
Programming in

C
Second Edition

Pradip Dey Manas Ghosh

OXFORD
UNIVERSITY PRESS

www.allitebooks.com

http://www.allitebooks.org

© Oxford University Press 2011

ISBN: 978-0-198065-28-9

www.allitebooks.com

http://www.allitebooks.org

Since the evolution of computers, a variety of program-
ming languages have come into existence. C stands
out among general-purpose programming languages
for its unrivaled mix of portability, fl exibility, and ef-
fi ciency. It is a versatile language and is commonly used
for developing application and system programs. C has
block structures, stand-alone functions, a compact set of
keywords, and very few restrictions. For all these rea-
sons, learning and using C is a necessity for most pro-
grammers.

ABOUT THE BOOK
This book is intended for an introductory course on pro-
gramming in C. It assumes no prior programming expe-
rience in C or any other language. Readers will fi nd the
explanations lucid and effective. Every feature of C has
been demonstrated with appropriate programs tested and
run on a computer. The output obtained after executing
these programs have also been included. The explana-
tions have been depicted with suitable diagrams to convey
the concepts more effectively. Readers will be profi cient
at programming after solving the review questions and
programming exercises given at the end of each chapter.
Though every attempt has been made to avoid and check
errors, we will be grateful to readers if they can bring
to our notice any errors that may have crept in inadver-
tently.

CONTENT AND STRUCTURE
Chapter 1 begins by explaining the concept of program-
ming. It discusses the techniques of forming an organized
approach to problem solving. It also identifi es the differ-
ent types of programs and the various categories of pro-
gramming languages available. The prescribed tools that
are used in this process are described and explained with
suffi cient examples and diagrams.

For a beginner, Chapter 2 is undoubtedly the most im-
portant chapter that describes the basic elements of C. This
chapter introduces the keywords, the basic data types and
their modifi ers, operators and their precedence, and ex-
pressions and data type conversion rules. The basic struc-
ture of a C program along with the common commands
used in MS-DOS and UNIX/Linux for compiling and running
it has been described at length in this chapter.
 Accepting data from and conveying the results to a user
is one of the most important actions desired from a pro-
gram. To satisfy these requirements through the console,
there are some commonly used input and output func-
tions in C. These have been explained with illustrations in
Chapter 3.
 Program fl ow control and looping constructs in C are ex-
plained in Chapter 4. The general statement format with fl ow-
charts and examples illustrate their signifi cance in programs.
 Arrays and strings are two important data structures for
handling a cluster of homogeneous data. How such clus-

C Preface to the
First Edition

www.allitebooks.com

http://www.allitebooks.org

ters are declared and handled is explained with ample ex-
amples in Chapter 5.
 The concept of functions, its form, and its requirement
in a program is discussed in Chapter 6 with well-explained
examples. Recursive functions are also described with
several examples. Analysis of time and space complexity
for an algorithm has also been presented in this chapter.
 One of the most important features of C is pointers.
Starting with an introduction to pointers, Chapter 7 also
elaborates on how pointers are used with arrays, strings,
and functions. The use of pointers is also described in
depth with innumerable examples.
 User-defi ned data types such as structures and unions
are described in Chapter 8. What these data types com-
prise and how these are handled and used are illustrated
with examples.
 Creating, amending, appending, and many other opera-
tions on fi les in C is a necessity for storing and retrieving
data and programs. This has been covered in Chapter 9
with suffi cient examples.
 Linked list, which is a popular data structure, has been
covered in Chapter 10. Various types of linked lists and the
different operations that can be carried out on such linked
lists have been discussed. In this chapter, readers will also
get to know how pointers are used in constructing this data
structure.
 Chapter 11 highlights some of the advanced features
of C such as command-line arguments, bit-wise operators,
different memory models, and type qualifi ers with several
illustrations.
 Frequently asked questions are always a source of
learning. Some frequently asked questions have been in-
cluded at end of the book, which will help readers to clear
any doubts pertaining to programming in C.

 The appendices contain case studies where the problem
is fi rst defi ned and then the algorithm is developed, based
on which the C program is coded. Some sample runs ob-
tained during the execution of these programs have also
been included. It also contains tables for ASCII codes, num-
ber system conversions, escape sequences, operators, data
types and data conversion rules, commonly used conver-
sion characters, and format tags. Among many other useful
topics covered in the appendices, an exhaustive listing of
C library functions, with programs illustrating how these
functions can be put to use, have also been presented.

ACKNOWLEDGEMENTS
We thank our students Rakesh Dutta and Niloy Debnath
for verifying the programs in this book and Sonia Khed-
wal, Priyanka Nawalkar, Sayantani Saha, and Debolina
Sharangi for their assistance in the preparation of the
model questions. We are grateful to the staff of Oxford
University Press for their continuous cooperation, interest,
and assistance extended to us during the preparation of the
book. We are also thankful to our colleague Mr Manash
Sinharoy for helping us in preparing the manuscript in
time and Mr Tapas Kumar Tunga and Mr P.N. Pathak for
their assistance in the preparation of the manuscript.
 Special thanks are due to Mr Steve Summit for his ar-
ticles on C, which have guided us in preparing some of the
topics in this book. We also wish to thank Mr Vijay Kumar
R Zanvar and Mr Jayasima Ananth for the article on point-
ers and arrays as also Mr Thomas Jenkins for the article on
recursion, both of which have served as a guide during the
development of this manuscript. We express our gratitude
to Mr Peter Burden, Mr Mike Banahan, Mr Declan Brady,
and Mr Mark Doran for their articles on C.

 PRADIP DEY

 MANAS GHOSH

vi Preface to the First Edition

www.allitebooks.com

http://www.allitebooks.org

Evolution of ideas is a never-ending process. New tech-
nology and changing needs have a tremendous infl uence
on computing requirements, which in turn lead to continu-
ous enhancements of the power and scope of a program-
ming language.
 C99 is the modern standard of the C programming lan-
guage. It extends the previous version (C90) with new lan-
guage and library features, and helps programmers make bet-
ter use of available computer hardware and compiler technol-
ogy. The new features include inline functions, several new
data types, and new header fi les. Hence, with the new fea-
tures suggested by the C99 committee, the C programming
language has expanded its scope and range of applications.
 Accordingly, this edition offers several new topics,
features based on the recommendations proposed by C99
committee in relevant chapters, and many other useful fea-
tures. A special effort has been made to simplify the exist-
ing text with better treatment and explain the concepts with
the help of examples containing appropriate comments.
Further, the inclusion of key terms with brief defi nitions,
FAQs with answers, and case studies demonstrating the
stepwise approach of solving practical problems will aid
the reader to grasp the essence of the concepts and under-
stand their practical implementation.

NEW TO THE SECOND EDITION

∑ C99 features highlighted wherever relevant in the text
∑ New chapter on Stacks, Queues, and Trees

∑ Chapter-end case studies
∑ Points to Note, Key Terms with defi nitions, Frequently

Asked Questions, and Project Questions with each
chapter

∑ Improved explanations of algorithms and codes, and
new in-text examples

∑ Incremental problem running through Ch 3 to 9,
illustrating program code building from basics

∑ New sections such as variable length arrays, searching
and sorting algorithms, pointer and const qualifi er,
and applications of linked lists

∑ Includes a CD that contains all the example programs,
incremental problems, and case studies in a user-
friendly format.

EXTENDED CHAPTER MATERIAL

Chapter 1: Introduction to Programming:
Algorithms and Flowcharts

Includes new sections on
∑ Correctness and termination of algorithms
∑ Subroutines
∑ Strategy for designing algorithms
∑ Tracing an algorithm to depict logic
∑ Specifi cation for converting algorithms into

programs

C Preface to the
Second Edition

www.allitebooks.com

http://www.allitebooks.org

Chapter 2: Basics of C

Includes new sections on
 ∑ Compilation model of a C program
 ∑ Philosophy of main() function
 ∑ The concept of Type qualifi ers
 ∑ How integers are stored in memory?

Chapter 4: Control Statements

Contains new sections on different forms of loop and mov-
ing out from a nested loop.

Chapter 6: Functions

Includes new sections on
 ∑ Scope, storage class, and linkages
 ∑ inline function
 ∑ Different sorting and searching methods along with

the analysis of time and space complexity

Chapter 7: Pointers

Includes new sections on
 ∑ Pointer and const qualifi er
 ∑ Constant parameter
 ∑ Returning pointer from a function

Chapter 10: Linked Lists

New discussions on the stringizing operator, token pasting
operator, and the optional third command line argument of
main() function have been included in this chapter.

Chapter 12: Stacks, Queues, and Trees

It is a new chapter in this edition. This chapter explains
the implementation of stacks and queues using arrays and
linked lists as well as the applications of these two data
structures. It also explains binary trees, their traversal,
types, and applications.

ACKNOWLEDGEMENTS
We are grateful to a host of readers, who have encouraged
us in improving this book by their useful suggestions from
time to time. There are no words to express our gratitude
to Oxford University Press for their continuous support,
suggestions, and assistance while preparing this edition.
 Despite our best endeavour to make this edition error free,
some may have crept in inadvertently. Comments and sugges-
tions for the improvement of the book are welcome. Please
send them to the publisher by logging on to their website www.
oup.com or to the authors at pdey.mghosh@gmail.com.

PRADIP DEY

MANAS GHOSH

iv Preface to the Second Edition

www.allitebooks.com

http://www.allitebooks.org

Preface to the Second Edition .. iii
Preface to the First Edition ..v

 1. Introduction to Programming, Algorithms and Flowcharts ..1
 2. Basics of C ..39
 3. Input and Output ..94
 4. Control Statements ...117
 5. Arrays and Strings ..169
 6. Functions ..214
 7. Pointers in C ...268
 8. User-defi ned Data Types and Variables ...350
 9. Files in C ..388
 10. Linked Lists ...423
 11. Advanced C ..460
 12. Stacks, Queues, and Trees ..492

Appendices ...524
Bibliography and References ...544
Index ..545

C
iii

Brief Contents

www.allitebooks.com

http://www.allitebooks.org

 1 INTRODUCTION TO PROGRAMMING,
ALGORITHMS AND FLOWCHARTS 1

1.1 Programs and Programming 1
 System Software 2
 Application Software 2

1.2 Programming Languages 2
 System Programming Languages 3

 Application Programming Languages 3
 Low-level Languages 3
 High-level Languages 5
 1.3 Compiler, Interpreter, Loader, and Linker 6

 Compiling and Executing High-level Language
Programs 6

 Linker 7
 Loader 7
 Linking Loader and Linkage Editor 8
1.4 Program Execution 8
1.5 Fourth Generation Languages 9
1.6 Fifth Generation Languages 10
1.7 Classifi cation of Programming 10

 Procedural Languages 10
 Problem-oriented Languages 11
 Non-procedural Languages 11

 1.8 Structured Programming Concept 11
 Top–down Analysis 12

Preface to the Second Edition iii
Preface to the First Edition v

 Modular Programming 12
 Structured Code 13
 The Process of Programming 13

 1.9 Algorithms 14
 What is an Algorithm? 14
 Different Ways of Stating Algorithms 14
 Key Features of an Algorithm and the Step-

form 14
 What are Variables? 16
 Subroutines 17
 Strategy for Designing Algorithms 30

 Tracing an Algorithm to Depict Logic 31
 Specifi cation for Converting Algorithms into

Programs 32

 2 BASICS OF C 39
2.1 Introduction 39

 Why Learn C? 40
 The Future of C 40
2.2 Standardizations of C Language 40
2.3 Developing Programs In C 41
2.4 A Simple C Program 45
2.5 Parts of C Program Revisited 47
2.6 Structure of a C Program 48
2.7 Concept of a Variable 49

C
Contents

www.allitebooks.com

http://www.allitebooks.org

x Contents

 2.8 Data Types in C 50
 2.9 Program Statement 55
 2.10 Declaration 56
 2.11 How Does The Computer Store Data in

Memory? 57
 How Integers are Stored? 57
 How Floats and Doubles are Stored? 58
 2.12 Token 60
 Identifi er 60
 Keywords 61
 Constant 61
 Assignment 63
 Initialization 64
 2.13 Operators and Expressions 65
 Arithmetic Operators in C 66
 Relational Operators in C 71
 Logical Operators in C 71
 Bitwise Operators in C 72
 Conditional Operator in C 73
 Comma Operator 73
 Sizeof Operator 74
 Expression Evaluation—Precedence and

Associativity 74
 2.14 Expressions Revisited 77
 2.15 Lvalues and Rvalues 77
 2.16 Type Conversion in C 78
 Type Conversion in Expressions 78
 Conversion by Assignment 79
 Casting Arithmetic Expressions 81
 2.17 Working with Complex Numbers 86

 3 INPUT AND OUTPUT 94
 3.1 Introduction 94
 3.2 Basic Screen and Keyboard I/O in C 95
 3.3 Non-Formatted Input and Output 96
 Single Character Input and Output 96
 Single Character Input 96
 Single Character Output 96
 Additional Single Character Input and Output

Functions 97
 3.4 Formatted Input and Output Functions 100
 Output Function printf () 100
 Input Function scanf () 106

 4 CONTROL STATEMENTS 117
 4.1 Introduction 117
 4.2 Specifying Test Condition Forselection and

Iteration 119

 4.3 Writing Test Expression 119
 Understanding How True and False is Represented

in C 120
 4.4 Conditional Execution and Selection 124
 Selection Statements 124
 The Conditional Operator 131
 The Switch Statement 133
 4.5 Iteration and Repetitive Execution 137
 While Construct 138
 For Construct 143
 do-while Construct 151
 4.6 Which Loop Should be Used? 153
 Using Sentinel Values 153
 Using Prime Read 154
 Using Counter 155
 4.7 Goto Statement 155
 4.8 Special Control Statements 156
 4.9 Nested Loops 159

 5 ARRAYS AND STRINGS 169
 5.1 Introduction 169
 5.2 One-Dimensional Array 170
 Declaration of a One-dimensional Array 171
 Initializing Integer Arrays 173
 Accessing Array Elements 173
 Other Allowed Operations 174
 Internal Representation of Arrays in C 176
 Variable Length Arrays and the C99 changes 177
 Working with One-dimensional Array 177
 5.3 Strings: One-dimensional Character Arrays 182
 Declaration of a String 182
 String Initialization 182
 Printing Strings 183
 String Input 184
 Character Manipulation in the String 190
 String Manipulation 191
 5.4 Multidimensional Arrays 199
 Declaration of a Two-dimensional Array 199
 Declaration of a Three-dimensional Array 199
 Initialization of a Multidimensional Array 199
 Unsized Array Initializations 201
 Accessing Multidimensional Arrays 201
 Working with Two-dimensional Arrays 202
 5.5 Arrays of Strings: Two-dimensional Character

Array 206
 Initialization 206
 Manipulating String Arrays 206

www.allitebooks.com

http://www.allitebooks.org

Contents xi

 6 FUNCTIONS 214
 6.1 Introduction 214
 6.2 Concept of Function 215
 Why are Functions Needed? 215
 6.3 Using Functions 216
 Function Prototype Declaration 216
 Function Defi nition 217
 Function Calling 219
 6.4 Call by Value Mechanism 221
 6.5 Working with Functions 221
 6.6 Passing Arrays to Functions 224
 6.7 Scope and Extent 227
 Concept of Global and Local Variables 227
 Scope Rules 229
 6.8 Storage Classes 231
 Storage Class Specifi ers for Variables 231
 Storage Class Specifi ers for Functions 234
 Linkage 234
 6.9 The Inline Function 234
 6.10 Recursion 235
 What is Needed for Implementing Recursion? 235
 How is Recursion Implemented? 239
 Comparing Recursion and Iteration 241
 6.11 Searching and Sorting 241
 Searching Algorithms 241
 Sorting Algorithms 243
 6.12 Analysis of Algorithms 248
 Asymptotic Notation 250
 Effi ciency of Linear Search 252
 Binary Search Analysis 253
 Analysis of Bubble Sort 254
 Analysis of Quick Sort 255
 Disadvantages of Complexity Analysis 255

 7 POINTERS IN C 268
 7.1 Introduction 268
 7.2 Understanding Memory Addresses 269
 7.3 Address Operator (&) 271
 7.4 Pointer 272
 Declaring a Pointer 272
 Initializing Pointers 274
 Indirection Operator and Dereferencing 276
 7.5 Void Pointer 278
 7.6 Null Pointer 278
 7.7 Use of Pointers 279
 7.8 Arrays and Pointers 282
 One-dimensional Arrays and Pointers 282
 Passing an Array to a Function 285
 Differences Between Array Name and Pointer 286

 7.9 Pointers and Strings 288
 7.10 Pointer Arithmetic 289
 Assignment 290
 Addition or Subtraction with Integers 291
 Subtraction of Pointers 298
 Comparing Pointers 299
 7.11 Pointers to Pointers 300
 7.12 Array of Pointers 302
 7.13 Pointers To an Array 306
 7.14 Two-dimensional Arrays and Pointers 307
 Passing Two-dimensional Array to a Function 309
 7.15 Three-dimensional Arrays 316
 7.16 Pointers to Functions 317
 Declaration of a Pointer to a Function 317
 Initialization of Function Pointers 317
 Calling a Function using a Function Pointer 317
 Passing a Function to another Function 318
 How to Return a Function Pointer 319
 Arrays of Function Pointers 320
 7.17 Dynamic Memory Allocation 320
 Dynamic Allocation of Arrays 323
 Freeing Memory 325
 Reallocating Memory Blocks 327
 Implementing Multidimensional Arraysusing

Pointers 328
 7.18 Offsetting a Pointer 331
 7.19 Memory Leak and Memory Corruption 333
 7.20 Pointer and Const Qualifi er 334
 Pointer to Constant 334
 Constant Pointers 335
 Constant Parameters 335

 8 USER-DEFINED DATA TYPES AND
VARIABLES 350

 8.1 Introduction 350
 8.2 Structures 351
 Declaring Structures and Structure Variables 351
 Accessing the Members of a Structure 354
 Initialization of Structures 355
 Copying and Comparing Structures 359
 Typedef and its Use in Structure Declarations 361
 Nesting of Structures 362
 Arrays of Structures 363
 Initializing Arrays of Structures 364
 Arrays within the Structure 365
 Structures and Pointers 365
 Structures and Functions 367
 8.3 Union 370
 Declaring a Union and its Members 370

www.allitebooks.com

http://www.allitebooks.org

xii Contents

 Accessing and Initializing the Members of a
Union 371

 Structure Versus Union 372
 8.4 Enumeration Types 373
 8.5 Bitfi elds 374

 9 FILES IN C 388
 9.1 Introduction 388
 9.2 Using Files in C 390
 Declaration of File Pointer 390
 Opening a File 391
 Closing and Flushing Files 392
 9.3 Working with Text Files 393
 Character Input and Output 393
 End of File (EOF) 394
 Detecting the End of a File Using the feof()

Function 400
 9.4 Working with Binary Files 401
 9.5 Direct File Input and Output 402
 Sequential Versus Random File Access 403
 9.6 Files of Records 403
 Working with Files of Records 403
 9.7 Random Access to Files of Records 410
 9.8 Other File Management Functions 413
 Deleting a File 413
 Renaming a File 413
 9.9 Low-Level I/O 414

10 LINKED LISTS 423
 10.1 Introduction 423
 10.2 Singly Linked List 425
 Insertion of a Node in a Singly Linked List 430
 Deletion of a Node from a Singly Linked List 434
 Sorting a Singly Linked List 435
 Destroying a Singly Linked List 436
 More Complex Operations on Singly Linked

Lists 437
 10.3 Circular Linked Lists 440
 Appending a Node 441
 Displaying a Circular Linked List 442
 Inserting a Node After a Specifi ed Node 442
 Inserting a Node Before a Particular Node 443
 Deleting a Node 444
 Sorting a Circular Linked List 446
 10.4 Doubly Linked List 446
 Operations on Doubly Linked List 447
 Advantages/Disadvantages of DoublyLinked

Lists 450

 10.5 Introduction to Circular Doubly Linked List 450
 10.6 Applications of Linked Lists 451
 Dynamic Storage Management 451
 Garbage Collection and Compaction 452
 10.7 Disadvantages of Linked Lists 454
 10.8 Array Versus Linked List Revisited 454

11 ADVANCED C 460
 11.1 Introduction 460
 11.2 Bitwise Operator 461
 Bitwise and 462
 Bitwise or 463
 Bitwise Exclusive-OR 464
 Bitwise Not 464
 Bitwise Shift Operator 465
 11.3 Command-Line Arguments 467
 11.4 The C Preprocessor 470
 The C Preprocessor Directives 470
 Predefi ned Identifi ers 474
 11.5 Type Qualifi er 475
 Const Qualifi er 476
 Volatile Qualifi er 478
 Restrict Qualifi er 479
 11.6 Variable Length Argument List 480
 11.7 Memory Models and Pointers 481

12 STACKS, QUEUES, AND TREES 492
 12.1 Introduction 492
 12.2 Stack 493
 Implementation of Stack 493
 Application of Stack 498
 12.3 Queue 499
 Implementation of Queue 499
 Other Variations of Queue 505
 Applications of Queue 505
 12.4 Tree 506
 Some Basic Tree Terminology 507
 Binary Tree 507
 Traversals of a Binary Tree 509
 Kinds of Binary Trees 511
 Binary Search Tree 511
 Application of Tree 518

Appendices 524
Bibliography and References 544
Index 545

1.1 PROGRAMS AND PROGRAMMING
A computer can neither think nor make a decision on
its own. In fact, it is not possible for any computer to
independently analyze a given data and fi nd a solution on
its own. It needs a program which will convey what is to
be done. A program is a set of logically related instructions
that is arranged in a sequence that directs the computer in
solving a problem.

The process of writing a program is called programming.
It is a necessary and critical step in data processing.
An incorrect program delivers results that cannot be
used. There are two ways by which one can acquire a
program—either purchase an existing program, referred
to as packaged software or prepare a new program from
scratch, in which case it is called customized software.
 Computer software can be broadly classifi ed into two
categories: system software and application software.

After reading this chapter, the readers will be able to

 defi ne program and programming
 identify system programs and application programs
 get a basic concept of high-, middle-, and low-level languages
 briefl y understand compiler, interpreter, linker, and loader functions
 understand algorithms and the key features of an algorithm—sequence, decision, and

repetition
 learn the different ways of stating algorithms—step-form, fl owchart, etc.
 defi ne variables, types of variables, and naming conventions for variables
 decide a strategy for designing algorithms

Learning Objectives

C
Chapter

Introduction to
Programming, Algorithms

and Flowcharts

1

2 Programming in C

Computer Software

System Software Application Software

Figure 1.1 Computer software classifi cation

1.1.1 System Software

 System software is a collection of programs that interfaces
with the hardware. Some common categories of system
software are described as follows.

Language translator It is a system software that
transforms a computer program written by a user into a
form that can be understood by the machine.

Operating system (OS) This is the most important system
software that is required to operate a computer system.
An operating system manages the computer’s resources
effectively, takes care of scheduling multiple jobs for
execution, and manages the fl ow of data and instructions
between the input/output units and the main memory. An
operating system has become a part of computer software
with the advent of the third generation computers.
Since then a number of operating systems have been
developed and some have undergone several revisions and
modifi cations to achieve better utilization of computer
resources. Advances in computer hardware have helped in
the development of more effi cient operating systems.

System Software

Language
Translator

Operating
System Utilities

Special Purpose
Program

Figure 1.2 Categories of system software

1.1.2 Application Software

 Application software is written to enable the computer
to solve a specifi c data processing task. There are two
categories of application software: pre-written software
packages and user application programs.

 A number of powerful application software packages
that do not require signifi cant programming knowledge
have been developed. These are easy to learn and use
compared to programming languages. Although these
packages can perform many general and special functions,
there are applications where these packages are found to
be inadequate. In such cases, user application programs are
written to meet the exact requirements. A user application
program may be written using one of these packages or a
programming language. The most important categories of
software packages available are
 ∑ Database management software
 ∑ Spreadsheet software
 ∑ Word processing, Desktop Publishing (DTP), and

presentation software
 ∑ Multimedia software
 ∑ Data communication software
 ∑ Statistical and operational research software

Application Software

Pre-written Software
Packages

User-written Application
Programs

Figure 1.3 Categories of application software

Points to Note

 1. A program is a sequence of logically related instructions
and the process of making it is programming.

 2. A program is a software that is broadly categorized as
system software and application software.

1.2 PROGRAMMING LANGUAGES
To write a computer program, a standard programming
language is used. A programming language is composed
of a set of instructions in a language understandable to the
programmer and recognizable by a computer. Programming
languages can be classifi ed as high-level, middle-level, and
low-level. High-level languages such as BASIC, COBOL
(Common Business Oriented Programming Language),
and FORTRAN (Formula Translation Language) are used

Introduction to Programming, Algorithms and Flowcharts 3

to write application programs. A middle-level language
such as C is used for writing application and system
programs. A low-level language such as the assembly
language is mostly used to write system programs.
 Low-level programming languages were the fi rst
category of programming languages to evolve. Gradually,
high-level and middle-level programming languages were
developed and put to use.
 Figure 1.4 depicts the growth in computer languages
since the 1940s. The fi gure is meant to give some idea
of the times that the different generations appeared, time
scales, and relativity of computer languages to each other
and the world of problem solving.

Human
Oriented

Machine
Oriented

Problem
definition

Fourth Generation
Language

Third Generation
Language

Assembly
Language

Machine
Code

1940 1950 1960 1970 1980 1990
Years

Figure 1.4 Growth of computer languages

1.2.1 System Programming Languages

System programs or softwares are designed to make the
computer easier to use. An example of system software is
an operating system consisting of many other programs that
control input/output devices, memory, processor, schedule
the execution of multiple tasks, etc. To write an operating
system program, the programmer needs instructions to
control the computer’s circuitry as well as manage the
resources of the computer. For example, instructions that
move data from one location of storage to a register of the
processor are required. Assembly language, which has a
one-to-one correspondence with machine code, was the
normal choice for writing system programs like operating
systems. But, today C is widely used to develop system
software.

1.2.2 Application Programming Languages

There are two main categories of application programs:
business programs and scientifi c application programs.
Application programs are designed for specifi c computer
applications, such as payroll processing and inventory
control. To write programs for payroll processing or other
such applications, the programmer does not need to control
the basic circuitry of a computer. Instead, the programmer
needs instructions that make it easy to input data, produce
output, perform calculations, and store and retrieve data.
Programming languages suitable for such application
programs have the appropriate instructions. Most
programming languages are designed to be good for one
category of applications but not necessarily for the other,
although there are some general-purpose languages that
support both types. Business applications are characterized
by processing of large inputs and high-volume data storage
and retrieval but call for simple calculations. Languages
which are suitable for business program development
must support high-volume input, output, and storage
but do not need to support complex calculations. On the
other hand, programming languages designed for writing
scientifi c programs contain very powerful instructions for
calculations but have poor instructions for input, output,
etc. Among the traditionally used programming languages,
COBOL is more suitable for business applications whereas
FORTRAN is more suitable for scientifi c applications.

1.2.3 Low-level Languages

A low-level computer programming language is one that
is closer to the native language of the computer, which is
1’s and 0’s.

 Machine language

This is a sequence of instructions written in the form of
binary numbers consisting of 1’s and 0’s to which the
computer responds directly. The machine language is also
referred to as the machine code, although the term is used
more broadly to refer to any program text.
 A machine language instruction generally has three
parts as shown in Fig. 1.5. The fi rst part is the command or
operation code that conveys to the computer what function

4 Programming in C

has to be performed by the instruction. All computers have
operation codes for functions such as adding, subtracting
and moving. The second part of the instruction either
specifi es that the operand contains data on which the
operation has to be performed or it specifi es that the
operand contains a location, the contents of which have to
be subjected to the operation.

n-bits

q-bits

Operation Code Mode Operand

p-bits r-bits

Figure 1.5 General format of machine language
instruction

 Just as hardware is classifi ed into generations based on
technology, computer languages also have a generation
classifi cation based on the level of interaction with the
machine. Machine language is considered to be the fi rst
generation language (1GL).
Advantage of machine language The CPU directly
understands machine instructions, and hence no translation
is required. Therefore, the computer directly starts executing
the machine language instructions, and it takes less execution
time.

Disadvantages of machine language

 ∑ Diffi cult to use It is diffi cult to understand and de-
velop a program using machine language. For any-
body checking such a program, it would be diffi cult
to forecast the output when it is executed. Neverthe-
less, computer hardware recognizes only this type of
instruction code.

 ∑ Machine dependent The programmer has to re-
member machine characteristics while preparing a
program. As the internal design of the computer is
different across types, which in turn is determined by
the actual design or construction of the ALU, CU, and
size of the word length of the memory unit, the ma-
chine language also varies from one type of computer
to another. Hence, it is important to note that after be-
coming profi cient in the machine code of a particular

computer, the programmer may be required to learn
a new machine code and would have to write all the
existing programs again in case the computer system
is changed.

 ∑ Error prone It is hard to understand and remember
the various combinations of 1’s and 0’s representing
data and instructions. This makes it diffi cult for a
programmer to concentrate fully on the logic of the
problem, thus frequently causing errors.

 ∑ Diffi cult to debug and modify Checking machine
instructions to locate errors are about as tedious as
writing the instructions. Further, modifying such a
program is highly problematic.

 Following is an example of a machine language
program for adding two numbers.

Example

1. Machine Code Comments

 0011 1100 Load A register with value 7

 0000 0111

 0000 0110 Load B register with 10

 0000 1010

 1000 0000 A = A + B

 0011 1010 Store the result into the memory location
whose address is 100 (decimal)

 0110 0110
 0111 0110 Halt processing

 Assembly language

When symbols such as letters, digits, or special characters
are employed for the operation, operand, and other parts
of the instruction code, the representation is called an
assembly language instruction. Such representations are
known as mnemonic codes; they are used instead of binary
codes. A program written with mnemonic codes forms an
assembly language program. This is considered to be a
second generation language (2GL).
 Machine and assembly languages are referred to as
low-level languages since the coding for a problem is at
the individual instruction level. Each computer has its own
assembly language that is dependent upon the internal
architecture of the processor.

Introduction to Programming, Algorithms and Flowcharts 5

 An assembler is a translator that takes input in the form
of the assembly language program and produces machine
language code as its output. An instruction word consists
of parts shown in Fig. 1.5 where,
 ∑ the Opcode (Operation Code) part indicates the

operation to be performed by the instruction and
 ∑ the mode and operand parts convey the address of the

data to be found or stored.
 The following is an example of an assembly language
program for adding two numbers X and Y and storing the
result in some memory location.

Example

2. Mnemonics Comments Register/ Location

 LD A, 7 Load register A with 7 A 7

 LD B, 10 Load register B with 10 B 10

 ADD A, B A + B: Add contents of A 17

 A with contents of B and
 store result in register A
 LD (100), A Save the result in the main
 memory location 100 100 17

 HALT Halt process

 From this example program, it is clear that using
mnemonics such as LD, ADD, and HALT, the readability
of the program has improved signifi cantly.
 An assembly language program cannot be executed by
a machine directly as it is not in a binary machine language
form. An assembler is needed to translate an assembly
language program into the object code, which can then be
executed by the machine. The object code is the machine
language code. This is illustrated in Fig. 1.6.

Assembly
Language
Program

Source Code Object Code

Assembler
Object Code
in Machine
Language

Figure 1.6 Assembler

Advantage of assembly language Writing a program in
assembly language is more convenient than writing one

in machine language. Instead of binary sequence, as in
machine language, a program in assembly language is
written in the form of symbolic instructions. This gives
the assembly language program improved readability.

Disadvantages of assembly language

 ∑ Assembly language is specifi c to a particular machine
architecture, i.e., machine dependent. Assembly
languages are designed for a specifi c make and model
of a microprocessor. This means that assembly language
programs written for one processor will not work on a
different processor if it is architecturally different. That
is why an assembly language program is not portable.

 ∑ Programming is diffi cult and time consuming.
 ∑ The programmer should know all about the logical

structure of the computer.

1.2.4 High-level Languages

High-level programming languages such as COBOL,
FORTRAN, and BASIC were mentioned earlier in the
chapter. Such languages have instructions that are similar
to human languages and have a set grammar that makes it
easy for a programmer to write programs and identify and
correct errors in them. To illustrate this point, a program
written in BASIC, to obtain the sum of two numbers, is
shown below.

Example

3. Stmt. No. Program stmnt Comments
 10 LET X = 7 Put 7 into X
 20 LET Y = 10 Put 10 into Y
 30 LET SUM = X + Y Add values in X and Y and
 put in SUM.
 40 PRINT SUM Output the content in SUM.
 50 END Stop

 The time and cost of creating machine and assembly
language programs were quite high. This motivated the
development of high-level languages.

Advantages of high-level programming languages

Readability Programs written in these languages are
more readable than those written in assembly and machine
languages.

6 Programming in C

Portability High-level programming languages can be
run on different machines with little or no change. It
is, therefore, possible to exchange software, leading to
creation of program libraries.

Easy debugging Errors can be easily detected and removed.

Ease in the development of software Since the commands
of these programming languages are closer to the English
language, software can be developed with ease.
 High-level languages are also called third generation
languages (3GLs).

Points to Note

 1. There are two kinds of programming languages --- the
low-level and high level.

 2. The high level programming language is easy to read,
portable, allows swift development of programs and is
easy to debug.

 3. The low level programming language is not portable,
takes more time to develop programs and debugging
is diffi cult.

1.3 COMPILER, INTERPRETER, LOADER, AND
LINKER

For executing a program written in a high-level language,
it must be fi rst translated into a form the machine can
understand. This is done by a software called the compiler.
The compiler takes the high-level language program as
input and produces the machine language code as output
for the machine to execute the program . This is illustrated
in Fig. 1.7.

Source
Program in
High Level

Compiler
Object Code
in Machine
Language

Figure 1.7 Compiler action

 During the process of translation, the compiler reads
the source program statement- wise and checks for syntax
errors. In case of any error, the computer generates a
printout of the same. This action is known as diagnostics.
 There is another type of software that also does
translation. This is called an interpreter.

 The compiler and interpreter have different approaches
to translation. Table 1.1 lists the differences between a
compiler and an interpreter.

Table 1.1 Differences between a compiler and an Interpreter

Compiler Interpreter

Scans the entire program
before translating it into
machine code.

Translates and executes the
program line by line.

Converts the entire
program to machine code
and executes program only
when all the syntax errors
are removed.

The interpreter executes one
line at a time, after checking
and correcting its syntax
errors and then converting it to
machine code.

Slow in debugging or
removal of mistakes from a
program.

Good for fast debugging.

Program execution time is
less.

Program execution time is
more.

1.3.1 Compiling and Executing High-level Language
Programs

The compiling process consists of two steps: the analysis of
the source program and the synthesis of the object program
in the machine language of the specifi ed machine.
 The analysis phase uses the precise description of
the source programming language. A source language is
described using lexical rules, syntax rules, and semantic
rules.
 Lexical rules specify the valid syntactic elements or
words of the language. Syntax rules specify the way in
which valid syntactic elements are combined to form
the statements of the language. Syntax rules are often
described using a notation known as BNF (Backus Naur
Form) grammar. Semantic rules assign meanings to valid
statements of the language.
 The steps in the process of translating a source program
in a high-level language to executable code are depicted in
Fig. 1.8.
 The fi rst block is the lexical analyzer. It takes successive
lines of a program and breaks them into individual
lexical items namely, identifi er, operator delimiter, etc.
and attaches a type tag to each of these. Beside this, it
constructs a symbol table for each identifi er and fi nds the
internal representation of each constant. The symbol table
is used later to allocate memory to each variable.

Introduction to Programming, Algorithms and Flowcharts 7

Lexical
Rules

Syntax
Rules

Semantic
Rules

Object Code

Object Code
from Other

Compilations

Intermediate
Code

Source
Program

Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis

Code
Generator

Symbol
Table

Other
Tables

Linker and
Loader

Executable
Code

Figure 1.8 The process of compilation

 The second stage of translation is called syntax analysis
or parsing. In this phase, expressions, declarations, and
other statements are identifi ed by using the results of lexical
analysis. Syntax analysis is done by using techniques
based on formal grammar of the programming language.
 In the semantic analysis phase, the syntactic units
recognized by the syntax analyzer are processed. An
intermediate representation of the fi nal machine language
code is produced.
 The last phase of translation is code generation, when
optimization to reduce the length of machine language
program is carried out. The output of the code generator
is a machine level language program for the specifi ed
computer. If a subprogram library is used or if some
subroutines are separately translated and compiled, a fi nal
linking and loading step is needed to produce the complete
machine language program in an executable form.
 If subroutines were compiled separately, then the address
allocation of the resulting machine language instructions
would not be fi nal. When all routines are connected and
placed together in the main memory, suitable memory
addresses are allocated. The linker’s job is to fi nd the
correct main memory locations of the fi nal executable
program. The loader then places the executable program
in memory at its correct address.

 Therefore, the execution of a program written in high-
level language involves the following steps:
 1. Translation of the program resulting in the object

program.
 2. Linking of the translated program with other object

programs needed for execution, thereby resulting in a
binary program.

 3. Relocation of the program to execute from the specifi c
memory area allocated to it.

 4. Loading of the program in the memory for the purpose
of execution.

1.3.2 Linker

Linking resolves symbolic references between object
programs. It makes object programs known to each other.
The features of a programming language infl uence the
linking requirements of a program. In FORTRAN/COBOL,
all program units are translated separately. Hence, all
subprogram calls and common variable references require
linking. PASCAL procedures are typically nested inside
the main program. Hence, procedure references do not
require linking; they can be handled through relocation.
References to built-in functions however require linking.
In C, fi les are translated separately. Thus, only function
calls that cross fi le boundaries and references to global
data require linking. Linking makes the addresses of
programs known to each other so that transfer of control
from one subprogram to another or a main program takes
place during execution.

Relocation

 Relocation means adjustment of all address-dependent
locations, such as address constant, to correspond to the
allocated space, which means simple modifi cation of the
object program so that it can be loaded at an address
different from the location originally specifi ed. Relocation
is more than simply moving a program from one area to
another in the main memory. It refers to the adjustment
of address fi elds. The task of relocation is to add some
constant value to each relative address in the memory
segment.

1.3.3 Loader

Loading means physically placing the machine instructions
and data into main memory, also known as primary storage
area.

8 Programming in C

 A loader is a system program that accepts object programs
and prepares them for execution and initiates the execution
(see Fig. 1.9). The functions performed by the loader are :
 ∑ Assignment of load-time storage area to the program
 ∑ Loading of program into assigned area
 ∑ Relocation of program to execute properly from its

load time storage area
 ∑ Linking of programs with one another

Source
Program Data

Result

Translator Linker Loader
Binary

Program

Data Flow

Control Flow

Object
Module

Binary
Program

Figure 1.9 A schematic of program execution

 Thus, a loader is a program that places a program’s
instructions and data into primary storage locations. An
absolute loader places these items into the precise locations
indicated in the machine language program. A relocating
loader may load a program at various places in primary
storage depending on the availability of primary storage
area at the time of loading. A program may be relocated
dynamically with the help of a relocating register. The
base address of the program in primary storage is placed
in the relocating register. The contents of the relocation
register are added to each address developed by a running
program. The user is able to execute the program as if it
begins at location zero. At execution time, as the program
runs, all address references involve the relocation register.
This allows the program to reside in memory locations
other than those for which it was translated to occupy.

1.3.4 Linking Loader and Linkage Editor

User programs often contain only a small portion
of the instructions and data needed to solve a given
problem. Large subroutine libraries are provided so
that a programmer wanting to perform certain common

operations may use system-supplied routines to do so.
Input/output, in particular, is normally handled by routines
outside the user program. Hence, the machine language
program produced by the translator must normally be
combined with other machine language programs residing
within the library to form a useful execution unit. This
process of program combination is called linking and the
software that performs this operation is variously known
as a linking loader or a linkage editor. Linking is done
after object code generation, prior to program execution
time.
 At load time, a linking loader combines whatever
programs are required and loads them directly into primary
storage. A linkage editor also performs the same task,
but it creates a load image that it preserves on secondary
storage for future reference. Whenever a program is to be
executed, the load image produced by the linkage editor
may be loaded immediately without the overhead of
recombining program segments.

Points to Note

 1. A compiler converts a high-level language program
into executable machine instructions after the removal
of syntax errors.

 2. An interpreter executes each high-level language pro-
gram one line at a time after removing its syntax error
and converting it into machine instructions.

 3. A linker makes the addresses of programs known to
each other so that transfer of control from one subpro-
gram to another or a main program takes place prop-
erly during execution.

 4. A loader is a program that places a program’s execut-
able machine instructions and data into primary stor-
age locations.

1.4 PROGRAM EXECUTION
The primary memory of a computer, also called the
Random Access Memory, is divided into units known as
words.
 Depending on the computer, a word of memory may
be two, four, or even eight bytes in size. Each word is
associated with a unique address, which is a positive
integer that helps the CPU to access the word. Addresses
increase consecutively from the top of the memory to its
bottom. When a program is compiled and linked, each
instruction and each item of data is assigned an address. At
execution time, the CPU fi nds instructions and data from
these addresses.

Introduction to Programming, Algorithms and Flowcharts 9

 The PC, or program counter, is a CPU register that
holds the address of the next instruction to be executed
in a program. In the beginning, the PC holds the address
of the zeroth instruction of the program. The CPU fetches
and then executes the instruction found at this address.
The PC is meanwhile incremented to the address of the
next instruction in the program. Having executed one
instruction, the CPU goes back to look up the PC where
it fi nds the address of the next instruction in the program.
This instruction may not necessarily be in the next
memory location. It could be at quite a different address.
For example, the last statement could have been a go to
statement, which unconditionally transfers control to a
different point in the program; or there may have been a
branch to a function subprogram. The CPU fetches the
contents of the words addressed by the PC in the same
amount of time, whatever their physical locations. The
CPU has random access capability to any and all words
of the memory, no matter what their addresses. Program
execution proceeds in this way until the CPU has processed
the last instruction.

Points to Note

 1. When a program is compiled and linked, each instruction
and each item of data is assigned an address.

 2. During program execution, the CPU fi nds instructions
and data from the assigned addresses.

1.5 FOURTH GENERATION LANGUAGES
The Fourth Generation Language is a non-procedural
language that allows the user to simply specify what the
output should be without describing how data should
be processed to produce the result. Fourth generation
programming languages are not as clearly defi ned as are
the other earlier generation languages. Most people feel
that a fourth generation language, commonly referred to
as 4GL, is a high-level language that requires signifi cantly
fewer instructions to accomplish a particular task than
does a third generation language. Thus, a programmer
should be able to write a program faster in 4GL than in a
third generation language.
 Most third generation languages are procedural
languages. That is, the programmer must specify the steps
of the procedure the computer has to follow in a program.
By contrast, most fourth generation languages are non-
procedural languages. The programmer does not have

to give the details of the procedure in the program, but
specify, instead, what is wanted. For example, assume
that a programmer needs to display some data on the
screen, such as the address of a particular employee, say
MANAS, from the EMP fi le. In a procedural language, the
programmer would have to write a series of instructions
using the following steps:
 Step 1: Get a record from the EMP fi le.
Step 2: If this is the record for MANAS, display the

address.
Step 3: If this is not the record for MANAS, go to

step 1, until end-of-fi le.
 In a non-procedural language (4GL), however, the
programmer would write a single instruction that says:

 Get the address of MANAS from EMP fi le.

 Major fourth generation languages are used to get
information from fi les and databases, as in the previous
example, and to display or print the information. These
fourth generation languages contain a query language,
which is used to answer queries or questions with data
from a database. The following example shows a query in
a common query language, SQL.

 SELECT ADDRESS FROM EMP WHERE NAME =
‘MANAS’

 End user-oriented 4GLs are designed for applications
that process low data volumes. These 4GLs run on
mainframe computers and may be employed either by
information users or by the programmers. This type of 4GL
may have its own internal database management software
that in turn interacts with the organization’s DBMS
package. People who are not professional programmers
use these products to query databases, develop their
own custom-made applications, and generate their own
reports with minimum amount of training. For example,
ORACLE offers a number of tools suitable for the end
user.
 Some fourth generation languages are used to produce
complex printed reports. These languages contain certain
types of programs called generators. With a report generator,
the programmer specifi es the headings, detailed data,
and totals needed in a report. Thus, the report generator
produces the required report using data from a fi le. Other
fourth generation languages are used to design screens
for data input and output and for menus. These languages

10 Programming in C

contain certain types of programs called screen painters.
The programmer designs the screen to look as desired and,
therefore, it can be said that the programmer paints the
screen using the screen painter program. Fourth generation
languages are mostly machine independent. Usually they
can be used on more than one type of computer. They are
mostly used for offi ce automation or business applications,
and not for scientifi c programs. Some fourth generation
languages are designed to be easily learnt and employed
by end users.

Advantages of 4GLs

 ∑ Programming productivity is increased. One line of
a 4GL code is equivalent to several lines of a 3GL
code.

 ∑ System development is faster.
 ∑ Program maintenance is easier.
 ∑ End users can often develop their own applications.
 ∑ Programs developed in 4GLs are more portable than

those developed in other generation languages.
 ∑ Documentation is of improved order because most

4GLs are self-documenting.

 The differences between third generation languages
and fourth generated languages are shown in Table 1.2.

Table 1.2 3GL vs 4GL

3GL 4GL

Meant for use by professional
programmers

May be used by non-
professional programmers
as well as by professional
programmers.

Requires specifi cations of
how to perform a task

Requires specifi cations of
what task to perform.

All alternatives must be
specifi ed

System determines how to
perform the task.

Execution time is less Default alternatives are built-
in. User need not specify
these alternatives.

Requires large number of
procedural instructions Code
may be diffi cult to read,
understand, and maintain by
the user

Requires fewer instructions.

Typically, fi le oriented Diffi cult to debug

1.6 FIFTH GENERATION LANGUAGES
Natural languages represent the next step in the
development of programming languages belonging to
fi fth generation languages. Natural language is similar
to query language, with one difference: it eliminates
the need for the user or programmer to learn a specifi c
vocabulary, grammar, or syntax. The text of a natural-
language statement resembles human speech closely. In
fact, one could word a statement in several ways, perhaps
even misspelling some words or changing the order of the
words, and get the same result. Natural language takes the
user one step further away from having to deal directly
and in detail with computer hardware and software.
These languages are also designed to make the computer
smarter—that is, to simulate the human learning process.
Natural languages already available for microcomputers
include CLOUT, Q & A, and SAVY RETRIEVER (for use
with databases) and HAL(Human Access Language) for
use with LOTUS.

Points to Note

 1. Third generation programming language specifi es how
to perform a task using a large number of procedural
instructions and is fi le oriented.

 2. Fourth generation programming language specifi es
what task has to be performed using fewer instructions
and is database oriented.

 3. Fifth generation programming language resembles
human speech and eliminates the need for the user or
programmer to learn a specifi c vocabulary, grammar,
or syntax.

1.7 CLASSIFICATION OF PROGRAMMING

 LANGUAGES
1.7.1 Procedural Languages

 Algorithmic languages These are high-level languages
designed for forming convenient expression of procedures,
used in the solution of a wide class of problems. In this
language, the programmer must specify the steps the
computer has to follow while executing a program. Some
of languages that fall in the category are C, COBOL, and
FORTRAN.

 Object-oriented language The basic philosophy of object-
oriented programming is to deal with objects rather than
functions or subroutines as in strictly algorithmic languages.

Introduction to Programming, Algorithms and Flowcharts 11

Objects are self-contained modules that contain data as well
as the functions needed to manipulate the data within the
same module. In a conventional programming language,
data and subroutines or functions are separate. In object-
oriented programming, subroutines as well as data are
locally defi ned in objects. The difference affects the way a
programmer goes about writing a program as well as how
information is represented and activated in the computer.
The most important object-oriented programming features
are

 ∑ abstraction
 ∑ encapsulation and data hiding
 ∑ polymorphism
 ∑ inheritance
 ∑ reusable code

 C++, JAVA, SMALLTALK, etc. are examples of object-
oriented languages.

Programming Language

High-level
Language

Low-level
Language

Procedural Non-procedural Problem-
oriented

Machine
Language

Assembly
Language

Algorithmic
(

)
COBOL,

FORTRAN, C

Numerical
()MATLAB

Functional
()LISP, ML

Object
Oriented
(

)
C++, JAVA,

SMALLTALK

Symbolic
()MATHEMATICA

Logic Based
()PROLOG

Scripting
()VB, PERL

Publishing
()LATEX

Fig. 1.10 Programming language classifi cation

 Scripting languages These languages assume that
a collection of useful programs, each performing a
task, already exists. It has facilities to combine these
components to perform a complex task. A scripting
language may thus be thought of as a glue language,
which sticks a variety of components together. One of
the earliest scripting languages is the UNIX shell. Now
there are several scripting languages such as VB script
and Perl.

1.7.2 Problem-oriented Languages

These are high-level languages designed for developing a
convenient expression of a given class of problems.

1.7.3 Non-procedural Languages

 Functional (applicative) languages These functional
languages solve a problem by applying a set of functions
to the initial variables in specifi c ways to get the answer.
The functional programming style relies on the idea of
function application rather than on the notion of variables
and assignments. A program written in a functional
language consists of function calls together with arguments
to functions. LISP, ML, etc. are examples of functional
languages.

 Logic-based programming language A logic program
is expressed as a set of atomic sentences, known as fact,
and horn clauses, such as if-then rules. A query is then
posed. The execution of the program now begins and the
system tries to fi nd out if the answer to the query is true or
false for the given facts and rules. Such languages include
PROLOG.

Points to Note

 1. Programming languages can be categorized as high-
level or low-level.

 2. High-level languages are classifi ed as procedural, non-
procedural and problem-oriented languages. Programs
in high-level languages are easy to prepare and debug.
Such languages are not machine oriented.

 3. Low-level languages are machine oriented languages.

1.8 STRUCTURED PROGRAMMING CONCEPT
In 1968, computer scientist Edsger Dijkstra of Netherlands
published a letter to the editor in the journal of the Association
of Computing Machinery with the title ‘Go To statement
considered harmful’. goto is a command available in most
programming languages to transfer a control to a particular
statement. For three decades, Dijkstra had been crusading
for a better way of programming—a systematic way to
organize programs—called structured programming.
 Structured programming has been called a revolution
in programming and is considered as one of the most
important advancements in software in the past two
decades. Both academic and industrial professionals
are inclined towards the philosophy and techniques of
structured programming. Today, it can be safely said that

12 Programming in C

virtually all software developers acknowledge the merits
of the structured programming approach and use it in
software development.
 There is no standard defi nition of structured programs
available but it is often thought to be programming
without the use of a goto statement. Indeed, structured
programming does discourage the frequent use of goto but
there is more to it than that.
 Structured programming is:
 ∑ concerned with improving the programming process

through better organization of programs and better
programming notation to facilitate correct and clear
description of data and control structure.

 ∑ concerned with improved programming languages
and organized programming techniques which should
be understandable and therefore, more easily modifi -
able and suitable for documentation.

 ∑ more economical to run because good organization
and notation make it easier for an optimizing com-
piler to understand the program logic.

 ∑ more correct and therefore more easily debugged,
because general correctness theorems dealing with
structures can be applied to proving the correctness
of programs.

 Structured programming can be defi ned as a
 ∑ top–down analysis for program solving
 ∑ modularization for program structure and organization
 ∑ structured code for individual modules

1.8.1 Top–Down Analysis

A program is a collection of instructions in a particular
language that is prepared to solve a specifi c problem.
For larger programs, developing a solution can be very
complicated. From where should it start? Where should
it terminate? Top-down analysis is a method of problem
solving and problem analysis. The essential idea is to
subdivide a large problem into several smaller tasks or
parts for ease of analysis.
 Top-down analysis, therefore, simplifi es or reduces the
complexity of the process of problem solving. It is not
limited by the type of program. Top-down analysis is a
general method for attending to any problem. It provides a
strategy that has to be followed for solving all problems.
 There are two essential ideas in top-down analysis:
 ∑ subdivision of a problem
 ∑ hierarchy of tasks

 Subdivision of a problem means breaking a big problem
into two or more smaller problems. Therefore, to solve
the big problem, fi rst these smaller problems have to be
solved.
 Top-down analysis does not simply divide a problem
into two or more smaller problems.
 It goes further than that. Each of these smaller problems
is further subdivided. This process continues downwards,
creating a hierarchy of tasks, from one level to the next,
until no further break up is possible.
 The four basic steps to top-down analysis are as follows:
 Step 1: Defi ne the complete scope of the problem to

determine the basic requirement for its solution.
Three factors must be considered in the defi nition
of a programming problem.

 ∑ Input: What data is required to be processed
by the program?

 ∑ Process: What must be done with the input
data? What type of processing is required?

 ∑ Output: What information should the program
produce? In what form should it be presented?

Step 2: Based on the defi nition of the problem, divide the
problem into two or more separate parts.

Step 3: Carefully defi ne the scope of each of these
separate tasks and subdivide them further, if
necessary, into two or more smaller tasks.

Step 4: Repeat step 3. Every step at the lowest level
describes a simple task, which cannot be broken
further.

1.8.2 Modular Programming

 Modular programming is a program that is divided into
logically independent smaller sections, which can be written
separately. These sections, being separate and independent
units, are called modules.
 ∑ A module consists of a series of program instructions

or statements in some programming language.
 ∑ A module is clearly terminated by some special

markers required by the syntax of the language. For
example, a BASIC language subroutine is terminated
by the return statement.

 ∑ A module as a whole has a unique name.
 ∑ A module has only one entry point to which control

is transferred from the outside and only one exit point
from which control is returned to the calling module.

Introduction to Programming, Algorithms and Flowcharts 13

 The following are some advantages of modular
programming.

 ∑ Complex programs may be divided into simpler and
more manageable elements.

 ∑ Simultaneous coding of different modules by several
programmers is possible.

 ∑ A library of modules may be created, and these
modules may be used in other programs as and when
needed.

 ∑ The location of program errors may be traced to a
particular module; thus, debugging and maintenance
may be simplifi ed.

1.8.3 Structured Code

After the top-down analysis and design of the modular
structure, the third and fi nal phase of structured
programming involves the use of structured code.
Structured programming is a method of coding, i.e., writing
a program that produces a well-organized module.
 A high-level language supports several control
statements, also called structured control statements or
structured code, to produce a well-organized structured
module. These control statements represent conditional
and repetitive type of executions. Each programming
language has different syntax for these statements.
 In C, the if and case statements are examples of
conditional execution whereas for, while, and do...while
statements represent repetitive execution. In BASIC, for-
next and while-wend are examples of repetitive execution.
Let us consider the goto statement of BASIC, which is
a simple but not a structured control statement. The goto
statement can break the normal fl ow of the program
and transfer control to any arbitrary point in a program.
A module that does not have a normal fl ow control is
unorganized and unreadable.
 The following example is a demonstration of a program
using several goto statements. Note that at line numbers 20,
60, and 80, the normal fl ow control is broken. For example,
from line number 60, control goes back to line 40 instead
of line 70 in case value of (R – G) is less than 0.001.
 10 INPUT X
 20 IF X < 0 THEN GOTO 90
 30 G = X/2
 40 R = X/G
 50 G = (R + G)/2
 60 IF ABS(R - G) < 0.001 THEN GOTO 40
 70 PRINT G

 80 GOTO 100
 90 PRINT INVALID INPUT”

 100 END

 The structured version of this program using while-
wend statement is given below.

 INPUT X
 IF X > 0
 THEN
 G = X/2
 R = X/G
 WHILE ABS (R – G) < 0.001
 R = X/G
 G = (R + G)/2
 WEND
 PRINT G
 ELSE
 PRINT “INVALID INPUT”
 END

 Now if there is no normal break of control fl ow, gotos
are inevitable in unstructured languages but they can be
and should be always avoided while using structured
programs except in unavoidable situations.

1.8.4 The Process of Programming

The job of a programmer is not just writing program
instructions. The programmer does several other additional
jobs to create a working program. There are some logical
and sequential job steps which the programmer has to
follow to make the program operational.
These are as follows:
 1. Understand the problem to be solved
 2. Think and design the solution logic
 3. Write the program in the chosen programming

language
 4. Translate the program to machine code
 5. Test the program with sample data
 6. Put the program into operation
 The fi rst job of the programmer is to understand the
problem. To do that the requirements of the problem should
be clearly defi ned. And for this, the programmer may have
to interact with the user to know the needs of the user. Thus
this phase of the job determines the ‘what to’ of the task.
 The next job is to develop the logic of solving the
problem. Different solution logics are designed and the
order in which these are to be used in the program are
defi ned. Hence, this phase of the job specifi es the ‘how to’
of the task.

14 Programming in C

 Once the logics are developed, the third phase of the
job is to write the program using a chosen programming
language. The rules of the programming language have to
be observed while writing the program instructions.
 The computer recognizes and works with 1’s and 0’s.
Hence program instructions have to be converted to 1’s
and 0’s for the computer to execute it. Thus, after the
program is written, it is translated to the machine code,
which is in 1’s and 0’s with the help of a translating
program.
 Now, the program is tested with dummy data. Errors in
the programming logic are detected during this phase and
are removed by making necessary changes in either the
logic or the program instructions.
 The last phase is to make the program operational. This
means, the program is put to actual use. Errors occurring
in this phase are rectifi ed to fi nally make the program work
to the user’s satisfaction.

Points to Note

 1. Structured programming involves top–down analysis
for program solving, modularization of program structure
and organizing structured code for individual module.

 2. Top-down analysis breaks the whole problem into
smaller logical tasks and defi nes the hierarchical link
between the tasks.

 3. Modularization of program structure means making
the small logical tasks into independent program
modules that carries out the desired tasks.

 4. Structured coding is structured programming which
consists of writing a program that produces a well-
organized module.

1.9 ALGORITHMS

1.9.1 What is an Algorithm?

Computer scientist Niklaus Wirth stated that
 Program = Algorithms + Data
 An algorithm is a part of the plan for the computer
program. In fact , an algorithm is ‘an effective procedure
for solving a problem in a fi nite number of steps’.
 It is effective, which means that an answer is found
and it has a fi nite number of steps. A well-designed
algorithm will always provide an answer; it may not be
the desired answer but there will be an answer. It may be
that the answer is that there is no answer. A well- designed
algorithm is also guaranteed to terminate.

1.9.2 Different Ways of Stating Algorithms

Algorithms may be represented in various ways. There are
four ways of stating algorithms.
These are as follows:
 ∑ Step-form
 ∑ Pseudo-code
 ∑ Flowchart
 ∑ Nassi-Schneiderman
 In the step form representation, the procedure of solving
a problem is stated with written statements. Each statement
solves a part of the problem and these together complete
the solution. The step-form uses just normal language to
defi ne each procedure. Every statement, that defi nes an
action, is logically related to the preceding statement. This
algorithm has been discussed in the following section with
the help of an example.
 The pseudo-code is a written form representation of the
algorithm. However it differs from the step form as it uses
a restricted vocabulary to defi ne its action of solving the
problem. One problem with human language is that it can
seem to be imprecise. But the pseudo-code, which is in
human language, tends toward more precision by using a
limited vocabulary.
 Flowchart and Nassi-Schneiderman are graphically
oriented representation forms. They use symbols and
language to represent sequence, decision, and repetition
actions. Only the fl owchart method of representing
the problem solution has been explained with several
examples. The Nassi-Schneiderman technique is beyond
the scope of this book.

Points to Note

 1. An algorithm is an effective procedure for solving a
problem in a fi nite number of steps.

 2. A program is composed of algorithm and data.

 3. The four common ways of representing an algorithm
are the Step-form, Pseudo-code, Flowchart and Nassi-
Schneiderman.

1.9.3 Key Features of an Algorithm and the Step-form

Here is an example of an algorithm, for making a pot of tea.
 1. If the kettle does not contain water, then fi ll the

kettle.
 2. Plug the kettle into the power point and switch it on.
 3. If the teapot is not empty, then empty the teapot.

Introduction to Programming, Algorithms and Flowcharts 15

 The fi rst form of the decision if proposition then process
has a null else, that is, there is no else.

The repetition constructs— repeat and while

Repetition can be implemented using constructs like the
repeat loop, while loop, and if.. then .. goto .. loop.
 The Repeat loop is used to iterate or repeat a process or
sequence of processes until some condition becomes true.
It has the general form:
 Repeat
 Process1
 Process2

 ………..
 ProcessN
 Until proposition
Here is an example.
 Repeat
 Fill water in kettle
 Until kettle is full
 The process is ‘Fill water in kettle,’ the proposition is
‘kettle is full’.
 The Repeat loop does some processing before testing
the state of the proposition.
What happens though if in the above example the kettle
is already full? If the kettle is already full at the start of
the Repeat loop, then fi lling more water will lead to an
overfl ow.
 This is a drawback of the Repeat construct.
 In such a case the while loop is more appropriate. The
above example with the while loop is shown as follows:
 while kettle is not full
 fi ll water in kettle
 Since the decision about the kettle being full or not is
made before fi lling water, the possibility of an overfl ow
is eliminated. The while loop fi nds out whether some
condition is true before repeating a process or a sequence
of processes.
 If the condition is false, the process or the sequence of
processes is not executed. The general form of while loop
is:
 while proposition
 begin

 Process 1

 4. Place tea leaves in the teapot.
 5. If the water in the kettle is not boiling, then go to step 5.
 6. Switch off the kettle.
 7. Pour water from the kettle into the teapot.
 It can be seen that the algorithm has a number of steps
and that some steps (steps 1, 3, and 5) involve decision
making and one step (step 5 in this case) involves repetition,
in this case the process of waiting for the kettle to boil.
 From this example, it is evident that algorithms show
these three features:
 ∑ Sequence (also known as process)
 ∑ Decision (also known as selection)
 ∑ Repetition (also known as iteration or looping)
 Therefore, an algorithm can be stated using three basic
constructs: sequence, decision, and repetition.

Sequence

Sequence means that each step or process in the algorithm
is executed in the specifi ed order. In the above example,
each process must be in the proper place otherwise the
algorithm will fail.

The decision constructs— if ... then, if ... then ... else ...

In algorithms the outcome of a decision is either true or
false; there is no state in between.
The outcome of the decision is based on some condition
that can only result in a true or false value. For example,
 if today is Friday then collect pay
is a decision and the decision takes the general form:
 if proposition then process
 A proposition, in this sense, is a statement, which can
only be true or false. It is either true that ‘today is Friday’
or it is false that ‘today is not Friday’. It can not be both
true and false. If the proposition is true, then the process
or procedure that follows the then is executed. The deci-
sion can also be stated as:
 if proposition
 then process1
 else process2
 This is the if … then … else … form of the decision.
This means that if the proposition is true then execute
process1, else, or otherwise, execute process2.

16 Programming in C

 Process 2
 ………..
 ………...
 Process N
 end

 The if .. then goto .. is also used to repeat a process
or a sequence of processes until the given proposition
is false. In the kettle example, this construct would be
implemented as follows:
 1. Fill some water in kettle
 2. if kettle not full then goto 1
 So long as the proposition ‘kettle not full’ is true the
process, ‘fi ll some water in kettle’ is repeated. The general
form of if .. then goto .. is:
 Process1
 Process2
 ……….
 ……….
 ProcessN
 if proposition then goto Process1

Termination

The defi nition of algorithm cannot be restricted to
procedures that eventually fi nish. Algorithms might also
include procedures that could run forever without stopping.
Such a procedure has been called a computational method
by Knuth or calculation procedure or algorithm by
Kleene. However, Kleene notes that such a method must
eventually exhibit ‘some object.’ Minsky (1967) makes
the observation that, if an algorithm has not terminated,
then how can the following question be answered: “Will
it terminate with the correct answer?” Thus the answer is:
undecidable. It can never be known, nor can the designer
do an analysis beforehand to fi nd it out. The analysis of
algorithms for their likelihood of termination is called
termination analysis.

Correctness

The prepared algorithm needs to be verifi ed for its
correctness. Correctness means how easily its logic can be
argued to meet the algorithm’s primary goal. This requires
the algorithm to be made in such a way that all the elements
in it are traceable to the requirements.
 Correctness requires that all the components like the
data structures, modules, external interfaces, and module
interconnections are completely specifi ed.

 In other words, correctness is the degree to which an
algorithm performs its specifi ed function. The most common
measure of correctness is defects per Kilo Lines of Code
(KLOC) that implements the algorithm, where defect is
defi ned as the verifi ed lack of conformance to requirements.

Points to Note

 1. The key features of an algorithm are sequence, selection
and repetition.

 2. The stepwise form has sequence, selection and repetition
constructs.

 3. Termination means the action of closing. A well-designed
algorithm has a termination.

 4. Correctness of algorithm means how easily its logic
can be argued to meet the algorithm’s primary goal.

1.9.4 What are Variables?

So long, the elements of algorithm have been discussed.
But a program comprises of algorithm and data. Therefore,
it is now necessary to understand the concept of data. It
is known that data is a symbolic representation of value
and that programs set the context that gives data a proper
meaning. In programs, data is transformed into information.
The question is, how is data represented in programs?
 Almost every algorithm contains data and usually
the data is ‘contained’ in what is called a variable. The
variable is a container for a value that may vary during the
execution of the program. For example, in the tea-making
algorithm, the level of water in the kettle is a variable, the
temperature of the water is a variable, and the quantity of
tea leaves is also a variable.
 Each variable in a program is given a name, for
example,
 ∑ Water_Level
 ∑ Water_Temperature
 ∑ Tea_Leaves_Quantity
and at any given time the value, which is represented by
Water_Level, for instance, may be different to its value at
some other time. The statement
 if the kettle does not contain water then fi ll the
kettle could also be written as
 if Water_Level is 0 then fi ll the kettle
or
 if Water_Level = 0 then fi ll the kettle
 At some point Water_Level will be the maximum value,
whatever that is, and the kettle will be full.

Introduction to Programming, Algorithms and Flowcharts 17

Variables and data types

The data used in algorithms can be of different types. The
simplest types of data that an algorithm might use are
 ∑ numeric data, e.g., 12, 11.45, 901, etc.
 ∑ alphabetic or character data such as ‘A’, ‘Z’, or ‘This

is alphabetic’
 ∑ logical data, that is, propositions with true/false

values

Naming of variables

One should always try to choose meaningful names for
variables in algorithms to improve the readability of the
algorithm or program. This is particularly important in
large and complex programs.
 In the tea-making algorithm, plain English was used. It
has been shown how variable names may be used for some
of the algorithm variables. In Table 1.3, the right-hand
column contains variable names which are shorter than
the original and do not hide the meaning of the original
phrase. Underscores have been given to indicate that the
words belong together and represent a variable.

Table 1.3 Algorithm using variable names

Algorithm in Plain
English

Algorithm using Variable
Names

1. If the kettle does not
contain water, then fi ll the
kettle.

1. If kettle_empty then fi ll the
kettle.

2. Plug the kettle into the
power point and switch it
on.

2. Plug the kettle into the
power point and switch it
on.

3. If the teapot is not empty,
then empty the teapot.

3. If teapot_not_empty then
empty the teapot.

4. Place tea leaves in the
teapot.

4. Place tea leaves in the
teapot.

5. If the water in the kettle is
not boiling then go to
step 5.

5. If water_not_boiling then
go to step 5.

6. Switch off the kettle. 6. Switch off the kettle.

7. Pour water from the kettle
into the teapot.

7. Pour water from the kettle
into the teapot.

 There are no hard and fast rules about how variables
should be named but there are many conventions. It
is a good idea to adopt a conventional way of naming
variables.
 The algorithms and programs can benefi t from using
naming conventions for processes too.

Points to Note

 1. Data is a symbolic representation of value.

 2. A variable, which has a name, is a container for a value
that may vary during the execution of the program.

1.9.5 Subroutines
A simple program is a combination of statements that are
implemented in a sequential order. A statement block is
a group of statements. Such a program is shown in Fig.
1.11(i). There might be a specifi c block of statement,
which is also known as a procedure, that is run several
times at different points in the implementation sequence
of the larger program. This is shown in Fig.1.11(ii). Here,
this specifi c block of statement is named “procedure X”. In
this example program, the “procedure X” is written twice
in this example. This enhances the size of the program.
Since this particular procedure is required to be run at
two specifi c points in the implementation sequence of the
larger program, it may be treated as a separate entity and
not included in the main program. In fact, this procedure
may be called whenever required as shown in Fig.1.11(iii).
Such a procedure is known as a subroutine.

Start

Statement
1

Statement
2

Statement
3

Statement
N

Statement
4

End

�

Start

Statement
1

Procedure
X

Statement
2

Statement
N

Procedure
X

End

�

Start

Statement
1

Statement
2

Statement
3

Statement
N

End

�

Procedure
X

Subroutine

Call
Return

(i) A structure
of a simple
program

(ii) A structure
of a program
with repeated
procedures

(iii) A structure
of a program
using a
subroutine

Statement
4

Figure 1.11 Program structures

18 Programming in C

 Therefore, a subroutine, also known as procedure,
method or function, is a portion of instruction that is
invoked from within a larger program to perform a
specifi c task. At the same time the subroutine is relatively
independent of the remaining statements of the larger
program. The subroutine behaves in much the same way
as a program that is used as one step in a larger program.
A subroutine is often written so that it can be started
(“called”) several times and/or from several places during
a single execution of the program, including from other
subroutines, and then branch back (return) to the next
instruction after the “call”, once the subroutine’s task is
done. Thus, such subroutines are invoked with a CALL
statement with or without passing of parameters from the
calling program. The subroutine works on the parameters
if given to it, otherwise it works out the results and gives
out the result by itself and returns to the calling program
or pass the results to the calling program before returning
to it.
 The technique of writing subroutine has some distinct
advantages. The subroutine reduces duplication of block
of statements within a program, enables reuse of the block
of statements that forms the subroutine across multiple
programs, decomposes a complex task into simpler
steps, divides a large programming task among various
programmers or various stages of a project and hides
implementation details from users.
 However, there are some disadvantages in using
subroutines. The starting or invocation of a subroutine requires
some computational overhead in the call mechanism itself.
The subroutine requires some well defi ned housekeeping
techniques at it’s entry and exit from it.

Points to Note

 1. A subroutine is a logical collection of instructions that
is invoked from within a larger program to perform a
specifi c task.

 2. The subroutine is relatively independent of the remaining
statements of the program that invokes it.

 3. A subroutine can be invoked several times from several
places during a single execution of the invoking program.

 4. After completing the specifi c task, a subroutine returns
to the point of invocation in the larger program.

Some examples on developing algorithms using step-form

For illustrating the step-form the following conventions
are assumed:

 1. Each algorithm will be logically enclosed by two
statements START and STOP.

 2. To accept data from user, the INPUT or READ
statements are to be used.

 3. To display any user message or the content in a
variable, PRINT statement will be used. Note that the
message will be enclosed within quotes.

 4. There are several steps in an algorithm. Each step
results in an action. The steps are to be acted upon
sequentially in the order they are arranged or directed.

 4. The arithmetic operators that will be used in the
expressions are

 (i) ‘←’ ….Assignment (the left-hand side of ‘←’
should always be a single variable)

 Example: The expression x ← 6 means that a
value 6 is assigned to the variable x. In terms of
memory storage, it means a value of 6 is stored
at a location in memory which is allocated to the
variable x.

 (ii) ‘+’….. Addition
 Example: The expression z ← x + y means

the value contained in variable x and the value
contained in variable y is added and the resulting
value obtained is assigned to the variable z.

 (iii) ‘–’….. Subtraction
 Example: The expression z ← x – y means the

value contained in variable y is subtracted from
the value contained in variable x and the resulting
value obtained is assigned to the variable z

 (iv) ‘*’….. Multiplication
 Example: Consider the following expressions

written in sequence:
 x ← 5
 y ← 6
 z ← x * y
 The result of the multiplication between x and y

is 30. This value is therefore assigned to z.
 (v) ‘/’….. Division
 Example: The following expressions written in

sequence illustrates the meaning of the division
operator :

 x ← 10
 y ← 6
 z ← x/y

Introduction to Programming, Algorithms and Flowcharts 19

 The quotient of the division between x and y is 1
and the remainder is 4. When such an operator is
used the quotient is taken as the result whereas the
remainder is rejected. So here the result obtained
from the expression x/y is 1 and this is assigned
to z.

 5. In propositions, the commonly used relational
operators will include

 (i) ‘>’ ….. Greater than
 Example: The expression x > y means if the

value contained in x is larger than that in y then
the outcome of the expression is true, which will
be taken as 1. Otherwise, if the outcome is false
then it would be taken as 0.

 (ii) ‘<=’ …..Less than or equal to
 Example: The expression x <= y implies that

if the value held in x is either less than or equal
to the value held in y then the outcome of the
expression is true and so it will be taken as 1.

 But if the outcome of the relational expression is
false then it is taken as 0.

 (iii) ‘<’ …… Less than
 Example: Here the expression x < y implies that

if the value held in x is less than that held in y
then the relational expression is true, which is
taken as 1, otherwise the expression is false and
hence will be taken as 0.

 (iv) ‘=’ …… Equality
 Example: The expression x = y means that if the

value in x and that in y are same then this relational
expression is true and hence the outcome is 1
other wise the outcome is false or 0.

 (v) ‘>=’ …… Greater than or equal to
 Example: The expression x >= y implies that

if the value in x is larger or equal to that in y
then the outcome of the expression is true or 1,
otherwise it is false or 0.

 (vi) ‘!=’ …… Non- equality
 Example: The expression x != y means that if

the value contained in x is not equal to the value
contained in y then the outcome of the expression
is true or 1, otherwise it is false or 0.

 Note: The ‘equal to (=)’ operator is used both for
assignment as well as equality specifi cation. When
used in proposition, it specifi es equality otherwise
assignment. To differentiate ‘assignment’ from

‘equality’ left arrow (←) may be used. For example,
a ←b is an assignment but a = b is a proposition for
checking the equality.

 6. The most commonly used logical operators will be
AND, OR and NOT. These operators are used to
specify multiple test conditions forming composite
proposition. These are

 (i) ‘AND’…… Conjunction
 The outcome of an expression is true or 1 when

both the propositions AND-ed are true otherwise
it is false or 0.

 Example: Consider the expressions
 x ← 2
 y ← 1
 x = 2 AND y = 0
 In the above expression the proposition ‘x = 2’

is true because the value in x is 2. Similarly, the
proposition ‘y = 0’ is untrue as y holds 1 and
therefore this proposition is false or 0. Thus, the
above expression may be represented as ‘true’
AND ‘false’ the outcome for which is false or 0.

 (ii) ‘OR’ …… Disjunction
 The outcome of an expression is true or 1

when anyone of the propositions OR-ed is true
otherwise it is false or 0.

 Example: Consider the expressions
 x ← 2
 y ← 1
 x = 2 OR y = 0
 Here, the proposition ‘x = 2’ is true since x holds

2 while the proposition ‘y = 0’ is untrue or false.
Hence the third expression may be represented as
‘true’ OR ‘false’ the outcome for which is true
or 1.

 (iii) ‘NOT’ …… Negation
 If outcome of a proposition is ‘true’, it becomes

‘false’ when negated or NOT-ed.
 Example: Consider the expression
 x ← 2
 NOT x = 2
 The proposition ‘x = 2’ is ‘true’ as x contains

the value 2. But the second expression negates
this by the logical operator NOT which gives an
outcome ‘false’.

www.allitebooks.com

http://www.allitebooks.org

20 Programming in C

Examples

 4. Write the algorithm for fi nding the sum of any two numbers.

 Solution Let the two numbers be A and B and let their sum be
equal to C. Then, the desired algorithm is given as follows:

 1. START

 2. PRINT “ENTER TWO NUMBERS”

 3. INPUT A, B

 4. C ¨ A + B

Add values assigned
to A and B and

assign this value to C

 5. PRINT C

 6. STOP

 Explanation The fi rst step is the starting point of the algorithm.
The next step requests the programmer to enter the two numbers
that have to be added. Step 3 takes in the two numbers given by
the programmer and keeps them in variables A and B. The fourth
step adds the two numbers and assigns the resulting value to the
variable C. The fi fth step prints the result stored in C on the output
device. The sixth step terminates the procedure.

 5. Write the algorithm for determining the remainder of a division
operation where the dividend and divisor are both integers.

 Solution Let N and D be the dividend and divisor, respectively.
Assume Q to be the quotient, which is an integer, and R to be the
remainder. The algorithm for the given problem is as follows.

 1. START

 2. PRINT “ENTER DIVIDEND”

 3. INPUT N

 4. PRINT “ENTER DIVISOR”

 5. INPUT D

Only integer value
is obtained and

remainder ignored

 6. Q ¨ N/D (Integer division)

 7. R ¨ N – Q * D

 8. PRINT R

 9. STOP

 Explanation The fi rst step indicates the starting point of the
algorithm. The next step asks the programmer to enter the
dividend value. The third step keeps the dividend value in the
variable N. Step 4 asks for the divisor value to be entered. This
is kept in the variable D. In step 6, the value in N is divided by
that in D. Since both the numbers are integers, the result is an
integer. This value is assigned to Q. Any remainder in this step
is ignored. In step 7, the remainder is computed by subtracting
the product of the integer quotient and the integer divisor from
integer dividend N. The computed value of the remainder is an
integer here and obviously less than the divisor. The remainder

value is assigned to the variable R. This value is printed on an
output device in step 8. Step 9 terminates the algorithm.

 6. Construct the algorithm for interchanging the numeric values of
two variables.

 Solution Let the two variables be A and B. Consider C to be a
third variable that is used to store the value of one of the variables
during the process of interchanging the values.

 The algorithm for the given problem is as follows.

 1. START

 2. PRINT “ENTER THE VALUE OF A & B”

 3. INPUT A, B

 4. C ¨ A

 5. A ¨ B

A B

C

step 5

step 4 step 6

 6. B ¨ C

 7. PRINT A, B

 8. END

 Explanation Like the previous examples, the fi rst step indicates
the starting point of the algorithm. The second step is an output
message asking for the two values to be entered. Step 3 puts
these values into the variables A and B. Now, the value in variable
A is copied to variable C in step 4. In fact the value in A is saved
in C. In step 5 the value in variable B is assigned to variable A.
This means a copy of the value in B is put in A. Next, in step 6 the
value in C, saved in it in the earlier step 4 is copied into B. In step
7 the values in A and B are printed on an output device. Step 8
terminates the procedure.

 7. Write an algorithm that compares two numbers and prints either
the message identifying the greater number or the message
stating that both numbers are equal.

 Solution This example demonstrates how the process of selection
or decision making is implemented in an algorithm using the step-
form. Here, two variables, A and B, are assumed to represent
the two numbers that are being compared. The algorithm for this
problem is given as follows.

 1. START

 2. PRINT “ENTER TWO NUMBERS”

 3. INPUT A, B

 4. IF A > B THEN

 PRINT “A IS GREATER THAN B”

 5. IF B > A THEN

 PRINT “B IS GREATER THAN A”

 6. IF A = B THEN

 PRINT “BOTH ARE EQUAL”

 7. STOP

Introduction to Programming, Algorithms and Flowcharts 21

 Explanation The fi rst step indicates the starting point of the
algorithm. The next step prints a message asking for the entry of
the two numbers. In step 3 the numbers entered are kept in the
variables A and B. In steps 4, 5 and 6, the values in A, B and C
compared with the IF ...THEN construct. The relevant message is
printed whenever the proposition between IF and THEN is found
to agree otherwise the next step is acted upon. But in any case
one of the message would be printed because at least one of the
propositions would be true. Step 7 terminates the procedure.

 8. Write an algorithm to check whether a number given by the user
is odd or even.

 Solution Let the number to be checked be represented by N.
The number N is divided by 2 to give an integer quotient, denoted
by Q. If the remainder, designated as R, is zero, N is even;
otherwise N is odd. This logic has been applied in the following
algorithm.

 1. START

 2. PRINT “ENTER THE NUMBER”

 3. INPUT N

 4. Q ¨ N/2 (Integer division)

 5. R ¨ N – Q * 2

 6. IF R = 0 THEN

 PRINT “N IS EVEN”

 7. IF R != 0 THEN

 PRINT “N IS ODD”

 8. STOP

 Explanation The primary aim here is to fi nd out whether the
remainder after the division of the number with 2 is zero or not. If
the number is even the remainder after the division will be zero.
If it is odd, the remainder after the division will not be zero. So
by testing the remainder it is possible to determine whether the
number is even or odd.

 The fi rst step indicates the starting point of the algorithm
while the next prints a message asking for the entry of the
number. In step 3, the number is kept in the variable N. N is
divided by 2 in step 4. This operation being an integer division,
the result is an integer. This result is assigned to Q. Any
remainder that occurs is ignored. Now in step 5, the result Q
is multiplied by 2 which obviously produces an integer that is
either less than the value in N or equal to it. Hence in step 5
the difference between N and Q * 2 gives the remainder. This
remainder value is then checked in step 6 and step 7 to either
print out that it is either even or odd respectively. Step 8 just
terminates the procedure.

 9. Print the largest number among three numbers.

 Solution Let the three numbers be represented by A, B, and
C. There can be three ways of solving the problem. The three
algorithms, with some differences, are given below.

 1. START

 2. PRINT “ENTER THREE NUMBERS”

 3. INPUT A, B, C

 4. IF A >= B AND B >= C

 THEN PRINT A

 5. IF B >= C AND C >= A

 THEN PRINT B

 ELSE

 PRINT C

 6. STOP

 Explanation To fi nd the largest among the three numbers A,
B and C, A is compared with B to determine whether A is larger
than or equal to B. At the same time it is also determined whether
B is larger than or equal to C. If both these propositions are true
then the number A is the largest otherwise A is not the largest.
Step 4 applies this logic and prints A.

 If A is not the largest number as found by the logic in step
4, then the logic stated in step 5 is applied. Here again, two
propositions are compared. In one, B is compared with C and in
the other C is compared with A. If both these propositions are
true then B is printed as the largest otherwise C is printed as the
largest.

 Steps 1, 2, 3 and 6 needs no mention as it has been used in
earlier examples.

 Or

 This algorithm uses a variable MAX to store the largest number.

 1. START

 2. PRINT “ENTER THREE NUMBERS”

 3. INPUT A, B, C

 4. MAX ¨ A

 5. IF B > MAX THEN MAX ¨ B

 6. IF C > MAX THEN MAX ¨ C

 7. PRINT MAX

 8. STOP

 Explanation This algorithm differs from the previous one. After
the numbers are stored in the variables A, B and C, the value of
any one of these is assigned to a variable MAX. This is done in
step 4. In step 5, the value assigned to MAX is compared with

22 Programming in C

that assigned to B and if the value in B is larger only then it’s
value is assigned to MAX otherwise it remains unchanged. In
step 6, the proposition “ IF C > MAX ” is true then the value in
C is assigned to MAX. On the other hand, if the position is false
then the value in MAX remains unchanged. So at the end of step
6, the value in MAX is the largest among the three numbers. Step
1 is the beginning step while step 8 is the terminating one for this
algorithm.

 Or

 Here, the algorithm uses a nested if construct.

 1. START
 2. PRINT “ENTER THREE NUMBERS”
 3. INPUT A, B, C
 4. IF A > B THEN
 IF A > C THEN
 PRINT A
 ELSE
 PRINT C
 ELSE IF B > C THEN
 PRINT B
 ELSE
 PRINT C
 5. STOP

 Explanation Here, the nested if construct is used. The construct
“IF p1 THEN action1 ELSE action2” decides if the proposition
“ p1” is true then action1 is implemented otherwise if it is false
action2 is implemented. Now, action1 and action2 may be either
plain statements like PRINT X or INPUT X or another “IF p2
THEN action3 ELSE action4” construct, were p2 is a proposition.
This means that a second “IF p1 THEN action1 ELSE action2”
construct can be interposed within the fi rst “IF p1 THEN action1
ELSE action2” construct. Such an implementation is known as
nested if construct.

 Step 4 implements the nested if construct. First the
proposition “A > B ”is checked to fi nd whether it is true or false.
If true, the proposition “A > C ” is verifi ed and if this is found
to be true, the value in A is printed otherwise C is printed.
But if the fi rst proposition “A > B” is found to be false then the
next proposition that is checked is “B > C”. At this point if this
proposition is true then the value in B is printed whereas if it is
false C is printed.

 10. Take three sides of a triangle as input and check whether the
triangle can be drawn or not. If possible, classify the triangle as
equilateral, isosceles, or scalene.

 Solution Let the length of three sides of the triangle be represented
by A, B, and C. Two alternative algorithms for solving the problem
are given, with explanations after each step, as follows:

 1. START

 Step 1 starts the procedure.
 2. PRINT “ENTER LENGTH OF THREE SIDES OF A

TRIANGLE”

 Step 2 outputs a message asking for the entry of the lengths
for each side of the triangle.

 3. INPUT A, B, C

 Step 3 reads the values for the lengths that has been
entered and assigns them to A, B and C.

 4. IF A + B > C AND B + C > A AND A + C > B THEN

 PRINT “TRIANGLE CAN BE DRAWN”

 ELSE

 PRINT “TRIANGLE CANNOT BE DRAWN”: GO TO 6

 It is well known that in a triangle, the summation of lengths of
any two sides is always greater than the length of the third side.
This is checked in step 4. So for a triangle all the propositions
“A + B > C ”, “ B + C > A ” and “ A + C > B ” must be true. In such
a case, with the lengths of the three sides, that has been entered,
a triangle can be formed. Thus, the message “TRIANGLE CAN
BE DRAWN” is printed and the next step 5 is executed. But if
any one of the above three propositions is not true then the
message “TRIANGLE CANNOT BE DRAWN” is printed and so
no classifi cation is required. Thus in such a case the algorithm is
terminated in step 6.

 5. IF A = B AND B = C THEN

 PRINT “EQUILATERAL”

 ELSE

 IF A != B AND B != C AND C !=A THEN

 PRINT “SCALENE”

 ELSE

 PRINT “ISOSCELES”

 After it has been found in step 4 that a triangle can be
drawn, this step is executed. To fi nd whether the triangle is an
“EQUILATERAL” triangle the propositions “A = B” and “B
= C” are checked. If both of these are true, then the message
“EQUILATERAL” is printed which means that the triangle
is an equilateral triangle. On the other hand if any or both the
propositions “A = B” and “B = C” are found to be untrue then
the propositions “A != B” and “B != C” and “C !=A” are
checked.

Introduction to Programming, Algorithms and Flowcharts 23

 If none of the sides are equal to each other then all
these propositions are found to be true and so the message
“SCALENE” will be printed. But if these propositions
“A != B” and “B != C” and “C !=A” are false then the triangle
is obviously an isosceles triangle and hence the message
“ISOSCELES” is printed.

 6. STOP

 The procedure terminates here.
Or

 This algorithm differs from the previous one and applies an
alternate way to test whether a triangle can be drawn with the
given sides and also identify its type.

 1. START
 2. PRINT “ENTER THE LENGTH OF 3 SIDES OF A

TRIANGLE”
 3. INPUT A, B, C
 4. IF A + B > C AND B + C > A AND C + A > B

THEN
 PRINT “TRIANGLE CAN BE DRAWN”
 ELSE
 PRINT “TRIANGLE CANNOT BE DRAWN”
 : GO TO 8
 5. IF A = B AND B = C THEN
 PRINT “EQUILATERAL TRIANGLE”
 : GO TO 8
 6. IF A = B OR B = C OR C = A THEN
 PRINT “ISOSCELES TRIANGLE”
 : GO TO 8
 7. PRINT “SCALENE TRIANGLE”

 8. STOP

 Having followed the explanations given with each of the earlier
examples, the reader has already understood how the stepwise
representation of any algorithm of any problem starts, constructs
the logic statements and terminates.

 In a similar way the following example exhibits the stepwise
representation of algorithms for various problems.

 11. In an academic institution, grades have to be printed for students
who appeared in the fi nal exam. The criteria for allocating the
grades against the percentage of total marks obtained are as
follows.

Marks Grade Marks Grade

91–100 O 61–70 B

81–90 E 51–60 C

71–80 A <= 50 F

 The percentage of total marks obtained by each student in the
fi nal exam is to be given as input to get a printout of the grade the
student is awarded.

 Solution The percentage of marks obtained by a student is
represented by N. The algorithm for the given problem is as
follows.

 1. START
 2. PRINT
 “ENTER THE OBTAINED PERCENTAGE MARKS”
 3. INPUT N
 4. IF N > 0 AND N <= 50 THEN
 PRINT “F”
 5. IF N > 50 AND N <= 60 THEN
 PRINT “C”
 6. IF N > 60 AND N <= 70 THEN
 PRINT “B”
 7. IF N > 70 AND N <= 80 THEN
 PRINT “A”
 8. IF N > 80 AND N <= 90 THEN
 PRINT “E”
 9. IF N > 90 AND N <= 100 THEN
 PRINT “O”
 10. STOP

 12. Construct an algorithm for incrementing the value of a variable
that starts with an initial value of 1 and stops when the value
becomes 5.

 Solution This problem illustrates the use of iteration or loop
construct. Let the variable be represented by C. The algorithm for
the said problem is given as follows.

 1. START

 2. C ¨ 1

 3. WHILE C <= 5
 4. BEGIN

While loop construct
for looping till C is

greater than 5
 5. PRINT C
 6. C ¨ C + 1
 7. END

 8. STOP

 13. Write an algorithm for the addition of N given numbers.

 Solution Let the sum of N given numbers be represented by
S. Each time a number is given as input, it is assigned to the
variable A. The algorithm using the loop construct ‘if … then goto
…’ is used as follows:

 1. START
 2. PRINT “HOW MANY NUMBERS?”
 3. INPUT N

 4. S ¨ 0

 5. C ¨ 1
 6. PRINT “ENTER NUMBER”
 7. INPUT A

 8. S ¨ S + A

 9. C ¨ C + 1

24 Programming in C

 10. IF C <= N THEN GOTO 6

 11. PRINT S

 12. STOP

 14. Develop the algorithm for fi nding the sum of the series 1 + 2 + 3
+ 4 + … up to N terms.

 Solution Let the sum of the series be represented by S and the
number of terms by N. The algorithm for computing the sum is
given as follows.

 1. START
 2. PRINT “HOW MANY TERMS?”
 3. INPUT N

 4. S ¨ 0

 5. C ¨ 1

 6. S ¨ S + C

 7. C ¨ C + 1
 8. IF C <= N THEN GOTO 6
 9. PRINT S

 10. STOP

 15. Write an algorithm for determining the sum of the series 2 + 4 + 8
+ … up to N.

 Solution Let the sum of the series be represented by S and the
number of terms in the series by N. The algorithm for this problem
is given as follows.

 1. START
 2. PRINT “ENTER THE VALUE OF N”
 3. INPUT N

 4. S ¨ 0

 5. C ¨ 2

 6. S ¨ S + C

 7. C ¨ C * 2
 8. IF C <= N THEN GOTO STEP 6
 9. PRINT S
 10. STOP

 16. Write an algorithm to fi nd out whether a given number is a prime
number or not.

 Solution The algorithm for checking whether a given number is a
prime number or not is as follows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N
 4. IF N = 2 THEN
 PRINT “CO-PRIME” GOTO STEP 12

 5. D ¨ 2

 6. Q ¨ N/D (Integer division)

 7. R ¨ N – Q*D

 8. IF R = 0 THEN GOTO STEP 11

 9. D ¨ D + 1
 10. IF D <= N/2 THEN GOTO STEP 6
 11. IF R = 0 THEN
 PRINT “NOT PRIME”
 ELSE
 PRINT “PRIME”
 12. STOP

 17. Write an algorithm for calculating the factorial of a given number
N.

 Solution The algorithm for fi nding the factorial of number N is as
follows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N

 4. F ¨ 1

 5. C ¨ 1
 6. WHILE C <= N
 7. BEGIN

While loop construct
for looping till C is

greater than N

8. F ¨ F * C

9. C ¨ C + 1

 10. END
 11. PRINT F
 12. STOP

 18. Write an algorithm to print the Fibonacci series up to N terms.

 Solution The Fibonacci series consisting of the following terms
1, 1, 2, 3, 5, 8, 13, … is generated using the following algorithm.

 1. START
 2. PRINT “ENTER THE NUMBER OF TERMS”
 3. INPUT N
 4. C ¨ 1
 5. T ¨ 1
 6. T1 ¨ 0
 7. T2 ¨ 1
 8. PRINT T
 9. T ¨ T1 + T2
 10. C ¨ C + 1
 11. T1 ¨ T2
 12. T2 ¨ T
 13. IF C <= N THEN GOTO 8
 14. STOP

 19. Write an algorithm to fi nd the sum of the series 1 + x + x2 + x3 +
x4 + … up to N terms.

 Solution
 1. START
 2. PRINT “HOW MANY TERMS”
 3. INPUT N

Introduction to Programming, Algorithms and Flowcharts 25
 4. PRINT “ENTER VALUE OF X”
 5. INPUT X

 6. T ¨ 1

 7. C ¨ 1

 8. S ¨ 0

 9. S ¨ S + T

 10. C ¨ C + 1

 11. T ¨ T * X
 12. IF C <= N THEN GOTO 9
 13. PRINT S
 14. STOP

 20. Write the algorithm for computing the sum of digits in a number.

 Solution

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N

 4. S ¨ 0

 5. Q ¨ N/10 (Integer division)

 6. R ¨ N – Q * 10

 7. S ¨ S + R

 8. N ¨ Q
 9. IF N > 0 THEN GOTO 5
 10. PRINT S
 11. STOP

 21. Write an algorithm to fi nd the largest number among a list of
numbers.

 Solution The largest number can be found using the following
algorithm.

 1. START
 2. PRINT “ENTER,
 TOTAL COUNT OF NUMBERS IN LIST”
 3. INPUT N

 4. C ¨ 0
 5. PRINT “ENTER THE NUMBER”
 6. INPUT A

 7. C ¨ C + 1

 8. MAX ¨ A
 9. PRINT “ENTER THE NUMBER”
 10. INPUT B

 11. C ¨ C + 1
 12. IF B > MAX THEN

 MAX ¨ B
 13. IF C <= N THEN GOTO STEP 9
 14. PRINT MAX
 15. STOP

 22. Write an algorithm to check whether a given number is an
Armstrong number or not. An Armstrong number is one in which
the sum of the cube of each of the digits equals that number.

 Solution If a number 153 is considered, the required sum is (1
3

+ 5
3
 + 3

3
), i.e., 153. This shows that the number is an Armstrong

number. The algorithm to check whether 153 is an Armstrong
number or not, is given as follows.

 1. START
 2. PRINT “ENTER THE NUMBER”
 3. INPUT N

 4. M ¨ N

 5. S ¨ 0

 6. Q ¨ N/10 (Integer division)

 7. R ¨ N – Q * 10

 8. S ¨ S + R * R * R

 9. N ¨ Q
 10. IF N > 0 THEN GOTO STEP 6
 11. IF S = M THEN
 PRINT “THE NUMBER IS ARMSTRONG”
 ELSE PRINT “THE NUMBER IS NOT ARMSTRONG”
 12. STOP

 23. Write an algorithm for computing the sum of the series 1 + x +
x2/2! + x3/3! + x4/4! + … up to N terms.

 Solution

 1. START

 2. PRINT “ENTER NUMBER OF TERMS”

 3. INPUT N

 4. PRINT “ENTER A NUMBER”

 5. INPUT X

 6. T ¨ 1

 7. S ¨ 0

 8. C ¨ 1

 9. S ¨ S + T

 10. T ¨ T * X/C

 11. C ¨ C + 1

 12. IF C <= N THEN GO TO STEP 9

 13. PRINT S

 14. STOP

 Pseudo-code

Like step-form, Pseudo-code is a written statement of an
algorithm using a restricted and well-defi ned vocabulary.
It is similar to a 3GL, and for many programmers and
program designers it is the preferred way to state algorithms
and program specifi cations.

26 Programming in C

 Although there is no standard for pseudo-code, it is
generally quite easy to read and use. For instance, a sample
pseudo-code is written as follows:

dowhile kettle_empty
 Add_Water_To_Kettle

end dowhile

As can be seen, it is a precise statement of a while loop.

Flowcharts

A fl owchart provides appropriate steps to be followed in
order to arrive at the solution to a problem. It is a program
design tool which is used before writing the actual program.
Flowcharts are generally developed in the early stages of
formulating computer solutions.
 A fl owchart comprises a set of various standard shaped
boxes that are interconnected by fl ow lines. Flow lines
have arrows to indicate the direction of the fl ow of control
between the boxes. The activity to be performed is written
within the boxes in English. In addition, there are connector
symbols that are used to indicate that the fl ow of control
continues elsewhere, for example, the next page.
 Flowcharts facilitate communication between program-
mers and b usiness persons. These fl owcharts play a vital
role in the programming of a problem and are quite help-
ful in understanding the logic of complicated and lengthy
problems. Once the fl owchart is drawn, it becomes easy
to write the program in any high-level language. Often
fl owcharts are helpful in explaining the program to others.
Hence, a fl owchart is a must for better documentation of a
complex program.

Standards for fl owcharts The following standards should
be adhered to while drawing fl ow charts.

 ∑ Flowcharts must be drawn on white, unlined 81/2 ×
11 paper, on one side only.′′ ′

 ∑ Flowcharts start on the top of the page and fl ow down
and to the right.

 ∑ Only standard fl owcharting symbols should be used.
 ∑ A template to draw the fi nal version of fl owchart

should be used.
 ∑ The contents of each symbol should be printed

legibly.
 ∑ English should be used in fl owcharts, not programming

language.

 ∑ The fl owchart for each subroutine, if any, must
appear on a separate page. Each subroutine begins
with a terminal symbol with the subroutine name and
a terminal symbol labeled return at the end.

 ∑ Draw arrows between symbols with a straight edge
and use arrowheads to indicate the direction of the
logic fl ow.

Guidelines for drawing a fl owchart Flowcharts are
usually drawn using standard symbols; however, some
special symbols can also be developed when required.
Some standard symbols frequently required for
fl owcharting many computer programs are shown in
Fig.1.12.

Computational steps or processing
function of a program

Start or end of the program or
flowchart

Input entry or output display
operation

A decision making and branching
operation that has two alternatives

Connects remote parts of the
flowchart on the same page

A magnetic tape

A magnetic disk

Connects remote portions
of the flowchart not on the
same page

Flow lines

Add comments or furnish
clarifications

Display

Figure 1.12 Flowchart symbols

The following are some guidelines in fl owcharting.
 ∑ In drawing a proper fl owchart, all necessary

requirements should be listed out in a logical order.
 ∑ There should be a logical start and stop to the fl owchart.

Introduction to Programming, Algorithms and Flowcharts 27

 ∑ The fl owchart should be clear, neat, and easy to follow.
There should be no ambiguity in understanding the
fl owchart.

 ∑ The usual direction of the fl ow of a procedure or
system is from left to right or top to bottom.

 ∑ Only one fl ow line should emerge from a process
symbol.

or

 ∑ Only one fl ow line should enter a decision symbol,
but two or three fl ow lines, one for each possible
answer, can leave the decision symbol.

false

true

 ∑ Only one fl ow line is used in conjunction with a
terminal symbol.

START STOP

 ∑ The writing within standard symbols should be brief.
If necessary, the annotation symbol can be used to
describe data or computational steps more clearly.

This is a top secret data

 ∑ If the fl owchart becomes complex, connector symbols
should be used to reduce the number of fl ow lines.
The intersection of fl ow lines should be avoided to
make the fl owchart a more effective and better way
of communication.

 ∑ The validity of the fl owchart should be tested by
passing simple test data through it.

 ∑ A sequence of steps or processes that are executed
in a particular order is shown using process symbols
connected with fl ow lines. One fl ow line enters the
fi rst process while one fl ow line emerges from the
last process in the sequence.

First process in sequence

Last process in sequence

 ∑ Selection of a process or step is depicted by the
decision making and process symbols. Only one input
indicated by one incoming fl ow line and one output
fl owing out of this structure exists. The decision
symbol and the process symbols are connected by
fl ow lines.

process2process1

falsetrue

 ∑ Iteration or looping is depicted by a combination of
process and decision symbols placed in proper order.
Here fl ow lines are used to connect the symbols and
depict input and output to this structure.

process

falsetrue

28 Programming in C

 Advantages of using fl owcharts

 ∑ Communication: Flowcharts are a better way of
communicating the logic of a system to all concerned.

 ∑ Effective analysis: With the help of fl owcharts,
problems can be analyzed more effectively.

 ∑ Proper documentation: Program fl owcharts serve as
a good program documentation needed for various
purposes.

 ∑ Effi cient coding: Flowcharts act as a guide or
blueprint during the systems analysis and program
development phase.

 ∑ Proper debugging: Flowcharts help in the debugging
process.

 ∑ Effi cient program maintenance: The maintenance of
an operating program becomes easy with the help of
a fl owchart.

 Limitations of using fl owcharts

 ∑ Complex logic: Sometimes, the program logic
is quite complicated. In such a case, a fl owchart
becomes complex and clumsy.

 ∑ Alterations and modifi cations: If alterations are
required, the fl owchart may need to be redrawn
completely.

 ∑ Reproduction: Since the fl owchart symbols cannot
be typed in, the reproduction of a fl owchart becomes
a problem.

 ∑ Loss of objective: The essentials of what has to be
done can easily be lost in the technical details of how
it is to be done.

Points to Note

 1. A fl owchart comprises a set of standard shaped boxes
that are interconnected by fl ow lines to represent an
algorithm.

 2. There should be a logical start and stop to the fl owchart.

 3. The usual direction of the fl ow of a procedure or
system is from left to right or top to bottom.

 4. The intersection of fl ow lines should be avoided.

 5. Flowcharts facilitate communication between pro-
grammers and users.

Flowcharting examples A few examples on fl owcharting
are presented for a proper understanding of the technique.

This will help the student in the program development
process at a later stage.

Examples

 24. Draw a fl owchart to fi nd the sum of the fi rst 50 natural
numbers.

 Solution

START

STOP

SUM = 0

N = 0

N = N+1

SUM = SUM+N

IS
N = 50?

NO

PRINT SUM
YES

 25. Draw a fl owchart to fi nd the largest of three numbers A, B,
and C.

 Solution

START

STOP

READ A,B,C

PRINT CPRINT B PRINT A

IS A>B?IS B>C? IS A>C?

Y
E

S

NO

NO NO

YES

Y
E

S

 26. Draw a fl owchart for computing factorial N (N!) where
N! = 1 × 2 × 3 × … × N.

Introduction to Programming, Algorithms and Flowcharts 29

 Solution

START

END

T=1
F=1

T=T+1 IS
T>N?

NO

PRINT F

READ N

YES

F=F*T

 27. Draw a fl owchart for calculating the simple interest using the
formula SI = (P * T * R)/100, where P denotes the principal
amount, T time, and R rate of interest. Also, show the algorithm
in step-form.

 Solution

START

STOP

CALCULATE
P*T*R
100

PRINT VALUE FOR I

INPUT
P, T, R

Step 1: START

Step 2: Read P, ,T R

Step 3: Calculate I=P*R*T/100

Step 4: IPRINT

Step 5: STOP

I =

 28. The XYZ Construction Company plans to give a 5% year-end
bonus to each of its employees earning Rs 5,000 or more per
year, and a fi xed bonus of Rs 250 to all other employees. Draw a
fl owchart and write the step-form algorithm for printing the bonus
of any employee.

 Solution

Step 5: Calculate Bonus = 250

START

STOP

PRINT BONUS

INPUT SALARY
OF AN EMPLOYEE

IS
SALARY>=5000

BONUS = 250 BONUS =
0.05*SALARY

NO YES

Step 1: START
Step 2: Read salary of

an employee
Step 3: salary is greater than

or equal to 5,000
Step 4 Step 5

IF
THEN

ELSE
Step 4: Calculate

Bonus = 0.05 * Salary

Step 6: Print Bonus

Step 7: STOP

 29. Prepare a fl owchart to read the marks of a student and classify
them into different grades. If the marks secured are greater than
or equal to 90, the student is awarded Grade A; if they are greater
than or equal to 80 but less than 90, Grade B is awarded; if they
are greater than or equal to 65 but less than 80, Grade C is
awarded; otherwise Grade D is awarded.

 Solution

START

READ MARKS

ARE
MARKS 90≥

ARE
MARKS 80≥

ARE
MARKS 65>

GRADE = A

GRADE = B

GRADE = C GRADE = D

PRINT GRADE

STOP

NOYES

NOYES

NOYES

30 Programming in C

 30. Draw a fl owchart to fi nd the roots of a quadratic equation.

 Solution

START

D=B*B–4*A*C

READ A,B,C

STOP

NO IS
D>0

IS D>0
REAL1=(–B+SQRT(D))/(2*A)
REAL2=(B SQRT(D))/(2*A)– –

REAL1= B/2*A
REAL2= B/2*A

–
–

PRINT
“COMPLEX
ROOTS”

PRINT A,B,C
REAL1,
REAL2

PRINT A,B,C
REAL1,
REAL2

YES

NO YES

 31. Draw a fl owchart for printing the sum of even terms contained
within the numbers 0 to 20.

 Solution

START

SUM=0

COUNT=1

COUNT=COUNT+1

IS COUNT
AN EVEN
NUMBER?

IS
COUNT>20

SUM=SUM+COUNT

NO YES

YES

NO

B

STOP

PRINT SUM

B

1.9.6 Strategy for Designing Algorithms

Now that the meaning of algorithm and data has been
understood, strategies can be devised for designing
algorithms. The following is a useful strategy.

 Investigation step

 1. Identify the outputs needed.
 This includes the form in which the outputs have to be

presented. At the same time, it has to be determined
at what intervals and with what precision the output
data needs to be given to the user.

 2. Identify the input variables available.
 This activity considers the specifi c inputs available

for this program, the form in which the input variables
would be available, the availability of inputs at
different intervals, the ways in which the input would
be fed to the transforming process.

 3. Identify the major decisions and conditions.
 This activity looks into the conditions imposed by the

need identifi ed and the limitations of the environment
in which the algorithm has to be implemented.

 4. Identify the processes required to transform inputs
into required outputs.

 This activity identifi es the various types of procedures
needed to manipulate the inputs, within the bounding
conditions and the limitations mentioned in step 3, to
produce the needed outputs.

 5. Identify the environment available.
 This activity determines the kind of users and the

type of computing machines and software available
for implementing the solution through the processes
considered in steps.

 Top-down development step

 1. Devise the overall problem solution by identifying the
major components of the system.

Introduction to Programming, Algorithms and Flowcharts 31

 The goal is to divide the problem solution into
manageable small pieces that can be solved
separately.

 2. Verify the feasibility of breaking up the overall problem
solution.

 The basic idea here is to check that though each small
piece of solution procedure are independent, they
are not entirely independent of each other, as they
together form the whole solution to the problem. In
fact, the different pieces of solution procedures have
to cooperate and communicate in order to solve the
larger problem.

 Stepwise refi nement

 1. Work out each and every detail for each small piece
of manageable solution procedure.

 Every input and output dealt with and the
transformation algorithms implemented in each small
piece of solution procedure, which is also known
as process, is detailed. Even the interfacing details
between each small procedure are worked out.

 2. Decompose any solution procedure into further
smaller pieces and iterate until the desired level of
detail is achieved.

 Every small piece of solution procedure detailed in
step 1 is checked once again. If necessary any of these
may be further broken up into still smaller pieces of
solution procedure till it can no more be divided into
meaningful procedure.

 3. Group processes together which have some commonality.
 Some small processes may have to interface with a

common upper level process. Such processes may be
grouped together if required.

 4. Group variables together which have some appropriate
commonality.

 Certain variables of same type may be dealt as
elements of a group.

 5. Test each small procedure for its detail and correctness
and its interfacing with the other small procedures.

 Walk through each of the small procedures to determine
whether it satisfi es the primary requirements and
would deliver the appropriate outputs. Also, suitable
tests have to be carried out to verify the interfacing

between various procedures. Hence, the top-down
approach starts with a big and hazy goal. It breaks the
big goal into smaller components. These components
are themselves broken down into smaller parts. This
strategy continues until the designer reaches the stage
where he or she has concrete steps that can actually
be carried out.

 It has to be noted that the top-down approach does
not actually take into account any existing equipment,
people, or processes. It begins with a “clean slate” and
obtains the optimal solution. The top-down approach
is most appropriate for large and complex projects
where there is no existing equipment to worry about.
However, it may be costly because, sometimes, the
existing equipments may not fi t into the new plan
and it has to be replaced. However, if the existing
equipments can be made to fi t into the new plan with
very less effort, it would be benefi cial to use it and
save cost.

Points to Note

 1. Investigation phase determines the requirements for
the problem solution.

 2. The top-down development phase plans out the way
the solution has to be done by breaking it into smaller
modules and establishing a logical connection among
them.

 3. The step-wise refi nement further decomposes the
modules, defi nes the procedure in it and verifi es the
correctness of it.

1.9.7 Tracing an Algorithm to Depict logic

An algorithm is a collection of some procedural steps that
have some precedence relation between them. Certain
procedures may have to be performed before some others
are performed. Decision procedures may also be involved
to choose whether some procedures arranged one after
other are to be executed in the given order or skipped
or implemented repetitively on fulfi llment of conditions
arising out of some preceding manipulations. Hence,
an algorithm is a collection of procedures that results in
providing a solution to a problem. Tracing an algorithm
primarily involves tracking the outcome of every
procedure in the order they are placed. Tracking in turn
means verifying every procedure one by one to determine

32 Programming in C

and confi rm the corresponding result that is to be obtained.
This in turn can be traced to offer an overall output from
the implementation of the algorithm as a whole. Consider
Example 26 given in this chapter for the purpose of
tracing the algorithm to correctly depict the logic of the
solution. Here at the start, the “mark obtained by a student
in a subject” is accepted as input to the algorithm. This
procedure is determined to be essential and alright. In
the next step, the marks entered is compared with 90.
As given, if the mark is greater than 90, then the mark
obtained is categorized as Grade A and printed, otherwise
it is be further compared. Well, this part of the algorithm
matches with the requirement and therefore this part of the
logic is correct.
 For the case of further comparison, the mark is again
compared with 80 and if it is greater, then Grade B is
printed. Otherwise, if the mark is less than 80, then
further comparison is carried out. This part of the logic
satisfi es the requirement of the problem. In the next step
of comparison, the mark is compared with 65. If the mark
is lesser than 65, Grade C is printed, otherwise Grade D
is printed. Here also, the fl owchart depicts that the correct
logic has been implemented.
 The above method shows how the logic of an algorithm,
planned and represented by a tool like the fl owchart, can
be verifi ed for its correctness. This technique, also referred
to as deskcheck or dry run, can also be used for algorithms
represented by tools other than the fl owchart.

1.9.8 Specifi cation for Converting Algorithms into
Programs

By now, the method of formulating an algorithm has been
understood. Once the algorithm, for solution of a problem,
is formed and represented using any of the tools like
step-form or fl owchart or pseudo code, etc., it has to be
transformed into some programming language code. This
means that a program, formed by a sequence of program
instructions belonging to a programming language, has
to be written to represent the algorithm that provides a
solution to a problem.
 Hence, the general procedure to convert an algorithm
into a program is given as follows:

Code the algorithm into a program—Understand the
syntax and control structures used in the language that
has been selected and write the equivalent program
instructions based upon the algorithm that was created.

Each statement in an algorithm may require one or more
lines of programming code.

Desk-check the program—Check the program code by
employing the desk-check method and make sure that the
sample data selected produces the expected output.

Evaluate and modify, if necessary, the program—Based on
the outcome of desk-checking the program, make program
code changes, if necessary, or make changes to the original
algorithm, if need be.

Do not reinvent the wheel—If the design code already
exists, modify it, do not remake it.

Points to Note

 1. An algorithm can be traced by verifying every
procedure one by one to determine and confi rm the
corresponding result that is to be obtained.

 2. The general procedure to convert an algorithm into
a program is to code the algorithm using a suitable
programming language, check the program code by
employing the desk-check method and fi nally evaluate
and modify the program, if needed.

 Because the reader has not yet been introduced to the
basics of the C language, the reader has to accept the use of
certain instructions like #include <stdio.h>, int main(),
printf(), scanf(), and return without much explanation
at this stage in the example program being demonstrated
below.
 However, on a very preliminary level, the general
form of a C program and the use of some of the
necessary C language instructions are explained briefl y
as follows:
 1. All C programs start with:
 #include <stdio.h>

 int main ()

 {

 2. In C, all variables must be declared before using
them. So the line next to the two instruction lines,
given in step 1, should be any variable declarations
that is needed.

 For example, if a variable called “ a ” is supposed to
store an integer, then it is declared as follows:

 int a;

 3. Here, scanf() is used for inputting data to the C
program and printf() is used to output data on the
monitor screen.

Introduction to Programming, Algorithms and Flowcharts 33

 4. The C program has to be terminated with a statement
given below:

 return 0;

 }

 Here is an example showing how to convert some
pseudocode statements into C language statements:

 Pseudocode
 LOOP {

 EXIT LOOP

 IF (conditions) {

 ELSE IF (conditions) {

 ELSE {

 INPUT a

 OUTPUT “Value of a:” a

 + - * / %

 =

 <—

 !=

 AND

 OR

 NOT

C language Code
 while(1) {

 break;

 if (conditions) {

 else if (conditions) {

 else

 scanf(“%d”,&a);

 printf(“Value of a: %d”,a);

 (same)

 ==

 =

 !=

 &&

 ||

 !

 To demonstrate the procedure of conversion from an
algorithm to a program in C, an example is given below.

Problem statement Write the algorithm and the corre-
sponding program in C for adding two integer numbers
and printing the result.

Solution
Algorithm
1. START

2. DECLARE A AND B AS INTEGER VARIABLES

3. PRINT “ ENTER TWO NUMBERS ”

4. INPUT A, B

5. R = A + B

6. PRINT “ RESULT = ”

7. PRINT R

8. STOP.

Program in C
 int main()

 {

 int A, B;

 printf(“\n ENTER TWO NUMBERS:”);

 scanf(“%d%d”,&A,&B);

 R = A + B;

 printf(“\n RESULT = ”);

 printf(“%d”,R);

 return 0;

 }

SUMMARY

A program is a sequence of instructions and the process of writing a
program is called programming. Programs are broadly categorized as
system programs and application programs. Different programming
languages have evolved. High-level languages are easy to use while
low-level languages are complex. Therefore, writing programs in low-
level languages is diffi cult and time consuming.

 Compilers and interpreters are basically language translators that
convert program instructions to machine code. A linker attaches utilities

routines to the translated source code. A loader is responsible for
physically placing this code in the main memory.

 An algorithm is a statement about how a problem will be solved and
almost every algorithm exhibits the same features. There are many ways
of stating algorithms; three of them have been mentioned here. These
are step-form, pseudo code, and fl owchart method. Of these fl owchart
is a pictorial way of representing the algorithm. Here, the START and
STOP are represented by an ellipse-like fi gure, , decision

34 Programming in C

KEY-TERMS

Algorithm Specifi es a procedure for solving a problem in a fi nite
number of steps.
Application software A collection of programs that enables the
computer to solve a specifi c data processing task.
Assembler A translator that takes input in the form of the assembly
language and produces machine language code as its output.
Assembly language A low-level programming language.
Compiler A language translator that takes the high-level language
program as input and produces the executable machine language code.
Correctness Means how easily its logic can be argued to meet the
algorithm’s primary goal.
Data A symbolic representation of value.
Debug To search and remove errors in a program.
High-level programming language A language similar to human
languages that makes it easy for a programmer to write programs and
identify and correct errors in them.
Interpreter A language translator that translates and executes a
program line by line.
Investigation step A step to determine the input, output and
processing requirements of a problem.
Linker A program that resolves references between programs.
Loader A program that physically places the machine instructions
and data in main memory.

Low-level programming language Closer to the native language of
the computer, which is 1’s and 0’s.

Machine language Language that provides instructions in the form
of binary numbers consisting of 1’s and 0’s to which the computer
responds directly

Operating system System software that manages the computer’s
resources effectively.
Portability language Programming language that is not machine
dependent and can be used in any computer.

Program A set of logically related instructions arranged in a sequence
that directs the computer in solving a problem.

Programming languages A language composed of a set of
instructions understandable by the programmer.

Programming The process of writing a program.

System software A collection of programs that interfaces with the
computer hardware.
Termination Closure of a procedure.
Top-down analysis Breaking up a problem solution into smaller
modules and defi ninig their interconnections to provide the total
solution to a problem.
Variable A container for a value that may or may not vary during the
execution of the program.

FREQUENTLY ASKED QUESTIONS

1. What is a programming language?
 A programming language is an artifi cial formalism in which algorithms
can be expressed. More formally, a computer program is a sequence
of instructions that is used to operate a computer to produce a specifi c
result.

 A programming language is the communication bridge between
a programmer and computer. A programming language allows a
programmer to create sets of executable instructions called programs
that the computer can understand. This communication bridge is needed
because computers understand only machine language, which is an
instruction language in which data are represented by binary digits.

2. What is a token?
 A token is any word or symbol that has meaning in the language, such
as a keyword (reserved word) such as if or while. The tokens are
parsed or grouped according to the rules of the language.

3. What is syntax?

 Syntax is the ‘grammar’ of the programming language. It specifi es
the formal rules governing the way the vocabulary elements of the
language can be combined to form instructions. The syntax of a
programming language defi nes exactly what combinations of letters,
numbers, and symbols can be used in a programming language.
During compilation, all syntax rules are checked. If a program is not
syntactically correct, the compiler will issue error messages and will
not produce object code.

4. What is a variable?

 A variable is a name given to the area of computer memory that holds
the relevant data. Each variable has a data type, which might be number,
character, string, a collection of data elements (such as an array), a
data record, or some special type defi ned by the programmer.

construct by the rhombus-like fi gure, , the processes by
rectangles, and input/output by parallelograms, .
Lines and arrows connect these blocks. Every useful algorithm uses
data, which might vary during the course of the algorithm. To design
algorithms, it is a good idea to develop and use a design strategy.

 Generally the design strategy consists of three stages. The fi rst
stage is investigation activity followed by the top-down development
approach stage and eventually a stepwise refi nement process. Once
the design strategy is decided the algorithm designed is traced to
determine whether it represents the logic. Eventually, the designed and
checked, algorithm is transformed into a program.

Introduction to Programming, Algorithms and Flowcharts 35

5. What are the diffi culties faced in procedural programming?

 The main drawback of procedural programming is that it breaks down
when problems become very large especially when it is highly complex,
making it somewhat more diffi cult for a team of people to work with it.
There are limits to the amount of detail and largeness one can cope
with. Non-procedural programming like object-oriented programming
can help the programmer compartmentalize and manage that detail.
Various forms of non-procedural programming are vastly more effective
for many large real-world problems.

6. What is Spaghetti code?

 Non-modular code is normally referred to as spaghetti code. It is named
so because it produces a disorganized computer program using many
GOTO statements.

7. What is structured programming?

 Structured programming is a style of programming designed to make
programs more comprehensible and programming errors less frequent.
This technique of programming enforces a logical structure on the
program being written to make it more effi cient and easier to understand
and modify. It usually includes the following characteristics:

 Block structure The statements in the program must be organized
into functional groups. It emphasizes clear logic.

 Avoidance of jumps A lot of GOTO statements makes the programs
more error-prone. Structured programming uses less of these
statements. Therefore it is also known as ‘GOTO less programming’.

 Modularity It is a common idea that structuring the program makes it
easier for us to understand and therefore easier for teams of developers
to work simultaneously on the same program.

8. What are the advantages and disadvantages of structured
programming?

 Structured programming provides options to develop well-organized
codes which can be easily modifi ed and documented.

 Modularity is closely associated with structured programming. The
main idea is to structure the program into functional groups. As a result,
it becomes easier for us to understand and therefore easier for teams of
developers to work simultaneously on the same program.

 Another advantage of structured programming is that it reduces
complexity. Modularity allows the programmer to tackle problems in a
logical fashion. This improves the programming process through better
organization of programs and better programming notations to facilitate
correct and clear description of data and control structure.

 Structured programming also saves time as without modularity, the
code that is used multiple times needs to be written every time it is used.
On the other hand, modular programs need one to call a subroutine (or
function) with that code to get the same result in a structured program.

 Structured programming encourages stepwise refi nement, a
program design process described by Niklaus Wirth. This is a top-down
approach in which the stages of processing are fi rst described in high-

level terms, and then gradually worked out in their details, much like the
writing of an outline for a book.

 The disadvantages of structured programming include the
following:

 Firstly, error control may be harder to manage. Managing
modifi cations may also be diffi cult.

 Secondly, debugging efforts can be hindered because the problem
code will look right and even perform correctly in one part of the program
but not in another.

9. What is pseudocode?

 Pseudocode is an informal description of a sequence of steps for
solving a problem. It is an outline of a computer program, written in a
mixture of a programming language and English. Writing pseudocodes
is one of the best ways to plan a computer program.

 The advantage of having pseudocodes is that it allows the
programmer to concentrate on how the program works while ignoring
the details of the language. By reducing the number of things the
programmer must think about at once, this technique effectively
amplifi es the programmer’s intelligence.

10. What is top-down programming?

 Top-down programming is a technique of programming that fi rst defi nes
the overall outlines of the program and then fi lls in the details.

 This approach is usually the best way to write complicated programs.
Detailed decisions are postponed until the requirements of the large
program are known; this is better than making the detailed decisions
early and then forcing the major program strategy to conform to them.
Each part of the program (called a module) can be written and tested
independently.

11. What is an error? Describe different types of error that may
occur in a program.

 An error that occurs during the compilation stage is called a compiler
error. A compiler error occurs when a given program does not follow the
grammatical rules of a C program.

 An error that occurs during the linking stage is called a linker error. A
linker error typically occurs when the linker cannot locate the fi le to be
linked.

 Finally, an error that occurs during the execution of a program
is called a runtime error. These are the most troublesome errors to
correct.

 Logic errors are errors in a program that executes without performing
the intended action. In this case, the program compiles and executes
without complaints, but it produces incorrect results. It occurs when
the logic of the program as written is different from what was actually
intended. A compiler cannot fi nd such errors, and it must be fl ushed out
when the program runs, by testing it and carefully looking at its output.
The programmer is responsible for inspecting and testing the program to
guard against logic errors.

36 Programming in C

12. What is a debugger?

 A debugger is a programming tool that is used to debug a program, i.e.,
to correct the logical errors. Using a debugger, one can control a program
while it is running. The execution of the program can be stopped at some
point and the values in the different variables can be checked and these
values can be amended if desired. In this way, the logical errors can
be traced in the program and it can be seen whether the program is
producing correct results. This tool is very powerful and complex.

13. What is the function of a loader?

 After an executable program is linked and saved on the disk, it is ready
for execution. A program called loader is needed to load the program
into memory and then instruct the processor to execute the program
from the fi rst instruction (the starting point of every C program is from
the main function). This processor is known as a loader. Linker and
loaders are the parts of development environment. In fact, these are the
parts of system software.

14. What do you mean by high-level and low-level programming
languages? Differentiate between them.

 Both assembly language and machine language are considered as
low-level languages. The instructions in these languages have to take

into account the physical characteristics of the machine. Maybe these
features are completely irrelevant to the algorithm, but they have to be
considered while writing programs or developing algorithms.

 High-level programming languages, on the other hand, are those
which support the use of constructs that use appropriate abstraction
mechanisms to ensure that they are independent of the physical
characteristics of the computer. The term ‘high-level’ refers to the fact
that the programming statements are expressed in a form approaching
natural language, far removed from the machine language that is
ultimately executed.

 The difference between high level language and low level language
is summarized in the following table.

High-level Language Low-level Language

One instruction = many
machine code instructions

One instruction = one
machine code instruction

Portable, task-oriented Machine specifi c, machine-
oriented

More English-like Less easy to write and
debug

EXERCISE

 1. What do you mean by a program?

 2. Distinguish between system software and application software.

 3. State the advantages and disadvantages of machine language
and assembly language.

 4. Compare and contrast assembly language and high-level
language.

 5. Differentiate between 3GL and 4GL.

 6. What is a translator?

 7. What are the differences between a compiler and an interpreter?

 8. Briefl y explain the compilation and execution of a program written
in high-level language.

 9. Briefl y explain linker and loader? Is there any difference between
them?

 10. Explain linking loader and linkage editor?

 11. Classify the programming languages.

 12. What is a functional language?

 13. What is object-oriented language? Name fi ve object-oriented
programming languages. State the most common features of
object-oriented programming.

 14. What do you mean by structured programming? State the
properties of structured programming.

 15. What is top-down analysis? Describe the steps involved in top-
down analysis.

 16. What is a structured code?

 17. What is an algorithm?

 18. Write down an algorithm that describes making a telephone call.
Can it be done without using control statements?

 19. Write algorithms to do the following:

 (a) Check whether a year given by the user is a leap year or
not.

 (b) Given an integer number in seconds as input, print the
equivalent time in hours, minutes, and seconds as output.
The recommended output format is something like:

 7,322 seconds is equivalent to 2 hours 2 minutes 2
seconds.

 (c) Print the numbers that do not appear in the Fibonacci
series. The number of terms to be printed should be given
by the user.

 (d) Convert the binary equivalent of an integer number.

 (e) Find the prime factors of a number given by the user.

 (f) Check whether a number given by the user is a Krishnamurty
number or not. A Krishnamurty number is one for which the
sum of the factorials of its digits equals the number. For
example, 145 is a Krishnamurty number.

 (g) Print the second largest number of a list of numbers given
by the user.

Introduction to Programming, Algorithms and Flowcharts 37

 (h) Print the sum of the following series:

 (i) 1 x2/2! + x4/4! + up to n terms where n is given by the user

 (ii) 1 1/2 + 1/3 up to n terms where n is given by the user

 (iii) 1 + 1/2! + 1/3! + up to n terms where n is given by the user

 20. By considering the algorithmic language that has been taught,
answer the following:

 (a) Show clearly the steps of evaluating the following
expressions:

 (i) x y + 12 * 3/6 + k ^ x where x = 2, y = 6, k = 5

 (ii) a AND b OR (m < n) where a = true, b = false, m = 7, n = 9

 (b) State whether each of the following is correct or wrong.
Correct the error(s) where applicable.

 (i) The expression (35 = 035) is true.

 (ii) x1 x2 * 4 value

 (iii) INPUT K, Y Z

 21. Write an algorithm as well as draw a fl owchart for the following:

 Input
 ∑ the item ID number

 ∑ the Number On Hand

 ∑ the Price per item

 ∑ the Weight per item in kg

 ∑ the Number Ordered

 ∑ the Shipping Zone (1 letter, indicating the distance to the
purchaser)

 Processing
 The program will read each line from the user and calculate the

following:

 Total Weight = Weight Per Item * Number Ordered

 Weight Cost = 3.40 + Total Weight / 5.0

 Shipping cost is calculated as follows:

 If Shipping Zone is ‘A’

 Then Shipping Cost is 3.00

 If Shipping Zone is ‘B’

 Then Shipping Cost = 5.50

 If Shipping Zone is ‘C’

 Then Shipping Cost = 8.75

 Otherwise Shipping Cost is 12.60

 Handling Charges = 4.00, a constant

 New Number On Hand = Number On Hand Number Ordered

 Discount is calculated as follows:
 If New Number On Hand < 0

 Then Discount = 5.00

 Else Discount = 0

 Here the purchaser is being given a discount if the item has to be
repeat ordered. Total cost is calculated as follows:

 Total Cost

 = Price of Each * Number Ordered +

 Handling Charge + Weight Cost +

 Shipping Cost – Discount

 For each purchase, print out the information about the purchase
in a format approximately like this:

 Item Number: 345612

 Number Ordered: 1

 Number On Hand: 31

 Price of Each: 19.95

 Weight of Each: 3

 Shipping Zone: A

 Total Cost: 30.95

 After all the purchases are fi nished, print two lines stating the
total number of purchases and the total cost of all purchases.

 22. Fill in the blanks.

 (i) A program fl owchart indicates the __________ to be
performed and the __________ in which they occur.

 (ii) A program fl owchart is generally read from __________ to
__________.

 (iii) Flowcharting symbols are connected together by means of
__________.

 (iv) A decision symbol may be used in determining the
__________ or __________ of two data items.

 (v) __________ are used to join remote portions of a
fl owchart.

 (vi) __________ connectors are used when a fl owchart ends
on one page and begins again on another page.

 (vii) A __________ symbol is used at the beginning and end of
a fl owchart.

 (viii) The fl owchart is one of the best ways of __________ a
program.

 (ix) To construct a fl owchart, one must adhere to prescribed
symbols provided by the __________.

 (x) The programmer uses a __________ to aid him in drawing
fl owchart symbols.

 23. Defi ne a fl owchart. What is its use?

 24. Are there any limitations of a fl owchart?

 25. Draw a fl owchart to read a number given in units of length and
print out the area of a circle of that radius. Assume that the value
of pi is 3.14159. The output should take the form: The area of a
circle of radius __________ units is __________ units.

 26. Draw a fl owchart to read a number N and print all its divisors.

 27. Draw a fl owchart for computing the sum of the digits of any given
number.

 28. Draw a fl owchart to fi nd the sum of N odd numbers given.

38 Programming in C

 29. Draw a fl owchart to compute the sum of squares of integers from
1 to 50.

 30. Write a program to read two integers with the following
signifi cance.

 The fi rst integer value represents a time of day on a 24-hour
clock, so that 1245 represents quarter to one mid-day.

 The second integer represents a time duration in a similar way,
so that 345 represents three hours and 45 minutes.

 This duration is to be added to the fi rst time and the result printed
out in the same notation, in this case 1630 which is the time 3
hours and 45 minutes after 1245.

 Typical output might be start time is 1415. Duration is 50. End
time is 1505.

CASE STUDY

Problem Statement
Write an algorithm to compute and print the sum of the following series:

- + - +
3 5 7

3! 5! 7!
x x x

x

Analysis
From the problem statement, it is evident that the value of x and the
number of terms to be summed up should be taken as input and the
sum has to be printed.

Analyzing the expression for the above series, it is seen that the
powers and the factorials vary in the sequence 1, 3, 5, 7, …
Thus,

1!
x

◊ ◊= = ◊
◊ ◊ ◊

3 2

3! 3 2 1 1! 3 2
x x x x x x

◊ ◊ ◊ ◊= = ◊
◊ ◊ ◊ ◊ ◊

5 3 2

5! 5 4 3 2 1 3! 5 4
x x x x x x x x

◊ ◊ ◊ ◊ ◊ ◊= = ◊
◊ ◊ ◊ ◊ ◊ ◊ ◊

7 5 2

7! 7 6 5 4 3 2 1 5! 7 6
x x x x x x x x x x

and so on.
Therefore each term in the given series can be described as

Tk = Tk−1 × t,
where Tk is the kth term and Tk – 1 is the (k −1)th term, while the

variable t for each of the terms are:

◊ ◊ ◊ ◊

2 2 2 2

, , , ,
3 2 5 4 7 6 9 8
x x x x

respectively. So t can be described by the general form

-

2

. (1)
x

i i
for i = 3, 5, 7, 9, ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊

The following expression can be used repetitively to generate the
positive and negative sign for the alternative terms:

sign = –1 × sign

The initial value of k should be 1. At each iteration, 2 is added to k
so that the values of k is generated as 3, 5, 7, …. and so on. For each
iteration, the term is given by the following statement.

T = (–1) * T * x * x / (i * (i − 1))

The initial value of T is x. The sum of terms should be calculated
by the statement S = S + T.

The initial value of S is 0.
Having evolved the above expressions, the following statements

should be repeated for N times, where N is the number of terms to be
summed up to give the fi nal sum of the series.

S = S + T
i = i + 2
T = (1) * T * x * x / (i * (i − 1))

The number of iterations can be controlled by using a counter vari-
able c. It may be initialized to 1 and the iterations should continue for
the values 1, 2, 3, 4, … N.

Here i can be used to control the iteration. The value of i varies
in the sequence 1, 3, 5, 7, … It is therefore clear that to repeat the
iteration twice, the values of i should be 1 and 3. To iterate thrice,
the values of i should be 1, 3 and 5. To repeat the statements four
times, the values of i should be 1, 3, 5, and 7. Thus it is obvious that
the fi nal value of i is just one short of the twice the number of repeti-
tions. Therefore, the condition for which iteration should continue is
given by the expression i < N * 2. Finally the algorithm is created
as shown below.

Algorithm
 1. START
 2. PRINT “ENTER THE VALUE OF X”
 3. INPUT X
 4. PRINT “HOW MANY TERMS?”
 5. INPUT N

 6. I ← 1

 7. T ← X

 8. S ← 0

 9. S ← S + T

 10. I ← I + 2

 11. T ← (-1)*T*X*X/(I*(I-1))

 12. IF I < N*2 THEN GOTO 9
 13. PRINT S
 14. STOP

2.1 INTRODUCTION

The story started with the Common Programming Language
(CPL) which Martin Richards at the University of Cambridge
turned into Basic Combined Programming Language
(BCPL). This was essentially a type-less language, which
allowed the user direct access tothe computer memory.
This made it useful to system programmers.
 Ken Thompson at Bell Labs, USA, wrote his own
variant of this and called it B. In due course, the designers
of UNIX modifi ed it to produce a programming language
called C. Dennis Ritchie, also at Bell Labs, is credited for
designing C in the early 1970s. Subsequently, UNIX was

rewritten entirely in C. In 1983, an ANSI standard for C
emerged, consolidating its international acceptance.
 Ninety percent of the code of the UNIX operating
system and of its descendants is written in C. The name C
is doubly appropriate being the successor of B and BCPL.
It has often been said, and with some justifi cation, that
C is the FORTRAN of systems software. Just as FORTRAN
compilers liberated programmers from creating programs
for specifi c machines, the development of C has freed them
to write systems software without having to worryabout
the architecture of the target machine. Where architecture-
dependent code, i.e., assembly code is necessary, it can
usually be invoked from within the C environment.Today

After reading this chapter, the readers will be able to

 understand the basic structure of a program in C

 learn the commands used in UNIX/LINUX and MS-DOS for compiling and running a
program in C

 obtain a preliminary idea of the keywords in C

 learn the data types, variables, constants, operators, and expressions in C

 understand and grasp the precedence and associativity rules of operators in C

 get acquainted with the rules of type conversions in C

Learning Objectives

C
Chapter

Basics of C

2

www.allitebooks.com

http://www.allitebooks.org

40 Programming in C

it is the chosen language for systems programming, for
the development of 4GL packages such as dbase, and
also for the creation of user-friendly interfaces for special
applications. But application programmers admire C for
its elegance, brevity, and the versatility of its operators
and control structures. C may be termed as a mid-level
language,not as low-level as assembly and not as high-
level as BASIC.
 C is a high-level language which also provides the
capabilities that enable the programmers to ‘get in close’
with the hardware and allows them to interact with the
computer on a much lower level.

2.1.1 Why Learn C?

There are a large number of programming languages in
the world today—C++, Java, Ada, BASIC, COBOL, Perl,
Pascal, Smalltalk, FORTRAN, etc. Even so, there are several
reasons to learn C, some of which are stated as follows.
 ∑ C is a core language In computing, C is a general-

purpose, cross-platform, block structured procedural,
imperative computer programming language. There
are a number of common and popular computer
languages are based on C. Having learnt C, it will
be much easier to learn languages that are largely or
in part based upon C. Such languages include C++,
Java, and Perl.

 ∑ C is a small language C has only thirty-two keywords
(and only about twenty of them are in common use).
This makes it relatively easy to learn compared to
bulkier languages.

 ∑ C is quick We can write codes which run quickly,
and the program can be very ‘close to the hardware’.
By that, you can access low level facilities in your
computer quite easily, without the compiler or run-
time system stopping you from doing something
potentially dangerous.

 ∑ C is portable C programs written on one system
can be run with little or no modifi cation on other
systems. If modifi cations are necessary, they can
often be made by simply changing a few entries in
a header fi le accompanying the main program. The
use of compiler directives to the pre-processor makes
it possible to produce a single version of a program
which can be compiled on several different types of
computer. In this sense C is said to be very portable.
The function libraries are standard for all versions of
C so they can be used on all systems.

2.1.2 The Future of C

The story of C is not yet over. During the time when the
X3J11 committee moved steadilytowards producing the
ANSI C standard, another researcher, Bjarne Stroustrup
of BellLaboratories began experimenting with an object-
oriented fl avor of C that he called C++ (pronounced C plus
plus). C++ extended C, and according to Stroustrup, refi ned
thelanguage, making C++, in his words, ‘a better C’.
 Apparently, the X3J11 committee agreed, if not
completely, and they adopted some of Stroustrup’s
proposals into the ANSI C standard. Subsequently, a new
committee was formed to investigate a standard for ANSI
C++ that is now ready. Does this new standard mean that
ANSI C is destined to join its ancestors BCPL, B, and K&R
C on the heap of discarded programming languages?
 The answer is a solid no. Frankly, C++ is not for
everyone. When learning C, it is best to stick to the basics,
and readers would be well advised to ignore some of the
more advanced elements found in C++. For example, C++
provides classes for object-oriented programming, or
OOP as it is known. Until one knows C, one is not ready
for OOP.
 On the other hand, because C++ is based on ANSI C, one
may as well use modern next-generation C++ compilers to
write C programs. That way, one can take advantage of
both worlds. After learning C, one is ready to tackle OOP
and other advanced C++ subjects.

2.2 STANDARDIZATIONS OF C LANGUAGE
Both UNIX and C were created at AT&T’s Bell Laboratories
in the late 1960s and early 1970s. During the 1970s the
C programming language became increasingly popular.
Many universities and organizations began creating their
own variations of the language for their own projects.
 During the late 1970s and 1980s, versions of C were
implemented for a wide variety of mainframe computers,
minicomputers, and microcomputers, including the IBM
PC. In the early 1980s, a need was realized to standardize
the defi nition of the C language which in turn would help
C become more widespread in commercial programming.
 In 1983 the American National Standards Institute
(ANSI) formed a committee to establish a standard
specifi cation of C known as ‘ ANSI C’. This work ended in
the creation of the so-called C89 standard in 1989. Part of
the resulting standard was a set of software libraries called
the ANSI C standard library. This version of the language
is often referred to as ANSI C, Standard C, or sometimes

Basics of C 41

C89. ISO/IEC standard was thereafter adopted by ANSI
and people referred to this common standard as simply
‘standard’ or simply ‘C89’.
 In 1990, the ANSI C standard (with a few minor
modifi cations) was made by the International Organization
for Standardization (ISO) as ISO/IEC 9899:1990. This
version is sometimes called C90. Therefore, the terms
‘C89’ and ‘C90’ refer to essentially the same language.

Changes included in C89 are as follows:
 ∑ The addition of truly standard library.
 ∑ New preprocessor commands and features.
 ∑ Function prototypes which specify the argument

types in a function declaration.
 ∑ Some new keywords const, volatile and signed.
 ∑ Wide characters, wide strings and multi-byte characters.
 ∑ Many smaller changes and clarifi cation to conversion

rules, declarations and type checking.

 C89 is supported by current C compilers, and most
C code being written nowadays is based on it. In 1995,
amendments to C89 include:
 ∑ Three new library headers: iso646.h, wctype.h and

wchar.h.
 ∑ Some new formatting codes for the printf and scanf

family of functions.
 ∑ A large number of functions plus some types and

constants for multi-byte and wide characters.

 With the evolution of C++, the standardization of C
language began to be revised again. Some amendments
and corrections to C89 standard were made and a new
standard for the C language was created in 1995. In 1999,
a more extensive revision to the C standard began. It was
completed and approved in 1999. This new version is
known as ‘ISO/IEC 9899:1999’ or simply ‘C99’ and has
now become the offi cial standard C. The followings were
included:
 ∑ Support for complex arithmetic
 ∑ inline functions
 ∑ several new data types, including long long int,

optional extended integer types, an explicit boolean
data type, and a complex type to represent complex
numbers

 ∑ Variable length arrays
 ∑ Better support for non-English characters sets.
 ∑ Better support for fl oating-point types including math

functions for all types

 ∑ C++ style comments (//)
 ∑ new header fi les, such as stdbool.h and inttypes.h
 ∑ type-generic math functions (tgmath.h)
 ∑ improved support for IEEE fl oating point
 ∑ variable declaration no longer restricted to fi le scope

or the start of a compound statement

 GCC and other C compilers now support many of
the new features of C99. However, there has been less
support from vendors such as Microsoft and Borland
that have mainly focused on C++, since C++ provides
similar functionality improvement. According to Sun
Microsystems, Sun Studio (which is freely downloadable)
now supports the full C99 standard.
 As of 2007, work has begun in anticipation of another
revision of the C standard, informally called ‘C1x’. The C
standards committee has adopted guidelines that should
limit the adoption of new features that have not been not
tested by existing implementations.
 Most C implementations are actually C/C++ implemen-
tations giving programmers a choice of which language to
use. It is possible to write C code in the common subset
of the standard C/C++ languages so that code can be
compiled either as a C program or a C++ program.

2.3 DEVELOPING PROGRAMS IN C
There are mainly three steps:
 1. Writing the C program
 2. Compile the program and
 3. Executing it.

 For these steps, there requires some software
components, namely an operating system, a text editor,
and the C compiler, assembler, and linker. The editor is
used to create and modify the program code while the
compiler transforms the source program to object code.
Operating system is responsible for the execution of
the program. There are several editors which provide a
complete environment for writing managing, developing,
and testing your programs. This is sometimes called an
integrated development environment, or IDE.
 Below are the stages that happen in order regardless
of the operating system or compiler and graphically
illustrated in Figure 2.2. A brief explanation of each
of the processes involved in the compilation model is
given as follows:

42 Programming in C

Writing or Editing the source program using an text editor
or an IDE and saving it with .c extension.

 Programming Environment Most programming language
compilers come with a specifi c editor that can provide
facilities for managing the programs. Such an editor offers a
complete environment for writing, developing, modifying,
deploying, testing, and debugging the programs. Such
software is referred to as an integrated development
environment or IDE. An IDE is typically dedicated to
a specifi c programming language. It thus incorporates
features compatible with the particular programming
paradigm.
 Many IDEs have a Build option, which compiles and
links a program in one step. This option will usually be
found, within an IDE, in the Compile menu; alternatively,
it may have a menu of its own. In most IDEs, an
appropriate menu command allows one to run or execute
or debug the compiled program. In Windows, one can run
the .exe fi le for the corresponding source program like
any other executable program. The processes of editing,
compiling, linking, and executing are essentially the same
for developing programs in any environment and with any
compiled language.
 A simple programming environment specially designed
for C and C++ programming on Windows is the Quincy
IDE. Figure 2.1(a) shows a screenshot of the Quincy
environment. Quincy can be freely downloaded from
http://www.codecutter.com.

Figure 2.1(a) The screenshot of quincy

 There are many other IDEs available. DevC++ is
one of the most popular C++ IDEs amongst the student
community. DevC++ is a free IDE distributed under the
GNU General Public License for programming in C/
C++. It is bundled with MinGW, a free compiler. It can be
downloaded from the URL http://www.bloodshed.net.

Figure 2.1(b) The screenshot of Dev C++

 In UNIX or Linux, the most common text editor is the
vi editor. Alternately one might prefer to use the emacs
editor. The vi editor is simpler, smaller, and faster, and has
limited customization capabilities, whereas emacs has a
larger set of commands and is extensible and customizable.
On a PC, a user could use one of the many freeware and
shareware programming editors available. These will often
provide a lot of help in ensuring the code to be correct with
syntax highlighting and auto-indenting of the code.

 Preprocessing is the fi rst phase of the C compilation. It
processes include-fi les, conditional compilation instructions
and macros. The C preprocessor is used to modify your
program according to the preprocessor directives in your
source code. A preprocessor directive is a statement (such
as #defi ne) that gives the preprocessor specifi c instructions
on how to modify your source code. The preprocessor
is invoked as the fi rst part of your compiler program’s
compilation step. It is usually hidden from the programmer
because it is run automatically by the compiler.

 Compilation is the second pass. It takes the output of
the preprocessor, and the source code, and generates
assembler source code. The compiler examines each
program statement contained in the source program and
checks it to ensure that it conforms to the syntax and
semantics of the language. If any mistakes are discovered
by the compiler during this phase, they are reported to the
user. The errors then have to be corrected in the source
program (with the use of an editor), and the program has
to be recompiled.

 Assembly is the third stage of compilation. It takes
the assembly source code and produces an assembly
listing with offsets. The assembler output is stored in an

Basics of C 43

object fi le. After the program has been translated into
an equivalent assembly language program, the next step
in the compilation process is to translate the assembly
language statements into actual machine instructions. On
most systems, the assembler is executed automatically as
part of the compilation process. The assembler takes each
assembly language statement and converts it into a binary
format known as object code, which is then written into
another fi le on the system. This fi le typically has the same
name as the source fi le under UNIX, with the last letter an
‘o’ (for object) instead of a ‘c’. Under Windows, the suffi x
letters “obj” typically replace the “c” in the fi lename.

 Linking is the fi nal stage of compilation. After the program
has been translated into object code, it is ready to be linked.
The purpose of the linking phase is to get the program into
a fi nal form for execution on the computer. The functions
are the part of the standard C library, provided by every C
compiler. The program may use other source programs
that were previously processed by the compiler. These
functions are stored as separate object fi les which must be
linked to our object fi le. Linker handles this linking.

 The process of compiling and linking a program is
often called building. The fi nal linked fi le, which is in an
executable object code format, is stored in another fi le on
the system, ready to be run or executed. Under UNIX,
this fi le is called a.out by default. Under Windows, the
executable fi le usually has the same name as the source
fi le, with the .c extension replaced by an exe extension.
 When the program is executed, each of the statements
of the program is sequentially executed in turn. If the
program requests any data from the user, known as input,
the program temporarily suspends its execution so that the
input can be entered. Or, the program might simply wait for
an event, such as a mouse being clicked, to occur. Results
that are displayed by the program, known as output, appear
in a window, sometimes called the console. Or, the output
might be directly written to a fi le on the system.
 If all goes well the program performs its intended task.
If the program does not produce the desired results, it is
necessary to go back and reanalyze the program. There are
three types of errors that may occur:
 ∑ Compile errors These are given by the compiler and

prevent the program from not running.
 ∑ Linking errors These are given by the linker or

at runtime and ends the program. The linker can
also detect and report errors, for example, if part

of the program is missing or a non-existent library
component is referenced.

 ∑ Runtime errors These are given by the operating
system.

 Removing errors from a program is called debugging.
Any type of error in your program is known as bug.
During debugging an attempt is made to remove all the
known problems or bugs from the program. By tracing the
program step-by-step, keeping track of each variable, you
monitor the program state. The program state is simply
the set of values of all the variables at a given point in
program execution. It is a snapshot of the current state of
computation.
 A debugger is a program that enables you to run another
program step-by-step and examine the value of that program’s
variables. Debuggers come in various levels of ease of use
and sophistication. The more advanced debuggers show
which line of source code is being executed.

Linker/Link
editor

Loader

Stored in secondary storage
such as hard disk as an

executable image

When running/execute
the program

Libraries and
other object

modules

Preprocessor

Assembler

Compiler

Editor/IDE

C source code

Preprocessed code

Assembly code

Object code

Executable code

Figure 2.2 Typical steps for entering, compiling,
and executing C programs

44 Programming in C

 In the unix/linux operating system environment, the
program is stored in a fi le, the name of which ends in ‘.c’.
This means that the extension of the fi le will be ‘.c’. This
identifi es it as a C program. The easiest way to enter text is
by using a text editor such as vi, emacs, or xedit. The editor
is also used to make subsequent changes to the program.
To create or edit a fi le called ‘fi rst.c’ using vi editor, the
user has to enter vi fi rst.c.
 Most of the Windows-based C compilers have an inbuilt
context-sensitive editor to write C programs. The program
fi lename should have a ‘.c’ extension.
 To compile a C program in UNIX simply invoke the
command CC. The command must be followed by the
name of the C program that has to be compiled. A number
of compiler options can be specifi ed also. But only some
useful and essential options would be dealt with here;
these are introduced below.
 In the UNIX operating system, to compile a C source
program, where fi rst.c is the name of the fi le, the
command is

cc fi rst.c

 In the LINUX operating system, a C source program,
where fi rst.c is the name of the fi le, may be compiled by
the command

gcc fi rst.c

The GNU C compiler gcc is popular and available for
many platforms. If there are syntax errors in the program
due to wrong typing, misspelling one of the key words,
or omitting a semicolon, the compiler detects and reports
them. There may, of course, still be logical errors that the
compiler cannot detect. The program code may be telling
the computer to do the wrong operations.
 When the compiler has successfully translated the
program, the compiled version, or the executable program
code is stored in a fi le called a.out or if the compiler option
–o is used, the executable program code is put in the fi le listed
after the –o option specifi ed in the compilation command.
 It is more convenient to use –o and fi le name in the
compilation as shown.

cc –o program fi rst.c

 This puts the compiled program into the fi le program or
any fi lename following the –o argument, instead of putting
it in the fi le a.out.
 PC users may also be familiar with the Borland C
compiler. Borland International has introduced many C
compilers such as Turbo C, Turbo C++, and Borland C++.

It should be noted here that C++ is the superset of C and
has the same syntax. A C program can be compiled by
a C++ compiler. In all these cases, the actual computer
program development environment comes in two forms.
 To run the executable fi le, the command for both UNIX
and LINUX operating system is

./a.out

 To run an executable program in UNIX, simply type the
name of the fi le that contains it, in this case fi rst instead
of a.out. This executes the program, displaying the
results on the screen. At this stage there may be run-time
errors, such as division by zero, or it may become evident
that the program has produced incorrect output. If so,
the programmer must return to edit the source program,
recompile it, and run it again.
 Now, to run a C program in the Borland environment, if
the msdos prompt obtained while compiling has not been
closed.
 1. The following prompt would be visible on the screen:

 c:\borland\bcc55\bin>

 2. Enter
 c:\borland\bcc55\bin> cd c:\cprg

 3. Press <Enter>. This changes the directory to one
where the following msdos prompt would be seen:

 c:\cprg>

 4. Enter fi rst.exe or simply fi rst, and the screen would
display

 c:\cprg>fi rst.exe or c:\cprg>fi rst

 5. Press <Enter> to run the program and its output
would be available.

 For compiling a C program in the Borland C compiler,
the given steps must be followed.
 1. Open MS-DOS prompt.
 2. At the prompt

 c:\windows>

 give the following command:
 c:\windows>cd c:\borland\bcc55\bin

 Press <Enter>.
 This changes the directory to c:\borland\bcc55\bin

and the following prompt appears:
 c:\borland\bcc55\bin>

 Now, enter
 bcc32 -If:\borland\bcc55\include
 -Lf:\borland\bcc55\Lib c:\cprg\fi rst.c

 3. Press <Enter>.

Basics of C 45

2.4 A SIMPLE C PROGRAM
The best way to learn C or any programming language is
to begin writing programs in it.
 Let us write the fi rst program named fi rst.c as
follows:

/* A Simple C Program */

#include <stdio.h>
int main(void)
{
 printf(“C is Sea\n”);
 return 0;
}

 There are a few important points to note about this
program. These are common to all C programs.

/* A Simple C Program */

 This is a comment line.
In C, the comments can be included in the program. The
comment lines start with /* and terminate with */. These
statements can be put anywhere in the program.The
compiler considers these as non-executable statements.
 The comment lines are included in a program to describe
the variables used and the job performed by a set of
program instructions or an instruction. Comment lines may
also bewritten to record any other information that may be
necessary for the programmer and relevant to the program.
 According to C99, a comment also begins with // and
extends up to the next line break. So the above comment
line can be written as follows:

// A Simple C Program

// comments were added for C99 due to their utility and
widespread existing practice, especially in dual C and C++
translators.

#include <stdio.h>

 In C, all lines that begin with # are directives for the
preprocessor, which means that all these directives will be
processed before the program is actually compiled. The
#include directive includes the contents of a fi le during
compilation. In this case, the fi le stdio.h is added in the
source program before the actual compilation begins.
stdio.h is a header fi le that comes with the C compiler
and contains information about input and output functions
e.g. printf(), etc.
 For now it may be noted that there are two ways in
which the preprocessor directives differ from program
statements (a) they must begin in the fi rst column and no

spaces are allowed between ‘#’ and include and (b) they
are not terminated by a semicolon.

int main(void)

 Every C program contains a function called main.
This is the starting point of the program. A C program
may contain one or more functions one of which must be
main(). Functions are the building blocks of a C program.
For now the functions may be recognized by the presence
of parentheses after their names. When a C program is
executed, main() is where the action starts. Then, other
functions maybe ‘invoked’ or called.
 A function is a sub-program that contains instructions or
statements to perform a specifi c computation or processing.
When its instructions have been executed, the function
returns control to the calling point, to which it may optionally
return the results of its computations. Since main() is also a
function from which control returns to the operating system
at program termination, in ANSI C it is customary, although
not required, to include a statement in main() which explicitly
returns control to the operating environment.
 For the Watcom C/C++, IBM VisualAge C/C++, and
Microsoft Visual C/C++ compilers, the function main can
also be declared to return void. The compilers MetaWare
High C/C++ and EMX C/C++ do not allow main to
have a return type void. For these compilers, the return
type of main has to be declared as int. Borland C/C++,
Comeau C/C++, and Digital Mars C/C++ compilers do
not explicitly list void main() as a legal defi nition of main,
but somewhat ironically there are example codes using
this non-conforming defi nition on main.

{}

 This is a brace. As the name implies, braces come in packs
of two, i.e. for every open brace there must be a matching
close. Braces allow me to lump pieces of program together.
Such a lump of program is often called a block. A block can
contain the declaration of variable used within it, followed
by a sequence of program statements which are executed
in order. In this case the braces enclose the working parts
of the function main. When the compiler sees the matching
close brace at the end it knows that it has reached the end of
the function and can look for another (if any).
 By enclosing the program instructions, printf() and
return 0 within the opening brace ‘{’ and the closing
brace ‘}’, a block of program instruction is formed.Such
a block of program instructions, within these braces, form
the body of thefunction main().

printf(“C is Sea\n”);

printf() is a ‘library function’

46 Programming in C

 The \n (pronounced backslash n) in the string argument
of the function printf()

“C is Sea\n”

is an example of an escape sequence. It is used to print the
new line character. If the program is executed, the \n does
not appear in the output. Each \n in the string argument of
a printf() causes the cursor to be placed at the beginning
of the next line of output. Think of an escape sequence
as a ‘substitute character’ for outputting special characters
or some positional action on the printing point, known as
cursor, when the output device is a visual diaplay unit.
 All escape sequences available in C are given in Table
2.1. Placing any of these within a string causes either the
indicated action or the related character to be output.

return 0;

 This statement indicates that the value returned by the
function main(), after the program instructions in its body

are executed, to the operating system is 0. Though the
value, recognized by the OS as status, is returned using
the return 0 statement, the OS may not always use it.
 The return statement is not mandatory; if it is missing,
the program will still terminate. In C89, the value returned
to the operating system is undefi ned. In C99, if main() is
declared to return an int, the program returns 0 (zero) to
the operating system or operating environment; otherwise
the program returns an unspecifi ed value.
 Throughout this book, at the end of every function
defi nition for main(), the return 0 instruction must
be written. Function defi nition means the sequence of
instructions that form the body of the function which
performs the desired task. Similarly, main() should always
be written as int main(void) in every program given in
this book.
 The above discussion is summarized in Figure 2.3.

/* A simple C program */

include <stdio.h>

int main (void)

{

printf (“C is Sea \n);”

return 0;

}

Beginning of
comment

End of
comment

Includes the contents of the
external file into the program

Preprocessor directive

Indicates an integer value
is returned to the operating
system from main()

Start of the functions main()

The standard header file
that provides input out functions
like printf() which displays
information on the screen

Nothing is passed to main()

A library function declared
is stdio.h used to print any
data on the video monitor
screen. Here 'C is Sea'
will be displayed.

returns the value 0 to the
operating system or operating
environment to indicate that
the program terminated
normally; a nonzero value
would indicate an abnormal
return, which means, in other
words, things were not as they
should be when the program
ended.

It is an escape sequence that
causes the cursor to be placed
at the beginning of the next
line of output

Statement terminator

End of the
function main()

Figure 2.3 An Illustrated version of fi rst.c

Basics of C 47

Table 2.1 Backslash codes

Code Meaning

\a
\?
\b
\r
\f
\t
\v
\0
\\
\”
\’
\n
\o
\x

Ring terminal bell (a is for alert) [ANSI] extension]
Question mark [ANSI extension]
Backspace
Carriage return
Form feed
Horizontal tab
Vertical tab
ASCII null character
Backslash
Double quote
Single quote
New line
Octal constant
Hexadecimal constant

Points to Note

 ∑ C uses a semicolon as a statement terminator; the
semicolon is required as a signal to the compiler to
indicate that a statement is complete.

 ∑ All program instructions, which are also called state-
ments, have to be written in lower case characters.

2.5 PARTS OF C PROGRAM REVISITED

 Header fi les

A header fi le is a fi le containing C declarations and macro
defi nitions to be shared between
 In C, the usual convention is to give header fi les
names that end with .h. Functions in the ANSI C library
are declared in a set of standard headers. This set is self-
consistent and is free of name space pollution, when
compiling in the pure ANSI mode. The ISO C standard
library consists of 24 header fi les which can be included
into a programmer’s project with a single directive. Each
header fi le contains one or more function declarations,
data type defi nitions and macros. Later revisions of the C
standard have added several new required header fi les to
the library:
 ∑ The headers <iso646.h>, <wchar.h>, and <wctype.h>

were added with Normative Addendum 1 (hereafter
abbreviated as NA1), an addition to the C Standard
ratifi ed in 1995.

 ∑ The headers <complex.h>, <fenv.h>, <inttypes.h>,
<stdbool.h>, <stdint.h>, and <tgmath.h> were added
with C99, a revision to the C Standard published in
1999

The following list contains the set of standard headers:

assert.h
complex.h
ctype.h
errno.h
fenv.h
fl oat.h

inttypes.h
iso646.h
limits.h
locale.h
math.h
setjmp.h

signal.h
stdarg.h
stdbool.h
stddef.h
stdint.h
stdio.h

stdlib.h
string.h
tgmath.h
time.h
wchar.h
wctype.h

 There are two ways of including fi les in C program. The
fi rst way is to surround the fi le you want to include with the
angled brackets < and > that is like #include <fi lename>. This
method of inclusion tells the preprocessor to look for the fi le
in the predefi ned default location. This predefi ned default
location is often an INCLUDE environment variable that
denotes the path to your include fi les. On UNIX systems,
standard include fi les reside under /usr/include.
 The second way to include fi les is to surround the fi le
you want to include with double quotation marks like
#include “fi lename”. This method of inclusion tells the
preprocessor to look for the fi le in the current directory fi rst,
then look for it in the predefi ned locations you have set up.
The #include <fi lename> method of fi le inclusion is
often used to include standard headers such as stdio.h
or stdlib.h. This is because these headers are rarely (if
ever) modifi ed, and they should always be read from your
compiler’s standard include fi le directory.
 The #include “fi le” method of fi le inclusion is often
used to include nonstandard header fi les that you have
created for use in your program. This is because these
headers are often modifi ed in the current directory, and
you will want the preprocessor to use your newly modifi ed
version of the header rather than the older, unmodifi ed
version.

Philosophy of main()

 main() is a user defi ned function. main() is the fi rst function
in the program which gets called when the program
executes. The startup code c calls main() function. We
can’t change the name of the main() function.
 According to ANSI/ISO/IEC 9899:1990 International
Standard for C, the function called at program startup is
named main. The implementation declares no prototype
for this function. It can be defi ned with no parameters:

int main(void) { /* ... */ }

or with two parameters (referred to here as argc and argv,
though any names may be used, as they are local to the
function in which they are declared):

int main(int argc, char *argv[]) { /* ... */ }

48 Programming in C

 On many operating systems, the value returned by
main() is used to return an exit status to the environment.
On Unix, MS-DOS, and Windows systems, the low
eight bits of the value returned by main() is passed to
the command shell or calling program. It is extremely
common for a program to return a result indication to the
operating system. Some operating systems require a result
code. And the return value from main(), or the equivalent
value passed in a call to the exit() function, is translated
by your compiler into an appropriate code.
 There are three and only three completely standard and
portable values to return from main() or pass to exit():
 ∑ The plain old ordinary integer value 0.
 ∑ The constant EXIT_SUCCESS defi ned in stdlib.h
 ∑ The constant EXIT_FAILURE defi ned in stdlib.h
 If you use 0 or EXIT_SUCCESS your compiler’s run time
library is guaranteed to translate this into a result code
which your operating system considers as successful.
 If you use EXIT_FAILURE your compiler’s run time library
is guaranteed to translate this into a result code which your
operating system considers as unsuccessful.

 main() is MUST

It depends on the environment your program is written for.
If its a hosted environment, then main function is a must
for any standard C program. Hosted environments are
those where the program runs under an operating system.
If it is a freestanding environment, then main function is
not required. Freestanding environments are those where
the program does not depend on any host and can have any
other function designated as startup function. Freestanding
implementation need not support complete support of the
standard libraries; Usually only a limited number of I/O
libraries will be supported and no memory management
functions will be supported. Examples of freestanding
implementations are embedded systems and the operating
system kernel.
 The following will give a linker error in all compilers:

MAIN
{
 printf(“hello, world\n”);
}

 Along with the user supplied main() function all C
programs include something often called the run-time
support package which is actually the code that the
operating system executes when starting up your program.

The run-time support package then expects to call the user
supplied function main(), if there is no user supplied main()
then the linker cannot fi nish the installation of the run-
time support package. In this case the user had supplied
MAIN() rather than main(). “MAIN” is a perfectly valid C
function name but it isn’t “main”.

2.6 STRUCTURE OF A C PROGRAM
The general structure of a C program is depicted in the
following fi gure:

Preprocessor directives

Global declarations

Local definitions

Statements

int main (void)
{

return 0;
}

Figure 2.4 Structure of a C program

 Declaration is the program statement that serves to
communicate to the language translator information about
the name and type of the data objects needed during
program execution. As discussed before, preprocessor
directives tells the preprocessor to look for special code
libraries, make substitutions in the code and in other ways
prepare the code for translation into machine language.
 The basic idea behind the global declaration is that
they are visible to all parts of the program. A more detailed
discussion on global declarations has been included in
Chapter 6.
 All functions including main() can be divided into
two sections – local defi nition and statements. Local
defi nitions would be at the beginning of the functions
which is followed by statement section. It describes the
data that will be used in the function. Data objects in local
defi nitions as opposed to global declarations are visible
only to the function that contains them. Statement section
consists of the instructions that cause the computer to do
something.

Basics of C 49

 The difference between a declaration and defi nition is
important. A declaration announces the properties of a data
object or a function. The main reason for declaring data
objects and functions is for type checking. If a variable
or function is declared and then later make reference to
it with data objects that do not match the types in the
declaration, the compiler will complain. The purpose of
the complaint is to catch type errors at compile time rather
than waiting until the program is run, when the results can
be more fatal.
 A defi nition, on the other hand, actually sets aside
storage space (in the case of a data object) or indicates the
sequence of statements to be carried out (in the case of a
function).

Points to Note

 ∑ Declaration means describing the type of a data object
to the compiler but not allocating any space for it.

 ∑ Defi nition means declaration of a data object and also
allocating space to hold the data object.

2.7 CONCEPT OF A VARIABLE
Programs operate on data. The instructions that make up
the program, and the data that it acts upon, have to be
stored somewhere while the computer is executing that
program. A programming language must provide a way
of storing the data that are to be processed, otherwise it
becomes useless. In this context, it may be mentioned that
a computer provides a Random Access Memory (RAM)
for storing the executable program code and the data the
program manipulates.
 A computer memory is made up of registers and cells
which are capable of holding information in the form
of binary digits 0 and 1 (bits). Instead, it accesses data
in a collection of bits, typically 8 bits, 16 bit, 32 bit or
64 bit. Data is stored in the memory at physical memory
locations. These locations are known as the memory
address. Therefore each byte can be uniquely identifi ed
by its address (see Figure 2.5).
 The amount of bits on which it can operate simultane-
ously is known as the word length of the computer. A word
is the natural unit of memory for a given computer design.
For 8-bit microcomputers, such as the original Apples,
a word is just 1 byte. IBM compatibles using the 80286

processor are 16-bit machines. This means that they have
a word size of 16 bits, which is 2 bytes. Machines like
the Pentium-based PCs and the Macintosh PowerPCs have
32-bit words. More powerful computers can have 64-bit
words or even larger. When we say that Pentium 4 is a 32
bit machine, it means that it simultaneously operates on
32 bit of data.
 A variable is an identifi er for a memory location in which
data can be stored and subsequently recalled. Variables are
used for holding data values so that they can be utilized in
various computations in a program.
 Variables are a way of reserving memory to hold some
data and assign names to them so that we don’t have to
remember the numbers like 46735 and instead we can use
the memory location by simply referring to the variable.
Every variable is mapped to a unique memory address.
Variables are used for holding data values so that they can
be utilized in various computations in a program.
 The C compiler generates an executable code which
maps data entities to memory locations. For example, the
variable defi nition

int salary = 65000;

causes the compiler to allocate a few bytes to represent
salary. The exact number of bytes allocated and the method
used for the binary representation of the integer depends
on the specifi c C implementation, but let it be said that
two bytes contain the encoded data as a binary number
1111110111101000. The compiler uses the address of the
fi rst byte at which salary is allocated to refer to it. The
above assignment causes the value 65000 to be stored as a
binary number in the two bytes allocated (see Figure 2.6).

1211

Byte

1212

Byte

1213

Byte

1214

Byte

1215

Byte

1216

Byte

1217

Byte... ...Memory

1 1 0 1 0 0 0 1

Byte Address

Bit

Figure 2.5 Bits and bytes in memory

50 Programming in C

1211

Byte

1212

Byte

1213

Byte

1214

11111101

1215

11101000

1216

Byte

1217

Byte... ...Memory

Salary

(A 2-byte Integer whose address is 1214)

Figure 2.6 Representation of an integer in memory

 While the exact binary representation of a data item is
rarely of interest to a programmer, the general organization
of memory and use of addresses for referring to data items
is very important.
All variables have three important attributes.
 ∑ A data type that is established when the variable is

defi ned, e.g., integer, real, character. Once defi ned,
the type of a C variable cannot be changed.

 ∑ A name of the variable
 ∑ A value that can be changed by assigning a new value to

the variable. The kind of values a variable can assume
depends on its type. For example, an integer variable
can only take integer values, e.g., 2, 100, –12.

 The number of characters that you can have in a variable
name will depend upon your compiler. A minimum of 31
characters must be supported by a compiler that conforms to
the C language standard, so you can always use names up to
this length without any problem. It can be suggested that don’t
make the variable names longer than this anyway, as they
become cumbersome and make the code harder to follow.
Some compilers will truncate names that are too long.
 Variable names are case sensitive, which means that the
names NUM and num are distinct.
 In C, a variable must be declared before it can be used.
Variables can be declared at the start of any block of code,
but these are mostly found at the start of each function.
This serves two purposes. First, it gives the compiler
precise information about the amount of memory that will
be given over to a variable when a program is fi nally run
and what sort of arithmetic will be used on it (e.g., only
integer or fl oating point or none). Secondly, it provides the
compiler with a list of the variables in a convenient place
so that it can cross check names and types for any errors.

2.8 DATA TYPES IN C
The type, or data type, or a variable determines a set of
values that a variable might take and a set of operations
that can be applied to those values. Data types can be
broadly classifi ed as shown in Figure 2.4.

Primitive/
Basic
Data peTy
� char
�

�

�

int
float
double

Derived
Data Type
�

�

�

a
f
p

rray
unction
ointer

User-defined
Data Type
�

�

�

structure
union
enumeration

Valueless
� void

Data Type

Figure 2.7 Classifi cation of data types

C provides a standard, minimal set of basic data types.
Sometimes these are called ‘primitive’ types. More
complex data types can be built up from these basic types.
C has fi ve basic data types and they are as follows:
 ∑ character—Keyword used is char
 ∑ Integer—Keyword used is int
 ∑ fl oating point—Keyword used is fl oat
 ∑ double precision fl oating point—Keyword used is

double

 ∑ valueless—Keyword used is void

Basic Data Types

char int float double void

Figure 2.8 Basic data types

Table 2.2(a) lists the sizes and ranges of basic data types in
C for a 16-bit computer and Table 2.2(b) lists the sizes and
ranges of basic data types in C for a 32-bit computer.

Table 2.2(a) Sizes and ranges of basic data types in C for a
16-bit computer

Data type Size (in bits) Range

char 8 –128 to 127

int 16 –32768 to 32767

fl oat 32 1.17549 × 10–38 to 3.40282 × 1038

double 64 2.22507 × 10–308 to 1.79769 × 10 308

void 8 valueless

Basics of C 51
Table 2.2(b) Sizes and ranges of basic data types in C for a

32-bit computer

Data type Size (in bits) Range

char 8 –128 to 127

int 32 –2147483648 to 2147483647

fl oat 32 1.17549 × 10–38 to 3.40282 × 1038

double 64 2.22507 × 10–308 to 1.79769 × 10 308

void 8 valueless

 The C standard does not state how much precision the
fl oat, double types provide, since different computers may
store fl oating point numbers in different ways. According
to IEEE, the precisions for fl oat and double are 6 and 15
respectively.
 The void type has no values and only one operation,
assignment. The void type specifi es an empty set of values.
It is used as the type returned by functions that generate
no value. The void type never refers to an object and
therefore, is not included in any reference to object types.
According to ISO/IEC draft, “The void type comprises an
empty set of values; it is an incomplete type that cannot be
completed.”
 In addition C has four type specifi ers or modifi ers and
three type qualifi ers.

The following points should be noted:
 (a) Each of these type modifi ers can be applied to the

base type int.
 (b) The modifi ers signed and unsigned can also be

applied to the base type char.
 (c) In addition, long can be applied to double.
 (d) When the base type is omitted from a declaration, int

is assumed.
 (e) The type void does not have these modifi ers.

 The specifi ers and qualifi ers for the data types can be
broadly classifi ed into three types:
 ∑ Size specifi ers— short and long
 ∑ Sign specifi ers— signed and unsigned
 ∑ Type qualifi ers— const, volatile and restrict.
 The size qualifi ers alter the size of the basic data types.
There are two such qualifi ers that can be used with the data
type int; these are short and long.

 The specifi er short, when placed in front of the int
declaration, tells the C compiler that the particular variable
being declared is used to store fairly small integer values.
The motivation for using short variables is primarily one
of conserving memory space, which can be an issue in
situations in which the program needs a lot of memory
and the amount of available memory is limited.
 In any ANSI C compiler, the sizes of short int, int, and
long int are restricted by the following rules.
 ∑ The minimum size of a short int is two bytes.
 ∑ The size of an int must be greater than or equal to

that of a short int.
 ∑ The size of a long int must be greater than or equal

to that of an int.
 ∑ The minimum size of a long int is four bytes.

 In most of the DOS based compilers that work on
16-bit computers, the size of a short int and an int is
the same, which is two bytes. In such compilers, a long
int occupies four bytes. On the other hand, in the 32-bit
machine compilers such as GNU C(gcc), an int and long
int take four bytes while a short int occupies two bytes.
For UNIX based compilers, a short int takes two bytes,
while a long int takes four bytes.
 The long qualifi er is also used with the basic data type
double. In older compilers this qualifi er was used with
fl oat, but it is not allowed in the popular compilers of
today. As mentioned earlier, it may be noted here that the
sign qualifi ers can be used only with the basic data types
int and char.
 Table 2.3 lists the sizes of the short int, int and long int
data types in different machines.

Table 2.3 sizes in number of bytes of the short int, int and
long int data types in different machines.

16-bit Machine 32-bit Machine 64-bit Machine

 short int 2 2 2

int 2 4 4

 long int 4 4 8

 C99 provides two additional integer types long long
int and unsigned long long int. For long long, the C99
standard specifi ed at least 64 bits to support. Table 2.4
summarizes the size and range of different variations of
long long type.

52 Programming in C

Table 2.4 Size and range of long long type

Size (in bytes) Range

long long int 8 9, 223, 372, 036, 854,
775, 808 to +9, 223,
372, 036, 854, 775, 807

unsigned long int
or unsigned long

4 0 to 4, 294, 967, 295

unsigned long long int
or
unsigned long long

8 0 to +18, 446, 744, 073,
709, 551, 615

 The C89 Committee added to C two type qualifi ers,
const and volatile; and C99 adds a third, restrict. Type
qualifi ers control how variables may be accessed or
modifi ed. They specify which variables will never (const)
change and those variables that can change unexpectedly
(volatile).
 Both keywords require that an associated data type be
declared for the identifi er, for example

const fl oat pi = 3.14156;

specifi es that the variable pi can never be changed by
the program. Any attempt by code within the program to
alter the value of pi will result in a compile time error.
The value of a const variable must be set at the time
the variable is declared. Specifying a variable as const
allows the compiler to perform better optimization on the
program because of the data type being known. Consider
the following program –

#include <stdio.h>
int main(void)
{
const int value = 42;
/* constant, initialized integer variable */
value = 100;
/* wrong! − will cause compiler error */
return 0;
}

Points to Note
const does not turn a variable into a constant. A variable with
const qualifi er merely means the variable cannot be used
for assignment. This makes the value read only through that
variable; it does not prevent the value from being modifi ed some
other ways e.g. through pointer.

 The volatile keyword indicates that a variable can
unexpectedly change because of events outside the control
of the program. This usually is used when some variable

within the program is linked directly with some hardware
component of the system. The hardware could then directly
modify the value of the variable without the knowledge of
the program. For example, an I/O device might need to
write directly into a program or data space. Meanwhile,
the program itself may never directly access the memory
area in question. In such a case, we would not want the
compiler to optimize-out this data area that never seems to
be used by the program, yet must exist for the program to
function correctly in a larger context. It tells the compiler
that the object is subject to sudden change for reasons
which cannot be predicted from a study of the program
itself, and forces every reference to such an object to be a
genuine reference.
 The restrict type qualifi er allows programs to be
written so that translators can produce signifi cantly faster
executables. Anyone for whom this is not a concern can
safely ignore this feature of the language.
 Size and range of different combinations of basic data
types and modifi ers are listed in Table 2.5.
 Several new types that were added in C89 are listed
below:
 ∑ void
 ∑ void*
 ∑ signed char
 ∑ unsigned char
 ∑ unsigned short
 ∑ unsigned long
 ∑ long double
 And new designations for existing types were added in
C89:
 ∑ signed short for short
 ∑ signed int for int
 ∑ signed long for long
C99 also adds new types:
 ∑ _Bool
 ∑ long long
 ∑ unsigned long long
 ∑ fl oat _Imaginary
 ∑ fl oat _Complex
 ∑ double _Imaginary
 ∑ double _Complex
 ∑ long double _Imaginary
 ∑ long double _Complex

Basics of C 53

 C99 also allows extended integer types <inttypes.h>,
and <stdint.h>) and a boolean type <stdbool.h>).
char A character variable occupies a single byte that
contains the code for the character. This code is a numeric
value and depends on the character coding system being
used, i.e., it is machine-dependent. The most common
coding system is ASCII (American Standard Code for
Information Interchange). For example, the character ‘A’
has the ASCII character code 65, and the character ‘a’ has
the ASCII code 97.
 Since character variables are accommodated in a byte,
C regards char as being a sub-range of int, (the sub-range
that fi ts inside a byte) and each ASCII character is for all
purposes equivalent to the decimal integer value of the
bit picture that defi nes it. Thus ‘A’, of which the ASCII
representation is 01000001, has the arithmetical decimal
value of 65. This is the decimal value of the sequence
of bits 01000001, which may be easily verifi ed. In other
words, the memory representation of the char constant
‘A’ is indistinguishable from that of the int constant,
decimal 65.
 It may be observed that small int values may be
stored in char variables and char values may be stored
in int variables. Character variables are therefore signed

quantities restricted to the value range [–128 to 127].
However, it is a requirement of the language that the
decimal equivalent of each of the printing characters be
non-negative.
 It may thus be concluded that in any C implementation
in which a char is stored in an 8-bit byte, the corresponding
int value will always be a non-negative quantity whatever
the value of the leftmost (sign) bit. Now, identical bit
patterns within a byte may be treated as a negative
quantity by one machine and as a positive quantity by
another. For ensuring the portability of programs that
store non-character data in char variables the unsigned
char declaration is useful: it changes the range of chars to
[0 to 255].
 The signedness of characters is an important issue
because the standard I/O library routines which may
normally return characters from fi les, return a negative
value when End-of-File is reached.
Let us now discuss these data types in detail.
 Signed integer types There are four standard integer types
– short, int, long, long long.
 The precise range of values representable by a signed
integer type depends not only on the number of bits used
in the representation but also on the encoding techniques.

