or become full, in which case the access attempt will fail
and the program will stop running and crash. If this happens, the application may generate an
ugly error message that is sure to confound your users, or it may simply shut down without an
explanation of what has happened.

Application compilers are not able to detect and notify you of runtime errors. To detect them,
you need to extensively test your applications. This is especially true if your application contains
subroutines or functions that may not be executed except on rare occasions. Failure to test every
procedure in an application and to attempt to validate the application’s execution in every pos-
sible scenario means that your users will be left to discover runtime errors on their own. The
result may be a loss of faith in the quality of the application or, even worse, their belief in the
quality of your work.

If a runtime error occurs when you are executing a program using Just BASIC’s code editor, Just
BASIC displays an error message in a pop-up dialog informing you of the error before terminat-
ing your program’s execution. For example, the following statement is guaranteed to produce a
runtime error. (It is illegal in any programming language to divide a number by zero.)

x = 10 / 0

353Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 353

As soon as it comes across this statement, Just BASIC displays the pop-up error message shown
in Figure 11.7.

Runtime errors can occur for all sorts of reasons. The user may, for example, provide your appli-
cation with invalid input. You can deal with this by adding input validation logic to your program.
Your program may need to work with a specific file. Because files have a tendency to disappear
for all kinds of reasons, it is a good idea to add logic to your program to check for the existence
of a file prior to trying to access it. This way if the file is not found, you can take corrective action.
This action might be to re-create the file, or it might be to display a message informing the user
of the problem and stating that until it has been fixed, your application will not be able to perform
a particular task.

Nothing is ever perfect, including computer programs. Therefore, try as you might, there is no
way to ever be 100-percent certain that all runtime errors have been eliminated from your appli-
cations. However, even in this worst-case scenario, you still have options. Specifically, you can add
error-handling logic to your applications, as discussed later in this chapter, to recover from errors
or at the very least to gracefully handle them (for example, by displaying a user-friendly error
message and by closing any open files in use by the program).

What Is Just BASIC’s Error.log File?
As was demonstrated in Figure 11.7, sometimes error messages reference Just BASIC’s Error.log
file. Just BASIC writes internal information to the file as it executes. Sometimes you can get helpful
bits and pieces of information that provide insight as to why a particular error occurred by exam-
ining this file. However, more often than not, you probably will not find this file overly helpful.

Hint

If you run into a problem that you cannot figure out and you think it might be the result of a
problem with Just BASIC, you can send an email to support@justbasic.com explaining your
problem in as much detail as possible. In addition, you might want to include a copy of the
program in which the error is occurring, as well as a copy of the Error.log file.

354 Programming for the Absolute Beginner, Second Edition

Figure 11.7 An example of a runtime
error being reported by Just BASIC.
© 2016 Cengage Learning®

11 ProgABS2E ch11 2/23/15 8:47 PM Page 354

Debugging Your Just BASIC Applications
Most modern-day programming languages, including Just BASIC, Visual Basic, and Liberty BASIC,
give programmers access to a built-in program debugger. A debugger is a utility program that runs
an application in a special mode that allows the programmer to pause application execution to
view variable values and to then execute line-by-line control over program statements.

Just BASIC also includes a debugger that you can use to debug your Windows application to trace its
execution flow, thus validating that things are occurring in the order you expect them to. In addition,
because you can see and keep an eye on the values assigned to application variables, you can also use
the debugger to ensure that your program is correctly calculating and updating variable values.

To run a program using the Just BASIC debugger, open your program in the Just BASIC editor
and then click on the Run menu and select Debug or click on the Debug button, which looks like
a small ladybug. In response, Just BASIC loads—but does not run—your application into the
debugger and displays the debugger window, as demonstrated in Figure 11.8.

Working with the Debugger Toolbar
Just BASIC’s debugger consists of a toolbar and two window panes. The toolbar, shown in Figure
11.9, contains buttons that give you detailed control over how your program is executed.

355Chapter 11 • Debugging Your Applications

Figure 11.8 Using Just BASIC’s
built-in debugger to execute a
Windows application.
© 2016 Shoptalk Systems

11 ProgABS2E ch11 2/23/15 8:47 PM Page 355

The function of each of the toolbar buttons is explained here:

• Resume. Continues the normal execution of the program and does not display informa-
tion about variable values while executing.

• Stop. Stops program execution and highlights the line where execution has been paused.

• Step Into. Executes the next statement in the program and then pauses the program. If the
next statement is a subroutine or a function, execution pauses at the opening subroutine
statement.

• Step Over. Executes the next statement in the program and then pauses the program
unless the next statement is a subroutine or a function, in which case the entire procedure
is run before program execution pauses.

• Step Out. Executes any statements remaining in a subroutine or function and then pauses
program execution. Resumes the execution of the program, allowing it to run normally.

• Animate. Executes the program normally while also displaying variable values in the
upper pane as the program runs.

• Help. Displays information about the debugger and its operation.

Examining Variable Values
When it’s started, the debugger highlights the first statement in your application and waits for
you to tell it what to do. By default, only the variables explicitly defined within your application
are displayed in the upper window pane. However, Just BASIC automatically generates additional
variables for every application. You can view these variables by selecting the Show Default Variables
checkbox control located in the space between the upper and lower window pane. When selected,
this option instructs the debugger to show all program variables, as demonstrated in Figure 11.10.

As you use the debugger to execute your application, the value of variables displayed in the upper
pane is constantly updated as changes are made to them. As such, you can keep an eye on your
application’s variables to determine if their values are being correctly modified as the application
executes.

356 Programming for the Absolute Beginner, Second Edition

Resume

Stop Step Over Animate

Figure 11.9 Just BASIC’s debugger toolbar gives the programmer control over program execution.
© 2016 Shoptalk Systems

Step Into Step Out Help

11 ProgABS2E ch11 2/23/15 8:47 PM Page 356

A Quick Demonstration of How to Use the Debugger
The best way to learn how to work with any programming language’s debugger is to spend some
time getting comfortable with its operation. Let’s take Just BASIC’s debugger for a quick test drive.
For starters, you need a program to execute, so begin by keying the following program into the
Just BASIC code editor:

print “It is time to count to 5.” + chr$(13) + chr$(13)

x = 5

for i = 1 to 5

print i

x = x + i

next i

call DisplayMessage

end

sub DisplayMessage

notice “All done!”

end sub

357Chapter 11 • Debugging Your Applications

Figure 11.10 Viewing all the
variables being managed by Just
BASIC as your program executes.
© 2016 Shoptalk Systems

11 ProgABS2E ch11 2/23/15 8:47 PM Page 357

When executed, this program displays a list of numbers from 1 to 5 and then displays a pop-up
dialog announcing the end of the program’s execution. Rather than running the program nor-
mally, click on the Debug (ladybug) button located on Just BASIC’s toolbar. In response, Just
BASIC opens the debugger window, loads your application, and then pauses. In addition, the
application’s mainwin text window appears. To run your program at normal speed, click on the
debugger’s Resume button. When run this way, the debugger does not keep track of statement
execution flow or variable values and is not much help in tracking down an error.

Now close the debugger window and click on the Debug button again. Note that when the debug-
ger reappears, the first statement in your program is highlighted, identifying it as the next line of
code to be executed. Also note that the value of both x and i are set to zero. Click on the Step Into
button. In response, the debugger processes the highlighted statement and pauses execution
again. If you look at the mainwin text window, you see a line of text has been printed to it. Click
on the Step Into button again. Note that the value of x has been set equal to 5. If you continue to
click on the Step Into button, you see that the statements that make up the program’s for…next loop
are repeatedly executed five times and that the values assigned to x and i are continuously updated.

Once the loop has executed for the fifth and final time, the Call DisplayMessage statement is
highlighted. If you click the Step Into button a few more times, you step through the execution of
the DisplayMessage subroutine a line at a time. Alternatively, you can click on the Step Over but-
ton, in which case the entire subroutine executes without pausing. However, execution pauses
again at the end statement. You can also Step Into the subroutine and then decide to click on the
Step Out button, in which case the rest of the subroutine is executed and pauses again at the end
statement. Lastly, you can click on the Animate button at any time, in which case the debugger exe-
cutes the rest of the program at normal speed while updating the value of x and i in the upper
pane and showing in the lower pain the order in which statements are being executed. Because this
example loops only five times, the animate feature is of little help. But if you modify the program
to loop 1,000 times, you’re able to get a better understanding of how the animate option works.

All in all, the debugger can be a great tool for tracking down a particularly pesky bug because it
allows you to run your program and control the pace at which things occur while easily keeping
an eye on variable values.

Hint

One major feature not found in Just BASIC’s debugger is the ability to set breakpoints. A
breakpoint is a marker that tells the debugger to pause execution at a specified location in
a program. By setting breakpoints at different points within a program, you have an addition-
al means of controlling and pausing program execution.

358 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 358

Developing a Runtime Error Handler
As previously discussed, runtime errors can occur for different reasons. As a programmer, it is
your job to anticipate and deal with runtime errors. Your goal is to develop bug-free applications
that never crash and that handle any unavoidable errors as gracefully as possible. The end result
should be an application that meets user needs and minimizes potential confusion in the event
of a runtime error.

Your first step in meeting this challenge is to anticipate the places within your applications where
errors are most likely to occur and try to programmatically deal with them. You should, for exam-
ple, validate any user input and ensure that files exist before attempting to open them.

For situations that may be out of your control, you can set up a runtime error handler to deal
with errors. Examples of these types of situations include an unavailable disk drive or a missing
file. Using a runtime error handler, you set up your program to gracefully handle the situation
using any of the following options:

• Presenting user-friendly error messages

• Closing any open files and resources in use by the applications

• Providing the user with additional instruction on how to fix the problem

• Apologizing for any inconvenience

• Requesting that the user report the error

Whenever an error occurs in a Just BASIC application, the Err special variable is populated with
an error number. Likewise, the Err$ special variable is populated with a string that describes the
error.

Trap

Both Err and Err$ are case sensitive, so when you use them, be sure to type them exactly
as shown here.

Using the information provided by the Err and Err$ special variables, you can capture and iden-
tify the cause of a runtime error. Using this information, you can add an error-handling routine
to your program that attempts to recover from or gracefully deal with the error. To set up an error
handler within your Just BASIC program, you need to use the On Error GoTo statement.

359Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 359

Hint

Use of the On Error GoTo statement as a means of setting up an error handler is supported
in many different programming languages. This approach to error handling is sometimes
referred to as unstructured error handling. Structured error handling is an alternative
approach that many programming languages provide, including C++ and Visual Basic. In
structured error handling, you use a Try…Catch…Finally statement to build error-handling
routines. Specifically, Try statements are inserted into locations within the application where
exceptions are most likely to occur, and Catch statements are then added that are designed
to handle the exception. To handle different types of exceptions, you can add additional
Catch blocks. Programmers can also add an optional Finally block. If included, the Finally
block executes and runs program statements that need to be executed in response to any error.

The On Error GoTo statement instructs Just BASIC to redirect program flow to a specified label if
an error occurs. This statement has the following syntax:

On Error GoTo [label]

To better understand how the On Error GoTo statement works, take a look at the following exam-
ple:

On Error GoTo [ErrorHandler]

open “C:\Sample.log” for input as #logFile

line input #logFile, variableName$

print variableName$

close #logFile

wait

[ErrorHandler]

print “The following error occurred during program execution:” _

+ chr$(13) + chr$(13)

print “——————————————————————————————”

print “Error Code: “; Err

print “Error Message: “; Err$

360 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 360

print “——————————————————————————————”

print

print “An error code of 0 indicates that the Sample.log file is empty.”

print

print “An error code of 53 indicates that Sample.log has been removed “

print “from this computer.”

print

print “Please report this error message to Technical Support.”

if Err = 0 then

close #logFile

end if

end

Here, an On Error GoTo statement has been added as the first statement at the beginning of a
small application. As a result, if an error occurs, execution flow is redirected to a label named
[ErrorHandler]. The code statements that follow the label are then executed.

The code statements that make up the actual application have been inserted after the On Error GoTo
statement and before [ErrorHandler]. The first of these statements attempts to open a file named
Sample.log that should be found in the root of the computer’s C: drive. If the file is found, it is
opened, and the first line of the file is read and then displayed. The file is then closed.

The application’s error handler has been designed to handle two possible runtime errors. First, if
the file exists but is empty, leaving nothing to be retrieved and displayed, when the line input

command is executed, an error occurs. In response, the execution flow is immediately passed to
[ErrorHandler]. Within the handler, the values of Err and Err$ are used to display a user-
friendly error message. In addition, because Err will be equal to 0, the close command is used
to close the Sample.log file. Figure 11.11 shows the result that is produced when this example is
executed.

If, on the other hand, the program is run and it turns out that somebody has deleted the Sample.log
file, a different error occurs. In response, execution flow jumps to [ErrorHandler], where a user-
friendly error message is displayed. Because the value of Err is 53 this time, there is no need to
close the Sample.log file; it was never opened.

Regardless of the type of error that occurs, once executed, the last statement following the
[ErrorHandler] executes, terminating the execution of the program.

361Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 361

To see the benefit of including an error handler within your Just BASIC applications, consider
what would happen if you were to remove the On Error GoTo statement and its corresponding
error handler from the application, leaving only the statements shown here:

open “C:\Sample.log” for input as #logFile

line input #logFile, variableName$

print variableName$

close #logFile

wait

This time, if you execute the application, instead of displaying a user-friendly error message and
gracefully terminating the application, the two pop-up dialog error messages shown in Figure
11.12 are displayed, and the application abruptly terminates.

362 Programming for the Absolute Beginner, Second Edition

Figure 11.11 Using a custom error handler
to gracefully handle a runtime error.
© 2016 Shoptalk Systems

Figure 11.12 An example of the type of errors that users may see when a runtime error is not programmatically handled.
© 2016 Shoptalk Systems

11 ProgABS2E ch11 2/23/15 8:47 PM Page 362

Back to the Hangman Game
Now it is time to turn your attention back to this book’s final application development project:
the Hangman game. This game serves as an excellent capstone project for this book, giving you
the chance to put together everything you have learned. You’ll need to work with both variables
and arrays. You’ll use loops and conditional logic. You’ll also need to work with both subroutines
and functions. And, of course, you’ll have to design and develop the game’s GUI.

Designing the Game
As has already been stated, the design of the Hangman game relies on subroutines and functions.
In total, the game will be created in nine steps, as outlined here:

 1. Create a new BASIC file and add initial comment statements.

 2. Define an array and global variables, and initiate gameplay.

 3. Create the ManageGamePlay subroutine.

 4. Create the StartNewGame subroutine.

 5. Create the GetNewWord$() function.

 6. Create the ProcessGuess subroutine.

 7. Create the ValidateInput$() function.

 8. Create the PlayAgain subroutine.

 9. Create the ClosePlay subroutine.

Creating a Just BASIC File Script

The first step in the creation of the Hangman game is to create a new BASIC file named Hangman.bas
and add the following statements to it:

‘ ***

‘

‘ Script Name: Hangman.bas (The Hangman Game)

‘ Version: 1.0

‘ Author: Jerry Lee Ford, Jr.

‘ Date: February 5, 2015

‘

‘ Description: This is a computerized version of the classic

‘ Hangman game. The objective of the game is for the player to

‘ try to guess mystery words one letter at a time in as

‘ few guesses as possible without getting hung.

‘

363Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 363

‘ ***

nomainwin ‘Suppress the display of the default text window

As you can see, there is nothing new here beyond the addition of standard opening comment
statements and the execution of the nomainwin command.

Defining Global Variables and an Array

The next step in the development of the Hangman game is to declare a few global variables used
to store the game’s mystery word and to keep track of the total number of incorrect and correct
player guesses. In addition, you will define an array named words$() and populate it with 10
mystery words. Lastly, the ManageGamePlay subroutine, which generates the game’s user interface,
is called. To accomplish all this, add the following statements to the end of the program file:

‘Define global variables

global secretWord$, totalMissed, totalCorrect

‘Define an array capable of storing 10 words

dim words$(9)

‘Load the array with words (limit word size to a maximum of 10 letters)

words$(0) = “piano”

words$(1) = “article”

words$(2) = “television”

words$(3) = “musical”

words$(4) = “redundant”

words$(5) = “remarkable”

words$(6) = “experience”

words$(7) = “adventure”

words$(8) = “discover”

words$(9) = “military”

call ManageGamePlay ‘Call the subroutine responsible for managing gameplay

wait ‘Pause the application and wait for the player’s instruction

Designing the Game’s User Interface

The code statements that compose the ManageGamePlay subroutine are shown next and should
be added to the end of the program file. When executed, this subroutine generates the game’s user
interface and is responsible for managing overall gameplay:

364 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 364

‘This subroutine displays the game board and controls interaction with the

‘player

sub ManageGamePlay

WindowWidth = 600 ‘Set the width of the window to 600 pixels

WindowHeight = 350 ‘Set the height of the window to 350 pixels

loadbmp “blank”, “C:\images\blank.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “head”, “C:\images\head.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “body”, “C:\images\body.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “leftarm”, “C:\images\leftarm.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “rightarm”, “C:\images\rightarm.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “leftleg”, “C:\images\leftleg.bmp” ‘Load the specified bitmap

‘file into memory

loadbmp “rightleg”, “C:\images\rightleg.bmp” ‘Load the specified bitmap

‘file into memory

‘Define the format of statictext controls displayed on the window

statictext #play.statictext1, “H A N G M A N”, 120, 10, 340, 50

statictext #play.statictext2, “Copyright 2015”, 460, 35, 80, 20

statictext #play.statictext3, “Enter a guess and click on Submit:”, _

10, 270, 280, 20

statictext #play.statictext4, “Guesses:”, 80, 170, 80, 20

‘Add a graphicbox control to be used to display hangman image files

graphicbox #play.pic1, 440, 70, 133, 150

‘Add textbox controls to be used to display the letters of each word

textbox #play.letter1 20, 70, 40, 60

textbox #play.letter2 60, 70, 40, 60

textbox #play.letter3 100, 70, 40, 60

textbox #play.letter4 140, 70, 40, 60

textbox #play.letter5 180, 70, 40, 60

textbox #play.letter6 220, 70, 40, 60

365Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 365

textbox #play.letter7 260, 70, 40, 60

textbox #play.letter8 300, 70, 40, 60

textbox #play.letter9 340, 70, 40, 60

textbox #play.letter10 380, 70, 40, 60

‘Display a list of guessed letters

textbox #play.guesses 165, 160, 160, 40

‘Add textbox control used to collect player guesses

textbox #play.guess 295, 240, 50, 50

‘Add button controls for submitting guesses and starting new games

button #play.button1 “Submit”, ProcessGuess, UL, 365, 250, 100, 40

button #play.button2 “New Game”, PlayAgain, UL, 475, 250, 100, 40

‘Open the window with no frame and a handle of #play

open “Hangman” for window_nf as #play

print #play.button1, “!enable” ‘Enable the Submit button

print #play.button2, “!disable” ‘Disable the New Game button

‘Set up the trapclose event for the window

print #play, “trapclose ClosePlay”

‘Set the font type, size, and attributes

print #play.statictext1, “!font Arial 24 bold”

print #play.statictext3, “!font Arial 10 bold”

print #play.statictext4, “!font Arial 10 bold”

print #play.guesses, “!font Arial 14 bold”

print #play.letter1, “!font Arial 24 bold”

print #play.letter2, “!font Arial 24 bold”

print #play.letter3, “!font Arial 24 bold”

print #play.letter4, “!font Arial 24 bold”

print #play.letter5, “!font Arial 24 bold”

print #play.letter6, “!font Arial 24 bold”

print #play.letter7, “!font Arial 24 bold”

print #play.letter8, “!font Arial 24 bold”

print #play.letter9, “!font Arial 24 bold”

print #play.letter10, “!font Arial 24 bold”

366 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 366

print #play.guess, “!font Arial 20 bold”

print #play.guess, “!setfocus” ‘Set focus to the button control

call StartNewGame ‘Call on the subroutine that gets things started

‘Pause the application and wait for the player’s instruction

wait

end sub

This subroutine begins by assigning values to the WindowWidth and WindowHeight special vari-
ables to set the window’s width and height. Then a series of loadbmp commands are executed to
preload bitmap images representing different graphical depictions of a hangman character. A
series of statictext controls is defined next, displaying the name of the game and its copyright
statement and providing labels for other controls. A graphicbox control is then added to the right
side of the window.

The game is designed to display mystery words that are ten letters or less in length. To display the
letters that make up each word, 10 textbox controls are added next, each of which is 40 pixels
wide by 60 pixels tall. Two additional textbox controls are then added. The first textbox control
is used to display a list of all the letters guessed by the player, making it easy for the player to keep
track of things. The second textbox control is used to collect player guesses.

Next, two button controls are added. The first button control is labeled Submit. When clicked, it
calls on a subroutine named ProcessGuess, which is responsible for ensuring that the player’s
guess is valid and for displaying letters that are correctly guessed. The second button control is
labeled New Game. When clicked, it calls on a subroutine named PlayAgain. This subroutine is
responsible for preparing the game for a new round of play.

At this point, the user interface is complete and the open command is used to display the window
and assign it a handle of #play. Next, two print statements are executed to enable the Submit
button and disable the New Game button. Another print statement is used to set up the trap-
close event for the window. Additional print statements are then executed to specify the font
type, size, and attributes for various interface controls. A final print statement is executed to set
focus to the textbox control used to collect player guesses, and then the StartNewGame subroutine
is called. The last statement in the ManageGamePlay subroutine executes the wait command to
pause the game and wait for the player to make a guess.

367Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 367

Starting a New Game

The StartNewGame subroutine, shown next, is responsible for setting up the game window to play
a new game. This subroutine starts off by clearing out the textbox control used to collect the
player’s guesses. Next, a bitmap showing an empty hangman gallows is loaded into the window’s
graphicbox control using the drawbmp command.

Next, the GetNewWord$() function is called. This function returns a randomly selected word from
the words$() array, which is then stored in the secretWord$ variable.

To clear out anything displayed in the textbox controls representing the letters of the secret word,
print statements are used to display an empty string in each control. A for…next loop is then set
up that loops once for each letter in the game’s mystery word and displays an underscore charac-
ter in the corresponding textbox controls:

‘This subroutine starts a new round of play

sub StartNewGame

print #play.guesses, “” ‘Clear out any previous guesses

‘Load a blank bitmap image into the game’s graphicbox control

print #play.pic1, “flush” ‘Flush the previous image

print #play.pic1, “drawbmp blank 1 1” ‘Display the bitmap image

print #play.pic1, “flush” ‘Flush the new image

‘Call on the function responsible for selecting a new word

secretWord$ = GetNewWord$()

‘Clear out anything displayed in the textbox controls used to

‘represent the letters of the word

print #play.letter1, “”

print #play.letter2, “”

print #play.letter3, “”

print #play.letter4, “”

print #play.letter5, “”

print #play.letter6, “”

print #play.letter7, “”

print #play.letter8, “”

print #play.letter9, “”

print #play.letter10, “”

368 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 368

i = 1 ‘Define a variable to be used as a counter

‘Loop through each letter in the word and display an underscore

‘character for each letter in the appropriate textbox control

for i = 1 to len(secretWord$)

if i = 1 then print #play.letter1, “_”

if i = 2 then print #play.letter2, “_”

if i = 3 then print #play.letter3, “_”

if i = 4 then print #play.letter4, “_”

if i = 5 then print #play.letter5, “_”

if i = 6 then print #play.letter6, “_”

if i = 7 then print #play.letter7, “_”

if i = 8 then print #play.letter8, “_”

if i = 9 then print #play.letter9, “_”

if i = 10 then print #play.letter10, “_”

next i

end sub

Hint

Take note of the use of the len() function in the for…next loop. This function returns a numeric
value representing the number of characters in the specified string.

Retrieving a Mystery Word

The code statements that make up the GetNewWord$() function are shown here and should be
added to the end of the program file:

‘This function is responsible for retrieving a word for the player

‘to guess

function GetNewWord$()

RandomNumber = int(rnd(1)*10) ‘Retrieve a number between 0 and 9

‘Use the random number to retrieve a word from the array and return

‘the word to the calling statement

GetNewWord$ = words$(RandomNumber)

end function

369Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 369

The function begins by retrieving a random number in the range of 0–9. Next, using this number,
a mystery word is selected from the words$() array and assigned to a local variable named Get-
NewWord$. GetNewWord$ is also the name of the function. In Just BASIC, any time you assign a
value to a variable that is named after the function in which it resides, the assigned value is
returned to the statement that called the function. As such, the word retrieved from the words$()
array is passed back to the StartNewGame subroutine, where it is assigned to the secretWord$
variable.