Table 2.5 Allowed combinations of basic data types and modifi ers in C for a 16-bit computer

Data Type Size (bits) Range Default Type

char 8 –128 to 127 signed char

unsigned char 8 0 to 255 None

signed char 8 –128 to 127 char

int 16 –32768 to 32767 signed int

unsigned int 16 0 to 65535 unsigned

signed int 16 –32768 to 32767 int

short int 16 –32768 to 32767 short, signed short, signed short int

unsigned short int 16 0 to 65535 unsigned short

signed short int 16 –32768 to 32767 short, signed short, short int

long int 32 –2147483648 to 2147483647 long, signed long, signed long int

unsigned long int 32 0 to 4294967295 unsigned long

signed long int 32 –2147483648 to 2147483647 long int, signed long, long

fl oat 32 3.4E–38 to 3.4E+38 None

double 64 1.7E–308 to 1.7E+308 None

long double 80 3.4E–4932 to 1.1E+4932 None

54 Programming in C

The most common binary encoding technique for integers
is called 2’s complement notation in which a signed integer
represented with n bits will have a range from (–2n–1)
through (2n–1 – 1) encoded in the following fashion:
 1. The high-order(left-most) bit (of the word) is the

sign bit. If the sign bit is 1, the number is negative;
otherwise the number is positive.

 2. To negate an integer, complement all bits in the word
and then add 1 to the result thus to form the integer
–1, start with 1 (00….0012), complement the bits 11
….. 1102 and add 1 giving 11….1112 = –1.

 3. The maximum negative value, 10…..00002 or –2n–1,
has no positive equivalent; negating this value
produces the same value.

 Other binary integer encoding techniques are
1’s complement notation, in which negation simply
complements all bits of the word and sign magnitude
notation, in which negation involves simply complementing
the sign bit. These alternatives have a range from (–2n–1)
through (2n–1 – 1); they have one less value and two
representations for zero (positive and negative). All three
notations represent positive integers identically. All are
acceptable in standard C.
 In C89, information about the representation of integer
types is provided in the header fi le limits.h. in C99, the fi les
stdint.h and inttypes.h contain additional information.
 The system fi le limits.h available in ANSI C-compliant
compilers contains the upper and lower limits of integer

types. The user may #include it before main() precisely
like #include <stdio.h>, as shown

#include <limits.h>

and thereby give the program access to the constants
defi ned in it.
 The permitted minimum and maximum values are shown
in Table 2.6.

 Unsigned Integer Types For each signed integer types, there
is a corresponding unsigned type that occupies the same
amount of storage but has a different integer encoding.
 All unsigned types use straight binary notation
regardless of whether the signed types use 2’s complement,
1’s complement, or sign magnitude notation; the sign bit
treated as an ordinary data bit. Therefore, an n-bit word can
represent the integers 0 through 2n – 1. Most computers
are easily able to interpret the value in a word using either
signed or unsigned notation. For example, when the 2’s
complement notation is used, the bit pattern 11 …..11112
(n bits long) can represent either –1 (using the signed
notation) or 2n – 1 (using the unsigned notation). The
integers from 0 through 2n–1 –1are represented identically
in both signed and unsigned notations. The particular ranges
of the unsigned types in a standard C implementation are
documented in the header fi le limits.h.
unsigned The declaration of unsigned int variable
‘liberates’ the sign bit, and makes the entire word

Table 2.6 Constants in limit.h

 Name Meaning Values

 CHAR_BIT Bits in a char 8
 CHAR_MAX Maximum value of char UCHAR-MAX or SCHAR_ MAX
 CHAR_MIN Minimum value of char 0 or SCHAR _ MIN
 INT_MAX Maximum value of int 32767
 INT_MIN Minimum value of int –32767
 LONG_MAX Maximum value of long 2147483647
 LONG_MIN Minimum value of long –2147483647
 SCHAR_MAX Maximum value of signed char 127
 SCHAR_MIN Minimum value of signed char –127
 SHRT_MAX Maximum value of short 32767
 SHRT_MIN Minimum value of short –32767
 UCHAR_MAX Maximum value of unsigned char 255
 UINT_MAX Maximum value of unsigned int 65535
 ULONG_MAX Maximum value of unsigned long 4294967295
 USHRT_MAX Maximum value of unsigned short 65535

Basics of C 55

(including the freed sign bit) available for the storage of
non-negative integers. It should be noted that the sign bit is
the leftmost bit of a memory word. It determines the sign
of the contents of the word: when it is set to 1, the value
stored in the remaining bits is negative. Most computers
use 2’s complement arithmetic in which the sign bit is
‘weighted’, i.e., it has an associated place value, which
is negative. Thus on a 16-bit machine its value is –215,
or –32,768. So a 16-bit signed number such as 10000000
00111111 would have the value 20 + 21 + 22+ 23 +24 +
25 –215 = –32,705. As an unsigned integer, this string of
bits would have the value 215 + 25 + 24 + 23 + 22 + 21 +
20 = 32831. On PCs, the unsigned declaration allows for
the int variables a range [0 to 65535] and is useful when
one deals with quantities which are known beforehand to
be both large and non-negative, e.g., memory addresses, a
stadium’s seating capacity, etc.
short The short int declaration may be useful in
instances where an integer variable is known beforehand
to be small. The declaration above ensures that the range
of short int will not exceed that of ints, but on some
computers the range may be shorter (e.g., –128 through
127); short int may be accommodated in a byte, thus
saving memory. There was a time in the early days of
computing when main memory was an expensive resource
and programmers tried by such declarations and other
stratagems to optimize core usage to the extent possible.
The VAX computer uses two bytes to store short ints,
which is half the amount it uses for ints; but for present-
day PCs, with cheap and plentiful memory, most compiler
writers make no distinction between int and short int.
unsigned short For the unsigned short int variable, the
range of values does not exceed that of the unsigned int;
it may be shorter.
unsigned long The unsigned long variable declaration
transforms the range of long int to the set of 4-byte
non-negative integers with values ranging over [0 to
4294967295].
long On most computers, long int variables are 4-byte
integers with values ranging over the interval [–2147483648
to 2147483647].
fl oat Integer and character data types are incapable of storing
numbers with fractional parts. Depending on the precision
required, C provides two variable types for computation
with ‘fl oating-point’ numbers, i.e., numbers with a decimal
(internally a binary) point. fl oats are stored in four bytes and
are accurate to about seven signifi cant digits;

Points to Note

It must be remembered that the fl oating point numbers held
in a computer’s memory are at best approximations to real
numbers. The fi nite extent of the word size of any computer
forces a truncation or round-off of the value to be stored;
whether a storage location is two bytes wide, or four, or
even eight, the value stored therein can be precise only to
so many binary digits. In any computation with fl oating point
numbers, errors of round-off or truncation are necessarily
introduced. Therefore, any number with a long string of digits
after the decimal point, given by a computer as the result of
a computation, may not be quite as accurate as it seems.

double Because the words of memory can store values
that are precise only to a fi xed number of fi gures, any
calculation involving fl oating-point numbers almost
invariably introduces round-off errors. At the same
time, scientifi c computations often demand a far greater
accuracy than that provided by single precision arithmetic,
i.e., arithmetic with the four-byte fl oat variables. Thus,
where large-scale scientifi c or engineering computations
are involved, the double declaration becomes the natural
choice for program variables. The double specifi cation
allows the storage of double precision fl oating-point
numbers (in eight consecutive bytes) that are held correct
to 15 digits and have a much greater range of defi nition
than fl oats,
Boolean data type _Bool A _Bool variable is defi ned in
the language to be large enough to store just the values
0 and 1.The precise amount of memory that is used is
unspecifi ed. _Bool variables are used in programs that
need to indicate a Boolean condition. For example, a
variable of this type might be used to indicate whether all
data has been read from a fi le.
 By convention, 0 is used to indicate a false value, and
1 indicates a true value. When assigning a value to a _Bool
variable, a value of 0 is stored as 0 inside the variable,
whereas any nonzero value is stored as 1.
 To make it easier to work with _Bool variables in your
program, the standard header fi le stdbool.h defi nes the
values bool, true, and false.

2.9 PROGRAM STATEMENT
A statement is a syntactic constructions that performs
an action when a program is executed. All C program
statements are terminated with asemi-colon (;). A program
statement, in C, can be classifi ed as shown in Figure 2.9.

56 Programming in C

Statement

Declaration

Expression

Compound

Labeled

Control

Selection

Iteration

Jump

Figure 2.9 Different types of program statements
available in C

 Declaration is a program statement that serves to
communicate to the language translator information about
the name and type of the data objects needed during
program execution.
 Expression statement is the simplest kind of statement
which is no more than an expression followed by a
semicolon. An expression is a sequence of operators and
operands that specifi es computation of a value.

x = 4

is just an expression (which could be part of a larger
expression), but

x = 4;

is a statement.
 Compound statement is a sequence of statements that
may be treated as a single statement in the construction of
larger statements.
 Labeled statements can be used to mark any statement so
that control may be transferred to the statement by switch
statement.
 Control statement is a statement whose execution results
in a choice being made as to which of two or more paths
should be followed. In other words, the control statements
determine the ‘fl ow of control’ in a program.
 The kinds of control fl ow statements supported by
different languages vary, but can be categorized by their
effect:
 ∑ continuation at a different statement
 ∑ executing a set of statements only if some condition

is met

 ∑ executing a set of statements zero or more times,
until some condition is met

 ∑ executing a set of distant statements, after which the
fl ow of control usually returns

 ∑ stopping the program, preventing any further execu-
tion (unconditional halt).

 Selection statements allow a program to select a particular
execution path from a set of one or more alternatives.
Various forms of the if..else statement belong to this
category.
 Iteration statements are used to execute a group of one
or more statements repeatedly. while, for, and do..while
statements falls under this group.

 Jump statements cause an unconditional jump to some
other place in the program. goto statement falls in this
group.
 The fi rst four types of program statements shown in the
fi gure are defi ned and explained in the next few sections
of this chapter. The program statement control, which is of
three types, is dealt with in Chapter 4.

2.10 DECLARATION
 Declaration introduces one or more variables within
a program. Definition, on the other hand, directs the
compiler to actually allocate memory for the variable. A
declaration statement begins with the type, followed by
the name of one or more variables. The general form
is

data_type variable_name_1, variable_name_2, ...,
variable_name_n;

 Declaration of multiple variables of the same data types
can be done in one statement. For example,

int a;
int b;

int c;

can be rewritten as
int a, b, c;

 Variables are declared at three basic places. Firstly,
when these are declared inside a function, they are called
local variables. Secondly, when the variables are declared
in the defi nition of function parameters, these variables are
called formal parameters. And thirdly, when the variables

Basics of C 57

are declared outside all functions, they are called global
variables. Variables used in expressions are also referred
to as operands.

2.11 HOW DOES THE COMPUTER STORE DATA
IN MEMORY?

It is needed to understand about the word size of your
computer. The word size is the computer’s preferred size
for moving units of information around; technically it’s the
width of your processor’s registers, which are the holding
areas your processor uses to do arithmetic and logical
calculations. When people write about computers having
bit sizes (calling them, say, ‘32-bit’ or ‘64-bit’ computers),
this is what they mean.
 Most computers now have a word size of 64 bits. In the
recent past (early 2000s), many PCs had 32-bit words. The
old 286 machines back in the 1980s had a word size of 16
bits. Old-style mainframes often had 36-bit words.
 The computer views your memory as a sequence
of words numbered from zero up to some large value
dependent on your memory size.

2.11.1 How Integers Are Stored?

Storing unsigned integers is a straightforward process.
The number is changed to the corresponding binary form
and the binary representation is stored.

0000000000000000 1111111111111111

655350
–• +•

Figure 2.10(a) Range of an unsigned integer stored
in a 16-bit word

It can be represented with a circle as shown in
Figure 2.10(b).
0 is placed at the top of the circle and values are placed
around the circle clockwise until the maximum value
adjacent to the value 0. In other words, storing numbers is
a modulo process. The number to be stored is represented
as modulus the maximum value that can be stored plus
one, in this case it is 65535.

65535 + 1 = 65536 % 65536 = 0.

32768

065535

49152 16384

Figure 2.10(b) Cyclic view of the range of an unsigned
integer stored in a 16-bit word

 For signed integer types, the bits of the object
representation shall be divided into three groups: value
bits, padding bits, and the sign bit. There need not be any
padding bits; there shall be exactly one sign bit. Each bit
that is a value bit shall have the same value as the same bit
in the object representation of the corresponding unsigned
type (if there are M value bits in the signed type and N in
the unsigned type, then M ≤ N). If the sign bit is zero, it
shall not affect the resulting value. If the sign bit is one,
the value shall be modifi ed in one of the following ways:
 ∑ the corresponding value with sign bit 0 is negated

(sign and magnitude);
 ∑ the sign bit has the value −(2N) (2’s complement);
 ∑ the sign bit has the value −(2N − 1) (1’s complement).
 Which of these applies is implementation-defi ned, as is
whether the value with sign bit 1 and all value bits zero (for
the fi rst two), or with sign bit and all value bits 1 (for ones’
complement), is a trap representation or a normal value. In
the case of sign and magnitude and ones’ complement, if this
representation is a normal value it is called a negative zero.

 Sign and magnitude

In this method, one bit (the left-most) represents sign
bit, 0 for positive and 1 for negative. The leftover bits
of the word represents the absolute value of the number.
Therefore, the maximum positive value is one half of the
unsigned value. There are two zero values, a plus zero and
a minus zero. This method is not used to store values in
today’s computer.

58 Programming in C

–32767 +32767

+0–0
–•

1000000000000000 0000000000000000

01111111111111111111111111111111

+•

Figure 2.11 Range of a signed integer stored in a
16-bit word in sign and magnitude form

 One’s complement

In this method, negative numbers are stored in their
complemented format. Like sign and magnitude form
the 1’s complement has two zero values (plus zero and
minus zero). Figure 2.12 shows the confi guration for 1’s
complement values.

1111111111111111 0000000000000000

01111111111111111000000000000000

–32767 +32767

+0–0
-• +•

Figure 2.12 Range of a signed integer stored in 16-bit
word in one’s complement form

 Like sign and magnitude method, this method is not
used in general purpose computers.

 Two’s complement form

All bits change when sign of the number changes. So the
whole number, not just the most signifi cant bit, takes part
in the negation processes. However, we have only one 0.
 With a little thought, you should recognize that 0 and
–1 are complement of each other. Likewise +32767 and
– 32768 are the complement to each other. The range of
integers in 2’s complement format is shown Figure 2.14.
 32767 is at the bottom of the circle. When we add 10, we
move clockwise 10 positions which puts us in the negative
portion of the number range. The value at that position is
– 32759. Thus, the geometric depiction of 2’s complement
numbers may help to understand how overfl ow conditions

can be determined using this representation for negative
numbers. Starting at any point on the circle, you can add
positive k (or subtract negative k) to that number (the
starting point number) by moving k positions clockwise.
Similarly, you can subtract positive k (or add negative
k) from that number by moving k positions counter-
clockwise. If an arithmetic operation results in traversal
of the point where the endpoints are joined, an incorrect
answer will result.

2.11.2 How Floats and Doubles are Stored?

Floats and doubles are stored in mantissa and exponent
forms except that instead of the exponent representing the
power of 10, it represents a power of 2, since base 2 is the
computer’s natural format. The number of bytes used to

0000000000000000

01111111111111111000000000000000

–16384 +16383

0–1

1111111111111111

–32768 +32767

Figure 2.13 Range of a signed integer stored in 16-bit
word in Two’s complement form

–32768 +32767

–1 0

Negative Positive

Figure 2.14 Cyclic view of the range of a signed integer
stored in a 16-bit word in 2’s complement
form

Basics of C 59

represent a fl oating-point number depends on the precision
of the variable. fl oat is used to declare single-precision
variables, whereas the type double denotes double-
precision values. The representation of the mantissa and
exponent in these variables is in accordance with the IEEE
fl oating-point standards. This representation is followed
by most of the C compilers. The IEEE format expresses
a fl oating-point number in a binary form known as a
normalized form. Normalization involves adjusting the
exponent so that the binary point (the binary analog of the
decimal point) in the mantissa always lies to the right of
most signifi cant non-zero digit. In binary representation,
this means that the most signifi cant digit of the mantissa is
always 1. This property of the normalized representation
is exploited by the IEEE format when storing the mantissa.
Consider an example of generating the normalized form of
a fl oating-point number. For instance, the binary equivalent
to represent the decimal number 5.375 can be obtained as
shown in the following example.

Example

Integer part conversion
to binary

Writing the remainders
in reverse order, the
integer part in binary
is 101

Writing the whole numbers
part in the same order in which
they are obtained, the fraction
part in binary is 011

Fraction part conversion
to binary

2 5
2 2 1
2 1 0

0 1

RemainderQuotient

.375 × 2 = 0.750

.750 × 2 = 1.500

.500 × 2 = 1.000

0
1
1

Whole
numbers

 Thus the binary equivalent of 5.375 would be 101.011.
The normalized form of this binary number is obtained
by adjusting the exponent until the decimal point is to the
right of the most signifi cant 1. In this case the result is
1.01011 × 22. The IEEE format for fl oating-point storage
uses a sign bit, a mantissa, and an exponent for representing
the power of 2. The sign bit denotes the sign of the number:
0 represents a positive value and 1 denotes a negative
value. The mantissa is represented in binary. Converting
the fl oating point number to its normalized form results in
a mantissa whose most signifi cant digit is always 1. The
IEEE format takes advantage of this by not storing this bit
at all. The exponent is an integer stored in unsigned binary
format after adding a positive integer bias. This ensures

that the stored exponent is always positive. The value
of the bias is 127 for fl oats and 1023 for doubles. Thus,
1.01011 × 22 is represented as follows:

0 10000001 01011000000000000000000

Sign
bit

Exponent-obtained
after adding a bias
127 to exponent 2

Mantissa stored in
normalized form

 Consider another example. Suppose, the number –0.25
has to be represented in IEEE format. On conversion
to binary, this number would become –0.01 and in its
normalized form it would be –1.0 × 2–2. This normalized
form when represented in IEEE format it would look like

1 011 1110 1 000 0000 0000 0000 0000 0000

Sign
bit

Exponent-obtained
after adding a bias
127 to exponent –2

Mantissa stored in
normalized form

 Now it is known that converting the fl oating point
number to its normalized form results in a mantissa
whose most signifi cant digit is always 1. The IEEE format
takes advantage of this by not storing this bit at all. The
exponent is an integer stored in an unsigned binary format
after adding a positive integer bias. This ensures that the
stored exponent is always positive. The value of the bias
is 127 for fl oats and 1023 for doubles. Figure 2.15 shows
how any general fl oat and double are represented in the
IEEE format.

(a) IEEE float representation

S E M

31 0
Single
precision

Double
precision

Sign bit 8-bit biased exponent 23-bit mantissa

(b) IEEE double representation

S E M

63 0
Sign bit 11-bit biased exponent 52-bit mantissa

Value = (–1) (2) 1.MS E–127¥ ¥

Value = (–1) (2) 1.MS E–1023¥ ¥

Figure 2.15 IEEE format for representing fl oat and double

60 Programming in C

 According to most C literature, the valid range for
fl oats is 10–38 to 1038. But, how is such an odd range used?
Well, the answer lies in the IEEE representation. Since the
exponent of a fl oat in IEEE format is stored with a positive
bias of 127, the smallest positive value that can be stored
in a fl oat variable is 2–127, which is approximately 1.175 ×
10–38. The largest positive value is 2128, which is about 3.4
× 1038. Similarly, for a double variable the smallest possible
value is 2–1023, which is approximately 2.23 × 10–308. The
largest positive value that can be held in a double variable
is 21024, which is approximately 1.8 × 10308.
 There is one more quirk. After obtaining the IEEE
format for a fl oat, when the time comes to actually store it
in memory, it is stored in the reverse order. That is, if the
user calls the four-byte IEEE form as ABCD, then while
storing in memory it is stored in the form DCBA. This
can be understood with an example. Suppose the fl oating
point number in question is 5.375. Its IEEE representation
is 0100000010101100000000000000 0000. Expressed in
Hex this is 40 AC 00 00. While storing this in memory, it
is stored as 00 00 AC 40.
 The representation of a long double (10-byte entity)
is also similar. The only difference is that unlike fl oat and
double, the most signifi cant bit of the normalized form is
specifi cally stored. In a long double, 1 bit is occupied by
the sign, 15 bits by the biased exponent (bias value 16383),
and 64 bits by the mantissa.

2.12 TOKEN
Tokens are the basic lexical building blocks of source
code. In other words, one or more symbols understood by
the compiler that help it interpret your code. Characters
are combined into tokens according to the rules of the
programming language. The compiler checks that the
tokens can be formed into legal strings according to the
syntax of the language.There are fi ve classes of tokens:
identifi ers, reserved words, operators, separators, and
constants.
An identifi er is a sequence of characters invented by
the programmer to identify or name a specifi c object
and name is formed by a sequence of letters, digits, and
underscores.
 Keywords are explicitly reserved words that have a strict
meaning as individual tokens to the compiler. They cannot
be redefi ned or used in other contexts. Use of variable
names with the same name as any of the keywords will
cause a compiler error.

 Operators are tokens used to indicate an action to be taken
(usually arithmetic operations, logical operations, bit
operations, and assignment operations). Operators can be
simple operators (a single character token) or compound
operators (two or more character tokens).
 Separators are tokens used to separate other tokens. Two
common kinds of separators are indicators of an end of an
instruction and separators used for grouping.
A constant is an entity that doesn’t change.
Say we have the following piece of code,

if(x<5)

 x = x + 2;
else
 x = x + 10;

Here the tokens that will be generated are
Keywords : if , else
Identifi er : x
Constants : 2, 10,5
Operators : +,=
Separator : ;

2.12.1 Identifi er

An identifi er or name is a sequence of characters invented
by the programmer to identify or name a specifi c object.
In C, variables, arrays, functions, and labels are named.
Describing them may help to learn something about the
character of the language since they are elements that C
permits the programmer to defi ne and manipulate. Some
rules must be kept in mind when naming identifi ers. These
are stated as follows.
 1. The fi rst character must be an alphabetic character

(lower-case or capital letters) or an underscore ‘_’.
 2. All characters must be alphabetic characters, digits,

or underscores.
 3. The fi rst 31 characters of the identifi er are signifi cant.

Identifi ers that share the same fi rst 31 characters may
be indistinguishable from each other.

 4. Cannot duplicate a key word. A keyword word is one
which has special meaning to C.

 Some examples of proper identifi ers are employee_
number, box_4_weight, monthly_pay, interest_per_annum,
job_number, and tool_4.
 Some examples of incorrect identifi ers are 230_item,
#pulse_rate, total~amount, /profi t margin, and ~cost_
per_item.

Basics of C 61

2.12.2 Keywords

 Keywords are the vocabulary of C. Because they are
special to C, one can’t use them for variable names.
 There are 32 words defi ned as keywords in C. These
have predefi ned uses and cannot be used for any other
purpose in a C program. They are used by the compiler to
compile the program. They are always written in lowercase
letters. A complete list of these keywords is given in
Table 2.7.

Table 2.7 Keywords in C

auto double int struct

break else long witch

case enum register typedef

char extern return union

const fl oat short unsigned

continue for signed void

default goto sizeof volatile

do if static while

 Several keywords were added in C89: const, enum,
signed, void and volatile. New in C99 are the keywords
inline, restrict, _Bool, _Complex and _Imaginary.

Table 2.8 Full set of keywords upto C99

auto enum restrict unsigned

break extern return void

case fl oat short volatile

char for signed while

const goto sizeof _Bool

continue if static _Complex

default inline struct _Imaginary

do int switch

double long typedef

else register union

 Note that compiler vendors (like Microsoft, Borland,
etc.) provide their own keywords apart from the ones
mentioned above. These include extended keywords like
near, far, asm, etc. Though it has been suggested by
the ANSI committee that every such compiler specifi c
keyword should be preceded by two underscores (as in
__asm), not every vendor follows this rule.

2.12.3 Constant

A constant is an explicit data value written by the
programmer. Thus, it is a value known to the compiler at
compiling time. The compiler may deal with this value in
any of several ways, depending on the type of constant
and its context. For example, the binary equivalent of the
constant may be inserted directly into the output code
stream. The value of the constant may be stored in a
special data area in memory. The compiler may decide to
use the constant’s value for its own immediate purpose,
e.g., to determine how much storage it should allocate to
a data array.
 C permits integer constants, fl oating-point constants,
character constants, and string constants. Figure 2.16
depicts the types of constants that C allows. An integer
constant consists of a sequence of digits. It is normally
interpreted as a decimal value. Thus, 1, 25, and 23456 are
all decimal integer constants.
 A literal integer (e.g., 1984) is always assumed to be of
type int, unless it has an ‘L’ or ‘l’ suffi x, in which case it
is treated as a long. Also, a literal integer can be specifi ed
to be unsigned using the suffi x U or u. For example,

1984L 1984l 1984U 1984u 1984LU 1984ul

 Literal integers can be expressed in decimal, octal,
and hexadecimal notations. The decimal notation is the
one that has been used so far. An integer is taken to be
octal if it is preceded by a zero (0), and hexadecimal if it is
preceded by a 0x or 0X. For example,

92 /* decimal */
0134 /* equivalent octal */
0x5C /* equivalent hexadecimal */

Points to Note

In ANSI C, a decimal integer constant is treated as an
unsigned long if its magnitude exceeds that of the signed
long. An octal or hexadecimal integer that exceeds the
limit of int is taken to be unsigned; if it exceeds this limit,
it is taken to be long; and if it exceeds this limit, it is treated
as an unsigned long. An integer constant is regarded as
unsigned if its value is followed by the letter ‘u’ or ‘U’, e.g.,
0x9999u; it is regarded as unsigned long if its value is
followed by ‘u’ or ‘U’ and ‘l’ or ‘L’, e.g., OxFFFFFFFFul.

 A fl oating-point constant consists of an integer part,
a decimal point, a fractional part, and an exponent fi eld
containing an e or E followed by an integer. Both integer

62 Programming in C

and fractional parts are digit sequences. Certain portions of
this format may be missing as long as the resulting number
is distinguishable from a simple integer. For example,
either the decimal point or the fractional part, but not both,
may be absent. A literal real (e.g., 0.06) is always assumed
to be of type double, unless it has an ‘F’ or ‘f’ suffi x, in
which case it is treated as a fl oat, or an ‘L’ or ‘l’ suffi x, in
which case it is treated as a long double. The latter uses
more bytes than a double for better accuracy (e.g., 10 bytes
on the programmer’s PC). For example,

0.06F 0.06f 3.141592654L 3.141592654l

 In addition to the decimal notation used so far, literal
reals may also be expressed in scientifi c notation. For
example, 0.002164 may be written in scientifi c notation as

2.164E-3 or 2.164e-3

 The letter E (or e) stands for exponent. The scientifi c
notation is interpreted as follows.

2.164E-3 = 2.164 × 10–3

The following are examples of long long:
12345LL
12345ll

The following are examples of unsigned long long:
123456ULL
123456ull

 A character constant normally consists of a single character
enclosed in single quotes. Thus, for example, ‘b’ and ‘$’ are
both character constants. Each takes on the numeric value
of its character in the machine’s character set. Unless stated
otherwise, it will henceforth be assumed that the ASCII code is
used. This table is provided in Appendix A. Thus, for example,
writing down the character constant ‘A’ is equivalent to
writing down the hex value 41 or the octal value 101. The
‘A’ form is preferable, of course, fi rst, because its meaning
is unmistakable, and second, because it is independent of
the actual character set of the machine.
 In C, certain special characters, in particular, non-
printing control characters are represented by special, so-
called escape character sequences, each of which begins
with the special backslash (\) escape character. Most of
these escape codes are designed to make visible, on paper,
any of those characters whose receipt by a printer or
terminal causes a special, non-printing control action.
 Character constants can also be defi ned via their octal
ASCII codes. The octal value of the character, which may

be found from the table in Appendix A, is preceded by a
backslash and enclosed in single quotes.

char terminal_bell = ‘\07’;
/* 7 = octal ASCII code for beep */

char backspace = ‘\010’;
/* 10 = octal code for backspace */

 For ANSI C compilers, character constants may be defi ned
by hex digits instead of octals. Hex digits are preceded by x,
unlike 0 in the case of octals. Thus, in ANSI C

char backspace = ‘\xA’;

is an acceptable alternative declaration to

char backspace = ‘\010’;

 Any number of digits may be written but the value
stored is undefi ned if the resulting character value exceeds
the limit of char.
 On an ASCII machine both ‘\b’ and ‘\010’ are equivalent
representations. Each will print the backspace character.
But the latter form, the ASCII octal equivalent of ‘\b’,
will not work on an EBCDIC machine, typically an IBM
mainframe, where the collating sequence of the characters
(i.e., their gradation or numerical ordering) is different. In
the interests of portability it is therefore preferable to write
‘\b’ for the backspace character rather than its octal code.
Then the program will work as faultlessly on an EBCDIC
machine as it will on an ASCII.
 Note that the character constant ‘a’ is not the same as
the string “a”. A string is really an array of characters that
is a bunch of characters stored in consecutive memory
locations, the last location containing the null character; so
the string “a” really contains two chars, an ‘a’ immediately
followed by ‘\0’. It is important to realize that the null
character is not the same as the decimal digit 0, the ASCII
value of which is 00110000.
 A string constant is a sequence of characters enclosed
in double quotes. Whenever the C compiler encounters
a string constant, it stores the character sequence in an
available data area in memory. It also records the address
of the fi rst character and appends to the stored sequence
an additional character, the null character ‘\0’, to mark the
end of the string.
 The length of a character string is the number of
characters in it (again, excluding the surrounding double
quotes). Thus, the string “messagen” has a length of eight.
The actual number of stored characters is one more as a
null character is added.

Basics of C 63

 The characters of a string may be specifi ed using any
of the notations for specifying literal characters. For
example,
“Name\tAddress\tTelephone” /* tab-separated words */
“ASCII character 65: \101” /* ‘A’ specifi ed as ‘101’ */

 A long string may extend beyond a single line, in which
case each of the preceding lines should be terminated by a
backslash. For example,

 “Example to show \
 the use of backslash for \
 writing a long string”

 The backslash in this context means that the rest of the
string is continued on the next line. The preceding string is
equivalent to the single-line string

“Example to show the use of backslash for writing
a long string”

Points to Note

 A common programming error results from confusing a
single-character string (e.g., “A”) with a single character
(e.g., ‘A’). These two are not equivalent. The former con-
sists of two bytes (the character ‘A’ followed by the char-
acter ‘\0’), whereas the latter consists of a single byte.

 The shortest possible string is the null string (“ ”). It
simply consists of the null character. Table 2.9 summarizes
the different constants.

Table 2.9 Specifi cations of different constants

Type Specifi cation Example

Decimal nil 50

Hexadecimal Preceded by 0x or 0X 0x10

Octal Begins with 0 010

Floating constant Ends with f/F 123.0f

Character Enclosed within single quote ‘A’ ‘o’

String Enclosed within double quote “welcome”

Unsigned integer Ends with U/u 37 u

Long Ends with L/l 37 L

Unsigned long Ends with UL/w 37 UL

 C89 added the suffi xes U and u to specify unsigned
numbers. C99 adds LL to specify long long.
 More than one \n can be used within a string enabling
multi-line output to be produced with a single use of the
printf() function. Here’s an example.

int main()

{

 printf(“This sentence will \n be printed\nin\

 multi-line \n”);

 return 0;

}

 When the program was compiled and run it produced
the following output.

This sentence will
be printed
in multi-line

 However if the string is too long to fi t on a single line
then it is possible to spread a string over several lines by
escaping the actual new-line character at the end of a line
by preceding it with a backslash. The string may then
be continued on the next line as shown in the following
program:

int main()
{
 printf(“hello,\
 world\n”);
 return 0;
}

The output is
hello, world

 The indenting spaces at the start of the string continuation
being taken as part of the string. A better approach is to use
string concatenation which means that two strings which
are only separated by whitespaces are regarded by the
compiler as a single string. Space, newline, tab character
and comment are collectively known as whitespace. The
use of string concatenation is shown by the following
example.

int main()
{
 printf(“hello,” “world\n”);
 return 0;
}

2.12.4 Assignment

In the example (i) above we have used a statement :
int a=2,b=3;

Here both a and b assigned a value.
 The assignment operator is the single equal to sign (=).

64 Programming in C

The general form of the assignment statement is
variable_name = expression;

Some examples are given below.
 i = 6;
 i = i + 1;

 The assignment operator replaces the content of the
location ‘i’ with the evaluated value of the expression on its
right-hand side. The assignment also acts as an expression
that returns the newly assigned value. Some programmers
use the feature to write statements like the following:

y = (x = 2 * x);

 This statement puts x’s new value in y. The operand to
the left of the assignment operator must be a variable name.
C does not allow any expression, constant, or function to
be placed to the left of the assignment operator. Thus, its
left operand should be a variable and its right operand may
be an arbitrary expression. The latter is evaluated and the
outcome is stored in the location denoted by the variable
name. For example, the mathematical expression x + 2
= 0 does not become an assignment expression in C by
typing x + 2 = 0. It is wrong in C, as the left-hand side
of the ‘equal to’ operator (assignment operator) must not
have an expression, value, or constant.
 The operand to the left of the assignment operator is
an lvalue that denotes left value. An lvalue is anything
that denotes a memory location in which a value may be
stored. The only kind of lvalue identifi ed so far in this
book is a variable. It will be discussed in detail later in
this chapter. Other kinds of lvalues, based on pointers and
references, will be described later in the book.

2.12.5 Initialization

When a variable is declared, the C compiler does not
assign any value to the variable, unless it is instructed to
do so. Such declaration is called a tentative declaration.
For example,

int i; /* This declaration is tentative */
int x;
x = i + 5;
/* variable i is not assigned any known value, and
therefore the value of x is undefi ned. This is a
bug */

 To prevent such pitfalls, always assign a value to the
variable during the declaration of variables. This is known

as initialization. The value of initialization is called the
initializer. The general form of the initialization statement is

data type variable_name=constant;

For example,
int i = 100; /* 100 is an initializer */

int x;

x = i + 5;

/* since i has been given a value during its
declaration, x is evaluated to hold a value 105 */

Check Your Progress

 1. What will be the output of the following program?
 (a) #include <stdio.h>
 int main()
 {
 int a=010;
 printf(“\n a=%d”,a);
 return 0;
 }

 Output: a = 8

 (b) #include <stdio.h>
 int main()
 {
 int a=010;
 printf(“\n a=%o”,a);
 return 0;
 }

 Output: a = 10

Explanation: In (a), the integer constant 010 is taken to be
octal as it is preceded by a zero (0). Here the variable ‘a’
is printed with %d specifi er. The decimal equivalent of the
octal value 10, which is 8, will be printed. Whereas in (b)
the same variable is printed with %o format specifi er, so 10
is printed on the screen.

 (c) #include <stdio.h>

 int main()

 {

 int a=010;

 printf(“\n a=%x”,a);

 return 0;

 }

 Output: a = 8

Explanation: In (c), the octal value 10 is printed with
%x format specifi er. That is hexadecimal equivalent of 10
which is 8 will be printed.

Basics of C 65
 (d) #include <stdio.h>

 int main()

 {

 int a=53;

 printf(“\n a=%o”,a);

 return 0;

 }

 Output: a = 65

Explanation: In (d), an integer constant 53 is stored in the
variable ‘a’ but is printed with %o. The octal equivalent of
53, which is 65, will be printed.

 (e) #include <stdio.h>

 int main()

 {

 int a=53;

 printf(“\n a=%X”,a);

 return 0;

 }

 Output: a = 35

Explanation: In (e), an integer constant 53 is stored in
the variable ‘a’ but is printed with %X. The hexadecimal
equivalent of 53, which is 35, will be printed.

2.13 OPERATORS AND EXPRESSIONS
An operator is a symbol that specifi es the mathematical,
logical, or relational operation to be performed. This
section introduces the built-in C operators for composing
expressions with variables. An expression is any
computation that yields a value. Figure 2.16 gives the
classifi cation of operators in C language. Table 2.10 gives
the different types of operators.

Table 2.10 Different operators

Type of operator Operator symbols with meanings

 Arithmetical Unary
 + (Unary)
 – (Unary)
 ++ Increment
 – – Decrement

Binary
 + Addition
 – Subtraction
 * Multiplication
 / Division
 % Modulas

Ternary
 ?: Discussed later on

 Assignment Simple Assignment
 =

Compound Assignment
 +=, -=, *=, /=, %=, &=, ^=, |=

Expression Assignment
 A= 5+(b=8 + (c=2)) -4

 Relational >, <, >=, <=

 Equality = = (Equal to)
 != (Not equal to)

 Logical && (Logical AND)
 || (Logical OR)
 ! (Logical NOT)

 Bitwise & (Bitwise AND)
 | (Bitwise OR)
 ~ (Complement)
 ^ (Exclusive OR)
 >> (Right Shift)
 << (Left Shift)

Others , (Comma)
 * (indirection),
 . (membership operator)
 -> (membership operator)

Operators

Arithmetical

Ternary Expression

AssignmentEquality Relational Logical Bit-wise

Unary Binary Simple Compound

Figure 2.16 Classifi cation of operators in C language

66 Programming in C

 When discussing expressions, the term evaluation is often
used. For example, it is said that an expression evaluates to
a certain value. Usually the fi nal value is the only reason
for evaluating the expression. However, in some cases,
the expression may also produce side effects. These are
permanent changes in the program state. In this sense, C
expressions are different from mathematcal expressions.
 C provides operators for composing arithmetic,
relational, logical, bitwise, and conditional expressions. It
also provides operators that produce useful side effects, such
as assignment, increment, and decrement. Each category of
operators will be discussed in turn. The precedence rules
that govern the order of operator evaluation in a multi-
operator expression will also be discussed.

2.13.1 Arithmetic Operators in C

There are three types of arithmetic operators in C: binary,
unary, and ternary.
 Binary operators C provides fi ve basic arithmetic binary
operators. These are summarized in Table 2.11.

 Table 2.11 Arithmetic binary operators

Operator Name Example

+ Addition 12 + 4.9 /* gives 16.9*/

- Subtraction 3.98 – 4 /* gives –0.02 */

* Multiplication 2 * 3.4 /* gives 6.8 */

/ Division 9 / 2.0 /* gives 4.5 */

% Remainder 13 % 3 /* gives 1 */

 Except for remainder (%), all other arithmetic operators
can accept a mix of integer and real operands. Generally,
if both operands are integers, the result will be an integer.
However, if one or both of the operands are reals, the result
will be a real (or double to be exact).
 When both operands of the division operator (/) are
integers, the division is performed as an integer division
and not the normal division. Integer division always results
in an integer outcome, i.e., the result is always rounded off
by ignoring the remainder. For example,

9/2 /* gives 4, not 4.5 */

–9/2 /* gives –4, not 4 */

 Unintended integer divisions are a common source
of programming errors. To obtain a real division when
both operands are integers, cast one of the operands to be
real, which means forcing the data type of the variable to
real. Typecasting will be explained in detail later in this

chapter. The following example demonstrates the case of
real division.

int cost = 100;

int volume = 80;

double unitPrice;

unitPrice = cost/(double) volume; /* gives 1.25 */

 The remainder operator (%) always expects integers
for both of its operands. It returns the integer part of
the remainder obtained after dividing the operands. For
example, 13%3 is calculated by integer division 13 by 3 to
give a remainder of 1; the result is therefore 1.
 It is possible for the outcome of an arithmetic operation
to be too large for storing in a designated variable.
This situation is called an overfl ow. The outcome of an
overfl ow is machine-dependent and therefore undefi ned.
For example,

unsigned char k = 10 * 92; /* overfl ow: 920 > 255 */

It is not possible to divide a number by zero. This operation
is illegal and results in a run-time division-by-zero
exception that typically causes the program to terminate.
 The effects of attempting to divide by zero are offi cially
undefi ned. The ANSI standard does not require compiler
writers to do anything special, so anything might happen.
Of course we tried this by changing the value of x to zero
in the previous program. Turbo C spotted what was going
on and displayed the message

Divide error

 The UNIX systems were slightly less informative
producing the following messages

Arithmetic exception (core dumped)
Breakpoint - core dumped

A few examples on the use of various arithmetic operators
are given below

Examples

1. #include <stdio.h>

 int main()

 {

 int a = 100;

 int b = 2;

 int c = 25;

 int d = 4;

 int result;

Basics of C 67
 result = a-b; /*subtraction */

 printf(“a – b = %d \n”, result);

 result = b * c; /* multiplication */

 printf(“b * c = %d \n”, result);

 result = a / c; /* division */

 printf(“a / c = %d \n”, result);

 result = a + b * c;

 printf(“a + b * c = %d \n”, result);

 printf(“a * b + c * d = %d\n”, a* b+c*d);

 return 0;

 }

Output:

a – b = 98

b * c = 50

a / c = 4

a + b * c = 150

a * b + c * d = 300

2. #include <stdio.h>

 int main()

 {

 int a = 25;

 int b = 2;

 int result;

 fl oat c = 25.0;

 fl oat d = 2.0;

 printf(“6 + a / 5 * b = %d \n”, 6 + a / 5 * b);

 printf(“a / b * b = %d\n”, a / b * b);

 printf(“c / d * d = %f\n”, c / d * d);

 printf(“-a = %d\n”,-a);

 return 0;

 }

Output:

6 + a / 5 * b = 16

a / b * b = 24

c / d * d = 25.000000

-a = -25

 Note the difference between this and the previous program. When
we evaluate 6 + a / 5 * b, we have not stored its value in any
variable, but it is evaluated in the printf statement itself and printed
straight away.

Points to Note

op1/op2
op1%op2

For / and %, op2 must be non-zero; op2 = 0 results in
an error. (We cannot divide by zero.) When op1 and op2
are integers and the quotient is not an integer then the
following points have to be noted:

 If op1 and op2 have the same sign, op1/op2 is the
largest integer less than the true quotient, and op1%op2
has the sign of op1.

 If op1 and op2 have opposite signs, op1/op2 is the
smallest integer greater than the true quotient, and
op1%op2 has the sign of op1.

It is to be noted that rounding off is always towards zero.

 % operator returns the remainder of an integer division.
i.e., x%y = x – (x/y) * y where x and y both are
of integer types. This operator can be applied only to
integer operands and cannot be applied to operands
of type fl oat or double. The following example shows
the occurrence of compiler error when the % operator
is applied on a fl oating point number:

 #include <stdio.h>
 int main()
 {
 fl oat c= 3.14;
 printf(“%f”, c%2);
 return 0;
 }

Check Your Progress

 1. What will be the output of the following programs:
 (a) #include <stdio.h>

 int main()

 {

 int x = 5, y = 7, z;

 z = x + y;

 printf(“The value of x is: %d\n”, x);

 printf(“The value of y is: %d\n”, y);

 printf(“Their sum, z, is: %d\n”, z);

 return 0;

 }

 Output:
 The value of x is: 5

 The value of y is: 7

 Their sum, z, is: 12

68 Programming in C

 (b) #include <stdio.h>

 int main()

 {

 int a, b, c; /* a, b and c are undefi ned. */

 c= a + b ;

 printf(“The value of a is: %d\n”, a);

 printf(“The value of b is: %d\n”, b);

 printf(“Their sum, c, is: %d\n”, c);

 return 0;

 }

 Output:
 The value of a is: 2146744409

 The value of b is: 2146744417

 Their sum, c, is: –1478470

 Now, look at the output of this program. Could it be
possible to predict the values a, b, and c? Never assume
a variable to have a meaningful value, unless a value is
assigned to it.

 Unary operators The unary ‘–’ operator negates the
value of its operand (clearly, a signed number). A numeric
constant is assumed positive unless it is preceded by
the negative operator. That is, there is no unary ‘+’. It is
implicit. Remember that -x does not change the value of x
at the location where it permanently resides in memory.
Apart from this, there is another group of unary operators
available in C that are described next.

Unary increment and decrement operators The unary
‘++’ and ‘--’ operators increment or decrement the value
in a variable by 1. There are ‘pre’ and ‘post’ variants for
both operators that do slightly different things as explained
below.

var++ increment ‘post’ variant var-- decrement
‘post’ variant
++var increment ‘pre’ variant --var decrement ‘pre’
variant

 The following examples illustrate the use of increment
and decrement operators on a variable not placed in an
expression.

Example
int i = 42;

i++; /* increment contents of i, same as i = i + 1; */

/* i is now 43 */

i— —; /* decrement contents of i, same as i = i – 1; */

/* i is now 42 */

++i; /* increment contents of i, same as i = i + 1; */

/* i is now 43 */

– –i; /* decrement contents of i, same as i = i – 1; */
/* i is now 42 */

Basic rules for using ++ and – – operators

 The operand must be a variable but not a constant or
an expression.

 The operator ++ and -- may precede or succeed the
operand.

Example

1. #include <stdio.h>
 int main()
 {
 int a=5, b=3;
 printf(“\n %d”, ++(a*b+2));
 return 0;
 }

 Output:
 Compiler error – Lvalue required

2. #include <stdio.h>
 int main()
 {
 printf(“\n %d”, ++2));
 return 0;
 }

 Output:
 Compiler error – Lvalue required

 It is to be noted that i++ executes faster than i = i

+ 1 because the expression i++ requires a single machine
instruction such as INR to carry out the increment operation
whereas i = i + 1 requires more instructions to carry out
this operation.

Pre- and post-variations of ++ and – – operators The pre-
and post- (++ and --) operators differ in the value used for
the operand n when it is embedded inside expressions.
 If it is a ‘pre’ operator, the value of the operand is
incremented (or decremented) before it is fetched for the
computation. The altered value is used for the computation
of the expression in which it occurs.
 A few examples are shown here to demonstrate the use
of the increment and decrement operators for postfi x and
prefi x operations in expressions.

Basics of C 69

Examples

 3. Postfi x operation

(a) x = a++;

a = a + 1

x = a First action: store value of a in
memory location for variable .x

Second action: increment value
of by 1 and store result in
memory location for variable .

a
a

 (b) y = b––;

b = b – 1

y = b First action: put value of in
memory location for variable

b
.b

Second action: decrement value
of by 1 and put result in memory
location for variable .

b

b

 4. Prefi x operation
(a) x = ++a;

a = a + 1

x = a

First action: increment value of a
by 1 and store result in memory
location for variable a.

Second action: store value of a
in memory location for variable x.

 (b) y = ––b;

b = b – 1

y = b

First action: decrement value of
by 1 and put result in memory

location for variable .
b

b

Second action: put value of in
memory location for variable y.

b

 To clarify, suppose that an int variable a has the value
5. Consider the assignment

b = ++a;

Pre-incrementation implies

Step 1: increment a; /* a becomes 6 */
Step 2: assign this value to b; /* b becomes 6 */
Result: a is 6, b is 6

 If it is a ‘post’ operator, the value of the operand is altered
after it is fetched for the computation. The unaltered value
is used in the computation of the expression in which it
occurs.
 Suppose again that a has the value 5 and consider the
assignment

b = a++;

Post-incrementation implies
Step 1: assign the unincremented a to b;
 /* b becomes 5 */
Step 2: increment a; /* a becomes 6 */
Result: a is 6, b is 5

 The placement of the operator before or after the operand
directly affects the value of the operand that is used in the
computation. When the operator is positioned before the
operand, the value of the operand is altered before it is
used. When the operator is placed after the operand, the
value of the operand is changed after it is used. Note in the
examples above that the variable a has been incremented
in each case.
 Suppose that the int variable n has the value 5. Now
consider a statement such as

x = n++ / 2;

 The post-incrementation operator, possessing a
higher priority than all other operators in the statement,
is evaluated fi rst. But the value of n that is used in the
computation of x is still 5. Post-incrementation implies
use the current value of n in the computation; increment it
immediately afterwards.
 So x gets the value 5/2 = 2, even though n becomes
6. The rule is repeated; in an expression in which a post-
incremented or post-decremented operand occurs, the
current (unaltered) value of the operand is used; then,
and only then, is it changed. Accordingly, in the present
instance, 5 is the value of n that is used in the computation.
n itself becomes 6.
 Now consider the statement given below.

x = ++n / 2;

where n is initially 5.
 Pre-incrementation or pre-decrementation fi rst alters the
operand n; it is this new value that is used in the evaluation
of x. In the example, n becomes 6, as before; but this new
value is the value used in the computation, not 5. So x gets
the value 6/2 = 3.
Now, consider the following program:

int main()

{

 int x=5;

 printf(“Values are %d and %d\n”,x++,++x);

 return 0;

}

70 Programming in C

 Before revealing the results, let us see if we can work out
what the output of the program will be. Here it is needed
to consider the values passed to the printf() function.
The fi rst part of the expression is “x++”. This is a post-
increment(use-and-increment) expression so the value of
the expression is 5 and as a side effect of evaluating the
expression the value of x is increased to 6. Next the value
of the expression “++x” is now calculated, this is the pre-
increment (increment-and-use) expression so the value of
the expression is clearly 7. Thus the expected output is

Values are 5 and 7

 Some compilers give this expected output but trying the
same program using the Turbo C as well as GCC based
compiler for example in Quincy 2005 resulted in the
output

Values are 6 and 7

 This is rather surprising but it can easily be explained.
The C programming language standard rules quite
specifi cally allow the parameters to be passed to a function
to be evaluated in any convenient order. Some compilers
worked left to right, which seems more natural, whereas
the others worked right to left which may be more effi cient
in some circumstances.
 This must be remembered when writing programs that
are to be compiled on many different machines. A similar
diffi culty arises when considering the output of a program
such as

int main()

{

 int x = 4;

 printf(“Result = %d\n”,x++ + x);

 return 0;

}

 Since the standard allows expressions involving
commutative associative operators such as “+” to be
evaluated in any order a moment’s thought shows that the
value printed out would be 8 for right-to-left evaluation
and 9 for left-to-right evaluation. On the Quincy 2005 the
output was

Result = 8

whereas the Turbo C compiler gave the result
Result = 9

Strictly the behaviour of the program is undefi ned, which
means the C standard fails to defi ne what the result
should be.

The following statements are undefi ned
i = ++i + 1;
a[i++] = i;

while allowing the following statements
i = i + 1;
a[i] = i;

#include <stdio.h>
int main(void)
{
 int number = 5;
 printf(“the number is: %d\n”, number);
 return 0;
}

 When compiled and executed, this program should
display the following onto the screen:

the number is: 5

If the %d specifi er is omitted the value 5 vanishes from the
output.
 The values of several variables of different types in a
single statement as shown in the following example:

#include <stdio.h>
int main(void)
{
 int i = 5;
 char ch= ‘A’;
 fl oat f=12.345;
 printf(“\n i = %d ch = %c f = %f”, i, ch, f);
 return 0;
}

Output:
i = 5 ch = A f = 12.345000

 The conversion specifi ers are replaced in order by
the values of the variables that appear as the second and
subsequent arguments to the printf() function, so the
value of i corresponds to the fi rst specifi er %d, and the value
of ch corresponds to the second one, i.e. %c and so on.
 One important point to be noted that when a variable is
not initialized with some values then what is printed on the
screen if the following program is compiled and run –

#include <stdio.h>

int main(void)

{

 int number;

 printf(“the number is: %d\n”, number);

 return 0;

}

Basics of C 71

 The output will be anything is that the values are
indeterminate; this means that one cannot make any
assumptions about what values are initially in any location.
On many systems we will fi nd that the initial value is zero
but you must not rely on this.
Abbreviated (compound) assignment expressions It is
frequently necessary in computer programs to make as-
signments such as

n = n + 5;

C allows a shorter form for such statements, as shown.
 n += 5;

 Assignment expressions for other arithmetic operations
may be similarly abbreviated as shown.

n –= 5; /* is equivalent to n = n – 5; */

n *=5; /* is equivalent to n = n * 5; */

n /= 5; /* is equivalent to n = n / 5; */

n %= 5; /* is equivalent to n = n % 5; */

 The priority and direction of association of each of the
operators +=, -=, *=, /=, and %= is the same as that of the
assignment operator.

2.13.2 Relational Operators in C

C provides six relational operators for comparing numeric
quantities. These are summarized in Table 2.12. Relational
operators evaluate to 1, representing the true outcome, or
0, representing the false outcome.

 Table 2.12 Relational operators

Operator Action Example

== Equal 5 == 5 /* gives 1 */

!= Not equal 5 != 5 /* gives 0 */

< Less than 5 < 5.5 /* gives 1 */

<= Less than or equal 5 <= 5 /* gives 1 */

> Greater than 5 > 5.5 /* gives 0 */

>= Greater than or equal 6.3 >= 5 /* gives 1 */

 Note that the <= and >= operators are only supported in
the form shown. In particular, =< and => are both invalid
and do not mean anything.
 The operands of a relational operator must evaluate to
a number. Characters are valid operands since they are

represented by numeric values. For example (assuming
ASCII coding),

‘A’ < ‘F’ /* gives 1 (is like 65 < 70) */

 The relational operators should not be used for
comparing strings because this will result in string
addresses being compared, not string contents. For
example, the expression

“HELLO” < “BYE”

causes the address of “HELLO” to be compared to the
address of “BYE”. As these addresses are determined by the
compiler (in a machine-dependent manner), the outcome
may be 0 or may be 1, and is therefore undefi ned.
 C provides library functions (e.g., strcmp) for the
lexicographic comparison of strings. These will be
described later in the book.

2.13.3 Logical Operators in C

C provides three logical operators for forming logical
expressions. These are summarized in Table 2.13. Like the
relational operators, logical operators evaluate to 1 or 0.
 Logical negation is a unary operator that negates
the logical value of its single operand. If its operand
is non-zero, it produces 0, and if it is 0, it produces 1.
Logical AND produces 0 if one or both its operands
evaluate to 0. Otherwise, it produces 1. Logical OR
produces 0 if both its operands evaluate to 0. Otherwise,
it produces 1.

 Table 2.13 Logical operators

Operator Action Example Result

! Logical Negation !(5 == 5) 0

&& Logical AND 5 < 6 && 6 < 6 0

|| Logical OR 5 < 6 || 6 < 5 1

 Note that here, zero and non-zero operands are
mentioned, not zero and 1. In general, any non-zero value
can be used to represent the logical true, whereas only zero
represents the logical false. The following are, therefore,
all valid logical expressions.

!20 gives 0

10 && 5 gives 1

10 || 5.5 gives 1

10 && 0 gives 0

72 Programming in C

 Table 2.14 Bitwise operators

Operator Action Example
~ Bitwise Negation ~‘\011’

/* gives ‘\066’ */
& Bitwise AND ‘\011’ & ‘\027’

/* gives ‘\001’ */
| Bitwise OR ‘\011’ | ‘\027’

/* gives ‘\037’ */
^ Bitwise Exclusive OR ‘\011’ ^ ‘\027’

/* gives ‘\036’ */
<< Bitwise Left Shift ‘\011’ << 2

/* gives ‘\044’ */
>> Bitwise Right Shift ‘\011’ >> 2

/* gives ‘\002’ */

 Bitwise left shift operator and bitwise right shift
operator both take a bit sequence as their left operand and
a positive integer quantity n as their right operand. The
former produces a bit sequence equal to the left operand
but which has been shifted n bit positions to the left. The
latter produces a bit sequence equal to the left operand but
which has been shifted n bit positions to the right. Vacated
bits at either end are set to 0. The general form of the right
shift statement is
 variable_name >> number of bit positions;
and that of the left shift statement is
 variable_name << number of bit positions;
Table 2.15 illustrates bit sequences for the sample operands.
To avoid worrying about the sign bit (which is machine
dependent), it is common to declare a bit sequence as an
unsigned quantity

unsigned char x = ‘\011’;
unsigned char y = ‘\027’;

 Table 2.15 How the bits are calculated

Example Octal value Bit sequence

x 011 0 0 0 0 1 0 0 1

y 027 0 0 0 1 0 1 1 1

~x 366 1 1 1 1 0 1 1 0

x & y 001 0 0 0 0 0 0 0 1

x | y 037 0 0 0 1 1 1 1 1

x ^ y 036 0 0 0 1 1 1 1 0

x << 2 044 0 0 1 0 0 1 0 0

x >> 2 002 0 0 0 0 0 0 1 0

 C does not have a built-in Boolean type. It is customary
to use the type int for this purpose instead. For example,

int sorted = 0; /* false */

int balanced = 1; /* true */

Exceptions in the evaluation of logical expressions
containing && and || If the left operand yields a false
value, the right operand is not evaluated by a compiler
in a logical expression using &&. If the left operand
evaluates true value, the right operand is not evaluated by
the compiler in a logical expression with the || operator.
The operators && and || have left to right associativity.
Hence the left operand is evaluated fi rst and, depending
on the output, the right operand may or may not be
evaluated.

Example

5. #include <stdio.h>

 int main()

 {

 int i=0, j=1;

 printf(“\n %d”, i++ && ++j);

 printf(“\n %d %d”, i,j);

 return 0;

 }

 Output:
 0
 1 1

2.13.4 Bitwise Operators in C

C provides six bitwise operators for manipulating the
individual bits in an integer quantity. These are summarized
in Table 2.14.
 Bitwise operators expect their operands to be integer
quantities and treat them as bit sequences. Bitwise
negation is a unary operator that complements the bits in
its operands. Bitwise AND compares the corresponding
bits of its operands and produces a 1 when both bits
are 1, and 0 otherwise. Bitwise OR compares the
corresponding bits of its operands and produces a 0
when both bits are 0, and 1 otherwise. Bitwise exclusive
or compares the corresponding bits of its operands and
produces a 0 when both bits are 1 or both bits are 0, and
1 otherwise.

Basics of C 73

2.13.5 Conditional Operator in C

The conditional operator has three expressions. It has the
general form

expression1 ? expression2 : expression3
First, expression1 is evaluated; it is treated as a logical condition.
If the result is non-zero, then expression2 is evaluated and its
value is the fi nal result. Otherwise, expression3 is evaluated
and its value is the fi nal result. For example,

int m = 1, n = 2, min;
min = (m < n ? m : n); /* min is assigned a value 1 */

 In the above example, because m is less than n, m<n
expression evaluates to be true, therefore, min is assigned
the value m, i.e., 1.
 The same code can also be written using the if-else
construct, described in Chapter 4.

 int m=1, n=2, min;

 if(m<n)

 min=m;

 else min=n;

 Note that out of the second and the third expressions
of the conditional operator, only one is evaluated. This
may be signifi cant when one or both contain side effects,
that is, their evaluation causes a change to the value of a
variable. For example, in

min = (m < n ? m++ : n++);

m is incremented because m++ is evaluated but n is not
incremented because n++ is not evaluated.

2.13.6 Comma Operator

This operator allows the evaluation of multiple expressions,
separated by the comma, from left to right in order and the
evaluated value of the rightmost expression is accepted as
the fi nal result. The general form of an expression using a
comma operator is

expressionM = (expression1, expression2, …,

 expressionN);

where the expressions are evaluated strictly from left
to right and their values discarded, except for the last
one, whose type and value determine the result of the
overall expression. Here, it may be stated that in the
preceding general form, the left hand side expression,
expiressonM, may be omitted. In such a case, the right

hand side expressions exist and the comma operator
evaluates these from left to right. Finally, the value
of the last expression is returned as the outcome. The
application of the comma operator is best explained by
the following examples.

Examples

 6. int i = 0;

 int j;

 j = (i += 1, i += 2, i + 3);

 In this example, the comma operator is used with three
expressions on the right hand side of the assignment operator.
Hence, the comma operator takes these three expressions and
evaluates them from left to right and returns the value of the
rightmost expression. Thus, in this example, the operator fi rst
evaluates “i += 1” which increments the value of i. Then
the next expression “i += 2” is evaluated which adds 2 to i,
leading to a value of 3. The third expression is evaluated and its
value is returned as the operator’s result. Thus, j is assigned a
value of 6.

 7. int m = 1;
 int n;

 n = (m = m+3, m%3);

 Here, the comma operator takes two expressions. The operator
fi rst evaluates “m = m+3” which assigns a value 4 to m. Then
the expression m%3 is evaluated to 1. Thus n is assigned a value
of 1.

 8. int m, n, min;
 int mCount = 0, nCount = 0;
 . . .

 min = (m < n ? mCount++, nCount++, n);

 Here when m is less than n, mCount++ is evaluated and the
value of m is stored in min. Otherwise, nCount++ is evaluated
and the value of n is stored in min.

 9. Swapping of two integer variables using the comma operator:
 #include <stdio.h>
 int main()
 {
 int a=2,b=3,c;
 c=a,a=b,b=c; /* comma operator is used */
 printf(“\n a=%d b=%d”,a,b);
 return 0;
 }

 Output: a=3 b=2

74 Programming in C

From these examples, it may be concluded that the comma
operator is used to ensure that parts of an expression are
performed in a left to right sequence. The comma allows
for the use of multiple expressions to be used where
normally only one would be allowed. It is used most often
in the for loop statement where one statement is called for,
but several actually need to be coded.
 The comma operator forces all operations that appear
to the left to be fully completed before proceeding to the
right of the comma. This helps eliminate any inaccuracy in
the evaluation of the expression. For example,

num1 = num2 + 1, num2 = 2;

 The comma operator ensures that num2 will not be
changed to a 2 before num2 has been added to 1 and the
result placed in num1. The other similar operators that are
also considered to be sequence points like the comma
operator are as follows:

 &&

 ||

 ?:

 When any of these operators are encountered all activity
associated with any operator to the left is completed before
the new operator begins executing. Both the semicolon and
the comma also perform this service, ensuring that there is
a way to control the order of executions in a program. The
commas that separate the actual arguments in a function
call are punctuation symbols, not sequence points. A
punctuation symbol, in a function, does not guarantee
that the arguments are either evaluated or passed to the
function in any particular order.

2.13.7 sizeof Operator

C provides a useful operator, sizeof, for calculating the
size of any data item or type. It takes a single operand
that may be a type name (e.g., int) or an expression (e.g.,
100) and returns the size of the specifi ed entity in bytes.
The outcome is totally machine-dependent. The following
program illustrates the use of sizeof on the built-in types
we have encountered so far.

#include <stdio.h>

int main()

{

 printf(“char size = %d bytes\n”, sizeof(char));

 printf(“short size = %d bytes\n”, sizeof(short));

 printf(“int size = %d bytes\n”, sizeof(int));

 printf(“long size = %d bytes\n”, sizeof(long));

 printf(“fl oat size = %d bytes\n”, sizeof(fl oat));

 printf(“double size = %d bytes\n”, sizeof(double));

 printf(“1.55 size = %d bytes\n”, sizeof(1.55));

 printf(“1.55L size = %d bytes\n”, sizeof(1.55L));

 printf(“HELLO size = %d bytes\n”, sizeof(“HELLO”));

return 0;

}

 When run, the program will produce the following
output (on the programmer’s PC):

char size = 1 bytes

short size = 2 bytes

int size = 2 bytes

long size = 4 bytes

fl oat size = 4 bytes

double size = 8 bytes

1.55 size = 8 bytes

1.55L size = 10 bytes

HELLO size = 6 bytes

2.13.8 Expression Evaluation—Precedence and
 Associativity

Evaluation of an expression in C is very important to
understand. Unfortunately there is no ‘BODMAS’ rule in
C language as found in algebra. Operators have rules of
precedence and associativity that are used to determine
how expressions are evaluated.
 When there is more than one operator occurring in an
expression, it is the relative priorities of the operators with
respect to each other that will determine the order in which
the expression will be evaluated. This priority is known
as precedence. The precedence of operators determines
the order in which different operators are evaluated
when they occur in the same expression. Operators of
higher precedence are applied before operators of lower
precedence.
Consider the following expression:

4 + 3 * 2

the operator ‘*’ has higher precedence than ‘+’, causing
the multiplication to be executed fi rst, then the addition.
Hence, the value of the expression is 10. An equivalent
expression is

4 + (3 * 2)

Basics of C 75

 But what happens when an expression consists of
operators with same precedence. For example

4 / 2 *3

 The associativity of operators determines the order in
which operators of equal precedence are evaluated when
they occur in the same expression. The associativity
defi nes the direction, left-to-right or right-to-left, in which
the operator acts upon its operands.
 Both * and / have the same precedence. Here division
operation will be executed fi rst followed by multiplication.
The value of the expression is 6.
 Table 2.16 lists the operators in order of decreasing
operator priority and states their direction of grouping.
 Let’s illustrate a statement as written below. Assume
that n is a variable of type int:

n = 5 – 2 * 7 – 9;

 The ‘*’ has a higher precedence than ‘–’ so it is
evaluated fi rst, and the statement is equivalent to:

n = 5 – 14 – 9;

 The minus has left-to-right associativity, so the
statement is equivalent to:

n = –18;

 Also, the ‘=’ has lower precedence than either ‘–’ or ‘*’
or any other arithmetic, logical, or relational operator, and
this is how C enforces the rule that the expression to the
right of the ‘=’ gets evaluated fi rst and then the resulting
value gets assigned to the variable to the left of the ‘=’.
Here is another valid statement in C language:

x = x + 1;

 The expression to the right of the equal sign is evaluated
fi rst, and its value is then assigned to the variable to the left.
So let’s assume the value stored in x is equal to 5. When
this statement is executed, the expression to the right of ‘=’
evaluates to 6, and the value of 6 is assigned back to x.
 It makes sense for the priority of the assignment
operator to be lower than the priorities of all the arithmetic
operators, and for it to group from right to left. Naturally
it is very important for programmers to become adept at
the precedence and grouping properties of all C operators.
But if programmers are not sure of the order in which
operators will be evaluated in a computation, they may
use the parentheses operator, (), to override default
priorities. Yes, even the parentheses are an operator in C.
The parentheses operator has a priority higher than any

binary operator, such as that for multiplication; it groups
from left to right. Thus in the statement

w = x * (y * z);

the product y * z will be computed fi rst; the value obtained
will then be multiplied by x; lastly, the assignment of the
result will be made to w. Had the parentheses been absent,
the order of the computation would have been fi rst, the
multiplication of x by y, with the result stored as an
intermediate quantity; second, the multiplication of this
quantity by z; and third, the assignment of the result to w.
 The parentheses are an example of a primary operator.
C has in addition three other primary operators: array ([],
the dot (.), and arrow (Æ), which will be encountered in
later chapters. All these operators have the same priority,
higher than that of any other operator. They all group from
left to right.
 Aside from the primary operators, C operators are
arranged in priority categories depending on the number
of their operands. Thus a unary operator has but a single
operand and a higher priority than any binary operator,
which has two operands. Binary operators have a higher
priority than the ternary operator, which has three operands.
The comma operator may have any number of operands,
and has the lowest priority of all C operators. Table 2.16
refl ects this rule.
 One readily available example of a unary operator is
the operator for negation, the (–). It changes the sign of the
quantity stated on it. Since the unary operators have higher
priority than the assignment operator, in the statement
 x = –3;

the 3 is fi rst negated, and only then is this value assigned
to x. The negation operator has a priority just below that
of the parentheses operator; it groups from right to left.
Right to left association is a property the operator for
negation shares in common with all unary operators. In
the following statement

 x = –(3 * 4);

the presence of the parentheses ensures that the expression
3 * 4 is evaluated fi rst. It is then negated. Finally x is
assigned the value –12.
 A question that might be asked is: Does C have a unary
plus operator, +? In other words, can an assignment of the
form a = + 5 be made? Not in compilers conforming to the
K&R standard, though ANSI C does provide a unary plus
operator. See Table 2.16.

76 Programming in C

Table 2.16 Precedence and associativity of operators

Operaors Associativity

() [] . ++ (postfi x) –- (postfi x) L to R

++ (prefi x) –– (prefi x) !~ sizeof(type)
+ (unary) – (unary) & (address) *

(indirection)

R to L

* / % L to R

+ – L to R

<< >> L to R

< <= > >= L to R

== != L to R

& L to R

^ L to R

| L to R

&& L to R

|| L to R

?: R to L

= += –= *= /= %= >>= <<= &= ^= |= R to L

, (comma operator) L to R

Points to Note

 In the division of one integer by another, the remainder is
discarded. Thus 7/3 is 2, and 9/11 is 0. The % operator can
only be used with the integer variables. It can not be used
with the variables of fl oat or double.

The multiplication, division, and residue-modulo operators
have the same priority. The addition and subtraction
operators also have equal priority, but this is lower than
that of the former three operators, *, /, and %. All these
operators group from left to right. In a C program, is the
value of 3/5 + 2/5 the same as (3 + 2)/5? Is 3 * (7/5) the
same as 3 * 7/5? The answer to both questions is ‘No’.

Examples

In the examples below let x be an integer variable.

 10. x = 2 * 3 + 4 * 5;

 The products 2 * 3 and 4 * 5 are evaluated fi rst; the sum 6 +
20 is computed next; fi nally the assignment of 26 is made to x.

 11. x = 2 * (3 + 4) * 5;

 The parentheses guarantee that 3 + 4 be evaluated fi rst. Since
multiplication groups from left to right, the intermediate result 7
will be multiplied by 2 and then by 5, and the assignment of 70
will fi nally be made to x.

 12. x = 7*6 % 15/9;

 Each of the operators above has equal priority; each groups from
left to right. Therefore, the multiplication 7 * 6 (= 42) is done
fi rst, then the residue-modulo with respect to 15 (42 % 15 =
12), and fi nally the division (of 12) by 9. Since the division of
one integer by another yields the integer part of the quotient and
truncates the remainder, 12/9 gives the value 1. x is therefore
assigned the value 1.

 13. x = 7 * (6 % 15)/9;

 The parentheses ensure that 6 % 15 is evaluated fi rst. The
remainder, when 6 is divided by 15, is 6. In the second step this
result is multiplied by 7, yielding 42. Integer division of 42 by 9
gives 4 as the quotient, which is the value assigned to x.

 14. x = 7*6 % (15/9);

 Here, 15/9 is performed fi rst and yields 1. The next computation
in order is 7 * 6 % 1, i.e., the remainder, on division of 42 by 1,
is 0. x gets the value 0.

 15. x = 7 * ((6 % 15)/9);

 The innermost parentheses are evaluated fi rst: 6 % 15 is 6. The
outer parentheses are evaluated next—6/9 is 0. x gets the value
7 * 0 = 0.

16. An example of the use of precedence of operators
 #include <stdio.h>

 int main()

 {

 int a;

 int b = 4;

 int c = 8;

 int d = 2;

 int e = 4;

 int f = 2;

 a = b + c / d + e * f;
/* result without parentheses */

 printf(“The value of a is = %d \n”, a);

 a = (b + c) / d + e * f;
/* result with parentheses */

 printf(“The value of a is = %d \n”, a);

 a = b + c / ((d + e) * f);
/* another result with parentheses */

 printf(“The value of a is = %d \n”, a);

 return 0;

 }

 Output:
 The value of a is = 16

 The value of a is = 14

 The value of a is = 6

Basics of C 77

2.14 EXPRESSIONS REVISITED
An expression in C consists of a syntactically valid
combination of operators and operands that computes
to a value. An expression by itself is not a statement.
Remember, a statement is terminated by a semicolon; an
expression is not. Expressions may be thought of as the
constituent elements of a statement, the ‘building blocks’
from which statements may be constructed. The important
thing to note is that every C expression has a value. The
number 7 as we said a while ago, or any other number by
itself, is also an expression, the value of the number being
the value of the expression. For example,

 3 * 4 % 5

is an expression with value 2.
 x = 3 * 4

is an example of an assignment expression. Note the absence
of the semicolon in the assignment above. The terminating
semicolon would have converted the expression into a
statement. Like any other C expression, an assignment
expression also has a value. Its value is the value of the
quantity on the right-hand side of the assignment operator.
Consequently, in the present instance, the value of the
expression (x = 3 * 4) is 12. Consider a C statement such as

 z = (x = 3 * 4) / 5;

 Here the parentheses ensure that x is assigned the value
12 fi rst. It is also the value of the parenthetical expression
(x = 3 * 4), from the property that every expression has a
value. Thus the entire expression reduces to

 z = 12/5

 Next in order of evaluation, the integer division of 12
by 5 yields 2. The leftmost assignment operator fi nally
gives the value 2 to z. x continues to have the value 12.
Consider the expression

 x = y = z = 3

 The assignment operator groups from right to left.
Therefore the rightmost assignment

 z = 3

 is made fi rst. z gets the value 3; this is also the value of
the rightmost assignment expression, z = 3. In the next
assignment towards the left the expression is

 y = z = 3

Since the sub-expression z = 3 has the value 3, so
 y = (z = 3)

i.e., y = 3
 The assignment to y is again of the value 3. Equally
then the entire expression

 y = z = 3

gets the value 3. In the fi nal assignment towards the left, x
gets the value of this latter expression

 x = (y = (z = 3))

 Each parenthetical expression is 3. Thus x is 3. One
statement that often confuses novice programmers is

 x = x * x;

 For those who have studied algebra, the immediate
reaction may well be, ‘This can not be right, unless x is 0
or x is 1; and x is neither 0 nor 1 in the program.’ However,
the statement

 x = x * x;

is not an algebraic equation. It is an instruction to the
computer, which in English translates to the following:

 Replace x by x times x.

Or, more colloquially, after its execution

 (new value of x) is (old value of x) * (old value of x)

2.15 LVALUES AND RVALUES
An lvalue is an expression to which a value can be assigned.
An rvalue can be defi ned as an expression that can be
assigned to an lvalue. The lvalue expression is located on
the left side of an assignment statement, whereas an rvalue
is located on the right side of an assignment statement.
 The address associated with a program variable in C is
called its lvalue; the contents of that location are its rvalue,
the quantity that is supposed to be the value of the variable.
The rvalue of a variable may change as program execution
proceeds; but never its lvalue. The distinction between
lvalues and rvalues becomes sharper if one considers the
assignment operation with variables a and b.

a = b;

b, on the right-hand side of the assignment operator, is the
quantity to be found at the address associated with b, i.e.,
an rvalue. a is assigned the value stored in the address
associated with b. a, on the left-hand side, is the address at
which the contents are altered as a result of the assignment.
a is an lvalue. The assignment operation deposits b’s
rvalue at a’s lvalue.

78 Programming in C

 An lvalue cannot be a constant. For example, consider
the following statements:

1 = x;
x + y = a + b;
x + b = 5;

 In each of the above cases, the left side of the statement
evaluates to a constant value that cannot be changed
because constants do not represent storable locations in
memory. Therefore, these two assignment statements do
not contain lvalue and will generate compiler errors.
 Unlike an lvalue, an rvalue can be a constant or an
expression, as shown here:

int x, y;
x = 5; /* 1 is an rvalue; x is an lvalue */
y = (x + 1); /* (x + 1) is an rvalue; y is an
lvalue */

 The difference between Lvalue and Rvalue is in Table 2.17.

Table 2.17 Lvalue versus rvalue

Lvalue Rvalue

Consider the following assignment statement:
a = b;

Refers to the address that ‘a’
represents.

Means the content of the
address that b represents.

is known at compile time. is not known until runtime.

Says where to store the value. Tells what is to be stored.

Cannot be an expression or a
constant

Can be an expression or a
constant

2.16 TYPE CONVERSION IN C
Though the C compiler performs automatic type
conversions, the programmer should be aware of what is
going on so as to understand how C evaluates expressions.

2.16.1 Type Conversion in Expressions

When a C expression is evaluated, the resulting value has
a particular data type. If all the variables in the expression
are of the same type, the resulting type is of the same type
as well. For example, if x and y are both of int type, the
expression x + y is of int type as well.
 What if the variables of an expression are of different
types? In that case, the expression has the same data type as
that of the variable with the largest size data type, present
in it. The smallest to the largest data types with respect to
size are given as follows:

char
int
long
fl oat
double

Thus, an expression containing an int and a char evaluates
to type int, an expression containing a long and a fl oat
evaluates to type fl oat, and so on. Within expressions,
individual operands are promoted as necessary to match
the associated operands in the expression. Operands are
promoted in pairs for each binary operator in the expression.
If both operands are of the same type, promotion is not
needed. If they are not, promotion follows these rules:
 fl oat operands are converted to double.
 char or short (signed or unsigned) are converted to

int (signed or unsigned).
 If any one operand is double, the other operand is also

converted to double, and that is the type of the result;
 or
 If any one operand is long, the other operand is treated

as long, and that is the type of the result;
 If any one operand is of type unsigned, the other

operand is converted to unsigned, and that is the type
of the result; or the only remaining possibility is that

 Both operands must be int, and that is also the type
of the result.

Figure 2.16 illustrates the rule for data type promotion in
an expression.

long double

double

float

unsigned long int

long int

unsigned int

int

short

char

Figure 2.16 Rule for data type promotion in an expression

 For example, if x is an int and y is a fl oat, evaluating the
expression x/y causes x to be promoted to fl oat type before
the expression is evaluated. This does not mean that the

Basics of C 79

type of variable x is changed. It means that a fl oat type copy
of x is created and used in the evaluation of the expression.
The value of the expression is the fl oat type. Likewise, if x
is a double type and y is a fl oat type, y will be promoted to
double.
 Figure 2.17 shows how the rule of type promotion is
followed in a typical expression containing variables of
mixed types. The data type of r evaluates to double.

char c;

int j;

float f;

double d, r;

r = (c * j) + (f/j) – (f + d);

int

int

float double

float double

doublefloat

float

double

double

Figure 2.17 Conversion of types in a mixed expression

2.16.2 Conversion by Assignment

Promotions also occur with the assignment operator. The
expression on the right side of an assignment statement
is always promoted to the type of the data object on the
left side of the assignment operator. Note that this might
cause a ‘demotion’ rather than a promotion. If f is a fl oat
type and i is an int type, i is promoted to fl oat type in this
assignment statement:

 f = i;

In contrast, the assignment statement
 i = f;

causes f to be demoted to type int. Its fractional part is lost
on assignment to i. Remember that f itself is not changed

at all; promotion affects only a copy of the value. Thus,
after the following statements are executed

 fl oat f = 1.23;

 int i;

 i = f;

the variable i has the value 1, and f still has the value 1.23.
As this example illustrates, the fractional part is lost when
a fl oating point number is converted to an integer type.
 The programmer should be aware that when an integer
type is converted to a fl oating point type, the resulting
fl oating point value might not exactly match the integer
value. This is because the fl oating point format used
internally by the computer can not accurately represent
every possible integer number.
 In most cases, any loss of accuracy caused by this would
be insignifi cant. To be sure, however, keep integer values
in int type or long type variables.

Conversions of characters and integers

There are six basic methods of converting values from one
type to another. The methods are.

 1. Sign Extension This technique is adopted when
converting a signed object to a wider signed object.
E.g converting a short int to a long int . It preserves
the numerical value by fi lling the extra leading space
with 1’s or 0’s.

 2. Zero Extension This is used when converting an
unsigned object to a wider unsigned object. It works
by simply prefi xing the value with the relevant
number of zeroes.

 3. Preserve low order data - truncate This is used
when converting an object to a narrower form.
Signifi cant information may be lost.

 4. Preserve bit pattern This is used when converting
between signed and unsigned objects of the same
width.

 5. Internal conversion This uses special hardware
to convert between fl oating point types and from
integral to fl oating point types.

 6. Truncate at decimal point This is used to convert
from fl oating point types to integral types, it may
involve loss of signifi cant information.

 The basic conversions listed above are those that take
place on assignment.

80 Programming in C

 Conversion of a shorter integer to a longer integer
preserves the sign. Traditional C uses ‘unsigned preserving
integer promotion’ (unsigned short to unsigned int),
while ANSI C uses ‘value preserving integer promotion’
(unsigned short to int).
 A longer integer is truncated on the left when converted
to a shorter integer or to a char. Excess bits are discarded.
 When an unsigned integer is converted to a longer
unsigned or signed integer, the value of the result is
preserved. Thus, the conversion amounts to padding with
zeros on the left.
 When an unsigned integer is converted to a shorter
signed or unsigned integer, the value is truncated on the
left. If the result is signed, this truncation may produce a
negative value.
 Consider the following program which illustrates the
above facts:

#include <stdio.h>
int main()
{
 short int si;
 long int li;
 unsigned short int usi;
 unsigned long int uli;

 si = -10;

 li = si; /* sign extension - li should be -10 */

 printf(“si = %8hd li = %8ld\n”,si,li);

 usi = 40000U; /* usigned decimal constant */

 uli = usi;
/* zero extension - uli should be 40000 */

 printf(“usi = %8hu uli = %8lu\n”,usi,uli);

 uli = 0xabcdef12; /* sets most bits ! */

 usi = uli;
/* will truncate - discard more

sigfi cant bits */

 printf(“usi = %8hx uli = %8lx\n”,usi,uli);

 si = usi; /* preserves bit pattern */

 printf(“si = %8hd usi = %8hu\n”,si,usi);

 si = -10;

 usi = si; /* preserves bit pattern */

 printf(“si = %8hd usi = %8hu\n”,si,usi);

 return 0;

}

Output:
si = –10 li = –10
usi = 40000 uli = 40000
usi = ef12 uli = abcdef12
si = –4334 usi = 61202
si = –10 usi = 65526

 It may be interesting to note that the difference
between the pairs of values on the last two lines is 65536.
Conversions between signed long and unsigned short are
typically undefi ned. The next program shows conversions
to and from fl oating point types.
 There is an extra complication concerning variables
of type char. The conversion rules to be applied depend
on whether the compiler regards char values as signed
or unsigned. Basically the ANSI C standard says that
variables of type char are promoted to type unsigned int
or type signed int depending on whether the type char is
signed or unsigned. An unsigned int may then be further
converted to a signed int by bit pattern preservation. This
is implementation dependent. The following program
shows what might happen.

#include <stdio.h>
int main()
{
 int si;
 unsigned int usi;
 char ch = ‘a’;
 // Most signifi cant bit will be zero
 si = ch; // will give small +ve integer
 usi = ch;
 printf(“c = %c\n si = %d\n usi = %u\n”, ch,

 si,usi);
 ch = ‘\377’; /* set all bits to 1 */
 si = ch; /* sign extension makes negative */
 usi = ch;
 printf(“si = %d\n usi = %u\n”,si,usi);
 return 0;
}

Output:
 c = a
 si = 97
 usi = 97
 si = -1
 usi = 4294967295

 The Turbo C compiler regarded char as a signed data
type applying sign extension when assigning the signed
char c to the signed int si . The conversion from signed
char c to unsigned int usi is more interesting. This took
place in two stages the fi rst being sign extension and the
second being bit pattern preservation. On the IBM 6150
char is treated as an unsigned data type, both assignments
using bit pattern preservation.
 The conversion of the unsigned char to either the signed
int si or the unsigned int ui is by bit pattern preservation.

Basics of C 81

Conversions of fl oat and double

ANSI C considers all fl oating point constants to be
implicitly double precision, and operations involving such
constants therefore take place in double precision. To force
single precision arithmetic in ANSI C, use the f or F suffi x
on fl oating point constants. To force long double precision
on constants, use the l or L suffi x. For example, 3.14l is
long double precision, 3.14 is double precision, and 3.14f
is single precision in ANSI C.
 What happens if you try to make a fl oat variable exceed
its limits? For example, suppose you multiply 1.0e38f
by 1000.0f (overfl ow) or divide 1.0e-37f by 1.0e8f
(underfl ow)? The result depends on the system. Either
could cause the program to abort and to print a runtime
error message. Or overfl ows may be replaced by a special
value, such as the largest possible fl oat value, underfl ows
might be replaced by 0. Other systems may not issue
warnings or may offer you a choice of responses. If this
matter concerns you, check the rules for your system. If
you can’t fi nd the information, don’t be afraid of a little
trial and error.

Conversion of fl oating and integral types

When a fl oating value is converted to an integral value, the
rounded value is preserved as long as it does not overfl ow.
When an integral value is converted to a fl oating value,
the value is preserved unless a value of more than six
signifi cant digits is being converted to single precision,
or fi fteen signifi cant digits is being converted to double
precision.
 Whenever a fl oating-point value is assigned to an
integer variable in C, the decimal portion of the number
gets truncated. Assigning an integer variable to a fl oating
variable does not cause any change in the value of the
number; the value is simply converted by the system and
stored in the fl oating variable. The next program shows
conversions to and from fl oating point types.

#include <stdio.h>

int main()

{

 double x;

 int i;

 i = 1400;

 x = i; /* conversion from int to double */

 printf(“x = %10.6le i = %d\n”,x,i);

 x = 14.999;

 i = x; /* conversion from double to int */

 printf(“x = %10.6le i = %d\n”,x,i);

 x = 1.0e+60; /* a LARGE number */

 i = x; /* won’t fi t - what happens ?? */

 printf(“x = %10.6le i = %d\n”,x,i);

 return 0;

}

Producing the output

x = 1.445000e+03 i = 1445

x = 1.499700e+01 i = 14

x = 1.000000e+60 i = 2147483647

 The loss of signifi cant data, a polite way of saying
the answer is wrong, in the fi nal conversion should be
noted.

2.16.3 Casting Arithmetic Expressions

 Casting an arithmetic expression tells the compiler to
represent the value of the expression in a certain way. In
effect, a cast is similar to a promotion, which was discussed
earlier. However, a cast is under the programmer’s control,
not the compiler’s. For example, if i is a type int, the
expression

 (fl oat)i

casts i to fl oat type. In other words, the program makes an
internal copy of the value of i in fl oating point format.
When is a typecast used with an arithmetic expression?
The most common use is to avoid losing the fractional
part of the answer in an integer division. Consider the
following example.

Example

 17. When one integer is divided by another, any fractional part of the
answer is lost.

 #include <stdio.h>
 int main()
 {
 int a = 100,b = 40;
 fl oat c;
 …
 …
 c = a/b;
 return 0;
 }

82 Programming in C

 If the value of c is printed, the output will be 2.000000.
The answer displayed by the program is 2.000000, but
100/40 evaluates to 2.5. What happened? The expression
a/b contains two int type variables. Following the rules
explained earlier in this chapter, the value of the expression
is int type itself. As such, it can represent only whole
numbers, so the fractional part of the answer is lost.
 It may be assumed that assigning the result of a/b to a
fl oat type variable promotes it to fl oat type. This is correct,
but it is too late; the fractional part of the answer is already
gone.
 To avoid this sort of inaccuracy, one of the int type
variables must be cast to fl oat type. If one of the variables
is cast to type fl oat, the previous rules says that the other
variable is promoted automatically to fl oat type, and the
value of the expression is also fl oat type. The fractional
part of the answer is thus preserved. To demonstrate this,
change the statement

 c = a/b;

in the source code so that the assignment statement reads
as follows:

 c = (fl oat)a/b;

The program will then display the correct answer.

Rounding a fl oating point value to a whole number

A fl oating point value can be rounded to an integer simply
by adding 0.5 before storing it in an integer storage location.
Normally, when a fl oating point value is assigned to an
integer storage location, all fractional value (digits to the
right of the decimal point) are ‘truncated’ (chopped-off). If
we declare an integer variable named N with the statement

int N;

and then attempt to assign a fl oating point value into it
with the statement

N = 2.8;

the variable N would receive the whole value 2, not the
value 2.8 or the rounded value 3. Therefore, to assign the
rounded result of 2.8 into variable N, we would use the
simple expression

N = 2.8 + 0.5;

which would increase the value to 3.3 and then truncate
the .3 portion, resulting in the rounded value 3.
 If you had a fl oating point value stored in a variable named
A and you wanted to round it to a whole number and store
that in an integer variable named B, the statement would be

B = A + 0.5;

If you had a complex formula such as
(X + 8.5) / (Y - 4.2)

that resulted in a fl oating point value and you wanted to
round the result to a whole number and store that in an
integer variable named C, the statement would be

C = (X + 8.5) / (Y - 4.2) + 0.5;

Rounding a fl oating point value to a specifi c decimal
precision

A fl oating point value can be rounded to a specifi c decimal
precision by following the four major steps described
above, but with special care given to production of the
appropriate data type during each part of the process.
Using casting, we can force a value into an integer data
type during a calculation. This would be done just before
the step in which we truncate unwanted digits to the right
of the offset decimal point. Normally, when a fl oating
point value is converted into an integer storage location,
all fractional value (digits to the right of the decimal point)
are ‘truncated’ (chopped-off).
 Consider the following example in which a stored
fl oating point value is rounded to 2 decimal places, as are
the results of most monetary calculations.
Given the following fl oating point variables

fl oat F; /* A fl oating point value that needs to
 be rounded */
fl oat R; /* A fl oating point value that has been
 rounded */

 If we assign a fl oating point value into F with the statement
F = 2.468;

the variable F would receive the value 2.468, not the
rounded value of 2.47 which would be appropriate for
most monetary uses. To assign the rounded result of 2.47
into variable R, we would use the expression

R = (int) (F*100+0.5) / 100.0;

which would offset the decimal point two places by
multiplying F by 100 (resulting in 246.8), then bump the
value to 247.3, and then truncate the .3 portion by casting
the value into integer form, and fi nally reposition the
decimal point by dividing the result by 100.0. It is essential
to write the value 100 in fl oating point notation (with the
.0 attached) to prevent C from performing integer division
which would corrupt the results.
 When rounding the results of a fl oating point
calculation, simply substitute that expression in place of F

Basics of C 83

in the expression above. But pay careful attention to data
types and the order of precedence of operators in the larger
expression. For example, if the expression was

X+Y;

where X and Y were double precision fl oating point values
(long fl oats), then the larger expression made by inserting
X+Y in place of F in the rounding formula above would
be

R = (long int) ((X+Y)*100+0.5) / 100.0;

 Notice the enclosure of the X+Y inside of parentheses
to force the weak addition operator to be performed before
the stronger multiplication by 100. Notice also the use of
the long int data type in the casting to allow for the high
precision fl oating point result required by double precision
fl oating point values.
 If our intention was to round the fl oating point value F
to 3 decimal places, then we would use a factor of 1000
(10 raised to the 3rd power) in steps 1 and 4, as in

R = (int) (F*1000+0.5) / 1000.0;

Check Your Progress

All the programs will have #include <stdio.h> preceding
the main().
 1. Which of the following is an incorrect assignment

statement?
 (a) n = m = 0
 (b) value += 10
 (c) mySize = x < y ? 9 : 11
 (d) testVal = (x > 5 || x < 0)
 (e) none of the above
 Answer: (e)
 2. What will be the output:
 (a) int main()

 {

 fl oat c= 3.14;

 printf(“%f”, c%2);

 return 0;

 }

 Output: Compiler error

 Explanation: In example (a), % operator is applied
on a variable of type fl oat. The operands of the %
opearator can not be of fl oat or double. This is why it
causes a compiler error.

 (b) int main()

 {

 printf(“%d”, ‘A’);

 return 0;

 }

 Output: 65
 Explanation: In example (2), ‘A’ is a character

constant and it is printed with format specifi er %d.
The ASCII equivalent of the character A is 65. So 65
will be printed.

 (c) int main()

 {

 double d= 1/2.0 – 1/2;

 printf(“d=%.2lf”, d);

 return 0;

 }

 Output: d=0.50
 Explanation: The value of 1 / 2.0 is evaluated as

0.50 as one of this expression is of type double and
result would be in double. Whereas in case of 1 /
2, both operands are of type int. The result of this
expression is 0 as an integer division of 1 / 2 gives 0.
So the value of d is equal to 0.50 – 0 i.e. 0.50. Now,
the value of d is printed with %g format specifi er; so
0.50 will be printed instead of 0.500000.

 (d) int main()

 {

 unsigned int c= -2;

 printf(“c=%u”, c);

 return 0;

 }

 Output: c=65534
 (Considering Turbo C compiler)

 Explanation: An overfl ow occurs during an operation
on unsigned integers, though the result is defi ned.
An signed integer constant –2 is assigned to an
unsigned integer variable. Such an operation numbers
is a modulo process. The number to be stored is
represented as the maximum value that can be stored
plus one, in this case it is 65535+1 i.e 65536, minus
the signed value, here is –2. (65535+1) – 2 =65534.
Hence the output.

84 Programming in C

 (e) int main()

 {

 char c = ‘A’;

 printf(“%c”, c + 10);

 return 0;

 }

 Output: K

 Explanation: The chatracter constant ‘A’ is stored in
the variable c. when 10 is added with c, then 10 is
added to the ASCII value of ‘A’ (i.e. 65) . the result
is 75. As the result is printed with %c, the character
equivalent of 75 which is ‘K’ is printed on the
screen.

 (f) int main()

 {

 int a=5;

 a=printf(“Good”)+ printf(“Boy”);

 printf(“%d”,a);
 return 0;
 }

 Output: GoodBoy7
 Explanation: printf() function returns the number

of characters printed on the screen. ‘Good’ and ‘Boy’
will be printed consecutively. The fi rst printf ()
returns 4 and second one returns 3. 4+3=7 is stored in
a. When it is printed 7 would be printed at the end of
‘GoodBoy’.

 (g) void int main()

 {

 printf(“Work” “Hard”);

 return 0;

 }

 Output: WorkHard

 Explanation: In example (g), adjacent string literals
will automatically be joined together as one at compile
time. So “WorkHard” will be printed on the screen.

 (h) int main()
 {
 int c= – –2;
 printf(“c=%d”, c);
 return 0;
 }

 Output: c = 2;
 Explanation: In example (h) unary minus (or

negation) operator is used twice. Here math-rule

‘minus * minus = plus’ is to be applied. However, one
cannot give --2 instead of - -2 because the -- operator
can only be applied to variables as a decrement
operator (eg., i--). 2 is a constant and not a variable.

 (i) int main()

 {

 int a=5;

 i=!a >10;

 printf(“i=%d”,i);

 return 0;

 }

 Output: i = 0
 Explanation: In the expression !a>10, the NOT (!)

operator has more precedence than the ‘>’ symbol. !
is a unary logical operator. !a (!5) is 0 (NOT of true
is false). 0>10 is false (zero).

 (j) int main()

 {

 printf(“\nab”);

 printf(“\bsi”);

 printf(“\rha”);

 return 0;

 }

 Remember that \n - newline

 \b - backspace

 \r - linefeed

 Output: hai
 Explanation: The escape sequences \n, \b and \r stand

for newline, backspace and line feed respectively. At
fi rst ‘ab’ is printed on console. The \b deletes the
character ‘b’ of ‘ab’ and appends ‘si’. Therefore ‘asi’
is printed. Then \r causes to position the cursor at ‘a’
of ‘asi’ and replace ‘as’ with ‘ha’. As a result fi nally
‘hai’ is printed on the screen.

 (k) int main()
 {
 int i=5;
 printf(“%d%d%d”,i++, i, ++i);
 return 0;
 }

 Output: 666
 Explanation: The arguments in a function call are

pushed into the stack from left to right. The evaluation
is by popping out from the stack and the evaluation is
from right to left, hence the result.

Basics of C 85
 (l) int main()
 {
 int i;
 printf(“%d”,scanf(“%d”,&i));
 /* value 10 is given as input here */
 return 0;
 }

 Output: 1
 Explanation: scanf returns the number of items

successfully read. Here 10 is given as input that should
have been scanned successfully. So the number of
items read is 1.

 (m) int main()

 {

 char n;

 n=!2;

 printf(“%d”,n);

 return 0;

 }

 Output: 0
 Explanation: ! is a logical operator. In C, the value

0 is considered to be FALSE, and any non-zero value
including negative value, is considered to be the
Boolean value TRUE. Here 2 is a non-zero value, so
TRUE. !TRUE is FALSE (0), so it prints 0.

 (n) int main()

 {

 int i=-2;

 printf(“-i = %d \n”,-i,);

 return 0;

 }

 Output: -i = 2
 Explanation: –i is executed and this execution does

not affect the value of i. In printf fi rst just print the
value of i. After that the value of the expression -i =
-(-2) is printed.

 (o) int main()

 {

 int x=10,y=15,a,b;

 a=x++;

 b=++y;

 printf(“%d%d\n”,a,b);

 return 0;

 }

 Output: 1016

 Explanation: a = x++ is evaluated as a =x then x =
x + 1. So the value of a is 10 and the value of x is 11.
The statement b= ++y, ++y is incremented before it
is assigned to b. that b = ++y is evaluated as y = y+1
followed by b = y. So the value of b is 16; hence the
output.

 (p) int main()
 {
 int x=10,y=15;
 x=x++;
 y=++y;
 printf(“%d%d\n”,x,y);
 return 0;
 }

 Output: 1116
 Explanation: In this example, x = x++ is evaluated

as x = x followed by x = x + 1. That is value of x will
be 11. Same thing happened with y also.

 (q) int main()

 {

 int x=1,y=5;

 printf(“%d ”,++(x+y));

 return 0;

 }

 Output: Compiler error – Lvalue required
 Explanation: The increment operator (++) cannot be

used with expressions. The expression ++(x+y) stands
for (x+y) = (x+y) +1. We cannot write expression in
the left-hand side of the assignment operator (=).

 (r) int main()

 {

 int x=1,y=5;

 printf(“%d ”,++x+y);

 return 0;

 }

 Output: 7
 Explanation: In the expression ++x + y, before

addition ++x is evaluated fi rst. The ++x yields 2 and
the value of y is 5. The result of x + y is 7; hence the
output.

 3. How do we round numbers?
 Answer: The simplest and most straightforward way

is with a code like (int)(x + 0.5) This technique will
not work properly for negative numbers, though.

86 Programming in C

 4. Use the following values for the next four questions.
 int a = 8, b = 3, x1, x2, x3, x4
 x1 = a * b x2 = a / b
 x3 = a % b x4 = a && b

 (a) The value of x1 is
 (i) 0
 (ii) 1
 (iii) 2
 (iv) 3
 (v) none of these
 Output: (v)

 (b) The value of x2 is
 (i) 0
 (ii) 1
 (iii) 2
 (iv) 3
 (v) none of these
 Output: (iii)

 (c) The value of x3 is
 (i) 0
 (ii) 1
 (iii) 2
 (iv) 3
 (v) none of these
 Output: (iii)

 (d) The value of x4 is
 (i) 0
 (ii) 1
 (iii) 2
 (iv) 3
 (v) none of these
 Output: (ii)
5. Find the output:
 (a) int main()

 {

 int a = 7, b = 2;

 fl oat c;

 c = a/b;

 printf(“\n%f”,c);

 return 0;

 }

 Output: 3.000000

 (b) int main()

 {

 int c = 1;

 c=c+2*c++;

 printf(“\n%f”,c);

 return 0;

 }

 Output: 4.000000

 (c) Is i % 2 == 0
 equivalent to (i % 2) == 0?
 Output: Yes,

 == has lower precedence than %

 (d) int main()

 {

 int a=2,b=3, c=3;

 a=b==c;

 printf(“a=%d”, a);

 return 0;

 }

 Output: a=1

2.17 WORKING WITH COMPLEX NUMBERS
A complex number is a number with a real part and an
imaginary part. It is of the form a + bi where i is the
square root of minus one, and a and b are real numbers. a
is the real part, and bi is the imaginary part of the complex
number. A complex number can also be regarded as an
ordered pair of real numbers (a, b).

According to C99, three complex types are supported:
fl oat complex
double complex
long double complex

C99 implementations support three imaginary types also:

fl oat imaginary

double imaginary

long double imaginary

 To use the complex types, the complex.h header fi le
must be included. The complex.h header fi le defi nes
some macros and several functions that accept complex
numbers and return complex numbers. In particular, the
macro I represents the square root of –1. It enables to do
the following:

double complex c1 = 3.2 + 2.0 * I;

Basics of C 87

fl oat imaginary c2= -5.0 * I;

 The following program illustrates the use of complex
and imaginary types:

#include <stdio.h>

#include <limits.h>

#include <complex.h>

#include <stdio.h>

int main(void)

{

double complex cx = 3.2 + 3.0*I;

double complex cy = 5.0 - 4.0*I;

printf(“Working with complex numbers:”);

printf(“\nStarting values: cx = %g + %gi cy =

%g + %gi”,creal(cx), cimag(cx), creal(cy),

cimag(cy));

double complex sum = cx+cy;

printf(“\n\nThe sum cx + cy = %g + %gi”,

creal(sum),cimag(sum));

return 0;

}

Output
Working with complex numbers:

Starting values: cx = 3.2 + 3i cy = 5 + -4i

The sum cx + cy = 8.2 + -1i

 The creal() function returns the real part of a value of
type that is passed as the argument, and cimag() returns
the imaginary part. For details of the functions that can
be applied on these types, the header complex.h that is
supplied with your compiler may be explored.

C is a programming language that can be used to solve problems. Each
of the 32 keywords of C has a fi xed meaning and forms the building
block for program statements. Variables are given names.

 Variables holds data at memory locations allocated to them. There
are fi ve basic data types in C, namely, char, int, fl oat, double,
and void. Except type void, the basic data types can have various
modifi ers such as signed, unsigned, long, and short that precedes
them. The computer and the data type determine the memory space

allocated to a variable. Constants in C have fi xed values. There are
several operators in C that can be classifi ed as arithmetic, relational,
logical, assignment, increment and decrement, conditional, bit-wise,
and special. Expressions are formed with variables and operators.
Operators in C have certain precedence and associativity rules that
are followed while evaluating expressions. Automatic type conversion
takes place according to set rules in expressions with mixed types.
Forced type conversion is also possible in C.

SUMMARY

KEY-TERMS

ASCII It is a standard code for representing characters as numbers
that is used on most microcomputers, computer terminals, and printers.
In addition to printable characters, the ASCII code includes control
characters to indicate carriage return, backspace, etc.

Assembler The assembler creates the object code.

Associativity The associativity of operators determines the order in
which operators of equal precedence are evaluated when they occur in
the same expression. Most operators have a left-to-right associativity,
but some have right-to-left associativity

Compiler A system software that translates the source code to
assembly code.

Constant A constant is an entity that doesn’t change.

Data type The type, or data type, of a variable determines a set of
values that the variable might take and a set of operations that can be
applied to those values

Debugger A debugger is a program that enables you to run another
program step-by-step and examine the value of that program’s
variables.

IDE An Integrated Development Environment or IDE is an editor
which offers a complete environment for writing, developing, modifying,
deploying, testing, and debugging the programs.

Identifi er An identifi er is a symbolic name used in a program and
defi ned by the programmer.

Identifi er An identifi er or name is a sequence of characters invented
by the programmer to identify or name a specifi c object.

Keyword Keywords are explicitly reserved words that have a strict
meaning as individual tokens to the compiler. They cannot be redefi ned
or used in other contexts.

Linker If a source fi le references library functions or functions defi ned
in other source fi les, the linker combines these functions to create an
executable fi le.

88 Programming in C

FREQUENTLY ASKED QUESTIONS

1. What is the difference between compiling and linking?
 Compiler converts each source fi le into an object fi le. Linker takes all
generated object fi le, as well as the system libraries that are relevant,
and builds an executable fi le that is stored on disk.

2. What is bug?
 Any type of error in your program is known as bug. There are three
types of errors that may occur:

Compile errors These are given by the compiler and prevent the
program from not running.

Linking errors These are given by the linker or at runtime and ends
the program. The linker can also detect and report errors, for example,
if part of the program is missing or a non-existent library component is
referenced.

Runtime errors These are given by the operating system.

3. Why do we need header fi les?
 The header fi les primarily contain declarations relating to standard library
functions and macros that are available with C. During compilation, the
compilers perform type checking to ensure that the calls to the library
and other user-defi ned functions are correct. This form of checking
helps to ensure the semantic correctness of the program. The header
fi les, which usually incorporate data types, function declarations and
macros, resolves this issue. The fi le with .h extension is called header
fi le, because it’s usually included at the head of a program. Every C
compiler that conforms to the international standard (ISO/IEC 9899) for
the language will have a set of standard header fi les supplied with it.

4. What is library?
 A library is a collection of functions. A library fi le stores each function
individually. When the program uses a function contained in a library,
the linker looks for the function and adds its code to the program. Not
the contents of the entire library are added to the executable fi le.

5. What is the difference between declaring a variable and defi ning
a variable?
 Declaring a variable means informing the compiler about its type without
allocating any space for it. To put it simply, a declaration says to the

compiler, “Somewhere in the program there will be a variable with this
name, and this is the kind of data type it is”. Defi ning a variable means
declaring it as well as allocating space to hold the variable. Here is a
declaration of a variable and a variable defi nition:
 extern int x; /* this is a declaration */

 int y; /* this is a defi nition */

 Below is a defi nition of a variable with initialization.

 int y=10;

 It is to be noted that a variable can be declared many times, but it
must be defi ned exactly once. For this reason, defi nitions do not belong
in header fi les, function defi nitions are placed in library fi les.

6. Why data type is specifi ed for a variable declaration?

 The type, or data type, of a variable determines a set of values that the
variable might take and a set of operations that can be applied to those
values.

7. What are the uses of void in C?

 It has three uses. When it specifi es the return type of a function, it
means the function returns no value to the calling function. It is also
used to declare that a function has no parameters. And thirdly, it can
create a generic pointer.

8. Which one is correct: main() or void main() or int
main()?

 Under C89, main() is acceptable, although it is advisable to use the
C99 standard, under which only int main(void) is acceptable.
There are some compilers where void main() is allowed, but these
are on specialized systems only. If the programmer is not sure of
whether he/she is using one of these specialized systems, then the
programmer should simply avoid using void main().

9. Is main() must?

 It depends on the environment your program is written for. If it is a
hosted environment, then main function is a must for any standard C
program. Hosted environments are those where the program runs under
an operating system. If it is a freestanding environment, then main

Lvalue An lvalue is an expression to which a value can be assigned.

Precedence The precedence of operators determines the order
in which different operators are evaluated when they occur in the
same expression. Operators of higher precedence are applied before
operators of lower precedence.

Preprocessor The C preprocessor is used to modify the source
program befpre compilation according to the preprocessor directives
specifi ed.

Rvalue An rvalue can be defi ned as an expression that can be
assigned to an lvalue.

Token A token is one or more symbols understood by the compiler
that help it interpret your code

Variable A variable is a named memory location. Every variable has
a type, which defi nes the possible values that the variable can take, and
an identifi er, which is the name by which the variable is referred.
Whitespace Space, newline, tab character and comment are
collectively known as whitespace.

Word A word is the natural unit of memory for a given computer
design. The word size is the computer’s preferred size for moving units of

information around; technically it’s the width of the processor’s registers.

Basics of C 89

function is not required. Freestanding environments are those where
the program does not depend on any host and can have any other
function designated as start up function. Freestanding implementation
need not support complete support of the standard libraries; usually
only a limited number of I/O libraries will be supported and no memory
management functions will be supported. Examples of freestanding
implementations are embedded systems and the operating system
kernel.

10. May the prototype for main() be included?

 Absolutely; it is legal in C though it is not required.

11. Should main() always return a value?

 Yes, unless it encounters a call for exit(). When a program runs, it
usually terminates with some indication of success or some error code.
The return statement is not mandatory; if it is missing, the program will
still terminate. In C89, the value returned to the operating system is
undefi ned. In C99, if main() is declared to return an int, the program
returns 0 (zero) to the operating system or operating environment;
otherwise the program returns an unspecifi ed value.

12. How can it be checked that what value is returned from
main()? Is the executed program terminated normally or not?

 A “batch fi le” or “shell script” can be used for this purpose.

 In UNIX, each shell has its own method for testing the status code.
In the Bourne shell, after executing the C program, the variable $?
contains the status of the last program executed. The C shell has
similar variable, but its name is $status.

13. What is the need of unsigned char?

 The signedness of characters is an important issue because the
standard I/O library functions which normally read characters from fi les
and return a negative value (-1 or its symbolic constant EOF) when the
end of fi le is reached.

14. In some compilers like Turbo C the size occupied by an
integer variable is 2 bytes; again in most of the compilers an
integer variable takes 4 bytes of memory. What is the size of an
integer variable?

 The size of an int is usually the same as the word length of the
execution environment of the program.

15. Both %d and %i can be used to read and print integers. What
is the difference between %d and %i?

 If %d is used in scanf(), it can only match an integer in decimal form.
On the other hand if %i is used with scanf(), it can match an integer
expressed in octal, decimal or hexadecimal form. If the input number is
prefi xed with a 0, %i treats it as an octal number; if it is prefi xed with 0x
or 0X, it will be treated as a hexadecimal number.
 With printf(), there is no such difference between these two
format specifi ers. The aforesaid facts are evident from the following
program:

 #include <stdio.h>
 int main(void)
 {
 int n;
 printf(“\n Enter an integer: “);
 scanf(“%d”,&n);
 printf(“\n n = %d”, n);
 printf(“\n Enter the same integer again: “);
 scanf(“%i”,&n);
 printf(“\n n = %i”, n);
 return 0;
 }

 Sample run:
 Enter an integer: 023
 n = 23
 Enter the same integer again: 023
 n = 19

16. What is the difference between %f, %g and %e format
specifi ers when used to display a real value?

 The %f characters are used to display values in a standard manner.
Unless size and width are specifi ed, printf() always displays a fl oat
or double value rounded up to six decimal places.
 The %e characters are used to display the value of a fl oat or double
variable in scientifi c notation.
 With the %g characters, printf() automatically removes from
displaying any trailing zeroes. If no digits follow the decimal point,
it doesn’t display that either. For illustration consider the following
program –
 #include <stdio.h>
 int main()
 {
 fl oat x=12.34;
 printf(“\n %f”, x);
 printf(“\n %g”, x);
 printf(“\n %e”, x);
 return 0;
 }

 Output:
 12.340000
 12.34
 1.234000+e001

17. What is lvalue and rvalue?

 An lvalue is an expression to which a value can be assigned. An
rvalue can be defi ned as an expression that can be assigned to
an lvalue. The lvalue expression is located on the left side of an
assignment statement, whereas an rvalue is located on the right side
of an assignment statement.
 The address associated with a program variable in C is called its
lvalue; the contents of that location are its rvalue, the quantity that
is supposed to be the value of the variable. The rvalue of a variable

www.allitebooks.com

http://www.allitebooks.org

90 Programming in C

may change as program execution proceeds; but never its lvalue.
The distinction between lvalues and rvalues becomes sharper if
one considers the assignment operation with variables a and b.

 a = b;

 b, on the right-hand side of the assignment operator, is the quantity
to be found at the address associated with b, i.e., an rvalue. a is
assigned the value stored in the address associated with b. a, on the
left-hand side, is the address at which the contents are altered as a
result of the assignment. a is an lvalue. The assignment operation
stores b’s rvalue at a’s lvalue.

18. What are the difference between l-value and r-value?

l-value r-value

The l-value expression is located
on the left side of an assignment
statement.

An r-value is located on the right
side of an assignment statement.

An l-value means the address
that it represents.

An r-value means the contents
of the address that it represents
which is a value.

An l-value says where to store
the result.

An r-value says what is to be
stored.

An l-value is known at compile
time.

An r-value is not known until run
time.

19. Why does the statement a + b = c + d is not legal in C?

 Because the left side of the statement evaluates to a constant value that
cannot be changed and do not represent storable locations in memory.
Therefore, this assignment statement do not contain an lvalue and will
generate compiler errors.

20. Why should we use i++ instead of i = i + 1?

 Most C compilers produce very fast and effi cient object code for
increment and decrement operations. For these reason, we should use
the increment and decrement operators when we can.

21. Can we apply ++ and –– operators on fl oating point numbers?

 ++ and –– operators can be applied to fl oating point numbers as well as
integers.

22. What is the difference between the prefi x and postfi x forms of
the ++ operator?

 The prefi x form increments fi rst, and the incremented value goes on
to participate in the surrounding expression (if any). The postfi x form
increments later; the previous value goes on to participate in the
surrounding expression.

23. The % operator fails to work on fl oat numbers. Can we get the
remainder of a fl oating point division?

 The % operator cannot be used with fl oating point values. But if it is
required to get the remainder of fl oating point division, one may use
the function fmod(). The fmod() function returns the remainder as a

fl oating-point division. Following program illustrates the use of fmod()
function.

 #include <math.h>

 int main()

 {

 printf (“%f”, fmod (7.25, 3.0));

 return 0;

 }

 The above code snippet would give the output as 1.250000.

24. What is precedence of operators?

 Operator precedence determines the sequence in which operators in an
expression are evaluated. In fact, each operator in C has a precedence
associated with it. The operator with the higher precedence is evaluated
fi rst. The expression

 a + b * c

 The operations of multiplication and division are given precedence over
the operations of addition and subtraction. Therefore, the expression

 a + b * c

 is evaluated as

 (a + (b * c))

 by the C system.

25. What is associativity?

 The sequence of execution for operators of equal precedence is
determined by their associativity, which determines whether they’re
selected from left to right or from right to left.

 The expression

 a * b / c

 The operations of multiplication and division are of same precedence.
Here associativity breaks the tie. Therefore, the expression

 a * b / c

 is evaluated as

 ((a * b) / c)

 by the C system.

26. What’s short-circuiting in C expressions?

 Short circuiting in an expression means that the right hand side of the
expression is not evaluated if the left hand side determines the outcome.
That is if the left hand side is true for || or false for &&, the right hand
side will not be evaluated.

27. What does the term cast refer to? Why is it used?

 Casting is a mechanism built into C language that allows the programmer
to force the conversion of data types. This may be needed because

Basics of C 91

most C functions are very particular about the data types they process.
A programmer may wish to override the default way the C compiler
promotes data types. An example of a type cast which ensures that an
expression evaluates to type fl oat is as follows:

 x = (fl oat) x / 2;

28. When should a type cast be used?

 There are two situations in which the type casting may be used.

 To change the type of an operand to an arithmetic operation so that
the operation will be performed properly.

 To cast pointer types to and from void * in order to port with functions

that returns void pointers e.g. malloc() has to be casted to the return
type of the pointer to which returned address to be stored.

29. When should a type cast not be used?

 There are two cases where type casting should not be used to override
a const or volatile declaration. Overriding these type modifi ers can
cause the program to fail to run correctly. To turn a pointer to one type
of structure into another.

30. Why the output of sizeof(‘a’) is 2 and not 1?
Character constants in C are of type int, hence sizeof (‘a’) is
equivalent to sizeof(int), i.e. 2. Hence the output comes out to
be 2 bytes.

EXERCISE

 1. What is the purpose of a header fi le? Is the use of a header fi le
absolutely necessary?

 2. What is the return type of a program’s main() function?

 3. What is meant by a variable? What is meant by the value of a
variable?

 4. Name and describe the basic data types in C.

 5. What is ASCII? How common is its use?

 6. How can values be assigned to variables?

 7. How can the % symbol be printed using a printf()
statement?

 8. What is an escape sequence? What is its purpose?

 9. Describe the different types of operators that are included in C.

 10. What are unary operators? State the purpose of each.

 11. Describe two different ways of using the increment and
decrement operators.

 12. What is meant by precedence? Explain with an example.

 13. What is meant by associativity? Explain with an example. What
is the associativity of arithmetic operators?

 14. What is the order of precedence and associativity of arithmetic
operators?

 15. What are bit-wise operators? Explain.

 16. What is the difference between prefi x and postfi x of –– and ++
operators?

 17. Describe the use of the conditional operator to form a conditional
expression.

 18. Which of the algebraic expressions matches the C expression
given below?

sqrt(x*x + y*y)/sqrt(x*x – 1)

 (a)
+
+

2 2

2 1

x y

x
(b)

+
-

2 2

2 1

x y

x

(c)

+
-

2 2

2 1

x y

x
(d)

+
-

2 2

2 2

x y

x y

 (e) none of the above

 19. Find the value that is assigned to the variables x, y, and z when
the following program is executed.
int main()
 {
 int x, y, z;
 x = 2 + 3 - 4 + 5 - (6 - 7);
 y = 2 * 33 + 4 * (5 - 6);
 z = 2 * 3 * 4 / 15 % 13;
 x = 2 * 3 * 4 / (15 % 13);
 y = 2 * 3 * (4 / 15 % 13);
 z = 2 + 33 % 5 / 4;
 x = 2 + 33 % - 5 /4;
 y = 2 - 33 % - 5 /- 4;
 z =-2*-3/-4%-5;
 x =50 % (5 * (16 % 12 * (17/3)));
 Y=-2*-3%-4 /-5-6+-7;
 z = 8 /4 / 2*2*4*8 %13 % 7 % 3;
 return 0;
 }

 By inserting appropriate calls to printf(), verify the answers
obtained.

 20. Give the output of the following program:

#include <stdio.h>
int main()
 {
 int x = 3,y = 5,z = 7,w;
 w = x % y + y % x - z % x - x % z;
 printf(“%d \n”, w);
 w = x / z + y / z + (x + y) / z;
 printf(“%d\n”, w);

92 Programming in C

 w = x / z * y / z + x * y / z;
 printf(“%d\n”, w);
 w = x % y % z + z % y % (y % x);
 printf(“%d\n”, w);
 w = z / y / y / x + z / y / (y / x);
 printf(“%d\n”, w);
 return 0;
 }

 21. What does the following program print?

#include <stdio.h>
int main()
 {
 printf(“%d\n”, - 1 + 2 - 12 * -13 / -4);
 printf(“%d\n”, - 1 % - 2 + 12 % -13 % - 4);
 printf(“%d \n”,-4/2 - 12/4 - 13 % -4);
 printf(“%d\n”, (- 1 + 2 - 12) * (- 13 / - 4));
 printf(“%d\n”, (- 1 % - 2 + 12) %(- 13 % - 4));
 printf(“%d\n”, (- 4 /2 - 12) / (4 - 13 % - 4));
 return 0;
 }

 22. Find the outputs of the following programs:

(a) #include <stdio.h>
 int main()
 {
 int x = 3, y = 5, z = 7, w = 9;
 w += x;
 printf(“w = %d\n”, w);
 w -= y;
 printf(“w = %d\n”, w);
 x *= z;
 printf(“x = %d\n”, x);
 w += x + y - (z -= w);
 printf(“w = %d, z = %d\n”, w, z);
 w += x -= y %= z;
 printf(“w = %d, x = %d, y = %d\n”, w, x, y);
 w *= x / (y += (z += y));
 printf(“w = %d, y = %d, z = %d\n”, w, y, z);
 w /= 2 + (w %= (x += y - (z -= -w)));
 printf(“w = %d, x = %d, z = %d\n”, w, x, z);
 return 0;
 }

(b) #include <stdio.h>
 int main()
 {
 int x = 7, y = -7, z = 11,
 w =- 11, S = 9, t = 10;
 x += (y -= (z *= (w /= (s %= t))));
 printf(“x = %d, y = %d, z = %d, w = %d,
 s = %d, t = %d\n”, x, y, z, w, s, t);

 t += s -= w *= z *= y %= x;
 printf(“x = %d, y %d, z = %d, w = %d,
 s = %d, t = %d\n”, x, y, z, w, s, t);
 return 0;
 }

(c) #include <stdio.h>
 int main()
 {
 int amount = 7;
 printf(“If I give you”);
 printf(“Rs.%05d\n”, amount);
 printf(“You will owe me”);
 printf(“Rs.%-05d\ n”, amount);
 return 0;
 }

 23. Given that x, y, z, and w are integers with the respective values
100, 20, 300, and 40, fi nd the outputs from the following
printf() statements.

printf(“%d\n%d\n%d\n%d”, x,*y, z, w);
printf(“\t%d\n\t%d\n\t%d\n\t%d”, x, y, z, w);
printf(“%d %d %d %d %d %d %d %d”, x, y,
 w, z, y, w, z, x);
printf(“%d %d”, x + z - y * y,
 (y - z % w) * x);

 24. Execute the following program to verify the rules stated above
for the output of fl oating point variables.

#include <stdio.h>
int main()
 {
 double pi = 3.14159265;
 printf(“%15f\n”, pi);
 printf(“%15.12f\n”, pi);
 printf(“%-15.12f\n”, pi);
 printf(“%15.4f\n”, pi);
 printf(“%15.0f\n”, pi);
 printf(“%15.3g\n”, pi);
 printf(“%15g\n”, pi);
 printf(“%15.4e\n”, pi);
 printf(“%15e\n”, pi);
 return 0;
 }

 25. What does the following program print?

#include <stdio.h>
int main()
 {
 printf(“%-40.24s”, “Left
 justifi ed printing.\n”);
 printf(“%-40.20s”, “Left
 justifi ed printing.\n”);

Basics of C 93

 printf(“%-40.16s”, “Left
 justifi ed printing.\n”);
 printf(“%-40.12s”, “Left
 justifi ed printing.\n”);
 printf(“%-40. 8s”, “Left
 justifi ed printing.\n”);
 printf(“%-40.4s”, “Left
 justifi ed printing.\n”);
 printf(“%-40.0s”, “Left
 justifi ed printing.\n”);
 printf(“%40.25s”, “Right
 justifi ed printing.\n”);
 printf(“%40.20s”, “Right

 justifi ed printing.\n”);
 printf(“%40.15s”, “Right
 justifi ed printing.\n”);
 printf(“%40.10s”, “Right
 justifi ed printing.\n”);
 printf(“%40.5s”, “Right
 justifi ed printing.\n”);
 printf(“%40.0s”, “Right
 justifi ed printing.\n”);
 printf(“%40.0s”, “Right
 justifi ed printing.\n”);
 return 0;
 }

94 Programming in C

3.1 INTRODUCTION
For carrying out an arithmetic calculation using C, there is
no way other than writing a program, which is equivalent to
using a pocket calculator. Different outcomes are obtained
when different values are assigned to variables involved in
the arithmetic calculation.
 Hence, there is a need to read values into variables as
the program runs. Notice the words here: ‘as the program
runs’. Values can be stored in variables using the assignment
operator. That is, for example, a=100; stores 100 in the
variable ‘a’ each time the program is run, no matter what the

program does. Without some sort of input command, every
program would produce exactly the same result every time
it is run. This would certainly make debugging easy. But
in practice, of course, the user may need programs to do
different jobs that give different outcomes each time they
are run. For this purpose, C has been provided with some
input instructions that are in fact a set of functions. For the
present, it may be said that a function is a code segment
that is complete in itself and does some particular task as
and when it is called. Functions will be dealt in greater
detail in Chapter 6.

After reading this chapter, the readers will be able to

 Understand what C considers as standard input and output devices

 get to know the input and output streams that exist in C to carry out the input and output
tasks

 understand that C provides a set of input and output functions

 learn the use of single character unformatted input and output functions getchar() and
putchar()

 learn to use the formatted input and output functions scanf() and printf() for handling
multiple input and output

Learning Objectives

C
Chapter

Input and Output

3

Input and Output 95

 When a program is in execution, each of its statements
are executed one after the other or in a particular order.
When this process of execution reaches an input instruction,
also referred to as an input statement, the most popular
being the scanf() function, the program execution pauses
to give the user time to enter something on the keyboard.
The execution of the program continues only after the
user enters some data (or nothing) and presses <Enter>
or <Return> to signal that the procedure of entering input
data has been completed. The program execution then
continues with the inputted value stored in the memory
location reserved for the variable. In this way, each time
the program is run, users get a chance to type in different
values for the variable and the program also gets a chance
to produce different results.
 The fi nal missing piece in the jigsaw is using an output
command or statement, the commonly used one being the
 printf() function, the one that has already been used in
some example programs in the previous chapter, to print
the value currently stored in a variable.
 In the context of the above example, it should be
understood that the input function, scanf(), is used to read
data entered through the keyboard. On the other hand, the
printf() function is used to display data on the screen.
 The original C specifi cation did not include commands
for input and output. Instead, the compiler writers were
supposed to implement library functions to suit their
machines. In practice, all chose to implement printf()
and scanf() and, after a while, C programmers started
to think of these functions as I/O keywords. It sometimes
helps to remember that they are functions like any other
function.
 To make C a more uniform language, it has been
provided with standard libraries of functions that perform
common tasks. Though these libraries are termed standard
but until the ANSI committee actually produced a standard,
there was, and still is, some variation in what the standard
libraries contained and exactly how the functions worked.
However, in practice, the situation is not that bad; most
of the functions that are used frequently are standard on
all implementations. In particular the input and output
functions vary very little.
 This chapter will, therefore, primarily consider input
functions that read data from the keyboard and output
functions that display data on the screen.

Points to Note
The scanf() function does not prompt for an input. It is
a good programming practice to always use a printf()
function before a scanf() function for users of the program
to know what they should enter through the keyboard.

3.2 BASIC SCREEN AND KEYBOARD I/O IN C
C provides several functions that give different levels of
input and output capability. These functions are, in most
cases, implemented as routines that call lower-level input/
output functions.
 The input and output functions in C are built around the
concept of a set of standard data streams being connected
from each executing program to the basic input/output
devices. These standard data streams or fi les are opened
by the operating system and are available to every C and
assembler program for use without having to open or close
the fi les. These standard fi les or streams are called
 ∑ stdin : connected to the keyboard
 ∑ stdout : connected to the screen
 ∑ stderr : connected to the screen
 The following two data streams are also available on
MSDOS-based computers, but not on UNIX or other
multi-user-based operating systems.
 ∑ stdaux : connected to the fi rst serial communications

port
 ∑ stdprn : connected to the fi rst parallel printer port
 A number of functions and macros exist to provide
support for streams of various kinds. The <stdio.h> header
fi le contains the various declarations necessary for the
functions, together with the macros and type declarations
needed for the input and output functions. The input/
output functions fall into two categories: non-formatted
read (input) and display (output) functions and formatted
read (input) and display (output) functions.

Points to Note

 1. The input and output functions in C are implemented
through a set of standard data streams which connect each
executing program to the basic input/output devices.

 2. The input/output functions are of two kinds: non-
formatted and formatted functions.

96 Programming in C

3.3 NON-FORMATTED INPUT AND OUTPUT
Non-formatted input and output can be carried out by
standard input-output library functions in C. These can
handle one character at a time. For the input functions
it does not require <Enter> to be pressed after the entry
of the character. For output functions, it prints a single
character on the console.

3.3.1 Single Character Input and Output

A number of functions provide for character-oriented
input and output. The declarations format of two of these
are given as follows:
int getchar(void);

//function for character input

int putchar(int c);

//function of character output

 getchar() is an input function that reads a single character
from the standard input device, normally a keyboard.
 putchar() is an output function that writes a single character
on the standard output device, the display screen.
 There are two other functions, gets() and puts(), that
are used to read and write strings from and to the keyboard
and the display screen respectively. A string may be
defi ned as an arranged collection of characters. These two
functions will be dealt with in greater detail in the chapter
on arrays and strings.

3.3.2 Single Character Input

The getchar() input function reads an unsigned char from
the input stream stdin. The character, obtained from the input
stream, is treated as an unsigned char and is converted to an
int, which is the return value. On End of File, the constant
EOF is returned, and the end-of-fi le indicator is set for the
associated stream. On error, the error indicator is set for the
stream. Successive calls will obtain characters sequentially.
 To read a single character from the keyboard, the
general form of the statement used to call the getchar()
function is given as follows:

char_variable = getchar();

where char_variable is the name of a variable of type
char. The getchar()input function receives the character
data entered, through the keyboard, and places it in the
memory location allotted to the variable char_variable
The following code

int ch;

ch = getchar();
places the character read from the keyboard in the lower
byte of the variable named ‘ch’.

x
Two bytes are allotted in memory to
integer variable ‘ch’ but the typed in
character ‘x’ is stored in the lower
order byte while the contents of
higher order byte has no relevance
when a character is typed in.

15...8 7 . . . 0

 It has to be noted here that getchar() reads a single
character from the input data stream; but does not return
the character to the program until the ‘\n’ (<Return> or
<Enter>) key is pressed.
 There is an important observation that has to be made
about the ch = getchar(); function. Though the data
entered through the keyboard is perceived to be of character
type, the data is actually stored in an integer. Here, this
integer is the variable ch. This is because every time
ch = getchar(); reads a data from the keyboard it checks
whether it is a character data or an ‘EOF’. The problem
is distinguishing the end of input from valid data. The
solution is that getchar() returns a distinctive value when
there is no more input, a value that cannot be confused
with any real character. This value is called EOF, i.e., end
of fi le. So ch must be declared to be of a type big enough
to hold any value that getchar() returns. Therefore, char
cannot be used since ch must be big enough to hold EOF in
addition to any possible char. Therefore, int is used.

3.3.3 Single Character Output

The putchar() function is identical in description to
the getchar() function except the following difference.
putchar() writes a character to the stdout data stream.
On success, putchar() returns the character. On error,
putchar() returns EOF. There is no equivalent to End of
File for an output fi le. To write a single character on the
screen, the general form of the statement used to call the
putchar() function is given as follows:

putchar(char_variable);

where char_variable is the name of a variable that is of type
char. The character data stored in the memory location,
allotted to the variable char_variable, is displayed on the
display screen.
 The following program code displays the character
entered through getchar() on the screen.

Input and Output 97

two bytes allocated to
integer variable ‘ch’

15 . . . 8 7 0. . .

15 . . . 8 7 . . . 0

bit numbers

int ch;

ch = getchar ();

putchar (ch);

character ‘x’ typed
in is stored in lower
order byte of ‘ch’
by getchar ()

character ‘x’ stored in
lower order byte of ‘ch’
is printed on the monitor
screen by putchar().

x

x

Points to Note

 1. getchar(), the single character input function, reads
a one byte character input from the keyboard and
stores it in the lower order byte of an integer variable.

 2. putchar(), the single character output function, dis-
plays a one byte character on the monitor screen.

Examples

 1. Display a given character.

 Solution
 #include<stdio.h>

 int main(void)

 {

 int ch;

 ch=‘A’;

 putchar(ch);

 return 0;

 }

 Output: A

 Explanation: In this example, the variable “ch” is declared as an
integer. In the next statement the character “A” is assigned to this
variable, which results in the ASCII equivalent of the character
“A” being stored in the lower order byte of the integer variable
“ch” as shown below :

ASCII equivalent,
41h, of ‘A’ is placed
in the lower order

byte.

 15 8 7.….........0
ch

upper byte lower byte

01000001

 It has to be noted that the character ‘x’ remains stored in
the lower order byte of ‘ch’ even after putchar(ch)copies
it and displays it on the monitor screen.

3.3.4 Additional Single Character Input and Output
Functions

Other than getchar() and putchar(), there are some
more single character input and output functions that are
available in Turbo C only. These are as follows:

getch() This input function reads, without echoing on
the screen, a single character from the keyboard and
immediately returns that character to the program. General
statement form:

ch = getch(); /* ‘ch’ is a character variable */

getche() This input function reads, with echo on the screen,
a single character from the keyboard and immediately
returns that character to the program. General statement
form:

ch = getche(); /* ‘ch’ is a character variable */

putch() This output function writes the character directly
to the screen. On success, the function putch() returns
the character printed. On error, it returns EOF. General
statement form:

putch(ch); /* ‘ch’ is a character variable */

 When used in programs, the above functions require
the header fi le conio.h to be included. It should be noted
here that the data held by the variable in all the input and
output functions are in ASCII value.

98 Programming in C

 Next, when the output statement putchar(), actually an output
function, is executed, the ASCII equivalent of ‘A’ is taken from
the lower order byte of the integer variable “ch” and displayed on
the monitor screen.

 2. Display a keyed-in character.

 Solution
 #include<stdio.h>
 int main(void)
 {
 int ch;
 ch=getchar();
 putchar(ch);
 return 0;
 }

 Input: A

 Output: A

 Explanation: Here, the typed in character is read and stored in
the lower order byte allocated to the integer ch by the input
function getchar(). This character is then copied on to the
monitor screen by the output function putchar(ch).

 3. Accept a given character and display the next character from the
ASCII table.

 Solution
 #include<stdio.h>
 int main(void)
 {
 int ch;
 ch=‘A’;
 ch=ch + 1;
 putchar(ch);
 return 0;
 }

 Output: B

 Explanation: Here, the character “A” is assigned to the integer
variable “ch”. This results in the ASCII equivalent, 41h, of the
character “A” being stored in the lower order byte of the integer
variable “ch”. As 1 is added to the contents of “ch”,it becomes
42h, which is the ASCII representation for the character “B”. So
when putchar(ch) is executed the character displayed on the
screen is “B”. The fi gure below illustrates the contents of the
variable “ch” as it changes from “A” to “B”.

15.....8 7.....0

empty 01000001

15.....8 7.....0

empty 01000010

41h + 01h 42h

ch + 1 ch

ch = ‘A’

 4. Display the keyed-in character and the next character from the
ASCII table.

 Solution
 #include<stdio.h>
 int main(void)
 {
 int ch;
 ch=getchar();
 ch=ch++;
 putchar(ch);
 return 0;
 }

 Input: a

 Output: b

 Explanation: This example is similar to the previous one
excepting for the fact that the integer variable “ch” is assigned
a character read in by getchar() from the keyboard. Hence,
the output obtained after executing this program is similar to the
previous example.

 5. Double the output of next two characters from the ASCII table.

 Solution
 #include<stdio.h>
 int main(void)
 {
 int ch;
 ch=getchar();
 putchar(++ch); /* fi rst putchar() */
 putchar(ch++); /* second putchar()*/
 putchar(ch); /* third putchar() */
 putchar(ch––); /* fourth putchar()*/
 putchar(ch); /* fi fth putchar() */
 return 0;
 }

 (i) Input: a

 Output: bbccb

 (ii) Input: h

 Output: iijji

 Explanation: Here when the program is executed, getchar()
obtains the typed in character and places its ASCII equivalent
in the integer variable ch. As shown, the typed in character is
chosen to be “a”. Next, in the fi rst putchar(), at the beginning,
the content of ch is incremented by 1 to represents “b”, then this
is displayed on the monitor screen. In the second putchar(),
the content of ch,which is “b”, is displayed on the monitor screen
and then it ‘s content is incremented by 1 to represent “c” in
ASCII. In the third putchar(), the content of ch, which is “c”,
is displayed on the monitor screen and the contents in ch does
not get altered. During the fourth putchar(), the content in
ch, which is “c”, is fi rst displayed on the monitor screen and

Input and Output 99

then the content in ch is decremented to represent “b” in ASCII.
Therefore, during the fi fth putchar() the content of ch is
displayed as “b” on the monitor screen.

 Similar result is obtained when the program is run for the
second time with “h” as the input data.

 6. Print a keyed character.

 Solution
 #include<stdio.h>

 int main(void)

 {

 int ch;

 putchar(ch=getchar());

 return 0;
 }

 Input: x

 Output: x

 Explanation: The program in this example is similar to
Example 2 shown above except for the fact that the statement
ch=getchar() is placed as a parameter of the output function
putchar(). So when putchar() is executed getchar()
gets invoked and it obtains the character data from the keyboard
which is passed to putchar(). Then putchar() displays the
data entered through the keyboard.

 7. Print a keyed character.

 Solution
 #include<stdio.h>

 int main(void)
 {
 putchar(getchar());
 return 0;
 }

 Input: y

 Output: y

 Explanation: This example is almost similar to that of Example

6. The only difference is that the integer variable “ch” has been

omitted. But otherwise this program executes similarly as that in

Example 6.

 8. Get an ASCII number that is ahead by two positions from the
keyed number.

 Solution
 #include<stdio.h>

 int main(void)

 {

 int ch;

reads a typed in
character in ASCII

representation.

 putchar(ch=(getchar())+2);

 return 0
content of ch is

{ASCII equivalent
of character typed

in + 2}

 }

 Input: a

 Output: c

 Explanation: Here, the ASCII equivalent of the typed in
character “a”, read in by getchar(), is 61h. To this 2 is added
to make it 63h. The alphabetic character represented by 63h is
“c”. Therefore, putchar() displays this character on the monitor
screen.

 9. Compare two numbers.

 Solution
 #include<stdio.h>

 #include<conio.h>

 int main(void)

 {

 int a=2,b=5;

 int t,f,x;

 t=getchar();

 ffl ush(stdin); /* the ffl ush() function clears */

 /* the input stream stdin */

 f=getchar();

 x=((a>b)?t:f);

 putchar(x);

 putch(x);

 return 0;

 }

 Input: 1

 0

 Output: 00

 Explanation: In this example, the character entered in variable
“t” is 1 while that for “f ” is 0. During evaluation of the expression
x=((a>b)?t:f) the relation a > b is found to be false, so
“f” is assigned to x. Since f contains 0, thus x is assigned this
character 0. Therefore, putchar(x) displays a 0 on the monitor
screen. Since there is no new-line command following the display
of 0, the cursor positions itself next to this character. Now, when
putch(x) is executed it displays the value in x at the cursor
positioned next to the earlier display. So the output fi nally appears
as 00.

100 Programming in C

 10. Convert alphabets from lowercase letters to capital letters.

 Solution
 #include<stdio.h>
 int main(void)
 {
 int ch,n;
 ch=getchar();
 n=(ch>=‘a’)&&(ch<=‘z’)?

 putchar(ch+‘A’-‘a’): putchar(ch);
 putchar(n);
 return 0;
 }

 (i) Input: m

 Output: MM

 (ii) Input: b

 Output: BB

 (iii) Input: $

 Output: $$

 Explanation: In this example program, once the typed in character
is read in by getchar(), it’s ASCII equivalent is stored in the
integer variable ch. Next, the expression (ch>=‘a’)&&(ch<=‘z’)
is evaluated. The ASCII equivalent value in ch is compared with
the ASCII equivalent value of the beginning (means ‘a’) ending(
means ‘z’) characters of the alphabet. In short, this expression
checks to see whether the character entered is anyone among the
characters ‘a’ to ‘z’ of the alphabet. If this is true, then the function
putchar(ch+‘A’-‘a’) is executed and its return value is assigned
to “n”; otherwise the function putchar(ch)is executed. Here, it
may be noted that on evaluating the expression (ch +‘A’-‘a’) an
ASCII value representing the upper-case alphabet corresponding
to the lower-case value is obtained. So putchar(ch+‘A’-‘a’)
displays the upper-case alphabet and assigns this character to
“n”. On the otherhand, if the typed in character is none among the
alphabets a to z, then the typed in character is displayed. In any
case, the output function putchar(n) displays the character once
again.

 The following two programs depict what happens when getch()
and getche() are used.

 11. Write a program to show the usefulness of getch().

 Solution
 #include <stdio.h>
 int main()
 {
 int ch;
 printf(“\nContinue(Y/N)?”);
 ch = getch();
 putch(ch);
 return 0;
 }

This typed-in character is
read in by getch() and kept
in variable ch. putch(ch) just

displays ch content.

 Output: Continue(Y/N)? Y

 Explanation: Upon pressing the Y or N keys, the character
is stored in ch, but the character pressed is not automatically
shown on the screen.

 The functions getch() and putch(ch) are available only with
turbo C compilers.

 12. Write a program to show the usefulness of getche().

 Solution
 #include <stdio.h>
 int main()
 {

 int ch;

 printf(“\nContinue(Y/N)?”);

 ch = getche();

 return 0;
 }

This typed in character is
read in by getche() which
keeps it in variable ch and

displays it.
 Result: Continue(Y/N)?N

 Explanation: Upon pressing the Y or N key, the character is
stored in ch and is also displayed on the screen without using
any output function like putch(ch). Such input and output
functions are available only with Turbo C compilers.

3.4 FORMATTED INPUT AND OUTPUT FUNCTIONS
When input and output is required in a specifi ed format the
standard library functions scanf() and printf() are used.
The scanf() function allows the user to input data in a
specifi ed format. It can accept data of different data types.
The printf() function allows the user to output data of
different data types on the console in a specifi ed format.

3.4.1 Output Function printf ()

The printf() (and scanf()) functions differ from the kind
of functions that are created by the programmer as they
can take a variable number of parameters. In the case of
printf(), the fi rst parameter is always a control string,
for example ‘Hello World’, but after that the programmer
can include any number of parameters of any type. The
general form of a call to the printf() function is

printf(“control_string”,variable1,variable2,
variable3,...);

where the ‘...’ means a list of variables that can be written
separated by commas and this list may be as long as is
desired. The control string is all-important because it
specifi es the type of each variable in the list and how the
user wants it printed. The control string is also called
the format string.
 The control string, which is written within “and”,
contains data type with format specifi ers indicated by the

Input and Output 101

characters that follow the % symbol. These are arranged in
order so that they correspond to the respective variables. In
between the % symbol with the specifi ers, character strings
may be inserted. When the printf() function executes, it
scans the control string from left to right and prints out
the character string as it is while printing the values of
the listed variables according to the information specifi ed
with the respective format specifi ers. For example,

printf(“Hello World”);

has a control string only and has no % characters. The
above statement displays Hello World only. The format
specifi er %d means convert the next value to a signed
decimal integer, and hence

printf(“Total = %d”,total);

will print Total = and then the value passed by the variable
named total as a decimal integer.
 The C view of output is at a lower level than one might
expect. The %d is known as a format specifi er, while it also
acts as a conversion code. It indicates the data type of the
variable to be printed and how that data type should be
converted to the characters that appear on the screen. That
is, %d says that the next value to be printed is a signed
integer value, i.e., a value that would be stored in a
standard int variable, and this should be converted into a
sequence of characters, i.e., digits representing the value
in decimal. If by some accident the variable that is to be
displayed happens to be a fl oat or a double, then the user
will still see a value displayed but it will not correspond to
the actual value of the fl oat or a double.
The reason for this is twofold.
 ∑ An int uses two bytes (considering 16-bit machine)

to store its value, while a fl oat uses four and a double
uses eight. If an effort is made to display a fl oat or a
double using %d, then only the fi rst two bytes of the
value are actually used.

 ∑ Even if there was no size difference, int, fl oat, and
double use a different binary representation and %d
expects the bit pattern to be a simple signed binary
integer.

 This is all a bit technical, but that is in the nature of C.
These details can be ignored as long as two important facts
are remembered.
 ∑ The conversion code following % indicates the type

of variable to be displayed as well as the format in
which that the value should be displayed.

 ∑ If the programmer uses a conversion code with the
wrong type of variable, then some strange things will

be seen on the screen and the error often propagates
to other items in the printf() list.

 Though this appears a bit complicated, it should also be
pointed out that the benefi t lies in being able to treat what
is stored in a variable in a more fl exible way than other
languages allow. In fact the programmer need not know
that the numeric number stored in a variable is in binary
form. But while printing this number, using the printf()
function, it would appear to be a decimal number. Of
course, whether this is viewed as an advantage depends on
what the programmer is trying to do. It certainly brings the
user closer to the way the machine works.
 The format string in printf(), enclosed in quotation
marks, has three types of objects:
 ∑ Ordinary characters: these are copied to output
 ∑ Conversion specifi er fi eld: denoted by % containing

the codes listed in Table 3.1 and by optional modifi ers
such as width, precision, fl ag, and size

 ∑ Control code: optional control characters such as \n,
\b, and \t

% Format specifi ers in printf ()

The % format specifi ers, also termed here as the conversion
code, that can be used in ANSI C are given in Table 3.1.

Table 3.1 Format specifi ers for printf()

Conversion
code

Usual variable
type

Display

%c char single character

%d (%i) int signed integer

%e (%E) fl oat or double exponential format

%f fl oat or double signed decimal

%g (%G) fl oat or double use %f or %e, whichever is

shorter

%o int unsigned octal value

%p pointer address stored in pointer

%s array of char sequence of characters (string)

%u int unsigned decimal integer

%x (%X) int unsigned hex value

%% none no corresponding argument

is converted, prints only a %

%n pointer to int the corresponding argument

is a pointer to an integer

into which the number of

characters displayed is

placed.

102 Programming in C

Formatting the output in printf ()

The type conversion code only does what is asked of
it. This means that it converts a given bit pattern into a
sequence of characters that a human can read. If the
programmer wants to format the characters, then more
needs to be known about the printf() function’s control
string or format string.
 The format string in printf() has the following general
form:

“<control code><character string><%conversion

specifi er fi eld> <control code>”

 The programmer has the option of changing the order of
the objects, such as ‘character string’, the ‘% conversion
specifi er fi eld’, and the ‘control code’ within the format
string. Except for the ‘% conversion specifi er fi eld’, the
other two objects, that is, the ‘character string’and the
‘control code’, are optional when the list of variables
is present in printf(). Figure 3.1 shows the parts of a
conversion specifi er fi eld for printf().

% Flag Minimum
width Precision Size Conversion

code

*, –, +,0 d,i,u,o,x,X,c,s,
p,f,e,G,g,E,n

h,l,L

Fig. 3.1 Parts of conversion specifi er fi eld for printf()

 The character string is a sequence of ordinary characters
that is to be printed without any alteration. The ‘control
code’ and ‘conversion specifi er’ may be embedded within
the ‘character string’. Each conversion specifi er fi eld is
coded as follows:

%<flag(s)><width><precision><size><conversion-

code>

 The percent sign and conversion code are required
but the other modifi ers such as width and precision are
optional. The width modifi er specifi es the total number of
characters used to display the value and precision indicates
the number of characters used after the decimal point. The
precision option is only used with fl oats or strings. Its

use with strings will be discussed in a later chapter; for
now, its use with fl oats will be considered.
 When used to modify a fl oat, precision indicates how
many digits should be printed after the decimal point. If
the precision option is used, the number of digits must be
preceded by a period. Extra digits will be omitted, and zero
digits will be added at the right if necessary. If precision is
not specifi ed, the default value of 6 is assumed.
 So, the width option is used to specify the minimum
number of positions that the output will take. If the output
would normally take less than the specifi ed number, the
output is padded, usually with empty spaces to the left
of the value. If the output requires more space than the
specifi ed number, it is given the space that it needs. For
example, %10.3f will display the fl oat using ten characters
with three digits after the decimal point. Notice that the ten
characters include the decimal point and a ‘–’ sign if there
is one.
 Here are some examples.

 printf(“number=%3d\n”, 10);
 printf(“number=%2d\n”, 10);
 printf(“number=%1d\n”, 10);
 printf(“number=%7.2f\n”, 5.4321);
 printf(“number=%.2f\n”, 5.4391);
 printf(“number=%.9f\n”, 5.4321);
 printf(“number=%f\n”, 5.4321);

The output of these fi ve statements in order are:
number = 1 0

number = 1 0

number = 1 0

number = 5 . 4 3

number = 5 . 4 4

number = 5 . 4 3 2 1 0 0 0 0 0

number = 5 . 4 3 2 1 0 0

Output screen snapshot:

number= 10
number=10
number=10
number= 5.43
number=5.44
number=5.432100000
number=5.432100

 The fi rst example prints one space to the left of 10 since
a width of 3 was specifi ed. The second case adds no spaces,
since 10 takes up the entire width of 2. In the third case, the

Input and Output 103

specifi ed width is just 1, but the value of 10 requires two
spaces so it is given.
 In the fourth case, a precision of 2 is specifi ed for a
fl oat, so only two digits are printed after the decimal place,
and a width of 7. So the value, which would normally
contain four characters including the decimal point, has
three additional spaces. In the fi fth case, no width is
specifi ed, so the value of width is taken to be exactly what
it needs, and a precision of 2 is specifi ed, but this time, the
hundredth digit is rounded up.
 In the sixth case, a precision of 9 is specifi ed, so fi ve
zeros are added to the end of the value, and in the fi nal
case, a default precision of 6 is used, so two zeros are
added to the end of the value.
 The fl ag option allows one or more print modifi cations
to be specifi ed. The fl ag can be any one of the characters
shown in Table 3.2.
 The specifi er %–10d will display an int left justifi ed in
a ten-character space. The specifi er %+5d will display an
int using the next fi ve character locations and will add a
‘+’ or ‘–’ sign to the value.

Table 3.2 fl ag characters used in printf()

fl ag Meaning

–

+

space

0

#

Left justify the display

Display positive or negative sign of value

Display space if there is no sign

Pad with leading zeros

Use alternate form of specifi er

Here are a couple of examples using the fl ag options.

printf(“number=%06.1f\n”, 5.5);

printf(“%-+6.1f=number\n”, 5.5);

The output of these two statements in order is:

number = 0 0 .0 5 5

+ .5 5 = number

 In the fi rst statement, a fl oat is printed with a precision
of 1 and width of 6. Because the 0 fl ag is used, the three
extra positions that need to be fi lled are occupied by zeros
instead of spaces. In the second statement, the minus sign
causes the value to be left justifi ed, spaces are added to the
right instead of the left, and the positive sign causes the
sign of the number to be printed with the number.

 Similarly, for
 printf(“%-6.3f\n”,17.23478);

the output on the screen will show

 1 . 37 2 5

which is left justifi ed and the total width being 6, only
three digits after the decimal point are printed. Also, for

 printf(“VAT=17.5%%\n”);

the output on the screen will be

V T 1 5A = .7 %

 Strings will be discussed later but for now it is enough
to remember that if a string is printed using the %s specifi er,
then all of the characters stored in the array up to the fi rst
null will be printed. If a width specifi er is used, the string
will be right justifi ed within the space. If a precision
specifi er is included, only that number of characters will
be printed.
For example, consider the program given as follows:

#include <stdio.h>

int main()

{

 printf(“%s”,“hello”); /* fi rst printf() */

 printf(“\n%3s”,“hello”); /* second printf() */

 printf(“\n%10s”,“hello”); /* third printf() */

 printf(“\n%-10s”,“hello”); /* fourth printf() */

 printf(“\n%10.3s”,“hello”); /* fi fth printf() */

 return 0;

}

 The output for the respective printf() functions would
be as follows:
h l oe l output from fi rst printf()
h l oe l output from second printf()

leh l o output from third printf()
h l o e l output from fourth printf()

h e l output from fi fth printf()

 The third printf() prints 10 characters with hello right
justifi ed, while the fourth printf() prints 10 characters
with hello left justifi ed. The fi fth printf() prints only the
fi rst three characters, considered from the left, of hello
because the precision specifi er has been given as 3. Also
notice that it is normal to pass a constant value to printf()
as in printf(“%s”, “hello”).

104 Programming in C

Output screen:

hello
hello

hello
hello

hel

 Among the fl ags, the only complexity is in the use of
the # modifi er. What this modifi er does depends on the
type of format specifi er, that is, the conversion code it is
used with.
 Table 3.3 depicts the actions that take place when this
fl ag is used with the different allowed format specifi ers.

Table 3.3 Uses of # fl ag with format specifi er

fl ag with format
specifi er

Action

%#0

%#x or X

%#f or e
%#g or G

Adds a leading 0 to the octal number printed
Adds a leading 0x or 0X to the hex number
printed
Ensures that the decimal point is printed
Displays trailing zeros in g or G type
conversion and ensures decimal point is
printed in fl oating-point number, even though
it is a whole number

 The effects of the size modifi ers that transform the
conversion code are shown in Table 3.4.

Table 3.4 Size modifi ers used in printf()

Size modifi er Conversion code Converts to

l

h

l

L

d i o u x

d i o u x

e f

e f

long int

short int

double

long double

Examples of the use of size are as follows:

%hd /* short integer */

%ld /* long integer */

%Lf /* long double */

 Adding an ‘l’ in front of a conversion code will mean
a long form of the variable type and an ‘h’ will indicate
a short form. For example, %ld means a long integer
variable, usually four bytes, and %hd means a short int.
Notice that there is no distinction between a four-byte
fl oat and an eight-byte double. The reason is that a fl oat is
automatically converted to a double precision value when
passed to printf. Therefore, the two can be treated in the
same way. In pre-ANSI, all fl oats were converted to double
when passed to a function but this is no longer true.

 Finally there are the control codes also known as escape
sequences that have already been described and listed in
Chapter 2. Some of the commonly used ones are listed in
Table 3.5.

Table 3.5 List of commonly used control codes

Control code Action

\b

\f

\n

\r

\t

\‘

\0

Backspace

Form feed

New line

Carriage return

Horizontal tab

Single quote

Null

 If any of these are included in the format string, the
corresponding ASCII control code is sent to the screen, or
output device, which should produce the effect listed. In
most cases, the programmer only needs to remember \n
for new line.
 The conversion specifi er fi eld is used to format printed
values, often to arrange things nicely in columns. Here
are some illustrations of the use of printf() with brief
explanations.

Examples

 13. printf(“Hello there”);

 Puts Hello there on the screen. The cursor remains at the
end of the text, which is where the next printf() statement will
place its text.

 14. printf(“Goodbye.\n”);

 printf Goodbye. on the screen. The \n does not show on the
screen; it means ‘new line’; it moves the cursor to the next line
downwards and to the left.

 15. int int_var;
 int_var = 10;
 printf(“Integer is: %d”, int_var);

 Integer variable int_var contains a value of 10. This prints
“Integer is: 10” on the screen, as the %d is replaced by the
contents of the int_var variable.

 16. int i1, i2; i1 = 2; i2 = 3;
 printf(“Sum is: %d”, i1 + i2);

 Integer variable i1 contains 2 and i2 contains 3. This prints Sum
is: 5 on the screen.

 The result of i1+i2 is calculated (2+3=5) and this replaces the
%d in the string.

Input and Output 105

 17. printf(“%3d\n%3d\n%3d\n”, 5, 25, 125);

 This displays three values on the screen, each followed by a new
line. The %3d means ‘replace this with an integer, but ensure it
takes up at least three spaces on the screen’. This is good for
lining up columns of data. There are three of these, so we need
three extra parameters to fi ll them in (5, 25, and 125). So the
output is

 5
 25
 125

 18. fl oat pi;
 pi = 3.1415926535;
 printf(“Pi is %4.2f to 2dp\n”, pi);

 This example sets a fl oating-point variable pi to be
3.1415926535. The %4.2f is replaced by this value, but the
4.2 part indicates that the number can be a maximum of four
characters wide (including the decimal point), and has two
decimal places (i.e., digits after the decimal point). This means
that only 3.14 will show. Note that if pi had been 3.146, then 3.15
would have been shown due to rounding off. In this case, what
shows is pi which is 3.14, followed by a new line.

 19. char color[11] = “red”;
 printf(“Color is: %s\n”, color);

 The %s is replaced by a character array (or string) – in this case,
Color is: red is displayed, followed by a new line.

 Note: After the printf() function is executed, the output is
printed out on the standard device, which is normally the Video
Display Unit (VDU); it returns a number that is equal to the
number of characters printed.

 To illustrate that the printf() function returns a
number that is equal to the number of characters printed,
the following program is given below :

#include<stdio.h>

#include<stdlib.h>

#defi ne length 40

int main()

{

 int n;

There are 17 characters,
including one space in this

string of characters that
precedes %n

 printf(“Oxford University%n Press”, &n);

 printf(“\n n = %d”,n);
Address of the

variable n, where
the character count

17 is stored.

 return 0;

}

Output:
Oxford University
n = 17

Runtime adjustment and precision in printf()

The correct way to adjust fi eld width and precision at
run time is to replace the width and/or precision with a
star (*) and include appropriate integer variables in the
parameter list. The values of these integer variables
representing width and precision will be used before
the actual variable to be converted is taken from the
parameter list. Here is a program showing the described
feature in use.

#include <stdio.h>
int main()
{
 double x=1234.567890;
 int i=8,j=2;
 while(i<12)
 {
 j=2;
 while(j<5)

 {

total number of digit
positions provided

for output

total number of digit
positions provided
for decimal part in

the output

 printf(“width = %2d precision = %d display \
 >>%*.*lf<<\n”,i,j,i,j,x);
 }

. takes the values
assigned to i and j as width
and precision for outputting

the value in x

 j++;
 }
 return 0;
}

 The program displays the effects of various widths
and precisions for output of a double variable. Here is the
output.

width = 8 precision = 2 display >> 1234.57<<

width = 8 precision = 3 display >>1234.568<<

width = 8 precision = 4 display >>1234.5679<<

width = 9 precision = 2 display >> 1234.57<<

width = 9 precision = 3 display >> 1234.568<<

width = 9 precision = 4 display >>1234.5679<<

width = 10 precision = 2 display >> 1234.57<<

width = 10 precision = 3 display >> 1234.568<<

width = 10 precision = 4 display >> 1234.5679<<

width = 11 precision = 2 display >> 1234.57<<

width = 11 precision = 3 display >> 1234.568<<

width = 11 precision = 4 display >> 1234.5679<<

 The >> and << symbols are used to indicate the limits
of the output fi eld. Note that the variables i and j appear
twice in the parameter list, the fi rst time to give the values
in the annotation and the second time to actually control
the output.

106 Programming in C

Points to Note

 1. A control string, also termed as format string, and
variable names are specifi ed for the prinf() output
function to display the values in the variables in the
desired form on the monitor screen.

 2. The format string in printf(), enclosed in quotation
marks, has three types of objects: (i) Characters string
(ii) Conversion specifi er (iii) Control code, with the
programmer’s option of changing the order of these
three objects within the format string.

 3. Except for the % conversion specifi er fi eld, the other
two objects, that is, the character string and the control
code, are optional when the list of variables is present
in printf().

 4. The control code and conversion specifi er may be
embedded within the character string.

3.4.2 Input Function scanf ()

The scanf() function works in much the same way as the
printf(). It has the general form

scanf(“control_string”,variable1_address,
variable2_address,...);

where the control string, also known as format string is
a list of format specifi ers indicating the format and type
of data to be read from the standard input device, which
is the keyboard, and stored in the corresponding address
of variables. There must be the same number of format
specifi ers and addresses as there are input fi elds.
 scanf() returns the number of input fi elds successfully
scanned, converted, and stored. The return value does not
include scanned fi elds that were not stored. If scanf()
attempts to read end-of-fi le, the return value is EOF. If no
fi elds were stored, the return value is 0. However, there are
a number of important differences as well as similarities
between scanf() and printf().
 The most obvious is that scanf() has to change
the values stored in parts of the computer’s memory
associated with variables. Until functions are covered
in more detail, understanding this fully has to wait. But,
just for now, understand that to store values in memory
locations associated with variables, the scanf() function
should have the addresses of the variables rather than just
their values. This means that simple variables have to be
passed with a preceding &.
 There is no need to use ‘&’ for strings stored in arrays
because the array name is already a pointer. This issue will
be dealt with in the chapter on arrays and strings. Moreover,
the format string has some extra attributes to cope with

the problems of reading and data writing, which are
described below. However, almost all of the conversion
specifi ers, or format specifi ers, listed in connection with
printf() can be used with scanf() also.
 As with printf(), the format string in scanf() is
enclosed in a set of quotation marks and it may contain the
following:
 ∑ White space This causes the input stream to be read

up to the next non-white-space character.
 ∑ Ordinary character string Anything except white

space or % characters. The next character in the input
stream must match this character.

 ∑ Conversion specifi er fi eld This is a % character,
followed by an optional * character, which suppresses
the conversion, followed by an optional non-zero
decimal integer specifying the maximum fi eld width,
an optional h, l, or L to control the length of the
conversion, and fi nally a non-optional conversion
specifi er. Note that use of h, l, or L will affect the
type of pointer which must be used.

 Format specifi ers in scanf ()

The format string in scanf() has the following general form:

“< character string >< % conversion specifi er fi eld >”

 Here character string is optional and has to be used
with care. Each ‘conversion specifi er fi eld’ is coded as
follows:

%[*]<width><size><conversion-code>

 Each conversion (or format) specifi er begins with the
per cent character, %, after which come the following, in
the given order.

 1. An optional assignment-suppression character, *,
which states that the value being read will not be
assigned to an argument, but will be dropped.

 2. An optional width specifi er, <width>, which designates
the maximum number of characters to be read that
compose the value for the associated argument.

 Encountering white space, before the entire width is
scanned, terminates the input of this value and moves
to the next.

 3. An optional conversion-code modifi er, <size>, which
modifi es the conversion code to accept format for a
type of :

 h = short int,

Input and Output 107

 l = long int, if the format specifi ers provide for an
integer conversion,

 l = double, if the format specifi ers provide for a
fl oating-point conversion, and

 L = long double, which is valid only with fl oating-
point conversions.

The format specifi ers in scanf() are shown in Fig. 3.2.

% Flag Maximum width Size Conversion code

*

Fig. 3.2 Parts of conversion specifi er fi eld for scanf()

 The format specifi ers, or the conversion code, that apply
to scanf() are given in Table 3.6.

Table 3.6 Format Specifi ers for scanf()

Conversion
code

Usual variable
type

Action

%c

%d(%i)

%e(%E)

%f

%g(%G)

%o

%p

%s

%u

%x(%X)

%%

%n

[...]

char

int

fl oat or double
fl oat or double
fl oat or double
int
pointer

array of char

int
int
none

pointer to int

array of char

Read a single character

Read a signed decimal integer

Read signed decimal

Read signed decimal

Read signed decimal

Read octal value

Read in hex address stored in

pointer

Read sequence of characters

(string)

Read unsigned decimal integer

Read unsigned hex value

A single % character in the input

stream is expected. There is no

corresponding argument.

No characters in the input

stream are matched. The

corresponding argument is a

pointer to an integer into which

the number of characters read

is placed.

Read a string of matching

characters

Formatted input in scanf ()

Typically, the format string for a scanf() will not contain
constant text. If it does, that means the input must contain

the same text in the same position. For example, consider
the following simple program.

Example

20. #include <stdio.h>
 int main(void)
 {
 int x;
 scanf(“Number=%d”, &x);
 printf(“The value of x is %d.\n”, x);
 return 0;
 }

 If the user wants the value of x to be 25, the user would have to
type “Number=25” exactly, or the behavior of this little program
is unpredictable. To avoid this type of problem, it is usually a good
idea not to include constant text in format strings when using
scanf().

 When reading in integers or fl oats, the scanf() function
skips leading white space.
 That is, all spaces, tabs, and new line characters will
be ignored, and scanf() will keep reading input until it
reaches a number. When reading in a character, scanf()
will read exactly one character, which can be any valid
ASCII character or other valid character for the system. If
the user wants to skip a space before a character, the space
has to be explicitly included in the character string. For
example, consider the following code, assuming that a, b,
and c are integers and x is a character.

scanf(“%d%d%d%c”, &a, &b, &c, &x);

 Assume that the user wants a, b, c, and x to be 1, 2, 3,
and Z. The user would have to type

1 2 3Z

If, instead, the user types
1 2 3 Z

then the value of x will be a space because Z has been
typed with a space preceding it.
 If the user wants to be able to enter the line this way, the
scanf() needs to be coded as follows:

scanf(“%d%d%d %c”, &a, &b, &c, &x);

 Using spaces between integer fi eld specifi cations is
optional. For example, while reading integers x, y, and z

scanf(“%d%d%d”, &x, &y, &z);

is equivalent to

scanf(“%d %d %d”, &x, &y, &z);

 Normally, when reading a numeric value, scanf() reads
until it sees trailing white space. The rule is that scanf()

108 Programming in C

 The scanf() function returns the number of variables
successfully read in. For example, consider the following
program.

Example

21. #include <stdio.h>
 int main(void)
 {
 int a, b, c;
 int num;
 num = scanf(“%d %d %d”, &a, &b, &c);
 printf(“I have read %d values.\n”, num);
 return 0;
 }

When run, the user must type 10 20 30 for the program to output

I have read 3 values.

If the user types 10 20 hello the program will output

I have read 2 values.

If the user types hello 10 20 30 the program will output

I have read 0 values.

 When reading standard input from the keyboard,
the input is buffered. In other words, the program is not
seeing the text directly as it is typed in; the characters are
being temporarily stored in a buffer somewhere. When
the user hits <Enter>, the buffer is sent to the program.
Until then, the user can edit the buffer by adding (typing)
new characters, or by hitting the backspace or delete key
to remove the last character from the buffer. The program
will never see these deleted characters. Consider the
following simple program.

Example

22. #include <stdio.h>
 int main(void)
 {
 int x;
 scanf(“%d”, &x);
 printf(“You typed %d.\n”, x);
 return 0;
 }

 If an input 45 is given to this program, the printed output will be

You typed 45.

 Another thing to note about scanf() is that the format
string should never end with a new line character. This
will always lead to some form of error. For example,

scanf(“%d\n”, &x);

processes the format string from left to right and each time
it reaches a specifi er it tries to interpret what has been
typed as a value. If multiple values are input, these are
assumed to be separated by white space, i.e., spaces, new
line, or tabs. This means the user can type

3 4 5
or

3
4
5

and it does not matter how many spaces are included
between items. For example,

scanf(“%d %d”,&i,&j);

will read in two integer values into i and j. The integer
values can be typed on the same line or on different lines as
long as there is at least one white space character between
them. The only exception to this rule is the %c specifi er
that always reads in the next character typed no matter
what it is.
 If a width modifi er is used, it specifi es the maximum
number of characters to be read.
 Then scanf() will read either as many characters as
specifi ed by the width modifi er or until it sees white space,
whichever happens fi rst. In this case its effect is to limit the
number of characters accepted to the width. For example,

scanf(“%10d”,&i)

would use at most the fi rst ten digits typed as the new
value for i. There are two other reasons that can cause
scanf() to stop. One is if an end-of-fi le character is
encountered. When reading from an actual disk fi le, there
is automatically an end-of-fi le character at the end of the
fi le. When reading from a keyboard, the user can simulate
one by pressing a specifi c character sequence. On UNIX
machines, the user can enter an end-of-fi le character by
pressing <Ctrl-d>.
 The other reason scanf() may stop is when it encounters
an invalid input. For instance, if scanf() is expecting to
read a numeric value and it comes across a non-numeric
character, this is an error.
 The following are the reasons because of which scanf()
will stop reading a value for a variable.
 ∑ A white space character is found after a digit in a

numeric sequence.
 ∑ The maximum number of characters has been processed.
 ∑ An end-of-fi le character is reached.
 ∑ An error is detected.

Input and Output 109

 This code will not work correctly because of the \n
at the end of the scanf() format string. The last thing to
remember about scanf() is that each variable must be
preceded by the & symbol. This symbol is the address
operator. It takes the address in memory of the variable
following the symbol. If the values of the variables are
passed to scanf(), it would be unable to change the values
of the variables. By passing the memory address where
these values are stored, the function is able to write new
values into memory.
 At this point it must be clear that both the functions
scanf() and printf() use the stdin and stdout streams
respectively and require the header fi le stdio.h to be
included in the program when they are used.

Points to Note

 1. In scanf(), the control string or format string, that
consists of a list of format specifi ers, indicates the
format and type of data to be read in from the standard
input device, which is the keyboard, for storing in the
corresponding address of variables specifi ed.

 2. There must be the same number of format specifi ers
and addresses as there are input variables.

 3. The format string in scanf() is enclosed in a set of
quotation marks and it may contain the following:

 (a) white space

 (b) ordinary character string

 (c) conversion specifi er fi eld

Examples

 23. Add two integer numbers and print the input numbers and result.

 Solution
 #include <stdio.h>
 int main()

 {
 int a,b,c;
 printf(“\nThe fi rst number is ”);
 scanf(“%d”,&a);
 printf(“\nThe second number is ”);
 scanf(“%d”,&b);
 c=a+b;
 printf(“The answer is %d \n”,c);
 return 0;

 }

 Output:
 The fi rst number is 5
 The second number is 9
 The answer is 14

 24. Print formatted numbers.

 Solution
 #include <stdio.h>
 int main()
 {
 printf(“/%d/\n”,336);
 printf(“/%2d/\n”,336);
 printf(“/%10d/\n”,336);
 printf(“/%-10d/\n”,336);
 return 0;
 }

 Output: /336/
 /336/
 /336/

 /336/

 25. Print formatted fl oating-point number.

 Solution
 #include <stdio.h>
 int main()
 {
 printf(“/%f/\n”,1234.56);
 printf(“/%e/\n”,1234.56);
 printf(“/%4.f/\n”,1234.56);
 printf(“/%3.1f/\n”,1234.56);
 printf(“/%-10.3f/\n”,1234.56);
 printf(“/%10.3f/\n”,1234.56);
 printf(“/%10.3e/\n”,1234.56);
 return 0;
 }

 Output: /1234.560000/
 /1.234560e+03/
 /1235/
 /1234.6/
 /1234.560 /
 / 1234.560/
 / 1.235e+03/

 26. Print character strings.

 Solution
 #include <stdio.h>
 #defi ne BLURB “Outstanding Program!”
 int main()
 {
 printf(“/%2s/\n”,BLURB);
 printf(“/%22s/\n”,BLURB);
 printf(“/%22.5s/\n”,BLURB);
 printf(“/%-22.5s/\n”,BLURB);
 return 0;
 }

 Output: /Outstanding Program!/
 / Outstanding Program!/
 / Outst/
 /Outst /

110 Programming in C

 27. Write a program that prints the next character for the corresponding
three characters given to the program.

 Solution
 #include <stdio.h>
 int main()
 {
 char a,b,c;
 scanf(“%c%c%c”,&a,&b,&c);
 a++;
 b++;
 c++;
 printf(“a=%c b=%c c=%c”,a,b,c);
 return 0;
 }

 Input: PQR
 Output: a=Q b=R c=S

 28. Determine how much money is in a piggy bank that contains
several 50, 25, 20, 10 , and 5 paise coins. Use the following
values to test the program: fi ve 50 paise coins, three 25 paise
coins, two 20 paise coins, one 10 paise coin, and fi fteen 5 paise
coins.

 Solution
 /* To determine how much money there is in a

piggy bank */
 #include <stdio.h>
 #include <string.h>
 int main(void)
 {
 fl oat coin1=0.50,coin2=0.25,coin3=0.20,

 coin4=0.10, coin5=0.05,total=0.0;
 int ncoins;
 printf(“How many 50 paise coins : ”);
 scanf(“%d”,&ncoins);
 total += (ncoins * coin1);
 printf(“** %.2f **”,total);

 printf(“\nHow many 25 paise coins : ”);
 scanf(“%d”,&ncoins);
 total += (ncoins * coin2);
 printf(“** %.2f **”,total);

 printf(“\nHow many 20 paise coins : ”);
 scanf(“%d”,&ncoins);
 total += (ncoins * coin3);
 printf(“** %.2f **”,total);

 printf(“\nHow many 10 paise coins : ”);
 scanf(“%d”,&ncoins);
 total += (ncoins * coin4);
 printf(“** %.2f **”,total);

 printf(“\nHow many 5 paise coins : ”);
 scanf(“%d”,&ncoins);
 total += (ncoins * coin5);

 printf(“\n\nThe total amount is
Rs.%.2f”,total);

 return 0;
 }

 Output:
 How many 50 paise coins : 5
 ** 2.50 **
 How many 25 paise coins : 3
 ** 3.25 **
 How many 20 paise coins : 2
 ** 3.65 **
 How many 10 paise coins : 1
 ** 3.75 **
 How many 5 paise coins : 15
 The total amount is Rs 4.50

 29. Modify the program given in Example 28 to accept the total
amount (in rupees) and convert them into paise (vice-versa of
Example 28).

 Solution
 #include <stdio.h>
 #include <string.h>
 int main(void)
 {
 int nc1,nc2,nc3,nc4,nc5,temp;
 fl oat total;
 printf(“Enter the amount : ”);
 scanf(“%f”,&total);
 temp = total * 100;
 nc1 = temp / 50;
 temp = temp % 50;

 nc2 = temp / 25;
 temp = temp % 25;

 nc3 = temp / 20;
 temp = temp % 20;

 nc4 = temp / 10;
 temp = temp % 10;

 nc5=temp;

 printf(“\n\nNo. of 50 paise coins = %d”,nc1);
 printf(“\nNo. of 25 paise coins = %d”,nc2);
 printf(“\nNo. of 20 paise coins = %d”,nc3);
 printf(“\nNo. of 10 paise coins = %d”,nc4);
 printf(“\nNo. of 5 paise coins = %d”,nc5);
 return 0;
 }

 Output:
 Enter the amount: 7.65
 No. of 50 paise coins = 15
 No. of 25 paise coins = 0
 No. of 20 paise coins = 0
 No. of 10 paise coins = 1

Input and Output 111

 30. Write a program for computing product cost. The program should
output the computed cost and the delivery date of the product.

 Solution
 #include <stdio.h>

 int main()
 {
 int quantity, day, month, year;
 fl oat cost, total;
 int prod_code;

 printf(“Enter quantity: ”);
 scanf(“%d”, &quantity);

 printf(“Enter cost: ”);
 scanf(“%f”, &cost);
 total = cost * quantity;

 printf(“Enter product code: ”);
 scanf(“%d”, &prod_code);

 printf(“Enter date in format dd/mm/yyyy: ”);
 scanf(“%d/%d/%d”, &day, &month, &year);

 month+=1;

 if(month > 12)

 {

 month = 1; year++;

 }

 printf(“Order for %d should be with you by

%d/%d/%d at a total cost of %6.2f\n”,prod_

code, day, month, year, total);

 return 0;

 }

 Result:
 Inputs

Enter quantity: 3

Enter cost: 1.25

Enter product code: 1 2

Enter date in format dd/mm/yy: 17/12/2003

Output: Order for 1 should be with you by 17/1/2004 at
a total cost of 3.75

Points to Note

 1. The scanf() function returns the number of variables
successfully read in.

 2. The printf() function returns a number that is equal
to the number of characters printed.

SUMMARY

Generally, input and output in C, from and to standard devices, are
managed through standard streams. The standard input and output
devices are the keyboard and the screen. To carry out the input
and output, a number of standard functions such as getchar(),
putchar(), scanf(), and printf() are in-built in C.

getchar() and putchar() functions are single- character input and
output functions respectively.

So, these do not need any formatted inputs or outputs. The functions
scanf() and printf() handle multiple variables of all the allowed
data types in C. These, therefore, require formatted inputs and outputs.

KEY-TERMS

Character string A chain of characters placed one after another that
is dealt as one unit.

Control code Special characters that specify some positional action
on the printing point, also known as cursor.

Conversion specifi er Same as format specifi er.

Flag modifi er It is a character that specifi es one or more of the
following:

 • display space if no sign symbol precedes the output

 • inclusion of + or – sign symbol preceding the output

 • Padding the output with leading 0s.

 • the positioning of the output to be displayed

 • Use of alternate form of specifi er.

Format specifi er Identifi es the data type, along with width, precision,
size and fl ag, for the respective variables to be outputted to or read in
from a standard device.

Format string A group of characters that contain ordinary character
string, conversion code, or control characters arranged in order so that
they correspond to the respective control string variables placed next
to it in printf() function.

112 Programming in C

Precision modifi er Indicates the number of characters used after
the decimal point in the output displayed. The precision option is only
used with fl oats or strings.

Size modifi er Precedes the conversion code and specifi es the kind
of data type thereby indicating the number of bytes required for the
corresponding variable.

White space Blank space that causes the input stream to be read

up to the next non-white-space character.

Width modifi er When used in context to the format string, specifi es
the total number of characters used to display the output or to be

read in.

FREQUENTLY ASKED QUESTIONS

1. How can you print % character using printf()?
 Conversion specifi ers always start with a % character so that the
printf() function can recognize them. Because a % in a control
string always indicates the start of a conversion specifi er, if one wants
to output a % character you must use the sequence %%.

2. What is the return type of printf() ?
 The return value for printf() is incidental to its main purpose of
printing output, and it usually isn’t used. The return type of printf()
function is int: Under ANSI C, printf() function returns the number
of characters it printed. If there is an output error, printf() returns a
negative value. The following program illustrates the fact.

 #include <stdio.h>
 int main(void)
 {
 int c;
 c=printf(“One”);
 printf(“\nc = %d”,c);
 return 0;
 }
 Output:
 One
 c = 3

3. What is the return type of scanf()?
 The scanf() function returns the number of variables that it
successfully reads. If it reads no variables, which happens if you type
a non-numeric string when it expects a number, scanf() returns the
value 0. It returns EOF if it detects “end of fi le”. This condition would
cause if we press CTRL-z in windows or CTRL-d in UNIX/LINUX.
 #include <stdio.h>

 int main(void)

 {

 int a,b,c;

 c=scanf(“%d %d”,&a,&b);

 printf(“\nc = %d”,c);

 return 0;

 }

 Output:
 Sample run 1:
 2 3
 c = 2

 Sample run 2:
 2 a
 c = 2

 Sample run 3:
 a b
 c = 0

 Sample run 4:
 ^z

 c = -1

4. How do I write printf() so that the width of a fi eld can be
specifi ed at runtime?
 This is shown in following program.

 int main()
 {
 int w, no;
 printf (“Enter number and the width for the\
 number fi eld:”);
 scanf (“%d%d”, &no, &w);
 printf (“%*d”, w, no);
 return 0;

 }

 Here, an ‘*’ in the format specifi er in printf() indicates that an
int value from the argument list should be used for the fi eld width.