Processing Player Guesses

The code statements that make up the ProcessGuess subroutine are shown next and should be
added to the end of the program file:

‘This subroutine processes player guesses

sub ProcessGuess handle$

print #play.guess, “!contents? letterGuessed$” ‘Get the player’s guess

letterGuessed$ = lower$(letterGuessed$) ‘Convert all input to lowercase

print #play.guess, “” ‘Clear out the textbox control used to collect

‘player input

‘Call the function responsible for validating player guesses

result$ = ValidateInput$(letterGuessed$)

if result$ = “Invalid” then ‘Exit the subroutine if the guess is invalid

exit sub

end if

print #play.guesses, “!contents? guesses$” ‘Get the player’s guess

guesses$ = guesses$ + letterGuessed$ ‘Add the current guess to the list

‘of letters already guessed

print #play.guesses, guesses$ ‘Display the list of guessed letters

‘Determine if the letter that was guessed is part of the word

if instr(secretWord$, letterGuessed$) = 0 then

‘The letter is not part of the word, so increment the variable used to

‘keep track of the total number of misses

totalMissed = totalMissed + 1

370 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 370

notice “Sorry: Your guess was wrong!” ‘Inform the player

print #play.guess, “!setfocus” ‘Set focus to the button control

‘Update the display of the hangman image based on how many misses

‘the player has made so far

if totalMissed = 1 then print #play.pic1, “drawbmp head 1 1”

if totalMissed = 2 then print #play.pic1, “drawbmp body 1 1”

if totalMissed = 3 then print #play.pic1, “drawbmp leftarm 1 1”

if totalMissed = 4 then print #play.pic1, “drawbmp rightarm 1 1”

if totalMissed = 5 then print #play.pic1, “drawbmp leftleg 1 1”

if totalMissed = 6 then ‘At 6 misses the game is over

print #play.pic1, “drawbmp rightleg 1 1” ‘The player is hung

notice “Game over. You Lose!” ‘Notify the player

print #play.button1, “!disable” ‘ Disable the Submit button

print #play.button2, “!enable” ‘Enable the New Game button

print #play.button2, “!setfocus” ‘Set focus to the New Game button

end if

print #play.pic1, “flush” ‘Make the bitmap image stick

else ‘The letter is part of the word

‘Replace the underscore character for each occurrence of the letter

‘in the word

for i = 1 to len(secretWord$)

‘Retrieve a letter from the word

letter$ = mid$(secretWord$, i, 1)

‘See if the letter matches the player’s guess and display it if it

‘matches

if letter$ = letterGuessed$ then

if i = 1 then print #play.letter1, letterGuessed$

if i = 2 then print #play.letter2, letterGuessed$

if i = 3 then print #play.letter3, letterGuessed$

if i = 4 then print #play.letter4, letterGuessed$

if i = 5 then print #play.letter5, letterGuessed$

if i = 6 then print #play.letter6, letterGuessed$

if i = 7 then print #play.letter7, letterGuessed$

if i = 8 then print #play.letter8, letterGuessed$

if i = 9 then print #play.letter9, letterGuessed$

371Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 371

if i = 10 then print #play.letter10, letterGuessed$

totalCorrect = totalCorrect + 1 ‘Increment the variable used to

‘keep track of correct guesses

end if

next i

print #play.guess, “!setfocus” ‘Set focus to the button control

‘The player wins when the total number of correct guesses equals the

‘number of letters in the word

if totalCorrect = len(secretWord$) then

notice “Game Over. You have won!” ‘Notify the player

print #play.button1, “!disable” ‘Disable the Submit button

print #play.button2, “!enable” ‘Enable the New Game button

print #play.button2, “!setfocus” ‘Set focus to the button control

end if

end if

end sub

This subroutine begins by retrieving the contents of the textbox control into which player guesses
are entered and assigns this value to a variable named letterGuessed$. Once its value has been
retrieved, the contents of the #play.guess textbox control are replaced with an empty string.

Next, the ValidateInput$ function is called and passed letterGuessed$ as an argument. The
ValidateInput$ function analyzes the player’s guess and returns a string of “Invalid” if a prob-
lem is found. If this is the case, no additional tasks need to be performed in the ProcessGuess
subroutine, and the exit sub command is executed. If this is not the case, a valid guess has been
entered, so the next few statements retrieve the list of guesses that have been already made (from
the #play.guesses textbox control), add the player’s current guess to this list, and then redisplay
the updated list of guesses back in the textbox control.

Next, an if…then…else code block is set up to determine whether the player’s guess is part of the
mystery word. This is accomplished by first using the lower$() function to convert the player’s
guess to all lowercase characters and then using the instr() function to search secretWord$ and
see if it contains the letter the player guessed. If instr() returns a value of 0, the player has
guessed a letter that is not in the word. In this case, the value of totalMissed is incremented, and
a pop-up dialog is displayed informing the player of her missed guess. Focus is then placed on
the textbox control used to collect player guesses.

372 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 372

Finally, a bitmap is loaded into the window’s graphicbox control. The game determines what
bitmap image to load based on the value assigned to totalMissed. For example, if this is the first
time that the player has guessed an incorrect letter, a bitmap showing a head with no body parts
is loaded. If, on the other hand, this is the player’s sixth miss, a bitmap showing a complete body
is displayed, notifying the player that she has lost the game. In addition, the Submit button is dis-
abled, and the New Game button is enabled.

If the player’s guess did match up against at least one of the letters in the mystery word, the else
portion of the if…then…else code block is executed. If this is the case, a for…next loop is set up
that repeats once for each letter in the mystery word. Upon each iteration of the loop, the mid$()
function is used to retrieve a letter from the mystery word. Once a letter has been retrieved, an
if statement code block is set up that checks to see if the player’s guess is equal to that letter in
the word. If a match is found, a print statement is executed that displays that letter. Because the
for…next loop iterates through every letter in the mystery word, every matching instance of
the player’s guess is displayed. Note also that the totalCorrect variable is incremented for each
matching letter that is found in the mystery word.

Once the entire word has been processed, the value of totalCorrect is checked to see if it is equal
to the length of the secretWord$. If this is the case, the player has guessed every letter that makes up
the game’s mystery word, and the game is over. After notifying the player of this fact, the Submit
button is disabled, and the New Game button is enabled.

Validating Player Guesses

The ValidateInput$() function, shown next, is responsible for validating player guesses and
notifying the player when an invalid guess has been submitted:

‘This subroutine is responsible for validating player guesses

function ValidateInput$(x$)

‘Check to see if the player entered something

if x$ = “” then ‘An empty string is not allowed

notice “Invalid input: You must enter a letter!”

ValidateInput$ = “Invalid” ‘Return a string indicating invalid input

print #play.guess, “!setfocus” ‘Set focus to the button control

exit function ‘There is no need to go further, so exit the subroutine

end if

‘Check to see if the player entered more than one character

if len(x$) > 1 then ‘Only one character may be input at a time

notice “Invalid input: Enter only one letter at a time!”

ValidateInput$ = “Invalid” ‘Return a string indicating invalid input

373Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 373

print #play.guess, “!setfocus” ‘Set focus to the button control

exit function ‘There is no need to go further, so exit the subroutine

end if

‘Check to see if the player entered a letter

if instr(“abcdefghijklmnopqrstuvwxyz”, lower$(x$)) = 0 then

notice “Invalid input: Numeric and special character guesses are “ _

+ “not valid!”

ValidateInput$ = “Invalid” ‘Return a string indicating invalid input

print #play.guess, “!setfocus” ‘Set focus to the button control

exit function ‘There is no need to go further, so exit the subroutine

end if

print #play.guesses, “!contents? guesses$” ‘Get the player’s guess

‘Check to see if the player has already entered this guess

if instr(guesses$, lower$(x$)) > 0 then ‘Convert the player guess to all

‘lowercase characters

notice “Invalid input: This letter has already been guessed!”

ValidateInput$ = “Invalid” ‘Return a string indicating invalid input

print #play.guess, “!setfocus” ‘Set focus to the button control

exit function ‘There is no need to go further, so exit the subroutine

end if

end function

This function consists of four separate if…then code blocks. The first code block checks to see if
the player clicked on the Submit button without entering a guess. The second code block checks
to see if the player’s guess is more than one character long. The third code block checks to see if
the guess is a letter. Finally, the fourth code block checks to see if the player has made the guess
before, which is the case if the letter the player submitted is found in the list of guessed letters
stored in #play.guesses.

If any of the validation checks proves true, the function returns a value of “Invalid”. Otherwise,
the function exits without returning anything, signaling a valid guess.

Preparing for a New Game

The PlayAgain function subroutine is called whenever the player clicks on the New Game button.
The code statements that make up this subroutine are shown next and should be added to the
end of the program file:

374 Programming for the Absolute Beginner, Second Edition

11 ProgABS2E ch11 2/23/15 8:47 PM Page 374

‘This subroutine prepares the game for another round of play

sub PlayAgain handle$

print #play.button1, “!enable” ‘Enable the Submit button

print #play.button2, “!disable” ‘Disable the New Game button

print #play.guess, “!setfocus” ‘Set focus to the button control

‘Reset these variables back to zero to get ready to play again

totalMissed = 0

totalCorrect = 0

call StartNewGame ‘Call this subroutine to start a new round of play

end sub

When called, the subroutine enables the Submit button and disables the New Game button. It
also assigns focus to the textbox control used to collect player guesses. Next, the values assigned
to the totalMissed and totalCorrect variables are reset to their initial default settings, and the
StartNewGame subroutine is called, allowing the player to play a new game.

Getting Player Confirmation Before Closing the Game

The last procedure in this application, shown next, is a subroutine named ClosePlay. This sub-
routine is responsible for getting player confirmation before terminating the execution of the game:

‘This subroutine is called when the player closes the #play window

‘and is responsible for ending the game

sub ClosePlay handle$

‘Get confirmation before terminating program execution

confirm “Are you sure you want to quit?”; answer$

if answer$ = “yes” then ‘The player clicked on Yes

close #play ‘Close the #play window

end ‘Terminate the game

end if

end sub

375Chapter 11 • Debugging Your Applications

11 ProgABS2E ch11 2/23/15 8:47 PM Page 375

The Final Result
Okay, this marks the end of yet another successful development project. Assuming that you fol-
lowed along carefully and did not make typos, your new game should be ready to go. If, on the
other hand, you find that things are not working as expected, it is time to put your newly devel-
oped debugging skills to work. In fact, even if the game is running just fine, you might want to
go ahead and run it once using Just BASIC’s debugger, just so that you can observe and verify its
proper execution.

Summary
In this chapter, you learned how to track down and fix syntax, logical, and runtime errors. You dis-
covered how to work with the Just BASIC debugger to keep an eye on program statement execu-
tion as well as to monitor the status of variable values. You found out how to exercise step-by-step
control over the execution of programming statements within your programs. In addition, you
learned how to develop error handlers. Finally, you discovered how to create the Hangman game.

Now, before you put this book down and move on to other things, why don’t you take a little
extra time to make a few improvements to the Hangman game by addressing the following list of
challenges.

376 Programming for the Absolute Beginner, Second Edition

 1. Currently, the Hangman game randomly pulls mystery words from an array that contains
10 entries. As a result, it does not take long before players start running into the same
word repeatedly. Consider expanding the number of words stored in the array to 40 or
50.

 2. To give the game a little more pizzazz, consider adding a splash screen to it. In addition,
add a Help window.

 3. You might also want to do away with all the pop-up windows displayed by the game and
instead communicate with the player by adding another textbox control to the window
in which you can post messages.

 4. Add a little sound to the Hangman game by setting it up to play different wave files
when the player guesses a correct letter or when the player wins or loses a game.

 5. It might also be a good idea to let the player know what the mystery word is at the end
of each losing game.

C
ha

lle
ng

es

11 ProgABS2E ch11 2/23/15 8:47 PM Page 376

Appendix A: What’s on the Companion
Website?

Appendix B: What’s Next?

Glossary

IVP
A

R
T

Appendixes

12 ProgABS2E Apps 2/23/15 8:48 PM Page 377

This page intentionally left blank

T
o become an effective programmer with any programming language, you
must dedicate yourself to learning the language through the development of
new applications. This means that you have to spend time learning about

and experimenting with different language features. As you learn more and tackle
more challenging programming tasks, it helps to have a collection of source code
from which you can draw upon and rely.

If you created each of the applications presented in this book as you went along,
you already have access to a good set of examples with which you can experiment
and learn. However, if you have not had time to create one or more of the book’s
applications, you can download them from this book’s companion website located
at www.cengage.com/downloads.

Assuming that you have read each chapter of the book and you did not skip around
too much, you should already have a good understanding of how each game works
and what its purpose is. However, in case you jumped around a bit, Table A.1 provides
a brief overview of each application.

What’s on the
Companion Website?

A
12 ProgABS2E Apps 2/23/15 8:48 PM Page 379

http://www.cengage.com/downloads

© 2016 Cengage Learning®

380 Programming for the Absolute Beginner, Second Edition

Chapter Game Description

Chapter 1 Knock Knock Joke This game provides an introduction to BASIC
programming and demonstrates the steps
involved in creating a small Just BASIC
application that tells the player knock-knock
jokes.

Chapter 2 The Legend of Mighty Molly This game demonstrates how to collect and
process user input through the creation of a
mad-lib-style computer game.

Chapter 3 BASIC Crazy 8 Ball This game simulates a magic 8-ball that provides
randomly selected answers to player questions.

Chapter 4 Ask Genie This game pits you against a willful genie named
Tabethia, who is determined not to grant any of
your wishes.

Chapter 5 Rock, Paper, Scissors This game demonstrates how to use conditional
logic to create a player versus computer game
based on the popular Rock, Paper, Scissors game.

Chapter 6 Guess My Number This game demonstrates how to use a loop to
control the overall operation of a number-
guessing game.

Chapter 7 BASIC BlackJack This card game demonstrates how to improve
the organization of BASIC applications through
the use of functions and subroutines.

Chapter 8 Tic-Tac-Toe This is a two-player implementation of the
classic Tic-Tac-Toe game.

Chapter 9 BASIC Slot Machine This game pits the player against a computer-
simulated Las Vegas-style slot machine,
complete with animation and sound effects.

Chapter 10 Just Bricks This is a breakout-style arcade game that
demonstrates Just BASIC’s ability to generate
advanced computer games.

Chapter 11 Hangman This game ties together all the programming
concepts demonstrated in this book through
the development of a game that challenges the
player to guess mystery words in five or fewer
wrong guesses.

TA B L E A .1 J U S T BAS IC S O U R C E C O D E LO C AT E D

O N T H E C O M PA N I O N W E B S I T E

12 ProgABS2E Apps 2/23/15 8:48 PM Page 380

N
ow that you have completed this book and know the fundamentals of pro-
gramming, you may be wondering what to do next. Although you have
learned much already, there is still plenty left to be learned. You should not

view this book as the end of your programming education. Instead, think of it as
the beginning. To become an effective programmer, you must continue to expand
your knowledge and skills.

Fortunately, there is no end to the number of different opportunities open to you.
For starters, you may want to continue to work and experiment with Just BASIC
to see how far it will take you. Or you may want to move on to any number of alter-
native and more advanced BASIC programming languages, such as Liberty BASIC
or Visual Basic. Alternatively, you might want to apply your BASIC programming
skills to other avenues such as VBScript (a Visual Basic–like scripting language).

This appendix has been designed to help you keep your momentum going by
pointing you to different resources that you can tap into to learn more about BASIC
programming in its many forms. You will learn where to go to learn more about Just
BASIC, as well as where to find information about other programming languages.

What’s Next?

B
12 ProgABS2E Apps 2/23/15 8:48 PM Page 381

Locating Just BASIC Resources Online
The Internet provides access to an abundance of information on Just BASIC. The first place to
start is the Just BASIC website, which you will find at www.justbasic.com. This website has plenty
of useful information, including the latest news about Just BASIC, access to download the cur-
rent release of Just BASIC, and upgrade information to Liberty BASIC, the big brother commer-
cial version to Just BASIC.

The Just BASIC Forum
Another excellent source for learning more about Just BASIC is the Just BASIC forum located at
http://justbasic.conforums.com. At the Just BASIC Forum, you can access different discussion
forums and view thousands of topics and postings made by other Just BASIC programmers. You
can also post your own questions and answers if you want. There are forums specifically dedicated
to novice programmers, games and graphics development, tip sharing, and much more.

The Just BASIC Files Archive
Another excellent source of Just BASIC information can be found on the Just BASIC Files Archive
located at http://jbfilesarchive.com/phpBB3/viewforum.php?f=35. Here you can get access to forum
discussions regarding a host of topics, including game development, utilities, database access, and
Internet application development.

If you run into a problem with a Just BASIC application that you cannot figure out on your own,
you might want to join this site and post your question to see if other programmers have already
run into the same problem and figured out a way to fix it.

Liberty BASIC
As you have already been informed, Liberty BASIC is Just BASIC’s big brother. Liberty BASIC is
marketed as a commercial implementation of the BASIC programming language. Although it’s
not as robust and powerful as other BASIC programming languages like Visual Basic, Liberty
BASIC is a low-cost option that is well suited as a programming language for computer hobby-
ists and individuals just getting started in BASIC programming.

To download a trial copy of Liberty BASIC, visit the Liberty BASIC website at www.libertyba-
sic.com. Here you can access online documentation, tutorials, and training videos. Registered
users can even take an online Liberty BASIC programming class.

Because of its close relationship to Just BASIC, you will find that the transition from Just BASIC
to Liberty BASIC is straightforward. You will also find that Liberty BASIC provides all the capa-
bilities provided by Just BASIC—and much more.

382 Programming for the Absolute Beginner, Second Edition

12 ProgABS2E Apps 2/23/15 8:48 PM Page 382

http://www.justbasic.com
http://www.libertybasic.com
http://www.libertybasic.com
http://justbasic.conforums.com
http://jbfilesarchive.com/phpBB3/viewforum.php?f=35

Liberty BASIC benefits from the support of a large and active online community, which includes
third-party developers who provide add-ons designed to extend or enhance Liberty BASIC’s
capabilities. One area of third-party development that may interest you is applications that are
designed to simplify the development of graphical user interfaces (GUIs) for Liberty BASIC appli-
cations. Two such third-party applications are Liberty BASIC Workshop and Liberty BASIC Quick
Visual Designer.

Liberty BASIC Workshop
Liberty BASIC Workshop is an integrated development environment that is distributed as freeware.
You can download a copy of it from http://alycesrestaurant.com/workshop.htm. Its features include
a GUI builder that is designed to assist you in the development of Liberty BASIC window interfaces.

Run BASIC
Run BASIC is a web development tool that allows you to create web applications using a version
of BASIC that is based on Just BASIC and Liberty BASIC. Run BASIC installs as an online web
interface and a web service, consisting of the BASIC programming language, an SQLite database,
and a small web server, which provides multisession support. Run BASIC applications are created
without Hypertext Markup Language (HTML). Instead, Run BASIC automatically generates the
HTML for you. Applications created using Run BASIC are written as BASIC programs, as is done
with Just BASIC.

Run BASIC offers an alternative to more complex web development languages and environment list
PHP, Perl, and Apache. You can install it on your own computer, setting up a Run BASIC web server.
If your Internet service provider permits it, you can install Run BASIC on one of its web servers.

Run BASIC install using a simple installer program. Installation packages are available for Windows,
Mac OS X, and Linux. Once it’s installed, you can interact with and program Run BASIC using
your web browser, which automatically connects to the Run BASIC server that is installed on your
computer. You can learn more about and download a copy of Run BASIC at www.runbasic.com.

Visual Basic
For programmers whose customers are Microsoft Windows users, Microsoft Visual Basic is the
dominant BASIC programming language. Visual Basic is a Rapid Application Development (RAD)
application development tool that is closely integrated with the Microsoft .NET framework, upon
which it depends to run and access system and network resources. As far as BASIC programming
languages go, Visual Basic is as complicated as it gets. As a result, it takes longer to learn and

383Appendix B • What’s Next?

12 ProgABS2E Apps 2/23/15 8:48 PM Page 383

http://www.runbasic.com
http://alycesrestaurant.com/workshop.htm

384 Programming for the Absolute Beginner, Second Edition

master than other BASIC programming languages. To help address this issue, Microsoft has devel-
oped a scaled-down version of Visual Basic called Microsoft Visual Basic Express 2013, which is
a little easier to learn.

You can download a copy of Microsoft Visual Basic Express 2013 at http://msdn.microsoft.com/
vstudio/express/vb/, where it is made freely available as a component of Visual Studio Express 2013.

Other BASIC Programming Languages
In addition to Just BASIC, Liberty BASIC, Visual Basic, and NS Basic, there are dozens of other
programming languages that are based on BASIC. Although it is well beyond the scope of this
book to attempt to cover each of these BASIC dialects, some deserve a mention. Table B.1 shows
a list of seven additional BASIC programming languages and provides the address of the language’s
website. Also included in Table B.1 is a listing of the operating system that each of these BASIC
programming languages supports.

© 2016 Cengage Learning®

Name URL Supported Platforms

DarkBASIC www.thegamecreators.com Windows (game development)

PowerBASIC www.powerbasic.com/ Windows

Kbasic www.kbasic.com/ Windows, Linux, Mac OS X

Yabasic www.yabasic.de/ Windows, Linux, UNIX

SmallBASIC http://smallbasic.sourceforge.net/ Linux, Windows

True BASIC www.truebasic.com/ Windows

XBasic www.xbasic.org/ Windows, Linux

TA B L E B .1 A LT E R N AT I V E BAS IC P R O G R A M M I N G L A N G U A G E S

12 ProgABS2E Apps 2/23/15 8:48 PM Page 384

http://www.thegamecreators.com
http://www.xbasic.org/
http://www.truebasic.com/
http://smallbasic.sourceforge.net/
http://www.yabasic.de/
http://www.kbasic.com/
http://www.powerbasic.com/
http://msdn.microsoft.com/vstudio/express/vb/
http://msdn.microsoft.com/vstudio/express/vb/

Non-BASIC Programming Languages
Of course, there is nothing that says you have to apply your newly developed programming skills
to BASIC programming. You can apply the programming techniques and principles that you
learned in this book to any programming language, including such languages as these:

• Microsoft C#

• Microsoft C++

• Perl

• Python

• JavaScript

• Java

• Ruby

Each of these programming is separate and distinct and has its own set of strengths and weaknesses.
You can obtain more information about these and other programming languages by spending a
little time searching the Internet.

www.tech-publishing.com
Last but not least, you may want to check out the author’s website, which is located at www.tech-
publishing.com, as shown in Figure B.1. Here you will find other books offering additional infor-
mation regarding many of the programming languages introduced in this book.

385Appendix B • What’s Next?

Figure B.1 The author’s website at www.tech-publishing.com.
© 2016 Cengage Learning®

12 ProgABS2E Apps 2/23/15 8:48 PM Page 385

http://www.techpublishing.com
http://www.techpublishing.com
http://www.tech-publishing.com

This page intentionally left blank

absolute path. A path specification in which the complete path to a file or folder,
including the drive letter and any folders, is included in the path between the drive
specification and the target file or folder.

accelerator key. A key that can be used to activate a menu or menu item when pressed
in conjunction with another key, such as Alt.

AppleScript. A scripting programming language run on Mac OS X.

applets. Java programs embedded inside web pages that are loaded and executed
by a web browser.

application window. A window that can contain interface controls and that supports
optional features such as resizing and menus.

argument. A value, literal, or variable that is passed to a subroutine or function for
processing.

array. An index list of values stored and managed as a unit.

assembler. A program used to compile assembly language programs, line for line,
into machine code.

assembly language. A low-level programming language that uses mneumonic
codes to represent specific machine code commands.

BASIC (Beginner’s All-Purpose Symbolic Instruction Code). A programming lan-
guage initially created to teach people how to program.