5. What is EOF?

 EOF is a special character called the end-of-fi le character. In fact, the
symbol EOF is defi ned in <stdio.h> and is usually equivalent to the
value –1. However, this isn’t necessarily always the case, so one should
use EOF in the programs rather than an explicit value. EOF generally
indicates that no more data is available from a stream. . Incidentally
EOF can be entered manually from the keyboard by pressing CTRL +
D on a Unix/Linux type machine or by pressing CTRL + Z on a Windows
type machine.

Input and Output 113

EXERCISE

 1. What will be the value of each variable after the following input
command?

 data input: Tom 34678.2 AA4231

 scanf(“%s %3d %f %c %*c %1d”,

 name,&m,&x,&ch,&i,&j);

 (a) name:

 (b) m:

 (c) x:

 (d) ch:

 (e) i:

 (f) j:

 2. What output does each of the following produce?

 (a) putchar(‘a’);

 (b) putchar(‘\007’);

 (c) putchar(‘\n’);

 (d) putchar(‘\t’);

 (e) n = 32; putchar(n);

 (f) putchar(‘\”’);

 3. For the different values of n, what is the output?

 printf(“%x %c %o %d”,n,n,n,n);

 (a) n = 67

 (b) n = 20

 (c) n = 128

 (d) n = 255

 (e) n = 100

 4. What is wrong with each of the following?

 (a) scanf(“%d”,i);

 (b) #include stdio.h

 (c) putchar(‘/n’);

 (d) printf(“\nPhone Number:(%s) %s”, phone);

 (e) getch(ch);

 (f) putch() = ch;

 (g) printf(“\nEnter your name:”, name);

 5. Which numbering system is not handled directly by the printf()
conversion specifi ers?

 (a) decimal

 (b) binary

 (c) octal

 (d) hexadecimal

 6. What are formatted input and output statements in C? Give
suitable examples.

 7. What do the getchar() and putchar() functions do?

 8. How can a % character be printed with printf()?

 9. How can printf() use %f for type double if scanf() requires
%lf?

 10. How can a variable fi eld width be implemented with printf()?

 11. How can numbers be printed with commas separating the
thousands?

 12. Will the call scanf(“%d”, i) work? Give reasons for your
answer.

 13. Explain why the following code is not going to work.
 double d;

scanf(“%f”,&d);

 14. How can a variable width be specifi ed in a scanf() format
string?

 15. When numbers are read from the keyboard with scanf “%d\n”,
they seem to hang until one extra line of input is typed. Explain.

 16. Why does everyone advise against using scanf()? What should
be used instead?

 17. On the screen write the words
 she sells seashells by the seashore

 (a) all in one line

 (b) in three lines

 18. Write a program that asks interactively the users name and age
and responds with

 Hello name, next year you will be next_age.

 where next_age is age + 1.

 19. Write programs to read the values of the variables and print the
results of the computed expressions given below:

 (a) a = (b+c)*(b–c)

 (b) y = ax2 + bx + c

 (c) I = (P*R*T)/100

 (d) C = (F–32)/100

 (e) A = –(R1/R2+R3)

 (f) a = 0.5*fl oat1 + 0.25*integer1 + integer2/0.4 + integer3

 20. What will be printed by the code given below?
 int value = 5;

 printf(“%s”, !(value % 2) ? “yes”: “no”);

114 Programming in C

 21. What will be the output of the following program?
 int main()

 {

 char a,b,c;

 scanf(“%c %c %c”,&a,&b,&c);

 printf(“a=%c b=%c c=%c”,a,b,c);

 return 0;

 }

 [Note: The user input is:ABC DEF GHI]

 (a) a=ABC b=DEF c=GHI

 (b) a=A b=B c=C

 (c) a=A b=D c=G

 (d) None of these

 22. What will be the output of the following program?
 int main()

 {

 int a,b,c;

 scanf(“%1d %2d %3d”,&a,&b,&c);

 printf(“Sum=%d”,a+b+c);

 return 0;
 }

 [Note: The user input is: 123456 44 544]

 (a) Sum=480

 (b) Sum=594
 (c) Sum=589

 (d) None of these

 23. What will be the output of the following program?

 int main()

 {

 int x=20,y=35;

 x = y++ + x++;

 y = ++y + ++x;

 printf(“x=%d,y= %d\n”,x,y);

 return 0;
 }

 24. What will be the output of the following program?
 int main()

 {

 int x=5;

 printf(“%d %d %d\n”,x,x<<2,x>>2);

 return 0;
 }

 25. What will be the output of the following program?
 int main()

 {

 int a=2, b=3;

 printf(“ %d ”, a+++b);

 printf(“a=%d,b=%d”,a,b);

 return 0;
 }

 26. What does the following program give as output?
 int main()

 {

 int a,b;

 printf(“\n enter integer values”);

 printf(“for a and b within 0”);

 printf(“to 100\n”);

 scanf(“%d%d”,&a,&b);

 b=b^a;

 a=b^a;

 b=b^a;

 printf(“a=%d, b=%d\n”,a,b);

 return 0;
 }

 Note: The user input is 23 67

 27. What will be the output of the following program?
 int main(void)

 {

 int var1,var2,var3,minmax;

 var1=5;

 var2=5;

 var3=6;

 minmax=(var1>var2)?(var1>var3)?

 var1:var3:(var2>var3)? var2:var3;
 printf(“%d\n”,minmax);
 return 0;

 }

 28. What will be the output of the following program?
 int main(void)

 {

 int a=19,b=4;

 fl oat c,d;

 c=a/b;

 d=a%b;

 printf(“/c=%12f/\nd=%);

 printf(“–12.4f/”,c,d);

 return 0;
 }

 29. Pick the correct output of the given program.
 int main(void)

 {

 int i=5;

Input and Output 115

 printf(“%d %d %d %d %d”,i, i++, i++, i++, ++i);

 return 0;
 }

 (a) Compile-Time Error

 (b) 10 9 8 7 6

 (c) 9 8 7 6 6

 (d) 10 8 7 6 6

Answers to objective type questions and problems
20. no, 21. (b), 22. (a), 23. x=57, y=94,

24. 5 201, 25. 5 a=3, b=3 Explanation: Here

it evaluates as a+++b. 26. a=67, b=23, 27. 6,

28. /c=4.000000/

 /d=4.0000 /

29. (d)

Starting with this chapter, we will develop an incremental problem
chapter by chapter, which will grow complex by the end of Chapter 9.
As we go through the chapters, we will add to or modify the program
code that we start writing in this section, based on what we learn in
the following chapters.

Problem Statement

Write a C program that would fi nd the length of a straight line formed
by two end points, whose co-ordinates would be given as inputs.

Solution

To start with, the program for solving this problem needs to take in-
puts from the user. The inputs are the values of x and y coordinates
of the two end points of the straight line. Two basic I/O functions
have already been described in this chapter. Four variables of type
fl oat are used to store the coordinates of the two endpoints of
the straight line joining them. Then the length of this straight line
formed by the two end points is given by the following formula:

2 2
1 2 1 2(–) + (–)x x y y

The program for solving the given problem is given as follows:

Program

#include<stdio.h>

#include<math.h

int main()

{

 fl oat x1, y1, x2, y2, lin_len;

 printf(“\n\n Enter x-coordinate of fi rst point:”);

 scanf(“%f”, &x1);

printf(“\n Enter y-coordinate of fi rst point:”);

scanf(“%f”, &y1);

 printf(“\n\n Enter x-coordinate of second point:”);

scanf(“%f”, &x2);

printf(“\n Enter y-coordinate of second point:”);

scanf(“%f”, &y2);

 lin_len = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1));

 printf(“\n The length of the straight line joining\

the two points is %f”, lin_len);

return 0;

}

Output

Enter x-coordinate of fi rst point: 1

Enter y-coordinate of fi rst point: 2

Enter x-coordinate of second point: 3

Enter y-coordinate of second point: 4

The length of the straight line joining the two

points is 2.828427

Press Enter to return to Quincy...

INCREMENTAL PROBLEM

116 Programming in C

Problem Statement
The packing department of a television vision set manufacturer has
to prepare a requisition note listing the number of different boxes
required for the different TV models that it has received from the
production department. The list prepared has to be forwarded to
the stores department so that the required boxes are issued to the
packing department. The category and the number of boxes required
for each type of TV model is given as follows:

Model type Box type Numbers

TV-LCD 17 1 98

TV-LCD 22 2 79

TV-LCD 26 3 65

TV-LCD 32 4 43

TV-LCD 37 5 17

Anaysis

This problem provides some data based on which a requisition note
has to be prepared and printed. The note should specify the type and
number of box required for each kind of TV model.
The program, written for accomplishing the task specifi ed by the
problem, accepts the number of sets of different TV models for each
of which a particular type of packing box is required. The box type for
each model is of standard dimensions and is pre-assigned a unique
type number. Using the data provided by the problem, a requisition
note is printed by the program as shown below.

Solution
#include<stdio.h>
int main()
{
int tv17box,tv22box,tv26box,tv32box,tv37box;

/* Box Types */
int tv17num,tv22num,tv26num,tv32num,tv37num;

/* Number of TV sets to be packed */

/* Box Types */

tv17box = 1;
tv22box = 2;
tv26box = 3; Assigning type number to packing boxes

tv32box = 4;
tv37box = 2;

CASE STUDY

printf(“\nEnter number of TV-LCD 17 model to be packed:”);
scanf(“%d”,&tv17num);

printf(“\nEnter number of TV-LCD 22 model to be packed:”);
scanf(“%d”,&tv22num);

printf(“\nEnter number of TV-LCD 26 model to be packed:”);
scanf(“%d”,&tv26num);

printf(“\nEnter number of TV-LCD 32 model to be packed:”);
scanf(“%d”,&tv32num);

printf(“\nEnter number of TV-LCD 37 model to be packed:”);
scanf(“%d”,&tv37num);

printf(“\n **** Requisition Note **** ”);
printf(“\n ====================================”);

printf(“\n TV Model |Box type| Numbers ”);
printf(“\n |required| ”);

printf(“\n ====================================”);

printf(“\n\n TV-LCD 17 %d %d”,tv17box,tv17num);
printf(“\n TV-LCD 22 %d %d”,tv22box,tv22num);
printf(“\n TV-LCD 26 %d %d”,tv26box,tv26num);
printf(“\n TV-LCD 32 %d %d”,tv32box,tv32num);
printf(“\n TV-LCD 37 %d %d”,tv37box,tv37num);
printf(“\n ====================================”);

return 0;
}

Ouput
Enter number of TV-LCD 17 model to be packed:98
Enter number of TV-LCD 22 model to be packed:79
Enter number of TV-LCD 26 model to be packed:65
Enter number of TV-LCD 32 model to be packed:43
Enter number of TV-LCD 37 model to be packed:17

**** Requisition Note ****
 ===
 TV Model | Box type | Numbers
 | required |
 ===
 TV-LCD 17 1 98

 TV-LCD 22 2 79

 TV-LCD 26 3 65

 TV-LCD 32 4 43

 TV-LCD 37 2 17
 ===

4.1 INTRODUCTION
So far, every program in this book has executed sequentially
in the order in which they appear, i.e., statements in a
program are normally executed one after another until the
last statement completes. A C application begins executing
with the fi rst line of the main() function and proceeds
statement by statement until it gets to the end of the main()
function.
 In C, any sequence of statements can be grouped
together to function as a syntactically equivalent single
statement by enclosing the sequence in braces. This
grouping is known as statement block or compound

statement. Compound statements were originally designed
to make control structures simpler.
 In C89, one must declare all local variables at the start
of the block prior to any executable statements. However
in C99, local variables can be declared at any point within
the block prior to their fi rst use.
 Consider the following program that illustrates variable
declaration at the beginning of a statement block.

#include <stdio.h>

int main(void)

{

 int a=5;

After reading this chapter, the readers will be able to

 understand the meaning of a state ment and a statement block

 learn about decision type control constructs in C and the way these are used

 learn about looping type control constructs in C and the technique of putting them
to use

 learn the use of special control con structs such as goto, break, continue, and return

 learn about nested loops and their utility

Learning Objectives

C
Chapter

Control Statements

4

118 Programming in C

 printf(“\n a = %d”, a);

 /* A statement block follows */

‘b’ is visible only
within this block

 {
 int b=10;
 printf(“\n a = %d”, a);
 printf(“\n b = %d”, b);
 }

 printf(“\n a = %d”, a);
 return 0;
}

Output:
a = 5
a = 5
b = 10
a = 5

 In C99 compliant compiler, the above program can be
written as follows giving the same output:

#include <stdio.h>
int main(void)
{
 int a=5;
 printf(“\n a = %d”, a);
 /* A statement block follows */
 {
 printf(“\n a = %d”, a);
 int b=10;
 printf(“\n b = %d”, b);
 }
 printf(“\n a = %d”, a);
 return 0;
}

 Take a note of the highlighted line. The visibility or
accessibility of the variable ‘b’ is limited to the block in
which it was declared. Consider the modifi ed version of the
above program. Here it is tried to access the variable out of
the block. Defi nitely we should get a compilation error.

#include <stdio.h>
int main(void)
{
 int a=5;
 printf(“\n a = %d”, a);
 {
 int b=10;
 printf(“\n b = %d”, b);
 }
 printf(“\n b = %d”, b);
 return 0;
}

 Every function has a function body consisting of a set
of one or more statements, i.e., a statement block. For that
reason, every function body including main() is confi ned
within a set of curly braces and may optionally include
variable declarations after the open curly brace. Inside a
function, execution proceeds from one statement to the next,
top to bottom. However, depending on the requirements of
a problem, it might be required to alter the normal sequence
of execution in a program. The order in which statements are
executed in a running program is called the fl ow of control.
Controlling the fl ow of a program is a very important aspect
of programming. Control fl ow relates to the order in which
the operations of a program are executed.
 Control statements embody the decision logic that tells the
executing program what action to carry out next depending
on the values of certain variables or expression statements.
The control statements include selection, iteration, and
jump statements that work together to direct program fl ow.
 A selection statement is a control statement that allows
choosing between two or more execution paths in a program.
The selection statements in C are the if statement, the if-
else statement, and the switch statement. These statements
allow us to decide which statement to execute next. Each
decision is based on a boolean expression (also called a
condition or test expression), which is an expression that
evaluates to either true or false. The result of the expression
determines which statement is executed next.
 The programming mechanism that executes a series of
statements repeatedly a given number of times, or until
a particular condition is fulfi lled, is called a loop. The
construct used for loop is known as iteration statement.
C language offers three language elements to formulate
iteration statements: while, do-while, and for.
 Jump statements transfer the control to another point
of the program. Jump statements include goto, break,
continue and return.
 After a very brief introduction to the different types of
control structures, it is explained how each type can be
used. The subsequent sections will discuss the use of control
statements in C. It is also explained how these statements
can be used to write effi cient programs by using

 ∑ Selection or branching statements
 ∑ Iteration or loop statements
 ∑ Jump statements

Control Statements 119

Program Control
Statements/Constructs

Selection/Branching Iteration/Looping

Conditional
Type

for while do-whileUnconditional
Type

if if-else switchif-else-if break continue goto

Figure 4.1 Program control statements/constructs in C

4.2 SPECIFYING TEST CONDITION FOR
SELECTION AND ITERATION

A test condition used for selection and iteration is expressed
as a test expression. If an expression evaluates to true, it
is given the value of 1. If a test expression evaluates to
false, it is given the value of 0. Similarly, if a numeric
expression is used to form a test expression, any non-zero
value (including negative) will be considered as true, while
a zero value will be considered as false.
 Test expression is a Boolean expression that is either
true or false. It is formed in terms of relational expression
or logical expression or both. The expressions used to
compare the operands are called boolean expressions in
terms of relational operators. In addition to using simple
relational expressions as conditions, compound conditions
can be formed using the logical operators.
 Several relational and logical operators are available to
specify the test condition used in the control constructs
of C. Relational operators are used to specify individual
test expression. More than one test expression can be
connected through the logical operator. Tables 4.1 and 4.2
list the several relational, equality, and logical operators
used in C.
 When the AND operator, &&, is used between two
relational expressions, the result is true only if each of
both the expressions are true by themselves. When using
the OR operator, ||, the condition is true if either one or
both of the two individual expressions is true.
 The NOT operator, !, is used to change any expression
to its opposite state. That is, if the expression has any
nonzero value (true), !expression produces a zero value
(false). If an expression is false to begin with (has a zero
value), !expression is true and evaluates to 1.

Table 4 .1 Relational operators

To Specify Symbol Used

less than
greater than
less than or equal to
greater than or equal to

<
>
< =
>=

 Among the relational, equality, and logical operators
only the ‘!’ operator is unary; the rest are binary operators.

Table 4.2 Equality and logical operators

To specify Symbol used

Equal to
Not equal to
Logical AND
Logical OR
Negation

==

!=

&&

||

!

4.3 WRITING TEST EXPRESSION

 Relational expression can be formed using relational operators.
A relational operator takes two operands and compares them
to each other, resulting in a value of true (1) or false (0). The
syntax for relational expression is as follows:

Variable Variable

OR OR

Relational_OperatorExpression Expression

OR OR

Constant Constant

Ï ¸ Ï ¸
Ô Ô Ô Ô
Ô Ô Ô ÔÔ Ô Ô Ô
Ì ˝ Ì ˝
Ô Ô Ô Ô
Ô Ô Ô Ô
Ô Ô Ô ÔÓ ˛ Ó ˛

 The relational operators may be used with integer, fl oat,
double, or character operands.

120 Programming in C

Examples

 1. Some examples of expressions are given below.

 a>2 a < b + c a == 3

 a! = 0 a <= b a >= 2

 A test expression involving relational and/or equality and/or
logical operators, yields either integer 1 or 0 after evaluation.
Consider the following examples of programs.

 2. (a) #include <stdio.h>
 int main()
 {
 int a=3;
 printf(“\n%d”,a>3);
 return 0;
 }

 Output: 0

 (b) #include <stdio.h>
 int main()
 {
 int a=3;
 printf(“\n%d”,a>2);
 return 0;
 }

 Output: 1

 The reason for the above output is that in C, false is represented
by the value 0 and true is represented by the value 1 as the
expression is a relational expression. In C, if such a value is zero,
it is interpreted as a logical value false. If such a value is not zero,
it is interpreted as the logical value true. The value for false may
be any zero value, e.g., 0, 0.0, ‘\0’ (null character) or the NULL
pointer value, discussed later.

 3. The following declarations and initializations are given.

 int x=1, y=2, z=3;

 Then,

 The expression x>=y evaluates to 0 (false).

 The expression x+y evaluates to 3 (true).

 The expression x+y is basically a concise syntax for the
full relational expression (x+y != 0), written for coding
convenience, as it is only a relational expression which can
be used for testing. When x+y evaluates to 3, (x+y !=0)
evaluates to true, as it should be.

 The expression x=y evaluates to 2 (true).

 The expression x=y would again be translated by the
compiler to a relational expression ((x=y)!= 0). When
x=y evaluates to 2, ((x=y)!= 0) evaluates to true.

 The expression x==y evaluates to 0 (false).

 The expression z%2==0 evaluates to 0 (false).

 The expression x<=y evaluates to non-zero (true), i.e., 1.

4.3.1 Understanding How True and False is
Represented in C

C does not have pre-defi ned true and false values. The
value zero (0) is considered to be false by C. Any positive
or negative value is considered to be true. Conventionally,
it is assumed that only positive one is true but C evaluates
any non-zero value to be true.
 ∑ The following expressions have the resulting value of

true, assuming that the integer variables a, b, and c
have the values a = 1, b = 2, and c = 3.

 (a < 2) (a + 1 == b) 1==a

 a + b >=c c <= (a + b) (a > 0)

 (a) (–a) (a = 3)

 Note that in the expression (a = 3) where the
assignment operator is sometimes accidentally used
instead of the relational operator ‘==’. C evaluates
the expression as true even if the variable ‘a’ is
previously assigned some value other than zero (0).

 It is better to develop the habit of writing the literal
fi rst, e.g., (3==i). Then, if an equal sign is accidently
left out, the compiler will complain about the
assignment, as lvalue can never be constant.

 The expression (a) where the variable ‘a’ was pre-
viously assigned the value 1 is true since C considers
any expression that evaluates to a non-zero value to
be true. Even if the variable ‘a’ were assigned the
value –3, the expression (a) would evaluate to true.

 ∑ The following expressions evaluate to true where a = 1,
b = 2, and c = 3.

 (b) (c+a) (2*b)

 (c–2*–30) (0+b) (c–a+b)

 ∑ The following expressions evaluate to false where
a = 1, b = 2, and c = 3.

 (a - 1) (!(a)) (0 * c)
 (c - a - b)
 Note that the ‘ ! ‘ symbol, the logical NOT operator,

changes a true to a false.
 ∑ The following expressions have the resulting value of

false assuming that the integer variables a, b, and c
have the values a = 1, b = 2, and c = 3.

Control Statements 121
 (a > 1)
 (b == 1)
 (a/b + a/b)= = 1
 (c % 3)
 (a > 0 + 4)

 Care should be taken when one compares two values
for equality. Due to truncation, or rounding up, some
relational expressions, which are algebraically true,
may return 0 instead of 1.

 For example, look at the relational expression:
(a/b + a/b)==l which is 1/2 + 1/2 == 1.

 This is algebraically true and is supposed to return 1 .
The expression, however, returns 0 , which means that
the equal-to relationship does not hold. This is because
the truncation of the integer division 1/2 produces 0,
not 0.5. The following program proves this.

 #include <stdio.h>
 int main()
 {

 int a=1,b=2;
 printf(“\n (a/b + a/b) == 1 evaluates %d”,

(a/b + a/b) == 1);
 return 0;
 }

 Output:
 (a/b+a/b) == 1 evaluates to 0

 Another example is 1.0/3.0, which produces 0.33333....
This is a number with an infi nite number of decimal
places. But the computer can only hold a limited
number of decimal places. Therefore, the expression
1.0/3.0 + 1.0/3.0 + 1.0/3.0 == 1.0 might not re-
turn 1 on some computers, although the expression is
theoretically true.

 ∑ Consider a relational expression such as a < b. If ‘a’
is less than ‘b’, then the expression has the integer
value 1, which is true. If ‘a’ is not less than ‘b’,
then the expression has the integer value 0, which is
false. Mathematically, the value of a < b is the same
as the value of a – b < 0. Because the precedence
of the relational operators are less than that of the
arithmetic operators, the expression a – b < 0 is
equivalent to (a – b) < 0

 On many machines, an expression such as a < b is
implemented as a – b < 0. The usual arithmetic
conversions occur in relational expressions.

 Let a and b be the arbitrary arithmetic expressions.
Table 4.3 shows how the value of a–b determines the
values of relational expressions.

Table 4.3 Values of relational expressions

a - b a < b a > b a <= b a >= b

Positive 0 1 0 1

Zero 0 0 1 1

Negative 1 0 1 0

 An equality expression like a == b evaluates to either
true or false. An equivalent expression is a – b == 0. If
a equals b then a – b evaluates to 0 and 0 == 0 is true.
In this case a == b results in the integer value 1 which is
true in C. If a is not equal to b, then the expression yields
0, which might be thought of as false.

Points to Note

 ∑ If an expression, involving the relational operator, is
true, it is given a value of 1. If an expression is false, it
is given a value of 0. Similarly, if a numeric expression
is used as a test expression, any non-zero value
(including negative) will be considered as true, while a
zero value will be considered as false.

 ∑ Space can be given between operand and operator
(relational or logical) but space is not allowed between
any compound operator like <=, >=, ==, !=. It is also
compiler error to reverse them.

 ∑ a == b and a = b are not similar, as == is a test for
equality, a = b is an assignment operator. Therefore,
the equality operator has to be used carefully.

 ∑ The relational operators have lower precedence than
all arithmetic operators.

 C has three logical operators for combining logical
values, which are listed in Table 4.2. && and || are used to
connect two or more expressions to form a test condition.
&& means a conjunction, i.e., all the expressions connected
by it must be true to satisfy the test condition. || means a
disjunction, i.e., either of the expressions connected by it
must be true to satisfy the test condition.
 Like arithmetical operators, the relational, equality and
logical operators have rules of precedence and associativity
for evaluating expression involving these operators.
Logical operators may be mixed within relational
expressions but one must abide by their precedence rules
which is as follows (see Table 4.4 for complete list).

122 Programming in C

NOT operator (!), AND operator (&&), OR operator (||)

 One must remember that the && operation is always
performed before the || operation because && is similar
to multiplication in normal arithmetic while || is similar to
addition.
 The == (equal to) and != (not equal to) operators are
analogous to the relational operators except for their lower
precedence.

Table 4.4 Operators semantics

Operators Associativity

() ++ (postfi x) – (postfi x)
+ (unary) – (unary)

++ (prefi x) – (prefi x) * / %
+ -

< <= > >=
== !=

&&
||
?:

= + = – = * = / =
, (comma operator)

left to right
right to left
left to right
left to right
left to right
left to right
left to right
left to right
right to left
right to left
left to right

 Given the following declarations and initializations:
int a=3, b=-5, c=0;

consider Table 4.5 which illustrates the use of the logical
operators.

Table 4.5 Illustration of the use of logical operators

Expression Result

a>0 && c>0

a>=0 && c>=0

a && c

a && b

a || c

!a && c

5 && !c

0(false)

1(true)

0(false)

1(true)

1(true)

0(false)

1(true)

 In addition to numerical operands, character data can
also be compared using relational operators.

‘a’ < ‘e’ returns 1(true)
‘9’ > ‘1’ returns 1(true)

‘A’ > ‘a’ returns 0 (false)

as ASCII value of ‘A’ is 65 and that of ‘a’ is 97.

Consider the following declaration:

Char ch = ‘A’;

 To check whether ch contains upper case letter the
conditional expression can be written as follows:

ch>=‘A’ && ch<=‘Z’

 It is also possible to use the ASCII value corresponding
to a character in relational expression. The above
expression can also be written as

ch >= 65 && ch <= 90.

 ∑ Although C does not have an exclusive OR (XOR)
logical operator, outcome of XOR is true if and
only if one operand is true but not both. It can be
implemented by the following expression:

 (a || b) && !(a && b)

Short-circuiting evaluation in C

It is to be noted that in case of && when the fi rst operand
is false, it is evident that the result must be false. So the
other operand of the expression will not be evaluated.
Likewise, in case of | | , when the fi rst operand is
true, there is no need to evaluate the other operand of
the expression, so the resulting value is set to true
immediately. C uses this short-circuit method which is
summarized as follows:

false && (anything) true || (anything)

false true

 Sometimes, it can cause problems when the second
operand contains side effects. For instance, consider the
following example:

r= a && b++;

 When the fi rst operand is non-zero, that is if a=2, b=3
then the expression evaluates to give r=1, a=2, and b=4.
But if the fi rst variable is zero, then the second variable
will never be evaluated. That is, if a=0, b=3; then r=0,
a=0, and b=3. Same thing would happen in case of

r = a || b++;

 If the fi rst operand is non-zero, then the second operand
would never be incremented. It is important to understand
the complement of relational and equality operators. Table
4.6 illustrates the complements.

Control Statements 123
Table 4.6 Relational operator complement

Operator Complement

>

<

==

< =

>=

! =

 For example, !(a<b) is equivalent to a>=b, !(a>=b) is
equivalent to a<b.
 ∑ An expression such as a < b < c is syntactically

correct but often confusing. This is illustrated with an
example. In mathematics,

 3 < j < 5

 indicates that the variable j has the property of being
greater than 3 and less than 5. It can also be considered
as a mathematical statement that, depending on the
value of j, may or may not be true. For example, if
j = 4, then the mathematical statement is true. But if
j = 7, then the mathematical statement is false. Now
consider the C code

 j =7;

 printf(“%d\n”, 3 < j < 5);

 /* 1 gets printed, not 0 */

 By analogy with mathematics, it might be expected
that the expression is false and that 0 is printed.
However, that is not the case because relational
operators associate from left to right.

 3 < j < 5 is equivalent to (3 < j) < 5

 Because the expression 3 < j is true, it has value 1.
Thus,

 (3 < j) < 5 is equivalent to 1 < 5

 which has value 1 . In C, the correct way to write an
expression for testing both 3 < j and j < 5 is

 3 < j && j < 5

 Because relational operators have higher precedence
than binary logical operators, this is equivalent to

 (3 < j) && (j < 5)

 and, as will be seen later, this expression is true if and
only if both operands of the && expression are true.

 ∑ Like arithmetic operators, the relational and logical
operators have rules of precedence and associativity

for evaluating expressions involving these operators
(shown in Table 4.4).

 The precedence of the relational operators is less than
that of the arithmetic operators, including + and –,
and greater than that of assignment operators. This
means, a > b + 5 means the same as a > (b + 5). The
expression a = b > 5 means a = (b > 5). That is, a
is assigned 1 if b is greater than 5 and 0 otherwise;
a is not assigned the value of b.

 The relational operators are themselves organized
into two different priorities:

 Higher-priority group: <<= >>=
 Lower-priority group: !=
 Like most other operators, the relational operators

associate from left to right. Therefore,
 expr1 != expr2 == expr3

 is the same as
 (expr1 != expr2) == expr3

 First, C checks to see if expr1 and expr2 are unequal.
Then the resulting value of 1 or 0 (true or false) is
compared to the value of expr3. It is not recommended
to write a relational expression like this but this
has been pointed out for a clearer understanding of
the precedence and associativity of the relational
operator.

 Initially C language did not provide any Boolean
data type. As in C99, a new data type _Bool has been
provided which remedied the lack of Boolean type in
C language. In this version of C, a Boolean variable
can be declared as follows:

 _Bool isPrime;

 _Bool is actually an integer type (More precisely an
unsigned integer type). Unlike an ordinary integer
variable, _Bool variable can only be assigned 0 or 1.
When converting any scalar values to type _Bool, all
non-zero values are converted to 1 while zero values
are converted to 0. Consider the following program:

 #include <stdio.h>

 int main(void)

 {

 _Bool isPrime =5;

 printf(“\n isPrime = %d”, isPrime);

 return 0;

 }

 Output: isPrime = 1

124 Programming in C

 Because a relational operator produces a Boolean
result, it is possible to store the result in a variable of
type _Bool. For example

 _Bool result = 5 < 4; /* result will be false */

 In addition to _Bool type, C99 also provides a new
header fi le stdbool.h for working with Boolean
values. This header fi le provides a macro bool which
to be synonym for _Bool and defi nes false and true to
be 0 and 1 respectively.

 If stdbool.h is included then the following
declaration can be written:

 bool fl ag;

 This header fi le also provides macros like true, false
which stands for 1 and 0 respectively making it
possible to write the following statements:

 fl ag=true;

4.4 CONDITIONAL EXECUTION AND SELECTION
Uses of selection and iteration statements are the basic
tools of thought when designing a logical process. The
ability to control the order in which the statements are
executed adds enormous value to the programming. The
uses of selection in various forms have already been
discussed in the previous sections. In this section the
concept of iteration or looping will be discussed.
 A loop allows one to execute a statement or block of
statements repeatedly. There are mainly two types of
iterations or loops – unbounded iteration or unbounded
loop and bounded iteration or bounded loop. In bounded
iteration, repetition is implemented by constructs that
allow a determinate number of iterations. That is, bounded
loops should be used when we know, ahead of time, how
many times we need to loop. C provides for construct as
bounded loop.
 There are also many occasions when one doesn’t know,
ahead of time, how many iterations may be required. Such
occasions require unbounded loops. C provides two types
of unbounded loop: while loop and do... while loop.
These types of loops are also known as indeterminate or
indefi nite loop.

4.4.1 Selection Statements

When dealing with selection statements, there are
generally three versions: one-way, two-way, and multi-
way. One-way decision statements do a particular thing
or they do not. Two-way decision statements do one thing
or do another. Multi-way decision statements can do one
of many different things depending on the value of an
expression.

 One-way decisions using if statement

One-way decisions are handled with an if statement that
either do some particular thing or do nothing at all. The
decision is based on a ‘test expression’ that evaluates
to either true or false. If the test expression evaluates to
true, the corresponding statement is executed; if the test
expression evaluates to false, control goes to the next
executable statement. Figure 4.2 demonstrates this. The
form of this one-way decision statement is as follows:

if(TestExpr)

 stmtT;

TestExpr is the test expression. stmtT can be a simple
statement or a block of statements enclosed by curly
braces {}.

TestExpr
T F

stmtT

Figure 4.2 Flowchart for if construct

 The if construct can be illustrated with the help of the
following example.

Control Statements 125

Example

 4. Write a program that prints the largest among three numbers.

 Solution:

Algorithm C Program
1. START

2. PRINT “ENTER THREE

 NUMBERS”

3. INPUT A, B, C

4. MAX=A

5. IF B>MAX THEN MAX=B

6. IF C>MAX THEN MAX=C

7. PRINT “LARGEST

 NUMBER IS”, MAX

8. STOP

#include <stdio.h>

int main()

{

int a, b, c, max;

printf(“\nEnter 3 numbers”);

scanf(“%d %d %d”, &a, &b, &c);

max=a;

if(b>max)

 max=b;

if(c>max)

 max=c;

printf(“Largest No is %d”, max);

return 0;

}

if and the comma operator

Normally, the comma operator is used to combine
statements. For example, the statements:

x = 1;

y = 2;

are treated as a single statement when written as:

x = 1, y = 1;

 With simple statements, the comma operator is not
very useful. However it can be used in conjunction with
if statement to provide the programmer with a unique
shorthand.

if (fl ag)

 x =1, y = 1;

This example is syntactically equivalent to:

if (fl ag)

{

 x = 1;
 y = 1;
}

 The problem with the comma operator is that when
you use it you break the rule of one statement per line,
which obscures the structure of the program. Therefore
never use the comma operator when you can use braces
instead.

 Two-way decisions using if-else statement

Two-way decisions are handled with if-else statements
that either do one particular thing or do another. Similar
to one-way decisions, the decision here is based on a
test expression. The form of a two-way decision is as
follows:

if(TestExpr)

 stmtT;

else

 stmtF;

 If the test expression TestExpr is true, stmtT will be
executed; if the expression is false, stmtF will be executed.
stmtT and stmtF can be single or a block of statements.
Remember that a block of statements are always enclosed
with curly braces {}. Figure 4.3 depicts a fl owchart of the
if-else construct.

TestExpr
T F

stmtT stmtF

Figure 4.3 Flowchart of if-else construct

 The if-else construct is illustrated with the help of an
example.

126 Programming in C

Example

 5. Write a program in C to check whether a number given by the
user is odd or even.

Algorithm C Program

1. START

2. PRINT “ENTER THE NUMBER”

3. INPUT N

4. Q=N/2 (Integer Division)

5. R=N-Q*2

6. IF R=0 THEN PRINT

 “EVEN” ELSE PRINT “ODD”

7. STOP

#include <stdio.h>

int main()

{

int n,r;

printf(“\nEnter the number”);

scanf(“%d”, &n);

r=n%2;

if(r==0)

 printf(“EVEN”);

else

 printf(“ODD”);

return 0;

}

 An absolutely classic pitfall is to use assignment
(=) instead of comparison (==). This is probably the
single most common error made by beginners in C
programming. The problem is that in such a case the
compiler is of no help—it is unable to distinguish this
non-syntax error. Consider the following example
program.

Example

 6. Check whether the two given numbers are equal.

 (a) #include <stdio.h>

 int main()

 {

 int a=2, b=3;

 if(a == b)

 printf(“EQUAL”);

 else

 printf(“UNEQUAL”);

 return 0;

 }

 Output: UNEQUAL

 (b) #include <stdio.h>

 int main()

 {

 int a=2, b=3;

 if(a = b)

 printf(“EQUAL”);

 else

 printf(“UNEQUAL”);

 return 0;

 }

 Output: EQUAL

 The explanation for the above outputs is that when a
condition is specifi ed with = instead of ==, the C compiler
checks the value of the test expression. If it is non-zero
including negative, it evaluates the test condition as
true; otherwise it evaluates the test condition as false.
Example 6(a) simply checks the equality and gives the
result as expected. But in Example 6(b), the value of b
is assigned to a fi rst. Since the value assigned to a is
3, which is non-zero, the condition will be true and the
program outputs EQUAL. If the value of b was assigned
as zero, then following the above explanation, the
second program would print UNEQUAL as now a would
be zero.
 So the test expression using the equality operator must
be specifi ed carefully. If the value of a variable is assigned
a constant value, the same thing may not occur. The
example statement,

if(x = 3) stmT;

does not test whether x is 3. This sets x to the value 3, and
then returns x to the if construct for testing. Now, 3 is not
0, so it is deduced as true. The actual test expression should
be x==3. Such a problem can be overcome by writing the
expression as 3==x. It is safe to write. If the expression is
written 3=x by mistake, then the compiler will complain
because 3 cannot be a lvalue.
 In case it is desired to test whether variable x has a non-
zero value, one could write

if(x)

rather than
if(x != 0)

Control Statements 127

 However, this can sometimes be confusing. In general,
it is better to write whatever is meant rather than writing
something that has the same effect.
 The following three if() statements are functionally
equivalent.

if(x)

 printf(“true\n”);

if(x!=0)

 printf(“true\n”);

if(!(x==0))

 printf(“true\n”);

 The unsigned preserving approach (K&R C) says that
when an unsigned type mixes with an int or smaller signed
type, the result is an unsigned type. This is the simple rule
independent of hardware but as in the following example,
it does something to force a negative result to lose its sign.
The value preserving approach (ANSI C) says that when
an integral operand type is mixed like this, the result type
is signed or unsigned depending on the relative sizes of the
operand type. Consider the following example.

 #include <stdio.h>
 int main()
 {
 int i=-1;
 unsigned int u=1;
 if(i<u)
 printf(“\n i is less than u”);
 else
 printf(“\n i is not less than u”);
 return 0;
 }

Output: i is not less than u (in GCC compiler)

 Depending on whether this program is compiled and
executed under K&R or ANSI C, the expression i<u
will be evaluated differently. The same bit patterns are
compared but interpreted as either a negative number or as
unsigned (hence positive number).
 If either operand is unsigned, the result is unsigned, and
is defi ned to be modulo 2n, where n is the word size. If
both operands are signed, the result is undefi ned.
 Suppose, for example, a and b are two integer variables,
known to be non-negative, and you want to test whether
a+b might overfl ow. One obvious way to do it looks
something like this:

if (a + b < 0)
 printf(“\OVERFLOW”);

 In general, this does not work. The point is that once
a + b has overfl owed, all bits are off as to what the result
will be. If the operation overfl owed, the register would
be in overfl ow state, and the test would fail. One correct
way of doing this particular test relies on the fact that
unsigned arithmetic is well-defi ned for all values, as are
the conversions between signed and unsigned values:

if ((int) ((unsigned) a + (unsigned) b) < 0)
printf(“\OVERFLOW”);

Examples

 7. Suppose a C code has to be written that will calculate the
earnings by workers who are paid an hourly wage, with weekly
hours greater than 40 being paid ‘time and a half’. Suppose
weekly hours and hourly rate are known in the program. Two
options of the code to handle this situation are as follows.

 Option 1 Using simple statements:

 if(weeklyHours <= 40)
 earnings = hourlyRate * weeklyHours;
 else
 earnings = 40 * hourlyRate + (weeklyHours

- 40) *hourlyRate* 1.5;

 Option 2 Using a simple and compound statement:

 if(weeklyHours <= 40)
 earnings = hourlyRate * weeklyHours;
 else
 {
 offHours = weeklyHours - 40;
 regpay = 40 * hourlyRate;
 earnings = regpay + offHours * hourlyRate

* 1.5;
 }

 A complete program in C is illustrated as follows.

 8. Write a program that determines if a year is a leap year.

#include<stdio.h>
int main()
{
 int year, rem_4,rem_100,rem_400;
 printf(“Enter the year to be tested:”);
 scanf(“%d”, &year);
 rem_4 = year % 4;
 rem_100 = year % 100;
 rem_400 = year % 400;
 if((rem_4 == 0 && rem_100 != 0) || rem_400 = = 0)
 printf(“It is a leap year.\n”);
 else
 printf(“It is not a leap year.\n”);
 return 0;
}

128 Programming in C

 Given below are the outputs obtained for different
inputs from the above program executed in a computer.

Test run no. 1
Enter the year to be tested: 1955

It is not a leap year.

Test run no. 2
Enter the year to be tested: 2000

It is a leap year.

Test run no. 3
Enter the year to be tested: 1800

It is not a leap year.

 Multi-way decisions

Multi-way decision statements use if-else-if nested
if or switch statements. They are used to evaluate a
test expression that could have several possible values.
if-else-if statements are often used to choose between
ranges of values. Switch statements are discussed in the
next section.
 ∑ if-else-if ladder
 The form of a multi-way decision construct using

if-else if statements is as follows:

 if(TestExpr1)

 stmtT1;

 else if(TestExpr2)

 stmtT2;

 else if(TestExpr3)

 stmtT3;

 . . .

 else if(TestExprN)

 stmtTN;

 else

 stmtF;

 If the fi rst test expression TestExpr1 is evaluated to
true, then stmtT1 is executed. If the second test expression
TestExpr2 is true, then stmtT2 is executed, and so on. If
none of the test expressions are true, then the statement
stmtF is executed. The fl ow chart of the above construct is
shown in Fig. 4.4.

TestExpr

T

F

stmtT1

TestExpr2

T

F

stmtT2

TestExpr3

T

F

stmtT3

TestExprN

T

F

stmtTN

stmtF

Figure 4.4 Flowchart of an if-else-if construct

Examples

 9. The following program checks whether a number given by the
user is zero, positive, or negative.

 #include <stdio.h>

 int main()

 {

 int x;

 printf(“\n ENTER THE NUMBER:”);

 scanf(“%d”, &x);

 if(x > 0)

 printf(“x is positive \n”);

 else if(x == 0)

 printf(“x is zero \n”);

 else

 printf(“x is negative \n”);

 return 0;

 }

 10. This program prints the grade according to the score secured by
a student.

 #include <stdio.h>

 int main()

Control Statements 129
 {

 int score;

 char grade;

 printf(“\n ENTER SCORE : ”);

 scanf(“%d”, &score);

 if(score >= 90)

 grade = ‘A’;

 else if(score >= 80)

 grade = ‘B’;

 else if(score >= 70)

 grade = ‘C’;

 else if(score >= 60)

 grade = ‘D’;

 else

 grade = ‘F’;

 printf(“GRADE IS: %c”, grade);

 return 0;

 }

 Nested if

When any if statement is written under another if
statement, this cluster is called a nested if. A simple
illustration of a nested if is given below.
 The if statement that tests for divisibility by 5 is located
inside of the if statement that tests for divisibility by 3
therefore it is considered to be a nested if statement.

if (number % 3 == 0)

{

 printf(“number is divisible by 3. \n”);

 if (number % 5 == 0)

 {

 printf(“number is divisible by 3 and 5. \n”);

 }
}

Another example is given below.

if(a > b)

 if(a > c)

 printf(“%d”, a);

 Here a will be printed in case both if conditions are
true. The indentation makes the logic of the statements
explicitly clear. Next, the nested loop is further explained
with the example given below.

if(a > b)

 if(a > c)

 printf(“%d”, a);

 else

 printf(“%d”, c);

 An important fact to be noted here is that an else
always associates itself with the closest (innermost) if. In
the above example, the else part corresponds to the inner
if, that is, if(a > c). If another else is added, the last
else corresponds to if(a > b). The syntax for the nested
if is as follows.

Construct 1 Construct 2

if(TestExprA)

 if(TestExprB)

 stmtBT;

 else

 stmtBF;

else

 stmtAF;

if(TestExprA)

 if(TestExprB)

 stmtBT;

 else

 stmtBF;

else

 if(TestExprC)

 stmtCT;

 else

 stmtCF;

stmtBT, stmtBF, stmtCT, and stmtCF can be a simple
statement or a block of statements. It is to be remembered
that a block of statement is always enclosed with curly
braces {}.
 In construct 1, stmtBT will be executed if both TestExprA
and TestExprB evaluate to true. stmtBF will be executed
if TestExprA evaluates to true and TestExprB evaluates to
false. stmtAF will be executed if TestExprA is false and
does not check for TestExprB.
 In construct 2, stmtBT will be executed if both TestExprA
and TestExprB evaluate to true. stmtBF will be executed
if TestExprA evaluates to true and TestExprB evaluates
to false. If TestExprA is false, then the test expression
TestExprC will be checked. If it is true, then stmtCT will
be executed, otherwise stmtCF will be executed.
 Finally, a program to fi nd the largest among three
numbers using the nested loop follows. The required
fl owchart is shown in Fig. 4.5. The C code is given as
follows:

130 Programming in C

#include <stdio.h>

int main()

{

 int a, b, c;

 printf(“\nEnter the three numbers”);

 scanf(“%d %d %d”, &a, &b, &c);

 if(a > b)

 if(a > c)

 printf(“%d”, a);

 else

 printf(“%d”, c);

 else

 if(b > c)

 printf(“%d”, b);

 else

 printf(“%d”, c);

 return 0;

}

START

END

READ A, B, C

IS

B>C?

IS

A>C?

PRINT B PRINT APRINT C

YES

YES

YES

NO

NO

IS

A>B?

Figure 4.5 Flowchart for fi nding the largest of three
numbers

Dangling else Problem

This classic problem occurs when there is no matching
else for each if. To avoid this problem, the simple C rule
is that always pair an else to the most recent unpaired if
in the current block. Consider the following illustration.

 if(TestExprA)

 if(TestExprB)
 stmtBT;
 else
 stmtAF;

 If TestExprA is evaluated to true, then execution moves
to the nested if and evaluates TestExprB. If TestExprB is
evaluated to true then stmtBT will be executed. If TestExprA
is evaluated to false, then stmtAF is executed. But in the
code above, the else is automatically paired with the
closest if. But, it is needed to associate an else with the
outer if also. The solution is either of the following:

 ∑ Use of a null else
 ∑ Use of braces to enclose the true action of the

second if
Each of these has the following form:

 With null else With braces

 if(TestExprA) if(TestExprA)

 if(TestExprB) {

 stmtBT; if(TestExprB)

 else stmtBT;

 ; }

 else else

 stmtAF; stmtAF;

 Now, in both the solutions, if the expression TestExprA
evaluates to false then the statement stmtBF will be
executed. If it evaluates to true, then it checks for TestExprB.
If TestExprB evaluates to true then statement stmtBT will
be executed. Consider the following C program with a
dangling else problem.

#include <stdio.h>

int main()

{

 int a = 2;

 int b = 2;

 if (a == 1)

 if (b == 2)

 printf(“a was 1 and b was 2\n”);

 else

 printf(“a wasn’t 1\n”);

 return 0;

}

Control Statements 131

 When compiled and run, this program did not produce
any output. With the program in its original form it is quite
likely that the programmer thought the else statement

else
 printf(“a wasn’t 1\n”);

would be associated with the fi rst if but it was not. An
else always associates with the immediately preceding
if as is clear by the alternatively laid out version of the
program. The reason for the complete absence of output
is the fact that there is no else statement associated with
the fi rst if.
 In order to achieve the effect that the programmer
probably originally intended, it is necessary to re-arrange
the program in the following form.

int main()
{
 int a = 2;
 int b = 2;
 if (a == 1)
 {
 if (b == 2) printf(“a was 1 and b was 2\n”);
 }
 else printf(“a wasn’t 1\n”);
 return 0;
}

Points to Note

 ∑ Multi-way decision statements are used to evaluate a test
expression that could have several possible values.

 ∑ An else is always associated with the closest unmatched if.

Check Your Progress

1. What will be the output of the following programs?
(a) int main()
 {
 printf(“Hi!”);
 if(-1)
 printf(“Bye”);
 return 0;
 }
 Output: Hi!Bye

(b) int main()
 {
 printf(“Hi!”);
 if(!1)
 printf(“Bye”);
 return 0;
 }
 Output: Hi!

(c) fl oat x = 199.9;

 if(x < 100)

 printf(“one ”);

 if(x < 200)

 printf(“two ”);

 if(x < 300)

 printf(“three ”);

 Output: two three

(d) int main()

 {

 int i= -1;

 unsigned int j =1;

 if(i<j)

 printf(“Less”);

 else

 printf(“Greater”);

 return 0;

 }

 Output: Greater

4.4.2 The Conditional Operator

Consider the situation in which there are two or more
alternatives for an expression. Such a situation arises
frequently in programming. For example, depending on
existing conditions, there may be two or more alternative
values evaluated from the expression. There may be two or
more alternative expressions, based on existing conditions,
for the value to be returned by a specifi c function. There
may be two or more alternative expressions, again based
on existing conditions, for the value of a specifi c argument
in a function call. C’s conditional operator is specifi cally
tailored for such situations. It has the following simple
format:

expr1 ? expr2 : expr3

 It executes by fi rst evaluating expr1, which is normally
a relational expression, and then evaluates either expr2,
if the fi rst result was true, or expr3, if the fi rst result was
false.
 For instance, if the larger of two integer numbers has
to be printed, the program using conditional operator
will be

132 Programming in C

 #include <stdio.h>

 int main()

 {

 int a,b,c;

 printf(“\n ENTER THE TWO NUMBERS: ”);

 scanf(“%d %d”, &a, &b);

 c=a>b?a:b;

 printf(“\n LARGER NUMBER IS %d”,c);

 return 0;

 }

 The following is a more refi ned version of the program.
Here the conditional operator has to be nested.

 #include <stdio.h>

 int main()

 {

 int a,b,c;

 printf(“\n ENTER THE TWO NUMBERS: ”);

 scanf(“%d %d”, &a, &b);

 c=a>b? a : b>a ? b :-1;

 if(c==-1)

 printf(“\n BOTH NUMBERS ARE EQUAL”);

 else

 printf(“\n LARGER NUMBER IS %d”,c);

 return 0;

 }

 For illustration, let us consider the program that will
print the largest among three integer numbers. If the
program is written using the nested if construct, it will be
as follows:

 #include <stdio.h>

 int main()

 {

 int a,b,c;

 printf(“\n ENTER THE THREE NUMBERS: ”);

 scanf(“%d %d %d”, &a, &b, &c);

 if(a>b)

 if(a>c)

 printf(“\n LARGEST NUMBER IS: %d”, a);

 else

 printf(“\n LARGEST NUMBER IS: %d”, c);

 else

 if(b>c)

 printf(“\n LARGEST NUMBER IS: %d”, b);

 else

 printf(“\n LARGEST NUMBER IS: %d”, c);

 return 0;

 }

 Now the above program is converted into one that uses
the nested conditional operator.

#include <stdio.h>

int main()

{

 int a,b,c, max;

 printf(“\n ENTER THE THREE NUMBERS: ”);

 scanf(“%d %d %d”, &a, &b, &c);

 max=a>b ? a>c ? a : c: b>c? b : c;

 /* This statement is equivalent to
 max= a>b? (a>c? a: c):(b>c? b: c)*/

 printf(“\n LARGEST NUMBER IS: %d”, max);

 return 0;

}

 Similarly, the following program fi nds the largest
number among four integer numbers.

#include <stdio.h>

int main()

{

 int a, b, c, d, e;

 printf(“\n Enter the four numbers one by one \n”);

 scanf(“%d %d %d %d”, &a, &b, &c, &d);

 e=a>b?(a>c?(a>d?a:d):(c>d?c:d)):(b>c?(b>d?b:d):
(c>d?c:d));

 printf(“\nLargest number is %d\n”, e);

 return 0;

}

 The use of the conditional expression frequently
shortens the amount of source code that must be written.
For example, a lengthy function call, which has several
argument expressions, one of which is conditional, needs
to be written only once.

Control Statements 133

 The conditional expression is not only a shorthand; it
may also result in less object code than would be generated
by other alternative means, e.g., by the use of one or more
if statements.
 Observe that parentheses are normally not needed
around the expressions that are separated by the characters
‘?’ and because, as the operator precedence table shows,
the ‘?:’ operator has a very low precedence, i.e., it is
usually applied last.

4.4.3 The switch Statement

When there are a number of else alternatives as above,
another way of representing this multi-way selection is
by the switch statement (shown in Fig. 4.6). The general
format of a switch statement is

 switch(expr)

 {

 case constant1: stmtList1;

 break;

 case constant2: stmtList2;

 break;

 case constant3: stmtList3;

 break;

 ………………………….

 ………………………….

 default: stmtListn;

 }

 When there is a switch statement, it evaluates the
expression and then looks for a matching case label. If
none is found, the default label is used. If no default is
found, the statement does nothing.
 The expanded fl owchart of the switch statement is
shown in Fig. 4.6.
 This construct evaluates the expression expr and
matches its evaluated value with the case constants and
then the statements in the corresponding statement list
are executed. Otherwise if there is a default (which is
optional) then the program branches to its statement list
when none of the case constants match with the evaluated
value of expr. The case constants must be integer or
character constants. The expression must evaluate to an

integral type. Single quotes must be used around char
constants specifi ed with each case.
 Once again, it is emphasized that the default case,
if present, will be selected if none of the prior cases
are chosen. A default case is not required but it is good
programming practice to include one.
 Perhaps the biggest defect in the switch statement is
that cases do not break automatically after the execution
of the corresponding statement list for the case label. Once
the statement list under a case is executed, the fl ow of
control continues down, executing all the following cases
until a break statement is reached.
 The break statement must be used within each case
if one does not want the following cases to execute once
one case is selected. When the break statement is executed
within a switch, C executes the next statement outside the
switch construct. However, sometimes it may be desirable
not to use the break statement in a particular case.

expr==constant1

expr==constant2

expr==constant3

T

T

T

F

F

F

StmtList1

StmtList2

StmtList3

StmtListndefault

Figure 4.6 The C switch construct

134 Programming in C

Examples

The following is an example where the control expression is a char
variable ch. Notice the use of single quotes around the character
variable in each case.

 11. switch(ch)

 {

 case ‘A’:

 printf(“You entered an A”);

 break;

 case ‘B’:

 printf(“You entered a B”);

 break;

 default:

 printf(“Illegal entry”);

 break;

 }

 Another example is depicted where the variable ‘Choice’ is an
int variable. Note that single quotes are not used around the
integer values in each of the case statements.

 12. switch(Choice)

 {

 case 1:

 printf(“You entered menu choice #1”);

 break;

 case 2:

 printf(“You entered menu choice #2”);

 break;

 case 3:

 printf(“You entered menu choice #3”);

 break;

 default:

 printf(“You failed to enter a valid menu choice”);

 break;

 }

 13. switch(donationLevel)

 {

 case 1:

 printf(“You donated over Rs 1,000.”);

 case 2:

 printf(“You donated over Rs 500.”);

 case 3:

 printf(“You donated over Rs 250.”);

 case 4:

 printf(“You donated over Rs 100.”);

 break;

 default:

 printf(“Please be a little more generous.”);

 break;

 }

 The break statement causes fl ow of control to exit from the
entire switch block and resume at the next statement outside the
switch. Technically, the break statement is optional, although
most applications of the switch will use it. If a break statement
is omitted in any case of a switch statement, the compiler will
not issue an error message. The fl ow of control continues to the
next case label.

 The redundancy in the code can be minimized by placing the cases
next to each other, as in the following example. That is, several
case values can be associated with one group of statements.

 14. switch(number)

 {

 case 1:

 case 3:

 case 5:

 case 7:

 case 9:

 printf(“ %d is an odd number.”, number);

 break;

 case 2:

 case 4:

 case 6:

 case 8:

 printf(“ %d is an even number\n”, number);

 break;

 default:

 printf(“ %d is a value not between or including
1 and 9.”, number);

 break;

 }

Control Statements 135

Points to Note

 ∑ The switch statement enables you to choose one
course of action from a set of possible actions, based
on the result of an integer expression.

 ∑ The case labels can be in any order and must be
constants.

 ∑ No two case labels can have the same value.

 ∑ The default is optional and can be put anywhere in
the switch construct.

 ∑ The case constants must be integer or character con-
stants. The expression must evaluate to an integral
type.

 ∑ The break statement is optional. If a break statement
is omitted in any case of a switch statement, the
program fl ow is followed through the next case label.

 ∑ C89 specifi es that a switch can have at least 257
case statements. C99 requires that at least 1023 case
statements be supported. The case cannot exist by
itself, outside of a switch.

Switch vs. nested if

The switch differs from the else-if in that switch can test
only for equality, whereas the if conditional expression
can be of a test expression involving any type of relational
operators and/or logical operators. A switch statement is
usually more effi cient than nested ifs.
 The switch statement can always be replaced with a
series of else-if statements. One may only use switch
and case statements if an expression is required to check
against a fi nite amount of constant, integral, or character
values. If there are too many values and if any of the values
depend on variables, or if the values are not integers or
characters, one must use a series of else-if statements.
Even when one can use switch effi ciently, it is just a
matter of personal preference whether one decides to use a
switch statement or else-if statements.

Examples

 15. Writing a program using a switch statement to check whether
a number given by the user is odd or even.

 Solution:

 #include <stdio.h>

 int main()

 {

 int n;

 printf(“\n Enter the number:”);

 scanf(“%d”, &n);

 switch(n%2)

 {

 case 0: printf(“\n EVEN”);

 break;

 case 1: printf(“\n ODD”);

 break;

 }

 return 0;

 }

 16. Write a program to carry out the arithmetic operations addition,
subtraction, multiplication, and division between two
variables.

 Solution: Use the switch construct to choose the operations.

 #include<stdio.h>

 int main()

 {

 int value1, value2;

 char operator;

 printf(“Type in your expression. \n”);

 scanf(“%d %c %d ”,&value1,&operator,&value2);

 switch(operator)

 {

 case ‘+’:

 printf(“%d \n”, value1 + value2);

 break;

 case ‘-’:

 printf(“%d \n”, value1 - value2);

 break;

 case ‘*’:

 printf(“%d \n”, value1 * value2);

 break;

 case ‘/’:

 if(value2 == 0)

 printf(“division by zero. \n”);

 else

 printf(“%d \n”, value1 / value2);

 break;

 default:

136 Programming in C

 printf(“Unknown Operator \n”);

 break;

 }

 return 0;

 }

 17. Write a program that checks whether a character entered by the
user is a vowel or not.

 Solution:

 #include <stdio.h>

 int main(void)

 {

 char c;

 printf(“Enter a character: “);

 scanf(“%c”, &c);

 switch(c)

 {

 case ‘a’: case ‘A’:

 case ‘e’: case ‘E’:

 case ‘i’: case ‘I’:

 case ‘o’: case ‘O’:

 case ‘u’: case ‘U’:

 printf(“%c is always a vowel!\n”, c);

 break;

 case ‘y’: case ‘Y’:

 printf(“%c is sometimes a vowel!\n”, c);

 break;

 default:

 printf(“%c is not a vowel!\n”, c);

 break;

 }

 return 0;

 }

Check Your Progress

 1. What will be printed by the code below?

 fl oat x = 123.4;

 if(x < 100)

 printf(“one ”);

 if(x < 200)

 printf(“two ”);

 if(x < 300)

 printf(“three ”);

 Output: two three

 2. What will the following switch statement print?
 char c = ‘Y’; switch(c)

 {

 case ‘Y’: printf(“Yes/No”);

 case ‘N’: printf(“No/Yes”); break;

 default: printf(“Other”);

 }

 Output: Yes/NoNo/Yes

 3. What will the following switch statement print?
 (a) char c = ‘y’;
 switch(c)

 {

 case ‘Y’: printf(“Yes/No”);

 break;

 case ‘N’: printf(“No/Yes”);

 break;

 default: printf(“Other”);

 }

 Output: Other

 (b) int main()
 {

 int choice=3; switch(choice)

 {

 default:

 printf(“Default”);

 case 1: printf(“Choice1”);

 break;

 case 2: printf(“Choice2”);

 break;

 }

 return 0;

 }
 Output: DefaultChoice1

Control Statements 137

4.5 ITERATION AND REPETITIVE EXECUTION
Selection and iteration statements are the basic tools of
thought when designing a logical process. The ability to
control the order in which the statements are executed adds
enormous value to programming. The uses of selection in
various forms have already been discussed in the previous
sections. In this section, the concept of iteration or looping
will be discussed.
 A loop allows one to execute a statement or block of
statements repeatedly. There are mainly two types of
iterations or loops – unbounded iteration or unbounded
loop and bounded iteration or bounded loop. In bounded
iteration, repetition is implemented by constructs that
allow a determinate number of iterations. That is, bounded
loops should be used when we know, ahead of time, how
many times we need to loop. C provides for construct as
bounded loop.
 There are also many occasions when one doesn’t know,
ahead of time, how many iterations may be required. Such
occasions require unbounded loops. C provides two types
of unbounded loop: while loop and do...while loop.
These types of loops are also known as indeterminate or
indefi nite loop.
 A loop can either be a pre-test loop or be a post-test
loop. In a pre-test loop, the condition is checked before the
beginning of each iteration. If the test expression evaluates
to true, the statements associated with the pre-test loop
construct are executed and the process is repeated till the
test expression becomes false. On the other hand, if the
test expression evaluates to false, the statements associated
with the construct are skipped and the statement next to the
loop is executed. So for such a construct, the statements
associated with the construct may not be executed even
once.
 In the post-test loop, the code is always executed once.
At the completion of the loop code, the test expression
is tested. If the test expression evaluates to true, the loop
repeats; if the expression is false the loop terminates. The
fl owcharts in Fig. 4.7 illustrate these loops.
 C has three loop constructs: while, for, and do-while.
The fi rst two are pre-test loops and do-while is a post-test
loop.
 In addition to the test expression, two other processes are
associated with almost all loops. These are initialization and
updating. The test expression always involves a variable,
which is known as a loop control variable. Initialization

is something that initializes the loop. That is the statement
that assigns the initial value of the loop control variable.
Now, how can the test expression, that controls the loop,
be true for a while then changes to false? The answer is
that something must happen inside the loop so that the test
expression becomes false. The action that changes the test
expression from true to false so that the loop is terminated
is the updating statement. This involves updating the value
of the control variable. Updating is done in each iteration.
Comparison between a pre-test and post-test loop is given
in Table 4.7.

Table 4.7 Comparison between a pre-test and
post-test loop

Pre-test loop Post-test loop

Initialization

Number of tests

Actions executed

Updating executed

Minimum iteration

once

n+1

n

n

not even once

once

n

n

n

at least once

 A loop can be characterized as either event controlled
or counter controlled. In an event-controlled loop, an event
changes the test expression of the loop from true to false.
When the number of repetitions is known, then a counter-
controlled loop is used. Here it is needed to initialize the
counter, test it, and update it. All the loops used in C are
either event controlled or counter controlled.

TestExpr

T

F

An action or a
series of actions TestExpr

An action or a
series of actions

F

T

Pre-test loop Post-test loop

Figure 4.7 Loop variations: pre-test and post-test loops

138 Programming in C

4.5.1 While Construct

while statement is a pre-test loop. It uses a test expression
to control the loop. Since it is a pre-test loop, it evaluates
the test expression before every iteration of the loop. The
basic syntax of the while statement is shown in Fig. 4.8.

No semicolon

No semicolon

Body of
the loop

while(TestExpr)

{

stmT

}

Figure 4.8 while construct

stmT will be executed repeatedly till the value of TestExpr
becomes 0. stmT may be a single statement or multiple
statements terminated by a semicolon.
 To use the while statement, the test expression should
contain a loop control variable. The initialization of the
loop control variable has to be done before the loop starts
and updating must be included in the body of the loop. The
expanded form of the while statement is given in Fig. 4.9.

TestExpr

T

F

stmT

Intialization

Updating

Statement
block

Initialization

while (TestExpr)

{
stmT

...

...

Updating

Statement
block

}

Body of
the loop

Figure 4.9 Expanded syntax of while and its fl owchart
representation

Examples

 18. #include <stdio.h>

 int main()

 {

 int c;

 c=5; // Initialization

 while(c>0)

 { // Test Expression

 printf(“ \n %d”,c);

 c=c-1; // Updating

 }

 return 0;

 }

 This loop contains all the parts of a while loop. When executed
in a program, this loop will output

 5
 4
 3
 2
 1

 The operation of the looping construct in the above example
is traced step by step as follows. First, the loop initialization,
with ‘c’ being assigned the value of 5, is carried out. Then, the
instructions within the while construct are executed repetitively
so long as the test expression, c > 0, is true. The moment the
test expression in the while construct evaluates as false, the
program is terminated.

 Now, when the while statement is encountered, the test
expression, similar to an if-test expression, is evaluated. In
this case, since c is 5 and c > 0, the test expression evaluates
to true. Hence the statement body of the loop is executed
sequentially. A printf statement writes the current value of
c on the screen. After this c is updated by subtracting 1. Thus
c now has the value of 4. On reaching the end of the loop, the
loop condition is checked again. If it is true, which it is because 4
> 0, the loop is executed once again. In a similar way, the loop is
executed fi ve times.

 At the end of the fi fth iteration, c has the value of 0 for which
the condition will fail since 0 is not greater than 0. Thus the term
loop being applied to this repeating control structure can be
understood since all statements inside the while loop construct
will be executed several times until the condition has failed.

Control Statements 139

 19. Program to print a horizontal row of 50 asterisks

 The program is written using while loop. Here are three versions
of same program. They only differ in the use of test expression
and the initialization of the control variable.

Version 1 Version 2

#include <stdio.h>

int main()

{

 int times = 0;

 while (times < 50)

 {

 printf(“*”);

 times++;

 }

 return 0;

}

#include <stdio.h>

int main()

{

 int times = 1;

 while (times <= 50)

 {

 printf(“*”);

 times++;

 }

 return 0;

}

Version 3

#include <stdio.h>

int main()

{

 int times = 50;

 while (times > 0)

 {

 printf(“*”);

 times— —;

 }

 return 0;

}

 Notice the various ways of accomplishing the same task. Run
the above three versions and see the output. If a loop is to
be executed for a specifi ed number of times and the counter
variable is used within the loop, the loop may be written as given
in version 3 using countdown instead of count up. This is called
loop inversion.

 The following program takes age as input from user and quits
when a –1 is entered:

 int main()

 {

 int count = 0;

 int age;

 printf(“\n Please enter an age(enter –1 to quit)”);

 scanf(“%d”,&age);

 while(age != –1)

 {

 count++;

 printf(“\n Age # %d is %d”,count, age);

 printf(“\n Enter an age(enter –1 to quit)”);

 scanf(“%d”,&age);

 }

 return 0;

 }

 20. Consider a general while loop that accepts input from the
keyboard and counts the positive integers until a negative number
is entered.

 Solution:

 #include <stdio.h>

 int main()

 {

 int x = 1;

 int count = 0;

 printf(“\n Enter the Number:”);

 while(x >= 0)

 {

 scanf(“%d”,&x);

 count += 1;

 }

 return 0;

 }

 The following are some observations on the above while loop.

 ∑ Variables have been declared and initialized at the same
time.

 ∑ The loop condition logically says, ‘While x is a positive
number, repeat.’

 ∑ The count variable keeps a track of how many numbers are
entered by the user.

 ∑ This can be a useful loop when accepting input from the
keyboard for a certain number of times.

 21. Consider a more extensive example of a program that asks the
user to enter some numbers and then fi nd their average.

140 Programming in C

 Solution: The program that would be written would either ask the
user in advance how many numbers will be supplied or ask the
user to enter a special value after the last number is entered, e.g.,
negative for test scores. This special value is known as sentinel
value.

 The algorithm of the C program using the fi rst approach is given
as follows:

 Algorithm

 1. START

 2. PRINT “HOW MANY NUMBERS:”

 3. INPUT N

 4. S = 0

 5. C=1

 6. PRINT “ENTER THE NUMBER”

 7. INPUT A

 8. S=S+A

 9. C=C+1

 10. IF C<=N THEN GOTO STEP 6

 11. AVG=S/N

 12. PRINT “:AVERAGE” IS AVG;

 13. STOP

 C Program
#include <stdio.h>

int main()

{

 int n, a, c=1,s=0;

 fl oat avg;

 printf(“\n HOW MANY NUMBERS?”);

 scanf(“%d”, &n);

 while(c<=n)

 {

 printf(“\n Enter the number: ”);

 scanf(“%d”, &a);

 s+=a;

 c++;

 }

 avg=(fl oat)s/n;

 printf(“ \n AVERAGE IS %f ”, avg);

 return 0;

}

 In this example, typecasting is needed as both s and n are integers
and avg is a fl oat. Otherwise the program evaluates avg as an
integer.

 A better way to implement the program in Example 23 is given as
follows.

 22. Algorithm

 1. START

 2. S=0

 3. N=0

 4. ANS=‘Y’

 5. PRINT “ENTER THE NUMBER”

 6. INPUT A

 7. S=S+A

 8. N=N+1

 9. PRINT “WILL U ADD MORE (Y/N)?”

 10. INPUT ANS

 11. IF ANS=‘Y’ THEN GOTO STEP 5

 12. AVG=S/N

 13. PRINT: AVERAGE IS “AVG”

 14. STOP

 C Program

#include <stdio.h>

int main()

{

 int n=0, a, s=0;

 fl oat avg;

 char ans=‘y’;

 while(ans == ‘y’ || ans == ‘Y’)

 {

 printf(“\n Enter the number: ”);

 scanf(“%d”, &a);

 s+=a;

 n++;

 printf(“\n will U add more(y/ n)?”);

 scanf(“%c”,&ans);

 }

 avg=(fl oat)s/n;

 printf(“ \n AVERAGE IS %f”, avg);

 return 0;

}

Control Statements 141

 23. Consider the two versions of the same program that prints the
sum of digits of a number.

 Version 1
 #include <stdio.h>
 int main()
 {
 int n, s=0, r;
 printf(“Enter the Number”);
 scanf(“%d”, &n);
 while(n>0)
 {
 r=n%10;
 s=s+r;
 n=n/10;
 }
 printf(“\nSum of digits %d”, s);
 return 0;
 }

 Version 2
 #include <stdio.h>
 int main()
 {
 int n, s=0, r;
 printf(“Enter the Number”);
 scanf(“%d”, &n);
 while(n)
 {
 r=n%10;
 s=s+r;
 n=n/10;
 }
 printf(“\nSum of digits %d”, s);
 return 0;
 }

 Notice the conditions specifi ed in the two versions—
in version 1 while(n>0), in version 2 while(n). When
an expression or variable is used instead of a relational
expression, if the result of the expression or the value of the
variable is non-zero (including negative), the statements
within the while loop will be executed. Both versions will
run fi ne.
 Care must be taken in using expressions in a while
loop. It should be noted that that there is no semicolon
after the right parenthesis ending the expression that
‘while’ is checking. If there were, it would mean that the
program would repeat the null statement until the condition
becomes false.

 Consider the use of the scanf() function in a loop.
Suppose one needs to read and process a list of numbers
from the keyboard. The loop ends when EOF is reached
(when <Ctrl+d> in UNIX or <Ctrl+z> in DOS is pressed).
The loop logic is shown in the following example:

r=scanf(“%d”,&a);
while(r!=EOF)
{
 ——————-
 ——————-
 r=scanf(“%d”,&a);
}
or
while((r=scanf(“%d”,&a))!=EOF)
{
 —————-
 —————-
}

Developing infi nite loop using while construct Consider
the following programs.

#include <stdio.h>
int main()
{
 int c=5;
 while(c)
 {
 printf(“\t %d”,c);
 c–-;
 }
 return 0;
}

Here the output will be
54321

 Now, the above program is rewritten to print the odd
numbers between 5 and 0.

#include <stdio.h>
int main()
{
 int c=5;
 while(c)
 {
 printf(“\t %d”,c);
 c=c–2;
 }
 return 0;
}

142 Programming in C

It will print

5 3 1 –1 –3 –5 ...

That is, it leads to an infi nite loop. This is so because
after printing 1, the value of ‘c’ will be -1 and while(c)
evaluates true as the value of ‘ c’ is non-zero. As a result,
the program will print -1, -3, -5, and so on.
 An infi nite loop can also be built using the following
construct:

 while(1)

 {

 ...

 ...

 }

 The while(1) loop will iterate forever because the while
will exit only when the expression 1 is 0. The only way to
exit this loop is through a break statement.
 It should be noted that any non-zero value including a
negative value may be used instead of 1 in the condition
expression of the while construct.

Some do’s and don’ts for testing fl oating point ‘equality’

 ∑ Representation error
 Consider the following program fragment that uses

C’s fl oating-point arithmetic.

 double hundred = 100.0;

 double number = 95.0;

 if(number == number / hundred * hundred)

 printf(“Equal\n”);

 else

 printf(“Not equal\n”);

 On some machines, the above fragment prints ‘Not
equal’, because 95.0/100.0 cannot be accurately
represented in binary. It might be 0.94999999999,
0.9500000001, or some other value, and when
multiplied by 100 it does not exactly equal 95.0.

 ∑ Compiler optimizations
 In the case of Borland compilers used on PCs, the

following program fragment, identical to the above
except that the variables have been replaced with
their constant values, prints ‘Equal’.

 if(95.0 == 95.0 / 100.0 * 100.0)

 printf(“Equal\n”);

 else

 printf(“Not equal\n”);

 The best guess is that the compiler ‘optimizes’ the
constant division and multiplication, causing the
statement to appear as “95.0 == 95.0’, which is
trivially true.

 ∑ Testing for fl oating-point ‘equality’
 As the preceding examples show, fl oating-point

numbers cannot be compared for exact equality.
Here is a second example. Using a fl oating-point
number as an ‘exact’ terminating condition in a loop
is not a good idea. Since fl oating-point numbers are
approximations, a test for exact equality will often
be wrong. An example of a program code is given as
follows:

 fl oat x;

 x = 0.0;

 while(x != 1.1)

 {

 x = x + 0.1;

 printf(“1.1 minus %f equals %.20g\n”, x, 1.1 - x);

 }

 The above loop never terminates on many computers,
because 0.1 cannot be accurately represented using binary
numbers. Each time through the loop, the error increases,
and the sum of eleven ‘tenths; never quite equals 1.1. Never
test fl oating point numbers for exact equality, especially in
loops. Since fl oating-point numbers are approximations,
the correct way to make the test is to see if the two numbers
are ‘approximately equal’.
 The usual way to test for approximate equality is to
subtract the two fl oating-point numbers and compare
the absolute value of the difference against a very small
number, epsilon. Such an approach is shown in the
following program code.

#defi ne EPSILON 1.0e-5 /* a very small value */

double hundred=100.0;

double number=95.0;

double n1, n2;

n1 = 95.0;

n2 = number / hundred * hundred;

Control Statements 143
if(fabs(n1-n2) < EPSILON)

 printf(“Equal\n”);

else

 printf(“Not equal\n”);

fabs() is the C library function that returns the fl oating-
point absolute value of its argument.
 Epsilon is chosen by the programmer to be small
enough so that the two numbers can be considered ‘equal’.
The larger the numbers being compared, the larger will
be the value of epsilon. For example, if the fl oating-point
numbers are in the range 1.0e100, epsilon will probably
be closer to 1.0e95, which is still a very big number but
small compared to 1.0e100. (1.0e95 is ten-thousandth
of 1.0e100.) If two numbers of magnitudes 1.0e100 and
1.0e95 differ by only 0.0e05, they may be close enough to
be considered equal.
 Note that just as adding a very small fl oating-point
value to a very large fl oating point value may not change
the latter, subtracting fl oating-point numbers of widely
differing magnitudes may have no effect. If the two
numbers differ in magnitude by more than the precision
of the data type used, the addition or the subtraction will
not affect the larger number. For the fl oat data type on
most microcomputers, the precision is about six to seven
decimal digits. An example of a program code follows:

fl oat big, small, sum;

big = 1.0e20;

small = 1.0;

sum = big - small;

if(sum == big)

 printf(“Equal\n”); /* this prints */

else

 printf(“Not Equal\n”);

 On executing the program code, the computer would
print ‘Equal’, as observed earlier.

4.5.2 for Construct

A loop formed by using the for statement is generally called
a determinate or defi nite loop because the programmer
knows exactly how many times it will repeat. The number
of repetitions can be determined mathematically by
manually checking the logic of the loop. The general form
of the for statement is as follows:

 for(initialization; TestExpr; updating)
 stmT;

Initialization This part of the loop is the fi rst to be
executed. The statement(s) of this part are executed only
once. This statement involves a loop control variable.

TestExpr TestExpr represents a test expression that must
be true for the loop to continue execution.

 stmT stmT is a single or block of statements.

Updating The statements contained here are executed
every time through the loop before the loop condition
is tested. This statement also involves a loop control
variable.

 C allows the updating of a loop control variable to be
written inside the body of the loop. An example of a for
loop is shown as follows:

int main(void)

{

 int i;

 for(i = 0; i < 10; i++)

 printf(“%d”,i);

 return 0’

}

The program continues. The above for loop operates as
follows:

 1. Set i equal to 0

 2. If i is less than 10, execute the body of the loop, that
is, ‘printf’ and go to step3; otherwise, go to the next
instruction after the for loop and continue.

 3. Increment i
 4. Go to step 2

 The following fi gure explains the three expressions in
the for loop used in the above program that are separated
by semicolons and that control the operation of the loop.

This expression
executes once when

the loop starts.

This expression
executes at the end
of every loop cycle

(iteration).

 for(i = 0; i < 10; i++)

This expression executes at the beginning of every loop
cycle (iteration). If it evaluates to true, the loop continues
(i.e. the statement printf(“%d”,i); will be executed), and if it

is false, the loop ends.

144 Programming in C

This loop would produce the following output:

0123456789

 Note that ‘running the loop’ from 0 to 9 executes
the body of the loop 10 times. The fl owchart of the for
construct is given in Fig. 4.10.

TestExpr

T

F

stmT

Initialization

Updating

Figure 4.10 for construct fl ow chart

 It is to be noted that all four parts of the previous loops
are present in the for loop, although they are compressed
into one line. In general, a for loop can be written as an
equivalent while loop and vice versa.

The equivalence of bounded and unbounded loops

We should now be able to understand that the for, while
control fl ow statements are each closely related. To fully
understand this, however, one needs to interpret, that
the three ‘pieces’ of the for construct, are not always
initialization, condition, modifi cation.
 In general, a for loop can be written as an equivalent
while loop and vice versa. The for loop

for(initialization; TestExpr; updating)

{

 stmT;

}

is equivalent to the following while construct:

initialization;

while (TestExpr)

{

 stmT;

 updating;

}

The following example illustrates a for loop that prints
1, 2, 3, 4, 5.
 In both cases, we are expecting TestExpr to produce a
Boolean value, either true or false, as we need that truth
value to determine if our loops should ‘keep going’.
 Let us illustrate the similarities between ‘while’ and
‘for’ loop constructs an example which prints 1, 2, 3,
4, and 5.The algorithm for the above problem is given
below:

 1. START
 2. C ¨ 1

 3. PRINT C

 4. C ¨ C+1

 5. IF C<=5 THEN GO TO STEP 3

 6. STOP

 The C program corresponding to the problem can use
either “while” or “for” construct. The two versions, one
using “for” construct and another using “while” construct,
and their equivalence are shown below:

#include <stdio.h>

int main(void)

{

int c;

 for(c=1; c<=5; c++)

 {

 printf(“%d”, c);

 }

 return 0;

}

#include <stdio.h>

int main(void)

{

 int c;

 c=1;

 while(c<=5)

 {

 printf(“%d”, c);

 c++;

 }

 return 0;

}

Initialization
TestExpr

Updating

 To test the understanding of the while and for loops,
conversion of one to the other would be implemented.
Suppose, a while loop, given in the following illustration,
has to be converted to a well constructed for loop.

Control Statements 145
 fl oat C = 2.0;

 char chr = ‘F’;

 while(C > 0.01) {

 printf(“%f \n”,C);

 C /= 10;

 }

 To make this an easy conversion, note the four parts of
a loop.

 fl oat C = 2.0; /* initialization */

 char chr = ‘F’;

 while(C > 0.01) { /* test expression */

 printf(“%f \n”,C); /* body of the loop */

 C /= 10; /* updating */

 }

 Given such information, the transition to the for loop
is made. The for loop is

 fl oat C;

 char chr = ‘F’;

 for(C = 2.0; C > 0.01; C /= 10)

 {

 printf(“%f \n”,C);

 }

 There was a small trick in this case. Even though two
variables were declared and initialized, only one was used
in the while loop. Therefore, only that specifi c variable, C,
is initialized in the for loop.
 Now, consider the conversion of the following for loop
to its respective while loop.

int index;

int Total;

for(Total = 0, index = 0; index < 10; index += 1)

{

 if(index > 5)

 Total += index;

 else if(index < 5)

 Total -= index;

}

 Again, noting the four parts of the loop, the conversion
is given as follows:

int index = 0;

int Total = 0;

while(index < 10)

{

 if(index > 5) Total += index;

 else if(index < 5)

 Total –= index;

 index += 1;

}

 It must be emphasized that in a for construct, the
condition is tested before the statements contained in body
and updating are executed; it is possible that the body of
the loop is never executed or tested.
 The sequence of events that generate the iteration using
the for loop are as follows.

 1. Evaluate the initialization expression.
 2. If the value of the test expression is false, terminate

the loop.
 3. Execute the statement or blocks of statements.
 4. Evaluate the update expression.
 5. Go to step 2.

An execution cycle for a for construct is drawn to help
understand the concept.

 1

2

4

 for(initialization; TestExpr; updating)

 stmT; 3

 Here is a program that adds a sequence of integers.
Assume that the fi rst integer read with scanf() specifi es
the number of input values to be summed. The program
should read only one value each time scanf() is executed.
A typical input sequence might be

5 102 125 352 54 9

where 5 indicates that the subsequent fi ve values are to be
summed.

21 4

3

#include <stdio.h>

int main()

{

 int sum = 0, number, value, i;

146 Programming in C

 printf(“Enter no. of values to be processed: \n”);

 scanf(“%d”, &number);

 for(i = 1; i <= number; i++)

 {

 printf(“Enter a value: \n”);

 scanf(“%d”, &value);

 sum += value;

 }

 printf(“Sum of %d values is: %d\n”, number, sum);

 return 0;

}

 In general, how many times does the body of a for()
loop execute?
 (a) The following loop is executed (n-m)+1 times.

 for(i=m; i<=n; i++)
 ...

 (b) The following loop is executed (n-m) times.
 for(i=m; i<n; i++)
 ...

 (c) The following loop is executed (n-m)/x times.
 for(i=m; i<n; i+=x)
 ...

 Considering the above, the previous program may be
rewritten as follows:

#include <stdio.h>

int main()

{

 int sum = 0, number, value, i;

 printf(“Enter no. of values to be processed: \n”);

 scanf(“%d”, &number);

 for(i = 0; i < number; i++)

 {

 printf(“Enter a value: \n”);

 scanf(“%d”, &value);

 sum += value;

 }

 printf(“Sum of %d values is: %d\n”, number, sum);

 return 0;

}

 Now, let us calculate the factorial of a number given by
the user. The factorial of a positive integer n, written as n!,

is equal to the product of the positive integers from 1 to n.
The following is an example of a program.

int main()

{

 int n, c;

 long int f=1;

 printf(“\n Enter the number: ”);

 scanf(“%d”,&n);

 for(c=1;c<=n;++c)

 f*=c;

 printf(“\n Factorial is %ld”,f);

 return 0;

}

 It can be implemented in another way too. Here the
variable ‘c’ is not required. The alternate program is
shown as follows:

int main()

{

 int n;

 long int f=1;

 printf(“\n Enter the number: ”);

 scanf(“%d”,&n);

 for(;n>0;n–-)

 f*=n;

 printf(“\n Factorial is %ld”,f);

 return 0;

}

 The following program inputs a series of ten integer
numbers and determines and prints the largest of them.

#include <stdio.h>

int main()

{

 int counter = 2, number, max;

 printf(“Enter an integer number\n”);

 scanf(“%d”, &max);

 while(counter <= 10)

 {

 printf(“Enter an integer number\n”);

 scanf(“%d”, &number);

 if(number > max)

Control Statements 147
 max = number;

 counter++;

 }

 printf(“The maximum number is %d\n”, max);

 return 0;

}

 There must be no semicolon after a for statement or
it will lead to a different output. Consider the following
program.

#include <stdio.h>

int main()

{

 int c;

 for(c=1; c<=5; c++);

 printf(“%d”, c);

 return 0;

}

 A semicolon before the printf statement implies that
the loop only increments the value of c. No executable
statement is included in this for loop, i.e., there is no
statement in the statement block. The output will be 6, as
the loop continues up to c=5. When the value of c is 6, the
loop terminates as the test expression evaluates false.

Some variations of for loop

From a syntactic standpoint, all the three expressions
(initialization, test expression, and updating) need
not be present in a ‘for’ statement, though semicolon
must be present. However, the criteria and consequences
of an omission should be clearly understood.
 Any initialization statement can be used in the fi rst
part of the for loop. Multiple initializations should be
separated with a comma operator.

Example

 24. Print the sum of the series 1+2+3+4+... up to n terms.
Program 1

 #include <stdio.h>

 int main()

 {

 int c, s=0, n;

 printf(“\n Enter the No. of terms”);

 scanf(“%d”, &n);

 for(c=1; c<=n; c++)

 s+=c;

 printf(“\n Sum is %d”, s);

 return 0;

 }

 Program 2 Equivalent to Program 1

 #include <stdio.h>

 int main()

 {

 int c=1, s, n;

 printf(“\n Enter the No. of terms”);

 scanf(“%d”, &n);

 for(s=0; c<=n; c++)

 s+=c;

 printf(“\n Sum is %d”, s);

 return 0;

 }

 Program 3

 #include <stdio.h>

 int main()

 {

 int c, s, n;

 printf(“\n Enter the No. of terms”);

 scanf(“%d”, &n);

 for(c=1, s=0; c<=n; c++)

 s+=c;

 printf(“\n Sum is %d”, s);

 return 0;

 }

 ∑ If initialization is not required or is done before the
for loop, the initialization statement can be skipped
by giving only a semicolon. This is illustrated using
the previous program.

 #include <stdio.h>
 int main()
 {
 int c=1, s=0, n;
 printf(“\n Enter the No. of terms”);
 scanf(“%d”, &n);
 for(; c<=n; c++)
 s+=c;
 printf(“\n Sum is %d”, s);
 return 0;
 }

148 Programming in C

 ∑ Multiple conditions in the test expression must be
connected using the logical operator && or ||.

 ∑ In the third expression of the for statement, the
increment or decrement statement may contain any
expression which involves unary and/or assignment
operator. It is not true that increment or decrement
statements must be used with ++ or – – only. This is
illustrated in the following example where the sum of
digits of a given number has to be found.

Example

 25. #include <stdio.h>

 int main()

 {

 int n, s=0, r;

 printf(“\n Enter the Number”);

 scanf(“%d”, &n);

 for(;n>0;n/=10)

 {

 r=n%10;

 s=s+r;

 }

 Printf(“\n Sum of digits %d”, s);

 return 0;

 }

 ∑ If the increment or decrement is done within the
statement block, then the third part can be skipped.
The following is the equivalent variation of the
program in Example 28 (sum of digits of a number).

 #include <stdio.h>

 int main()

 {

 int n, s=0, r;

 printf(“\n Enter the Number”);

 scanf(“%d”, &n);

 for(;n>0;)

 {

 r=n%10;

 s=s+r;

 n=n/10;

 }

 printf(“Sum of digits %d”, s);

 return 0;

 }

 ∑ Multiple statements can be written in the third part
of the for statement with the help of the comma
operator. The preceding program can be rewritten as
follows:

 #include <stdio.h>

 int main()

 {

 int n, s=0, r;

 printf(“\n Enter the Number”);

 scanf(“%d”, &n);

 for(;n>0;s+=r, n=n/10)

 r=n%10;

 printf(“\n Sum of digits %d”, s);

 return 0;

 }

 It is to be noted that comma operator associates from
the left to right. The code

 for(s=0,i=1;i<=n;++i)

 s+=i;

 can be written as

 for(s=0,i=1;i<=n; s+=i, ++i);

 but not as

 for(s=0,i=1;i<=n; ++i, s+=i);

 Because, in the comma expression ++i, s+=i, the
expression ++i is evaluated fi rst and this will cause s
to have a different value.

 ∑ If ++ or – – operators are used in the increment or
decrement part of the for loop, pre-increment or
post-increment and post-decrement or pre-decrement
has the same effect. So, both the following codes
yield the same output 1, 2, 3, 4, 5.

 Version 1
 #include <stdio.h>

 int main()

 {

 int c;

 for(c=1; c<=5; c++)

 printf(“%d”, c);

 return 0;

 }

Control Statements 149

 Version 2
 #include <stdio.h>

 int main()

 {

 int c;

 for(c=1; c<=5; ++c)

 printf(“%d”, c);

 return 0;

 }

 But the post- and pre-operations play a different role
when they are specifi ed in the test_expression.

#include <stdio.h>

int main()

{

 int c;

 for(c=0; c++; c++)

 printf(“%d”, c);

 return 0;

}

Output: Prints nothing as c has been initialized as zero and
the post-increment of c makes a difference. The condition
is evaluated fi rst, followed by increment. The condition
is evaluated false as c contains zero at that moment. The
printf() statement will not be executed as the condition
becomes false.

#include <stdio.h>

int main()

{

 int c;

 for(c=0;++c; ++c)

 printf(“%d”, c);

return 0;

}

Output: This is an infi nite loop. As the fi rst pre-increment
takes place, it results in c=1. Then the test expression
evaluates to 1 as c contains a non-zero value. Thus the
loop continues.
 ∑ It is possible to have a variable increase by a value

other than one. For example, the following loop
would iterate four times with the variable num taking
on the values 1, 4, 7, and 10. The step expression
adds 3 to the value of num on each iteration.

 for(num = 1; num <= 10; num = num + 3)

 It is a common error for students to use the following
for statement, which causes a compilation error:

 for(num = 1; num <= 9 ; num + 3)

 Consider the following program where the increment
operator is used at a place other than the third part of
the for statement.

 #include <stdio.h>

 int main()

 {

 int c;

 for(c=1; c<=5;)

 printf(“%d”, c++);

 return 0;

 }

 Output: 12345

 #include <stdio.h>

 int main()

 {

 int c;

 for(c=1; c<=5;)

 printf(“%d”, ++c);

 return 0;

 }

 Output: 23456

 ∑ Any or all of the three expressions in a for loop can
be omitted, but the two semicolons must remain.
When all three expressions in a for loop are omitted,
it acts as a infi nite loop. For example,

 for(;;)

 {

 printf(“hello\n”);

 }

 This loop will run forever. Although there are
some programming tasks, such as operating system
command processors, which require an infi nite loop,
most ‘infi nite loops’ are really just loops with special
termination requirements.

 ∑ Often, the variable that controls a for loop is needed
only for the purposes of the loop and is not used
elsewhere. When this is the case, it is possible to
declare the variable inside the initialization portion
of the for loop in modern compiler. Some compilers,

150 Programming in C

may, equivalently, use the while structure to represent
these for statements.

 x = 1;

 while(x < 100)

 {

 ...

 ++x; /* This can be replaced with x++ or x += 1 or*/

 /* x = x + 1 */

 }

 2. What would be the output from the given program?
 int main()

 {

 int i=9;

 for(i––; i––; i––)

 printf(“%d”, i);

 return 0;

 }

 Output: 7 5 3 1

 3. What would be the output from the given program?
 int main()

 {

 int i;

 for(i=5; ++i; i–=3)

 printf(“%d”, i);

 return 0;

 }

 Output: 6 4 2

 4. What would be the output from the given program?
 int main()

 {

 for(;printf(“C”););

 return 0;

 }

 Output: This is an infi nite loop and it will repeatedly
print ‘C’.

 5. Examine the given program and predict the output.
 int main()

 {

 int i;

 for(i=5; --i;)

however, do not. You will need to check this feature in
the environment you are using. Consider the following
program which print the sum of the following series

 #include <stdio.h>

 int main()

 {

 int s=0, n;

 printf(“\n Enter the No. of terms”);

 scanf(“%d”, &n);

 for(int c=1; c<=n; c++)
Here c is declared
inside the for loop

 s+=c;

 printf(“\n Sum is %d”, s);

 return 0;

 }

 The variable c is only known throughout the execution
of the for loop (it’s called a local variable) and cannot
be accessed outside the loop. the ANSI/ISO Standard
restricts the variable to the scope of the for loop

Points to Note

 ∑ If the test expression is omitted, however, it will be
assumed to have a permanent value of true; thus the
loop will continue indefi nitely unless it is terminated
by some other means, such as a break or a return
statement (see Section 4.8).

 ∑ Multiple initializations should be separated with a
comma operator.

 ∑ Multiple relational expressions in the test expression
must be connected using logical operators && or ||.

 ∑ Do not use a fl oating-point variable as the control
variable because fl oating-point values are sometimes
approximated and may result in imprecise counter
values and inaccurate test for termination.

Check Your Progress

 1. Is there any difference between the following for
statements? Explain.

 (a) for(x = 1; x < 100; x++)

 (b) for(x = 1; x < 100; ++x)

 (c) for(x = 1; x < 100; x = x + 1)

 (d) for(x = 1; x < 100; x += 1)

 Output: There is no difference between these for
statements. This is because x is incremented in the
same manner at the end of the for structure. One

Control Statements 151
 printf(“%d”,i);

 return 0;

 }

 Output: 4321

 6. What output is obtained from the given program?
 int main()

 {

 int i=3;

 for(i--; i<7; i=7)

 printf(“%d”,i++);

 return 0;

 }

 Output: 2

 7. Read the program code and guess what the output
could be.

 int main()

 {

 int i;

 for(i=–10; !i; i++);

 printf(“%d”,–i);

 return 0;

 }

 Output: No output

4.5.3 do-while Construct

Another construct that is very closely related to the while
construct is the do-while construct.
 The do keyword is placed on a line of code at the top
of the loop. A block of statements follows it with a test
expression after the keyword while, at the bottom of the
loop. Figure 4.11 illustrates this. The form of this loop
construct is as follows:

do

{

 stmT; /* body of statements would be placed here*/

}while(TestExpr);

 The test expression TestExpr must evaluate to ‘true’ for
the do-while loop to iterate after the fi rst time. StmT may
be a single statement or a block of statements. The main
difference between the while and do-while loop is the
placement of the test expression. Since the do-while has

the test expression at the end of the loop, it is guaranteed
that the body of the loop will execute at least once.
 In the while loop, it is possible to come upon a condition
that is not satisfi ed and hence does not enter the loop. What
are the reasons of placing the condition at the end of the
loop in terms of coding? They are few but important. The
order of the statements may have to change to refl ect the
effect of the condition being at the end.
 Consider the simple while loop illustrated in Example
22. It can be rewritten as a do-while loop as follows:

 #include <stdio.h>
 int main()
 {
 int x = 1;
 int count = 0;
 do {
 scanf(“%d”, &x);
 if(x >= 0)
 count += 1;
 } while(x >= 0);
 return 0;
 }

Notice that an extra if statement was added to the loop.

TestExpr

T

F

stmT

Initialization

Updating

Figure 4.11 The C do-while loop

Explanation: Consider the case when the fi rst number
entered is a negative number. Without the if statement, the
count would be 1. Beware of the ramifi cations of allowing

152 Programming in C

at least one execution of the loop when using the do-while
loop. The following examples will help understand this
loop.

#include <stdio.h>

int main()

{

 int c=5;

 while(c<5)

 {

 printf(“ Hello”);

 c++;

 }

 return 0;

}

Output: The program will print nothing. As the condition
c<5 fails, neither the printf() statement nor C++ will be
executed.

#include <stdio.h>

int main()

{

 int c=5;

 do

 {

 printf(“Hello”);

 c++;

 } while(c<5);

 return 0;

}

Output: Hello

 Here the statements within the loop are executed at
least once.
 Suppose, one wants to write a code that reads in a
positive integer only. The following code will serve the
purpose.

do

{

 printf(“\n INPUT A POSITIVE INTEGER: ”);

 scanf(“%d”,&n);

 if(error=(n<=0))

 printf(“\n ERROR Do it again\n”);

}while(error);

while and do-while Loop

Like a while loop, a do-while loop is considered to be an
indeterminate or unbound loop. The important difference
between the while and do-while loops lies with the
question ‘when the loop controlling test expression is
checked?’. A do-while loop is considered to be a post-
test loop, since the test expression is located after the
body of the loop and after the while keyword. A do-while
loop is guaranteed to execute at least once even if the test
expression evaluates to false.
 With a while statement, the Boolean expression is
checked before the loop body is executed. If the test
expression evaluates to false, the body is not executed
at all.

Points to Note

With a do-while statement, the body of the loop is executed
fi rst and the test expression is checked after the loop
body is executed. Thus, the do-while statement always
executes the loop body at least once.

Example

 26. Euler’s number e is used as the base of natural logarithms. It may
be approximated using the following formula:

1 1 1 1 1 1
...

0! 1! 2! 3! (1)! !
e

n n
= + + + + + +

-

 where n is suffi ciently large. Write a program that approximates e
using a loop that terminates when the difference between the two
successive values of e is less than 0.0000001.

 #include <stdio.h>

 int main()

 {

 double term = 1.0;

 double sum = 1.0;

 int n = 0;

 while (term >= 0.0000001)

 {

 n++;

 term = term/n;

 sum = sum + term;

 }

 printf(“\n Approximate value of e is: %lf ”,sum);

 return 0;

 }

Control Statements 153

Check Your Progress

 1. How many times will the following while-loop
repeat, i.e., how many xs are printed?

 int i = 5; while(i–– > 0) printf(“x”);

 Output: 5

 2. How many xs are printed by the following code?

 int i = 5;

 while(i-- > 0)

 printf(“x”);

 printf(“x”);

 Output: 6

 3. What does the following do-while loop print?
 int i = 0; char c = ‘0’;

 do {

 putchar(c + i);

 ++i;

 } while(i < 5);

 Output: 01234

 4. int main()
 {

 fl oat s=1.0;

 int a=4;

 while(a<=10)

 {

 s = a*1.2;

 printf(“%f”,s);

 }

 return 0;

 }

 Output: It never ends because ‘a’ is always 4, an
infi nite loop!

 5. What will be the output of the following program?
 # defi ne infi niteloop while(1)

 int main()

 {

 infi niteloop;

 printf(“DONE”);

 return 0;

 }

 Output: None
 Explanation: The infi niteloop in main ends with

‘;’. So the loop will not reach an end; and the DONE too
will not print.

4.6 WHICH LOOP SHOULD BE USED?
A question that must be asked is why are there while,
do-while, and for loops? Is it a matter of style?
 The while and for constructs are pre-test loops and
the do-while construct is post-test loop. The while and
do-while loops are event-controlled whereas the for loop
is counter-controlled. The for loop is appropriate when
one knows in advance how many times the loop will be
executed. The while and do-while loops are used when it
is not known in advance when the loop should terminate;
the while loop is used when one may not want to execute
the loop body even once, and the do-while loop when one
wants to execute the loop body at least once. These criteria
are somewhat arbitrary and there is no hard-and-fast rule
regarding which type of loop should be used.

Points to Note

When using loops, always ask

 ∑ under what condition(s) will the loop body be executed?

 ∑ under what condition(s) will the loop terminate?

 ∑ what is the value of the loop control variable(s) when
the loop halts?

Some methods of controlling repetition in a program are
being discussed in the following subsections. There are
three ways of doing this: sentinel values, prime reads, and
counters.

4.6.1 Using Sentinel Values

A sentinel value is a value that is not a legitimate data
value for a particular problem, but is of a proper type, that
is used to check for a ‘stopping’ value. It is like a fl ag or an
indicator. There may be times when users of the program
must be allowed to enter as much information as they want
to about something. When the user has fi nished entering
all the information, the user can enter a sentinel value that
would let the program know that the user has fi nished with
inputting information.

Examples

 27. [–1] may be used as a sentinel value.
 int main()
 {
 int age;
 printf(“\n Enter an age(–1 to stop):”);

154 Programming in C

 scanf(“%d”,&age);

 while(age != –1)

 { . . .

 printf(“\n Enter an age(–1 to stop):”);

 scanf(“%d”,&age);

 }

 return 0;

 }

 28. [-99] may also be used as a sentinel value. Read a list of text
scores and calculate their average. An input of -99 for a score
denotes end-of-data for the user.

 #include <stdio.h>

 int main()

 {

 int n, sum, score;

 fl oat average;

 sum = 0;

 n = 0;

 printf(“\n Enter a test score(–99 to quit):”);

 scanf(“%d”, &score);

 while(score != –99)

 {

 sum += score;

 n++;

 printf(“\n Enter a test score(–99 to quit):”);

 scanf(“%d”,&score);

 }

 average = (fl oat)sum/ n;

 printf(“\n The average is %f”, average);

 return 0;

 }

4.6.2 Using Prime Read

Another method of controlling repetition is to use a prime
read. A prime read and sentinel value often go hand in
hand. A prime read is a data input before the loop statement
that allows the fi rst actual data value to be entered so that
it can be checked in the loop statement. The variable that
is inputted by the user and being tested by the expression
in the loop is the prime read; the value of the prime read is
what one calls a sentinel value [see Section 4.6.1].

Examples

 29. [age] is used as a prime read.

 #include <stdio.h>

 int main()

 {

 int age;

 printf(“\n Enter an age(–1 to stop):”);

 scanf(“%d”,&age);

 while(age != –1)

 {
 . . .

 printf(“\n Enter an age(–1 to stop):”);

 scanf(“%d”,&age);
 }
 . . .

 return 0;

 }

 30. [score] is used as a prime read. Read a list of text scores and
calculate their average. An input of -99 for a score denotes end-
of-data for the user.

 #include <stdio.h>

 int main()

 {

 int n, sum, score;

 fl oat average;

 sum = 0;

 n = 0;

 printf(“\n Enter a test score(–99 to quit):”);

 scanf(“%d”, &score);

 while(score != –99)

 {

 sum += score;

 n++;

 printf(“\n Enter a test score(–99 to quit):”);

 scanf(“%d”, &score);

 }

 average = (fl oat)sum / n;

 printf(“\n The average is %f”, average);

 return 0;

 }

Control Statements 155

 EOF can also be used in prime read. Consider the
following program.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int n, sum, score;

 fl oat average;

 sum = 0;

 n = 0;

 printf(“\n Enter test scores one by one(EOF to
quit): ”);

 while(scanf(“%d”, &score) != EOF)

 {

 sum += score;

 n++;

 }

 average = (fl oat)sum / n;

 printf(“\n The average is %f”, average);

 return 0;

}

4.6.3 Using Counter

Yet another method for controlling repetition during the
execution of a program is by using a counter. Using a
counter requires knowledge of the exact number of times
something needs to be repeated. For example, if a user of
the program had to be instructed to input ten numbers, a
counter variable could be set to 0, and then a loop set up to
continue cycles while the value of the counter is less than
ten (this loop would equal ten cycles: 0, 1, 2, 9).

Examples

 31. Write a section of code that would output the numbers from 1 to
10.

 #include <stdio.h>

 int main()

 {

 int count;

 count = 0;

 int numTimesNeeded = 10;

 while(count < numTimesNeeded)

 {

 printf(“\n%d”, (count + 1)) ;

 count++;

 }

 return 0;

 }

 32. Write a section of code that will allow the user to input ten test
scores in order to fi nd the average of the scores.

 #include <stdio.h>

 int main()

 {

 int count, score;

 fl oat average;

 count = 0;

 int numTimesNeeded = 10;

 int total = 0;

 while(count < numTimesNeeded)

 {

 printf(“\n Enter a test score”);

 scanf(“%d”, &score);

 total += score;

 count++;

 }

 average = (fl oat)total/ numTimesNeeded;

 printf(“\n The average is %f” , average);

 return 0;

 }

4.7 GOTO STATEMENT

The goto statement is another type of control statement
supported by C. The control is unconditionally transferred
to the statement associated with the label specifi ed in the
goto statement. The form of a goto statement is

goto label_name;

 Because the goto statement can interfere with the
normal sequence of processing, it makes a program more
diffi cult to read and maintain. Often, a break statement, a
continue statement, or a function call can eliminate the
need for a goto statement.
 A statement label is defi ned in exactly the same way as
a variable name, which is a sequence of letters and digits,
the fi rst of which must be a letter. The statement label

156 Programming in C

must be followed by a colon (:) just like a CASE label in
a SWITCH. Like other statements, the goto statement ends
with a semicolon.
Some examples of goto statements are in order:

Example

 33. The following program is used to find the factorial of a
number.

 #include <stdio.h>
 int main()
 {
 int n, c;
 long int f=1;
 printf(“\n Enter the number:”);
 scanf(“%d”,&n);
 if(n<0)
 goto end;
 for(c=1; c<=n; c++)
 f*=c;
 printf(“\n FACTORIAL IS %ld”, f);
 end:
 return 0;
 }

 The goto statement can be used for looping as follows. Here the
goto statement is used in conjunction with an if statement.

 #include <stdio.h>

 int main()

 {

 int n, c;

 long int f=1;

 printf(“\n Enter the number:”);

 scanf(“%d”,&n);

 if(n<0)

 goto end;

 c=1;

 loop:

 f=f*c;

 c++;

 if(c<=n)

 goto loop;

 printf(“\n FACTORIAL IS %ld”, f);

 end:

 return 0;

 }

 In theory it’s always possible to avoid using the goto
statement, but there are one or two instances in which it’s
a useful option. But the goto statement is not considered
a good programming statement when overused. Because
the goto statement can interfere with the normal sequence
of processing, it makes a program more diffi cult to read
and maintain. When too many goto statement are used
in a program then the program branches all over the
place, it becomes very diffi cult to follow. Some authors
call programs with many goto statements ‘spaghetti
code’. So it’s best to avoid the goto statement as far as
possible. Often, a break statement, a continue statement,
or a function call can eliminate the need for a goto
statement.

4.8 SPECIAL CONTROL STATEMENTS

There are certain control statements, which terminate
either a loop or a function. There are three such statements
namely: return, break, and continue.

 return statements The return type is used in the defi ni-
tion of a function to set its returned value and the return
statement is used to terminate execution of the function.
The return statement has two forms. Functions with
return type void use the following form:

return;

 Functions with non-void return type use the following
form:

return expression;

 Here, expression yields the desired return value. This
value must be convertible to the return type declared for
the function. This will be explained in more detail in the
chapter on functions.

 break statements The break statement is used in loop
constructs such as for, while and do-while, and switch
statement to terminate execution of the loop or switch
statement. The form of a break statement is

break;

 After a break statement is executed within a loop
or a case in a switch construct, execution proceeds to
the statement that follows the loop construct or switch
statement. The following is an example of the use of a
break statement.

Control Statements 157
 #include <stdio.h>

 int main()

 {

 int c=1;

 while(c<=5)

 {

 if(c==3)

 break;

 printf(“\t %d”, c);

 c++;

 }

 return 0;

 }

Or
 #include <stdio.h>

 int main()

 {

 int c=1;

 for(;c<=5;c++)

 {

 if(c==3)

 break;

 printf(“\t %d”, c);

 }

 return 0;

 }

The program will print 1 2 instead of 1 2 3 4 5.
The statement while(1) leads to an infi nite loop but by
using the break statement it can be made a fi nite loop.
This is illustrated in the following example.

Example

 34. Program 1
 #include <stdio.h>
 int main()
 {
 int c=1;
 while(1)
 {
 printf(“\t %d”, c);
 c++;
 }
 return 0;
 }

 It is an infi nite loop. It will print
 1 2 3 4...

 Program 2

 #include <stdio.h>

 int main()

 {

 int c=1;

 while(1) Note this

 {

 if(c==5)

 break;

 printf(“\t %d”, c);

 c++;

 }

 return 0;

 }

 Or

 #include <stdio.h>

 int main()

 {

 int c;

 for(;;) Note this

 {

 if(c==5)

 break;

 printf(“ \t %d”, c);

 c++;

 }

 return 0;

 }

 It is a fi nite loop. It will print
 1 2 3 4

 A break statement may be used to check whether a number is a
prime number or not. The following program illustrates this.

#include <stdio.h>

int main()

{

 int n, r, d=2;

 printf(“\n Enter the number :”);

 scanf(“%d”, &n);

 r = n%d;

158 Programming in C

 while(d <= n/2)

 {

 r = 1;

 if(r == 0)

 break;

 d++;

 }

 if(r==0)

 printf(“\n IT IS NOT A PRIME NUMBER”);

 else

 printf(“\n IT IS A PRIME NUMBER”);

 return 0;

}

 A break used in a switch statement will affect only that switch, and
not the loop the switch happens to be in.

 continue statements The continue statement does not
terminate the loop but goes to the test expression in the
while and do-while statements and then goes to the
updating expression in a for statement. The form of a
continue statement is

continue;

 The jumps by continue in different pre-test and post-
test loops are shown here.

while(testexpr) do
 { {
 ………………………… …………………………..
 ………………………… …………………………..
 continue; continue;

 ………………………….. …………………………..
 ………………………….. …………………………..
 } }while(TestExpr);

 for(initialization; TestExpr; updating)
 {

 …………………………
 …………………………
 continue;
 …………………………..
 …………………………..
 }

 The difference between break and continue statements
is summarized in Table 4.8.

Table 4.8 Break and continue statements

Break Continue

It helps to make an early
exit from the block where it
appears.

It helps in avoiding the remaining
statements in a current iteration
of the loop and continuing with
the next iteration

It can be used in all control
statements including switch
construct.

It can be used only in loop
constructs.

 This can be illustrated by the following programs.

Program code with break
#include <stdio.h>

int main()

{

 int c=1;

 while(c<=5)

 {

 if(c==3)

 break;

 printf(“\t %d”, c);

 c++;

 }

 return 0;

}

Output: 1 2

Program code with continue

#include <stdio.h>

int main()

{

 int c=1;

 while(c<=5)

 {

 if(c==3)

 continue;

 printf(“\t %d”, c);

 c++;

 }

 return 0;

}

Output: 1 2 4 5

Control Statements 159

4.9 NESTED LOOPS
A nested loop refers to a loop that is contained within
another loop. If the program has to repeat a loop more than
once, it is a good candidate for a nested loop. In nested
loops, the inside loop (or loops) executes completely before
the outside loop’s next iteration. It must be remembered
that each inner loop should be enclosed completely in the
outer loop; overlapping loops are not allowed. Thus, the
following is not allowed.

for(count = 1; count < 100; count++)

{

 do

 {

 /* the do...while loop */

 } /* end of for loop */

}while(x != 0);

 If the do-while loop is placed entirely in the for loop,
there is no problem. For example,

for(count = 1; count < 100; count++)

{

 do

 {

 /* the do...while loop */

 }while(x != 0);

} /* end of for loop */

 An example of the nested loop is to print the
following:

*

* *

* * *

* * * *

 In each row, there are several ‘ *’ to be printed. In row
one, one star has to be printed; in row two, two stars have
to be printed; in row three, three stars have to be printed,
and so on. So an outer loop is required to keep track of the
number of rows to be printed and in each iteration of the
outer loop, an inner loop is required to keep track of the
printing of stars that corresponds to the row. The program
will then read as follows:

#include <stdio.h>

int main()

{

 int row,col;

 for(row=1;row<=4;++row)

 {

 for(col=1;col<=row;++col)

 printf(“* \t”);

 printf(“\n”);

 }

 return 0;

}

If the following output has to be obtained on the screen
1

2 2

3 3 3

4 4 4 4

then the corresponding program will be

#include <stdio.h>

int main()

{

 int row,col;

 for(row=1;row<=4;++row)

 {

 for(col=1;col<=row;++col)

 printf(“%d \t”, row);

 printf(“\n”);

 }

 return 0;

}

The variant of the preceding program is

#include <stdio.h>

int main()

{

 int row,col, k=1;

 for(row=1;row<=4;++row)

 {

 for(col=1;col<=row;++col)

 printf(“%d \t”, k++);

 printf(“\n”);

 }

 return 0;

}

160 Programming in C

It will print the following on the screen.

1

2 3

4 5 6

7 8 9 10

 When nested loops are used, remember that changes
made in the inner loop might affect the outer loop as well.
Note, however, that the inner loop might be independent
of any variables in the outer loop; in the above examples,
they are not.
 Good indenting style makes a code with nested loops
easier to read. Each level of loop should be indented one
step further than the last level. This clearly identifi es the
code associated with each loop.
 Let us take a look at a trace of two nested loops. In order
to keep the trace manageable, the number of iterations has
been shortened.

for(num2 = 0; num2 <= 3; num2++)
{
 for(num1 = 0; num1 <= 2; num1++)
 {
 printf(“\n %d %d”,num2,num1);
 }
}

Memory Screen

num 2 num l
0 0

1

2

3 (end)
1 0

1
2

3 (end)
2 0

1

2

3 (end)
3 0

1

2

3 (end)
4 (end)

 0 0

 0 1

 0 2

 1 0
 1 1

 1 2

 2 0

 2 1

 2 2

 3 0
 3 1

 3 2

Remember that, in the memory, for loops will register a value
one beyond (or the step beyond) the requested ending value in
order to disengage the loop.

 Here is an example of nested loops which prints out a
multiplication table.

Example

 35. #include <stdio.h>
 int main ()
 {
 int i,j;
 for (i = 1; i <= 10; i++)
 {
 for (j = 1; j <= 10; j++)
 {
 printf (“%5d”,i * j);
 }
 printf (“\n”);
 }
 return 0;
 }

 Output:

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

 Note that after the inner for loop (at the end of each
iteration of the outer for loop), a ‘\n’ is used which
causes the next line of the output to be printed in a fresh
line.
 If a break statement is encountered in a nested loop, the
control of the program jumps to the fi rst statement after the
innermost loop. For instance, to print the diagonal lower
half of the multiplication table (below the diagonal line
from the top left to the bottom right), for each row(denoted
by i here), once the column(denoted by j) equals the row,
the rest of the inner for loop has to be skipped and the
line that prints the newline character should be executed.
Similarly, the next row has to be printed. The output would
be as follows.

Control Statements 161

 1
 2 4
 3 6 9
 4 8 12 16
 5 10 15 20 25
 6 12 18 24 30 36
 7 14 21 28 35 42 49
 8 16 24 32 40 48 56 64
 9 18 27 36 45 54 63 72 81
 10 20 30 40 50 60 70 80 90 100

 The C program to achieve the preceding output is as
follows.

#include <stdio.h>

int main()

{

 int i,j;

 for (i = 1; i <= 10; i++)

 {

 for (j = 1; j <= 10; j++)

 {

 printf (“%5d”,i * j);

 if(i==j)

 break;

 }

 printf (“\n”);

 }

 return 0;

}

 To put everything together as well as demonstrate the
use of the break statement, here is a program for printing
prime numbers between 1 and 100.

#include <stdio.h>

#include <math.h>

int main()

{

int i, j;

printf(“%d\n”, 2);

for(i = 3; i <= 100; ++i)

 {

 for(j = 2; j < i; ++j)

 {

 if(i % j == 0)

 break;

 if(j > sqrt(i))

 {

 printf(“%d\n”, i);

 break;

 }

 }

 }

 return 0;

}

 The outer loop steps the variable ‘i’ through the
numbers from 3 to 10 0; the code tests to see if each
number has any divisors other than 1 and itself. The trial
divisor ‘j’ increments from 2 to ‘i’. ‘j’ is a divisor of ‘i’
if the remainder of ‘i’ divided by ‘j’ is 0, so the code uses
C’s ‘remainder’ or ‘modulus’ operator % to make this test.
Remember that i % j gives the remainder when ‘i’ is
divided by ‘j’.
 If the program fi nds a divisor, it uses break to come
out of the inner loop, without printing anything. But if it
evaluates that ‘j’ has risen higher than the square root of
‘i’, without its having found any divisors, then ‘i’ must
not have any divisors. Therefore, ‘i’ is prime, and its value
is printed. Once it has been determined that ‘i’ is prime
by noticing that j > sqrt(i), there is no need to try the
other trial divisors. Therefore, a second break statement
can be used to break out of the loop in that case, too. The
following program is a simplifi ed form of the previous
program.

#include <stdio.h>

#include <math.h>

main()

{

 int i, j,r;

 for(i = 2; i <= 100; ++i)

 {

 r=1;

 for(j = 2; j <= sqrt(i); ++j)

 {

 r=i%j;

 if(r == 0)

 break;

 }

 if(r!=0)

 printf(“%d\n”, i);

 }

}

162 Programming in C

 Nested loops and the goto statement

Occasionally it is needed to come out of all the nested
loops from the innermost loop and then continue with
the statement following the outermost loop. A break
statement in the innermost loop will only break out of
that loop, and execution will continue with the loop which
is the immediate outer loop. To escape the nested loops
completely using break statements therefore requires quite
complicated logic to break out of each level until you
escape the outermost loop. This is one situation in which
the goto can be very useful (as shown below) because it
provides a way to avoid all the complicated logic.
Consider the following code segment:

for (i = 0; i < n; ++i)

 for (j = 0; j < m; ++j)

 for (k = 0; k < s; ++k)

 {

 scanf(“%d”, &n);

 if (n == 0)

 goto GoOut;

 x= n*(i+j+k)

 … … … … … … … … … … … … … … .

 … … … … … … … … … … … … … … .

 }

GoOut:

A naive attempt is as follows:

for (done = 0, i = 0; !done && i < n; ++i)

 for (j = 0; !done && j < m; ++j)

 for (k = 0; !done && k < s; ++k)

 {

 scanf(“%d”, &n);

 if (n == 0)

 done = 1;

 x= n*(i+j+k)

 … … … … … … … … … … … … … … .

 … … … … … … … … … … … … … … .

 }

 C89 specifi es that at least 15 levels of nesting must be
supported by the compiler. C99 raises this limit to 127. In
practice, most compilers allow substantially more levels.
However, nesting beyond a few levels is seldom necessary,
and excessive nesting can quickly confuse the meaning of
an algorithm.

Common programming errors

 ∑ Writing expressions like a<b<c or a==b==c etc.
 These expressions are legal in C but do not have

meaning that might be expected. For example, in
a<b<c, the operator < is left associative, this expression
is equivalent to (a<b) < c.

 ∑ Use of = instead of ==
 a == b and a = b are not similar as == is a test for

equality a = b is an assignment operator. Be careful
when writing the equality operator.

 ∑ Forgetting to use braces for compound statement
 If the number of statements to be executed is more

than one i.e. compound statement and those statements
are to be executed if the test expression is true for
once (if used with if...else) or repeatedly (if used
with while or for or do-while), then the compound
statement must be enclosed within braces.

 ∑ Dangling else
 An else is always associated with the closest un-

matched if. If this is not the wanted branching im-
pose the proper association between if and else by
means of braces.One should be careful when framing
if-else-if ladder.

 ∑ Use of semicolon in loop
 Also, remember not to put a semicolon after the close

parenthesis at the end of the for loop (this immediately
ends the loop). As an illustration the following code
segment will print 12345.

 for (int c = 1; c <= 5; ++c)
 printf(“%d”,c);

 But the following code would print 6.

 for (int c = 1; c <= 5; ++c);
 printf(“%d”,c);

 This same sort of problem can arise with a while
loop. Be careful not to place a semicolon after the
closing parenthesis that encloses the test expression
at the start of a while loop. A do-while loop has just
the opposite problem. You must remember always to
end a do-while loop with a semicolon.

 ∑ Floating point equality
 Do not use the equality operator with a fl oating point

numbers. When equality of fl oating point values is

Control Statements 163

desired it is better to require that the absolute value
of the difference between operands be less than some
extremely small value’.. When it is needed to test for
equality such as a == b use

 if(fabs(a-b) < 0.000001)

 where the value 0.000001 can be altered to any
other acceptably small value.Thus, if the difference
between the two operands is less than 0.000001 (or
any other user selected amount), the two operands are
considered essentially equal.

SUMMARY

A statement is a syntactic construction that performs an action when
a program is executed. It can alter the value of variables, generate
output, or process input. In C, any sequence of statements can be
grouped together to function as a syntactically equivalent single
statement by enclosing the sequence in braces. These groupings are
called statement blocks, which mean a fi nal semicolon after the right
brace is not needed.

The program statements in C fall into three general types:
assignment, input/output, and control. C has two types of control
structures: selection (decision) and repetition (loops). The decision
control constructs are of two types: conditional and unconditional.
The conditional control constructs are if, if-else, if-else-if,
and switch. The unconditional control constructs are break,
continue, and goto. The loop control constructs are for, while,
and do-while. Relational and logical operators are used to specify
test conditions used in the control constructs of C. The test conditions
give shape to test expressions, which are evaluated to give a value of
zero or non-zero, irrespective of its sign. In C, the zero value is taken
as false and any non-zero value, either positive or negative, is taken
as true.

One-way decisions are handled with an if statement that either
does some particular thing or does nothing at all. The decision is
based on a test expression that either evaluates to true or false. Two-
way decisions are handled with if-else statements that either do
one particular thing or do another. Similar to one-way decisions, the
decision is based on a test expression. Multi-way decision statements
use if-else-if, nested if, or switch statements. They are
all used to evaluate a test expression that can have several possible
values selecting different actions.

The while statement is a pre-test loop declaration construct. This
is a top-driven loop. The condition is tested before the execution of the
code in the body of the loop. It is tested before the body is executed the
very fi rst time and if it is false, the body of the loop will not be executed
at all. So the loop may execute zero times. A while loop is considered
to be an indeterminate or indefi nite loop because it is usually only at run
time that it can be determined how many times it will iterate.

A loop formed by using the for statement is generally called a
determinate or defi nite loop because the programmer knows exactly
how many times it will repeat. The number of repetitions can be
determined mathematically by manually checking the logic of the loop.

A do-while loop is considered to be a bottom-checking loop since
the control expression is located after the body of the loop and after the
while keyword. A do-while loop is guaranteed to execute at least
once even if the control expression evaluates to false.

A goto statement causes control to be transferred unconditionally
to the statement associated with the label specifi ed in the statement.
There are some special statements such as break, return, and
continue that are used with the control constructs. The break
statement is used in loop constructs, such as for, while, and do-
while, and switch statement to terminate execution of the loop or
switch statement.

The return statement has two forms. In one instance, it is used in
the defi nition of a function to set its returned value and in other instance
it is used to terminate the execution of the function. The continue
statement is used in while, for, or do-while loops to terminate
an iteration of the loop.

A nested loop refers to a loop that is contained within another
loop. It must be remembered that each inner loop should be enclosed
completely in the outer loop; overlapping loops are not allowed.

KEY-TERMS

Block Any sequence of statements can be grouped together to function
as a syntactically equivalent single statement by enclosing the sequence
in braces.

Boolean expression An expression that evaluates to either true or false.

Loop A programming construct in which a set of statements in a

computer program can be executed repeatedly.

Sentinel A sentinel value is a value that is not a legitimate data value
for a particular problem, but is of a proper type, that is used to check
for a ‘stopping’ value.

Spaghetti code Programs with many goto statements.

164 Programming in C

FREQUENTLY ASKED QUESTIONS

1. Is the relational expression a < b < c legal in C?
 Yes. It is legal but does not have the meaning that might be expected.
Since the operator < is left associative, this expression is equivalent
to (a < b) < c. The result from the evaluation of these expression
would either be 0 or 1 depending on the values of a, b and c.

2. There is no logical exclusive OR operator in C; can it be
simulated by anyway?

 The result of the logical exclusive OR operation on two integers is true
if and only if one operand (but not both) is true. It can be simulated by
the following expression.

 (a||b) && !(a && b)

 where a and b are both of type int.

3. The fl oating point numbers are seldom equal to required value
or variable; then how can two fl oating point values or variables be
tested for equality?

 The following code segment may be used.

 fl oat a, b;

 if(fabs(a-b) < 0.000001)

 printf(“equal”);

 else

 printf(“\n not equal ”);

4. What is a null statement?

 A null statement is an expression statement consisting solely of the
terminating semicolon. A null statement can appear on its own, or (most
frequently) as the statement body of an iteration statement. “0;”or “1;”
can also be used as null statements. Note that {}(which contains nothing

within braces, i.e., it is empty) is not a null statement. {} is a compound
statement. An empty block (called a null block) is not the same as a null
statement.

5. Which form of loop should you use- while or for or do-while?

 The decision of selecting while or do-while depends on the situation.
It is to be decided whether one needs a pre-test loop or a post-test loop.
In such situation where either of while or do-while can be used, the
computer scientists usually consider a pre-test loop superior. Because,
a general principle is that prevention is better than cure. A program is
easier to read if the test for iteration (i.e. loop) is found at the beginning
of the loop. In many uses, it is important that the loop be skipped entirely
if the test is not initially met.

 The choice between a for or a while is partly a matter of taste.

6. What is the difference between a break and continue
statement?

 Sometimes when executing a loop, it becomes desirable to leave the
loop as soon as a certain condition occurs. The break statement can
be used for this purpose. Execution of the break statement causes the
program to immediately exit from the loop it is executing, whether it’s a
for, while, or do-while loop. Subsequent statements in the loop
are skipped, and execution of the loop is terminated.

 The continue statement causes the next iteration of the enclosing
for, while, or do loop to begin. In the while and do-while, this means
that the test part is executed immediately; in the for, control passes to
the increment step. The continue statement applies only to loops, not
to switch. A continue inside a switch causes the next loop iteration if
it is placed within a loop.

EXERCISE

 1. What do you mean by control statements in C?

 2. What is the purpose of the if-else state ment?

 3. Compare the use of the if-else statement with the use of the
‘?:’ operator. In particular, in what way can the ‘?:’ operator be
used in place of an if-else statement?

 4. What is the purpose of the switch statement? What are
labels, i.e., case prefi xes? What type of expression must be
used to represent a case label?

 5. What is the purpose of the comma operator? Within which
control statement does the comma operator usually appear?

 6. Why is the use of the goto statement generally discouraged?
Under what conditions might the goto statement be helpful?
What types of usage should be avoided and why?

 7. Differentiate between a for loop and a while loop. Discuss the
usage of each.

 8. Distinguish between the following:
 (a) do-while and while loop
 (b) break and continue

 9. Write a program using conditional operators to determine
whether a year entered through the keyboard is a leap year
or not.

 10. The factorial of an integer n is the product of consecutive integers
from 1 to n. That is, factorial n = n! = n x (n - 1) x (n - 2) x (n - 3) x
... x 3 x 2 x 1. Write a C program to fi nd the factorial value of n.

 11. Write a C program to print the quotient of an integer number
without using ‘/’.

 12. Write a program to print all the even and odd numbers of a
certain range as indicated by the user.

 13. Write a C program to convert the binary equivalent of an integer
number without using array.

Control Statements 165

 14. Write a C program to fi nd the prime factors of a number given by
the user.

 15. Write a C program to check whether a number is a power of 2
or not.

 16. Write a program to fi nd the GCD of two numbers.

 17. Write a program to fi nd the sum of digits of a number given by
the user.

 18. Write a C program to calculate the sum of prime numbers in a
range.

 19. Write a C program to print the sum of the following series up to
n terms where n is given by the user.

 1 + x + x2/2! + x3/3! + ... (The value of x is also given by the user.)

 20. Write a C program to print the sum of the following series up to
n terms where n is given by the user.

 x - x3/3! + x5/5! - ... (The value of x is given by the user.)

 21. Write a C program to print the following series: 0 1 1 2 3 5 8 13
.... The number of terms to be printed should be given by the
user.

 22. Write a C program to print the numbers that do not appear in the
Fibonacci series. The number of such terms to be printed should
be given by the user.

 23. Write a program to convert a decimal number into any base.

 24. Write a program to check whether a number is a Krishnamurty
number or not. A Krishnamurty number is one whose sum of
factorial of digits equals the number.

 25. Write a program to print the second largest number among a list
of numbers without using array.

 26. Write programs to print the sum of the following series (with and
without pow() library function).

 (a) S = 1+ x + x2 + x3 + x4 + ... n terms

 (b) S = -x + x2 - x3 + x4 + ... n terms

 (c) S = 1 + x + x2/2! + x3/3! + ... n terms

 (d) S = 1 + (1+2) + (1+2+3) + ... n terms

 (e) S = 1 - x + x2/2! - x3/3! + ... n terms

 (f) S = x - x3/3 + x5/5 - x7/7 + ... n terms

 (g) S = 2 + 22+ 222 + 2222 + ... n terms

 (h) S = 1 + x/4 + x2/8 + ... n terms

 (i) S = x - x2/2 + x3/3 - x4/4 ... n terms

 27. Write a program to print the prime numbers in a range.

 28. Given a number, write a program using while loop to reverse
the digits of the number. For example, the number 12345 should
be written as 54321.

 29. Write a program to print the following triangle.

 (a) *
 * * * * *

 * * * * ... up to nth line

 (b) *
 * *

 * * *

 * * * * * ... up to nth line

 (c) 1
 1 2

 1 2 3

 1 2 3 4 ... up to nth line

 (d) 1
 2 1 2

 3 2 1 2 3 ... up to nth line

 (e) 1
 2 2

 3 3 3

 4 4 4 4

 5 5 5 5 5 ... up to nth line

 30. Write a program to check whether a number is a prime number
or not.

 31. Write a program to print all the prime numbers of a certain range
given by the user.

 32. Write a program to print the Floyd’s triangle.

 33. Write a program to add the prime numbers of a certain range given
by the user.

Project Questions
 1. Write a C program that prompts the user to enter the date as

three integer values for the month, the day in the month, and
the year. The program should then output the date in the form
31st December 2003 when the user enters 12 31 2010, say. The
program has to work out when superscripts “th”, “nd”, “st”, and “rd”
need to be appended to the day value. The programmer should

not forget 1st, 2nd, 3rd, 4th; and then 11th, 12th, 13th, 14th; and
21st, 22nd, 23rd, and 24th.

 2. This is a well-known game with a number of variants. The
following variant has an interesting winning strategy. Two players
alternately take marbles from a pile. In each move, a player
chooses how many marbles to take. The player must take at least

166 Programming in C

one but at most half of the marbles. Then the other player takes
a turn. The player who takes the last marble loses. Write a C
program in which the computer plays against a human opponent.
Generate a random integer between 10 and 100 to denote the
initial size of the pile. Generate a random integer between 0 and 1
to decide whether the computer or the human takes the fi rst turn.
Generate a random integer between 0 and 1 to decide whether
the computer plays smart or stupid. In stupid mode the computer
simply takes a random legal value (between 1 and n/2, where n is
the total number of marbles) from the pile whenever it has a turn.

In smart mode the computer takes off enough marbles to make
the size of the pile a power of two minus 1—that is, 3, 7, 15, 31,
or 63. That is always a legal move, except when the size of the
pile is currently one less than a power of two. In that case, the
computer makes a random legal move. It should be noted that the
computer cannot be beaten in smart mode when it has the fi rst
move, unless the pile size happens to be 15, 31, or 63. Of course
a human player who has the fi rst turn and knows the winning
strategy can win against the computer.

In the earlier chapter, a program was developed to determine the
length of a straight line joining two points. The program code already
developed in the earlier chapter is not repeated here. The program
code developed here starts with the assumption that the length has
already been determined and that the length of three sides of a trian-
gle are stored in three variables. Considering this fact, the program
is further developed to solve the problem stated by using the decision
making or looping constructs.

Problem statement

Get the lengths of three sides of a triangle. Check whether the tri-
angle can be formed or not. If possible then classify the triangle as
equilateral, isosceles or scalene. Otherwise, if the triangle cannot be
formed give the user a chance to re-enter the lengths of the sides or
terminate the program.

Solution

To solve this problem, lengths of three sides of a triangle are stored
in three variables say sideOne, sideTwo and sideThree. If the
sum of the lengths of any two sides is greater than the length of the
third side then a triangle can be formed. Therefore to fi nd out whether
a triangle can be formed or not, the following test expression has to
be evaluated.

sideOne+sideTwo > sideThree && sideTwo + sideTh-
ree > sideOne && sideOne + sideThree > sideTwo

If the above test expression evaluates to false then to give the user
a chance to re-enter the lengths of the sides or to terminate the pro-
gram, a loop has to be used. However, in case the triangle can be
drawn, the said loop as well as the program would terminate. For this
purpose, the variable ans is used.

Program

#include <stdio.h>

int main(void)

{

 int sideOne,sideTwo,sideThree;

 char ans =‘y’;

 while(ans == ‘y’ || ans == ‘Y’)

 {

 printf(“\n Enter the lengths of threesides

of a triangle:”);

 scanf(“%d %d %d”,&sideOne,&sideTwo,&side

Three);

 if(sideOne+sideTwo>sideThree && sideTwo+side

Three>sideOne && sideOne+sideThree>side

Two)

 {

 printf(“\n Triangle can be drawn”);

 if(sideOne==sideTwo && sideTwo==sideThree)

 printf(“\n It is a Equilateral Triangle”);

 else if(sideOne==sideTwo || sideTwo==side

Three ||sideOne==sideThree)

 printf(“\n It is a Isosceles Triangle”);

 else

 printf(“\n It is a scalene Triangle”);

 ans=‘n’; // break; can also be used.

 }

 else

 {

 printf(“\n Triangle cannot be drawn”);

 printf(“\n Do you want to reenter the

lengths again(y/n)? ”);

 ffl ush(stdin);

 scanf(“%c”,&ans);

 }

 }

 return 0;

}

INCREMENTAL PROBLEM

Control Statements 167

Problem Statement
Write a program to compute the square root of a given number,
without using sqrt() function of the math library.

Analysis
Let the square root of a number m be n. i.e. =n m . Therefore, n
* n = m. To devise the algorithm for this problem, consider that m =
49. Suppose one might guess 9 could be the square root of 49. But
9 × 9 = 81 which is larger than 49. As 9 is too large, so next let us
try 8. The square of 8 is 64. It is still greater than 49, but more closer
to 49. However, the right guess for n should be 7. In some case it
may be possible that the value of m may not be a perfect square of
n. Then the obvious question is how one should choose the initial
guess value. The number of iterations is critically dependent on the
initial guess. As a consequence, the approach to square root value is
another question. If one opted for 4 instead of 9 as the initial guess
value, then 4 × 4 is equal to 16 which is too small compared to 49.
As the square root of 49 lies between 9 and 4, the average of 9 and
4 might be the next estimate. The average of 9 and 4 is (9 + 4) =
13/2 = 6.5. The square of 6.5 is 42.25, which is less than 49.
If 49 is divided by 6.5, the next complimentary value can be found
which is 49/6.5=7.5384. Following the same computation method,
the next complementary value is given by

= 6.5
49

7.5384

The last two estimates i.e. 7.5384 and 6.5 are closer to the actual
result but one is slightly greater than 7 and the other is slightly less
than 7. To get the better estimate, the average of most two recent
guesses may be considered as a next guess.

+
=

7.5384 6.500
7.0192

2

The square of 7.0192 is 49.2691, which is closer to 49.
To summarize the above analysis, let the previous guess be f,
then the complementary value is given by m/f. The next improved
estimate of the square root, s, is given by

+= (/)
2

f m f
s

(1)

The above averaging process can be repeated by replacing f with
s followed by (1). That is the values of f and s furnish most recent
estimates for the square root of m. Obviously, the successive
repetitions gradually produce better estimates as the iterations
decrease the difference between square roots estimated and with
successive iterations would become progressively smaller. This is
evident from the estimated square roots found out in successive
iterations.

7.538 → 7.0192 → 7.0000

Because the successive guesses that are derived by repeated
application of the formula (1) gets closer and closer to the true value
of the square root, one can set a limit that can be used for deciding

CASE STUDY

when to terminate the process. The repetition should be terminated
when the difference between recent two successive estimates, f and
s, becomes signifi cantly small, preferably less than 0.000001 as
the fl oating-point numbers cannot be compared for exact equality.
The usual way to test for approximate equality is to subtract the
two fl oating-point numbers and compare the absolute value of the
difference against a very small number. This ‘very small number’
is chosen by the programmer to be small enough so that the two
numbers can be considered ‘equal’.

The most important question here is about the initial guess. One may
assume that the initial guess might be m/2. This fact would be sorted
out from the following table, in which the number and their square
roots are listed.

Number Square root (up to 4 digit after decimal point)

1 1.0000

2 1.4142

2.5 1.5811

3 1.7320

3.5 1.8708

4 2

4.5 2.1213

5 2.2360

5.5 2.3452

6 2.4494

6.5 2.5495

7 2.6457

7.5 2.7386

8 2.8284

8.5 2.9154

9 3.0000

If m is negative then it is safer to display an error message and then
immediately terminate without performing any calculations. The
square root routine in the standard C library is called sqrt() and it
returns a ‘domain error’ if a negative argument is supplied. The actual
value that is returned is implementation-defi ned. On some systems, if
you try to display such a value, it displays as NAN, which means Not
A Number.

Design
Algorithm for the above problem may be formulated as follows-

 1. START
 2. PRINT “ENTER THE NUMBER: ”
 3. INPUT M
 4. IF M < 0 THEN PRINT “NEGATIVE VALUE IS NOT

A VALID INPUT”: GOTO 10

 5. S ← M/2

 6. F ← S

168 Programming in C

 7. S ← (F+M/F)/2
 8. IF (F-S) >= 0.000001 THEN GOTO 6
 9. PRINT S
 10. STOP

Implementation
The corresponding C program following the above algorithm is
demonstrated below.

/* C progarm to compute the square root of a given
number */

#include <stdio.h>
#include <math.h>
int main(void)
{
 fl oat m, f,s;
 printf(“\n Enter the number:”);
 scanf(“%f”, &m);

 /* Checking for negative input */

 if (m < 0)
 {
 printf(“\n Negative Input For Computing Square\

Root Is Not Allowed”);

 return 0;
 }
 s = m/2; /* Set the initial guess */
 do
 {
 f = s;
 s = (f + m / f) / 2;
 /* Compute the next estimate

for the square root */

 } while(fabs(f-s) >= 0.000001);
 printf(“\n Square root of %g is %g\n”, m, s);
 return 0;
}

N.B. fabs() is the C library function that returns the fl oating-point
absolute value of its argument.

Sample Run
Enter the number: 9
Square root of 9 is 3

Enter the number: 5
Square root of 5 is 2.23607

Enter the number: 2.5
Square root of 2.5 is 1.58114

5.1 INTRODUCTION
The variables used so far have all had a common
characteristic: each variable can only be used to store a
single value at a time. For example, each of the variables
ch, n, and price declared in the statements

char ch;
int n;

fl oat price;

are of different data types and each variable can only
store one value of the declared data type. These types of
variables are called scalar variables. A scalar variable is

a single variable whose stored value is an atomic type.
This means that the value cannot be further subdivided or
separated into a legitimate data type.
 In contrast to atomic types, such as integer, fl oating
point, and double precision data, there are aggregate types.
An aggregate type, which is referred to as both a structured
type and a data structure, is any type whose values can
be decomposed and are related by some defi ned structure.
Additionally, operation must be available for retrieving
and updating individual values in the data structure. Such
a derived data type is an array.

After reading this chapter, the readers will be able to

 understand what an array is
 learn about one-dimensional array, their declaration, initialization, ways to access

individual array elements, representation of array elements in memory, and other
possible operations

 learn about one-dimensional strings and the way they are declared, initialized,
manipulated, inputted, and displayed

 learn about two-dimensional arrays, initialization of sized and unsized two-dimensional
arrays, accessing elements in such arrays, and how this kind of an array can be used

 know about array of strings, its declaration, initialization, other operations, manipulations,
and uses

 get a brief idea of three-dimensional arrays or even larger ones

Learning Objectives

C
Chapter

Arrays and Strings

5

170 Programming in C

Why array?

Consider a brand-new problem: a program that can print
its input in reverse order. If there are two values, this is
easy and the program is

#include <stdio.h>
int main()
{
 int v1, v2;
 printf(“Enter two values:”);
 scanf(“%i %i”, &v1, &v2);
 printf(“%i\n%i\n”, v2, v1);
 return 0;
}

 If there are three values, this is still relatively easy and
the program is

#include <stdio.h>
int main()
{
 int v1, v2, v3;
 printf(“Enter three values: ”);
 scanf(“%d %d %d”, &v1, &v2, &v3);
 printf(“%d\n %d\n %d \n”, v3, v2, v1);
 return 0;
}

 But what if there are ten or twenty or one hundred
values? Then it is not so easy.
 Besides that, the solutions work only if the number of
inputs exactly matches with those expected by the user.
 Consider another problem: the average of n integer
numbers given by the user can easily be computed as
follows.

#include <stdio.h>
int main()
{
 int count,s=0, n, num;
 fl oat avg;
 printf(“\n How many numbers?”);
 scanf(“%d”, &n);
 for(count=1;count<=n;++count)
 {
 printf(“\n Enter the Number:”);
 scanf(“%d”, &num);
 s+=num;
 }
 avg=(fl oat)s/n;
 printf(“Average is %f”, avg);
 return 0;
}

 Now if the problem is given as ‘Print the numbers that
are greater than the average’, then one solution is to read
the numbers twice. That is,
 ∑ read in all the numbers and calculate the average.
 ∑ read in all the numbers again, this time checking each

as it is read against a previously calculated average.
 If input is from the keyboard, then the user has to enter
each number twice and accurately, with no mistakes. This
is not a viable solution. Because, for 25 numbers entered,
the user has to remember all the numbers. But what if
there are 50 or 100 numbers? Then, it is not so easy. To
solve this problem, an array is required. It is a collection
of numbered elements.
 An array is a fundamental data structure that enables the
storing and manipulation of potentially huge quantities of
data. An array stores an ordered sequence of homogeneous
values. Homogeneous means that all the values are of
the same data type. The order of the values are also
preserved, i.e., the integer array {1, 2, 3, 4} is different
from {1, 4, 3, 2}.
 An array can be defi ned as a data structure consisting of
an ordered set of data values of the homogeneous (same)
type. An array is a collection of individual data elements
that is
 ∑ Ordered—one can count off the elements 0, 1, 2, 3, ...
 ∑ Fixed in size
 ∑ Homogeneous—all elements have to be of the same

type, e.g., int, fl oat, char, etc.
 In C, each array has two fundamental properties: the
data type and the size. Individual array elements are
identifi ed by an integer index. In C, the index begins at
zero and is always written inside square brackets.

Points to Note

 1. A scalar variable is a single variable whose stored
value is an atomic data type.

 2. An array is a collection of individual data elements that
is ordered, fi xed in size, and homogeneous.

 3. An array is considered to be a derived data type.

 4. Array enables the storing and manipulation of potentially
huge quantities of data.

5.2 ONE-DIMENSIONAL ARRAY
There are several forms of an array used in C: one-
dimensional or single-dimensional and multidimensional

Arrays and Strings 171

array. In this section, one-dimensional arrays will be
discussed.
 Since the array is one dimensional, there will be a single
subscript or index whose value refers to the individual
array element which ranges from 0 to (n–1), where n is the
total number of elements in the array.

5.2.1 Declaration of a One-dimensional Array

To use an array variable in a program, it must be declared.
When defi ning an array in a program, three things need to
be specifi ed.
 ∑ the type of data it can hold, i.e., int, char, double,

fl oat, etc.
 ∑ the number of values it can hold, i.e., the maximum

number of elements it can hold
 ∑ a name
 A one-dimensional array declaration is a data type
followed by an identifi er with a bracketed constant integral
expression. The value of the expression, which must be
positive, is the size of the array. It specifi es the number of
elements in the array. The array subscripts can range from
0 to (size –1). The lower bound of the array subscripts is
0 and the upper bound is (size –1). Thus, the following
relationships hold.

int a[size]; /* memory space for a[0],a[1],…, a[size –1]
allocated */

lower bound = 0
upper bound = size –1
size = upper bound + 1

 The syntax for declaration of a one-dimensional array is
 data_type array_name [SIZE];

 ∑ All the array elements hold values of type <data type>
 ∑ The size of the array is indicated by <SIZE>, the

number of elements in the array. <SIZE> must be an
int constant or a constant expression.

 For example, to declare an array that can hold up to 10
integers, the following statement has to be written.

int ar[10];

This reserves space for 10 integers. Similarly,

int a[100]; /* an array with 100 int elements */

declares an array ‘a’ that can hold 100 integers. Once
declared, an array element can be referenced as

<array name>[<index>]

where <index> is an integer constant or variable ranging
from 0 to <SIZE> – 1.
 In the above example, the array index starts at 0, so for
this array there are elements named a[0], a[1], ..., a[99].
The idea is that if there is an array variable named a, its
elements can be accessed with a[0], a[1], ..., a[99]. That
is, a particular element of the array can be accessed by its
‘index’, a number that specifi es which element is needed.
 In a single-dimensional array of integers, the array is
composed of individual integer values where integers are
referred to by their position in the list. Indexed variables
provide the means of accessing and modifying the specifi c
values in the array. For instance, in an array named ‘number’
 number[0] refers to the fi rst number stored in the

‘number’ array
 number[1] refers to the second number stored in the

‘number’ array
 number[2] refers to the third number stored in the

‘number’ array
 number[3] refers to the fourth number stored in the

‘number’ array
 number[4] refers to the fi fth number stored in the

‘number’ array
 Figure 5.1 illustrates the number array in memory
with the correct designation for each array element. Each
individual array element is called an indexed variable or
a subscripted variable, since both a variable name and an
index or a subscript value must be used to reference the
element. Remember that the index or subscript value gives
the position of the element in the array. Internally, unseen
by the programmer, the computer uses the index as an
offset from the array’s starting position.

number[0] number[1] number[2] number[3] number[4]

number array

Figure 5.1 Identifying individual array elements

 As illustrated in Figure 5.2, the index indicates how
many elements to skip over, starting from the beginning
of the array, to get the desired element. At the time of
declaration, the size of the array must be given; it is
mandatory. Otherwise the compiler generates an error.

172 Programming in C

number[0] number[1] number[2] number[3] number[4]

Start
here

Skip over 3 elements to get to
the starting location of Element 3

Element 3

The array name and index number identify
the starting location of the array

Figure 5.2 Accessing element 3

The following declaration is invalid.

#include <stdio.h>

int main()

{

 double x[], y[];

 ...
No value is

assigned for index
 return 0;

}

 C does not allow declaring an array whose number
of elements is unknown at compile time. So the above
declaration statement is not valid. Now, consider the
following code:

#include <stdio.h>

int main()

{

 int N;

a variable of integer data
type specifi ed as index

of the arrays

 double x[N], y[N];

 ...

 scanf(“%d”,&N);

 return 0;

}

Here, the variable size array declaration, e.g.,

double x[N], y[N];

is used where N is an integer variable. This kind of a declaration
is illegal in C and results in a compile-time error.
 It is sometimes convenient to defi ne an array size in
terms of a symbolic constant, rather than a fi xed integer
quantity. This makes it easier to modify a program that
utilizes an array, since all references to the maximum
array size can be altered by simply changing the value

of the symbolic constant. This approach is used in many
of the sample programs given in this book. Consider the
following sample program, which uses this approach.

/* Defi ne a symbolic constant for the size of
the array */
#include <stdio.h>

#defi ne N 100

the symbolic
constant N is
assigned the

value 100

int main()
{
 double x[N], y[N];
 ...

N is replaced with the
assigned value 100

 return 0;
}

 It is a good programming practice to defi ne the size of
an array as a symbolic constant.
 Hence, it may be observed that a literal number or a
previously declared ‘#defi ned symbolic constant’ must be
used in an array declaration for the size of the array. No
variables are allowed for the size of the array.
 Since the number of array elements can also be given
by an expression, the declarations depicted below can be
used.

int x[N+1];

double y[M+5*N];

 However, the C compiler must be able to evaluate the
expression, which implies that all components of the
expression must be available for evaluation of the expression
when the program is compiled—there must be no unknowns.
This means that the expression must be composed of
constants. In the preceding examples, identifi ers consisting
of capital letters have been used, which is the convention
for symbols defi ned with #defi ne directives.
 Thus the following expressions accessing elements of
array arr are valid.

/* Give N a value so that the examples are concrete! */

#defi ne N 20

int i = 1, j = 3, k = 2;

fl oat arr[N];

arr[0]

arr[3]
the evaluated value
of this expression is
the index of arr here

arr[9]

arr[i*j+k] /* given values of i,j,k evaluates i*j+k to 5 */

arr[N-10]

arr[N-1]

Arrays and Strings 173

separate the individual values assigned to the elements in
the array initialization statements as shown.
 (a) int A[10] = {9, 8, 7, 6, 5, 4, 3, 2, 1, 0};

9 8 7 6 5 4 3 2 1 0 ¨ values stored in array elements

0 1 2 3 4 5 6 7 8 9 ¨ index values of array elements

 (b) double a[5] = {3.67, 1.21, 5.87, 7.45, 9.12}

Automatic sizing While initializing, the size of a one-
dimensional array can be omitted as shown.

int arr[] = {3,1,5,7,9};

 Here, the C compiler will deduce the size of the array
from the initialization statement.
 From the above initialization statement, the size of the
array is deduced to be 5.

5.2.3 Accessing Array Elements

Single operations, which involve entire arrays, are not
permitted in C. Thus, if x and y are similar arrays (i.e., of the
same data type, dimensionality, and size), then assignment
operations, comparison operations, etc., involving these
two arrays must be carried out on an element-by-element
basis. This is usually accomplished within a loop, or within
nested loops for multidimensional arrays.
 For initializing an individual array element, a particular
array index has to be used. For example, in an array A, for
initializing elements 0 and 3, the following statements are
used,

A[0] = 3;

A[3] = 7;

 Subscripted variables can be used at any place where
scalar variables are valid. Examples using the elements of
an array named ‘numbers’ are shown here:

numbers [0] = 98;
numbers [1] = numbers [0] – 11
numbers [2] = 2 * (numbers [0] – 6);
numbers [3] = 79;
numbers [4] = (numbers [2] + numbers [3] – 3)/2;
total = numbers[0] + numbers[1] + numbers[2] +

numbers[3] + numbers[4];

 One extremely important advantage of using integer
expressions as subscripts is that it allows sequencing through
an array using a for loop. This makes statements such as

total = numbers[0] + numbers[1] + numbers[2] +
numbers[3] + numbers [4];

The following array references are not valid.
arr[-1]
arr[N-21]
arr[N+20]
arr[N]

 In the previous example, arr[N-1] is the cause of many
problems for new C programmers. It must be remembered
that C array indices start at 0. Thus for an array with N
elements, the index of the last element is N-1. It may be
of help to think of the array index as an offset from the
beginning of the array, so that the fi rst element, at offset 0
from the beginning, is arr[0] and the last, at offset N-1,
must be arr[N-1].
 Thus, expressions such as arr[N] are happily accepted
by the compiler. (C compilers usually make the assumption
that programmers know what they are doing.) The results
of running such programs are entirely unpredictable, since
the space at the end of the array may have arbitrary data
in it. The results from a program may even vary from one
run to another, as the memory space in which the compiler
assumes the (N+1)th object to be stored may well have been
allocated to some other object.

Points to Note

 1. In C, arrays are of two types: one-dimensional and
multidimensional.

 2. An array must be declared with three attributes: type of
data it can hold, the number of data it can hold(size),
and an identifi er(name) before it is used.

 3. The array size must be a positive integer number or an
expression that evaluates to a positive integer number
that must be specifi ed at the time of declaration with the
exception that it may be unspecifi ed while initializing
the array.

 4. In C, the array index starts at 0 and ends at (size–1)
and provides the means of accessing and modifying
the specifi c values in the array.

 5. C never checks whether the array index is valid—either
at compile time or when the program is running.

5.2.2 Initializing Integer Arrays

Variables can be assigned values during declaration like
the following example.

int x = 7;

Arrays can be initialized in the same manner. However,
since an array has multiple elements, braces are used to
denote the entire array of values and commas are used to

174 Programming in C

unnecessary. The subscript value in each of the subscripted
variables in this statement can be replaced by the counter in
a for loop to access each element in the array sequentially.
For example, the C statements,

total = 0; /*initialize total to zero */
for(i = 0; i <5; ++i)
total = total + numbers[i]; /* add in a number */

sequentially retrieve each array element and adds the element
to the total. Here the variable ‘i’ is used both as the counter
in the for loop and as a subscript. As ‘i’ increases by one
each time through the for loop, the next element in the array
is referenced. The procedure for adding the array elements
within the for loop is the same as that used before.

The following code
/* Initialization of all of the elements of the
sample array to 0 */

for(i = 0; i < 5; i++)
{
 a[i] = 0;
}

would cause all the elements of the array to be set to 0.
Consider the following program that would use the above
code segment.

#include <stdio.h>
#defi ne ARRAY_SIZE 10
int main()
{
 int index, a[ARRAY_SIZE];
 for(index = 0; index < ARRAY_SIZE; index++)
 {
 a[index] = 0;
 printf(“a[%d] = %d\n”, index, a[index]);
 }
 printf(“\n”);
 return 0;
}

The output from the above example is as follows:
a[0] = 0
a[1] = 0
a[2] = 0
a[3] = 0
a[4] = 0
a[5] = 0
a[6] = 0
a[7] = 0
a[8] = 0
a[9] = 0

 Arrays are a real convenience for many problems, but
there is not a lot that C can do with them automatically.
In particular, neither can all elements of an array be set
at once nor can one array be assigned to another. Both
assignments

a = 0; /* WRONG */

and

int b[10];

b = a; /* WRONG */

are illegal, where a is an array.

 So, for example, to assign values to (i.e., store values
into) an array, ar[10], the following program statements
may be used.

ar[0] = 1;

ar[1] = 3;

ar[2] = 5;

...

ar[9] = 19;

Or
for(i = 0; i < 10; i++)

 ar[i] = (i*2) + 1;

 Notice how the variable i, used as a subscript,
increments from 0 to ‘less than’ 10, i.e., from 0 to 9. To
access values in an array, the same subscripted notation
has to be utilized as shown.

printf(“%d”, ar[2]);

thirdOdd = ar[2];

nthOddSquared = ar[n-1] * ar[n-1];

5.2.4 Other Allowed Operations

These operations include the following, for an array named
‘ar’.
 (a) To increment the ith element, the given statements

can be used.
 ar[i]++;

 ar[i] += 1;

 ar[i] = ar[i] + 1;

 (b) To add n to the ith element, the following statements
may be used,

 ar[i] += n;

 ar[i] = ar[i] + n;

Arrays and Strings 175

 (c) To copy the contents of the ith element to the kth
element, the following statement may be written.

 ar[k] = ar[i];

 (d) To copy the contents of one array ‘ar’ to another array
‘br’, it must again be done one by one.

 int ar[10],br[10];

 for(i = 0; i < 10; i = i + 1)

 br[i] = ar[i];

 (e) To exchange the values in ar[i] and ar[k], a
‘temporary’ variable must be declared to hold one
value, and it should be the same data type as the array
elements being swapped. To perform this task, the
following C statements are written

 int temp;

 temp = ar[i]; /* save a copy of value in ar[i] */

 ar[i] = ar[j]; /* copy value from ar[j] to ar[i] */

 ar[j] = temp; /* copy saved value of ar[i] to ar[j] */

Storing values given by the user in an array Reading the
input into an array is done as shown.

int a[10]; /* an array with 10 “int” elements */

int i;

for(i=0 ; i< 10; i++)

scanf(“%d”, &a[i]);

 The idea is that fi rst a value must be read and copied
into a[0], then another value read and copied into a[1],
and so on, until all the input values have been read.
Printing an array The following code segment prints the
elements of an array, a[10].

for(i=0 ; i< 10; i++)

printf(“%d”, a[i]);

 Now the problem posed earlier can be solved. For
printing of numbers entered by the user in the reverse
order, the program will be as follows:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a[30],n,i;

 /* n = number of array elements and i=index */

 printf(“\n Enter the number n”);

 scanf(“%d”,&n);

 if(n>30)

 {

 printf(“\n Too many Numbers”);

 exit(0);

 }

 for(i=0 ; i< n; i++)

 scanf(“%d”, &a[i]);

 printf(“\n Numbers entered in reverse order \n”);

 for(i=n-1 ; i>=0; i--)

 printf(“%d”, a[i]);

 return 0;

}

 A program for printing numbers that are greater than
the average is as follows:

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a[30],n,i,s=0;

 fl oat avg;

 printf(“\n Enter the number of numbers”);

 scanf(“%d”,&n);

 if(n>30)

 {

 printf(“\n Too many Numbers”);

 exit(0);

 }

 for(i=0 ; i< n; i++)

 {

 scanf(“%d”, &a[i]);

 s+=a[i];

 }

 avg=(fl oat)s/n;

 printf(“\n Numbers greater than the average: \n”);

 for(i=0 ; i< n; i++)

 if(a[i]>avg)

 printf(“%d”,a[i]);

 return 0;

}

176 Programming in C

5.2.5 Internal Representation of Arrays in C

Understanding how arrays work in C requires some
understanding of how they are represented in the computer’s
memory. In C, an array is implemented as a single block
of memory, with element 0 occupying the fi rst ‘slot’ in
that block. That is, arrays are allocated contiguous space
in memory. As a result, C subscripts are closely related
to actual memory addresses and to the notion of ‘pointer’
that will be discussed in the chapter on pointers.
 The possible consequences of the misuse of arrays should
motivate one to pay close attention to the array indices.
 For a simple variable (e.g., int, double, etc.) of data
type X, the compiler allocates sizeof(X) bytes to hold it.
For an array of length L and data type X, the compiler
allocates L* sizeof (X) bytes.
 Given an array like int scores[100], the compiler
allocates 200 bytes starting at some location, say 64789.
Given an expression like scores[5], the compiler accesses
the value stored at the memory location starting with byte
64789+(5*2). In general, a[i] is located at byte: base
address of a + i * sizeof (type of array).

References to elements outside of the array bounds It is
important to realize that there is no array bound checking
in C. If an array x is declared to have 100 elements, the
compiler will reserve 100 contiguous, appropriately sized
slots in computer memory on its behalf. The contents of
these slots can be accessed via expressions of the form
x[i], where the integer i should lie in the range 0 to 99. As
seen, the compiler interprets x[i] to mean the contents of
the memory slot which is i slots away from the beginning
of the array. Obviously, accessing elements of an array that
do not exist is going to produce some sort of error. Exactly
what sort of error is very diffi cult to say—the program may
crash, it may produce an absurdly incorrect output, it may
produce plausible but incorrect output, it may even produce
correct output—it all depends on exactly what information
is being stored in the memory locations surrounding the
block of memory reserved for x. This type of error can be
extremely diffi cult to debug, since it may not be immediately
apparent that something has gone wrong when the program
is executed. It is, therefore, the programmer’s responsibility
to ensure that all references to array elements lie within the
declared bounds of the associated arrays.

A bit of memory allocation It has been seen how arrays
can be defi ned and manipulated. It is important to learn
how to do this because in more advanced C programs it
is necessary to deal with something known as dynamic
memory management. This is where the memory
management of the programs is taken over by the
programmer so that they can do more advanced things.
To understand this, it is important to have a rough idea
of what is going on inside the computer’s memory
when the program runs. Basically, it is given a small
area of the computer’s memory to use. This memory,
which is known as the stack, is used by variables in the
program

int a = 10;

fl oat values[100];

 The advantage of this is that the memory allocation
is very simple. When a variable or array is required, the
user can declare it. When the variable or array goes out of
scope, it is destroyed and the memory is freed up again. A
variable goes out of scope when the program control (the
place of the program in the code) gets to the next closing
curly bracket. This is normally at the end of a function or
even at the end of an if-else/for/while structure.
 This is why it is necessary to be careful when getting
functions to fi ll in arrays. If the function declares the array
and then returns it, what actually happens is that only the
pointer is kept safe (copied back to the calling function);
all the memory allocated for the array is de-allocated. This
is a disadvantage.
 Another disadvantage is that the size of memory
allocated from the stack must be fi xed at compile time.
For example, it is impossible to declare an array using a
variable for the size because at compile time the compiler
does not know how big the array will be. For this reason,
the following code will not work.

int size;

printf(“How big do you want the array?\n”);

scanf(“%d”, &size);

int array[size];

 Therefore, doing things dynamically is a real problem.
Perhaps the biggest problem with using memory from the
stack is that the stack is not very big. It is typically only

Arrays and Strings 177

64k in size, even on a machine with tens of megabytes
of memory. The rest of this memory is left alone by the
compiler but the user can access it explicitly; it is called
the heap.

5.2.6 Variable Length Arrays and the C99 changes

With the earlier version of C(C89) compilers, an array’s
size must be a constant integral expression so that it can
be calculated at compile-time. This has already been
mentioned in earlier sections. But in the C99 compilers,
an array size can be an integral expression and not
necessarily a constant one. This allows the programmer
to declare a variable-length array or an array whose size
is determined at runtime. However, such arrays can exist
within a block or a function thereby signifying its scope
to be limited within a set of instructions contained within
a pair of left ({) and right (}) braces. This means that
storage allocation to such an array is made at run-time
and during its existence within the scope of a block or a
function and relinquishes this storage the moment it exits
its scope.
The following program illustrates the concept:

#include <stdio.h>

int main(void)

{

 int n,i;

 printf(“\n enter the value of n: ”);

 scanf(“%d”, &n);

 int a[n];

 printf(“\n enter the values one by one\n”);

 for(i=0;i<n; ++i)

 scanf(“%d”, &a[i]);

 printf(“\n entered numbers are.....\n”);

 for(i=0;i<n;++i)

 printf(“\n %d”,a[i]);

 return 0;

}

 Some changes in initializing an array has been made
in C99. Here, the element number of an array can be
specifi ed explicitly by using a format called a specifi cation
initializer. When an array is initialized in C89, each
element needs to be initialized in order from the beginning.

In C99, initial values can be set only for certain elements,
with uninitialized elements being initialized as 0. In C99,
initial values can be set only for specifi c members, with
uninitialized members being initialized as 0. This is useful
when the elements requiring initialization are limited, or
when arrays have large element counts.

Example

 1. int arr[6] = { [2] =3, [5] = 7 };

 Here array element arr[2] and arr[5] is assigned the value
3 and 7 respectively, while all other element in arr are assigned
the value 0.

5.2.7 Working with One-Dimensional Array

Printing binary equivalent of a decimal number using
array Here the remainders of the integer division of a
decimal number by 2 are stored as consecutive array
elements.
 The division procedure is repeated until the number
becomes 0.

#include <stdio.h>

int main()

{

 int a[20],i,m,n,r;

 printf(“\n Enter the decimal Integer”);

 scanf(“%d”,&n);

 m=n;

 for(i=0;n>0;i++)

 {

 r=n%2;

 a[i]=r;

 n=n/2;

 }

 printf(“\n Binary equivalent of %d is \t”,m);

 for(i--;i>=0;i--)

 printf(“%d”,a[i]);

 return 0;

}

 Fibonacci series using an array This example will intro-
duce another application of the array. The program prints
out an array of Fibonacci numbers. These are defi ned by
a series in which any element is the sum of the previous
two elements. This program stores the series in an array,
and after calculating the terms, prints the numbers out as
a table.

178 Programming in C

#include <stdio.h>
int main()
{
 int fi b[15];
 int i;
 fi b[0] = 0;
 fi b[1] = 1;
 for(i = 2; i < 15; i++)
 fi b[i] = fi b[i-1] + fi b[i-2];
 for(i = 0; i < 15; i++)
 printf(“%d\n”, fi b[i]);
 return 0;

}

Output:
0
1
1
2
3
5
8
13
21
34
55
89
144
233

377

Searching an element within an array Consider an array
of n elements, where each element is a key (e.g., a number).
The task is to fi nd a particular key in the array. The simplest
method is a sequential search or linear search. The idea is
to simply search the array, element by element, from the
beginning until the key is found or the end of the list is
reached. If found, the corresponding position in the array
is printed; otherwise, a message will have to be displayed
that the key is not found. Now, the implementation of the
program will be

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int a[30],n,i,key, FOUND=0;

 printf(“\n How many numbers”);

 scanf(“%d”,&n);

 if(n>30)

 {

 printf(“\n Too many Numbers”);

 exit(0);

 }

 printf(“\n Enter the array elements \n”);

 for(i=0 ; i<n; i++)

 scanf(“%d”, &a[i]);

 printf(“\n Enter the key to be searched \n”);

 scanf(“%d”,&key);

 for(i=0 ; i<n; i++)

 if(a[i] == key)

 {

 printf(“\n Found at %d”,i);

 FOUND=1;

 }

 if(FOUND = = 0)

 printf(“\n NOT FOUND...”);

 return 0;

}

Sorting an array

 Bubble sort A bubble sort compares adjacent array ele-
ments and exchanges their values if they are out of order.
In this way, the smaller values ‘bubble’ to the top of the
array (towards element 0), while the larger values sink
to the bottom of the array. This sort continues until no
exchanges are performed in a pass. If no exchanges are
made, then all pairs must be in order. For this reason, a fl ag
named ‘sorted’ is used.
 The way bubble sort works is that it iterates through the
data set comparing two neighbouring items at a time and
swapping them if the fi rst item is larger than the second
item.
 The following example depicts the different stages of
bubble sort.

Pass 1 Pass 2 Pass 3 Pass 4 Pass 5

42 42 26 26 26 26

60 26 42 34 28 28

26 55 34 28 34 34

55 34 28 42 42 42

34 28 55 55 55 55

28 60 60 60 60 60

Arrays and Strings 179

 Now the implementation of the above algorithm will be
as follows:

#include <stdio.h>
#include <stdlib.h>
int main()
{
 int a[30],n,i,j,temp, sorted=0;
 printf(“\n How many numbers”);
 scanf(“%d”,&n);
 if(n>30)
 {
 printf(“\n Too many Numbers”);
 exit(0);
 }
 printf(“\n Enter the array elements \n”);
 for(i=0 ; i< n; i++)
 scanf(“%d”, &a[i]);
 for(i = 0; i < n-1 && sorted==0; i++)
 {
 sorted=1;
 for(j = 0; j < (n - i) -1; j++)
 if(a[j] > a[j+1])
 {
 temp = a[j];
 a[j] = a[j+1];
 a[j+1] = temp;
 sorted=0;
 }
 }
 printf(“\n The numbers in sorted order \n”);
 for(i=0 ; i<n; ++i)
 printf(“\n %d”, a[i]);
 return 0;
}

Output
How many numbers 6
Enter the array elements
42
60
26
55
34
28
The numbers in sorted order
26
28
34
42
55
60

 Binary searching The drawbacks of sequential search
can be eliminated if it becomes possible to eliminate
large portions of the list from consideration in
subsequent iterations. The binary search method does
just that; it halves the size of the list to search in each
iteration.
 Binary search can be explained simply by the analogy
of searching for a page in a book. Suppose a reader is
searching for page 90 in a book of 150 pages. The reader
would fi rst open the book at random towards the latter half
of the book. If the page number is less than 90, the reader
would open at a page to the right; if it is greater than 90,
the reader would open at a page to the left, repeating the
process till page 90 was found. As can be seen, by the fi rst
instinctive search, the reader dramatically reduced the
number of pages to be searched.
 Binary search requires sorted data to operate on, since
the data may not be contiguous like the pages of a book. It
is not possible to guess in which quarter of the data set the
required item may be. So, the array is divided in the center
each time.
 Binary search will fi rst be illustrated with an example
before going on to formulate the algorithm and analyzing
it.
 In binary search, the following procedure is
implemented.
 ∑ Look at the middle element of the list.
 ∑ If it is the value being searched, then the job is done.
 ∑ If the value that is being searched is smaller than the

middle element, then continue with the bottom half
of the list.

 ∑ If the value that is being searched is larger than the
middle element, then continue with the top half of the
list.

 In effect, binary search splits the array in half and then
repeats the algorithm on the half that must contain the
value that it is searching for, if it is there at all.

Example

 2. Consider the array

 1 2 3 4 5 6 7 8 9

 Construct the binary search algorithm for fi nding the
Key = 7.

 1st iteration

HIGH = 8, LOW = 0; because the array index begins with
‘0’ and ends with ‘8’

180 Programming in C

MID = 4, Array[4] = 5, 5<7 : TRUE
LOW = 5
New List = 6 7 8 9

 2nd iteration
HIGH = 8, LOW = 5
MID = 6, Array[6] = 7, 7<7 : FALSE
HIGH = 6
New List = 6 7

 3rd iteration
HIGH = 6, LOW = 5
MID = 5, Array[5] = 6, 6<7 : TRUE
LOW = 6
New List = 7

 4th iteration
HIGH = 6, LOW = 6

MID = 6, Array [MID] = Array [6] = 7 == Key

then Found = TRUE

Tabular illustration Table 5.1 shows an example of the
operation of the binary search algorithm. The rows of the
table, starting from the top, are the array indices, the data
stored at the indexed location, and the index values used
for high (H), low (L), and middle (M) at each iteration of
the algorithm. If the target value is 52, its location is found
on the 3rd iteration
Algorithm for binary search This represents the binary
search method to fi nd a required item in a list sorted in
increasing order.

Example

 3. Sort an array LIST of size N and fi nd the position of the target
value T.

 Algorithm: The algorithm determines the position of T in the
LIST.

 1. START

 2. PRINT “ENTER THE NO. OF ELEMENTS IN THE ARRAY”

 3. INPUT N

 4. I=0

 5. PRINT “ENTER ARRAY ELEMENT”

 6. INPUT LIST(I)

 7. I=I+1

 8. IF I<N THEN GOTO STEP 5

 9. PRINT “ENTER THE ELEMENT TO SEARCH”

 10. INPUT T

 11. HIGH = N - 1

 12. LOW = 0

 13. FOUND = 0

 14. MID = (HIGH + LOW)/ 2

 15. IF T = LIST [MID]

 FOUND = 1

 ELSE IF T < LIST[MID]

 HIGH = MID-1

 ELSE

 LOW = MID+1

 16. IF (FOUND =0) and (HIGH > = LOW) THEN GOTO
STEP 14

 17. IF FOUND =0 THEN PRINT “NOT FOUND”

 18. ELSE PRINT “FOUND AT”, MID.

 19. STOP

The C program for this algorithm is as follows:
#include <stdio.h>
#include <stdlib.h>
int main()
{
 int a[30],n,i,t,low,mid,high,found=0;
 printf(“\n Enter the NO. of elements in the array:”);
 scanf(“%d”,&n);
 if(n>30)
 {
 printf(“\n Too many Numbers”);
 exit(0);
 }

Table 5.1 Depiction of binary search algorithm

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data 23 27 29 32 34 41 46 47 49 52 55 68 71 74 77 78

1st iteration L M H

2nd iteration L M H

3rd iteration L M H

Arrays and Strings 181
 printf(“\n Enter the elements of the array:”);
 for(i=0 ; i< n; i++)
 scanf(“%d”, &a[i]);
 printf(“\n Enter the element to search :”);
 scanf(“%d”,&t);
 low = 0;
 high = n - 1;
 while(high >= low)
 {
 mid = (low + high) / 2;
 if(a[mid] == t)
 {
 found = 1;
 break;
 }
 else if (t < a[mid])
 high = mid - 1;
 else
 low = mid + 1;
 }
 if(found==0)
 printf(“\n NOT FOUND”);
 else
 printf(“\n FOUND AT %d”,mid);
 return 0;
}

Output
Enter the number of elements in the array: 9
Enter the elements of the array:
1
2
3
4
5
6
7
8
9
Enter the element to search: 7
FOUND AT 6
Enter the number of elements in the array 9
Enter the elements of the array:
1
2
3
4
5
6
7
8
9
Enter the element to search: 11
NOT FOUND

 Here is a slightly bigger example of the use of arrays.
Suppose one wants to investigate the behaviour of rolling
a pair of dice. The total roll value can range from 2 to 12,
and how often each roll comes up is to be counted. An
array is to be used to keep track of the counts: a[2] will
count how many times 2 have been rolled, etc.
 The simulation of the roll of a dice is done by calling
C’s random number generation function, rand(). Each
time rand() is called, it returns a different, pseudo-random
integer. The values that rand() returns typically span a
large range, so C’s modulus (or remainder) operator % will
be used to produce random numbers in the required range.
The expression rand() % 6 produces random numbers in
the range 0 to 5, and rand() % 6 + 1 produces random
numbers in the range 1 to 6.

Here is the program.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i;

 int d1, d2;

 int a[13]; /* uses [2..12] */

 for(i = 2; i <= 12; i = i + 1)

 a[i] = 0;

 for(i = 0; i < 100; i = i + 1)

 {

 d1 = rand() % 6 + 1;

 d2 = rand() % 6 + 1;

 a[d1 + d2] = a[d1 + d2] + 1;

 }

 for(i = 2; i <= 12; i = i + 1)

 printf(“%d: %d\n”, i, a[i]);

 return 0;

}

 The header <stdlib.h> has to be included because
it contains the necessary declarations for the rand()
function. The array of size 13 has to be declared so that its
highest element will be a[12]. Space for a[0] and a[1]
will be wasted; this is no great loss. The variables d1 and
d2 contain the roll values of the two individual dice; they
are added together to decide which cell of the array to
increment in the line

a[d1 + d2] = a[d1 + d2] + 1;

182 Programming in C

 After 100 rolls, the array is printed out. Typically,
mostly 7’s are seen as output, and relatively few 2’s and
12’s. However, using the % operator to reduce the range of
the rand() function is not always a good idea.

Check Your Progress

 1. Given the array declaration
 int myArray[] = {0, 2, 4, 6, 8, 10};
 What is the value of myArray[myArray[2]];
 Output: 8
 2. #include <stdio.h>

 main()

 {

 fl oat a[10];

 printf(“%d”, sizeof(a));

 }

 What is the output of this program?
 Output: 40

 3. #include <stdio.h>
 main()

 {

 int a[5],i;

 for(i=0;i<5;++i)

 printf(“%d”,a[i]);

 }

 What is the output of this program?
 Output: Garbage
 4. An array has been declared as int a[] = {1, 2,

3, 4, 5, ...}; How can you fi nd the number of
elements (i.e., size) of the array without manually
counting them?

 Output: printf(“%d”,sizeof(a)/sizeof(a[0]));

Points to Note

 1. Single operations, which involve entire arrays, are not
permitted in C.

 2. Neither can all elements of an array be set at once nor
can one array be assigned to another.

 3. For an array of length L and data type X, the compiler
allocates L* sizeof (X) bytes of contiguous space in
memory.

 4. It is not possible to declare an array using a variable for
the size.

5.3 STRINGS: ONE-DIMENSIONAL CHARACTER
ARRAYS

Strings in C are represented by arrays of characters. The
end of the string is marked with a special character, the
null character, which is a character all of whose bits are
zero, i.e., a NUL (not a NULL). (The null character has no
relation except in name to the null pointer. In the ASCII
character set, the null character is named NUL.) The null
or string-terminating character is represented by another
character escape sequence, \0.
 Although C does not have a string data type, it allows string
constants. For example,”hello students” is a string constant.

5.3.1 Declaration of a String

Strings can be declared like one-dimensional arrays. For
example,

char str[30];
char text[80];

illustrates this feature.

5.3.2 String Initialization

Character arrays or strings allow a shorthand initialization,
for example,

char str[9] = “I like C”;

which is the same as
char str[9] = {‘I’,‘ ’,‘l’,‘i’,‘k’,‘e’,‘ ’,‘C’,‘\0’};

 Whenever a string, enclosed in double quotes, is written,
C automatically creates an array of characters containing
that string, terminated by the \0 character. C language
allows the alternative notation

char msg[] = “Hello”;

that is always used in practice. The rules for writing
string constants are exactly the same as those that were
discussed earlier in this book when the use of printf()
was introduced. It should be noted that the size of the
aggregate ‘msg’ is six bytes, fi ve for the letters and one for
the terminating NUL.
 There is one special case where the null character is
not automatically appended to the array. This is when
the array size is explicitly specifi ed and the number of
initializers completely fi lls the array size. For example,

char c[4] = “abcd”;

 Here, the array c holds only the four specifi ed characters,
a, b, c, and d. No null character terminates the array.

Arrays and Strings 183

Points to Note

 1. An array formed by characters is a string in C.

 2. The end of the string is marked with a the null
character.

 3. When the character array size is explicitly specifi ed
and the number of initializers completely fi lls the array
size, the null character is not automatically appended
to the array.

5.3.3 Printing Strings

The conversion type ‘s’ may be used for output of strings
using printf(). Width and precision specifi cations may be
used with the %s conversion specifi er. The width specifi es
the minimum output fi eld width; if the string is shorter,
then space padding is generated. The precision specifi es
the maximum number of characters to display. If the string
is too long, it is truncated. A negative width implies left
justifi cation of short strings rather than the default right
justifi cation. For example,

printf(“%7.3s”,name)

 This specifi es that only the fi rst three characters have
to be printed in a total fi eld width of seven characters and
right justifi ed in the allocated width by default. We can
include a minus sign to make it left justifi ed (%-7.3). The
following points should be noted.
 ∑ When the fi eld width is less than the length of the

string, the entire string is printed.
 ∑ The integer value on the right side of the decimal point

specifi es the number of characters to be printed.
 ∑ When the number of characters to be printed is

specifi ed as zero, nothing is printed.
 ∑ The minus sign in the specifi cation causes the string

to be printed as left justifi ed.
 The following program illustrates the use of the %s
conversion specifi er.