Glossary

12 ProgABS2E Apps 2/23/15 8:48 PM Page 387

binary file. A file that is capable of storing text, graphics files, sound files, and so on.

binary operator. An operator that performs a calculation on two values, such as addition, sub-
traction, multiplication, and division.

bmpbutton control. A user interface control similar to the button control but which supports
the display of a graphics image in place of a text string.

break point. A designated location within a program that pauses the execution of an application
to facilitate debugging and the observation of variable values.

button control. A user interface control that displays a graphical representation of a button users
can click on to send a command to a program.

by reference. A state in which the value of an argument passed to a procedure for processing is
changed if the corresponding procedure parameter is changed during the execution of the pro-
cedure.

bytecode. An intermediate level of compilation (sometimes referred to as p-code) used by pro-
gramming languages such as Java to run an application in a virtual machine, allowing for greater
portability with minimal loss of time and minimal use of resources during runtime compilation.

by value. A state in which the value of an argument passed to a procedure for processing remains
unchanged if the corresponding procedure parameter is changed during the execution of the
procedure.

C. A general-purpose programming language developed in the early 1970s at Bell Telephone
Laboratories for use on UNIX operating systems.

C++. An object-oriented programming language that views system and key language resources
as objects that provide everything needed to access and manipulate them.

checkbox control. A user interface control that gives the user a choice between two options,
which when set displays a check box inside a square field.

COBOL (Common Business-Oriented Language). A programming language developed in the
1950s to support the development of business applications.

code editor. A text editor used to enter and save program source code.

collision detection. An event that occurs when two objects (sprites) make contact with one another
during the execution of a computer game.

combobox control. A user interface control that includes features provided by the listbox and
textbox controls that can be used to present users with a list of options from which to select.

compiler. A program that translates program language statements into machine code.

388 Programming for the Absolute Beginner, Second Edition

12 ProgABS2E Apps 2/23/15 8:48 PM Page 388

concatenation. The process of joining two or more strings to create a new string.

constant. A descriptive name assigned to a known value that does not change during program
execution.

counter. A variable used to keep count of iterations in a loop.

cross-platform. The ability to run an application on more than one operating system.

data. The information that your applications collect, store, process, and modify during execution.

database. An application that is designed to facilitate the storage and retrieval of large amounts
of data.

debugger. A software program used to locate and analyze errors that occur during the application
development process, thus enabling programmers to trace and pause program execution to check
the status of program variables.

dialog. A special pop-up window designed to collect user information or to notify the user of an
event or result.

do…until. A programming statement that creates a loop that repeats until a specified condition is
true.

do…while. A programming statement that creates a loop that repeats as long as a specified con-
dition is true.

endless loop. A loop that never ends.

event. An occurrence of a predefined activity such as a mouse click or the closing of a window.

event handler. A mechanism for triggering subroutine or function execution based on the occur-
rence of a specified event, such as a mouse click or the closing of a window.

expression. A statement that is evaluated and produces a result.

flowchart. A tool used by programmers to graphically depict the logical flow of all or part of a
program.

focus. A state in which a user interface control has been set up to accept any incoming keyboard
input.

for…next. A programming statement that creates a loop that repeats a set number of times.

Fortran (FORmula TRANslator). A programming language created in the 1950s for the purpose
of performing complex mathematic calculations.

FreeForm-J. A Just BASIC application that assists Just BASIC programmers in visually designing
graphical user interfaces (GUIs).

389Glossary

12 ProgABS2E Apps 2/23/15 8:48 PM Page 389

function. A collection of statements that is called and executed as a unit and which has the ability
to return a value to the statement that called upon it.

game state. A term that describes the different stages a computer game goes through during its
execution.

global variable. A variable that is accessible throughout the program.

graphicbox control. A user interface control that can display bitmap images and draw shapes
such as squares, circles, and text characters.

graphics window. A window designed to display graphics and sprite animation.

groupbox control. A programming statement that consists of a box with a label that is used to
group and organize other controls.

HTML (Hypertext Markup Language). A web development language used to provide and display
content on the World Wide Web.

IDE (integrated development environment). An application or group of applications designed to
facilitate application development, which usually includes a code editor, compiler, and debugger.

if…then. A programming statement that tests a condition and then alters the execution flow of
an application based on the result of its analysis.

interpreter. A program that converts script statements into machine code at runtime.

Java. A cross-platform programming language, developed by Sun Microsystems in the early
1990s, that is based heavily on C and C++.

JavaScript. A scripting language used to develop scripts embedded within web pages to add
dynamic content to websites.

Just BASIC. A free BASIC programming language used to create standalone Windows applications.

Liberty BASIC. A commercial programming language based on BASIC that provides all the same
functionality as Just BASIC plus a number of additional features.

listbox control. A user interface control used to display a list of items from which the user can
make a selection.

local variable. A variable that is accessible only within the scope in which it is created.

logical error. An error created when a programmer makes a mistake laying out the logic used to
perform a given task.

loop. A set of programming statements that is repeatedly executed as a unit.

390 Programming for the Absolute Beginner, Second Edition

12 ProgABS2E Apps 2/23/15 8:48 PM Page 390

machine code. The basic language of a computer, which is made up of binary patterns that the
CPU can understand and process.

mainwin. A text window automatically created as part of every Just BASIC program.

menus. Drop-down lists of commands located at the top of the window, just underneath the
window’s title bar.

Microsoft .NET Framework. A collection of resources designed to support the development and
execution of Windows applications that run on desktop computers, local area networks, and the
Internet.

MIDI (Musical Instrument Digital Interface). A communications protocol that enables elec-
tronic musical instruments and computers to communicate.

Objective-C. An object-oriented programming language based on C that runs on Mac OS X.

object-oriented. A type of programming language that views resources as objects containing
methods and properties that can be used to manipulate and configure their behavior.

order of precedence. A set of rules that determines the order in which a programming language
evaluates a numeric expression.

parameter. A variable defined within a subroutine or function that maps to an argument that the
subroutine or function is called on to execute.

p-code. An intermediate level of compilation (sometimes referred to as bytecode) used by pro-
gramming languages such as Java to run an application inside a virtual machine, thus allowing
for greater application portability.

pen. A virtualized writing instrument that can be used to draw on a graphics window or a graph-
icbox control.

Perl. A scripting language originally developed to run on UNIX but later ported over to every
major operating system platform.

pixel (Picture Element). The smallest addressable area that can be written to on the screen or
window.

point. 1/72 of an inch.

procedure. A collection of programming statements that can be called upon to execute from dif-
ferent locations within an application.

program. A file containing code statements that, when executed, tell the computer to do something.

pseudo code. A term that refers to an English-like outline of all or part of the programming logic
that makes up a computer program.

391Glossary

12 ProgABS2E Apps 2/23/15 8:48 PM Page 391

Python. A scripting language similar to Perl that is known for its emphasis on easing programmer
development, sometimes at the cost of speed and efficiency.

RAD (Rapid Application Development). A programming technique in which the programmer
begins application development using a drag-and-drop tool that facilitates the creation of graph-
ical user interfaces. Once the interface has been designed, the program code required to finish
building the application is added.

radiobutton control. A user interface control that gives users a choice between two or more
mutually exclusive choices.

random access file. A file that can be read from or written to at any location within the file.

RBScript. A scripting language derived from REALbasic.

relative path. A path specification that identifies the location of a file or folder relative to the
location of the current working directory (folder).

reserved word. A programming language keyword that has been defined as having a special purpose.

Rexx (Restructured eXtended eXecution). A scripting language developed by IBM and later
ported over to every major computing platform.

Ruby. An object-oriented scripting language similar to Perl.

Run BASIC. A web development service that supports the development of web applications
using a version of BASIC that is based on Just BASIC and Liberty BASIC.

runtime error. An error that occurs when an application performs an illegal action.

scripting language. A computer language that is interpreted into machine code at execution time.

select…case. A programming statement used to set up a series of conditional tests, each of
which is compared to a single value.

sequential file. A file that contains plain text and that is processed sequentially, from beginning
to end.

source code. The statements that make up a program.

special variables. A collection of variables created and managed by a programming language that
provides access to commonly used information.

sprite. An image that is integrated into a larger background scene and forms the basis of com-
puter animation.

SQL (Structured Query Language). A specialized programming language designed to support
the creation, modification, and retrieval of data stored in a database.

392 Programming for the Absolute Beginner, Second Edition

12 ProgABS2E Apps 2/23/15 8:48 PM Page 392

statements. The instructions that make up a computer program.

statictext control. A user interface control used to display a text string on a window.

subroutine. A collection of one or more code statements that can be called upon to execute.

syntax error. An error that occurs when you do not write a code statement according to the rules
of the programming language.

textbox control. A user interface control that provides a single-line input field that can be used
to display or to collect small amounts of text input the user provides.

texteditor control. A user interface control that provides a multiline text field that can be used
to display text or to collect text input by the user.

text window. A window designed specifically for the purpose of displaying text, which always
includes a menu bar containing File and Edit menus.

token file. A file used as the basis for creating Just BASIC applications that can run as standalone
applications.

trapclose. An event that automatically occurs when the user clicks on the system menu close
button or otherwise closes the application window.

variable. A pointer to a location in memory (address) where a value is stored.

VBA (Visual Basic for Applications). A Microsoft programming language based on BASIC that
can be used to automate the execution of an application.

VBScript. A scripting language based on BASIC.

wave. A digital audio file with a .wav file extension that stores uncompressed raw audio data.

while…wend. A programming statement that creates a loop that repeats for as long as a specified
condition is true.

393Glossary

12 ProgABS2E Apps 2/23/15 8:48 PM Page 393

This page intentionally left blank

Index
Symbols
− operator, 173
! character, 82
$ character, 145
* operator, 173
/ operator, 173
// comment character, 25
^ operator, 173
{} (curly braces), 167
“ (double quotes), 25, 281
+ operator, 173
< operator, 172
<= operator, 172
<> operator, 172
= operator, 172
> operator, 172
>= operator, 172

A
AboutGame subroutine, 331
ABS() numeric function, explained, 142
absolute path, explained, 251
accelerator keys, using with menus, 106
adaptive applications. See conditional logic
AddBallToGame subroutine, 337
AddBricksToGame subroutine, 336–337
addition operator, description and example, 173
Agentix Installer program, 63
AnalyzeAndUpdateBallLocation subroutine, 339–341
and operator, type and example, 176

application menus
adding to windows, 106
building, 106–107
defined, 106
naming, 106
naming items, 106
separator line, 106
standards, 107
users’ expectations, 107
See also window menus

application windows
! character, 82
accelerator keys, 106
adding programming logic to, 81
closing, 80–82
designing with FreeForm-J, 108–111
device parameter, 80
dialog type, 76, 78
displaying, 80
event programming, 82
graphics type, 76–78
#handle parameter, 80–81
#main handle, 81
opening, 80–82
specifying size and location, 83–84
style suffixes, 78–79
text type, 76–77
UpperLeftX variable, 83
UpperLeftY variable, 83
window type, 76–77
WindowHeight variable, 83
WindowWidth variable, 83–84
See also windows

applications. See programs

13 ProgABS2E Index 2/23/15 8:49 PM Page 395

arcade-style games
animation speed, 318
BallControl subroutine, 322–323
collision detection, 318–320
CollisionCheck subroutine, 320
event synchronization, 318
game state, 314–315
gameplay and loops, 315–316
key events, 321–323
moving items, 316–317
player input, 321–323
RegulateTiming subroutine, 317
sprites, 308–314
See also Bricks game

arguments
defined, 48, 221
passing by reference, 226–227
passing by value, 226
passing to subroutines, 221

arrays
creating, 99–100, 134, 144–145
in Hangman game, 364
one-dimensional, 134, 249
redim statement, 146
resizing, 146
retrieving data from, 145
storing data in, 144–146
two-dimensional, 248

Ask Genie game
accepting player input, 151–154
answering player questions, 154–155
beginning, 130
on companion website, 380
designing, 148
final result, 157
Just BASIC file script, 148–149
lamp.bmp image file, 153
providing hints, 156
seeing hints, 130
starting gameplay, 150–151
subroutines, 148
Tabethia, 130
welcoming players, 149–150
winning, 130

assembly language, 9
associated arrays, defining, 135
autoresize drawing command, described, 280

B
backcolor drawing command, described, 280
background color, setting, 84–86
BallAndPaddleHaveCollided subroutine, 342–343
BallControl subroutine, 322–323
BASIC BlackJack game

bitmap images, 228
CloseSplashWindow subroutine, 231–232
on companion website, 380
DealCard subroutine, 234
DealerTurn subroutine, 234–236
DealOpeningHand subroutine, 236–237
designing, 228
DisplaySplash subroutine, 230–231
final result, 238
GetRandomNumber() function, 237
initializing, 229
Just BASIC file script, 229
ManageGamePlay subroutine, 232–233
object of, 216
ResetGame subroutine, 237–238
RestartGame subroutine, 236
starting hands, 217
timer command, 231

BASIC Crazy 8 Ball game
asking questions, 72
on companion website, 380
controlling termination, 120
designing, 118
final result, 124
generating answers, 122–124
generating random number, 123
initiating gameplay, 120
Just BASIC file script, 118
opening window, 72
playing, 72
prompting player to ask question, 121–122
terminating gameplay, 124
welcome screen, 119–120

BASIC Doodle application, code for, 285–287

Programming for the Absolute Beginner, Second Edition396

13 ProgABS2E Index 2/23/15 8:49 PM Page 396

BASIC files, opening, 57
BASIC language, 12–13

“ (double quotes), 25
alternatives, 384
prompt command, 26
strings, 25
variables, 25
See also Just BASIC; programming languages

BASIC programs, running, 56
BASIC Slot Machine game, on companion website, 380
beep command, explained, 289
binary operators, support for, 174
bitmap images

creating from existing ones, 309–310
displaying, 308–309

BlackJack game
bitmap images, 228
CloseSplashWindow subroutine, 231–232
on companion website, 380
DealCard subroutine, 234
DealerTurn subroutine, 234–236
DealOpeningHand subroutine, 236–237
designing, 228
DisplaySplash subroutine, 230–231
final result, 238
GetRandomNumber() function, 237
initializing, 229
Just BASIC file script, 229
ManageGamePlay subroutine, 232–233
object of, 216
ResetGame subroutine, 237–238
RestartGame subroutine, 236
starting hands, 217
timer command, 231

BMP folder, contents of, 91
bmpbutton controls

adding to windows, 90–91
in Tic Tac Toe game, 244, 264

box drawing command, described, 280
boxfilled drawing command, described, 280
breakpoint, explained, 358
Bricks game

AboutGame subroutine, 331
AddBallToGame subroutine, 337

AddBricksToGame subroutine, 336–337
AnalyzeAndUpdateBallLocation subroutine,

339–341
BallAndPaddleHaveCollided subroutine, 342–343
CollisionCheck subroutine, 338–339
Collision.wav file, 340
on companion website, 380
designing, 324–325
dialog window, 306
DisplayGameOverMessage subroutine, 344–345
DrawBackground subroutine, 335–336
EndGame subroutine, 330
ExitGame subroutine, 330, 345
final result, 345
GameHelp subroutine, 330–331
GenerateGameSprites subroutine, 334–335
global variables, 326–327
InitializeVariables subroutine, 326–327
initializing game state, 326–329
Just BASIC application file, 325–326
ManageGamePlay subroutine, 327–329
ManageLives subroutine, 344
ManagePaddleMovement subroutine, 332–333
managing game state, 314–315
MonitorForBrickCollisions subroutine, 341–342
MoveTheBall subroutine, 338
number of subroutines, 325
RegulateGameSpeed subroutine, 341
relationship of subroutines, 324
RepositionBallAndPaddle subroutine, 337–338
ResetGame subroutine, 329–330
SetStartingBallDirection subroutine, 333–334
StartGameLoop subroutine, 331–332
starting, 306
structure chart, 324–325
UpdatePlayerScore subroutine, 343
See also arcade-style games

bugs. See debugger
button controls

adding to windows, 89–90
for Guess My Number game, 206
in Hangman game, 367

397Index

13 ProgABS2E Index 2/23/15 8:49 PM Page 397

C
C language, 10–11
C++ language, 11
carriage return, inserting between strings, 115
case statement

in Tic Tac Toe game, 267
using, 169–170

Catch statements, using in error handling, 360
characterInput event, described, 285
checkbox controls, adding to windows, 91–93
chr$() function, using, 142
circle drawing command, described, 280
circlefilled drawing command, described, 280
ClosePlay subroutine, 302–303, 375
CloseSplashWindow subroutine, creating, 231–232
cls drawing command, described, 280
COBOL (Common Business-Oriented Language), 10
code editor

compiler, 40
explained, 40
integrated debugger, 40
interpreter, 40

Code Editor window
Copy command, 50–51
Cut command, 50–51
Debug command, 50–51
default text window, 47
Edit menu, 49
end command, 48
File menu, 48
Find/Replace commands, 50–51
FreeForm-J utility, 49
Help command, 50–51
Kill command, 49
menu system, 48–50
New file command, 50–51
nomainwin command, 47
Open file command, 50–51
opening, 46
Preferences command, 50–51
Print command, 50–51
Release Notes command, 50–51
Run command, 50–51

run command, 47
Run menu, 49
Save file command, 50–51
Setup menu, 50
*.TKN files, 49
toolbar shortcuts, 50–51
welcome.bas program, 46
Winhlp32 file, 48
World of Just BASIC command, 50–51

code statements
entering for Knock Knock Joke game, 24–25
explained, 22

collision detection, incorporating in games, 318–320
CollisionCheck subroutine, 320, 338–339
Collision.wav file, explained, 340
colors

specifying for controls, 105–106
specifying for drawing, 284

combobox controls, adding to windows, 100–101, 180
comments, including, 25
companion website

accessing, 379
Ask Genie game, 380
BASIC BlackJack game, 380
BASIC Crazy 8 Ball game, 380
BASIC Slot Machine game, 380
Bricks game, 380
Guess My Number game, 380
Hangman game, 380
Knock Knock Joke game, 380
Legend of Mighty Molly game, 380
Rock, Paper, Scissors game, 380
source code on, 380
Tic Tac Toe game, 380
See also websites

comparison operations
combining, 175–177
negating, 175–177

comparison operators
table of, 171
using, 172–173

compiler program, explained, 10–11, 40
computer arcade games. See arcade-style games

Programming for the Absolute Beginner, Second Edition398

13 ProgABS2E Index 2/23/15 8:49 PM Page 398

computer languages
assembly language, 9
BASIC, 12–13
C, 10–11
C++, 11
COBOL, 10
database, 16–17
deciding on, 17
embedded application, 15
Fortran, 10
Java, 13–14
machine language, 8–9
Objective-C, 11
scripting, 14–15
Web development, 16
See also programming languages

concatenating strings, 141
conditional execution, example of, 162
conditional logic

applying, 163
courses of action, 163
explained, 162
if…then statements, 164–169
select case statements, 164

Conform dialog, using, 115
constants

assigning values to, 132
defining, 133
explained, 132

control color, specifying, 105–106
control focus, setting, 104
control font, specifying, 105–106
controls

availability of, 88
bmpbutton, 90–91, 244
button, 89–90, 206, 367
checkbox, 91–93
combobox, 100–101, 180
disabling, 105
for drawing application, 287
enabling, 105
graphicbox, 103–104, 281–283, 312–314
groupbox, 102–103
listbox, 99–100

radiobutton, 93–95
statictext, 95–96
textbox, 96–97, 181, 206
texteditor, 97–98

Crazy 8 Ball game
asking questions, 72
on companion website, 380
controlling termination, 120
designing, 118
final result, 124
generating answers, 122–124
generating random number, 123
initiating gameplay, 120
Just BASIC file script, 118
opening window, 72
playing, 72
prompting player to ask question, 121–122
terminating gameplay, 124
welcome screen, 119–120

curly braces ({}), using with if…then statements, 167

D
DarkBASIC, URL and platform, 384
data

collecting for files, 248–250
collecting for folders, 248–250
data, defined, 131
See also program data

data types, 137–138
Boolean, 135
Date, 135
Decimal, 135
Double, 135
Integer, 135
Long, 135
Single, 136
String, 136

database, defined, 16
database languages, 16–17
date data, retrieving, 136
DealCard subroutine, creating, 234
DealerTurn subroutine, creating, 234–236
DealOpeningHand subroutine, creating, 236–237

399Index

13 ProgABS2E Index 2/23/15 8:49 PM Page 399

debugger
examining variable values, 356–357
explained, 40
using, 357–358
using in Just BASIC, 59–60
See also error messages

debugger-toolbar buttons
Animate, 356
Help, 356
Resume, 356
Step Into, 356
Step Out, 356
Step Over, 356
Stop, 356

deleting
files, 259
folders, 260

delsegment drawing command, described, 280
dialog windows

in Bricks game, 306
using in applications, 76, 78

dialogs
Confirm, 115
Filedialog, 116–117
Notice, 114–115
Prompt, 115–116
using in Just BASIC, 114–117

ding.wav file, using with Slot Machine game, 299
direction drawing command, 281
directories, retrieving information about, 248
disable drawing command, 280
discard drawing command, 280
DisplayGameOverMessage subroutine, 344–345
DisplayHeight variable, 84
DisplayImages subroutine, 297–298
DisplaySplash subroutine, 230–231
DisplayWidth variable, 84
division operator, 173
Doodle application, code for, 285–287
double quotes, using in BASIC, 25
do…until loops

comparing to do…while, 196
equivalents of, 197
example, 197

explained, 193
do…while loops

comparing to do…until, 196
equivalents of, 196
example, 192–195
syntax, 194

down drawing command, 280
DrawBackground subroutine, 335–336
drawbmp command, 280, 309
drawing application

controls, 287
creating, 285–288
SetColor subroutine, 288

drawing commands, 280–281
drawing graphics, 279–285
drawing options

shape graphics, 279
text graphics, 279
turtle graphics, 279

drawings
clearing out, 284
segments, 278

drive information, retrieving, 246–248

E
Edit menu, inheriting, 108
ellipse drawing command, 280
ellipsefilled drawing command, 280
elseif keyword, 165
embedded application languages, 15
enable drawing command, 280
end command

adding to Just BASIC programs, 57
in Legend of Mighty Molly game, 70

end….if keywords, 166
end keyword, adding in Just BASIC, 29
EndGame subroutine, 330
endless loops, avoiding, 200–201
eof() function, using with files, 257
equals comparison, performing, 172
Err special variable, 359
error handling

benefit of, 362
On Error GoTo statement, 360–361

Programming for the Absolute Beginner, Second Edition400

13 ProgABS2E Index 2/23/15 8:49 PM Page 400

setting up, 360
structured, 360
unstructured, 360
See also runtime errors

error messages, receiving, 351. See also debugger
Error.log file, 354
errors

avoiding, 350
getting help with, 354
logical, 352–353
runtime, 353–354
syntax, 351–352
types of, 350

event handlers
keyboard, 284–285
subroutines as, 220–221, 267
See also runtime errors

event programming, 82
exit command, using with loops, 202–203
ExitGame subroutine, 330, 345
EXP() numeric function, 142
exponentiation operator, 173

F
File menu, adding to windows, 107
filenames, specifying, 251
Filedialog, 116–117, 252–253
files

allowing selection by users, 252–253
appending text to end of, 258
closing, 254
collecting data about, 248–250
creating, 258
deleting, 259
ensuring existence of, 250–251
eof() function, 257
input command, 255–256
kill command, 259
line input command, 256
opening, 254
random access, 253
reading from, 255
reading line by line, 257
renaming, 259

sequential type, 253
writing to, 258
See also Windows file system

files command, using wildcards with, 250
fill drawing command, described, 280
Finally blocks, using in error handling, 360
flowcharts, using, 162–163
flush drawing command, described, 280
focus. See control focus
folders

collecting data about, 248–250
creating, 260
deleting, 260

font attributes, setting in Just BASIC, 86–87
font drawing command, described, 280
font types, specifying, 87
fonts, specifying for controls, 105–106
foreground color, setting, 84–86
forms, designing in Just BASIC, 58
for…next loops

counter and next statement, 198
explained, 193
using, 197–199

Fortran (FORmula TRANslator), 10
FreeForm-J GUI Editor

accessing, 54, 58–59
availability of, 108–109
building window menus, 111–112
designing application windows, 108–111
explained, 49
generating source code, 112–113
starting, 108

functions
built-in, 146, 227
comparing to subroutines, 218
defined, 123
defining, 223–224
executing, 224–225
explained, 218
GetRandomNumber(), 237
for manipulating strings, 143–144
returning values from, 224
rmdir(), 260
terminating prematurely, 225
word$(), 247

401Index

13 ProgABS2E Index 2/23/15 8:49 PM Page 401

G
GameHelp subroutine, using with arcade-style games,

330–331
gameplay

Ask Genie game, 150–151
Crazy 8 Ball game, 120
initiating for Slot Machine game, 276
managing in Rock, Paper, Scissors game, 182–186
Slot Machine game, 294–295
terminating for Slot Machine game, 302–303
terminating for Tic Tac Toe, 272–273
Tic Tac Toe game, 244, 262

games. See BASIC BlackJack game; Guess My Number
game; Hangman game; Knock Knock Joke game;
Legend of Mighty Molly game