#include <stdio.h>

int main()

{

 char s[]=“Hello, World”;

 printf(“>>%s<<\n”,s);

 printf(“>>%20s<<\n”,s);

 printf(“>>%-20s<<\n”,s);

 printf(“>>%.4s<<\n”,s);

 printf(“>>%-20.4s<<\n”,s);

 printf(“>>%20.4s<<\n”,s);

 return 0;

}

producing the output
>>Hello, World<<

>> Hello, World<<

>>Hello, World <<

>>Hell<<

>>Hell <<

>> Hell<<

 The >> and << symbols are included in this program so
that the limits of the output fi elds are clearly visible in the
output.
 There is another way to print a string. The library
function puts() writes a line of output to the standard
output. It terminates the line with a new line, ‘\n’. It
returns an EOF if an error occurs. It will return a positive
number upon success. The use of puts() is given as
follows:

#include <stdio.h>

int main()

{

 char s[]=“Hello, World”;

 puts(s);

 return 0;

}

 The library function sprintf() is similar to printf().
The only difference is that the formatted output is written
to a memory area rather than directly to a standard output.
It is particularly useful when it is necessary to construct
formatted strings in memory for subsequent transmission
over a communications channel or to a special device. Its
relationship with printf() is similar to the relationship
between sscanf() and scanf(). The library function puts()
may be used to copy a string to the standard output, its
single parameter is the start address of the string. puts()
writes a new-line character to standard output after it has
written the string.
 The following is a simple example of the use of
sprintf() and puts().

184 Programming in C

#include <stdio.h>

int main()

{

 char buf[128];

 double x = 1.23456;

 int i = 0;

 sprintf(buf,“x = %7.5lf”,x);

 while(i<10)

 puts(buf+i++);

 return 0;

}

The output produced is as follows:
x = 1.23456

= 1.23456

= 1.23456

1.23456

1.23456

.23456

23456

3456

456

56

 If ‘\n’ had been incorporated in the format string of
the sprintf(), the output would have been double-spaced
because the function would have put a new-line character
in the generated string and puts() would then generate a
further new line.

5.3.4 String Input

The following sections will describe the methods of taking
input from the user.

Using %s control string with scanf()

Strings may be read by using the %s conversion with the
function scanf() but there are some irksome restrictions.
The fi rst is that scanf() only recognizes a sequence of
characters delimited by white space characters as an
external string. The second is that it is the programmer’s
responsibility to ensure that there is enough space to
receive and store the incoming string along with the
terminating null which is automatically generated and
stored by scanf() as part of the %s conversion. The
associated parameter in the value list must be the address

of the fi rst location in an area of memory set aside to store
the incoming string.
 Of course, a fi eld width may be specifi ed and this is
the maximum number of characters that are read in, but
remember that any extra characters are left unconsumed
in the input buffer. A simple use of scanf() with%s
conversions is illustrated in the following program.

int main()

{

 char str[50];

 printf(“Enter a string”);

 scanf(“%s”,str);

 printf(“The string was :%s\n”,str);

 return 0;

}

Output of sample runs:
(a) Enter a string manas

 The string was :manas

(b) Enter a string manas ghosh

 The string was :manas

(c) Enter a string “manas and ghosh”

 The string was : “manas”

 Dissimilar to the integer, fl oat, and characters, the %s
format does not require the ampersand before the variable
str.
 It will also be observed that attempts to quote a string
with internal spaces or to escape the internal spaces (both of
which normally work in the UNIX command environment)
did not work. C supports variable fi eld width or precision,
e.g.,

printf(“%*.*s”,w,d,str);

prints the fi rst d characters of the string in the fi eld width
of w. For example,

int main()

{

 char str[50];

 printf(“\n Enter a string:”);

 scanf(“%s”,str);

 printf(“\n %*.*s\n”,2,3,str);

 return 0;
Specifi es that the fi rst
three characters of the
string will be printed.

}

Arrays and Strings 185

Sample run:
Enter a string:Manas

Man
First three characters of entered string

“Manas” is displayed on the screen.

 As an illustration, the following program converts a
decimal number into its hexadecimal equivalent.

#include <stdio.h>

int main(void)

{

 int n, r, i, a[50];

 char hexdigit[]=“0123456789ABCDEF”;

 printf(“\n Enter the decimal number:\t”);

 scanf(“%d”, &n);

 i=0;

 while(n>0)

 {

 r=n%16;

 a[i]=r;

 i++;

 n=n/16;

 }

 printf(“\n Hexadecimal equivalent is...: \t”);

 for(--i;i>=0;--i)

 printf(“%c”, hexdigit[a[i]]);

 return 0;

}

 Here, at each iteration, remainder of the integer division
of n by 16 is stored as an element of the array variable
‘a’. It continues until the number ‘n’ becomes 0. After
storing the remainders as elements of the array ‘a’, it is
needed to print the elements in reverse order. When the
control comes out of the while loop the value of ‘i’ would
be incremented.
 So it is needed to decrement i by one and it has been
performed at the initialization part of the for loop. The
expression hexdigit[a[i]] would print the corresponding
hexadecimal digit at each iteration. If the value stored in
a[i] is 5 then printf(“%c”, hexdigit[5]); would print
5. If the value stored in a[i] is 13 then printf(“%c”,
hexdigit[13]); would print D. The trace of the above
program is given below.

n= 28

n=28 i=0 r=12 a[0]=12

n=1 i=1 r=1 a[1]=1

n=0 i=2

 The value of i is 2 when the control is outside the while
loop. ‘i’ becomes 1 at the initialization step. In the fi rst
iteration, hexdigit[1] that is ‘C’ will be printed because
the value stored in a[1] is 12. In the second iteration,
hexdigit[0] that is ‘1’ will be printed because the value
stored in a[0] is 1.
 The above program can be rewritten where the
remainders are stored in the string hexdigit.

#include <stdio.h>

#include <string.h>

int main(void)

{

 int n, r, i;

 char hexdigit[50];

 printf(“\n Enter the decimal number:\t”);

 scanf(“%d”, &n);

 i=0;

 while(n>0)

 {

 r=n%16;

 if(r<10)

 hexdigit[i]=r+48;

 else

 hexdigit[i]=r%10+65;

 i++;

 n=n/16;

 }

 hexdigit[i]=‘\0’;

 printf(“\n Hexadecimal equivalent is...: \t”);

 for(i=strlen(hexdigit)-1;i>=0;--i)

 printf(“%c”, hexdigit[i]);

 return 0;

}

Using scanset

The scanset conversion facility provided by scanf() is a
useful string input method. This conversion facility allows
the programmer to specify the set of characters that are
(or are not) acceptable as part of the string. A scanset
conversion consists of a list of acceptable characters
enclosed within square brackets. A range of characters
may be specifi ed using notations such as‘a-z’, meaning
all characters within this range. The actual interpretation
of a range in this context is implementation-specifi c, i.e.,

186 Programming in C

it depends on the particular character set being used on the
host computer. If an actual ‘-’ is required in the scanset,
it must be the fi rst or last character in the set. If the fi rst
character after the ‘[’ is a ‘^’ character, then the rest of
the scanset specifi es unacceptable characters rather than
acceptable characters.
 The following program shows the use of scansets.

int main()
{
 char str[50];
 printf(“Enter a string in lower case:”);
 scanf(“%[a-z]”,str);
 printf(“The string was : %s\n”,str);
 return 0;
 }

Three sample runs are given below.
(a) Enter a string in lower case: hello world
 The string was: hello world

(b) Enter a string in lower case: hello, world
 The string was: hello

(c) Enter a string in lower case: abcd1234
 The string was : abcd

 In the second case, the character, ‘,’ (comma) is not in
the specifi ed range. Note that in all cases, conversion is
terminated by the input of something other than a space or
lowercase letter.

Single-line input using scanset with ^

The circumfl ex (^) plays an important role while taking
input. For a single-line text input, the user presses the
<Return> or <Enter> key to terminate the string. The
maximum number of characters typed by the user might
be 80 because the screen can print a maximum of 80
character in a line. All characters are allowed to be typed
as input except ‘\n’. In the example that follows, the
computer takes this (\n) as a clue indicating that the string
has ended. Look at the example given below.

#include <stdio.h>
int main()
{
 char str[80];
 printf(“Enter a string in lower case”);
 scanf(“%[^\n]”,str);
 printf(“The string was : %s\n”, str);
 return 0;
}

Multiline input using scanset

One can use a bracketed string read, %[..] where the square
brackets [] are used to enclose all characters which are
permissible in the input. If any character other than those
listed within the brackets occurs in the input string, further
reading is terminated. Reciprocally, those characters may
be specifi ed with the brackets which, if found in the input,
will cause further reading of the string to be terminated.
Such input terminators must be preceded by the caret (^).
For example, if the tilde (~) is used to end a string, the
following scanf() shows how it is coded.

char string [200];

scanf(“%[^~]”, string);

 Then, if the input for string consists of embedded spaces,
no matter what, they will all be accepted by scanf();
and reading will stop when a tilde (~) is entered. This is
illustrated in the following program and its output.

#include <stdio.h>

int main()

{

 char string [80];

 printf(“Enter a string, terminate with a tilde

 (~)...”);

 scanf(“%[^~]”, string);

 printf(“%s”, string);

 return 0;

}

Output:
Enter a string, terminate with a tilde (~) ... I

am a string. ~

I am a string.

 Though the terminating tilde is not itself included as an
element of the string read, it stays in the ‘read buffer’—the
area of memory designated to store the input—and will be
picked up by the next call to scanf(), even though it is
not required. This is illustrated by the following program
and its output. Here, when the second call to scanf() is
executed automatically, the tilde (~) character is assigned
to the character variables x. The call to putchar() prints
the value of x.

Arrays and Strings 187
#include <stdio.h>

int main()

{

 char string [80];

 char x;

 printf(“Enter a string, terminate with a tilde

 (~)...”);

 scanf(“%[^~]”, string);

 scanf(“%c”, &x); /* The leftover from the last
scanf is read here. This scanf() does
not wait for the user to enter another
char.*/

 printf(“%s”, string);

 putchar(x);

 return 0;

}

Output:
Enter a string, terminate with a tilde (~) ... I am a
string. ~

I am a string. ~

 Compile and execute the program. It will be found that
the machine executes the second scanf() without much
fuss. Such dangling characters must be ‘absorbed away’
by a subsequent call to scanf() with %c, or to getchar()
or they may interfere in unexpected ways with subsequent
calls to scanf() or getchar().

String input using scanf() with conversion specifi er %c

An alternative method for the input of strings is to use
scanf() with the %c conversion which may have a count
associated with it. This conversion does not recognize
the new-line character as special. The count specifi es
the number of characters to be read in. Unlike the %s
and %[] (scanset) conversions, the %c conversion does
not automatically generate the string terminating NUL
and strange effects will be noted if the wrong number of
characters is supplied. The following program demonstrates
its use.

int main()

{

 char str[10];

 int i;

 while(1)

 {

 printf(“Enter a string of 9 characters:”);

 scanf(“%10c”,str);

 str[9]=‘\0’; /* Make it a string */

 printf(“String was :%s\n”,str);

 if(str[0] == ‘Z’) break;

 }

 return 0;

}

The output of the sample runs is given below.
 (a) Enter a string of 9 characters: 123456789
 String was : 123456789

 (b) Enter a string of 9 characters: abcdefghi
 String was : abcdefghi

 (c) Enter a string of 9 characters: abcdefghijklmnopqr
 String was :abcdefghi

 (d) Enter a string of 9 characters: 123456789
 String was :klmnopqr

 (e) Enter a string of 9 characters: ttttttttt
 String was :23456789

 There are some rather odd things going on here. The
fi rst point to note is that, contrary to the prompt, 10
characters are being converted. This is done so that the
new-line character at the end of the input line is also
read in; otherwise it would be left in the input buffer to
be read in as one of the input characters the next time
round. The effect of providing too many input characters
is that ‘unconsumed’ input characters (including new-
line characters) are left in the input buffer. These will be
‘consumed’ by the next call to scanf(). If too few input
characters are provided, scanf() hangs (or blocks) until it
gets enough input characters. Both types of behavior can
be seen in the above example.
 The complexities in using the scanf() function suggest
that it is not really suitable for a reliable, general-purpose
string input.

Using gets()

The best approach to string input is to use a library
function called gets(). This takes the start address of
an area of memory suitable to hold the input as a single
parameter. The complete input line is read in and stored
in the memory area as a null-terminated string. Its use is
shown in the program below.

188 Programming in C

int main()

{

 char str[150];

 printf(“Enter a string”);

 gets(str);

 printf(“The string was :%s\n”,str);

 return 0;

}

Sample run:
 (a) Enter a string manas

 The string was :manas

 (b) Enter a string manas ghosh

 The string was :manas ghosh

gets() can be implemented using getchar() or scanf()
with %c conversion specifi er as follows:

#include <stdio.h>

int main()

{

 char s[80], ch;

 int i;

 printf(“\n Enter the text:”);

 for(i=0; i<80 ;i++)

 {

 ch=getchar();

 if(ch==‘\n’)

 break;

 s[i]=ch;

 }

 s[i]=‘\0’;

 printf(“\n Entered text is:”);

 puts(s);

 return 0;

}

Be careful not to input more characters than can be stored
in the string variable used because C does not check array
bounds. gets() and puts() functions can be nested. The
following statements can be written in C.

printf(“%s”, gets(s));

puts(gets(s));

 sscanf()

There are a variety of library functions for handling input
data. The most useful include sscanf() and the function

atoi(). The function sscanf() applies scanf() type
conversions to data held in a program buffer as a single
string but not to read data from standard input. The atoi()
function converts a character string from external decimal
form to internal binary form.
 The use of sscanf() in conjunction with gets() is
illustrated by the following program. The purpose of the
program is to read in an integer. Unlike simple uses of
scanf(), input errors are detected and the prompt repeated
until a valid integer is entered.

#include <stdio.h>

int main()

{

 int error;

 char inbuf[256];

 int i;

 char c;

 while(1)

 {

 error = i = 0;

 printf(“Enter an integer”);

 gets(inbuf); /* get complete input line */

 while(inbuf[i] == ‘ ’)

 i++; /* skip spaces */

 if(inbuf[i] == ‘-’ || inbuf[i] == ‘+’)

 i++;

 while((c = inbuf[i++])!=‘\0’)

 /* while string end with NUL */

 {

 if(c>‘9’ || c<‘0’) /* non-digit ? */

 {

 printf(“Non-Numeric Character %c\n”,c);

 error = 1;

 break;

 }

 }

 if(!error) /* was everything OK ? */

 {

 int num; /* local variable */

 sscanf(inbuf,“%d”,&num); /* conversion */

 printf(“Number was %d\n”,num);

 break;

 }

 }

 return 0;

}

Arrays and Strings 189

Sample outputs are shown below:
 (a) Enter an integer a123

 Non-Numeric Character a

 (b) Enter an integer 123a

 Non-Numeric Character a

 (c) Enter an integer 1234.56

 Non-Numeric Character .

 (d) Enter an integer 1234

 Number was 1234

 (e) Enter an integer +43

 Number was 43

 There are some interesting points about this program.
The main processing loop fi rst skips any leading spaces
pointing to the fi rst non-blank character in the input text.
An initial sign is also skipped. After the optional initial
sign, all input characters must be digits until the input
string terminating NUL is encountered. If anything other
than a digit, including trailing blanks, is encountered, the
loop is broken and an error indicator is set. The condition

c = inbuf[i++]

associated with the loop that checks for digits is a typical
piece of C code that does several things in one go. The
value of the expression inbuf[i++] is the next character
from the input buffer inbuf. In the course of shifting of
the character, the variable i is incremented as a side effect.
The character value is assigned to the variable c to be used
in the test for being a digit on the following line, the value
of the assignment expression being, of course, the value
assigned. The value of this expression becomes zero and
terminates the loop when the character in question is the
string terminating NUL.
 In practice the code of this program would be
incorporated into a user-defi ned function that might return
the value of the entered integer.
 The function sscanf() is similar to scanf() except that
it has an extra parameter, which is the address of the start
of the memory area that holds the character string to be
processed. The library function atoi() could have been
used instead of sscanf() in this example by changing the
appropriate line to read.

num = atoi(inbuf);

 The function atoi() takes the address of an area of
memory as parameter and converts the string stored at
that location to an integer using the external decimal to
internal binary conversion rules. This may be preferable

to sscanf() since atoi() is a much smaller, simpler, and
faster function. sscanf() can do all possible conversions
whereas atoi() can only do single decimal integer
conversions. This type of function will be discussed in
later sections.

String input and output using fscanf() and fprintf()

stdin, stdout, and stderr: Each C program has three I/O
streams.

stdin program stdout

stderr

 The input stream is called standard-input (stdin); the
usual output stream is called standard-output (stdout);
and the side stream of output characters for errors is
called standard error (stderr). Internally they occupy fi le
descriptors 0, 1, and 2 respectively.
 Now one might think that calls to fprinf() and
fscanf() differ signifi cantly from calls to printf() and
scanf(). fprintf() sends formatted output to a stream and
fscanf() scans and formats input from a stream. See the
following example.

#include <stdio.h>

int main()

{

 int fi rst, second;

 fprintf(stdout,“Enter two ints in this line: ”);

 fscanf(stdin,“%d %d”, &fi rst, &second);

 fprintf(stdout,“Their sum is: %d.\n”, fi rst + second);

 return 0;

}

 There is a third defi ned stream named stderr. This is
associated with the standard error fi le. In some systems
such as MSDOS and UNIX, one can redirect the output
of the programs to fi les by using the redirection operator.
In DOS, for example, if fl .exe is an executable fi le that
writes to the monitor, then it can be redirected to output
to a disk fi le. Output that would normally appear on the
monitor can thus be sent to a fi le. Writing error messages
to stderr can be done by

fprintf(stderr,“Unable to open newfi le.dat for
writing”);

190 Programming in C

 This ensures that normal output will be redirected, but
error messages will still appear on the screen. Observe the
following program.

#include <stdlib.h>

#include <stdio.h>

int main()

{

 int i;

 printf(“Input an integer:”);

 /* read an integer from the standard input stream */

 if(fscanf(stdin,“%d”, &i))

 printf(“The integer read was: %i\n”, i);

 else

 {

 fprintf(stderr,“Error reading an integer from
stdin.\n”);

 exit(1);

 }

 return 0;

}

Points to Note

 1. One special case, where the null character is not
automatically appended to the array, is when the array
size is explicitly specifi ed and the number of initializers
completely fi lls the array size.

 2. printf() with the width and precision modifi ers in the %s
conversion specifi er may be used to display a string.

 3. The %s format does not require the ampersand before
the string name in scanf().

 4. If fewer input characters are provided, scanf() hangs
until it gets enough input characters.

 5. scanf() only recognizes a sequence of characters
delimited by white space characters as an external
string.

 6. While using scanset with scanf(), dangling characters
must be ‘absorbed away’ by a subsequent call to
scanf() with %c or to getchar().

5.3.5 Character Manipulation in the String

In working with a string, one important point to be
remembered is that it must be terminated with NUL (\0).
The following program removes all the blank spaces in the
character string.

#include <stdio.h>

#include <string.h>

int main()

{

 char a[80],t[80];

 int i,j;

 printf(“\n enter the text\n”);

 gets(a);

 for(i=0,j=0; a[i]!=‘\0’;++i)

 if(a[i]!= ‘ ’)

 t[j++]=a[i];

 t[j]=‘\0’;

 printf(“\n the text without blank spaces\n”);

 puts(t);

 return 0;

}

 Table 5.2 lists the character-handling functions of the
header fi le. Notice that except for the toupper() and
tolower() functions, all these functions return values
indicating true or false. It may be recalled that in C, true
is any non-zero number and false is zero. The character is
seemingly typed as an integer in these functions. This is
because the character functions are really looking at the
ASCII values of the characters, which are integers.

Table 5.2 Character functions in <ctype.h> where c is the
character argument

Function Description

ialnum(c) Returns a non-zero if c is alphabetic or numeric

isalpha(c) Returns a non-zero if c is alphabetic

scntrl(c) Returns a non-zero if c is a control character

isdigit(c) Returns a non-zero if c is a digit, 0 – 9

isgraph(c) Returns a non-zero if c is a non-blank but printing
character

islower(c) Returns a non-zero if c is a lowercase alphabetic
character, i.e., a – z

isprint(c) Returns a non-zero if c is printable, non-blanks and
white space included

ispunct(c) Returns a non-zero if c is a printable character, but not
alpha, numeric, or blank

isspace(c) Returns a non-zero for blanks and these escape sequences:
‘\f’, ‘\n’, ‘\r’, ‘\t’, and ‘\v’

isupper(c) Returns a non-zero if c is a capital letter, i.e., A – Z

isxdigit(c) Returns a non-zero if c is a hexadecimal character: 0 –
9, a – f, or A – F

tolower(c) Returns the lowercase version if c is a capital letter;
otherwise returns c

toupper(c) Returns the capital letter version if c is a lowercase
character; otherwise returns c

Arrays and Strings 191

 To see the actual effect of some of these character
manipulation functions write and run the following
program on the computer. This program counts the number
of words in a string.

#include <stdio.h>
#include <ctype.h>
int main()
{
 char s[30];
 int i=0,count=0;
 printf(“\n enter the string\n”);
 scanf(“%[^\n]”,s);
 while(s[i]!=‘\0’)
 {
 while(isspace(s[i]))
 i++;
 if(s[i]!=‘\0’)
 {
 ++count;
 while(!isspace(s[i]) && s[i] != ‘\0’)
 i++;
 }
 }
 printf(“\n NO. of words in the string is %d:”, count);
 return 0;
}

 Here is a short program which illustrates the effect of
the tolower() and toupper() functions. Notice that if a
character is not lowercase, the toupper() function does
not change the character; the effect is similar if a character
is not a capital letter. The following program converts a
given text into a capital letter using toupper() function.

#include <stdio.h>

#include <string.h>

int main()

{

 char a[30];

 int i=0;

 printf(“\n enter the string\n”);

 gets(a);

 while(a[i]!=‘\0’)

 {

 a[i]=toupper(a[i]);

 i++;

 }

 a[i]=‘\0’;

 puts(a);

 return 0;

 }

 It should be remembered that there is a difference
between characters and integers. If the character ‘1’ is
treated as an integer, perhaps by writing

int i = ‘1’;

it will probably not get the value 1 in i; it will produce
the value of the character ‘1’ in the machine’s character
set. In ASCII, it is 49. When the numeric value of a digit
character has to be found (or to put it in another way, to
get the digit character with a particular value) it is useful
to remember that in any character set used by C, the values
for the digit characters, whatever they are, are contiguous.
In other words, no matter what values ‘0’ and ‘1’ have,
‘1’ - ‘0’ will be 1 (and, obviously, ‘0’ - ‘0’ will be 0). So, for
a variable c holding some digit character, the expression

c - ‘0’

gives its value. Similarly, for an integer value i, i + ‘0’
gives us the corresponding digit character, as long as 0 <=
i <= 9.
 Just as the character ‘1’ is not the integer 1, the string
‘123’ is not the integer 123. When a string of digits is
available, it can be converted to the corresponding integer
by calling the standard function atoi.

char string[] =“123”;

int i = atoi(string);

int j = atoi(“456”);

5.3.6 String Manipulation

C has the weakest character string capability of any
general-purpose programming language. Strictly speaking,
there are no character strings in C, just arrays of single
characters that are really small integers. If s1 and s2 are
such ‘strings’ a program cannot
 ∑ assign one to the other: s1 = s2;
 ∑ compare them for collating sequence: s1 < s2
 ∑ concatenate them to form a single longer string: s1 + s2
 ∑ return a string as the result of a function
 A set of standard C library functions that are contained
in <string.h> provides limited support for the fi rst three.
By convention, the end of a string is delimited by the non-
printable null character (0 value), but there is no indication
of the amount of memory allocated. Consequently, both
user code and standard library functions can overwrite
memory outside the space allocated for the array of
characters.

192 Programming in C

 The string header, string.h, provides many functions
useful for manipulating strings or character arrays. Some
of these are mentioned in Table 5.3.

Table 5.3 String manipulation functions available in string.h

Function Description

strcpy(s1,s2) Copies s2 into s1

strcat(s1,s2) Concatenates s2 to s1. That is, it appends
the string contained by s2 to the end of the
string pointed to by s1. The terminating null
character of s1 is overwritten. Copying stops
once the terminating null character of s2 is
copied.

strncat(s1,s2,n) Appends the string pointed to by s2 to the
end of the string pointed to by s1 up to n
characters long. The terminating null character
of s1 is overwritten. Copying stops once n
characters are copied or the terminating null
character of s2 is copied. A terminating null
character is always appended to s1.

strlen(s1) Returns the length of s1. That is, it returns
the number of characters in the string without
the terminating null character.

strcmp(s1,s2) Returns 0 if s1 and s2 are the same
Returns less than 0 if s1<s2
Returns greater than 0 if s1>s2

strchr(s1,ch) Returns pointer to fi rst occurrence ch in s1

strstr(s1,s2) Returns pointer to fi rst occurrence s2 in s1

Counting number of characters of a string

The fi rst of these, strlen(), is particularly straightforward.
Its single parameter is the address of the start of the string
and its value is the number of characters in the string
excluding the terminating NUL.
 To demonstrate the use of strlen(), here is a simple
program that reads in a string and prints it out reversed, a
useful thing to do. The repeated operation of this program
is terminated by the user by entering a string of length
zero, i.e., by hitting the <Return> key immediately after
the program prompt.

#include <stdio.h>
#include <string.h>
int main()
{
 char s[100];
 int len; /* holds length of string */
 while(1)

 {
 printf(“Enter a string”);
 gets(s);
 len = strlen(s); /* fi nd length */
 if(len == 0) break; /* termination condition */
 while(len > 0)
 {
 len--;
 printf(“%c”,s[len]);
 }
 printf(“\n”);
 }
 return 0;
}

 The program operates by printing the characters one
by one, starting with the last non-NUL character of the
string. Notice that ‘len’ will have been decremented before
the output of the character. This is correct since the length
returned by strlen() is the length excluding the NUL
but the actual characters are aggregate members, 0, ...,
length–1. The outputs of this program for different sample
runs are

 (a) Enter a string 1234

 4321

 (b) Enter a string manas

 Sanam

 (c) Enter a string abc def ghi

 ihg fed cba

 Look at the following program that reads a line of text,
stores it in a string, and prints its length (excluding the
new line at the end).

#include <stdio.h>
int main()
{
 int n, c;
 char line[100];
 n = 0;
 while((c=getchar()) != ‘\n’)
 {
 if(n < 100)
 line[n] = c;
 n++;
 }
 line[n]=‘\0’;
 printf(“length = %d\n”, n);
 return 0;
}

Arrays and Strings 193

Lastly, here is another version of strlen().

int mystrlen(char str[])
{
 int i;
 for(i = 0; str[i] != ‘\0’; i++)
 {}
 return 0;
}

 In this case, all one has to do is fi nd the \0 that terminates
the string. It turns out that the three control expressions of
the for loop do all the work; there is nothing left to do in
the body. Therefore, an empty pair of braces {} are used
as the loop body. Equivalently, a null statement could be
used, which is simply a semicolon as shown.

for(i = 0; str[i] != ‘\0’; i++);

 Empty loop bodies can be a bit startling at fi rst, but they
are not unheard of.

Copying a string into another

Since C never lets entire arrays to be assigned, the strcpy()
function can be used to copy one string to another. strcpy()
copies the string pointed to by the second parameter into
the space pointed to by the fi rst parameter. The entire
string, including the terminating NUL, is copied and there
is no check that the space indicated by the fi rst parameter is
big enough. The given code shows the use of the strcpy()
function.

#include <string.h>

int main()

{

 char s1[] =“Hello, world!”;

 char s2[20];

 strcpy(s2, s1);

 puts (s2);

 return 0;

}

 The destination string is strcpy’s fi rst argument, so that
a call to strcpy mimics an assignment expression, with
the destination on the left-hand side. Note that string s2
must be allocated suffi cient memory so that it can hold the
string that would be copied to it. Also, at the top of any
source fi le, the following line must be included

#include <string.h>

that contains external declarations for these functions.

 Since a string is just an array of characters, all string-
handling functions can be written quite simply, using no
technique more complicated than the ones that are already
known. In fact, it is quite instructive to look at how these
functions might be implemented. Here is a version of
strcpy.

#include <stdio.h>

#include <string.h>

int main()

{

 char src[30], dest[30];

 int i = 0;

 printf(“\n Enter the source string: ”);

 scanf(“%[^\n]”,src);

 while(src[i] != ‘\0’)

 {

 dest[i] = src[i];

 i++;

 }

 dest[i] = ‘\0’;

 printf(“\n Source string is :%s\n”, src);

 printf(“\n Destination string is : %s\n”, dest);

 return 0;

}

 Its operation is simple. It looks at characters in the src
string one at a time, and as long as they are not \0, assigns
them, one by one, to the corresponding positions in the
dest string. On completion, it terminates the dest string by
appending a \0. After exiting the while loop, i is guaranteed
to have a value one greater than the subscript of the last
character in src. For comparison, here is a way of writing
the same code, using a for loop instead of while loop.

for(i = 0; src[i] != ‘\0’; i++)

 dest[i] = src[i];

dest[i] = ‘\0’;

The above statements can be rewritten using the following
expression:

for(i=0;(dest[i] = src[i]) != ‘\0’;i++);

This is actually the same sort of combined operation.

Comparing strings

Another function, strcmp(), takes the start addresses of
two strings as parameters and returns the value zero if the

194 Programming in C

strings are equal. If the strings are unequal, it returns a
negative or positive value. The returned value is positive if
the fi rst string is greater than the second string and negative
if the fi rst string is lesser than the second string. In this
context, the relative value of strings refers to their relative
values as determined by the host computer character set
(or collating sequence).
 It is important to realize that two strings cannot be
compared by simply comparing their start addresses
although this would be syntactically valid. The following
program illustrates the comparison of two strings.

#include <stdio.h>

#include <string.h>

int main()

{

 char x[50],y[]=“a programming example”;

 strcpy(x,“A Programming Example”);

 if(strcmp(x,“A Programming Example”) == 0)

 printf(“Equal \n”);

 else

 printf(“Unequal \n”);

 if(strcmp(y,x) == 0)

 printf(“Equal \n”);

 else

 printf(“Unequal \n”);

 return 0;

}

It produces the following output.
Equal

Unequal

Putting strings together

The arithmetic addition cannot be applied for joining of
two or more strings in the manner

string1 = string2 + string3; or

string1 = string2 +”RAJA”;

 For this, the standard library function, strcat(), that
concatenates strings is needed. It does not concatenate two
strings together and give a third, new string. What it really
does is append one string at the end of another. Here is an
example.

#include <stdio.h>

#include <string.h>

int main()

{

 char s[30] =“Hello,”;

 char str[] =“world!”;

 printf(“%s\n”, s);

 strcat(s, str);

 printf(“%s\n”, s);

 return 0;

}

The fi rst call to printf prints “Hello,”, and the second one
prints “Hello,world!”, indicating that the contents of str
have been appended to the end of s. Notice that s was
declared with extra space, to make room for the appended
characters.
 Note that in arithmetic, char variables can usually
be treated like int variables. Arithmetic on characters is
quite legal, and often makes sense.

c = c + ‘A’ - ‘a’;

converts a single, lowercase ASCII character stored
in c to a capital letter, making use of the fact that
corresponding ASCII letters are a fi xed distance apart.
The rule governing this arithmetic is that all chars are
converted to int before the arithmetic is done. Be aware
that conversion may involve a sign-extension; if the
leftmost bit of a character is 1, the resulting integer might
be negative.
 Therefore, to convert a text into lowercase, the following
program can be used

#include <stdio.h>

int main()

{

 char c;

 while((c=getchar()) != ‘\n’)

 if(‘A’<=c && c<=‘Z’)

 putchar(c+‘a’-‘A’);

/* equivalent statement in putchar(C+32);*/

 else

 putchar(c);

 return 0;

}

Sample run:
TIMES OF INDIA

times of india

Arrays and Strings 195

 The following program will demonstrate the strncat()
library function.

#include <string.h>

#include <stdio.h>

int main()

{

 char aString1[80] =“RCC Institute of Information
Technology” ,

 aString2[80] =“Oxford University Press”;

 printf(“\n Before the copy...\n”);

 puts(aString1);

 puts(aString2);

 strncat(aString1, aString2, 6);

 printf(“\n Before the copy...\n”);

 puts(aString1);

 puts(aString2);

 return 0;

}

Output:
Before the copy...

RCC Institute of Information Technology

Oxford University Press

Before the copy...

RCC Institute of Information Technology Oxford

Oxford University Press

Points to Note

 1. Since C never lets entire arrays to be assigned, the
strcpy() function can be used to copy one string to
another.

 2. Strings can be compared by the help of strcmp()
function.

 3. The arithmetic addition cannot be applied for joining
two or more strings; this can be done by using the
standard library function, strcat().

Some sample programs

One interesting thing: This program tries to prove that a
string really is an array of characters. Note the explicit
placement of the string terminator at the end of the string.
Note the &str[2]. Remember that str[2] is the third
character, so &str[2] is the address of the third character.
Since str is the address of the fi rst character, &str[2]

effectively is str but with the fi rst two characters removed.
Try replacing &str[2] with str+2. Does this work? Lastly,
notice the use of the strcpy (string copy) function from
the string.h library.

#include <stdio.h>

#include <string.h>

int main()

{

 char str[30];

 str[0]=‘M’;

 str[1]=‘A’;

 str[2]=‘D’;

 str[3]=‘A’;

 str[4]=‘M’;

 str[5]= ‘\0’; /* terminate string with a null */

 printf(“String is %s\n”,str);

 printf(“Part of string is %s\n”,&str[2]);

 strcpy(str,“SIR”);

 printf(“String is %s\n”,str);

 return(0);

}

Sample run:
String is MADAM

Part of string is DAM

String is SIR

 To make sure that what is going on is understood,
consider the following table:

Code Format Output

printf(“%?”, str); “%s” MADAM

printf(“%?”, str[1]); “%s” Error

printf(“%?”, &str[1]); “%s” ADAM

printf(“%?”, &str); “%s” MADAM

 Some of the following programs will illustrate the
manipulation of strings. The following program toggles
the case of every character in the input string.

#include <stdio.h>

#include <string.h>

int main()

{

 char istr[128]; /* input buffer */

 char tstr[128]; /* translated string here */

 int i;

196 Programming in C

 int slen; /* string length */

 while(1)

 {

 printf(“Enter a string”);

 gets(istr);

 if((slen=strlen(istr))==0) break;/* terminate */

 strcpy(tstr,istr); /* make a copy */

 i = 0;

 while(i < slen) /* translate loop */

 {

 if(tstr[i] >= ‘A’ && tstr[i] <= ‘Z’)

 /* upper case */

 tstr[i] += ‘a’-‘A’;

 else if(tstr[i] >= ‘a’ && tstr[i] <= ‘z’)

 /* lower case */

 tstr[i] += ‘A’-‘a’;

 i++; /* to next character */

 }

 printf(“Original string = %s\n”,istr);

 printf(“Transformed string = %s\n”,tstr);

 }

 return 0;

}

Output
Enter string aBDefgXYZ
Original string = aBDefgXYZ
Transformed string = AbdEFGxyz
Enter string ab CD 123
Original string = ab CD 123
Transformed string = AB cd 123

This program can also be written as follows where ‘\0’
character is used as a tool.

#include <stdio.h>

#include <string.h>

int main()

{

 char istr[128]; /* input buffer */

 char tstr[128]; /* translated string here */

 int i;

 /* string length */

 while(1)

 {

 printf(“Enter a string”);

 gets(istr);

 if(strlen(istr)==0) break; /* terminate */

 strcpy(tstr,istr); /* make a copy */

 i = 0;

 while(tstr[i]!=‘\0’) /* translate loop */

 {

 if(tstr[i] >= ‘A’ && tstr[i] <= ‘Z’)

 /* upper case */

 tstr[i] += ‘a’-‘A’;

 else if(tstr[i] >= ‘a’ && tstr[i] <= ‘z’)

 /* lower case */

 tstr[i] += ‘A’-‘a’;

 i++; /* to next character */

 }

 printf(“Original string = %s\n”,istr);

 printf(“Transformed string = %s\n”,tstr);

 }

 return 0;

}

 The following program checks whether a string given
by the user is a palindrome or not. In this program, the fi rst
character s[0] and the last character s[n-1] are compared.
Then the second character s[1] and last but one character
s[n-2] are compared, and so on. This process will be
continued up to half the length of the string. If characters
are found to be different during any comparison, then the
string is not a palindrome. Else it is a palindrome.

#include <stdio.h>

#include <string.h>

int main()

{

 int n,i,j,chk=1;

 char s[30];

 printf(“\n Enter the string:”);

 scanf(“%[^\n]”,s);

 n=strlen(s)-1;

 for(i=0,j=n;i<n/2;i++,j--)

 if(s[i]!=s[j])

 {chk=0;

 break;}

 if(chk==1)

 printf(“String is Palindrome”);

 else

 printf(“String is not Palindrome”);

 return 0;

}

Arrays and Strings 197

 Here the variable chk is used to check the result of the
comparison. Alternatively, the preceding program can be
implemented as follows:

#include <stdio.h>

#include <string.h>

int main()

{

 int n,i,j;

 char s[30],t[30];

 printf(“\n Enter the string:”);

 scanf(“%[^\n]”,s);

 n=strlen(s)-1;

 for(i=0,j=n;j>=0;i++,j--)

 t[i]=s[j];

 t[i]=‘\0’;

 if(strcmp(s,t)==0)

 printf(“String is Palindrome”);

 else

 printf(“String is not Palindrome”);

 return 0;

}

 In the above example, the string given by the user is
reversed and is stored in another array. Then using the
strcmp() library function, two strings are compared to test
whether they are equal or not. If the outcome of strcmp()
is 0, then the string entered by the user is a palindrome.

Sample runs:
 (a) Enter the string : madam

 String is Palindrome

 (b) Enter the string: india

 String is not Palindrome

 The following program deletes a word of a sentence.
Here the logic used is that each word is extracted from
the sentence into the string w. The words are separated by
a space except the last word, which is terminated by the
NUL character. Each word is compared with the word to
be deleted. If there is a match, then that word will not be
concatenated at the target string t, else it is.

#include <stdio.h>

#include <string.h>

int main()

{

 char s[50],w[20],t[50],d[20];

 int i,j;

 printf(“\n Enter the sentence: \n”);

 gets(s);

 printf(“\n Enter the word to be deleted:”);

 scanf(“%s”,d);

 i=0;

 while(s[i]!=‘\0’)

 {

 j=0;

 while(1)

 {

 if(s[i]==‘ ’||s[i]==‘\0’)

 break;

 w[j++]=s[i++];

 }

 w[j]=‘\0’;

 if(strcmp(w,d)!=0)

 {

 strcat(t,w);

 strcat(t,“ ”);

 }

 if(s[i]!=‘\0’)

 i++;

 }

 printf(“\n After deletion the sentence is as
follows...\n”);

 puts(t);

 return 0;

}

Sample run:
Enter the sentence: Ram is a good boy
Enter the word to be deleted:good
After deletion the sentence is as follows...
Ram is a boy

 The following program takes the name of a person as
input and prints the fi rst letters of the fi rst name and middle
name (if any), and the title as it is. For example, printing
Raj Kumar Santoshi as R.K. Santoshi.

#include <stdio.h>

#include <string.h>

int main()

{

 char s[50],w[20],d[20];

 int i,j;

 printf(“\n Enter the full name :”);

198 Programming in C

 gets(s);

 i=0;

 while(s[i]!=‘\0’)

 {

 j=0;

 while(1)

 {

 if(s[i]==‘ ’||s[i]==‘\0’)

 break;

 w[j++]=s[i++];

 }

 w[j]=‘\0’;

 if(s[i]==‘ ’)

 {

 printf(“%c”,w[0]);

 printf(“%c”,‘.’);

 }

 if(s[i]==‘\0’)

 printf(“%s”,w);

 if(s[i]!=‘\0’)

 i++;

 }

 return 0;

}

The logic as applied in the previous program is used here
too. Each word is extracted and the fi rst letter of the word
w[0] is printed. If ‘\0’ is encountered, that word must be
the title and it is printed as it is.

Check Your Progress

 1. What is the index of the element ‘A’ in the array
below?

 char myArray[] = {‘m’, ‘y’, ‘A’, ‘r’, ‘r’, ‘a’, ‘y’};

 Output: 2

 2. What will be the output for the following programs?
 (a) #include <stdio.h>

 int main()

 {

 char s1[]=“Oxford”;

 char s2[]=“University”;

 s1=s2;

 printf(“%s”,s1);

 return 0;

 }

 Output: There is a compilation error that states “it
cannot be a modifi able ‘lvalue’”. Or “Incompatible
types in assignment”

 (b) #include <stdio.h>
 #include <string.h>

 int main()

 {

 char p[]=“string”;

 char t;

 int i,j;

 for(i=0,j=strlen(p);i<j;i++)

 {

 t=p[i];

 p[i]=p[j-i];

 p[j-i]=t;

 }

 printf(“%s”,p);

 return 0;

 }

 Output: No output

 (c) #include <stdio.h>
 int main()
 {
 char names[5][20]={“pascal”,“ada”,“cobol”,

“fortran”,“perl”};
 int i;
 char *t;
 t=names[3];
 names[3]=names[4];
 names[4]=t;
 for(i=0;i<=4;i++)
 printf(“%s”,names[i]);
 return 0;
 }

 Output: Compiler error:“Lvalue required”
Or

“Incompatible types in assignment”

Arrays and Strings 199

 (d) #include <stdio.h>
 int main()
 {
 int i;
 char a[]=“\0”;
 if(printf(“%s\n”,a))
 printf(“Ok here \n”);
 else
 printf(“Forget it\n”);
 return 0;
 }

 Output: Ok here

 (e) #include <stdio.h>
 int main()
 {
 char p[]=“%d\n”;
 p[1] = ‘c’;
 printf(p,65);
 return 0;
 }

 Output: A

 (f) #include <stdio.h>
 #include <string.h>
 int main()
 {
 char str1[] = {‘s’,‘o’,‘m’,‘e’};
 char str2[] = {‘s’,‘o’,‘m’,‘e’,‘\0’};
 while(strcmp(str1,str2))
 printf(“Strings are not equal\n”);
 return 0;
 }

 Output:
 “Strings are not equal”
 “Strings are not equal”

...

 (g) #include <stdio.h>
 #include <ctype.h>
 int main()
 {
 char p[]=“The Matrix Reloaded”;
 int i=0;
 while(p[i])
 {
 if(!isupper(p[i]++))
 ++i;
 }
 printf(“%d”, i);
 return 0;
 }

 Output: 19

5.4 MULTIDIMENSIONAL ARRAYS
Arrays with more than one dimension are called
multidimensional arrays. Although humans cannot easily
visualize objects with more than three dimensions,
representing multidimensional arrays presents no problem
to computers.

5.4.1 Declaration of a Two-dimensional Array

An array of two dimensions can be declared as follows:

data_type array_name[size1][size2];

Here, data_type is the name of some type of data, such as
int. Also, size1 and size2 are the sizes of the array’s fi rst
and second dimensions, respectively.
 Here is an example of defi ning an eight-by-eight array
of integers, similar to a chessboard. Remember, because
C arrays are zero-based, the indices on each side of the
chessboard array run from zero through seven, rather than
one through eight. The effect is the same. However, it is
a two-dimensional array of 64 elements which has the
following declaration statement.

int arr[8][8];

5.4.2 Declaration of a Three-dimensional Array

A three-dimensional array, such as a cube, can be declared
as follows:

data_type array_name[size1][size2][size3]

 Arrays do not have to be shaped like squares and cubes;
each dimension of the array can be given a different size,
as follows:

int non_cube[2][6][8];

Three-dimensional arrays, and higher, are stored in the
same basic way as are two-dimensional ones. They are kept
in computer memory as a linear sequence of variables, and
the last index is always the one that varies fastest (then the
next-to-last, and so on).

5.4.3 Initialization of a Multidimensional Array

The number of subscripts determines the dimensionality
of an array. For example, x[i] refers to an element of a
one-dimensional array, x. Similarly, y[i][j] refers to an
element of a two-dimensional array, y, and so on.
 Multidimensional arrays are initialized in the same way
as are single-dimension arrays. For example,

200 Programming in C

(a) int a[6][2] = {

 1,1,

 2,4,

 3,9,

 4,16,

 5,25,

 6,36

 };

 (b) int b[3][5] = {{1,2,3,4,5},

 {6,7,8,9,10},

 {11,12,13,14,15}

 };

 The same effect is achieved by

int b[3][5]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};

 Although the commas in the initialization braces are
always required, the inner braces can be omitted. Thus,
the initialization for an array val may be written as

int val[3][4] = {8, 16, 9, 52,

 3, 15, 27, 6,

 14, 25, 2, 10};

The separation of initial values into rows in the declaration
statement is not necessary since the compiler assigns values
beginning with the [0][0] element and proceeds row by
row to fi ll in the remaining values. Thus, the initialization

int val [3][4] = {8, 16, 9, 52, 3, 15, 27, 6, 14,
25, 2, 10};

is equally valid but does not clearly illustrate to another
programmer where one row ends and another begins.
 As illustrated in Fig. 5.3, the initialization of a two-
dimensional array is done in row order. First the elements in
the fi rst row are initialized, then the elements in the second
row are initialized, and so on, until the initializations are

completed. This row ordering is also the same as the
ordering used to store two-dimensional arrays. That is,
array element [0][0] is stored fi rst, followed by element
[0][1], followed by element [0][2], and so on. Following
the fi rst row’s elements is the second row’s elements, and
so on for all the rows in the array.
 Using the following rules, braces can be omitted when
initializing the members of multidimensional arrays.
 ∑ When initializing arrays, the outermost pair of braces

cannot be omitted.
 ∑ If the initializer list includes all the initializers for

the object being initialized, the inner braces can be
omitted.

Consider the following example.
int x[4][2] = {

 { 1, 2 },

 { 3, 4 },

 { 5, 6 }

 };

 In this example, 1 and 2 initialize the fi rst row of the
array x, and the following two lines initialize the second
and third rows, respectively. The initialization ends before
the fourth row is initialized, so the members of the fourth
row default to0 or garbage depending on the compiler.
Here is the result.

x[0][0] = 1;

x[0][1] = 2;

x[1][0] = 3;

x[1][1] = 4;

x[2][0] = 5;

x[2][1] = 6;

x[3][0] = 0;

x[3][1] = 0;

Initialization
starts with

this element

val[0][0] = 8

val[1][0] = 3

val[2][0] = 14

val[0][1] = 16

val[1][1] = 15

val[2][1] = 25

val[0][2] = 9

val[1][2] = 27

val[2][2] = 2

val[0][3] = 52

val[1][3] = 6

val[2][3] = 10

Figure 5.3 Storage and initialization of the val[] array

Arrays and Strings 201

The following declaration achieves the same result.
int x[4][2] = { 1, 2, 3, 4, 5, 6 };

 Here, the compiler fi lls the array row by row with the
available initial values. The compiler places 1 and 2 in the
fi rst row (x[0]), 3 and 4 in the second row (x[1]), and 5
and 6 in the third row (x[2]). The remaining members of
the array are initialized to zero or garbage value.

5.4.4 Unsized Array Initializations

If unsized arrays are declared, the C compiler automatically
creates an array big enough to hold all the initializers. This
is called an unsized array. The following are examples of
declarations with initialization.
 (a) char e1[] =“read error\n”;
 (b) char e2[] =“write error\n”;
 (c) int sgrs[][2] =

 {
 1,1,
 2,4,
 3,9,
 4,16,
 };

5.4.5 Accessing Multidimensional Arrays

The elements of a multidimensional array are stored
contiguously in a block of computer memory. In scanning
this block from its start to its end, the order of storage is
such that the last subscript of the array varies most rapidly
whereas the fi rst varies least rapidly. For instance, the
elements of the two-dimensional array x[2][2] are stored
in the order: x[0][0], x[0][1], x[1][0], x[1][1]. Take a
look at the following code.

#include <stdio.h>
int main()
{
 int i,j;
 int a[3][2] = {{4,7},{1,0},{6,2}};
 for(i = 0; i < 3; i++)
 {
 for(j = 0; j < 2; j++)
 {
 printf(“%d”, a[i][j]);
 }
 printf(“\n”);
 }
 return 0;
}

Since computer memory is essentially one-dimensional
with memory locations running straight from 0 up through
the highest, a multidimensional array cannot be stored in
memory as a grid. Instead, the array is dissected and stored
in rows. Consider the following two-dimensional array.

Row 0 1 2 3

Row 1 4 5 6

Row 2 7 8 9

 Note that the numbers inside the boxes are not the actual
indices of the array, which is two-dimensional and has two
indices for each element, but only arbitrary placeholders
to enable the reader to see which elements correspond in
the following example. The row numbers correspond to
the fi rst index of the array, so they are numbered from 0 to
2 rather than 1 to 3.
 In the computer, the above array actually ‘looks’ like
this.

1 2 3 4 5 6 7 8 9

row 0 row 1 row 2

 Another way of saying that arrays are stored by rows
and that the second index varies fastest, a two-dimensional
array is always thought of as follows:

array_name[row][column]

Every row stored will contain elements of many columns.
The column index runs from 0 to [size – 1] inside every
row in the one-dimensional representation where size is
the number of columns in the array. So the column index
changes faster than the row index as the one-dimensional
representation of the array inside the computer is traversed.
 To illustrate the use of multidimensional arrays, the
elements of the array a2 might be fi lled in or initialized
using this piece of code.

int i, j;

for(i = 0; i < 5; i = i + 1)

{

 for(j = 0; j < 7; j = j + 1)

 a2[i][j] = 10 * i + j;

}

 This pair of nested loops sets a[1][2] to 12, a[4][1]
to 41, etc. Since the fi rst dimension of a2 is 5, the fi rst
subscripting index variable, i, runs from 0 to 4. Similarly,
the second subscript varies from 0 to 6.

202 Programming in C

 It will be found that the program still runs without any
problems. This is because a multidimensional array is
implemented as a big, single-dimensional array. When an
element of the array is referenced, the two indices used are
modifi ed into a single index for the array.

5.4.6 Working with Two-dimensional Arrays

The most important application of the two-dimensional
array is with a matrix. A matrix is defi ned as an ordered
rectangular array of numbers. They can be used to represent
systems of linear equations.

Transpose of a matrix

The transpose of a matrix is found by exchanging rows for
columns, i.e., for

Matrix A = (aij)
the transpose of A is AT=(aji), where i is the row number
and j is the column number.
 For example, the transpose of a matrix A would be
given by

5 2 3 5 4 8

4 7 1 2 7 9

8 9 9 3 1 9

Ê ˆ Ê ˆ
Á ˜ Á ˜= =Á ˜ Á ˜
Ë ¯ Ë ¯

TA A

 In the case of a square matrix (m = n), the transpose can
be used to check if a matrix is symmetric. For a symmetric
matrix, A = AT.

1 2 1 2

2 3 2 3

Ê ˆ Ê ˆ
= = =Á ˜ Á ˜Ë ¯ Ë ¯

TA A A

The following program fi nds the transpose of a matrix.

#include <stdio.h>

int main()

{

 int row,col;

 int i, j, value;

 int mat[10][10], transp[10][10];

 printf(“\n Input the number of rows:”);

 scanf(“%d”, &row);

 printf(“Input number of cols:”);

 scanf(“%d”, &col);

 for(i = 0 ; i < row; i++)

 {

 for(j = 0 ; j < col; j++)

 The array a2 could be printed out in a two-dimensional
way suggesting its structure, with a similar pair of nested
loops.

for(i = 0; i < 5; i = i + 1)

{

 for(j = 0; j < 7; j = j + 1)

 printf(“%d\t”, a2[i][j]);

 printf(“\n”);

}

 The character \t in the printf() string is the tab
character, which is itself an escape sequence or control
code. To understand this more clearly, the ‘row’ and
‘column’ subscripts could be made explicit by printing
them too. So, the following code could be used.

for(j = 0; j < 7; j = j + 1)

 printf(“\t%d:”, j);

printf(“\n”);

for(i = 0; i < 5; i = i + 1)

{

 printf(“%d:”, i);

 for(j = 0; j < 7; j = j + 1)

 printf(“\t%d”, a2[i][j]);

 printf(“\n”);

}

This last fragment would print
0: 1: 2: 3: 4: 5: 6:

0: 0 1 2 3 4 5 6

1: 10 11 12 13 14 15 16
2: 20 21 22 23 24 25 26
3: 30 31 32 33 34 35 36
4: 40 41 42 43 44 45 46

 Finally, there is no reason to loop over the rows fi rst and
the columns second; depending on what the user wanted to
do, the two loops could be interchanged, like this.

for(j = 0; j < 7; j = j + 1)

{

 for(i = 0; i < 5; i = i + 1)

 printf(“%d\t”, a2[i][j]);

 printf(“\n”);

}

 Notice that i is still the fi rst subscript and it still runs
from 0 to 4, and j is still the second subscript and it still
runs from 0 to 6.

Arrays and Strings 203
 {

 printf(“Input Value for : %d: %d:”,
i+1,j+1);

 scanf(“%d”, &value);

 mat[i][j] = value;

 }

 }

 printf(“\n Entered Matrix is as follows:\n”);

 for(i = 0; i < row; i++)

 {

 for(j = 0; j < col; j++)

 {

 printf(“%d”, mat[i][j]);

 }

 printf(“\n”);

 }

 for(i = 0; i< row; i++)

 {

 for(j = 0; j < col; j++)

 {

 transp[i][j]= mat[j][i];

 }

 }

 printf(“\n Transpose of the matrix is as\
follows:\n”);

 for(i = 0; i < col; i++)

 {

 for(j = 0; j < row; j++)

 {

 printf(“%d”, transp[i][j]);

 }

 printf(“\n”);

 }

 return 0;

}

 In the above example, it should be remembered that the
number of both rows and columns must be less than or
equal to 10.

Matrix addition and subtraction

Two matrices A and B can be added or subtracted if and
only if their dimensions are the same, i.e., both matrices
have an identical amount of rows and columns. Take the
matrices,

1 2 3 2 1 2

1 0 2 1 0 3

Ê ˆ Ê ˆ
= =Á ˜ Á ˜Ë ¯ Ë ¯

A B

Addition If A and B above are matrices of the same type,
then their sum is found by adding the corresponding elements
aij + bij.
 Here is an example of adding A and B together.

1 2 3 2 1 2 3 3 5

1 0 2 1 0 3 2 0 5

Ê ˆ Ê ˆ Ê ˆ
+ = + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

A B

Subtraction If A and B are matrices of the same type, then
their difference is found by subtracting the corresponding
elements aij – bij.
 Here is an example of subtracting matrices.

1 2 3 2 1 2 1 1 1

1 0 2 1 0 3 0 0 1

-Ê ˆ Ê ˆ Ê ˆ
- = - =Á ˜ Á ˜ Á ˜-Ë ¯ Ë ¯ Ë ¯

A B

The following program pertains to matrix addition.

#include <stdio.h>

#include <stdlib.h>

#defi ne row 10

#defi ne col 10

int main()

{

 int row1, col1;

 int row2, col2;

 int i,j;

 fl oat mat1[row][col];

 fl oat mat2[row][col];

 fl oat mat_res[row][col];

 printf(“\n Input the row of the matrix->1:”);

 scanf(“%d”, &row1);

 printf(“\n Input the col of the matrix->1:”);

 scanf(“%d”, &col1);

 printf(“\n Input data for matrix-> 1\n”);
 for(i = 0; i< row1; i++)
 {
 for(j = 0; j<col1; j++)
 {
 printf(“Input Value for: %d: %d:”, i+1, j+1);
 scanf(“%f”, &mat1[i][j]);
 }
 }

 printf(“\n Input the row of the matrix ->2:”);
 scanf(“%d”, &row2);

204 Programming in C

 printf(“\n Input the col of the matrix->2:”);
 scanf(“%d”, &col2);

 printf(“\n Input data for matrix-> 2\n”);
 for(i = 0; i< row2; i++)
 {
 for(j = 0; j<col2; j++)
 {
 printf(“Input Value for: %d: %d:”, i+1, j+1);
 scanf(“%f”, &mat2[i][j]);
 }
 }
 printf(“\n Entered Matrix First is:\n”);
 for(i = 0; i < row1; i++)
 {
 for(j = 0; j < col1; j++)
 {
 printf(“%f”, mat1[i][j]);
 }
 printf(“\n”);
 }
 printf(“\n Entered Matrix Two is:\n”);
 for(i = 0; i < row2; i++)
 {
 for(j = 0; j < col2; j++)
 {
 printf(“%f”, mat2[i][j]);
 }
 printf(“\n”);
 }
 if((row1 == row2) && (col1 == col2))
 {
 printf(“\n Addition is possible and”);
 printf(“the result is: \n”);
 for(i = 0; i<row1; i++)
 for(j = 0; j<col1; j++)
 mat_res[i][j] = mat1[i][j]+mat2[i][j];
 for(i = 0; i < row1; i++)
 {
 for(j = 0; j < col1; j++)
 {
 printf(“%f”, mat_res[i][j]);
 }
 printf(“\n”);
 }
 }
 else

 printf(“\n Addition is not possible”);

 return 0;

}

Matrix subtraction can be implemented in a similar way.

Matrix multiplication

When the number of columns of the fi rst matrix is the
same as the number of rows in the second matrix, then
matrix multiplication can be performed.
 Here is an example of matrix multiplication for two 2 × 2
matrices.

() ()

() ()

a b e f ae bg af bh

c d g h ce dg ef dh

+ +Ê ˆ Ê ˆ Ê ˆ
=Á ˜ Á ˜ Á ˜+ +Ë ¯ Ë ¯ Ë ¯

 Here is an example of matrix multiplication for a 3 × 3
matrix.

() () ()

() () ()

() () ()

Ê ˆ Ê ˆ
Á ˜ Á ˜
Á ˜ Á ˜
Ë ¯ Ë ¯

+ + + + + +Ê ˆ
Á ˜= + + + + + +Á ˜

+ + + + + +Ë ¯

a b c j k l

d e f m n o

g h i p q r

aj bm cp ak bn cq al bo cr

dj em fp dk en fq dl eo fr

gj hm ip gk hn iq gl ho ir

 Now let us look at the n × n matrix case, where A has
dimensions m × n and B has dimensions n × p. The product
of A and B is the matrix C, which has dimensions m × p.
The ijth element of matrix C is found by multiplying the
entries of the ith row of A with the corresponding entries
in the jth column of B and summing the n terms. The
elements of matrix C are

c11 = a11b11 + a12b21 + ... + a1nbn1
c12 = a11b12 + a12b22 + ... + a1nbn2

cmp = am1b1p + am2b2 p + ... + amnbnp

Note A × B is not the same as B × A.

#include <stdio.h>

#include <stdlib.h>

#defi ne row 10

#defi ne col 10

int main()

{

 int row1, col1;

 int row2, col2;

 int i,j,k;

 fl oat mat1[row][col];

 fl oat mat2[row][col];

 fl oat mat_res[row][col];

 printf(“\n Input the row of the matrix->1:”);

 scanf(“%d”, &row1);

Arrays and Strings 205
 printf(“\n Input the col of the matrix->1:”);

 scanf(“%d”, &col1);

 printf(“\n Input data for matrix-> 1\n”);

 for(i = 0 ; i< row1; i++)

 {

 for(j = 0 ; j<col1; j++)

 {

 printf(“Input Value for: %d: %d:”, i+1, j+1);

 scanf(“%f”, &mat1[i][j]);

 }

 }

 printf(“\n Input the row of the matrix->2:”);

 scanf(“%d”, &row2);

 printf(“\n Input the col of the matrix ->2:”);

 scanf(“%d”, &col2);

 printf(“\n Input data for matrix-> 2\n”);

 for(i = 0 ; i< row2; i++)

 {

 for(j = 0 ; j<col2; j++)

 {

 printf(“Input Value for: %d: %d:”, i+1, j+1);

 scanf(“%f”, &mat2[i][j]);

 }

 }

 printf(“\n Entered Matrix First is:\n”);

 for(i = 0; i < row1; i++)

 {

 for(j = 0; j < col1; j++)

 {

 printf(“%f”, mat1[i][j]);

 }

 printf(“\n”);

 }

 printf(“\n Entered Matrix Two is: \n”);

 for(i = 0; i < row2; i++)

 {

 for(j = 0; j < col2; j++)

 {

 printf(“%f”, mat2[i][j]);

 }

 printf(“\n”);

 }

 if(col1 == row2)

 {

 printf(“\n Multiplication is possible and the
Result is as follows\n”);

 for(i=0; i<row1; i++)

 for(j=0; j<col2; j++)

 {

 mat_res[i][j] = 0;

 for(k = 0; k < col1; k++)

 {

 mat_res[i][j] += mat1[i][k] * mat2[k][j];

 }

 }

 for(i = 0; i < row1; i++)

 {

 for(j = 0; j < col2; j++)

 {

 printf(“%f”, mat_res[i][j]);

 }

 printf(“\n”);

 }

 }

 else

 printf(“\n Multiplication is not possible”);

 return 0;

}

Finding norm of a matrix

The norm of a matrix is defi ned as the square root of the
sum of the squares of the elements of a matrix.

#include <stdio.h>

#include <math.h>

#defi ne row 10

#defi ne col 10

int main()

{

 fl oat mat[row][col], s;

 int i,j,r,c;

 printf(“\n Input number of rows:”);

 scanf(“%d”, &r);

 printf(“\n Input number of cols:”);

 scanf(“%d”, &c);

 for(i = 0 ; i< r; i++)

206 Programming in C

 {

 for(j = 0 ;j<c; j++)
 {
 printf(“\nInput Value for: %d: %d:”, i+1, j+1);
 scanf(“%f”, &mat[i][j]);
 }
 }
 printf(“\n Entered 2D array is as follows:\n”);
 for(i = 0; i < r; i++)
 {
 for(j = 0; j < c; j++)
 {
 printf(“%f”, mat[i][j]);
 }
 printf(“\n”);
 }
 s = 0.0;
 for(i = 0; i < r; i++)
 {
 for(j = 0; j < c; j++)
 {
 s += mat[i][j] * mat[i][j];
 }
 }
 printf(“\n Norm of above matrix is: %f”, sqrt(s));
 return 0;
}

Points to Note

 ∑ Multi-dimensional arrays are kept in computer memory
as a linear sequence of variables.

 ∑ The elements of a multi-dimensional array are stored
contiguously in a block of computer memory.

 ∑ The number of subscripts determines the dimensionality
of an array.

 ∑ The separation of initial values into rows in the
declaration statement is not necessary.

 ∑ If unsized arrays are declared, the C compiler
automatically creates an array big enough to hold all
the initializers.

5.5 ARRAYS OF STRINGS: TWO-DIMENSIONAL
CHARACTER ARRAY

A two-dimensional array of strings can be declared as
follows:

<data_type> <string_array_name>[<row_size>]
 [<columns_size>];

 Consider the following example on declaration of a
two-dimensional array of strings.

char s[5][30];

5.5.1 Initialization

Two-dimensional string arrays can be initialized as
shown

char s[5][10] ={“Cow”,”Goat”,”Ram”,”Dog”,”Cat”};

which is equivalent to

s[0] C o w \0

S[1] G o a t \0

S[2] R a m \0

S[3] D o g \0

S[4] C a t \0

 Here every row is a string. That is, s[i] is a string. Note
that the following declarations are invalid.

char s[5][] ={“Cow”,“Goat”,“Ram”,”Dog”,“Cat”};

char s[][] ={“Cow”,“Goat”,“Ram”,“Dog”,“Cat”};

5.5.2 Manipulating String Arrays

The following program demonstrates how an individual
string of an array of strings can be used to take input from
the user. As mentioned before, each row (i.e., s[i], if ‘s’ is
the array of strings) of an array of strings is a string.

#include <stdio.h>

int main()

{

 int i;

 char s[10][30], t[30];

 for(i=0;i<10;i++)

 scanf(“%s”,s[i]);

 for(i=0;i<10;i++)

 printf(“\n%s”,s[i]);

 return 0;

}

 The following codes show how arrays of strings may
be manipulated. This program checks whether a number is
odd or even without using any control statement.

Arrays and Strings 207
#include <stdio.h>

int main()

{

 char s[2][5]={“EVEN”,“ODD”};

 int n;

 printf(“\n enter the number:”);

 scanf(“%d”,&n);

 printf(“\n The number is %s”,s[n%2]);

 return 0;

}

 The following program accepts one line of text and
prints the words in reverse order. For example, if input
is ‘Today is Tuesday’, then output will be ‘Tuesday is
Today’.

#include <stdio.h>

#include <string.h>

int main()

{

 char st[25][30],s[80],w[20],d[20];

 int i,j, k=0;

 printf(“\n Enter the Sentence :”);

 gets(s);

 i=0;

 while(s[i]!=‘\0’)

 {

 j=0;

 while(1)

 {

 if(s[i]==‘ ’||s[i]==‘\0’)

 break;

 w[j++]=s[i++];

 }

 w[j]=‘\0’;

 strcpy(st[k],w);

 k++;

 if(s[i]!=‘\0’)

 i++;

 }

 for(k--;k>=0;k--)

 printf(“%s”,st[k]);

 return 0;

}

 The following program sorts an array of strings using
bubble sort. Note here that strcmp() is used to compare the
string. strcpy() is used for interchanging the strings.

#include <stdio.h>

#include <string.h>

int main()

{

 char s[10][30], t[30];

 int i,j,n;

 printf(“\n how many strings:”);

 scanf(“%d”,&n);

 printf(“\n enter the strings:\n”);

 for(i=0;i<n;i++)

 scanf(“%s”,s[i]);

 printf(“\n **starting comparing and sorting**”);

 for(i=0;i<n-1;i++)

 for(j=i+1; j<n; ++j)

 if(strcmp(s[i],s[j])>0)

 {

 strcpy(t,s[i]);

 strcpy(s[i],s[j]);

 strcpy(s[j],t);

 }

 printf(“\n **sorted array**\n”);

 for(i=0;i<n;i++)

 printf(“\n%s”,s[i]);

 return 0;

}

208 Programming in C

SUMMARY

An array is a collection of individual data elements that is ordered, fi xed
in size, and of homogeneous data type. When defi ning an array in a
program, three things need to be specifi ed:what kind of data it can hold,
how many values it can hold, and a name for it.
 A one-dimensional array declaration is a type followed by an array
name with a bracketed constant integral expression. The value of the
expression, which must be positive, is the size of the array. It specifi es
the number of elements in the array.
 The array subscripts (index) can range from 0 to (size–1). The lower
bound of the array subscripts is 0 and the upper bound is (size –1). An
element can be referenced by the array name and index. At the time
of declaration, the size of the array has to be given; it is mandatory.
Otherwise the compiler generates an error. No variables are allowed as
the size of the array.

 C never checks whether the array index is valid—either at compile
time or when the program is running. Array elements are initialized
using the assignment operator, braces, and commas. Single operations,
which involve entire arrays, are not permitted in C.
 Strings are an array of characters terminated by ‘\0’. Character arrays
or strings allow a shorthand initialization. Although C does not have a
string data type, it allows string constants. There are a set of input and
output functions in C suitable for handling strings. The manipulation of
strings can be carried out with the help of several functions provided in
the string.h fi le. Arrays can also be formed with strings. These are
categorized as two-dimensional arrays.
 Arrays with more than one dimension are called multidimensional
arrays. An array of two dimensions can be declared by specifying the
data type, array name, and the size of the rows and columns.

KEY-TERMS

Aggregate data type It is an agglomeration of data, of any data
type, that is identifi ed with a single name and can be decomposed and
related by some defi ned structure.

Array identifi er A name assigned to an array.

Array initialization The procedure of assigning numerical value or
character to each element of an array.
Array of strings An array that contains strings as its elements.

Array It is a collection of individual data elements that is ordered,
fi xed in size and homogeneous.

Concatenation of strings A kind of string manipulation where one
string is appended to another string.

Homogeneous data Data of same kind or same data type.

Index of an array It is an integer constant or variable ranging from
0 to (size – 1).

Library functions Pre-written functions, provided with the C
compiler,which can be attached to user written programs to carry out
some task.

Multidimensional array An array that is represented by a name and
more than one index or subscript.

One-dimensional array An array that is represented by a name and
single index or subscript.

Scalar variable It is a single variable whose stored value is an atomic
data type.

Scanset It is a conversion specifi er that allows the programmer to
specify the set of characters that are (or are not) acceptable as part of
the string.

Size of array The number of elements in an array.

Stderr The side stream of output characters for errors is called
standard- error

stdin Standard input stream that is used to receive and hold input
data from standard input device.

Stdout Standard output stream that is used to hold and transfer
output data to standard output device.

String compare A kind of string manipulation where two strings are
compared to primarily fi nd out whether they are similar or not.

String copy A kind of string manipulation where one string is copied
into another.

String manipulation Carrying out various operations like comparing,
appending, copying, etc. among strings.

String One-dimensional array of characters that contain a NUL at
the end.

FREQUENTLY ASKED QUESTIONS

1. Why is it necessary to give the size of an array in an array
declaration?
 When an array is declared, the compiler allocates contiguous memory for all
the elements of the array. The size is to be known to allocate the required
space at compile time. Thus, the size must be specifi ed.

2. Why do array subscripts start at 0 instead of 1?
 It can make array subscripting somewhat faster. Two facts are known
about an array. Firstly, an array name say arr always designates the

base address of the array. Secondly, address of ith element of arr is
given by &arr[i], which is eventually (arr + i). The base address
is the address of the fi rst element which is nothing but address of the
fi rst element &a[0]. That means that both arr and &a[0] holds the
same value which is the address of the fi rst element of the array. To
carry the expression (arr+i) same equivalence for all the elements of
the array, subscript of the fi rst element must be 0. Having the subscript
to start at 0 simplifi es scaling a bit for the compiler.

Arrays and Strings 209

3. Why do we have a null character (‘\0’ or NUL) at the end of a string?
 A string is not a data type but a data structure. This means that its
implementation is logical not physical. The physical data structure is the
array in which string is stored. Since string, by defi nition, is a variable
length structure, it is needed to identify the logical end of the data within
the physical structure.

4. If a string str contains a string literal “Oxford University
Press”, then is it legal to print the string using the statement
printf(str);?

 Yes. It prints Oxford University Press on the screen.

EXERCISE

 1. What is an array? What type and range must an array subscript
have?

 2. What does the array name signify?

 3. Can array indexes be negative?

 4. Illustrate the initialization of one-dimensional arrays, two-
dimensional arrays, and strings.

 5. Demonstrate the storage of two-dimensional arrays in memory
with the help of a diagram.

 6. Write a program to fi nd the inverse of a square matrix.

 7. Write a program to fi nd the determinant of a matrix.

 8. What is null character?

 9. What is the difference between strcat() and strncat()?

 10. Write the characteristics of array in C.

 11. In what way does an array differ from an ordinary variable?

 12. Take input from the user in a two-dimensional array and print
the row-wise and column-wise sum of numbers stored in a two-
dimensional array.

 13. What is the difference between scanf() with %s and gets()?

 14. What is the difference between character array and string?

 15. Write C programs for the following.

 (a) Store a list of integer numbers in an array and print the
following:

 (i) the maximum value

 (ii) the minimum value

 (iii) the range

 Hint This is computed as maximum-minimum.

 (iv) the average value

 Hint To compute this, add all the numbers together into
Sum and count them all in Count. The average is Sum/
Count.

 (b) Swap the kth and (k+1)th elements in an integer array. k is
given by the user.

 (c) Find the binary equivalent of an integer number using array.

 (d) Find similar elements in an array and compute the number of
times they occur.

 (e) Find the intersection of two sets of numbers.

 (f) Enter n numbers and store in an array and rearrange the
array in the reverse order.

 (g) Sort the numbers stored in an array in descending order.

 (h) Arrange the numbers stored in an array in such a way that
the array will have the odd numbers followed by the even
numbers.

 (i) Find the frequency of digits in a set of numbers.

 (j) Remove the duplicates from an array.

 (k) Merge two sorted arrays into another array in a sorted order.

 (l) Compare two arrays containing two sets of numbers.

 (m) Rearrange an array in reverse order without using a second
array.

 16. Write a C program to read a text and count all the occurrences
of a particular letter given by the user.

 17. Write a C program that will capitalize all the letters of a string.

 18. Write a C program to check whether a string given by the user is
a palindrome or not.

 19. Write a C program that counts the total numbers of vowels and
their frequency.

 20. Write a C program to remove the white spaces (blank spaces)
from a string.

 21. Write a C program to print a sub-string within a string.

 22. Write a C program that will read a word and rewrite it in
alphabetical order.

 23. Write a C program that deletes a word from a sentence. Note
that the word may appear any number of times.

 24. Write a C program that will analyze a line of text and will print the
number of words, the number of consonants, and the number of
vowels in the text.

 25. Write a C program to fi nd a string within a sentence and replace
it with another string.

 26. Write a C program that will insert a word before a particular word
of a sentence.

 27. Write a C program that takes the name of a person as input and
prints the name in an abbreviated fashion, e.g., Manas Ghosh
as M.G.

 28. Write a C program that reads in a string such as ‘20C’ or ‘15F’
and outputs the temperature to the nearest degree using the
other scale.

 29. Write a C program that takes the name of a person as input and
prints the fi rst letter of the fi rst name and middle name (if any),
and the title as it is, e.g., Raj Kumar Santoshi as R.K. Santoshi.

210 Programming in C

 30. Write a C program that reads a line of text and counts all
occurrences of a particular word.

 31. Write a program to convert each character of a string into the
next alphabet and print the string.

 32. Write a program that accepts a word from the user and prints it
in the following way.

 For example, if the word is COMPUTER, the program will print
it as

 C
 C O
 C O M
 C O M P
 C O M P U
 C O M P U T
 C O M P U T E
 C O M P U T E R

Continuing with what has been done earlier, the program for incre-
mental problem solving now uses arrays to represent the vertices
of a triangle. So there is a change in the program code, though, as
in the earlier case, the objective is to test and obtain an equilateral
triangle.

Problem statement

Using arrays to represent the three vertices of a triangle, calculate
the length of the three sides of a triangle formed with these vertices.
Then determine whether an equilateral triangle can be formed with
the given vertices.

Solution

The x and y co-ordinates of the three vertices of the triangle are rep-
resent by two one-dimensional arrays. The x and y co-ordinates for
each vertex, entered by the user, are stored in the two arrays. Using
these values, the program computes the value of the length of each
side, which are in turn stored in an array. The length of the sides of
the triangle is then considered to fi nd whether the sum of lengths
of any two sides is greater than the length of the third side. Only
if the test evaluates to be true, it is considered that a triangle can
be formed with the chosen vertices and the next test for evaluating

whether the triangle is an equilateral triangle conducted. If it is found
that neither a triangle can be formed nor an equilateral triangle be
obtained, then the program is terminated; otherwise it is considered
that an equilateral triangle can be obtained.

Program

#include<stdio.h>

#include<math.h>

int main(void)

{

 double x[3],y[3],len[3];

 int i;

 char run =‘y’;

 while(run==‘y’ || run==‘Y’)

 {

 printf(“\n Enter the coordinates of the\

vertices of a triangle”);

 for(i=0;i<3;++i)

 {

 printf(“\n Enter x[%d]:”,i);

INCREMENTAL PROBLEM

Project Questions
 1. Write a program that performs the following. The user inputs a

number and then enters a series of numbers from 1 to that number.
Your program should determine which number (or numbers) is
missing or duplicated in the series, if any. For example, if the user
entered 5 as the initial number and then entered the following
sequences, the results should be as shown.

 Input Sequence Output
 ----------------- ---------------
 1 2 3 4 5 Nothing bad

 However, if 7 were the highest number, the user would see the
results on the right for the following number entries:

 Input Sequence Output
 ----------------- ---------------
 1 3 2 4 5 Missing 6
 Missing 7

 And if 10 were the highest number and the user entered the
numbers shown on the left, note the list of missing and duplicate
numbers:

 Input Sequence Output

 ---------------------- ---------------

 1 2 4 7 4 4 5 10 8 2 6 Duplicate 2 (2 times)

 Missing 3

 Duplicate 4 (3 times)

 Missing 9

 The program should check the highest number that the user
inputs to ensure that it does not exceed the size of any array
you might be using for storage.

 2. Given an array of integers, find subarray with largest sum

Arrays and Strings 211

 scanf(“%f”,&x[i]);

 printf(“\n Enter y[%d]: ”,i);

 scanf(“%f”,&y[i]);

 }

 for(i=0; i<3; ++i)

 len[i]= sqrt((x[(i+1)%3]-x[i])*(x[(i+1)%3]-x[i])

+ (y[(i+1)%3]-y[i])*(y[(i+1)%3]-y[i]));

 if(((len[0]+len[1])>len[2])&&((len[1]+len[2])

>len[0])&& ((len[2] + len[0]) >len[1]))

 {

 printf(“\n Triangle can be drawn”);

 if((len[0]=len[1])&&(len[1]=len[2])&&(l

en[2]=len[0]))

 printf(“\n Triangle is equilateral”);

 else

 printf(“\n Triangle is not equilateral”);

 }

 else

 printf(“Triangle cannot be drawn”);

 ffl ush(stdin);

 printf(“\n\n Run once more? \n Enter y or n:”);

 scanf(“%c”, &run);

 }

 return 0;

}

Problem Statement
A company manufactures three types of UPS models. At the end of
any month serial numbers are to be generated for each of the models
manufactured. The last serial number for each type of model has
to be taken into consideration for generating the new set of serial
number for each set of models. At the end of a particular month
the following data is available for generating the new serial numbers
model-wise:

Model type Units manufactured Last serial number

Ups1 3 24

Ups2 4 19

Ups3 5 9

A program has to be written that generates the new serial numbers for
each model type for the month under consideration taking the above
data as input.

Analysis
The problem consists of calculating the serial number for each model
type by taking into consideration the serial number that was allotted
to the last unit of each type manufactured the previous month. The
above given data pertaining to each type has to be fed to the program.
Depending on the number of units manufactured and the last serial
number, the new set of serial numbers are computed for each model
type. At the end a report is printed depicting the serial numbers
allotted to each of the model units manufactured.

The algorithm for solving this problem is given as follows:

 1. START

 2. PRINT “MODEL OPTIONS: 1 FOR UPS1, 2 FOR
UPS2, 3 FOR UPS3”

 3. WHILE 1
 4. BEGIN
 5. PRINT“ENTER MODEL OPTION”
 6. INPUT OPTION
 7. IF OPTION NOT ENTERED EARLIER THEN GOTO 13
 8. ELSE PRINT“OPTION ENTERED EARLIER AND DO YOU

WANT TO AMEND ENTERED DATA?”
 9. IF YOU WANT TO AMEND ENTERED DATA THEN GOTO 11
 10. ELSE GOTO 22
 11. IF OPTION = 1 THEN FLAG1=1
 ELSE
 IF OPTION = 2 THEN FLAG2=1
 ELSE
 IF OPTION = 3 THEN FLAG3=1
 ELSE
 PRINT “WRONG OPTION” AND EXIT
 12. PRINT “ENTER LAST SERIAL NUMBER”
 13. INPUT LAST_SERIAL_NUMBER
 14. PRINT “ENTER NUMBER_OF_UNITS PRODUCED”
 15. INPUT NUMBER_OF_UNITS
 16. I = 0
 17. J = 0
 18. NEW_SERIAL_NUMBER[J] = LAST_SERIAL_NUMBER + 1 + I
 19. I = I + 1
 20. J = J + 1
 21. IF I < NUMBER_OF_UNITS THEN GOTO 19
 22. PRINT “WANT TO ENTER DATA FOR ONE MORE MODEL ?”
 23. IF NO THEN GOTO 25
 24. END
 25. PRINT “REPORT”
 26. PRINT “ITEM NUMBER MODEL TYPE SERIAL NUMBER”

CASE STUDY

212 Programming in C

 27. I = 0

 28. PRINT “ITEM_NUMBER MODEL_TYPE[I] NEW_
SERIAL_NUMBER[I]”

 29. I = I + 1
 30. IF I < NUMBER_OF_UNITS GOTO 28
 31. STOP

C Implementation
#include<stdio.h>
 #include<string.h>
#include<stdlib.h>

int main()
{
 int i,j,k,last_sn[3],new_sn[3][50],op;
 int units[3];
 char model[3][6] = {“ups01”,“ups02”,“ups03”};
 char str[3][6];
 int fl ag[3] = {0};

 printf(“\n Model options:”);
 printf(“\n 1: ups01, 2: ups02, 3: ups03”);

 while(1)
 {
 printf(“\n Enter model option:”);
 scanf(“%d”, &op);

 if (fl ag[op − 1] != 0)
 {
 printf(“\n\n model option %d already

entered”, op);
 printf(“\n\n want to correct erroneous\

entry, enter 1 for yes and 2 for no”);
 scanf(“%d”,&k);
 if(k==2)
 goto label1;
 }

 switch(--op)
 {
 case 0:
 fl ag[0] = 1;
 strcpy(str[op],model[op]);
 break;

 case 1:
 fl ag[1] = 1;
 strcpy(str[op],model[op]);
 break;

 case 2:
 fl ag[2] = 1;

 strcpy(str[op],model[op]);
 break;

 default:
 printf(“\n\n wrong option”);
 exit(0);
 }
 printf(“\n\n Enter last serial number:”);
 scanf(“%d”,&last_sn[op]);

 printf(“\n\n:%d”,last_sn[op]);
 /* test if entry is correct */

 printf(“\n\n Enter no. of units produced:”);
 scanf(“%d”,&units[op]);

 for(i=0;i<units[op];i++)
 new_sn[op][i]= last_sn[op]+1+i;

 for(i=0;i<units[op];i++)
/* test if entry is correct */

 printf(“\n serial number: %d”,new_sn[op][i]);
 label1:
 printf(“\n\n Want to enter data for one\

more model:\
 enter 1 for yes and 2 for no:”);
 scanf(“%d”,&k);
 if(k==2)break;
 }

 printf(“\n\n REPORT”);

 printf(“\\n-------------------------------”);
 printf(“\n\n ITEM NUMBER MODEL TYPE SERIAL

NUMBER”);
 printf(“\\n-------------------------------”);

 k=1;

 for(i=0; i<3; i++)
 {
 for(j=0; j<units[i]; j++)
 {
 printf(“\n\n %d %s %d”, (j+k),\

str[i],new_sn[i][j]);
 printf(“\\n-------------------”);
 }
 k = j + k;
 }

 printf(“\n\n done”);
 return 0;
 }

Arrays and Strings 213

Sample run result:
Model options:
1: ups01, 2: ups02, 3: ups03
Enter model option:1
Enter last serial number: 24
:24

Enter number of units produced: 3
 serial number: 25
 serial number: 26
 serial number: 27

Want to enter data for one more model:enter 1 for
yes and 2 for no: 1
Enter model option:2
Enter last serial number: 19
:19

Enter number of units produced: 4
 serial number: 20
 serial number: 21
 serial number: 22
 serial number: 23

Want to enter data for one more model:enter 1 for
yes and 2 for no: 1
 Enter model option:3
 Enter last serial number: 9
 :9

Enter number of units produced: 5
 serial number: 10
 serial number: 11
 serial number: 12
 serial number: 13
 serial number: 14

Want to enter data for one more model:enter 1 for
yes and 2 for no: 2

REPORT

--
 ITEM NUMBER MODEL TYPE SERIAL NUMBER
--
 1 ups01 25
--
 2 ups01 26
--
 3 ups01 27
--
 4 ups02 20
--
 5 ups02 21
--
 6 ups02 22
--
 7 ups02 23
--
 8 ups03 10
--
 9 ups03 11
--
 10 ups03 12
--
 11 ups03 13
--
 12 ups03 14
--

done
Press Enter to return to Quincy...

214 Programming in C

6.1 INTRODUCTION
Software engineering is a discipline that is concerned with
the construction of robust and reliable computer programs.
Just as civil engineers use tried and tested methods for the
construction of buildings, software engineers use accepted
methods for analysing a problem to be solved, a blueprint
or plan for the design of the solution and a construction
method that minimises the risk of error. The discipline has
evolved as the use of computers has spread. In particular,
it has tackled issues that have arisen as a result of some
catastrophic failures of software projects involving teams

of programmers writing thousands of lines of program
code. Just as civil engineers have learnt from their failures
so have software engineers.
 One of the most important barriers to the development
of better computer software is the limited ability of human
beings to understand the programs that they write. To
design a program we often use some method of software
engineering. Each approach to software engineering
divides the required task into sub-tasks, modules, sub-
systems or processes of various types. Functions are a
natural way of implementing such designs in C.

After reading this chapter, the readers will be able to
 understand what a function is and how its use benefi ts a program
 learn how a function declaration, function call, and function defi nition are constructed
 understand how variables and arrays are passed to functions
 understand what scope rules mean in functions and blocks and learn about global and

local variables
 learn about storage class specifi ers for variables
 understand the basic concept of recursion and learn the technique of constructing

recursive functions

Learning Objectives

C
Chapter

Functions

6

Functions 215

 A particular method or family of methods that a
software engineer might use to solve a problem is known
as a methodology. During the 1970s and into the 80s,
the primary software engineering methodology was
 structured programming. Dijkstra introduced the term
structured programming to refer to a set of principles (e.g.
sequence, selection or branching, iteration or looping etc)
for writing well-organized programs that could be more
easily shown to be correct. Structured programming is a
style of programming designed to make programs more
comprehensible and programming errors less frequent.
Other computer scientists added further principles, such
as modularization (breaking down a program into separate
procedures, such as for data input, different stages of
processing, and output or printing). Modularization makes
it easier to fi gure out which part of a program may be
causing a problem, and to fi x part of a problem without
affecting other parts. It enables programmers to break
problems into small and easily understood components
that eventually will comprise a complete system.
 The structured programming approach to program
design was based on the following method:
 ∑ To solve a large problem, break the problem into

several pieces and work on each piece separately;
 ∑ To solve each piece, treat it as a new problem that can

itself be broken down into smaller problems;
 ∑ Repeat the process with each new piece until each can

be solved directly, without further decomposition.
 Structured programming also encourages stepwise
refi nement, a program design process described by Niklaus
Wirth, creator of Pascal. This is a top-down approach
in which the stages of processing are fi rst described in
high-level terms (like pseudocode), and then gradually
elaborated in their details. That is, the planning activities
of problem solving are carried out in the direction from
general to specifi c. Structured programming refers to the
implementation of the resulting design. It requires planning
and organization, but a good design will often save much
time when it comes to actual implementation, and the
resulting code will be more elegant and readable. Functions
form an important part of top-down design and structured
programming. Using functions removes the need to repeat
identical groups of statements within programs when the
same task must be performed several times. Also, the use
of functions allows libraries of frequently used software to
be built up and re-used in different programs thus allowing
the creation of compact and effi cient programs.

6.2 CONCEPT OF FUNCTION
A function is a self-contained block of program statements
that performs a particular task. It is often defi ned as a
section of a program performing a specifi c job. In fact,
the concept of functions, which were originally a subset
of a concept called subroutine, came up because of the
following deliberation.
 Imagine a program wherein a set of operations has to
be repeated often, though not continuously, n times or so.
If they had to be repeated continuously, loops could be
used. Instead of inserting the program statements for these
operations at so many places, write a separate program
segment and compile it separately. As many times as it is
needed, keep ‘calling’ the segment to get the result. The
separate program segment is called a function and the
program that calls it is called the ‘main program’.
 C went one step further; it divided the entire concept
of programming to a combination of functions. C has
no procedures, only functions. scanf(), printf(),
main(), etc. that have been used in programs so far, are
all functions. C provides a lot of library functions; in
addition, the programmers can write their own functions
and use them. The special function called main() is where
program execution begins. When a function is called upon,
with or without handing over of some input data, it returns
information to the main program or calling function from
where it was called.

6.2.1 Why are Functions Needed?

The use of functions provides several benefi ts.
 ∑ First, it makes programs signifi cantly easier to

understand and maintain by breaking up a program
into easily manageable chunks. Even without
software engineering, functions allow the structure of
the program to refl ect the structure of its application.

 ∑ Secondly, the main program can consist of a series
of function calls rather than countless lines of code.
It can be executed as many times as necessary from
different points in the main program. Without the
ability to package a block of code into a function,
programs would end up being much larger, since one
would typically need to replicate the same code at
various points in them.

 ∑ The third benefi t is that well written functions may be
reused in multiple programs. The C standard library
is an example of the reuse of functions. This enables
code sharing.

216 Programming in C

 ∑ Fourthly, functions can be used to protect data. This
is related with the concept of local data. Local data
is the data described within a function. They are
available only within a function when the function is
being executed.

 ∑ The fi fth benefi t of using functions is that different
programmers working on one large project can divide
the workload by writing different functions.

6.3 USING FUNCTIONS
Referring back to the Introduction, all C programs contain
at least one function, called main() where execution starts.
Returning from this function the program execution
terminates and the returned value is treated as an indication
of success or failure of program execution.
 When a function is called, the code contained in that
function is executed, and when the function has fi nished
executing, control returns to the point at which that function
was called. The program steps through the statements in
sequence in the normal way until it comes across a call to
a particular function. At that point, execution moves to the
start of that function—that is, the fi rst statement in the body
of the function. Execution of the program continues through
the function statements until it hits a return statement or
reaches the closing brace marking the end of the function
body. This signals that execution should go back to the point
immediately after where the function was originally called.
 Functions are used by calling them from other
functions. When a function is used, it is referred to as
the ‘called function’. Such functions often use data that
is passed to them from the calling function. Parameters
provide the means by which you pass information from
the calling function into the called function. Only after the
called function successfully receives the data can the data
be manipulated to produce a useful result.

6.3.1 Function Prototype Declaration

All the header fi les contain declarations for a range of
functions, as well as defi nitions for various constants. In
a C program, a user-written function should normally be
declared prior to its use to allow the compiler to perform
type checking on the arguments used in its call statement
or calling construct. The general form of this function
declaration statement is as follows:

return_data_type function_name (data_type variable1,
...);

Or
return_data_type function_name (data_type_list);

There are three basic parts in this declaration.
 ∑ function_name This is the name given to the function

and it follows the same naming rules as that for any
valid variable in C.

 ∑ return_data_type This specifi es the type of data
given back to the calling construct by the function
after it executes its specifi c task.

 ∑ data_type_list This list specifi es the data type
of each of the variables, the values of which are
expected to be transmitted by the calling construct to
the function.

 The following are some examples of declaration
statements.
 (a) fl oat FtoC(fl oat faren);
 (b) double power(double, int);
 (c) int isPrime(int);
 (d) void printMessage(void);
 (e) void fi bo_series(int);

 A function has a name that both identifi es it and is
used to call it for execution in a program. The name of
a function is global. Functions, which perform different
actions, should generally have different names. The names
are, generally, created to indicate the particular job that the
function does, as is seen in examples (a) to (e).
 There are two ways for prototyping functions. The most
common method is simply to write the function declaration
with the arguments typed, with or without identifi ers for
each, such as example (a) can be written as either of the
following:

fl oat FtoC(fl oat);

fl oat FtoC(fl oat faren);

 The ANSI standard does not require variable names for
the prototype declaration parameters. In fact, readability
and understandability are improved if names are used.
 In modern properly written C programs, all functions
must be declared before they are used. This is normally
accomplished using a function prototype. Function
prototypes were not part of the original C language,
but were added by C89. Although prototypes are not
technically required, their use is strongly encouraged.
 If there are no parameters to a function, you can specify
the parameter list as void, as you have been doing in the
case of the main() function. Actually, when a function
takes no parameters, the inclusion of the word “void”
inside the parentheses is optional, since it is the default.

Functions 217

When a function returns no value, however, it is required
to include “void” as the function type, since the default is
“int”. If you are writing a function that returns an “int”,
technically speaking you could leave out the type and you
should always include it.

Points to Note

 ∑ The name of a function is global.

 ∑ It should not be forgotten that a semicolon is required
at the end of a function prototype. Without it, the
compiler will give an error message. And no function
can be defi ned in another function body.

 ∑ If the number of arguments does not agree with the
number of parameters specifi ed in the prototype, the
behavior is undefi ned.

 ∑ The function return type cannot be an array or a
function type. These two cases must be handled by
returning pointers to the array or function.

6.3.2 Function Defi nition

The collection of program statements in C that describes
the specifi c task done by the function is called a function
defi nition. It consists of the function header and a function
body, which is a block of code enclosed in parentheses.
The defi nition creates the actual function in memory. The
general form of the function defi nition is as follows-

return_data_type function name(data_type variable1,
data_type variable2,……)

{

 /* Function Body */

}

The function header in this defi nition is
return_data_type function name(data_type variable1,
data_type variable2,……)

and the portion of program code within the braces is the
function body. Notice that the function header is similar to
the function declaration but does not require the semicolon
at the end. The list of variables in the function header is
also referred to as the formal parameters.
 One point to be noted here is that the names do not
need to be the same in the prototype declaration and the
function defi nition. If the types are not the same then the
compiler will generate an error. The compiler checks the
types in the prototype statements with the types in the call
to ensure that they are the same or at least compatible.
 A value of the indicated data type is returned to the
calling function when the function is executed. The return

data type can be of any legal type. If the function does not
return a value, the return type is specifi ed by the keyword
void. The keyword void is also used to indicate the absence
of parameters. So a function that has no parameters and
does not return a value would have the following header.

void function_name(void)

 A function with a return type specifi ed as void should
not be used in an expression in the calling function. Since
it does not return a value, it cannot sensibly be part of an
expression. Therefore, using it in this way will cause the
compiler to generate an error message.
 There is no standard guideline about the number
of parameters that a function can have. Every ANSI
C compliant compiler is required to support at least 31
parameters in a function. However, it is considered bad
programming style if a function contains an inordinately
high (eight or more) number of parameters. The number
of parameters a function has also directly affects the speed
at which it is called—the more parameters, the slower the
function call. Therefore, if possible, one should minimize
the number of parameters to be used in a function.
 The statements in the function body, following the function
header, perform the desired computation in a function. To
understand this, consider the following examples.

Example

 1. Write a function that computes xn, where x is any valid number
and n an integer value.

 /***/
 /* Function to compute integral powers of any

valid number. First argument is any valid number,
second argument is power index.*/

 /***/

 double power(double x, int n)
/* function header */

 {
/* function body starts here... */

 double result = 1.0;
/* declaration of variable result */

 for(int i = 1; i<=n; i++)
/* computing xn */

 result *= x;
/* : */

 return result;
/* return value in ‘result’ to

calling function*/
 }

/* function body ends here... */

218 Programming in C

return Statement

The general form of the return statement is as follows:

return expression;

or
return(expression);

where expression must evaluate to a value of the type
specifi ed in the function header for the return value. The
expression can be any desired expression as long as it
ends up with a value of the required type. In Example 1,
the return statement returns the value of result to the
point where the function was called. What might strike
immediately is that the variable result, as stated earlier,
ceases to exist on completing the execution of the function.
So how is it returned? The answer is that a copy of the
value being returned is made automatically, and this copy
is available to the return point in the program.
 The expression can also include function calls, if those
functions return a numeric value! The following is a valid
calling statement:

x = power(power(2, 5), 2);

 The inner call to power returns 32, which is then used
as an argument for the outer call to power. This call to
power passes 32 and 2, and power will return the value
1024 which would get assigned to x.
 If a function returns a value, usually it has to be assigned
to some variable since a value is being returned. If there
is no assignment specifi ed, then is it a valid statement in
C? The answer is yes but may fi re a warning message. It is
allowed as the returned value is simply discarded. Let us
consider the following example.

Example

3. #include <stdio.h>

 int sum(int, int);

 int main()

 {

 int a=5, b=10;

 sum(a,b);
The statement is

valid but may elicit
warning message

 return 0;

 }

 int sum(int x, int y)

 {

 return x+y;

 }

 In Example 1, the fi rst statement in the function body
declares a variable result that is initialized with the value
1.0. The variable result is local to the function, as are all
automatic variables declared within a function body. This
means that the variable result ceases to exist after the
function has completed execution.
 The calculation is performed in the for loop. A loop
control variable i is declared in the for loop which will
assume successive values from 1 to n. The variable result
is multiplied by x once for each loop iteration. Thus this
occurs n times to generate the required value. If n is 0, the
statement in the loop will not be executed at all because
the loop continuation condition will immediately fail, and
so result will be left as 1.0.

Example

 2. Function for converting a temperature from Fahrenheit scale to
Celsius scale.

fl oat FtoC(fl oat faren) /*function header */

{ /* function body starts here…….*/

 fl oat factor = 5.0/9.0; /* : */

 fl oat freezing = 32.0; /* : */

 fl oat celsius; /* : */

 celsius = factor ∗(faren - freezing);

 return celsius; /* : */

} /* function body ends here……. */

 Again, refer to Example 2. Here, several variables have
been declared within the function FtoC().They are declared
just like any other variable. They are called automatic local
variables, because: Firstly, they are local: their effect is
limited to the function. Secondly, they are automatic since
they are automatically created whenever the function is
called. Also their value can be accessed only inside the
function, not from any other function; some authors also
use “auto” to indicate that they are automatically created.
 The scope of variables declared within a function is
limited to its use in the function only. Any change made
to these variables, internally in the function, is made only
to the local copies of the variables. Such variables are
created at the point at which it is defi ned and ceases to
exist at the end of the block containing it. There is one type
of variable that is an exception to this – those declared as
static. Discussions on static variables will be carried out
a little later in this chapter.

Functions 219

 The following statement may be used instead of the
statement sum(a,b) to avoid the warning message.

(void)sum(a,b)

 Thus the returned value is purposely discarded in this
manner.
 If the type of return value has been specifi ed as void,
there must be no expression appearing in the return
statement. It must be written simply as

return;

 For such a case the return statement may be omitted, if
desired. Also, note that when a function doesn’t return a
value, the return statement is not followed by an expression,
just a semicolon right away. Actually, if there is not a return
statement at the end of a function, and execution gets to
the end of the function, a return statement is assumed and
control goes back to the caller.
 A function can only return one value. A function with
return type void does not return any values. There may be
more than one return statement in a function, but only one
return statement will be executed per calling to the function.
As an illustration, the following function defi nition checks
whether a given year is a leap year or not. The year passed
to that function as an argument. It returns 1 if the year is a
leap year, otherwise it returns 0.

Example

 4. Function defi nition to checks whether a given year is a leap year
or not.

 void leap_yr(int yr)

 {

 if((yr%4==0)&&(yr%100!=0)||yr%400 ==0)

 return 1;

 else

 return 0;

 }

Points to Note

 ∑ If a program is compiled that contains a function
defi ned with a void return type and tries to return a
value, an error message will occur.

 ∑ An error message will be fi red by the compiler if a bare
return is used in a function where the return type was
specifi ed to be other than void.

 Standard C permits main to be defi ned with zero or two
parameters as demonstrated below:
 (a) int main(void)
 {

 return 0;
 }

 (b) int main()
 {

 return 0;
 }

(c) int main(int argc, char *argv[])
 {

 return 0;

 }

 The value returned by the function main(), after the
program instructions in its body are executed, is 0. Prior to
C99, the return type of main was often omitted, defaulting
to int. This is no longer used. In Microsoft based compiler,
C programs use void main(void). Most of the C compilers
like Borland, GCC etc always recommend main() properly
returning an int.
 According to the newly ratifi ed update to the C standard
in 1999, main() should be defi ned with a return type of int.
The practical reason to return an int from main() is that
on many operating systems, the value returned by main()
is used to return an exit status to the environment. On
Unix, MS-DOS, and Windows systems, the low eight bits
of the value returned by main() is passed to the command
shell or calling program. This is often used to change the
course of a program, batch fi le, or shell script.

6.3.3 Function Calling

It may be concluded that a function will carry out its
expected action whenever it is invoked (i.e. whenever
the function is called) from some portion of a program
which means the program control passes to that of the
called function. Once the function completes its task, the
program control is returned back to the calling function.
Generally, a function will process information passed to it
from the calling statement of a program and return a single
value. A function with returned type void does not return

220 Programming in C

any value. It only returns the control from called function
to calling function. The general form of the function call
statement (or construct) is

function_name(variable1, variable2,…);

or
variable_name = function_name(variable1,

variable2,…);

 If there are no arguments to be passed in the function,
i.e., the argument is void, then the calling statement would
be

function_name();

or
variable_name = function_name();

 Information will be passed to the function via special
identifi ers or expression called arguments or actual
parameters and returned via the return statement.

Points to Note

 One thing to notice here is that even when there are no
parameters, you need to include left and right parentheses
after the name of the function when you call it. If you leave
them out, the code will still compile, but the function never
actually gets called. What happens is that C interprets
a function name without parentheses as the memory
address where the function is stored, and it is actually legal
to have a number by itself as a statement. The statement is
useless, but valid.

 There are certain rules for parameters which must be
keep in mind while writing a C program which uses one or
more functions. These are listed below -

 ∑ The number of parameters in the actual and formal
parameter lists must be consistent.

 ∑ Parameter association in C is positional. This means
that the fi rst actual parameter corresponds to the fi rst
formal parameter, the second matches the second and
so on.

 ∑ Actual parameters and formal parameters must be of
compatible data types.

 ∑ Actual (input) parameters may be a variable,
constant, or any expression matching the type of the
corresponding formal parameter.

 Concepts described above have been taken together in
the following complete program.

Example

 5. Write C a program that uses a function to convert a temperature
from Fahrenheit scale to Celsius scale.

 #include <stdio.h>

 fl oat FtoC(fl oat); Function prototype
declaration

 int main(void)

 {

 fl oat tempInF;

 fl oat tempInC;

 printf(“\n Temperature in Fahrenheit scale: ”);

 scanf(“%f”, &tempInF);

 tempInC = FtoC(tempInF); Function calling

 printf(“%f Fahrenheit equals %f Celsius \n”,
tempInF,tempInC);

 return 0;

 }

 /* FUNCTION DEFINITION */

 fl oat FtoC(fl oat faren) Function header

 {

 fl oat factor = 5.0/9.0;

 fl oat freezing = 32.0; Function
body

 fl oat celsius;

 celsius = factor ∗(faren - freezing);

 return celsius;

 }

Points to Note

 The values passed to a function are referred to as
arguments. The parameters of the called function can be
thought of as declared local variables that get initialized
with the values of the arguments. Some text books use the
terms formal parameters and actual parameters instead of
parameters and arguments.

 Finally, there are some points which are very relevant as
well as crucial here. When function prototypes are used
 ∑ The number and types of arguments must match the

declared types otherwise the program causes an error
message.

 ∑ The arguments are converted as if by assignment,
to the declared types of the formal parameters. The
argument is converted according to the following
default argument promotions:

Functions 221

 ∑ Type fl oat is converted to double.
 ∑ Array and function names are converted to

corresponding pointers.
 ∑ When using traditional C, types unsigned short

and unsigned char are converted to unsigned
int, and types signed short and signed char
are converted to signed int.

 ∑ When using ANSI C, types short and char,
whether signed or unsigned, are converted to int.

6.4 CALL BY VALUE MECHANISM
The technique used to pass data to a function is known as
parameter passing. Data are passed to a function using one
of the two techniques: pass by value or call by value and
pass by reference or call by reference.
 In call by value, a copy of the data is made and the copy
is sent to the function. The copies of the value held by the
arguments are passed by the function call. Since only copies
of values held in the arguments are passed by the function
call to the formal parameters of the called function, the
value in the arguments remains unchanged. In other words,
as only copies of the values held in the arguments are sent
to the formal parameters, the function cannot directly
modify the arguments passed. This can be demonstrated by
deliberately trying to do so in the following example.

Example

6. #include <stdio.h>
 int mul_by_10(int num); /* function prototype */
 int main(void)
 {
 int result,num = 3;
 printf(“\n num = %d before function call.”, num);
 result = mul_by_10(num);
 printf(“\n result = %d after return from\

function”, result);
 printf(“\n num = %d”, num);
 return 0;
 }
 /* function defi nition follows */
 int mul_by_10(int num)
 {
 num *= 10;
 return num;
 }

Output
 num = 3, before function call.
 result = 30, after return from function.
 num = 3

 The sample result obtained from this program shows
that the attempt to modify the arguments of the function
has failed. This confi rms that the original value of num
remains untouched. The multiplication occurred on the
copy of num that was generated, and was eventually
discarded on exiting from the function. Some more
examples have been furnished on function calls and the
passing of arguments using the ‘pass by value’ or ‘call by
value’ technique.
 The second technique, pass by reference, sends the
address of the data rather than a copy. In this case, the
called function can change the original data in the calling
function. Unfortunately, C does not support pass by
reference. Whenever the data in the calling function have
to be changed, one must pass the variable’s address and use
it to change the value. Here values are passed by handing
over the addresses of arguments to the called function, it is
possible to change the values held within these arguments
by executing the function. This appears as if multiple
values are returned by the called function. Details on call
by reference will be presented in the chapter on pointers.

Points to Note

C supports only call by value mechanism which means the
values of the actual arguments are conceptually copied to
the formal parameters. If it is required to alter the actual
arguments in the called function, the addresses of the
arguments must be passed explicitly.

6.5 WORKING WITH FUNCTIONS
Functions can be used in a program in various ways:
 (a) Function that perform operations on their parameters

and return a value:
 (b) Function that manipulates information on their

parameters and returns a value that simply indicates
the success or failure of that manipulation.

 (c) Function having no return type that is strictly
procedural

Function that perform operations on their parameters
and return a value Functions in this category may be
classifi ed into two types.
 1. A function with fi xed number of parameters.
 2. A function with variable number of parameters

such as printf(). Writing a function with variable
arguments will not be explored in this chapter. It has
been discussed in Chapter 11.

222 Programming in C

 As an illustration of a function with fi xed number of
parameters, the following example may be sited.

Example

 7. Write a function that uses a function to fi nd the greatest common
divisor (GCD) of two integers.

 To fi nd the GCD using a function, two integers should be passed
as parameters. Let they are x and y. It is needed to check
whether k (for k = 2, 3, 4 and so on) is a common divisor
for x and y until k is greater than x or y. The common divisor is
to be stored in a variable named result. Initially result is 1.
Whenever a new common divisor is found, the value of result
is updated with the new common divisor. When all the possible
common divisors from 2 to up to x or y, are checked the value
in the variable result is the greatest common divisor and it is
returned to the calling function. Here is the implementation.

 #include <stdio.h>

 int GCD(int,int);

 int main(void)

 {

 int nOne, nTwo, n;

 printf(“\n Enter two numbers: ”);

 scanf(“%d %d”, &nOne, &nTwo);

 n=GCD(nOne,nTwo);

 printf(“\n GCD of %d and %d is %d \n”,
nOne,nTwo,n);

 return 0;

 }

 int GCD(int x,int y)

 {

 int result=1, k=2;

 while(k<=x && k<=y)

 {

 if(x%k==0 && y%k == 0)

 result=k;

 k++;

 }

 return result;

 }

Function that manipulates information on their param-
eters and returns a value that simply indicates the suc-
cess or failure of that manipulation For example, using
function we can determine whether a number is a prime
number or not. If the number is a prime then the function

returns 1 and returns 0 otherwise. Defi nition of the func-
tion may be implemented as follows:

int isPrime(int x)

{

 int d;

 for(d=2;d<=x/2;++d)

 if(x%d==0)

 return 0;

 return 1;

}

 In C99 compliant compiler, the above function can be
rewritten using standard header fi le stdbool.h. The return
type of the function is bool.

bool isPrime(int x)

{

 int d;

 for(d=2;d<=x/2;++d)

 if(x%d==0)

 return false;

 return true;

}

 Using the above function, it is possible to solve the
following problem.

Example

 8. Print the prime factors of a given number using a function.

 A number can always be divided by 1 and the number itself. The
logic behind this program is we have to divide the number starting
from 2 to n/2 where n is the given number. In any case if the
number becomes divisible by any number in the range 2 to n/2,
then that is considered to be a factor of the number. If that factor
is a prime number then the factor is a prime factor. We can use
the function isPrime() to determine whether the factor is a
prime factor or not.

 #include <stdio.h>

 #include <stdbool.h>

 bool isPrime(int);

 int main(void)

 {

 int n, d=2;

 printf(“\n Enter the Number: ”);

 scanf(“%d”,&n);

 printf(“\n Prime factors of %d is....\n”,n);

Functions 223
 for(d=2;d<=n/2;++d)

 if(n%d==0 && isPrime(d))

 printf(“%d ”,d);

 return 0;

 }

 bool isPrime(int x)

 {

 int d;

 for(d=2;d<=x/2;++d)

 if(x%d==0)

 return false;

 return true;

 }

 Sample run:

 Enter the Number: 51

 Prime factors of 51 is....

 3 17

 Function having no return type that is strictly procedural
The function may or may not have parameters. Unlike
some other languages, C makes no distinction between
subroutines (procedures) and functions. In C, there is
only the function, which can optionally return a value. A
function with void as return type simulates the procedure
in C.
 We’ve seen that when we pass the value of a typical
variable to a function, a copy of that value gets assigned
to the parameter. Changing the value of the parameter
within the called function does not affect the value of
the local variable in the calling function. Things are
different when an array is passed to a function. What we
are actually passing is the memory address of the array
(this may seem more clear after we learn about pointers),
and if the called function changes specifi c entries in the
array, these entries remain changed when control gets
back to the calling function. So when arrays or strings
are passed to a function, call by value mechanism is
not followed. That means any modifi cation made in the
array or string parameter within the called function will
be refl ected in the original array or string in the calling
function that was passed to the function. This concept
will be understood more clearly in Chapter 7. As a result
in most of the cases, it is not required to return anything.
Here is an example:

Example

9. #include <stdio.h>

 void change(int []);

 int main(void)

 {

 int arr[3] = {1, 2, 3};

 change(arr);

 printf(“Elements are %d, %d, and %d.\n”, arr[0],
arr[1], arr[2]);

 return 0;

 }

 void change(int my_array[])

 {

 my_array[0] = 10;

 my_array[2] = 20;

 return;

 }

 This program will print “Elements are 10, 2, and 20.”
to the screen.
 As a further illustration, Example 10 sorts a set of
numbers stored in an array using a function.

Example

 10. Write a C program that uses a function to sort an array of integers
using bubble sort algorithm.

 Sorting an array in ascending order means that rearranging the
values in the array so that the elements progressively increase
in value from the smallest to the largest. By the end of such
a sort, the minimum value is contained in the fi rst location of
the array, whereas the maximum value is found in the last
location of the array, with values that progressively increase in
between.

 This example implements the bubble sort algorithm, which has
already been discussed in the previous chapter. A function called
sort, takes two arguments: the array to be sorted and the number
of elements in the array.

 #include <stdio.h>

 void sort (int [], int);

 int main (void)

 {

 int i;

 int arr[10] = {3,2,7,0,6,4,9,8,1,5};

224 Programming in C

 printf (“The array before the sort:\n”);

 for (i = 0; i < 10; ++i)

 printf (“%i”, arr[i]);

 sort (array, 10);

 printf (“\n\nThe array after the sort:\n”);

 for (i = 0; i < 10; ++i)

 printf (“%i”, arr[i]);

 return 0;

 }

 void sort (int a[], int n)

 {

 int i, j, temp;

 for(i = 0; i < n-1; ++i)

 for(j = 0; j < n-i-1; ++j)

 if (a[j] > a[j+1])

 {

 temp = a[j];

 a[j] = a[j+1];

 a[j+1] = temp;

 }

 }

 Output

 The array before the sort:

 3 2 7 0 6 4 9 8 1 5

 The array after the sort:

 0 1 2 3 4 5 6 7 8 9

6.6 PASSING ARRAYS TO FUNCTIONS
Arrays can also be arguments of functions. When an array
is passed to a function, the address of the array is passed
and not the copy of the complete array. Therefore, when
a function is called with the name of the array as the
argument, address to the fi rst element in the array is handed
over to the function. Hence when an array is a function
argument, only the address of the array is passed to the
function called. This implies that during its execution the
function has the ability to modify the contents of the array
that is specifi ed as the function argument. Therefore array
is not passed to a function by value. This is an exception
to the rule of passing the function arguments by value.
Consider the following example.

Example

11. #include <stdio.h>

 void doubleThem(int [], int);

/* declaration of function */

 int main(void)

 {

 int myInts[10] = {1,2,3,4,5,6,7,8,9,10};

 int size=10;

 printf(“\n\n The given numbers are :”);

 for (i = 0; i < size; i++)

 printf(“%d,”,myInts[i]);

 doubleThem(myInts,size); /* function call */

 printf(“\n\n The double numbers are : ”);

 for (i = 0; i < size; i++)

 printf(“%d,”,myInts [i]);

 return 0;

 }

 /******* function defi nition *******/

 void doubleThem(int a[], int size)

 {

 int i;

 for(i = 0; i < size; i++)

 {

 a[i] = 2 * a[i];

 }

 }

 Output
 The given numbers are :1, 2, 3, 4, 5, 6, 7, 8,

9, 10,

 The double numbers are : 2, 4, 6, 8, 10, 12, 14,
16, 18, 20,

 It is to be noted that the value of the variable is initialized
with 10 as there are 10 values in the array myInts. The value
of the variable can also be determined by the expression
sizeof(myInts)/sizeof(myInts[0])

That is,

size=sizeof(myInts)/sizeof(myInts [0]);

Example

 12. Write a program that uses a function to fi nd the average age of
students of a class chosen for a junior quiz competition.

Functions 225
 #include <stdio.h>

 #defi ne SIZE 50

 fl oat avg_age(int [],int);

 int main(void)

 {

 int i,b[SIZE],n;

 fl oat average;

 printf(“\n How many students? \n%”);

 scanf(“%d”,&n);

 printf(“\n Enter the age of students \n”);

 for(i=0;i<n;i++)

 scanf(“%d”,&b[i]);

 average=avg_age(b,n);

 printf(“\n the average age of students =%f”,
average);

 return 0;

 }

 fl oat avg_age(int a[], int n)

 {

 int j;

 fl oat sum=0.0;

 for(j=0;j<n;j++)

 sum=sum+a[j];

 return sum/n;

 }

 13. Write a program that uses a function to fi nd the maximum value
in an array.

 Solution

 #include <stdio.h>

 int maximum(int [],int); /* function prototype */

 int main(void)

 {

 int values[5], i, max;

 printf(“Enter 5 numbers\n”);

 for(i = 0; i < 5; ++i)

 scanf(“%d”, &values[i]);

 max = maximum(values,5); /* function call */

 printf(“\nMaximum value is %d\n”, max);

 return 0;

 }

 /**** function defi nition ****/

 int maximum(int values[], int n)

 {

 int max_value, i;

 max_value = values[0];

 for(i = 1; i < n; ++i)

 if(values[i] > max_value)

 max_value = values[i];

 return max_value;

 }

 Output

 Enter 5 numbers

 11 15 8 21 7

 Maximum value is 21

 When an array is passed to a function, actually the
address of the fi rst element (called the base address of an
array) is passed which is nothing but passing arguments
by address. In general, when a one dimensional array is
passed to a function, it degenerates to a pointer. This will
be explained in the chapter on pointers.
 A local variable max_value is set to the fi rst element of
values, and a for loop is executed which cycles through
each element in values and assigns the maximum item to
max_value. This number is then passed back by the return
statement, and assigned to max in the main() function.
 However, it has to be noted that an array name with an
index number as a function argument will only pass that
particular array element’s value, like all other variables, to
the function called.
 Strings are passed to functions in the same way as are
one-dimensional arrays. By implementing string functions,
it will be shown how strings are passed into and out of
functions. Some examples involving strings as function
arguments follow.

Example

 14. Write a program that uses a function to copy one string into
another without using the strcpy() function available in the
standard library of C.

 Solution
 #include <stdio.h>

 void string_copy(char [], char []);

/* function prototype */

 int main()

 {

 char a[100]; /*** source string ***/

226 Programming in C

 char b[100]; /*** destination string ***/

 printf(“\n Input source string :”);

 scanf(“%[^\n]”,a); /* read input source string */

 string_copy(b,a); /* function call */

 printf(“\n Destination string : %s\n”,b);

 return 0;

 }

 /*** function defi nition ***/

 void string_copy(char d[], char s[])

 {

 int i = 0;

 printf(“\n Source string : %s\n”,s);

/* copying the string */

 for (i = 0; s[i] != ‘\0’; i++)

 d[i] = s[i]; /* Copy NUL character to
 destination string */

 }

 Multidimensional arrays are also allowed to be passed
as arguments to functions. The simplest type of such an
array is the two-dimensional array. It may be recalled
here that when a two-dimensional array is initialized, the
number of rows need not be specifi ed. A similar technique
is adopted while specifying the two dimensional array as a
formal parameter in a function header. The fi rst dimension
value can be omitted when a multidimensional array is
used as a formal parameter in a function.
 Of course, the function will need some way of knowing
the extent of the fi rst dimension. For example, the function
header could be written as follows:

double yield(double arr[][4], int index);

 Here, the second parameter, index, would provide the
necessary information about the fi rst dimension of the
array. The function can operate with a two-dimensional
array with any value for the fi rst dimension, but with the
second dimension fi xed at 4.

Example

 15. Write a program that uses a function to perform addition and
subtraction of two matrices having integer numbers.

 The computation that is carried out in the function is simply a
nested for loop with the inner loop summing elements of a
single row and the outer loop repeating this for every row.

 #include <stdio.h>

 #defi ne row 2

 #defi ne col 3

 void mat_arith(int [][col], int [][col]);

/* function prototype */

 int main()

 {

 int a[row][col], b[row][col],i,j;

 printf(“\n Enter elements of the fi rst matrix.\n”);

 for(i=0; i<row; i++)

/** Read fi rst matrix elements **/

 for(j=0; j<col; j++)

 scanf(“%d”,&a[i][j]);

 printf(“\n Enter elements of the second
 matrix.\n”);

 for(i=0; i<row; i++)

/** Read second matrix elements **/

 for(j=0; j<col; j++)

 scanf(“%d”,&b[i][j]);

 mat_arith(a,b); /** function call **/

 }

 void mat_arith(int a[][col], int b[][col])

 {

 int c[row][col],i,j,choice;

 printf(“\n For addition enter: 1 \n”)

 printf(“For subtraction enter: 2\n”);

 printf(“\nEnter your choice:”);

 scanf(“%d”,&choice);

 for(i=0; i<row; i++)

 for(j=0; j<col; j++)

 {

 if(choice==1)

 c[i][j]= a[i][j] + b[i][j];

 else if(choice==2)

 c[i][j]= a[i][j] - b[i][j];

 else

 {

 printf(“\n Invalid choice. Task not done.”);

 return;

 }

 }

 printf(“\n The resulting matrix is:\n”);

 for(i=0; i<row; i++)

 {

 for(j=0; j<col; j++)

Functions 227
 printf(“%d”, c[i][j]);

 printf(“\n\n”);

 }

 return;

 }

 Output
 Enter elements of the second matrix.

 1 3 5 7 9 11

 For addition enter: 1

 For subtraction enter: 2

 Enter your choice: 1

 The resulting matrix is:

 3 7 11

 14 17 21

 Till now, the function defi nition was always placed after
the main program. In fact, C allows the function defi nition
to be placed ahead of the main program. In such a case, the
function prototype is not required.

6.7 SCOPE AND EXTENT
The region of the program over which the declaration of an
identifi er is visible is called the scope of the identifi er. The
scope relates to the accessibility, the period of existence,
and the boundary of usage of variables declared in a
statement block or a function. These features in turn defi ne
whether a variable is local or global in nature.

6.7.1 Concept of Global and Local Variables

There are two common terms related to the visibility
or accessibility of a variable. They are global and local
variables. Actually global and local are the terms related
with lifetime. Lifetime is the period during execution of a
program in which a variable or function exists. It will be
discussed in details later on in this section.
 Variables declared within the function body are called
local variables. They have local scope. Local variables are
automatically created at the point of their declaration within
the function body and are usable inside the function body.
These variables only exist inside the specifi c function that
creates them. They are unknown to other functions and
to the main program. The existence of the local variables
ends when the function completes its specifi c task and
returns to the calling point. They are recreated each time a
function is executed or called.

 Variables declared outside of all the functions of a
program and accessible by any of these functions are
called global variables. The existence and region of
usage of these variables are not confi ned to any specifi c
function body. They are implemented by associating
memory locations with variable names. Global variables
are created at the beginning of program execution and
remain in existence all through the period of the execution
of the program. These variables are known to all functions
in the program and can be used by these functions as many
times as may be required. They do not get recreated if the
function is recalled. Global variables do not cease to exist
when control is transferred from a function. Their value is
retained and is available to any other function that accesses
them.
 All global variables are declared outside of all the
functions. There is no general rule for where outside the
functions these should be declared, but declaring them
on top of the code is normally recommended for reasons
of scope, as explained through the given examples. If
a variable of the same name is declared both within a
function and outside of it, the function will use the variable
that is declared within it and ignore the global one. If
not initialized, a global variable is initialized to zero by
default. As a matter of style, it is best to avoid variable
names that conceal names in an outer scope; the potential
for confusion and error is too great. Moreover, the use of
global variables should be as few as possible. Consider the
example below.

Example

 16. Write a program that uses a function to swap values stored in two
integer variables to understand the concept of local and global
variables.

 #include <stdio.h>

 void exchange(int, int);

 int main()

 { /* main() program body starts here...*/

 int a, b; /* local variables */

 a = 5;

 b = 7;

 printf(“ In main: a = %d, b = %d\n”, a, b);

 exchange(a, b);

 printf(“\n Back in main:”);

 printf(“a = %d, b = %d\n”, a, b);

 return 0;

 } /* main() program body ends here... */

228 Programming in C

 void exchange(int a, int b)

 { /* function body starts here...*/

 int temp; /* local variable */

 printf(“\n In function exchange() before\
change: just received from main... a=%d\
and b=%d”,a,b);

 temp = a;

 a = b;

 b = temp; /* interchange over */

 printf(“\n In function exchange() after change:”);

 printf(“a = %d, b = %d\n”, a, b);

 } /* function body ends here...*/

 Output:
 In main: a = 5, b = 7

 In function exchange() before change: just
received from main... a=5 and b=7

 In function exchange() after change: a = 7, b = 5

 Back in main: a = 5, b = 7

 The results depict that the program code above failed to
exchange the numbers between the variables in the function
main(). This happened because, fi rstly, the variables a and
b in main() and that within the function exchange() are not
the same. The variables a and b within exchange() are local
variables and are created when the function is invoked,
which means program control is taken over by the function,
and these are killed the moment program control returns to
the main() program. While calling the exchange() function
from main(), copies of the values held by a and b, which
are local to main(), are handed over to separate variables
a and b that are local to the function exchange(). Within
this exchange() function, the task of exchanging the
values between its local variables a and b is carried out
successfully, as is evident from the messages displayed
when the program is run. This in no way affects the values
in variables a and b in the main(). Secondly, this exchanged
copy of values in the variables is not passed back from the
function exchange() to the variables in main(). Hence the
values in the variables a and b within main() remained
untouched and unchanged. This demonstrates the difference
in the scope of the local variables in main() and the function
exchange(). One way to affect an interchange could be by
declaring the variables that are to be exchanged, that is a
and b, as global variables only. This is demonstrated by the
example program code that follows.

Example

17. #include <stdio.h>

 void exchange(void);

 int a, b; /* declaration of global variables */

 int main()

 { /* main program starts here...*/

 a = 5;

 b = 7;

 printf(“ In main: a = %d, b = %d\n”, a, b);

 exchange(); /* function call, no parameters
are passed */

 printf(“\n Back in main:”);

 printf(“a = %d, b = %d\n”, a, b);

 return 0;

 } /* main program ends here */

 void exchange(void)

 { /* function body starts here...*/

 int temp; /* decl. of local variable in function*/

 printf(“\n In function exchange() before\
change: just received from\

 main... a=%d and b=%d”,a,b);

 temp = a;

 a = b;

 b = temp; /* interchange over */

 printf(“\n In function exchange() after change:”);

 printf(“a = %d, b = %d\n”, a, b);

 } /* function body ends here*/

 Output

 In main: a = 5, b = 7

 In function exchange() before change: just
received from main... a=5 and b=7

 In function exchange() after change: a = 7, b = 5

 Back in main: a = 7, b = 5

 The example shows that for global variables the
interchange is possible by following the scope rules. By
using pointers in functions, the same job can be done more
effectively and the function call technique is known as
.call by reference more strictly call by address. This would
be discussed in the chapter on pointers.

Functions 229

Points to Note

Rather than passing variables to a function as arguments,
it is possible to make all variables global. But it is not
recommended, as global variables breaks the normal
safeguards provided by functions. Using parameter passing
mechanism and declaring local variables as needed, C
offers provision for making functions independent and
insulated from each other, including the necessity of
carefully designating the type of arguments needed by a
function, the variables used in the function, and the value
returned. Using only global variables can be especially
disastrous in larger programs that have many user-defi ned
functions. Since a global variable can be accessed and
changed by any function following the global declaration, it
is a time-consuming and frustrating task to locate the origin
of an erroneous value.

 But it is not the case that use of global variables is
always disadvantageous. There are certain instances
where use of global variables is advocated. Global
variables, however, are extremely useful in creating array
of data and constants that must be shared between many
functions. If many functions require access to a group
of arrays, global variables allow the functions to make
effi cient changes to the same array without the need for
multiple arrays passing.

6.7.2 Scope Rules

The region of the program over which the declaration of an
identifi er is accessible is called the scope of the identifi er.
The scope relates to the accessibility, the period of
existence, and the boundary of usage of variables declared
in a program. Scopes can be of four types.
 ∑ block
 ∑ fi le
 ∑ function
 ∑ function prototype

 The following sections describe the scope associated
with variables.

 Block scope

This means that the identifi er can only be used in the
block in which it is declared. These variables are created
at the point of their declaration inside the block and cease
to exist outside it. Outside the block, these variables are
unknown and non-existent. For blocks within blocks,
termed as nested blocks, variables declared outside the

inner blocks are accessible to the nested blocks, provided
these variables are not redeclared within the inner block.
The redeclaration of variables within the blocks bearing
the same names as those in the outer block, masks the
outer block variables while executing the inner blocks.
 In general, it is always better to use different names
for variables not common to outer and inner blocks to
avoid unforced errors. The following are some examples
illustrating the scope rules in blocks.

Example

 18. Write a program that illustrates the scope rules in blocks.

 #include <stdio.h>

 int main()

 {

 int x= 3; /* variable declaration in outer
 block */

 printf(“\n in outer block x = %d before\
executing inner block”, x);

 {

 int x= 45; /* variable declaration in inner
 block */

 printf(“\n in inner block x = %d”, x);

 }

 printf(“\n in outer block x = %d after executing\
inner block”, x);

 return 0;

 }

 Output
 in outer block x = 3 before executing inner

block

 in inner block x = 45

 in outer block x = 3 after executing inner
block

 This program shows that because the variable x has been
redeclared as 45 in the inner block, a local variable gets
created in the inner block. This variable is only accessible
and known to the inner block.
 Functions are considered as named block. Variables
declared within a function block can be used anywhere
within the function in which they are defi ned. The variable
x declared in outer block has the block scope. Like blocks,
functions can either be defi ned in parallel, where the
functions are placed one after the other and a function can
be called from any other function. But C does not allow

230 Programming in C

functions to be nested, i.e. a function cannot be defi ned
within another function defi nition.

 Function scope

This applies only to labels. Normally labels are used with
goto statement. It simply means that labels can be used
anywhere within the function in which they are defi ned.
This includes use before defi nition.

 File scope

This means that the identifi er can be used anywhere in
the current fi le after the declaration of the identifi er. This
applies to functions and all variables declared outside
functions. File scope variable is also known as global
variable. The illustration involving global or fi le scope
variables has already been discussed in Section 6.7.1.
File scope identifi ers may be hidden by the block scope
declarations having same name.

 Function prototype scope

In order to improve readability and understandabilty,
function prototypes are usually written with ‘dummy’
variable names. For example

double max(double x, double y);

 The identifi ers ‘x’ and ‘y’ have function prototype
scope, which terminates at the end of the prototype.
This allows any dummy parameter names appearing in a
function prototype to disappear at the end of the prototype.
Consider the following program:

#include <stdio.h>

int main(void)

{

 void show(int x);

 int x=10;

 show(x);

 return 0;

}

void show(int x)

{

 printf(“\n %d”,x);

}

 The int variable name does not confl ict with the
parameter name because the parameter went out of scope
at the end of the prototype. However, the prototype is still
in scope.

Points to Note

In standard C, formal parameters in the function defi nition
have the same scope as variables declared at the beginning
of the block that forms the function body and therefore
they cannot be hidden or redeclared by declarations in the
body. The following function defi nition, if used, will give
error message at compile time.

int sum(int x, int y)

{

 int x=5;

 return x+y;

}

Compilation error message displayed

In function ‘sum’:

error: ‘x’ redeclared as different kind of symbol

note: previous defi nition of ‘x’ was here

 How long memory will be associated with them is known
as extent or lifetime of a data object. The storage duration of
the identifi er determines its lifetime, either static duration
(global lifetime) or automatic duration (local lifetime).
The duration of an object describes whether its storage is
allocated once only, at program start-up, or is more transient
in its nature, being allocated and freed as necessary. Static
duration means that the object has its storage allocated
permanently i.e. storage is allocated at or before the
beginning of program execution and the storage remain
allocated until program termination. Automatic duration
means that the storage is allocated and freed as necessary.
 The following rules specify whether an identifi er has
global (static) or local (automatic) lifetime:
 ∑ Global lifetime All functions have global lifetime.

As do the identifi ers declared at the top level (that is,
outside all blocks in the program at the same level of
function defi nitions).

 ∑ Local lifetime An object (unless it is declared as
static) is said to have local lifetime when it is created on
entry to a block or function and destroyed on exit from
block or function. Formal parameters and variables
declared at the beginning of the block may have local
lifetime depending on the place of declaration.

 The data object created with the use of special library
functions such as malloc() or calloc() etc have dynamic
duration and the storage remain allocated from the time
of creation at run time until program termination or until a
call to special library function free().

Functions 231

6.8 STORAGE CLASSES

6.8.1 Storage Class Specifi ers for Variables

In C, the variables are declared by the type of data they
can hold. The name of a variable is associated with a
memory location within the computer where the value
assigned to the variable is stored in the form of bits.
During the execution of the program, these variables
may be stored in the registers of the CPU or the primary
memory of the computer. To indicate where the variables
would be stored, how long they would exist, what would
be their region of existence, and what would be the
default values, C provides four storage class specifi ers
that can be used along with the data type specifi ers in the
declaration statement of a variable. These four storage
class specifi ers are automatic, external, register, and
static.
 The storage class specifi er precedes the declaration
statement for a variable. The general form of the variable
declaration statement that includes the storage class
specifi er is given as follows:

storage_class_specifi er data_type variable_name;

The storage class – auto

By default, all variables declared within the body of any
function are automatic. The keyword auto is used in the
declaration of a variable to explicitly specify its storage
class. For example, the following declaration statement
within a function body

auto char any_alpha;

specifi es that any_alpha is a variable that can hold a
character and its storage class is automatic. Even if the
variable declaration statement in the function body does
not include the keyword auto, such declared variables are
implicitly specifi ed as belonging to the automatic storage
class. In fact, all local variables in a function, by default,
belong to automatic storage class. Their region of use is
limited within the function body and vanishes when the
function completes its specifi c task and returns to the
main program from where the function was invoked.
These variables are stored in the primary memory of the
computer.
 Local variables declared within nested blocks in a
function belong by default to the automatic storage class.

Example

 19. Write a C program that demonstrates the use of the automatic
storage class variable.

 #include <stdio.h>

 int main(void)

 {

 auto int a =5;

 printf(“\n a = %d”,a);

 {

 int a = 10;

 printf(“\n a = %d”,a);

 printf(“\n i = %d”,i);

 }

 printf(“\n a = %d”,a);

 return 0;

 }

 Output
 a = 5

 a = 10

 i = 4199232

 a = 5

 Output shows that because a is declared auto in outer
block and a declared in inner block is also auto by default.
Since this local variable i is not initialized within the
inner block, the value held by it is unpredictable and thus
garbage. This is printed as 4199232. When inner block
ends, the existence of both the variables a and i go away.
So outside the inner block, the value of a is printed as
5. Any attempt to access the variable i outside the inner
block causes a compiler error. This example demonstrates
the accessibility, existence, effect of initialization, and
garbage default value of the automatic storage class or the
local variable.

The storage class – register

Values stored in registers of the CPU are accessed in much
lesser time than those stored in the primary memory. To
allow the fastest access time for variables, the register
storage class specifi er is used. The keyword for this
storage class is register. The variables thus specifi ed are
stored in some register of the CPU. In most C compilers,
the register specifi er can only be applied to int and char
type variables; however, ANSI C has broadened its scope.

232 Programming in C

Arrays cannot be stored in a registers but they may still
receive preferential treatment by the compiler depending
on C compiler and the operating system under which it is
running.
 The existence of the variables with the storage class
specifi er register is restricted within the region of a
function or a block where it has been declared and exists
as long as the function or block remains active. The default
value within this variable is unknown, which is interpreted
as garbage. Storage class of a global variable cannot be
specifi ed as register.

Points to Note

 ∑ Global variables with register storage class are not
allowed.

 ∑ In C, it is not possible to obtain the address of a
register variable by using ‘&’ operator.

 ∑ In addition, the only storage class specifi er that can be
used in a parameter declaration is register.

The storage class – static

Two kinds of variables are allowed to be specifi ed as static
variables: local variables and global variables. The local
variables are also referred to as internal static variables
while the global variables are also known as external static
variables. The default value of a static variable is zero.
 To specify a local variable as static, the keyword static
precedes its declaration statement.
 A static local variable is allotted a permanent storage
location in the primary memory. This variable is usable
within functions or blocks where it is declared and
preserves its previous value held by it between function
calls or between block re-entries. However, once a function
is invoked, the static local variable retains the value in it
and exists as long as the main program is in execution.
 The external static variables in a program fi le are
declared like global variables with the keyword static
preceding its declaration statement. These static variables
are accessible by all functions in the program fi le where
these variables exist and are declared. The external static
variables are not available to functions defi ned earlier in
the same fi le or not accessible to functions defi ned in other
fi les although these may use the extern keyword. These
variables exist throughout the period of the main program
execution. Such variables get stored in the primary
memory.

Example

 20. Write a C program that illustrates the use local static variables
and functions.

 #include <stdio.h>

 int main()

 {

 void show(void);

 printf(“\n First Call of show()”);

 show();

 printf(“\n Second Call of show()”);

 show();

 printf(“\n Third Call of show()”);

 show();

 return 0;

 }

 void show(void)

 {

 static int i;

 printf(“\n i=%d”,i);

 i++;

 }

 Output
 First Call of show()

 i=0

 Second Call of show()

 i=1

 Third Call of show()

 i=2

The storage class – extern

A program in C, particularly when it is large, can be broken
up into smaller programs. After compiling, each program
fi le can be joined together to form the large program.
These small program modules that combine together
may need some variables that are used by all of them.
In C, such a provision can be made by specifying these
variables, accessible to all the small program modules,
as an external storage class variable. These variables are
global to all the small program modules that are formed
as separate fi les. The keyword for declaring such global
variables is extern. Such global variables are declared like
any other variable in one of the program modules while

Functions 233

the declaration of these variables is preceded with the
keyword extern in all other combining program modules.
The program modules may also be a function or a block.
These variables remain in existence as long as the program
is in execution and their existence does not terminate upon
the exit of a function or a block or a program module from
its state of execution. These variables are stored in the
primary memory and their default value is zero. Table 6.1
provides a summary of the salient features of storage class
specifi ers. The following programs illustrate the use of the
external storage class variable.

Example

21. /***/

 /* Program fi le: pgm1.c */

 /***/

 #include <stdio.h>

 #include “pgm2.c” /*** link program pgm2.c ***/

 int i; /*** external/global decl.**/

 void show(void); /*** function prototype ***/

 int main()

 {

 i=10;

 show(); /* call to function in program fi le
 pgm2.c */

 printf(“\n Value of i in pgm1.c=%d ”,i);

 return 0;

 } /****** pgm1.c fi le ends ***********/

 /***/

 /* Program fi le: pgm2.c */

 /***/

 extern int i;

 /***** function defi nition of show()*********/

 void show() /*** function header ***/

 { /*** fn. body starts..**/

 printf(“\n Value of i in pgm2.c=%d”,i);

 } /*** fn. body ends.. **/

 Output

 Value of i in pgm2.c=10

 Value of i in pgm1.c=10

 Here is another example where the global variable i
is assigned a value in the program fi le in which the basic
declaration statement and main() are absent. There is a minor
difference between this example and the previous one.

Table 6.1 Summary of salient features of storage class specifi ers

Storage class
specifi er

Place of storage Scope Lifetime Default value

auto Primary memory Within the block or function
where it is declared.

Exists from the time of entry in the function or
block to its return to the calling function or to
the end of block.

garbage

register Register of CPU Within the block or function
where it is declared.

Exists from the time of entry in the function or
block to its return to the calling function or to
the end of block.

garbage

static Primary memory For local
Within the block or function
where it is declared.

For global
Accessible within the
combination of program
modules/fi les that form the
full program.

For local
Retains the value of the variable from one
entry of the block or function to the next or
next call.

For global
Preserves value in the program fi le

0

extern Primary memory Accessible within the
combination of program
modules/fi le that form the full
program.

Exists as long as the program is in execution. 0

234 Programming in C

Example

22. /***/

 /* Program fi le: pgm1.c */

 /***/

 #include <stdio.h>

 #include “pgm2.c” /*** link program pgm2.c ***/

 int i; /*** external/global decl.**/

 void show(void); /*** function prototype ***/

 int main()

 {

 show(); /* call to function in program fi le pgm2.c */

 printf(“\n Value of i in pgm1.c=%d”,i);

 return 0;

 } /******* pgm1.c fi le ends***********/

 /***/

 /* Program fi le: pgm2.c */

 /***/

 extern int i;

 /******* function defi nition of show() ********/

 void show() /*** function header ***/

 { /*** fn. body starts..**/

 i = 20;

 printf(“\n Value of i in pgm2.c=%d”,i);

 } /*** fn. body ends.. **/

 Output
 Value of i in pgm2.c=20

 Value of i in pgm1.c=20

6.8.2 Storage Class Specifi ers for Functions

The only storage class specifi ers that may be assigned with
functions are extern and static. The extern signifi es that
the function can be referenced from other fi les- that is,
the function name is exported to the linker. The static
signifi es that the function cannot be referenced from other
fi les- that is the function name is not exported to the linker.
If no storage class appears in a function defi nition, extern
is presumed.

6.8.3 Linkage

An identifi er’s linkage determines which of the references
to that identifi er refer to the same object. An identifi er’s
linkage is determined by whether it appears inside or
outside a function, whether it appears in a declaration
of a function (as opposed to an object), its storage-class

specifi er, and the linkage of any previous declarations of
the same identifi er that have fi le scope. C defi nes three types
of linkages – external, internal and no linkage. In general,
 ∑ Functions and global variables have external linkage.

This means they are available to all fi les that constitute
a program.

 ∑ Identifi ers with fi le scope declared as static have
internal linkage. These are known only within the fi le
in which they are declared.

 ∑ Local identifi ers have no linkage and are therefore
known only within their own block.

 Two declarations of the same identifi er in a single fi le
that have the same linkage, either internal or external, refer
to the same object. The same identifi er cannot appear in a
fi le with both internal and external linkage.

Points to Note

It is not always necessary to specify both the storage class
and the type of identifi ers in a declaration. Storage class
specifi ers appearing in declarations outside of functions are
assumed to be extern. In a declaration inside a function, if
a type but no storage class is indicated, the identifi er is
assumed to be auto. An exception to the latter rule is made
for functions because functions with storage class auto do
not exist; it is implicitly declared to be extern.

6.9 THE INLINE FUNCTION
C99 has added the keyword inline, which applies to
functions. By preceding a function declaration with inline,
the compiler is instructed to optimize calls to the function.
Typically, this means that the function’s code will be
expanded in line, rather than called. Below is a defi nition
of such inline function.

inline int sum(int x, int y)

{

 return x+y;

}

 The inline designation is only a hint to the compiler,
suggesting that calls to the inline function should be as fast
as possible. The name comes from a compiler optimization
called inline expansion, whereby a call to a function is
replaced by a copy of the function body. This eliminates
the overhead of the function call. There is no guarantee in
general that the compiler will take note of a function being
declared as inline. It is free to ignore the request.

Functions 235

6.10 RECURSION
The formal defi nition is given below:

A recursive function is one that calls itself directly or
indirectly to solve a smaller version of its task until a
fi nal call which does not require a self-call.

 Recursion is like a top–down approach to problem
solving; it divides the problem into pieces or selects one
key step, postponing the rest. On the other hand, iteration
is more of a bottom–up approach; it begins with what is
known and from this constructs the solution step by step.

6.10.1 What is needed for implementing recursion?

 ∑ Decomposition into smaller problems of same type
 ∑ Recursive calls must diminish problem size
 ∑ Necessity of base case
 ∑ Base case must be reached
 ∑ It acts as a terminating condition. Without an explicitly

defi ned base case, a recursive function would call
itself indefi nitely.

 ∑ It is the building block to the complete solution. In
a sense, a recursive function determines its solution
from the base case(s) it reaches.

Points to Note

What is a base case? An instance of a problem the solution
of which requires no further recursive calls is known as a
base case. It is a special case whose solution is known.
 Every recursive algorithm requires at least one base case
in order to be valid. A base case has two purposes.

 The recursive algorithms will generally consist of an if
statement with the following form:

if(this is a base case) then

 solve it directly

else

 redefi ne the problem using recursion.

 Four questions can arise for constructing a recursive
solution. They are as follows.
 ∑ How can the problem be defi ned in terms of one or

more smaller problems of the same type?
 ∑ What instance(s) of the problem can serve as the base

case(s)?
 ∑ As the problem size diminishes, will this/these base

case(s) be reached?

 ∑ How is/are the solution(s) from the smaller problem(s)
used to build a correct solution to the current larger
problem?

 It is not always necessary or even desirable to ask the
above questions in strict order. For example, sometimes the
solution to a problem is easier to imagine if it is fi rst asked
what instance(s) can serve as the base case(s) and then defi ne
the problem in terms of one or more smaller problems of the
same type which are closer to the base case(s).
 The following sections discuss some popular problems
where the recursive functions are constructed and used
keeping in mind the above approach.

The Fibonacci sequence

The Fibonacci numbers are a sequence of numbers that
have many varied uses. They were originally intended to
model the growth of a rabbit colony. The sequence is as
follows:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

 The third term of the sequence is the sum of the fi rst
and second terms. The fourth term is the sum of the second
and third terms, and so on. The problem is to compute the
value of the nth term recursively.
 Let fi b(n) denote the nth term of the Fibonacci sequence.
Four questions arise.
 ∑ How can the problem be defi ned in terms of one or

more smaller problems of the same type?
 fi b(n) = fi b(n-2) + fi b(n-1) for n>2

 This recursive relation introduces a new point. In
some cases, one solves a problem by solving more
than one smaller problem of the same type.

 ∑ What instance of the problem can serve as the base
case?

 One must be careful when selecting the base case in this
situation. For example if one simply says that fi b(1) is
the base case, what happens if fi b(2) is called?

 fi b(2) is fi b(0) + fi b(1) but fi b(0) is undefi ned.

 That makes fi b(2) undefi ned. Therefore, it is necessary
to give fi b(2) an explicit defi nition, i.e., to make it a
base case also.

 fi b(1) = 1 for n = 1

 fi b(2) = 1 for n = 2

 Two base cases are necessary because there are two
smaller problems.

236 Programming in C

 ∑ As the problem size diminishes, will one reach these
base cases?

 As n is a non-negative integer and each call to the
function will reduce the parameter n by 1 or 2, the
base cases n = 1, n = 2 will be reached.

 ∑ How are the solutions from the smaller problems
used to build a correct solution to the current larger
problem?

 The recursive step adds the results from the two smaller
problems fi b(n–2) and fi b(n–1) to obtain the solution to the
current fi b(n) problem. This function uses what is known
as ‘non-linear’ recursion.
 In this context, brief defi nitions of linear, non-linear,
and mutual recursions are given as follows.

 ∑ Linear recursion This term is used to describe a
recursive function where at most one recursive call
is carried out as part of the execution of a single
recursive process.

 ∑ Non-linear recursion This term is used to describe
a recursive function where more than one recursion
can be carried out as part of the execution of a single
recursive process.

 ∑ Mutual recursion In order to check and compile
a function call, a compiler must know the type
of the function, the number of parameters, and
so on. In direct recursion the function header,
which contains this information, is seen before
any call within the function body or later. In
mutual recursion, the functions must be defi ned in
some order. This means that a call of at least one
function must be compiled before its defi nition is
seen. Different programming languages approach
this problem in various ways. Some use separate
forward defi nitions of function headers to give
suffi cient information to compile a call and body
defi nitions to contain those calls.

 Coming back to the Fibonacci sequence problem, any
number in the sequence can be determined by the defi nition
that follows.

1 if n<=2
Fibo(n)=

Fibo(n + 1)+Fibo(n-2) otherwise

 Considering the defi nition, the following code may be
used in a recursive function to generate the numbers in the
Fibonacci sequence.

int fi b(int val)
{
 if(val <= 2)
 return 1;
 else
 return(fi b(val - 1) + fi b(val - 2));
}

 The following example illustrates the use of the
preceding recursive function for generating the Fibonacci
numbers.

Example

23. /***/
 /* Program for computing the Fibonacci number
 sequence using recursion. */
 /***/
 #include <stdio.h>
 #include <stdlib.h>
 int fi b(int); /* function prototype */
 int main()
 {
 int i,j;
 printf(“\n Enter the number of terms: ”);
 scanf(“%d”,&i);
 if(i < 0)
 {
 printf(“\n Error – Number of terms cannot be\

negative\n”);
 exit(1);
 }
 printf(“\n Fibonacci sequence for %d terms is:”,i);
 for(j=1; j<=i; ++j)
 printf(“ %d”,fi b(j)); /* function call to return

 jth Fibonacci term*/
 return 0;
 }
 /***/
 /* Recursive function fi b() */
 /***/
 int fi b(int val)
 {
 if(val <= 2)
 return 1;
 else
 return(fi b(val - 1) + fi b(val - 2));
 }

 Output
 (a) Enter the number of terms: 6
 Fibonacci sequence for 6 terms is: 1 1 2 3 5 8
 (b) Enter the number of terms: 4
 Fibonacci sequence for 4 terms is: 1 1 2 3

Functions 237

 The non-recursive version of the Fibonacci function
discussed above follows.

int fi b(int val)

{

 int current = 1;

 int old = 1;

 int older = 1;

 val -=2;

 while(val > 0)

 {

 current = old + older;

 older = old;

 old = current;

 --val;

 }

 return current;

}

Greatest common divisor

The greatest common divisor of two integers is the
largest integer that divides them both. The problem is to
calculate the GCD of two non-negative integers m and n
recursively.
 If n divides m, then by defi nition of what a GCD is,
gcd(m, n) = n. n divides m if and only if (m % n) = 0. So
the base case is when (m % n) = 0. If m > n at the start,
then gcd(n, m % n) is a smaller problem than gcd(m, n). If
m < n at the start then (m % n) = m and the fi rst recursive
step gcd(n, m mod n) is equivalent to gcd(n, m). This has
the effect of exchanging the parameter values m and n. So
after the fi rst call, it is back to the situation where the fi rst
parameter is greater than the second.
 In this function, the result from the smaller problem
gcd(n, m % n) is the solution to the current larger problem
gcd(m, n). All the algorithm has to do is fi nd the solution
to the base case and return it unchanged until it reaches the
original problem.
 Using the defi nition given for gcd(), the following code
may be used in a recursive function to fi nd the GCD of two
integers.

Example

 24. Write a C program to fi nd the Greatest Common Divisor using
recursion.

 #include <stdio.h>

 int gcd(int, int); /* function prototype */

 int main()

 {

 int i,j;

 printf(“\n Enter the numbers :”);

 scanf(“%d% d”,&i,&j);

 printf(“\n The GCD of %d and %d is\

 %d”,i,j,gcd(i,j)); /* function call */

 return 0;

 }

 /***/

 /* Recursive function gcd() */

 /***/

 int gcd(int a,int b)

 {

 int remainder;

 remainder = a % b;

 if(remainder == 0)

 return b;

 else

 return gcd(b, remainder);

 }

 Output
 Enter the numbers :48 18

 The GCD of 48 and 18 is 6

The Towers of Hanoi

The Towers of Hanoi problem is a classic case study
in recursion. It involves moving a specifi ed number
of disks from one tower to another using a third as an
auxiliary tower. Legend has it that at the time of the
creation of the world, the priests of the Temple of
Brahma were given the problem with 64 disks and told
that when they had completed the task, the world would
come to an end.
 Move n disks from peg A to peg C, using peg B as
needed. The following conditions apply.

238 Programming in C

 ∑ Only one disk may be moved at a time.
 ∑ This disk must be the top disk on a peg.
 ∑ A larger disk can never be placed on top of a smaller

disk.
 The solution should be in the form of a printed list of
disk moves. For example, if n = 3, then the pegs would
look as shown in Fig. 6.1.

Original state Move 1

Move 2 Move 3

Move 4 Move 5

Move 6 Move 7

Figure 6.1 Moving of disks from and to different pegs

 The key to the problem is not to focus on the fi rst step
(which must be to move the disk 1 from A to somewhere)
but on the hardest step, i.e., moving the bottom disk to peg
C. There is no way to reach the bottom disk until the top
n–1 disks have moved. Further, they must be moved to
peg B to allow the movement of the bottom disk to peg C.
Now n–1 disks are on peg B that must be moved to peg C
(using peg A). There is no reason why the n–1 remaining
disks cannot be moved in the same manner; in fact, it must
be done in the same manner since there is again a bottom
disk that must be moved last. Therefore,

 ∑ Move n–1 disks from peg A to peg B using peg C
 ∑ Move the nth disk from peg A to peg C
 ∑ Move n–1 disks from peg B to peg C using peg A

 Notice that the size of the Towers of Hanoi problem is
determined by the number of disks involved. This implies
that the problem has been redefi ned in terms of three

smaller problems of the same type.
 ∑ What instance(s) of the problem can serve as the base

case(s)?
 If n = 1, then the problem consists of moving one

disk from peg A to peg C, which can be clearly solved
immediately.

 ∑ As the problem size diminishes, will the base case be
reached?

 Since each call to the function will reduce the
parameter n by 1, and n is nonnegative, the base case
n = 1 will always be reached.

 ∑ How is the solution from the smaller problem used to
build a correct solution to the current larger problem?

 As seen in the fi rst question, when each of the three
smaller problems are solved, then the solution to the
current problem is completed. The following is a summary
of the algorithm described earlier.

Algorithm

FUNCTION MoveTower(disk, from, to, using):

IF(n is 1) THEN

 move disk 1 from the “from” peg to the “to” peg

ELSE IF(n > 1) THEN

 move n-1 disks from the “from” peg to the “using”

peg using the “to” peg

 move the n’th disk from the “from” peg to the

“to” peg

 move n-1 disks from the “using” peg to the “to”

peg using the “from” peg

ENDIF

 If in the body of a function, a recursive call is placed
in such a way that its execution is never followed by the
execution of another instruction of the function; the call
is known as a tail recursive call. The execution of such a
call terminates the execution of the body of the function.
A function may have more than one tail recursive call.
 A non-tail recursive function can often be converted
to a tail-recursive function by means of an ‘auxiliary’
parameter. This parameter is used to form the result. The
idea is to attempt to incorporate the pending operation into
the auxiliary parameter in such a way that the recursive
call no longer has a pending operation. The technique is
usually used in conjunction with an ‘auxiliary’ function.
This is simply to keep the syntax clean and to hide the fact
that auxiliary parameters are needed.

Functions 239

 For example, a tail-recursive Fibonacci function can
be implemented by using two auxiliary parameters for
accumulating results. It should not be surprising that
the tree-recursive fi b function requires two auxiliary
parameters to collect results; there are two recursive calls.
To compute fi b(n), call fi b_aux(n 1 0)

int fi b_aux(int n, int next, int result) {

 if (n == 0)

 return result;

 else

 return fi b_aux(n - 1, next + result, next);

}

 A tail recursive call can be eliminated by changing the
values of the calling parameters to those specifi ed in the
recursive call, and repeating the whole function. Consider,
for example, the function used to solve the Towers of
Hanoi problem.

void MoveTower(int n, char from, char to, char

using){

 if(n == 1)

 printf(“\n Move disk 1 from peg %c to ped %c”,

from, to);

 else if(n > 1) {

 MoveTower(n-1, from, using, to);

 printf(“\n Move disk %d from peg %c to ped %c”,

 n, from, to);

 MoveTower(n-1, using, to, from);

 }

}

 By removing tail recursion, the function can be
rewritten as

void MoveTower(int n, char from, char to, char

using){

 char temp;

 if(n > 1) {

 MoveTower(n-1, from, using, to);

 printf(“\n Move disk %d from peg %c to ped %c”,

n, from, to);

 n = n - 1;

 temp = from;

 from = using;

 using = temp;

 }

 if(n == 1) then

 printf(“\n Move disk 1 from peg %c to ped %c”,

from, to);

}

 The recursive call, MoveTower(n-1, from, using, to);, is
not a tail recursive call because its execution is followed by
the execution of other instructions in the function, namely,
a printf() statement, various assignment statements, and
if n == 1 is true, another printf() statement.
 In general, any recursive call placed within a looping
statement is not tail recursive because when control returns
from the recursive call, there may be one or more cycles of
the loop yet to be executed.
 Elimination of tail recursion is simple and can
shorten the execution time quite considerably. It is not a
necessary stage in the elimination of all recursive calls. In
particular, compilers do not normally deal with removal
of tail recursions separately, and this explains the gain in
effi ciency mentioned above.
 A key tool for analyzing recursive algorithms is
the recursion tree, which portrays the life history of a
recursive process (or, equivalently, the life history of the
runtime stack). A recursion tree can be built according to
the following rules.

 ∑ Every tree must have a main root from which all
branches originate. This principle root will represent
the initial call to the function.

 ∑ The tree consists of nodes (vertices), with each
node representing a particular call to the recursive
function.

 ∑ A branch of the tree (solid line) represents a call-return
path between any two instances of the function.

Figure 6.2 shows a call tree for MoveTower(3,A,B,C).

6.10.2 How is Recursion implemented?

The run-time stack For the moment, let it be left to
recursion to consider what steps are needed to call any
function in a single processor computer system.

240 Programming in C

1st call

1st call

(empty
stack)

(empty
stack)

1st call
2nd call

1st call
2nd call

1st call
2nd call

3rd call

Figure 6.3 The sequence of events that takes place
when a stack is used with function calls

 Modern languages are usually implemented in a manner
such that storage for program code and storage for data
items are allocated separately. The area of store set aside
to hold the data items used in the call of a function is called
its data area or activation record.
 This data area essentially consists of calling parameters,
local variables, and certain system information such as
the address of the instruction that must be returned to on
leaving the function.
 The storage mechanism that most modern languages
use is called stack storage management. Using this
mechanism, storage for the main program’s data area is
allocated at load time, while storage for a function’s data

area is only allocated when the function is called. On
exit from the function this storage is de-allocated. This
mechanism results in a stack of data areas called the ‘run-
time stack’. When a function is called, space for its data
area is allocated and placed on top of the run-time stack.
On exit from the function, its data area is de-allocated and
removed from the top of the run-time stack. Basically the
principle it follows is Last In First Out (LIFO).
 Stack storage management is capable of dealing with
recursive functions. In the recursive case, two recursive
calls are regarded as being different so that the data areas
for one call do not overlap with the other; just like one
would not mix the data areas for different sub-functions,
one called from within the other. This implies that there
may be several data areas in existence simultaneously, one
for each recursive call.
 In the stack implementation of recursion, the local
variables of the function will be pushed onto the stack
as the recursive call is initiated. When the recursive call
terminates, these local variables will be popped from the
stack and thereby restored to their former values.
 But doing so is pointless because the recursive call is
the last action of the function and so the function now
terminates. The just-restored local variables are discarded.
It is thus pointless to use the recursion stack since no local
variables need to be preserved. All that is needed is to set
the calling parameters to their new values and branch to
the beginning of the function.

(0, A, C, B)

MoveTower (1, C, A, B) MoveTower (1, A, B, C)

MoveTower (3, A, B, C)

(0, B, A, C)

MoveTower (1, A, B, C) MoveTower (1, B, C, A)

MoveTower (2, A, C, B) MoveTower (2, C, B, A)

(0, C, B, A) (0, C, B, A) (0, A, C, B) (0, C, B, A)(0, B, A, C)(0, A, C, B)

Figure 6.2 Recursion tree for movetower (3,a,b,c)

Functions 241

Points to Note

 ∑ It may not terminate if the stopping case is not correct
or is incomplete (stack overfl ow: run-time error)

 ∑ Make sure that each recursive step leads to a situation
that is closer to a stopping case.

6.10.3 Comparing Recursion and Iteration

Recursion is a very powerful tool for solving complex
problem, particularly when the underlying problem or
data to be treated are already defi ned in recursive terms.
For such problems, recursion can lead to solutions that
are much clearer and easier to modify than their iterative
counterparts.
 However, such recursive defi nitions do not guarantee
that a recursive algorithm is the best way to solve a
problem. Depending on the implementation available
and the algorithm being used, recursion can require a
substantial amount of runtime overhead. Thus, the use
of recursion illustrates the classic trade off between time
spent in constructing and maintaining a program and the
cost in time and memory of execution of that program.
 Two factors contribute to the ineffi ciency of some
recursive solutions.

 ∑ The overhead associated with function calls
 ∑ The ineffi cient utilization of memory
 With most implementations of modern programming
languages, a function call incurs a booking overhead in the
form of a runtime stack. Recursive functions magnify this
bookkeeping overhead because a single initial call to the
function can generate a large number of recursive calls.
 It makes ineffi cient utilization of memory, as every time
a new recursive call is made a new set of local variables
is allocated to function. Moreover it also slows down
execution speed, as function calls require jumps, and
saving the current state of the calling function onto stack
before jump.
 Recursion is of value when the return values of the
recursive function are used in further processing within
the calling version of the function (rather than being
immediately passed back to an earlier version of the
function). In this case it was worth saving the parameter
and local variables on the stack because they are used later
in some useful way.
 If one problem can be solved in both way (recursive or
iterative), then choosing iterative version is a good idea
since it is faster and doesn’t consume a lot of memory.

Points to Note

 In general, an iterative version of a program will execute
more effi ciently in terms of time and space than a recursive
version. This is because the overhead involved in entering
and exiting a function is avoided in iterative version.
However a recursive solution can be sometimes the most
natural and logical way of solving a complex problem.

6.11 SEARCHING AND SORTING

6.11.1 Searching Algorithms

Searching an array of integers has already been discussed
in chapter 5. Among the searching algorithms, only two of
them will be discussed here; sequential search and binary
search.

Sequential or linear search algorithm

The idea behind the sequential search is to compare the
given number to each of the numbers in the array. If a
number in the list matches the given key, we can return the
index of that number. If we reach the end of the list, we
can indicate that key does not exist in array by returning
–1. Here is an implementation of this simple algorithm:

int Lsearch(int ArrayElement[], int key,
 int ArraySize)

{

 int i ;

 for (i = 0; i < ArraySize; i++)

 if (ArrayElement[i] == Key)

 return (i) ;

 return (-1);

}

The function calling statement will be as follows:

p=Lsearch(a,k,n);

if(p = = -1)

 printf(“\n KEY NOT FOUND”);

else

 printf(“\n KEY FOUND AT POSITION %d”, p);

 Binary search algorithm

Precondition of binary search is that it requires sorted data
to operate on. Basic technique is to compare the search
element with the element which is in the middle of the
search space and then to restrict further searching into

242 Programming in C

the appropriate half of the search space (this can be done
because the search space is sorted). Then at each step, the
process is repeated (cutting the remaining search space in
half at each step) until either the search element is found
or we have run out of elements to compare and the element
was not in the search space.
 To implement binary search, Variables beg and end keep
track of the lower bound and upper bound of the array,
respectively. We begin by examining the middle element
of the array. If the key we are searching for is less than the
middle element, then it must reside in the lower half of
the array. Thus, we set end to (mid – 1). If the key we are
searching for is greater than the middle element, then it
must reside in the upper half of the array. Thus, we set beg
to (mid + 1).This restricts our next iteration through the
loop to the top half of the array. In this way, each iteration
halves the size of the array to be searched. For example,
the fi rst iteration will leave 3 items to test. After the second
iteration, there will be 1 item left to test. Therefore it takes
only three iterations to fi nd any number.
 To Illustrate the algorithm, let us Consider the following
array:

3 10 15 20 35 40 60

Suppose we want to search the element “15”
 1. We take beg = 0, end = 6 and compute the location of

the middle element as

() (0 6)

min 3
2 2

beg end+ += = =

 2. We then compare the search key with mid i.e.
a[mid]==a[3] is not equal to 15. Since beg<end, we
have to start the next iteration.

 3. As a[mid]=20>15, therefore, we take end = mid–1 =
3 – 1 = 2 whereas beg remains the same.. Thus

() (0 2)
min 1

2 2
beg end+ += = =

 4. Since a[mid], i.e. a[1]=10<15, therefore, we take
beg=mid+1=1+1=2, while end remains the same.

 5. Now beg=end. Compute the mid element:

() (2 2)

min 2
2 2

beg end+ += = =

 Since a[mid], i.e. a[2]=15, the search terminates on
success.The C code for binary search is given below.

 #include <stdio.h>

 int binarysearch(int a[], int n, int key)

 {

 int beg,mid;

 beg=0; end=n-1;

 while(beg<=end)

 {

 mid=(beg+end)/2;

 if(key==a[mid])

 return mid;

 else if(key>a[mid])

 beg=mid+1;

 else

 end=mid-1;

 }

 return -1;

 }

 int main()

 {

 int arr[50], n, key, index;

 printf(“How many elements?”);

 scanf(“%d”, &n);

 puts(“Enter the array elements in ascending\

order”);

 for (index = 0; index < n; index++)

 scanf(“%d”, &arr[index]);

 printf(“Enter the search key: ”);

 scanf(“%d”, &key);

 index = binarysearch(arr, n, key);

 if (index == -1)

 puts(“Sorry, the given key was not found”);

 else

 printf(“The given key was found at index:\

%d\n”, index);

 return 0;

 }

 Binary search in a recursive way

Binary search is often written using recursion, instead of
iteration. The key idea is that when the algorithm decides to
search the right or left half of the array, which is a simpler
version of the original problem. In the recursive Search

Functions 243

function below note how the parameters to the recursive
calls are adjusted to specify either the right or left half of
the array.
/* Given:x Array of integers.

 Low The low index of the range of integers
to search.

 High The top index of the range of integers
to search.

 k The integer for which to search.

 Task: To do a recursive binary search for k
in the specifi ed range of Array.

 Return: In the function name, return the index
of where k was found or -1 if it was
not found.

*/

int search(int x[], int k, int low, int high)

{

 int mid;

 if(low > high)

 return (-1);

 mid = (low + high) /2;

 return (k= =x[mid] ? mid : k < x[mid] ? search(x, k,
low, mid – 1):search(x, k, mid+1, high));

}

6.11.2 Sorting Algorithms

Arranging elements of an array in a particular order is
called sorting. The order of arrangement may be ascending
or descending in nature. There are several methods of
arranging or sorting arrays. Sorting algorithms are divided
into two categories: internal and external sorts.
 ∑ Internal sort Any sort algorithm, which uses main

memory exclusively during the sort. This assumes
high-speed random access to all memory.

 ∑ External sort Any sort algorithm, which uses external
memory, such as tape or disk, during the sort.

 A sort algorithm is said to be ‘stable’ if multiple items
which compare as equal will stay in the same order they
were in after a sort.
Some of the sorting methods include:
 • Bubble sort
 • Selection sort
 • Insertion sort
 • Merge sort
 • Quick sort

 The method of bubble sort has been explained with
examples in Chapter 5. Hence the discussion in the
following section begins with selection sort.

 Selection sort

Selection sort is a way of arranging the elements, of a
supposedly unsorted array, in an ascending order. It works
by fi nding the smallest element in the whole array and
placing it at the fi rst element position. It then fi nds the 2nd
smallest element in the array disregarding the fi rst element
and places it in the 2nd position. Next it fi nds the smallest
element in the array disregarding the elements placed in
position 1 and 2. This continues until the entire array has
been sorted. The implementation algorithm for selection
sort may be states as follows:

 1. Examine each element in the array or list to fi nd the
smallest.

 2. Swap the element found in step 1 with the fi rst
element in the array or list.

 3. Repeat steps 1 and 2, each time ignoring the element
at the start of the last sort. Stop when only one element
has to be sorted.

 The selection sort is, therefore, a combination of
searching and sorting. During each pass, the unsorted
element with the smallest (or largest) value is moved to
its proper position in the array. This sort also uses an
incremental approach to sorting the array. The number of
times the sort passes through the array depends on the size
of the array. The algorithm makes one less pass than the
number of elements in the array.
 A function for the selection sort can be developed using
two loops. There is an inner loop that passes through the
array and fi nds the next smallest (or largest) value, and an
outer loop that places that value into its proper position.
The selection sort is one of the easiest sorts to implement,
but is among the least effi cient. It provides no way to end
a sort early even if it begins with an already sorted list.
A function developed for implementing the selection sort
technique for arranging a list of elements in ascending
order is shown below:

void selectsort(int numbers[], int array_size)

{
 int i, j; an array formed

with integers

 int min, temp;

 for (i = 0; i < array_size-1; i++)

244 Programming in C

 {

 min = i;

 for (j = i+1; j < array_size; j++)

 {

highlighted “for loop”
fi nds the position of
the smallest integer

 if (numbers[j] < numbers[min])

 min = j;

 }

 temp = numbers[i];

 numbers[i] = numbers[min];

 numbers[min] = temp;

 }
highlighted statements interchange the
position of the smallest integer with that

at the fi rst position.

}

 For the above algorithm to work, it must ignore elements
that have already been sorted. For instance, once the
smallest element has been placed in its correct position,
it must be ignored for the rest of the sort. In practice this
means that to implement the algorithm, the already sorted
elements have to be skipped, looking only for the smallest
element that is not yet sorted. This can be implemented in
the function void selectsort() by replacing the encircled
portion of the program code with that shown within the
box on the right.

void selectsort(int numbers[], int array_size)

{
 int i, j;
 int min, temp;
 for (i = 0; i < array_size-1; i++)
 {
 min = i;
 for (j = i+1; j < array_size; j++)
 {
 if (numbers[j] < numbers[min])
 min = j;
 }

 temp = numbers[i];
 numbers[i] = numbers[min];
 numbers[min] = temp;

 }

 Insertion sort

The primary idea, in insertion sort, is to pick up a
data element from a list or array and insert it into its
proper place in the partial data list or array considered
so far.
 The process of insertion sort is started by considering
the fi rst element to belong to a sorted sub-array while the
remaining array elements to another sub-array which is
considered as unsorted. The fi rst step then is to compare
the fi rst element of the unsorted array with the sorted
array’s element. If the sorting is for arranging the elements
in ascending order, then the comparison is carried out to
fi nd whether the fi rst element of the unsorted array is
smaller than that of the sorted array’s element. If this is
true then the fi rst element of the unsorted array is placed
at the fi rst position of the sorted array while the existing
element in the sorted array is shifted right by one position.
The sorted sub-array will now contain two sorted elements
while the unsorted sub-array will contain N-2 elements,
where N denotes the size of the whole array. In the second
step again the fi rst element of the unsorted sub- array is
compared with the elements of the sorted sub-array and
the resulting element is placed at the proper position while
shifting the larger elements by one position to the right in
the sorted sub-array.
 The sorted sub-array now contains three elements
arranged in order while the rest of the elements form the
unsorted sub-array. In the same way, the next step repeats
the same procedure of comparison and placing of the
appropriate element at the proper position. This process
continues till the last element in the array. Thus, in each
pass, the fi rst element of the unsorted portion is picked
up, transferred to the sorted sub-list, and inserted at the
appropriate place. A list of N elements will take at most
N–1 passes to sort the data.
Figure 6.4 shows the insertion sort technique. THis
illustration demonstrates the way the array is sorted.
Every time the fi rst element, which is shown coloured, is
compared with the elements of the sorted sub-array and
interposed at the proper position in sorted sub-array by
suitably shifting the larger value elements.
 A function prepared for implementing the insertion sort
algorithm for sorting an array in ascending order is given
below Fig. 6.4.

if(min != i)

 {
 temp = numbers[i];
 numbers[i] = numbers[min];
 numbers[min] = temp;

 }

Functions 245

68 25 44 7 31 53

Sorted Unsorted

Original list

The highlighted element is the
first one that is compared
and inserted in the sorted
sub-array shown after pass1.
It repeats for each pass.

25 68 44 7 31 53

Sorted Unsorted

After pass 1

25 6844 7 31 53

Sorted Unsorted

After pass 2

25 68447 31 53

Sorted Unsorted

After pass 3

25 68447 31 53

Sorted Unsorted

After pass 4

25 68447 31 53

Fully sorted

After pass 5

Figure 6.4 Insertion sort

void insertSort(int A[], int arr_size)
{
 int i, j,temp;
 for (i=1; i < arr_size; i++)
 {
 temp = A[i];
 j = i;
 while ((j > 0) && (A[j-1] >temp))
 {
 A[j] = A[j-1];
 j = j - 1;
 }
 A[j] = temp;
 }
 }

 An alternate function that can also do insertion sorting
is shown below.

void insort(int A[], int size)
{
 int i, j, temp;
 for (i = 1 ; i < size; i++)
 {
 temp = A[i];
 for (j = i - 1; j >= 0 && temp < A[j] ; j--)
 A[j + 1] = A[j];
 A[j + 1] = temp;
 }
}

 An advantage of this procedure is that it sorts the array
only when it is really necessary. If the array is already in
order, no moves for sorting are performed. However, it
overlooks the fact that the elements may already be in their
proper positions. When an element has to be inserted, all
elements greater than this have to be shifted. There may be
large number of redundant shifts, as an element, which is
properly located, may be shifted but later brought back to
its position.
 The best case is when the data are already in order.
Only one comparison is made for each position and the
data movement is 2N – 1, where N is the size of the array.
The worst case is when the data are in reverse order. Each
data element is to be moved to new position and for that
each of the other elements have to be shifted. When the
elements are in random order, it turns out that both number
of comparisons and movements turn out to be closer to the
worst case .

 Merge sort

The merge sort splits a data list to be sorted into two equal
halves, and places them in separate arrays.
 This sorting method uses the divide-and-conquer
paradigm. It separates the list into two halves and then
sorts the two half data sets recursively. Finally, these are
merged to obtain the complete sorted list.
 To be more specifi c, the merge sort breaks an array
down into smaller and smaller pieces until the individual
pieces are just one item in size. Since a single item is
always considered to be sorted, two contiguous items can
be merged. The merge sort algorithm therefore breaks
the array down into smaller chunks on the way down the
recursion tree. On the way back up, it merges these smaller
pieces of the array into larger pieces. One could say that
the sorting is done on the way back up the tree.

246 Programming in C

 Figure 6.5 shows a typical example of the merge sort
algorithm for an unsorted array A of size 8 that contains the
following data elements 32 45 26 15 25 91 30 73.

32 45 26 15

32 45

32 45

32 45

26 15

15 26

26 15

15 26 32 45

25 91 30 73

25 91

25 91

25 91

30 73

30 73

30 73

25 30 73 91

15 25 26 30 32 45 73 91

32 45 26 15 25 91 30 73Initial
unsorted list

Figure 6.5 Merge sort

 In the example shown above the original array is kept
on splitting in two halves till it reduces to array of one
element. Then these are merged in the following steps:

 1. Elements 32 and 45 are compared and merged to
form the array [32 45] .

 2. Elements 26 and 15 are compared and merged to
form the array [15 26].

 3. Next sub-arrays [32 45] and [15 26] are compared
and merged to form the array [15 26 32 45].

 4. Elements 25 and 91 are compared and merged to
form the array [25 91].

 5. Elements 30 and 73 are compared and merged to
form the array [30 73].

 6. Next sub-arrays [25 91] and [30 73] are compared
and merged to form the array [25 30 73 91].

 7. Finally the sorted and merged sub-arrays in steps 3
and 6 are sorted and merged to form the array [15 25
26 30 32 45 73 91].

 A function that implements the merge sort algorithm
discussed above is given as follows:

 void mergesort(int array[], int n)
{
 int j,n1,n2,arr1[n],arr2[n];
 if (n<=1)return;
 n1=n/2;
 n2 = n - n1;
 for(j = 0; j<n1; j++)
 arr1[j]= array[j];
 for(j = 0; j<n2; j++)
 arr2[j]= array[j+n1];
 mergesort(arr1, n1);
 mergesort(arr2, n2);
 merge(array, arr1, n1, arr2, n2);
 }
void merge (int array[], int arr1[], int n1,
 int arr2[], int n2)
{
 int j, p=0, p1=0,p2=0;
 printf(“\n After merging [”);
 for(j=0; j<n1; j++)
 printf(“%d ”,arr1[j]);
 printf(“] [”);
 for(j=0; j<n2; j++)
 printf(“%d”,arr2[j]);
 printf(“]”);
 while (p1 < n1 && p2 < n2)
 {
 if(arr1[p1] < arr2[p2])
 array [p++] = arr1[p1++];
 else
 array[p++] = arr2[p2++];
 }
 while (p1 < n1)
 array [p++] = arr1[p1++];
 while (p2 < n2)
 array[p++] = arr2[p2++];
 printf(“merged array is [”);
 for(j=0; j<n1+n2; j++)
 printf(“%d”, array[j]);
 printf(“]\n”);
 }

 Quick sort

Quick sort is a recursively defi ned procedure for rearranging
the values stored in an array in ascending or descending
order. Suppose an array a of 11 integers is given as shown
in Fig.6.6(a).

Functions 247

 The idea is to use a process that separates the list into
two parts, using a distinguishedvalue in the list called a
pivot. At the end of the process, one part will contain only
values less than or equal to the pivot, and the other will
contain only values greater than or equal to the pivot. So,

if 8 is picked as the pivot, Fig. 6.6(b) shows the result at
the end of the process.
 The same process can then be reapplied exactly to the
left-hand and right-hand parts separately. This reapplication
of the same procedure leads to a recursive defi nition. The

14 3 2 11 5 8 0 2 9 4 20

a[0] a[10]
4 3 2 2 5 0 8 11 9 14 20

a[0] a[10]

14 3 2 11 5 8 0 2 9 4 20

left_arrow right_arrow

pivot

14 3 2 11 5 8 0 2 9 4 20

left_arrow right_arrow

pivot

4 3 2 11 5 8 0 2 9 14 20

left_arrow right_arrow

pivot

4 3 2 11 5 8 0 2 9 14 20

left_arrow right_arrow

pivot

4 3 2 11 5 8 0 2 9 14 20

left_arrow right_arrow

pivot

4 3 2 2 5 8 0 11 9 14 20

left_arrow right_arrow

pivot

4 3 2 2 5 8 0 11 9 14 20

left_arrow
right_arrow

pivot

4 3 2 2 5 8 0 11 9 14 20

left_arrow
right_arrow

pivot

4 3 2 2 5 80 11 9 14 20

left_arrow
right_arrow

pivot

4 3 2 2 5 80 11 9 14 20

left_arrow
right_arrow

pivot

(a) Array of 11 elements containing
integers

(c) Choosing the index of the pivot

(e) Swapping of the values in the
a[left_arrow]and a[right_arrow]
elements

(g) Position of left_arrow after a[left_
arrow]>=pivot condition becomes
true as the left_arrow is moved right

(i) Moving right_arrow to the Left till
a[right_arrow]<=pivot

(k) Exchanging pivot with right_arrow
content

(b) Separation of elements with values
less or more than the pivot, 8

 (d) Moving the right_arrow to the left until
‘value <= pivot’

 (f) Position of the right_arrow after a[right_
arrow] <=pivot condition becomes true as
the right_arrow is moved left

(h) Exchanging a[left_arrow] and a[right_
arrow]

(j) Moving left_arrow right till a[left_arrow]>= pivot

(l) The right_arrow is moved left and the
left_arrow is moved right

Figure 6.6 Step-by-step depiction of how quick sort works

248 Programming in C

detail of the rearranging procedure is as follows. The index
of the pivot value is chosen simply by evaluating

(fi rst + last) / 2

where fi rst and last are the indices of the initial and fi nal
elements in the arrayrepresenting the list. A left_arrow
and a right_arrow are then identifi ed on the farleft and the
far right respectively, as can be seen in Fig. 6.6(c), where
left_arrow and right_arrow initially represent the lowest
and highest indicesof the array components. Starting from
the right, the right_arrow is moved left until a value less
than or equal to the pivot is encountered. See Fig. 6.6(d).
 Similarly, the left_arrow is moved right until a value
greater than or equal to the pivot is encountered. Now the
contents of the two array components are swapped as can
be seen in Fig. 6.6(e).
 Now continuing the movement of the right_arrow left
till a[right_arrow]<=pivot, the position of the right_
arrow is as shown in Fig. 6.6(f).
 Having reached the status shown in Fig. 6.6(g), the
contents of the a[left_arrow] and a[right_arrow] are
interchanged. After this interchange the contents of the
elements are shown in Fig. 6.6(h).
 The process of movement of the left_arrow and right_
arrow only stops when the condition left_arrow > right_
arrow becomes true. Since in Fig. 6.6(h), this condition
is still False, move right_arrow left again as seen in Fig.
6.6(i).
 Having reached the status shown in Fig. 6.6(k), the
contents of the a[left_arrow] and a[right_arrow] are
inter-changed. It is acceptable to exchange the pivot
because pivot is the value itself, not the index. As before,
the right_arrow is moved left and the left_arrow is moved
right as can be seen in Fig. 6.6(l).
 The procedure’s terminating condition left_arrow >

right_arrow is now true,and the fi rst sub-division of the
list (i.e., array) is now complete.
 Here the quick sort procedure is coded as a recursive C
function. This can be seen asfollows.

void quick_sort(int list[], int left, int right)

{

 int pivot, left_arrow, right_arrow;

 left_arrow = left;

 right_arrow = right;

 pivot = list[(left + right)/2];

 do

 {

 while(list[right_arrow] > pivot)

 right_arrow--;

 while(list[left_arrow] < pivot)

 left_arrow++;

 if(left_arrow <= right_arrow)

 {

 swap(list[left_arrow], list[right_arrow]);

 left_arrow++;

 right_arrow--;

 }

 }

 while(right_arrow >= left_arrow);

 if(left < right_arrow)

 quick_sort(list, left, right_arrow);

 if(left_arrow < right)

 quick_sort(list, left_arrow, right);

}

6.12 ANALYSIS OF ALGORITHMS
One signifi cant factor considered while designing
algorithms is the algorithm’s effi ciency. The effi ciency of
an algorithm is determined by the amount of time it takes
to run the program and the memory space the program
requires. In analyzing an algorithm, rather than a piece of
code, the number of times ‘the principle activity’ of that
algorithm is performed, should be predicted. For example,
if one is analyzing a sorting algorithm, one might count
the number of comparisons performed, and if it is an
algorithm to fi nd an optimal solution, one might count the
number of times it evaluates a solution.
 Complexity of an algorithm is a measure of the amount
of time and/or memory space required by an algorithm for a
given input. It is a function describing the effi ciency of the
algorithm in terms of the amount of data the algorithm must
process. Usually there are natural units for the domain and
range of this function. The factor or parameters or fi elds
whose values affect the number of operations performed is
called the problem size or the input size. The following are
the two main complexity measures of the effi ciency of an
algorithm:
 ∑ Time complexity is a function describing the amount

of time an algorithm takes with respect to the amount
of input provided to the algorithm. ‘Time’ can mean
the number of memory accesses performed, the

Functions 249

number of comparisons between integers, the number
of times some inner loop is executed, or some other
natural unit related to the amount of real time the
algorithm will take. It is denoted as T(n) where n is
the size of the input.

 ∑. Space complexity is a function describing the amount
of memory (space) an algorithm takes with respect to
the amount of input provided to the algorithm. Space
complexity is sometimes ignored because the space
used is minimal and/or obvious, but sometimes it
becomes as important an issue as time. It is denoted
as S(n) where n is the size of the input.

 Complexity analysis attempts to characterize the
relationship between the number of data elements and
resource usage (time or space) with a simple formula
approximation. Using the RAM model of computation,
one can count how many steps our algorithm will take for
executing a program based on the input provided. However,
to really understand how good or bad an algorithm is, one
must know how it works over all instances. There are three
terms to describe these situations:

 ∑ The worst-case complexity of the algorithm is the
function defi ned by the maximum number of steps
taken on any instance of input size n.

 ∑ The best-case complexity of the algorithm is the
function defi ned by the minimum number of steps
taken on any instance of input size n.

 ∑ Finally, the average-case complexity of the algorithm
is the function defi ned by the average number of steps
taken on any instance of input size n.

 Every input instance can be represented as a point on
a graph, where the x-axis is the size of the problem (for
sorting, the number of items to sort) and the y-axis is the
number of steps taken by the algorithm on this instance.
Worse case complexity is represented by the curve passing
through the highest point of each column. The curve
passing through the lowest point of each column represents
the best case complexity.
 The average case is probably the most important, but it
is problematic. One has to make some assumption about
the probabilities, and the analysis will only be as accurate
as the validity of the assumptions. In simple cases, the
average complexity is established by considering possible

inputs to an algorithm, for each input, adding the number
of steps for all the inputs and dividing by the number
of inputs. Here it is assumed that the possibility of the
occurrence of each input is the same, which will not
always be the case. To consider the probability explicitly,
the average complexity is defi ned as the average over the
number of steps executed when processing each input
weighted by the probability of occurrence of this input.
 If a function is linear, that is, if it contains no loops, then
its effi ciency is a function of the number of instructions it
contains. In this case, its effi ciency is dependent on the
speed of the computer. On the other hand, functions that
contain loops will vary widely in their effi ciency. The
study of algorithm effi ciency is, therefore, largely devoted
to the study of loops. The effi ciency of an algorithm can
be expressed as a function of the number of elements or
inputs to be processed. The general format is

 f(n) = effi ciency

 Loops can be of various types. Let us discuss these in
detail.
 Linear loops Consider the following simple loop.

 for(i=1;i<=n;++i) for(i=0;i<n;++i)

 { {

 stmTs stmTs

 } }

 The body of the loop will be repeated for n times. In the
following loop,

 for(i=1;i<=n; i=i+2)

 {

 stmTs

 }

the body of the loop will be executed n/2 times. In all
of the above cases, the number of iterations is directly
proportional to a factor. The higher the factor, the higher
will be the number of iterations. If either of these loops
were plotted, one would get a straight line. For that reason,
they are known as linear loops. Because the effi ciency is
proportional to the number of iterations, it is

f(n) = n

 Logarithmic loops Now, the following loops are to be
considered in which the controlling variable is multiplied
or divided in each iteration.

250 Programming in C

 Multiply loop Divide loop

 for(i=1; i<n; i=i*2) for(i=n; i>=1; i=i/2)

 { {

 stmTs stmTs

 } }

 Let n = 10; the number of iterations in both cases is 4.
The reason is that in each iteration the value of i doubles
for the multiply loop and is cut in half for the divide loop.
The number of iterations is a function of the multiplier or
divisor. The loop continues while the following condition
is true.

 For the multiply loop, 2iteration < n
 For the divide loop, n/2iteration >=1
 Generalizing the analysis, f(n) = [log2 n]
 Nested loop For the nested loop, the total number of
iterations would be the product of the number of iterations
for the inner loop and the number of iterations for the outer
loop. There are various types of nested loops, namely,
quadratic, dependent quadratic, linear logarithmic, etc.
 Quadratic loop Here each of the loops iterates the same
number of times as shown in the following code.

 for(i=1;i<=n;i++)
 for(j=1;j<=n;j++)
 {
 stmTs
 }

 For each iteration of the outer loop, the inner loop will
be executed n times. The outer loop will be executed n
times. Therefore,

 f(n) = n2

Dependent quadratic Consider the following nested loop:

 for(i=1;i<=n;i++)

 for(j=1;j<=i;j++)

 {

 stmTs

 }

 Here, the inner loop is dependent on the outer loop
for one of its factors. It is executed only once for the fi rst
iteration, twice for second iteration, thrice for third, and so
forth. The number of iteration for the inner loop is

 1+2+3+4+………n = n(n+1)/2

 The average of this loop is (n+1)/2. Multiplying
the inner loop by the number of times the outer loop is

executed gives the following formula for a dependent
quadratic loop.

f(n) = n(n+1)/2

Linear logarithmic Consider the following nested loop
in which the outer loop is linear and the inner loop is
logarithmic.

 for(i=1;i<=n;i++)

 for(j=1;j<=n;j=j*2)

 {

 stmTs

 }

 Therefore, the number of iterations in the inner loop is
[log2 n]. The outer loop will be executed n times. So,

 f(n) = [nlog2 n]

 It has been shown that the number of statements
executed in the function for n elements of data is a function
of the number of elements, expressed as f(n). There is a
dominant factor in the equation that determines the ‘order
of magnitude’ of the result. Therefore, it is not needed to
determine the complete measure of effi ciency, only the
factor that determines the magnitude. This factor is the
Big-O.

6.12.1 Asymptotic Notation

Asymptotic notation is a way of describing functions
without having to deal with distracting details. In many
ways, asymptotic notation can seem very imprecise and
intuitive, but it is important that it is precisely defi ned; it is
also crucial to understand exactly what it means.

 Big-O Notation

The most well known symbol in asymptotic notation is the
big-O (historically, the Greek letter omicron). It is used to
give an upper limit to the asymptotic growth of a function.
Order notation, or Big-O notation, is a measure of the
running time of an algorithm, as it relates to the size of
the input to that algorithm. It is intended, not to measure
the performance of the machine on which the algorithm is
run, but rather to strictly measure the performance of the
algorithm itself.
 Formally it can be defi ned as, if f(n) and g(n) are
functions defi ned for positive integers then f(n) = O(g(n))
if there exists a c such that |f(n)|<=c|g(n)| for all
suffi ciently large positive integers n.

Functions 251
f(n) = O(g(n)) is true if

lim f(n)/g(n) is a constant.

n Æ a

 It is to be noted that the big-O notation says ‘some
constant multiple of’ without saying what the constant
is. This leaves out some information that is sometimes
important, but it allows specifying time without reference
to the speed of the computer and without measuring
exactly how many instructions are in a certain block
of code. The properties of the big-O notation are as
follows.

 1. O(k*f(n)) = O(f(n)), therefore, constants can be
ignored.

 2. O(f(n)*g(n)) = O(f(n)) * O(g(n)), i.e., if a function
is a product then its order is the product of the orders
of the factors.

 3. O(f(n)/g(n)) = O(f(n)) / O(g(n)), i.e., the order is
the same for a function that is a quotient.

 4. O(f(n)) > O(g(n)), if and only if, f dominates g.
 5. O(f(n)+g(n)) = Max[O(f(n)), O(g(n))], i.e., terms of

lower degree can be ignored.
 6. One should be careful with functions that have

subtraction:
 If f(n) = O(h(n)) and g(n) = O(h(n)) then
 f(n)-g(n) is not equal to O(h(n)) – O(h(n)) = 0
 7. Big O is transitive. That is, if f(n) = O(g(n)) and

g(n) is O(h(n)), then f(n) = O(h(n)).
 8. The powers of n are ordered according to the exponent

na = O(nb) iff a <= b.
 9. The order of log n is independent of the base taken

loga n = O(logb n) for all a, b > 1.
 10. Logarithms grow more slowly than any power of n

log n = O(na) for any a>0 but na != O(log n)
 11. na = O(bn), for all a, b > 1 but bn != O(na) for b > 1
 The big-O notation can be derived from f(n) using the
following steps:
 1. In each term, set the coeffi cient of the term to one.
 2. Keep the largest term in the function and discard the

others. Terms are ranked from lowest to highest as
follows:

 log n, n, nlog n, n2, n3, …, nk, 2n, n!, …

 For example, to calculate the Big-O notation for
 f(n) = n(n+1)/2 + 5n3 =n2/2 + n/2 + 5n3

 we fi rst remove the coeffi cients. This gives us n2 + n +
n3. The largest factor is n3. Therefore, the big-O notation
is stated as

 O(f(n)) = O(n3)

 Certain big-O expressions occur so frequently that they
are given names. An algorithm is
 ∑ constant, if f(n) is O(1).
 ∑ logarithmic, if f(n) is O(lg n).
 ∑ linear, if f(n) is O(n).
 ∑ quadratic, if f(n) is O(n2).
 ∑ polynomial, if f(n) is O(nk), where k is constant.
 ∑ exponential, if f(n) is O(nk), where k is constant.
Let us now discuss these in detail.

Constant O(1)

An algorithm with the running time O(1) is said to have
a ‘constant’ running time. Basically, this means that
the algorithm always takes the same amount of time,
regardless of the size of the input. To state it technically,
if an algorithm will never performs more than a certain
number of steps, no matter how large the input is, then
that algorithm is considered to have a constant running
time.

Linear O(n)

An algorithm which runs in O(n) is said to have a ‘linear’
running time. This means that the amount of time to run
the algorithm is proportional to the size of the input.
Alternatively, an algorithm which never performs more
than a certain number of steps for each element in the
input has a linear running time.

Quadratic O(n2)

This means that whenever one increases the size of the
input by a factor of n, the running time increases by a
factor of n2.

Logarithm O(log n)

This means that as the size of the input increases by a
factor of n, the running time increases by a factor of the

252 Programming in C

logarithm of n. For example, if one increases the input size
of O(logn) algorithm by a factor of 1024, the running time
will increase by a factor of 10. This running time is better
than O(n), but not as good as O(1). As the input size gets
large, however, the behavior becomes comparable to O(1)
in many circumstances.

Linear Logarithmic O(nlog n)

An algorithm which when given an input of size n never
performs more than cn log n steps (for some c which
is always the same regardless of the value of n) has a
running time of O(n log n). This running time is better
than O(n2).

Exponential O(2n)

This means that its running time will double every time
you add another element to the input. An algorithm with
this running time is generally considered to be too slow to
be useful for anything but the smallest of problems.

Lower Bounds and Tight Bounds

Big O only gives an upper bound on a function, i.e., if
the constant factors are ignored and n gets big enough,
it is obvious that some function will never exceed some
other function. But this can give too much freedom. For
instance, the time for selection sort is easily O(n3), because
n2 is O(n3). But we know that O(n2) is a more meaningful
upper bound. What is required is to be able to describe a
lower bound, a function that always grows more slowly
than f(n), and a tight bound, a function that grows at about
the same rate as f(n). There is a symmetrical defi nition of
the lower bound in the defi nition of big-W (omega):
 The function f(n) is W (g(n)), if there exist positive
numbers c and N such that f(n) > cg(n) for all n > N. In
other words, cg(n) is a lower bound on the size of f(n) or
in the long run f grows at least at the rate of g.
 There is an interconnection between these two notations
expressed by the equivalence.

f(n) is W (g(n)) iff g(n) is O(f(n)).

 There is a common ground between big-O and big-W
notations indicated by the equalities in the defi nition of
these notations. Big-O is defi ned in terms of £ and Big-W
in terms of >; = is included in both inequalities. This

restriction can be accomplished by the following defi nition
of q (theta) notation:
 The function f(n) is q(g(n)), if there exist positive
numbers c1, c2, and N such that c1g(n) < f(n) < c2g(n) for
all n > N.

6.12.2 Effi ciency of Linear Search

Linear or sequential search has already been discussed
in the chapter on arrays and strings. For the linear search
algorithm, the number of steps depend on whether the key
is in the list, and if so, where in the list or array, as well
as on the length of the list (number of elements in the list
or array).
 For search algorithms, the main steps are the comparisons
of values of array elements with the key value. Counting
these for data models representing the best case, the worst
case, and the average case produces the following table.
For each case, the number of steps is expressed in terms of
n, the number of elements in the array.

Case Comparisons as a
function of n

Best Case (fewest comparisons) 1

Worst Case (most comparisons) n

Average Case (average number of
comparisons)

n/2

 The best case for sequential search is that it does only
one comparison. In the worst case, sequential search does
n comparisons, and either matches the last element in the
array or does not match anything.
 The average case is harder to do. It is known that the
number of comparisons depends on the position of key
in the array. But what is the typical position of the key?
One reasonable assumptionis that if the key is in the array,
it is equally likely to be any position. So probability of
occurences of position = 1/n. Therefore, average number
of comparisons

 1=
Â=
n

i

(1/n)× i

n

i=1

= 1/n i∑
 = n(n+1)/2n

 = (n+1)/2

Functions 253

 But if key is not in the list, the number of comparisons
is always n. Suppose for an array, any permutation of
the list is equally likely. Then we can average over all
possible permutations. Therefore, average number of
comparisons

n!

i = 1

1
= .

n!∑

(position of key in permutation i)

Â
n

p = 1

1
= .p.

n! (number of permutations with key in position p)

n

p = 1

1
= .p.(n-1)!

n!∑
n

p = 1

1
= .p

n!∑
= (n+1)/2

 Hence, this assumption gives the same analysis. A
second point to be made about average case analysis is
that sometimes it makes sense to analyze different cases
separately. The analysis above assumes key is always in the
array; if key is not in the array, it requires n comparisons. One
could make up a probability p that x is in or out of the array
and combine the two numbers above to get a total average
number comparisons equal to pn + (1-p)(n+1)/2 but it
makes more sense to just mention both numbers separately.
 The best-case analysis on an average has no signifi cance.
If the fi rst element checked happens to be the target, any
algorithm will take only one comparison. The worst and
average case analyses give a better indication of algorithm
effi ciency.
 Notice that if the array grows in size, the number of
comparisons required to fi nd a key item in both worst and
average cases grows linearly. In general, for an array of
length n, the worst case is n comparisons. The algorithm
is called linear search because its complexity/effi ciency
can be expressed as a linear function. The number of
comparisons to fi nd a target increases linearly as the size
of the array. Therefore, T(n) = O(n).

6.12.3 Binary Search Analysis

To evaluate binary search, count the number of
comparisons in the best case and worst case. This analysis
omits the average case, which is a bit more diffi cult, and
ignores any differences between algorithms in the amount
of computation corresponding to each comparison.

 The best case occurs if the middle item happens to be
the target. Then only one comparison is needed to fi nd it.
As before, the best-case analysis does not reveal much.
When does the worst case occur? If the target is not in the
array, then the process of dividing the list in half continues
until there is only one item left to check. Figure 6.7 shows
a pattern of the number of comparisons done after each
division, given the simplifying assumption of an initial
array length that is an even power of two which gives
an exact division in half on each iteration. Consider an
array in which the following elements are stored: 1 2 3 4
5 6 7 8 9.

5

3 8

42 7 9

109865431

1 2 3 F 4 F 5 F 6 F 8 F 9 F 10 F

1 F 2 F 6 F 7 F

Figure 6.7 Comparison tree for n=10

 Every search ends at a leaf whether successful or
unsuccessful denoted by F. To fi nd the average number of
comparisons for a successful search, one has to fi nd total
comparisons for successful searches and divide by number
of searches (=n). That is, it is needed to a count number of
branches leading from root to each leaf that terminates a
successful search. From the comparison tree, the following
observations can be made:

 1. Height of tree = maximum number of key comparisons
possible (height = number of levels below root)

 2. Height of tree is at most one more than average
number of key comparisons because the levels of
leaves can only differ by one, as size of lists when
divided by algorithm can only differ by zero or one

 3. The number of leaves in a tree expands by a power of
two (Fig. 6.8)

254 Programming in C

2 = 1
0

2 = 2
1

2 = 4
2

*

*

* * *

*

*

Figure 6.8 Number of leaves in a tree expands by a
power of two

 Number of leaves = 2h where h is the height of the tree.
Therefore, if the tree has leaves on same level then 2h = 2n.
If the tree has leaves on two levels, then 2h > 2n (where h
is smallest integer that matches the inequality). Generally
one can say that 2h >= 2n. Taking logs of both sides
(base 2) (i.e., given ay = x, we get logax = y).
 If 2h >= 2n then h >= 1 + log2n {as log(2*n) becomes
log(2) + log(n) and log22 = 1}
 As n gets large, the inequality 2h >= 2n tends to 2h = 2n
 Therefore, the average number of comparisons for a
binary search is approximately log2(n + 1). The following
table summarizes the analysis for binary search.

Case Comparisons as
a function of n

Best Case (fewest comparisons) 1

Worst Case (most comparisons) log2n

 Hence, the worse case complexity is T(n) = O(log2 n)
and the best case complexity is T(n) = O(1).

6.12.4 Analysis of Bubble Sort

To analyze bubble sort, it is needed to compare the fi rst and
second elements of an array and exchange, if necessary, so
that the smaller is in the fi rst position. This is repeated for
the second and third pair, third and fourth pair, etc. until a
pass through all adjacent pairs has been made. At the end
of this fi rst pass, the last item will be in its proper place
(i.e., it will be the largest).
 A second pass is performed on the fi rst (n-1) items, after
which the last two elements will be in place. (n-1) passes
will be required to sort an array containing n elements.
At the end of the ith pass, the last i elements will be

ordered. If the pass is made in which no exchanges are
required, then the array is in order, even if less than (n-1)
passes have been made.
 For a list containing n items, the number of swaps
required for each location in the fi rst half of the array can
be shown as follows:

n/2–1

3

n/2

1

n/2-2

5

..

..

..

..

2

n-3+ + + + + + +

3

n-5

1

n-1
Location

Swaps

 Each swap is experienced by two elements and the
number of swaps is counted, and it is experienced by half
the elements. Every swap always moves the elements
towards their eventual location and the sum of this series
will be the total number of swaps required. Consider the
following table.

Pass Comparisons Swaps Moves
First (n-1) (n-1)/2 swaps

(average)
3(n-1)/2

Second (n-2) (n-1)/2
swaps(average)

3(n-2)/2

All
passes

= (n-1)+(n-2)...+ 1
= n(n-1)/2
= ~ n2/2

= n(n-1)/4
=~ n2/4
(average)

~3n2/4
moves

Therefore,
 T(n) = n + (n - 1) + (n - 2) + (n - 3) + (n - 4)

... (2) + (1)

 = n(n(n-1)/2) = n2/2

 Hence, the time complexity of bubble sort is O(n2).
The average case behaviour of the bubble sort algorithm
can be shown to be approximately equal to the worst
case behaviour. It can be assumed that for the worst case
situation, every element is approximately half the list
away from its eventual location in the sorted list. This
will require each element to experience a minimum of
n/2-1 swaps. It cannot be assumed that the other element
participating in the swap will benefi t from the swap by
being moved towards its desired location. It can be assumed
that the swaps in the average case situation are only 50%
as effective as the swaps in the worst case situation. This
leads to the conclusion that each element has to experience
approximately n swaps and as each swap moves two
elements, the total number of swaps is approximately n2/2.
This is the same number of swaps as required in the worst
case situation and will need at least as many iterations of
the inner loop.
 Therefore, the worse case complexity is T(n) = O(n2)
and the average case complexity is also T(n) = O(n2).

Functions 255

6.12.5 Analysis of Quick Sort

In quick sort, each recursive call could have a different
sized set of numbers to sort. Here are the three analyses
that must be performed:
 ∑ Best case
 ∑ Average case
 ∑ Worst case

 In the best case, a perfect partition is to be set every
time. If we let T(n) be the running time of quick sorting n
elements, then T(n) = 2T(n/2) + O(n), since partition runs
in O(n) time.
 Now, consider how bad quick sort would be if the
partition element was always the greatest value of the one
remaining to be sorted. In this situation, one has to run
partition n-1 times, the fi rst time comparing n-1 values,
then n-2, followed by n-3, etc. This points to the sum
1+2+3+...+(n-1) which is (n-1)n/2. Thus, the worst case
running time is O(n2).
 Now, lets us calculate the average case running time. This
is certainly diffi cult to ascertain because one cannot get any
sort of partition. It is assumed that each possible partition (0
and n-1, 1 and n-2, 2 and n-3, etc.) is equally likely. One way
to work out the mathematics is as follows. Assume that you
run quick sort n times. In doing so, since there are n possible
partitions, each equally likely, on average, each partition
occurs once. So, the following recurrence relation is found:

 nT(n) = T(0)+T(n-1)+T(1)+T(n-2)+...+T(n-1)+T(0) + n*n

 = 2[T(1)+T(2)+...T(n-1)] + n2 (6.1)

 Now, putting n-1 in Eqn (6.1),

 (n-1)T(n-1) = 2[T(1)+T(2)+...T(n-2)] + (n-1)2 (6.2)

 Subtracting Eqn (6.2) from Eqn (6.1), gives

 nT(n) - (n-1)T(n-1) = 2T(n-1) + 2n - 1 nT(n)

 = (n+1)T(n-1) + (2n - 1)

 T(n) = [(n+1)/n]T(n-1) + (2n - 1)/n (6.3)

 Since it is an approximate analysis, the –1 is dropped
at the end of this equation. Dividing Eqn (6.3) by n+1,
yields

 T(n)/(n+1) = T(n-1)/n + 2/(n+1) (6.4)

 Now, substituting different values of n into this
recurrence to form several equations, it evaluates to

 T(n)/(n+1) = T(n-1)/n + 2/(n+1)T(n-1)/(n)

 = T(n-2)/(n-1) + 2/(n)

 T(n-2)/(n-1) = T(n-3)/(n-2) + 2/(n-1)
 . . .

 T(2)/3 = T(1)/2 + 2/1 (6.5)

 Now, adding Eqns (6.5) reveals many identical terms
on both sides. In fact, after cancelling identical terms, we
are left with
T(n)/(n+1) = T(1)/2 + 2[1/1 + 1/2 + 1/3 + ... + 1/(n+1)]

 The sum on the right hand side of the equation is a
harmonic number. The nth harmonic number (Hn) is defi ned
as 1 + 1/2 + 1/3 + ... 1/n.
 Through calculus, it can be shown that Hn ~ ln n (ln is
the natural log with the base e; e ~ 2.718282). Now,
 T(n)/(n+1) ~ 1/2 + 2ln n

 T(n) ~ n(ln n) (simplifying a bit)
 Thus, even in the average case for quick sort, it is found
that T(n) = O(n log n).
 Note, in order analysis, any function of the form logbn
= O(logcn), for all positive constants b and c, greater than 1.
 Let us look at the best case complexity. The best case
occurs when the pivot is the median value, thus the two
recursive calls are problems with approximately half the
size of the original problem. This recurrence is given by
 T(n) = 2T(n / 2) + O(n) = O(n log n)

Weiss derives the best case performance fi gure to be
 c * n * log n + n

where c represents the constant pivot selection time.
 The main consideration is quick sort’s average
performance. This has been shown (see Kruse et al.) to be
1.39 * n * log n + c * n.
 For quick sort, best case is T(n)= O(n log n), worse case
is T(n) = O(n2), and average case is T(n)= O(n log n).

6.12.6 Disadvantages of Complexity Analysis

Complexity analysis can be very useful, but there are
problems with it too. The disadvantages of complexity
analysis are as follows.

 ∑ Many algorithms are simply too hard to analyze
mathematically.

 ∑ The average case is unknown. There may not
be suffi cient information to know what the most
important ‘average’ case really is, therefore analysis
is impossible.

 ∑ Big-O analysis only specifi es how it grows with the
size of the problem, not how effi cient it is.

 ∑ If there are no large amounts of data, algorithm
effi ciency may not be important.

256 Programming in C

SUMMARY

A function is a self-contained block of program statements that performs
some particular task. Programs should be built with a large number
of small compact functions rather than with a small number and large
functions. The use of functions in programs makes it more manageable
and easy to understand. They may be called as many times as the main
program needs to use them. Functions are reusable and can therefore
be used in multiple programs.

 The linkage with the user-made functions and the main() program
is established through three components associated with the user
function. These three components are

 ∑ the declaration statement

 ∑ the function defi nition

 ∑ the calling statement

 When a function is called, parameters are passed by value.
Depending on its return type specifi ed by its declaration, a function
either does not return any value or some value of the type mentioned
in its prototype. Another method of passing parameters to function is
known as call by reference more strictly ’call by address’. This will be
discussed in detail in the chapter on pointers.

 Scope rules related to statement blocks and functions basically
describe the existence, accessibility, and default values of variables
called local variable, declared within the function body and those called
global variables, declared outside all functions.

 To indicate where the variables would be stored, how long they
would exist, what would be their region of existence, and what would be

the default values, C provides four storage class specifi ers that can be
used along with the data type specifi ers in the declaration statement of
a variable. These four storage class specifi ers are as follows:

 ∑ automatic

 ∑ external

 ∑ register

 ∑ static

 Recursion in programming is a technique for defi ning a problem in
terms of one or more smaller versions of the same problem. A function
that calls itself directly or indirectly to solve a smaller version of its task
until a fi nal call which does not require a self-call is a recursive function.
The following are necessary for implementing recursion:

 ∑ Decomposition into smaller problems of same type

 ∑ Recursive calls must diminish problem size

 ∑ Necessity of base case

 ∑ Base case must be reached

 An instance of the problem whose solution requires no further
recursive calls is known as a base case. It is a special case whose
solution is known. Every recursive algorithm requires at least one base
case in order to be valid.

 Some popular problems where the recursive functions can be used
have been discussed in this chapter. While developing user-defi ned
functions, the common errors encountered by programmers, ideas on
how to choose test data, and the way these can be tracked have also
been presented in detail.

KEY-TERMS

Actual parameters Information will be passed to the function via
special identifi ers or expression called arguments or actual parameters.
Average-case The average-case complexity of the algorithm is the
function defi ned by the average number of steps taken on any instance
of input size.
Base case An instance of a problem the solution of which requires no
further recursive calls is known as a base case.
Best-case The best-case complexity of the algorithm is the function
defi ned by the minimum number of steps taken on any instance of input
size.
Big-O Big-O notation is a measure of the running time of an algorithm,
as it relates to the size of the input to that algorithm. It is intended, not to
measure the performance of the machine on which the algorithm is run,
but rather to strictly measure the performance of the algorithm itself.
Call by Value Call by value means the values of the actual arguments
are conceptually copied to the formal parameters.
Extent How long memory will be associated with them is known as extent.
Formal parameters The list of variables in the function header is
also referred to as the formal parameters.

Recursion A technique by which a function is called by itself.

Scope The region of the program over which the declaration of an
identifi er is accessible is called the scope of the identifi er.

Space complexity Space complexity is a function describing the
amount of memory (space) an algorithm takes with respect to the
amount of input provided to the algorithm.

Storage class Storage class specifi es where the variables would
be stored, how long they would exist, what would be their region of
existence, and what would be the default values

Structured programming Structured programming refers to a set of
principles for writing well-organized programs that could be more easily
shown to be correct.

Time complexity Time complexity is a function describing the
amount of time an algorithm takes with respect to the amount of input
provided to the algorithm.

Worst-case The worst-case complexity of the algorithm is the function
defi ned by the maximum number of steps taken on any instance of
input size.

Functions 257

FREQUENTLY ASKED QUESTIONS

1. Why is a function prototype required?
 A function prototype tells the compiler what kind of arguments a
function receives and what kind of value a function is going to give
back to the calling function. Function prototype helps the compiler
ensure that calls to a function are made correctly and that no erroneous
type conversions are taking place. If the compiler fi nds any difference
between the prototype and calls to the function or the defi nition of the
function, an error or a warning may be caused.

2. Why is scope important?
 In structured programming approach, the program is divided into
independent functions that perform a specifi c task. The key word here is
independent. For true independence, it is necessary for each function’s
variables to be isolated from interference caused by other functions.
Only by isolating each function’s data can you make sure that the
function performs its intended task without affecting or being affected
by some other part of the program. it is also true that in some situation
complete data isolation between functions isn’t always desirable. By
specifying the scope of variables, a programmer may attain the control
over the degree of data isolation.

3. If global variables can be used anywhere in the program, why
not make all variables global?
 When the program becomes complex and large, it may be needed to
declare more and more variables. Variables declared as global take
up memory for the entire time the program is running; however, local
variables don’t. For the most part, a local variable takes up memory
only while the function to which it is local is active. Additionally, global
variables are subject to unintentional alteration by other functions. If this
occurs, the variables might not contain the values one expects when
they’re used in the functions for which they were created.

4. What is the advantage of using register storage class? What
are the restrictions with register storage class?
 Access to `register’ identifi ers should be as fast as possible, so the
compiler may place the value in a machine register. However, the
compiler is free to treat a `register’ declaration as an `auto’ declaration
because it is only a hint and not a directive.
 There are some restrictions with register storage class. They include
the following.
 The variable must be of a type that can be held in the CPU’s register.
This usually means a single value of a size less than or equal to the
size of an integer. Some machines have registers that can hold fl oating-
point numbers as well.
 An array should not be declared with register storage class; doing so
is an undefi ned behavior.
 Address-of operator (&) cannot be applied to an identifi er with
register storage class. An attempt to do so would cause as an error by
the compiler.
 Register storage class can only be applied to local variables and
to the formal parameters in function. Global register variables are not

allowed. That is, the `register’ storage class should not occur in an
external declaration.

5. What is linkage?
 An identifi er’s linkage determines which of the references to that
identifi er refer to the same object. An identifi er’s linkage is determined
by whether it appears inside or outside a function, whether it appears in
a declaration of a function (as opposed to an object), its storage-class,
and the linkage of any previous declarations of the same identifi er that
have fi le scope.

6. What does linkage intend?
 Linkage is used to determine what makes the same name declared in
different scopes refer to the same thing. An object only ever has one
name, but in many cases we would like to be able to refer to the same
object from different scopes.

7. What are the different types of linkages?
 C defi nes three types of linkages – external, internal and no linkage. In
general,
 Functions and global variables have external linkage. This means
they are available to all fi les that constitute a program.
 Identifi ers with fi le scope declared as static have internal linkage.
These are known only within the fi le in which they are declared.
 Local identifi ers have no linkage and are therefore known only within
their own block.
 Two declarations of the same identifi er in a single fi le that have the
same linkage, either internal or external, refer to the same object. The
same identifi er cannot appear in a fi le with both internal and external
linkage.

8. Differentiate between an internal static and external static
variable?
 An internal static variable is declared inside a block with static storage
class whereas an external static variable is declared outside all the
blocks in a fi le. An internal static variable has persistent storage,
block scope and no linkage. An external static variable has permanent
storage, fi le scope and internal linkage

9. What does extern mean in a function declaration?
 Using extern in a function declaration the function can be used outside
the fi le in which it is defi ned.

10. Compare recursion and iteration.
 Recursion is a top-down approach to problem solving; it divides the
problem into pieces or selects out one key step, postponing the rest.
On the other hand, iteration is more of a bottom-up approach; it begins
with what is known and from this constructs the solution step by step.
 Depending on the implementation available and the algorithm being
used, recursion can require a substantial amount of runtime overhead.
Thus, the use of recursion illustrates the classic tradeoff between time
spent constructing and maintaining a program and the cost in time and

258 Programming in C

memory of execution of that program. For that reason, it is often the
case that an iterative version of a solution is considerably more effi cient
than a recursive one.

11. Can main() be called recursively?
 This is perfectly legal to call main() recursively if properly written as
follows-
 #include <stdio.h>
 int main()
 {
 static int c=5;
 if(c-->0)
 {
 printf(“\t %d”, c);
 return main();
 }

 else
 return 0;
 }

 Output:
 4 3 2 1 0
 If the recursive call does not have base case as the following program
then this will go on till a point where runtime error occurs due to stack
overfl ow.
 #include <stdio.h>
 int main()
 {
 main();
 return 0;
 }

EXERCISE

 1. A function that returns an integer value and takes a single integer
as an argument can be prototyped as

 ∑ int myFun();

 ∑ void myFun(int);

 ∑ int myFun(void);

 ∑ int myFun(int);

 2. If called by the statement

 n = myFun(9);

 what value will myFun(9) return for assign-ment to n?

 int myFun(int val) {

 return(val * (val + 1))/2;

 }

 3. Which of the function prototypes below have no errors?

 ∑ void myFun1(int)

 ∑ int myFun2(void);

 ∑ fl oat myFun3(a, b, c);

 ∑ double myFun(void a, int b);

 ∑ int myFun5(int var1, int);

 4. A function is defi ned that calculates and returns the hypotenuse
of a right triangle with sides a and b. The function prototype is

 double hypot(double a, double b);

 Which of the statements below are correct uses of (calls to) this
function (assume x, y, and z are double variables and that x
and x have been initialized properly)?

 z = hypot(4.0, 4.5);

 z = hypot(double x, double y);

 hypot(x, y);

 printf(“%f”, hypot(x, y));

 z = x + y + hypot(x, y);

 5. A function, sumN, is defi ned that takes an integer n as argument
and returns the sum of the integers from 1 through n. What is the
value of the expression shown below?

 sumN(3456) - sumN(3455);

 6. Choose all the correct ways of calling a function with prototype

int f1(int, double);

 given the variables below and that the math library was
included.

int val1 = 5, retVal;

double val2 = 9.8;

 retVal = f1(4, 3.5);

 retVal = f1(int val1, fl oat val2);

 retVal = f1(1000, val2);

 retVal = f1(2*val1, val2/3.5);

 retVal = f1(val1, sqrt(val2));

 7. Given the function defi nition shown for f1() below, what will be
printed?

int f1(void);

int main(void) {

printf(“%d”, f1());

printf(“%d”, f1());

printf(“%d”, f1());

return 0;

}

int f1(void) {

int val = 1;

return val++;

}

 8. Given the function defi nition shown for f1() below, what will be
printed?

Functions 259
int f1(void);

int main(void) {

 printf(“%d”, f1());

 printf(“%d”, f1());

 printf(“%d”, f1());

 return 0;

}

int f1(void) {

 static int val = 1;

 return val++;

}

 9. What is printed by the code below?

void f1(void);

int val = 6;

int main(void) {

 f1();

 printf(“%d”, val);

 f1();

 printf(“%d”, val);

 return 0;

}

void f1(void) {

 ++val;

 }

 10. What is printed by the code below?

void f1(int);

int val = 6;

int main(void) {

 f1(val);

 printf(“%d”, val);

 f1(val);

 printf(“%d”, val);

 return 0;

 }

void f1(int val) {

 ++val;

 }

 11. Given the array declaration and function prototype below,
choose all the correct ways of calling the function from main()
and giving it a reference to myarray[].

void myFun(int a[]);

int main() {

 int myArray[] =

 {10,20,30,40,50,60,70,80};

 /* function call here */

 myFun(myArray);

 myFun(myArray[]);

 myFun(&myArray[0]);

 myFun(myArray[0]);

 myFun(myArray[8]);

 12. What will be the output of the following program?
#defi ne swap(a,b) temp=a; a=b; b=temp;

int main()

{

 static int a=5,b=6,temp;

 if(a > b)

 swap(a,b);

 printf(“a=%d b=%d”,a,b);

 return 0;

}

 (a) a=5 b=6 (b) a=6 b=5

 (c) a=6 b=0 (d) None of these

 13. The following code is not well written. What is the output?
int main()

{

 int a=1,b=2;

 printf(“%d”,add(a,b));

 return 0;

}

int add(int a,int b)

{

return(a+b);

}

 (a) Run-time error (b) Compile-time error

 (c) 3 (d) None of these

 14. What will be the output of the following program?

int add(int a,int b)

{

 int c=a+b;

}

int main()

{

 int a=10,b=20;

 printf(“%d %d %d”,a,b,add(a,b));

 return 0;

}

 (a) 10 20 0 (b) Compile-time error

 (c) 10 20 30 (d) None of these

 15. What will be the output of the following program?

260 Programming in C

int add(int a,int b)

{

 int c=a+b;

 return;

}

int main()

{

 int a=10,b=20;

 printf(“%d %d %d”,a,b,add(a,b));

 return 0;

}

 (a) 10 20 0 (b) Compile-time error

 (c) 10 20 30 (d) None of these

 16. What will be the output of the following program?

int main()

{

 int add(int,int);

 int a=7,b=13;

 printf(“%d”,add(add(a,b),

 add(a,b)));

 return 0;

}

int add(a,b)

int a,b;

{

 return(a+b);

}

 (a) Compile-time error (b) 20

 (c) 40 (d) None of these

 17. What will be the output of the following program?

int add(a,b)

{

 int c=a+b;

 return c;

}

int main()

{

 int a=10,b=20;

 printf(“%d”,add(a,b));

 return 0;

}

 (a) 30 (b) Compile-time error

 (c) 0 (d) None of these

 18. What will be the output of the following program?

int funct2(int b)

{

 if(b == 0)

 return b;

 else

 funct1(b––);

}

int funct1(int a)

{

 if(a == 0)

 return a;

 else

 funct2(a––);

}

int main()

{

 int a=7;

 printf(“%d”,funct1(a));

 return 0;

}

 (a) 0 (b) Compile-time error

 (c) Infi nite loop (d) 7

 19. What will be the output of the following program?

int funct2(int b)

{

 if(b == 0)

 return b;

 else

 funct1(––b);

}

int funct1(int a)

{

 if(a == 0)

 return a;

 else

 funct2(––a);

}

int main()

{

 int a=7;

 printf(“%d”,funct1(a));

 return 0;

}

 (a) 0 (b) Compile-time error

 (c) Infi nite loop (d) 7

Functions 261

 20. What will be the output of the following program?

int funct1(int a)

{{;}{{;}return a;}}

int main()

{

 int a=17;

 printf(“%d”,funct1(a));

 return 0;

}

 (a) 0 (b) Compile-time error

 (c) 17 (d) None of these

 21. What will be the output of the following program?

int funct1(int a)

{

 if(a)

 return funct1(––a)+a;

 else

 return 0;

}

int main()

{

 int a=7;

 printf(“%d”,funct1(a));

 return 0;

}

 (a) 7 (b) 21

 (c) 28 (d) None of these

 22. What will be the output of the following program?

int compute(int a,int b)

int c;

{

 c=a+b;

 return c;

}

int main()

{

 int a=7,b=9;

 printf(“%d”,compute(a,b));

 return 0;

}

 (a) Compile-time error (b) 16

 (c) None of these

 23. What will be the output of the following program?

int a=10;

void compute(int a)

{

 a=a;

}

int main()

{

 int a=100;

 printf(“%d”,a);

 compute(a);

 printf(“%d”,a);

 return 0;

}

 (a) 10 10 (b) Compile-time error

 (c) 100 100 (d) 100 10

 24. What will be the output of the following program?

int funct(char ch)

{

 ch=ch+1;

 return ch;

}

int main()

{

 int a=127;

 printf(“%d %d”,a,funct(a));

 return 0;

}

 (a) Compile-time error (b) 127 128

 (c) 127–128 (d) None of these

 25. What will be the output of the following program?

char funct(int val)

{

 char ch=val;

 return ch;

}

int main()

{

 fl oat a=256.25;

 printf(“%d”,funct(a));

 return 0;

}

 (a) 0 (b) 256.25

 (c) 256 (d) None of these

 26. What will be the output of the following program?

auto int a;

void changeval(int x)

262 Programming in C

{

 a=x;

}

int main()

{

 a=15;

 printf(“%d”,a);

 changeval(75);

 printf(“%d”,a);

 return 0;

}

 (a) Compile-time error (b) 15 75

 (c) 15 15 (d) None of these

 27. What will be the output of the following program?

int val;

static int funct()

{

 return val*val;

}

int main()

{

 val=5;

 funct();

 val++;

 printf(“%d”,funct());

 return 0;

}

 (a) Compile-time error (b) 25

 (c) 36 (d) None of these

 28. What will be the output of the following program?

static int funct(int val)
{
 static int sum;
 sum+=val;
 return sum;
}
int main()
{
 int i,n=9;
 for(i=1; i<n—; i++)
 funct(i*2);
 printf(“%d”,funct(0));
 return 0;
}

 (a) 20 (b) 0

 (c) 30 (d) None of these

 29. What will be the output of the following program?
void print(int a[],...)

{

 while(*a != -1)

 printf(“%d”,*a++);

}

int main()

{

 int a[]={1,2,3,4,5,-1};

 print(a,5,6,7,8,9,-1);

 return 0;

}

 (a) Compile-time error (b) Run-time error

 (c) 12345 (d) 56789

 30. What will be the output of the following program?

int main()

{

 int a=19,b=4;

 fl oat c;

 c=a/b;

 printf(“%f”,c);

 return 0;

}

 (a) 4.75 (b) 4

 (c) 4.750000 (d) 4.000000

 31. What will be the output of the following program?

int main()

{

 int _;

 _=70;

 printf(“%d”,_);

 return 0;

}

 (a) Compile-time error (b) Run-time error

 (c) 70 (d) None of these

 32. What will be the output of the following program?

#defi ne func(x,y) { func(x,y) }

int main()

{

 int a=5,b=6;

 c=func(x,y);

 printf(“%d %d %d”,c);

 return 0;

}

Functions 263

 (a) Compile-time error (b) Linker error

 (c) 5 6 11 (d) Infi nite loop

 33. What will be the output of the following program?

#defi ne big(a,b) a > b ? a : b

#defi ne swap(a,b) temp=a; a=b; b=temp;

int main()

{

 int a=3,b=5,temp;

 if((3+big(a,b)) > b)

 swap(a,b);

 printf(“%d %d”,a,b);

 return 0;

}

 (a) 3 0 (b) 5 3

 (c) 3 5 (d) 5 0

 34. Write a function to fi nd the sum of digits of a given number.

 35. Write a program that uses a function to search a number within
an array.

 36. Write a function that takes a decimal number and base as
argument and returns the equivalent number of the given base.

 37. Write a function that will scan a string that is passed as an
argument and convert all characters to capital letters.

 38. Write a program that uses a function to add a string to the end of
another string without using any library function.

 39. Write function to sort an array of integers in ascending order.

 40. Write a function to reverse a given string and use it to check
whether the given string is a palindrome or not.

 41. Write a program to perform addition, subtraction, and multiplication
on two matrices depending upon the user’s choice.

 42. Write a program to print the transpose of that matrix.

 43. Write a program that sorts the words of a sentence in alphabetical
order.

 44. Write a function that will print the longest word written in a line.

 45. Write a program to sort the numbers stored in a matrix.

 46. Read two integers, representing a rate of pay (pence per hour)
and a number of hours. Print out the total pay, with hours up to
40 being paid at basic rate, from 40 to 60 at rate- and-a-half,
above 60 at double-rate. Print the pay as pounds to two decimal
places.

 Hints Construct a loop. Terminate the loop when a zero rate is
encountered. At the end of the loop, print out the total pay. The
code for computing the pay from the rate and hours is to be
written as a function.

 The recommended output format is

Pay at 200 pence/hr for 38 hours is 76.00 pounds

Pay at 220 pence/hr for 48 hours is 114.40 pounds

Pay at 240 pence/hr for 68 hours is 206.40 pounds

Pay at 260 pence/hr for 48 hours is 135.20 pounds

Pay at 280 pence/hr for 68 hours is 240.80 pounds

Pay at 300 pence/hr for 48 hours is 156.00 pounds

Total pay is 928.80 pounds

 The ‘program features’ check that explicit values such as 40
and 60 appear only once, as a #defi ne or an initialized variable
value.

 47. Write functions to convert feet to inches, convert inches to
centimeters, and convert centimeters to meters. Write a program
that prompts a user for a measurement in feet and converts and
outputs this value in meters. Facts to use: 1 ft = 12 inches, 1 inch
= 2.54 cm, 100 cm = 1 meter

Project Question
 1. Write a menu-based program in C that uses a set of functions

to perform the following operations
 (a) reading a complex number
 (b) writing a complex number

 (c) addition of two complex numbers
 (d) subtraction of two complex numbers
 (e) Multiplication of two complex numbers

As was done in the earlier chapters, the test for forming a triangle
with the given vertices is conducted.
If it is possible to draw a triangle with the given vertices, the area of
the triangle is computed. Here, in addition to using arrays, functions
are used.

Problem statement

Compute the lengths of three sides of a triangle formed by three
points whose co-ordinates are given. Check whether a triangle can
be formed or not. Then compute the area of the triangle. Next, take a
point as input from the user and check whether it is inside or outside
the triangle.

INCREMENTAL PROBLEM

264 Programming in C

Solution

The problem can be divided into functions. One function named
getLength() could be used to compute the length of the side of a
triangle from the coordinates of the two vertices. Another function
called getArea() could be used to calculate the area of the triangle
from the lengths of three sides of the triangle. The area is given
by,

Area = s(–)(–)(–)s a s b s c

where a, b, c are the lengths of the three sides and

s = (a + b + c)/2.

Finally, to check whether a point is located inside or outside a trian-
gle another function should be used. The three vertices of a triangle
can be represented by two integer arrays x[3] and y[3] where
(x[0],y[0]), (x[1],y[1]) and (x[2],y[2]) make up the
vertices of the triangle.
 When a point resides inside a triangle, the sum of the areas of
the triangles formed by taking two adjacent vertices and the point
together must be same as the area of the triangle.(see the fi gure)
That is, sum of areas of the triangles formed by {(x,y), (x0,y0),
(x1,y1)}, {(x,y), (x1,y1), (x2,y2)} and {(x,y), (x0,y0),
(x2,y2)} must be the same as the area of the triangle formed with
{(x0,y0),(x1,y1),(x2,y2)} if the point is located inside the tri-
angle.

(x1, y1)

(x2, y2)

(x, y)

(x0, y0)

Program

#include <stdio.h>

#include <math.h>

double getLength(int, int, int, int);

double getArea(double, double, double);

int insideOrOutside(int[], int[], int, int);

int main(void)

{

 int x[3],y[3];

 int i,xx,yy;

 double a,b,c, area;

 printf(“\n Enter the co-ord. of the vertices”);

 for(i=0;i<3;++i)

 {

 printf(“\n Enter x[%d]:”,i);

 scanf(“%d”,&x[i]);

 printf(“\n Enter y[%d]:”,i);

 scanf(“%d”,&y[i]);

 }

 a = getLength(x[0],y[0],x[1],y[1]);

 b = getLength(x[1],y[1],x[2],y[2]);

 c = getLength(x[0],y[0],x[2],y[2]);

 if(a+b>c && b+c>a && c+a>b)

 {

 printf(“Triangle can be drawn”);

 area = getArea(a,b,c);

 printf(“\n Area is %lf sq. units”, area);

 printf(“\n Enter the co-ord. of the point:”);

 printf(“\n x co-ordinate:”);

 scanf(“%d”,&xx);

 printf(“\n y co-ordinate:”);

 scanf(“%d”,&yy);

 if(insideOrOutside(x,y,xx,yy))

 printf(“\n Inside the triangle”);

 else

 printf(“\n Outside the triangle”);

 }

 else

 printf(“Triangle cannot be drawn”);

 return 0;

}

double getLength(int xOne, int yOne, int xTwo,int yTwo)

{

 int m, n;

 m = (xOne-xTwo)*(xOne-xTwo);

 n = (yOne-yTwo)*(yOne-yTwo);

 return sqrt((double)(m+n));

}

double getArea(double sA,double sB, double sC)

{

 double s;

 s = (sA+sB+sC)/2.0;

 return sqrt(s*(s-sA)*(s-sB)*(s-sC));

}

int insideOrOutside(int x[],int y[],int xx, int yy)

{

 int i,k;

 double d[3], area, sumArea=0.0,aa,bb;

 for(i=0;i<3;++i)

Functions 265

Problem Statement
The functional value at a point has to be determined with only a few
given functional values at some points and without any functional
expressions being given. Using Lagrange’s interpolation technique,
fi nd the functional value at a given point.

Analysis and Algorithm
The basic problem of polynomial interpolation is as follows: Given
a set of (n + 1) distinct data points (xi, yi), where i = 0, 1, 2, ..., n, the
curve passing through these points is to be found. When the curve is
found, the coordinate corresponding to any desired abscissa value is
also readily found. Let

y = a0 + a1x + a2x
2 + ... + anx

n

be the required curve of degree less than or equal to n, where the
constants a1, where i = 0, 1, 2, ..., n, are to be determined; n being a
positive integer. Since it passes through the prescribed points (xi, yi),
it follows that

 y0 = a0 + a1x0
2 + ... + anx0

n
 y1 = a1 + a1x1 + a2x1

2 + ... + anx1
n

 . . .
 yn = a0 + a1xn + a2xn2 + ... anxn

n

CASE STUDY

This is a system of (n + 1) linear algebraic equations for the (n + 1)
unknowns ai, where i = 0, 1, 2, ..., n. The coeffi cient determinant of
the system is given by

’= = -
=

π

21 0 0 0
21 1 1 1 ()

, 0

21

nx x

nnx x xD x xi j
i j

i jnx x xn n n

x

This is known as Van der Monde determinant, which is clearly different
from zero, in view of the fact that the given points are distinct. An
alternative solution path was suggested by the great mathematician
Lagrange, who formulated the problem and solved it in closed form.
Following Lagrange, let us defi ne the auxiliary functions

Pk(x) = (x – x0) ... (x – xk – 1)(x – x k – 1) ... (x – xn)

So that the function Pk(x) is a continued product of n-factors of the
from (x – xi), beginning from i = 0 to n, from which the factor (x – xk)
is missing. It is to be noted that Pk(x) vanishes for any value x = xi,
where i = 0, 1, ... n. Since there are n factors, the functions Pk(x) are
polynomials of degree n. Further let

 {

 d[i] = getLength(x[i],y[i],x[(i+1)%3],

y[(i+1)%3]);

 }

 area = getArea(d[0],d[1],d[2]);

 for(i=0;i<3;++i)

 {

 aa = getLength(xx,yy,x[i],y[i]);

 bb = getLength(xx,yy,x[(i+1)%3],y[(i+1)%3]);

 sumArea += getArea(d[i],aa,bb);

 }

 if(fabs(area-sumArea) < 0.00001)

 return 1;

 else

 return 0;

}

Note
The lengths of three sides constituted by vertices {(x[0],y[0]),
(x[1],y[1])}, {(x[1],y[1]),(x[2],y[2])} and {(x[0],
y[0]), (x[2], y[2])} are stored in d[0], d[1], d[2]

respectively.
The following portion of code contained in insideOrOutside()
needs to be explained.

for(i=0;i<3;++i)

{

 aa = getLength(xx,yy,x[i],y[i]);

 bb = getLength(xx,yy,x[(i+1)%3],y[(i+1)%3]);

 sumArea += getArea(d[i],aa,bb);

}

In each iteration, the code within the for loop can be described as
follows.

i = 0

aa = getLength(xx,yy,x[0],y[0]);
bb = getLength(xx,yy,x[1],y[1]);
sumArea += getArea(d[0],aa,bb);

Here (i+1)%3 evaluates to 1 as (0+1)%3=1

i = 1

aa = getLength(xx,yy,x[1],y[1]);
bb = getLength(xx,yy,x[2],y[2]);
sumArea += getArea(d[1],aa,bb);

Here (i+1)%3 evaluates to 2 as (1+1)%3=2

i = 2

aa=getLength(xx,yy,x[2],y[2]);
bb=getLength(xx,yy,x[0],y[0]);
sumArea+=getArea(d[2],aa,bb);
Here (i+1)%3 evaluates to 0 as (2+1)%3 = 0

266 Programming in C

y = f(x) =
=
Â

0

()
n

k K
k

A P x

where Ak (k = 0, 1, ... n) are constants to be determined.
Clearly, the function f(x) is a polynomial of degree n(or less). Further,
it is given that, at x = xi, y = yi so that

f
=

= = Â
0

() ()
n

i k K i
k

y x A P x

Therefore, Ai = yi |Pi(xi). Hence,

0

0 1 1

0 1 10

()
()

()...()()...()

()...()()...()
n

n
k

k
k kk

n
k k n

k k x k k k xk

P x
y y

P x

x x x x x x x x

x x x x x x x

=

- -

- + -=

=

- - - -
=

- - -

Â

Â
...(1)

Equation (1) is the Lagrange interpolation formula. It defi nes a
polynomial of degree < = n, which approximates the unknown function
f(x) (assumed to be suffi ciently smooth) and assumes the prescribed
values yi at the pivotal points xi.

The algorithm for solving this problem is given as follows:

 1. START

 2. PRINT “Enter the no. of data:”

 3. INPUT N

 4. ALLOCATE STORAGE SPACE FOR N NUMBER OF DATA

VALUES FOR X AND Y

 5. I←0

 6. PRINT “ENTER X AND Y VALUES:”

 7. INPUT X[I], Y[I]

 8. I←I+1

 9. IF(I < N) THEN GO TO 6

 10. PRINT “Enter the value of x:”

 11. INPUT A

 12. RESULT = CALL lagrange(X,Y,A,N)

 13. PRINT VALUE OF y

 14. STOP

FUNCTION lagrange(X,Y,A,N)

 1. START

 2. J←0

 3. L←1

 4. R←0

 5. I←0

 6. IF(I!=J)THEN

 L*=(A-X[I])/(X[J]-X[I])

 7. I←I+1

 8. IF I<N THEN GOTO 6

 9. R← R + Y[J]*L;

 10. L←1;

 11. J←J+1

 12. IF J<N THEN GOTO 5

 13. RETURN R

Program
#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

fl oat lagrange(fl oat *, fl oat *, fl oat, int);

int main(void)

{

 int i,j,n;

 fl oat *x,*y,result,a;

 printf("Enter the no. of data:");

 scanf(“%d”,&n);

 if(n<1)

 {

 printf(“ERROR”);

 exit(0);

 }

 x=(fl oat*)malloc(n*sizeof(fl oat));

 y=(fl oat*)malloc(n*sizeof(fl oat));

 for(i=0;i<n;i++)

 {

 ffl ush(stdin);

 printf(“Enter the value of x%d:”,i);

 scanf(“%f”,(x+i));

 ffl ush(stdin);

 printf(“Enter the value of y%d:”,i);

 scanf(“%f”,(y+i));

 }

 printf(“Enter the value of x:”);

 scanf(“%f”,&a);

 result=lagrange(x,y,a,n);

 printf(“\n value of y is %f”, result);

 return 0;

 }

fl oat lagrange(fl oat *x, fl oat *y, fl oat a, int n)

Functions 267

{

 int i,j;

 fl oat l=1,r=0;

 for(j=0;j<n;j++)

 {

 for(i=0;i<n;i++)

 {

 if(i!=j)l*=(a-x[i])/(x[j]-x[i]);

 }

 r+=y[j]*l;

 l=1;

 }

 return r;

 }

Sample run:

268 Programming in C

7.1 INTRODUCTION

In programming with C, there are far too many things
that can only be done with pointers. In many cases, C
programmers use pointers because they make the code
more effi cient. But at the same time, pointers seem to
make the code harder to understand. However, with
increased power, pointers bring increased responsibility.

Pointers allow new and ugly types of bugs, and pointer
bugs can crash in random ways, which makes them more
diffi cult to debug. Nonetheless, even with their problems,
pointers are a powerful programming construct. The only
peculiarity of C, compared to other languages is its heavy
reliance on pointers and the relatively permissive view of
how they can be used.

After reading this chapter, the readers will be able to

 understand memory addresses

 understand the concept of pointers

 learn the use of pointer variables and understand call-by-value and call-by-address

 get acquainted with dereferencing

 study equivalence among arrays and pointers—treating pointers as arrays

 understand pointer arithmetic

 learn about the concept and construction of array of pointers and pointer to array

 discuss pointers and functions—parameter passing techniques, pointers as function parameters

 get an idea about pointers to functions—functions as arguments to another function

 understand dynamic memory allocation using pointers

 comprehend memory leak, memory corruption, and garbage collection

 decipher (long) pointer declarations

Learning Objectives

C
Chapter

Pointers in C

7

Pointers in C 269

 Before going on to discuss the concept of pointers,
it is necessary to understand the use of memory in a C
program.

Points to Note

 • Pointers allow new and ugly types of bugs.

 • Pointer bugs can crash in random ways, which makes
them more diffi cult to debug.

7.2 UNDERSTANDING MEMORY ADDRESSES
All computers have primary memory, also known as RAM
or random access memory. For example, a computer may
have 16, 32, 64, 128, 256, or 512 MB of RAM installed.
RAM holds the programs that the computer is currently
running along with the data they are currently manipulating
(their variables and data structures). All the variables used
in a program (and indeed, the program itself) reside in the
memory when the program is executed. The organization
of the memory is rather straightforward. It is a sequence
of a large number of memory locations (cells), each of
which has an address. Each memory location is capable
of storing a small number (0 to 256), which is known as
a byte. A char data is 1 byte in size and hence needs one
memory location of the memory. Both integer and fl oat
need four bytes each, or four locations in a 32-bit machine.
The size needed for a particular data type varies with the
platform in which the program is run. Even if an int/fl oat
number is small, it will still occupy four locations. When
a program in C is written and compiled, the compiler will
allocate the memory necessary to run the program. This is
part of the reason why declaring variables is so important.
For example,

int x;
x=1000;

will fi rst convey to the C compiler that x is an integer before
assigning a value of 1000 to it. The declaration statement
informs the compiler to allocate enough memory to store an
integer and assign an address to that space in memory. Since
an integer requires two or four bytes of memory, the compiler
searches for two or four free bytes memory and holds them
until a value is assigned to x. It then puts that value in the
memory location and stores it there until x is redefi ned as
something else. The same goes for other data types in C.
Declaring variables fi rst always allows the compiler to set
aside a space in memory which can then be fi lled up with
useful numbers. Figure 7.1 represents these facts.

MemAddr

0

1

2

3

4

5

.

.

.

27576

27577

27578

0

1

2

3

4

5

.

.

.

27576

27577

27578

One
location

65

char ‘a’ in
memory

int number
1000 in

float
number

Figure 7.1 The computer memory (16-bit system)

 Variables can be stored in several places in memory,
depending on their lifetime. Variables that are defi ned outside
any function (whether of global or fi le static scope), and
variables that are defi ned inside a function as static variables,
exist for the lifetime of the program’s execution. These
variables are stored in the data segment. The data segment is
a fi xed-size area in memory set aside for these variables. The
data segment is subdivided into two parts, one for initialized
variables and another for uninitialized variables.
 There may be several global variables declared in the
program, but they will not be stored contiguously, since
the compiler is not compelled to store them in any order
convenient to the programmer. They are randomly stored
throughout the available global memory even though it is
a fact that every C compiler will probably assign them in
some contiguous manner.
 There are virtual memory, cache memory, registers, and
other kinds of memory that make the system run a little faster
or appear to have more memory. The blocks returned to the
program from the heap have additional housekeeping memory
associated with them and there are byte alignment considerations
for both the heap and the stack. Global memory also has some
byte alignment considerations. For example, the compiler may
require that all fl oat and double type variables start on an even
numbered byte boundary, or on a byte boundary that is modulo
four. This may require some bytes added as padding to get to
the boundary when one of these is encountered. The compiler/
linker will take care of these details.
 Variables that are defi ned inside a function as auto
variables (that are not defi ned with the keyword static)

270 Programming in C

come into existence when the program begins executing
the block of code (delimited by curly braces {}) containing
them, and they cease to exist when the program leaves that
block of code. Variables that are the arguments to functions
exist only during the call to that function. These variables
are stored on the stack. The stack is an area of memory
that starts out small and grows automatically up to some
predefi ned limit. The stack has three major functions:
 1. The stack provides the storage area for local variables

declared within the function.
 2. The stack stores housekeeping information involved

when function call is made.
 3. The stack is needed for recursive call.
 Once a variable is stored on the stack, it can be
referred to by the code that puts it on the stack, so that it
is a variable available for use in much the same manner
as global variables are available. However, when the
program has fi nished using the data on the stack, it can
be discarded to allow the stack to be used for other data
when needed. This is probably unclear at this point, but it
will make more sense when one gets to the actual usage.
It is to be noted that stack would not be needed except for
recursive calls. If not, for these a fi xed amount of space for
local variables, parameters and return addresses would be
known at compile time and could be allocated in BSS.
 In DOS and other systems without virtual memory, the
limit is set either when the program is compiled or when it
begins executing. In UNIX and other systems with virtual
memory, the limit is set by the system, and it is usually so
large that the programmer can ignore it.
 The third and fi nal area doesn’t actually store variables
but can be used to store data pointed to by variables.
 Pointer variables that are assigned to the result of
a call to the malloc() function contain the address of a
dynamically allocated area of memory. This memory is
in an area called the heap. When the program requests a
block of data, the dynamic allocation scheme carves out a
block from the heap and assigns it to the user by returning
a pointer to the beginning of the block. When the system
has fi nished using the block, it returns the block to the
heap where it is returned to the pool of available memory
called the free list. This is called de-allocation. The heap
can share a memory segment with either the data segment
or the stack, or it can have its own segment. It all depends
on the compiler options and operating system. The heap,
like the stack, has a limit on how much it can grow, and the
same rules apply as to how that limit is determined.

 Since readers are interested only in the logical
assignment of memory, they can ignore all of these extra
considerations, and still write effi cient, robust programs.
The compiler writers have a big job to do because they
must keep track of all of these entities in order to make
the programmer’s job easier. C uses pointers in three main
ways.
 1. Pointers in C provide an alternative means of

accessing information stored in arrays, which is
especially valuable when working with strings. There
is an intimate link between arrays and pointers in C.

 2. C uses pointers to handle variable parameters passed
to functions.

 3. They are used to create dynamic data structures, those
that are built up from blocks of memory allocated
from the heap at run-time. This is only visible through
the use of pointers.

 Table 7.1 describes the memory layout of the memory
elements of a C program.

Table 7.1 Memory layout summary

Memory
Section Name

Description

Text (or
the code
segment)

This is the area of memory that contains the
machine instructions corresponding to the compiled
program. This area is READ ONLY and is shared
by multiple instances of a running program.

Data This area in the memory image of a running
program contains storage for initialized global
variables. This area is separate for each
running instance of a program.

BSS This is the memory area that contains storage for
uninitialized global variables. It is also separate
for each running instance of a program.

Stack This region of the memory image of a running
program contains storage for the automatic
(local) variables of the program. It also stores
context-specifi c information before a function call,
e.g., the value of the instruction pointer (program
counter) register before a function call is made.
On most architectures, the stack grows from
higher memory to lower memory addresses.

Heap This memory region is reserved for dynamically
allocating memory for variables at run-time.
Dynamic memory allocation is done by using
the malloc or calloc functions.

Shared
libraries

This region contains the executable image of
shared libraries being used by the program.

Pointers in C 271

7.3 ADDRESS OPERATOR (&)
Readers might have noticed that when we call certain
functions in C the & sign is used. For example,

scanf(“%d”, &n);

takes the input from the terminal and stores it in integer
format in the variable named n. The & sign indicates to
the address in memory of the integer n, which must be
previously declared using

int n;

where the function stores the inputted data. Just like a
house address in a town, the memory address is an integer
specifying the location where something resides. scanf
needs to know this in order to redirect the data. If one
forgets and types n instead, the scanf function interprets
the actual integer value of n as an address and tries to send
its output there. This address may not exist, it may be used
by the operating system or otherwise blocked, or it may be
impossible to fi nd again. It is likely to get a

segmentation fault

error when one compiles, and one will certainly get
nonsense values if the program runs.
 To recap, the compiler thinks n means the value of n
(which will be junk if it has not been assigned yet) and
&n means n’s address. At the moment when the variable
is declared, it must be stored in a concrete location in the
succession of cells in the memory. The programs do not
decide where the variable is to be placed. That is done
automatically by the compiler and the operating system
at run-time. But once the operating system has assigned
an address there may be cases where it may be of interest
to know the location of the variable. This can be done by
preceding the variable identifi er by an ampersand (&),
which literally means ‘address of’.
 Now the above ideas are illustrated with some more
details. Consider the declaration,

int i = 3;

This declaration tells the C compiler to
 reserve space in memory to hold the integer value
 associate the name i with this memory location
 store the value 3 at this location

i’s location in the memory may be logically represented
with the memory map shown in Fig. 7.2.

i

3

2147478276

Figure 7.2 Memory map

 The computer has selected memory location 2147478276
as the place to store the value 3. This location number
2147478276 is not a number to be relied upon because
at some other time the computer may choose a different
location for storing the value 3. This address can be printed
through the following statement:

printf(“\n Address of i = %u”, &i);

 The output will be: 2147478276. Look at the printf()
statement carefully. The ‘&’ used in this statement is C’s
address operator. The expression &i returns the address
of the variable i, which in this case happens to be
2147478276.
 The address is printed using %u control string as it is
of type unsigned int. %X can also be used. Actually %p
should be used because it prints the input argument as a
memory address.
The following statement

printf(“\n Address of i = %x”, &i);

will print FFDC in hexadecimal as the address of variable ‘i’.

Why an unassigned pointer should not be used?

According to a verse taught in elementary school, “I
shot an arrow into the air, where it lands, I don’t care.”
It may rhyme, but its message is really not appropriate
for little ones. However, when a pointer is declared and
then used without fi rst assigning it a value, it is doing the
programming equivalent of the verse.
 The following program declares a pointer and then
attempts to output its value without fi rst assigning it a value.

#include <stdio.h>
int main()
{
 int *ptr;
 printf(“\n The value of ptr is %u”, ptr);
 return 0;
}

272 Programming in C

 The result, depending on the compiler and operating
system, may be a compiler error, a run-time error, or a
computer that locks up. Regardless, attempting to use a
declared pointer without fi rst assigning it a value is not a
good idea.
 It may be recalled from previous chapters that when a
variable is declared and then an attempt is made to output
its value without fi rst assigning it a value, the result is a so-
called garbage value that makes little sense. The reason
for this result is that the computer attempts to interpret
whatever value is left over from previous programs at the
address of the variable.
 When the variable is a pointer, that leftover value is
interpreted as another memory address, which the pointer
then tries to access when we attempt to use it. There are a
number of memory address ranges that are not permitted
to access programmatically, such as those reserved
for use by the operating system. If the leftover value is
interpreted as one of those prohibited addresses, the result
is an error.

Points to Note

 • After declaring a variable, where the variable is to be
located, is decided by the compiler and the operating
system at run-time.

 • After declaring a variable, if an attempt is made to
output its value without assigning a value, the result is
a garbage value.

7.4 POINTER
A pointer provides a way of accessing a variable without
referring to the variable directly. The mechanism used for
this is the address of the variable. A program statement
can refer to a variable indirectly using the address of the
variable.
 A pointer variable is a variable that holds the memory
address of another variable. Put another way, the pointer
does not hold a value in the traditional sense; instead, it
holds the address of another variable. They are called
pointers for the simple reason that, by storing an address,
they ‘point’ to a particular point in memory. A pointer
points to that variable by holding a copy of its address.
Because a pointer holds an address rather than a value,
it has two parts. The pointer itself holds the address. The
address points to a value.

Pointers can be used to:
 call by address, thereby facilitating the changes

made to a variable in the called function to become
permanently available in the function from where the
function is called

 return more than one value from a function indirectly
 pass arrays and strings more conveniently from one

function to another
 manipulate arrays more easily by moving pointers

to them (or to parts of them) instead of moving the
arrays themselves

 create complex data structures, such as linked lists
and binary trees, where one data structure must
contain references to other data structures

 communicate information about memory, as in the
function malloc() which returns the location of free
memory by using a pointer

 compile faster, more effi cient code than other derived
data types such as arrays

 Therefore, a pointer variable is a variable that stores
the address of another variable. In C there is an additional
restriction on pointers—they are not allowed to store any
memory address, but they can only store addresses of
variables of a given type.

7.4.1 Declaring a Pointer

Just as any other variable in a program, a pointer has
to be declared; it will have a value, a scope, a lifetime,
a name; and it will occupy a certain number of memory
locations. The pointer operator available in C is ‘*’, called
‘value at address’ operator. It returns the value stored at
a particular address. The value at address operator is also
called ‘indirection’ operator. A pointer variable is declared
by preceding its name with an asterisk. The syntax for
declaring a pointer variable is

datatype * pointer_variable;

where, datatype is the type of data that the pointer is
allowed to hold the address of (that is, the type of data that
the pointer is allowed to point to) and pointer_variable
is the pointer variable name that is used to refer to the
address of a variable of type datatype.
An example of a pointer declaration would be

char *ptr;

 The above declaration should be evaluated as: ptr is
a pointer to char type data. char is not the data type of

Pointers in C 273

ptr. ptr is an identifi er of type pointer and char is a data
specifi er that is used to indicate what type of data is at the
memory address that ptr is holding. Pointers are variables
that hold memory addresses. At the memory address,
held in a pointer, is a value; this value has a data type of
one of the C data types or a user-defi ned data type (e.g.,
structure). In declaring a pointer variable, the programmer
is actually declaring a variable that holds a memory address
that points to a specifi c type of data value. Consider the
following declaration.

int *a;

 The above declaration indicates that a is a pointer
type variable that points to int type data. That is, the int
indicates that the pointer variable is intended to store the
address of an integer variable. Such a pointer is said to
‘point to’ an integer.

fl oat *t;

 The above declaration represents the fact that t is a
pointer type variable that points to fl oat type data. Some
declarations are listed in Table 7.2.

Table 7.2 Meaning of some pointer type variable declarations

Declaration What it Means

int p p is an integer

int *p p is a pointer to an integer

char p p is a character

char *p p is a pointer to a character

long p p is a long integer

long *p p is a pointer to a long integer

unsigned char p p is an unsigned character

unsigned char *p p is a pointer to an unsigned character

Consider the following program.
#include <stdio.h>
int main()
{
 int *p;
 fl oat *q;
 double *r;
 printf(“\n the size of integer pointer is %d”,

sizeof(p));
 printf(“\n the size of fl oat pointer is %d”,

sizeof(q));
 printf(“\n the size of double pointer is %d”,

sizeof(r));
 printf(“\n the size of character pointer is %d”,

sizeof(char *));
 return 0;
}

Output:
In Turbo C

the size of integer pointer is 2
the size of fl oat pointer is 2
the size of double pointer is 2
the size of character pointer is 2

In GCC
the size of integer pointer is 4
the size of fl oat pointer is 4
the size of double pointer is 4
the size of character pointer is 4

 The output shows that all the pointer type variables (p, q,
and r) take up the same storage space. Depending upon
the machine architecture, the size of a pointer will range
from being a 16-bit fi eld on the IBM PC class of machines,
to a 64-bit fi eld on a Cray supercomputer.

Why should pointers have data types

Let it be assumed that an address in a hypothetical machine
is 32-bits long. The addressing of a byte or word will,
therefore, require a 32-bit address. This suggests that a
pointer (as pointers store addresses) should be capable of
storing at least, a 32-bit value irrespective of whether it is
an integer or a character. This brings in a question. Why
should pointers have data types when their size is always
four bytes (in a 32-bit machine) irrespective of the target
they are pointing to?
 Before discussing why pointers should have data types,
it would be benefi cial to understand the following points
about C.

 It has data types of different size, i.e., objects
of different types will have different memory
requirements.

 It supports uniformity of arithmetic operations across
different (pointer) types.

 It does not maintain data type information in the
object or executable image.

 When objects of a given data type are stored
consecutively in the memory (that is, an array), each object
is placed at a certain offset from the previous object, if any,
depending on its size. A compiler that generates a code
for a pointer, which accesses these objects using pointer
arithmetic, requires information on generating offset. The
data type of the pointer provides this information. This
explains the fi rst point.

274 Programming in C

 The second point is reasonable enough to suggest that
pointers should have data types. Sizes of various data types
are basically decided by the machine architecture and/or
the implementation. And, if arithmetic operations were
not uniform, then the responsibility of generating proper
offset for accessing array elements would completely rest
on the programmer. This has the following drawbacks.
 A programmer is likely to commit mistakes such as

typographical mistakes and providing wrong offsets.
 Porting the code to other implementations would

require changes, if data type sizes differ. This would
lead to portability issues.

Points to Note

 • Pointers have data types but the size of a pointer
variable is always four bytes (in a 32-bit machine)
whatever the data type is used in declaring it.

Where is a pointer stored?

A pointer can be stored in any location like any other
variable but is generally not stored on the heap. It can be
defi ned and stored globally, or it can be defi ned local to a
function and stored on the stack. The size of the pointer
depends on the implementation and for 32-bit operating
systems, it generally requires four bytes of storage space.
This is, however, not a requirement. A compiler writer can
use any number of bytes desired to store a pointer.
 Keep in mind, that a pointer is like any other variable
in the sense that it requires storage space somewhere in
the computer’s memory, but it is not like most variables
because it contains no data, only an address. Since it is an
address, it actually contains a number referring to some
memory location. Dynamically allocated arrays can also
be expanded during the execution of the program.

7.4.2 Initializing Pointers

It should be noted that, unlike a simple variable that stores
a value, a pointer must be initialized with a specifi ed
address prior to its use. One of the most common causes
of errors in programming by novices and professionals
alike is uninitialized pointers. These errors can be very
diffi cult to debug because the effect of the errors is often
delayed until later in the program execution. Consider the
following program.

#include <stdio.h>
int main()
{
 int *p; /* a pointer to an integer */
 printf(“%d\n”,*p);
 return 0;
}

 This code conveys to the compiler to print the value
that p points to. However, p has not been initialized yet; it
contains the address 0 or some random address. A pointer
must not be used until it is assigned a meaningful address.
To use a pointer that has not been initialized properly
will cause unpredictable results. When a program starts
execution, an uninitialized pointer will have some unknown
memory addresses in them. More precisely, they will have
an unknown value that will be interpreted as memory
addresses. To use a pointer that has not been initialized
properly will cause unpredictable results. In most cases, a
segmentation fault (or some other run-time error) results,
which means that the pointer variable used points to an
invalid area of memory. Sometimes the program will
appear to run correctly but when the program terminates,
the message ‘Null Pointer Assignment’ will be displayed.
This message is produced by the system for notifying the
programmer that the program is using an uninitialized
pointer. In other cases, the use of an uninitialized pointer
will result in a ‘Bus Error’ or a ‘Memory Fault’ run-time
error. No matter what, the use of an uninitialized pointer is
extremely dangerous, especially on PC type systems, and
diffi cult to track down.

Points to Note

 • A pointer should be initialized with another variable’s
memory address, with 0, or with the keyword NULL
prior to its use; otherwise the result may be a compiler
error or a run-time error.

 Now, back to the new pointer variable p declared earlier.
Suppose p stores the address of the integer variable i that
contains the value 3. To store the address of ‘i’ in ‘p’, the
unary & address operator is to be used. This is shown as
follows:

p = &i;

 The & operator retrieves the lvalue (address) of i, even
though i is on the right-hand side of the assignment operator
‘=’, and copies that onto the contents of the pointer ptr.

Pointers in C 275

Now, ptr is said to ‘point to’ i. The & operator applies only
to objects in memory; that is, variables and array elements.
It cannot be applied to expressions, constants, or register
variables.
 The following program shows how to use the address
operator to assign the address of a variable to a pointer.
This program also demonstrates that the value of a pointer
is the same as the address to which the pointer points.

#include <stdio.h>
int main()
{
 int i = 5;
 int *ptr = &i;
 printf(“\nThe address of i using &num is %p”, &i);
 printf(“\nThe address of i using Ptr is %p”, ptr);
 return 0;
}

 The output (the following addresses might be different
on different computers) is

The address of i using &num is 0012FED4
The address of i using Ptr is 0012FED4

 Figure 7.3 shows graphically how the pointer points to
the integer variable.

i p

0012FED45

0012FED4 0012FEE4

Figure 7.3 Pointer pointing to an integer variable

 Another point to be remembered is that a pointer
variable is always bound to a specifi c data type (except
void pointer). This means that the type of the pointer and
the variable whose address is contained in the pointer must
be of the same type. The following pointer initializations
are invalid.

int a=3, *ip;
fl oat *p;
char ch=’A’;
p=&a; —————————— INVALID
ip=&ch; —————————— INVALID

 Any number of pointers can point to the same address.
For example, we could declare p, q, and r as integer
pointers and set all of them to point to i as shown here.

int i=3;
int *p, *q, *r;
p = &i;
q = &i;
r = p;

 Note that in this code, r points to the same address
that p points to, which is the address of i. We can assign
pointers to one another, and the address is copied from the
right-hand side to the left-hand side during the assignment.
The pictorial representation is given in Fig. 7.4.

p

q3

r

i

Figure 7.4 Three pointers pointing to the same variable

 The variable i can be accessed through i, *p, *q, and *r.
There is no limit on the number of pointers that can hold,
and therefore point to, the same address.

Points to Note

 • A pointer is bound to a specifi c data type (except
pointer to void). A pointer to an int cannot hold the
address of a character variable in which case a
compiler error would result.

Printing pointer value

A pointer variable contains a memory address that points
to another variable. To print the memory address stored in
pointers and non-pointer variables using the %p conversion
specifi er and to learn the use of the %p conversion specifi er,
study the following program.

#include <stdio.h>
int main(void)
{
 int a=10, *p;
 p=&a;
 printf(“\n p = %p”, p);
 return 0;
}

Output:
p = 0022FF2C

276 Programming in C

 On most systems %p produces a hexadecimal number.
On ANSI C systems the %p is preferred. Instead of %p,
%x can be used giving the same output. If %u is used the
address will be printed in decimal form. Compare the
output with the previous program.

#include <stdio.h>

int main(void)

{

 int a=10, *p;

 p=&a;

 printf(“\n p = %u”, p);

 return 0;

}

Output:
p = 2293548

Points to Note

 • Addresses must always be printed using %u or
%p or %x. If %p is used, the address is printed in
hexadecimal form. If %u is used, address is printed in
decimal form.

Is it possible to assign a constant to a pointer variable?

Consider the following code:
int *pi;
pi= (int*)1000;
*pi = 5;

 Location 1000 might contain the program. Since it is a
read only, the OS will throw up a segmentation fault.
 What about *pi = 5? Again, it will most likely cause a
segmentation fault because lower memory addresses are
typically used for program code. This area is read only.
It should be known in advance where this constant is
located in the memory. This construction is useful when
writing an OS or device driver that communicates with the
device using memory.
 For example, in older PCs, the screen could be updated
by directly accessing an array in memory (the address
probably started at 0x10000). The array was of integers
that were two bytes. The fi rst byte held the ASCII character
code and the second byte stored the character attributes.
Once again, if one did not know what one were doing, the
computer could crash.

Points to Note

 • A pointer is a variable that holds the address of a
memory location. That is, pointers are variables that
point to memory locations.

 • In C, pointers are not allowed to store any arbitrary
memory address, but they can only store addresses
of variables of a given type.

7.4.3 Indirection Operator and Dereferencing

The primary use of a pointer is to access and, if appropriate,
change the value of the variable that the pointer is pointing
to. The other pointer operator available in C is ‘*’, called
the ‘value at address’ operator. It returns the value stored
at a particular address. The value at address operator is
also called indirection operator or dereference operator.
 In the following program, the value of the integer
variable num is changed twice.

#include <stdio.h>
int main()
{
 int num = 5;
 int *iPtr = #
 printf(“\n The value of num is %d”, num);
 num = 10;
 printf(“\n The value of num after num = 10 is\

%d”, num);
 *iPtr = 15;
 printf(“\n The value of num after *iPtr = 15 is\

%d”, num);
 return 0;
}

Output:
The value of num is 5
The value of num after num = 10 is 10
The value of num after *iPtr = 15 is 15

 The second change should be familiar, by the direct
assignment of a value to num, such as num=10. However, the
third change is accomplished in a new way, by using the
indirection operator.

*iPtr = 15;

 The indirection operator is an asterisk, the same
asterisk that is used to declare the pointer or to perform
multiplication. However, in this statement the asterisk is
not being used in a declaration or to perform multiplication.

Pointers in C 277

Therefore, in this context it is being used as an indirection
operator. Observe the following statements carefully.

int i=5;
int *p;
p = &i;
printf(“\nValue of i = %d”, i);

Output: 5
printf(“\nValue of i = %d”, *(&i));

Output: 5

 Note that printing the value of *(&i) is same as printing
the value of i. * always implies value at address. *(&i)
is identical to i. The unary operators & and * bind more
tightly than arithmetic operators; they associate right to
left, hence *&i is equivalent to *(&i).
 The placement of the indirection operator before a
pointer is said to dereference the pointer. The value of a
dereferenced pointer is not an address, but rather the value
at that address—that is, the value of the variable that the
pointer points to.
 For example, in the preceding program, iPtr’s value is
the address of num. However, the value of iPtr dereferenced
is the value of num. Thus, the following two statements
have the same effect, both changing the value of num.

num = 25;
*iPtr = 25;

 Similarly, a dereferenced pointer can be used in
arithmetic expressions in the same fashion as the variable
to which it points. Thus, the following two statements
have the same effect.

num *= 2;
*iPtr *= 2;

 In these examples, changing a variable’s value using the
indirection operator rather than through a straightforward
assignment seems like an unnecessary complication.
However, there are instances covered later in this chapter,
such as looping through an array using a pointer, or using
dynamic memory allocation, in which using the indirection
operator is helpful or even necessary.

Points to Note

 • Address of operator (&): It is used as a variable prefi x
and can be translated as ‘address of’. Thus, &variable
can be read as .address of variable.

 • Dereference operator (*): It can be translated by .value
pointed by or ‘value at address’. *ptr can be read as
‘value pointed by ptr’. It indicates that what has to be
evaluated is the content pointed by the expression
considered as an address.

 The following example shows how pointers can be
used to add numbers given by the user through the use of
pointers without using the variable directly.

#include <stdio.h>
int main()
{
 int a,b,c;
 int *pa,*pb,*pc;
 pa=&a;
 pb=&b;
 pc=&c;
 printf(“\n ENTER THE FIRST NUMBER:”);
 scanf(“%d”,pa);
 printf(“\n ENTER THE SECOND NUMBER:”);
 scanf(“%d”,pb);
 *pc=*pa+*pb;
 printf(“\n SUM IS %d”,*pc);
 return 0;
}

Output:
ENTER THE FIRST NUMBER 5
ENTER THE SECOND NUMBER 6
SUM IS 11

The following statements are also valid.
*ptr = *ptr + 10;

increments *ptr by 10. The unary operators * and & bind
more tightly than arithmetic operators, so the assignment

y = *ptr + 1

takes whatever ptr points at, adds 1, and assigns the result
to y, while

*ip += 1

increments what ptr points to. A pointer variable does
not always points to a particular variable throughout the
program. It can point to any variable; the only precondition
is that their type must be same because the pointer variable
is bound to specifi c data type. The following program
illustrates this fact.

#include <stdio.h>
int main()
{
 int a=5, b=10;
 int *p;
 p = &a;
 printf(“\na=%d b=%d *p=%d”, a, b,*p);
 p=&b;
 printf(“\na=%d b=%d *p=%d”, a, b,*p);
 return 0;
}

Output:
a=5 b=10 *p=5
a=5 b=10 *p=10

278 Programming in C

7.5 VOID POINTER
A void pointer is a special type of pointer. It can point to
any data type, from an integer value or a fl oat to a string
of characters. Its sole limitation is that the pointed data
cannot be referenced directly (the asterisk * operator
cannot be used on them) since its length is always
undetermined. Therefore, type casting or assignment
must be used to turn the void pointer to a pointer of a
concrete data type to which we can refer. Take a look at
the following example.

#include <stdio.h>

int main()

{

 int a=5,

 double b=3.1415;

 void *vp;

 vp=&a;

 printf(“\n a= %d”, *((int *)vp));

 vp=&b;

 printf(“\n a= %d”, *((double *)vp));

 return 0;

}

Output:
a= 5
b= 3.141500

Points to Note

 • Void pointer can point to a variable of any data type, from
an integer value or a fl oat to a string of characters.

 • The type casting or assignment must be used to turn
the void pointer to a pointer of a concrete data type to
which we can refer.

7.6 NULL POINTER
Suppose a variable, e.g., a, is declared without initialization.

int a;

 If this is made outside of any function, ANSI-compliant
compilers will initialize it to zero. Similarly, an uninitialized
pointer variable is initialized to a value guaranteed in such
a way that it is certain not to point to any C object or
function. A pointer initialized in this manner is called a
null pointer.

 A null pointer is a special pointer that points nowhere.
That is, no other valid pointer to any other variable or array
cell or anything else will ever be equal to a null pointer.
 The most straightforward way to get a null pointer
in the program is by using the predefi ned constant NULL,
which is defi ned by several standard header fi les, including
<stdio.h>, <stdlib.h>, and <string.h>. To initialize a pointer
to a null pointer, code such as the following can be used.

#include <stdio.h>
int *ip = NULL;

 To test it for a null pointer before inspecting the value
pointed to, code such as the following can be used.

if(ip != NULL)
 printf(“%d\n”, *ip);

 It is also possible to refer to the null pointer using a
constant 0, and to set null pointers by simply saying

int *ip = 0;

 If it is too early in the code to know which address to
assign to the pointer, then the pointer can be assigned to
NULL, which is a constant with a value of zero defi ned
in several standard libraries, including stdio.h. The
following program does so.

#include <stdio.h>

int main()

{

 int *p;

 p = NULL;

 printf(“\n The value of p is %u”, p);

 return 0;

}

Output:
The value of p is 0

 On most operating systems, programs are not permitted
to access memory at address 0 because that memory is
reserved by the operating system. It is not the case that
the pointer points to a memory address that is reserved
by the operating system. However, the memory address
0 has special signifi cance; it signals that the pointer is
not intended to point to an accessible memory location.
Thus, if it is too early in the code to know which address
to assign to a pointer, the pointer should fi rst be assigned
to NULL, which then makes it safe to access the value of
a pointer before it is assigned a ‘real’ value such as the
address of another variable or constant.

Pointers in C 279

 Furthermore, since the defi nition of ‘true’ in C is a value
that is not equal to 0, the following statement tests for non-
null pointers with abbreviated code such as

if(ip)
 printf(“%d\n”, *ip);

 This has the same meaning as our previous example;
if(ip) is equivalent to if(ip != 0) and to if(ip != NULL).
The value 0 can be used to represent a null pointer in
 assignment and initialization
 comparison
 All of these uses are legal, although the use of the
constant NULL is recommended for clarity.

Points to Note

 NULL is a constant that is defi ned in the standard library
and is the equivalent of zero for a pointer. NULL is a value
that is guaranteed not to point to any location in memory.

Consider the following code segment:
#include <stdio.h>
int main(void)
{
 char *p=NULL;
 printf(“%s”,p);
 return 0;
}

 The C standard lays down that the argument for a %s
specifi er shall be a pointer to an array of characters.
Since NULL is not an array of characters, the statement
“printf(“%s”,p);” shows an undefi ned behaviour resulting
in unpredictable or compiler defi ned output.

7.7 USE OF POINTERS
 Call by address

One of the typical applications of pointers is to support
call by reference. However, C does not support call by
reference as do other programming languages such as
PASCAL and FORTRAN. Typically a function call is made to
communicate some arguments to the function. C makes
use of only one mechanism to communicate arguments to
a function: call by value. This means that when a function
is called, a copy of the values of the arguments is created
and given to the function. For example,

#include <stdio.h>
void swap(int a, int b)
{
 int temp;
 temp=a;
 a=b;
 b=temp;
}
int main()
{
 int x=5,y=10;
 void swap(int,int);
 printf(“%d %d\n”,x,y);
 swap(x,y);
 printf(“%d %d\n”,x,y);
 return 0;
}

Output:
5 10
5 10

 No swapping takes place. Now when the function
swap is called, the system automatically creates two new
variables (called a and b in this case). These will contain
a copy of the values that are specifi ed in the function call
(i.e., the value of x and the value of y). All the operations
performed by the function operate on the copies of the
values (a, b), and will not affect the original values (x, y).
 Of course, in this particular example, the function will
probably not accomplish what is needed. The function swap
is used to exchange the content of two variables, but when
the call is made, the function will receive and operate on
the copies of the variables, leaving the original variables
(x, y) untouched. So at the end of the function the effect of
the changes done by swap are lost (the copies created when
the function is called are destroyed when the function is
completed).
 This is a common situation in C. Each function always
receives copies of values and the function does not have
any way of modifying the value of variables that exist
outside the function (e.g., x, y in the example).
 The way to obtain the desired effect is call by reference.
This means that when the function is called, we do not
create copies of values but the function is allowed to access
the original values. This also means that if the function
modifi es such values, then the modifi cation will affect the
original value and will persist once the function execution
is fi nished.

280 Programming in C

 Call by reference does not exist in C, but it can be
simulated through the use of pointers. To make a function
be able to modify a certain variable, the function must be
provided with information about the location of the variable
in memory (i.e., its address). If the function knows where
the variable is in memory, it will be able to access that area
of memory by using pointers and change its content. This
is known as call by address.
 The way to obtain the desired effect is for the calling
program to pass pointers to the values to be changed. For
example,

swap(&x, &y);

 Since the operator & produces the address of a variable,
&x is a pointer to x. In swap itself, this will arrive to the
function in the form of a pointer. That is, the parameters
are declared as pointers, and the operands are accessed
indirectly through them. Now the preceding program is
rewritten using call by address.

#include <stdio.h>
void swap(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}
int main()
{
 int x=5,y=10;
 void swap(int *,int *);
 printf(“%d %d\n”,x,y);
 swap(&x, &y);
 printf(“%d %d\n”,x,y);
 return 0;
}

Output:
5 10
10 5

 The values have been exchanged by the function
swap(). Within the main() function, the & operator causes
the address of arguments x and y to be passed in the call
to swap(). In the swap() function header, the addresses
being passed from the calling function are received in
pointer type variables (int *a, int *b). Within the swap()
function body, the * operator is used to retrieve values held
at the addresses that were passed. The following example
attempts to demonstrate how identifi ers or variables are

assigned locations in memory and how values are stored
in those locations. All addressing in the following example
is assumed arbitrarily.

 Variable Memory value
 name address
int main()
{
void swap(int *, int *);
int
 x = 5, x 2000 5
 y = 10 y 2002 10
 ;
 /* pass addresses */
 swap(&x, &y);
 return 0;
}
void
swap(int *a, int *b) a 3000 2000
 b 3002 2002
{
 int temp; temp 4000 0/garbage
 temp = *a; temp 4000 5
 *a = *b; *a 2000 10
 *b = temp; *b 2002 5
}

 In the above code, the addresses of x and y are passed to
the function swap(). The parameters of the swap() function,
int *a and int *b are pointers to integer type data. These
pointers receive the addresses of x and y respectively
that are passed in the call to swap(). Within the function
swap(), a local variable temp is declared. The pointer a is
dereferenced, meaning that the value at the address held
in a is retrieved. This value is stored into temp. Then the
value at the address held in b is retrieved and assigned to
the value at the address held in a, thus exchanging values.
The fi nal statement in the function completes the exchange
of values. Notice that the function does not return a value
because of the void return type. Figure 7.5 presents this
diagrammatically.

In main In swap

x ay b

5 10

Figure 7.5 Call by address

Pointers in C 281

 Suppose one accidentally forgets the & when the swap
function is called, and that the swap line accidentally looks
like this:

swap(x, y);

 This causes a segmentation fault. When the value of a is
passed instead of its address, a points to an invalid location
in memory and the system crashes when *a is used.

Points to Note

 • C only supports call by value. C does not support call
by reference in true sense, but it can be simulated
through the use of pointers known as call by address.

Returning more than one value from a function

Functions usually return only one value and when
arguments are passed by value, the called function cannot
alter the values passed and have those changes refl ected
in the calling function. Pointers allow the programmer to
‘return’ more than one value by allowing the arguments to
be passed by address, which allows the function to alter
the values pointed to, and thus ‘return’ more than one
value from a function.

Example

1. #include <stdio.h>
 int main()

 {

 fl oat r, area, perimeter;

 fl oat compute(fl oat, fl oat *);

 printf(“\n enter the radius of the circle:”);

 scanf(“%f”,&r);

 area=compute(r, &perimeter);

 printf(“\n AREA = %f”, area);

 printf(“\n PERIMETER = %f”, perimeter);

 return 0;

 }

 fl oat compute(fl oat r, fl oat *p)

 {

 fl oat a;

 a=(fl oat)3.1415 * r * r;

 *p=(fl oat)3.1415 * 2 * r;

 return a;

 }

 It must keep the value available until execution reaches
a sequence point, which in this case means the end of the
statement. When the system is notifi ed to assign the value
to area, a copy of it is saved. Following that, the compiler
writer may delete the memory used to return the value. If
it was returned on the stack, it is imperative to remove it
from the stack in preparation for the next operation. But
that can be done because the value is stored in area and
can be used in any way.

Returning pointer from a function

It is also possible to return a pointer from a function. When
a pointer is returned from a function, it must point to data
in the calling function or in the global variable. Consider
the following program. In this program, a pointer would
point an integer variable whichever is larger between two
variables through a function which returns the address of
the larger variable.

#include <stdio.h>
int *pointMax(int *, int *);
int main(void)
{
 int a,b,*p;
 printf(“\n a = ?”);
 scanf(“%d”,&a);
 printf(“\n b = ?”);
 scanf(“%d”,&b);
 p=pointMax(&a,&b);
 printf(“\n*p = %d”, *p);
 return 0;
}
int *pointMax(int *x, int *y)
{
 if(*x>*y)
 return x;
 else
 return y;
}

Output:
a = ?5
b = ?7
*p = 7

 When the function pointMax() is called addresses of
two integer variables are passed to it. In the function the
pointers x and y are pointing to a and b respectively. If a
is greater than b then the function pointMax()returns the
address of a; otherwise, it returns the address of b. When
the control returns to the main(), p points either to a or b.

282 Programming in C

 Returning a pointer to a local variable in the called
function is not effectual or legal as illustrated in the
following code segment. Because when function terminates
the address of the local variable becomes invalid. Some
compilers issue a warning that ‘function returns address of
local variable’.

int *pointMax(void)
{
 int a,b;

 if(a>b)
 return a;

WRONG!
Never return a pointer to

an automatic local variable.
In C99, a warning will be

issued
 else
 return b;
}

 But it is legal to write a function that returns a pointer
to an external variable or to a static variable that has been
declared static.

include <stdio.h>
int *pointMax(void);
int main(void)
{
 int *p;
 p=pointMax();
 printf(“*p = %d”, *p);
 return 0;
}
int *pointMax(void)
{
 static int a=5, b=10;
 if(a>b)
 return &a;
 else
 return &b;
}

 When an array is passed as argument to a function,
sometimes it may be useful to return a pointer to one of the
elements of the array as shown in the following function.

int *fi ndMiddle(int x[], int n)
{
 return &x[n/2];
}

7.8 ARRAYS AND POINTERS
Pointers and arrays are inseparably related, but they are
not synonymous.

7.8.1 One-dimensional Arrays and Pointers

An array is a non-empty set of sequentially indexed elements
having the same type of data. Each element of an array has
a unique identifying index number. Changes made to one
element of an array does not affect the other elements. An
array occupies a contiguous block of memory. The array a
is laid out in memory as a contiguous block, as shown.

int a[]={10, 20, 30, 40, 50};

a[0] a[1] a[2] a[3] a[4]

10 20 30 40 50

2147478270 2147478274 2147478278 2147478282 2147478286

 Elements of array are stored in the successive
increasing locations of memory. For example, if the array
starts at memory location 2147478270 (considering a 32-bit
machine), then with the assumed size of an integer as four
bytes, the fi rst element is stored at location 2147478270, the
second element at location 2147478274, and so on. Here the
locations are taken as arbitrary.
 Array notation is a form of pointer notation. The name
of an array is the beginning address of the array, called
the base address of the array. That is, the base address of
an array is the address of the zeroth element of the array.
The array name is referred to as an address constant.
Mentioning the name of the array fetches its base address.
Consider the following program.

Example

2. #include <stdio.h>
 int main()
 {
 int array[]={10, 20, 30, 40, 50};
 printf(“%u %u”, array, &array[0]);
 return 0;
 }

 Output:

 2147478270 2147478270

Again, consider the following program.

#incl]ude <stdio.h>
int main()
{
 int array[]={10, 20, 30, 40, 50};
 printf(“%u %u”, array, &array);
 return 0;
}

Output:
 2147478270 2147478270

Pointers in C 283

 Both array and &array would give the base address
of the array. Though both array and &array give the
same address, there is a small difference between them.
Under ANSI/ISO Standard C, &array yields a pointer,
of type pointer-to-array-of-T, where T is the data type
to the entire array. Under pre-ANSI C, the & in &array
generally elicited a warning, and was generally ignored.
Under all C compilers, an unadorned reference to an
array yields a pointer, of type pointer-to-T, to the array’s
fi rst element.

Points to Note

 • Array name is an pointer constant. It cannot be used
as lvalue. That is array names cannot be used as
variables on the left of an assignment operator.

 • Both array and &array would give the base address
of the array, but the only difference is under ANSI/ISO
Standard C, &array yields a pointer, of type pointer-
to-array of-the data type to the entire array.

 An array can be subscripted to get to individual cells of
data. With the name of the array actually being a constant
that represents a memory address, the name of the array
can be used as a pointer and an integer value can be used
to represent an offset from the base address. This alternate
method can be used to get to individual cells of an array. An
element of the array a is addressed as a[i] and the address
of the ith element of the array a is given by &a[i]= a + i*
size of the type pointed to by a.
 The expression a + i (with integer i) means the address
of the ith element beyond the one a points to. This is not
measured in number of bytes, but in number of sizeof(type)
bytes. This is known as scaling.
 The compiler automatically scales a subscript to the size
of the object pointed at. The compiler takes care of scaling
before adding to the base address. This is the reason why
pointers are always typed-constrained to point to objects
for only one type – so that the compiler knows how many
bytes to retrieve on pointer dereference and it knows by
how much to scale a subscript.
 As indirection operator ‘*’ implies value at address,
a[i] is equivalent to *(a+i). Consider the following two
versions of the same program.

Example

 3.(a) #include <stdio.h>
 int main()
 {
 int a[]={10, 20, 30, 40, 50};
 int i;
 for(i=0;i<5;++i)
 printf(“\n%d”, a[i]);
 return 0;
 }

 Output:
 10
 20
 30
 40
 50

 (b) #include <stdio.h>
 int main()
 {
 int a[]={10, 20, 30, 40, 50};
 int i;
 for(i=0;i<5;++i)
 printf(“\n%d”, *(a+i));
 return 0;
 }

 Output:
 10
 20
 30
 40
 50

 The integer identifi er i is added to the base address of the
array. The C compiler computes the resulting address that
will be accessed by taking the value held in i multiplied by
the size in bytes of the type of array a and adds the proper
offset to a to give the correct memory address. Subscript
notation is converted by the compiler into the pointer
notation. Hence, pointer notation would work faster since
conversion time can be saved by using it.
 All the following four expressions are the same when
their addresses are considered.

a[i]
*(a + i)
*(i + a)
i[a]

284 Programming in C

 In the expression a[i], i must be an integer. The
other may either be an array name or a pointer. For any
one-dimensional array a and integer i, the following
relationships are always true.
 1. &a[0] == a
 The address of the fi rst element of the array a is the

value of a itself. In other words, a is a pointer; it
points to the fi rst element in the array.

 2. &a[i] == a + i
 The address of the ith element of a is the value of

a + i. This is one of the great truths (and a defi ning
characteristic) of C. The fi rst relationship is a special
case of this more general relationship.

 3. a[i] == *(a + i)
 This is basically the same as the previous relationship

but this relationship still holds if both sides of the
equality operator are dereferenced.

 4. (&a[i] - &a[j]) == (i - j)
 This relationship defi nes the subtraction of pointers.

The subtraction of two pointers of type t is the number
of elements of type t that would fi t between them.

 A pointer variable (of the appropriate type) can also be
used to initialize or point to the fi rst element of the array.
Then it can also be used as above.

#include <stdio.h>
int main()
{
 int a[]={10, 20, 30, 40, 50};
 int i, *p;
 p=a; /* it can also be written as p=&a[0]; */
 for(i=0;i<5;++i)
 printf(“\n%d”, p[i]);

printf (“\n%d”, *(p+i));
OR

printf (“\n%d”, *(i+p));
OR

printf (“\n%d”, i[p]);

 return 0;
}

Output:
10
20
30
40
50

 One can defi ne a pointer of the same type as the elements
of the array and can assign it the address of any element
of the array and use it to access the array elements. In
fact, one may add an integer value to it. Such a statement
in the program uses the formula given earlier to do the

assignment; so it also adjusts the count for the size of the
element. Pointers and arrays are so closely related that
their notation can be interchanged such that the following
terms are identical if p contains the value of a.

a[i]
*(a + i)
*(p + i)
p[i]
where i=0,1,2,...(N–1). N is the size of the array.

 The similarities between arrays and pointers end up
being quite useful, and in fact C builds on the similarities,
leading to what is called ‘the equivalence of arrays and
pointers in C’. This equivalence does not mean that arrays
and pointers are the same (they are, in fact, quite different)
but that they can be used in related ways, and that certain
operations may be used between them. These operations
are as follows.
 The fi rst such operation is that it is possible to

(apparently) assign an array to a pointer.
 int a[10];
 int *p;
 p = a;

 C defi nes the result of this assignment to be that p
receives a pointer to the fi rst element of a. In other
words,

 p = &a[0];

 The second aspect of the equivalence is that the array
subscripting notation [i] can be applied on pointers,
too. p[3] can be written as *(p + 3).

 So a pointer that points to an array or a part of an
array can be treated ‘as if’ it was an array, using
the convenient [i] notation. In other words, at the
beginning of this discussion, the expressions *p,
*(p+1), *(p+2), and in general *(p+i), could have
been written as p[0], p[1], p[2], and p[i]. This can
be quite useful (or at least convenient).

 The pointer to an array does not always point to the
fi rst element of the array. It can point to any element
of the array. For example,

 int a[]={10,20,30,40,50};

 int *p;

 p = a + 3;

 can also be written as follows
 p = &a[0] + 3;

Pointers in C 285

 which, in turn, gives the same result as
 p = &a[3];

 Figure 7.6 depicts the equivalence among array notation
and pointer notation.

10 20 30 40 50

a[0] a[1] a[2] a[3] a[4]

p = a

p = &a[0]

p = a+2

p = &a[2]

p = a+4

p = &a[4]

Figure 7.6 Pointer notation of array elements

Is it possible to treat an array as if it were a 1-based
array?
Although this technique is attractive (and was used in old
editions of the book Numerical Recipes in C), it does not
conform to the C standards. Pointer arithmetic is defi ned
only as long as the pointer points within the same allocated
block of memory, or to the imaginary ‘terminating’ element
one past it; otherwise, the behavior is undefi ned, even if
the pointer is not dereferenced. The preceding code could
fail if, while subtracting the offset, an illegal address were
generated (perhaps because the address tried to ‘wrap
around’ past the beginning of some memory segment).
Here is a neat trick, the details of which will be discussed
in Section 7.18.

int arr[10];
int *a = &arr[-1];

Points to Note

For any one-dimensional array a and integer i, the following
relationships are always true.

 • a[i] ≡ *(a+i) ≡ *(i+a) ≡ i[a].

7.8.2 Passing an Array to a Function

An array may be passed to a function, and the elements of
that array may be modifi ed without having to worry about
referencing and dereferencing. Since arrays may transform
immediately into pointers, all the diffi cult stuff gets done
automatically. A function that expects to be passed with
an array can declare that formal parameter in one of the
two ways.

int a[] or int *a

 When passing an array name as argument to a function,
the address of the zeroth element of the array is copied to
the local pointer variable in the function. The values of the
elements are not copied. The corresponding local variable
is considered as a pointer variable, having all the properties
of pointer arithmetic and dereferencing. It is not an address
constant. This is illustrated with an example. The relevant
function calls in main() and the corresponding function
headers are shown as follows for easy reference.

#defi ne MAX 50
int main()
{
 int arr[MAX],n;
 ...
 n = getdata(arr, MAX);
 show(arr, n);
 return 0;
}
int getdata(int a[], int n)
{
 ...
}
void show(int a[], int n)
{
 ...
}

 When a formal parameter is declared in a function
header as an array, it is interpreted as a pointer variable,
not an array. Even if a size were specifi ed in the formal
parameter declaration, only a pointer cell is allocated for
the variable, not the entire array. The type of the pointer
variable is the specifi ed type. In the preceding example, the
formal parameter, a, is an integer pointer. It is initialized
to the pointer value passed as an argument in the function
call. The value passed from main() is arr, a pointer to the
fi rst element of the array, arr[].
 Within the function, getdata(), it is now possible to
access all the elements of the array indirectly. Since the
variable a in getdata() points to the fi rst element of the
array arr[], it accesses the fi rst element of the array. In
addition, a + 1 points to the next element of the array, so
it accesses the next element, i.e., arr[1]. In general, *(a
+ i) accesses the element arr[i]. To access elements of
the array, we can either write *(a + i) or a[i], because
dereferenced array pointers and indexed array elements
are identical ways of writing expressions for array access.
 The functions, getdata() and show() can be used to read
objects into any integer array and to print element values of
any integer array, respectively. The calling function must
simply pass an appropriate array pointer and maximum
number of elements as arguments. These functions may
also be written explicitly in terms of indirect access. Such
an example is as follows:

286 Programming in C

Example

4. #include <stdio.h>
 #defi ne MAX 50
 int main()
 {
 int arr[MAX],n;
 int getdata(int *, int);
 void show(int *, int);
 n = getdata(arr, MAX);
 show(arr, n);
 return 0;
 }
 /* Function reads scores in an array. */
 int getdata(int *a, int n)
 {
 int x, i = 0;
 printf(“\n Enter the array elements one by one\n”);
 while(i < n)
 {
 scanf(“%d”, &x)
 *(a + i) = x;
 i++;
 }
 return i;
 }
 void show(int *a, int n)
 {
 int i;
 for(i=0;i<n;++i)
 printf(“\n %d”, *(a+i));
 }

 Figure 7.7 illustrates the connection between the calling
function main(), and the called functions.

int main()

{ int arr[MAX],n;

...

n = getdata(arr, MAX);

show(arr, n);

return 0;

}

a=arr;

a=arr;

int getdata(int *a, int n)

{

...

}
void show(int *a, int n)

{

...

}

Figure 7.7 Passing array to a function

 When an array is passed to a function, the C language
allows the programmer to refer the formal parameter as
either an array or as a pointer. The compiler knows that
whenever a formal parameter is declared as an array,
inside the function it will in fact always be dealing with
a pointer to the fi rst element of the array of unknown
size. That’s why the calling function must simply pass
an appropriate array pointer and maximum number of
elements as arguments.
 Parts of an array, called a sub-array, may also be
passed to a function. A pointer to a sub-array is also an
array pointer; it simply specifi es the base of the sub-array.
In fact, as far as C is concerned, there is no difference
between an entire array and any of its sub-arrays. For
example, a function call can be made to print a sub-array
by specifying the starting pointer of the sub-array and its
size. Suppose we need to print the sub-array starting at
arr[3] containing fi ve elements; the expression, &arr[3]
is a pointer to an array starting at arr[3]. The function call
is,

show(&arr[3], 5);

 Alternately, since arr + 3 points to arr[3], the function
call can be

show(arr + 3, 5);

Points to Note

 • When an array is passed to a function, it degenerates to
a pointer. All array names that are function parameters
are always converted into pointers by the compiler.
Because when passing an array to a function, the
address of the zero-th element of the array is copied
to the pointer variable which is the formal parameter
of the function. However, arrays and pointers are
processed differently by the compiler, represented
differently at runtime.

7.8.3 Differences between Array Name and Pointer

From the above discussion it seems that array name and
pointer, which points to the base address of the array, are
equivalent. But it is not true. There are a several differences
between them. They are as follows.

 When memory is allocated for the array, the starting
address is fi xed, i.e., it cannot be changed during
program execution. Therefore, array name is an
address constant; the value contained in it should not
be changed. To ensure that this pointer is not changed,

Pointers in C 287

in C, array names may not be used as variables on
the left of an assignment statement, i.e., they may not
be used as an lvalue. Instead, if necessary, separate
pointer variables of the appropriate type may be
declared and used as lvalues. Here is an example of
a common error when an attempt to use an array as
an lvalue is made.

 #include <stdio.h>
 int main()
 {
 int i;
 fl oat a[5];
 for(i = 0; i < 5; i++)
 {
 *a = 0.0;
 a++; /* BUG: a = a + 1; */
 }
 return 0;
 }

 In this example, a is fi xed and cannot be used as an
lvalue; the compiler will generate an error stating that
an lvalue is required for the ++ operator. However,
a pointer variable can be declared, which can point to
the same type as the type of the array, and initialize it
with the base address of array. This pointer variable
can be used as an lvalue and no error message will be
displayed. Here is the difference.

 #include <stdio.h>
 int main()
 {
 int i;
 fl oat *ptr, a[5];
 ptr = a;
 for(i = 0; i < 5; i++)
 {
 ptr = 0.0; / *ptr accesses a[i] */
 ptr++;
 }
 return 0;
 }

 Observe that the pointer variable, ptr, is type fl oat *,
because the array is of type fl oat. It is initialized to the
value of the fi xed pointer, a (i.e., the initial value of
ptr is set to the same as that of a, namely, &a[0]), and
may subsequently be modifi ed in the loop to traverse
the array. The fi rst time through the loop, *ptr which
points to (a[0]) is set to zero and ptr is incremented

by one so that it points to the next element in the
array. The process repeats and each element of the
array is set to 0.0.

 Following the same concept, an array cannot be
assigned to another. The following code

 int a[5]={1,2,3,4,5};
 int b[5];
 b = a; /* WRONG */

 is illegal. To copy a into b, something like the
following has to be entered.

 for(i=0; i<5; i++)
 b[i]=a[i];

 Or, to put it more succinctly,
 for(i=0; i<5; b[i]=a[i], i++);

 But two pointer variables can be assigned.
 int *p1, *p2;
 int a[10]={1,2,3,4,5};
 p1 = &a[0];
 p2 = p1;

 Pointer assignment is straightforward; the pointer on
the left is simply made to point wherever the pointer
on the right does. The statement p1=p2 does not copy
the data pointed to (there is still just one copy in the
same place); it just makes two pointers point to the
same location.

 The & (address of) operator normally returns the
address of the operand. However, arrays are the
exception. When applied to an array (which is an
address), it has the same value as the array reference
without the operator. This is not true of the equivalent
pointers, which have an independent address. The
following example shows this.

Example

 5. (a) #include <stdio.h>
 int main()
 {
 int a[]={10, 20, 30, 40, 50};
 printf(“%u %u %u”, a, &a[0],&a);
 return 0;
 }

 Output:

 65506 65506 65506

288 Programming in C

 (b) #include <stdio.h>
 int main()
 {
 int a[]={10, 20, 30, 40, 50};
 int *ptr;
 ptr=a;
 printf(“%u %u”, &a[0],ptr,&ptr);
 return 0;
 }

 Output:

 65506 65506 65526

 The sizeof operator returns the size of the allocated
space for arrays. In case of a pointer, the sizeof
operator returns two or four or more bytes of storage
(machine dependent).

Example

 6.(a) #include <stdio.h>
 int main()
 {
 int a[]={10, 20, 30, 40, 50};
 printf(“%d”, sizeof (a));
 return 0;
 }

 Output:

 In Turbo C

 10

 In GCC

 20

 (b) #include <stdio.h>
 int main()
 {
 int a[]={10, 20, 30, 40, 50};
 int *ptr;
 ptr=a;
 printf(“%d”, sizeof (ptr));
 return 0;
 }

 Output:

 In Turbo C

 2

 In GCC

 4

 Table 7.3 lists the differences between pointers and
arrays.

Table 7.3 Differences between pointers and arrays

Arrays Pointers

 Array allocates space
automatically.

 It is explicitly assigned to
point to an allocated space.

 It cannot be resized. It can be resized using
realloc().

 It cannot be reassigned. It can be reassigned.

 sizeof(arrayname) gives
the number of bytes
occupied by the array.

 sizeof(p) returns the
number of bytes used to store
the pointer variable p.

7.9 POINTERS AND STRINGS
Strings are one-dimensional arrays of type char. By
convention, a string in C is terminated by the end-of-
string sentinel \0, or null character. The null character is
a byte with all bits off; hence, its decimal value is zero.
It is useful to think of strings as having a variable length,
delimited by \0, but with the maximum length determined
by the size of the string. The size of a string must include
the storage needed for the end-of-string sentinel. As with
all arrays, it is the job of the programmer to make sure that
string bounds are not overrun.
 String constants are written between double quotes.
For example, “abc” is a character array of size 4, with the
last element being the null character \0. Note that string
constants are different from character constants. For
example, “a” and ‘a’ are not the same. The array “a” has
two elements, the fi rst with value ‘a’ and the second with
value ‘\0’.
 A string constant, like an array name by itself, is treated
by the compiler as a pointer. Its value is the base address
of the string. Like the numeric array, individual characters
contained in a string can be printed.

#include <stdio.h>
int main()

{

 char s[]=“Oxford”;

 for(i=0;s[i]!=‘\0’;++i)

 putchar(s[i]);

 return 0;

}

 A string in C is a pointer itself. The following program
proves the fact.

Pointers in C 289
#include <stdio.h>
int main()
{
 for(i=0;*(“I am a pointer” + i)!=‘\0’;++i)
 printf(“%c”,*(“I am a pointer” + i));
 return 0;
}

Output:
 I am a pointer

 But this is not true for a numeric array. The following
program gives an error.

#include <stdio.h>
int main()
{
 for(i=0;*({1,2,3,4,5} + i)!=‘\0’;++i)
 putchar(*({1,2,3,4,5} + i));
 return 0;
}

Consider the following code.
char *p = “abc”;
printf(“%s %s \n”, p, p + 1); /* abc bc is printed */

 The variable p is assigned the base address of the
character array “abc”. When a pointer to char is printed
in the format of a string, the pointed-at character and
successive characters are printed until the end-of-string
sentinel (that is, ‘\0’) is reached. Thus, in the printf()
statement, the expression p causes abc to be printed, and
the expression p + 1, which points to the letter b in the
string “abc”, causes bc to be printed. Because a string
constant such as “abc” is treated as a pointer, expressions
such as

“abc”[1] and *(“abc” + 2)

are possible. Such expressions are not used in serious
code, but they help to emphasize that string constants
are treated as pointers. It should be noted that arrays and
pointers have similar uses. They also have differences. Let
us consider two declarations

char *p = “abcde”; and char s[] = “abcde”;

 In the fi rst declaration, the compiler allocates space
in the memory for p, puts the string constant “abcde” in
memory somewhere else, and initializes p with the base
address of the string constant. Now think of p as pointing
to the string. The second declaration is equivalent to

char s[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘\0’};

 Because the brackets are empty, the complier allocates
six bytes of memory for the array s. The fi rst byte is
initialized with ‘a’, the second byte is initialized with
‘b’, and so on. Here is how these objects are stored in
memory.

a b c d e \0 a b c d e \0

s

p

 A char is always stored in one byte, and on most
machines a pointer is stored in a word. Thus, on the
machine, p is stored in four bytes, and s is stored in six
bytes of storage. For technical reasons, it is better not to
print null characters. However, the printing of null strings
is perfectly acceptable.
 One question may arise—when an array is passed, how
does the function know how many elements the array
has?
 For a string, the number of elements it has need not
be passed because it has the terminating null character.
For other types of arrays, the number of elements must be
passed as well.

Points to Note

 • A string constant is treated by the compiler as a
pointer.

 • For a string, the number of elements it has need not
be passed to a function because it has the terminating
null character.

7.10 POINTER ARITHMETIC
If p is declared as a pointer variable of any type and it has
been initialized properly, then, just like a simple variable,
any operation can be performed with *p. Because *
implies value at address, working with *p means working
with the variable whose address is currently held by p.
Any expression, whether relational, arithmetic, or logical,
can be written, which is valid for a simple value variable.
But with only p, operations are restricted as in each case
address arithmetic has to be performed. The only valid
operations on pointers are as follows.

 Assignment of pointers to the same type of pointers:
the assignment of pointers is done symbolically.
Hence no integer constant except 0 can be assigned
to a pointer.

 Adding or subtracting a pointer and an integer.

290 Programming in C

 Subtracting or comparing two pointers (within array
limits) that point to the elements of an array.

 Incrementing or decrementing the pointers (within
array limits) that point to the elements of an array.
When a pointer to an integer is incremented by one,
the address is incremented by two (as two bytes are
used for int). Such scaling factors necessary for the
pointer arithmetic are taken care of automatically by
the compiler.

 Assigning the value 0 to the pointer variable and
comparing 0 with the pointer. The pointer with
address 0 points to nowhere at all.

 These valid address arithmetic are discussed below in
detail. Do not attempt the following arithmetic operations
on pointers. They will not work.
 Addition of two pointers
 Multiplying a pointer with a number
 Dividing a pointer with a number

7.10.1 Assignment

Pointers with the assignment operators can be used if the
following conditions are met.
 The left-hand operand is a pointer and the right-hand

operand is a null pointer constant.
 One operand is a pointer to an object of incompatible

type and the other is a pointer to void.
 Both the operands are pointers to compatible types.
 Some of the pointer assignment s tatements were
discussed earlier. For the notion of incompatible types,
including the use of void *, there are now some complicated
rules about how pointers can be mixed and what arithmetic
with pointers really permits.
 Pointers to void can be freely converted back and forth
with pointers to any object or incomplete type. Converting
a pointer to an object or an incomplete type to void * and
then back gives a value which is equal to the original one.

Example

7. #include <stdio.h>
 int main()
 {
 int i;
 int *ip;
 void *vp;
 ip = &i;

 vp = ip;
 ip = vp;
 if(ip != &i)
 printf(“\n Compiler error\n”);
 else
 printf(“\n No Compiler error\n”);
 return 0;
 }

 Output:

 No Compiler error

 Now, consider the revised version of the program in
Example 7.

#include <stdio.h>
int main()
{
 int i=5;
 int *ip;
 void *vp;
 ip = &i;
 vp = ip;
 //printf(“\n *vp= %d”,*vp); ——————— ERROR
 ip = vp;
 printf(“\n *ip= %d”,*ip);
 return 0;
}

 This program gives an error in the fi rst printf statement
stating ‘not an allowed type’ because no type is associated
with a void pointer. The void pointer can store the address
of a variable of any type. But while using the void pointer,
the right type has to be specifi ed through type casting. The
right version of this program is as follows.

#include <stdio.h>
int main()
{
 int i=5;
 int *ip;
 void *vp;
 ip = &i;
 vp = ip;
 printf(“\n *vp= %d”,*((int *)vp));
 ip = vp;
 printf(“\n *ip= %d”,*ip);
 return 0;
}

Output:
*vp=5
*ip=5

Pointers in C 291

 The predefi ned constant NULL, which is defi ned by
several standard header fi les, including <stdio.h>,
<stdlib.h>, and <string.h> can be assigned.

int *p;
p = NULL;

 It is also possible to refer to the null pointer by using a
constant 0 by simply writing

 int *ip = 0;

 In fact, NULL is a preprocessor macro that typically has
the value, 0.
 The only values that can be assigned to pointers
apart from 0 are the values of other pointers of the same
type. However, one of the things that makes C a useful
replacement for assembly language is that it allows one to
do the sort of things that most other languages prevent. Try
this.

int *ip;
ip = (int *)6;
*ip = 0xFF;

 What does that do? The pointer has been initialized to
the value of 6 (notice the cast to turn an integer 6 into a
pointer). This is a highly machine-specifi c operation, and
the bit pattern that ends up in the pointer is quite possibly
nothing like the machine representation of 6. After the
initialization, a hexadecimal FF is written into wherever
the pointer is pointing. The int at location 6 has had 0xFF
written into it—subject to whatever ‘location 6’ means on
this particular machine.
 It may or may not make sense to do that sort of thing; C
gives you the power to express it, it is up to the programmer
to get it right. As always, it is possible to do things like this
by accident, too, and to be very surprised by the output.

7.10.2 Addition or Subtraction with Integers

In a closely related piece of syntax, a ‘+’ between a
pointer and an integer does the same offset computation
as explained earlier, but leaves the result as a pointer.
The square bracket syntax gives the nth element while
the ‘+’ syntax gives a pointer to the nth element. So the
expression (arr + 3) is a pointer to the integer arr[3].
(arr + 3) is of type (int *) while arr[3] is of type int.
The two expressions only differ in whether the pointer
is dereferenced or not. So the expression (arr + 3) is
equivalent to the expression (&(arr[3])). In fact those
two probably compile to exactly the same code. They
both represent a pointer to the element at index 3. Any []

expression can be written with the + syntax instead. It just
needs the pointer dereference to be added in. So arr[3] is
equivalent to *(arr + 3). For most purposes, the [] syntax
is the easiest to use and the most readable as well. Every
once in a while the + is convenient if one needs a pointer
to the element instead of the element itself.
 Therefore, expressions can add (or subtract, which is
equivalent to adding negative values) integral values to
the value of a pointer to any object type. The result has the
type of the pointer and if n is added, then the result points
n array elements away from the pointer. The most common
use is repeatedly to add 1 to a pointer to step it from the
start to the end of an array, but addition or subtraction of
values other than 1 is possible. Consider the following two
versions of same program.

Example

 8. (a) #include <stdio.h>
 int main(void)
 {
 int a[] = {10, 12, 6, 7, 2};
 int i;
 int sum = 0;
 for(i=0; i<5; i++)
 {
 sum += a[i];
 }
 printf(“%d\n”, sum);
 return 0;
 }

 (b) #include <stdio.h>
 int main(void)
 {
 int a[] = {10, 12, 6, 7, 2};
 int i;
 int sum = 0;
 for(i=0; i<5; i++)
 {
 sum += *(a + i);
 }
 printf(“%d\n”, sum);
 return 0;
 }

 Note that if the pointer resulting from the addition
points in front of the array or past the non-existent element
just after the last element of the array, then it results in
overfl ow or underfl ow and the result is undefi ned.

292 Programming in C

 This is a typical string-processing function. Pointer
arithmetic and dereferencing are used to search for various
characters or patterns. Often a character pointer is used to
march along a string while parsing it or interpreting it in
some way.

Declaration and initializations
char s1[] = “India is a beautiful country”;

s2[] = “C is sea”;

Expression Value
strlen(s1) 28

strlen(s2 + 5) 3
Statements What gets printed

printf(“%s”, s1 + 10);
strcpy(s1 + 10, s2 + 8)
strcat(s1, “great country”);

printf(“%s”, s1);

beautiful country

India is a great country

 If p is a pointer to an element in an array, then (p+1)
points to the next element in the array. The statement p++
can be used to step a pointer over the elements in an array.
The program in Example 8 can be rewritten as follows.

#include <stdio.h>
int main(void)
{
 int a[] = {10, 12, 6, 7, 2};
 int i;
 int sum = 0;
 int *p;
 p = a;
 for(i=0; i<5; i++)
 {
 sum += *p;
 p++;
 }
 printf(“%d\n”, sum);
 return 0;
}

 Similarly, since ++p and p++ are both equivalent to
p=p + 1, incrementing a pointer using the unary ++ operator,
either pre- or post-, increments the address it stores by the
amount sizeof(type) where ‘type’ is the type of the object
pointed to (i.e., 4 for an integer in a 32-bit machine).
 Example 9 shows that pointers may be incremented and
decremented. In either case, if the original pointer points
to an object of a specifi c type, the new pointer points to
the next or the previous object of the same type. That is,
pointers are incremented or decremented in steps of the

object size that the pointer points to. Thus, it is possible to
traverse an array starting from a pointer to any element in
the array. Consider the following program.

Example

9. #include <stdio.h>
 #defi ne N 5
 int main()
 {
 fl oat arr[N], *ptr;
 int *iptr, a[N], i;
 /* initialize */
 for(i = 0; i < N; i++)
 {
 arr[i] = 0.3;
 a[i] = 1;
 }
 /* initialize ptr to point to element arr[3] */
 ptr = &arr[3];
 ptr = 1.0; / arr[3] = 1.0 */
 (ptr - 1) = 0.9; / arr[2] = .9 */
 (ptr + 1) = 1.1; / arr[4] = 1.1 */
 /* initialize iptr in the same way */
 iptr = &a[3];
 *iptr = 0;
 *(iptr - 1) = -1;
 *(iptr + 1) = 2;
 for(i = 0; i < N; i++)
 {
 printf(“arr[%d] = %f”, i, *(arr + 1));
 printf(“a[%d] = %d\n”, i, a[i]);
 return 0;
 }
 }

 The program is straightforward. It declares a fl oat array
of size 5, and an integer array of the same size. The fl oat
array elements are all initialized to 0.3, and the integer
array elements to 1. The program also declares two pointer
variables, one a fl oat pointer and the other an integer pointer.
Each pointer variable is initialized to point to the array
element with index 3; for example, ptr is initialized to point
to the fl oat array element, arr[3]. Therefore, ptr – 1 points
to arr[2], and ptr + 1 points to arr[4]. The value of *ptr
is then modifi ed, as is the value of *(ptr – 1) and *(ptr +
1). Similar changes are made in the integer array. Finally,
the arrays are printed. Here is the output of the program.

arr[0] = 0.300000 a[0] = 1
arr[1] = 0.300000 a[1] = 1

Pointers in C 293
arr[2] = 0.900000 a[2] = -1
arr[3] = 1.000000 a[3] = 0
arr[4] = 1.100000 a[4] = 2

Consider the following program.
int b[]={10,20,30,40,50};
int i,*p;
 p=&b[4]-4;
for(i=0;i<5;++i)
 {
 printf(“%d”,*p);
 p++;
 }

 The expression &b[4] gives the address of b[4]. Let
the address of b[4] be 65540. Then the expression p =

&b[4]–4 may give either 65536 or 65532 (considering a
16-bit machine). To explain this, consider the following
statements assuming the previous array.

int *p;
p=&b[4]
p=p-4;

 The statement p–4 gives the address of 65532 as p–4
evaluates as p–4* sizeof(int) i.e., 65540 – 8 (considering
a 16-bit machine). That is, p is pointing to the address of
b[0] or &b[0]. The rest of the code is executed as usual.
 Consider the following program where the elements of
the array a are initialized, and then all elements in array a
are copied into b, so that a and b are identical.

Example

10. #defi ne MAX 10
 int main()

 {

 int a[MAX];

 int b[MAX];

 int i;

 for(i=0; i<MAX; i++)

 a[i]=i;

 b=a;

 return 0;

 }

 If it is compiled, there will be an error. Arrays in C are unusual in that
variables a and b are not, technically, arrays themselves but permanent
pointers to arrays. Thus, they point to blocks of memory that hold the
arrays. They hold the addresses of the actual arrays, but since they
are pointer constant or address constant, their addresses cannot be
changed. The statement b=a;, therefore, does not work.

 To copy array a into another array b, something like the
following has to be entered.

for(i=0; i<MAX; i++)
 a[i]=b[i];

Or, to put it more succinctly,
 for(i=0; i<MAX; a[i]=b[i], i++);

 In the statement p++; if p is pointing to an array,
the compiler knows that p points to an integer. So this
statement increments p by the appropriate number of bytes
to move it to the next element of the array. The array a can
be copied into b using pointers as well. The following code
can replace (for i=0; i<MAX; a[i]=b[i], i++); :

 int *p *q;
 p=a;
 q=b;
 for(i=0; i<MAX; i++)
 {
 *q = *p;
 q++;
 p++;
 }

This code can be abbreviated as follows.
 p=a;
 q=b;
 for(i=0; i<MAX; i++)
 *q++ = *p++;

Further abbreviation leads to
 for(p=a,q=b,i=0; i<MAX; *q++ = *p++, i++);

 It is important to note that the unary operators ++ and --
have the same priority as *. All unary operators bind from
right to left. Therefore, ++*p is equivalent to ++(*p);
Notice the difference.

 Equivalent:
 (*ip)++; int temp;

 (temp = *ip, *ip = *ip + 1)

 Equivalent:
 *ip++; *(ip++);

 int* temp;

 (temp = ip, ip = ip + 1)

 Since * and ++ have the same precedence and associate
from right to left, this is equivalent to *(ip++); the value
of ip++ is ip, so this pointer will be dereferenced. After
that the pointer ip is incremented by 1. Like always, it
is recommended to use parentheses () in order to avoid

294 Programming in C

unexpected results. Since ++ and -- are either prefi x or
postfi x operators, other combinations of * and ++ and --
occur, although less frequently. For example,

 *––p

decrements p before fetching the variable that p points to.
Example 11 will clear these facts.

Example

11. #include <stdio.h>

int main()

{

 int A[] = {10, 20, 30, 40, 50};

 int *p, i;

 p = A;

 printf(“*p : %i\n\n”, *p);

 i = *(p++);

 printf(“i is: %i\n”, i);

 printf(“*p is: %i\n\n”, *p);

 i = (*p)++;

 printf(“i is: %i\n”, i);

 printf(“*p is: %i\n\n”, *p);

 i = *(++p);

 printf(“i is: %i\n”, i);

 printf(“*p is: %i\n\n”, *p);

 i = ++(*p);

 printf(“i is: %i\n”, i);

 printf(“*p is: %i\n\n”, *p);

 return 0;

}

Output:
*p : 10

i is: 10

*p is: 20

i is: 20

*p is: 21

i is: 30

*p is: 30

i is: 31

*p is: 31

 An integer can also be subtracted. This is illustrated in
Example 12.

Example

12. #include <stdio.h>
int main(void)
{
 int a[] = {10, 20, 30, 40, 50};
 int i, *p;
 p=a+4;
 for(i=4; i>=0; i––)
 printf(“%d\n”, *(p-i));
 return 0;
}

Output:
 10
 20
 30
 40
 50

The above code may be replaced by the following code.
#include <stdio.h>
int main(void)
{
 int a[] = {10, 12, 6, 7, 2};
 int i, *p;
 p=a+4;
 for(i=4; i>=0; i––)
 printf(“%d\n”, p[-i]);
 return 0;
}

p[–i] is equivalent to *(p–i). Initially p points to the
last element. At the beginning, i=4, p-i evaluates as
p–i*sizeof(int)= p–16 (in a 32-bit machine) or =p–8(in
a 16-bit machine). Now p-i gives the address of the fi rst
element of the array. p[–i], which is equivalent to, *(p–i),
prints the fi rst element of the array. Then i = 3, so p[–i]
prints the second element and so on. Look at Fig. 7.8.

a[0]

10

65004

a[1]

20

65006

a[2]

30

65008

a[3]

40

65010

a[4]

50

65012

Figure 7.8 Subscripted notation value and address of
elements of an array

 Here a 16-bit machine is assumed. Initially p=65012,
i=4. Therefore,

Pointers in C 295

 p[–i]=*(p–i)= value at address p–i*sizeof(int)

= value at address (p–8)
 = value at address (65012–8) = value at address 65004

= 10.
When i=3, p[–i]=*(p–6)=*(65012–6)= value at address
65006 = 20 and so on. If i iterates from 0 to 4, then this
code will print the elements of array in reverse order.

Example

13. #include <stdio.h>
int main(void)
{
 int a[] = {10, 12, 6, 7, 2};
 int i, *p;
 p=a+4;
 for(i=0; i<5; i++)
 printf(“%d\n”, p[-i]);
 return 0;
}

Output:
 50
 40
 30
 20
 10

 The reason is very simple. Apply the same calculation as before.
The study of strings is useful to further tie in the relationship between
pointers and arrays. This discussion is also applicable to strings as
strings are nothing but an array of characters. Consider the following
program that uses a pointer to shift to the next character of the string.

14. #include <stdio.h>
int main()
{
 char a[15] = “test string”;
 char *pa;
 pa = a;
 while(*pa)
 {
 putchar(*pa);
 pa++;
 }
 printf(“\n”);
 return 0;
}

Output:

 test string

 The while loop is equivalent to while(*pa!=’\0’). More
aspects of pointers and strings are illustrated here by studying versions
of some useful functions adapted from the standard library string.h.
The fi rst function is strcpy(t,s), which copies the string s to the
string t. It would be nice just to write t = s but this copies the pointer,
not the characters. To copy the characters, a loop is needed. The array
version is as follows.

15. #include <stdio.h>
int main()
{
 char a[50], b[50];
 void scopy(char *, char *);
 printf(“\n Enter the string: “);
 gets(a);
 scopy(b,a);
 printf(“\n %s”,b);
 return 0;
}
/* scopy: copy s to t; array subscript version */
void scopy(char *t, char *s)
{
 int i;
 i = 0;
 while(s[i]!= ‘\0’)
 {
 t[i] = s[i];
 i++;
 }
 t[i]=‘\0’;
}

An equivalent version of scopy() is given as follows.
void scopy(char *t, char *s)
{
 int i;
 i = 0;
 while((t[i] = s[i]) != ‘\0’)
 i++;
}

For contrast, here is a version of scopy() with pointers.

/* scopy: copy s to t; pointer version */

void scopy(char *t, char *s)

{

 int i;

 i = 0;

 while((*t = *s) != ‘\0’)

 {

 s++;

 t++;

 }

}

296 Programming in C

 Because arguments are passed by value, scopy can
use the parameters b and a. Here they are conveniently
initialized pointers, marching along the arrays one
character at a time, until the ‘\0’ that terminates s has been
copied into t. Experienced C programmers would prefer
the following version.

/* scopy: copy s to t; pointer version 2 */
void scopy(char *s, char *t)
{
 while((*t++ = *s++) != ‘\0’)
 ;
}

 This moves the increment of s and t into the test part of
the loop. The value of *s++ is the character that s pointed to
before t was incremented; the postfi x ++ does not change
s until after this character has been fetched. In the same
way, the character is stored into the old t position before
t is incremented. This character is also the value that is
compared against ‘\0’ to control the loop. The net effect is
that characters are copied from s to t, up and including the
terminating ‘\0’.
 The C99 standards state that the strcpy() function must
return a copy of its destination parameter. In both cases, we
are returning a copy of the destination parameter – that is,
we are returning a pointer as the function’s value. That’s
why, The strcpy() in the standard library (<string.h>)
returns the target string as its function value. It might look
like

char *strcopy(char *destination, char *source)
{
 char *p = destination;
 while(*source != ‘\0’)
 {
 *p++ = *source++;
 }
 *p = ‘\0’;
 return destination;
}

 The following is the array subscript version of the
strlen library function.

int strlen(char s[])
{
 int x;
 x=0;
 while(s[x] != ‘\0’)
 x=x+1;
 return(x);
}

 Using a pointer-based approach, this function can be
rewritten as follows.

int strlen(char *s)
{
 int c=0;
 while(*s != ‘\0’)
 {
 c++;
 s++;
 }
 return(c);
}

This code can be abbreviated as follows.
int strlen(char *s)
{
 int c=0;
 while(*s++)
 c++;
 return(x);
}

 Now examine strcmp(s,t), which compares the
character strings s and t, and returns negative, zero, or
positive if s is lexicographically less than, equal to, or
greater than t. The value is obtained by subtracting the
characters at the fi rst position where s and t disagree.

int stcmp(char *s, char *t)
{
 int i;
 for(i = 0; s[i] == t[i]; i++)
 if(s[i] == ‘\0’)
 return 0;
 return s[i] - t[i];
}

The pointer version of stcmp is an follows:

int stcmp(char *s, char *t)
{
 for(; *s == *t; s++, t++)
 if(*s == ‘\0’)
 return 0;
 return *s - *t;
}

 To illustrate string processing, a function is written that
counts the number of words in a string. It is assumed that
words in the string are separated by white space. Here
function will use the macro isspace(), which is defi ned
in the standard header fi le ctype.h. This macro is used to

Pointers in C 297

test whether a character is a blank, tab, new line, or some
other white-space character. If the argument is a white-
space character, then a non-zero (true) value is returned;
otherwise, zero (false) is returned.

Example

16. /* Count the number of words in a string. */
#include <stdio.h>
#include <ctype.h>
int word_cnt(char *s)
{
 int cnt = 0;
 while(*s != ‘\0’)
 {
 while(isspace(*s)) /*skip white space */
 ++ s;
 if(*s != ‘\0’)
 { /*found a word */
 ++cnt;
 while(!isspace(*s) && *s ! = ‘\0’)

/* skip the word */
 ++s;
 }
 }
 return cnt;
}
int main()
{
 char str [80]
 printf(“\n ENTER THE SENTENCE”);
 scanf(“%[^\n]”, str);
 printf(“\n NO OF WORDS =% d”, word_cnt(str));
 return 0;
}

 As an example, try to write a function that looks for one string within
another, returning a pointer to the string if it can, or a null pointer if it
cannot. Here is the function (using the obvious brute-force algorithm):
at every character of the input string, the code checks for a match to the
pattern string.

17. #include <stddef.h>
 #include <stdio.h>

 int main()

 {

 char a[50], b[30];

 char *mystrstr(char *, char *);

 printf(“\n Enter the string:”);

 gets(a);

 printf(“\n Enter the substring to search:”);

 gets(b);

 if(mystrstr(a,b) == NULL)

 printf(“NOT FOUND\n”);

 else

 printf(“FOUND\n”);

 return 0;

 }

 char *mystrstr(char *input, char *pat)

 {

 char *start, *p1, *p2;

 for(start = &input[0]; *start != ‘\0’; start++)

 { /* for each position in input string... */

 p1 = pat; /* prepare to check for pattern
 string there */

 p2 = start;

 while(*p1 != ‘\0’)

 {

 if(*p1 != *p2) /* characters differ */

 break;

 p1++;

 p2++;

 }

 if(*p1 == ‘\0’) /* match found*/

 return start;

 }

 return NULL;

 }

 The start pointer steps over each character position in
the input string. At each character, the inner while loop
checks for a match thereby using p1 to step over the pattern
string (pat) and p2 to step over the input string (starting at
start). The successive characters are compared until either
the end of the pattern string (i.e. *p1 == ‘\0’) is reached
or two characters differ. When the end of the pattern string
(i.e. *p1 == ‘\0’) is reached it means that all preceding
characters matched and a complete match is found for the
pattern starting at start, so start is returned. Otherwise,
the outer loop is executed again, to try another starting
position. It no match is found, a null pointer is returned.
Notice that the function is declared as returning (and does
in fact return) a pointer-to-char.
 mystrstr (or its standard library counterpart strstr) can
be used to determine whether one string contains another.
Hence, the code is as follows:

298 Programming in C

 if(mystrstr(a,b) == NULL)
 printf(“NOT FOUND\n”);
 else printf(“FOUND\n”);

 In general, C does not initialize pointers to NULL,
and it never tests pointers to see if they are null before
using them. If one of the pointers in the programs points
somewhere some of the time but not all of the time, an
excellent convention to use is to set it to a null pointer
when it does not point to any valid location, and test to see
if it is a null pointer before using it. But an explicit code
must be used to set it to NULL, and to test it against NULL.
(In other words, just setting an unused pointer variable to
NULL does not guarantee safety; one also has to check for
the null value before using the pointer.) On the other hand,
if it is known that a particular pointer variable is always
valid, it does not have to insert a paranoid test against NULL
before using it.

7.10.3 Subtraction of Pointers

As has been seen, an integer can be added to a pointer to
get a new pointer, pointing somewhere beyond the original
(as long as it is in the same array). For example, one might
write

p2 = p1 + 3;

Applying a little algebra,
p2 - p1 = 3

 Here both p1 and p2 are pointers pointing to the
elements of the same array. From this it can be concluded
that the two pointers are subtracted, as long as they point
into the same array. The result is the number of elements
separating them. One may also ask (again, as long as they
point into the same array) whether one pointer is greater or
less than another; one pointer is ‘greater than’ another if it
points beyond where the other one points.
 Therefore, pointer subtraction is also valid: Given two
pointers p and q of the same type, the difference p – q is
an integer k such that adding k to q yields p. The result is
portable and useful only if they point to the elements of
the same array. The difference k is the difference in the
subscripts of the elements pointed by them. The following
code illustrates this.

#include <stdio.h>

int main()

{

 double a[2],*p,*q;

 p=a;

 q=p+1;
 printf(“%d\n”,q – p);
 return 0;
}

Output:
 1

 To print the number of bytes resulting from q-p, each
pointer may be typecast.

#include <stdio.h>
int main()
{
 double a[2],*p,*q;
 p=a;
 q=p+1;
 printf(“%d\n”,(int)q-(int)p);
 return 0;
}

Output:
 8

 It has been seen that two pointers to compatible types
may be subtracted. Actually, the result is stored in the
variable type ptrdiff_t, which is defi ned in the header fi le
<stddef.h>. Both pointers must point into the same array,
or one past the end of the array, otherwise the behavior is
undefi ned. The value of the result is the number of array
elements that separate the two pointers.

Example

18. #include <stdio.h>
int main()
{
int x[100];
int *pi, *cpi = &x[99]; /* cpi points to the last

 element of x */
pi = x;
if((cpi - pi) != 99)
 printf(“Error\n”);
pi = cpi;
pi++; /* increment past end of x */
if((pi - cpi) != 1)
 printf(“Error\n”);
return 0;
}

 The execution of the above program prints nothing.
Consider another version of the standard library function
strlen.

Pointers in C 299
int stlen(char *s)
{
 char *p = s;
 while(*p != ‘\0’)
 p++;
 return p - s;
}

 In its declaration, p is initialized to s, that is, to point
to the fi rst character of the string. In the while loop, each
character in turn is examined until the ‘\0’ at the end is
seen. Because p points to characters, p++ advances p to
the next character each time, and p-s gives the number of
characters advanced over, that is, the string length. The
number of characters in the string could be too large to
store in an int. The header <stddef.h> defi nes a variable
type ptrdiff_t that is large enough to hold the signed
difference of two pointer values. If we were being cautious,
however, we would use size_t for the return value of
strlen to match the standard library version. size_t is the
unsigned integer type returned by the sizeof operator.

Points to Note

 The += and –= operators can involve pointers as long as
the left-hand side is a pointer to an object and the right-
hand side is an integral expression.

7.10.4 Comparing Pointers

C allows pointers to be compared with each other. If two
pointers compare equal to each other, then they point to
the same thing, whether it is an object or the non-existent
element of the end of an array (see arithmetic above). If
two pointers point to the same thing, then they compare
equal to each other. The relational operators >, <=, and so
on give the result that would be expected if the pointers
point to the same array: if one pointer compares less than
another, then it points nearer to the front of the array.
Consider the following program.

Example

19. #include <stdio.h>
int main(void)
{
 int a[] = {10, 20, 30, 40, 50};
 int i, *p;
 for(p=a; p<=a+4; p++)
 printf(“%d\n”, *p);
 return 0;
}

Output:
 10
 20
 30
 40
 50

 Here each time p is compared with the base address of
the array.
 One common use of pointer comparisons is for copying
arrays using pointers. Here is a code fragment which
copies 10 elements from array1 to array2, using pointers.
It uses an end pointer, ep, to keep track of when it should
stop copying.

int array1[10], array2[10];
int *ip1, *ip2 = &array2[0];
int *ep = &array1[10];
for(ip1 = &array1[0]; ip1 < ep; ip1++)
 *ip2++ = *ip1;

 As mentioned earlier, there is no element array2[10],
but it is legal to compute a pointer to this (non-existent)
element as long as it is only used in pointer comparisons
like this (that is, it is legal as long as no attempt is made to
fetch or store the value that it points to).
 The following program will print the line in reverse
order. The program uses two pointers pointing to elements
of the same array, illustrating the pointer comparison.

Example

20. #include <stdio.h>
#include <string.h>
int main()
{
 char a[50];
 void reverse(char *);
 printf(“\n Enter the string:”);
 gets(a);
 reverse(a);
 printf(“\nAfter reversing the string is :\n”);
 puts(a);
 return 0;
}
void reverse(char *string)
{
 char *lp = string; /* left pointer */
 char *rp = &string[strlen(string)-1];

/* right pointer */
 char tmp;

300 Programming in C

 while(lp < rp)
 {
 tmp = *lp;
 *lp = *rp;
 *rp = tmp;
 lp++;
 rp––;
 }
}

Output:
Enter the string:manas
After reversing the string is:
sanam

 A null pointer constant can be assigned to a pointer;
that pointer will then compare equal to the null pointer
constant. A null pointer constant or a null pointer will
not compare equal to a pointer that points to anything
which actually exists. This has already been discussed and
illustrated earlier. A pointer arithmetic summary is given
in Table 7.4.

7.11 Pointers to Pointers

So far in the discussion, pointers have been pointing
directly to data. C allows the use of pointers that point to
pointers, and these, in turn, point to data. For pointers to
do that, we only need to add an asterisk (*) for each level
of reference. Consider the following declaration.

 int a=5;
 int *p; ¨ pointer to an integer
 int **q; ¨ pointer to a pointer to an integer
 p=&a;
 q=&p;

 To refer to a using pointer p, dereference it once, that
is, *p.

 To refer to a using q, dereference it twice because
there are two levels of indirection involved.

 If q is dereferenced once, actually p is referenced
which is a pointer to an integer. It may be represented
diagrammatically as follows.

5

p q

 So, *p and **q print 5 if they are printed with a printf
statement.

#include <stdio.h>
int main()
{
 int a=5;
 int *p,**q;
 p=&a;
 q=&p;
 printf(“\n *p=%d”,*p);
 printf(“\n **q=%d”,**q);
 return 0;
}

Output:
*p=5
**q=5

qpa

65550655405

655586555065540

Table 7.4 Pointer arithmetic summary

 Operation Condition Example Result

 Assignment Pointers must be of int *p,*q p points to whatever
 same type ... q points to
 p = q;
 Addition of an int k,*p; Address of the kth object
 integer ... after the one p points to
 p + k

 Subtraction of an int k,*p; Address of the kth object
 integer ... before the one p points to
 p – k

 Comparison of Pointers pointing to int *p,*q; Returns true (1) if q
 pointers the members of the ... points to an earlier
 same array q < p element of the array than
 p does. Return type is int

 Subtraction of Pointers to members int *p,*q; Number of elements
 pointers of the same array and ... between p & q;
 q < p p – q

Pointers in C 301

 In the preceding fi gure, the cells contain the content of
the variable and its location is given below the cells. In
this example, variable q, can be described in three different
ways; each one of them would correspond to a different
value.

q is a variable of type (int **) with a value of
65550

*q is a variable of type (int *) with a value of
65540

**q is a variable of type (int) with a value of 5

Consider the following declarations.
int a; /*integer variable */

int *p; /*pointer to integer */

int **q; /*pointer to pointer to integer */

a = 5; /*assign value to a */

p = &a; /*address of a is stored in p */

q = &p; /*address of pa is stored in q */

Memory picture

Variable Address Value

a 65540 5

p 65550 65540

q 65558 65550

 Consider introducing the following expression in the
preceding memory picture.

*p = 7;

Variable Address Value

a 65540 5 7

p 65550 65540

q 65558 65550

 As p is the address of int a, *p changes the value of a
to 7. Now consider introducing the following expression
in the same example.

**q = 10;

Variable Address Value

a 65540 5 7 10

p 65550 65540

q 65558 65550

 Now **q also refers to int a; it changes value of a to 10.
It is also possible to change the value of p using q because
q points to p. Consider the following table.

Variable Address Value

a 65540 10

p 65550 65540

q 65558 65550

b 65512

 Now *q = &b modifi es the place where q is pointing,
i.e., p. So we get the following table.

Variable Address Value

a 65540 10

p 65550 65512

q 65558 65550

b 65512

 The call by value and call by address mechanisms are
also applicable to pointers also. Consider the following
program:

#include <stdio.h>
void change(int *);
int a,b;
int main(void)
{
 int *p;
 a=5;
 b=10;
 p=&a;
 change(p);
 printf(“\n *p = %d”, *p);
 return 0;
}
void change(int *q)
{
 q=&b;
}

Output
*p = 5

 Both a and b are global variables. They can be accessible
from all the functions of the program. The address of the
variable ‘a’ is assigned in the pointer p. Then p is passed
to the function change(). What is intended to be done here
is that the address of the variable ‘b’ is to be assigned to p
through the function change(). But the output shows that
though pointer is passed to a function still it follows call by
value mechanism. The address contained in p is passed to
the function and stored in q through the parameter passing.
When the address of b is assigned to q, p is still pointing

302 Programming in C

to a because of call by value mechanism. Pointer is not an
exception, it should be pass by address as in the following
program.

#include <stdio.h>
void change(int **);
int a,b;
int main(void)
{
 int *p;
 a=5;
 b=10;
 p=&a;
 change(&p);
 printf(“\n *p = %d”, *p);
 return 0;
}
void change(int **q)
{
 *q=&b;
}

Output
*p = 10

 As address of p is passed to a function, it follows call by
address mechanism. The statement *q = &b is equivalent
to p = &b; hence the value at address held by p is printing
10.
 The following program explores how pointer to a
pointer to an integer and pointer to pointer to pointer can
be used to read the value of the same variable.

Example

21. #include <stdio.h>
int main()
{
 int a;
 int *p;
 int **dp;
 int ***tp;
 p=&a;
 dp=&p;
 tp=&dp;
 printf(“\n ENTER THE VALUE OF a”);
 scanf(“%d”,&a);
 printf(“\n a=%d”,a);
 printf(“\n ENTER THE VALUE OF a”);
 scanf(“%d”,p);
 printf(“\n a=%d”,a);
 printf(“\n ENTER THE VALUE OF a”);

 scanf(“%d”,*dp);
 printf(“\n a=%d”,a);
 printf(“\n ENTER THE VALUE OF a”);
 scanf(“%d”,**tp);
 printf(“\n a=%d”,a);
 return 0;
}

Output:
ENTER THE VALUE OF a 5
a=5
ENTER THE VALUE OF a 10
a=10
ENTER THE VALUE OF a 20
a=20
ENTER THE VALUE OF a 25
a=25

 Now the question is how many levels of indirection can
be used in a single declaration?
 According to the ANSI C standard, all compilers must
handle at least 12 levels. Actually, it depends on the
compiler. Some compilers might support more.

7.12 ARRAY OF POINTERS
An array of pointers can be declared very easily. It is done
thus.

int *p[10];

 This declares an array of 10 pointers, each of which
points to an integer. The fi rst pointer is called p[0], the
second is p[1], and so on up to p[9]. These start off as
uninitialized—they point to some unknown point in
memory. We could make them point to integer variables in
memory thus.

int* p[10];
int a = 10, b = 20, c = 30;
p[0] = &a;
p[1] = &b;
p[2] = &c;

p

10 20 30

 It can be seen from the diagram that there is no way of
knowing in advance where the compiler is going to put
these numbers in memory. They may not even be stored in
order.

Pointers in C 303

 The obvious thing to do is to sort the numbers in
memory, not by moving the numbers themselves around
but by altering the order of the pointers to them.

Example

22. #include <stdio.h>
/* the array of pointers is declared here so that

the function display can access them */

int *p[10];

void display()

 { int i;

 /* Displaying what each pointer in the array
points to. */

 for(i = 0; i < 10; i++)

 printf(“%d \n”,*p[i]);

 }

int main()

 { int a = 46, b = 109, c = 51, d = 66, e = 82, f = 47,

 g = 40, h = 36, k = 70, l = 79;

 int* temp;

 int i,j;

 p[0] = &a;
 p[1] = &b;
 p[2] = &c;
 p[3] = &d;
 p[4] = &e;
 p[5] = &f;
 p[6] = &g;
 p[7] = &h;
 p[8] = &k;
 p[9] = &l;

 display(); /* Displaying the values before
 sorting */

 for(i = 0; i < 10; i++)

 for(j = 0; j < 9-i; j++)

 if(*p[j] > *p[j+1])

 {

 temp = p[j];

 p[j] = p[j+1];

 p[j+1] = temp;

 }

 display(); /* Displaying after sorting */

 return 0;

}

 This program is very clumsy. It can be rewritten. In the
following program, an array of pointers contains the base
address of three one-dimensional arrays.

{
 int a[]={1,2,3,4,5};
 int b[]={10,20,30,40,50};
 int c[]={100,200,300,400,500};
 int *ap[3]={a,b,c};
 int i;
 for(i=0;i<3;++i)
 printf(“%d”,*ap[i]);
}

 In the for loop, printf() prints the values at the
addresses stored in ap[0], ap[1], and ap[2], which are 1,
10, and 100.
 The above for loop can also be replaced by the following
to get the same output.

{
.
.
.
.
int *p; p=ap;
 for(i=0;i<3;++i)
 {
 printf(“%d”,**p);
 p++;
 }
}

Another illustration is as follows.
int main()
{
 int a[3][3]={1,2,3,4,5,6,7,8,9};
 int *ptr[3]={a[0],a[1],a[2]};
 int i;
 for(i=0;i<3;++i)
 printf(“%d”,*ptr[i]);
 printf(“\n”);
 for(i=0;i<3;++i)
 printf(“%d”,*a[i]);
 return 0;
}

Output:
 1 4 7
 1 4 7

 In the second for loop, the values of the base address
stored in the array a[] are printed, which are again 1 4 7.
 An array of character pointers that is pointed to the
strings is declared as follows.

char *nameptr[MAX];

304 Programming in C

 The array, nameptr[], is an array of size MAX, and each
element of the array is a character pointer. It is then
possible to assign character pointer values to the elements
of the array. For example,

nameptr[i] = “Oxford”;

 The string “Oxford” is placed somewhere in memory by
the compiler and the pointer to the string constant is then
assigned to nameptr[i]. It is also possible to assign the
value of any string pointer to nameptr[i]. For example, if
s is a string, then it is possible to assign the pointer value
s to nameptr[i].

nameptr[i] = s;

Again, for example,
char *name[] = {“Manas”,“Pradip”,“Altaf”};

/* Creates and initializes an array of 3 strings

name[0] is Manas, name[1] is Pradip and name[2]
is Altaf*/

 Beginners are often confused about the difference
between this example and a multi-dimensional array.

char name[3][10] = {“Manas”,“Pradip”,“Altaf”};

 Both of these will behave the same way in most
circumstances. The difference can only be seen if we look
at the memory locations.

name[0]

name[1]

name[2]

M

P

A

a

r

l

n

a

t

a

d

a

s

i

f

\0

p

\0

\0

 This fi gure shows the fi rst declaration char

*name[];name contains an array of three pointers to char.
The pointers to char are initialized to point to locations
which may be anywhere in memory containing the
strings “Manas”, “Pradip” and “Altaf” (all correctly \0
terminated).

M a n a s\0 ? p r a d i p\0 ? A l t a f\0 ?? ? ? ?? ?? ?

 This represents the second case—the \0 characters
terminate the strings. The ? represent memory locations
which are not initialized. char *a[] represents an array of
pointers to char. This can be used to contain a number of
strings.

 Look at the following program, which uses an array of
pointers.

Example

23. char *rainbow[] = {“red”, “orange”, “yellow”,
“green”, “blue”, “indigo”, “violet” };

int main()
{
 int color;
 for(color = 0; color <= 6; color++)
 {
 printf(“%s”, rainbow[color]);
 }
 printf(“\n”);
 return 0;
}

 Output:

red

orange

yellow

green

blue

indigo

violet

 The following program would clear the above facts.

24. #include <stdio.h>
char *getday(int);

int main()

{

 int iday;

 char *dayofWeek;

 printf(“Enter a number from 1 to 7 for the day\
of the week:”);

 scanf(“%d”,&iday);

 dayofWeek=getday(iday);

 if(dayofWeek!=NULL)

 printf(“\n\nThat day of the week is %s”, dayofWeek);

 else

 printf(“Invalid entry for day!”);

 return 0;

}

char *getday(int iNo)

{

 char *days[7];

 days[0]=“Sunday”;

 days[1]=“Monday”;

 days[2]=“Tuesday”;

 days[3]=“Wednesday”;

Pointers in C 305
 days[4]=“Thursday”;

 days[5]=“Friday”;

 days[6]=“Saturday”;

 if(iNo >=1 && iNo<=7)

 return days[iNo-1];

 else

 return NULL;

}

 In general, an array of pointers can be used to point to an
array of data items, with each element of the pointer array
pointing to an element of the data array. Data items can
be accessed either directly in the data array, or indirectly
by dereferencing the elements of the pointer array. The
advantage of an array of pointers is that the pointers can be
reordered in any manner without moving the data items.
For example, the pointer array can be reordered so that the
successive elements of the pointer array point to data items
in a sorted order without moving the data items. Reordering
pointers is relatively fast compared to reordering large data
items such as data records or strings. This approach saves
a lot of time, with the additional advantage that the data
items remain available in the original order. How such a
scheme might be implemented is now discussed here.
 Sorting an array of strings requires swapping the
strings that can require copying a lot of data. For the sake
of effi ciency, it is better to avoid actual swapping of data
whenever a data item is large, such as a string or an entire
database record. In addition, arrays may be needed in more
than one order; for example, an exam scores array sorted
by ID numbers and by weighted scores; or strings may
be needed in both an unsorted form and a sorted form. In
either of these cases, either two copies of the data, each
sorted differently, must be kept, or a more effi cient way
to store the data structure must be found. The solution is
to use pointers to elements of the array and swap pointers.
Consider some examples.

int data1, data2, *ptr1, *ptr2, *save;
 data1 = 100; data2 = 200;
 ptr1 = &data1; ptr2 = &data2;

 The values of the data can be swapped and the swapped
values stored in data1 and data2. Or the values of the
pointers can be exchanged.

temp = ptr1;
 ptr1 = ptr2;
 ptr2 = save;

 Here, the values in data1 and data2 have not changed;
but ptr1 now accesses data2 and ptr2 access data1. The
pointer values have been swapped so they point to objects
in a different order. The same idea can be applied to
strings.

char name1[] = “Oxford”;
char name2[] = “University”;
char *p1, *p2;
 p1 = name1;
 p2 = name2;

 Pointers p1 and p2 point to strings name1 and name2. Now
the pointer values can be swapped so that p1 and p2 point
to name2 and name1, respectively. Given an array of strings,
the following program uses pointers to order the strings in
a sorted form, leaving the array unchanged.

Example

25. #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#defi ne COLS 50
void sort_words(char *a[], int n)
{
 int i,j;
 char *temp;
 for(i=0;i<n-1;++i)
 for(j=i+1;j<n;++j)
 if(strcmpi(a[i],a[j])>0)
 {
 temp=a[i];
 a[i]=a[j];
 a[j]=temp;
 }
}
int main()
{
char w[10][COLS];
char *wdptr[10];
int i;
for(i=0; i<10; ++i)
{
gets(w[i]);
wdptr[i]=w[i];
}
printf(“\n Before sorting the strings\

are.......\n”);
for(i=0; i<10; ++i)
puts(w[i]);

306 Programming in C

sort_words(wdptr,10);
printf(“\n After sorting the strings are....\n”);
for(i=0; i<10; ++i)
puts(wdptr[i]);
return 0;
}

 When an array of pointers to strings is used, the strings
can be initialized at the point where the array is declared,
but the strings entered by the user cannot be received using
scanf(). Consider the following program.

int main()
{
 char *name[5];
 int i;
 for(i=0;i<5;++i)
 {
 printf(“\n ENTER NAME”);
 scanf(“%[^\n]”,name[i]);
 }
 return 0;
}

 The program may not work because when an array is
declared it contains garbage value, and it would be wrong
to send the garbage value to scanf() as address where the
string received from the keyboard should be kept.

7.13 POINTERS TO AN ARRAY
Suppose we have an array of unsigned long values called
v. We can declare a pointer to a simple integer value and
make it point to the array as is done normally.

 int v[5] = {1004, 2201, 3000, 432, 500};
 int *p = v;
 printf(“%d \n”, *p);

 This piece of code displays the number, which the
pointer p points to, that is the fi rst number in the array,
namely 1004.

1004

2201

3000

432

500

v[0]

v[1]

v[2]

v[3]

v[4]

p

 C tends to treat arrays almost as though they were
pointers, which is why we can set a pointer to an array
straight rather than using the address of operator. The

instruction p = v makes the pointer point to the address of
the array. The number at this address is the fi rst element of
the array; so that is the value produced when we access *p.
p++ gives some extra arithmetic instructions that lets us
use the pointer to the array more fl exibly.

 p++

 This instruction increases the pointer so that it points
to the next element of the array. If it is followed by the
instruction printf(“%d \n”, *p); then it would display the
number 2201, which is the content of element v[1] (i.e.,
the second element).
 Similarly, we can use instructions such as += and -= to
refer to different elements in the array.

1004

2201

3000

432

500

1004

2201

3000

432

500

v[0]

v[1]

v[2]

v[3]

v[4]

v[0]

v[1]

v[2]

v[3]

v[4]

p

p

p+=2;

p--;

 Reference can be made to the different array elements
without having to alter the value of p. We have already used
*p to refer to the fi rst element of the array (or subsequent
elements if p has been updating with += or -=), but *(p+1)
can be used to refer to the next element after *p, *(p+2) to
refer to the one after that, etc.

1004

2201

3000

432

500

v[0]

v[1]

v[2]

v[3]

v[4]

p
*(P–1)

*(P+1)

*(P+2)

*(P+3)

 Now it is time to turn to the problem of the two-
dimensional array. As stated in the last chapter, C interprets
a two-dimensional array as an array of one-dimensional
arrays. That being the case, the fi rst element of a two-
dimensional array of integers is a one-dimensional array
of integers. And a pointer to a two-dimensional array
of integers must be a pointer to that data type. One way
of accomplishing this is through the use of the keyword
‘typedef’. typedef assigns a new name to a specifi ed data
type.

Pointers in C 307

For example,
 typedef unsigned char byte;

causes the name byte to mean type unsigned char. Hence,

byte b[10];

would be an array of unsigned characters.
 Note that in the typedef declaration, the word byte has
replaced what would normally be the name of unsigned
char. That is, the rule for using typedef is that the new
name for the data type is the name used in the defi nition of
the data type. Thus in

typedef int Array[10];

 Array becomes a data type for an array of 10 integers.
That is, “Array my_arr”; declares my_arr as an array of 10
integers and Array arr2d[5]; makes arr2d an array of fi ve
arrays of 10 integers each.
 Also note that Array *ptr2arr; makes ptr2arr a
pointer to an array of 10 integers. Because *ptr2arr points
to the same type as arr2d, assigning the address of the
two-dimensional array arr2d to ptr2arr, the pointer to a
one-dimensional array of 10 integers is acceptable. That
is, ptr2arr = &arr2d[0]; or ptr2arr = arr2d; are both
correct.
 Since the data type of the pointer is an array of 10
integers it is expected that incrementing ptr2arr by one
would change its value by 10*sizeof(int), which it does.
That is, sizeof(*ptr2arr) is 20. It can be proved by writing
and running a simple short program.
 Now, while using typedef makes things clearer for
the reader and easier on the programmer, it is not really
necessary. What is needed is a way of declaring a pointer
such as ptr2arr without using the typedef keyword. It
turns out that this can be done and that

int(*ptr2arr)[10];

is the proper declaration, i.e., ptr2arr here is a pointer to
an array of 10 integers just as it was under the declaration
using the array type. Note that this is different from

int *ptr2arr[10];

which would make ptr2arr the name of an array of 10
pointers to type int.
 The elements of a two-dimensional array can be
printed using a pointer to an array. The following program
illustrates this.

Example

26. int main()
{
 int a[2][3]={{3,4,5},{6,7,8}};
 int i; int(*pa)[3];
 pa=a;
 for(i=0;i<3;++i)
 printf(“%d\t”,(*pa)[i]);
 printf(“\n”);
 pa++;
 for(i=0;i<3;++i)
 printf(“%d\t”,(*pa)[i]);
 return 0;
}

Output:
3 4 5
6 7 8

 Table 7.5 summarizes the differences between array of
pointer and pointer to an array.

Table 7.5 Difference between an array of pointers and a
pointer to an array

Array of Pointer Pointer to an Array

Declaration Declaration

data_type *array_
name[SIZE];

data_type(*array_name)
[SIZE];

Size represents the
number of rows

Size represents the number of
columns

The space for columns
may be allotted

The space for rows may be
dynamically allotted

7.14 TWO-DIMENSIONAL ARRAYS AND POINTERS
A two-dimensional array in C is treated as a one-
dimensional array whose elements are one-dimensional
arrays (the rows). For example, a 4 × 3 array of T (where
‘T’ is any data type supported by C) may be declared by ‘T
a[4][3]’, and described by the following scheme.
 Figure 7.9 is the logical layout of a two-dimensional
array in memory but it does not give a good picture of what
is happening internally. The ‘internal pseudo-memory
map’ works just to display what the two-dimensioned
array looks like within the system, and can be used to
illustrate how it is actually implemented. Figure 7.10 is the
graphical representation of a two-dimensional array. Keep
in mind that this may not be an accurate picture of what is
actually stored in memory, but it is accurate in terms of the
concept of a two-dimensional array.

308 Programming in C

a[0]

a[1]

a[2]

a[3]

a[0][0]

a[1][0]

a[2][0]

a[3][0]

a[0][1]

a[1][1]

a[2][1]

a[3][1]

a[0][2]

a[1][2]

a[2][2]

a[3][2]

Figure 7.9 Logical representation of a two-dimensional
array

 The fi rst thing to be noticed is that there is still a single
pointer that is the name of the entire array, but in this case
it is a constant pointer to a constant pointer. It points to an
array of pointers, each of which points somewhere inside
of the array. Finally, there is the actual storage for the
elements of the array. According to the defi nition of C, all
elements of the array must be contiguous. The elements
are drawn in the manner shown to emphasize this fact.
One may guess, and properly so, that none of the pointers
are necessarily real pointers, but are somehow bound up
in the addressing logic of the code, or they may be stored
in registers. On the other hand, they could actually all be
pointers if the implementers decided to do so. There are no
assumptions made about the underlying implementation.
 The address arithmetic for the a[n] array of pointers
can be used as done earlier, but it is a slightly different
case this time. The following formula is used with size
being the number of bytes used to store a pointer.

byte_address = a + i * size

 It will, however, be correct to think of these pointers
existing somewhere in memory conceptually in order to
understand how a two-dimensional array is stored in the
computer memory.

 Pointer arithmetic can be performed within each row
as is done with the one-dimensional array. The constant
pointer named a[0] can be considered to be a constant
pointer to the fi rst element in the fi rst row and the formula
mentioned earlier can be used for pointer arithmetic just as
if it were referring to a one-dimensional array. Therefore,
the following two expressions,

*(a[0] + 3)

and

a[0][3]

are identical as far as the compiler is concerned.
 It is possible to keep the fi rst array index set to zero and
vary the second array index from zero to eleven, thereby
accessing all twelve elements by varying a single subscript.
This is considered bad practice in some programming
circles and its use is not encouraged, but it does illustrate
how the elements are actually stored.

 for(i = 0; i < 12; i++)
 a[0][i] = i;

 This trick is possible because C does not do run-time
range checking of array subscripts. The following code is
also valid for the two-dimensional array a[4][3] of integer
type

 for(i = 0; i < 12; ++i)
 scanf(“%d”, &a[0][i]);

 Readers may have noticed that in C the rightmost
subscript of a two-dimensional array varies faster than the
leftmost (in fact, there are no multidimensional arrays in
C, but array of arrays). This fact suggests that the array
is stored in a ‘row major addressing’ format. So the array
equation for element ‘a[m][n]’ of type T is as follows:

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] a[2][0] a[2][1] a[2][2] a[3][0] a[3][1] a[3][2]

a[0] a[1] a[2] a[3]

a

Figure 7.10 Physical representation of a two-dimensional array

Pointers in C 309
 Address of (a[i][j]) = address of a[0][0] + (i *

n + j)

 The array equation is important. In C, it is hidden from
the programmer; the compiler automatically computes
the necessary code whenever an array reference is made.
The obvious advantage is that the number of rows is not
required in the array equation, the address of an element
does not have to be computed. That is why it is not always
necessary to specify the fi rst dimension in a function that
is being passed a two-dimensional array. But for higher-
dimensional arrays, the equation gets more and more
complicated.
 K&R tried to create a unifi ed treatment of arrays and
pointers, one that would expose rather than hide the
array equation in the compiler’s code. It has been already
discussed that a[i] = *(a + i). Therefore, following the
same concept, a two-dimensional array can be expressed
as follows:

 a[i][j] = *(a[i]+ j) = (*(a + i))[j] = *(*(a + i) + j)

 The array equation discussed above is a consequence
of the aforesaid notations in the case of a two-dimensional
array. The following program illustrates the facts just
discussed.

Example

27. #include <stdio.h>
int main()

{

 int a[2][3]={10,20,30, 40,50,60};

 int i,j;

 for(i=0;i<2;++i)

 {

 printf(“\n”);

 for(j=0;j<3;++j)

 printf(“%d\t”,*(*(a+i)+j));

 }

 return 0;

}

Output:
10 20 30
40 50 60

The same output will result if the statement
 printf(“%d\t”,*(*(a+i)+j));

is replaced by the following equivalent statements.
 printf(“%d\t”,*(a[i]+j));
 printf(“%d\t”,(*(a+i))[j]);
 printf(“%d\t”,*(&a[0][0]+i*3+j));

 Thus, to evaluate either expression, a total of fi ve values
must be known.
 The address of the fi rst element of the array, which

is returned by the expression a, i.e., the name of the
array

 The size of the type of the elements of the array, in
this case sizeof(int)

 The second dimension of the array
 The specifi c index value for the fi rst dimension, 2 in

this case
 The specifi c index value for the second dimension, 3

in this case

7.14.1 Passing Two-dimensional Array to a Function

The following are several alternative ways in C to handle
an array passed to a function. They differ in the formal
parameter. For illustration, the following C statements are
considered.

#defi ne MAX_ROWS 10
#defi ne MAX_COLS 10
int A[MAX_ROWS][MAX_COLS];

When data is accessed in our matrix using the notation

A[i][j]

the location for this data is computed using
&A[0][0] + MAX_COLS * i + j

Some interesting information about a two-dimensional
array A[10][10] is as follows.

 &A[0][0] is the base address
 A[0] is the base address
 A is the base address
 &A[0] is the base address

But these are not interchangeable. For instance,
 &A[0][0] +1 points to A[0][1]
 A[0] + 1 points to A[0][1]
 A + 1 points to A[1][0]

(A + 1 is the same as A[1] and points to row 1)
 &A[0] + 1 points to A[1][0]

310 Programming in C

 That is, C stores a matrix linearly in rows. The values
for the matrix elements are referenced as

A[i][j] = (*(A+i))[j] = *((*(A+i))+j) = *(A[i]+j)

Therefore,
A[0][0] = (*(A))[0] = *((*A)+0) = *(A[0]+0)
A[0][2] = (*(A))[2] = *((*A)+2) = *(A[0]+2)
A[1][2] = (*(A+1))[2] = *((*(A+1))+2) = *(A[1]+2)

Thus address equalities will be
&A[i][j] = (A+i)[j] = *(A+i)+j = A[i]+j

So,
&A[0][0] = (A)[0] = *A+0 = A[0]+0
&A[0][2] = (A)[2] = *A+2 = A[0]+2
&A[1][2] = (A+1)[2] = (*A+1)+2 = A[1]+2

The following program illustrates the above facts.
#include <stdio.h>
int main()
{
int A[2][3] = { {1, 2, 3},{4, 5, 6} };
printf(“\nThe value of element A[0][0] is \n”);
printf(“%d %d %d %d \n”, A[0][0], (*(A+0))[0],

*((*A)+0), *(A[0]+0));
printf(“\nThe address of element A[0][0] is \n”);
printf(“%x %x %x %x\n”,&A[0][0],(A)[0],(*A+0),

(A[0]+0));
return 0;
}

 Traditional method which uses array notation as a formal
parameter—an array with an empty fi rst dimension

#include <stdio.h>

int main()

{

 int a[2][3]={10,20,30, 40,50,60};

 void show(int [][3]);

 show(a);

 return 0;

}

void show(int b[][3])

{

 int i,j;

 for(i=0;i<2;++i)

 {

 printf(“\n”);

 for(j=0;j<3;++j)

 printf(“%d\t”,*(*(b+i)+j));

 }

}

Pointer to an array as a formal parameter Here the
second dimension is explicitly specifi ed. A pointer to the
array of 10 integers can be declared as follows.

 int(*ptr)[10] = &a;

 The following program shows the use of a pointer to an
array as a formal parameter.