GenerateGameSprites subroutine, 334–335
getbmp command, 280, 310
GetRandomNumber() function, 237
global variables

in Bricks game, 326–327
for Guess My Number game, 206
in Hangman game, 364
for Rock, Paper, Scissors game, 178–180
for Tic Tac Toe game, 262
using, 138–139

go drawing command, described, 280
goto command, 92, 281
graphicbox controls

adding to windows, 103–104
home command, 283
using with sprites, 312–314
working with, 281–283

graphics
commands, 280–281
coordinate system, 277
displaying for Slot Machine game, 298–299
drawing, 279–285

graphics images, displaying, 278
graphics windows

using in applications, 76–78
working with, 281

greater than operator, symbol for, 172
greater than or equal to operator, symbol for, 172
groupbox controls, adding to windows, 102–103

Guess My Number game
analyzing player’s guesses, 207–209
button controls, 206
on companion website, 380
designing, 203
final result, 212
global variables, 206
Help window, 210–211
Just BASIC file script, 204
open command, 206
print command, 206
StartGame subroutine, 209–210
starting, 190–191
terminating application execution, 211–212
textbox controls, 206
user-interface design, 204–206

GUI Editor, FreeForm-J, 49
GUIs (graphical user interfaces), 11, 40

H
Hangman game

array, 364
button controls, 367
ClosePlay subroutine, 375
on companion website, 380
designing, 363
displaying mystery words, 367
entering guesses, 348–349
final result, 376
global variables, 364
if…then…else code block, 372
Just BASIC file script, 363–364
len() function, 369
PlayAgain subroutine, 374–375
ProcessGuess subroutine, 370–373
retrieving mystery word, 369–370
StartNewGame subroutine, 368–369
user interface, 364–366
ValidateInput$() function, 373–374

HappyBirthday subroutine
executing, 221
naming, 219

hashes, defining, 135
Help menu, adding to windows, 107

Programming for the Absolute Beginner, Second Edition402

13 ProgABS2E Index 2/23/15 8:49 PM Page 402

Help window
closing for Guess My Number game, 211
for Guess My Number game, 210–211

hints, providing to players, 156–157
home command, using with graphicbox control, 283
home drawing command, described, 281
horizscrollbar drawing command, described, 281
HTML (Hypertext Markup Language), 16

I
IDE (integrated development environment), 40
if…then statements

alternative conditions, 167–168
example, 164
explained, 164
multiple-line, 166–167
nesting, 168–169
pseudo code, 164
select case statements in, 171
on single line, 165–166
syntax, 165
use of curly braces ({}), 167

if…then…else statement
in Hangman game, 372
using, 169

InitializeVariables subroutine, 326–327
input command

syntax of, 75
using with files, 255–256

installing, Just BASIC, 18–20
InStr() string function, explained, 143
int() function, using in Just BASIC, 123
INT() numeric function, explained, 143
interpreter, defined, 15, 40

J
Java language, 13–14
JavaScript language, 16
joystick input, responding to, 323
Just BASIC

adding controls to windows, 88
audio-file support, 41
automatic code indentation, 41, 53
background color, 84–86

built-in dialogs, 114–117
built-in functions, 146
built-in sprite engine, 41
built-in variables, 147
code editor, 55
compiler settings, 53
conditional logic statements, 164
debugger, 59–60
default text window, 74
designing forms, 58
displaying pop-up dialogs, 114
downloading, 17
drag-and-drop GUI forms, 41
environmental settings, 53
font attributes, 86–87
foreground color, 84–86
FreeForm-J GUI Editor, 54
functions, 123
GUI forms editor, 41
Hello World program, 23
installing, 18–20
Kill BASIC Apps, 53
killing programs, 57
Load on Startup option, 52
Main Window Columns, 53
mainwin text window, 73–75
menu system, 48–50
notice command, 114
notification settings, 52
opening programs, 55–56
preference settings, 51–54
Reload File on Activate, 53–54
reserved words, 146–147
saving programs, 55–56
saving work, 22–23
Setup menu, 54
source code debugger, 41
Source Filename Extension, 53
startup settings, 52
statement color coding, 41
syntax coloring, 53
system files, 62
welcome.bas program, 52
World of Just BASIC window, 41–46
See also BASIC language

403Index

13 ProgABS2E Index 2/23/15 8:49 PM Page 403

Just BASIC applications
distributing, 62–63
executing, 62
terminating, 29
See also programs

Just BASIC Files Archive, 382
Just BASIC folder, displaying contents of, 56
Just BASIC forum, 382
Just BASIC language

code statements, 20–21
creating programs, 20–23
end keyword, 29
executing programs, 20–23
Hello World program, 21
iniFilename runtime error, 19
nomainwin command, 25
setting up Window’s Help, 20
See also BASIC language

Just BASIC programs, forcing termination of, 201

K
Kbasic, URL and platforms, 384
key events, capturing in arcade-style games, 321–323
keyboard events, 284–285, 322
keyboard shortcuts, 51
kill command, using with files, 259
killing programs, 57
Knock Knock Joke game

analyzing player input, 26–27
beginning, 4
on companion website, 380
creating Just BASIC file, 24–26
described, 4
designing, 23–24
displaying opening prompt, 25–26
distribution files, 63
documenting purpose of, 24–25
ending, 5
error messages, 5
final result, 29–33
if…then…else statement, 169
punch line, 4
response of player, 4
source code with comments, 29–32

telling last joke, 27–28
telling second joke, 27
terminating program, 28

L
lamp.bmp image file, accessing, 153
Lander.bas program, executing, 56
languages. See computer languages
Left$() string function, explained, 143
leftButton* events, described, 285
Legend of Mighty Molly game

beginning story, 68
collecting player input, 67
on companion website, 380
designing, 64
displaying welcome screen, 65–66
end command, 70
ending, 40
final result, 70
input command, 64–65
instructions to player, 36–37
Just BASIC file script, 65
opening screen, 36
pausing after parts of story, 39
preparing to end, 69
prompting for player input, 66–67
providing instructions for, 66
responding to questions, 36–37
storytelling, 38, 68–69

len() function, using in Hangman game, 369
Len() string function, explained, 143
less than operator, symbol for, 172
less than or equal to operator, symbol for, 172
Liberty BASIC

downloading trial copy of, 382
support for, 383
workshop, 383

line drawing command, described, 281
line input command, using with files, 256
listbox controls, adding to windows, 99–100
literal values, storing data in, 132
loadbmp command, using, 180
local variables, using, 138
locate drawing command, described, 281

Programming for the Absolute Beginner, Second Edition404

13 ProgABS2E Index 2/23/15 8:49 PM Page 404

LOG() numeric function, explained, 143
logical errors

explained, 352
fixing, 353
guarding against, 352
tracking down, 352–353

logical flow, depicting with flowcharts, 162–163
logical operators, table of, 176
LookForEndOfGame subroutine, 269–271
loops

do…until, 193, 196–197
do…while, 192, 194–196
endless, 200–201
exiting, 202–203
for…next, 193, 197–199
while…wend, 193, 199–200, 257

Lower$() string function, explained, 143

M
machine language, 8–9
mainwin text window

Columns placeholder, 74
input command, 75
print command, 75
specifying initial size of, 74–75
writing text to, 73–74

ManageGamePlay subroutine, 327–329
creating, 232–233
for Tic Tac Toe, 264

ManageLives subroutine, using in arcade-style games,
344

ManagePaddleMovement subroutine, 332–333
mathematical calculations

order of precedence, 174–175
overriding rules of precedence, 175

mathematical operators, table of, 173
memory addresses, manipulating, 132
Microsoft

.NET Framework, 12
Visual Basic, 12–13, 383–384
Word, 7
See also application menus; window menus

Mid$() string function, explained, 143
middleButton* events, described, 285
MIDI files, playing, 292–293
midipos() function, explained, 289, 292
MonitorForBrickCollisions subroutine, 341–342
mouse events

setting up, 284–285
validity of, 322

mouse input, responding to, 323
mousemove event, described, 285
MoveTheBall subroutine, using in arcade-style games,

338
multiplication operator, description and example, 173

N
nesting if…then statements, 168–169
.NET Framework, 12
nomainwin command, using in Just BASIC, 25
northpie drawing command, described, 281
not equal operator, symbol for, 172
not operator, type and example, 176
notice command, using with dialogs, 124
Notice dialog, using, 114–115
numeric functions

ABS(), 142
EXP(), 142
INT(), 143
LOG(), 143
RND(), 143
SQR(), 142

numeric values
converting strings to, 140–141
converting to string values, 141

numeric variables, using, 142–143

O
Objective-C language, 11
On Error GoTo statement, 360–361
open command, 80

for Guess My Number game, 206
using with application windows, 80

or operator, type and example, 176
order of precedence, 174–175

405Index

13 ProgABS2E Index 2/23/15 8:49 PM Page 405

P
parameters, explained, 221
path names, specifying, 251
pixel, defined, 84, 278
place drawing command, described, 281
PlayAgain subroutine, 374–375
player input, collecting in arcade-style games, 321–323
player movement, processing in Tic Tac Toe, 264–268
player turns, controlling, 268–269
playmidi command, explained, 289, 292–293
playwave command, explained, 289
point, measurement of, 87
Pong, collisions in, 320
pop-up dialogs, displaying in Just BASIC, 114
posxy drawing command, described, 281
PowerBASIC, URL and platform, 384
print command

described, 281
displaying value of Drive$, 246
for Guess My Number game, 206
syntax of, 75

procedures
calling, 222
explained, 218–219
passing arguments to, 226–227

ProcessGuess subroutine, using in Hangman game,
370–373

program data
arrays, 134
constants, 132–133
hashes, 135
literal values, 132
retrieving, 132, 135
storing, 132, 135
storing in arrays, 144–146
storing in variables, 132, 137–138
structures, 135
using, 131
variables, 133–134
See also data

program logic, 7–8
programming

overview, 6
reasons for learning, 5

programming languages, non-BASIC, 385. See also
BASIC language; computer languages

programs
defined, 22
killing in Just BASIC, 57
opening in Just BASIC, 55–56
saving in Just BASIC, 55–56
See also Just BASIC applications; standalone

applications
prompt command, using in basic, 26
Prompt dialog, using, 115–116
pseudo code

case statement, 170
explained, 164

Q–R
quotation marks (“), using with drawing commands, 281

RAD (Rapid Application Development), 11, 40
radiobutton controls, adding to windows, 93–95
random access file, explained, 253
RandomSelection subroutine, using in Slot Machine

game, 299–302
redim statement, using with arrays, 146
redraw drawing command, described, 281
RegulateGameSpeed subroutine, 341
RegulateTiming subroutine, using in arcade-style

games, 317
relative path names, specifying, 251–252
rem, using to add comments, 25
repeat until loops, 193
repeat while loops, 193
repeat with loops, 193
RepositionBallAndPaddle subroutine, using in

arcade-style games, subroutines, 337–338
reserved words, table of, 147
ResetGame subroutine, 237–238, 329–330
ResetGameBoard subroutine, using in Tic Tac Toe,

271–272
RestartGame subroutine, creating, 236
Right$() string function, explained, 143
rightButton* events, described, 285
rmdir() function, caution about, 260
rnd() function, using in Just BASIC, 123

Programming for the Absolute Beginner, Second Edition406

13 ProgABS2E Index 2/23/15 8:49 PM Page 406

RND() numeric function, explained, 143
Rock, Paper, Scissors game

combobox control, 180
on companion website, 380
computer movement, 161
controlling player moves, 181
designing, 177
final result, 187
global variables, 178–180
Just BASIC file script, 178
loadbmp command, 180
managing gameplay, 182–186
player movement, 160
PlayHand subroutine, 182–185
starting, 160
terminating application execution, 186
textbox control, 181
trapclose event, 186
user-interface design, 178–181
winning, 161