#include <stdio.h>
int main()
{
 int a[2][3]={10,20,30,40,50,60};
 void show(int(*)[3]);
 show(a);
 return 0;
}
void show(int(*b)[3])
{
 int i,j;
 for(i=0;i<2;++i)
 {
 printf(“\n”);
 for(j=0;j<3;++j)
 printf(“%d\t”,*(*(b+i)+j));
 }
}

 A double pointer cannot be used directly as a formal
parameter for a two-dimensional array. Consider the
following program.

Example

28. #include <stdio.h>
int main()

{

 int a[2][3]={10,20,30, 40,50,60};

void show(int **);

show(a);

return 0;

}

void show(int **b)

{

int i,j;

for(i=0;i<2;++i)

{

 printf(“\n”);

 for(j=0;j<3;++j)

 printf(“%d\t”,b[i][j]);

}

}

Pointers in C 311

 It gives the wrong output instead of printing
10,20,30,40,50,60. The reason is as follows.
 Although the compiler may not complain, it is wrong to
declare int **b and then use b as a two-dimensional array.
These are two very different data types and by using them
you access different locations in memory.
 The array decays into pointer when it is passed to a
function. The famous decay convention is that an array is
treated as a pointer that points to the fi rst element of the
array. This mistake is common because it is easy to forget
that the decay convention must not be applied recursively
(more than once) to the same array, so a two-dimensional
array is not equivalent to a double pointer. A ‘pointer to
pointer of T’ cannot serve as a ‘two-dimensional array of
T’. The two-dimensional array is equivalent to a ‘pointer
to row of T’, and this is very different from ‘pointer to
pointer of T’.
 When a double pointer that points to the fi rst element
of an array is used with subscript notation ‘ptr[0][0]’,
it is fully dereferenced two times. After two full de-
referencings, the resulting object will have an address
equal to whatever value was found inside the fi rst element
of the array. Since the fi rst element contains the data, we
would have wild memory accesses.
 The extra dereferencing could be taken care of by
having an intermediary ‘pointer to T’.

type a[m][n], *ptr1, **ptr2;

ptr2 = &ptr1;

ptr1 = (type *)a;

 But that would not work either; the information on
the array ‘width’ (n) is lost. A possible solution to make
a double pointer work with a two-dimensional array
notation is to have an auxiliary array of pointers, each of
them pointing to a row of the original two-dimensional
array.

type a[m][n], *aux[m], **ptr2;

ptr2 = (type **)aux;

for(i = 0; i < m; i++)

 aux[i] = (type *)a + i * n;

Of course, the auxiliary array could be dynamic.

Points to Note

 • C does not do run-time range checking of array
subscripts.

 • In C the rightmost subscript of a two-dimensional array
varies faster than the leftmost.

 • Multi-dimensional array is stored in a ‘row major
addressing’ format.

 • The following expressions are equivalent for a two-
dimensional array

 a[i][j]= *(a[i]+ j)
 = (*(a + i))[j] = *(*(a + i) + j)

A single pointer as a formal parameter With this method
general-purpose functions can be created. The dimensions
do not appear in any declaration, so they can be added to
the formal argument list. The manual array indexing will
probably slow down the execution.

#include <stdio.h>

int main()

{

 int a[2][3]={10,20,30,40,50,60};

 void show(int *);

 show(&a[0][0]);
Can be replaced by

show(*a);

 return 0;

}

void show(int *b)

{

 int i,j;

 for(i=0;i<2;++i)

{

 printf(“\n”);

 for(j=0;j<3;++j)

 printf(“%5.2d”, *(b + 3*i + j));

}

}

 Passing matrices to a function can be tricky. For more
clarity here are some examples of passing a 3 × 4 matrix
to functions. Notice each and every program carefully.

312 Programming in C

Example

29. #include <stdio.h>
#defi ne ROWS 3

#defi ne COLS 4

int main()

{

 int i, j;

 int mat[ROWS][COLS];

 int *ptr;

 void show(int [][COLS], int, int);

 printf(“\nThe matrix is %d x %d \n”,ROWS,COLS);

 printf(“The original values using array indices \n”);

 for(i=0; i < ROWS; i++)

 {

 printf(“%p”,mat[i]);

 for(j=0; j < COLS; j++)

 {

 mat[i][j] = i+j;

 printf(“%d”, mat[i][j]);

 }

 printf(“\n”);

 }

 printf(“\n The fi rst call to show \n”);

 show(mat, ROWS, COLS);

 printf(“\n The second call to show \n”);

 show(&mat[0], ROWS, COLS);

 printf(“\nThe original values using a pointer. \n”);

 ptr = &mat[0][0];

 for(i=0; i < ROWS; i++)

 {

 printf(“%p”,ptr);

 for(j=0; j < COLS; j++)

 {

 *ptr = i+j;

 printf(“%d”, *(ptr++));

 }

 printf(“\n”);

 }

 printf(“\n The fi rst call to show\n”);

 show(mat, ROWS, COLS);

 printf(“\n The second call to show\n”);

 show(&mat[0], ROWS, COLS);

 return 0;

}

void show(int array[][COLS], int rows, int cols)

 {

 int i,j;

 for(i=0; i < rows; i++)

 {

 printf(“%p”,array[i]);

 for(j=0; j < cols; j++)

 printf(“%d”, array[i][j]);

 printf(“\n”);

 }

}

Output:
 The matrix is 3 x 4

 The original values using array indices

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The fi rst call to show

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The second call to show

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The original values using a pointer

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The fi rst call to show

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The second call to show

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 In the fi rst call to show() function, the base address is passed
implicitly in function.
 In the second call, the base address of the element in the fi rst
row is passed explicitly. This will run faster because there is no need
to compute the location using &mat[0][0] + 4*i + j. A two-
dimensional array is actually a one-dimensional array that maps to the
storage map for mat; that is why we do not need the fi rst index size.
 In the following illustration, the function display() takes pointer to
array of four integers. Here a pointer to an array of integers is used and
only one index is used.

Pointers in C 313

30. #include <stdio.h>

 #defi ne ROWS 3

 #defi ne COLS 4

 int main()

 {

 int i, j;

 int mat[ROWS][COLS];

 int * ptr;

 void display(int(*)[COLS], int, int);

 printf(“\nThe matrix is %d x %d \n”,ROWS, COLS);

 printf(“The original values for mat and display \n”);

 for(i=0; i < ROWS; i++)

 {

 printf(“%p”,mat[i]);

 for(j=0; j < COLS; j++)

 {

 mat[i][j] = i+j;

 printf(“%d”, mat[i][j]);

 }

 printf(“\n”);

 }

 printf(“\n The fi rst call to display\n”);

 display(mat, ROWS, COLS);

 printf(“\n The second call to display\n”);

 display(&mat[0], ROWS, COLS);

 printf(“\nThe original values using a pointer. \n”);

 ptr = &mat[0][0];

 for(i=0; i < ROWS; i++)

 {

 printf(“%p”,ptr);

 for(j=0; j < COLS; j++)

 {

 *ptr = i+j;

 printf(“%d”, *(ptr++));

 }

 printf(“\n”);

 }

 printf(“\n The fi rst call to display\n”);

 display(mat, ROWS, COLS);

 printf(“\n The second call to display\n”);

 display(&mat[0], ROWS, COLS);

 return 0;

 }

 void display(int (*array)[COLS], int rows, int cols)

 {

 int i,j;

 for(i=0; i < rows; i++)

 {

 printf(“%p”, array);

 for(j=0; j < cols; j++)

 printf(“%d”,(*array)[j]);

 array++;

 printf(“\n”);

 }

 }

Output:

 Our matrix is 3 x 4

 The original values for mat and display

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The fi rst call to display

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The second call to display

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The original values using a pointer

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The fi rst call to display

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 The second call to display

 FFDC 0 1 2 3

 FFE4 1 2 3 4

 FFEC 2 3 4 5

 Now let us pass these values to print_mat() function. This will
run faster than show and display. pt-array is a pointer that points to
the elements in the matrix. This is convenient because C stores two-
dimensional arrays in rows.

314 Programming in C

31. #include <stdio.h>
#defi ne ROWS 3

#defi ne COLS 4

int main()

{

 int i, j;

 int mat[ROWS][COLS];

 int *ptr;

 void print_mat(int *, int, int);

 printf(“\n The matrix is %d x %d \n”,ROWS, COLS);

 printf(“The original values for the matrix \n”);

 for(i=0; i < ROWS; i++)

 {

 printf(“%p”,mat[i]);

 for(j=0; j < COLS; j++)

 {

 mat[i][j] = i+j;

 printf(“%d”, mat[i][j]);

 }

 printf(“\n”);

 }

 printf(“\n The fi rst call to print_mat\n”);

 print_mat(mat[0], ROWS, COLS);

 printf(“\n The second call to print_mat\n”);

 print_mat(&mat[0][0], ROWS, COLS);

 printf(“\n The third call to print_mat\n”);

 print_mat(*mat, ROWS, COLS);

/* This will run faster as will print_mat.*/

 printf(“\nThe original values for print_mat \n”);

 ptr = &mat[0][0];

 for(i=0; i < ROWS; i++)

 {

 printf(“%p”,ptr);

 for(j=0; j < COLS; j++)

 {

 *ptr = i+j;

 printf(“%d”, *(ptr++));

 }

 printf(“\n”);

}

 printf(“\n The fi rst call to print_mat\n”);

 print_mat(mat[0], ROWS, COLS);

 printf(“\n The second call to print_mat\n”);

 print_mat(&mat[0][0], ROWS, COLS);

 printf(“\n The third call to print_mat\n”);

 print_mat(*mat, ROWS, COLS);

 return 0;

 }

 void print_mat(int *pt_array, int rows, int cols)
 {
 int i,j;
 for(i=0; i < rows; i++)
 {
 printf(“%p”,pt_array);
 for(j=0; j < cols; j++)
 printf(“ %d”, *(pt_array++));
 printf(“\n”);
 }
 }

Output:
 The matrix is 3 x 4
 The original values for the matrix
 FFDC 0 1 2 3
 FFE4 1 2 3 4
 FFEC 2 3 4 5
 The fi rst call to print_mat
 FFDC 0 1 2 3
 FFE4 1 2 3 4
 FFEC 2 3 4 5
 The second call to print_mat
 FFDC 0 1 2 3
 FFE4 1 2 3 4
 FFEC 2 3 4 5
 The third call to print_mat
 FFDC 0 1 2 3
 FFE4 1 2 3 4
 FFEC 2 3 4 5
 The original values for print_mat
 FFDC 0 1 2 3
 FFE4 1 2 3 4
 FFEC 2 3 4 5
 The fi rst call to print_mat
 FFDC 0 1 2 3
 FFE4 1 2 3 4
 FFEC 2 3 4 5
 The second call to print_mat
 FFDC 0 1 2 3
 FFE4 1 2 3 4
 FFEC 2 3 4 5
 The third call to print_mat
 FFDC 0 1 2 3
 FFE4 1 2 3 4
 FFEC 2 3 4 5

 In the above illustrations, the address of the
corresponding rows is printed on the fi rst column.
 Consider the problem of date conversion, from day of
the month to day of the year and vice versa. For example,

Pointers in C 315

March 1st is the 60th day of a non-leap year, and the 61st
day of a leap year. Let us defi ne two functions to do the
conversions.
day_of_year converts the month and day into the day of
the year and month_day converts the day of the year into
the month and day. Since this latter function computes two
values, the month and day arguments will be pointers.
month_day(1988, 60, &m, &d) sets m to 2 and d to 29
(February 29th).
 Both these functions need the same information, a table
of the number of days in each month. Since the number
of days per month differs for leap years and non-leap
years, it is easier to separate them into two rows of a two-
dimensional array than to keep track of what happens to
February during computation. The array and the functions
for performing the transformations are as follows.

 static char daytab[2][13] = {
 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
 {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
 };
 /* day_of_year: set day of year from month & day */
 int day_of_year(int year, int month, int day)
 {
 int i, leap;
 leap = year%4 == 0 && year%100 != 0

 || year%400 == 0;
 for(i = 1; i < month; i++)
 day += daytab[leap][i];
 return day;
 }
 /* month_day: set month, day from day of year */
 void month_day(int year, int yearday,

 int *pmonth, int *pday)
 {
 int i, leap;
 leap = year%4 == 0 && year%100 != 0

 || year%400 == 0;
 for(i = 1; yearday > daytab[leap][i]; i++)
 yearday -= daytab[leap][i];
 *pmonth = i;
 *pday = yearday;
 }

 Recall that the arithmetic value of a logical expression,
such as the one for leap, is either zero (false) or one (true),
so it can be used as a subscript of the array daytab. The
array daytab has to be external to both day_of_year and
month_day, so they can both use it. It is made as char to
illustrate a legitimate use of char for storing small non-
character integers.

 In C, a two-dimensional array is really a one-
dimensional array, each of whose elements is an array.
Hence, subscripts are written as

 daytab[i][j]

and elements are stored by rows. So the rightmost subscript,
or column, varies fastest as elements are accessed in
storage order.
 Here the array daytab is started with a column of zero
so that month numbers can run from the natural 1 to 12
instead of 0 to 11. Since space is not at a premium here,
this is clearer than adjusting the indices.
 Ragged arrays It is required to contrast a two-dimensional
array of type char with a one-dimensional array of pointers
to char. Similarities and differences exist between these
two constructs.

Example

32. #include<stdio.h>
 int main(void)
 {
 char a[2][15]= {“abc:”, “a is for apple”};
 char *p[2]= {“abc:”, “a is for apple”};
 printf(“%c %c %c %s %s \n”, a[0][0],a[0][1],

a[0][2], a[0], a[1]);
 printf(“%c %c %c %s %s \n”, p[0][0],p[0][1],p[0]

[2],p[0],p[1]);
 return 0;
 }

Output:
 abc abc: a is for apple
 abc abc: a is for apple

 The program and its output illustrate similarities in
how the two constructs are used. The identifi er a is a two-
dimensional array, and its declaration causes 30 chars to be
allocated. The two-dimensional initializer is equivalent to

{{‘a’, ‘b’, ‘c’, ‘:’, ‘\0’}, {‘a’, ‘ ’, ‘i’, ‘s’, ...}}

 The identifi er a is an array, each of whose elements is
an array of 15 chars. Thus, a[0] and a[1] are arrays of 15
chars. Because arrays of characters are strings, a[0] and
a[1] are strings. The array a[0] is initialized to

 {‘a’, ‘b’, ‘c’, ‘:’, ‘\0’}

and because only fi ve elements are specifi ed, the rest are
initialized to zero (the null character). Even though not all
elements are used in this program, space has been allocated
for them. The compiler uses a storage mapping function to

316 Programming in C

access a[i][j]. Each access requires one multiplication
and one addition.
 The identifi er p is a one-dimensional array of pointers
to char. Its declaration causes space for two pointers to
be allocated (four bytes for each pointer on the 32-bit
machine). The element p[0] is initialized to point at “abc:”,
a string that requires space for fi ve chars. The element p[1]
is initialized to point at “a is ...”, a string that requires
space for 15 chars, including the null character \0 at the
end of the string. Thus, p does its work in less space than
a. Moreover, the compiler does not generate code for a
storage mapping function to access p[i][j], which means
that p does its work faster than a. Note that a[0][14] is a
valid expression, but that p[0] [14] is not. The expression
p[0][14] overruns the bounds of the string pointed to by
p[0]. Of course, a[0][14] overruns the string currently
stored in a[0], but it does not overrun the array a[0].
Hence, the expression a[0][14] is acceptable.
 Another difference is that the strings pointed to by
p[0] and p[1] are constant strings, and, hence, cannot be
changed. In contrast to this, the strings pointed to by a[0]
and a[1] are modifi able.
 An array of pointers whose elements are used to point to
arrays of varying sizes is called a ragged array. Because, in
the preceding program, the rows of p have different lengths,
it is an example of a ragged array. If we think of the elements
p[i][j] arranged as a ‘rectangular’ collection of elements
in rows and columns, the disparate row lengths give the
‘rectangle’ a ragged look. Hence, the name ragged array.
 The following is a depiction of a ragged array.

a b c \0

a i s f o r a p p l e \0

7.15 THREE-DIMENSIONAL ARRAYS
Arrays of dimension higher than two work in a similar
fashion. Let us describe how three-dimensional arrays
work. If the following is declared

 int a[7][9][2];

then a compiler such as a[i][j][k] is used in a program.
The compiler uses the storage-mapping function to
generate the object code to access the correct array element
in memory.

Initialization Consider the following initialization.
 int a[2][2][3] = {
 {{1, 1, 0}, {2, 0, 0}},
 {{3, 0, 0}, {4, 4, 0}}
 };

 C uses two implementations of arrays, depending on
the declaration. They are the same for one dimension, but
different for more dimensions. For example, if an array is
declared as

 int array[10][20][30];

then there are exactly 6000 ints of storage allocated, and a
reference of the form array[i][j][k] will be translated to

 *(array + i*20*30 + j*30 + k)

which calculates the correct offset from the pointer ‘array’,
and then does an indirection on it. To pass an array of this
type to a function, the formal parameter must be declared
as

 int arg[][20][30];

 Here is a function that will sum the elements of the
array. Note carefully that all the sizes except the fi rst must
be specifi ed.

 int sum(int a[][9][2])
 {
 int i, j, k, sum = 0;
 for(i = 0; i < 7; ++i)
 for(j = 0; j < 9; ++j)
 for(k = 0; k < 2; ++k)
 sum + = a[i][j][k];
 return sum;
 }

 In the header of the function defi nition, the following
three declarations are equivalent.

 int a[][9][2] int a[7][9][2] int(*a)[9][2]

 In the second declaration, the constant 7 acts as a
reminder to human readers of the code, but the compiler
disregards it. The other two constants are needed by
the compiler to generate the correct storage-mapping
function.

Points to Note
In case of multi-dimensional arrays all sizes except the fi rst
must be specifi ed.

Caution These three declarations are equivalent only in a
header to a function defi nition.

Pointers in C 317

 If a three-dimensional array is declared as
 int ***array;

(and it is assumed for the moment that it has been allocated
space for a 10*20*30 array), then there is an array of 10
pointers to pointers to ints, 10 arrays of 20 pointers to
ints, and 6000 ints. The 200 elements of the 10 arrays
each point to a block of 30 ints, and the 10 elements of
the one array each point to one of the 10 arrays. The array
variable points to the head of the array with 10 elements.
 In short, array points to a pointer to a pointer to an
integer, *array points to a pointer to an integer, ‘**array’
points to an integer, and ‘***array’ is an integer.
 In this case, an access of the form array[i][j][k]
results in an access of the form

 ((*(array+i) + j) + k)

 This means take a pointer to the main array, add i
to offset to the pointer to the correct second dimension
array, and indirect to it. Now there is a pointer to one of
the arrays of 20 pointers, and j is added to get the offset
to the next dimension, and an indirection is done on that.
Now a pointer to an array of 30 integers is obtained, and
k is added to get a pointer to the desired integer, and an
indirection is done to have the integer.

7.16 POINTERS TO FUNCTIONS
One of the power features of C is to defi ne pointers to
functions. Function pointers are pointers, i.e., variables,
which point to the address of a function. A running program
is allocated a certain space in the main memory. The
executable compiled program code and the used variables
are both put inside this memory. Thus a function in the
program code has an address. Like other pointer variables,
function pointers can be declared, assigned values, and
then used to access the functions they point to.

7.16.1 Declaration of a Pointer to a Function

Function pointers are declared as follows:
Return_type(*function_pointer_name

 (argument_type1, argument_type2, ...);

 In the following example, a function pointer named fp
is declared. It points to functions that take one fl oat and
two char and return an int.

int(*fp)(fl oat, char, char);

Some examples include the following.
int(*fp)();
 double(*fptr)();

 Here, fp is declared as a pointer to a function that
returns int type, and fptr is a pointer to a function that
returns double. The interpretation is as follows for the
fi rst declaration: the dereferenced value of fp, i.e., (*fp)
followed by () indicates a function that returns integer
type. The parentheses are essential in the declarations. The
declaration without the parentheses

int *fp();

declares a function fp that returns an integer pointer.

7.16.2 Initialization of Function Pointers

Like other pointer variables, function pointers must be
initialized prior to use. It is quite easy to assign the address
of a function to a function pointer. One simply uses the
name of a function. It is optional to use the address operator
& in front of the function’s name. For example, if add()
and sub() are declared as follows

int add(int, int);

and
int sub(int, int);

 the names of these functions, add and sum, are pointers
to those functions. These can be assigned to pointer
variables.

fpointer = add;
fpointer = sub;

7.16.3 Calling a Function using a Function Pointer

In C there are two ways of calling a function using a function
pointer: use the name of the function pointer instead of the
name of the function or explicitly dereference it.

 result1 = fpointer(4, 5);

 result2 = fpointer(6, 2);

The following program illustrates the above facts.

Example

33. int(*fpointer)(int, int);

/* Defi ne a pointer to a function */

 int add(int, int); /* Defi ne a few functions. */

 int sub(int, int);

 int main()
 {
 fpointer = add;

/* Put the address of ‘add’ in ‘fpointer’ */

318 Programming in C

 printf(“%d \n”, fpointer(4, 5));
/* Execute ‘add’ and print results */

 fpointer = sub; /* Repeat for ‘sub’ */
 printf(“%d \n”, fpointer(6, 2));
 return 0;
 }
 int add(int a, int b)
 {
 return(a + b);
 }
 int sub(int a, int b)
 {
 return(a - b);
 }

7.16.4 Passing a Function to another Function

A function pointer can be passed as a function’s calling
argument. The following code shows how to pass a pointer
to a function, which returns a double and takes two double
arguments. Suppose, a computation can be performed with
different functions. Consider

n

k m=
Â f (K)

where in one instance f(K) = xK/K! and in another instance
f(K) = 1/xK.
f(K) = xK/K! can be implemented as follows.

double exp_term(double b, double x)
{
 return(pow(x,b)/fact(b));
}
double fact(double a)
 {
 double f=1.0;
 for(;a>0;a––)
 f*=a;
 return f;
 }

f(K) = 1/xK can be implemented as follows.
double by_term(double b, double x)
{
 return(1/pow(x,b));
}

 Now, the summation function can be implemented as
follows.

double sum(double f(double,double), int m, int n)
{

May be treated as
pointer to a function

 int K;
 double s = 0.0;
 double x;
 printf(“\n ENTER THE VALUE OF x”);
 scanf(“%lf”,&x);
 for(K=m; K<=n;++K)
 s+=f(K,x);
 return s;
}

 When a function appears as an argument, the compiler
interprets it as a pointer. The following is an equivalent
header to the function.

double sum(double(*f)(double), int m, int n)
{
 ... same as above
}

 Here, double(*f)(double) is a pointer to a function that
takes an argument of type double and returns a value of
type double.
 Parentheses is very important as () binds more tightly
than *. If the argument is written as double f(double)
instead of double(f)(double) then it implies that f is
a function that takes an argument of type double and
returns a pointer to a double.
In the body of the sum function, the statement

 s+ = f(K)

can be replaced by
 s+ = (*f)(K)

where the pointer to the function is explicitly dereferenced.
Here,
 f implies the pointer to a function
 *f implies the function itself
 (*f)(K) the call to the function
 Figure 7.11 depicts the meaning of each part in a
function pointer notation.

()()Kf
*

The function
itself

the pointer to a function

call to the
function

Figure 7.11 Meaning of function pointer notation

Pointers in C 319

 Now, what should be the prototype of the functions?
The prototypes of the corresponding functions used here
are given by

double by_term(double); (i)
double exp_term(double); (ii)
double fact(double); (iii)
double sum(double(*f)(double), int, int); (iv)

 There are several equivalent prototype declarations for
the function prototype (iv) that show a function as a formal
parameter.

 double sum(double(*)(double), int, int);
 double sum(doublef(double), int, int);
 double sum(doublef(double x), int m, int n);

 Now, come to the calling statement of the function that
follows.

int main()
{
 printf(“\n SUM OF COMPUTATION 1: %lf:”, sum(exp_

term,0,3));
 printf(“\n SUM OF COMPUTATION 2: %lf”, sum(by_

term,0,4));
 return 0;
}

sum(exp_term, 0, 4) computes the sum of the following
series.

0 1 2 3 4

2 3 4

0! 1! 2! 3! 4!

1
2! 3! 4!

x x x x x
s

x x x
x

= + + + +

= + + + +

sum(by_term, 0, 4) computes the sum of the following
series.

0 1 2 3 4

2 3 4

1 1 1 1 1

1 1 1 1
1

s
x x x x x

x x x x

= + + + +

= + + + +

The following is the complete program.

Example

34. #include <stdio.h>
 #include <math.h>
 double fact(double a)
 {
 double f=1.0;
 for(;a>0;a––)
 f*=a;
 return f;
 }

 double exp_term(double b, double x)
 {
 return(pow(x,b)/fact(b));
 }
 double by_term(double b, double x)
 {
 return(1/pow(x,b));
 }
 double sum(double f(double,double), int m, int n)
 {
 int K;
 double s = 0.0;
 double x;
 printf(“\n ENTER THE VALUE OF x “);
 scanf(“%lf”,&x);
 for(K=m; K<=n;++K)
 s+=f(K,x);
 return s;
 }
 int main()
 {
 printf(“\n SUM OF COMPUTATION 1: %lf:”,

 sum(exp_term,0,3));
 printf(“\n SUM OF COMPUTATION 2: %lf”,

 sum(by_term,0,4));
 return 0;
 }

Output:

ENTER THE VALUE OF x 2
SUM OF COMPUTATION 1:6.333333
ENTER THE VALUE OF x 2
SUM OF COMPUTATION 2:1.937500

7.16.5 How to Return a Function Pointer

It is a little bit tricky but a function pointer can be a
function’s return value. In the following example there are
two solutions of how to return a pointer to a function that
takes two fl oat arguments and returns a fl oat. If anyone
wants to return a pointer to a function all that needs to
be done is to change the defi nitions/declarations of all
function pointers.

 fl oat Add(fl oat a, fl oat b) { return a+b; }
 fl oat Sub(fl oat a, fl oat b) { return a-b; }

 Add and Sub have been defi ned. They return a fl oat and
take two fl oat values. The function takes a char and returns
a pointer to a function that takes two fl oats and returns a
fl oat. <opCode> specifi es which function to return.

320 Programming in C

fl oat(*GetPtr1(char opCode))(fl oat, fl oat)
{
 if(opCode == ‘+’) return &Add;
 if(opCode == ‘-’) return ⋐
}

 A solution using a typedef defi nes a pointer to a function
that takes two fl oat values and returns a fl oat.

typedef fl oat(*ptr2Func)(fl oat, fl oat);

 The function takes a char and returns a function pointer
that is defi ned as a type above. <opCode> specifi es which
function to return.

ptr2Func GetPtr2(char opCode)
{
 if(opCode == ‘+’) return &Add;
 if(opCode == ‘-’) return ⋐
}
void Return_A_Function_Pointer()
{
 printf(“Executing Return_A_Function_Pointer\n”);
 fl oat(*fptr)(fl oat, fl oat);

/* defi ne a function pointer*/
 fptr=GetPtr1(‘+’);/* get function pointer from

function ‘GetPtr1’ */
 printf(“%f \n”,fptr(2, 4));

/* call function using the pointer */
 fptr=GetPtr2(‘-’);/*get function pointer from

function ‘GetPtr2’*/
 printf(“%f \n”,fptr(2, 4));

/* call function using the pointer */
}

7.16.6 Arrays of Function Pointers

As has been seen, there are arrays of pointers to an
int, fl oat, string, and structure. Similarly, an array of
pointers to a function can also be used. Operating with
arrays of function pointers is very interesting. It offers
the possibility of selecting a function using an index. It is
illustrated in the following program.

Example

35. int main()
{
 void(*p[3])(int, int);
 int i;
 void Add(int, int);
 void Sub(int, int);
 void Mul(int, int);
 p[0] = Add;
 p[1] = Sub;
 p[2] = Mul;

 for(i = 0; i <= 2; i++)
 (*p[i])(10, 5);
 return 0;
}
void Add(int a, int b)
{
printf(“\n Result of Addition = %d”,a+b);
}
void Sub(int a, int b)
{
 printf(“\n Result of Subtraction = %d”,a-b);
}
void Mul(int a, int b)
{
 printf(“\n Result of Multiplication = %d”,a*b);
}

7.17 DYNAMIC MEMORY ALLOCATION
A problem with many simple programs such as those written
so far is that they tend to use fi xed-size arrays, which may or
may not be big enough. There are more problems of using
arrays. Firstly, there is the possibility of overfl ow since C
does not check array bounds. Secondly, there is wastage of
space—if an array of 100 elements is declared and a few
are used, it leads to wastage of memory space.
 How can the restrictions of fi xed-size arrays be avoided?
The answer is dynamic memory allocation. It is the
required memory that is allocated at run-time (at the time
of execution). Where fi xed arrays are used, static memory
allocation, or memory allocated at compile time, is used.
Dynamic memory allocation is a way to defer the decision
of how much memory is necessary until the program is
actually running, or give back memory that the program
no longer needs.
 The area from where the application gets dynamic
memory is called heap. The heap starts at the end of the
data segment and grows against the bottom of the stack. If
both meet, the program is in trouble and will be terminated
by the operating system. Thus, C gives programmers
the standard sort of facilities to allocate and de-allocate
dynamic heap memory. These will be discussed here.
Static memory allocation The compiler allocates the re-
quired memory space for a declared variable. By using the
address of operator, the reserved address is obtained that may
be assigned to a pointer variable. Since most declared vari-
ables have static memory, this way of assigning pointer value
to a pointer variable is known as static memory allocation.
 Dynamic memory allocation A dynamic memory alloca-
tion uses functions such as malloc() or calloc() to get
memory dynamically. If these functions are used to get

Pointers in C 321

memory dynamically and the values returned by these
functions are assigned to pointer variables, such assign-
ments are known as dynamic memory allocation. Memory
is assigned during run-time.
 C provides access to the heap features through library
functions that any C code can call. The prototypes for
these functions are in the fi le <stdlib.h>. So any code
which wants to call these must #include that header fi le.
The four functions of interest are as follows:
 void* malloc(size_t size): Request a contiguous

block of memory of the given size in the heap.
 malloc() returns a pointer to the heap block or
NULL if the request is not satisfi ed. The type size_t
is essentially an unsigned long that indicates how
large a block the caller would like measured in bytes.
Because the block pointer returned by malloc() is
a void * (i.e., it makes no claim about the type of
its pointee), a cast will probably be required when
storing the void pointer into a regular typed pointer.

 calloc(): works like malloc, but initializes the
memory to zero if possible. The prototype is

 void * calloc(size_t count, size_t eltsize)

 This function allocates a block long enough to contain
an array of count elements, each of size eltsize. Its
contents are cleared to zero before calloc returns.

 void free(void* block): free() takes a pointer to a
heap block earlier allocated by malloc() and returns
that block to the heap for reuse. After the free(),
the client should not access any part of the block or
assume that the block is valid memory. The block
should not be freed a second time.

 void* realloc(void* block, size_t size): Take
an existing heap block and try to reallocate it to a
heap block of the given size which may be larger or
smaller than the original size of the block. It returns
a pointer to the new block, or NULL if the reallocation
was unsuccessful. Remember to catch and examine
the return value of realloc(). It is a common error to
continue to use the old block pointer. realloc() takes
care of moving the bytes from the old block to the new
block. realloc() exists because it can be implemented
using low-level features that make it more effi cient
than the C code a programmer could write.

 To use these functions, either stdlib.h or alloc.h must
be included as these functions are declared in these header
fi les.

Points to Note
All of a program’s memory is de-allocated automatically
when it exits. So a program only needs to use free()
during execution if it is important for the program to recycle
its memory while it runs, typically because it uses a lot of
memory or because it runs for a long time. The pointer
passed to free() must be the same pointer that was
originally returned by malloc() or realloc(), not just a
pointer into somewhere within the heap block.

 Let us discuss the functions and their use in detail. Note
that if suffi cient memory is not available, the malloc returns
a NULL. Because malloc can return NULL instead of a usable
pointer, the code should always check the return value of
malloc to see whether it was successful. If it was not, and
the program dereferences the resulting NULL pointer, the
program will crash. A call to malloc, with an error check,
typically looks something like this.

int *ip;
*ip =(int *) malloc(sizeof(int));
if(ip == NULL)
{
 printf(“out of memory\n”);
 exit(0); /* ‘return’ may be used*/
}

About exit() In the previous example there was a case in
which we could not allocate memory. In such cases it is
often best to write an error message, and exit the program.
The exit() function will stop the program, clean up any
memory used, and will close any fi les that were open at
the time.

#include <stdlib.h>
void exit(int status);

 Note that we need to include stdlib.h to use this
function.
 When memory is allocated, the allocating function
(such as malloc() and calloc()) returns a pointer. The
type of this pointer depends on whether one using an older
K&R compiler or the newer ANSI type compiler. With the
older compiler, the type of the returned pointer is char;
with the ANSI compiler it is void.
 malloc() returns a void pointer (because it does not
matter to malloc what type this memory will be used
for) that needs to be cast to one of the appropriate types.
The expression (int*) in front of malloc is called a ‘cast
expression’.

322 Programming in C

Although this is not mandatory in ANSI/ISO C, but it is
recommended for portability of the code. Because many
compilers yet fully compliant with the standard. The
following program illustrates malloc() in action.

Example

36. #include <stdlib.h>
 #include <stdio.h>
 int main()
 {
 int * ip;
 double * dp;
 fl oat * fp1;
 fl oat * fp2;
 ip = (int *) malloc(sizeof(int));
 if(ip == NULL)
 {
 printf(“out of memory\n”);
 exit(-1);
 }
 dp =(double *) malloc(sizeof(double));
 if(dp == NULL)
 {
 printf(“out of memory\n”);
 exit(-1);
 }
 fp1 =(fl oat *) malloc(sizeof(fl oat));
 if(fp1 == NULL)
 {
 printf(“out of memory\n”);
 exit(-1);
 }
 fp2 = (fl oat *) malloc(sizeof(fl oat));
 if(fp2 == NULL)
 {
 printf(“out of memory\n”);
 exit(-1);
 }
 *ip = 42;
 *dp = 3.1415926;
 *fp1 = -1.2;
 *fp2 = 0.34;
 printf(“ip: address %d; contents %d\n”, (int)ip, *ip);
 printf(“dp: address %d; contents %f\n”, (int)dp, *dp);
 printf(“fp1: address %d; contents %f\n”, (int)

fp1, *fp1);
 printf(“fp2: address %d; contents %f\n”, (int

fp2, *fp2);
 return 0;
 }

Output:
ip: address 133792; contents 42

dp: address 133808; contents 3.141593

fp1: address 133824; contents -1.200000

fp2: address 133840; contents 0.340000

 This program declares a number of pointer variables,
calls malloc to allocate memory for their contents, stores
values into them, and then prints out the addresses that were
allocated and the values that were stored there. The size of
the memory to be allocated must be specifi ed in bytes as
an argument to malloc(). Since the memory required for
different objects is implementation-dependent, the best
way to specify the size is to use the sizeof operator. Recall
that the sizeof operator returns the size of the operand in
bytes.
 The example above is useless because in each case
enough memory is allocated for exactly one object with
each call to malloc(). Dynamic memory allocation is
really needed when the amount of memory to be allocated
will not be known until the program is run. For example,
it will be determined on the basis of responses from a user
of the program.
 The malloc() has one potential error. If malloc() is called
with zero size, the result is unpredictable. It may return a
NULL pointer or it may return some other implementation
dependent value. We should never call malloc() with zero
size.

Points to Note

 • In dynamic memory allocation, memory is allocated at
runtime from heap.

 • According to ANSI compiler, the block pointer returned
by allocating function is a void pointer.

 • If suffi cient memory is not available, the malloc()and
calloc() returns a NULL.

 • According to ANSI compiler, a cast on the void pointer
returned by malloc() is not required.

 • calloc() initializes all the bits in the allocated space set
to zero where as malloc() does not do this. A call to
calloc() is equivalent to a call to malloc() followed by
one to memset(). calloc(m, n) is essentially equivalent
to p = malloc(m * n); memset(p, 0, m * n);

 • When dynamically allocated, arrays are no longer
needed, it is recommended to free them immediately.

Pointers in C 323

7.17.1 Dynamic Allocation of Arrays

To allocate a one-dimensional array of length N of some
particular type where N is given by the user, simply use
malloc() to allocate enough memory to hold N elements
of the particular type, and then use the resulting pointer
as if it were an array. The following program will create
an array of N elements, where the value of N is given by
the user, and then print the sum of all the elements of the
array.

Example

37. #include <stdio.h>
 #include <stdlib.h>
 int main()
 {
 int N,*a,i,s=0;

 printf(“\n enter no. of elements of the array:”);
 scanf(“%d”,&N);
 a=(int *)malloc(N*sizeof(int));
 if(a==NULL)
 {
 printf(“\n memory allocation unsuccessful...”);
 exit(0);
 }
 printf(“\n enter the array elements one by one”);
 for(i=0; i<N;++i)
 {
 scanf(“%d”,&a[i])); /* equivalent statement

 scanf(“%d”,(a+i));*/
 s+=a[i];
 }
 printf(“\n sum is %d ”,s);
 return 0;
}

 Here is a function that allocates memory and then
prints out the values that happen to be stored there without
initializing them.

void show()
{
 fl oat *fp;
 int i;
 fp = (fl oat *) malloc(10 * sizeof(fl oat));
 if(fp == NULL)
 {
 printf(“\nout of memory\n”);
 exit(0);
 }
 for(i = 0; i < 10; i++)
 printf(“%f\n”, fp[i]);
}

 Upon being run, this program gives different results
at different times depending on who else is using the
computer and how much memory they are using. Usually
it just prints out all zeros, but every once in a while it prints
something like the following.

4334128524874197894168576.000000
0.000000
184955782229502459904.000000
17882566491775977254553649152.000000
76823376945293474156251822686208.000000
757781365851288653266944.000000
73563871150448510975409030955008.000000
75653519981391330952584626176.000000
71220705399418838035166396416.000000
4258569508226778963902464.000000

 What happened was that there were non-zero values in
the memory that were allocated, and the printf function
tried to interpret those values as fl oating point numbers.
Maybe they were fl oating point numbers, but they could
have been characters, integers, pointers, or anything else.
 It is a good idea to initialize the memory returned
by malloc(). The reason is that the memory may not be
‘clean’—it may have been recently used by some other
program, and the values stored there might or might not
make sense if interpreted as the type of object we expect
to be there (in this case, as fl oating point numbers).
Sometimes there will be zeros. Sometimes, odd values.
Sometimes, the values will be so weird that the processor
will detect what is called a ‘bus error’, and will dump core.
If the memory is initialized to contain legitimate values of
the appropriate type, this will not happen.
 Here is a useful program that creates an array that can
hold fl oating point numbers.

fl oat * make_fl oat_array(int size)

{

 int i;

 fl oat *fa;

 fa = (fl oat *) malloc(size * sizeof(fl oat));

 if(fa == NULL)

 {

 printf(“out of memory\n”);

 exit(0);

 }

 for(i = 0; i < size; i++)

 fa[i] = 0.0;

 return(fa);

}

324 Programming in C

 Another way is to use calloc() that allocates memory
and clears it to zero. It is declared in stdlib.h.

 void * calloc(size_t count, size_t eltsize)

 This function allocates a block long enough to contain a
vector of count elements, each of size eltsize. Its contents
are cleared to zero before calloc returns. The sum of all N
elements of an array that uses dynamic memory allocation
through malloc() function can be written as follows.

Example

38. #include <stdio.h>
 #include <stdlib.h>

 int main()

 {

 int N,*a,i,s=0;

 printf(“\n enter the number of elements of the
array:”);

 scanf(“%d”,&N);

 a=(int *)calloc(N,sizeof(int));

 if(a==NULL)

 {

 printf(“\n memory allocation unsuccessful...”);

 exit(0);

 }

 printf(“\n enter the array elements one by one”);

 for(i=0; i<N;++i)

 {

 scanf(“%d”,(a+i));

 s+=a[i];

 }

 printf(“\n sum is %d ”,s);

 return 0;

}

calloc() can be defi ned using malloc() as follows.
void * calloc(size_t count, size_t eltsize)

{

 size_t size = count * eltsize;

 void *value = malloc(size);

 if(value != 0)

 memset(value, 0, size);

 return value;

}

 But in general, it is not necessary that calloc() calls
malloc() internally. memset sets n bytes of s to byte c where
its prototype is given by

 void *memset(void *s, int c, size_t n);

memset also sets the fi rst n bytes of the array s to the
character c. The following program illustrates the use of
the memset function.

Example

39. #include <string.h>
 #include <stdio.h>

 #include <mem.h>

 int main(void)

 {

 char b[] = “Hello world\n”;

 printf(“b before memset: %s\n”, b);

 memset(b, ‘*’, strlen(b) - 1);

 printf(“b after memset: %s\n”, b);

 return 0;

}

Output:
 b before memset: Hello world
 b after memset: ***********

 The malloc() function has one potential error. If malloc()
is called with a zero size, the results are unpredictable. It
may return some other pointer or it may return some other
implementation-dependent value. It is recommended that
malloc() never be called with a size zero.
 Some programmers like to replace malloc() as
follows.

#include <stdlib.h>
void *safe_malloc(size_t, char *);

Now the function defi nition would be as follows.
/* Error checking malloc function*/

void *safe_malloc(size_t size, char *location)

{

 void *ptr;

 ptr= malloc(size);

 if(ptr == NULL) {

 fprintf(stderr,“Out of memory at function:\
%s\n”,location);

 exit(-1);

 }

 return ptr;

}

 This function can then be called like a normal malloc()
but will automatically check memory as follows.

Pointers in C 325
void get_n_ints(int n)
{
 int *array;
 array= (int *) safe_malloc (n * sizeof(int),

“get_n_ints()”); . . .
}

Points to Note

Regarding size_t type in the declaration of safe_malloc,
it is a type declared in stdlib.h that holds memory sizes
used by memory allocation functions. It is the type returned
by the sizeof operation.

 A fi nal point worth mentioning related to safe_malloc()
is the special variables __LINE__ and __FILE__ that are used
to indicate a line number and a fi le name. They are put in
by the pre-processor and are replaced by, respectively, an
int that is the line number where the __LINE__ tag occurs
and a string which is the name of the fi le. A commonly
used version is as follows.

#include <stdlib.h>
void *safe_malloc(size_t);
/* Error trapping malloc wrapper */
void *safe_malloc(size_t size)
/* Allocate memory or print an error and exit */
{
 void *ptr;
 ptr= malloc(size);
 if(ptr == NULL) {
 fprintf(stderr, “Out of memory at line %d fi le\

%s\n”, __LINE__, __FILE__);
 exit(-1);
 }
 return ptr;
}

Points to Note

 • malloc() requires two parameters, the fi rst for the
number of elements to be allocated and the second for
the size of each element, whereas calloc() requires
one parameters.

 • calloc() initializes all the bits in the allocated space
set to zero whereas malloc() does not do this. A call
to calloc() is equivalent to a call to malloc() followed
by one to memset().

 • calloc(m, n) is essentially equivalent to p = malloc(m
* n); memset(p, 0, m * n);

 • If malloc() is called with a zero size, the results are
unpredictable. It may return some other pointer or it may
return some other implementation-dependent value.

 How much amount of memory that the compiler’s
implementation of malloc() can allocate at one time? The
argument to malloc() is of type size_t so the integer type
that corresponds to size_t will limit the number of bytes
you can specify. If size_t corresponds to a 4-byte unsigned
integer, you will be able to allocate up to 4,294,967,295
bytes at one time.

7.17.2 Freeing Memory

Memory allocated with malloc() does not automatically
get de-allocated when a function returns, as automatic-
duration variables do, but it does not have to remain for
the entire duration of the program, either.
 In fact, many programs such as the preceding one use
memory on a transient basis. They allocate some memory,
use it for a while, but then reach a point where they do
not need that particular piece any more (when function or
main() fi nishes). Because memory is not inexhaustible,
it is a good idea to de-allocate (that is, release or free)
memory that is no longer being used.
 Dynamically allocated memory is de-allocated with the
free function. If p contains a pointer previously returned
by malloc(), a call such as

free(p);

will ‘give the memory back’ to the stock of memory
(sometimes called the ‘arena’ or ‘pool’) from which malloc
requests are satisfi ed. When the allocated memory is de-
allocated with the free() function, it returns the memory
block to the ‘free list’ within the heap.
 When thinking about malloc, free, and dynamically-
allocated memory in general, remember again the
distinction between a pointer and what it points to. If
we call malloc() to allocate some memory, and store the
pointer which malloc gives us in a local pointer variable,
what happens when the function containing the local
pointer variable returns? If the local pointer variable
has automatic duration (which is the default, unless the
variable is declared static), it will disappear when the
function returns. But for the pointer variable to disappear
says nothing about the memory pointed to. That memory
still exists and, as far as malloc() and free() are concerned,
is still allocated. The only thing that has disappeared is
the pointer variable we had which pointed at the allocated
memory. Furthermore, if it contained the only copy of the
pointer we had, once it disappears, we will have no way of
freeing the memory, and no way of using it, either. Using
memory and freeing memory both require that we have at
least one pointer to the memory.

326 Programming in C

 Look at the following program that is similar to the
programs written earlier but differs only in the use of
free().

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
 int *array;
 int size = 1;
 int i;
 printf(“Enter the number of values:”);
 scanf(“%d”, &size);
 array = (int *)calloc(size, sizeof(int));
 for(i=0; i<size; i++) {
 printf(“Please enter value #%d: ”, i+1);
 scanf(“%d”, array+i);
 }
for(i=0; i<size; i++) {
printf(“Value #%d is: %d\n”, i+1, array[i]);
 }
free(array);
return 0;
}

 Naturally, once some memory has been freed, it must
not be used any more. After calling

free(p);

it is probably the case that p still points at the same memory.
However, since it has been given back, it is now available,
and a later call to malloc() might give that memory to
some other part of the program. If the variable p is a global
variable or will otherwise stick around for a while, one
good way to record the fact that it is not to be used any
more would be to set it to a null pointer.

free(p);
p = NULL;

 Now the question is why NULL should be assigned to
the pointer after freeing it. This is paranoid based on long
experience. After a pointer has been freed, the pointed-to
data can no longer be used. The pointer is said to be a
dangling pointer; it does not point at anything useful. If a
pointer is ‘NULL out’ or ‘zero out’ immediately after freeing
it, the program can no longer get in trouble by using that
pointer. Also, there still might be copies of the pointer that
refer to the memory that has been de-allocated; that is the
nature of C. Zeroing out pointers after freeing them will
not solve all problems.

 malloc() and calloc() can also be used in a similar
way with strings.

include <stdio.h>
#include <alloc.h>
#include <string.h>
int main(void)
{
 char *str = NULL;
 /* allocate memory for string */
 str = (char *)calloc(10, sizeof(char));
 /* copy “Hello” into string */
 strcpy(str, “Hello”);
 /* display string */
 printf(“String is %s\n”, str);
 /* free memory */
 free(str);
 str=NULL;
 return 0;
}

How malloc() and free() work Some steps from a typical
malloc() call will show how much work is performed
here.
 A program does request memory from the heap with

 int* ptr = (int*) malloc(1024 * sizeof(int));

 It expects a pointer back that points to a newly
allocated area on the heap that is at least big enough
to hold 1024 integer values, no matter how big an
integer on this platform is. If the program would ask
for (1024 * 2) bytes, it would assume 16-bit integer
values and would not be portable to other hardware.

 The malloc() function is part of the C run-time library.
It will now check the current status of free memory
on the heap. It needs to fi nd a piece of memory big
enough for 1024 integers. Once it fi nds it, it will be
returned to the application. What could be simpler?

 The reason for malloc() being a very expensive call
has many facets. First, fi nding the proper area needs a
clever memory organization by malloc() so that it will
fi nd those pieces fast. Remember, malloc() does not know
how much memory will be requested. The next problem
appears when the current heap size becomes too small.
The operating system allocates physical memory and
maps it into the process address space that belongs to the
heap. Frequent allocations are expensive if done in small
sizes, but how should malloc() know? And lastly, when
the memory is returned, malloc() has to try to reduce

Pointers in C 327

fragmentation of memory space. Otherwise it will not fi nd
a piece of memory big enough to satisfy a request even
though enough small pieces would be available.

7.17.3 Reallocating Memory Blocks

Sometimes it is not known at fi rst how much memory is
needed. For example, if a series of items entered by the
user has to be stored, the only way to know how many
they are totally depends on the user input. Here malloc()
will not work. It is the realloc() function that is required.
For example, to point ip variable from an earlier example
in Section 7.17 at 200 ints instead of 100, try calling

ip = realloc(ip, 200 * sizeof(int));

 Since each block of dynamically allocated memory
needs to be contiguous (so that one can treat it as if it were
an array), it may be a case where realloc cannot make
the old block of memory bigger ‘in place’, but has to
reallocate it elsewhere to fi nd enough contiguous space for
the new requested size. realloc() does this by returning a
new pointer. If realloc() was able to make the old block
of memory bigger, it returns the same pointer. If realloc()
has to go elsewhere to get enough contiguous memory, it
returns a pointer to the new memory after copying the old
data there. (In this case, after it makes the copy, it frees
the old block.) Finally, if realloc() cannot fi nd enough
memory to satisfy the new request at all, it returns a NULL.
Therefore, usually the old pointer is not overwritten with
realloc()’s return value until it has been tested to make
sure it is not a null pointer.

int *np;

np = (int *)realloc(ip, 200 * sizeof(int));

if(np != NULL)

 ip = np;

else {

 printf(“out of memory\n”);

 exit(0);

 }

 If realloc() returns something other than a null pointer,
then memory reallocation has succeeded and ip might be
set to what it returned. If realloc() returns a null pointer,
however, the old pointer ip still points at the original 100
values.
 Putting all this together, here is a program that reads a
series of numbers from the user and stores each integer in
a dynamically allocated array and prints the sum.

Example

40. #include <stdio.h>
 #include <stdlib.h>

 int main()

 {

 int N,*a,*np,i,s=0;

 char ans=‘Y’;

 printf(“\n Enter no. of elements of the array:”);

 scanf(“%d”,&N);

 a=(int *)malloc(N*sizeof(int));

 if(a==NULL)

 {

 printf(“\n memory allocation unsuccessful”);

 exit(0);

 }

 i=0;

 while(toupper(ans)==‘Y’)

 {

 if(i >= N)

 { /* increase allocation */

 N *=2;

 np =(int *)realloc(a,N*sizeof(int));

 if(np == NULL)

 {

 printf(“out of memory\n”);

 exit(1);

 }

 a = np;

 }

 printf(“\n Enter the number ...”);

 scanf(“%d”,&a[i]);

 s+=a[i];

 i++;

 printf(“\n Do U 12 Continue(y/n)?...”);

 ffl ush(stdin);

 scanf(“%c”, &ans)

 }

 N=i;

 printf(“\n THE NUMBERS ARE:...\n”);

 for(i=0;i<N;++i)

 printf(“\n%d”,a[i]);

 printf(“\n Sum is %d”,s);

 return 0;

}

328 Programming in C

 Two different variables are used here to keep track of
the ‘array’ pointed to by a. N represents how many elements
have been allocated, and i how many of them are in use.
Whenever another item is about to store in the array, if
i>=N, the old array is full, and it is time to call realloc()
to make it bigger.

7.17.4 Implementing Multidimensional Arrays
using Pointers

It is usually best to allocate an array of pointers, and then
initialize each pointer to a dynamically allocated ‘row’.
Here is an example.

Example

41. #include <stdlib.h>
 #include <stdio.h>
 #defi ne ROW 5
 #defi ne COL 5
 int main()
 {

 int **arr,i,j;
 arr=(int **)malloc(ROW*sizeof(int *));
 if(!arr)

 {
 printf(“out of memory\n”);
 exit(EXIT_FAILURE);

 }
 for(i=0;i<ROW;i++)

 {

 arr[i]=(int *)malloc(sizeof(int)*COL);

 if(!arr[i])

 {

 printf(“out of memory\n”);

 exit(EXIT_FAILURE);

 }

 }
 printf(“\n Enter the Elements of the matrix\n”);
 for(i=0;i<ROW;++i)
 for(j=0;j<COL;++j)
 scanf(“%d”,&arr[i][j]);
 printf(“\n The matrix Is as follows...\n”);
 for(i=0;i<ROW;++i)
 {
 printf(“\n”);
 for(j=0;j<COL;++j)
 printf(“%d\t”,arr[i][j]);
 }

 return 0;

}

 With exit(), status is provided for the calling process
as the exit status of the process.
 Typically a value of 0 indicates a normal exit and a non-
zero value indicates some error.
 The following exit status can be used.

Table 7.6 exit() status

Status Indicates

EXIT_SUCCESS Normal program termination

EXIT_FAILURE Abnormal program termination. Signal to
operating system that program has terminated
with an error

arr is a pointer-to-pointer-to-int. At the fi rst level, it points
to a block of pointers, one for each row. That fi rst-level
pointer is the fi rst one that is allocated; it has row elements,
with each element big enough to hold a pointer-to-int, or
int *. If it is successfully allocated, then the pointers (all
row of them) are fi lled in with a pointer (obtained from
malloc) to col number of ints, the storage for that row of
the array. If this is not quite making sense, a picture should
make everything clear:

arr

 If the double indirection implied by the above schemes
is for some reason unacceptable, a two-dimensional array
with a single, dynamically allocated one-dimensional
array can be simulated.

int *arr = (int *)malloc(nrows * ncolumns * sizeof(int));

 An appropriate block of memory is fi rst allocated for the
two-dimensional array size desired. Since array storage in
C is in row major form, the block is treated as a sequence
of rows with the desired number of columns. The pointer
to the allocated block is a pointer to the base type of the
array; therefore, it must be incremented to access the next
column in a given row. It must also be incremented to
move from the last column of a row to the fi rst column of
the next row.
 The following program asks the user to specify the
number of rows and columns for a two-dimensional
array. It then dynamically allocates a block of memory to
accommodate the array. The block is then treated as a two-

Pointers in C 329

dimensional array with the specifi ed rows and columns.
Data is read into the array, and then the array is printed.

Example

42. #include <stdlib.h>
 #include <stdio.h>

 void getdata(int *,int, int);

 void showdata(int *,int,int);

 int main()

 {

 int row, col;

 int *a;

 printf(“\n ENTER THE NUMBER OF ROWS:”);

 scanf(“%d”,&row);

 printf(“\n ENTER THE NUMBER OF COLUMNS:”);

 scanf(“%d”,&col);

 a=(int *)malloc(row*col*sizeof(int));

 getdata(a,row,col);

 showdata(a,row,col);

 free(a);

 a=NULL:

 return 0;

 }

 void getdata(int *p,int r, int c)

 {

 int i,j;

 printf(“\n Enter the Numbers one by one....\n”);

 for(i=0;i<r;++i)

 for(j=0;j<c;++j)

 {

 scanf(“%d”,p);

 p++;

 }

 }

 void showdata(int *p,int r,int c)

 {

 int i,j;

 printf(“\n the MATRIX is as follows....\n”);

 for(i=0;i<r;++i)

 {

 printf(“\n”);

 for(j=0;j<c;++j)

 {

 printf(“\t %d”,*p);

 p++;

 }

 }

 }

 The array’s contents can be kept contiguous with the
explicit pointer arithmetic.

int **arr = (int **)malloc(nrows * sizeof(int *));
arr[0] = (int *)malloc(nrows * ncolumns * sizeof(int));
for(i = 1; i < nrows; i++)
 arr[i] = arr[0] + i * ncolumns;

 In either case, the elements of the dynamic array can be
accessed with normal-looking array subscripts: arr[i][j]
(for 0 <= i < nrows and 0 <= j < ncolumns). Here is the
program.

Example

43. #include <stdlib.h>
 #include <stdio.h>
 #defi ne ROW 5
 #defi ne COL 5
 int main()

 {
 int **arr;
 arr= (int **) malloc(ROW * sizeof(int *));
 if(!arr)
 {
 printf(“out of memory\n”);
 exit(EXIT_FAILURE);
 }
 arr[0] = (int *)malloc(ROW *COL* sizeof(int));
 if(!arr[0])
 {
 printf(“out of memory\n”);
 exit(EXIT_FAILURE);
 }
 for(int i=1; i < ROW; i++)
 arr[i] = arr[0] + i * COL;
 return 0;
}

 One way of dealing with the problem is through the use
of the typedef keyword. Consider the following program.

#include <stdio.h>
#include <stdlib.h>
#defi ne COLS 5
typedef int RowArray[COLS];
RowArray *rptr;
int main(void)
{
 int nrows = 10;
 int r, c;
 rptr = malloc(nrows * COLS * sizeof(int));

330 Programming in C

 for(r = 0; r < nrows; r++)
 {
 for(c = 0; c < COLS; c++)
 {
 rptr[r][c] = 0;
 }
 }
 return 0;
}

 Here it has been assumed that an ANSI compiler
has been used, so a cast on the void pointer returned by
malloc() is not required. If an older K&R compiler is
being used, it will have to cast using

rptr = (RowArray *)malloc(...);

 Using this approach, rptr has all the characteristics of
an array name, (except that rptr is modifi able), and array
notation may be used throughout the rest of the program.
That also means a function has to be written to modify the
array contents, COLS must be used as a part of the formal
parameter in that function, as was done when discussing
the passing of two-dimensional arrays to a function.
 In the above method, rptr turned out to be a pointer to
type ‘one-dimensional array of COLS integers’. It turns out
that there is a syntax that can be used for this type without
the need of typedef. If the following is written

int(*ptr)[COLS];

the variable ptr will have the same characteristics as the
variable rptr in the method above, and it is not necessary
to use the typedef keyword. Here ptr is a pointer to an
array of integers and the size of that array is given by
the #defi ned COLS. The parentheses placement makes
the pointer notation predominate, even though the array
notation has higher precedence. That is, if it is written
as

int *ptr[COLS];

it implies that ptr is an array of pointers holding the
number of pointers equal to that #defi ned by COLS. That is
not the same thing at all. However, arrays of pointers have
their use in the dynamic allocation of two-dimensional
arrays. Consider the following program, which creates an
array of strings through dynamic memory allocation and
sorts the strings alphabetically and also uses pointer to
a pointer in swapping by the bubble sort method. Here,
instead of swapping the strings, their base addresses are
exchanged.

Example

44. #include <stdio.h>
 #include <stdlib.h>
 #defi ne COLS 25
 int main()
 {
 char word[50];
 char *w[cols];
 for(i=0; i<COLS; ++i)
 {
 scanf(“%s”,word);
 w[i]=(char *)calloc(strlen(word)+1, sizeof(char));
 strcpy(w[i],word);
 }
 n=i;

 sort_words(w,n);

 return 0;

 }

 void sort_words(char *a[], int n)

 {

 int i,j;

 for(i=0;i<n-1;++i)

 for(j=i+1;j<n;++j)

 if(strcmpi(a[i],a[j])>0)

 swap(&a[i],&a[j]);

 }

 void swap(char **p, char**q)

 {

 char *tmp;

 tmp=*p;

 *p=*q;

 *q=tmp;
}

 In the swap() function, the formal parameters are pointer
to a pointer. So it is called with addresses of the successive
strings.
 With all of these techniques, it is necessary to remember
to free the arrays which may take several steps as follows;
when they are no longer needed, and one cannot necessarily
intermix dynamically allocated arrays with conventional,
statically allocated ones, it is recommended to free them
immediately.

 int i, **a;

 for(i=m;i>=0;++i)

 free(a[i]);

 free(a);

Pointers in C 331

 Here, m is the number of rows of the dynamically
allocated two-dimensional array.
 All of the above techniques can also be extended to
three or more dimensions. As before, it is assumed that the
variable is defi ned as

 int ***array;

and we want the dimensions to be 10*20*30. All of the
following subscripts could be done for an arbitrary i,j,k,
which is closer to what is needed.
 First, we need an array of 10 int **s, so we use the
following.

array = (int ***) malloc(10 * sizeof(int **));

 The sizeof function returns an integer indicating how
many bytes are needed by something of type int**, and
we need 10 of them. The (int ***) is a cast which changes
the pointer type from char * to int *** to keep the types
correct. Do not forget that after this call to malloc, one
should check to see if array==NULL.
 Now that there are 10 pointers, the next level of pointers
can be obtained with the following code:

for(i = 0; i < 10; ++i) {
 array[i] = (int **) malloc(20 * sizeof(int *));
}

 And fi nally, each of these pointers can be fi lled with an
array of 30 integers.

for(i = 0; i < 10; ++i) {
 for(j = 0; j < 20; ++j) {
 array[i][j] = (int *) malloc(30 * sizeof(int));
}
}

 Again, remember that each call to malloc() must check
the result. Also note that the preceding two steps can be
put together, fi lling each set of 20 pointers. It is much more
effi cient to combine all similar allocations and divide the
memory after getting it.
 Arrays of buffers can also be allocated from the heap.
This allows for a dynamically allocated two-dimensional
array.

Example

45. #include <stdio.h>
 #include <stdlib.h>
 int main()
 {
 char **buf;
 int height, width, i, j;

 printf(“\nEnter number of lines:”);
 scanf(“%d”, &height);
 ffl ush(stdin);
 printf(“\nEnter width of lines:”);
 scanf(“%d”, &width);
 ffl ush(stdin);
 buf = (char **)malloc(height * sizeof(char *));
 if(buf == (char **)NULL)
 {
 fprintf(stderr, “\nCannot Allocate a Space\n”);
 return 1;
 }
 for(i = 0; i < height; ++i)
 {

 buf[i] = (char *)malloc(width);

 if(buf[i] == (char *)NULL)

 {

 fprintf(stderr,“\nCannot allocate text space.\n”);

 ––i;

 while(i >= 0)

 {

 free(buf[i]);

 ––i;

 }

 free(buf);

 return 1;

 }

 }

 for(i = 0; i < height; ++i)

 {

 printf(“\nEnter text:”);

 gets(buf[i]);

 }

 printf(“\n\n\n\n\n”);

 for(i = 0; i < height; ++i)

 printf(“%s\n”,buf[i]);

 for(i = 0; i < height; ++i)

 free(buf[i]);

 free(buf);

 return 0;

}

7.18 OFFSETTING A POINTER
In mathematics, the subscript for vectors and matrices
starts at 1 instead of 0. There are several ways to achieve
it.

332 Programming in C

 In vector (one-dimensional array), the following may
be done.

double *allot_space(int n)
{
 double *v;
 v=(double *)(n, sizeof(double));
 return(v-1);
}
main()
{
 int n;
 double *a;
 a=allot_space(n);
 ...
 ...
 ...
}

 Actually what is done here is that the following code
segment replaces the function allot_space().

v=(double*)calloc(n, sizeof(double));
——v;

 The following memory diagram may clarify the
preceding program statements.

. . .
0 1 2

 Here a[0] should not be accessed, neither written to nor
read. For de-allocating the memory space, the following
statement should be used.

 free(a+1);

For matrix, i.e., a two-dimensional array,
double **get_matrix_space(int m, int n)

{

 int i;

 double **a;

 a=(double **)calloc(m, sizeof(double*));

 ––a;

 for(i=1;i<=m;++i)

 {

 a[i]=(double *)calloc(n, sizeof(double));

 ––a[i];

 }

 return a;

}

The main() function will be as follows.
int main()
{
 int **v;
 int r,c;
 ...
 ...
 ...
 v=get_matrix_space(r,c);
 ...
 ...
 ...
 release_space(v,r);
 return 0;

}

 The memory allocation can be depicted as follows.

.
.

.

 De-allocating of memory space for the above matrix
should be through the release_space() function that takes
one parameter number of rows.

void release_space(double **a, int m)
{
 int i;
 for(i=1;i<=m;++i)
 free(a[i]+1);
 free(a+1);
}

 There is another way to achieve the above by allocating
all the memory at once. Here the pointer that is used to
allocate memory would have to be offset. The get_matrix_
space() function can be rewritten as follows.

double **get_matrix_space(int m, int n)

{

 int i;

 double *p;

 double **a;

 p=(double *)malloc(m*n*sizeof(double));

 a=(double **)malloc(m*sizeof(double *));

 ––a; /*offset the pointer*/

}

Pointers in C 333
void release_space(double **a)
{
 double *p;
 p=(double *)a[1]+1;
 free(p);
}

7.19 MEMORY LEAK AND MEMORY CORRUPTION
A memory leak occurs when a dynamically allocated area
of memory is not released or when no longer needed. In
C, there are two common coding errors that can cause
memory leaks.
 Firstly, an area can be allocated but, under certain
circumstances, the control path bypasses the code that
frees the area. This is particularly likely to occur if the
allocation and release are handled in different functions or
even in different source fi les.
 Secondly, the address of an area can be stored in a
variable (of pointer data type) and then the address of
another area stored in the same variable without releasing
the area referred to the fi rst time. The original address
has now been overwritten and is completely lost. In a
reasonably well-structured program, the second type
are usually the harder to fi nd. In some programming
languages and environments, special facilities known as
garbage collectors are available to track down and release
unreferenced dynamically allocated blocks. But it should
be noted that automatic garbage collection is not available
in C. It is the programmer’s responsibility to deallocate the
memory that was allocated through the use of malloc() or
calloc(). The following sample codes will cause memory
leak.

...
char *oldString = “Old String”;
char newString;
strcpy(newString, oldString);
...
free(newString);

 Memory leaks are another undesirable result when a
function is written as follows.

void my_function(void)
{
 int *a;
 a=(int *)malloc(100*sizeof(int));
 /* Do something with a*/
 /* forgot to free a */
}

 This function is tested and it will do everything it is
meant to. The only problem is that every time this function
is called, it allocates a small bit of memory and never gives
it back. If this function is called a few times, all will be fi ne
and the difference will not be noticed. On the other hand, if
it is called often, then it will gradually eat all the memory in
the computer. Even if this routine is only called rarely but
the program runs for a long time, it will eventually crash
the computer. This can also be an extremely frustrating
problem to debug.
 Dangling pointer In C, a pointer may be used to hold
the address of dynamically allocated memory. After this
memory is freed with the free() function (in C), the
pointer itself will still contain the address of the released
block. This is referred to as a dangling pointer. Using
the pointer in this state is a serious programming error.
Pointers should be assigned 0, or NULL in C after freeing
memory to avoid this bug.
 If the pointer is reassigned a new value before being
freed, it will lead to a ‘dangling pointer’ and memory leak.
Consider the following example.

char *a = malloc(128*sizeof(char));

char *b = malloc(128*sizeof(char));

b = a;

free(a);

free(b); /* will not free the pointer to the
 original allocated memory.*/

 In a programming language such as C, which is weakly
typed, garbage collection is not a serious option and the
programmer must avoid leaks or take the consequences.
Debugging leaky code can be tricky without some
assistance. This assistance usually takes the form of
variants of the memory allocation and release functions
that keep a record of where they were called from (source
fi le name and line number) and maintain a list of all
allocated blocks. This list can be inspected or displayed
periodically and usually gives a pretty good indication of
the data area that is causing the diffi culty.
 A solution was found using the C pre-processor with
declarations such as

#ifdef DEBUG
#defi ne malloc(a) mymalloc((a),__LINE__,__FILE__)
#endif

 The explanation of this code needs some expertise. This
will be clear after reading the Chapter 11.

334 Programming in C

 Memory corruption Memory when altered without an
explicit assignment due to the inadvertent and unexpected
altering of data held in memory or the altering of a pointer
to a specifi c place in memory is known as memory
corruption.
 The following are some examples of the causes of
memory corruption that may happen.
 Buffer overfl ow A case of overfl ow: Overwrite beyond
allocated length

char *a = malloc(128*sizeof(char));

memcpy(a, data, dataLen); /* Error if dataLen is
 too long. */

 A case of index of array out of bounds: (array index
overfl ow—index too large/underfl ow—negative index)

Char *s=”Oxford University”;

ptr = (char *) malloc(strlen(s));

/* Should be (s + 1) to account */

 /* for null termination.*/
strcpy(ptr, s);

/* Copies memory from string s which is one byte
longer than its destination ptr.*/

Overfl ow by one byte

Using an address before memory is allocated and set
 int *ptr;
 ptr=5;

In this case, the memory location is NULL or random.

Using a pointer which is already freed
char *a = (char *)malloc(128*sizeof(char));
...
...
free(a);
puts(a); /* This will probably work but dangerous. */

Freeing memory that has already been freed
Freeing a pointer twice:

char *a = malloc(128*sizeof(char));

free(a);

... Do Something ...

free(a);

/* A check for NULL would indicate nothing. This
memory space may be reallocated and thus one may
be freeing memory. It does not intend to free or
portions of another block of memory. The size of
the block of memory allocated is often held just
before the memory block itself..*/

Freeing memory which was not dynamically allocated
double a=6.12345, *ptr;
ptr = &a;
...
free(ptr);

7.20 POINTER AND CONST QUALIFIER
A declaration involving a pointer and const has several
possible orderings

7.20.1 Pointer to Constant

The const keyword can be used in the declaration of the
pointer when a pointer is declared to indicate that the value
pointed to must not be changed. If a pointer is declared as
follows

int n = 10;

const int *ptr=&n;

 The second declaration makes the object that it points at
read-only and of course, both the object and what it points
at might be constant. Because we have declared the value
pointed to by ptr to be const, the compiler will check for
any statements that attempt to modify the value pointed to
by ptr and fl ag such statements as an error. For example,
the following statement will now result in an error message
from the compiler:

p = 100; / ERROR */

 As the declaration asserted that what ptr points to must
not be changed. But the following assignment is valid.

n = 50;

 The value pointed to has changed but here it was not
tried to use the pointer to make the change. Of course, the
pointer itself is not constant, so it is always legal to change
what it points to:

int v = 100;

ptr = &v; /* OK - changing the address in ptr */

 This will change the address stored in ptr to point to the
variable v.
 It is to be noted that the following declarations are
equivalent.

const int *ptr=&n;

int const *ptr=&n;

Pointers in C 335

7.20.2 Constant Pointers

Constant pointers ensure that the address stored in a pointer
cannot be changed. Consider the following statements -

int n = 10;
int *const ptr = &n; /* Defi nes a constant */

 Here’s how one could ensure that a pointer always
points to the same object; the second statement declares
and initializes ptr and indicates that the address stored
must not be changed.
 Any attempt to change what the pointer points to
elsewhere in the program will result in an error message
when you compile:

int v = 5;
ptr = &v; /* Error - attempt to change a constant

pointer */

 It is still legitimate to change the value that ptr points
to using ptr though:

ptr = 100; / OK - changes the value of v */

 This statement alters the value stored in v through the
pointer and changes its value to 100.
 You can create a constant pointer that points to a value
that is also constant:

int n = 25;
const int *const ptr = &n;

ptr is a constant pointer to a constant so everything is
fi xed. It is not legal to change the address stored in ptr as
well as ptr cannot be used to modify what it points to.

7.20.3 Constant parameters

Remembering that arrays are passed to functions by
address and it is also known that function implementations
can alter the original array’s contents. To prevent an array
argument from being altered in a function, use the const
qualifi er as demonstrated in the next programs.

Version 1
#include <stdio.h>
void change(char *);
int main(void)
{
 char s[]=“Siva”;
 change(s);
 printf(“\n The string after calling change():\

%s”, s);
 return 0;
}

void change(char *t)
{
 *t= ‘V’;
}

Output:
The string after calling change():Viva

Version 2
#include <stdio.h>
void change(const char *);
int main(void)
{
 char s[]=“Oxford University”;
 change(s);
 printf(“\n The string after calling change():\

%s”, s);
 return 0;
}

Note the constant
parameter

void change(const char *t)
{
 *t=‘V’;
}

Output:
Compiler error: Assignment of read-only location

 The same error will cause when the following program
is compiled.

#include <stdio.h>

void change(const int [], int);

int main(void)

{

 int a[]={1,2,3,4,5};
 int n,i;

The expression
sizeof(a)/sizeof(a[0]) yields 5
as sizeof(a) returns 20 and

sizeof(a[0]) returns 4.

 n=sizeof(a)/sizeof(a[0]);

 change(a,n);

 printf(“\n The array elements after calling
change()\n”);

 for(i=0;i<n;++i)

 printf(“\t%d”,a[i]);

 return 0;

}

void change(const int b[],int n)

{

 int i;

 for(i=0;i<n;++i)

 b[i]+=10;

}

336 Programming in C

 In the above program, use of constant parameter protects
the elements of the array from being modifi ed within the
function change() though arrays passed as arguments are
passed by address automatically.

Check Your Progress

What will be the output of the following program?
 1. int main()

 {
 int val = 5;
 int *ptr = &val;
 printf(“%d %d”, ++val, *ptr);
 return 0;
 }

 Output: 6 5
 2. int main()

 {
 int val = 5;
 int *ptr = &val;
 printf(“%d %d”, val, *ptr++);
 return 0;
 }

 Output: 5 5
 3. int main()

 {
 int val = 5;
 int *ptr = &val;
 printf(“%d %d”, val, ++*ptr);
 return 0;
 }

 Output: 6 6
 4. int main()

 {
 int a[] = {1,2,3,4,5,6};
 int *ptr = a + 2;
 printf(“%d %d”, *++a, ––*ptr);
 return 0;
 }

 Output: Error: Lvalue required
 5. int main()

 {
 int a[] = {1,2,3,4,5,6};
 int *ptr = a + 2;
 printf(“%d %d”, ––*ptr+1,1+*— —ptr);
 return 0;
 }

 Output: 2 3

 6. int main()
 {
 char myArray[5], *p = myArray;
 int i;
 for(i = 4; i > 0; i––){
 *p++ = i * i; p++;}
 for (i = 4; i >= 0; i––)
 printf(“%d”, myArray[i]);
 return 0;
 }

 Output: 0 1 4 9 16
 7. int main()

 {
 int a = 555, *ptr = &a, b = *ptr;
 printf(“%d %d %d”, ++a, ––b, *ptr++);
 return 0;
 }

 Output: 556 554 555
 8. int main()

 {
 int val = 5;
 int *ptr = &val;
 printf(“%d %d”, val,(*ptr)++);
 return 0;
 }

 Output: 6 5
 9. int main()

 {
 int a[100];
 int sum = 0;
 for(k = 0; k < 100; k++)
 *(a+k) = k;
 printf(“%d”, a[––k]);
 return 0;
 }

 Output: 99
 10. int main()

 {
 void F(int *a, int n);
 int arr[5] = {5,4,3,2,1};
 F(arr,5);
 return 0;
 }
 void F(int *a, int n)
 {
 int i;
 for(i = 0; i < n; i++)
 printf(“&d”, *(a++)+i);
 }

 Output: 55555

Pointers in C 337

 11. int main(void)
 {
 int a[10];
 printf(“%d”, ((a + 9) + (a + 1)));
 return 0;
 }

 Output: Error
 12. int main()

 {
 char A[] = {‘a’,‘b’,‘c’,‘d’,‘e’,‘f’,‘g’,‘h’};
 char *p = A;
 ++p;
 while(*p != ‘e’)
 printf(“%c”, *p++);
 return 0;
 }

 Output: bcd
 13. int main()

 {
 char *p1 = “Name”;
 char *p2;
 p2 = (char *) malloc(20);
 while(*p2++ = *p1++);
 printf(“%s\n”, p2);
 return 0;
 }

 Output: An empty string
 14. int main()

 {
 int a = 2, b = 3;
 printf(“%d”, a+++b);
 return 0;
 }

 Output: 5
 15. int main()

 {
 int a[] = {1,2,3,4,5,6,7};
 char c[] = {‘a’,‘x’,‘h’,‘o’,‘k’};
 printf(“%d\t %d”, (&a[3]-&a[0]),(&c[3]-&c[0]));
 return 0;
 }

 Output: 3 0
 16. #include#<stdio.h>

 int main()
 {
 char s1[] = “Manas”;

 char s2[] = “Ghosh”;
 s1 = s2;
 printf(“%s”, s1);
 return 0;
 }

 Output: Error
 17. int main()

 {
 char *ptr = “Mira Sen”;
 (*ptr)++;
 printf(“%s\n”, ptr);
 ptr++;
 printf(“%s\n”, ptr);
 return 0;
 }

 Output: Nira Sen
 ira Sen

 18. int main()
 {
 char *p = “The Matrix Reloaded”;
 int i = 0;
 while(*p)
 {
 if(!isupper(*p++))
 ++i;
 }
 printf(“%d”, i);
 return 0;
 }

 Output: 16
 19. int main()

 {
 char str[] = “Test”;
 if((printf(“%s”, str)) == 4)
 printf(“Success”);
 else
 printf(“Failure”);
 return 0;
 }

 Output: Test Success
 20. int main()

 {
 printf(“Hi Friends”+3);
 return 0;
 }

 Output: Friends

338 Programming in C

 21. int main()
 {
 int a[] = {1,2,3,4,5,6};
 int *ptr = a + 2;
 printf(“%d”, *––ptr);
 return 0;
 }

 Output: 2
 22. int main()

 {
 int i = 100, j = 20;
 i++ = j;
 i* = j;
 printf(“%d\t %d\n”, i,j);
 return 0;
 }

 Output: Error lvalue required
 23. int main()

 {
 int a[5], *p;
 for(p = a; p < &a[5]; P++)
 {
 *p = p-a;
 printf(“%d”, *p);
 }
 return 0;
 }

 Output: 2
 24. int main()

 {
 putchar(5[“manas”]);
 return 0;
 }

 Output: Nothing will be printed
 25. int main()

 {
 int a[] = {1,2,3,4,5};
 int i, s = 0;
 for(i = 0; i < 5; ++i)
 if((a[i]%2) == 0)
 s+ = a[i];
 printf(“%d”, s);
 return 0;
 }

 Output: 6

 26. int main()
 {

 int i;

 char s[] = “Oxford University Press”;

 for(i = 0; s[i]!= ‘\0’; ++i)

 if((i%2) == 0)

 printf(“%c %c”, s[i], s[i]);

 return 0;

 }

 Output: O Of fr r n nv vr ri iy yP Pe es s
 27. int main()

 {

 int i;

 char s[] = “Oxford University Press”;

 for(i = 0; s[i]!= ‘\0’; ++i)

 if((i%2) == 0)

 putchar(s[i]);

 return 0;

 }

 Output: Ofr nvriyPes
 28. int main()

 {

 char s[3][6] = {“ZERO”, ONE”, TWO”};

 printf(“%s”, s[2]);

 printf(“%c”, s[2][0]);

 return 0;

 }

 Output: TWOT
 29. int main()

 {

 int a[][3] = {0,1,2,3,4,5};

 printf(“%d”, sizeof(a));

 return 0;

 }

 Output: 12
 30. int main()

 {

 int a[2][3] = {0,1,2,3,4,5};

 printf(“%d”, sizeof(a[2]));

 return 0;

 }

 Output: 6 OR 12

Pointers in C 339

 31. int main()
 {
 char *str = “This is my string”;
 str[3] = ‘B’;
 puts(str);
 return 0;
 }

 Output: ThiB is my string
 32. int main()

 {
 int a[5]={1,3,6,7,0};
 int *b;
 b=&a[2];
 printf(“%d”, b[–1]);
 return 0;
 }

 Output: 3
 33. int main()

 {
 register int x=5, *p;
 p=&x

 printf(“%d”,*p);
 return 0;
 }

 Output: Error
 34. int main()

 {
 void x(void);
 x();
 return 0;
 }
 void x(void)
 {
 char a[]=“HELLO”;
 char *b=“HELLO”;
 char c[10]=“HELLO”;
 printf(“%s %s %s\n”, a, b, c);
 printf(“%d %d %d\n”,sizeof(a), sizeof(b), sizeof(c));
 }

 Output: HELLO HELLO HELLO
 6 4 10

sizeof(b) gives the bytes required for storing the pointer
b. The other two are the array sizes.

SUMMARY

Think of memory as an array of cells. Each memory cell has a location/
address/lvalue and contains a value/rvalue. There is a difference
between the address and the contents of a memory cell. A pointer is a
variable that contains the address in memory of another variable. There
can be a pointer to any variable type. The unary or monadic operator ‘&’
gives the ‘address of a variable’. The indirection or dereference operator
‘*’ gives the ‘contents of an object pointed to by a pointer’. A pointer to
any variable type is an address in memory, which is an integer address.
A pointer is defi nitely not an integer. When a pointer is declared, it does
not point anywhere. It must be set to point somewhere before it can
be used. That is, an address must be assigned to the pointer by using
an assignment statement or a function call prior to its use. A pointer
is bound to a particular data type (void pointer is an exception). For
instance, the address of a short int cannot be assigned to a long
int. There is a special pointer which is defi ned to be zero. It is called
the NULL pointer.

 There are many cases when a passed argument in the function may
need to be altered and the new value received back once the function
has fi nished. Other languages do this. C uses pointers explicitly to do
this. Other languages mask the fact that pointers also underpin the
implementation of this. Pointers provide the solution: Pass the address
of the variables to the functions and access address of function.

 Pointers and arrays are very closely linked in C. When subscript
notation is used, the C compiler generates an executable code that
does the following.

 Determines the size of the elements in the array. Let us call that
elemSize.

 Multiplies elemSize by the subscript value. Let us call that
offset.

 Adds offset to the address that represents the beginning of the
array. This is the address of the element that we want to access.

 The address of ARRAY[i] is calculated each time again by the
compiler as follows.

 address of ARRAY[i] = ARRAY+i*sizeof(int);

 The equivalence of arrays and pointers must be understood.
Assume that a is an array and i is an integer.

 a[i] == *(a + i) == *(i + a) == i[a]

 Although these are equivalent, it is recom-mended that i[a] never
be written instead of a[i]. However, pointers and arrays are different.

 A pointer is a variable. We can do

 pa = a and pa++.

340 Programming in C

 An array is not a variable. a = pa and a++ are illegal.

 When an array is passed to a function what is actually passed is its
initial element’s location in memory. Array decays into pointers when
passed into function.

 The following ‘meaningful’ arithmetic operations are allowed on
pointers.

 Add or subtract integers to/from a pointer. The result is a
pointer.

 Subtract two pointers to the same type. The result is an int.

 Assigning NULL or any pointer of same datatype

 Multiplying, adding two pointers, etc. does not make sense.

 It is also possible to have arrays of pointers since pointers are
variables. Arrays of pointers are a data representation that will
cope effi ciently and conveniently with variable length text lines. This
eliminates

 complicated storage management

 high overheads of moving lines

 Pointers, of course, can be ‘pointed at’ any type of data object,
including arrays.

 int(*p)[10];

is the proper declaration, i.e., p here is a pointer to an array of 10
integers just as it was under the declaration using the array type. Note
that this is different from

 int *p[10];

which would make p the name of an array of 10 pointers to type int.

 A two-dimensional array is really a one-dimensional array, each
of whose elements is itself an array. Array elements are stored row
by row. When a two-dimensional array is passed to a function, the
number of columns must be specifi ed; the number of rows is irrelevant.
The reason for this is pointers again. C needs to know the number of
columns in order to jump from row to row in memory.

 Consider int a[5][10] to be passed in a function

 It is possible to say

 f(int a[][10]) {.....}

or even

 f(int(*a)[10]) {.....}

It needs a parenthesis (*a) since [] have a higher precedence than
*.

So,

 int(*a)[10]; declares a pointer to an array of 10 ints.

 int *a[10]; declares an array of 10 pointers to ints.

 Dynamic memory allocation is a way to defer the decision of how
much memory is necessary until the program is actually running, get
more if it runs out, or give back memory that the program no longer
needs it. When memory is allocated, the allocating function (such as
malloc() and calloc()) returns a pointer. The type of this pointer
depends on the type of compiler, whether it is an older K&R compiler
or the newer ANSI type compiler. With the older compiler the type of
the returned pointer is char; with the ANSI compiler it is void. When
the program fi nishes using whatever memory it dynamically allocates, it
can use the free function to indicate to the system that the memory is
available again.

 The rules to be followed for deciphering pointer declarations are as
follows. These are particularly important for function pointers.

 Start with the name that will identify the pointer, known as the
identifi er.

 Move to the right until you encounter a right-parenthesis ‘)’ or
reach the end. Do not stop if the () brackets are used to pass
parameters to a function. Also do not stop on encountering
brackets used with arrays: [].

 Now go left of the identifi er to continue deciphering the declaration.
Keep going left until you fi nd a left-parenthesis ‘(’ or reach the
end. Do not stop if the brackets are used to pass parameters to a
function.

 The whole interpretation should be a single long sentence.

KEYTERMS

Call by address facilitating the changes made to a variable in the
called function to become permanently available in the function from
where the function is called.

Call-by-value A particular way of implementing a function call, in
which the arguments are passed by their value (i.e., their copies).

Dangling pointer A pointer pointing to a previously meaningful location
that is no longer meaningful; usually a result of a pointer pointing to an
object that is deallocated without resetting the value of the pointer.

Dynamic data structures Those that are built up from blocks of
memory allocated from the heap at run-time.

Dynamic memory allocation The process of requesting and obtaining
additional memory segments during the execution of a program.

Function pointer A function has a physical location in memory that
can be assigned to a pointer. Then it is called function pointer. This
address is the entry point of the function and it is the address used
when the function is called.

Garbage collection If only implicit dynamic allocation is allowed then
deallocation must also be done by implicit means, which is often called
garbage collection.

Heap This memory region is reserved for dynamically allocating
memory for variables at run-time. Dynamic memory allocation is done
by using the malloc() or calloc() functions.

Memory leak A commonly used term indicating that a program is
dynamically allocating memory but not properly deallocating it, which

Pointers in C 341

results in a gradual accumulation of unused memory by the program to
the detriment of other programs, the operating system, and itself.

NULL A special C constant, defi ned as macro in stdio.h as or 0, or
(void*)), that can be used as the null value for pointers.

Null pointer A null pointer is a special pointer value that points
nowhere. I is initialized with value 0 or NULL.

Pointer A value or a variable with two attributes: (i) an address and
(ii) a data type of what should be found at that address.

Ragged array An array of pointers whose elements are used to point
to arrays of varying sizes is called a ragged array.

Stack A data structure resembling a deck of cards; a new item can
only be put on top of the deck (the push operation) or removed from the
top of the deck (the pop operation).

Static memory allocation Memory layout for static data prepared
by the compiler.

Void pointer A void pointer is a special type of pointer that can point to
any data type,

FREQUENTLY ASKED QUESTIONS

1. Why Use Pointers?

 C uses pointers in three different ways:

 First, pointers allow different sections of code to share information
easily. One can get the same effect by copying information back and
forth, but pointers solve the problem better.

 Secondly, in some cases, C programmers also use pointers because
they make the code slightly more effi cient. Pointers allow to create
complex dynamic data structures like linked lists and binary trees.

 Thirdly, pointers in C provide an alternative way to access information
stored in arrays. Pointer techniques are especially valuable when you
work with strings. There is an intimate link between arrays and pointers
in C.

 Apart from these, C uses pointers to handle variable parameters
passed to functions.

2. Why pointers should have data types when their size is always
4 bytes (in a 32-bit machine), irrespective of the variable they are
pointing to?

 Sizes of various data types are basically decided by the machine
architecture and/or the implementation. Considering a 32-bit machine,
the addressing of a byte or word will, therefore, require a 32-bit address.
This suggests that a pointer (as pointers store addresses) should be
capable enough to store, at least, a 32-bit value; no matter if it points to
an integer or a character.

 For an array, consecutive memory is allocated. Each element is
placed at a certain offset from the previous element, if any, depending
on its size. The compiler that generates code for a pointer, which
accesses these elements using the pointer arithmetic, requires the
number of bytes to retrieve on pointer dereference and it knows how
much to scale a subscript. The data type of the pointer provides this
information. The compiler automatically scales a subscript to the size
of the variable pointed at. The compiler takes care of scaling before
adding the base address.

3. What is wrong with the following code segment?
 int *p;

 *p=10;

 The pointer p is an uninitialized pointer which may have some unknown
memory address in it. More precisely, it may have an unknown value
that will be interpreted as a memory location. Most likely, the value will
not be valid for the computer system that are using or if it is, will not be
valid for the memory that has been allocated. If the address does not
exist, one may get immediate runtime errors.

4. Does C have ‘pass by reference’ feature?
 Not really. Strictly speaking, C always uses pass by value. One can
simulate pass by reference by defi ning functions which accept pointers
as formal parameters and then using the & operator when calling the
function. The compiler will essentially simulate it when an array to a
function is passed (by passing a pointer instead). But truly C has no
equivalent to the formal pass by reference feature as C++ provides.

5. What is wild pointer in C?
 A pointer in c which has not been initialized is known as wild pointer.

6. Is a null pointer same as an uninitialized pointer?
 A null pointer is conceptually different from an uninitialized pointer. An
uninitialized pointer may point to anywhere, whereas a null pointer does
not point to any object or function. Null pointer points the base address of
segment while wild pointer doesn’t point any specifi c memory location.

7. What are the uses of the null pointers?
 The null pointer is used for three purposes:
 ∑ To stop indirection
 ∑ As an error value
 ∑ As a sentinel value

8. Is NULL always defi ned as 0?
 NULL is defi ned as either 0 or (void*)0. These values are almost
identical; either a literal zero or a void pointer is converted automatically

342 Programming in C

to any kind of pointer, as necessary, whenever a pointer is needed
(although the compiler cannot always tell when a pointer is needed).

9. What is the difference between NULL and NUL?
 NULL is a macro defi ned in <stddef.h> for the null pointer. NUL is
the name of the fi rst character in the ASCII character set. It corresponds
to a zero value. NULL can be defi ned as ((void*)0), whereas NUL
is ‘\0’. Both can also be defi ned simply as 0.

10. Since 0 is used to represent the null pointer, can it be thought
of as an address with all zero bits?
 Each compiler interprets the null pointers differently and not all compilers
use a zero address. For example, some compilers use a nonexistent
memory address for the null pointer; that way, attempting to access
memory through a null pointer can be detected by the hardware. When
NULL is assigned to a pointer, then 0 is converted to the proper internal
form by the compiler.

11. What is the difference between arr and &arr where arr is an
array name, though both displays the base address of the array?
 The array name arr is a pointer to the fi rst element in the array
whereas the &arr is a pointer to the array as a whole. Numerically,
the values they display are same; however, their interpretation is not
same.

12. When would you use a pointer to a function?
 Pointers to functions are typically used when it is required to pass
them to other functions. The called function takes function pointers as
formal parameters. This is known as a “callback.” It is frequently used
in graphical user interface libraries.

13. What are the uses of dynamic memory allocations?

 Typical uses of dynamic memory allocation are:
 ∑ Ccreation of dynamic arrays – arrays whose sizes are chosen at

run time;
 ∑ Ccreation of dynamic data structures – data collections that grow

and shrink with the changing data storage needs of a program or
module.

14. Why is it required to cast the values returned by malloc() to
the pointer type being allocated?
 Before ANSI/ISO Standard C introduced the void * generic pointer
type, these casts were typically required to avoid warnings about
assignment between incompatible pointer types. Under ANSI/ISO
Standard C, these casts are no more required.

15. What happens if malloc(0) is called?
 If malloc() is called with zero size, the result is unpredictable. Each
compiler is free to defi ne the behavior of malloc()when the size

is 0. It may either return NULL or it may return other implementation
dependent value.

16. What is the difference between calloc() and malloc() ?
 malloc() takes one argument, whereas calloc() takes two.
 calloc() initializes all the bits in the allocated space set to zero
whereas malloc() does not do this.
 A call to calloc() is equivalent to a call to malloc() followed by
one to memset().
 calloc(m, n)

is essentially equivalent to
 p = malloc(m * n);

 memset(p, 0, m * n);

17. What is a dangling pointer?
 A dangling pointer arises when you use the address of an object after
its lifetime is over. This may occur in situations like returning addresses
of the automatic variables from a function or using the address of the
memory block after it is freed.

18. Why should NULL be assigned to the pointer after freeing it?
 After a pointer has been freed, the pointer can no longer be used. After
this memory is freed with the free() function , the pointer itself will still
contain the address of the released block. Such a pointer is referred to
as a dangling pointer; it doesn’t point at anything useful. If the pointer
is used without reinitializing it, it may or may not run; merely produces
a bug. Such a pointer must be assigned NULL after freeing memory to
avoid this bug. The program can no longer get in trouble by using that
pointer.

19. Is it legal to return a pointer to a local variable in the called
function?
 Absolutely not; it is an error to return a pointer to a local variable in the
called function, because when the function terminates, its memory gets
inaccessible.

20. What is memory leak?
 When memory is allocated dynamically, it is the responsibility of
the programmer to deallocate the dynamically allocated memory by
calling free(). Freeing the memory returns it to the system, where it
can be reassigned to another application when needed. When an
application dynamically allocates memory, and does not free that
memory when it is fi nished using it, that chunk of memory is still
in use to the operating system. The memory is not being used by
the application anymore, but it cannot be used by the system or
any other program either. This is known as memory leak. Memory
leaks add up over time, and if they are not cleaned up, the system
eventually runs out of memory

Pointers in C 343

EXERCISE

 1. What are pointers? Why are they important?

 2. Explain the features of pointers.

 3. Explain the pointer of any data type that requires four bytes.

 4. Explain the use of (*) indirection operator.

 5. What is a NULL pointer? Is it the same as an uninitialized
pointer?

 6. What is a NULL macro? What is the difference between a NULL
pointer and a NULL macro?

 7. What does the error ‘Null Pointer Assignment’ mean and what
causes this error?

 8. Explain the effect of ++ and – – operators with pointer of all
types.

 9. What is an array of pointer? How is it declared?

 10. Explain the relation between an array and a pointer.

 11. Why is the addition of two pointers impossible?

 12. Which arithmetic operations are possible with pointers?

 13. Explain the comparison of two pointers.

 14. How does one pointer point to another pointer?

 15. How will you recognize pointer to pointer? What does the number
of ‘*’s indicate?

 16. How are strings stored in the pointer variables? Is it essential to
declare length?

 17. What is base address? How is it accessed differently for one-
dimensional and two-dimensional arrays?

 18. Distinguish between the address stored in the pointer and the
value at that address.

 19. Why does the element counting of arrays always start from ‘0’?

 20. Write a program to read and display a two-dimensional array of
5 by 2 numbers. Reduce the base address of an array by one
and start element counting from one.

 21. How is a pointer initialized?

 22. Explain the effects of the following statements.

 (a) int a, *b=&a;
 (b) int p, *p;
 (c) char *s;
 (d) a = (fl oat*) &x;
 (e) double(*f)();

 23. Predict the output of each of the following programs (draw
the memory diagram so that it will be easy to answer) where
memory addresses are to be described. You can assume any
six-digit number. Assume numbers starting from 333333.

 (a) int a;

 int *integer_pointer;

 a=222;

 integer_pointer=&a;

 printf(“The value of a is %d\n”, a);

 printf(“The address of a is %d\n”,&a);

 printf(“The address of\

 integer_pointer %d\n”, &integer_pointer);

 printf(“Star integer_pointer\

 %d\n”, *integer_pointer);

 (b) char a;

 char *char_pointer;

 a=‘b’;

 char_pointer=&a;

 printf(“The value of a %d\n”, a);

 printf(“The address of a %d\n”, &a);

 printf(“The address of\

 char_pointer %d\n”, &char_pointer);

 printf(“Star char_pointer %d\n”, *char_pointer);

 (c) for fl oat

 fl oat a;

 fl oat *fl oat_pointer;

 a=22.25;

 fl oat_pointer=&a;

 printf(“The value of a %d\n”, a);

 printf(“The address of a %d\n”, &a);

 printf(“The address of\

 fl oat_pointer %d\n”, &fl oat_pointer);

 printf(“Star fl oat_pointer %d\n”, *fl oat_

 pointer);

 (d) int a, b

 int *ip1, *ip2;

 a=5;

 b=6;

 ip1=&a;

 ip2=ip1;

 printf(“The value of a is %d\n”, a);

 printf(“The value of b is %d\n”, b);

 printf(“The address of a is %d\n”,&a);

 printf(“The address of b is %d \n”&b);

 printf(“The address of ip1 is %d\n”, &ip1);

 printf(“The address of ip2 is %d\n”, &ip2);

 printf(“The value of ip1 is %d\n”,ip1);

344 Programming in C

 printf(“The value of ip2 is %d\n”, ip2);

 printf(“ip1 dereferenced %d\n”,*ip1);

 printf(“ip2 dereferenced %d\n”, *ip2);

 (e) int i, j, *ip;

 i=1;

 ip=&i;

 j=*ip;

 *ip=0;

 printf(“The value of i %d\n”, i);

 printf(“The value of j %d\n”, j);

 (f) int x, y;

 int *ip1, *ip2;

 y=1;

 ip2=&y;

 ip1=ip2;

 x=*ip1+y;

 printf(“The value of x %d\n”, x);

 printf(“The value of y %d\n”,y);

 24. Distinguish between (*m)[5] and *m[5].

 25. Explain the difference between ‘call by reference’ and ‘call by
value’.

 26. Write a program using pointers to read in an array of integers
and print its elements in reverse order.

 27. We know that the roots of a quadratic equation of the form

 ax2 + bx + c = 0

 are given by the following equations:

+=

=

2

1

2

2

()

()

– squareroot – 4
2

– – squareroot – 4
2

b b ac
x

a

b b ac
x

a

 Write a function to calculate the roots. The function must use two
pointer parameters, one to receive the coeffi cients a, b, and c,
and the other to send the roots to the calling function.

 28. Does mentioning the array name give the base address in all
contexts?

 29. Write a C program to read through an array of any type using
pointers. Write a C program to scan through this array to fi nd a
particular value.

 30. Write a function using pointers to add two matrices and to return
the resultant matrix to the calling function.

 31. Using pointers, write a function that receives a character string
and a character as argument and deletes all occurrences of this

character in the string. The function should return the corrected
string with no holes.

 32. Write a function day_name that receives a number n and
returns a pointer to a character string containing the name of the
corresponding day. The day names should be kept in a static
table of character strings local to the function.

 33. Write a program to fi nd the number of times that a given word
(i.e., a short string) occurs in a sentence (i.e., a long string).

 Read data from standard input. The fi rst line is a single word,
which is followed by general text on the second line. Read both
up to a new-line character, and insert a terminating null before
processing. Typical output should be:

 The word is “the”.

 The sentence is “the cat sat on the mat”.

 The word occurs 2 times.

 34. Write a program to read in an array of names and to sort them
in alphabetical order. Use sort function that receives pointers to
the functions strcmp, and swap.sort in turn should call these
functions via the pointers.

 35. Given an array of sorted list of integer numbers, write a function
to search for a particular item using the method of binary
search. Also show how this function may be used in a program.
Use pointers and pointer arithmetic.

 Hint In binary search, the target value is compared with the
array’s middle element. Since the table is sorted, if the required
value is smaller, we know that all values greater than the middle
element can be ignored. That is, in one attempt, we eliminate
one half of the list. This search can be applied recursively till the
target value is found.

 36. Differentiate between p and *p.

 37. What is the equivalent pointer notation to the subscript notation
pt [0][2]?

 38. What is the difference between *p++ and p++?

 39. What is the result of adding an integer to a pointer?

 40. What are the advantages of using pointers?

 41. How do pointers differ from variables in C?

 42. Explain the following declaration.

 int(*pf) (char *a, int *b);

 43. What is the purpose of the realloc() function?

 44. Differentiate between calloc() and malloc() functions in C.

 45. For the version of C available on your particular computer, how
many memory cells are required to store a single character?
An integer quantity? A long integer? A fl oating-point quantity? A
double-precisions quantity?

Pointers in C 345

 46. What is meant by the address of a memory cell? How are
addresses usually numbered?

 47. How is a variable’s address determined?

 48. What kind of information does a pointer variable represent?

 49. What is the relationship between the address of a variable v and
the corresponding pointer variable pv?

 50. What is the purpose of the indirection operator? To what type of
operand must the indirection operator be applied?

 51. What is the relationship between the data item represented by a
variable v and the corresponding pointer variable pv?

 52. What precedence is assigned to the unary operators compared
with the multiplication, division, and module operators? In what
order are the unary operators evaluated?

 53. Can the address operator act upon an arithmetic expression
such as 2* (u + v)? Explain your answer.

 54. Can an expression involving the indirection operator appear on
the left side of an assignment statement? Explain.

 55. What kinds of objects can be associated with pointer variables?

 56. How is a pointer variable declared? What is the purpose of the
data type included in the declaration?

 57. In what way can the assignment of an initial value be included in
the declaration of a pointer variable?

 58. Are integer values ever assigned to pointer variables? Explain.

 59. Why is it sometimes desirable to pass a pointer to a function as
an argument?

 60. Suppose a function receives a pointer as an argument. Explain
how this function is declared within its calling function. In
particular, explain how the data type of the pointer argument is
represented.

 61. Suppose a function receives a pointer as an argument. Explain
how the pointer argument is declared within the function
defi nition.

 62. What is the relationship between an array name and a pointer?
How is an array name interpreted when it appears as an
argument to a function?

 63. Suppose a formal argument within a function defi nition is an
array. How can the array be declared within the function?

 64. How can a portion of an array be passed to a function?

 65. How can a function return a pointer to its calling routine?

 66. Describe two different ways to specify the address of an array
element.

 67. Why is the value of an array subscript sometimes referred to as
an offset when the subscript is a part of an expression indicating
the address of an array element?

 68. Describe two different ways to access an array element.
Compare your answer to that of Question 62.

 69. Can an address be assigned to an array name or an array
element? Can an address be assigned to a pointer variable
whose object is an array?

 70. How is the library function malloc used to associate a block of
memory with a pointer variable? How is the size of the memory
block specifi ed? What kind of information does the malloc
function return?

 71. Suppose a numerical array is defi ned in terms of a pointer
variable. Can the individual array elements be initialized?

 72. Suppose a character-type array is defi ned in terms of a pointer
variable. Can the individual array elements be initialized?
Compare your answer with that of the previous question.

 73. Suppose an integer quantity is added to or subtracted from a
pointer variable. How will this difference be interpreted?

 74. Under what conditions can one pointer variable be subtracted
from another? How will this difference be interpreted?

 75. Under what conditions can two pointer variables be compared?
Under what conditions are such comparisons useful?

 76. How is a multidimensional array defi ned in terms of a pointer to
a collection of contiguous array of lower dimensionality?

 77. How can the indirection operator be used to access a
multidimensional array element?

 78. How is a multidimensional array defi ned in terms of an array
of pointers? What does each pointer represent? How does this
defi nition differ from a pointer to a collection of contiguous array
of lower dimensionality?

 79. How can a one-dimensional array of pointers be used to
represent a collection of strings?

 80. If several strings are stored within a one-dimensional array of
pointers, how can an individual string be accessed?

 81. If several strings are stored within a one-dimensional array of
pointers, what happens if the strings are reordered? Are the
strings actually moved to different locations within the array?

 82. Under what conditions can the elements of a multidimensional
array be initialized if the array is defi ned in terms of an array of
pointers?

 83. What is the relationship between a function name and a pointer?

 84. Suppose a formal argument within a function defi nition is
a pointer to another function. How is the formal argument
declared? Within the formal argument declaration, what does
the data type refer to? Defi cient or abundant?

 85. Defi ne an integer pointer array of 10 integers. Initialize them to
any integer values from the keyboard. Find the sum, average,

346 Programming in C

minimum, and maximum of these 10 integers. Sort the 10
integers in descending order.

 86. Write a program to display the starting day and ending day of
the week for a project. The user is asked which day (0 to 6)
is preferable to begin the project and the expected duration in
number of days (a decimal number, e.g., 6.5 refers to 6.5 days)

to complete the project. It then displays the starting and ending
day as:

 Project starts on Monday and ends on Wednesday—duration
is 10.5 days (if the start day number is 1 and duration = 10.5
days). The program allows the user to continue until the start
day number is entered as 9 to exit the program.

The problem here is the same as in the earlier chapter. The
programming logic employed is similar to that used in the earlier
program. The main difference between this depicted program and that
in the earlier chapter is the use of pointers. After learning pointers,
the reader gets a fi rsthand idea on how a pointer can be used in a
problem like this.

Problem statement

Compute the lengths of three sides of a triangle formed by three
points whose co-ordinates are given. Check whether the triangle can
be formed or not. Then compute the area of a triangle. Next take a
point as input from the user and check whether it is inside or outside
the triangle.

Solution

The program logic is similar to that applied in the earlier chapter.
Functions used with the program are similar to those used earlier.
The only change is in the representation of the vertices of the triangle
as pointers, which has been learnt in this chapter. The program for
solving the problem with pointers is given as follows:

Program

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

void createTriangle(int **,int **);

double getLength(int,int,int,int);

double getArea(double,double, double);

int insideOrOutside(int *,int *,int, int);

int main(void)

{

 int *x,*y;

INCREMENTAL PROBLEM

 int i,xx,yy;

 double a,b,c, area;

 createTriangle(&x,&y);

 a=getLength(x[0],y[0],x[1],y[1]);

 b=getLength(x[1],y[1],x[2],y[2]);

 c=getLength(x[0],y[0],x[2],y[2]);

 if(a+b>c && b+c>a && c+a>b)

 {

 printf(“Triangle can be drawn”);

 area=getArea(a,b,c);

 printf(“\n Area of the triangle is %lf\
sq. units”, area);

 printf(“\n Enter the coordinates of the\
point:”);

 printf(“\n x cordinate: ”);

 scanf(“%d”,&xx);

 printf(“\n y cordinate: ”);

 scanf(“%d”,&yy);

 if(insideOrOutside(x,y,xx,yy))

 printf(“\n Inside the triangle”);

 else

 printf(“\n Outside the triangle”);

 }

 else

 printf(“Triangle cannot be drawn”);

 free(x);

 free(y);

 x=y=NULL;

Write a program that reads in up to 10 strings or to EOF, whichever
comes fi rst. Have it offer the user a menu with fi ve choices: print the
original list of strings, print the strings in alphabetical order, print the
strings in order of increasing length, print the strings in order of the

length of the fi rst word in the string, and quit. Have the menu recycle
until the user enters the quit request. The program, of course, should
actually perform the promised tasks.

Project Questions

Pointers in C 347

 return 0;

}

void createTriangle(int **a, int **b)

{

 int i;

 *a=(int *)malloc(3*sizeof(int));

 if(*a==NULL)

 {

 printf(“\n Memory Allocation Error \n”);

 return;

 }

 *b=(int *)malloc(3*sizeof(int));

 if(*b==NULL)

 {

 printf(“\n Memory Allocation Error \n”);

 return;

 }

 printf(“\n Enter the coordinates of the\
vertices of a triangle”);

 for(i=0;i<3;++i)

 {

 printf(“\n Enter x[%d]:”,i);

 scanf(“%d”,(*a+i));

 printf(“\n Enter y[%d]:”,i);

 scanf(“%d”,(*b+i));

 }

}

double getLength(int xOne, int yOne, int xTwo,int yTwo)

{

 int m, n;

 m=(xOne-xTwo)*(xOne-xTwo);

 n=(yOne-yTwo)*(yOne-yTwo);

 return sqrt((double)(m+n));

}

double getArea(double sA,double sB, double sC)

{

 double s;

 s=(sA+sB+sC)/2.0;

 return sqrt(s*(s-sA)*(s-sB)*(s-sC));

}

int insideOrOutside(int *a,int *b,int xx, int yy)

{

 int i,k;

 double d[3], area, sumArea=0.0,aa,bb;

 for(i=0;i<3;++i)

 {

 d[i]=getLength(*(a+i),*(b+i),*(a+(i+1)%3),
*(b+(i+1)%3));

 }

 area=getArea(d[0],d[1],d[2]);

 for(i=0;i<3;++i)

 {

 aa=getLength(xx,yy,*(a+i),*(b+i));

 bb=getLength(xx,yy,*(a+(i+1)%3),*(b+(i+1)%3));

 sumArea+=getArea(d[i],aa,bb);

 }

 if(fabs(area-sumArea)<0.00001)

 return 1;

 else

 return 0;

}

Problem Statement

The Chief Operating Offi cer (CEO) signs vouchers , cheques, and
documents where the amount is given in digits as well as in words.
Every time before signing these, the CEO checks up whether the
amount written in words matches with that of the digits. To do this
swiftly the CEO needs a program in the computer that would accept
the value written on vouchers, cheques, and documents and display
the amount in words. The amount in any case should not exceed Rs
99 crores. A program has to be written to perform this task.

Analysis

The idea here is to express the amount in rupees in words. It must
be noted that the largest amount that will be dealt with should never
exceed Rs 999999999 and that this will always be a whole number.
 Whenever a value is inputted, it is divided with 10000000 to obtain a
quotient that represents the crore part of the amount. Next, when the
value is divided by 100000, the quotient represents lakh part inclusive
of the crore part. This quotient when divided 100, a remainder is
obtained that represents the only the lakh part of the amount. Now,

CASE STUDY

348 Programming in C

when the value is divided by 1000 a quotient is obtained the division
of which by 100 gives a remainder that represents the thousands part
of the amount. The last operation is to divide the value by 10 and fi nd
the remainder which represents the amount less than ten rupee.
Arrays of pointers have been used to store the corresponding words
equivalent to the numbers. Hence after every division operation
mentioned above, the corresponding word equivalent to the number
is picked up from the respective array and displayed after the amount
computed in appropriate order.

Design

 The algorithm for the main program is given as follows:

 1. START
 2. STORE WORD EQUIVALENT FOR VALUES 0 TO 19 IN

ARRAY NAMED ONE
 3. STORE WORD EQUIVALENT FOR VALUES 0, LESS THAN

10, 20 TO 90 IN ARRAY NAMED TEN
 4. FLAG = 0
 5. WHILE(FLAG !=1)
 6. BEGIN
 7. PRINT “ENTER ANY NINE DIGIT VALUE”
 8. INPUT N
 9. IF N < 0
 THEN PRINT “ENTER VALUE GREATER THAN 0”
 ELSE
 1. PRINT “ THE GIVEN AMOUNT IN WORDS IS RS.”
 2. CALL NUM_TO_WORD((K = N/10000000), “CRORE”)
 3. CALL NUM_TO_WORD((K = (N/100000)%100), “LAKH”)
 4. CALL NUM_TO_WORD(((K = N/1000)%100), “THOUSAND”)
 5. CALL NUM_TO_WORD(((K = N/100)%10), “HUNDRED”)
 6. CALL NUM_TO_WORD((K = N%100), “ ”)
 7. PRINT “ONLY”
 10. PRINT “ DO YOU WANT TO CONVERT ONCE MORE : Y OR N”
 11. INPUT OPTION
 12. IF OPTION != Y
 THEN FLAG = 1
 ELSE
 FLAG = 0
 13. END
 14. STOP
 The algorithm for the function CALL NUM_TO_

WORD(VALUE, WORD) is given below:
 1. START
 2. RECEIVE VALUE K AND WORD
 3. IF N > 19
 THEN PRINT “ TEN[N/10] AND ONE[N%10]”
 ELSE
 PRINT “ ONE[N]”
 4. IF N != 0 THEN PRINT “WORD”
 5. RETURN

C Implementation

#include<stdio.h>
void num2word(long,char[]);
char *one[]={“ ”, “one”, “two”, “three”, “four”,

“fi ve”, “six”, “seven”, “eight”, “Nine”,
“ten”, “eleven”, “twelve”, “thirteen”,
“fourteen”, “fi fteen”, “sixteen”,
“seventeen”, “eighteen”, “nineteen”};

char *ten[]={“ ”,“ ”, “twenty”, “thirty”, “forty”,
“fi fty”, “sixty”, “seventy”, “eighty”,
“ninety”};

int main()
{
 long n;
 int fl ag = 0;
 char ch;
 while(fl ag!=1)
 {
 printf(“\n Enter any 9 digit value: ”);
 scanf(“%9ld”,&n);
 if(n<=0)
 printf(“\n Enter values greater than 0”);
 else
 {
 printf(“\n The given amount expressed in words\

is:\n Rs”);
 num2word((n/10000000),“crore”);
 num2word(((n/100000)%100),“lakh”);
 num2word(((n/1000)%100),“thousand”);
 num2word(((n/100)%10),“hundred”);
 num2word((n%100),“ ”);
 printf(“only”);
 }

 printf(“\n\n Do you want to convert once more: y\

or n \n”);
 ffl ush(stdin);
 scanf(“%c”,&ch);
 if(ch!=‘y’)
 fl ag=1;
 else
 fl ag=0;
 }

 return 0;
 }

void num2word(long n,char ch[])
{
 (n>19)?printf(“%s %s”,ten[n/10],one[n%10]):

printf(“%s”,one[n]);

Pointers in C 349

 if(n)
printf(“%s”, ch);

}

Sample run result:
Enter any 9 digit no: 546789123
The given amount expressed in words is:
Rs fi fty four crore sixty seven lakh eighty Nine
thousand one hundred t
wenty three only

Do you want to convert once more: y or n
y
Enter any 9 digit no: 123456789
The given amount expressed in words is:
Rs twelve crore thirty four lakh fi fty six thousand
seven hundred eighty
Nine only
Do you want to convert once more: y or n
n
Press Enter to return to Quincy...

350 Programming in C

8.1 INTRODUCTION
So far, fundamental data types have been used in the
programs illustrated. However, C provides facilities to
construct user-defi ned data types from the fundamental
data types.
 A user-defi ned data type may also be called a derived
data type. The array type is a derived data type that
contains only one kind of fundamental data types defi ned
in C. This means that the array elements, represented by a
single name, contain homogeneous data.

 But what happens if the different elements in this cluster,
known as array, are to be of different data types. Such non-
homogeneous data cannot be grouped to form an array. To
tackle this problem suitably, C provides features to pack
heterogeneous data in one group, bearing a user-defi ned
data type name, and forming a conglomerate data type.
So, C provides facilities for the user to create a new data
type called the ‘ structure’ that is capable of holding data of
existing type.

After reading this chapter, the readers will be able to

 learn about the user-defi ned data type called structure and its tag, members, and
variables

 access, initialize, and copy structures and their members

 understand nesting of structures

 make and initialize arrays of structures

 comprehend pointer to structures

 use structures as function arguments and return values

 learn about union data types

 understand enumeration data types

 get acquainted with bitfi elds

Learning Objectives

C
Chapter

User-defined Data Types
and Variables

8

User-defi ned Data Types and Variables 351

8.2 STRUCTURES
The array is an example of a data structure. It takes basic
data types such as int, char, or double and organizes them
into a linear array of elements of the same data type. The
array serves most but not all of the needs of the typical C
program. The restriction is that an array is composed of
the same type of elements.
 At fi rst this seems perfectly reasonable. After all,
why would one want an array to be composed of twenty
Characters and two integers? Well, this sort of mixture
of data types working together is one of the most familiar
of data structures. Consider for a moment a record card
which stores name, age, and salary. The name would
have to be stored as a string, i.e., an array of characters
terminated with an ASCII null character, and the age and
salary would be integers. Hence, the only way one can
work with this collection of data is as separate variables.
This is not as convenient as a single data structure using
a single name. Therefore, C provides a keyword struct,
which is used to form a user-defi ned data type that can
hold a collection of elements of different fundamental
data types. This conglomerate, user-defi ned data type, is
called a structure. At fi rst it is easier to think of this as a
record, although it is a little more versatile than what it
appears to be.
 A structure is a collection of variables under a single
name. These variables can be of different types, and each
has a name which is used to select it from the structure.
Therefore, a structure is a convenient way of grouping
together several pieces of related information.
 Thus, a structure can be defi ned as a new named type,
thus extending the number of available data types. It can
use other structures, arrays, or pointers as some of its
members, though this can get complicated unless one is
careful.
 A structure provides a means of grouping variables
under a single name for easier handling and identifi cation.
Complex hierarchies can be created by nesting structures.
 Structures may be copied to and assigned. They are
also useful in passing groups of logically related data into
functions.

8.2.1 Declaring Structures and Structure Variables

A structure is declared by using the keyword struct
followed by an optional structure tag followed by the body

of the structure. The variables or members of the structure
are declared within the body.
 The general format of declaring a simple structure is
given as follows.

struct <structure_tag_name >{
Keyword

<data_type member_name1>; Basic
data type<data_type member_name2>;

 . . .

} <structure_variable1>,<structure_variable2>,...;

 The structure_tag_name is the name of the structure.
The structure_variables are the list of variable names
separated by commas. Each of these structure_variable
names is a structure of type structure_tag_name. The
structure_variable is also known as an instance variable
of the structure. Each member_name declared within the
braces is called a member or structure element.
 Like all data types, structures must be declared and
defi ned. There are three different ways to declare and/or
defi ne a structure. These are

 ∑ Variable structure
 ∑ Tagged structure
 ∑ Type-defi ned structure

 A variable structure may be defi ned as follows.

struct

{

member_list

}variable_identifi er;

 As an example the following statement is a defi nition of
a variable structure:

struct
No tag

name exist

{

 int x; members

 int y;

}a;
variable
identifi er

 It does not offer any advantage over other declaration
formats. A tagged structure has been described earlier. It
has the following format:

struct tag_name

{
 member_list

}variable_identifi er;

352 Programming in C

 The preceding structure declaration may be expressed
as a tagged structure as follows:

struct coordinate tag name

{

 int x;

 int y;

}a;

 This creates a structure variable named ‘a’ and has a
separate instance of all members (x and y) in the structure
coordinate. If one concludes the structure with a semicolon
after the closing brace, no variable is defi ned. In this case,
the structure is simply a type template with no associate
storage. Once one has declared a tagged structure type,
then the structure variable can be defi ned by specifying the
following statement.

struct tag_name variable1, variable2, …;

 Type-defi ned structures have been discussed later on
(see Section 8.2.5).
 The proper place for structure declarations is in the
global area of the program before main(). This puts them
within the scope of the entire program and is mandatory if
the structure is to be shared by functions. If a declaration
is placed inside a function, then its tag can be used only
inside that function.
 Here is an example of a structure that would be useful
in representing the Cartesian coordinates of a point on a
computer screen, that is, the pixel position.

struct point

{

 int x;

 int y;

};

 The struct declaration is a user-defi ned data type.
Here, the name of the structure is point. Variables of type
point may be declared in the way variables of a built-in
type are declared. For example,

struct point

{

 int x;

 int y;

 } upper_right;

 As mentioned earlier, the structure tag name provides a
shorthand for declaring structures.
This is shown as follows.

struct point

{

 int x;

 int y;

};

struct point upper_left,lower_right;

struct point origin;

 Here, upper_left, lower_right, and origin are the
names of three structures of type point. The following are
some examples of declaration of structures and structure
variables.

Example

 1. struct personal_data

 {

 char name[100];

 char address[200];

 int year_of_birth;

 int month_of_birth;

 int day_of_birth;

 };

 struct personal_data monish, venkat, naresh;

 The above statement is for defi ning a type of variable that holds
a string of 100 characters called name, a string of 200 characters
called address, and three integers called year_of_birth, month_
of_birth, and day_of_birth. Any variable declared to be of type
struct personal_data will contain these components, which are
called members.

 Different structures, even different types of structures,
can have members with the same name, but the values of
members of different structures are independent of one
another. The same name for a member as for an ordinary
variable in that program can also be used, but the computer
will recognize them as different entities, with different
values. This is similar to the naming convention for
humans, where two different men may share the name ‘Jogi
Sharma’, but are recognized as being different people.
 See Figure 8.1. The three structure variables declared
are monish, venkat, and naresh. Each one of it contains the
member fi elds declared within the structure personal_data.

User-defi ned Data Types and Variables 353

Naresh

name

address

yr of birth

mth of birth

day of birth

VenkatMonish

name

address

yr of birth

mth of birth

day of birth

name

address

yr of birth

mth of birth

day of birth

Name

Address

yr of birth

mth of birth

day of birth

Naresh

Name

Address

yr of birth

mth of birth

day of birth

Venkat

Name

Address

yr of birth

mth of birth

day of birth

Monish

(a)

(b)

Figure 8.1 Structure variables

Example

 2. struct country

 {

 char name[30];

 int population;

 char language[15];

 }Country;

 Here, a structure variable Country has been declared to be of
structure type country. This structure variable holds a string called
name having 30 characters, an integer variable population and a
string called language with 15 characters.

 3. struct country

 {

 char name[30];

 int population;

 char language[15];

 }India, Japan, Indonesia;

 This structure named country has three structure variables India,
Japan, Indonesia. All three structure variables hold the same kind of
member elements, though with different values.

 4. struct date /* the tag */

 { /* start of struct date template */

 int day; /* a member */

 int month; /* a member */

 int year; /* a member */

 fl oat sensex; /* a member */

 }dates, today, next; /* instances */

 This declaration has three structure variables dates, today, and
next. These are also called instances and hold similar kind and number
of variables, which may contain different values.

 It has been seen that instances of structures can be
declared at the same time the structure is defi ned. For
example,

struct myStruct {

 int a;

 int b;

 int c;

 } s1, s2;

would generate two instances of myStruct. s1 would cover
the fi rst 12 bytes of the fi le (four bytes for each of the three
integers) and s2 would cover the next 12 bytes of the fi le,
considering a 32-bit machine. So, from the declaration
of members, the compiler can determine the memory
space needed and identify the different members in the
structure.
 Observe that the structure declaration construct is a
template that conveys to the C compiler how the structure
is laid out in memory and gives details of the member
names. A (tagged) template does not reserve any instances
of the structure; it only conveys to the compiler what it
means. This is explained with the help of the following
example.

 struct date {

 int month;

 int day;

 int year;

 };

 This declares a new data type called date. The date
structure consists of three basic data elements, all of type
integer. It does not create any storage space and cannot be

354 Programming in C

used as a variable. In essence, it is a new data type keyword,
like int and char, and can now be used to create variables.
Other data structures may be defi ned as consisting of the
same composition as the date structure.
 Structure type and variable declarations can be either
local or global, depending on their placement in the
code, just as any other declaration can be. Structures
may be assigned, used as formal function parameters,
and returned as functional values. Such operations cause
the compiler to generate sequences of load and store
instructions that might pose effi ciency problems. C
programmers particularly concerned about program speed
will avoid such things and work exclusively with pointers
to functions.
 There are few actual operations that can be performed
on structures as distinct from their members. The only
operators that can be rightly associated with structures
are ‘=’ (simple assignment) and ‘&’ (take the address). It
is not possible to compare structures for equality using
‘==’, nor is it possible to perform arithmetic on structures.
Such operations need to be explicitly coded in terms of
operations on the members of the structure.
 Structure member declarations conform to the same
syntax as ordinary variable declarations. Structure
member names should conform to the same syntax as
ordinary variable names and structure tags but again
belong to a different ‘universe’, i.e., the same name could
be used for a structure tag, an instance of the structure,
and a member of the structure. Each structure defi nes
a separate space as far as naming structure members is
concerned.
 The following rather bizarre and confusing codes are
perfectly valid.

(a) struct a (b) struct b

 { {

 int a; char b;

 int b; char a;

 } b; }a;

 Structure members can be any valid data type, including
other structures, aggregates, and pointers including
pointers to structures and pointers to functions. A structure
may not, for obvious reasons, contain instances of itself
but may contain pointers to instances of itself.

Points to Note

 1. A structure can be defi ned as a user-defi ned data type
that is capable of holding heterogeneous data of basic
data type.

 2. The structure is simply a type template with no
associate storage.

 3. The proper place for structure declarations is in the
global area of the program before main().

 4. It is not possible to compare structures for equality
using ‘==’, nor is it possible to perform arithmetic on
structures.

8.2.2 Accessing the Members of a Structure

The members of a structure can be accessed in three
ways. One of the ways consists of using the ‘.’, which is
known as the ‘dot operator’. The members are accessed by
relating them to the structure variable with a dot operator.
The general form of the statement for accessing a member
of a structure is as follows.

< structure_variable >.< member_name > ;

 The . (dot) operator selects a particular member from a
structure. It has the same precedence as () and [], which
is higher than that of any unary or binary operator. Like ()
and [], it associates from left to right. For example, in

s1.b

s1.cs1.a

s2.b

s2.cs2.a

Conceptual view of memory allocated
for instances s1 & s2

 struct myStruct

 {
 int a;
 int b;
 int c;
 } s1, s2;

the fi rst member can be accessed by the construct

 s1.a

 For any other member of the structure, the construct
for accessing it will be similar. Therefore, for assigning a
value of 12, say, to the member b of the structure identifi ed
by the variable s2, the following statement is written

 s2.b = 12;

User-defi ned Data Types and Variables 355

 To print this value assigned to the member on the
screen, the following code is written.

 printf(“%d”, s2.b);

 Similarly, in the preceding example, member b of
structure s2 will behave just like a normal variable of type
int. However, it is referred to as

 s2.b

 Now, consider the structure given as follows.
 struct personal_data

 {

 char name[100];

 char address[200];

 int year_of_birth;

 int month_of_birth;

 int day_of_birth;

 };

and the declaration statement for the structure variables
monish, venkat, and naresh is given by

 struct personal_data monish, venkat, naresh;

 To input the address of monish, the following code can
be used.

 scanf(“%s”, monish.address);

 The member address of structure personal_data will
behave just like a normal array of char. However, it is
referred to as monish.address.
 In the following example, the year 1982 is assigned
to the year_of_birth member of the structure variable
monish, of type struct personal_data. Similarly, the
month 5 is assigned to the month_of_birth member,
and day 4 is assigned to the day_of_birth member. The
following statements show the assignment of the values to
the member variables belonging to the structure variable
monish.

 monish.year_of_birth = 1982;

 monish.month_of_birth = 5;

 monish.day_of_birth = 4;

 Hence, each member of a structure can be used just
like a normal variable, but its name will be a bit longer.
Therefore, the ‘dot’ is an operator that selects a member
from a structure. This is just one of the ways of accessing
any member in a structure. The other two ways will be
described in the ensuing sections.

8.2.3 Initialization of Structures

A structure can be initialized in much the same way as any
other data type. This consists of assigning some constants
to the members of the structure. Structures that are not
explicitly initialized by the programmer are, by default,
initialized by the system. For integer and fl oat data type
members, the default value is zero. For char and string
type members the default value is ‘\0’.
 The general construct for initializing a structure can be
any of the two forms given as follows.

struct <structure_tag_name>

{

 <data_type member_name1>;

 <data_type member_name2>;

}<structure_variable1> = {constant1,constant2, . .};

or
struct <structure_tag_name> <structure_variable>

 = {constant1,constant2,..};

 The following are some examples using both the forms
for initialization.

Example

 5. Initialization of structure using the fi rst construct.

 #include <stdio.h>

 struct tablets tag name

 {

 int count;

 fl oat average_weight;

 int m_date, m_month, m_year;

 int ex_date, ex_month, ex_year;

 }batch1={2000,25.3,07,11,2004};

structure
variable

initialization
constants

 int main()

 {

 printf(“\n count=%d, av_wt=%f”,batch1.count,
batch1.average_weight);

 printf(“\n mfg-date=%d/%d/%d”, batch1.m_date,
batch1.m_month batch1.m_year);

members

356 Programming in C

 printf(“\n exp-date=%d/%d/%d”, batch1.ex_date,
batch1.ex_month, batch1.ex_year);

 return 0;

 }

Output:

 count=2000, av_wt=25.299999

 mfg-date=7/11/2004

 exp-date= 0/0/0

 In the preceding example, observe that after the ‘=’
operator, the number of constants within the braces, that
is, { and }, are not equal to the total number of members
within the structure tablets. There are eight members in
this structure whereas there are fi ve initializing constants.
Hence, the fi rst fi ve members are assigned the constants
given and the remaining members are assigned the default
value of zero. This is a case of partial initialization
where, always, the fi rst few members are initialized and
the remaining uninitialized members are assigned default
values. Therefore, it is obvious that the partial initialization
feature is supported in C.
 It may, therefore, be stated that the initialization of
all members in a structure is possible if the number of
initializing constants located within the braces is equal to
the number of members. Otherwise, partial initialization
will be done and the rule of assigning the default values to
the rest of the members will be followed.

Example

 6. Initialization of structure using the second construct.

#include <stdio.h>

struct tablets

{

 int count;

 fl oat average_weight;

 int m_date, m_month, m_year;

 int ex_date, ex_month, ex_year;

};

struct tablets batch1={2000,25.3,07,11,2004,06,
10,2007};

int main()

{

 printf(“\n count=%d, av_wt=%f mg.”,batch1.
count, batch1.average_weight);

 printf(“\n mfg-date= %d/%d/%d”,batch1.m_date,
batch1.m_month, batch1.m_year);

 printf(“\n exp-date= %d/%d/%d”,batch1.ex_date,
batch1.ex_month, batch1.ex_year);

 return 0;

}

Output:

 count=2000, av_wt=25.299999 mg.

 mfg-date= 7/11/2004

 exp-date= 6/10/2007

 It must be noted that within the structure construct no
member is permitted to be initialized individually, which
means the following initialization construct is wrong.

 struct games_ticket

 {

 int value = 500;

/* wrong procedure of initialization */

 int seat_num = 52;

/* wrong procedure of initialization */

 int date, month, year;

 }fan1;

The initialization statements

 int value = 500;

and int seat_num = 52;

placed within the struct construct are not permitted in
C. The structure tag (here games_ticket) is not a variable
name. It is just a name given to the template of a structure.
Thus, the statement games_ticket.value=500; will cause
the compiler to generate an error. games_ticket is a just
a data type like int and not a variable. Just as int=10 is
invalid, games_ticket.value=500; is also invalid. The
correct code allowed by C will be

struct games_ticket /* structure tag */

{

 int value; /* member */

 int seat_num; /* member */

 int date, month, year; /* members */

} fan1={500, 52}; /* structure variable and */

 /* initializing values */

User-defi ned Data Types and Variables 357

 Here, the members value and seat_num are initialized
with the values 500 and 52 respectively.
 The rules described upto this point, for the initialization
of structures, is valid for the old C compilers that do no
comply with C99 standards. The compilers that follow C99
standard allow the initialization of individual members of
a structure. This method of initialization was forbidden in
old compilers that are not C99 compliant. To demonstrate
this kind of named initialization of a structure look at the
following examples.

Example

 7. struct {

 fl oat p, q,

 int r;

 } k = { .p = 3.0, .q = 7.9, .r = 5};

 The instance “k” of the above defi ned structure is initialized by
assigning value to individual named members. Here a “dot” is
used with the member’s name for assigning a value.

 8. struct employee

 {

 int emp_num;

 char designation[40];

 char kind_of_leave_applied[30];

 int number_of _days;

 int begin_date;

 };

 struct employee mangal_singh = {.kind_of_leave_
applied = “Medical leave”, .begin_date =
230910, .emp_num = 0691};

 The “struct employee” defi nes a template of a structure with
tagname “employee”. An instance of the structure is created
by the statement “struct employee mangal_singh”. This
instance is initialized. But it may be noted that only some of
the members are initialized. In the C compilers not complying
to C99, such initialization is not allowed. For such compilers,
while initializing an instance of a structure, the members of the
structure have to be assigned a value or a character, whichever
is appropriate, in the order of their defi nition and members not
assigned are given default value of 0 or \0, which has been
mentioned earlier. But, C99 allows the members of a structure to
be initialized by name, which is shown in the above example.

 Further note that the order of the initialization is different from
that of the defi nition of the members in the structure. The member
“kind_of_leave_applied” is placed fi rst, the member

“begin_date” is placed second and the member “emp_num” is
placed third, while the other remaining members are not assigned
anything. Members uninitialized are fi lled up with the default value
of 0. It may be observed that this not only decouples the order
of the defi nition from the order of the initialization, but it’s more
readable. This means the programmer only need to fi ll out the
portions of the structure that are presently relevant and is able
to initialize the elements of the structure using the set notation
without feeling the need to remember the order of the elements
of the structure. Also, if new elements to the structure are added
in later versions, they get initialized to a known value.

 Some examples using named initialization in structures are
given below for getting more familiar with it’s applications.

 9. Demonstration of named initialization in a structure.

 #include<stdio.h>

 struct

 {

 fl oat x, y, z;

 } s = { .y = 0.6, .x = 2.7, .z = 14.6};

 int main()

 {

 fl oat p,q,r;

 p= s.x + s.y + s.z;

 q= s.z*s.x;

 r= s.z/s.x;

 printf(“\n p = %5.2f”,p);

 printf(“\n q = %5.2f”,q);

 printf(“\n r = %5.2f”,r);

 return 0;

 }

 Output:

 p = 17.90

 q = 39.42

 r = 5.41

 10. Another demonstration of named initialization in a structure.

 #include<stdio.h>

 struct test

 {

 fl oat x, y, z;

 }s;

 int main()

 {

 fl oat p,q,r;

358 Programming in C

 struct test s= { .y = 1.24, .x = 3.8, .z = 11.7};

 p= s.x + s.y + s.z;

 q= s.z*s.x;

 r= s.z/s.x;

 printf(“\n p = %5.2f”,p);

 printf(“\n q = %5.2f”,q);

 printf(“\n r = %5.2f”,r);

 return 0;

 }

 Output:

 p = 16.74

 q = 44.46

 r = 3.08

 11. One more demonstration of named initialization in a structure.

 #include<stdio.h>

 struct test

 {

 fl oat x, y, z;

 }s;

 int main()

 {

 fl oat p,q,r;

 struct test s;

 s.y= 5.94;

 s.z= 19.45;

 s.x= 23.17;

 p= s.x + s.y + s.z;

 q= s.z*s.x;

 r= s.z/s.x;

 printf(“\n p = %7.2f”,p);

 printf(“\n q = %7.2f”,q);

 printf(“\n r = %7.2f”,r);

 return 0;

 }

 Output:

 p = 48.56

 q = 450.66

 r = 0

 12. A railway ticket generation program that uses named initialization
in a structure.

 #include<stdio.h>

 struct traveler

 {

 int class;

 char train_num[40];

 char coach_num[6];

 int seat_num;

 char from[30];

 char to[30];

 char gender[10];

 int age;

 int dep_date[10];

 char name[80];

 };

 struct traveler passenger8 =

 {

 .name = “JIT SINHA”,

 .to = “Jaipur”,

 .from = “Raigarh”,

 .train_num = “superfast 154”,

 .dep_date[0] = 30,

 .dep_date[1] = 8,

 .dep_date[2] = 2010,

 .gender = “M”,

 .age = 28,

 .class = 1

 };

 int main()

 {

 printf(“\n enter coach number:”);

 scanf(“%s”,passenger8.coach_num);

 printf(“\n enter seat number:”);

 scanf(“%d”, &passenger8.seat_num);

 printf(“\nxxxxxxxxx Ticket xxxxxxxxx”);

 printf(“\n\n\n Name of Ticket holder : %s”,

passenger8.name);

 printf(“\n\n Train : %s:”,passenger8.train_num);

 printf(“\n\n From : %s Date of Departure:”,

passenger8.from);

User-defi ned Data Types and Variables 359
 for(int i=0;i<3;i++)

 printf(“: %d :”,passenger8.dep_date[i]);

 printf(“\n\n To: %s”, passenger8.to);

 printf(“\n\n Coach No.: %s Seat No.:%d”,passenger8.
coach_num,passenger8.seat_num);

 printf(“\n\n\nxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx”);

 return 0;

 }

 Output:

 enter coach number: S6

 enter seat number: 41

 xxxxxxxxxxxxxxxxxxx Ticket xxxxxxxxxxxxxxxxxxxx

 Name of Ticket holder : JIT SINHA

 Train : Superfast 154:

 From : Raigarh Date of Departure : : 30 :: 8 :: 2010 :

 To: Jaipur

 Coach No.: S6 Seat No.: 41

8.2.4 Copying and Comparing Structures

A structure can be assigned to another structure of the
same type. Here is an example of assigning one structure
to another.

Example

 13. Copying one structure to another of the same type.

 #include <stdio.h>

 struct employee

 {

 char grade;

 int basic;

 fl oat allowance;

 };

 int main()

 {

 struct employee ramesh={‘b’, 6500, 812.5};

 /* member of employee */

 struct employee vivek;

/* member of employee */

 vivek = ramesh; /* copy respective members of
 ramesh to vivek */

 printf(“\n vivek’s grade is %c, basic is Rs %d,
allowance is Rs %f”, vivek.grade,vivek.
basic, vivek.allowance);

 return 0;

 }

 Output:

 vivek’s grade is b, basic is Rs 6500, allowance
is Rs 812.500000

 The preceding example has illustrated that it is possible
to copy the corresponding members of one structure
variable to those of another structure variable provided
they belong to the same structure type. It was mentioned
earlier that the operator ‘=’ can only be used on structure
variables, as demonstrated in this example. The operator
‘&’ can also be used on the structure variable. No other
operators, arithmetic, logical, or relational, can be used
with the structure variables.
 Comparing one structure variable with another is not
allowed in C. The components of a structure are laid
out in memory in the order they are declared. The fi rst
component has the same address as the entire structure.
Padding is introduced between components to satisfy
the alignment requirements of individual components.
This can be explained in terms of slack bytes. Sometimes
hardware requires that certain data such as integers and
fl oating point members, be aligned on a word boundary
in memory. When data in a structure are grouped, the
arrangement of the data may require that slack bytes be
inserted to maintain these boundary requirements. For
example, consider the following structure.

struct test

{

 char c[25];

 long int l;

 char ch;

 int I;

};

 On a byte-addressed machine, short of size two might
be placed at even addresses and long int of size four at
addresses that are multiples of four. In this structure, it is
assumed that a long int is stored in a word that requires

360 Programming in C

four bytes and must be on an address evenly divisible
by four such as 20, 24, 28, or 32. It is also assumed that
integers are stored in a two-byte word that requires an
address evenly divisible by four. The 25 bytes string at the
beginning of the structure forces slack bytes between the
string and the long (see Fig. 8.2). Then the character after
the long forces slack byte to align with the integer at the
end of the structure.

c slack slackl ch i

Word boundary
divisible by 4

Word boundary
divisible by 2

0 24 25 27 28 31 32 33 35 36 37

Figure 8.2 Slack bytes in a structure

 Since these extra bytes are beyond the control of the
program, one cannot guarantee what their values will be.
The gce compiler aligns the structure fi elds on 4-byte
boundaries. Considering the above structure, sizeof(test)
will print 40 (25 bytes for char + 3 bytes padding + 4 bytes
for long + 1 byte for char + 3 bytes padding + 4 bytes
for int. Therefore, if two structures are compared and
their fi rst components are equal, the inserted slack bytes
could cause an erroneous result. C prevents this problem
by not allowing selection statements with structures.
Generally, it is good to group structure fi elds of the same
type together to minimize the extra padding. Of course,
when comparing two structures, one should compare
the individual fi elds in the structure. To determine byte
offset of a member within a structure, ANSI C defi nes
offsetof macro in stdef.h. This can also be implemented
as follows.

#defi ne offsetof (type, mem) ((size_t) ((char *)

&((type *)0)–>mem –\(char *) (type *)0))

 To avoid wastage of space and to minimize the effects
of padding, the members of a structure should be placed
according to their sizes from the largest to the smallest.
However, members of one structure can be compared
with members of another on an individual basis. In fact,
the members involved in the comparison will behave like
any other variable. An example illustrating this feature
follows.

Points to Note

 1. Any member in a structure can be accessed by relating
them to the structure variable with a dot operator.

 2. Structures that are not explicitly initialized by the
programmer are, by default, initialized by the system.
In most of the C compilers, for integer and fl oat data
type members, the default value is zero and for char
and string type members, the default value is ‘\0’.

 3. Comparing one structure variable with another is
not allowed in C. However, when comparing two
structures, one should compare the individual fi elds in
the structure.

Example

 14. Comparison of individual members of structures.

 #include <stdio.h>
 struct employee
 {
 char grade;
 int basic;
 fl oat allowance;
 };
 int main()
 {
 struct employee ramesh = {‘b’, 5750, 818.75};
 struct employee vivek = {‘b’, 6500, 812.5};
 if(ramesh.grade!= vivek.grade)
 printf(“Ramesh and Vivek are employed on

different grades”);
 else if((ramesh.basic+ramesh.allowance)>(vivek.

basic+vivek.allowance))
 printf(“Ramesh is senior and his total

remuneration is Rs%f”,
 (ramesh.basic+ramesh. allowance));
 else if((ramesh.basic+ramesh.allowance)==(vivek.

basic+vivek.allowance))
 printf(“Ramesh and Vivek get the same total

remuneration of Rs%f”,
 (ramesh.basic+ramesh.allowance));
 else
 printf(“Vivek is senior and his total

remuneration is Rs%f”,

 (vivek.basic+vivek.allowance));

 return 0;

 }

Output:

 Vivek is senior and his total remuneration is
Rs 7312.500000

User-defi ned Data Types and Variables 361

8.2.5 Typedef and its Use in Structure Declarations

The typedef keyword allows the programmer to create a
new data type name for an existing data type. No new data
type is produced but an alternate name is given to a known
data type. The general form of the declaration statement
using the typedef keyword is given as follows.

typedef <existing data type> <new data type ,….>;

 The typedef statement does not occupy storage; it
simply defi nes a new type. typedef statements can be
placed anywhere in a C program as long as they come
prior to their fi rst use in the code.
 The following examples show the use of typedef.

typedef int id_number;

typedef fl oat weight;

typedef char lower_case;

 In the preceding example, id_number is the new data
type name given to data type int, while weight is the new
data type name given to data type fl oat and lower_case is
the new data type name given to data type char. Therefore,
the following statements

id_number vinay, komal, jaspal;

weight apples, pears, mangoes;

lower_case a,b,c;

mean that vinay, komal, and jaspal are variable names
that are declared to hold int data type. The new data type,
id_number, suggests that the data content of the variable
names vinay, komal, and jaspal are integers and that it
gives their identifi cation number. The two other examples
shown also carry similar meanings. Therefore, by the
typedef keyword mechanism, the suggested use of the
type names can be understood easily. This is one of the
benefi ts of using the typedef keyword. Moreover, typedef
makes the code more portable.
 Complex data type like structure can use the typedef
keyword. For example,

typedef struct point

 {

 int x;

 int y;

 } Dot;

Dot left,right;

shows that left and right are the structure variables of
structure type point.
 When typedef is used to name a structure, the structure
tag name is not necessary. Such an example follows.

typedef struct /* no structure tag name used */

 {

 fl oat real;

 fl oat imaginary;

 } complex; /* means complex number */

 complex u,v;

 The preceding example declares u and v as complex
numbers having a real part and an imaginary part. The
following are some examples involving structures and
typedef.

Example

 15. A program that prints the weight of various sizes of fruits.

 #include <stdio.h>
 typedef struct fruits
 {
 fl oat big;
 fl oat medium;
 fl oat small;
 }weight;
 int main()
 {
 weight apples={200.75,145.5,100.25};
 weight pears={150.50,125,50};
 weight mangoes={1000, 567.25, 360.25};
 printf(“\n\n apples: big %7.2fkg, medium %7.2fkg,

small %7.2fkg”,apples.big,apples.medium,
apples.small);

 printf(“\n\n pears: big %7.2fkg, medium %7.2fkg,
small %7.2fkg”,pears.big,pears.medium,
pears.small);

 printf(“\n\n mangoes: big %7.2fkg, medium %7.2fkg,
small %7.2fkg”, mangoes.big, mangoes.
medium, mangoes.small);

 return 0;
 }

Output:

 apples: big 200.75kg, medium 145.50kg, small 100.25kg

 pears: big 150.50kg, medium 125.00kg, small 50.00kg

 mangoes: big 1000kg, medium 567.25kg, small 360.25kg

362 Programming in C

 16. A program that prints the x – y coordinates of the two ends of a
line.

 #include <stdio.h>

 typedef struct /* no tag */

 {

 int x;

 int y;

 }Dot; /* a new type name */

 Dot left,right;

 /* declaring structures “left”
and “right” */

 int main()

 {

 printf(“\n Enter x & y coordinates of left and
right:”);

 scanf(“%d %d %d %d”,&left.x,&left.y,&right.x,
&right.y);

 printf(“\n left: x=%d, y=%d, right: x=%d,
y=%d”, left.x, left.y, right.x,right.y);

 return 0;

 }

 Output:

 Enter x & y coordinates of left and right:4 20 30 20

 left: x=4, y=20, right: x=30, y=20

8.2.6 Nesting of Structures

A structure can be placed within another structure. In other
words, structures can contain other structures as members.
A structure within a structure means nesting of structures.
In such cases, the dot operator in conjunction with the
structure variables are used to access the members of the
innermost as well as the outermost structures.

Example

 17. A program to demonstrate nesting of structures and accessing
structure members.

 #include <stdio.h>
 struct outer /* declaration of outer structure */
 {
 int out1; /* member of outer structure */
 fl oat out2; /* member of outer structure */
 struct inner /* declaration of inner structure */
 {

 int in1; /* member of inner structure */

 fl oat in2; /* member of inner structure */

 }invar;

/* structure_variable of inner structure*/

 };

 int main()

 {

 struct outer outvar;

/* declaring structure_variable of outer */

 outvar.out1= 2; /* assigning values to members */

 outvar.out2= 10.57;

 /* assigning values to members */

 outvar.invar.in1= 2* outvar.out1;

 outvar.invar.in2= outvar.out2 + 3.65;

 printf(“ out1=%d, out2=%6.2f, in1=%d, in2=%6.2f”,
outvar.out1, outvar.out2,outvar.invar.in1,
outvar.invar.in2);

 return 0;

 }

 Output:

 out1=2, out2= 10.57, in1=4, in2= 14.22

 It must be noted that an innermost member in a nested
structure can be accessed by chaining all the concerned
structure variables, from outermost to innermost, with
the member using the dot operator. This technique has
been used in the previous example, when the inner-most
members in1 and in2, belonging to the structure inner, are
assigned values.
 What happens when the fi rst structure type is declared
outside and before the second structure type and is
incorporated as a member of the second structure type?
The following example depicts what happens in such a
case. The structure members are accessed in the same way
as was done in the earlier example.

Example

 18. Write a program to demonstrate nesting of structures, accessing
structure members, and using structure type declaration different
from that in the previous example.

 #include <stdio.h>

 struct fi rst /* declaration of fi rst structure */

 {

 int in1; /* member of fi rst */

 fl oat in2; /* member of fi rst */

 };

User-defi ned Data Types and Variables 363
 struct second /* declaration of second structure */

 {

 int out1; /* member of second */

 fl oat out2; /* member of second */

 struct fi rst inf; /* structure_variable of fi rst
 structure */

 };

 int main()

 {

 struct second outs; /* structure_variable of
 second structure */

 outs.out1= 2; /* assigning values to
 members */

 outs.out2= 10.57; /* assigning values to
 members */

 outs.inf.in1= 2* outs.out1;

 outs.inf.in2= outs.out2 + 3.65;

 printf(“ out1=%d, out2=%6.2f, in1=%d, in2=%6.2f”,
outs.out1, outs.out2, outs.inf.in1,
outs.inf.in2);

 return 0;

 }

 Output:

 out1=2, out2= 10.57, in1=4, in2= 14.22

 It must be understood that, in principle, structures can
be nested indefi nitely. Statements like the following are
syntactically acceptable, but are bad style.

 Outer_struct_variable.member1.member2.member3.
member4.member5 = 3;

 However, one may be curious to know what happens
if a structure contains an instance of its own type. The
following example may be examined in this context.

struct compute

{

 int int_member;

 struct compute self_member;

};

 For the computer to compile a statement of this type, it
would theoretically need an infi nite amount of memory. In
practice, however, the programmer will simply receive an
error message along the following lines.

 In function ‘main’:

 fi eld self_member has incomplete type

 The compiler conveys to the programmer that ‘self_
member’ has been declared before its data type ‘compute’
has been fully declared. Since the programmer is declaring
‘self_member’ in the middle of declaring its own data type,
this is quite natural.

8.2.7 Arrays of Structures

Just as there can be arrays of basic types such as integers
and fl oats, so also can there be arrays of structures. This
means that the structure variable would be an array of
objects, each of which contains the member elements
declared within the structure construct. The general
construct for declaration of an array structure is given as
follows.

struct <structure_tag_name >

{

 <data_type member_name1>;

 <data_type member_name2>;
 . . .

 }<structure_variable>[index];

Or

struct <structure_tag_name> <structure_variable>[index];

 Figure 8.3 depicts the arrays formed for the array
objects declared to be of type structure_tag_name having
structure_variable as its name. Here, the term ‘index’
specifi es the number of array objects. In the fi gure, this
has been shown to be from 1 to N.

Example

 19. Write a program to illustrate the use of array of structures.

 #include <stdio.h>

 struct test1

 {

 char a;

 int i;

 fl oat u;

 }m[3];

 int main()

 {

 int n;

 for(n=0;n<=2;++n)

 {

 printf(“\n Enter ch, in, fl :”);

364 Programming in C

 ffl ush(stdin); /* clear stdin stream */

 /* input the values of array
of structures */

 scanf(“%c %d %f”,&(m[n].a),&(m[n].i),&(m[n].u));

 ffl ush(stdout); /* clear stdout stream */

 /* output the values of array
of structures */

 printf(“\n a=%c, i=%d, u=%f”, m[n].a, m[n].i, m[n].u);

 }

 return 0;

 }

 Output:

 Enter ch, in, fl :g 45 678.1956

 a=g, i=45, u=678.195618

 Enter ch, in, fl :j 76 345.5674

 a=j, i=76, u=345.567413

 Enter ch, in, fl :k 69 123.333547

 a=k, i=69, u=123.333549

member1;

member2;

memberN;

...

<structure_variable>[0]

. . .

member1;

member2;

memberN;

...

member1;

member2;

memberN;

...

<structure_variable>[1] <structure_variable>[N]

Figure 8.3 Array of structures

8.2.8 Initializing Arrays of Structures

Initializing arrays of structures is carried out in much
the same way as arrays of standard data types. A typical
construct for initialization of an array of structures would
appear as follows.

struct <structure_tag_name >
/* structure declaration */

 {
 <data_type member_name_1>;
 <data_type member_name_2>;
 .
 .
 <data_type member_name_n>;
 };
 /* declaration of structure array and initialization */
 struct <structure_tag_name> <structure_variable>[N]=

{
 {constant01,constant02,……………………….constant0n},
 {constant11,constant12,……………………….constant1n},
 .
 .
 {constantN1,constantN2,…constantNn}};

 The following example shows how the initialization
technique referred to above is implemented.

Example

 20. Write a program to print the tickets of the boarders of a boat using
array of structures with initialization in the program.

 #include <stdio.h>
 struct boat /** declaration of structure **/
 {
 char name[20];
 int seatnum;
 fl oat fare;
 };
 int main()
 {
 int n;
 struct boat ticket[4]= {{“Vikram”, 1,15.50},

{“Krishna”, 2,15.50}, {“Ramu”, 3,25.50},
{“Gouri”, 4,25.50}};

 /** initialization **/
 printf(“\n Boarder Ticket num. Fare”);
 for(n=0;n<=3;n++)
 printf(“\n %s %d %f”,ticket[n].name,ticket[n].

seatnum,ticket[n].fare);
 return 0;
 }

 Output:

 Boarder Ticket num. Fare
 Vikram 1 15.500000
 Krishna 2 15.500000
 Ramu 3 25.500000
 Gouri 4 25.500000

User-defi ned Data Types and Variables 365

8.2.9 Arrays within the Structure

There can be arrays within a structure. In other words, any
member within a structure can be an array. When arrays are
used in a structure, they are accessed and initialized in a way
similar to that illustrated in Example 20. In this example,
name[20] is an array within the structure boat. Initialization
of the structure means initialization of members: name[20],
seatnum, and fare. The printf() statement within the for
loop uses the dot operator to access the member name[20],
an array, within the structure boat. Therefore, this example
demonstrates how an array is used within a structure and
also shows the way to initialize it.

Points to Note

 1. By using typedef, no new data type is produced but an
alternate name is given to a known data type.

 2. typedef statements can be placed anywhere in a C
program as long as they come prior to their fi rst use in
the code.

 3. An innermost member in a nested structure can be
accessed by chaining all the concerned structure
variables, from outermost to innermost, with the
member using the dot operator.

8.2.10 Structures and Pointers

At times it is useful to assign pointers to structures. A
pointer to a structure is not itself a structure, but merely
a variable that holds the address of a structure. This
pointer variable takes four bytes of memory just like any
other pointer in a 32-bit machine. Declaring pointers to
structures is basically the same as declaring a normal
pointer. A typical construct for declaring a pointer to a
structure will appear as follows.

struct <structure_tag_name >

/* structure declaration */

 {

 <data_type member_name_1>;

 <data_type member_name_2>;

 .

 .

 <data_type member_name_n>;

 }*ptr;

or
struct <structure_tag_name>

 {

 <data_type member_name_1>;

 <data_type member_name_2>;

 .

 .

 <data_type member_name_n>;

 };

struct <structure_tag_name> *ptr;

 This pointer, *ptr, can be assigned to any other pointer
of the same type, and can be used to access the members of
its structure. To access the members within the structure,
the dot operator is used with the pointer variable. For
example, to enable the pointer variable to access the
member member_name_1, the following construct is used.

(*ptr).member_name_1

 The bracket is needed to avoid confusion about the ‘*’
and ‘.’ operators. If the bracket around *ptr is done away
with, the code will not compile because the ‘.’ operator has
a higher precedence than the ‘*’ operator. It gets tedious
to type so many brackets when working with pointers to
structures. Hence C includes a shorthand notation that
does exactly the same thing.

ptr-> member_name_1

 This is less confusing and a better way to access a
member in a structure through its pointer. The -> operator,
an arrow made out of a minus sign and a greater than
symbol, enables the programmer to access the members
of a structure directly via its pointer. This statement means
the same as the last line of the previous code example, but
is considerably clearer. The -> operator will come in very
handy when manipulating complex data structures.
 For initializing the structure members through a pointer
to the structure, any one of the following constructs is used.

(*ptr).member_name_x = constant;

or
ptr-> member_name_x = constant;

where x is 1 to N, and N is the total number of members in
the structure. The following are examples using pointer to
structure.

366 Programming in C

Example

 21. Write a program using a pointer to structure illustrating the
initialization of the members in the structure.

 #include <stdio.h>

 #include <conio.h>

 struct test1

 /** declaration of structure “test” */

 {

 char a;

 int i;

 fl oat f;

 };

 int main()

 {

 struct test1 pt; /* declaring pointer to the

structure */

 clrscr();

 pt->a=‘K’; /* initializing char a */

 pt->i=15; /* initializing int i */

 pt->f=27.89; /* initializing fl oat f */

 printf(“\n a=%c, i=%d, f=%f”,pt->a,pt->i,pt->f);

 printf(“\n Enter new char, int, fl oat:”);

 scanf(“%c %d %f”,&pt->a,&pt->i,&pt->f);

/* input for members */

 printf(“\n a=%c, i=%d, f=%f”,pt->a,pt->i,pt->f);

 return 0;

 }

 /* function to link-in fl oating
point emulator */

 void linkfl oat()

 {

 fl oat a,*x;

 x=&a;

 a=*x;

 }

 Output:

 a=k, i=15, f=27.889999

 Enter new char, int, fl oat: d 45 67.53

 a=d, i=45, f=67.529999

 The function linkfl oat() needs to be explained. If
this function is not included, the following error is
generated.

 scanf: fl oating point format not linked

 Abnormal program termination

 A similar message saying “fl oating point not

loaded” is printed by the Microsoft C runtime system
when the software needs a numeric coprocessor but
the computer does not have one installed. One may
fix it by returning the program using the floating-point
emulation library.
 A fl oating-point emulator is used to manipulate
fl oating point numbers in runtime library functions
such as scanf() and atof(). When compiling the source
program if the compiler encounters a reference to the
address of a fl oat, it sets a fl ag to have the linker link
in the fl oating-point emulator. In some cases in which
reference to fl oat seems to guess wrongly when the
program uses fl oating point formats in scanf() but
does not call any other fl oating point routines. The
function linkfl oat() forces linking of the fl oating point
emulator into an application. There is no need to call this
function. Just include it anywhere in the program. This
provides a solid clue to the Borland PC linker that the
fl oating-point library is need.
 Another workaround is to defi ne a function in a
module that will be included in the link. The function is as
follows:

static void forcefl oat (fl oat *p)

{

 fl oat f=*p;

 forcefl oat(&f);

}

 The problem can also be solved by including the
following code in the program instead of the functions
such as linkfl oat() or forcefl oat().

#include <math.h>

double dummy = sin(0.0);

 This code forces the compiler to load the fl oating-point
version of scanf().

User-defi ned Data Types and Variables 367

Example

 22. Write a program using a pointer to structure illustrating the
initialization of the members in the structure using a different
technique to avoid the fl oating point error problem.

 #include <stdio.h>

 struct test1

 {

 char a;

 int i;

 fl oat f;

 };

 int main()

 {

 fl oat x;

 struct test1 *q,p;

 clrscr();

 printf(“\n Enter char, int, fl oat:”);

 scanf(“%c %d”,&p.a,&p.i);

 scanf(“%f”,&x);

 p.f=x;

 q=&p;

 printf(“\n a=%c, i=%d, f=%f”,q->a,q->i,q->f);

 q=NULL;

 return 0;

 }

 Output:

 Enter char, int, fl oat:g 32 87.64

 a=g, i=32, f=87.639999

 23. Write a program using a pointer to structure illustrating the
initialization of the members in the structure using malloc().

 #include <stdio.h>

 struct A

 {

 char ch;

 int in;

 fl oat f;

 };

 int main()

 {

 struct A *sp;

 int n,i;

 printf(“\n How many members:”);

 scanf(“%d”,&n);

 sp=(struct A *)malloc(n*sizeof(struct A));

 if(sp==NULL)

 {

 printf(“\n Memory allocation unsuccessful”);

 exit(0);

 }

 for(i=0;i<n;++i)

 {

 printf(“\n Enter ch, in and f:”);

 ffl ush(stdin);

 scanf(“%c %d %f”,&sp[i].ch,&sp[i].in,&sp[i].f);

 }

 for(i=0;i<n;++i)

 printf(“\n ch=%c in=%d f=%f”,sp[i].ch,
sp[i].in, sp[i].f);

 return 0;

 }

 void linkfl oat()

 {

 fl oat a=0.0,*x;

 x=&a;

 a=*x;

 }

 Output:

 How many members:2

 Enter ch, in and f: g 31 76.56

 Enter ch, in and f: k 32 78.34

 ch=g in=31 f=76.559998

 ch=k in=32 f=78.339996

 There are many reasons for using a pointer to a struct.
One of them is to make a two-way communication possible
within functions. This aspect is explained with examples
in the following section.

8.2.11 Structures and Functions
An entire structure can be passed as a function argument
just like any other variable. When a structure is passed as an
argument, each member of the structure is copied. In fact,
each member is passed by value. In case the member is an
array, a copy of this array is also passed. This can prove
to be ineffi cient where structures are large or functions are
called frequently. Passing and working with pointers to

368 Programming in C

large structures may be more effi cient in such cases. The
general construct for passing a structure to a function and
returning a structure is

struct structure_tag function_name(struct
structure_tag structure_variable);

 Several variations in this construct are made while using
this construct. In some cases, the function may receive a
structure but may return a void or some other data type.
In another implementation, no parameters may be passed
to a function but it may return a structure. Another option
may be to pass a pointer to a structure and return any
data type, including a user-defi ned structure. Hence, the
preceding construct is formed based on the requirement.
It must be noted that in any case the structure declaration
and the defi nition of the structure variable should precede
the function call construct stated above. The following are
some examples involving structures with functions.

Example

 24. Write a program where a structure is passed to a function while it
returns nothing.

 #include <stdio.h>

 struct A

 {

 char ch;

 int in;

 fl oat f;

 };

 void show(struct A);

 int main()

 {

 struct A a;

 printf(“\n Enter ch, in and f:”);

 ffl ush(stdin);

 scanf(“%c %d %f”,&a.ch,&a.in,&a.f);

 show(a);

 return 0;

 }

 /*** function show() ***/

 void show(struct A b)

 {

 printf(“\n ch=%c, in=%d, f=%f”,b.ch,b.in,b.f);

 }

 /*** function linkfl oat() ***/

 void linkfl oat()

 {

 fl oat a=0.0,*x;

 x=&a;

 a=*x;

 }

 Output:

 Enter ch, in and f:v 34 78.95

 Ch=v, in=34, f=78.949997

 25. Write a program that passes a pointer to a structure and returns
nothing.

 #include <stdio.h>

 struct A

 {

 char ch;

 int in;

 fl oat f;

 };

 void read(struct A *);

 /* function prototype with pointer to structure
as a parameter and void as return */

 void show(struct A);

 /* function prototype with structure as
a parameter and void as return */

 int main()

 {

 struct A a;

/* declaring “a” as structure variable */

 read(&a); /* call to function read() */

 show(a);
 /* call to function show() */

 return 0;

 }

 /*** function read() ***/

 void read(struct A *p)

 {

 printf(“\n Enter ch, in and f:”);

 /* request for values to members */

 ffl ush(stdin); /* clear input stream */

 scanf(“%c %d %f”,&p->ch,&p->in,&p->f);

 /* input values to members */

 }

 /*** function show() ***/

User-defi ned Data Types and Variables 369
 void show(struct A b)

 {

 printf(“\n ch=%c in=%d f=%f”,b.ch,b.in,b.f);

 }

 /*** function linkfl oat() ***/

 void linkfl oat()

 {

 fl oat a=0.0,*x;

 x=&a;

 a=*x;

 }

 Output:

 Enter ch, in and f:m 31 89.75

 ch=m, in=31, f=89.75

 26. Write a program using a function that does not require any
parameter to be passed and returns a structure.

 #include <stdio.h>

 struct A

 {

 char ch;

 int in;

 fl oat f;

 };

 struct A read(void);

 void show(struct A);

 int main()

 {

 struct A a;

 a=read();

 show(a);

 return 0;

 }

 struct A read(void)

 {

 struct A p;

 printf(“\n Enter ch, in and f:”);

 ffl ush(stdin);

 scanf(“%c %d %f”,&p.ch,&p.in,&p.f);

 return p;

 }

 /*** function show() ***/

 void show(struct A b)

 {

 printf(“\n ch=%c, in=%d, f=%f”,b.ch,b.in,b.f);

 }

 /*** function linkfl oat() ***/

 void linkfl oat()

 {

 fl oat a=0.0,*x;

 x=&a;

 a=*x;

 }

 Output:

 Enter ch, in and f:g 30 92.55

 ch=g, in=30, f=92.550003

 From the preceding examples, it is evident that to modify
the value of the members of the structure by a function, the
programmer must pass a pointer to that structure to the
function. This is just like passing a pointer to an int type
argument whose value is to be changed.
 If the programmer is only interested in one member of
a structure, it is probably simpler to just pass that member
to the function. This will make for a simpler function,
which is easier to reuse. But, of course, if the value of that
member has to be changed, a pointer to it should be passed
to the function.
 However, when a structure is passed as an argument
to a function, each member of the structure is copied.
This can prove expensive where structures are large or
functions are called frequently. Passing and working with
pointers to large structures may be more effi cient in such
cases.

Points to Note

 1. A pointer to a structure is not itself a structure,
but merely a variable that holds the address of a
structure.

 2. Passing and working with pointers to large structures
may be more effi cient while passing structures to a
function and working within it.

370 Programming in C

8.3 UNION
A union is a structure all of whose members share the
same storage. The amount of storage allocated to a union
is suffi cient to hold its largest member. At any given time,
only one member of the union may actually reside in that
storage. The way in which a union’s storage is accessed
depends, then, on the member name that is employed
during the access. It is the programmer’s responsibility to
keep track of which member currently resides in a union.
 A union is identifi ed in C through the use of the keyword
union in place of the keyword struct. Virtually all other
methods for declaring and accessing unions are identical
to those for structures.

8.3.1 Declaring a Union and its Members

The general construct for declaring a union is given as
follows.

 union tag_name
 {
 member1;
 member2;
 .
 .
 memberN;
 }variable1,variable2,variable3,…,variableX;

 Similar to structure, the union also has a tag name,
members, and variable names. In the preceding declaration
construct, the variable names, variable1, variable2,
variable3,…,variableX, are optional and therefore these
may not be mentioned.
 The general construct of declaring the individual union
variables is

 union tag_name variable1,variable2,…,variableX;

 As an example, consider the following declarations for
a union that has a tag named mixed.

 union mixed
 {
 char letter;
 fl oat radian;
 int number;
 };
 union mixed all;

 The fi rst declaration consists of a union of type mixed,
which consists of a char, fl oat, or int variable as a member.
At a time only one member belonging to any one of the

data types, that is char, int, or fl oat, can exist. This is due
to the provision of a single memory address that is used to
store the largest variable, unlike the arrangement used for
structures. Figure 8.4 depicts the way the three members
letter, radian, and number are stored in memory, for a 16-
bit machine.
 Therefore, the variable all can only be a character, a
fl oat, or an integer at any one time. C keeps track of what
all actually is at any given moment but does not provide a
check to prevent the programmer accessing it incorrectly.

Address 5000 5001 5002 5003

letter

radian

number

Figure 8.4 Three members of a union sharing a memory
location for a 16-bit machine

 It is evident from the previous example that a union is
similar to a structure except that all the members in it are
stored at the same address in memory. Therefore, only one
member can exist in a union at any one time. The union data
type was created to prevent the computer from breaking its
memory up into several ineffi ciently sized pieces, which is
called memory fragmentation.
 The union data type avoids fragmentation by creating a
standard size for certain data. When the computer allocates
memory for a program, it usually does so in one large block
of bytes. Every variable allocated when the program runs,
occupies a segment of that block. When a variable is freed,
it leaves a ‘hole’ in the block allocated for the program.
If this hole is of an unusual size, the computer may have
diffi culty allocating another variable to ‘fi ll’ the hole,
thus leading to ineffi cient memory usage. However, since
unions have a standard data size, any ‘hole’ left in memory
by freeing a union can be fi lled by another instance of
the same type of union. A union works because the space
allocated for it is the space taken by its largest member;
thus, the small-scale tmemory ineffi ciency of allocating
space for the worst case leads to memory effi ciency on a
larger scale.
 Unions can also be a member of a structure. The
following is an example showing such a structure.

User-defi ned Data Types and Variables 371
 struct conditions
 {
 fl oat temp;
 union feels_like {
 fl oat wind_chill;
 fl oat heat_index;
 }

 } today;

 As is known, wind_chill is only calculated when it is
‘cold’ and heat_index when it is ‘hot’. There is no need
for both at the same time. So when the today is specifi ed,
feels_like has only one value, either a fl oat for wind_chill
or a fl oat for heat_index.
 Within a union, data types can be of any kind; in fact it
may even be of struct type.

8.3.2 Accessing and Initializing the Members of a Union

Consider, the general declaration construct of a union.
union tag_name
{
 member1;
 member2;
 . . .
 memberN;
 }variable1,variable2,variable3,…,variableX;

 For accessing members of, say, variable1 to N of the
union tag_name, the following constructs are used.

variable1.member1
variable2.member2
 . . .

variableX.memberN

 Only a member that exists at the particular instance
in storage should be accessed. The general construct for
individual initialization of a union member is

variableX.memberN = constant;

where X is any value 1 to X and N is any value 1 to N.

Example

 27. Write a program that illustrates the initialization of a member in a
union.

 #include <stdio.h>
 #include <conio.h>
 union test /* declaration of union */

 {
 int i; /* integer member */
 char c; /* character member */
 }var; /* variable */
 int main()
 {
 var.i=65; /* initializing integer member */
 printf(“\n var.i=%d”, var.i);
 /* output integer member */
 printf(“\n var.c=%c”, var.c);
 /* output character member */
 return 0;
 }

 Output:
 var.i=65
 var.c=A

Note See Fig. 8.5 for the storage location of union test.

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

15Bit position 1413121110 9 8 7 6 5 4 3 2 1 0

char c
int i

Figure 8.5 The storage location of union test, for a
16-bit machine

 Figure 8.5 shows the storage location of union test.
The location has two bytes because the largest member in
the union test is an integer named ‘i’. The other member,
‘c’, being a character, occupies eight bits from bit 0 to
bit 7. The integer member ‘i’ is assigned the value ‘65’.
Hence, this value in binary form is stored in bits 0 to 15 as
seen in the fi gure. So when printf() is executed, the value
65 for ‘i’ is printed on the screen. But the member ‘c’ has
not been assigned any value. Therefore, the existing value
of 65 in the referred storage location is taken when the
printf() for the member ‘char c’ is executed. Referring
to the ASCII table, the equivalent symbol for the decimal
value 65 is ‘A’. Thus when the second printf() is executed,
the output is ‘A’.
 It must be remembered that while accessing member
variables, the user should make sure that they can
access the member whose value is currently in storage.
For example, considering the union in Example 21, the
following statements

372 Programming in C

var.i = 145;

var.c = 273.85;

printf(“%d”, var.i);

would produce an erroneous output. This results because the
value assigned to var.c overlays the value assigned to var.i.
 The initialization of only the fi rst member of the union can
be carried out during the declaration of the union variable.
The initialization value must be of the same data type as
the member. Again referring to Example 27, a declaration
statement with initialization will appear as follows.

 union test var={65};

 Here, the value used to initialize the member ‘i’ is of
the same data type as that of ‘i’. But in this example, if the
initialization value is a fl oat data type, then the initialization
will not be valid because the member ‘i’ is an integer data
type. Therefore, the following construct will be wrong and
invalid with reference to Example 27.

 union test var={45.62};

 A union is also employed as an important convenience
for the programmer. For example, it is often useful to
name a single cell to hold a type-independent value,
say, one returned by any of the several functions or one
returned by a macro whose arguments may have different
types.

8.3.3 Structure versus Union

 Memory allocation The amount of memory required to
store a structure is the sum of the size of all the members
in addition to the slack bytes or padding bytes that may
be provided by the compiler. On the other hand, in case
of a union, the amount of the memory required is same
as that of the largest member. This can be proved by the
following program.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct S
{
 int i;
 char ch;
 double d;
};
union U
{
 int i;
 char ch;
 double d;
};

int main()
{
printf(“\n Size of the structure is %d”, sizeof

(struct S));
printf(“\n Size of the union is %d”, sizeof(union U));
return 0;
}

Output:
 Size of the structure is 16

 Size of the union is 8

Member access While all structure members can be
accessed at any point of time, only one member of a union
can be accessed at any given time. Because at a particular
moment of time, only one union member will have a
meaningful value. The other members have garbage values.
It is the responsibility of the programmer to keep track of
the active member. Consider the following program.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
struct S
{
 int i;
 char ch;
 double d;
};
union U
{
 int i;
 char ch;
 double d;
};
int main()
{
 struct S a={10,‘A’,3.1415};
 union U b={10,‘A’,3.1415};
 printf(“\n a.i=%d a.ch=%c a.d=%lf”,a.i,a.ch,a.d);
 printf(“\n b.i=%d b.ch=%c b.d=%lf”,b.i,b.ch,b.d);
 b.ch=‘B’;
 printf(“\n b.i=%d b.ch=%c b.d=%lf”,b.i,b.ch,b.d);
 b.f=5.12345;
 printf(“\n b.i=%d b.ch=%c b.d=%lf”,b.i,b.ch,b.d);
 return 0;
}

Output:
a.i=10 a.ch=A a.d=3.141500
b.i=10 b.ch=
b.d=0.000000
b.i=66 b.ch=B b.d=0.000000
b.i=-1388133430 b.ch=Ê b.d=5.123450

User-defi ned Data Types and Variables 373

Careful study reveals the aforesaid point.

Identifying active members There is no way to fi nd
which of the members is active at any moment of time. The
program must keep track of active members explicitly.

Do’s and don’ts for unions

Note It is important to remember which union member
is being used. If the user fi lls in a member of one type
and then tries to use a different type, the results can be
unpredictable. The following operations on union variables
are valid.
 A union variable can be assigned to another union

variable.
 A union variable can be passed to a function as a

parameter.
 The address of a union variable can be extracted by

using & operator.
 A function can accept and return a union or a pointer

to a union.
 Don’t try to initialize more than the fi rst union member.
 Don’t forget that the size of a union is equal to its

largest member.
 Don’t perform arithmetical or logical operations on

union variables.

Points to Note

 1. At any given time, only one member of the union may
actually reside in the storage.

 2. In a union, the amount of memory required is same as
that of the largest member.

 3. It is important to remember which union member is
being used. If the user fi lls in a member of one type
and then tries to use a different type, the results can
be unpredictable.

 4. The following operations on union variables are valid:

 • A union variable can be assigned to another union
variable.

 • A union variable can be passed to a function as a
parameter.

 • The address of a union variable can be extracted
by using & operator.

 • A function can accept and return a union or a
pointer to a union.

 5. No attempt should be made to initialize more than one
union member.

 6. Performing arithmetical or logical operations on union
variables is not allowed.

8.4 ENUMERATION TYPES

Enumeration data types are data items whose values may be
any member of a symbolically declared set of values. The
symbolically declared members are integer constants. The
keyword enum is used to declare an enumeration type. The
general construct used to declare an enumeration type is

enum tag_name{member1, member2,…, memberN}
variable1,...,variableX;

 In this declaration, either tag_name or variable may be
omitted or both may be present. But at least one of them
must exist in this declaration construct.
 The enum tag_name specifi es the user-defi ned type. The
members are integer constants. By default, the fi rst member,
that is, member1, is given the value 0. The second member,
member2, is given the value 1. Members within the braces
may be initialized, in which case, the next member is given
a value one more than the preceding member. So, each
member is given the value of the previous member plus 1.
 The general form of the construct for declaring variables
of enum type separately is

 enum tag_name variable1,...,variableX;

 The variables can take on as values only the members
in the member list. Therefore,

 variable1 = member2;

assigns the value represented by member2 to variable1. A
typical declaration would be

 enum days {Mon, Tues, Wed, Thurs, Fri, Sat, Sun};

 The above declaration means that the values ‘Mon,...,Sun’
may be assigned to a variable of type enum days. The actual
values are 0,...,6 in this example and it is these values that
must be associated with any input or output operations.
The following example illustrates these features.

Example

 28. Write a program to illustrate the assignment of default values to
the members of data type enum.

 #include <stdio.h>
 enum days{Mon, Tues, Wed, Thurs, Fri, Sat, Sun };
 int main()
 {
 enum days start, end;
 start= Tues; /* means start=1 */
 end= Sat; /* means end=5 */
 printf(“\n start = %d, end = %d”, start,end);

374 Programming in C

 start= 64;
 printf(“\n start now is equal to %d”, start);
 return 0;
 }

 Output:
 start = 1, end = 5
 start now is equal to 64

 It will be noticed that it is possible to assign a normal
integer to an enum data type and no verifi cation is carried
out to fi nd that an integer assigned to an enum data type is
within range.
 It is possible to associate numbers other than the
sequence starting at zero with the names in the enum data
type by including a specifi c initialization in the variable
name list. This also affects the values associated with all
the following variable names. For example, consider the
following declaration construct.

enum coins{ p1=1, p2, p5=5, p10=10, p20=20, p50=50 };

 Here, all the variables except p2 are initialized. Since
p2 is next to p1, it will be assigned a value 2. Similar
examples showing how the members in a enum data type
are initialized are given below.

Example

 29. Illustrations of initialization of members in enum data type
 (a) enum fruit {mango=10, orange, apple=6, pear}fru;

 Here, since mango is initialized to 10, orange has a value
of 11. For the same reasons, because apple is assigned a
value of 6, pear has a value of 7. It may be observed that
multiple values initialization are allowed, but the member
names must themselves be unique.

 (b) enum veg{tomato=15, beans=15, onions=15}
veget1,veget2;

 Here, all the members are initialized with a value.
 (c) enum {teak,pine}tree;

 In this case, since no tag name has been specifi ed, no other
variable of type enum {teak,pine} can be declared.

 (d) enum veg{tomato,beans,onions}veg;

 The above example shows that a tag name can be reused
as a variable name or as an enumerator. This is because
the tag names have their own name space. Such usage,
though valid, is not good programming practice.

 Few programmers use enum data types. The same effects
can be achieved by use of #defi ne although the scoping rules
are different. The enum data types are rarely used in practice.

8.5 BITFIELDS
There are two ways to manipulate bits in C. One of the
ways consists of using bitwise operators. The other way
consists of using bitfi elds in which the defi nition and the
access method are based on structure. The general format
for declaring bitfi elds using a structure is given as follows.

struct bitfi eld_tag
 {
 unsigned int member1: bit_width1;
 unsigned int member2: bit_width2;
 . . .
 unsigned int memberN: bit_widthN;
 };

 In this construct, the declaration of variable name is
optional. The construct for individually declaring the
variables to this structure is given by

 struct bitfi eld_tag variable_name;

 Each bitfi eld, for example, ‘unsigned int member1: bit_
width1’, is an integer that has a specifi ed bit width. By this
technique the exact number of bits required by the bitfi eld is
specifi ed. This way a whole word is not required to hold a
fi eld. This helps in packing a number of bitfi elds in one word.
The savings made possible by using bits within a word rather
than whole words can be considerable. This idea directly
motivates the concept of packed fi elds of bits and operations
on individual bits. Consider the following example.

 struct test
 {
 unsigned tx : 2;
 unsigned rx: 2;
 unsigned chk_sum : 3;
 unsigned p : 1;
 } status_byte;

 This construct declares a structure that has a variable
name, status_byte, containing four unsigned bitfi elds.
The number following the colon is the fi eld width. Field
variables may be assigned values. However, the value
assigned to a fi eld must not be greater than its maximum
storable value. Individual fi elds are referenced as though
they are structure members. The assignment

 chk_sum = 6;

sets the bits in the fi eld chk_sum as 110. The signed or
unsigned specifi cation makes for portability; this is
important because bitfi elds are extremely implementation-
dependent. For example, C does not specify whether
fi elds must be stored left to right within a word, or vice

User-defi ned Data Types and Variables 375

versa. Some compilers may not allow fi elds to cross a
word boundary. Unnamed fi elds may be used as fi llers. In
declaring the following structure, a two-bit gap is forced
between the fi elds tx and rx.

 struct

 {

 unsigned tx : 2;

 : 2;

 unsigned rx : 4;

 }status;

 The unnamed fi eld of width 2 will cause the next fi eld
to begin in the following word instead of at the boundary
of the last fi eld. It should be noted that a fi eld in a word
has no address. Therefore, it is wrong to try and use the
operator ‘&’ with bitfi elds.
 The use of bitfi elds may save some memory as against
storing variables whose values are only going to be 1or
0 in characters, but it should be remembered that extra
instructions will be required to perform the necessary
packing and unpacking. Bitfi elds are very rarely used in
practice.
 Here is an example of assigning a byte to memory
and then examining each bit. The bit fi elds are used in a
structure, and the structure is used in a union.

 #include <stdio.h>

 #include <stdlib.h>

 struct cbits {

 unsigned b1 : 1;

 unsigned b2 : 1;

 unsigned b3 : 1;

 unsigned b4 : 1;

 unsigned b5 : 1;

 unsigned b6 : 1;

 unsigned b7 : 1;

 unsigned b8 : 1;

 };

 union U {

 char c;

 struct cbits cb;

 };

 int main()

 {

 union U look;

 /* Assign a character to memory */

 look.c = ‘A’;

 /* Look at each bit */

 printf(“\nBIT 1 = %d\n”, look.cb.b1);

 printf(“BIT 2 = %d\n”, look.cb.b2);

 printf(“BIT 3 = %d\n”, look.cb.b3);

 printf(“BIT 4 = %d\n”, look.cb.b4);

 printf(“BIT 5 = %d\n”, look.cb.b5);

 printf(“BIT 6 = %d\n”, look.cb.b6);

 printf(“BIT 7 = %d\n”, look.cb.b7);

 printf(“BIT 8 = %d\n\n”, look.cb.b8);

 return 0;

 }

 This program returns the bits (in terms of unsigned
ints 0 or 1) for the character A stored in memory at the
address of character variable named c. The output looks
like this...

 BIT 1 = 0

 BIT 2 = 1

 BIT 3 = 0

 BIT 4 = 0

 BIT 5 = 0

 BIT 6 = 0

 BIT 7 = 0

 BIT 8 = 1

 The output makes sense because 01000001 (binary)
= 65 (decimal) = 101 (octal) = 41 (hexadecimal) which
maps to an A in the ASCII character set. If one wants
to do this with an integer, the size using the function
sizeof(int) has to be fi rst determined, then a structure
is created with eight bit fi elds for each byte counted by
sizeof(int).

Points to Note

 1. The members in an enumerator are integer constants.
 2. By default, the fi rst member of a union is given the

value 0.
 3. With reference to bitfi elds, it should be noted that a

fi eld in a word has no address.

376 Programming in C

A structure is a collection of variables under a single name. These
variables can be of different types, and each has a name that is used
to select it from the structure. There can be structures within structures,
which is known as nesting of structures. Arrays of structures can be
formed and initialized as required. Pointers may also be used with
structures. Structures may be passed as function arguments and they
may also be returned by functions.

SUMMARY

 A union is a structure, all of whose members share the same
storage. The amount of storage allocated to a union is suffi cient to
hold its largest member. Enumeration data types are data items whose
values may be any member of a symbolically declared set of values.
Bitfi elds are identifi ers whose bit-width can be specifi ed and used to
form packed words containing different fi elds.

KEYTERMS

Accessing a structure member The act of handling any member of
a structure for the purpose of assigning a value or using the member
in any expression.

Arrays of structures It refers to the “structure variable” when it is an
array of objects, each of which contains the member elements declared
within the structure construct.

Initialization of structure Assigning values to members of an
instance variable.

Instance variable One of the named pieces of data that make up a
structure.
Non-homogeneous data Data of different types such as integer,
fl oat, character, etc.
Structure A collection of data grouped together and treated as a
single object.
Type template A document or fi le having a preset format, used as
a starting point for a particular application so that the format does not
have to be recreated each time it is used.

FREQUENTLY ASKED QUESTIONS

1. What is the difference between structure and union?
 Memory allocation The amount of memory required to store a structure
is greater or equal to the sum of the size of all the members in addition
to the slack bytes or padding bytes that may be provided by the
compiler. On the other hand, in case of a union, the amount of the
memory required is same as that of the largest member.

 Member access While all structure members can be accessed at any
point of time, only one member of a union can be accessed at any given
time. Because at a particular moment of time, only one union member
will have a meaningful value. The other members have garbage
values.

 Identifying active members There is no way to fi nd which of the
members is active at any moment of time. The program must keep
track of active members explicitly.

2. Why can’t structures be compared?
 There can be unused padding bytes with structures as needed by
alignment requirements for a platform and how they are fi lled is not
defi ned by the standard. That’s why a byte by byte comparison will
also fail. This is because the comparison might fonder on random bits
present in unused “holes” in the structure as padding used to keep the
alignment of the later fi elds correct. So a memcmp() of the two structure
will almost never work.

3. How can two structures be compared?
 One way to compare two structures is comparing the individual fi elds in
the structure.

4. Why do structures get padded?
 Almost all modern processors support byte addressing, i.e. an address
is the address of a byte. However there is often a constraint that
larger data items (integers and fl oating-point numbers) should start at
locations whose address is a multiple of the size of the data item. This
constraint called, an alignment constraint, much simplifi es the handling
of such data items. Structure padding occurs because the members of
the structure must appear at the correct byte boundary. This enables
the CPU to access the members faster. If they are not aligned to word
boundaries, then accessing them might take up more time. So the
padding results in faster access.

 Additionally the size of the structure must be such that in an array
of the structures all the structures are correctly aligned in memory so
there may be padding bytes (also known as slack bytes) at the end of
the structure too.

5. How can the effect of padding be minimized?
 Structure padding defi nitely introduces unused holes. There is no standard
method to control the padding of structure. One way may be suggested
that the order of the members of the structure be arranged from largest to
smallest according to their respective sizes.

6. I get the following error message “Floating point formats not
linked”. What is wrong with the program?
 When parsing the source fi le, if the compiler encounters, a reference to
the address of a fl oat, it sets a fl ag to have the linker link in the fl oating
point emulator. A fl oating point emulator is used to manipulate fl oating

User-defi ned Data Types and Variables 377

point numbers in runtime of library functions like scanf() and atof() etc.
 There are some cases in which the reference to the fl oat does not
necessitate the compiler to involve the emulator. The most common
case is the one which uses scanf() to read a fl oat in an array of
structures and does not call any other functions related with fl oating
point manipulation. In such cases the runtime error might be caused by
giving the message “ Floating point formats not linked “.
 The solution of this problem is that the emulator will be used in such
a fashion that the compiler can accurately determine when to link in
the emulator. To force the fl oating point emulator to be linked into an
application, just include the following functions in your program.

 void FloatLink()

 {
 fl oat a = 0 , *b = &a;

 a = *b;

 }

OR

 static void forcefl oat (fl oat *p)

 {

 fl oat f=*p;

 forcefl oat(&f);

 }

 There is no need to call these functions; just it is needed to include it
anywhere in the program.

 Another solution is to include the following statements at the top-
level.

 #include <math.h>

 double dummy = sin(0.0);

 This code forces the compiler to load the fl oating-point version of
scanf().

EXERCISE

 1. What is the difference between a structure and a union?

 2. What is a member?

 3. How is a structure different from an array?

 4. What are member, tag, and variable name in a structure and
what purpose do they serve?

 5. What keyword is used in C to create a structure?

 6. What is the difference between a structure tag and a structure
instance?

 7. What does the following code fragment do?

 struct address {

 char name[31];

 char add1[31];

 char add2[31];

 char city[11];

 char state[3];

 char zip[11];

 } myaddress = { “Barun Dasgupta”,

 “Q_Software”,

 “P.O. Box 1213”,

 “Kolkata”, “WB”, “700 015”};

 8. Assume you have declared an array of structures and that ptr
is a pointer to the fi rst array element (that is, the fi rst structure
in the array). How would you change ptr to point to the second
array element?

 9. Write a code that defi nes a structure named time, which contains
three int members.

 10. Write a code that performs two tasks: defi nes a structure named
data that contains one type int member and two type fl oat
members, and declares an instance of type data named info.

 11. Continuing with Exercise 10, how would you assign the value
100 to the integer member of the structure info?

 12. Write a code that declares and initializes a pointer to info.

 13. Continuing with Exercise 12, show two ways of using pointer
notation to assign the value 5.5 to the fi rst fl oat member of
info.

 14. Defi ne a structure type named data that can hold a single string
of up to 20 characters.

 15. Create a structure containing fi ve strings: address1, address2,
city, state, and zip. Create a typedef called RECORD that
can be used to create instances of this structure.

 16. Using the typedef from Exercise 15, allocate and initialize an
element called myaddress.

 17. What is wrong with the following code?

 struct {

 char zodiac_sign[21];

 int month;

 } sign = “Leo”, 8;

 18. What is wrong with the following code?

 /* setting up a union */

378 Programming in C

 union data{

 char a_word[4];

 long a_number;

 }generic_variable = {“WOW”, 1000};

 19. What will be the output of the following program?

 struct {

 int i;

 fl oat f;

 }var;

 int main()

 {

 var.i=5;

 var.f=9.76723;

 printf(“%d %.2f”,var.i,var.f);

 return(0);

 }

 (a) Compile-time error

 (b) 5 9.76723

 (c) 5 9.76

 (d) 5 9.77

 20. What will be the output of the following program?

 struct {

 int i;

 fl oat f;

 };

 int main()

 {

 int i=5;

 fl oat f=9.76723;

 printf(“%d %.2f”,i,f);

 return(0);

 }

 (a) Compile-time error

 (b) 5 9.76723

 (c) 5 9.76

 (d) 5 9.77

 21. What will be the output of the following program?

 struct values {

 int i;

 fl oat f;

 };

 int main()

 {

 struct values var={555,67.05501};

 printf(“%2d %.2f”,var.i,var.f);

 return(0);

 }

 (a) Compile-time error

 (b) 55 67.05

 (c) 555 67.06

 (d) 555 67.05

 22. What will be the output of the following program?

 typedef struct {

 int i;

 fl oat f;

 }values;

 int main()

 {

 static values var={555,67.05501};

 printf(“%2d %.2f”,var.i,var.f);

 return(0);

 }

 (a) Compile-time error

 (b) 55 67.05

 (c) 555 67.06

 (d) 555 67.05

 23. What will be the output of the following program?

 struct my_struct {

 int i=7;

 fl oat f=999.99;

 }var;

 int main()

 {

 var.i=5;

 printf(“%d %.2f”,var.i,var.f);

 return(0);

 }

 (a) Compile-time error

 (b) 7 999.99

 (c) 5 999.99

 (d) None of these

User-defi ned Data Types and Variables 379

 24. What will be the output of the following program?

 struct fi rst {

 int a;

 fl oat b;

 }s1={32760,12345.12345};

 typedef struct {

 char a;

 int b;

 }second;

 struct my_struct {

 fl oat a;

 unsigned int b;

 };

 typedef struct my_struct third;

 int main()

 {

 static second s2={‘A’,--4};

 third s3;

 s3.a=~(s1.a-32760);

 s3.b=-++s2.b;

 printf(“%d%.2f\n%c%d\n%.

 2f %u”,(s1.a)––,

 s1.b+0.005,s2.a+32,s2.b,

 ++(s3.a),––s3.b);

 return(0);

 }

 (a) Compile-time error

 (b) 32760 12345.12

 A 4

 1 –5

 (c) 32760 12345.13

 a –5

 0.00 65531

 (d) 32760 12345.13

 a 5

 0.00 65530

 25. What will be the output of the following program?

 struct {

 int i,val[25];

 }var={1,2,3,4,5,6,7,8,9},

 *vptr=&var;

 int main()

 {

 printf(“%d %d %d\n”,var.i,);

 (vptr->i,(*vptr).i);

 printf(“%d %d %d %d %d %d”,

 var.val[4],*(var.val+4),vptr—>val[4],

 *(vptr—>val+4),(*vptr).val[4],

 *((*vptr).val+4));

 return(0);

 }

 (a) Compile-time error

 (b) 1 1 1

 6 6 6 6 6 6

 (c) 1 1 1

 5 5 5 5 5 5

 (d) None of these

 26. What will be the output of the following program?

 typedef struct {

 int i;

 fl oat f;

 }temp;

 void alter(temp *ptr,int x,fl oat y)

 {

 ptr->i=x;

 ptr->f=y;

 }

 int main()

 {

 temp a={111,777.007};

 printf(“%d %.2f\n”,a.i,a.f);

 alter(&a,222,666.006);

 printf(“%d %.2f”,a.i,a.f);

 return(0);

 }

 (a) Compile-time error

 (b) 111 777.007

 222 666.006

380 Programming in C

 (c) 111 777.01

 222 666.01

 (d) None of these

 27. What will be the output of the following program?

 union A {

 char ch;

 int i;

 fl oat f;

 }tempA;

 int main()

 {

 tempA.ch=’A’;

 tempA.i=777;

 tempA.f=12345.12345;

 printf(“%d”,tempA.i);

 return(0);

 }

 (a) Compile-time error

 (b) 12345

 (c) Erroneous output

 (d) 777

 28. Write a program using enumerated types which when given
today’s date will print out tomorrow’s date in the form 31st
January.

 29. Write a simple database program that will store a person’s
details such as age, date of birth, and address.

INCREMENTAL PROBLEM

The nature of the program for solving this problem has been chang-
ing with the use of different topics learnt in that particular chapter.
Hence, the use of the “a user defi ned data type” in solving the incre-
mental problem is being demonstrated here. Other than that similar
functions and logic has been implemented as in the earlier chapter.

Problem statement

Check whether a triangle can be formed by determining the length of
each side from the three given vertices and using the condition that
in a triangle, the sum of any two sides is greater than the third side.
Calculate the area of the triangle if it can be formed with the given
vertices. Next, verify whether a given point is within or outside the
triangle.

Solution

A two-dimensional point can be represented best by the following
structure:

typedef struct

{

int x;

int y;

}Point;

Therefore, instead of a simple array, the vertices of the triangle are
represented by an array of structure. The functions used perform
the same tasks as in earlier chapters with some amendments in the
parameters passed to them. The rest of the logic for determining
whether the given point is within or outside the triangle is similar to
that discussed in Chapter 6.

Program

The C Program for the problem using the derived data types, learnt
in this chapter, is given as follows:

 1. Write a menu-based program in C that uses a set of functions to
perform the following operations:

 (a) reading a complex number
 (b) writing a complex number
 (c) addition of two complex numbers
 (d) subtraction of two complex numbers
 (e) multiplication of two complex numbers
 Represent the complex number using a structure.

 2. Declare a structure to store the following information of an
employee-

 • Employee code
 • Employee name
 • Salary
 • Department number

 • Date of join(it is itself a structure consisting of day, month
and year)

 Write a C program to store the data of ‘n’ employees where
n is given by the user (Use dynamic memory allocation).
Include a menu that will allow user to select any of the following
features:

 (a) Use a function to display the employee information getting
the maximum and minimum salary.

 (b) Use a function to display the employee records in
ascending order according to their salary.

 (c) Use a function to display the employee records in
ascending order according to their date of join.

 (d) Use a function to display the department wise employee
records.

Project Questions

User-defi ned Data Types and Variables 381

#include <stdio.h>

#include <math.h>

typedef struct

{

 int x;

 int y;

}Point;

double getLength(Point,Point);

double getArea(double,double, double);

int insideOrOutside(Point [],Point);

int main(void)

{

 Point p[3],pt;

 int i,xx,yy;

 double a,b,c, area;

 printf(“\n Enter the coordinates of the verti-

ces of a triangle”);

 for(i=0;i<3;++i)

 {

 printf(“\n Enter x[%d]:”,i);

 scanf(“%d”,&p[i].x);

 printf(“\n Enter y[%d]:”,i);

 scanf(“%d”,&p[i].y);

 }

 a=getLength(p[0],p[1]);

 b=getLength(p[1],p[2]);

 c=getLength(p[0],p[2]);

 if(a+b>c && b+c>a && c+a>b)

 {

 printf(“Triangle can be drawn”);

 area=getArea(a,b,c);

 printf(“\n Area of triangle is %lf sq. units”,

area);

 printf(“\n Enter the coordinates of the point:”);

 printf(“\n x cordinate:”);

 scanf(“%d”,&pt.x);

 printf(“\n y cordinate:”);

 scanf(“%d”,&pt.y);

 if(insideOrOutside(p, pt))

 printf(“\n Inside the triangle”);

 else

 printf(“\n Outside the triangle”);

}

else

 printf(“Triangle cannot be drawn”);

return 0;

}

double getLength(Point One, Point Two)

{

 int m, n;

 m=(One.x-Two.x)*(One.x-Two.x);

 n=(One.y-Two.y)*(One.y-Two.y);

 return sqrt((double)(m+n));

}

double getArea(double sA,double sB, double sC)

{

 double s;

 s=(sA+sB+sC)/2.0;

 return sqrt(s*(s-sA)*(s-sB)*(s-sC));

}

int insideOrOutside(Point p[],Point pt)

{

 int i,k;

 double d[3], area, sumArea=0.0,aa,bb;

 for(i=0;i<3;++i)

 {

 d[i]=getLength(p[i],p[(i+1)%3]);

 }

 area=getArea(d[0],d[1],d[2]);

 for(i=0;i<3;++i)

 {

 aa=getLength(pt,p[i]);

 bb=getLength(pt,p[(i+1)%3]);

 sumArea+=getArea(d[i],aa,bb);

 }

 if(fabs(area-sumArea)<0.00001)

 return 1;

 else

 return 0;

}

382 Programming in C

Problem Statement

A program has to be written that takes in student data and displays
the same in the order of entry. It should provide the user the option to
choose to the display of a particular student given the name or the roll
number. Provision for displaying all the student records in ascending
order of name or ascending order of grade should also be provided
as options.

Analysis and Design
The primary feature of the program is to keep track of student records.
Here a structure named student is declared with members roll,
name, and grade. The number of records to be kept is given by the
user and an array of structure is dynamically created. The following
operations are performed using different functions.

 • Displaying all student records
 • Searching a student record

 • Sorting the student records by name and grade

The algorithm of the main program is given as follows:

 1. START
 2. PRINT “ENTER THE NUMBER OF STUDENTS”
 3. INPUT NUMBER_OF_STUDENT
 4. ALLOCATE MEMORY SPACE S[NUMBER_OF_STUDENT]

WHERE S IS A RECORD WITH FIELDS NAME, ROLL_
NUMBER AND GRADE

 5. IF ALLOCATION OF MEMORY SPACE IS UNSUCCESSFUL
GOTO 26

 6. PRINT “ENTER STUDENT DATA”
 7. CALL READ_DATA(S, NUMBER_OF_STUDENT)
 8. PRINT “RECORDS OF ALL STUDENT”
 9. CALL DISPLAY_ALL(S, NUMBER_OF_STUDENT)
 10. PRINT “ENTER OPTIONS:
 1 FOR SEARCH
 2 FOR STUDENT RECORDS IN ALPHABETICAL ORDER

 OF THEIR NAME
 3 FOR STUDENT RECORDS IN DESCENDING ORDER OF

THEIR GRADE
 4 EXIT ”

 11. INPUT OPTION
 12. IF OPTION = 1 THEN GOTO 13
 ELSE IF OPTION = 2 THEN GOTO 16
 ELSE IF OPTION = 3 THEN GOTO 20
 ELSE IF OPTION = 4 THEN GOTO 27
 ELSE IF OPTION != 1 OR OPTION != 2 OR

OPTION != 3 THEN GOTO 24
 13. PRINT “SEARCH A STUDENT RECORD”
 14. CALL SEARCH(S,NUMBER_OF_STUDENT)
 15. GOTO 10
 16. PRINT “RECORDS OF ALL STUDENT IN ASCENDING

ORDER OF THEIR NAME”

CASE STUDY

 17. CALL SORT_BY_NAME(S, NUMBER_OF_STUDENT)
 18. CALL DISPLAY_ALL(S, NUMBER_OF_STUDENT)
 19. GOTO 10
 20. PRINT “RECORDS OF ALL STUDENT IN ASCENDING

ORDER OF THEIR GRADE”
 21. CALL SORT_BY_GRADE(S, NUMBER_OF_STUDENT)
 22. CALL DISPLAY_ALL(S, NUMBER_OF_STUDENT)
 23. GOTO 10
 24. PRINT “ERROR IN CHOOSING OPTIONS”
 25. GOTO 10
 26. PRINT “ALLOCATION OF MEMORY SPACE UNSUCCESSFUL”
 27. STOP

The algorithm of READ_DATA(S, NUMBER_OF_STUDENT) function
is given as follows:
 1. START

 2. I ← 0
 3. PRINT “ENTER NAME, ROLLNUMBER AND GRADE”
 4. INPUT S[I].NAME, S[I].ROLL _NUMBER , S[I].GRADE

 5. I ← I + 1
 6. IF I < NUMBER_OF_STUDENT GOTO 3
 7. RETURN

The algorithm of DISPLAY_ALL(S, NUMBER_OF_STUDENT)
function is given as follows:
 1. START

 2. I ← 0
 3. PRINT S[I].NAME, S[I].ROLL_NUMBER , S[I].

GRADE

 4. I ← I + 1
 5. IF I < NUMBER_OF_STUDENT GOTO 3
 6. RETURN

The algorithm of SEARCH(S, NUMBER_OF_STUDENT) function is
given as follows:
 1. START
 2. PRINT “ENTER OPTIONS:
 FOR SEARCH BY ROLL NUMBER
 FOR SEARCH BY NAME
 FOR EXIT”
 3. INPUT OPTION
 4. IF OPTION = 1 THEN GOTO 8
 5. ELSE IF OPTION = 2 THEN GOTO 10
 6. ELSE IF OPTION = 3 THEN GOTO 14
 7. ELSE IF OPTION != 1 OR OPTION != 2 OR

OPTION!= 3 GOTO 12
 8. CALL SEARCH_BY_ROLL(S, NUMBER_OF_STUDENT)
 9. GOTO 15
 10. CALL SEARCH_BY_ NAME(S, NUMBER_OF_STUDENT)
 11. GOTO 15
 12. PRINT “ERROR IN CHOOSING OPTIONS”
 13. GOTO 2
 14. RETURN

User-defi ned Data Types and Variables 383

The algorithm of SEARCH_BY_ROLL(S, N) function is given as
follows:
 1. START

 2. FOUND ← 0
 3. PRINT “ENTER STUDENT ROLL NUMBER TO SEARCH”
 4. INPUT R

 5. I ← 0

 6. IF R = S[I].ROLL_NUMBER THEN FOUND ← 1 :GOTO 11

 7. I ← I + 1
 8. IF I < N GOTO 6
 9. IF FOUND = 0 THEN PRINT “RECORD DOES NOT EXIST”
 10. GOTO 12
 11. PRINT S[I].ROLL_NUMBER, S[I].NAME AND S[I].

GRADE
 12. RETURN

The algorithm of SEARCH_BY_NAME (S, N) function is given as
follows:
 1. START

 2. FOUND ← 0
 3. PRINT “ENTER STUDENT NAME TO SEARCH”
 4. INPUT TNAME

 5. I ← 0

 6. IF TNAME = S[I].NAME THEN FOUND ← 1 : GOTO 11

 7. ELSE I ← I + 1
 8. IF I < N GOTO 6
 9. IF FOUND = 0 THEN PRINT “RECORD DOES NOT EXIST”
 10. GOTO 12
 11. PRINT S[I].ROLL_NUMBER, S[I].NAME, S[I].GRADE
 12. RETURN

The algorithm of SORT_BY_NAME (S, N) function is given as
follows:
 1. START

 2. I ← 0

 3. J ← 0

 4. IF S[J].NAME >S[J+1].NAME THEN TEMP ← S[J] :

S[J] ← S[J + 1]: S[J + 1] ← TEMP

 5. J ← J + 1
 6. IF J < N – I – 1 THEN GO TO 4

 7. I ← I + 1
 8. IF I < N – 1 THEN GOTO 3
 9. RETURN

The algorithm of SORT_BY_GRADE (S, N) function is given as
follows:
 1. START

 2. I ← 0

 3. J ← 0

 4. IF S[J].GRADE <S[J+1].GRADE THEN TEMP ← S[J]

: S[J] ← S[J + 1] : S[J + 1] ← TEMP

 5. J ← J + 1

 6. IF J < N – I – 1 THEN GO TO 4

 7. I ← I + 1
 8. IF I < N – 1 THEN GOTO 3
 9. RETURN

The program for the problem is given below:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct student
{
 int roll;
 char name[50];
 fl oat grade;
 };

void readdata(struct student *, int);
void displayall(struct student *, int);
void sortbyname(struct student *, int);
void sortbygrade(struct student *, int);
void search(struct student *, int);

int main()
{

 struct student *s;
 int n;
 char fl ag;

 printf(“\n\n ENTER THE NUMBER OF STUDENTS... ”);
 scanf(“%d”, &n);
 s=(struct student *)malloc(n*sizeof(struct student));
 if(s==NULL)
 {
 printf(“\nMEMORY ALLOCATION UNSUCCESSFUL\n”);
 exit(0);
 }

 printf(“\n\n ENTER THE STUDENT RECORDS....\n”);
 readdata(s,n); /* enter data of all student */
 printf(“\n\n RECORDS OF ALL STUDENTS...... \n”);
 displayall(s,n); /* print data of students in

 the order of entry */

 while(1)
 {
 printf(“\n\n CHOOSE OPTIONS: \n 1 for SEARCH \n 2

for STUDENT RECORD IN ORDER\ OF NAME \n 3
for STUDENT RECORD IN ORDER OF GRADE \n 4
EXIT \n”);

 ffl ush(stdin);
scanf(“%c”,&fl ag);

384 Programming in C

 switch(fl ag)
 {

 case ‘1’:
 printf(“\n\n SEARCH A STUDENT RECORD.... \n”);
 search(s,n); /* fi nd the data of the specifi ed

 student and print the same*/
 break;

 case ‘2’:
 printf(“\n\n RECORDS OF ALL STUDENTS ”);
 printf(“(in ascending order of their name) \n”);
 sortbyname(s,n);
 displayall(s,n); /* print data of all students

 in ascending order */
 break;

 case ‘3’:
 printf(“\n\n RECORDS OF ALL STUDENTS ”);
 printf(“(in ascending order of their GRADE) \n”);
 sortbygrade(s,n);
 displayall(s,n); /* print data of all students

 in ascending order of their grade*/
 break;

 case ‘4’:
 printf(“\n\n Exit”);
 exit(0);

 default:
 printf(“error choosing options”);
 break;
 }
}

 free(s); /* free the allocated space */
 s=NULL;
 return 0;
 }
void readdata(struct student *s, int n)
 {
 int i;
 for(i=0; i<n; ++i)
 {
 printf(“\n ROLL NUMBER ?:”);
 scanf(“%d”,&s[i].roll);
 printf(“\n NAME ?:”);
 ffl ush(stdin);
 scanf(“%[^\n]”,s[i].name);
 printf(“\n GRADE ?:”);
 scanf(“%f”,&s[i].grade);
 }
 }

 void displayall(struct student *s, int n)
 {
 int i;
 for(i=0; i<n; ++i)
 {
 printf(“\n %d \t %s \t %.2f”,s[i].roll, s[i].

name, s[i].grade);

 }
 }

 void search(struct student *s, int n)
 {
 int ch;
 void searchbyroll(struct student *, int);
 void searchbyname(struct student *, int);

 while(1)
 {
 printf(“\n 1. SEARCH BY ROLL NUMBER ”);
 printf(“\n 2. SEARCH BY NAME ”);
 printf(“\n 3. EXIT ”);
 printf(“\n ENTER YOUR CHOICE... ”);
 scanf(“%d”, &ch);
 switch(ch)
 {
 case 1:searchbyroll(s,n); break;
 case 2:searchbyname(s,n); break;
 case 3:return;
 default: printf(“\n WRONG CHOICE\n”);
 }
 }
 }

 void searchbyroll(struct student *s, int n)
 {
 int i,r,found=0;
 printf(“\n ENTER ROLL TO SEARCH....”);
 scanf(“%d”,&r);
 for(i=0; i<n; ++i)
 {
 if(s[i].roll==r)
 {
 printf(“\n %d \t %s \t %.2f”,s[i].roll,

s[i].name, s[i].grade);
 found=1;
 break;
 }
 }

 if(found==0)
 printf(“\n\a RECORD DOES NOT EXIST.”);
 }

User-defi ned Data Types and Variables 385

void searchbyname(struct student *s, int n)
 {
 int i,found=0;
 char name[50];
 printf(“\n ENTER NAME TO SEARCH....”);
 ffl ush(stdin);
 scanf(“%[^\n]”,&name);
 for(i=0; i<n; ++i)
 {
 if(strcmpi(s[i].name,name)==0)
 {
 printf(“\n %d \t %s \t %.2f”,s[i].roll,

s[i].name, s[i].grade);
 found=1;
 }
 }
 if(found==0)
 printf(“\n\aRECORD DOES NOT EXIST.”);
 }

 void sortbyname(struct student *s, int n)
 {
 int i,j;
 struct student t;
 for(i=0;i<n-1;++i)
 for(j=0; j<n-i-1; ++j)
 if(strcmpi(s[j].name, s[j+1].name)>0)
 {
 t=s[j];
 s[j]=s[j+1];
 s[j+1]=t;
 }
 }

 void sortbygrade(struct student *s, int n)
 {
 int i,j;
 struct student t;
 for(i=0;i<n-1;++i)
 for(j=0; j<n-i-1; ++j)
 if(s[j].grade<s[j+1].grade)
 {
 t=s[j];
 s[j]=s[j+1];
 s[j+1]=t;
 }
 }

The following program keeps track of student records. Here a
structure named student is declared with members roll, name,
and grade. The number of records to be kept is given by the user and
an array of structure is dynamically created. The following operations
are performed using different functions.

 ∑ Displaying all student records
 ∑ Searching a student record
 ∑ Sorting the student records by name and grade

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct student

{

 int roll;

 char name[50];

 fl oat grade;

};

void readdata(struct student *, int);

void displayall(struct student *, int);

void sortbyname(struct student *, int);

void sortbygrade(struct student *, int);

void search(struct student *, int);

int main()

{

 struct student *s;

 int n;

 printf(“\n\n ENTER THE NUMBER OF STUDENTS...”);

 scanf(“%d”, &n);

 s=(struct student *)malloc(n*sizeof(struct
student));

 if(s==NULL)

 {

 printf(“\nMEMORY ALLOCATION
UNSUCCESSFUL\n”);

 exit(0);

 }

 printf(“\n\n ENTER THE STUDENT RECORDS....\n”);

 readdata(s,n);

 printf(“\n\n RECORDS OF ALL STUDENTS...... \n”);

 displayall(s,n);

 printf(“\n\n SEARCH A STUDENT RECORD...... \n”);

 search(s,n);

 printf(“\n\n RECORDS OF ALL STUDENTS ”);

 printf(“(in ascending order of their name) \n”);

 sortbyname(s,n);

 displayall(s,n);

 printf(“\n\n RECORDS OF ALL STUDENTS ”);

 printf(“(in ascending order of their roll
number) \n”);

386 Programming in C

 sortbygrade(s,n);

 displayall(s,n);

 free(s);

 s=NULL;

 return 0;

}

 void readdata(struct student *s, int n)

 {

 int i;

 for(i=0; i<n; ++i)

 {

 printf(“\n ROLL NUMBER ?:”);

 scanf(“%d”,&s[i].roll);

 printf(“\n NAME ?:”);

 ffl ush(stdin);

 scanf(“%[^\n]”,s[i].name);

 printf(“\n GRADE ?:”);

 scanf(“%f”,&s[i].grade);

 }

 }

 void displayall(struct student *s, int n)

 {

 int i;

 for(i=0; i<n; ++i)

 {

 printf(“\n %d \t %s \t %.2f”,s[i].roll,

 s[i].name, s[i].grade);

 }

 }

 void search(struct student *s, int n)

 {

 int ch;

 void searchbyroll(struct student *, int);

 void searchbyname(struct student *, int);

 while(1)

 {

 printf(“\n 1. SEARCH BY ROLL NUMBER”);

 printf(“\n 2. SEARCH BY NAME”);

 printf(“\n 3. EXIT”);

 printf(“\n ENTER YOUR CHOICE...”);

 scanf(“%d”, &ch);

 switch(ch)

 {

 case 1:searchbyroll(s,n); break;

 case 2:searchbyname(s,n); break;

 case 3:return;

 default: printf(“\n WRONG
CHOICE\n”);

 }

 }

 }

void searchbyroll(struct student *s, int n)

{

 int i,r,found=0;

 printf(“\n ENTER ROLL TO SEARCH....”);

 scanf(“%d”,&r);

 for(i=0; i<n; ++i)

 {

 if(s[i].roll==r)

 {

 printf(“\n %d \t %s \t %.2f”,s[i].roll,

 s[i].name, s[i].grade);

 found=1;

 break;

 }

 }

 if(found==0)

 printf(“\n\a RECORD DOES NOT EXIST.”);

}

void searchbyname(struct student *s, int n)

{

 int i,found=0;

 char name[50];

 printf(“\n ENTER NAME TO SEARCH....”);

 ffl ush(stdin);

 scanf(“%[^\n]”,&name);

 for(i=0; i<n; ++i)

 {

 if(strcmpi(s[i].name,name)==0)

 {

 printf(“\n %d \t %s \t %.2f”,s[i].roll,

 s[i].name, s[i].grade);

 found=1;

 }

 }

 if(found==0)

 printf(“\n\aRECORD DOES NOT EXIST.”);

}

void sortbyname(struct student *s, int n)

{

 int i,j;

User-defi ned Data Types and Variables 387

 struct student t;

 for(i=0;i<n-1;++i)

 for(j=0; j<n-i-1; ++j)

 if(strcmpi(s[j].name, s[j+1].name)>0)

 {

 t=s[j];

 s[j]=s[j+1];

 s[j+1]=t;

 }

}

void sortbygrade(struct student *s, int n)

{

 int i,j;

 struct student t;

 for(i=0;i<n-1;++i)

 for(j=0; j<n-i-1; ++j)

 if(s[j].grade>s[j+1].grade)

 {

 t=s[j];

 s[j]=s[j+1];

 s[j+1]=t;

 }

}

388 Programming in C

9.1 INTRODUCTION
A fi le is a repository of data that is stored in a permanent
storage media, mainly in secondary memory. So far, data
was entered into the programs through the computer’s
keyboard. This is somewhat laborious if there is a lot of
data to process. The solution is to combine all the input
data into a fi le and let the C program read the information
from the fi le when it is required. Frequently fi les are
used for storing information that can be processed by the
programs. Files are not only used for storing data, programs

are also stored in fi les. The editor, which is used to write
or edit programs and save, simply manipulates fi les for the
programmer. The UNIX commands cat, cp, and cmp are
all programs which process the fi les.
 In order to use fi les one has to learn about fi le I/O,
i.e., how to write information to a fi le, and how to read
information from a fi le. It will be seen that fi le I/O is
almost identical to the terminal I/O that has been used so
far. The primary difference between manipulating fi les

After reading this chapter, the readers will be able to

 understand the concept of streams used in the C fi le system

 know about text and binary fi les

 comprehend how to process text fi les as well as binary fi les using standard library
functions

 know about the sequential and random access of data stored in a disk fi le using proper
standard library functions

 have an overview of advanced fi le management system and low-level input and output

Learning Objectives

C
Chapter

Files in C

9

Files in C 389

and terminal I/O is that the programs must specify which
fi les are to be used because there are many fi les on the
disk. Specifying the fi le to use is referred to as opening the
fi le. When one opens a fi le, what is to be done with the fi le
must also be mentioned, i.e., read from the fi le, write to the
fi le, or both.
 A very important concept in C is the stream. The stream
is a common, logical interface to the various devices that
comprise the computer. In its most common form, a stream
is a logical interface to a fi le. As defi ned by C, the term ‘fi le’
can refer to a disk fi le, the screen, the keyboard, a port, a
fi le on tape, and so on. Although fi les differ in form and
capabilities, all streams are the same. The stream provides
a consistent interface to the programmer. Stream I/O uses
some temporary storage area, called buffer, for reading
from or writing data to a fi le. This is illustrated in Fig. 9.1.

Operating
System Side

C Side

Buffer

Base of Buffer
(Initial File Pointer)

Storage Device,
e.g., File on Disk

Figure 9.1 Stream I/O model

 The fi gure models an effi cient I/O. When a stream linked
to a disk fi le is created, a buffer is automatically created
and associated with the stream. A buffer is a block of
memory used for temporary storage of data being written
to and read from the fi le. Buffers are needed because disk
drives are block-oriented devices. This means that they
operate most effi ciently when data is read and written in
blocks of a certain size. The size of the ideal block differs,
depending on the specifi c hardware in use. It is typically of
the order of a few hundred to a thousand bytes. However,
it is not necessary to be concerned about the exact
block size.

 The buffer associated with a fi le stream serves as an
interface between the stream (which is character-oriented)
and the disk hardware (which is block-oriented). As the
program writes data to the stream, the data is saved in the
buffer until it is full, and then the entire contents of the
buffer are written, as a block, to the disk. A similar process
takes place when reading data from a disk fi le. The creation
and operation of the buffer are handled by the operating
system and are entirely automatic; the programmer does
not have to be concerned with them. C does offer some
functions for buffer manipulation. In practical terms, this
buffer operation means that during program execution,
data that the program wrote to the disk might still be
in the buffer, and not on the disk. If the program hangs
up, because of a power failure, or in case of some other
problem, the data that is still in the buffer might be lost,
and the user will not know what is contained in the disk
fi le. That is, data resides in the buffer until the buffer is
fl ushed or written out into fi le. Any abnormal exit of code
may cause problems.
 A stream is linked to a fi le while using an open
operation. A stream is disassociated from a fi le while using
a close operation. The current location, also referred to as
the current position, is the location in a fi le where the next
fi le access will occur.
 There are two types of streams: text and binary. A text
fi le can be thought of as a stream of characters that can be
processed sequentially. It can only be processed (logically)
in the forward direction. For this reason a text fi le is usually
opened for only one kind of operation, that is reading or
writing or appending, at any given time. Similarly, since
text fi les only process characters, they can only read or
write one character at a time. Functions are provided that
deal with lines of text, but these still essentially process
one character at a time.
 As text streams are associated with text fi les, they
may contain a sequence of lines. Each line contains zero
or more characters and ends with one or more characters
that specify the end of the line. The maximum number
of characters in each line is limited to 255 characters. It
is important to remember that a ‘line’ is not a C string;
there is no terminating NUL character (‘\0’). When a
text-mode stream is used, translation occurs between C’s
new-line character (\n) and whatever character(s) the
operating system uses to mark end-of-line on disk fi les.
On DOS systems, it is a carriage-return linefeed (CR-
LF) combination. When data is written to a text-mode

390 Programming in C

fi le, each ‘\n’ is translated to a CR-LF; when data is read
from a disk fi le, each CR-LF is translated to a ‘\n’. On
UNIX systems, no translation is done; new-line characters
remain unchanged.
 When text data fi les are used, there are two
representations of data—internal and external. For
example, a value of type int will usually be represented
internally as two- or four-bytes (16- or 32-bit) of memory.
Externally, though, that integer will be represented
as a string of characters representing its decimal or
hexadecimal value. Conversion between the internal and
external representations is very easy. To convert from the
internal representation to the external, printf or fprintf
is used in almost all cases. For example, to convert an
int %d or %i format might be used. To convert from the
external representation to the internal, scanf or fscanf
can be used, or the characters are read and then functions
such as atoi, strtol, or sscanf are used.
 Binary fi le is a collection of bytes. In C, a byte and
a character are equivalent. Hence, a binary fi le is also
referred to as a character stream, but there are two essential
differences.
 Firstly, the data that is written into and read from
remain unchanged, with no separation between lines and
no use of end-of-line characters. The NULL and end-of-
line characters have no special signifi cance and are treated
like any other byte of data.
 Secondly, the interpretation of the fi le is left to the
programmer. C places no construct on the fi le, and it may
be read from, or written to, in any manner chosen by the
programmer.
 In C, processing a fi le using random access techniques
involves moving the current fi le position to an appropriate
place in the fi le before reading or writing data. This
indicates a second characteristic of binary fi les—they
are generally processed using read and write operations
simultaneously. For example, a database fi le will be created
and processed as a binary fi le. A record update operation
will involve locating the appropriate record, reading the
record into memory, modifying it in some way, and fi nally
writing the record back to disk at its appropriate location in
the fi le. These kind of operations are common to many
binary fi les, but are rarely found in applications that
process text fi les.
 Some fi le input/output functions are restricted to one
fi le mode, whereas other functions can use either mode.

Points to Note

 • When one opens a fi le, the operation that has to be
carried on the fi le must also be specifi ed, i.e., read
from the fi le, write to the fi le, or both.

 • C treats a disk fi le like a stream which can be opened
either in text or in binary mode.

 • The maximum number of characters in each line is
limited to 255 characters.

 • A ‘line’ of a text stream is not a C string; thus there is
no terminating NULL character (‘\0’).

 • In a binary fi le, the NULL and end-of-line characters
have no special signifi cance and are treated like any
other byte of data.

 • C places no construct on the binary fi le, and it may be
read from, or written to, in any manner chosen by the
programmer.

9.2 USING FILES IN C
To use a fi le four essential actions should to be carried out.
These are

 ∑ Declare a fi le pointer variable.
 ∑ Open a fi le using the fopen() function.
 ∑ Process the fi le using suitable functions.
 ∑ Close the fi le using the fclose() function.

For clarity, the above order is not maintained.

9.2.1 Declaration of File Pointer

Because a number of different fi les may be used in a
program, when reading or writing, the type of fi le that is to
be used must be specifi ed. This is accomplished by using a
variable called a fi le pointer, a pointer variable that points
to a structure FILE. FILE is a structure declared in stdio.h.
The members of the FILE structure are used by the program
in various fi le access operations, but programmers do
not need to be concerned about them. However, for each
fi le that is to be opened, a pointer to type FILE must be
declared.
 When the function fopen() is called, that function
creates an instance of the FILE structure and returns
a pointer to that structure. This pointer is used in all
subsequent operations on the fi le. The syntax for declaring
fi le pointers is as follows.

Files in C 391
FILE *fi le_pointer_name,…;

For example,
FILE *ifp;
FILE *ofp;

declares ifp and ofp to be FILE pointers. Or, the two FILE
pointers can be declared in just one declaration statement
as shown below.

FILE *ifp, *ofp;

The * must be repeated for each variable.

9.2.2 Opening a File

To open a fi le and associate it with a stream, the fopen()
function is used. Its prototype is as follows.

FILE *fopen(const char *fname, const char *mode);

 File-handling functions are prototyped in <stdio.h>,
which also includes other needed declarations. Naturally,
this header must be included in all the programs that work
with fi les. The name of the fi le to be opened is pointed to
by fname , which must be a valid name. The string pointed
at for mode determines how the fi le may be accessed.
 Every disk fi le must have a name, and fi lenames must
be used when dealing with disk fi les. The rules for
acceptable fi lenames differ from one operating system
to another. In DOS, a complete fi lename consists of a
name that has one to eight characters, optionally followed
by a period and an extension that has from one to three
characters. In contrast, the Windows operating systems as
well as most UNIX systems permit fi lenames with up to
256 characters.
 Readers must be aware of the fi lename rules of the
operating system they are using. In Windows, for example,
characters such as the following are not permitted: /, \, :,
*, ?, “, <, >, and |.
 A fi lename in a C program can also contain path
information. The path specifi es the drive and/or directory
(or folder) where the fi le is located. If a fi lename is specifi ed
without a path, it will be assumed that the fi le is located
wherever the operating system currently designates as the
default. It is good programming practice to always specify
path information as part of the fi lename. On PCs, the
backslash character (\) is used to separate directory names
in a path. For example, in DOS and Windows, the name

c:\examdata\marks.txt

refers to a fi le named marks.txt in the directory \examdata
on drive C. It is to be remembered that the backslash
character has a special meaning to C with respect to
escape sequence when it is in a string. To represent the
backslash character itself, one must precede it with another
backslash. Thus, in a C program, the fi lename would be
represented as follows.

directory

name

 “c:\\examdata\\list.txt”;
drive
name fi le

name

 However, if the fi lename is entered by the user through
the keyboard, a single backslash has to be entered. Not all
systems use the backslash as the directory separator. For
example,

UNIX uses the forward slash (/).

 File Modes—What Sort of Open

Before a fi le can be used for reading or writing, it must
be opened. This is done through the fopen() function.
fopen() takes two string arguments. The fi rst of these is
the fi lename; the second is an option that conveys to C
what processing is to be done with the fi le: read it, write
to it, append to it, etc. Table 9.1 lists the options available
with fopen().

Table 9.1 File opening modes

Mode Meaning

r
w
a
rb
wb
ab
r+
w+
a+
r+b
w+b
a+b

Open a text fi le for reading
Create a text fi le for writing
Append to a text fi le
Open a binary fi le for reading
Open a binary fi le for writing
Append to a binary fi le
Open a text fi le for read/write
Create a text fi le for read/write
Append or create a text fi le for read/write
Open a binary fi le for read/write
Create a binary fi le for read/write
Append a binary fi le for read/write

 The following statements are used to create a text fi le
with the name data.dat under current directory. It is
opened in w mode as data are to be written into the fi le
data.dat.

392 Programming in C

FILE *fp;
fp = fopen(“data.dat”,“w”);

fopen() requires two parameters—both are character
strings. Either parameter could be a string variable.
Following is an example where a fi le pointer “ fp” is
declared, the fi le name, which is declared to contain a
maximum of 80 characters, is obtained from the keyboard
and then the fi le is opened in the “write” mode.

char fi lename[80];
FILE *fp;
printf(“Enter the fi lename to be opened”);
gets(fi lename);
fp = fopen(fi lename,“w”);

Checking the Result of Fopen()

The fopen() function returns a FILE *, which is a pointer
to structure FILE, that can then be used to access the fi le.
When the fi le cannot be opened due to reasons described
below, fopen() will return NULL. The reasons include the
following.
 ∑ Use of an invalid fi lename
 ∑ Attempt to open a fi le on a disk that is not ready; for

example, the drive door is not closed or the disk is not
formatted.

 ∑ Attempt to open a fi le in a non-existent directory or
on a non-existent disk drive

 ∑ Attempt to open a non-existent fi le in mode r
 One may check to see whether fopen() succeeds or
fails by writing the following set of statements.

fp = fopen(“data.dat”,“r”);

 attempts to
open the fi le
named “data.dat”
in read mode

if(fp == NULL)
{
 printf(“Can not open data.dat\n”);
 exit(1);
}

 Alternatively, the above segment of code can be written
as follows.

FILE *fp;
if((fp = fopen(“data.dat”, “r”)) ==NULL)
{
 printf(“Can not open data.dat\n”);
 exit(1);
}

 Whenever fopen() is used in a program, it is
recommended to test for the result of an fopen() and check
whether it is NULL or not. There is no way to fi nd exactly
which error has occurred, but one can display an error
message to the user and try to open the fi le again, or end
the program.

9.2.3 Closing and Flushing Files

After completing the processing on the fi le, the fi le must
be closed using the fclose()function. Its prototype is

int fclose(FILE *fp);

 The argument fp is the FILE pointer associated with
the stream; fclose() returns 0 on success or -1 on
error. When a program terminates (either by reaching the
end of main() or by executing the exit() function), all
streams are automatically fl ushed and closed. Actually,
in a simple program, it is not necessary to close the
fi le because the system closes all open fi les before
returning to the operating system. It would be a good
programming practice to get into the habit of closing all
fi les explicitly.
 When a fi le is closed, the fi le’s buffer is fl ushed or
written to the fi le. All open streams except the standard
ones (stdin, stdout, stdprn, stderr, and stdaux) can also
be closed by using the fcloseall() function. Its prototype
is int fcloseall(void);
 The above function also fl ushes any stream buffers and
returns the number of streams closed. A stream’s buffers
can be fl ushed without closing it by using the ffl ush() or
fl ushall() library functions. Use ffl ush() when a fi le’s
buffer is to be written to disk while still using the fi le. Use
fl ushall() to fl ush the buffers of all open streams. The
prototypes of these two functions are

int ffl ush(FILE *fp);

int fl ushall(void);

 The argument fp is the FILE pointer returned by
fopen() when the fi le was opened. If a fi le was opened
for writing, ffl ush() writes its buffer to disk. If the
fi le was opened for reading, the buffer is cleared. The
function ffl ush() returns 0 on success or EOF if an error
occurred. The function fl ushall() returns the number of
open streams.

Files in C 393

Points to Note

 • The type of fi le that is to be used must be specifi ed
using a variable called a fi le pointer.

 • The Windows operating systems as well as most UNIX
systems permit fi le names with up to 256 characters.

 • A fi lename in a C program can also contain path
information.

 • If a fi lename is entered by the user through the
keyboard, a single backslash or front slash has to be
entered depending upon the system as the directory
separator.

 • fclose() returns 0 on success or -1 on error.
 • The operating system closes all open fi les before

returning to the operating system.

9.3 WORKING WITH TEXT FILES
C provides four functions that can be used to read text fi les
from the disk. These are
 ∑ fscanf()
 ∑ fgets()
 ∑ fgetc()
 ∑ fread()
 C provides four functions that can be used to write text
fi les into the disk. These are
 ∑ fprintf()
 ∑ fputs()
 ∑ fputc()
 ∑ fwrite()

9.3.1 Character Input and Output

When used with disk fi les, the term character I/O refers to
single characters as well as lines of characters since a line is
nothing but a sequence of zero or more characters terminated
by the new-line character. Character I/O is used with text-
mode fi les. The following sections describe character input/
output functions for fi les with suitable examples.

 putc() Function

The library function putc() writes a single character to
a specifi ed stream. Its prototype in stdio.h appears as
follows

 int putc(int ch, FILE *fp);

fp
ch

Output stream
(output buffer)

Secondary
storage device

 The argument ch is the character to be outputted. As
with other character functions, it is formally considered to
be of type int, but only the lower-order byte is used. The
argument fp is the pointer associated with the fi le, which
is the pointer returned by fopen() when the fi le is opened.
The function putc() returns the character just written if
successful or EOF if an error occurs. The symbolic constant
EOF is defi ned in stdio.h, and it has the value –1.
 Because no ‘real’ character has that numeric value,
EOF can be used as an error indicator with text-mode fi les
only.
 The following program illustrates how to write a single
character at a time into a text fi le.

#include <stdio.h>

int main()

{

 FILE *fp;

 char text[80];

 int i, c;

 fp = fopen(“abc.txt”, “w”);

 printf(“\n ENTER TEXT”);

 scanf(“%[^\n]”, text);

 for(c = 1; c <= 10; c++)

 {

 for(i = 0; text[i]; i++)

 putc(text[i], fp);

 putc(‘\n’, fp);

 }

 fclose(fp);

 return 0;

}

 To append more lines to the fi le abc.txt, the statement
in bold font has to be replaced with the statement fp =
fopen(“abc.txt”, “a”);

write mode

declaring
pointer to

FILE

fi le name

394 Programming in C

 fputs() Function

To write a line of characters to a stream, the library
function fputs() is used. This function works just like
the string library function puts(). The only difference is
that with fputs() one can specify the output stream. Also,
fputs() does not add a new line to the end of the string; to
include ‘\n’, it must be explicitly specifi ed. Its prototype
in stdio.h is

char fputs(char *str, FILE *fp);

 The argument str is a pointer to the null-terminated
string to be written, and fp is the pointer to type FILE
returned by fopen() when the fi le was opened. The
string pointed to by str is written to the fi le, ignoring
its terminating \0. The function fputs() returns a non-
negative value if successful or EOF on error.

Points to Note

 • With disk fi les, the term character I/O refers to single
characters as well as lines of characters.

 • The function putc() returns the character just written
if successful or EOF if an error occurs.

 • The symbolic constant EOF is defi ned in stdio.h, and
it has the value –1.

 • fputs() does not add a “new line” to the end of the
string written on to a fi le.

 • The function fputs() returns a non-negative value if
successful or EOF on error.

9.3.2 End of File (EOF)

When reading from a fi le, how can the program detect that
it has reached the end of the fi le? One way is to have a
special marker at the end of the fi le. For instance

 ∑ A # character on its own could be the last line.
 ∑ DOS uses Ctrl-z as the special character that ends

a fi le. (It also knows how many characters there are
in the fi le.) The use of Ctrl-z is historical and most
people would want to do away with it.

 ∑ In UNIX, Ctrl-d is used as the end-of-fi le character.
Using a special character is not satisfactory. It means
that a fi le that contains these characters as real text
behaves abnormally.

Detecting the end of a fi le

Sometimes it is not known exactly how long a fi le is but
it is still possible to read data from the fi le, starting at the
beginning and proceeding to the end. There are two ways
to detect end-of-fi le.
 When reading from a text-mode fi le character by
character, one can look for the end-of-fi le character. The
symbolic constant EOF is defi ned in stdio.h as -1, a value
never used by a ‘real’ character. When a character input
function reads EOF from a text-mode stream, it ensures
that it has reached the end of the fi le. For example, one
could write the following.

while((c = fgetc(fp)) != EOF)

 The variable returned from the getc() function is a
character, so we can use a char variable for this purpose.
However, there is a problem that could develop here if
an unsigned char is used because C returns a -1 for an
EOF which an unsigned char type variable is not capable
of containing. An unsigned char type variable can only
have the values of 0 to 255, so it will return a 255 for
a minus one. The program can never fi nd the EOF and
will therefore never terminate the loop. This is easy
to prevent. Always use a char type variable in returning
an EOF.
 There are three character input functions: getc() and
fgetc() for single characters, and fgets() for lines.

 getc() and fgetc() functions

The functions getc() and fgetc() are identical and can be
used interchangeably. They input a single character from
the specifi ed stream. The following is the prototype of
getc() in stdio.h.

int getc(FILE *fp);

 The argument fp is the pointer returned by fopen()
when the fi le is opened. The function returns the character
that was input or it returns EOF on error.
 If getc() and fgetc() return a single character, why
are they prototyped to return a type int? The reason is that
when reading fi les, one needs to be able to read in the end-
of-fi le marker, which on some systems is not a type char
but a type int.

Files in C 395

fgets() Function

fgets() is a line-oriented function. The ANSI prototype
is

char *fgets(char *str, int n, FILE *fp);

 The function reads from the stream pointed to by fp and
places the output into the character array pointed to by str.
It will stop reading when any of the following conditions
are true.
 ∑ It has read n – 1 bytes (one character is reserved for

the null-terminator).
 ∑ It encounters a new-line character (a line-feed in the

compiler is placed here).
 ∑ It reaches the end of fi le.
 ∑ A read error occurs.
fgets() automatically appends a null-terminator to
the data read. fgetc() gives the user more control than
fgets(), but reading a fi le byte-by-byte from disk is rather
ineffi cient. These functions are illustrated in the following
programs. The following program displays the contents of
a fi le on screen.

Example

1. #include <stdio.h>

int main()

{

 FILE *fopen(), *fp;

 int ch;
fi le name

 fp = fopen(“a.txt”, “r”);

 if(fp == NULL) read
mode

 {

 printf(“Cannot open the fi le a.txt \n”);

 exit(1)

 }

 ch = getc(fp);

 while(ch != EOF)

 {

 putchar(ch);

 ch = getc(fp);

 }

 fclose(fp);

 return 0;

}

 Alternatively, one could prompt the user to enter the fi lename again,
and try to open it again.

2. #include <stdio.h>
#include <string.h>

int main()

{

 FILE *fopen(), *fp;

 int ch;

 char fname[30];

 printf(“\n Enter the fi lename \n”);

 ffl ush(stdin); clears the input
stream

 scanf(“%[^\n]”,fname);

 fp = fopen(fname, “r”);

 while(fp ==NULL || strcmp(fname, “ ”)!= 0)

 {

 printf(“Cannot open the fi le %s for reading \n”,
fname);

 printf(“\n Enter the fi lename \n”);

 ffl ush(stdin);

 scanf(“%[^\n]”,fname);

 fp = fopen(fname, “r”);

 }

 ch = getc(fp);

 while(ch != EOF)

 {

 putchar(ch);

 ch = getc(fp);

 }

 fclose(fp);

 return 0;

}

 In this Example, fi lenames are taken from the user until a valid
existing fi lename is entered or the space bar followed by the <Enter>
key is pressed. The following program illustrates that reading a line at a
time from a fi le can be performed using fgets().

3. #include <stdio.h>

int main()

{

 FILE *fp;

 char word[60];

 char *c;

 fp = fopen(“abc.txt”,“r”);

 do {

 c = fgets(word, 60,fp);

fp

Input
stream

Secondary
storage device

Whatever

Data

ch
w

w

Input
stream

Datafp

whatever

ch
w

w

Output device

396 Programming in C

 if(c != NULL)

 printf(“%s”, word);

 }

 while(c != NULL);

 fclose(fp);

 return 0;

}

4. Write a C program that counts the number of characters and number
of lines in a fi le.

#include <stdio.h>

int main()

{

 FILE *fopen(), *fp;

 int ch, nc, nlines;

 char fname[30];

 nlines = 0;

 nc = 0;

 printf(“Enter fi lename:”);

 ffl ush(stdin);

 scanf(“%s”, fname);

 fp = fopen(fname, “r”);

 if(fp == NULL)

 {

 printf(“Cannot open the fi le %s for reading

\n”, fname);

 exit(0);

 }

 ch = getc(fp);

 while(ch != EOF)

 {

 if(ch == ‘\n’)

 nlines++;

 nc++;

 ch = getc(fp);

 }

 fclose(fp);

 if(nc != 0)

 {

 printf(“There are %d characters in %s \n”, nc,

fi lename);

 printf(“There are %d lines \n”, nlines);

 }

 else

 printf(“File: %s is empty \n”, fi lename);

 return 0;

}

5. Write a program to display the contents of a fi le, 10 lines at a time.

#include <stdio.h>

int main()

{

 FILE *fopen(), *fp;

 int ch, nline;

 char fname[40], ans[40];

 printf(“Enter fi lename:”);

 scanf(“%s”, fname);

 fp = fopen(fname, “r”);

/* open for reading */

 if(fp == NULL)

/* check whether fi le exists or not */

 {

 printf(“Cannot open the fi le %s \n”, fname);

 exit(0);

 }

 nline = 1;

 ans[0] = ‘\0’;

 ch = getc(fp);

/* Read 1st character if any */

 while(ch != EOF && (ans[0] != ‘Q’ || ans[0] != ‘q’))

 {

 putchar(ch); /* Display character */

 if(ch == ‘\n’)

 nline++;

 if(nline == 10)

 {

 nline = 1;

 printf(“[Press Return to continue, q to quit]”);

 ffl ush(stdin);

 scanf(“%s”, ans);

 }

Files in C 397

 ch = getc(fp);

 }

 fclose(fp);

 return 0;

}

 The above program pauses after displaying 10 lines until the user
presses either Q or q to quit or return to display the next 10 lines. The
above program does the same as the UNIX command ‘more’.

6. Write a program to compare two fi les specifi ed by the user, displaying
a message indicating whether the fi les are identical or different.

#include <stdio.h>

int main()

{

 FILE *fp1, *fp2;

 int ca, cb;

 char fname1[40], fname2[40];

 printf(“Enter fi rst fi lename:”);

 ffl ush(stdin);

 gets(fname1);

 printf(“Enter second fi lename:”);

 ffl ush(stdin);

 gets(fname2);

 fp1 = fopen(fname1, “r”);

/* open first file for reading */

 fp2 = fopen(fname2, “r”);

 /* open second file for reading */

if(fp1 == NULL) /* check does file exist */

 {

 printf(“Cannot open the fi le %s for reading

\n”, fname1);

 exit(1); /* terminate program */

 }

 else if(fp2 == NULL)

 {

 printf(“Cannot open %s for reading \n”, fname2);

 exit(1); /* terminate program */

 }

 else /* both fi les opened successfully */

 {

 ca = getc(fp1);

 cb = getc(fp2);

 while(ca != EOF && cb != EOF && ca == cb)

 {

 ca = getc(fp1);

 cb = getc(fp2);

 }

 if(ca == cb)

 printf(“Files are identical \n”);

 else if(ca != cb)

 printf(“Files differ \n”);

 fclose(fp1);

 fclose(fp2);

 }

 return 0;

}

7. Write a fi le copy program in C that copies a fi le into another.

#include <stdio.h>

int main()

{

 FILE *fp1, *fp2;

 int ch;

 char fname1[30], fname2[30];

 printf(“Enter source fi le:”);

 ffl ush(stdin);

 scanf(“%s”, fname1);

 printf(“Enter destination fi le:”);

 ffl ush(stdin);

 scanf(“%s”, fname2);

 fp1 = fopen(fname1, “r”);

/* open for reading */

 fp2 = fopen(fname2, “w”);

 /* open for writing */

 if(fp1 == NULL)

/* check whether fi le exists or not */

 {

 printf(“Cannot open the fi le %s for reading

\n”, fname1);

 exit(1); /* terminate program */

 }

 else if(fp2 == NULL)

 {

398 Programming in C

 printf(“Cannot open the fi le %s for writing

\n”, fname2);

 exit(1); /* terminate program */

 }

 else /* both fi les has been opened successfully */

 {

 ch = getc(fp1); /* read from source */

 while(ch != EOF)

 {

 putc(ch, fp2); /* copy to destination */

 ch = getc(fp1);

 }

 fclose(fp1); / * Now close the fi les */

 fclose(fp2);

 printf(“Files successfully copied \n”);

 }

 return 0;

}

8. Write a C program that accepts the names of two fi les. It should
copy the fi rst fi le into the second line by line. Use the fgets() and
fputs() functions.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 FILE *fp1, *fp2;

 char fname1[30], fname2[30], t[60];

 printf(“Enter source fi le:”);

 ffl ush(stdin);

 gets(fname1);

 printf(“Enter destination fi le:”);

 ffl ush(stdin);

 gets(fname2);

 if((fp1 = fopen(fname1, “r”)) == NULL)

 printf(“Unable to open %s for reading \n”, fname1);

 else if((fi le_2 = fopen(fname2, “w”)) == NULL)

 printf(“Unable to open %s for writing \n”, fname2);

 else

 {

 while((fgets(t, sizeof(t), fp1)) ! = NULL)

 fputs(t, fp2);

 fclose(fp1);

 fclose(fp2);

 }

 return 0;

}

 The other two fi le-handling functions to be covered are fprintf()
and fscanf(). These functions operate exactly like printf() and
scanf() except that they work with fi les. Their prototypes are

int fprintf(FILE *fp, const char *control-string,

...);

int fscanf(FILE *fp, const char *control-string

...);

 Instead of directing their I/O operations to the console, these
functions operate on the fi le specifi ed by fp. Otherwise their operations
are the same as their console-based relatives. The advantage of
fprintf() and fscanf() is that they make it very easy to write a
wide variety of data to a fi le using a text format. The components of the
control string are the same as for scanf(). Finally, the ellipses (...)
indicate one or more additional arguments such as the addresses of
the variables where inputs are to be assigned. The following program
illustrates how the function fscanf() can be used to write into a text
fi le.

9. #include <stdio.h>

int main()

 {

 FILE *fp;

 if((fp = fopen(“afi le.txt”, “w”)) != NULL)

 {

 fprintf(fp, “%s”, “Introduction\n”);

 fprintf(fp, “%s”, “To\n”);

 fprintf(fp, “%s”, “Computing\n”);

 fclose(fp);

 }

 else

 printf(“Unable to open the fi le for writing”);

 return 0;

 }

 A fi le named ‘afi le.txt’ is created in the current directory, the
content of which is as follows.

Files in C 399
 Introduction

 To

 Computing

 The next program reads fi ve integer values from the keyboard and
stores them in the data fi le num.dat. In this program the user-defi ned
character is used, as end-of-fi le marker instead of standard EOF.

10. #include <stdio.h>
 int main()

 {

 FILE *fp;

 int n[5],i;

 if((fp = fopen(“num.dat”, “w”)) != NULL)

 {

 printf(“Enter 5 numbers, to be stored in
num.dat...”);

 for(i = 0; i < 5; i++)

 {

 scanf(“%d”, &n[i]);

 fprintf(fp, “%d\n”, n[i]);

 }

 fprintf(fp,”%d”,9999);

 fclose(ptr);

 }

 else

 printf(“Unable to open num.dat ...\n”);

 return 0;

 }

Output:

 Enter 5 numbers, to be stored in num.dat ... 1 2
3 4 5

 The fi le num.dat now contains the numbers arranged in the
following format.

 1
 2
 3
 4
 5
 9999

 Here 9999 is used as end-of-fi le marker. It is not a member of the
data set. While reading data from ‘num.dat’, the data is read until
9999 is found. The following program describes the usage where the
numbers stored in the fi le ‘num.dat’ are summed up and displayed.
Here fscanf() has to be used to read data from the fi le.

Example

11. #include <stdio.h>
 int main()

 {

 FILE *fp;

 int n,s=0;

 if((fp = fopen(“num.dat”, “r”)) != NULL)

 {

 fscanf(fp, “%d\n”, &n);

 while(n!=9999)

 {

 s+=n;

 fscanf(fp, “%d\n”, &n);

 }

 printf(“Sum is %d”,s);

 fclose(fp);

 }

 else

 printf(“Unable to open num.dat ... \n”);

 return 0;

 }

Output:

 Sum is 15

fscanf() is a fi eld-oriented function and is inappropriate
for use in a robust, general-purpose text fi le reader. It has
two major drawbacks.

 The programmer must know the exact data layout of
the input fi le in advance and rewrite the function call
for every different layout.

 It is diffi cult to read text strings that contain spaces
because fscanf() sees space characters as fi eld
delimiters.

 Now one might think that calls to fprinf() and
fscanf() differ signifi cantly from calls to printf() and
scanf(), and that these latter functions do not seem to
require fi le pointers. As a matter of fact they do. The fi le
pointer associated with printf() is a constant pointer
named stdout defi ned in <stdio.h>. Similarly scanf()
has an associated constant pointer named stdin. scanf()
reads from stdin and printf() writes to stdout. This can
be verifi ed by executing the following program.

400 Programming in C

Example

12. #include < stdio.h>
 int main()
 {
 int a, b;
 fprintf(stdout, “Enter two numbers separated

by a space:”);
 fscanf(stdin, “%d %d”, &a, &b);
 fprintf(stdout, “Their sum is: %d.\n”, a + b);
 return 0;
 }

 There is a third constant fi le pointer defi ned as stderr.
This is associated with the standard error fi le. stderr has the
following use: in some systems such as MSDOS and UNIX, the
output of the programs can be redirected to fi les by using
the redirection operator. In DOS, for example, if abc.exe is
an executable fi le that writes to the monitor, then its output
can be redirected to a disk fi le abc.out by the command

 abc>abc.out<CR>

 Output that would normally appear on the monitor
can thus be sent to the fi le abc.out. On the other hand,
while redirecting output, one would not want any error
messages such as ‘Unable to open abc.dat for writing’
to be redirected; one wants them to appear on the screen.
Writing error messages to stderr

 fprintf(stderr, “Unable to open newfi le.dat for
writing”);

ensures that normal output will be redirected, but error
messages will still appear on the screen.
 All three are, in fact, objects of type pointer to FILE,
and they may be used in any fi le-handling function in just
the same way as a pointer returned by fopen(). In fact the
macro putchar(c) is really nothing more than

 putc(c,stdout)

 It is sometimes useful to initialize a pointer to FILE to
point to one of the standard items, to provide a ‘standard
input as default’ type of operation.

 FILE *ifp = stdin;

is a typical defi nition.

9.3.3 Detecting the End of a File Using the feof()
Function

To detect end-of-fi le, there is library function feof(),
which can be used for both binary- and text-mode fi les.

 int feof(FILE *fp);

 The argument fp is the FILE pointer returned by fopen()
when the fi le was opened. The function feof() returns 0 if
the end-of-fi le has not been reached, or a non-zero value
if end-of-fi le has been reached. The following program
demonstrates the use of feof(). The program reads the fi le
one line at a time, displaying each line on stdout, until
feof() detects end-of-fi le.

Example

13. #include <stdlib.h>

 #include <stdio.h>

 #defi ne SIZE 100

 int main()

 {

 char temp[SIZE];

 char fname[60];

 FILE *fp;

 printf(“Enter name of fi lename:”);

 ffl ush(stdin);

 scanf(“%s”, fname);

 if((fp = fopen(fname, “r”)) == NULL)

 {

 fprintf(stderr, “Error in opening fi le”);

 exit(1);

 }

 while(!feof(fp))

 {

 fgets(temp, SIZE, fp);

 printf(“%s”,temp);

 }

 fclose(fp);

 return 0;

 }

Output:

Enter name of fi lename:

fi rst.c

#include <stdio.h>

int main()

{

 printf(“C is Sea”);

 return 0;

}

Files in C 401

Points to Note

 • DOS uses Ctrl-z as the special character that ends a
fi le.

 • In UNIX, Ctrl-d is used as the end-of-fi le character.
 • fgets() automatically appends a null-terminator to

the data read.
 • fgetc() gives more control than fgets(), but reading

a fi le byte-by-byte from disk is rather ineffi cient.
 • fscanf() is a fi eld-oriented function and is inappropriate

for use in a robust, general-purpose text fi le reader.

9.4 WORKING WITH BINARY FILES
The operations performed on binary fi les are similar to text
fi les since both types of fi les can essentially be considered
as streams of bytes. In fact, the same functions are used
to access fi les in C. When a fi le is opened, it must be
designated as text or binary and usually this is the only
indication of the type of fi le being processed. To illustrate
a binary fi le, consider the following program containing
a function, fi lecopy(), that is passed the names of the
source and destination fi les and then performs the copy
operation just as the outlined steps. If there is an error in
opening either fi le, the function does not attempt the copy
operation and returns -1 to the calling program. When
the copy operation is complete, the program closes both
fi les and returns 0. The steps for copying a binary fi le into
another are as follows.
 1. Open the source fi le for reading in binary mode.
 2. Open the destination fi le for writing in binary mode.
 3. Read a character from the source fi le. Remember,

when a fi le is fi rst opened, the pointer is at the start
of the fi le, so there is no need to position the fi le
pointer explicitly.

 4. If the function feof() indicates that the end of the
source fi le has been reached, then close both fi les and
return to the calling program.

 5. If end-of-fi le has not been reached, write the character
to the destination fi le, and then go to step 3.

Example

14. #include <stdio.h>

 int fi lecopy(char *, char *);

 int main()

 {
 char source[80], destination[80];

 printf(“\nEnter source fi le:”);

 ffl ush(stdin);

 gets(source);

 printf(“\nEnter destination fi le:”);

 ffl ush(stdin);

 gets(destination);

 if(fi lecopy(source, destination) == 0)

 puts(“\n Successfully copied”);

 else

 fprintf(stderr, “Error in copying...”);

 return 0;

 }

 int fi lecopy(char *s, char *d)

 {

 FILE *ofp, *nfp;

 int ch;

 /* Open the source fi le for reading
in binary mode. */

 if((ofp = fopen(s, “rb”)) == NULL)

 return -1;

 /* Open the destination fi le for
writing in binary mode. */

 if((nfp = fopen(d, “wb”)) == NULL)

 {

 fclose(ofp);

 return -1;

 }

 while(1)

 {

 ch = fgetc(ofp);

 if(!feof(ofp))

 fputc(ch, nfp);

 else

 break;

 }

 fclose(nfp);

 fclose(ofp);

 return 0;

}

Output:

Enter source fi le: a.txt

Enter destination fi le: b.txt

Successfully copied

402 Programming in C

Points to Note

 • At the time of fi le opening, it must be designated
as text or binary for indicating the type of fi le being
processed.

 • The operations performed on binary fi les are similar to
text fi les.

9.5 DIRECT FILE INPUT AND OUTPUT
 Direct I/O is used only with binary-mode fi les. With
direct output, blocks of data are written from memory to
disk. Direct input reverses the process. A block of data is
read from a disk fi le into memory. For example, a single
direct-output function call can write an entire array of type
double to disk, and a single direct-input function call can
read the entire array from disk back into memory. The C
fi le system includes two important functions for direct
I/O: fread() and fwrite(). These functions can read and
write any type of data, using any kind of representation.
Their prototypes are

size_t fread(void *buffer, size_t size, size_t

num,FILE *fp);

size_t fwrite(void *buffer, size_t size, size_t

num, FILE *fp);

 The fread() function reads from the fi le associated
with fp, num number of objects, each object size in bytes,
into buffer pointed to by buffer. It returns the number of
objects actually read. If this value is 0, no objects have
been read, and either end-of-fi le has been encountered or
an error has occurred. One can use feof() or ferror() to
fi nd out whether end of fi le has been detected or an error
has occurred. Their prototypes are

int feof(FILE *fp);

int ferror(FILE *fp);

 The feof() function returns non-zero if the fi le
associated with fp has reached the end of fi le, otherwise
it returns 0. This function works for both binary fi les and
text fi les. The ferror() function returns non-zero if the fi le
associated with fp has experienced an error, otherwise it
returns 0.
 The fwrite() function is the opposite of fread(). It
writes to fi le associated with fp, num number of objects,
each object size in bytes, from the buffer pointed to by
buffer. It returns the number of objects written. This value

will be less than num only if an output error has occurred.
To check for errors, fwrite() is usually programmed as
follows.

if((fwrite(buffer, size, num, fp)) != num)

 fprintf(stderr, “Error writing to fi le.”);

 The following program describes the use of fread()
and fwrite() functions. The program initializes an array.
Then the fwrite() function is used to save the array to
disk. After that, the fread() function is used to read the
data into a different array. Finally, it displays both the
arrays on-screen to show that they now hold the same
data.

Example

15. #include <stdlib.h>
 #include <stdio.h>

 #defi ne SIZE 10

 int main()

 {

 int i, a[SIZE], b[SIZE];

 FILE *fp;

 for(i = 0; i < SIZE; i++)

 a[i] = 2 * i;

 if((fp = fopen(“dfi le.txt”, “wb”)) == NULL)

 {

 fprintf(stderr, “Error opening fi le.”);

 exit(1);

 }

 if(fwrite(a, sizeof(int), SIZE, fp) != SIZE)

 {

 fprintf(stderr, “Error writing to fi le.”);

 exit(1);

 }

 fclose(fp);

 if((fp = fopen(“dfi le.txt”, “rb”)) == NULL)

 {

 fprintf(stderr, “Error in opening fi le.”);

 exit(1);

 }

 if(fread(b, sizeof(int), SIZE, fp) != SIZE)

 {

 fprintf(stderr, “Error in reading fi le.”);

 exit(1);

 }

Files in C 403
 fclose(fp);

 for(i = 0; i < SIZE; i++)

 printf(“%d\t%d\n”, a[i], b[i]);

 return 0;

 }

Output:
0 0

2 2

4 4

6 6

8 8

10 10

12 12

14 14

16 16

18 18

9.5.1 Sequential Versus Random File Access

Every open fi le has an associated fi le position indicator,
which describes where read and write operations take
place in the fi le. The position is always specifi ed in bytes
from the beginning of the fi le. When a new fi le is opened,
the position indicator is always at the beginning of the
fi le, i.e., at position 0. Because the fi le is new and has a
length of 0, there is no other location to indicate. When
an existing fi le is opened, the position indicator is at the
end of the fi le if the fi le was opened in the append mode,
or at the beginning of the fi le if the fi le was opened in any
other mode.
 The fi le input/output functions covered earlier in this
chapter make use of the position indicator, although the
manipulations go on behind the scenes. Writing and
reading operations occur at the location of the position
indicator and update the position indicator as well. Thus,
if one wishes to read all the data in a fi le sequentially or
write data to a fi le sequentially, it is not necessary to be
concerned about the position indicator because the stream
I/O functions take care of it automatically.
 When more control is required, the C library functions
that help determine and change the value of the fi le position
indicator, have to be used. By controlling the position
indicator, random access of a fi le can be made possible.
Here, random means that data can be read from, or written
to, any position in a fi le without reading or writing all the
preceding data. This will be covered in the later sections
of the chapter.

Points to Note

 • Direct I/O is used only with binary-mode fi les.

 • fread() and fwrite() functions can read and write
any type of data, using any kind of representation.

 • There are two type of fi le accessing method : sequential
and random.

 • Every open fi le has an associated fi le position
indicator. The position is always specifi ed in bytes
from the beginning of the fi le.

9.6 FILES OF RECORDS
Most C program fi les may be binary fi les, which can
logically be divided into fi xed-length records. Each record
will consist of data that conforms to a previously defi ned
structure. In C, this structure can be formed using a struct
data type. The records are written into disk sequentially.
This happens because as each record is written to disk, the
fi le position indicator is moved to the byte immediately
after the last byte in the record just written. Binary fi les
can be written sequentially to the disk or in a random
access manner.

9.6.1 Working with Files of Records

Using fscanf() and fprintf() The following structure
records the code, name, and price of an item. Using this
structure a fi le of records can be processed. Here 0 is used
as end-of-fi le marker (logically) to indicate there are no
records in the fi le.

Example

16. #include <stdio.h>

 struct item

 {

 int itemcode;

 char name[30];

 double price;

 };

 void append();

 void modify();

 void dispall();

 void dele();

 int main()

 {

 int ch;

404 Programming in C

 struct item it;

 FILE *fp;

 fp=fopen(“item.dat”,“w”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER ITEM CODE:”);

 scanf(“%d”,&it.itemcode);

 printf(“\n ENTER ITEM NAME:”);

 ffl ush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER PRICE:”);

 scanf(“%lf”,&it.price);

 fprintf(fp,“%d \t%s\t%lf\n”,it.itemcode,
it.name,it.price);

 fprintf(fp,“%d”,0);

 fclose(fp);

 while(1)

 {

 printf(“\n \t 1.APPEND RECORD”);

 printf(“\n \t 2.DISPLAY ALL RECORD”);

 printf(“\n \t 3.EDIT RECORD”);

 printf(“\n \t 4.DELETE RECORD”);

 printf(“\n \t 5.EXIT”);

 printf(“\n \t ENTER UR CHOICE:”);

 scanf(“%d”,&ch);

 switch(ch)

 {

 case 1:append(); break;

 case 2:dispall(); break;

 case 3:modify(); break;

 case 4:dele(); break;

 case 5:exit(0);

 }

 }

 return 0;

 }

 void append()

 {

 FILE *fp;

 struct item it;

 fp=fopen(“item.dat”,“a”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER ITEM CODE:”);

 scanf(“%d”,&it.itemcode);

 printf(“\n ENTER ITEM NAME:”);

 ffl ush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER PRICE:”);

 scanf(“%lf”,&it.price);

 fprintf(fp,“%d \t%s\t%lf\n”,it.itemcode,
it.name,it.price);

 fprintf(fp,“%d”,0);

 fclose(fp);

 }

 void dispall()

 {

 FILE *fp;

 struct item it;

 fp=fopen(“item.dat”,“r”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fscanf(fp, “%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 printf(“\n \t %d\t%s\t%lf”,it.itemcode,
it.name,it.price);

 }

 fclose(fp);

 }

Files in C 405
 void modify()

 {

 FILE *fp,*fptr;

 struct item it;

 int icd,found=0;

 fp=fopen(“item.dat”,“r”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“w”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER THE ITEM CODE TO EDIT”);

 scanf(“%d”,&icd);

 while(1)

 {

 fscanf(fp,“%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 if(it.itemcode==icd)

 {

 found=1;

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 printf(“\n EXISTING RECORD IS...\n”);

 printf(“\n \t %d\t%s\t%lf”,it.itemcode,
it.name,it.price);

 printf(“\n ENTER NEW ITEM NAME:”);

 ffl ush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER NEW PRICE:”);

 scanf(“%lf”,&it.price);

 fprintf(fptr,“%d \t%s\t%lf\n”,
it.itemcode,it.name,it.price);

 }

 else

 {

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 fprintf(fptr,“%d \t%s\t%lf\n”,
it.itemcode,it.name,it.price);

 }

 }

 fprintf(fptr,“%d”,0);

 fclose(fptr);

 fclose(fp);

 if(found==0)

 printf(“\nRECORD NOT FOUND...”);

 else

 {

 fp=fopen(“item.dat”,“w”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“r”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fscanf(fptr,“%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 fscanf(fptr,“%s”,it.name);

 fscanf(fptr,“%lf”,&it.price);

 fprintf(fp,“%d \t%s\t%lf\n”,it.itemcode,
it.name,it.price);

 }

 fprintf(fp,“%d”,0);

 fclose(fptr);

 fclose(fp);

 }

 }

 void dele()

 {

 FILE *fp,*fptr;

406 Programming in C

 struct item it;

 int icd,found=0;

 fp=fopen(“item.dat”,“r”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“w”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER THE ITEM CODE TO DELETE”);

 scanf(“%d”,&icd);

 while(1)

 {

 fscanf(fp,“%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 if(it.itemcode==icd)

 {

 found=1;

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 }

 else

 {

 fscanf(fp,“%s”,it.name);

 fscanf(fp,“%lf”,&it.price);

 fprintf(fptr,“%d \t%s\t%lf\n”,
it.itemcode,it.name,it.price);

 }

 }

 fprintf(fptr,“%d”,0);

 fclose(fptr);

 fclose(fp);

 if(found==0)

 printf(“\n RECORD NOT FOUND...”);

 else

 {

 fp=fopen(“item.dat”,“w”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“r”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fscanf(fptr,“%d”,&it.itemcode);

 if(it.itemcode==0)

 break;

 fscanf(fptr,“%s”,it.name);

 fscanf(fptr,“%lf”,&it.price);

 fprintf(fp, “%d \t%s\t%lf\n”,it.itemcode,
it.name,it.price);

 }

 fprintf(fp,“%d”,0);

 fclose(fptr);

 fclose(fp);

 }

 }

Using fread() and fscanf() The following program
demonstrates how the records stored in a binary fi le can
be read sequentially from the disk. This program will
only work if the structure of the record is identical to
the record used in the previous example. Here the fi le is
opened using the fopen() function, with the fi le opening
mode set to ‘rb’. The fi le is read sequentially because
after each read operation the fi le position is moved to
point to the fi rst byte of the very next record. It must be
remembered that the feof() function does not indicate
that the end of the fi le has been reached until after
an attempt has been made to read past the end-of-fi le
marker.

Files in C 407

Example

17. include <stdio.h>

 struct item

 {

 int itemcode;

 char name[30];

 double price;

 };

 void append();

 void modify();

 void dispall();

 void dele();

 int main()

 {

 int ch;

 struct item it;

 FILE *fp;

 fp=fopen(“item.dat”,“wb”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER ITEM CODE:”);

 scanf(“%d”,&it.itemcode);

 printf(“\n ENTER ITEM NAME:”);

 ffl ush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER PRICE:”);

 scanf(“%lf”,&it.price);

 fwrite(&it,sizeof(it),1,fp);

 fclose(fp);

 dispall();

 while(1)

 {

 printf(“\n \t 1.APPEND RECORD”);

 printf(“\n \t 2.DISPLAY ALL RECORD”);

 printf(“\n \t 3.EDIT RECORD”);

 printf(“\n \t 4.EXIT”);

 printf(“\n \t ENTER UR CHOICE:”);

 scanf(“%d”,&ch);

 switch(ch)

 {

 case 1:append(); break;

 case 2:dispall();break;

 case 3:modify();break;

 case 4:exit(0);

 }

 }

 return 0;

 }

 void append()

 {

 FILE *fp;

 struct item it;

 fp=fopen(“item.dat”,“ab”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER ITEM CODE:”);

 scanf(“%d”,&it.itemcode);

 printf(“\n ENTER ITEM NAME:”);

 ffl ush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER PRICE:”);

 scanf(“%lf”,&it.price);

 fwrite(&it,sizeof(it),1,fp);

 fclose(fp);

 }

 void dispall()

 {

 FILE *fp;

 struct item it;

 fp=fopen(“item.dat”,“rb”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

408 Programming in C

 {

 fread(&it,sizeof(it),1,fp);

 if(feof(fp))

 break;

 printf(“\n %d \t %s \t %lf”,it.itemcode,it.
name,it.price);

 }

 fclose(fp);

 }

 void modify()

 {

 FILE *fp,*fptr;

 struct item it;

 int icd,found=0;

 fp=fopen(“item.dat”,“rb”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“wb”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 printf(“\n ENTER THE ITEM CODE TO EDIT”);

 scanf(“%d”,&icd);

 while(1)

 {

 fread(&it,sizeof(it),1,fp);

 if(feof(fp))

 break;

 if(it.itemcode==icd)

 {

 found=1;

 printf(“\n EXISTING RECORD IS...\n”);

 printf(“\n \t %d\t%s\t%lf”,it.itemcode,
it.name,it.price);

 printf(“\n ENTER NEW ITEM NAME:”);

 ffl ush(stdin);

 scanf(“%[^\n]”,it.name);

 printf(“\n ENTER NEW PRICE:”);

 scanf(“%lf”,&it.price);

 fwrite(&it,sizeof(it),1,fptr);

 }

 else

 {

 fwrite(&it,sizeof(it),1,fptr);

 }

 }

 fclose(fptr);

 fclose(fp);

 if(found==0)

 printf(“\nRECORD NOT FOUND...”);

 else

 {

 fp=fopen(“item.dat”,“wb”);

 if(fp==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 fptr=fopen(“temp.dat”,“rb”);

 if(fptr==NULL)

 {

 printf(“\n ERROR IN OPENING FILE...”);

 exit(0);

 }

 while(1)

 {

 fread(&it,sizeof(it),1,fptr);

 if(feof(fptr))

 break;

 fwrite(&it,sizeof(it),1,fp);

 }

 fclose(fptr);

 fclose(fp);

 }

 }

Files in C 409

Using fgets() and fputc() It is not that only fread()
and fwrite() or fscanf() and fprintf() are used for
processing of fi les of records. fgets() and fputc() can
also be used. The following program illustrates this. The
program keeps the records of an item in a fi le stock.dat,
uses a structure item and processes the fi le, and prints out
all items where the quantity on hand is less than or equal
to the reorder level.

Example

18. #include <stdio.h>
#include <stdlib.h>

#include <ctype.h>

#include <string.h>

/* defi nition of a record of type item */

struct item {

 char name[20];

 fl oat price;

 int qty;

 int reorder;

};

void show(struct item);

int getrecord(struct item *);

FILE *fp; /* input fi le pointer */

void show(struct item rec)

{

 printf(“\nitem name\t%s\n”, rec.name);

 printf(“item price\t%.2f\n”, rec.price);

 printf(“item quantity\t%d\n”, rec.qty);

 printf(“item reorder level\t%d\n”, rec.reorder);

}

int getrecord(struct item *p)

{

 int i = 0, ch;

 char temp[40];

 ch = fgetc(fp);

 while((ch == ‘\n’) || (ch == ‘ ’) && (ch != EOF))

 ch = fgetc(fp);

 if(ch == EOF)

 return 0;

 /* read item name */

 while((ch != ‘\n’) && (ch != EOF)) {

 temp[i++] = ch;

 ch = fgetc(fp);

 }

 temp[i] = ‘\0’;

 strcpy(p->name, temp);

 if(ch == EOF) return 0;

 /* skip to start of next fi eld */

 while((ch == ‘\n’) || (ch == ‘ ’) && (ch != EOF))

 ch = fgetc(fp);

 if(ch == EOF) return 0; /* read item price */

 i = 0;

 while((ch != ‘\n’) && (ch != EOF))
 {

 temp[i++] = ch;

 ch = fgetc(fp);

 }

 temp[i] = ‘\0’;

 p->price = atof(temp);

 if(ch == EOF) return 0;

 /* skip to start of next fi eld */

 while((ch == ‘\n’) || (ch == ‘ ’) && (ch != EOF))

 ch = fgetc(fp);

 if(ch == EOF) return 0;

 /* read item quantity */

 i = 0;

 while((ch != ‘\n’) && (ch != EOF))
 {

 temp[i++] = ch;

 ch = fgetc(fp);

 }

 temp[i] = ‘\0’;

 p->qty = atoi(temp);

 if(ch == EOF) return 0;

 /* skip to start of next fi eld */

 while((ch == ‘\n’) || (ch == ‘ ’) && (ch != EOF))

 ch = fgetc(fp);

 if(ch == EOF) return 0;

 /* read item reorder level */

 i = 0;

 while((ch != ‘\n’) && (ch != EOF)) {

 temp[i++] = ch;

 ch = fgetc(fp);

 }

 temp[i] = ‘\0’;

 p->reorder = atoi(temp);

 if(ch == EOF) return 0;

 return 1;

/* signify record has been
read successfully */

}

410 Programming in C

int main()
{
 struct item rec;
 fp = fopen(“stock.dat”, “r”);
 if(fp == NULL) {
 printf(“Unable to open the fi le %s\n”, fi lename);
 if(fp != NULL)
 fclose(fp);
 exit(1);
}
 while(! feof(fp)) {
 if(getrecord(&rec) == 1) {
 if(rec.qty <= rec.reorder)
 show(rec);
 }
 else
 {
 if(fp != NULL)
 fclose(fp);
 exit(1);
 }
}
 if(fp != NULL)
 fclose(fp);
 exit(0);
 return 0;
}

Points to Note
 • Most C program fi les may be binary fi les, which can

logically be divided into fi xed-length records.
 • The records in a fi le are written sequentially onto the

disk.
 • Binary fi les can be written sequentially to the disk or in

a random access manner.
 • With fread() and fscanf(), the fi le is read sequentially

and after each read operation, the fi le position indicator
is moved to the fi rst byte of the next record.

 • The feof() function does not indicate that the end of
the fi le has been reached until after an attempt has
been made to read past the end-of-fi le marker.

9.7 RANDOM ACCESS TO FILES OF RECORDS
For random access to fi les of records, the following
functions are used.
 fseek()
 ftell()
 rewind()

 By using fseek(), one can set the position indicator
anywhere in the fi le. The function prototype in stdio.h is

 int fseek(FILE *fp, long offset, int origin);

 The argument fp is the FILE pointer associated with the
fi le. The distance that the position indicator is to be moved
is given by offset in bytes. It is the number of bytes to
move the fi le pointer. This is obtained from the formula:
the desired record number × the size of one record. The
argument origin specifi es the position indicator’s relative
starting point. There can be three values for origin,
with symbolic constants defi ned in stdio.h, as shown in
Table 9.2.

Table 9.2 Possible origin values for fseek()

Constant Value Description

SEEK_SET 0 Moves the indicator offset bytes from
the beginning of the fi le

SEEK_CUR 1 Moves the indicator offset bytes from
its current position

SEEK_END 2 Moves the indicator offset bytes from
the end of the fi le

 The function fseek() returns 0 if the indicator is moved
successfully or non-zero in case of an error. The following
program uses fseek() for random fi le access. The program
uses the previously created fi le item.dat and the structure
item. It is assumed that there are four records in the fi le
item.dat.

Example

19. #include <stdio.h>

 #include <string.h>

 struct item{

 int itemcode;

 char name[30];

 double price;

 };

 typedef struct item product;

 FILE *fp;

 int main()

 {

 product it;

 int rec, result;

 fp = fopen(“item.dat”, “r+b”);

Files in C 411
 printf(“Which record do you want [0-3]? Press\

-1 to exit...”);

 scanf(“%d”, &rec);

 while(rec >= 0)
 {
 fseek(fp, rec*sizeof(it), SEEK_SET);
 result = fread(&it, sizeof(it), 1, fp);
 if(result==1)
 {
 printf(“\nRECORD %d\n”, rec);
 printf(“Item code........: %d\n”,

it.itemcode);
 printf(“Item name.......: %s\n”, it.name);
 printf(“Price...: %8.2f\n\n”, it.price);
 }
 else
 printf(“\nRecord %d not found!\n\n”, rec);
 printf(“Which record do you want [0-3]? Press

-1 to exit...”);
 scanf(“%d”, &rec);
 }
 fclose(fp);
 return 0;
 }

The following program will further clear the concept of fseek().

20.#include <stdio.h>

/* random record description—could be anything */

struct rec

{

 int x,y,z;

};

/* writes and then reads 10 arbitrary records from
the fi le “junk”. */

int main()

{

 int i,j;

 FILE *f;

 struct rec r;

 /* create the fi le of 10 records */

 f=fopen(“junk”,“w”);

 if(!f)

 {

 printf(“File opening error for writing”);

 exit(1);}

 for(i=1;i<=10; i++)

 {

 r.x=i;

 r.y=i*2;

 r.z=i*3;

 fwrite(&r,sizeof(struct rec),1,f);

 }

 fclose(f);

 /* read the 10 records */

 f=fopen(“junk”,“r”);

 if(!f) {

 printf(“\n File opening error for reading”);

 exit(1);}

 for(i=1;i<=10; i++)

 {

 fread(&r,sizeof(struct rec),1,f);

 printf(“\n%d\t %d \t %d”,r.x,r.y,r.z);

 }

 fclose(f);

 printf(“\n”);

 /* use fseek to read the fi rst 5
records in reverse order */

 f=fopen(“junk”,“r”);

 if(!f)

 {

 printf(“\n File opening error for reading”);

 exit(1);

 }

 for(i=4; i>=0; i––)

 {

 fseek(f,sizeof(struct rec)*i,SEEK_SET);

 fread(&r,sizeof(struct rec),1,f);

 printf(“\n%d\t %d \t %d”,r.x,r.y,r.z);

 }

 fclose(f);

 printf(“\n”);

 /* use fseek to read every other record */

 f=fopen(“junk”,“r”);

 if(!f)

 {

 printf(“File opening error for reading”);

 exit(1);

 }

 fseek(f,0,SEEK_SET);

412 Programming in C

 for(i=0;i<5; i++)

 {

 fread(&r,sizeof(struct rec),1,f);

 printf(“\n%d\t %d \t %d”,r.x,r.y,r.z);

 fseek(f,sizeof(struct rec),SEEK_CUR);

 }

 fclose(f);

 printf(“\n”);

 /* use fseek to read 4th record,

 change it, and write it back */

 f=fopen(“junk”,“r+”);

 if(!f)

 {

 printf(“File opening error for reading and\
writing”);

 exit(1);}

 fseek(f,sizeof(struct rec)*3,SEEK_SET);

 fread(&r,sizeof(struct rec),1,f);

 r.x=9;

 r.y=99;

 r.z=999;

 fseek(f,sizeof(struct rec)*3,SEEK_SET);

 fwrite(&r,sizeof(struct rec),1,f);

 fclose(f);

 printf(“\n”);

 /* read the 10 records to ensure

 4th record was changed */

 f=fopen(“junk”,“r”);

 if(!f)

 {

 printf(“File opening error for reading and\
writing”);

 exit(1);

 }

 for(i=1;i<=10; i++)

 {

 fread(&r,sizeof(struct rec),1,f);

 printf(“\n%d\t %d \t %d”,r.x,r.y,r.z);

 }

 fclose(f);

 return 0;

}

Output:
 1 2 3

 2 4 6

 3 6 9

 4 8 12

 5 10 15

 6 12 18

 7 14 21

 8 16 24

 9 18 27

 10 20 30

 5 10 15

 4 8 12

 3 6 9

 2 4 6

 1 2 3

 1 2 3

 3 6 9

 5 10 15

 7 14 21

 9 18 27

 1 2 3

 2 4 6

 3 6 9

 9 99 999

 5 10 15

 6 12 18

 7 14 21

 8 16 24

 9 18 27

 10 20 30

 To set the position indicator to the beginning of the fi le,
use the library function rewind(). Its prototype in stdio.h is

void rewind(FILE *fp);

 The argument fp is the FILE pointer associated with
the stream. After rewind() is called, the fi le’s position
indicator is set to the beginning of the fi le (byte 0). Use
rewind() to read some data from a fi le and to start reading
from the beginning of the fi le again without closing and
reopening the fi le.
 To determine the value of a fi le’s position indicator, use
 ftell(). The prototype of this function, located in stdio.h,
reads

 long ftell(FILE *fp);

Files in C 413

 The argument fp is the FILE pointer returned by fopen()
when the fi le is opened. The function ftell() returns a
type long that gives the current fi le position in bytes from
the start of the fi le (the fi rst byte is at position 0). In case
of an error, ftell() returns -1L (a type long –1).
 There are a number of interesting points here.
 The direct access functions always work with long

integers and traditionally, associated variables are
declared as being of type long int.

 The record numbering starts at zero and the fi le
examination part of the program is terminated by a
negative input. Strictly the fi nal parameter of fseek()
ought to have been SEEK_SET, not zero.

 The value returned by ftell() is the byte position
of the byte about to be read from the fi le. Therefore
when a new line is encountered, it is the start address
of the next record.

 The functions fsetpos() and fgetpos() do the same
things as fseek() and ftell(), only they use parameters of
type fpos_t rather than long int. This, potentially, allows
for larger fi les to be handled. The use of these functions
must be preferred.

Points to Note

 • By using fseek(), one can set the position indicator
anywhere in the fi le.

 • The function fseek() returns 0 if the indicator is moved
successfully or non-zero in case of an error.

 • To determine the value of a fi le’s position indicator,
use ftell().

 • The record numbering starts at zero and the fi le
examination part of the program is terminated by a
negative input.

9.8 OTHER FILE MANAGEMENT FUNCTIONS
The copy and delete operations are also associated with fi le
management. Though one could write programs for them,
the C standard library contains functions for deleting and
renaming fi les.

9.8.1 Deleting a File

The library function remove() is used to delete a fi le. Its
prototype in stdio.h is

 int remove(const char *fi lename);

 The variable *fi lename is a pointer to the name of the fi le
to be deleted. The only precondition is that the specifi ed
fi le must not be open. If the fi le exists, it will be deleted
and remove() returns 0. If the fi le does not exist or if it
is read-only, if the programmer does not have suffi cient
access rights (for UNIX system), or in case of some other
error, remove() returns -1.
 The following program describes the use of the remove()
function.

Example

21.#include <stdio.h>
int main(void)
{
 char fi le[80];
 /* prompt for fi lename to delete */
 printf(“File to delete: ”);
 gets(fi le);
 /* delete the fi le */
 if(remove(fi le) == 0)
 printf(“Removed %s.\n”,fi le);
 else
 perror(“remove”);
 return 0;
}

In this program, a function perror() is used, the prototype for which
is

 void perror(const char *message);

perror() produces a message on standard error output, describing
the last error encountered. The argument string message is printed
fi rst, then a colon and a blank, followed by the message and a new line.
If the message is a NULL pointer or if it points to a null string, the colon
is not printed.

9.8.2 Renaming a File

The rename() function changes the name of an existing
disk fi le. The function prototype in stdio.h is as follows.

int rename(const char *oldname, const char *newname);

 The fi lenames pointed to by oldname and newname follow
the rules given earlier in this chapter. The only restriction
is that both names must refer to the same disk drive; a fi le
cannot be renamed on a different disk drive. The function
rename() returns 0 on success, or -1 if an error occurs. Errors
can be caused by the following conditions (among others).

414 Programming in C

 The fi le oldname does not exist.
 A fi le with the name newname already exists.
 One tries to rename on another disk.

Consider the following program.

Example

22.#include <stdio.h>

int main(void)

{

 char oldname[80], newname[80];

 /* prompt for fi le to rename and new name */

 printf(“File to rename:”);

 gets(oldname);

 printf(“New name:”);

 gets(newname);

 /* Rename the fi le */

 if(rename(oldname, newname) == 0)

 printf(“Renamed %s to %s.\n”, oldname, newname);

 else

 perror(“rename”);

 return 0;

}

Points to Note
 • The copy and delete operations are also associated

with fi le management.
 • In case of remove() function the only precondition is

that the specifi ed fi le must not be open.
 • The only restriction in rename() function is that both

names must refer to the same disk drive; a fi le cannot
be renamed on a different disk drive.

9.9 LOW-LEVEL I/O
This form of I/O is unbuffered. That is, each read or write
request results in accessing the disk (or device) directly
to fetch/put a specifi c number of bytes. There are no
formatting facilities. Instead of fi le pointers, we use low-
level fi le handles or fi le descriptors, which give a unique
integer number to identify each fi le.

To open a fi le the following function is used.
int open(char *fi lename, int fl ag, int perms);

 The above function returns a fi le descriptor or -1 for
a failure. The fl ag controls the fi le access and has the
following predefi ned in fcntl.h: O_APPEND, O_CREAT,
O_EXCL, O_RDONLY, O_RDWR, O_WRONLY and others. perms is
best set to 0 for most of our applications.

The function
 creat(char *fi lename, int perms);

can also be used to create a fi le.
 int close(int handle);

can be used to close a fi le.

 The following functions are used to read/write a specifi c
number of bytes from/to a fi le stored or to be put in the
memory location specifi ed by buffer.

 int read(int handle, char *buffer,unsigned length);

 int write(int handle, char *buffer, unsigned length);

 The sizeof() function is commonly used to specify
the length. The read() and write() functions return the
number of bytes read/written or -1 if they fail.

Points to Note
 • Low-level I/O has no formatting facilities.
 • Instead of fi le pointers, low-level fi le handles or fi le

descriptors, which give a unique integer number to
identify each fi le, are used.

SUMMARY

Data can also be stored in disk fi les. C treats a disk fi le like a stream
(a sequence of characters), just like the predefi ned streams stdin,
stdout, and stderr. A stream associated with a disk fi le must be
opened using the fopen() library function before it can be used, and
it must be closed after use through the fclose() function. A disk fi le
stream can be opened either in text or in binary mode.

 After a disk fi le has been opened, data can be read from the
fi le, written into the fi le, or both. Data can be accessed either in a
sequential manner or in a random manner. Each open disk fi le has an
associated fi le position indicator. This indicator specifi es the position

in the fi le, measured as the number of bytes from the start of the
fi le, where subsequent read and write operations occur. With some
cases, the position indicator is updated automatically by the system,
and programmers do not have to be bothered with it. For random fi le
access, the C standard library provides functions such as fseek(),
ftell(), and rewind() for manipulating the position indicator.

 Finally, C provides some rudimentary fi le management functions,
allowing deletion and renaming of disk fi les. Low-level fi le handling
functions, that do not use formatting and fi le position indicators, are
also available.

Files in C 415

KEY-TERMS

Binary fi le Binary fi le is a collection of bytes or a character stream.
The data that is written into and read from binary fi le remain unchanged,
with no separation between lines and no use of end-of-line characters
and the interpretation of the fi le is left to the programmer.

Buffer A buffer is a block of memory used for temporary storage of
data being written to and read from the fi le. It serves as an interface
between the stream (which is character-oriented) and the disk hardware
(which is block-oriented).

File management It basically means all operations related to
creating, renaming, deleting, merging, reading, writing, etc. of any type
of fi les.

Path The path specifi es the drive and/or directory (or folder) where
the fi le is located. On PCs, the backslash character is used to separate
directory names in a path. Some systems like Unix use the forward
slash (/) as the directory separator.

Random fi le access Random access means reading from or writing
to any position in a fi le without reading or writing all the preceding data
by controlling the position indicator.

Record A record consist of a collection of data fi elds that conforms
to a previously defi ned structure that can be stored on or retrieved
from a fi le.

Sequential fi le access In case of sequential fi le access, data is
read from or written to a fi le in a sequential manner while the position
indicator automatically gets adjusted by the stream I/O functions.

Stream The stream is a common, logical interface to the various
devices that comprise the computer and is a logical interface to a fi le.
Although fi les differ in form and capabilities, all streams are the same.

Text fi le A text fi le is a stream of characters that can be processed
sequentially and logically in the forward direction. The maximum
number of characters in each line is limited to 255 characters.

FREQUENTLY ASKED QUESTIONS

1. What is fi le?
 A fi le is a collection of bytes stored on a secondary storage device, which
is generally a disk of some kind. It is identifi ed by a name, which is given
at the time of its creation. It may be amended, moved from one storage
device to another or removed completely when desired.

2. What is a stream?
 In C, the stream is a common, logical interface to the various devices
that form the computer. When the program executes, each stream is
tied together to a specifi c device that is source or destination of data.
The stream provides a consistent interface and to the programmer one
hardware device will look much like another. In its most common form,
a stream is a logical interface to a fi le. Stream I/O uses some temporary
storage area, called buffer, for reading from or writing data to a fi le.
A stream is linked to a fi le by using an open operation. A stream is
disassociated from a fi le using a close operation.
 The C language provides three “standard” streams that are always
available to a C program. These are-

Name Description Example

stdin Standard Input Keyboard

stdout Standard Output Screen

stderr Standard Error Screen

3. What is buffer? What’s its purpose?
 Buffer is a temporary storage area that holds data while they are being
transferred to and from memory. Buffering is a scheme that prevents
excessive access to a physical I/O device like a disk or a terminal. Its
purpose is to synchronize the physical devices that the program needs.

The buffer collects output data until there are enough to write effi ciently.
The buffering activities are taken care of by software called device
drivers or access methods provided by the operating system.

4. Why have buffers?

 It speeds up input/output which can be a major bottleneck in execution
times. That is, it is less time-consuming to transmit several characters
as a block than to send them one by one.

5. What is FILE?

 FILE is a structure declared in stdio.h. The members of the
FILE structure are used by the program in the various fi le access
operations. For each fi le that is to be opened, a pointer to type FILE
must be declared. When the function fopen() is called, that function
creates an instance of the FILE structure and returns a pointer to that
structure. This pointer is used in all subsequent operations on the fi le.
But programmers don’t need to be concerned about the members of the
structure FILE.
 Because one may use a number of different fi les in the program,
he or she must specify when reading or writing which fi le one wishes
to use. This is accomplished by using a variable called a fi le pointer, a
pointer variable that points to a structure FILE.

6. How many fi les can I open at once?

 The number of fi les that can be opened at once will be determined by
the value of the constant FOPEN_MAX that is defi ned in <stdio.h>.
FOPEN_MAX is an integer that specifi es the maximum number of streams
that can be open at one time. The C language standard requires that
the value of FOPEN_MAX be at least 8, including the standard streams

416 Programming in C

stdin, stdout and stderr. Thus, as a minimum, it’s possible to
work with up to 5 fi les simultaneously.

7. What happens if anyone doesn’t close a fi le?

 By default, the fi le should be closed when the program exits; however,
one should never depend on this. A fi le must be closed as soon as the
programmer has fi nished the processing with it. This defends data loss
which could occur if an error in another part of the program caused the
execution to be stopped in an abnormal fashion. As a consequence,
the contents of the output buffer might be lost, as the fi le wouldn’t be
closed properly. It should be noted that one must also close a fi le before
attempting to rename it or remove it.

8. What is the difference between fgets() and gets() ?

gets() fgets()

The function gets() is
normally used to read a line
of string from the keyboard.

The function fgets() is used
to read a line of string from a fi le
or keyboard.

It automatically replaces the
‘\n’ by ‘\0’.

It does not automatically
delete the trailing ‘\n’

It takes one argument. It takes three arguments.

It does not prevent overfl ow. It prevents overfl ow.

EXERCISES

 1. What are the primary advantages of using a data fi le?

 2. What is FILE?

 3. What is the purpose of the fopen() function?

 4. What is the purpose of the fclose() function? Is it mandatory
to use this in a program that processes a data fi le?

 5. What is the difference between a text-mode stream and a binary-
mode stream?

 6. Describe different fi le opening modes used with the fopen()
function.

 7. What is stream? Describe two different methods of creating a
stream-oriented data fi le.

 8. What are the three general methods of fi le access?

 9. What is EOF? When is EOF used?

 10. Describe the different methods for reading from and writing into
a data fi le.

 11. What is the difference between a binary fi le and a text fi le in C?

 12. Compare fscanf() and fread() functions?

 13. What is the purpose of the feof() function?

 14. How do you detect the end of a fi le in text and binary modes?
Write code to close all fi le streams.

 15. Indicate two different ways to reset the fi le position pointer to the
beginning of the fi le.

 16. Is anything wrong with the following?

FILE *fp;

int c;

if((fp = fopen(oldname, “rb”)) == NULL)

 return -1;

while((c = fgetc(fp)) != EOF)

 fprintf(stdout, “%c”, c);

fclose(fp);

 17. Write a program to copy one existing fi le into another named
fi le.

 18. Write a complete C program that can be used as a simple line-
oriented text editor. The program must have the following capa-
bilities.

 (i) Enter several lines of text and store them in a data fi le

 (ii) List the data fi le

 (iii) Retrieve and display a particular line

 (iv) Insert n lines

 (v) Delete n lines

 (vi) Save the new text and exit

 Carry out these tasks using different functions.

 19. Write a program that opens a fi le and counts the number of
characters. The program should print the number of characters
when fi nished.

 20. Write a program to compare two fi les and print out the lines
where they differ.

 21. Write an interactive C program that will maintain a list roll, name,
and total marks of students. Consider the information associated
with each roll to be a separate record. Represent each record as
a structure. Include a menu that will allow the user to select any
of the following.

 (i) Add a new record

 (ii) Delete a record

Files in C 417

 (iii) Modify a record

 (iv) Retrieve and display an entire record for a given roll or name

 (v) Display all records

 (vi) End of computation

 22. Write a program that opens an existing text fi le and copies it to a
new text fi le with all lowercase letters changed to capital letters
and all other characters unchanged.

 23. Write a function that opens a new temporary fi le with a specifi ed
mode. All temporary fi les created by this function should automatically
be closed and deleted when the program terminates.

 24. Write a C code that will read a line of characters (terminated by
a \n) from a text fi le into a character array called buffer. NULL
terminates the buffer upon reading a \n.

INCREMENTAL PROBLEM
The additional feature that has been added in this program is creat-
ing a fi le and storing data and retrieving it from the fi le. Other than
that, similar functions and logic has been implemented as in the ear-
lier chapter.

Problem statement

Within a fi le, store the co-ordinates of the given sets of vertices with
which triangles can be formed. Read the co-ordinates of each set of
vertices and compute the areas of the triangles formed by them. Next
fi nd the set of vertices that forms the triangle with the largest area
among the set of triangles.

Solution

The functions and programming logic used is the same as in the
earlier chapter. The only addition is the use of a fi le to store the co-
ordinates of the set of vertices with which triangles can be formed.
The area of triangles formed by these set of vertices are determined
using the function getArea(). Next, the co-ordinates of the set of
vertices, with which the triangle with the largest area can be formed,
is found by using the function fi ndLargestArea().

Program

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

typedef struct

{

 int x;

 int y;

}Point;

double getLength(Point,Point);

double getArea(double, double, double);

void fi ndLargestArea(void);

int main(void)

{

 Point p[3];

 int i;

 double a,b,c;

 char ans=’y’;

 1. Write a C program that takes the name of a fi le as a command-
line argument, opens the fi le, reads through it to determine the
number of words in each sentence, displays the total number
of words and sentences, and computes the average number of
words per sentence. The results should be printed in a table (at
standard output), such as shown below:

 This program counts the words and sentences in
fi le “comp.text”.

Sentence: 1 Words: 29
Sentence: 2 Words: 41
Sentence: 3 Words: 16
Sentence: 4 Words: 22
Sentence: 5 Words: 44
Sentence: 6 Words: 14
Sentence: 7 Words: 32

 File “comp.text” contains 198 words words in
7 sentences for an average of 28.3 words per
sentence.

 In this program, you should count a word as any contiguous
sequence of letters, and apostrophes should be ignored. Thus,
“O’Henry”, “government’s”, and “friend’s’” should each
be considered as one word.

 Also in the program, you should think of a sentence as any
sequence of words that ends with a period, exclamation point,
or question mark. A period after a single capital letter (e.g., an
initial) or embedded within digits (e.g., a real number) should
not be counted as being the end of a sentence. White space,
digits, and other punctuation should be ignored.

 2. Write a C program that removes all comment lines from a C
source code.

Project Questions

418 Programming in C

 FILE *fp;

 fp=fopen(“point.dat”,”a”);

 if(fp==NULL)

 {

 printf(“\n Cannot open fi le..\n”);

 exit(1);

 }

 while(ans==’Y’||ans==’y’)

 {

 printf(“\n Enter the coordinates of the verti-
ces of a triangle”);

 for(i=0;i<3;++i)
 {
 printf(“\n Enter x[%d]: “,i);
 scanf(“%d”,&p[i].x);
 printf(“\n Enter y[%d]: “,i);
 scanf(“%d”,&p[i].y);
 }
 a=getLength(p[0],p[1]);
 b=getLength(p[1],p[2]);
 c=getLength(p[0],p[2]);
 if(a+b>c && b+c>a && c+a>b)
 {
 printf(“Triangle can be drawn”);
 fprintf(fp,”%d %d %d %d %d %d\n”,p[0].x,
 p[0].y,p[1].x,p[1].y,p[2].x,p[2].y);

 }

 else

 printf(“Triangle cannot be drawn”);

 printf(“\n Do you add more(y/n)?”);

 ffl ush(stdin);

 scanf(“%c”,&ans);

 }

 fclose(fp);

 fi ndLargestArea();

 return 0;

}

double getLength(Point One, Point Two)

{

 int m, n;

 m=(One.x-Two.x)*(One.x-Two.x);

 n=(One.y-Two.y)*(One.y-Two.y);

 return sqrt((double)(m+n));

}

double getArea(double sA,double sB, double sC)

{

 double s;

 s=(sA+sB+sC)/2.0;

 return sqrt(s*(s-sA)*(s-sB)*(s-sC));

}

void fi ndLargestArea(void)

{

 FILE *fp;

 Point p[3], r[3];

 int i;

 double a,b,c, maxArea, area;

 fp=fopen(“point.dat”,”r”);

 if(fp==NULL)

 {

 printf(“\n Cannot open fi le..\n”);

 exit(1);

 }

 fscanf(fp,”%d %d %d %d %d %d”, &p[0].x, &p[0].y,
&p[1].x, &p[1].y, &p[2].x, &p[2].y);

 for(i=0;i<3;++i)

 r[i]=p[i];

 a=getLength(p[0],p[1]);

 b=getLength(p[1],p[2]);

 c=getLength(p[0],p[2]);

 maxArea=getArea(a,b,c);

 while(!feof(fp))

 {

 fscanf(fp,”%d %d %d %d %d %d”,&p[0].x, &p[0].y,
&p[1].x, &p[1].y,&p[2].x,&p[2].y);

 a=getLength(p[0],p[1]);

 b=getLength(p[1],p[2]);

 c=getLength(p[0],p[2]);

 area=getArea(a,b,c);

 printf(“\n Area is = %lf”, area);

 if(area>maxArea)

 {

 maxArea=area;

 for(i=0;i<3;++i)

 r[i]=p[i];

 }

 }

 printf(“\n Triangle with largest area whose
points are:”);

 for(i=0;i<3;++i)

 printf(“(%d,%d)”, r[i].x, r[i].y);

 printf(“\n and Area is = %lf”, maxArea);

 fclose(fp);

}

Files in C 419

Problem Statement
A computer Phone Book containing name of persons, their home,
offi ce and mobile phone numbers has to be prepared. This book
should have the necessary provision for adding, editing and deleting
phone numbers and display the phone number of any person from the
Phone Book as and when required.

Analysis and Design
The following program keeps a track of the telephone numbers of
different persons. It works like a telephone index. Through the
program, telephone numbers of a person can be added, edited,
and deleted. Three telephone numbers (home, offi ce, and mobile)
are maintained along with the name of the person. All the records
can be displayed page wise. The searching of a record can also be
performed by inputting the name of the person. Here a binary fi le is
used to store the records. The access method is chosen as random.
Careful study of the program will clarify the following:

 ∑ the use of fread(), fwrite(), rewind()
 ∑ the concept of binary fi les with random access
 ∑ sorting of records stored in a fi le

The algorithm of the main program is given as follows:

 1. START
 2. OPEN FILE PBOOK.DAT IN BINARY MODE
 3. IF FILE OPEN OPERATION IS UNSUCCESSFUL THEN

GOTO 9
 4. PRINT “1. ADD 2. MODIFY 3. DELETE 4. SEARCH

5. DISPLAY 6. EXIT”
 5. PRINT “ENTER CHOICE”
 6. INPUT CHOICE
 7. IF CHOICE = 1 THEN CALL ADD()
 ELSE IF
 CHOICE = 2 THEN CALL MODIFY()
 ELSE IF
 CHOICE = 3 THEN CALL DELET()
 ELSE IF
 CHOICE = 4 THEN CALL SEARCH()
 ELSE IF
 CHOICE = 5 THEN CALL DISPLAY()
 ELSE GOTO 10
 8. GOTO 4
 9. PRINT “ ERROR OPENING PHONE BOOK”.
 10. CLOSE “PBOOK.DAT” FILE
 11. STOP

The algorithm of ADD() function is given as follows:

 1. START
 2. PRINT “ENTER NAME”
 3. INPUT NAME
 4. PRINT “ENTER HOME PHONE NUMBER”
 5. INPUT HOME_PHONE_NUMBER
 6. PRINT “ENTER OFFICE PHONE NUMBER”

CASE STUDY

 7. INPUT OFFICE_PHONE_NUMBER
 8. PRINT “ENTER MOBILE PHONE NUMBER”
 9. INPUT MOBILE_PHONE_NUMBER
 10. WRITE NAME, HOME_PHONE_NUMBER, OFFICE_PHONE
 NUMBER AND MOBILE_PHONE NUMBER IN THE FILE
 11. SORT THE RECORDS ACCORDING TO ALPHABETICAL

ORDER OF NAMES
 12. RETURN

The algorithm of MODIFY() function is given as follows:

 1. START
 2. PRINT “ENTER NAME”
 3. INPUT T
 4. NAME

 5. FLAG ← 0
 6. READ A RECORD FROM THE FILE “PBOOK.DAT”
 7. IF END OF FILE IS REACHED THEN GOTO 9

 8. IF NAME=TNAME THEN FLAG ← 1
 9. IF FLAG=0 THEN GOTO 5
 10. IF FLAG=0 THEN PRINT “NAME DOES NOT EXIST IN

RECORD” : GOTO 23
 11. POSITION THE RECORD POINTER AT THE BEGINNING
 12. READ A RECORD FROM THE FILE “PBOOK.DAT”
 13. IF NAME != TNAME THEN GOTO 11
 14. PRINT “ENTER NAME”
 15. INPUT NAME
 16. PRINT “ENTER HOME PHONE NUMBER”
 17. INPUT HOME_PHONE_NUMBER
 18. PRINT “ENTER OFFICE PHONE NUMBER”
 19. INPUT OFFICE_PHONE_NUMBER
 20. PRINT “ENTER MOBILE PHONE NUMBER”
 21. INPUT MOBILE_PHONE_NUMBER
 22. POSITION THE RECORD POINTER AT THE CORRECT

LOCATION
 23. WRITE NAME, HOME_PHONE_NUMBER, OFFICE_PHONE
 NUMBER AND MOBILE_PHONE_NUMBER IN THE FILE .
 24. RETURN

The algorithm of DELET() function is given as follows:

 1. START
 2. PRINT “NAME TO DELETE:”
 3. INPUT TNAME

 4. FLAG ← 0
 5. READ A RECORD FROM THE FILE “PBOOK.DAT”
 6. IF END OF FILE IS REACHED THEN GOTO 9

 7. IF NAME=TNAME THEN FLAG ← 1
 8. IF FLAG=0 THEN GOTO 5
 9. IF FLAG=0 THEN PRINT “NAME DOES NOT EXIST IN

RECORD” : GOTO 20
 10. OPEN A FILE “TEMP.DAT” IN BINARY MODE
 11. POSITION THE RECORD POINTER OF THE FILE

“PBOOK.DAT” AT THE BEGINNING

420 Programming in C

 12. READ A RECORD FROM THE FILE “PBOOK.DAT”
 13. IF END OF FILE IS REACHED THEN GOTO 16
 14. IF NAME!=TNAME THEN
 WRITE NAME, HOME_PHONE_NUMBER, OFFICE_PHONE_

NUMBER AND MOBILE_PHONE_NUMBER IN “TEMP.DAT”
 15. GOTO 12
 16. CLOSE THE FILES “PBOOK.DAT” AND “TEMP.DAT”
 17. REMOVE THE FILE “PBOOK.DAT”
 18. RENAME “TEMP.DAT” TO “PBOOK.DAT”
 19. IF FLAG=1 THEN PRINT “RECORD DELETED”
 20. RETURN

The algorithm of SEARCH() function is given as follows:

 1. START
 2. PRINT “ENTER NAME TO SEARCH”
 3. INPUT NAME

 4. FLAG ← 0
 5. READ A RECORD FROM THE FILE “PBOOK.DAT”
 6. IF END OF FILE IS REACHED THEN GOTO 9

 7. IF NAME=TNAME THEN FLAG ← 1: PRINT NAME,
HOME_PHONE_NUMBER, OFFICE_PHONE_NUMBER AND
MOBILE_PHONE_NUMBER

 8. GOTO 5
 9. IF FLAG=0 THEN PRINT “NAME DOES NOT EXIST”
 10. RETURN

The algorithm of DISPLAY() function is given as follows:

 1. START
 2. READ A RECORD FROM THE FILE “PBOOK.DAT”
 3. IF END OF FILE IS REACHED THEN GOTO 6
 4. PRINT NAME, HOME_PHONE_NUMBER, OFFICE_PHONE

_NUMBER AND MOBILE_PHONE_NUMBER
 5. GOTO 2
 6. RETURN

The program is given as follows:

#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <process.h>

struct student
{
 char name[75];
 double home_ph,off_ph,mob_ph;
}s,arr[100],temp;

long int recsize;
FILE *fp,*ft;
void add(void);
void display(void);
void end(void);
void search(void);
void modify(void);

void delet(void);
int i,c,k;
int main(void)
{
 int ch,i,c,k,fl ag,dis,no;
 clrscr();
 recsize=sizeof(s);
 fp=fopen(“pbook.dat”,“rb+”);
 if(fp==NULL)
 {
 fp=fopen(“pbook.dat”,“wb+”);
 if(fp == NULL)
 {
 printf(“\n\n\tFile Opening error!”);
 getch();
 exit(0);
 }
 }
 while(1)
 {
 printf(“\n\t 1 : ADD”);
 printf(“\n\t 2 : MODIFY”);
 printf(“\n\t 3 : DELETE”);
 printf(“\n\t 4 : SEARCH”);
 printf(“\n\t 5 : DISPLAY ALL”);
 printf(“\n\t 6 : EXIT”);
 printf(“\n\t Enter your choice(1-6)?”);
 ffl ush(stdin);
 scanf(“%d”,&ch);
 switch(ch)
 {
 case 1:add(); break;
 case 2:modify(); break;
 case 3:delet(); break;
 case 4:search(); break;
 case 5:display(); break;
 case 6:end(); break;
 }
 }
 return 0;
 }

void add(void)
{
 fseek(fp,0,2);
 clrscr();
 printf(“\n\n\tEnter Name :”);
 scanf(“%[^\n]”,s.name);
 ffl ush(stdin);
 printf(“\tEnter Phone Numbers(0 if a phone\
 number does not exist)\n”);
 printf(“\t\tHome Phone :”);
 scanf(“%lf”,&s.home_ph);
 ffl ush(stdin);
 printf(“\t\tOffi ce Phone :”);
 scanf(“%lf”,&s.off_ph);

Files in C 421

 ffl ush(stdin);
 printf(“\t\tMobile Number :”);
 scanf(“%lf”,&s.mob_ph);
 ffl ush(stdin);
 fwrite(&s,recsize,1,fp);
 i=0;
 rewind(fp);
 while(fread(&s,recsize,1,fp)==1)
 {
 arr[i]=s;
 i++;
 }
 for(c=0;c<i-1;c++)
 {
 for(k=0;k<i-1;k++)
 {
 if(strcmp(arr[k].name,arr[k+1].name)> 0)
 {
 temp=arr[k];
 arr[k]=arr[k+1];
 arr[k+1]=temp;
 }
 }
 }
 rewind(fp);
 for(k=0;k<i;k++)
 fwrite(&arr[k],recsize,1,fp);
 clrscr();
}

void end(void)
{
 fclose(fp);
 clrscr();
 getch();
 exit(0);
}

void display(void)
{
 int no,dis;
 rewind(fp);
 no=1;
 dis=0;
 clrscr();
 printf(“\n_________________________________\n”);
 printf (“ _ _ N A M E _ _ _ _ _ _ _ _ | _ _ _ \
 HOME____|____WORK____|___MOBILE___|\n”);
 while(fread(&s,recsize,1,fp)==1)
 {
 printf(“\n”);
 printf(“%2d)%-13s\t\t|”,no,s.name);no++;
 printf(“%-12.0lf|”,s.home_ph);
 printf(“%-12.0lf|”,s.off_ph);
 printf(“%-12.0lf|\n”,s.mob_ph);
 dis++;

 if(dis==15)
 {
 dis=0;
 printf(“\n\t\t\t Press ENTER to continue”);
 getch();
 printf(“\n\n_____________________________\n”);
 printf(“__NAME_________________|____\
 HOME____|____WORK____|___MOBILE___|\n”);
 }
 }
}

void search(void)
{
 int fl ag=0;
 char nm[75];
 rewind(fp);
 clrscr();
 printf(“\n\n\tEnter the name to be searched :”);
 printf(“\n\t\tEnter Name :“);
 scanf(“%[^\n]”,nm);
 ffl ush(stdin);
 while(fread(&s,recsize,1,fp)==1)
 {
 if(strcmp(s.name,nm)==0)
 {
 fl ag=1;
 printf(“\n\t——————Record found——————— \n”);
 printf(“\n\tName : %-15s \n”,s.name);
 printf(“\tHome Phone : %-12.0lf”,s.home_ph);
 printf(“\n\tOffi ce Phone : %-12.0lf”,s.
 off_ph);
 printf(“\n\tMobile Number : %6c \n”,s.
 mob_ph);
 }
 }
 if(fl ag==0)
 printf(“\n\n\t—— RECORD DOES NOT EXIST ——\n\n”);
}

void modify(void)
{
 int fl ag;
 char nm[75];
 rewind(fp);
 clrscr();
 printf(“\n\n\tEnter the name of the record to be
 edited :”);
 printf(“\n\t\tEnter Name :“);
 scanf(“%[^\n]”,nm);
 ffl ush(stdin);
 fl ag=0;
 while(fread(&s,recsize,1,fp)==1)
 if(strcmp(s.name,nm)==0)
 fl ag=1;

422 Programming in C

 if(fl ag==0)
 {
 printf(“\n\n\t—— RECORD DOES NOT EXIST ——\n\n”);
 return;
 }
 rewind(fp);
 while(fread(&s,recsize,1,fp) == 1)
 {
 if(strcmp(s.name,nm) == 0)
 {
 printf(“\n\nEnter new data :”);
 printf(“\n\n\tEnter Name :”);
 scanf(“%[^\n]”,s.name);
 ffl ush(stdin);
 printf(“\tEnter Phone Numbers(0 if a
 phone number does not exist)\n”);
 printf(“\t\tHome Phone :”);
 scanf(“%lf”,&s.home_ph);ffl ush(stdin);
 printf(“\t\tOffi ce Phone :”);
 scanf(“%lf”,&s.off_ph);ffl ush(stdin);
 printf(“\t\tMobile Number :”);
 scanf(“%lf”,&s.mob_ph);ffl ush(stdin);
 fseek(fp,-recsize,1);
 fwrite(&s,recsize,1,fp);
 break;
 }
 }
 i=0;
 rewind(fp);
 while(fread(&s,recsize,1,fp)==1)
 {
 arr[i]=s;
 i++;
 }
 for(c=0;c<i-1;c++)
 {
 for(k=0;k<i-1;k++)
 {
 if(strcmp(arr[k].name,arr[k+1].name)> 0)
 {
 temp=arr[k];
 arr[k]=arr[k+1];
 arr[k+1]=temp;
 }
 }
 }
 rewind(fp);
 for(k=0;k<i;k++)
 fwrite(&arr[k],recsize,1,fp);
 clrscr();
}

void delet(void)
{
 int fl ag;
 char nm[75];

 rewind(fp);
 ft=fopen(“temp.dat”,“wb+”);
 clrscr();
 printf(“\n\n\tEnter the name to be deleted :”);
 printf(“\n\t\tEnter Name :“);
 scanf(“%[^\n]”,nm);ffl ush(stdin);
 fl ag=0;
 while(fread(&s,recsize,1,fp)==1)
 if(strcmp(s.name,nm)==0)
 fl ag=1;
 if(fl ag==0)
 {
 printf(“\n\n\t——RECORD DOES NOT EXIST ——\n\n”);
 return;
 }
 rewind(fp);
 while(fread(&s,recsize,1,fp) == 1)
 {
 if(strcmp(s.name,nm) != 0)
 fwrite(&s,recsize,1,ft);
 }
 if(fl ag == 1)
 printf(“\n\n\t————— RECORD DELETED —————”);
 getch();
 fclose(fp);
 fclose(ft);
 remove(“pbook.dat”);
 rename(“temp.dat”,“pbook.dat”);
 fp=fopen(“pbook.dat”,“rb++”);
 i=0;
 rewind(fp);
 while(fread(&s,recsize,1,fp)==1)
 {
 arr[i]=s;
 i++;
 }
 for(c=0;c<i-1;c++)
 {
 for(k=0;k<i-1;k++)
 {
 if(strcmp(arr[k].name,arr[k+1].name)> 0)
 {
 temp=arr[k];
 arr[k]=arr[k+1];
 arr[k+1]=temp;
 }
 }
 }
 rewind(fp);
 for(k=0;k<i;k++)
 fwrite(&arr[k],recsize,1,fp);
 clrscr();
}

10.1 INTRODUCTION
List is a fi nite, ordered sequence of data items known
as elements. “Ordered” in this defi nition means that each
element has a position in the list. In other words, there is a
fi rst element in the list, a second element, and so on. Each
list element also has a data type.
 Formally, a general list is of the form a1, a2, a3, ..., an.
We say that the size of this list is n. We will call the special
list of size 0 a null list.
 Such a list can be implemented either by sequential
allocation or by linked allocation. By sequential allocation
a list is processed using array. Linked list is another data
structure to implement a list of items using linked list.

Before discussing linked list, there is a need to revisit the
array.
 Arrays are probably the most common data structures
used to store large numbers of homogeneous data elements.
Arrays are easy to declare and the array elements can
also be accessed by the index numbers easily by using
the symbols [and]. Therefore, arrays are used in most
languages including C. However, arrays have some
disadvantages also and they are as follows.

Fixed size The size of an array is fi xed. With a little
extra effort, by dynamically allocating an array in the
heap, specifying the size of the array can be deferred
until the array is created at runtime, but after that

After reading this chapter, the readers will be able to

 understand linked lists

 learn about the different types of linked lists

 learn about operations on linked lists

 know about the applications of linked lists

 get familiar with self-referential structures

 comprehend the advantages and disadvantages of linked lists

Learning Objectives

C
Chapter

Linked Lists

1010

424 Programming in C

it remains fi xed. Arrays can be dynamically resized
with the function realloc(), but that requires some
programming effort.

 Wastages of space If the number of elements in an
array is less than the size of the array, which is fi xed
in advance, then it leads to wastage of space.

 Sequential storage An array allocates memory for
all its elements chunked together as one block of
memory. For arrays, contiguous space is required. If
the program ever needs to process larger number of
elements, the code will crash.

 Possibility of overfl ow If the program ever needs to
process more than the size, there is a possibility of
overfl ow and the code breaks.

 Diffi culty in insertion and deletion Inserting new
elements at the front cannot be effi ciently done
because existing elements need to be shifted to make
room. Similar is the case for deletion also. Therefore,
these operations require a lot of movement of data,
thereby leading to an ineffi cient and time-consuming
algorithm. In case of deletion, the space of the deleted
element cannot be freed.

 An appropriate solution to these problems is the linked
list, which, at some cost in memory space, permits lists
to be constructed and modifi ed easily. A linked list is an
ordered collection of elements, where each element has
at least one pointer for pointing to the next element of the
list and at least one value. Such an element is known as
the node of a linked list. The singly linked list is the most
basic of all the linked data structures.
 Both the array and the linked list are alternative
implementation options for a sequence which is a
collection of items with a defi ned order. Table 10.1 shows
a comparison between these two implementations.
 There are several variants of linked lists. These are as
follows:

 Singly linked list
 Circular linked list
 Doubly linked list
 Doubly circular linked list

 The simplest kind of linked list is a singly linked list,
which has one link per node. The link is nothing but a
pointer. This link points to the next node in the list, or to a
NULL value or empty list if it is the fi nal node.

Table 10.1 Comparisons between linked lists and arrays

Feature Linked list Array

Memory
allocation

No overfl ow is
possible. All
memory offered
for an application
available. The links
need additional
space.

All memory must
be allocated before
use. The memory
space allocated can
be exhausted or left
unused.

Accessing
items

Only sequential
search is possible.

Random access is
possible, when the
order number is known.

Expressing
order of items

No order is
maintained since
nodes may not
be stored at
continuous memory
locations.

The location in
memory indicates the
order number of item.

Effi ciency of
operation

Insertions and
deletions are
effective, regardless
of the position they
are inserted in.

Many data
movements are
needed in insertions
and in deletions of
items.

Programming Needs a bit of
expertise.

Very easy

 A more advanced linked list is the doubly linked list or
two-way linked list. Each node has two links: one points to
the previous node, or points to a NULL value or empty list if
it is the fi rst node; and the other points to the next node, or
points to a NULL value or empty list if it is the fi nal node.
 In a singly circularly linked list, each node has one link,
similar to an ordinary singly linked list, except that the
next link of the last node points back to the fi rst node.
It is usual to retain a external pointer pointing to the last
element in a singly circularly linked list, as this allows
quick insertion at the beginning, and also allows access to
the fi rst node through the last node’s next pointer.
 In a doubly circularly linked list, each node has two
links, similar to a doubly linked list, except that the
previous link of the fi rst node points to the last node and
the next link of the last node points to the fi rst node. As in
a doubly linked list, insertions and removals can be done
at any point with access to any nearby node.
 Linked lists have their strengths and weaknesses, but
they happen to be strong where arrays are weak. All the
features of arrays follow from the strategy of allocating
the memory for all its elements in one block of memory.
Linked lists use an entirely different strategy. As will be
clear later, linked lists allocate memory for each element
separately and only when necessary.

Linked Lists 425

Points to Note

Arrays are mapped into a contiguous block of addresses
in the physical memory.The contiguous nature of the array
is mainly responsible for its drawbacks. An alternative is
the linked list. In a linked list,

 • The elements need not be stored contiguously. The
logical order of the list may not be the same as its
physical order.

 • To maintain a logical ordering, each element has a
link to the next item.

 • The elements may be removed from the list by skipping
over them in the link path.

 • The elements may be added to the list by linking them
in; that is, modifying a few of the links.

 • Sequential traversal (in logical order) can be performed
by following the link path.

10.2 SINGLY LINKED LIST
A singly linked list is simply a sequence of dynamically
allocated objects, each of which refers to its successor in
the list. It allocates space for each element separately in
its own block of memory called a linked list element or
node. Each node contains two fi elds: a data fi eld to store
whatever data type the list holds and a next fi eld, which is
a pointer, used to hold the address of the next node. The
next fi eld is used to link one node to the next node. The
beginning of the linked list is stored in a pointer termed as
head which points to the fi rst node. The fi rst node contains
a pointer to the second node. The second node contains a
pointer to the third node, and so on. The last node in the
list has its next fi eld set to NULL to mark the end of the list.
No matter how many nodes get added to the list, head will
always be the fi rst node in the linked list.
The empty list Initially the pointer head is initialized as NULL
indicating the empty list, i.e., the list with no node. A linked
list is represented pictorially as shown in Figure 10.1.

Data Next

Head

Figure 10.1 Representation of a singly linked list

 Observe that the linked list is an ordered collection of
elements called nodes each of which contains two items of
information:

 a data element of the list and
 a link, i.e., a pointer that indicates the location of the

node containing the successor of this list element
which is a node.

 In Figure 10.1, arrows represent the links. The data part
of each node consists of whatever data type the list holds
and the next part contains the pointer to the next node. The
grounded earth indicates NULL. Figure 10.2 shows several
of the most commonly used singly linked list variants.

head

head

tail

head

head

tail

(a)

(b)

(c)

(d)

(e)

sentinel

sentinel

Figure 10.2 Variations of singly linked lists

 The basic singly linked list is shown in Figure 10.2(a).
Each node of the list contains a pointer to its successor; the
last node contains a null pointer. A pointer to the fi rst node
of the list, labeled head in the fi gure is used to keep track
of the list.
 The basic singly linked list is ineffi cient in cases where
nodes are required to be added at both ends of the list.
While it is easy to add nodes at the head of the list, to add
nodes at the other end, called the tail, one needs to locate
the last element. If the basic singly linked list is used, the
entire list needs to be traversed in order to fi nd its tail.
 Figure 10.2(b) shows a way by which adding nodes to
the tail of a list is more effi cient. The solution is to keep
a second pointer, tail, which points to the last element of
the list. Of course, such effi ciency comes at the cost of the
additional space used to store the tail pointer.
 The singly linked lists [see Figure 10.2(c) and (d)]
illustrate two common programming tricks. The list in
Figure 10.2(c) has an extra node at the head of the list
called a sentinel. This element is never used to store
data but it should be present in the linked list to store the

426 Programming in C

address of the fi rst node. The principal advantage of using
a sentinel is that it simplifi es the programming of certain
operations, e.g., since there is always a sentinel standing
guard, we never need to modify the head pointer. Of
course, the disadvantage of a sentinel, such as that shown
in Figure 10.2(c), is that extra space is required, and the
sentinel needs to be created when the list is initialized.
 The list in Figure 10.2(c) is also a circularly linked list.
Instead of using a NULL pointer to delimit the end of the
list, the pointer in the last element points to the sentinel.
The advantage of this programming trick is that insertion
at the head of the list, insertion at the tail of the list, and
insertion at an arbitrary position of the list are all identical
operations.
 Figure 10.2(d) shows a variation of a singly linked list
using a sentinel in which instead of keeping a pointer to
the sentinel, the sentinel itself serves as the handle for the
list. This variant eliminates the need to allocate storage for
the sentinel separately.
 Of course, it is also possible to create a circular singly
linked list that does not use a sentinel. Figure 10.2(e) shows
a variation in which a single pointer is used to keep track
of the list, but this time the pointer, tail, points to the last
element of the list. Since the list is circular in this case, the
fi rst element follows the last element of the list. Therefore,
it is relatively simple to insert at the head or at the tail of
this list. This variation minimizes the storage required, at
the expense of a little extra time for certain operations.
 Figure 10.3 illustrates how the empty list (i.e., the list
containing no list elements) is represented for each of the
variations given in Figure 10.2. Notice that the sentinel is
always present in those list variants, which use it. On the
other hand, in the list variants, which do not use a sentinel,
null pointers are used to indicate the empty list.
 Here in the implementation of a singly linked list only
head is considered. A node of the singly linked list can be
represented in C using the function struct as follows:

 struct node
 {
 int data;
 struct node *next;
 };

 The fi rst fi eld is an integer named data and the second
is a pointer to the next node in the list as shown in Figure
10.1. Such structures that contain a pointer that points
to the same structure type are called self-referential
structures. Therefore, a linked list is an ordered collection
of structures connected by logical links that are stored as

a part of data in the structure itself. The link is in the form
of a pointer to another structure of the same type. In this
case, note that the data fi eld is an integer but it could be
any complex data type if required. In general, a node can
be represented in the following manner:

head

head

tail

head

head

tail

(a)

(b)

(c)

(d)

(e)

sentinel

sentinel

Figure 10.3 Empty singly linked lists

 struct tag-name{
 data_type member1;
 data_type member2;
 ...
 ...
 struct tag-name *next;
 };

 The structure may contain more than one item with
different data types. However, one of the items must be a
pointer to the tag-name.

Example:
 #defi ne NAMELEN 50
 struct node
 {
 char name[NAMELEN]; /* data: name */
 int year; /* data: year */
 struct node *next;

/* pointer to the next node */
 };

An example of a more complex node is as follows:
Data part:

 typedef struct
 {
 char code[8]; /* course code */
 char name[26]; /* course name */
 int credits; /* course credits */

Linked Lists 427
 int lectures; /* no. of lecture hours */
 int labs; /* no. of lab hours */
 } course;

Node:
 struct node
 {
 course data; /* course information */
 struct node *next;

/* pointer to the next node */
 } ;

 Singly linked list containing any of the nodes declared,
as above, is known as a homogeneous linked list as
it contains similar types of nodes. To represent non-
homogeneous list (those which contain nodes of different
types), a union may be used.
 For instance, consider the following declaration of a
node:

 struct node
 {
 int etype;
 union
 {
 int ival;
 fl oat fval;
 char *sval;
 }
 struct node *next;
 };

 It declares a node whose elements may be either integer,
or fl oating point numbers or string depending on the
corresponding etype. Since a union is always large enough
to hold its largest component, the sizeof and malloc()
functions can be applied to allocate storage space for the
node.
 Here is a simple program, which uses pointer operations
to build the singly linked list containing three nodes which
have the values 1, 2, and 3 in the data fi eld of the nodes
respectively and displays it.

 #include <stdio.h>
 #include <stdlib.h>
 struct node
 {
 int data;
 struct node *next;
 };
 void makelist(struct node **);
 void display(struct node *);

 int main()
 {
 struct node *head;
 head=NULL;
 makelist(&head);
 display(head);
 return 0;
 }
 void makelist(struct node **h)
 {
 struct node *fi rst=NULL;
 struct node *second=NULL;
 struct node *third=NULL;
 /* allocate 3 nodes in the heap */
 fi rst =(struct node *)malloc(sizeof(struct node));
 second=(struct node *)malloc(sizeof(struct node));
 third=(struct node *)malloc(sizeof(struct node));

 /* setup fi rst node */
 fi rst->data = 1;
 fi rst->next = second;

 /* setup second node */
 second->data = 2;
 second->next = third;

 /* setup third node */
 third->data = 3;
 third->next = NULL;
 /* store the address of fi rst node in head */
 *h=fi rst;
 }
 void display(struct node *p)
 {
 while(p!=NULL)
 {
 printf(“%d —>”,p->data);
 p=p->next;
 }
 printf(“NULL”);
 }

Analysis of the above program To create the linked list,
in the function makelist(), the following three steps are
used.
 1. Allocate the new node in the heap and set its data part

to whatever needs to be stored.
 2. Set the next pointer of the current node to point to

the next node of the list. This is actually just a pointer
assignment. Note that assigning one pointer to another
pointer makes them point to the same thing.

 3. Store the address of the fi rst node in head.

428 Programming in C

 In the function display(), a frequently used technique
in linked list code is to iterate a pointer over all the nodes
in a list. Traversing a linked list starts at the fi rst node and
each node in succession is examined until the last node
has been processed. In the function display(), the pointer
head is copied into a local variable p,which then iterates
through the list. The end of the list is tested with p!=NULL.
The statement p=p->next advances the local pointer p to
the next node in the list. Alternately, some might prefer to
write the loop using for, which makes the initialization,
test, and pointer updating more optimized.

 for(;p!=NULL;p=p->next) { ... }

 Beginners are often confused about how the statement
p=p->next makes p point to the next node in the linked
list. Let us understand this with the help of an example.
Suppose in a linked list containing four nodes p is pointing
to the fi rst node (see Figure 10.4).

4 NULL3 9102 7001 400150

910700400150

p

Figure 10.4 Actual representation of a SLL in memory

 Instead of showing the links to the next node, Figure
10.4 shows the address of the next node in the next part of
each node. When the statement p=p-> next is executed, the
right hand side of this expression yields 400. This address
is now stored in p. As a result, p starts pointing to the node
present at address 400. In effect, the statement has shifted
p so that it has started pointing to the next node in the
linked list. Figure 10.5 show a graphic representation of a
linked list traversal.

Head

p

Figure 10.5 Traversal of a singly linked list

 It is to be observed that in the function makelist(), the
formal argument is a pointer to pointer of type struct node
where &head is passed to this function. On the other hand,

in the function display(), only head is passed as parameter,
so the formal argument is a pointer of type struct node.
In C, changes to local parameters are never refl ected back
in the caller’s memory. It is to be noted that the function
makelist() is needed to change some variables of the
caller’s memory, namely the head variable. The traditional
method to allow a function to change its caller’s memory is
to pass a pointer to the caller’s memory instead of a copy.
 So in C, to change an int in the caller, pass an ‘int *’
instead. To change a T, pass a T *, where T is any data type.
Therefore, if a value struct node * is to be changed, it is
needed to passed as struct node ** instead. The type of
the head pointer is “pointer to a struct node”. In order to
change that pointer, we need to pass a pointer to it, which
will be a “pointer to a pointer to a struct node”.
 Instead of defi ning void makelist(struct node *), it
is needed to defi ne void makelist(struct node **). The
fi rst form passes a copy of the head pointer. The second,
correct form passes a pointer to the head pointer. In the
code, &head is to be used as actual parameter in the calling
function and ** should be used in the parameter of the
called function. Inside makelist(), the pointer to the head
pointer is named h.
 Figure 10.6 shows the memory diagram just before the
fi rst call to makelist() exits. The original value of the head
pointer is in solid line. Notice how the h parameter inside
makelist() points back to the real head pointer back in
makelist(). makelist() uses *h to access and change the
real head pointer.

head

In main()

h

In makelist()

STACK HEAP

It is pointer to the
“head” of the
linked list back in
the caller’s
memory space.

Figure 10.6 Memory diagram for pointer to a pointer to
head

 The general rule is that if there is a statement in the
function that modifi es the content of the pointer head,
then the address of the pointer head must be passed to that
function. This program is all right if the number of nodes

Linked Lists 429

is too few. It is not worthwhile to declare a pointer for each
node. A better implementation is given below where the
same pointer is used to create nodes. To make a list, the
append() function may be called repeatedly.

 void append(struct node **h)
 {
 struct node *p,*tmp;
 /* Creation of new node */
 p=(struct node *)malloc(sizeof(struct node));
 if(p==NULL)
 {
 printf(“\n Memory allocation unsuccessful..”);
 return;
 }
 printf(“ \n Enter data:…”);
 scanf(“%d”,&p->data);
 p->next=NULL;
 /* appending the newly created node in an empty

linked list */
 if(*h==NULL)
 {
 *h=p;
 return;
 }
 /* Traversal of list to fi nd out the last node */
 tmp=*h;
 while(tmp->next!=NULL)
 tmp=tmp->next;
 /* appending the newly created node after the

last node */
 tmp->next=p;
 }

The append() function has to deal with two situations:
First: Adding a node to an empty list.
Second: Adding the node to the end of the linked list.
 If the linked list is empty then the pointer head will
contain NULL. Hence space is allocated for the new node
using malloc(). Then the data and the next fi eld of this
node are set up. Lastly, head is made to point to this node,
since the fi rst node has been added to the linked list and
head must always point to the fi rst node. Note that *h is
nothing but equal to head.
 If the list is not empty, then one has to traverse upto
the last node and append the new node, address of which
is stored in p, at the end of the last node. Traversal of a
singly linked list has been discussed earlier. However, for
the convenience of readers, it has been explained again. A
pointer of type struct node, tmp, is made to point to the
fi rst node in the linked list through the statement

 tmp=*h;

 Then with tmp, the entire linked list is traversed using
the statements:

 while(tmp->next!=NULL)
 tmp=tmp->next;

 Each time tmp points to the next node in the list through
the while loop using the statement tmp=tmp->next. When
tmp reaches the last node, the condition tmp->next!= NULL
would fail. The position of the pointer after traversing the
linked list is shown in Figure 10.7.

tmphead
p

Figure 10.7 Appending a node into a singly linked list

 Now the previous last node has to be connected to this
new last node. tmp points to the previous node and p points to
the new last node They are connected through the statement

tmp->next = p;

 Compiling all the steps, the algorithm for appending a
node in a singly linked list is as follows:

 1. Whether the linked list is empty or not, one needs to
create a new node and fi ll it with data.

 2. If the address of the newly created node is stored in
a pointer, say p, then set the next fi eld of this node to
NULL; because, the newly added node is always the
last node.

 3. If the linked list is empty, make head point to p. If the
linked list is not empty, in that case, the current last
node in the linked list (not p) is no longer the last one.
So, the last node should be linked to p by assigning
the next fi eld of the last node to p.

 In many cases, it will be more effi cient if two pointers
are used: one for fi rst node (head), another for last node
(tail). If an external pointer tail is used to point to the
last node then traversing the list to the last node can be
avoided. The linked list diagram looks like a train, doesn’t
it? It has a head and a tail. For best performance, both
head and tail are required. For simplicity only head is
considered here.
 The recursive version of the append() function is as
follows:

430 Programming in C

 void append(struct node **h)

 {

 if(*h==NULL)

 {

 *h=(struct node *)malloc(sizeof(struct node));

 if(*h==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“ \n Enter data:”);

 scanf(“%d”,&(*h)->data);

 (*h)->next=NULL;

 }

 else

 append(&(*h)->next);

 }

 The function display() has already been discussed.
Following is a recursive version of this function.

 void display(struct node *p)

 {

 if(p==NULL)

 {

 printf(“NULL”);

 return;

 }

 else

 {

 printf(“%d —>”,p->data);

 display(p->next);

 }

 }

 The following main primitive operations can be
performed on singly linked lists:
 Insert a node
 After a particular node
 After nth node
 Before a particular node
 Search a particular node
 Remove a particular node
 Sort the nodes
 Destroy (delete all nodes)

 These operations will be discussed in the following
sections. In these sections, pointer pointing to the fi rst
node of the singly linked list is indicated by head in the
fi gures but in the corresponding functions it is written
as *h.

10.2.1 Insertion of a Node in a Singly Linked List

General algorithm to insert a node may be described as
follows:
 1. Allocate memory for the new node and and fi ll it with

data.
 2. Determine the insertion point, i.e., the position within

the list where the new node will be placed. To identify
the position, the predecessor of the new node should
be known.

 3. Point the new node to its successor.
 4. Point the predecessor to the new node.

 The different ways of insertion of a node in a singly
linked list are discussed in the following sub-sections.

Insertion of a Node after a Specifi ed Node

Consider that the node, after which a new node is to be
inserted, is specifi ed by the value of the data fi eld of that
node, say it is stored in a variable k. Searching the node,
after which the new node is to be placed, is carried out
with the usual traversal pattern, using a local pointer
variable say tmp to step through the nodes one at a time.
As the loop executes, tmp points to the nodes of the list one
after another. At each iteration, the content of the data fi eld
of the node currently being pointed by tmp is compared
with the value being sought (stored in k) and if the two are
equal then the loop is exited. Otherwise, tmp is updated to
tmp->next so that the next node can be examined. It will
continue until the last node has been visited in which case
executing tmp=tmp->next causes tmp becoming NULL, which
is used as an indication that the value contained in k is not
in the list. The following loop performs this task:

 for(tmp=head; tmp!=NULL && tmp->data!=k;
tmp=tmp->next);

 As a consequence of this loop, tmp is now pointing to
the node after which a new node is to be inserted. Let a
pointer p point to the new node to be inserted. Now follow
the schematic diagram shown in Figure 10.8.

Linked Lists 431

tmphead

p

(2)

(1)

Figure 10.8 Insertion of a node after a particular node in
a singly linked list

 From Figure 10.8, it is clear that the next fi eld of p
should point to what tmp was pointing to before insertion
and then the next fi eld of tmp should point to the node that
is pointed to by p. This action consists of two statements:
 p->next = tmp->next; (1)

 tmp->nex t=p; (2)

 The order in which the two pointer assignments are made
is important. If the order of the assignment statements is
reversed, then the value of tmp->next would be lost before
it is used and there would be no way to attach the new
node (pointed by p) to the remainder of the list. This code
can now be built into a function insaft() to insert a new
node after a particular node in a singly linked list.

 void insaft(struct node **h)
 {
 struct node *p,*tmp;
 int k;
 if(*h==NULL)
 {
 printf(“\n Linked List is EMPTY”);
 return;
 }
 printf(“\n Enter the node after which new node\

is to be inserted :”);
 scanf(“%d”,&k);
 for(tmp=*h; tmp!=NULL && tmp->data!=k;

tmp=tmp->next);
 if(tmp==NULL)
 printf(“\n NODE DOES NOT EXIST”);
 else
 {
 p=(struct node *)malloc(sizeof(struct node));
 if(p==NULL)
 {
 printf(“\n Memory allocation unsuccessfull..”);
 return;
 }

 printf(“ \n Enter data:…”);
 scanf(“%d”,&p->data);
 p->next=tmp->next;
 tmp->next=p;
 }
 }

 The recursive version of the preceding function is as
follows. In this version, it is needed to pass a value to the
data fi eld of the node after which the new node has to be
inserted.

 void insaft(struct node **h, int k)

 {

 struct node *p;

 if(*h==NULL)

 {

 printf(“\n NODE DOES NOT EXIST or \

 Linked List is EMPTY..void INSERTION”);

 return;

 }

 else if((*h)->data==k)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“ \n Enter data:”);

 scanf(“%d”,&p->data);

 p->next=(*h)->next;

 (*h)->next=p;

 return;

 }

 else

 insaft(&(*h)->next,k);

 }

 Note that in the function insaft(), there would be no
change in head. Therefore, it is not required to pass &head as
an actual parameter to the function. It is safe to replace all
*h with h and the formal parameter would be struct node
*h. This is illustrated in the next version of the insaft()
function.
 Consider that the node, after which the insertion of a
new node is to be carried out, is specifi ed by giving its
position with the fi rst node at position 1, second node at
position 2, next node at position 3, and so on. Like done

432 Programming in C

earlier, start by pointing the pointer variable h to the head
of the singly linked list. A loop then moves h forward to
the correct node as shown in the program. Therefore, h is
now pointing to the node after which the new node has
to be inserted. The rest is the same as before. Follow the
defi nition of the function, which is given as follows:

 void insaft_nth(struct node *h)

 {

 int position,i;

 struct node *p;

 if(h==NULL)

 {

 printf(“\n Linked List is EMPTY”);

 return;

 }

 printf(“\n Enter the position after which new\
 node is to be inserted :”);

 scanf(“%d”,&position);

 for(i=1;h!=NULL && i<position;++i)

 h=h->next;

 if(h==NULL)

 printf(“ There are less than %d nodes \

 in the list”,position);

 else

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“ \n Enter data: ”);

 scanf(“%d”,&p->data);

 p->next=h->next;

 h->next=p;

 }

 }

Its recursive version is as follows:

 void insaft_nth(struct node *h,int position)

 {

 static int i=1;

 struct node *p;

 if(h==NULL && i==1)

 {

 printf(“\n Linked List is EMPTY”);

 return;

 }

 else if(h==NULL && i>1)

 printf(“There are less than %d nodes in the\
 list”,position);

 else if(i==position)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“\n Enter data: ”);

 scanf(“%d”,&p->data);

 p->next=h->next;

 h->next=p;

 }

 else

 {

 i++;

 insaft_nth(h->next,position);

 }

 }

Insertion of a Node Before a Specifi ed Node

A function insbef() that inserts a new node can be defi ned
as follows.

 void insbef(struct node **h)

 {

 struct node *p,*tmp,*prev;

 int k;

 if(*h==NULL)

 {

 printf(“\n Linked List is EMPTY”);

 return;

 }

 printf(“\n Enter the node before which new node\
is to be inserted :”);

 scanf(“%d”,&k);

 /* Insertion at the begining */

 if((*h)->data==k)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

Linked Lists 433
 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;
 }
 printf(“ \n Enter data: ”);
 scanf(“%d”,&p->data);
 p->next=*h;
 *h=p;
 }
 tmp=(*h)->next;

/* as the fi rst node pointed by head
has been checked specially */

 prev=*h;
 while(tmp!=NULL)
 {
 if(tmp->data==k)
 break;
 else
 {
 prev=tmp;
 tmp=tmp->next;
 }
 }
 if(tmp==NULL)
 {
 printf(“\n NODE DOES NOT EXIST”);
 }
 else
 {
 p=(struct node *)malloc(sizeof(struct node));
 if(p==NULL)
 {
 printf(“\n Memory allocation unsuccessfull..”);
 return;
 }
 printf(“ \n Enter data: ”);
 scanf(“%d”,&p->data);
 p->next=tmp;
 prev->next=p;
 }
 }

 To insert a node before a particular node that holds a
specifi c value in its data fi eld, the node has to be located.
Since the singly linked list is unidirectional, it is not
possible to move backwards to fi nd its predecessor so
that the new node can be inserted. The predecessor of a
particular node might be found if one traverses the list
as long as the next fi eld of a node becomes equal to that
node. However, the best way is to use a pointer, prev which
points to the preceding node that is pointed to by another
pointer tmp. The pointer tmp is used to scan the list using

a loop. It is initialized to the node next to the fi rst node
(this is discussed in this section later on). It is advanced to
the next node using the statement tmp=tmp->next. Before
this assignment statement, tmp is assigned to prev so that
at any moment of time the current node (pointed by tmp)
and its predecessor (pointed by prev) can be accessed. If
tmp->data is equal to the value of k (a variable used to
specify the value of the node to be located), then the new
node is inserted between the nodes pointed by prev and
tmp respectively. The insertion scheme is depicted in
Figure 10.9.

prev tmphead

p

(4)

(3)

Figure 10.9 Insertion of a node before a particular node
in a singly linked list

 The pointer p is pointing to the newly created node that
has to be inserted. Now, the next fi eld of the node pointed
to by p should point to the node pointed to by tmp, and the
next fi eld of the node pointed to by prev should point to
the new node pointed by p. The following two program
statements accomplish this.
 p->next=tmp; (3)

 prev->next=p; (4)

 Insertion before the fi rst node pointed to by head (in the
function it is *h) of a singly linked list is treated specially
because such insertion implies modifi cation to the pointer
head. Figure 10.10 shows this insertion scheme.

head

p (6)

(5)

Figure 10.10 Insertion of a node at the beginning of a
singly linked list

434 Programming in C

 It is clear that the next part of the new node should point
to the node that is pointed to by head (in the function it is
*h) and this newly added node becomes the starting node
of the list when head points to it. Therefore, the following
two pointer assignments are required.
 p->next=head; (5)

 head=p; (6)

 It is required to modify the content of the pointer head.
The actual argument of the function insbef() would
be &head and the formal parameter would be struct
node **h.
 If the node, before which a new node has to be inserted,
is specifi ed by giving its position, the insertion algorithm
remains the same. Implementation of the same is left to the
readers.

10.2.2 Deletion of a Node from a Singly Linked List

Suppose, one wants to delete a node from a singly linked
list that holds a particular value in its data fi eld. The node
has to be located fi rst and then detached from the list by
linking the predecessor of the node to its successor. Now
the memory space for this node has to be disposed off by
calling the function free(). As discussed earlier, a singly
linked list is unidirectional. Two pointers tmp and prev
are initialized in the loop so that they point to the current
node being scanned and its predecessor respectively. At
each iteration, the data fi eld of the current node (pointed
to by tmp) is investigated and then is advanced to the next
node through the call tmp=tmp->next. Obviously, before
advancing to the next node, tmp has to be assigned to
prev. Removing the fi rst node pointed to by head should
be treated specially just like an insertion at the beginning.
The rest of the scheme is outlined in Figure 10.11.

 The function for the deletion of a node from a singly
linked list is as follows.

 void delnode(struct node **h)
 {
 struct node *tmp,*prev;
 int k;
 if(*h==NULL)
 {
 printf(“\n Linked List is EMPTY”);
 return;
 }
 printf(“\n Enter the node to be removed :”);
 scanf(“%d”,&k);
 /* deletion at the begining */
 if((*h)->data==k)
 {
 tmp=*h;
 *h=(*h)->next;
 free(tmp);
 return;
 }
 tmp=(*h)->next;
 prev=*h;
 while(tmp!=NULL)
 {
 if(tmp->data==k)
 break;
 else
 {
 prev=tmp;
 tmp=tmp->next;
 }
 }
 if(tmp==NULL)
 {
 printf(“\n NODE DOES NOT EXIST”);

head

tmp

(7)

(8)

(9)

head prev tmp

(10)

(11)

 tmp=head; (7) prev->next=tmp->next; (10)

 head=head->next; (8) free(tmp); (11)

 free(tmp); (9)

(a) Deletion of the fi rst node of a singly linked list (b) Deletion of an intermediate node of a singly linked list

Figure 10.11 Deletion of a node from a singly linked list

Linked Lists 435
 }
 else
 {
 prev->next=tmp->next;
 free(tmp);
 }
 }

 The recursive version of this function needs an extra
parameter k, which is the data value of the node to be
deleted.

 void delnode(struct node **h, int k)
 {
 struct node *next_n;
 if(*h == NULL)
 {
 printf(“\n Linked List is EMPTY or NODE does\

not exist..void DELETION”);
 return;
 }
 if((*h)->data == k)
 {
 next_n = (*h)->next;
 free(*h); /* if the nodes were malloc’ed */
 *h = next_n;
 }
 else
 delnode(&((*h)->next), k);
 }

 Readers are advised to create a program for the deletion
of the nth node from a singly linked list as an exercise.

10.2.3 Sorting a Singly Linked List

The sorting of a singly linked list means arranging the
nodes of the list in ascending values held in the data fi eld.
This can be accomplished in two ways: fi rstly arranging
the nodes by physically disconnecting the links, and
secondly, ordering the nodes by exchanging the values
stored in the data fi elds of the nodes. The second method
is considered here. The sorting method used here is bubble
sort. In bubble sort, the loops used are as follows:

 for(i=0;i<n-1;++i)
 {
 for(j=0;j<n-i-1;j++)
 {

 }
 }

 Here n is the number of nodes of the singly linked list,
which can be computed using a function named count(). It
uses the general traversal technique to obtain the number
of nodes in a list. Two consecutive nodes are considered
and if the value of the data fi eld of the fi rst is greater than
that of the second, then the values are swapped. However,
the problem is that every iteration associated with i in the
outer loop needs to start from the fi rst node of the singly
linked list. So, before entering the j loop, the temporary
pointer used for the traversal (in the function it is *p) must
be set to point to the fi rst node by the assignment statement
p=head. In the inner loop, the statement j++ does not cause
the pointer p to move to the next node so that the next two
nodes of the list can be examined. So, in the inner loop, to
advance to the next node, the statement p=p->next must be
included. The defi nition of the function sort() that does
the described operation is given here. In this function, a
variable sorted is used to make the function more effi cient
by reducing the number of additional iterations, when the
list has already been sorted.

 void sort(struct node *h)

 {

 struct node *p;

 int i,j,n=0,t,sorted;

 int *b;

 n=count(h);

 sorted=0;

 for(i=0;i<n-1 && !sorted;i++)

 {

 p=h;

 sorted=1;

 for(j=0;j<n-i-1;j++)

 {

 if(p->data>(p->next)->data)

 {

 t=p->data;

 p->data=(p->next)->data;

 (p->next)->data=t;

 sorted=0;

 }

 p=p->next;

 }

 }

 }

 Here is the defi nition of the function count(), which
returns the number of nodes in a singly linked list.

436 Programming in C

Iterative version
int count(struct node *p)
{
 int i;
 for(i=0;p!=NULL;p=p->next)
 i++;
 return i;
}

Recursive function
int count(struct node *p)
{
 if(p==NULL)
 return 0;
 else
 return (1+count(p->next));
}

10.2.4 Destroying a Singly Linked List

Destroying a singly linked list means deleting all the nodes
of a singly linked list. The function destroy() removes all
the nodes from a singly linked list and returns them to the
heap.

Iterative version
void destroy(struct node **h)
{
 struct node *q;
 if(*h==NULL)
 {
 printf(“\n Linked list is empty”);
 return;
 }
 while(*h!=NULL)
 {
 q=(*h)->next;
 free(*h);
 *h=q;
 }
}

Recursive function
void destroy(struct node **h)
{
 if(*h!=NULL)
 {
 destroy(&(*h)->next);
 free(*h);
 *h=NULL;441
 }
}

Points to Note

Be careful while coding to delete all the nodes of a linked
list. The following version of the preceding function is
incorrect.

 void destroy(struct node *p)
 {
 while(p!=NULL)
 {
 free(p);
 p=p->next;
 }
 }

 The reason is that after freeing p contains an address
that has already been de-allocated; therefore the statement
p=p->next; has no fruitful meaning. As a result the code
may crash.
 To sum up a C program that can carry out any of the
discussed operations on a singly linked list, with the help
of all the C functions defi ned in this section, is given as
follows.

 #include <stdio.h>

 #include <stdlib.h>

 struct node

 {

 int data;

 struct node *next;

 };

 void append(struct node **);

 void dispall(struct node *);

 void insaft(struct node *);

 void insbef(struct node **);

 void delnode(struct node **);

 int count(struct node *);

 void sort(struct node *);

 void destroy(struct node **);

 int main()

 {

 struct node *head;

 int ch;

 head=NULL;

 while(1)

 {

 printf(“\n 1.APPEND ”);

 printf(“\n 2.DISPLAY ALL ”);

 printf(“\n 3.INSERT AFTER A PARTICULAR NODE ”);

Linked Lists 437
 printf(“\n 4.INSERT BEFORE A PARTICULAR NODE ”);
 printf(“\n 5.DELETE A NODE ”);
 printf(“\n 6.SORT ”);
 printf(“\n 7.DESTROY ”);
 printf(“\n 8.EXIT ”);

 printf(“\n ENTER UR CHOICE...”);
 scanf(“%d”,&ch);
 switch(ch)
 {
 case 1:append(&head); break;
 case 2:dispall(head);break;
 case 3:insaft(head);break;
 case 4:insbef(&head);break;
 case 5:delnode(&head);break;
 case 6:sort(head);break;
 case 7:destroy(&head);break;
 case 8:exit(0);
 default:printf(“WRONG CHOICE..”);
 }
 }
 return 0;
 }

10.2.5 More Complex Operations on Singly
Linked Lists

Printing a Singly Linked List in Reverse Order

To print the nodes of a linked list in the reverse order
(without using an additional singly linked list), two loops
are used in a nested fashion. Two pointers tmp and last
are used. tmp is used to traverse the list up to a point. First,
the list is traversed up to the last node, and then up to the
second last node and so on. The pointer last is used to
point to the node where the traversal ends. That is, the list
is scanned using tmp from the beginning of the list until
it reaches the predecessor of the node that is pointed to
by last. Then last is updated by the value of tmp. This
process continues till last equals head (in the function it
is h).

Iterative version
void dispall(struct node *p)
{
 struct node *tmp,*last;
 if(p==NULL)
 return;
 last=NULL;
 tmp=p;

 while(last!=p)
 {
 tmp=p;
 while(tmp->next!=last)
 tmp=tmp->next;
 printf(“\t%d “,tmp->data);
 last=tmp;
 }
}

Recursive function
void dispall(struct node *p)
{
 if(p==NULL)
 return;
 else
 {
 dispall(p->next);
 printf(“\t%d”, p->data);
 }
}

Reverse a Singly Linked List

Using the previous function, the values of the data fi eld of
the nodes of a singly linked list can be printed in reverse
order but the list remains as it is. To physically reverse
a singly linked list (without using an additional singly
linked list), i.e., the last node becomes the fi rst node, the
second last node becomes the second node, and so on. In
order to reverse the entire list, reverse all of it other than
the fi rst node and then plug the fi rst node at the end of
the list. Now, there are two ways to reverse a linked list.
The fi rst version is an iterative (non-recursive) solution.
Here is a function that takes head of a singly linked list
as a parameter, reverses it, and returns a pointer to the
beginning of the reversed list. As the returned address is
assigned to head again, it is not required to pass the address
of head to the function.

Function prototype declaration:
struct node *reverse_list(struct node *);

Function calling statement:
head=reverse_list(head);

Function defi nition:
 struct node *reverse_list(struct node *h)
 {
 struct node *prev, *cur, *pNext;

438 Programming in C

 if (h == NULL)
 return NULL;
 prev = NULL;
 cur = h;
 do
 {
 pNext = cur->next;
 cur->next = prev;
 prev = cur;
 cur = pNext;
 } while (cur != NULL);
 return prev;
 }

 The special case, where the linked list is empty (NULL),
is handled fi rst; the reverse of a NULL list is a NULL list.
If the list is not empty, the following three pointers are
required:
 pointer to the current node (the one which needs its

next fi eld to be updated)
 pointer to the previous node (the one to which the

current node should point to)
 pointer to the node next to the current node (to

become the current after the current node gets its next
fi eld updated)

 Start with the fi rst node being the current one and the
previous node being NULL (since the fi rst node becomes the
last and points nowhere). At each iteration of the do-while
loop, the next fi eld of the current node is updated and the
pointers are updated. When the end of the list is reached
and the loop stops; prev (which stores the previous value
of cur) points to what used to be the last node and is now
the fi rst, so it is returned. Here is a recursive solution to the
same problem:

 struct node *reverse_list(struct node *h)

 {

 struct node *tmp;

 if (h == NULL)

 return NULL;

 if (h->next == NULL)

 return h;

 tmp = reverse_list(h->next);

 (h->next)->next = h;

 h->next = NULL;

 return tmp;

 }

 The recursive function has two base cases. If the list
is empty, it stays empty, and if the list is a single node, it
remains the same. These two base cases could be combined
into one, returning h if either condition is true. Otherwise,
one can use it as the general case. reverse_list() is
recursively called by passing the list starting with the
second node, considering the current node to be the fi rst.
Since the next fi eld of the current node has not changed,
and it used to point to the fi rst node of the remaining list,
it now points to the last node of the remaining list. That
node (the one pointed to by the current node) is updated to
point to the current node, and the current node is updated
to point nowhere (its next fi eld becomes NULL).

Copy a Singly Linked List

A given singly linked list can be copied into another list
by duplicating the values of each node. The following
C program performs this task. Observe the function
copy_list() that takes the target list and the source list
as parameters and uses a new logic for creating a singly
linked list.

 #include <stdio.h>
 #include <stdlib.h>
 struct node
 {
 int data;
 struct node *next;
 };
 void append(struct node **);
 void dispall(struct node *);
 void copy_list(struct node **, struct node *);
 int main()
 {
 struct node *head,*hd;
 int ch;
 char ans=‘y’;
 head=hd=NULL;
 printf(“\n CREATE THE FIRST LINKED LIST...\n”);
 while(ans==‘y’ ||ans==‘Y’)
 {
 append(&head);
 printf(“\n Do U add more node(y/n)?..”);
 ffl ush(stdin);
 ans=getchar();
 }
 dispall(head);
 copy_list(&hd,head);

Linked Lists 439
 printf(“\n THE LINKED LIST AFTER COPY...\n”);

 dispall(hd);

 return 0;

 }

 void append(struct node **h)

 {

 if(*h==NULL)

 {

 *h=(struct node *)malloc(sizeof(struct node));

 if(*h==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“ \n Enter data:”);

 scanf(“%d”,&(*h)->data);

 (*h)->next=NULL;

 }

 else

 append(&(*h)->next);

 }

 void dispall(struct node *p)

 {

 if(p==NULL)

 {

 printf(“NULL”);

 return;

 }

 else

 {

 printf(“%d —>”,p->data);

 dispall(p->next);

 }

 }

 void copy_list(struct node **t, struct node *s)

 {

 struct node *tmp;

 if(s==NULL)

 return;

 while(s!=NULL)

 {

 if(*t==NULL)

 {

 *t=(struct node *)malloc(sizeof(struct node));

 tmp=*t;

 }

 else
 {
 tmp->next =(struct node *)malloc

(sizeof(struct node));
 tmp=tmp->next;
 }
 tmp->data=s->data;
 s=s->next;
 }
 tmp->next=NULL;

 }

The recursive version of the function copy_list() is as
follows:

 void copy_list(struct node **t, struct node *s)
 {
 if(s!=NULL)
 {
 *t=(struct node *)malloc(sizeof(struct node));
 (*t)->data=s->data;
 (*t)->next=NULL;
 copy_list(&((*t)->next),s->next);
 }
 }

Maintaining a Linked List in Ascending Order

Let us create a singly linked list where every new node
added to the linked list gets inserted at such a place that
the linked list is always maintained in ascending order.
The following version of the append() function illustrates
the same. The trick followed here is that while traversing
the linked list, the data part of the node to be inserted is
compared with that of the current node and that of its
subsequent one and accordingly inserted.

 void append(struct node **h)
 {
 struct node *p, *tmp;
 p=(struct node *)malloc(sizeof(struct node));
 printf(“ \n Enter data:”);
 scanf(“%d”,&p->data);
 /* if list is empty or if new node is to be

inserted before the fi rst node */
 if(*h==NULL)
 {
 p->next=NULL;
 *h=p;
 return;
 }

440 Programming in C

 if((*h)->data>p->data)
 {
 p->next=*h;
 *h=p;
 return;
 }
 /* traverse the entire linked list to search

the position to insert the new node */
 tmp=*h;
 while(tmp!=NULL)
 {
 if(tmp->data<=p->data && (tmp->next==NULL ||

(tmp->next)->data>p->data))
 {
 p->next=tmp->next;
 tmp->next=p;
 return ;
 }
 tmp=tmp->next; /* move to the next node */
 }
 }

10.3 CIRCULAR LINKED LISTS
Although a singly linked list is a useful data structure, it
has a major drawback. From a given node, say, pointed to
by a pointer p, it is not possible to reach any of the nodes
that precede the node which p is pointing to. To overcome
this drawback, a small change is made to the structure of
the singly linked list so that the next fi eld of the last node is
pointing to the fi rst node rather than NULL. Such a linked list
is called a circular linked list and is shown in Figure 10.12.

Firstnode Lastnode

Figure 10.12 Circular Linked List

 From fi gure 10.12, it is clear that in such a list, it is
possible to reach any node in the list from a particular
node. Note that there is no natural fi rst or last node because
by virtue of the list being circular, the fi rst node is also the
last node and vice versa. Therefore, one useful convention
is to let the external pointer of the circular linked list, tail,
point to the last node and to allow the following node to
be the fi rst node. Another important point is that like the
singly linked list, the null pointer represents an empty
circular linked list.

 Following are the most common operations performed
on circular linked lists:
 Appending a new node
 Displaying all nodes
 Searching a node
 Inserting a node after a particular node
 Inserting a node before a particular node
 Deleting a particular node
 Sorting nodes

 To implement these operations, separate functions are
defi ned for each of these operations. The following code
displays these functions:

 #include <stdio.h>

 #include <stdlib.h>

 struct node

 {

 int data;

 struct node *next;

 };

 void append(struct node **);

 void dispall(struct node *);

 void insaft(struct node **);

 void insbef(struct node **);

 void delnode(struct node **);

 void sort(struct node **);

 int main()

 {

 struct node *tail;

 int ch;

 tail=NULL;

 while(1)

 {

 printf(“\n 1.APPEND ”);

 printf(“\n 2.DISPLAY ALL ”);

 printf(“\n 3.INSERT AFTER A PARTICULAR NODE ”);

 printf(“\n 4.INSERT BEFORE A PARTICULAR NODE ”);

 printf(“\n 5.DELETE A NODE ”);

 printf(“\n 6.SORT ”);

 printf(“\n 7.EXIT ”);

 printf(“\n ENTER UR CHOICE...”);

 scanf(“%d”,&ch);

 switch(ch)

Linked Lists 441
 {
 case 1:append(&tail);break;
 case 2:dispall(tail);break;
 case 3:insaft(&tail);break;
 case 4:insbef(&tail);break;
 case 5:delnode(&tail);break;
 case 6:sort(&tail);break;
 case 7:exit(0);
 default :printf(“WRONG CHOICE..”);
 }
 }
 return 0;
 }

 Note that tail is an external pointer of type struct
node that holds the address of the last node of the circular
linked list. Initially, it contains NULL indicating the empty
circular linked list. As done earlier, in most functions, the
address of tail is passed to the functions. As a result, the
formal parameter would be pointer to a pointer of type
struct node. However, in the fi gures, it is marked as tail
for clearer understanding. The implementations of the
individual operations on circular linked lists are discussed
in the following sections.