Run BASIC web development tool, 383
running BASIC programs, 56
runtime errors, eliminating, 353–354, 359–362. See also

error handling; event handlers

S
saving programs, 55–56
scope of variables

explained, 138
limiting, 139

scripting languages, 14–15
segment drawing command, described, 281
segment ID, retrieving, 279
segments, using in drawings, 278
select case statements

explained, 164
in if…then statements, 171
logic behind, 170
syntax, 169–170
using, 170

sequential file, explained, 253
set command, 281, 288
SetColor subroutine, using, 288
setfocus drawing command, described, 281

SetStartingBallDirection subroutine, using with
arcade-style games, 333–334

Setup2Go program, 63
shape graphics, explained, 279
size drawing command, described, 281
Slot Machine game

animating spin, 297–298
ClosePlay subroutine, 302–303
controlling automation, 297
designing, 293–294
ding.wav file, 299
DisplayImages subroutine, 297–298
displaying graphics, 298–299
final result, 304
initiating gameplay, 276, 294–295
Just BASIC file script, 294
player payout, 276
RandomSelection subroutine, 299–302
setting ultimate result, 299–302
terminating gameplay, 302–303
user-interface design, 295–297
values and results, 303

SmallBASIC, URL and platforms, 384
software distribution programs, 63
solutions, creating, 7
sounds

adding to applications, 289
beep command, 289
midipos() function, 289, 292
playing wave files, 289–291
playmidi command, 289, 292–293
playwave command, 289
stopmidi command, 289, 292

source code
explained, 22
generating with FreeForm-J, 112–113

Space$() string function, explained, 143
sprites

commands, 311
creating, 311–312
displaying bitmap images, 308–309
generating, 334–335
providing backgrounds, 313–314
using, 308
using in graphicbox controls, 312–313

407Index

13 ProgABS2E Index 2/23/15 8:49 PM Page 407

SQL (Structured Query Language), 16
SQR() numeric function, explained, 142
standalone applications

creating tokenized files, 60–61
distributing, 62–63
See also programs

StartGameLoop subroutine, using in arcade-style
games, 331–332

StartNewGame subroutine, in Hangman game, 368–369
statement-execution loops. See loops
statements

entering for Knock Knock Joke game, 24–25
explained, 22

statictext controls, adding to windows, 95–96
stopmidi command, explained, 289, 292
string functions

InStr(), 143
Left$(), 143
Len(), 143
Lower$(), 143
Mid$(), 143
Right$(), 143
Space$(), 143
Trim$(), 143
Upper$(), 143

string values, converting numeric values to, 141
strings

concatenating, 141
converting to numeric values, 140–141
creating, 142
set command, 288
using in BASIC, 25

structure chart, using for Bricks game, 324–325
structures, use of, 135
subroutines

AboutGame, 331
AddBallToGame, 337
AddBricksToGame, 336–337
AnalyzeAndUpdateBallLocation, 339–341
BallAndPaddleHaveCollided, 342–343
BallControl, 322–323
beginning, 219
calling, 220
calling programmatically, 221

ClosePlay, 302–303, 375
CloseSplashWindow, 231–232
CollisionCheck, 320, 338–339
comparing to functions, 218
DealCard, 234
DealerTurn, 234–236
DealOpeningHand, 236–237
defining, 219
DisplayGameOverMessage, 344–345
DisplayImages, 297–298
DisplaySplash, 230–231
DrawBackground, 335–336
EndGame, 330
ending, 219
as event handlers, 220–221, 267
ExitGame, 330, 345
explained, 148, 218
GameHelp, 330–331
GenerateGameSprites, 334–335
InitializeVariables, 326–327
LookForEndOfGame, 269–271
ManageGamePlay, 232–233, 264, 327–329
ManageLives, 344
ManagePaddleMovement, 332–333
MonitorForBrickCollisions, 341–342
MoveTheBall, 338
passing arguments to, 221
procedure names for, 219
ProcessGuess, 370–373
RandomSelection, 299–302
RegulateGameSpeed, 341
RegulateTiming, 317
relationships in Bricks game, 324
RepositionBallAndPaddle, 337–338
ResetGame, 237–238, 329–330
ResetGameBoard, 271–272
RestartGame, 236
SetColor, 288
SetStartingBallDirection, 333–334
StartGameLoop, 331–332
StartNewGame, 368–369
terminating prematurely, 222–223
UpdatePlayerScore, 343

subtraction operator, description and example, 173

Programming for the Absolute Beginner, Second Edition408

13 ProgABS2E Index 2/23/15 8:49 PM Page 408

switch statement, use of, 170
syntax errors

fixing, 351–352
impact of, 351
occurrence of, 351

T
terminating applications, logic for, 162
\text drawing command, described, 281
text files, writing to, 257–258
text graphics, explained, 279
text windows, using in applications, 76–77
textbox controls

adding to windows, 96–97
for Guess My Number game, 206
for Rock, Paper, Scissors game, 181

texteditor controls, adding to windows, 97–98
Tic Tac Toe game

bitmap images, 268
bmpbutton controls, 244, 264
case statement, 267–268
on companion website, 380
controlling player turns, 268–269
designing, 261
displaying game board, 263–264
final result, 273
gameplay, 244
global variables, 262
initiating gameplay, 262
Just BASIC file script, 261–262
LookForEndOfGame subroutine, 269–271
ManageGamePlay subroutine, 264
processing player moves, 264–268
ResetGameBoard subroutine, 271–272
terminating gameplay, 272–273

time data, retrieving, 136
timer command, syntax for, 231
*.TKN (token) files, explained, 49
tokenized files, creating, 60–61
toolbar shortcuts, 51
trapclose drawing command, described, 281
Trim$() string function, explained, 143
True BASIC, URL and platform, 384

Try statements, using in error handling, 360
Try…Catch…Finally statement, using, 360
turn drawing command, described, 281
turtle graphics, explained, 279
Type Mismatch error, generating, 142

U
unary operator, explained, 174
unloadbmp command, using, 309
UpdatePlayerScore subroutine, 343
up drawing command, described, 281
Upper$() string function, explained, 143
UpperLeftX variable, 83–84
UpperLeftY variable, 83–84
URLs (uniform resource locators). See websites
User Interface Design and Development page, 80
user interface, taking seriously, 80

V
ValidateInput$() function, using in Hangman game,

373–374
variable conversion

numeric to string values, 141
str$() operator, 140
string to numeric values, 140–141
val() operator, 140

variable values, examining, 356–357
variables

built-in, 147
creating on the fly, 137
declaring, 133–134, 137
global scope, 138–139, 262
local scope, 138–139
naming rules, 139–140
numeric type, 142–143
parameters as, 221
scope, 138
storing data in, 132, 137–138
table of, 134
using in BASIC, 25

VBA (Visual Basic for Applications), 15
vertscrollbar drawing command, described, 281
Visual Basic language, 12–13, 383–384

409Index

13 ProgABS2E Index 2/23/15 8:49 PM Page 409

W
wave files

Collision.wav, 340
ding.wav, 299
playing, 289–291

Web development languages, 16
websites

Agentix Installer program, 63
for author, 385
DarkBASIC, 384
Just BASIC Files Archive, 382
Just BASIC forum, 382
Kbasic, 384
PowerBASIC, 384
Setup2Go program, 63
SmallBASIC, 384
software distribution programs, 63
True BASIC, 384
User Interface Design and Development page, 80
XBasic, 384
Yabasic, 384
See also companion website

welcome.bas program, 46, 52
when event drawing command, described, 281
while…wend loops

equivalents of, 200
example, 200
explained, 193
using, 257

wildcards, using with files command, 250
window menus

building in FreeForm-J, 111–112
editing in FreeForm-J, 112
See also application menus

WindowHeight variable, 83
windows

adding menus to, 106
bmpbutton controls, 90–91
button controls, 89
checkbox controls, 91–93
combobox controls, 100–101
graphicbox controls, 103–104
groupbox controls, 102–103

listbox controls, 99–100
radiobutton controls, 93–95
statictext controls, 95–96
textbox controls, 96–97
texteditor controls, 97–98
UL (upper-left) corner of, 89
using in applications, 76–77
See also application windows

Windows file system, interacting with, 246. See also files
WindowWidth variable, 83–84
Word application, uses of, 7
word$() function, using, 247
World of Just BASIC window

access to help, 45
Code Editor window, 46–51
command, 50–51
Community link, 42–43
displaying, 41–42
Liberty BASIC link, 42–44
Links link, 44
News link, 46
Resources link, 45
Tutorial link, 44

X–Z
XBasic, 384
xor operator, type and example, 176

Yabasic, 384

Programming for the Absolute Beginner, Second Edition410

13 ProgABS2E Index 2/23/15 8:49 PM Page 410

	Cover
	Table of Contents
	Introduction
	PART I: INTRODUCTION TO COMPUTER PROGRAMMING
	1 Introduction to Programming
	Project Preview: The Knock Knock Joke Game
	Getting Started
	Programming Overview
	Deciding What Programming Language to Learn and Use
	Creating Your Own Solutions
	Mastering the Art of Program Logic
	Talking in a Language Computers Understand
	Other Types of Programming Languages
	Finding the Right Programming Language
	Getting Started with Just BASIC
	Back to the Knock Knock Joke Game
	Summary

	2 Creating Programs with Just BASIC
	Project Preview: The Legend of Mighty Molly
	Tools of the Trade
	Working with Just BASIC
	Configuring Just BASIC Preferences
	Working with Applications
	Other Just BASIC Components
	Building Standalone Applications
	Back to the Legend of Mighty Molly
	Summary

	3 Creating Graphical User Interfaces
	Project Preview: The BASIC Crazy 8 Ball Game
	Mainwin
	GUI Application Development
	Working with Application Windows
	Adding Controls to Windows
	Building Application Menus
	Building Interfaces with FreeForm-J
	Taking Advantage of Built-In Dialogs
	Back to the BASIC Crazy 8 Ball Game
	Summary

	PART II: LEARNING HOW TO WRITE BASIC PROGRAMS
	4 Working with Variables and Arrays
	Project Preview: The Ask Genie Game
	Working with Program Data
	Learning How to Work with Variables
	Storing Data in Arrays
	Reserved Words
	Back to the Ask Genie Game
	Summary

	5 Making Decisions with Conditional Logic
	Project Preview: The Rock, Paper, Scissors Game
	Building Adaptive Applications with Conditional Logic
	Working with the if…then Statement
	Exploring the Power of Nesting if…then Statements
	Working with the select...case Statement
	Performing Different Types of Comparison Operations
	Performing Mathematic Calculations
	Combining and Negating Comparison Operations
	Back to the Rock, Paper, Scissors Game
	Summary

	6 Using Loops to Process Data
	Project Preview: The Guess My Number Game
	Using Loops to Repeat Statement Execution
	Looking Out for Endless Loops
	Busting Out of Loops
	Back to the Guess My Number Game
	Summary

	7 Improving Program Organization with Functions and Subroutines
	Project Preview: The BASIC BlackJack Game
	Working with Subroutines and Functions
	Different Ways to Pass Arguments to Procedures
	Taking Advantage of Built-In Function Libraries
	Back to the BASIC BlackJack Game
	Summary

	PART III: ADVANCED PROGRAMMING TOPICS
	8 Working with Text Files
	Project Preview: The Tic Tac Toe Game
	Working with Files and Folders
	Working with Files
	File and Folder Administration
	Back to the Tic Tac Toe Game
	Summary

	9 Working with Sound and Graphics
	Project Preview: The Slot Machine Game
	Integrating Graphics and Sound into Applications
	Displaying Graphics Images
	Understanding How Just BASIC Manages Drawings
	Just BASIC’s Graphics Capabilities
	Drawing Graphics
	Creating a Drawing Application
	Getting Your Applications to Make Some Noise
	Back to the Slot Machine Game
	Summary

	10 Arcade-Style Computer Game Development
	Project Preview: The Bricks Game
	Key Features Found in Computer Arcade Games
	Back to the Bricks Game
	Summary

	11 Debugging Your Applications
	Project Preview: The Hangman Game
	Coping with Errors in Your Applications
	What Is Just BASIC’s Error.log File?
	Debugging Your Just BASIC Applications
	Developing a Runtime Error Handler
	Back to the Hangman Game
	Summary

	PART IV: APPENDIXES
	A: What’s on the Companion Website?
	B: What’s Next?
	Locating Just BASIC Resources Online
	Liberty BASIC
	Liberty BASIC Workshop
	Run BASIC
	Visual Basic
	Other BASIC Programming Languages
	Non-BASIC Programming Languages
	www.tech-publishing.com

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	V
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Z
	Y