10.3.1 Appending a Node

Let p be the pointer to the newly allocated node that is to
be added at the end of the last node. The next step is to
fi ll the data part of the newly allocated node. Now, check
whether the circular list is empty or not. If yes, then the
node pointed to by p is the fi rst as well as the last node.
Since tail is the external pointer to the desired circular
linked list, its value must be modifi ed to the address of
the new fi rst (also last) node of the list. This is done as
follows:

tail = p;

As there is only one node now, the next fi eld of the newly
added node (pointed to by p) will be pointing to itself. This
is illustrated in the Figure 10.13.

tail
(12)

(13)

tail = p; (12)

tail->next = p; (13)

Figure 10.13 Appending a node into a circular linked list

 If the circular linked list is not empty, then appending
the new node (pointed to by p) to the circular linked list
follows the following steps:
 1. Through the next fi eld of the node pointed to by tail

(in the function it is *t), it is possible to get the fi rst
node. Say a pointer head points to this node.

 2. Store the address of p in the next fi eld of the last node
(tail).

 3. Store the address of the fi rst node (stored in head) in
the next fi eld of the p.

 4. p and tail now point to the newly appended node as
that is the last node.

These steps are depicted in the following fi gure.

(14)
head

(15)

(17)

(16)

tailp

Figure 10.14 Appending a node in a non-empty circular list

 Putting all steps together, steps for appending a new
node in a non-empty circular list are as follows:
 head = tail-> next; (14)

 tail->next = p; (15)

 p ->next = head; (16)

 tail = p; (17)

 Here is the function defi nition for appending a node into
a circular linked list, written using the preceding steps:

 void append(struct node **t)
 {
 struct node *p,*head;
 p=(struct node *)malloc(sizeof(struct node));
 if(p==NULL)
 {
 printf(“\n Memory allocation unsuccessful..”);
 return;
 }
 printf(“\n ENTER THE DATA..:”);
 scanf(“%d”,&p->data);
 if(*t==NULL)
 {

 *t=p;

442 Programming in C

 p->next=*t;
 return;
 }
 head=(*t)->next;
 (*t)->next=p;
 p->next=head;
 *t=p;
 }

 Note that in the function the formal parameter t is a
pointer to the external pointer tail which is declared in
main(). When a new node is inserted at the end of the
list, the value of the tail should be updated through *t
irrespective of whether the circular list is empty or not as
the newly inserted node is now the last node. In Figure
10.14, *t is not used for better interpretation.

10.3.2 Displaying a Circular Linked List

Traversing a circular list is slightly different from traversing
a singly linked list because NULL is not encountered in the
next fi elds for any node in a circular list. For traversing a
circular list, one needs to save the address held in the next
fi eld of the node pointed to by tail. Let it be head. Now the
node pointed to by head is the fi rst node of the circular list.
Taking a copy of head in another pointer tmp, one has to
traverse as long as tmp becomes equal to the saved pointer
head. Therefore, it is suffi cient to assign ‘tmp->next’ to tmp
in a do...while loop as long as tmp is not equal to head.
The implementation of this operation in a circular linked
list is as follows:

 void dispall(struct node *t)
 {
 struct node *tmp,*head;
 if(t==NULL)
 {
 printf(“\n LINKED LIST IS EMPTY\n”);
 return;
 }
 head=tmp=t->next;
 printf(“\n”);
 do
 {
 printf(“\t %d”,tmp->data);
 tmp=tmp->next;
 }while(tmp!=head);
 }

10.3.3 Inserting a Node after a Specifi ed Node

The next operation is the insertion of a node to the circular
linked list. The node, after which insertion takes place, is
specifi ed either by the value of the data fi eld or by the
position in the list, assuming that the fi rst node is at position

one. Let the fi rst case be considered. For illustration,
consider the following circular linked list:

tail

Figure 10.15 Initial circular linked list

 Assume that tmp is a pointer pointing to the node after
which the new node is to be inserted. It has been discussed
how the value of the pointer variable tmp is set so that it
is able to point to that node of the circular list. Hence, a
new node pointed to by p has to be inserted after the node
pointed to by tmp in a circular list, the last node of which is
pointed to by tail (in the function it is *t). This is depicted
in Figure 10.16.

tail
tmp

(19)
(18)

p

Figure 10.16 Insertion of a node after a particular node

 Naturally, tmp->next and p->next need to be updated so
that after the insertion of the node, the circular linked list
would be as shown in Figure 10.17.

tail
tmp

p

Figure 10.17 Circular linked list after insertion

 That is, the next fi eld of p should point to what tmp was
pointing to before insertion and then the next fi eld of tmp
should point to the node that was being pointed to by p.
Corresponding statements are
 p->next = tmp->next; (18)

 tmp->next = p; (19)

Linked Lists 443

 Insertion after the node pointed to by tail (in the
function it is *t) of a circular linked list is always treated
specially because such an insertion implies modifi cation
to the pointer tail which points to the last node of the list.
This is illustrated in Figure 10.18.

tail

(20)

p

(21)

Figure 10.18 Insertion of a node after the last node

 The defi nition of the C function for implementing the
insertion of a node after a specifi c node is as follows:

 void insaft(struct node **t)
 {
 struct node *p,*tmp;
 int x, found=0;
 if(*t==NULL)
 {
 printf(“\n LINKED LIST IS EMPTY\n”);
 return;
 }
 printf(“ENTER THE VALUE OF THE NODE AFTER WHICH\

NEW NODE TO BE INSERTED :”);
 scanf(“%d”,&x);
 if((*t)->data==x)
 {
 p=(struct node *)malloc(sizeof(struct node));
 if(p==NULL)
 {
 printf(“\n Memory allocation unsuccessful..”);
 return;
 }
 printf(“\nENTER THE DATA: ”);
 scanf(“%d”,&p->data);
 p->next=(*t)->next;
 (*t)->next=p;
 *t=p;
 return;
 }
 tmp=(*t)->next;
 while(tmp!=*t)
 {
 if(tmp->data==x)
 {
 p=(struct node *)malloc(sizeof(struct node));
 if(p==NULL)
 {
 printf(“\n Memory allocation unsuccessful..”);
 return;
 }

 printf(“\nENTER THE DATA: ”);
 scanf(“%d”,&p->data);
 p->next=tmp->next;
 tmp->next=p;
 found=1;
 break;
 }
 tmp=tmp->next;
 }
 if(found==0)
 printf(“\n NODE DOES NOT EXIST...”);
 }

 It is left to the readers to follow the same scheme and
develop a program for insertion after the nth node.

10.3.4 Inserting a Node before a Particular Node

Like a singly linked list, a circular list is also unidirectional
and moving backward is impossible because there is
no direct link from a node to its predecessor. However,
unlike the singly linked list, though it is cumbersome,
the predecessor in a circular linked list can be found by
moving through the list since the tail (in the function it
is *t) is linked to the fi rst node of the circular list. A node
preceding a particular node, pointed to by p, can be found
if one traverses the list as long as the next fi eld of a node
becomes equal to p. The best way is to keep a pointer, which
stores the address of the previous node while moving to
the next node. As a result, at any moment, one can access
the current node as well as the previous node. Using this
trick, if the desired node before which the new node is to
be inserted is the fi rst node, then it can be treated specially
as the next fi eld of the last node which will now point to the
newly added node. This is illustrated in Figure 10.19.

tail

(22)

p (23)

p->next=tail->next; (22)

tail->next=p; (23)

Figure 10.19 Inserting a node pointed to by p before the
fi rst node

444 Programming in C

 From the second node of the list, the logic to be followed
is same as that followed in case of singly linked lists. A
new node pointed to by p is inserted before a node pointed
to by tmp as illustrated in Figure 10.20.
 Here, prev is the pointer that is pointing to the node
preceding the node pointed to by tmp. The next fi eld of p
should point to tmp and the next fi eld of prev should point
to p. That is,

p->next = prev->next; (24)
prev->next = p; (25)

tail

prev

(25)
(24)

p
tmp

Figure 10.20 Inserting a node before a particular node

 The C function for inserting a node before any node in
a circular linked list is as follows:

 void insbef(struct node **t)

 {

 struct node *p,*tmp,*prev,*head;

 int x, found=0;

 if(*t==NULL)

 {

 printf(“\n LINKED LIST IS EMPTY\n”);

 return;

 }

 printf(“ENTER THE VALUE OF THE NODE BEFORE\
WHICH NEW NODE TO BE INSERTED :”);

 scanf(“%d”,&x);

 head=(*t)->next;

 if(head->data==x)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessful..”);

 return;

 }

 printf(“\nENTER THE DATA: ”);

 scanf(“%d”,&p->data);

 p->next=head;

 (*t)->next=p;

 return;

 }

 prev=head;

 tmp=head->next;

 while(tmp!=head)

 {

 if(tmp->data==x)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessful..”);

 return;

 }

 printf(“\nENTER THE DATA: ”);

 scanf(“%d”,&p->data);

 prev->next=p;

 p->next=tmp;

 found=1;

 break;

 }

 else

 {

 prev=tmp;

 tmp=tmp->next;

 }

 }

 if(found==0)

 printf(“\n NODE DOES NOT EXIST...”);

 }

10.3.5 Deleting a Node

The general logic to delete a particular node pointed to
by p is that the preceding node should be linked to the
successor of p and then the memory space is to be de-
allocated using a call to free(p). This scheme is illustrated
in Figure 10.21.

Figure 10.21 Deletion of a node from a circular linked list

Linked Lists 445

 The predecessor node can be found using two pointers
tmp and prev, which are initialized so that they point to
the current node and its predecessor respectively. These
are used in a loop where tmp is used to scan the list and
for each iteration; it is advanced to the next node using
the statement tmp=tmp->next. Obviously, before advancing
tmp, the address contained in it is assigned to prev so that it
can always point to the previous node of the current node
pointed to by tmp. A number of special cases have to be
considered here.

Case 1: Deletion of the fi rst node should be treated
specially like insertion of a node at the beginning of the
circular list. In this case, the external pointer tail (in the
function it is *t) would point to the node next to the fi rst
node. This is represented in Figure 10.22.

tailhead

(28)

(26)

(27)

head = tail->next; (26)
tail->next = head->next; (27)
free(head) (28)

Figure 10.22 Deletion of the fi rst node of a circular linked
list

 The problem arises when the circular list contains only
one node. Then the statements (26), (27), and (28) will
create a chaos. Therefore, the steps in Figure 10.22 should
be followed only if the list contains more than one node.
If it contains a single node only (which can be ascertained
by checking whether the next fi eld of tail is pointing to
itself), then the pointer tail should set to NULL indicating
an empty circular list.

Case 2: If the node to be deleted is the last node which is
pointed to by tail (in the function it is *t). In this case after
the deletion, the tail will be pointing to its predecessor
which is shown in Figure 10.23.
 To do this, the C statements will be as follows:
 prev->next = tmp->next; (29)

 tail = prev; (30)

 free (tmp); (31)

 The defi nition of a function that will delete a node of a
circular linked list is given as follows:

tmp

prev

(29)

(30)

tail

(31)

Figure 10.23 Deletion of the last node in circular linked
list

 void delnode(struct node **t)
 {
 struct node *tmp,*prev,*head;
 int x, found=0;
 if(*t==NULL)
 {
 printf(“\n LINKED LIST IS EMPTY\n”);
 return;
 }
 printf(“ENTER THE VALUE OF THE NODE WHICH IS\

TO BE DELETED :”);
 scanf(“%d”,&x);
 head=(*t)->next;
 if(head->data==x)
 {
 tmp=head;
 if(tmp->next!=head)
 (*t)->next=head->next;
 else
 *t=NULL;
 free(tmp);
 return;
 }
 prev=head;
 tmp=head->next;
 while(tmp!=head)
 {

 if(tmp->data==x)

 {

 prev->next=tmp->next;

 if(tmp==*t)

 *t=prev;

 free(tmp);

 found=1;

446 Programming in C

 break;

 }

 else

 {

 prev=tmp;

 tmp=tmp->next;

 }

 }

 if(found==0)

 printf(“\n NODE DOES NOT EXIST...”);

 }

10.3.6 Sorting a Circular Linked List

Sorting the nodes of a circular linked list by exchanging
the values of the data fi elds of the consecutive nodes using
the bubble sort method is exactly the same as that of a
singly linked list except the part of the code that counts the
number of nodes. It is marked in bold face in the following
code:

 void sort(struct node **t)

 {

 struct node *tmp,*head;

 int i,j,n=1,temp;

 head=(*t)->next;

 for(tmp=head->next;tmp!=head;tmp=tmp->next)

 n++;

 printf(“\n Number of nodes=%d\n”,n);

 for(i=0;i<n-1;i++)

 {

 tmp=head;

 for(j=0;j<n-i-1;j++)

 {

 if(tmp->data>(tmp->next)->data)

 {

 temp=tmp->data;

 tmp->data=(tmp->next)->data;

 (tmp->next)->data=temp;

 }

 tmp=tmp->next;

 }

 }

 }

Points to Note

Circular linked lists are most useful for describing naturally
circular structures, and have the advantage of regular
structure and being able to traverse the list starting at
any point. They also allow quick access to the fi rst and
last records through a single pointer (the address of the
last element). Their main disadvantage is the complexity
of iteration, which has subtle special cases.

10.4 DOUBLY LINKED LIST
Linked lists that have been discussed so far contain only
one link (pointer) fi eld which points to the next node in the
list. Thus in both single and circular linked lists, one can
traverse in one direction only. It is observed that such lists
sometimes seem to be too restrictive. For example, note that
in order to delete a node in single and circular linked lists,
the predecessor of the node to be deleted has to be linked
to its successor. However, because the list has only forward
links, the predecessor of a node is not directly reachable
from it. A doubly linked list overcomes this limitation. A
doubly linked list is a type of an ordered list, in which each
node consists of two pointers. One is to store the address
of the next node while the other stores the address of the
previous node. It is also known as a two-way list.
 The specialty of this list is that the list can be traversed
in both the directions, i.e., both in forward as well as in
backward directions. The concept of this type of linked list
is used in trees. The hierarchical structure of the tree can be
easily represented using these double linked lists. The type
declaration of a node of a doubly linked list containing
integers is as follows:

 struct node
 {
 int data;
 struct node *prev,*next;
 };

 Pictorially, each node of a doubly linked list may be
represented as shown in Figure 10.24.

(a)

(b)

nextprev

Figure 10.24 A node in a doubly linked list

Linked Lists 447

 Observe that the left link of the fi rst node and right link
of the last node are set to NULL. Note that like the other
variants of linked lists, an empty doubly linked list is also
denoted by a null pointer. An external pointer head is kept
to indicate the start of a doubly linked list.

10.4.1 Operations on Doubly Linked List

Insertion and deletion are two basic operations on doubly
linked lists. The steps to be followed are exactly same as
singly linked list but only differ in the management of the two
pointers. It has to be noted that the loop used to fi nd the last
node of a doubly linked list can be avoided if another external
pointer tail is used to point to the last node of the list. In
such cases, insertion and deletion at the end becomes easier.
However, though ineffi cient, only head is considered here.
 As is clear by now any operation on linked list involves
adjustments of links. Since the steps have been explained
in detail for all the functions of singly linked lists as well as
circular linked lists, it is not necessary to give a step-by-step
working of these for doubly linked lists. The working of doubly
linked lists can be understood with the help of diagrams.

 Insertion of a Node in a Doubly Linked List

This operation includes the following:
 Appending a node
 Inserting a node after a specifi ed node
 Inserting a node before a specifi ed node, which

includes insertion at the beginning of the list

 Figure 10.25 shows the schematic representation of
insertion of a node in a doubly linked list.

Append a Node in a Doubly Linked List

The function defi nition to append a node in a doubly linked
list is as follows:

 void append(struct node **h)

 {

 struct node *p,*last;

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessful..”);

 return;

 }

 printf(“\n ENTER THE DATA..:”);

 scanf(“%d”,&p->data);

 p->next=NULL;

 if(*h==NULL)

 {

 *h=p;

 p->prev=NULL;

 return;

 }

 last=*h;

 while(last->next!=NULL)

 last=last->next;

 last->next=p;

 p->prev=last;

 }

Insertion of a Node After a Specifi ed Node

Insertion of a node after a specifi ed node may be
implemented with the following code:

(a) Insertion of node at the beginning

head

(b) Insertion of node at the end

head

p

(c) Insertion of node at any intermediate position

p

Figure 10.25 Insertion of a node at various positions in a doubly linked list

448 Programming in C

 void insaft(struct node *h)

 {

 struct node *p,*right;

 int k;

 if(h==NULL)

 {

 printf(“\n Linked List is EMPTY”);

 return;

 }

 printf(“\n Enter the node after which new node\
is to be inserted :”);

 scanf(“%d”,&k);

 while(h!=NULL && h->data!=k)

 h=h->next;

 if(h==NULL)

 {

 printf(“\n NODE DOES NOT EXIST”);

 }

 else

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“ \n Enter data: ”);

 scanf(“%d”,&p->data);

 right=h->next;

 p->prev=h;

 p->next=right;

 h->next=p;

 if(right!=NULL)

 right->prev=p;

 }

 }

 The statement marked is repeated here for the
convenience of readers.

 if(right!=NULL)
 right->prev=p;

 Checking this is very important because if the desired
node is the last node then its next fi eld contains NULL,
i.e., the pointer right would contain NULL. Therefore, the
statement right->prev implies NULL->prev which makes

no sense. If the desired node after which new node has
to be specifi ed is given by position assuming that the fi rst
node is at position 1 and so on then the function insaft()
is as follows:

 void insaft(struct node *h)

 {

 int position,i;

 struct node *p,*right;

 if(h==NULL)

 {

 printf(“\n Linked List is EMPTY..void
INSERTION”);

 return;

 }

 printf(“\n Enter the position after which \

 new node is to be inserted :”);

 scanf(“%d”,&position);

 for(i=1;h!=NULL && i<position;++i)

 h=h->next;

 if(h==NULL)

 printf(“ There are less than %d nodes in the \

 list”,position);

 else

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“ \n Enter data: ”);

 scanf(“%d”,&p->data);

 right=h->next;

 p->prev=h;

 p->next=right;

 h->next=p;

 if(right!=NULL)

 right->prev=p;

 }

 }

Insertion of a Node Before a Specifi ed Node

In case of doubly linked lists, from a particular node its
predecessor can be found very easily with the aid of its
prev fi eld. There is no need to adopt any special trick to

Linked Lists 449

fi nd the predecessor of a particular node. The defi nition
of the following function would be suffi cient enough to
understand this operation.

 void insbef(struct node **h)

 {

 struct node *p,*tmp,*left;

 int k;

 if(*h==NULL)

 {

 printf(“\n Linked List is EMPTY”);

 return;

 }

 printf(“\n Enter the node before which new node\
 is to be inserted :”);

 scanf(“%d”,&k);

 /* INSERTION AT THE BEGINNING */

 if((*h)->data==k)

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“ \n Enter data: ”);

 scanf(“%d”,&p->data);

 p->prev=NULL;

 p->next=*h;

 (*h)->prev=p;

 *h=p;

 return;

 }

 tmp=*h;

 while(tmp!=NULL && tmp->data!=k)

 tmp=tmp->next;

 if(tmp==NULL)

 {

 printf(“\n NODE DOES NOT EXIST”);

 }

 else

 {

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\n Memory allocation unsuccessfull..”);

 return;

 }

 printf(“ \n Enter data: ”);

 scanf(“%d”,&p->data);

 left=tmp->prev;

 p->prev=left;

 p->next=tmp;

 tmp->prev=p;

 left->next=p;

 }

 }

 Insertion of a node before nth node follows the
same logic as that for singly linked lists except that the
predecessor can easily be reached by the use of the prev
fi eld of the node.

 Deletion of a Node from Doubly Linked List

Deletion of a node from a doubly linked list may take
place from any position in the list. Deletion of a node from
a doubly linked list from various positions is shown in
Figure 10.26.

(a) Deletion of a node at the beginning

(b) Deletion of a node at the end

(c) Deletion of a node at an intermediate position

head

p

head

p

head

Figure 10.26 Deletion of a node at various positions in a
doubly linked list

450 Programming in C

 The deletion operation may be carried out using the
function delnode(). Note that the function implements the
deletion of a node at any position of the doubly linked list
as depicted in Figure 10.26; and it does not use temporary
pointers such as left or right to point to the predecessor
or successor of the target node. The function delnode() is
as follows:

 void delnode(struct node **h)

 {

 struct node *p = *h;

 int k;

 if(*h==NULL)

 {

 printf(“\n Linked List is EMPTY”);

 return;

 }

 printf(“ Data to be deleted: \n”);

 scanf(“%d”,&k);

 /* traverse the entire linked list */

 while(p!=NULL)

 {

 if(p->data==k)

 {

 if(p==*h) /*if it is the fi rst node */

 {

 *h=(*h)->next;

 (*h)-> prev = NULL;

 }

 else

 {

 /* if the node is last node */

 if(p->next==NULL)

 (p->prev)->next = NULL;

 else

 /* if the node is intermediate */

 {

 (p->prev)->next = p->next;

 (p->next)->prev = p->prev;

 }

 free(p);

 }

 return;

 }

 p=p->next;

/* move to the next node if not found */

 }

 printf(“\n NODE DOES NOT EXIST”);

 }

 Sorting a Doubly Linked List

To sort the nodes of a doubly linked list, the same function
can be used that has been used for singly linked list.

Deleting all Nodes

To deletes all nodes of a doubly linked list, the same
function used for singly linked lists can be used.

10.4.2 Advantages/Disadvantages of Doubly
Linked Lists

The primary advantage of a doubly linked list is that
navigation in either direction is easily possible. This can
be very useful, e.g., if the list is used for storing strings,
where the strings are lines in a text fi le. One might store the
‘current line’ of the text using a pointer to the appropriate
node; if the user moves the cursor to the next or the
previous line, a single pointer operation can restore the
current line to its proper value. Similarly, if the user moves
back ten lines, he/she can perform 10 pointer operations to
get to the right line. For either of these operations, if the
list is singly linked, one must start at the head of the list
and traverse until the proper point is reached. This can be
very ineffi cient where large lists are concerned.
 The primary disadvantages of doubly linked lists are
that each node requires an extra pointer, requiring more
space, and the insertion or deletion of a node takes a bit
longer (because of more pointer operations).

Points to Note

Double-linked lists require more space per node and their
elementary operations are more expensive; but they are
often easier to manipulate because they allow sequential
access to the list in both directions. In particular, one can
insert or delete a node in a constant number of operations
given only that node’s address. (Compared with singly-
linked lists, which require the previous node’s address
in order to correctly insert or delete.) Some algorithms
require access in both directions. On the other hand,
they do not allow tail-sharing, and cannot be used as
persistent data structures.

10.5 INTRODUCTION TO CIRCULAR DOUBLY
LINKED LIST

A circular doubly linked list is a variant of a doubly linked
list, in which the last node points back to the fi rst node.
The entire list may be accessed starting at any node and

Linked Lists 451

following links until one comes to the starting node again.
Here is the schematic representation of a circular doubly
linked list.

Figure 10.27 Circular doubly linked list

 In order to represent a doubly linked list, one can defi ne
a structure as follows:

struct Node{
 int data;
 struct node *prev, *next;
};

 The two basic operations related to circular doubly
linked lists are as follows:
 1. Inserting a node in a circular doubly linked list

Insertion of a node at the end as well as at the beginning
of the list follows a combination of the logics that
have been followed in case of doubly linked lists and
circular linked lists. Figure 10.28 shows how to insert
a node at an intermediate position in the circular
doubly linked list.

52 75 96

83

cdlist q

prev next

p

(1)
(4) (2)

(3)

Figure 10.28 Insert one node to the circular doubly
linked list

 The steps are as follows. These steps cannot be
written in any other order.

 p->prev = q; (1)
 p->next = q->next; (2)
 (q->next)->prev = p; (3)
 q->next = p; (4)

 2. Delete a node from a circular doubly linked list Figure
10.29 shows how to delete a node at an intermediate
position of the circular doubly linked list.

52 96

cdlist

next

p

Figure 10.29 Delete one node from the circular doubly
linked list

 The steps for deletion are as follows:
 (p->prev)->next = p->next;
 (p->next)->prev = p->prev;
 free(p);

 When the node to be deleted is the fi rst node (pointed
to by cdlist in the fi gure), the pointer cdlist will
point to the node next to the fi rst node. The steps to
be followed are as follows:

 cdList=p->next;
 (p->prev)->next=p->next;
 (p->next)->prev=p->prev;
 free(p);

10.6 APPLICATIONS OF LINKED LISTS
In computer programming, linked lists are extensively used
in Data Base Management Systems, Process Management,
Operating Systems, text editors, etc. An important
application of linked lists is to represent polynomials and
their manipulations. However, we will not go into the
details of this representation in this book.

10.6.1 Dynamic Storage Management

In a multiprogramming computer environment, several
programs reside in memory at the same time. Different
programs may have different memory requirements. In
order to satisfy their memory requirements, the operating
system must be able to allocate a block of contiguous
storage as required. At the same time, When the execution
of a program is complete, the memory block allocated to it
has to be freed and this freed block may now be allocated
to another program.
 To keep track of the allocated and free portions of
memory, the memory manager of the operating system
maintains a linked list of allocated and free blocks of
storage.
 A doubly linked list is used to maintain both the list of
allocated blocks and the list of free blocks. Each node of

452 Programming in C

this list contains a starting address, size, and status of the
segment. This list is kept sorted by the starting address
fi eld to facilitate the updating, because when a program
terminates, the memory segment allocated to it becomes
free, and so if any of the segments are freed, then they
can be merged with the adjacent segment, if the adjacent
segment is already free. This requires traversal of the list
both ways to fi nd out whether any of the adjacent segments
are free. So this list is required to be maintained as a doubly
linked list.

10.6.2 Garbage Collection and Compaction

During the program execution, blocks of storage that
once were needed but which at some later time became
unnecessary and unused are called garbage. Garbage
collection is the process of collecting all unused blocks
of memory and returning them to available space. This
process is carried out in essentially two phases. In the
fi rst phase, known as the marking phase, all nodes in use
are marked. In the second phase all unmarked nodes are
returned to the available space list. This second phase is
trivial when all nodes are of a fi xed size. When variable
size nodes are in use, it is desirable to compact memory
so that all free nodes form a contiguous block of memory.
In this case the second phase is referred to as memory
compaction. Compaction works by actually moving blocks
of memory from one location in the memory to another so
as to collect all the free blocks into one single large block.
Once this single block gets too small again, the compaction
mechanism is called again to reclaim the unused storage.
Here no storage releasing mechanism is used. Instead, the
marking algorithm is used to mark blocks that are still
in use. Then instead of freeing each unmarked block by
calling a release mechanism to put it on the free list, the
compactor simply collects all unmarked blocks into one
large block at one end of the memory segment.
 Representing polynomials using linked lists is
advantageous because linked lists can accommodate
a number of polynomials of growing sizes so that their
combined size does not exceed the total memory available.
The general form of a polynomial of degree n is
 P(x) = a0 + a1x + a2x2 + a3x3 + … + anxn

 Let us take P(x) = 6x4 + 3x3 – 7x2 + 4x – 5. To represent
each term of the polynomial using the nodes of a linked
list, each node should consist of three elements, namely,
coeffi cient, exponent, and a link to the next term.

coefficient exponent

(a)

(b)

6 –7 4 –534 2 1 03

head

Figure 10.30 Representation of a polynomial using a
linked list

 While maintaining the polynomial, it is assumed that
the exponent of each successive term is less than that
of the previous term. If this is not the case, one can also
use a function to build a list, which maintains this order.
Once the linked list to represent the polynomial is ready
then operations such as addition and multiplication can be
performed. A term in the polynomial can be declared using
the following structure defi nition.

 struct node
 {
 int coeff;
 int exp;
 struct node *next;
 };

 It is clear from this declaration that a singly linked list
has been used to represent a term of the polynomial.
 The functions to append the nodes for representing the
polynomial and displaying it are similar to the functions
append() and display(), respectively, for singly linked
lists. Hence, the readers should be able to develop these
on their own.
 The function addition() is used to carry out the addition
of the two polynomials. Two polynomials are pointed to
by the pointers fi rst and second which are passed to the
function. In this function, the linked lists representing the
two polynomials are traversed until the end of any one
list is reached. While traversing, the polynomials are
compared on term-by-term basis. If the exponents of the
two terms being compared are equal, then their coeffi cients
are added and the result is stored in a third polynomial. If
the exponents are not equal, then the bigger exponent is
added to the third polynomial. During the traversal if the
end of one list is reached, the control breaks out of the
while loop. Now the remaining terms of that polynomial
are simply appended to the resulting polynomial. Lastly,
the result is displayed using display(). The function to
add two polynomials is as follows:

Linked Lists 453
 void addition(struct node *fi rst, struct node

*second, struct node **third)

 {

 struct node *p;

 /* if both lists are empty */

 if(fi rst == NULL && second == NULL)

 return;

 /* traverse till one node ends */

 while(fi rst != NULL && second != NULL)

 {

 if (*third == NULL)

 {

 *third = (struct node *)malloc(sizeof(struct node));

 p = *third;

 }

 else

 {

 p->next = (struct node *)malloc(sizeof(struct
 node));

 p = p->next;

 }

 /* store a term of larger degree if polynomial */

 if(fi rst->exp < second->exp)

 {

 p->coeff = second->coeff;

 p->exp = second->exp;

 second = second->next;

/* move to the next node */
 }

 else if(fi rst->exp > second->exp)

 {

 p->coeff = fi rst->coeff;

 fi rst->exp = fi rst->exp;

 fi rst = fi rst->next;

/* move to the next node */

 }

 else if(fi rst->exp == second->exp)

 {

 p->coeff = fi rst->coeff + second->coeff;

 fi rst->exp = fi rst->exp;

 fi rst = fi rst->next;

/* move to the next node */

 second = second->next;

/* move to the next node */

 }

 }

 /*assign remaining elements of the fi rst
polynomial to the result */

 while(fi rst != NULL)

 {

 if(*third == NULL)

 {

 *third = (struct node *)malloc(sizeof(struct
 node));

 p = *third;

 }

 else

 {

 p->next = (struct node *)malloc(sizeof(struct
 node));

 p = p->next;

 }

 p->coef = fi rst->coef;

 p->exp = fi rst->exp;

 fi rst = fi rst->next;

 }

 /*assign remaining elements of the second
polynomial to the result */

 while(second != NULL)

 {

 if(*third == NULL)

 {

 *third = (struct node *)malloc(sizeof(struct
 node));

 p = *third;

 }

 else

 {

 p->next = (struct node *)malloc(sizeof(struct
 node));

 p = p->next;

 }

 p->coef = second->coef;

 p->exp = second->exp;

 second = second->next;

 }

 p->next = NULL;

/* at the end of list append NULL*/

 }

 In some critical applications, it may be required to
manipulate very large integers, which cannot be stored
in variables of type int or long in C. So a different
representation scheme is required for large integers.
Such a number can always be considered as a special
type of polynomial. For instance, a number 1234 may be
represented by the expression

 1 × 103 + 2 × 102 + 3 × 101 + 4 × 100

454 Programming in C

Clearly, the expression is of the order P(x) = x3 + 2x2 + 3x
+ 4 where x = 10. To generalize, any decimal integer of
n digits can be expressed as the value of a (n – 1) degree
polynomial.

1

0

() 10
n

i
i

i

P x a x for x
-

=

= =Â
where 0 £ ai £ 9.

 Addition of two large integers specifi ed in this manner
is very similar to addition of polynomials represented by
linked lists. The only difference is that the coeffi cients
must lie between 0 and 9. After addition, the coeffi cient
may become more than 9. Let the sum of corresponding
coeffi cients be S which is greater than 9 and the
corresponding exponent be E. In that case, two nodes will
result. One will contain the result of the expression S/10 as
digit and E as the coeffi cient. The other node will contain
the result of the expression S%10 as digit and E + 1 as
exponent. The result of such addition is shown here.

5

5

1 1

coeff

5

5

5 6

exp

P

Q

R

P = polynomial representing fi rst integer

Q = polynomial representing second integer

R = resultant polynomial after addition

Figure 10.31 Addition of coeffi cients (digits) that result in a
coeffi cient with value more than 9

10.7 DISADVANTAGES OF LINKED LISTS
In spite of the several advantages of using linked lists,
there are obviously some shortcomings too. One is pointer
management. Pointers, if not dealt carefully, may lead
to serious errors in execution. Linked lists also consume
extra space than the space for actual data as the links
among the nodes are maintained through the pointers. A
major drawback of linked lists is that they are not suited
for random access. To access a single node in linked
storage, it is necessary to traverse a long path to reach the
desired node, which takes a lot of time and space (because
of using pointers).

10.8 ARRAY VERSUS LINKED LIST REVISITED
A list of items may be implemented using both array and
linked list. An array uses sequential mapping in memory.
In contrast a linked list uses non-sequential mapping in
memory. Even if the array is dynamically allocated,
an estimate of the maximum size of the list is required.
Usually this requires a high over-estimate, which wastes
considerable space. This could be a serious limitation,
especially if there are many lists of unknown size.
 Any element of an array can be randomly accessed
through its index.The data in a linked list can be accessed
in only linear fashion and cannot be accessed from an
arbitrary location. For example to access the data in the
third node, you have to start from the fi rst, second and
then only can reach third node. Unlike arrays, one cannot
access the data of the third node directly.
 Each of these implementations of the sequence of
items has its advantages and disadvantages which are
summarized below.
In terms of space
 • In the linked-list implementation, one pointer must

be stored for every element in the sequence, while
the array stores only the elements themselves. Any
element of an array can be randomly accessed through
the array index.

 • The space used for a linked list is always proportional
to the number of elements in the list. This is not
necessarily true for the array implementation. If a lot
of items are added to a sequence and then removed,
the size of the array can be arbitrarily greater than the
number of items in the sequence.

In terms of time
 • The array implementation requires O(n) worst-case

time to add or remove an item with n items, because
existing items need to be moved.

 • In contrast, adding and removing items in a linked
list can be implemented to require only O(1) time (if
we maintain pointers to the last node in the list, and
the node before the current one, as well as a pointer
to the current node).

In terms of ease of implementation
The implementations of both the array and linked-list
versions seem reasonably easy and straightforward.
However, the methods for the linked-list version seem to
be complex as for adding and removing elements in the
linked-list requires pointer operations. Linked lists really

Linked Lists 455

test the understanding of pointers. Though the linked lists
are pointer intensive, they have a natural visual structure
for practicing this sort of thinking. It’s easy to draw the
state of a linked list and use that drawing to think through
the code.
In terms of performance
Array based implementation of a list used to furnish
slightly better performance than linked list implementation.
A number of factors that contribute to slightly better
performance of arrays are as discussed below.
Due to the scaling factor, the address of the next element
in an array &a[i], where a is the array name, may be
calculated from a current address and an element size -
both held in registers:

&a[i]=a + i * sizeofa[i]

 Both addresses may use a single register. Since no
memory accesses are required, this is a single-cycle
operation on a modern processor.
 Again, for an array, contiguous memory is allocated.
Using array, data is stored in consecutive memory
locations allowing the next element to be fetched by
accessing the current element of an array and using scaling
factor. In contrast, with linked list implementations, there
is additional overhead for pointers and the overhead
normally introduced due to memory allocation through
malloc(). There is no guarantee that successive elements
in a linked list occupy successive memory locations. This
leads to memory fetching to move to the next node from
the current one.

SUMMARY
The array implementation of a list provides effi cient access to individual
data items by index. However, it has some shortcomings:

 The resize operation is ineffi cient (w.r.t. execution time)
 Wastage of space
 Addition at the beginning or middle of the list is tedious
 Deletion from the beginning or middle of the list is cumbersome

 An array is stored in a contiguous block of memory and this
contiguous nature of the array is also responsible for its drawbacks. A
better alternative is the linked list. A linked list is a linear data structure
in which each data item points to the next data item. This linking is
accomplished by keeping an address variable (a pointer) together with
each data item. This pointer is used to store the address of the next
data item in the list.

 There are different kinds of linked lists, namely, singly linked lists,
circular singly linked lists, two-way or doubly linked lists, and circular
doubly linked list. Normally, every linked list has a beginning and an
end. In singly linked lists, one must never lose track of the beginning
of the linked list or there is no way to fi nd it, since links are pointing
forward. To avoid this problem, there are two common variations of

linked lists, namely, circular linked lists and doubly linked lists.

 A circular linked list is similar to a singly linked list, but the last node
points back to the fi rst. Or, alternatively, one can think of it as a circle
of nodes without a fi rst or a last node. The nodes of a circular linked list
have the same structure as the nodes of a singly linked list; they contain
data and one pointer which is a link to another node. However, unlike a
singly linked list, in a circular linked list, there is no NULL link.

 One problem with circular linked lists is that in order to insert a node
at the beginning of the list, one actually has to traverse the list to fi nd
the end of the list so that the last node can point to the new beginning
node. This can get annoying, and therefore circular linked lists do not
seem to be used much in practice.

 A doubly linked list is a list in which each node has two links. One
link points to the next node and the other points to the previous node.
Sometimes, the two variations of linked lists can be combined together,
which is known as a circular doubly linked list. The structure of each
node is the same as that for a doubly linked list, but there are no NULL
links. The last node’s next link points to the fi rst node of the list and the
fi rst node’s prev link points to the last node.

KEY-TERMS

Circular linked list Circular linked list is a data structure in which
each node has one link, similar to an ordinary singlylinked list, except
that the next link of the last node points back to the fi rst node.

Compaction Compaction is the process of moving blocks of memory
from one location in the memory to another so as to collect all the free
blocks into one single large block.

Doubly linked list A doubly linked list is a data structure in which
each item points to its successor and to its predecessor.

Garbage collection Garbage collection is the process of collecting
all unused blocks of memory and returning them to available space.

Linked list Linked list is a data structure in which each data item
points to the next data item. This “linking” is accomplished by keeping
an address variable (a pointer) together with each data item.

Self-referential structure A structures that contain a pointer that
points to the same structure type are called self-referential structure.

Singly linked list A singly linked list is a data structure in which each
item points to its successor.

456 Programming in C

FREQUENTLY ASKED QUESTIONS

1. Identify some specifi c advantages of link list over arrays.
 Whenever it is required to insert and remove elements frequently, linked
list presents a defi nite advantage over arrays.

2. Identify some advantages that arrays have over the linked list.
 When the number of random accesses are many times more than
the number of insertions and deletions, the array has a distinction
advantage over that of the linked list. This is due to the fact that
elements in an array are arranged contiguously while storing in
memory. This contiguous arrangement allows any element to be
accessed in O (1) time by using its index. On the other hand, to
access any element in linked list, a pointer has to be associated with
the element. Getting a pointer to an element can be expensive if we
do not know a great deal about the pattern in which the elements will
be accessed. Arrays are also advantageous whenever the storage is
at a premium because they do not require additional pointers to keep
their elements “linked” together.

3. What are the advantages and disadvantages of doubly linked
list over that of singly linked list?
 The primary advantage of a doubly linked list is that in a given node in
the list, one can move easily in either direction. For example, this can
be very useful, if the list is stores strings, where the strings are lines
in a text fi le (e.g., a text editor). One might store the “current line’’ that
the user is on with a pointer to the appropriate node; if the user moves
the cursor to the next or previous line, a single pointer operation can
restore the current line to its proper value.
 Otherwise, if the user moves back 10 lines, for example, one can
perform 10 pointer operations (follow the chain) to get to the right line.
For either of these operations, if the list is singly linked, one must start
at the head of the list and traverse until the proper point is reached.
Hence when such an operation is carried out on large list the use of a
singly linked list can be very ineffi cient.
 The main disadvantage of doubly linked list requires an extra
pointer for each node and therefore more space is required per
node. Because of this extra pointer per node more time is spent to

carry out insertion and deletion in case of doubly linked list. In singly
linked list since only one pointer exists per node it obviously requires
lesser space per node and any insertion or deletion operation would
consume lesser time compared to that for doubly linked list.

4. In what respect is the circular linked list different from singly
linked list?
 Circular linked lists are most useful for describing naturally circular
structures, and have the advantage of regular structure and being
able to traverse the list starting at any point. This is not so in a singly
linked list. Circular link list also allow quick access to the fi rst and
last records through a single pointer, the address of the last element.
In singly linked list accessing the fi rst element and the last element
involves a change of pointer which takes a longer time. Their main
disadvantage of circular link list is the complexity of iteration, which
has subtle special cases.

5. How would you detect a loop in a linked list? Write a C
program to detect a loop in a linked list.
 To detect a loop in a link list, choose two pointers to start of the linked
list. Increment one pointer by 1 node and the other by 2 nodes. If
there’s a loop, the 2nd pointer will meet the 1st pointer somewhere. If
it does, then you know there’s one. A function for detecting a loop in
a link list is given below:

 int hasLoop(struct node *h)
 {
 p=h;
 q=h->next;
 while(p!=NULL && q!=NULL)
 {
 if(p==q)
 return 0;
 p=p->next;
 q=(q->next)?(q->next->next):q->next;
 }
 return 1;
 }

EXERCISE
 1. Write down the advantages and disadvan-tages of linked lists,

compared to arrays.

 2. List the principal advantages of using a linked list for dynamical
storage, rather than using the memory allocation functions
malloc(), calloc(), and so on to create a dynami-cally
sizable array.

 3. Is it possible to create a linked list using only a head pointer? If
so, how can this be accomplished?

 4. What are the drawbacks of singly linked lists?

 5. What are the drawbacks of circular linked lists?

 6. Why are insert and delete operations more effi cient with a doubly
linked lists than with singly linked lists?

 7. List the important benefi ts of doubly linked lists over singly linked
lists.

 8. List at least two disadvantages of doubly linked lists.

 9. Write a C function to combine two singly linked lists in the
following manner. Suppose, one list is L, expressed as L = {l0, l1,
…, lm} and the other list is M expressed as M = {m0, m1 …, mn}
where li and mi represent nodes in their respective lists. After
combination, the combined list should be l0, m0, l1, m1, ….

Linked Lists 457

 10. Write a C function to merge two circular linked lists.

 11. Write a C program to compute the following operations on
polynomials represented as singly linked lists:

 (a) Evaluation of a polynomial

 (b) Multiplication of two polynomials

 12. Write a C program to add two long positive integers represented
by a doubly linked list.

 13. Write a C function to do the following in a circular linked list:

 (a) Form a circular linked list containing union of elements of
two lists

 (b) Form a circular linked list containing intersection of
elements of two lists

 (c) Delete every second node of the list

 (d) Reverse the list

 (e) Swap two nodes by adjusting pointers

 (f) Compare two lists

 14. Write a C function to interchange the mth and nth nodes of a
doubly linked list.

 15. How can a polynomial, involving two variables, be represented
in a linked list? Write C functions to do the following:

 (a) Addition of two such polynomials

 (b) Multiplication of two such polynomials

 16. Assume that fi rst and last are two external pointers to the
fi rst and last nodes of a doubly linked list. Write C functions to
implement the following operations.

 (a) Append a node

 (b) Delete the nth node from the list

 (c) Make a copy of the list

 (d) Insert an element after the nth node of the list

 (e) Delete every nth element of the list

 17. Write a program to split a linked list into two linked lists using
both singly linked list and doubly linked list .

 18. Write a program to add two polynomials using a doubly linked
list.

 19. Write a program to multiply two polynomials using both singly
linked list and doubly linked list.

 20. Write a program to add two long integers. Each integer may
contain 15 to 20 digits, which can be stored in nodes, a digit
each or more depending on the user’s choice. Add these long
integers (from least signifi cant digit backwards) and display the
resultant list.

 21. Write a program that reads information about cars (brand,
year, color, kilometer, and price) from a text fi le and stores this
information into a linked list. When the information is read, it
should display the contents of the linked list and perform the
following operations:

 (a) Add new car information to the end of the linked list

 (b) Add new car information to the begin-ning of the linked
list

 22. Write a program that reads car information (car number, brand,
year, color, kilometer, and price) from a text fi le, stores these
information into a linked list, and displays the contents of the
linked list. It should also read car numbers (until zero is entered)
and delete the nodes when car numbers are entered as an input
for deletion of nodes. At the end it should again display the
contents of the linked list.

Project Question
 1. 2’s compliment of a number is obtained by scanning it from right to

left and complementing all the bits after the fi rst appearance of a
1. Thus 2’s complement of 11100 is 00100. Write a C program to

fi nd the 2’s complement of a binary number. Also implement the
subtraction of two integers using binary arithmetic.

CASE STUDY

Problem Statement.

Write a C program to simulate the following problem-
A group of soldiers are surrounded by an overwhelming enemy force.
There is no hope for victory without reinforcements, but there is only
a single horse available for escape and summon help. They form a
circle and a number n is picked from a hat. One of their names is
also picked from a hat. Beginning with the soldier whose name is
picked, they begin to count clockwise around the circle. When the

count reaches n, that soldier is removed from the circle and count
begins again with the next soldier. Any soldier removed from the circle
is no longer counted. The last soldier remaining is to take the horse
and escape.

Analysis

The problem is, given a number n, the ordering of the soldiers in the
circle, and the soldier from whom the count begins, to determine

458 Programming in C

the order in which soldiers are eliminated from the circle and which
soldier escapes. For example, suppose that n equals 3 and there are
fi ve men named A, B, C, D, and E. We count three men, starting at A,
so that C is eliminated fi rst. We then begin at D and count D, E, and
back to A, so that A is eliminated next. Then we count B, D, and E (C
has already been eliminated) and fi nally B, D, and B, so that D is the
man who escapes.
The input of the program is a list of names which is the clockwise
ordering of the circle, the name of the soldier from whom count would
start and the value of n. The program would print the names in order
the soldiers are eliminated and fi nally the name of the soldier who
escapes.
To solve this problem, a circular linked list may be used in which
each node represents one soldier. The structure of a node may be
as follows-

struct NODE
{
 char name[50];
 struct NODE *next;
};

The circular list is formed using this node structure. Whenever a
soldier is eliminated, a node containing the name of the soldier is
deleted from the circular linked list. Finally when only one node
remains in the list, then the name contained in the data fi eld of the
node is the soldier who escapes.

Design

The design of the solution to the Josephus problem is portrayed using
the following algorithm.
 1. START
 2. PRINT “ENTER THE NAMES OF THE SOLDIERS”
 3. INPUT NAME
 4. IF NAME=”END” THEN GOTO 7
 5. CREATE A NODE WITH THE NAME AND APPEND IN

CIRCULAR LINKED LIST
 6. GOTO 3
 7. PRINT “ENTER THE NAME OF THE SOLDIER FROM WHOM

COUND BEGINS”
 8. INPUT SNAME
 9. PRINT “ENTER THE VALUE OF N”
 10. INPUT N
 11. MAKE THE NODE WITH SNAME AS STARTING NODE FOR

COUNTING
 12. IF THERE IS NO MORE THAN ONE NODE THEN GOTO 18
 13. COUNT THROUGH N-1 NODES IN THE CIRCULAR LIST
 14. PRINT THE NAME IN THE NTH NODE
 15. DELETE THE NTH NODE
 16. MAKE (N+1)TH NODE AS STARTING NODE
 17. GOTO 12
 18. PRINT THE NAME OF THE ONLY NODE IN THE LIST
 19. STOP

C Implementation

The C source code to solve the Josephus problem is given below.
#include<stdio.h>
#include<string.h>
#include <stdlib.h>

struct NODE
{
 char name[50];
 struct NODE *next;
};

void insert(struct NODE **, char *);
void display(struct NODE *);
void eliminate(struct NODE **, char *);

int main(void)
{
 int i,n;
 char sname[50];
 struct NODE *start,*tail=NULL,*p;

 printf(“\n Enter names of the soldiers, enter END\
when fi nished\n”);

 ffl ush(stdin);
 scanf(“%[^\n]”,sname);
 while(strcmp(sname,“END”)!=0)
 {
 insert(&tail,sname);
 ffl ush(stdin);
 scanf(“%[^\n]”,sname);
 }

 printf(“\n The soldiers in clockwise order\n”);
 display(tail);
 printf(“---------------------------------\n”);
 printf(“\n Enter the name of the soldier from\

whom count begins \n”);
 ffl ush(stdin);
 scanf(“%[^\n]”,sname);
 printf(“\nENTER THE VALUE OF n :”);
 scanf(“%d”,&n);
 printf(“\n The order in which the soldiers are\

eliminated is: \n”);
 p=tail->next;
 do
 {
 if(strcmp(p->name,sname)==0)
 break;
 p=p->next;
 }while(p!=tail);
 start=p;
 while(start!=start->next)
 {
 for(i=1;i<n;i++)
 start=start->next;
 printf(“\n\t Soldier eliminated: %s”,start->name);
 p=start->next;
 eliminate(&tail,start->name);

Linked Lists 459

 start=p;
 }
 printf(“\n SOLDIER WHO ESCAPES IS: %s”,start->name);
 return 0;
}
void insert(struct NODE **t, char *nm)
{
 struct NODE *p,*q;
 p=(struct NODE *)malloc(sizeof(struct NODE));
 strcpy(p->name,nm);
 if(*t==NULL)
 {
 *t=p;
 p->next=*t;
 return;
 }
 p->next=(*t)->next;
 (*t)->next=p;
 *t=p;
 return;
}
void eliminate(struct NODE **t, char *nm)
{
 struct NODE *p,*q;
 if((*t==NULL ||(*t)->next==*t))
 {
 printf(“\n The list is empty or contains only\

 a single node”);
 return;
 }
 if(strcmp((*t)->name,nm)==0)
 {
 p=(*t)->next;
 while(p->next!=*t)
 p=p->next;
 q=*t;
 p->next=q->next;
 *t=p;
 free(q);
 return;
 }
 else
 {
 p=*t;
 while(p->next!=*t)
 {
 if(strcmp((p->next)->name,nm)==0)

 {
 q=p->next;
 p->next=q->next;
 free(q);
 break;
 }
 p=p->next;
 }
 }
}
void display(struct NODE *t)
{
 struct NODE *q;
 q=t->next;
 do
 {
 printf(“%s\n”,q->name);
 q=q->next;
 }while(q!=t);
 printf(“%s\n”,q->name);
 return;
}

Sample Run
Enter names of the soldiers, enter END when
fi nished
Manas
Pradip
Shilpi
Tapas
Kunal
END
The soldiers in clockwise order
Manas
Pradip
Shilpi
Tapas
Kunal
--
Enter the name of the soldier from whom count begins
Tapas
ENTER THE VALUE OF n :3
 Soldier eliminated : Manas
 Soldier eliminated : Tapas
 Soldier eliminated : Shilpi
 Soldier eliminated : Kunal
SOLDIER WHO ESCAPES IS : Pradip

460 Programming in C

11.1 INTRODUCTION
This chapter deals with some of the topics that typically fall
in the domain of advanced use of C. The features discussed
in this chapter may not be required for general applications
but may be essential and extremely advantageous for
certain specifi c cases.
 Preprocessing is the fi rst step in the C program
compilation stage, which is an important feature of the C
compiler. In C, all preprocessor directives begin with a #.
It is used to defi ne constants or any macro substitution.
 It has been seen that the pointers provide control over
low-level memory operations. There are many programs
that operate at a low level when individual bytes are

operated on. The combination of pointers and bit-level
operators makes C useful for many low-level applications
and can almost replace assembly code. UNIX is mostly
written in C.
 Type qualifi ers include the keywords: const and
volatile. The const qualifi er places the assigned variable
in the constant data area of memory which makes the
particular variable unmodifi able. volatile is used less
frequently and it indicates that the value can be modifi ed
outside the control of the program.
 Choosing a memory model means making choices among
meeting minimum system requirements, maximizing code
effi ciency, and gaining access to every available memory

After reading this chapter, the reader will be able to

 understand bitwise operators and their uses

 comprehend how command arguments can be passed and used

 understand C preprocessor, its directives and predefi ned identifi ers

 get to know the three data type qualifi ers: const, volatile, and restrict

 use the data type qualifi er ‘restrict’ with pointers, functions, blocks, and structures

 comprehend variable length argument list and its uses

 understand different memory models and their application

Learning Objectives

C
Chapter

Advanced C

1111

Advanced C 461

location. Different memory models use different pointers.
There are three types of such pointers. They are near, far,
and huge.
 A function usually takes a number of arguments whose
types are fi xed when its code is compiled. But sometimes
it is desirable to implement a function where the number
of arguments is not constant or not known beforehand,
when the function is written. For example, the printf
function is a special type of routine that takes a variable
number of arguments. The user-defi ned function may use
variable-length argument list. The declaration requires a
special syntax to indicate the fact that beyond a certain
argument, the number and type of the parameters cannot
be checked at compile time. Instead, the number and type
of the parameters has to be computed at run-time. Using
ellipsis in the signature denotes a variable argument list.

11.2 BITWISE OPERATOR
Since a computer understands only machine language,
data is represented as binary numbers that are nothing
but various combinations of 0’s and 1’s. Readers are
conversant with the binary number system and the binary
arithmetic. Table 11.1 lists the bitwise operators that may
be used to manipulate binary numbers.
 Bitwise operators allow the user to read and manipulate
bits in variables of certain types. It is to be remembered that
bitwise operators only work on two types: int and char.
Bitwise operators fall into two categories: binary bitwise
operators and unary bitwise operators. Binary operators
take two arguments while unary operators take only one.
The ~ (bitwise NOT) is a unary bitwise operator as it acts
on a single operand. The &, |, ̂ , and ~ are known as bitwise
logical operators. The >> and << are termed as bitwise shift
operators. Bitwise operators, like arithmetic operators, do
not change the value of the operands. Instead, a temporary
value is created. This can then be assigned to a variable.

Table 11.1 Bitwise operators used in C

Operator Description

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

~ Bitwise Complement

<< Bitwise Shift Left

>> Bitwise Shift Right

Arithmetic operators are used in conjunction with the
assignment operator to form shorthand forms that do the
desired operation as well as assignment. Such forms are
+=, -=, *=, and so on. These shorthand forms can also be
applied to bitwise operators. For example, |=, &=, and ^=
are some of the shorthand forms with bitwise operators.
Nearly all binary operators have a version with = after it.
These operators do change the value of the operands.
 Arithmetic operators have higher precedence than
bitwise operators. The precedence and associativity of
bitwise operators are given in Table 11.2.

Table 11.2 The precedence and associativity of bitwise
operators and logical operators

Precedence Associativity

<< >> L Æ R

< <= > >= L Æ R

== != L Æ R

& L Æ R

^ L Æ R

| L Æ R

&& L Æ R

|| L Æ R

?: R Æ L

= >>= <<= &= ^= |= R Æ L

 It is evident from the table that among bitwise operators,
bitwise shift operators (<< and >>) have higher precedence
than bitwise logical operators and bitwise compound
operators (>>=, <<=, &=, ^=, and |=).

 Uses of Bitwise Operations
 Occasionally, such an operation is needed to

implement a large number of Boolean variables
without using a lot of space.

 A 32-bit int can be used to store 32 Boolean variables.
Normally, the minimum size for one Boolean variable
is one bit. All types in C must have sizes that are
multiples of bytes. However, only one bit is necessary
to represent a Boolean value.

 Bits can also be used to represent elements of a (small)
set. If a bit is 1, then element i is set, otherwise it is
not.

 Bitwise AND can be used to implement set-
intersection and bitwise OR to implement set-union.

462 Programming in C

if(r!=0)
 printf(“\n The number is not power of 2 ”);
else
 printf(“\n The number is power of 2 ”);
return 0;
}

 Using bitwise AND, the program in Example 1 can
be rewritten without using the loop or the arithmetic
operators.

 #include <stdio.h>
 int main()
 {
 int n;
 printf(“\n ENTER THE NUMBER :”);

 scanf(“%d”,&n);

 if((n & (n-1))==0)
 printf(“\n The number is power of 2 ”);
 else
 printf(“\n The number is not power of 2 ”);
 return 0;
 }

 For illustration, let n = 8, n & (n – 1) evaluates to 0000.
So, Here n is represented in as four binary digits. Hence

n 1 0 0 0

n – 1 0 1 1 1

n & (n – 1) 0 0 0 0

 So, the number 8 is a power of 2. But, when n = 12,
then,

n 1 1 0 0

n – 1 1 0 1 1

n & (n – 1) 1 0 0 0

 Thus, n & (n–1) is not equal to 0. Therefore, it is not a
power of 2, though it is divisible by 2.
 Masking is a process by which a given bit pattern is
converted into another bit pattern by means of a logical
bitwise operator. One of the operands in the bitwise
operation is the original bit pattern that is to be transformed.
The other operand, called mask, is the selected bit pattern
that yields the desired conversion. The bitwise AND
operator & is often used to mask off some set of bits. The
following segment of code uses a mask with the value 1
and prints an alternating sequence of 0’s and 1’s.

 Assuming that unsigned ints use 32 bits of memory,
two variables X and Y are defi ned for illustration as

 X = x31x30...x0
 Y = y31y30...y0

 Each bit of X and Y is referred to by writing the
variable name in lowercase with the appropriate subscript
numbers.

11.2.1 Bitwise AND

The bitwise AND is true only if both the corresponding
bits in the operands are set. The following chart defi nes
the operation of ‘&’ operator by applying ANDing on
individual bits

xi yi xi & yi

0 0 0

0 1 0

1 0 0

1 1 1

 However, here is an example of bitwise ‘&’ operation
applied on numbers represented by four bits.

Variable Decimal Equivalent b3 b2 b1 b0

x 12 1 1 0 0

y 10 1 0 1 0

z = x & y 8 1 0 0 0

 The & operator can be used to check whether a number
is a power of 2 or not. This can be achieved by using the
while loop and the arithmetic operator % as follows.

Example

1. #include <stdio.h>
int main()
{
int n, r;
printf(“\n ENTER THE NUMBER :”);
scanf(“%d”,&n);
while(n>1)
{
r=n%2;

r is assigned the
value obtained as

remainder from this
expression.if(r==0)

 n=n/2;
else
 break;
}

Result of logical
ANDing between
corresponding bit

positions

bitwise
operation

Advanced C 463
int i, mask=1;
for(i=0;i<16;++i)
 printf(“%d”,i & mask);

 A mask value can be used to check if certain bits have
been set. For example, to check whether bits 1 and 3 were
set, the number should be masked with 10 and the result
tested against the mask.

Example

2. #include <stdio.h>
int main()
{
 int n, mask = 10;
 printf(“Enter a number: ”);
 scanf(“%d”, &n);
 if((n & mask) == mask)
 printf(“Bits 1 and 3 are set”);
 else
 printf(“Bits 1 and 3 are not set”);
 return 0;
}

 The above example is better understood with the
following illustration:

Variable Contents Remarks

n any decimal
number

binary (16 bits)
x x x x x x x x x x

x x x x x x

x = 0 or 1

mask 10 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0

n & mask 0 0 0 0 0 0 0 0 0 0
0 0 x 0 x 0 15

...
... 3 2 1 0

Bit number

 In case the value of n & mask is equal to mask, that is, if
the bits 1 and 3 marked as x are equal to 1, then the bits in
1 and 3 positions are set to 1.
 Another important example of mask is 255; its binary
equivalent is 0000 0000 1111 1111. As only the lower
order bits are set to 1, the expression n & 255 produces
a value having a bit pattern with all its most signifi cant
bytes 0 and its least signifi cant byte the same as the least
signifi cant byte in n.

11.2.2 Bitwise OR

The | operator is used as bitwise OR. This operation
returns a 1 if either of the two bits (but not both) is a 1.

The following chart defi nes bitwise OR in individual bits
which are represented by variables with subscript i.

xi yi xi | yi

0 0 0

0 1 1

1 0 1

1 1 1

 Here is an example of bitwise | applied on four-bit
numbers.

Variable b3 b2 b1 b0

x 1 1 0 0

y 1 0 1 0

z = x | y 1 1 1 0

 The bitwise OR operator | is used to turn bits on. In the
following statement

n = n | mask;

the bits, which are set to 1 in mask, are set to 1 in n.

Example

3. #include <stdio.h>
int main()
{
 int n, mask = 4;
 printf(“\n Enter a number: ”);
 scanf(“%d”, &n);
 num |= mask;
 printf(“\n After ensuring bit 2 is set: %d\n”, n);
 return 0;
}

Output:
Enter a number: 3
After ensuring bit 2 is set: 7

 The binary equivalent of 3 represented in eight bits is
00000011. Here the mask is 4, the binary equivalent of
which is 00000100. The | operator sets the third bit of 3
from the right-hand side to 1. That is, n becomes 7; its
binary equivalent is 00000111.
 One must distinguish the bitwise operators & and | from
the logical operators && and ||, which imply left-to-right
evaluation of a truth value. For example, if x is 1 and y is
2, then x & y is 0 while x && y is 1.

464 Programming in C

11.2.3 Bitwise Exclusive-OR

The ^ operator is known as the bitwise Exclusive OR
(XOR). This operation returns a 1 if either of the two bits
(but not both) is a 1. The following chart defi nes XOR
applied on individual bits.

xi yi xi ^ yi

0 0 0

0 1 1

1 0 1

1 1 0

 The bitwise exclusive OR operator ^ sets a 1 in each
bit position where its operands have different bits, and 0
where they are the same. However, the following chart is
an example of bitwise ^ on four bit numbers.

Variable b3 b2 b1 b0

x 1 1 0 0

y 1 0 1 0

z = x ^ y 0 1 1 0

 Using bitwise XOR operator, two integer variables can
be swapped without using the third variable, as follows.

Example

4. #include <stdio.h>
int main()

{

 int a, b;

 printf(“\n Enter the value of a: ”);

 scanf(“%d”, &a);

 printf(“\n Enter the value of b: ”);

 scanf(“%d”, &b);

 a^=b^=a^=b;

 printf(“\n a = %d \t b = %d”,a,b);

 return 0;

}

Output:
 Enter the value of a:8
 Enter the value of b:10
 a = 10 b = 8

 Initially a = 8; its binary equivalent on an eight-bit
machine is 00001000. b = 10; its binary equivalent is
00001010. The statement a^=b^=a^=b; can be split into

three equivalent statements as it evaluates from right to
left due to the associativity of the ^= operator.
 (i) a ^= b
 (ii) b ^= a
 (iii) a ^= b
 After the execution of (i), the values of a and b in binary
equivalent will be 00000010 and 00001010 respectively.
After the execution of (ii), the values of a and b in binary
equivalent will be 00000010 and 00001000 respectively.
After the execution of (iii), the values of a and b in binary
equivalent will be 00001010 and 00001000 respectively.
That is, a=10 and b=8.
 The above logic may be applied to reverse a given
string using a bitwise operator.

Example

5. #include <stdio.h>
#include <string.h>
void reverse(char *str)
{
int l,j;
l = strlen(str) -1;
if(1==l)
 return; /* No need to reverse */
 for(j=0;j<l;j++,l––)
 {
 str[j]^=str[l]; /*triple xor will
 str[l]^=str[j]; /*replace c[j] with c[i]*/
 str[j]^=str[l]; /*without a temp var*/
 }
}
int main()
{
char s[80];
void reverse(char *);
printf(“\n Enter the string : ”);
ffl ush(stdin);
scanf(“%[^\n]”,s);
reverse(s);
printf(“\n Reverse of the string is %s”,s);
return 0;
}

11.2.4 Bitwise NOT

There is only one unary bitwise operator—bitwise NOT.
It is also known as 1’s complement operator. Bitwise NOT
fl ips all the bits. This works on a single number and simply

Advanced C 465

converts each 1 to 0 and each 0 to 1. Note that it is not the
same operation as a unary minus.
 The following is a chart that defi nes ~ on an individual
bit.

xi ~xi

0 1

1 0

 The bitwise ~ is easiest to demonstrate on four-bit
numbers (although only two bits are necessary to show the
concept).

Variable b3 b2 b1 b0

x 1 1 0 0

z = ~x 0 0 1 1

Example

6. #include <stdio.h>

int main()

{

 int num = 0xFFFF;

 printf(“The complement of %X is %X\n”, num, ~num);

 return 0;

}

Output:

The complement of FFFF is 0

7. #include <stdio.h>

int main()

{

 int num = 0xABCD;

 printf(“The complement of %X is %X\n”, num, ~num);

 return 0;

}

Output:

The complement of ABCD is 5432

11.2.5 Bitwise Shift Operator

The shift operators << and >> perform left and right shifts
of their left operand by the number of bit positions given
by the right operand, which must be non-negative.

Bitwise Shift Left

The bitwise shift left operator shifts the number left. The
most signifi cant bits are lost as the number moves left, and
the vacated least signifi cant bits are zero.
 Suppose a is a number whose value is 7335. Its binary
equivalent is 0001 1100 1010 0111. The expression b=a<<6
will shift all bits to the left. By shifting the bits to the left,
the most signifi cant bits are lost, and the number is padded
with zeros at the least signifi cant bit. The following is the
resulting number.

Shift left

10688 (in decimal)0010 10 01 1100 0000

Lost bits

0001 1100 1010 0111

Filled with 0’s

Bitwise Shift Right

The bitwise right shift operator causes all the bits in the
fi rst operand to be shifted to the right by the number of
positions indicated by the second operand. The rightmost
bits in the original bit pattern will be lost. The leftmost bit
positions that become vacant will be padded with zeros.
 Taking the number stored in a, the expression b=a>>6
will shift all bits to the right.

Lost bits

Filled with 0’s

114 (in decimal)

0001 1100 1010 0111

0000 0000 0111 0010

Shift right

 Thus x << 2 shifts the value of x by two positions, fi lling
vacated bits with zero; this is equivalent to multiplication
by 4. Right shifting an unsigned quantity always fi ts the
vacated bits with zero. Right shifting a signed quantity
will fi ll sign bit (‘arithmetic shift’) on some machines and
0 bits (‘logical shift’) on others. To divide an integer by 2n,
a right shift by n bit positions is applied. To multiply an
integer by 2n, a left shift by n positions is applied.
 The following program uses the bitwise shift right
and bitwise AND to display a number as a 16-bit binary

466 Programming in C

number. The number is shifted right successively from 16
down to zero and bitwise ANDed with 1 to see if the bit
is set. An alternative method would be to use successive
masks with the bitwise OR operator.

Example

8. #include <stdio.h>
int main()
{
 int counter, num;
 printf(“Enter a number: ”);
 scanf(“%d”, &num);
 printf(“\n The binary Equivalent of %d is”, num);
 for(counter=15; counter>=0; counter––)
 printf(“%d”,(num >> counter) & 1);
 putchar(‘\n’);
 return 0;
}

Output:
Enter a number: 7335
The binary Equivalent of 7335 is 0001 1100 1010

0111

9. A program to print the binary equivalent of an integer number using
bitwise operator.

 Solution
#include <stdio.h>
int main()
{
 int n,i,k,m;
 printf(“\n ENTER THE NUMBER :”);
 scanf(“%d”,&n);
 for(i=15;i>=0; ++i)
 {
 m=1<<i;
 k=n&m;
 k==0? printf(“0”):printf(“1”);
 }
 return 0;
}

 A better version of the program in Example 9 that works on machines
having either two- or four-byte words follows.

#include <stdio.h>
#include <limits.h>
int main()
{
 int num,i,n,mask;
 printf(“\n ENTER THE NUMBER :”);

 scanf(“%d”,&num);
 printf(“ \n BINARY EQUIVALENT IS :”);
 n =sizeof(int) * CHAR_BIT;
 mask= 1 << (n-1);
 for(i=1;i<=n;++i)
 {
 putchar(((num & mask) ==0) ? ‘0’: ‘1’);
 num<<=1;
 if(i% CHAR_BIT == 0 && i<n)
 putchar(‘ ’);
 }
 return 0;
}

Output:
 ENTER THE NUMBER :
 BINARY EQUIVALENT IS : 00011100 10100111

 In ANSI C, the symbolic constant CHAR_BIT is defi ned in
limits.h whose value is 8 representing the number of bits
in a char. Because a char takes 1 byte of storage space, the
constant 1 contains only its LSB as 1. The expression 1 <<
(n-1) shifts that bit to the higher order end. Thus, the mask
has all bits off except for its most signifi cant bit, which is
1. If the high-order bit in num is 0, then the expression num
& mask has all its bits set to 0 and the expression (num &
mask) == 0) evaluates to true. In the opposite case, if the
high-order bit is set to 1, then the expression num & mask
has all its bits set to 1 and the expression (num & mask)
==0) evaluates to false. That is putchar() prints 0 if the
most signifi cant bit is 0 and prints 1 if the most signifi cant
bit is 1. After that, the expression num << = 1 evaluates the
value of num with the same bit pattern except that the next
bit is brought as the MSB. The following statement

if(i% CHAR_BIT == 0 && i<n)
 putchar(‘ ’);

prints a blank space after each byte has been printed.

Example

10. A program to rotate a given number called value, n number
of times. If n is positive, rotate it left, otherwise right. It is to
be noted that rotation means shifting each bit by one place and
recovering the lost bit. For example, in a left shift, each bit is
shifted one place to the left and the leftmost bit, which comes
out is returned to the rightmost place.

 Solution
/* Function to rotate an unsigned int left or right */
 unsigned int rotate (unsigned int value, int n)

Advanced C 467
 {
 unsigned int result, bits;
 if(n== 0|| n== -16 || n== 16)
 return(unsigned int)l;
 else if(n > 0) /* left rotate */
 {
 n=-n;
 bits = value << (16 - n);
 result = value << n | bits;
 }
 else
 {
 n= -n;
 bits = value << (16 -n);
 result = value >> n | bits;
 }
 return(result);
 }
 int main()
 {
 unsigned int w1 = oxalb5, w2 = Oxff22;
 printf(“%x\n”, rotate(w1, 4);
 printf(“%x\n”, rotate(w1, -4);
 printf(“%x\n”, rotate(w2, 8);
 printf(“%x\n”, rotate(w2, -2);
 printf(“%x\n”, rotate(w1, 0);
 return 0;
 }

Output:
 1b5a
 5a1b
 22ff
 bfc8
 alb5

Points to Note

 • Arithmetic operators are used in conjunction with the
assignment operator to form shorthand forms that do
the desired operation as well as assignment. Such
forms are +=, –=, *=, and so on.

 • Shorthand forms can also be applied to bitwise
operators. For example, |=, &=, and ^= are some of
the shorthand forms with bitwise operators. Nearly all
binary operators have a version with = after it. These
operators do not change the value of the individual
operands.

 • Arithmetic operators have higher precedence than
bitwise operators.

11.3 COMMAND-LINE ARGUMENTS
All C programs defi ne a function main() that designates
the entry point of the program and is invoked by the
environment in which the program is executed. In the
programs considered so far, main() did not take any
arguments. However, main() can be defi ned with formal
parameters so that the program may accept command-line
arguments, that is, arguments that are specifi ed when the
program is executed. That is, the program must be run
from a command prompt. The following version of main()
allows arguments to be passed from the command line.

int main(int argc, char *argv[])

This declaration states that
 main returns an integer value (used to determine if the

program terminates successfully).
 argc is the number of command-line arguments including

the command itself, i.e., argc must be at least 1.
 argv is an array of the command-line arguments.
 The declaration of argv means that it is an array of
pointers to strings. By the normal rules about arguments
whose type is array, what actually gets passed to main is
the address of the fi rst element of the array. As a result, an
equivalent (and widely used) declaration is

int main(int argc, char **argv)

 When the program starts, the following conditions hold
true.
 argc is greater than 0.
 argv[argc] is a null pointer.
 argv[0], argv[1], ..., argv[argc–1] are pointers to

strings with implementation-defi ned meanings.
 argv[0] is a string that contains the program’s name.

The remaining members of argv are the program’s
arguments.

 The following program echoes its arguments to the
standard output. This program is essentially the UNIX or
MSDOS echo command.

Example

11. #include <stdio.h>
int main(int argc, char *argv[])
{
 int i;
 for(i = 0; i < argc; i++)
 printf(“%s \n”, argv[i]);

468 Programming in C

 printf(“\n”);
 return 0;
}

 If the name of this program is prg.c, an example of its execution is
as follows.

 prg.c oxford pradip manas

Output:
 prg.c
 oxford
 pradip
 manas

 The following program is a version of the UNIX cat
command or MSDOS type command that displays fi les
specifi ed as command-line parameters.

Example

12. #include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
 int i = 1;
 int c;
 int num_args = 0;
 FILE *fp;
 if(argc == 1)
 {
 fprintf(stderr, “No input fi les to display…\n”);
 exit(1);
 }
 if(argc > 1)
 printf(“%d fi les to be displayed\n”, argc-1);
 num_args = argc - 1;
 while(num_args > 0)
 {
 printf(“[Displaying fi le %s]\n”, argv[i]);
 num_args––;
 fp = fopen(argv[i], “r”);
 if(fp == NULL)
 {
 fprintf(stderr,“Cannot display %s \n”, argv[i]);
 continue; /* Goto next fi le in list */
 }
 c = getc(fp);
 while(c!= EOF)
 {
 putchar(c);
 c = getc(fp);

 }
 fclose(fp);
 printf(“\n[End of %s]\n———————\n\n”, argv[i]);
 i++;
 }
 return 0;
}

 The following program named count.c is similar to the
UNIX wc command call. The output of the program, run on
UNIX, is given here.

 $ count prog.c
 prog.c: 300 characters 20 lines
 $ count –l prog.c
 prog.c: 20 lines
 $ count –w prog.c
 prog.c: 300 characters

Example

13. /*count.c : Count lines and characters in a fi le */
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{
 int c, nc, nlines;
 char fi lename[120];
 FILE *fp, *fopen();
 if(argc == 1)
 {
 fprintf(stderr, “No input fi les\n”);
 fprintf(stderr, “Usage: \% count [-l] [w] fi le\n”);
 exit(1);
 }

 nlines = 0;

 nc = 0;

 if((strcmp(“-l”, argv[1]) == 0)||(strcmp(“-w”,
argv[1]) == 0))

 strcpy(fi lename, argv[2]);

 else

 strcpy(fi lename, argv[1]);

 fp = fopen(fi lename, “r”);

 if(fp == NULL)

 {

 fprintf(stderr,“Cannot open %s\n”, fi lename);

 exit(1);

 }

 c = getc(fp);

 while(c!= EOF)

Advanced C 469
 {
 if(c == ‘\n’)
 nlines++;
 nc++;
 c = getc(fp);
 }
 fclose(fp);
 if(strcmp(argv[1], “-w”) == 0)
 printf(“%s: %d characters \n”, fi lename, nc);
 else if(strcmp(argv[1], “-l”) == 0)
 printf(“%s: %d lines \n”, fi lename, nlines);
 else
 printf(“%s: %d characters %d lines\n”,

fi lename, nc, nlines);
 return 0;
}

 It should be noted that the preceding program crashes if
it is run as

 $ count –w

or
 $ count –l

 This is because in this case we failed to test if there was
a third argument containing the fi lename to be processed.
Here trying to access this non-existent argument causes a
memory violation. This gives rise to a so-called ‘bus error’
in a UNIX environment.

Example

14. Write a cpy command to operate like the UNIX cp or MSDOS COPY
command that takes its text fi les from the command line as
follows.

 cpy fi le newfi le

 Solution
#include <stdio.h>
int main(int argc, char **argv)
{
 FILE *in, *out;
 int key;
 if(argc < 3)
 {
 puts(“The source must be an existing fi le”);
 puts(“If the destination fi le exists, it will

be overwritten”);
 return 0;
 }

 if((in = fopen(argv[1], “r”)) == NULL)
 {
 puts(“Unable to open the fi le to be copied”);
 return 0;
 }
 if((out = fopen(argv[2], “w”)) == NULL)
 {
 puts(“Unable to open the output fi le”);
 return 0;
 }
 while(!feof(in))
 {
 key = fgetc(in);
 if(!feof(in))
 fputc(key, out);
 }
 fclose(in);
 fclose(out);
 return 0;
}

main() may take the third command line argument env,
though it is compiler dependent. The argument env is
an array of pointers to the strings. Each pointer points
to an environment variable from the list of environment
variables. Consider the following program.

#include <stdio.h>
int main(int argc, char *argv[], char *env[])
{
 int i = 0;
 while (env[i])
 printf (“\n%s”, env[i++]);
 return 0;
}

The above program produces a typical output when it
was executed in Quincy which uses the MinGW port of
the GCC compiler system.

ALLUSERSPROFILE=C:\ProgramData

APPDATA=C:\Users\Manas\AppData\Roaming

CommonProgramFiles=C:\Program Files\Common Files

COMPUTERNAME=MANAS-PC

ComSpec=C:\Windows\system32\cmd.exe

FLTK_DOCDIR=C:\Program Files\quincy\html\

programmerhelp\fl tk\fl tk1.1\

FP_NO_HOST_CHECK=NO

HOMEDRIVE=C:

HOMEPATH=\Users\Manas

470 Programming in C

LOCALAPPDATA=C:\Users\Manas\AppData\Local

LOGONSERVER=\\MANAS-PC

NUMBER_OF_PROCESSORS=2

OS=Windows_NT

Path=C:\Program Files\quincy\mingw\bin\;C:\Program
Files\quincy\bin\VistaBin;C:\Program
Files\quincy\bin;C:\JavaFX\javafxsdk\
bin;C:\JavaFX\javafxsdk\emulator\bin;C:\
Windows\system32;C:\Windows;C:\Windows\
System32\Wbem;C:\Windows\System32\
WindowsPowerShell\v1.0\

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;
.WSF;.WSH;.MSC

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER=x86 Family 15 Model 6 Stepping
5, GenuineIntel

PROCESSOR_LEVEL=15

PROCESSOR_REVISION=0605

ProgramData=C:\ProgramData

ProgramFiles=C:\Program Files

PROMPT=PG

PSModulePath=C:\Windows\system32\

WindowsPowerShell\v1.0\Modules\

PUBLIC=C:\Users\Public

SESSIONNAME=Console

SystemDrive=C:

SystemRoot=C:\Windows

TEMP=C:\Users\Manas\AppData\Local\Temp

TMP=C:\Users\Manas\AppData\Local\Temp

USERDOMAIN=Manas-PC

USERNAME=Manas

USERPROFILE=C:\Users\Manas

windir=C:\Windows

11.4 THE C PREPROCESSOR
The C preprocessor is a program that processes any source
program in C before compilation. Since it allows the user
to defi ne macros, the C preprocessor is also called a macro
processor. A macro is defi ned as an open-ended subroutine.
An open-ended subroutine is a set of program instructions,
as in a function, that does not have a return statement.
 The preprocessor provides its own language that
can be a very powerful tool for the programmer. These
tools are instructions to the preprocessor, and are called

 directives. The C preprocessor has several directives that
are used to invoke it. A directive usually occupies a single
line. The # symbol should be the fi rst non-blank character
on the line, which means that only spaces and tabs may
appear before it. Blank symbols may also appear between
the # and directive. A directive line may also contain a
comment; these are simply ignored by the preprocessor.
A # appearing in a line on its own is simply ignored. Most
directives are followed by one or more tokens. A token is
anything other than a blank. A line with a directive whose
last non-blank character is \, is assumed to continue in the
line following it, thus making it possible to defi ne multiple
line directives.
 Directives are generally placed at the beginning of a
source program, which means that these are written before
the main(). However, preprocessor directives can appear
anywhere in a source fi le, but they apply only to the
remainder of the source fi le. It is advantageous to use the
preprocessor because it makes

 program development easier.
 programs easier to read.
 modifi cation of programs easier.
 C code more transportable between different machine

architectures.

11.4.1 The C Preprocessor Directives

The preprocessor directives can be classifi ed into two
categories: unconditional and conditional. Figure 11.1
depicts the two categories of directives.

preprocessor

directives

unconditional

undef

else

include

elif

define

if

conditional

line

ifdef

error

ifndef

pragma

endif

Figure 11.1 Types of preprocessor directives in C

 The C preprocessor directives shown in Fig. 11.1 are
given in Table 11.3 with brief explanations.

Advanced C 471
Table 11.3 The C preprocessor directives

Directive Explanation

 #defi ne Defi nes a macro

 #undef Undefi nes a macro

 #include Textually includes the contents of a fi le

 #ifdef Makes compilation of code conditional on a macro
being defi ned

 #ifndef Makes compilation of code conditional on a macro
not being defi ned

 #endif Marks the end of a conditional compilation block

 #if Makes compilation of code conditional on an
expression being non-zero

 #else Specifi es an else part for a #ifdef, #ifndef, or
#if directive

 #elif Combination of #else and #if

 #line Change current line number and fi lename

 #error Outputs an error message

 #pragma Is implementation-specifi c

 # defi ne

 The general form for the defi ne directive is
#defi ne macro_name replacement_string

 The #defi ne directive is used to make substitutions
throughout the program in which it is located. In other
words, #defi ne causes the compiler to go through the
program, replacing every occurrence of macro_name with
replacement_string. The replacement string stops at the
end of the line. No semicolon is used at the end of the
directive.

Example

15. A typical illustration of the use of #defi ne.

#include <stdio.h>
#defi ne TRUE 1
#defi ne FALSE 0
int main()
{
 int done=0;
 while(done=!TRUE)
{
printf(“\n Here done is FALSE”);
done++;
}

printf(“\n Now done is TRUE”);
return 0;
}

Output:
 Now done is TRUE

 Another feature of the #defi ne directive is that it can take
arguments, making it rather useful as a pseudo-function creator.
Consider the following example.

16. #include <stdio.h>
#defi ne abs_value(a)((a<0)? –a : a)
int main()
{
 int a=-1; replaced by (a<0)? –a : a
 while(abs_value(a))
 {
 printf(“\n Value of a=%d within while”,a);
 a=0;
 }
 printf(“\n Value of a=%d outside while”,a);
 return 0;
}

Output:
Value of a=-1 within while
Value of a=0 outside while

 The next example shows how to use the #defi ne directive to
create a general-purpose incrementing for loop that prints out the
integers 1 through 5.

17. #include <stdio.h>
#defi ne up_count(x,lo,hi)\
 for((x)=lo;(x)<=(hi);(x)++)
int main()
{
 int k;

replaced by for (k = 1;
k<=5; k++)

 up_count(k,1,5)
 {
 printf(“\n k is %d”,k);
 }
 printf(“\n Test program ended”);
 return 0;
}

Output:
k is 1
k is 2
k is 3
k is 4
k is 5
Test program ended

472 Programming in C

 It should be noted that a macro should be written in a
single line, but it can be continued to more than one line
by using the statement continuation character, \. One could
write the following:

#defi ne min(x, y) \
 ((x)<(y) ? (x) : (y))

Points to Note

 Apart from parameterized macros, C99 added a better
way of creating function which expanded in line.

 #undef

The general form of this #undef directive is
#undef macro_name

 This directive undefi nes a macro. A macro must be
undefi ned before being redefi ned to a different value. For
example,

#undef VALUE
#defi ne VALUE 1024
#undef MAX

 The use of #undef on an undefi ned identifi er is harmless
and has no effect. If a macro ceases to be useful, it may be
undefi ned with the #undef directive. #undef takes a single
argument, the name of the macro to be undefi ned. The bare
macro name is used even if the macro is function-like. If
anything appears on the line after the macro name, it is an
error. Moreover, the #undef directive has no effect if the
name is not a macro.

 #include

The #include directive has two general forms
 #include <fi le_name>

and

 #include “fi le_name”

 The fi rst form is used for referring to the standard
system header fi les. It searches for a fi le named fi le_name
in a standard header fi le library and inserts it at the current
location. Header fi les contain details of functions and types
used within the library. They must be included before the
program can make use of the library functions. The angle
brackets, < >, indicates the preprocessor to search for the
header fi le in the standard location for library defi nitions.

 The second form searches for a fi le in the current
directory. This is used where multi-fi le programs are being
written. Certain information is required at the beginning of
each program fi le. This code in the fi le_name can be put into
the current directory and included in each program fi le.
Local header fi le names are usually enclosed by double
quotes, “ ”. It is conventional to give header fi les a name
that ends in ‘.h’ to distinguish them from other types of
fi les. Examples of both forms of #include have been given
in earlier chapters.
 In addition, each preprocessing directive must be on its
own line. For example, this will not work:

#include <stdio.h> #include <stdlib.h>

 Include fi les can have #include directives in them. This
is referred to as nested includes. The number of levels
of nesting allowed varies between compilers. However,
C89 stipulates that at least 8 nested inclusions will be
available. C99 specifi es that at least 15 levels of nesting
be supported.

 #if, #else, #elif, and #endif

Here #if is a conditional directive of the preprocessor. It
has an expression that evaluates to an integer. The #else is
also used with this directive if required. The #if and #else
pair operates in a way similar to the if-else construct
of C. The #endif is used to delimit the end of statement
following the statement sequence.
 The general form of #if with #endif and #else is

 #if< constant_expression>
 <statement_sequence1>
 #endif

or
 #if< constant_expression>
 <statement_sequence1>
 #else<statement_sequence2>
 #endif

 As an example, if a program has to run on an MSDOS
machine and it is required to include fi le msdos.h, otherwise
a default.h fi le, then the following code using #if can be
used.

 #if SYSTEM == MSDOS
 #include <msdos.h>
 #else
 #include “default.h”
 #endif

Advanced C 473

 The general form for using #if with #elif, which is
else-if, and #endif is

 #if<constant_expression1>
 <statement_sequence1>
 #elif<constant_expression2>
 <statement_sequence2>
 .
 .
 #elif<constant_expressionN>
 <statement_sequenceN>
 #endif

 Sometimes it may be necessary to choose one of the
different header fi les to be included into a program. For
example, preprocessors might specify confi guration
parameters to be used on different types of operating
systems. The programmer can do this using a series
of conditional directives as shown in the following
illustration.

 #if SYSTEM1
 #include “SYSTEM_1.h”
 #elif SYSTEM2
 #include “system_2.h”
 #elif SYSTEM3
 ...
 #endif
 #ifdef and #ifndef

 The #ifdef directive executes a statement sequence if
the macro_name is defi ned. If the macro_name is not defi ned,
the #ifndef directive executes a statement sequence. For
both the directives, the end of statements is delimited by
#endif. The general form of #ifdef is

 #ifdef macro_name
 <statement_sequence>
 #endif

and the general form of #ifndef is
 #ifndef macro_name
 <statement_sequence>
 #endif

 These conditional directives are useful for checking if
macros are defi ned or set, perhaps from different header
fi les and program modules. For instance, to set integer size
for a portable C program between Turbo C (on MSDOS) and
LINUX (or other) operating systems, these directives can be
used.
 As an example, assume that if Turbo C is running, a
macro TURBOC will be defi ned. So the programmer just

needs to check for this. Thus the following code may be
written.

 #ifdef TURBOC
 #defi ne INT_SIZE 16
 #else
 #defi ne INT_SIZE 32
 #endif

 Another example of the use of #ifdef is given as
follows.

Example

18. #include <stdio.h>
 #defi ne VAX 1

 #defi ne SUN 0

int main()

{

#ifdef VAX

 printf(“This is a VAX\n”);

#endif

#ifdef SUN

 printf(“This is a SUN\n”);

#endif

return 0;

}

Output:
 This is a VAX

Point to Note

C89 states that #ifs and #elifs may be nested at least
8 levels. C99 states that at least 63 levels of nesting be
allowed.

The logical operators such as && or || can be used to test
if multiple identifi ers have been defi ned.
 #error

The directive #error is used for reporting errors by the
preprocessor. The general form is

#error error_message

 When the preprocessor encounters this, it outputs the
error_message and causes the compilation to be aborted.
Therefore, it should be only used for reporting errors that
make further compilation pointless or impossible. It is
used primarily for debugging. For example,

474 Programming in C

#ifndef LINUX
#error This software requires the LINUX OS.
#endif

Another example of the use of #error is as follows –
#if A_SIZE < B_SIZE
#error “Incompatible sizes”
#endif

 Here, the #error macro is used to enforce the consistency
of two symbolic constants.

 #line

The #line directive is used to change the value of the __LINE__
and __FILE__ variables. The fi lename is optional. The __FILE__
and the __LINE__ variables represent the current fi le and line
that is being read. The general form of this directive is

#line line_number <fi le _name>

The example,
#line 20 “program1.c”

changes the current line number to 20, and the current fi le
to “program1.c”.

 #pragma

The #pragma directive allows the programmer the ability
to convey to the compiler to do certain tasks. Since the
#pragma directive is implementation-specifi c, uses vary
from compiler to compiler. One option might be to
trace program execution. Three forms of this directive
(commonly known as pragmas) are specifi ed by the 1999
C standard. A C compiler is free to attach any meaning it
likes to other pragmas.

11.4.2 Predefi ned Identifi ers

The preprocessor furnishes a small set of predefi ned identifi ers
that denote useful information. The standard ones are
summarized in Table 11.4. Most implementations augment
this list with many non-standard predefi ned identifi ers.

Table 11.4 Standard predefi ned identifi ers

Identifi er Denotes

__FILE__ Name of the fi le being processed

__LINE__ Current line number of the fi le being processed

__DATE__ Current date as a string (e.g., “16 Dec 2005”)

__TIME__ Current time as a string (e.g., “10:15:30”)

 The predefi ned identifi ers, also known as macros, can
be used in programs just like program constants.
 All predefi ned macros have two underscore characters
at the beginning and at the end. A demonstration of
predefi ned identifi ers is illustrated below:

#include <stdio.h>
int main()
{
 printf(“__DATE__ == %s\n”,__DATE__);
 printf(“__FILE__ == %s\n”,__FILE__);
 printf(“__LINE__ == %d\n”,__LINE__);
 printf(“__TIME__ == %s\n”,__TIME__);
 printf(“__STDC__ == %d\n”,__STDC__);
 return 0;
}

Output:
__DATE__ == Dec 18 2010
__FILE__ == pred.c
__LINE__ == 11
__TIME__ == 17:25:09
__STDC__ == 1

 The __DATE__ macro provides a string representation of
the date in the form Mmm dd yyyy where Mmm is the fi rst three
characters of the name of the month, dd is the day in the form
of a pair of digits 1 to 31, where single-digit days are preceded
by a blank and fi nally, yyyy is the year as four digits.
Similarly, __TIME__, provides a string containing the
value of the time when it’s invoked, in the form hh:mm:ss,
which is evidently a string containing pairs of digits for
hours, minutes, and seconds, separated by colons. Note
that the time is when the compiler is executed, not when
the program is run. Once the program containing this
statement is compiled, the values that will be output by
the printf() statement are fi xed until it is compiled again.
On subsequent executions of the program, the then current
time and date will be output. Don’t confuse these macros
with the time function

C99 adds the following macros.

_ _STDC_HOSTED_ _ 1 if an operating system is present

_ _STDC_VERSION_ _ 199901L or greater; represents
version of C

_ _STDC_IEC_559_ _ 1 if IEC 60559 fl oating-point
arithmetic is supported

__STDC_IEC_599_COMPLEX_ _ 1 if IEC 60559 complex arithmetic
is supported

_ _STDC_ISO_10646_ _ A value of the form yyyymmL
that states the year and month of
the ISO/IEC 10646 specifi cation
supported by the compiler

Advanced C 475

 There are two special operators that can be used in
macro. They are # and ##.

 Stringizing Operator

If the formal parameter associated with a macro is preceded
by a “#” symbol in the replacement string, then a string
complete with enclosing quotes and all relevant escapes
is formed. This operation is known as stringizing. It is
illustrated in the following program.

#include <stdio.h>

#defi ne SHOWX(x) printf(#x “= %d”, (x));printf (“\n”)

int main(void)

{

 int a = 5, b = 10;

 SHOWX(a);

 SHOWX(b);

 SHOWX(a+b);

 return 0;

}

Output:
a = 5
b = 10
a+ b = 15

In this illustration, SHOWX(a); is expanded as
printf(“a” “= %d”,(a));printf(“\n”);

Similarly, SHOWX(a+b); is expanded as
printf(“a+b” “= %d”,(a+b));printf(“\n”);

 Token Pasting Operator

The ## operator within a macro expansion causes
concatenation of the tokens on either side of it to form
a new token. This is called token pasting. This means
two tokens on either side of the ## will be merged as if
they were a single text token. The modifi ed version of the
above program is as follows :

#include <stdio.h>
#defi ne SHOWX(x) printf(“%d”,a##x);printf(“\n”)
int main(void)
{
 int a1 = 5, a2 = 10;
 SHOWX(1);
 SHOWX(2);
 return 0;
}

Output:
5
10

When the pre-processor processed SHOWX(1) it generated
printf(“%d”,a1);

 The ## operator can be used to swap two variables of
any data type as follows.

#include <stdio.h>
#defi ne SWAP(datatype, a,b) datatype a##b = a; \
 a = b; \
 b = a##b
int main(void)
{

 int x = 5, y = 10;
 fl oat m = 1.23f, n = 4.56f;
 SWAP(int, x, y);
 printf(“\n x = %d \t y = %d”, x,y);
 SWAP(fl oat, m, n);
 printf(“\n m = %g \t n = %g”, m,n);
 return 0;
}

Output:
x = 5 y = 10
m = 1.23 n = 4.56

 A formal parameter as an operand for ## is not expanded
before pasting. The actual parameter is substituted for the
formal parameter; but the actual parameter is not expanded.
For example,

#defi ne a(n) aaa ## n
#defi ne b 2

the expansion of a(b) is aaab, not aaa2 or aaan.

Points to Note

 • Command-line arguments are specifi ed when a program
is executed.

 • Preprocessor directives can appear anywhere in a
source program, but these are generally placed at the
beginning of a source program.

11.5 TYPE QUALIFIER
A type is a fundamental concept in Standard C. When a
variable is declared, it is associated with a data type. Each
expression and sub-expression that is written has a type.

476 Programming in C

That is, data type is a foundation attribute of a variable.
Additional attributes include the following.
 Type specifi er (signed or unsigned)
 Type qualifi er (const, volatile, and/or restrict)
 Storage class (auto, register, extern, or static)
 A type specifi er affects the range of values that an object
can have. It may either be signed or unsigned. Storage class
has already been discussed in Chapter 6. Type qualifi ers
are used to provide greater control over optimization.
Many important optimization methods are based on the
principle of caching: under certain circumstances the
compiler can remember the last value accessed (read or
written) from a location, and use this stored value the next
time that location is read. If this memory is a register of the
machine, for example, the code can be smaller and faster
using the register rather than accessing external memory.
 There are two or three types of qualifi ers—const,
volatile, and/or restrict. The concepts of const
and volatile are completely independent. A common
misconception is to imagine that const is the opposite of
volatile and vice versa. The C89 standards committee
added two type qualifi ers to C, const and volatile. The
C99 committee added a third type qualifi er with restrict.
A discussion of the type qualifi ers follows.

11.5.1 const Qualifi er

const means something that is not modifi able. The const
type qualifi er is used to qualify an object whose value
cannot be changed. Objects qualifi ed by the const keyword
cannot be modifi ed. Using the const qualifi er on an object
protects it from the side effects caused by operations that
alter storage.
 The syntax and semantics of const were adapted from
C++. Any variable that is declared with const as a part
of its type specifi cation must not be assigned to in the
program. The following program clarifi es the use of const
in a C program.

Example

19. #include <stdio.h>
 #include <stdlib.h>
 int main(){
 int i=10;
 const int c = 5;
 const int *cp;
 int *ncpi;

 cp = &c;
 ncpi = &i;

 cp = ncpi;
 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=%d”,*cp,*ncpi);
 exit(EXIT_SUCCESS);
 return 0;
}

Output:
 c=5 i= 10
 *cp=10 *ncpi=10

 Now if a statement c=20; is inserted in the program in Example
19, the compiler generates an error.

20. #include <stdio.h>
#include <stdlib.h>
int main(){
 int i=10;
 const int c = 5;
 const int *cp;
 int *ncpi;
 cp = &c;
 ncpi = &i;
 cp = ncpi;
 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=d”,*cp,*ncpi);

 c=20;
C compiler may give

an error here

 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=%d”,*cp,*ncpi);
 *ncpi = 0;
 exit(EXIT_SUCCESS);
 return 0;
}

 Consider the following version of the program in Example 20.

21. #include <stdio.h>
#include <stdlib.h>
int main()
{
 int i=10;
 const int c = 5;
 const int *cp;
 int *ncpi;
 cp = &c;
 ncpi = &i;
 cp = ncpi;

Advanced C 477
 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=%d”,*cp,*ncpi);
 ncpi = (int *)cp;
 *ncpi=20;
 printf(“\n c=%d \t i=%d”,c,i);
 printf(“\n *cp=%d \t *ncpi=%d”,*cp,*ncpi);
 exit(EXIT_SUCCESS);
 return 0;
}

Output:
 c=5 i= 10
 *cp=10 *ncpi=10
 c=5 i= 20
 *cp=20 *ncpi=20

 The output obtained will be clear after reading the
subsequent paragraphs. The following properties may be
applied to the const type qualifi er.
 The const qualifi er can be used to qualify any data

type, including a single member of a structure or
union.

 If const is specifi ed when declaring an aggregate
type, all members of the aggregate type are treated
as objects qualifi ed with const. When const is used
to qualify a member of an aggregate type, only that
member is qualifi ed.

For example,
const struct employee {
 char name[30];
 int age;
 int deptno;
 fl oat salary;
 } a, b;

 Here, name, age, deptno, and salary are treated as though
declared with const. Therefore, all members of a and b are
const-qualifi ed.

struct empl {
 char *name;
 const int age;
 int deptno;
 fl oat salary;
 } c, d;

 Here member age is qualifi ed. All members in the
previous structure are qualifi ed with const. If the tag
employee is used to specify another structure later in the

program, the const qualifi er does not apply to the new
structure’s members unless explicitly specifi ed.
 The address of a non-const object can be assigned

to a pointer to a const object (with an explicit const
specifi er), but that pointer cannot be used to alter the
value of the object. For example,

 const int i = 0;
 int j = 1;
 const int *p = &i;

Explicit const
specifi er required

 int *q = &j;
 *p = 1;

Error—attempt to modify a const-
qualifi ed object through a pointer

 *q = 1; This is VALID

 Attempting to modify a const object using a pointer
to a non-const qualifi ed type causes unpredictable
behavior.

 There are two standards for const specifi er. One, an
object that is defi ned with ‘const’ may not be modifi ed
in any way by a strictly conforming program. Since the
‘c’ in Example 19 is const, it may not be modifi ed; if it
is modifi ed, the behavior is undefi ned. Two, an lvalue
with the const-qualifi er may not be assigned to. Note also
that the following strictly conformant program must print
‘5, 7’.

Example

22.#include <stdio.h>
int v=5;

int *p;

void f(const int *);

int main(void) {

 p = &v;

 f(&v);

 return 0;

}

void f(const int *vp) {

 int i, j;

 i = *vp;

 *p = 7;

 j = *vp;

 printf(“%d, %d\n”, i, j);

}

478 Programming in C

 The compiler cannot assume that i and j are equal,
despite the fact that *vp is const-qualifi ed, because vp can
(and does) point to a modifi able lvalue and the assignment
to *p can (and does) modify the lvalue to which the const-
qualifi ed vp pointer points. As this example illustrates,
const does not mean constant.
 Consider the following statements.

 int c;
 int *const p = &c;

 Note, p is a pointer to an integer, which is exactly what
it must be if the const were not there. The const means that
the contents of p is not to be changed, although whatever
it points to can be—the pointer is constant, not whatever it
points to. The other way round is

 const int *cp;

that indicates cp is now an ordinary, modifi able pointer, but
what it points to must not be modifi ed. So, depending on
what one chooses to do, both the pointer and what it points
to may be modifi able or not; just choose the appropriate
declaration.
 The const qualifi er may be specifi ed with the volatile
qualifi er. This is useful, for example, in a declaration of a
data object that is immutable by the source process but can
be changed by other processes, or as a model of a memory-
mapped input port such as a real-time clock.

Points to Note

∑ const char *p This is a pointer to a constant char.
 One cannot change the value pointed at by p, but
 can change the pointer p itself.

 *p = ‘A’; is illegal.

p = “Hello”; is legal.

∑ const * char p This is a constant pointer to (non-
 const) char. One cannot change the pointer p, but
 can change the value pointed at by p.

 *p = ‘A’; is legal.

 p = “Hello”; is illegal.

∑ const char * const p This is a constant pointer to
 constant char! One cannot change the value pointed
 to by p, nor the pointer.

 *p = ‘A’; is illegal.

 p = “Hello”; is also illegal.

11.5.2 volatile Qualifi er

volatile is used to do away with the problems that
are encountered in real-time or embedded systems

programming using C. A volatile value is one that might
change unexpectedly. This situation generally occurs while
accessing special hardware registers, usually when writing
device drivers. The compiler should not assume that a
volatile-qualifi ed variable contains the last value that was
written to it, or that reading it again would yield the same
result that reading it the previous time did. The compiler
should, therefore, avoid making any optimizations that
would suppress seemingly redundant accesses to a volatile-
qualifi ed variable. Examples of volatile locations would
be a clock register (which always gives an up-to-date time
value each time you read it), or a device control/status
register, which causes some peripheral device to perform
an action each time the register is written to.
 The volatile qualifi er forces the compiler to allocate
memory for the volatile object, and to always access the
object from memory. This qualifi er is often used to declare that
an object can be accessed in some way not under the compiler’s
control. Therefore, an object qualifi ed by the volatile keyword
can be modifi ed or accessed by other processes or hardware,
and is especially vulnerable to side effects.
 The following rules apply to the use of the volatile
qualifi er.
 The volatile qualifi er can be used to qualify any

data type, including a single member of a structure or
union.

 Redundant use of the volatile keyword elicits a
warning message. For example,

 volatile volatile int x;

 When volatile is used with an aggregate type
declaration, all members of the aggregate type are qualifi ed
with volatile. When volatile is used to qualify a member
of an aggregate type, only that member is qualifi ed. For
example,

volatile struct employee {
 char name[30];
 int age;
 int deptno;
 fl oat salary;
 } a, b;

struct empl {
 char *name;
 volatile int age;
 int deptno;
 fl oat salary;
 } c, d;

Advanced C 479

 If the tag employee is used to specify another structure
later in the program, the volatile qualifi er does not
apply to the new structure’s members unless explicitly
specifi ed.
 The address of a non-volatile object can be assigned
to a pointer that points to a volatile object. For example,

const int *intptr;

volatile int x;

intptr = &x;

 Likewise, the address of a volatile object can be
assigned to a pointer that points to a non-volatile object.

11.5.3 restrict Qualifi er

The restrict qualifi er is an invention of the C99
committee. The object that is accessed through the
restrict-qualifi ed pointer has a special relation with that
pointer. Only pointer types can be restrict-qualifi ed. A
restrict-qualifi ed pointer that is a function parameter, is
the sole means of access to an object.

Some Typical Uses of the Restrict Qualifi er

The typical uses are in
 fi le scope restricted pointers
 function parameters
 block scope
These uses are explained in the following sections.

File scope restricted pointers A fi le scope-restricted
pointer is subject to very strong restrictions. It should point
to a single array object for the duration of the program.
That array object may not be referenced both through the
restricted pointer and through either its declared name (if
it has one) or another restricted pointer.
 Note in the following example how a single block of
storage is effectively subdivided into two disjoint objects.

fl oat *restrict x, *restrict y;

void init(int n)

{

 fl oat *t = malloc(2 * n * sizeof(fl oat));

 x = t; /* x refers to 1st half */

 y = t + n; /* y refers to 2nd half */

}

Function parameters Restricted pointers are also very
useful as pointer parameters of a function. A compiler can
assume that a restrict-qualifi ed pointer, that is a function
parameter, is at the beginning of each execution of the
function, the sole means of access to an object. Note that
this assumption expires with the end of each execution.

Block scope A block scope-restricted pointer makes an
aliasing assertion that is limited to its block. This seems
more natural than allowing the assertion to have function
scope. It allows local assertions that apply only to key
loops. In the following example, parameters x and y can
be assumed to refer to disjoint array objects because both
are restrict-qualifi ed. This implies that each iteration of
the loop is independent of the others, and hence the loop
can be aggressively optimized.

void f1(int n, fl oat * restrict x, const fl oat *
restrict y)

{

 int i;

 for(i = 0; i < n; i++)

 x[i] += y[i];

}

Members of Structures

The restrict qualifi er can be used in the declaration of a
structure member. When an identifi er of a structure type
is declared it provides a means of access to a member of
that structure type. The compiler assumes that the identifi er
provides the sole initial means of access to a member of the
type specifi ed in the member declaration. The duration of
the assumption depends on the scope of the identifi er, not on
the scope of the declaration of the structure. Thus a compiler
can assume that s1.x and s1.y below are used to refer to
disjoint objects for the duration of the whole program, but
that s2.x and s2.y are used to refer to disjoint objects only
for the duration of each invocation of the f3 function.

struct t {

 int n;

 fl oat * restrict x, * restrict y;

};

struct t s1;

void f3(struct t s2) { /* ... */ }

480 Programming in C

Points to Note

 • The const type qualifi er is used to qualify an obfect
value cannot be changed.

 • A volatile qualifed object is one that might change
unexpectedly.

 • The restrict-qualifi er, used only with pointers, is
used to access an object through a specially related
pointer.

11.6 VARIABLE LENGTH ARGUMENT LIST
All the functions discussed so far accept a fi xed number of
arguments. But functions like printf() accept any number
of parameters. How can a function with a variable number
of arguments be written? To write such functions, macros
defi ned in the header fi le stdarg.h have to be used. The
presence of a variable-length argument list is indicated by an
ellipsis (...) in the prototype. For example, the prototype for
printf(), as found in <stdio.h>, looks something like this.

extern int printf(const char *, ...);

 Those three dots ‘...’ allow the function to accept any
number of parameters. Only the last parameters must be
NULL and the function prototype must be as follows.

void function_name(const char *, ...);

 The macros used are va_list, va_start(), va_arg(),
and va_end(). va_list is an array or special ‘pointer’
type that is used in obtaining the arguments that come in
place of the ellipsis. va_start() begins the processing of
an argument list, va_arg() fetches argument values from
it, and va_end() fi nishes processing. Therefore, va_list is
a bit like the stdio FILE * type and va_start is a bit like
fopen(). Consider the following program.

Example

23. #include <stdarg.h>
#include <stdio.h>
void show(int n, ...)
{
va_list ap;
va_start(ap, n);
printf(“count = %d:”, n);
while(n–– > 0)
{
int i = va_arg(ap, int);
printf(“%d”, i);
}

printf(“\n”);
va_end(ap);
}
int main()
{
show(1, 1);
show(3, 1, 2, 3);
return 0;
}

 The show() function declares a single parameter (n), followed by
an ellipsis. The ellipsis specifi es that a variable number of additional
parameters are present. This means that a caller of show() can pass
an arbitrary number of arguments in addition to the fi rst int argument.

Output

count = 1: 1
count = 3: 1 2 3

 There are some restrictions on functions with variable-
length arguments.
 The fi rst parameter must be present since its name

has to be passed to va_start().
 While calling the function, if the type of the variable

passed does not match the type expected in the
function, the results are unpredictable. The C variable
argument mechanism is quite useful in certain
contexts. But the mechanism is error-prone because
it defeats type checking.

 For example, if the second show() call is changed to
 show(3, 1, 2, 3.4);

the result is something like
count = 1: 1
count = 3: 1 2 858993459

 The program assumes that an int argument has been
passed, when in fact a double (3.4) is passed.
 The macro va_end() performs clean up operations. It
releases any memory that might have been allocated when
va_start() was called. Another function vprintf() is used
to develop a function that outputs an error and exits.

void error(const char *fmt)
 {
 va_list ap;
 va_start(ap, fmt);
 vprintf(fmt, ap);
 va_end(ap);
 exit(0);
 }

Advanced C 481

 The use of the preceding function prompts the user to
enter an integer greater than 0, failing which it outputs an
error message and exits.

printf(“\n enter an integer >0”);
scanf(“%d”, &n);
if(n<=0)
 error(“value of n= %d it must be greater than 0

\n”, i);

 Notice that the function error() is called just like
printf().
 Perhaps the most important change to the preprocessor
is the ability to create macros that take a variable number
of arguments. This is indicated by an ellipsis (. . .) in the
defi nition of the macro.
 The built-in preprocessing identifi er __VA_ARGS__
determines where the arguments will be substituted. For
example, given the following defi nition,

#defi ne Largest(. . .) max(__VA_ARGS__)

the statement,
Largest(a, b);

is transformed into,
max(a, b);

11.7 MEMORY MODELS AND POINTERS
The concept and use of pointers have been discussed
in detail in Chapter 7. In C, each program is usually
restricted to 64K of static data. In most C compilers, the
programmer is able to select from a variety of memory
models which control the way in which physical memory
(RAM) is utilized by the program. It may be that the
program needs to process large volumes of data in RAM
or the applications (such as simulations) involve very
large amounts of code. Most C compilers offer several
memory models to achieve fl exible ways of optimizing
the use of available memory. That is, choosing a memory
model means making choices among meeting minimum
system requirements, maximizing code effi ciency, and
gaining access to every available memory location.
Modern compilers use the Win32 model. If the program’s
total size is under 640KB, one of the memory models
in Table 11.5 should be chosen. These are the real mode
memory models.

Table 11.5 Turbo C memory models

Memory model Memory available Pointers used

Tiny 64K code +
data/stack

Near for code,
Near for data

Small 64K code,
64K data/stack

Near for code,
Near for data

Medium 1 M code,
64K data/stack

Far for code,
Near for data

Compact 64K code,
1 M data/stack

Near for code,
Far for data

Large 1 M code,
1 M data/stack

Far for code,
Far for data

Huge 1 M code,
1 M data/stack

Far for code,
Far for data
(inc. static > 64K)

 The important differences between the memory models
are in the size of the data and code pointers, number of
data and code segments, and the number and type of heaps
available.
 In all the 16-bit memory models, the compiler puts
all static and global variables into a single data segment
(called DGROUP) that can only contain 64KB. With far
data, a particular data structure can be put into a data
segment of its own. However, that data structure cannot
be larger than 64KB. The major determinant of memory
availability is the size of the pointers used to access
memory locations.
 If the pointer is declared globally, the value of its
address will be 0000 in the case of a near pointer and
0000:0000 in the case of a far pointer. If the pointer is
declared inside a function defi nition as an auto variable
(default), then it is created on the stack and will have
a default address of whatever value happened to be at
that location on the stack when it was created. In either
case these default memory addresses are invalid. This is
referred to as an uninitialized pointer and should never be
dereferenced.
 There are three types of pointers. They are near, far, and
huge.
 In Turbo C almost all pointers are declared as near (16
bits per pointer by default) or far (32 bits per pointer).
While near pointers simplify memory access in the
segmented memory of Intel processors by allowing direct
arithmetic on pointers, they limit accessible memory to 64

482 Programming in C

kilobytes (216). Far pointers can be used to access multiple
code segments, each 64K, up to 1 megabyte (232), by using
segment and offset addressing. The disadvantage is that
the programmer cannot use the simple pointer arithmetic
that is possible with near pointers.
 The default model is small, which is effective for the
majority of applications. The tiny model is specifi cally
designed for the production of TSR (Terminate and
Stay Resident) programs, which must fi t into one code
segment and be compiled as .com rather than .exe fi les.
The remaining models are selectable in the compilation
process through the IDE or in the make fi le.
 GNU C does not have memory models because in
this compiler all addresses are 32 bits wide. This is
advantageous for the user, since it does not have the 64K

SUMMARY

limit. For DOS or Win16 compilers, a memory model must
be selected.

Points to Note

 • The mechanism of using variable-length arguments
with functions is error-prone because it defeats type
checking.

 • There are six types of memory models: tiny, small,
medium, compact, large, and huge.

 • The important differences between the memory
models are in the size of the data and code pointers,
number of data and code segments, and the number
and type of heaps available.

 • There are three types of pointers: near, far, and huge,
which use different memory models and functions for
memory allocation.

There are several features in C that can be classifi ed as advanced
features. Among these are the bitwise operators. There are six bitwise
operators, namely, AND (&), OR (!), COMPLEMENT (~), XOR (^),
LEFT-SHIFT (<<), and RIGHT-SHIFT (>>). These operators act on the
contents of bits individually when applied on bytes or words.

 The function main() can be defi ned with formal parameters so
that the program may accept command-line arguments. This means that
arguments are specifi ed to main() when the program is executed.

 The C preprocessor is a program that processes any source
program in C before compilation. Since it allows the user to defi ne
macros, the C preprocessor is also called a macro processor. The
preprocessor provides its own instructions, called directives. There are
several directives that are used to invoke it. A directive usually occupies
a single line. The preprocessor also furnishes a small set of predefi ned
identifi ers that denote useful information.

 There are two or three data type of quali-fi ers—const, volatile,
and/or restrict—that have been introduced in C. The concepts
of const and volatile are completely independent. A common
misconception is to imagine that const is the opposite of volatile
and vice versa. The C89 standards committee added two type qualifi ers
to C, const and volatile and the C99 committee added a third type
qualifi er with restrict.

 const means something that is not modifi able. The const type
qualifi er is used to qualify an object whose value cannot be changed.

Objects qualifi ed by the const keyword cannot be modifi ed. On the
other hand, a volatile value is one that might change unexpectedly.
This situation generally occurs while accessing special hardware
registers, usually when writing device drivers. The compiler should not
assume that a volatile-qualifi ed variable contains the last value that
was written to it, or that reading it again would yield the same result that
reading it the previous time did. An object qualifi ed by the volatile
keyword can be modifi ed or accessed by other processes or hardware,
and is especially vulnerable to side effects.

 The restrict qualifi er is an invention of the C99 committee.
The object accessed through the restrict-qualifi ed pointer has a
special relation with that pointer. Only pointer types can be restrict-
qualifi ed. A restrict-qualifi ed pointer that is a function parameter is
the sole means of access to an object.

 The functions discussed so far accepted a fi xed number of
arguments. But functions such as printf() can accept any number
of parameters. How can a function with variable number of arguments
be written? To write such functions, macros defi ned in the header
fi le stdarg.h have to be used. The presence of a variable-length
argument list is indicated by an ellipsis in the prototype.

 There are six types of memory models: tiny, small, medium,
compact, large, and huge. There are three types of pointers: near, far,
and huge. They use different memory models and functions for memory
allocation.

Advanced C 483

KEY-TERMS

Bitwise operators Boolean operators that implements bit to bit
operation between corresponding bit positions of two arguments.

Directives Instructions that are given to the preprocessor.

Macro An open-ended subroutine, similar to a function, that does not
have a return statement.

Masking A process by which a given bit pattern is converted into
another bit pattern by means of a logical bitwise operator.

Predefi ned identifi ers A set of identifi ers that provide preset
informations.

Preprocessor A program that processes any macro in C before
compilation of the main program.

Type qualifi er Additional attribute attached to a data type that further
specifi es the implementation nature of the defi ned variable.

Type specifi er Additional attribute attached to a data type specifying
the signed or unsigned nature of a variable.

FREQUENTLY ASKED QUESTIONS

1. What is a translation unit?
 A translation unit refers to a C program with all its header fi les. In a
project involving different C source fi les to be compiled separately, each
of them together with its header fi les forms a translation unit. Hence,
there will be as many translation units as there are fi les to be compiled
separately. The preprocessor produces this translation unit.

2. What is Preprocessor?

 The C preprocessor is a program that processes any source program in
C and prepares it for the translator. It can be an independent program
or its functionality may be embedded in the compiler. The preprocessor
is invoked as the fi rst part of your compiler program’s compilation step.
It is usually hidden from the programmer because it is run automatically
by the compiler.
 While preparing code, it scans for special commands known as
preprocessor directives. These directives instructs the preprocessor to
look for special code libraries, make substitutions in the code and in
other ways prepares the code for translation into machine language.

3. What facilities do a preprocessor provide to the programmer?

 C preprocessor provides the following three main facilities to the
programmers.

 ∑ fi le inclusion using #include directive
 ∑ macro replacement using #defi ne directive
 ∑ conditional inclusion using directives like #if, #ifdef etc

 The preprocessor reads in all the include fi les and the source
code to be compiled and creates a preprocessed version of your
source code. Macros get automatically substituted into the program by
their corresponding code and value assignments. If the source code
contains any conditional preprocessor directives (such as #if), the
preprocessor evaluates the condition and modifi es your source code
accordingly.

4. Why should the preprocessor statements be used in the
program?

 The C preprocessor provides the tools that enable the programmer to
develop programs that are easier to develop, easier to read, easier to

modify, and easier to port to a different computer system. One should
use the preprocessor statements in the program for the following basic
demands of the software programming.

 Improving readability and reliability of the program Macros
can make the C program much more readable and reliable, because
symbolic constants formed by non-parameterized macros aid
documentation. They also aid reliability by restricting to one place the
check on the actual representation of the constant.

 Facilitating easier modifi cations Using a macro in one place and use it
in potentially several places, one could modify all instances of the macro by
change it in one place rather than several places.

 Providing portability The macros aid portability by allowing
symbolic constants that may be system dependent to be altered once.
Conditional compilation is often used to create one program that can be
compiled to run on different computer systems.

 Helping in debugging The C preprocessor can be used to insert
debugging code into your program. By appropriate use of #ifdef
statements, the debugging code can be enabled or disabled at your
discretion. It is used to switch on or off various statements in the
program, such as debugging statements that print out the values of
various variables or trace the fl ow of program execution.

5. What is the difference between #include <fi le> and #include
“fi le”?

 Whether the fi lename is enclosed by quotes or by angle brackets
determines how the search for the specifi ed fi le is carried on.
 #include <fi le> tells the preprocessor to look for the fi le in the
predefi ned default location. This predefi ned default location is often an
INCLUDE environment variable that denotes the path to the include
fi les. #include “fi le” instructs the preprocessor to look for the fi le in
the current directory fi rst, then in the predefi ned locations. In general,
the location of the standard header fi les is system dependent. In
UNIX, the standard header fi les are typically located in the directory /
usr/include whereas in Borland C system they are found at \BC\
INCLUDE. Integrated development environments (IDEs) also have a
standard location or locations for the system header fi les.

484 Programming in C

 The #include “fi le” method of fi le inclusion is often used to
include non-standard header fi les created for use in the program.
However, there is no hard and fast rule that demands this usage. The
angle brackets surrounding the fi le name in #include instructs that the
fi le being included is part of the C libraries on the system.

6. Why should one include header fi les?

 Because they have information that the compiler needs. The ANSI C
standard groups the library functions into families, with each family
having a specifi c header fi le for its function prototypes. Refer to the
FAQ of Chapter 2.

7. Why should one create his or her own header fi le?

 One can create his or her own header fi le to divide a program of larger
size into several fi les and, of course, to manage the declarations for
any library functions of his or her own. Using include fi les to centralize
commonly used preprocessor defi nitions, structure defi nitions, prototype
declarations, and global variable declarations is good programming
technique.

8. Write a program, which produces the source code.

 #include <stdio.h>
 int main(void)
 {
 int c;
 FILE *f = fopen (__FILE__, “r”);
 if (!f) return 1;
 for (c=fgetc(f); c!=EOF; c=fgetc(f))
 putchar (c);
 fclose (f);
 return 0;
 }

9. What is the benefi t of using const for declaring constants?

 const has the advantage over #defi ne while defi ning a constant. This
is because a const variable can be of any type such as a struct
or union, which cannot be represented by a #defi ne constant. The
compiler might be able to perform type checking as well as make
optimizations based on the knowledge that the value of the variable will
not change.
 When an array or a string is passed to a function it degenerates into
a pointer. As a consequence, any modifi cations on the corresponding
formal parameters, in the called function, would affect the arguments
in the calling function. The arguments can be made read-only inside
the called function by declaring the parameter const in function
prototype as well as in the formal parameter of the function defi nition.
Also, because a const variable is a real variable, it is allocated in
memory and has an address that can be used, if needed, with the aid of
a pointer.
 Apart from these, scope rules can be applied with the constants
defi ned with const. The scope of a variable relates to parts of the
program in which it is defi ned.

10. What can be put into a header fi le?

 Basically, any code can be put in a header fi le but commonly used
preprocessor defi nitions, structure defi nitions, prototype declarations,
and global variable declarations are included in the header fi les. The
following statements are recommended to be placed in a header fi le.

 ∑ Manifest constants defi ned with enum or #defi ne.

 ∑ Function prototype declarations

 ∑ Parameterized macro defi nitions.

 ∑ Declaration of external global variables.
 ∑ Type defi nition with typedef and struct statements.

 It is to be noted here that header fi les are different from libraries.
The standard library contains object code of functions that have already
been compiled. The standard or user defi ned header fi les do not contain
compiled code.

11. Which is better to use: a macro or a function?

 Macros are more effi cient (and faster) than functions, because their
corresponding code is inserted directly at the point where the macro is
called. There is no overhead involved in using a macro unlike function
in which case most C implementations impose a signifi cant overhead
for each function call. When a function is called the processor
maintains a data structure called a stack which provides the storage
area for “housekeeping” information involved when a function call is
made e.g. the return address from the function, the machine state on
entry to the function, copies of the actual parameters and space for
all the function’s local variables. Maintaining the stack each time
when a function call is made imposes system overhead. On the other
hand, macro cannot handle large and complex coding constructs. A
function is more suited for this type of situation. Thus the answer
depends on the situation in which one is writing the code for. To
replace small, repeatable code sections, macro should be used and
for larger code, which requires several lines of code, function should
be employed.

12. What is argc and argv? What do argc and argv stand for?
Can they be named other than argc and argv?

 When main() is called by the runtime system, two arguments are
actually passed to the function. The fi rst argument, which is called
argc by convention (for argument count), is an integer value that
specifi es the number of arguments typed on the command line. The
second argument in main is an array of character pointers, which is
called argv by convention (for argument vector).There are argc + 1
character pointers contained in this array, where argc always has a
minimum value of 0.The fi rst entry in this array is a pointer to the name
of the program that is executing or is a pointer to a null string if the
program name is not available on the system. Subsequent entries in
the array point to the values that were specifi ed in the same line as the
command that initiated execution of the program. The last pointer in the
argv array, argv[argc], is defi ned to be NULL.

Advanced C 485

 The names argc and argv are traditional but arbitrary. It is not
mandatory to name these two parameters as argc and argv; any name
maintaining the rules for identifi er naming can be used.

13. How do I print the contents of environment variables?

 The environment variables are available for all operating systems.
Though it is compiler dependent, main() has the third command line
argument env, which is used for these environment variables. env is
an array of pointers to the strings. Each pointer points to an environment
variable from the list of environment variables. The following program
demonstrates the use of env.

 #include <stdio.h>
 int main(int argc, char *argv[], char *env[])
 {
 int i = 0 ;
 while (env[i])
 printf (“\n%s”, env[i++]);
 return 0;
 }

 The last element in the array env is a null pointer. Therefore
while(env[i]) can be used instead of while(env[i])!= NULL).
The typical output of the above code in windows based GCC compiler
(quincy v 1.3) is shown below.

ALLUSERSPROFILE=C:\Documents and Settings\All
Users

APPDATA=C:\Documents and Settings\Owner\
Application Data

CLIENTNAME=Console

CommonProgramFiles=C:\Program Files\Common Files

COMPUTERNAME=0DDB352EEEAB43E

ComSpec=C:\WINDOWS\system32\cmd.exe

FLTK_DOCDIR=C:\Program Files\quincy\html\
programmerhelp\fl tk\fl tk1.1\

FP_NO_HOST_CHECK=NO

HOMEDRIVE=C:

HOMEPATH=\Documents and Settings\Owner

LOGONSERVER=\\0DDB352EEEAB43E

NUMBER_OF_PROCESSORS=2

=Windows_NT

Path=C:\Program Files\quincy\mingw\bin\;C:\Program
Files\quincy\bin;C:\WINDOWS\system32;C:\
WINDOWS;C:\WINDOWS\System32\Wbem;C:\
Program Files\Panda Security\Panda Internet
Security 2011

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.
WSF;.WSH

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER=x86 Family 6 Model 28
Stepping 2, GenuineIntel

PROCESSOR_LEVEL=6

PROCESSOR_REVISION=1c02

ProgramFiles=C:\Program Files

PROMPT=PG

SESSIONNAME=Console

SystemDrive=C:

SystemRoot=C:\WINDOWS

TEMP=C:\DOCUME~1\Owner\LOCALS~1\Temp

TMP=C:\DOCUME~1\Owner\LOCALS~1\Temp

USERDOMAIN=0DDB352EEEAB43E

USERNAME=Owner

USERPROFILE=C:\Documents and Settings\Owner

windir=C:\WINDOWS

14. What is #pragma?

 The #pragma preprocessor directive allows each compiler to
implement compiler-specifi c features. It provides a single well-defi ned
implementation specifi c controls and extensions such as source listing
controls, structure packing, loop optimization and warning suppressing
etc.

15. What is the limitation of using bitwise operators?

 Bit operations can be performed on any type of integer value in C—be it
short, long, long long, and signed or unsigned—and on
characters, but bitwise operators cannot be used with fl oat, double,
long double, void , or other more complex types. Consider the
following program where bitwise AND is applied on a fl oat variable.

 #include <stdio.h>
 int main()
 {
 fl oat a, b=3.2;
 a=b & 1;
 printf(“a = %f\n”, a);
 return 0;
 }

 The program would not compile and causes the following error
message.
error: invalid operands to binary &

486 Programming in C

16. What are the uses of bit-wise operators?
 ∑ The bitwise AND operator can be used to clear a bit. That is, if any

bit is 0, in either operand, it causes the corresponding bit in the
outcome to be set to 0.

 ∑ The bitwise OR operator, as the reverse of bitwise AND, can be
used to set a bit. Any bit that is set to 1 in either operand causes
the corresponding bit in the outcome to be set to 1.

 ∑ Bitwise shift operators can be used to quickly multiply and divide
integers. A shift right effectively divides a number by 2 and a shift
left multiplies it by 2. Bitwise shift operators can be used to pack
four characters byte-by-byte into an integer on a machine with 32-
bit words.

 There are several applications of bitwise operators in low level
programming.

 ∑ Bitwise operations are most often applied in coding device drivers
such as modem programs, disk fi le routines, and printer routines
because bitwise operations can be used to mask off certain bits.

 ∑ Bitwise-shift operations can be very useful in decoding input from
an external device, such as a Digital to Analog converter, and
reading status information.

 ∑ Bitwise operators are often used in cipher routines. To make a disk
fi le appear unreadable, some bitwise manipulations can be applied
on it.

17. What are the limitations or restrictions on using bitwise shift
operators?

 A right shift of a signed integer is generally not equivalent to division of
power of two even if the implementation copies the sign into vacated
bits. Thus -1>>1 is not equal to 0 but -1/2 produces 0 as result.
 If a number being shifted is n bits long then the shift count must be
greater than or equal to 0 and strictly less than n. Thus it is not possible
to shift all the bits (i.e. n bits) out of the value in a single operation e.g. if
an int occupies 32 bits and x is a variable of type int then x << 31 and
x << 0 are legal but x << 32 or x << -1 is illegal. The purpose of
this restriction is to allow effi cient implementation on hardware with the
corresponding restriction.

18. What is meant by “masking”?

 Masking is an operation in which the desired bits of the binary number or
bit pattern are set to 0. A mask is a variable or a constant, usually stored
in a byte or in a short integer, that contains a bit confi guration that is used
for extracting or testing bits in bitwise operations. Bit masking is used in
selecting only certain bits from byte(s) that might have many bits set.
 To fi nd the value of a particular bit in an expression, a mask 1 can be
used in that position and 0 elsewhere e.g. the expression 1 << 2 can
be used to mask 3rd bit counting from the right.
 (n & (1 << 2)) ? 1 : 0 has the value 1 or 0 depending on the
third bit in n.
 To set the bits of interest, the number is to be bitwise “ORed” with
the bit mask. To clear the bits of interest, the number is to be bitwise
ANDed with the one’s complement of the bit mask.

19. How to fi nd whether the given number is a power of 2 using
bitwise operator?

 In a number which is an exact power of 2 only 1 bit is set and all others
are zero. Let the position of this 1 bit be MSB. Mathematics rules for
binary numbers tells us that if we subtract 1 from this number then
the number that we would get would have all its bit starting from the
bit position MSB+1 set to 1. For example if the given number num is
8(00001000) then num-1 would be 7 (00000111). Now we notice that
these two bit patterns dont have a 1 in the same bit position. Further
observation suggests that if we bitwise and (&) both these numbers we
would get zero.
 The following macro can be used.

#defi ne ISPOWOF2(n) (!((n) & (n-1))

20. How to fi nd whether a given number is even or odd without
using % (modulus) operator and using bitwise operators?

 If the number is odd then it’s least signifi cant bit (LSB) is set i.e. it is 1. If
it is even then it is 0. When you bitwise and (&) this number with 1, the
result would be either 1 if the number is odd or zero if it is even.
 int isOdd(int num)
 {
 return (num&1);
 }
 The returned value can be used to determine if the number is odd or
not. If the value returned is 0, the number is even. It is odd otherwise.

21. There are null character, null statement, null pointer in C
language. Is there any null directive?

 A # on a line is a null directive and by itself does nothing. It can be used
for spacing within conditional compilation blocks. Blank lines can also
be used but the # helps the reader see the extent of the block.

22. What does the type qualifi er volatile mean?

 The volatile type qualifi er is a directive to the compiler’s optimizer
that operations involving this variable should not be optimized in certain
ways. A volatile variable is one that can change unexpectedly. Because
the variable can be accessed in some way not under the compiler’s
control. This situation generally occurs while accessing special
hardware registers. The compiler can make no assumptions about the
value of the variable. It must absolutely be needed to reload the variable
every time it is used instead of holding a copy in a register. The most
common use of volatile is to provide reliable access to special memory
locations used by the computer hardware or by interrupt handlers. The
volatile qualifi er forces the compiler to allocate memory for the
volatile object, and to always access the object from memory.
 There are two special cases in which use of the volatile modifi er is
desirable. The fi rst case involves memory-mapped hardware where
a device such as a graphics adaptor that appears to the computer’s
hardware as if it were part of the computer’s memory and the second
involves shared memory in which case memory used by two or more
programs running simultaneously.

Advanced C 487

23. What does the type qualifi er restrict mean?

 restrict qualifi er was introduced by C99 committee. Only the pointer
types can be restrict-qualifi ed. The object which is accessed through
the restrict-qualifi ed pointer, that is a function parameter, is the sole
means of access to an object at the beginning of each execution of the
function. This assumption expires with the end of each execution.
 Other than used as function parameter, the pointer with restrict

qualifi er can be used in fi le scope as well as in block scope.
 A restricted pointer having fi le scope should point to an object for
the duration of the program. That object may not be referenced both
through the restricted pointer and through either its declared name (if it
has one) or another restricted pointer.
 A block scope restricted pointer makes an aliasing assertion that is
limited to its block.

EXERCISES

 1. What is meant by bitwise operations?

 2. What is the purpose of a complement operator? To what types of
operands does it apply? What is the precedence and associativ-
ity of this operator? How can the 2’s complement of a decimal
number be found?

 3. Describe the three logical bitwise operators. What is the purpose
of each?

 4. What is masking? Explain with an example.

 5. How can a particular bit be toggled on and off repeatedly? Which
logical bitwise operation is used for this?

 6. What are precedence and associativity of bitwise shift
operators?

 7. What is meant by a type qualifi er?

 8. Describe the use of the const type qualifi er.

 9. Compare volatile and restrict type qualifi ers.

 10. What is meant by a memory model in C? Describe the different
memory models used in C.

 11. What is a far pointer? How does it differ from near and huge
pointers?

 12. Explain the use of farmalloc() with an example.

 13. What is meant by command-line arguments? What are their
data types?

 14. When a parameter is passed to a program from command line,
how is the program execution initiated? Where do the parameters
appear?

 15. What useful purpose can be served by command-line arguments
when executing a program involving the use of data fi les?

 16. What is a macro?

 17. Compare macros and functions.

 18. How is a multiline macro defi ned?

 19. What is meant by a preprocessor directive?

 20. What is the difference between #include <stdio.h> and
#include “stdio.h”?

 21. What is the scope of a preprocessor directive?

 22. Describe the preprocessor directives # and ##? What is the
purpose of each?

 What is meant by conditional compilation? How is conditional
compilation carried out? What preprocessor directives are used
for this purpose?

 23. Defi ne a mask and write C programs using masking to solve the
following.

 (a) Copy the odd bits (bits 1, 3, 5, ..., 15) and place 0’s in the
even bit locations (bits 0, 2, 4, ..., 14) of a 16-bit unsigned
integer number.

 (b) Toggle the values of bits 1 to 6 of a 16-bit integer while
preserving all the remaining bits.

 24. Write a function setbits(x,p,n,y) that returns x with the
n bits that begin at position p set to the rightmost n bits of y,
leaving the other bits unchanged.

 25. Write a function invert(x,p,n) that returns x with the n bits
that begin at position p inverted (i.e., 1 changed into 0 and vice
versa), leaving the others unchanged.

 26. Write a C program that will illustrate the equivalence between

 (a) Shifting a binary number to the left n bits and multiplying
the binary number by 2n

 (b) Shifting a binary number to the right n bits and dividing
the binary number by 2n

 27. Write a function rightrot(x,n) that returns the value of the
integer x rotated to the right by n positions.

 28. Write a symbolic constant or macro defi nitions for each of the
following.

 (a) Defi ne a symbolic constant PI to represent the value
3.1415927.

 (b) Defi ne a macro AREA that will calculate the area of a
circle in terms of its radius. Use the PI defi ned above.

 29. Write a multiline macro named ‘interest’ that will compute the
compound interest formula

 F = P(1 + i)n

488 Programming in C

Project Questions
You will write a program that reads in employee data from two unsorted
binary fi les (the format of these fi les is described below), merges the
data from two fi les together in sorted order on employee name, and
outputs the resulting sorted list of employee data to a binary fi le.
Additionally, as your program reads each employee’s information from
an input fi le it should print it to standard output in tabular format, and
before your program writes the resulting sorted merged data from the
two input fi les, it should also print it to standard output in tabular format,
and print out the total number of employees and the average salary .

‘\t’ is the tab character that can be used to get nice tabular output.
The three fi le used by your program (two input and one output) will be
passed to your program via command line arguments.

Your program will read employee data into a singly linked list. The
employee list should be maintained sorted alphabetically by employee
name. You should not assume that the employee records in the input
fi le are already in sorted order. However, your program should write the
list to an output binary fi le in sorted order.

CASE STUDY

Problem Statement

Prepare a program that accepts from the user the starting month,
year, and the number of months for which a month-wise calendar has
to be created and printed.

Analysis and Algorithm

The problem consists of developing a program which will create and
print a calendar. The program should accept the starting month,
year, and the number of months from the user of the program. Once
starting month, year, and the number of months are given by the user,
the program then checks whether the given year is a leap year or not.
The following logic is applied to determine whether a year is a leap
year or not: If the given year is divisible by 4 and not by 100, then it
is a leap year. Otherwise if the given year is divisible by 400 it is a
leap year. After having found out whether the year is a leap year or
not, the fi rst day of the starting month is found and the total number

of calendar days calculated. The program then prints out the month
with the days and dates in a predefi ned format, which appears like
a calendar. The program then prints out a similar calendar for the
subsequent months after doing the calculations for the starting day
and the dates of the months. This work is repeated till the desired
numbers of months are printed.
 The program has been designed to take in the fi rst month name,
from which the calendar is desired, the year and the number of months
for which the month-wise calendar is to be created and printed.
The program fi rst checks for the name of the starting month, the year
and the number of months for which the calendars are required. If
any one of these parameters are missing, the programs abundant the
creation of the calendar and terminates. On the other hand, if the said
parameters are available, the program proceeds further to call the
calendar generation function named here as calendar_month().
This function in turn calls the function start_day(), which checks

 where F is the future amount of money that will accumulate after
n years, P is the principal amount, and i is the rate of interest
expressed as percentage.

 Write a macro named MAX that uses the conditional operator (?:)
to determine the largest number among three integer numbers.

 30. Defi ne a preprocessor macro swap(t, x, y) that will swap
two arguments x and y of a given type t.

 31. Defi ne a preprocessor macro to select

 the least signifi cant bit from an unsigned char

 the nth (assuming that the least signifi cant is 0) bit from
an unsigned char

 32. Defi ne plain macros for the following. An infi nite loop structure
called forever.

 33. Defi ne parameterized macros for the following.

 Swapping two values

 Finding the absolute value of a number

 Finding the center of a rectangle whose top-left and
bottom-right coordinates are given (requires two
macros)

 34. Write directives for the following.

 Defi ning Small as an unsigned char when the symbol PC
is defi ned, and as unsigned short otherwise

 Including the fi le basics.h in another fi le when the
symbol CPP is not defi ned

 Including the fi le debug.h in another fi le when release
is 0, or beta.h when release is 1, or fi nal.h when
release is greater than 1

 35. Write a macro named When which returns the current date and
time as a string (e.g., “25 Sep 2005, 12:30:55”). Similarly,
write a macro named Where which returns the current location
in a fi le as a string (e.g., “fi le.h: line 25”).

Advanced C 489

whether the year is a leap year by calling the function leap()and
returns the name of the fi rst day of a month.
The algorithm of the main program in step form is given as follows:

 1. START.

 2. INPUT START MONTH, YEAR, NUMBER OF MONTHS

 3. IF N !=4 THEN GO TO STEP 10

 4. M = NUMBER OF MONTHS

 5. I = START MONTH

 T = I + M
 6. CALL calendar_month()

The calendar
generation function

 7 I = I + 1

 8. IF I <= T THEN GO TO STEP 7

 9. STOP

The algorithm for the function calendar_month() is given as
follows:

 1. START

 2. RECEIVE START MONTH AND YEAR FROM MAIN

PROGRAM

 3. START_DAY_NAME = CALL start_day()

 Finds the name of the beginning day for the given month and
assigns it to START_DAY_NAME and also verifi es whether
the year is a leap year

 4. C = 0

 5. CALCULATE TOTAL NUMBER OF DAYS IN THE

GIVEN MONTH AND STORE IN DAYS_IN_MONTH

 6. PRINT CALENDER FOR MONTH AND YEAR WITH

START_DAY_NAME AND DAYS_IN_MONTH

 7. RETURN

The algorithm for the function start_day() is given as follows:
 1. START

 2. RECEIVE START MONTH AND YEAR FROM calendar_

month()

 3. DAYS_IN_FEB = CALL Leap()

 4. COMPUTE THE START_DAY_NAME USING DAYS_IN_FEB

 5. RETURN START_DAY_NAME

The algorithm for the function Leap() is given as follows:
 1. START

 2. RECEIVE YEAR FROM START_DAY

 3. IF YEAR % 4 == 0 AND YEAR % 100 !=0 OR

YEAR % 400 == 0

 THEN DAYS_IN_FEB = 29 Leap year

 4. ELSE DAYS_IN_FEB = 28

 RETURN DAYS_IN_FEB

M
ai

n
Pr

og
ra

m

Calender_month()

function
start_day ()

function
Leap ()

function

General schematic of the main program and functions

C Implementation

#include <stdio.h>

#defi ne TRUE 1

#defi ne FALSE 0

#defi ne DAYS_IN_A_WEEK 7

#defi ne MAX_COLS 6

#defi ne BASE_YEAR 1990 /* Year from */

/* which all calculations are done. */

/* Function prototype declarations */

void calender_month(const int, const int);

int start_day(const int, const int);

void leap(int);
/* Global variables */
int days_in_month[]={0,31,28,31,30,31,30,31,31,30,

31,30,31};

int main(int argc, char *argv[])
{
 int i;
 int year;
 int num_of_months;
 int start_month;
 int month;
 char *prog=argv[0];
 /* Checking whether the program name and
 required 3 parameters have been supplied or
 not */
 if(argc != 4)
 {
 puts(“\tProgram syntax:”);
 printf(“\t\t%s start month start year number
 of months”,prog);
 exit(1);
 }
 start_month = atoi(argv[1]);
 year = atoi(argv[2]);
 num_of_months = atoi(argv[3]);
 month = start_month;
 for(i=start_month; i < start_month + num_of_
 months; i++)
 {
 calender_month(month, year);
 if(month++ >= 12)

490 Programming in C

 {
 month = 1;
 year++;
 }
 }
 return 0;
}

/* Displaying one calendar month */
void calendar_month(const int month,const int year)
{
 int i,j,count; /* General purpose variables */
 char *days[]=
 {
 “ ”,
 “Mon”,
 “Tue”,
 “Wed”,
 “Thr”,
 “Fri”,
 “Sat”,
 “Sun”
 };

 char *months[]=
 {
 “ ”,
 “January”,
 “Febuary”,
 “March”,
 “April”,
 “May”,
 “June”,
 “July”,
 “August”,
 “September”,
 “October”,
 “November”,
 “December”
};

int month_map[8][MAX_COLS+1]={0}; /*
initialization of array with zeros */
j=start_day(month, year);
 /* Get the day the month starts */
i=1;
count=0;
while(days_in_month[month] > count)
{
 month_map[j++][i]=++count; /* Build the table. */

 /* Start a new week.*/
 if(j > DAYS_IN_A_WEEK)

 {
 j=1;
 i++;
 }
}
/* Displaying title bar */

printf(“\n\t\t%s %d\n\n”,months[month], year);

/* Displaying the calendar */

for(j=1; j<=DAYS_IN_A_WEEK; j++)
{
 printf(“\t%s”,days[j]); /* Displaying Day names */

 for(i=1; i<=MAX_COLS; i++)
 {
 if(month_map[j][i] == 0)
 {
 printf(“ ”);
 }
 else
 {
 printf(“%2d”, month_map[j][i]);
 }
 }
 printf(“\n”);
}
}

/* Function to fi nd on which day the month starts */
int start_day (const int month, const int year)
{
 int day=1; /* 1/1/1990 was a Monday. */
 int i,j;
 i = BASE_YEAR;
 while(i < year)
 {
 leap(i); /* Check for leap years */
 for(j=1; j<=12; j++)
 day = day + days_in_month[j];
 i++;
 }

 /* Count upto the month required */
 i=1;
 leap(year); /* Check for leap years */
 while(i < month)
 {
 day = day + days_in_month[i++];
 }
 /* Get modulo and return it as the start day
 for this month */
 if((day = day%7) == 0)
 day = 7; /* correct 0 to 7 */
 return(day);
}

Advanced C 491

/*Function for checking of leap year*/
void leap(int year)
{
 /* A leap year follows the following rules:
 if divisible by 4 and not 100 it is a leap
 year. if divisible by 400 it is a leap year. */
 if((year%4 == FALSE && year%100 != FALSE) ||
 year%400 == FALSE)
 {
 days_in_month[2] = 29;
 return;
 }
 else
 {
 days_in_month[2] = 28;
 return;
 }
}

Sample Run

492 Programming in C

12.1 INTRODUCTION
While solving a problem, it is needed to represent relation
between their data items. That is why data structures are
used. The logical inter-relation between elementary data
items is called as data structure. Basically it deals with
the manipulation and organization of data. The major
advantages of data structures are listed below.
 ∑ It provides different levels of organizing data.
 ∑ It tells how data can be stored and accessed in its

elementary level.
 Data structures can be classifi ed into
 ∑ Primitive data structures
 ∑ Non-primitive data structures

Primitive data structures are the data structures that can be
manipulated directly by machine instructions. The integer,
real, character, etc., are the examples of primitive data
structures. In C, the different primitive data structures are
int, fl oat, char, and double.

Non-primitive data structures cannot be manipulated
directly by machine instructions. Arrays, linked lists, trees
etc., are the examples of non-primitive data structures.
These data structures can be further classifi ed into linear
and non-linear data structures. The data structures that
show the relationship of logical adjacency between the
elements are called linear data structures. Otherwise they
are called non-linear data structures.

After reading this chapter, the reader will be able to

 understand the operations on stacks and their usefulness

 know about the operations on queues and their usage

 learn about different binary trees and their application

Learning Objectives

C
Chapter

Stacks, Queues, and Trees

1212

Stacks, Queues, and Trees 493

 Stacks, queues, and linear linked lists such as singly
linked list, doubly linked list, etc., are the examples of
linear data structures; whereas trees and graphs are non-
linear data structures. Their implementation will be our
main interest. In addition, we will discuss their functions
in detail and a proper way of representing the data using
these structures.

12.2 STACK
A stack is an ordered collection of elements into which
new elements may be inserted and from which elements
may be deleted at one end.
 Such a stack resembles a stack of trays in a cafeteria, or
a stack of boxes. Only the top tray can be removed from
the stack and it is the last one that was added to the stack.
A tray can be removed only if there are some trays on the
stack, and a tray can be added only if there is enough room
to hold more trays.
 The stack is based on the LIFO (Last In First Out)
principle as the last element inserted will be on the top of
the stack. Since deletion is done from the same end, the
last element inserted is the fi rst element to be deleted. It is
obvious that the information can only be removed in the
opposite order in which it was added to the stack.
 A stack is defi ned in terms of its behavior. Apart from
initialization, the common operations associated with a
stack are push and pop. Inserting an item in a stack is called
pushing it onto the stack. Removing an item from a stack
is called popping the stack. Items are added and removed
from only one designated end called the top of the stack.
Two important preconditions associated with the push and
pop operations are overfl ow and underfl ow, respectively.
Whilst a stack is conceptually unbounded, eventually
successive pushes will cause the stack to overfl ow. Trying
to pop an element off an empty stack is called underfl ow.
Other operations on stacks include the following:
 ∑ Size returns the number of elements present in the

stack.
 ∑ Peek operation on stack returns the topmost element

without removing it.

12.2.1 Implementation of Stack

A stack can be implemented in either of the following two
ways:
 ∑ Statically using arrays
 ∑ Dynamically by linked lists

 Array Implementation of Stack

A stack is represented as a structure with two members:
 ∑ an array to hold data items
 ∑ an integer variable showing the top of the stack. İt is

the array index of the element at top of stack
Such a structure can be represented as follows:

#defi ne SIZE 100
struct stack
{
 int list[SIZE];
 int top;
};

 The variable top denotes the position of the array
where a value was last inserted. It should be initialized
with -1. That is, when stack is empty, the value of the top
is -1.Here the stack contains the elements of type integer.
The maximum number of elements in the stack is defi ned
to be 100. list[0] contain the fi rst element so that the
value of top is 0. If there are fi ve elements in the stack, the
value of top will be 4 and the top element is in list[4].
 How stack shrinks or grows when the pop or push an
element on a stack is performed, is depicted in Figure
12.1.Here the maximum number of elements of the stack
is constrained to 5.
 To implement push operation, at fi rst it is needed to be
checked to see if top == SIZE – 1. If so, the stack is full
and it is not possible to push an element and must notify
the user of stack overfl ow. If top < SIZE – 1 then then
increment top and store the value v as list[0] = v.
 The corresponding C function for push operation would
be as follows:

void push(struct stack *sp,int x)
{
 if(sp->top == SIZE-1)
 {
 printf(“\n OVERFLOW”);
 return;
 }
sp->list[++sp->top] = x;
return;
}

 In contrast, in order to perform pop operation, it is
needed to check to see if top >= 0. If not, the stack is
empty and no element can be popped and must notify the
user of stack underfl ow. If top >= 0, then store the popped
value, i.e. list[top] in v and decrement top and return the

494 Programming in C

value of v. The corresponding C function for pop operation
would be as follows:

int pop(struct stack *sp)

 {

 /* Check for stack underfl ow */

 if(sp->top == -1)

 {

 printf(“\nSTACK IS EMPTY i,e UNDERFLOW”);

 return (-1);

 }

 return(sp->list[sp->top--]);

}

 The peek operation is implemented as n = list[top]
and return n. The c function for peek operation is given
below.

int peek(struct stack p)
{
 int n;
 if(p.top == -1)
 {
 printf(“\nSTACK IS EMPTY i,e UNDERFLOW”);
 return (-1);
 }
 n = p.list[p.top];
 return n;
}

 The complete C code summarizing push, pop and peek
operations would be as follows.

#include<stdio.h>

#defi ne SIZE 100

struct stack

{

 int list[SIZE];

 int top;

};

/* Function prototypes for push, pop and peek
operations */

void push(struct stack *,int);

int pop(struct stack *);

int peek(struct stack);

int main()

{

 struct stack s;

 int opt,x,n;

 /* Initializing stack to empty */

 s.top =-1;

 while(1)

 {

 printf(“\n1.PUSH 2.POP 3.PEEK 4.EXIT\n”);

 printf(“\n ENTER YOUR CHOICE :”);

 scanf(“%d”,&opt);

 switch(opt)

 {

 case 1:

 printf(“\nENTER THE NO :”);

 scanf(“%d”,&x);

 push(&s,x);

 break;

 case 2:
 n = pop(&s);
 if(n != -1)
 printf(“\nPOPPED VALUE :%d”,n);

 break;

(a) Empty stack, top = –1
5

top

(b) After one element is pushed
onto stack, top = ‘0’

5 3

top

9 11 4
(i) After an element is popped

from the stack, the popped
element is 11.

5 3

top

9 11 4
(j) When there is only one

element left in the stack.

5 3

top

9 11 2

(e) Any further attempt to
push any element leads
to overflow.

(f) After an element is popped
from the stack, the popped
element is 2

5 3 9 11 2

top

(g) After pushing 4 on to stack

5

top

3 9 11 4

(h) After an element is popped
from the stack, the popped
element is 4.

top

5 3 9 11 4

5 3 9 11 4

(k) After an element is popped from
the stack. The popped element
is 5 and top = –1 again.

top

5 3

(c) After second element in
pushed onto stack, top = 1

5 3

top

9 11 2

(d) When stack is full, top = 4

Figure 12.1 Representation of push and pop operation
onto stack

Stacks, Queues, and Trees 495
 case 3:

 n = peek(s);

 if(n != -1)

 printf(“\nTOP ELEMENT :%d”,n);

 break;

 case 4:

 exit(0);

 }

 }

 return 0;

}

void push(struct stack *sp,int x)

{

 /* Check for stack overfl ow */

 if(sp->top == SIZE-1)

 {

 printf(“\n OVERFLOW”);

 return;

 }

 sp->list[++sp->top] = x;

 return;

}

int pop(struct stack *sp)

{

 /* Check for stack underfl ow */

 if(sp->top == -1)

 {

 printf(“\nSTACK IS EMPTY, i.e. UNDERFLOW”);

 return (-1);

 }

 return(sp->list[sp->top--]);

}

int peek(struct stack p)

{

 int n;

 if(p.top == -1)

 {

 printf(“\nSTACK IS EMPTY, i.e. UNDERFLOW”);

 return (-1);

 }

 n = p.list[p.top];

 return n;

}

 Checking the size of the stack is a fairly simple task.
If you are implementing the stack as an array, the size of
the stack will be (top + 1). The 1 is added because top is
initially -1, when the stack is empty, or size equals 0. The
C function for implementing the size operation could be as
written below.

int size(struct stack p)

{

 int n;

 if(p.top == -1)

 return 0;

 else

 return(p.top + 1);

 }

Now consider the following illustration. Changing a
number from base 10 to an equivalent number in any
other base can be accomplished by repeated division of
the number by the desired base, until the number becomes
0, pushing the remainder after each division into stack and
then popping out the remainders in reverse order. This
process is illustrated by the following example.

Example

 1. Change (13)10 to an equivalent number in base 2.

First division 2) 13 Remainder 1
Second division 2) 6 Remainder 0

Third division 2) 3 Remainder 1
Fourth division 2) 1 Remainder 1

 The remainders are written out in reverse order giving the
following result:

(13)10 = (1101)2

 The fi rst remainder is the last to be written out while the last
remainder is the fi rst. We can model this LIFO situation very
conveniently by means of a stack.

#include<conio.h>

#include<stdio.h>

struct stack

 {

 int list[10];

 int top;

 };

496 Programming in C

void push(struct stack *,int);

int pop(struct stack *);

int main()

{

 struct stack s;

 int n, r;

 printf(“\n Enter the number :”);

 scanf(“%d”, &n);

 while(n > 0)

 {

 r=n%2;

 push(&s,r);

 n=n/2;

 }

 printf(“\n Binary equivalent is :”);

 while(s.top != -1)

 printf(“%d”,pop(&s));

 return 0;

}

void push(struct stack *sp,int x)

{

 if(sp->top == SIZE - 1)

 {

 printf(“\n OVERFLOW”);

 return;

 }

 sp->list[++sp->top] = x;

 return;

}

int pop(struct stack *sp)

{

 int x;

 if(sp->top == 0)

 {

 printf(“\nSTACK IS EMPTY, i.e. UNDERFLOW”);

 return (-1);

 }

 x = sp->list[sp->top];

 sp->top--;

 return x;

}

 Linked List Implementation of Stack

In the previous section, we discovered how stacks can be
implemented using arrays. We have already discussed the
limitations of arrays for implementation. There is another
way by which the data structure can be implemented
dynamically, i.e. using linked list. This provides better use
of memory.
 A stack can be implemented using pointers, as a form
of a linked list. When a stack is implemented in this way,
each node contains a data fi eld for the information, and a
pointer to the next node on the list. Top is a pointer to the
top of the list that is head. When the top is NULL, the stack
is empty.
 Implementing stacks as linked lists provides a solution
to the problem of dynamically growing stacks, as a linked
list is a dynamic data structure. The stack can grow or
shrink as the program demands it to. However, if a small
and/or fi xed amount of data is being dealt with, it is often
simpler to implement the stack as an array.

30

Top

20 10

A linked stack

 As discussed just now, each data item of the stack is
stored in a node, which also holds a pointer to the next
node on the list.

struct node
{
 int item;
 struct node *next;
};

 Let top be a pointer pointing to the top node (lastly
pushed) of stack. It is declared as follows.

struct node *top;

 When stack is implemented in linked list, it will never
overfl ow until memory allocation fails. Initially top is set
to NULL that indicates the stack is empty.

top

 The push and pop operations on a linked stack are
illustrated below.

Stacks, Queues, and Trees 497

 Say, the number 12 is to be pushed onto stack. After
pushing the value, the stack becomes as shown in Fig.
12.2(a). Next 5 is pushed onto the stack [see Fig. 12.2(b)].
When 7 is pushed, the stack can be represented as in Fig.
12.2(c). Now, if the stack is popped, the popped element
would be 7. The pointer top would point to the next node,
i.e., node containing the data 5. See Fig. 12.2(d). Again, if
another pop operation is performed, then stack is depicted
in Fig. 12.2(e).

top

12

(a) push 12 into linked stack

top

5 12

 (b) push 5 into linked stack

top

7 5 12

 (c) push 7 into linked stack

top

5 12

 (d) pop operation on linked stack, popping value is 7

12

 (e) popping 5 from linked stack

Figure 12.2 Push and pop operation on a linked stack

Example

 2. The C code for the implementation of the stack using linked list is
given below.

#include <stdio.h>
#include <stdlib.h>
struct node
{
 int data;
 struct node *next;
};

void pushNode(struct node **, int);

int popNode(struct node **);

int main(void)

{

 int x,ch;

 struct node *head;

 head=NULL;

 while(1)

 {

 printf(“\n 1.push 2.pop 3.EXIT\n”);

 printf(“\n Enter choice :”);

 scanf(“%d”,&ch);

 switch(ch)

 {

 case 1:

 printf(“\n Enter the data :”);

 scanf(“%d”,&x);

 pushNode(&head,x);

 break;

 case 2:

 x=popNode(&head);

 if(x!=-1)

 printf(“\n The popped element = %d”, x);

 break;

 case 3:

 exit(0);

 }

 }

 return 0;

}

void pushNode(struct node **t, int x)

{

 struct node *p;

 p=(struct node *)malloc(sizeof(struct node));

 if(p==NULL)

 {

 printf(“\nOVER FLOW”);

 return;

 }

 p->data=x;

 p->next=*t;

 *t=p;

}

int popNode(struct node **t)

{

 int n;

498 Programming in C

 struct node *p;

 if(*t==NULL)

 {

 printf(“\n UNDERFLOW”);

 return -1;

 }

 n=(*t)->data;

 p=*t;

 *t=(*t)->next;

 free(p);

 return n;

}

Discussion:
Another important thing to be noted for the implementation
of push operation is that the new element will be always
added at the beginning of the linked list and while popping
an element, it will be deleted from the same end, i.e. from
the beginning of the linked list.
 There is no condition base for overfl ow, but if the malloc()
function returns NULL, i.e. no more memory is available for
allocation, then it is assumed that the stack is full.

Points to Note
All operations for the array-based and linked stack
implementations take constant time. The only basis for
comparison is the total space (memory space) required.
The array-based stack must declare a fi xed size array
initially, and some of that space is wasted whenever the
stack is not full. The linked stack can shrink and grow, but
requires the overhead of an address fi eld (here the fi eld
is called as next) for every node.

12.2.2 Application of Stack

As explained, the stack is a way of forming a data
structure that arranges data elements one above the other
resembling a stack of books and allows entry and exit
of data elements from the top of this structure. This
therefore uses the LIFO technique to store and retrieve
data elements. This way of storing and retrieving data
elements is used in a variety of applications. Some of
these are discussed below.

Direct Applications

There are applications where the stack data structure is
used directly. Some of these are mentioned below.

 ∑ Page-visited history in a Web browser The web
browser keeps a record of the web-pages visited
by the user over a period of time. After storing the
identifi er pertaining to the fi rst web-page visited, the
identifi er associated with the second web-page, visited
by the user, is stored. Subsequently, as the user visits
different web-pages the corresponding identifi ers are
recorded in the structure one after the other. Here the
identifi er entry that was record last is the one that can
be retrieved fi rst. Hence this record of visited page
history is formed using the push operation while to
retrieve any record the pop operation is used as in a
stack.

 ∑ Undo sequence in a text editor This is similar to the
previous application. Whatever changes or deletion
are done in a document are stored as separate records.
But whenever the changes or deletions are needed to
be restored then the last change or deletion is restored
fi rst and subsequently the one deleted or changed
earlier to the last one. This is the characteristics of a
stack data structure.

 ∑ Resolving function call This again is another
application where one function calls a second
function and so on. While returning, the function
called last returns fi rst then the function previous to
this returns and this goes on till the oldest function
returns. This therefore is another application of the
stack data structure. The mechanism of achieving this
is explained briefl y below.

 Here, the system stack is used to process function
calls. Each function call results in an activation record
being generated and placed on the stack. The area of
storage, set aside to hold the data items used in the
call of a function, is called its data area or activation
record. This data area essentially consists of calling
parameters, local variables and certain system
information such as the address of the instruction
that must be returned to on leaving the function. This
activation record stores the function’s local variables
and parameters, return address, etc. The activation
record is popped when the function terminates. On
exit from the routine, this storage is de-allocated.
This mechanism results in a stack of data areas called
the run-time stack. When a function is called, space
for its data area is allocated and placed on top of the
run-time stack. On exit from the function, its data

Stacks, Queues, and Trees 499

area is de-allocated and removed from the top of the
run-time stack.

 ∑ Simulating recursion Recursive functions are han-
dled by runtime stack. In the recursion, two recursive
calls are regarded as being different so that it does not
mix the data areas for one call with another where one
is called from within the other. This implies that there
may be several data areas in existence simultaneously,
one for each recursive call.

 ∑ Evaluating expression Another application of the
stack is in expression evaluation. A complex assignment
statement such as a = b + c*d/e–f may be interpreted
in many different ways. Therefore, to give a unique
meaning, the precedence and associativity rules are
used. But still it is diffi cult to evaluate an expression
by computer in its present form. In infi x notation, the
binary operator comes in between the operands. A
unary operator comes before the operand. To get it
evaluated, it is fi rst converted to the postfi x form, where
the operator comes after the operands. For example, the
postfi x form for the expression a*(b–c)/d is abc–*d/. A
good thing about postfi x expressions is that they do not
require any precedence rules or parentheses for unique
defi nition. So, evaluation of a postfi x expression is
possible using a stack-based algorithm.

 This technique is also implemented in parsing.
Parsing is the second phase of program compilation.
While parsing a semantic expression, a parsing stack
is required to hold the operands for expressions. The
stack must hold both the value of the expression and
also its type. The purpose of the expression value stack
is to turn an infi x expression into postfi x expression
where all the required operands are saved on the
stack by the parser. Then the operation is performed
by popping the correct number of arguments from the
stack and pushing back the single result value.

Indirect Applications

 ∑ Auxiliary data structure for algorithms like back-
tracking algorithm A backtracking algorithm sys-
tematically considers all possible outcomes for each
decision and performs much better than exhaustive
search. To explore a solution space of the problem,
depth-search traversal of the solution space can be
performed. This depth-fi rst traversal uses stack data
structure. The backtracking algorithm is often used in
optimization and in games.

12.3 QUEUE
A queue is an ordered set of homogeneous elements in
which the items are added at one end (called the rear) and
are removed from the other end (called the front).
 A queue is a First In First Out (FIFO) data structure
where the fi rst element, which is inserted into the queue,
will be the fi rst one to be removed.
 The common operations on a queue include the
following:
 ∑ Initialize This operation creates a new empty queue.

This operation must be done in order to make the
queue logically accessible.

 ∑ Enqueue This operation inserts an element into the
queue provided the queue is not full. Whilst a queue
is conceptually unbounded, eventually successive
enqueues (without dequeues) will cause the queue to
overfl ow as the queue is practically bounded.

 ∑ Dequeue This operation removes and then returns the
element at the front of the queue. The precondition
for this operation is that the queue must not be empty.
Trying to dequeue an item off an empty queue causes
an underfl ow.

12.3.1 Implementation of Queue

 Array Implementation of Queue

A queue may be represented as a structure containing an
array list and two variables namely front and rear to
denote the present position of its front and rear element. A
queue may be defi ned as given below:

struct Queue

{

 int list[MAX_SIZE];

 int rear, front;

};

 The variables front and rear are initialized with 0 and
–1 respectively. This is the initialize operation. When
an element is enqueued into the queue, the rear will be
incremented by 1 and list[rear] is the place where the
element will have to be placed. On the other hand, when
an element is dequeued from the queue, front will be
incremented by 1. Actually rear points to the element
which is enqueued last and front points to the element
which is to be dequeued next.

500 Programming in C

 Before the enqueue operation, the array has to be
checked for overfl ow. The condition for overfl ow error
is rear == (MAX_SIZE – 1). Similarly before a dequeue
operation, it is to be determined whether the queue is empty
or not by checking front>rear. To determine the underfl ow
condition, let us consider a queue of 5 elements. Initially,
the values of rear and front are –1 and 0 respectively. When
three elements are enqueued, the values of rear and front
are 2 and 0 respectively. Then consecutive three dequeue
operations are performed. The values of rear and front
would be 2 and 3 respectively. In both cases, the value
of front is greater than 1 that of rear. The condition for
underfl ow error is front > rear.
 Considering a queue of size 5, the enqueue and dequeue
operations are illustrated in the following fi gures.
 Initially rear and front is initialized with –1 and 0
respectively (see Fig. 12.3).

front

Figure 12.3 Initial state of a queue

 The enqueue operations on queue are depicted in Figure
12.4.

(a) Enqueue of 5; rear = ,
front =

0
0

front

rear

5

rear

5 4

front

(b) 1Enqueue of 4; rear = ,
front = 0

(c) 2Enqueue of 9; rear = ,
front = 0

rear

5 4

front

9

rear

5 4

front

9 3

(d) 3Enqueue of 3; rear = ,
front = 0

rear

5 4

front

9 3 2

(f) Enqueue of 7 leading to an
overflow.

(e) 4Enqueue of 2; rear = ,
front = 0

rear

5 4

front

9 3 2

Overflow

Figure 12.4 Enqueue operations on a queue of size 5

 Now, let us dequeue the elements from a queue. As
queues follow the FIFO principle, the element will be
dequeued fi rst which is enqueued fi rst. In case of dequeue
operation, the front is incremented by 1. The successive
dequeue operations on a queue are portrayed in Fig. 12.5.

rear

5 4

front

6

rear

5 4

front

6

front

rear

5 4 6

rear

5 4

front

6

(a) Initial state of a queue;
rear = 2, front = 0

(b) First dequeue operation;
rear = 2, front = 1;
Dequeued element is 5.

(c) Second dequeue operation;
rear = 2, front = 2; Dequeued
element is 4.

(d) Third dequeue operation;
rear = 2, front = 3;
Dequeued element is 6.

5

rear

4

front

6

(e) Fourth dequeue operation;
leading to an underflow
rear = 2, front = ; Underflow
as it is empty.

3

Underflow

Figure 12.5 Dequeue operations on a queue of size 5

Example

 3. The C implementation of a queue using array is given below:

include<stdio.h>

#defi ne MAX_SIZE 25

struct queue

{

 int list[MAX_SIZE];

 int front,rear;

};

void enqueue(struct queue *,int);

int dequeue(struct queue *);

int main(void)

{

 struct queue q;

 int ch,x,p;

 q.rear=-1;

 q.front=0;

 while(1)

Stacks, Queues, and Trees 501
 {

 printf(“\n 1.INSERT 2.RETRIEVE 3.EXIT \n”);
 printf(“\n Enter your choice:”);
 scanf(“%d”,&ch);
 switch(ch)
 {
 case 1:
 printf(“\n ENTER THE NO :”);
 scanf(“%d”,&x);
 enqueue(&q,x);
 break;
 case 2:
 p=dequeue(&q);
 if(p!=-1)
 printf(“\n Dequeued Element is %d”,p);
 break;
 case 3:
 exit(0);
 }
 }
 return 0;
}
void enqueue(struct queue *qp,int x)
{
 if(qp->rear==MAX_SIZE-1)
 {
 printf(“\nOVERFLOW”);
 return;
 }
 (qp->rear)++;
 qp->list[qp->rear]=x;
 return;
}
int dequeue(struct queue *qp)
{
 if(qp->front>qp->rear)
 {
 printf(“\nUNDERFLOW”);
 return(-1);
 }
 return(qp->list[(qp->front)++]);
}

 There is a problem with this array-based queue
implementation. The elements are inserted (enqueued)
into the queue ‘at the end’, so they start at location 0 in
the array and work toward location MAX_SIZE–1, which is
the position of the last element in the array. On the other
hand, the elements are removed from the ‘front’ of the
array. Deletion (dequeue) of elements starts at element
0 and work their way toward the fi nal array location. As

a result, each location in the array can be used just once.
Considering a queue of fi ve elements, suppose one goes
on inserting elements into the queue till the entire array
gets fi lled. At this stage, the value of rear would be
MAX_SIZE – 1, that is, 4. Now if we delete four elements from
the queue, at the end of these deletions, the value of front
would be 4. Now any attempt to enqueue a new element to
the queue would cause an overfl ow error as it is reported as
full even though in reality, the fi rst fi ve slots of the queue
are empty. The situation can be depicted as in Fig. 12.6.

rear

5 12

front

7 3 4

Figure 12.6 The problem with linear queue leading to
overfl ow, though some slots are free

 To overcome this situation, we can implement a queue
as a circular queue. That is, during addition, if we reach
the end of the array and if the slots at the beginning of
the queue are empty (as a result of a few deletions), then
the new elements would get added at the beginning of the
array. The front should be placed at index 0. Here, one
mathematical trick that can be used is to place the front at
the start as well as to the successive positions of the array
is the modulo remainder method. Instead of incrementing,
one could use the following statements:

rear = (rear+1) % MAX_SIZE
front = (front+1) % MAX_SIZE

 Initially both front and rear are initialized with MAX_
SIZE – 1. Consider an array with fi ve elements, indexed as
0 through 4. The value of both rear and front is initialized
with 4. If the above statements are used, the successive
values of rear would be evaluated as given below.

rear = (4+1) % 5 = 0

rear = (0+1) % 5 = 1

rear = (1+1) % 5 = 2

rear = (2+1) % 5 = 3

rear = (3+1) % 5 = 4

rear = (4+1) % 5 = 0

It ensures that the indices cycle constantly from 0
through 4.

502 Programming in C

 The front indicates the next element to be removed
from the queue and the rear indicates the next location
where an element can be added. Now the question is, how
can the empty or full queue be represented? When both
indices point to the same array element, then the queue is
empty; and when the rear points to the array element that
logically precedes the front, the queue is full. This is the
common assumption in this implementation.
 In this implementation, it does not allow you to use all
of the elements of the underlying array; one array element
has to be sacrifi ced. So an array of ten elements is ‘full’
when it contains nine queue elements. Therefore the test
expression for overfl ow is given by front==(rear+1)%MAX_
SIZE. Similarly, the test expression for underfl ow is given
by front== rear.

Example

 4. The array implementation of the circular queue is given below.

#include <stdio.h>
#defi ne MAX_SIZE 5
struct queue
{
 int list[MAX_SIZE];
 int front,rear;
};
void enqueue(struct queue *,int);
int dequeue(struct queue *);
int main(void)
{
 struct queue q;
 int ch,x,p;
 q.rear=q.front=MAX_SIZE-1;
 while(1)
 {
 printf(“\n 1.INSERT 2.RETRIEVE 3.EXIT \n”);
 printf(“\n Enter your choice:”);
 scanf(“%d”,&ch);
 switch(ch)
 {
 case 1:
 printf(“\n ENTER THE NO :”);
 scanf(“%d”,&x);
 enqueue(&q,x);
 break;
 case 2:
 p=dequeue(&q);
 if(p!=-1)
 printf(“\n Dequeued Element is %d”,p);
 break;

 case 3:
 exit(0);
 }
 }
 return 0;
}
void enqueue(struct queue *qp,int x)
{
 if(qp->front==(qp->rear+1)%MAX_SIZE)
 {
 printf(“\nOVERFLOW”);
 return;
 }
 qp->rear=(qp->rear+1)%MAX_SIZE;
 qp->list[qp->rear]=x;
 return;
}
int dequeue(struct queue *qp)
{
 if(qp->front==qp->rear)
 {
 printf(“\nUNDERFLOW”);
 return(-1);
 }
 qp->front = (qp->front+1)%MAX_SIZE;
 return(qp->list[qp->front]);
}

 Linked List Implementation of Queue

The queue can be implemented as a linked list with one
external pointer to the front of the queue and a second
external pointer to the rear (back) of the queue. Each
element of the queue can be represented as follows:

struct node
{
 int data;
 struct node *next;
};

 Let us have two pointers, front to the fi rst element of
the list and rear to the last element of the list. Both pointers
must be of type struct node. To initialize the queue to
empty, the front and rear pointers are set to NULL.
 To implement the enqueue operation using a function,
the memory should be allocated trough malloc() function
and the data has to be set with suitable value. If the queue
is empty, both the front and rear pointer should be set
to point to the new node. That is because when there is
just one node, that node is both the front and the rear of

Stacks, Queues, and Trees 503

the queue. If the malloc() function is unable to allocate
memory for the node, then the ‘overfl ow’ error would have
to be fl ashed. The enqueue operations on a linked queue
may be envisioned in Fig. 12.7.

rear

5

front

(a) The enqueue of 5 into
linked queue

5 12

(b) The enqueue of 12 into linked
queue

(c) The enqueue operation of 7 into linked queue

5 12 7

front
rear

front
rear

Figure 12.7 Visual representation of enqueue operation
on a linked list

 To implement dequeue operation, the node pointed
by the pointer front will have to be deleted using free()
function and front should point to the next node of the
linked list. Any attempt to dequeue an element from the
empty queue would cause the underfl ow error. The queue
is empty when the front is NULL. The dequeue operation is
depicted in Fig. 12.8.

(a) Dequeue operation on linked queue

5 12 7

rear
front

(b) Dequeue of 12 from linked queue

5 12

rear
front

Figure 12.8 Visual representation of removing an element
from a linked queue

Example

 5. The C code for the implementation of a linked queue is as
follows:

#include <stdio.h>

#include <stdlib.h>

struct node

{

 int data;

 struct node *next;

};

void enqueue (struct node **f, struct node **r,
int item)

{

 struct node *q;

 /* create new node */

 q = (struct node *)malloc (sizeof(struct node));

 if(q == NULL)

 {

 printf(“queue is full”);

 return;

 }

 q -> data = item;

 q -> next = NULL;

 /* if the queue is empty */

 if (*f == NULL)

 *f = q;

 else

 (*r) -> next = q;

 *r = q;

}

/* removes an element from front of queue */

int dequeue(struct node **f, struct node **r)

{

 struct node *q;

 int item;

 /* if queue is empty */

 if (*f == NULL)

 {

 printf (“queue is empty”);

 return(-1);

 }

 else

 {

 /* delete the node */

 q = *f;

504 Programming in C

 item = q -> data;

 *f = q -> next;

 free (q);

 /* if on deletion the queue has become empty */

 if (*f == NULL)

 *r = NULL;

 return (item);

 }

}

int main(void)

{

 int x,ch;

 struct node *front, *rear;

 front=rear=NULL;

 while(1)

 {

 printf(“\n 1.ENQUEUE 2.DEQUEUE 3.EXIT\n”);

 printf(“\n Enter choice :”);

 scanf(“%d”,&ch);

 switch(ch)

 {

 case 1:

 printf(“\n Enter the data :”);

 scanf(“%d”,&x);

 enqueue(&front,&rear,x);

 break;

 case 2:

 x=dequeue(&front,&rear);

 if(x!=-1)

 printf(“\n Dequeued element = %d”, x);

 break;

 case 3:

 exit(0);

 }

 }

 return 0;

}

 The trivial improvement is to store both front and rear
of the queue, so there will be no need to pass both of them
into the function for inserting and retrieving elements
into and from the queue. This may be implemented using
another structure like:

typedef queue
{
 NODE* front;
 NODE* rear;
} QUEUE;

Example

 6. The revised version of the above program can be written as
follows:

#include <stdio.h>
#include <stdlib.h>
struct node
{
 int data;
 struct node *next;
};
typedef struct node NODE;
typedef struct queue
{
 NODE* front;
 NODE* rear;
} QUEUE;
void enqueue (QUEUE *qp, int item)
{
 NODE *q;
 /* create new node */
 q = (NODE *)malloc (sizeof (NODE));
 if(q == NULL)
 {
 printf(“queue is full”);
 return;
 }
 q -> data = item;
 q -> next = NULL;
 /* if the queue is empty */
 if (qp->front == NULL)
 qp->front = q;
 else
 (qp->rear) -> next = q;

 qp->rear = q;

}

/* removes an element from front of queue */

int dequeue(QUEUE *qp)

{

NODE *q;

int item;

/* if queue is empty */

if (qp->front == NULL)

 {

 printf(“queue is empty”);

 return(-1);

 }

else

{

/* delete the node */

Stacks, Queues, and Trees 505
q = qp->front;
item = q -> data;
qp->front = q -> next;
free (q);

/* if on deletion the queue has become empty */
if (qp->front == NULL)
 qp->rear = NULL;
return (item);
}
}
int main(void)
{
 int x,ch;
 QUEUE que;
 que.front=que.rear=NULL;
 while(1)
 {
 printf(“\n 1.ENQUEUE 2.DEQUEUE 3.EXIT\n”);
 printf(“\n Enter choice :”);
 scanf(“%d”,&ch);
 switch(ch)
 {
 case 1:
 printf(“\n Enter the data :”);
 scanf(“%d”,&x);
 enqueue(&que,x);
 break;
 case 2:
 x=dequeue(&que);
 if(x!=-1)
 printf(“\n Dequeued element = %d”, x);
 break;
 case 3:
 exit(0);
 }
 }
 return 0;
}

12.3.2 Other Variations of Queue

 Priority queue
Priority queue is a special type of queue in which items
can be inserted or deleted based on the priority. Different
types of priority queues are:
 1. Ascending priority queue
 2. Descending priority queue
 In an ascending priority queue, elements can be inserted
in any order. But while deleting an element from the queue,

remove only the smallest element fi rst. In a descending
priority queue, elements can be inserted in any order but
while deleting, the largest element is deleted fi rst. It is to
be noted that for elements of same priority, the FIFO order
is used.

Double Ended Queue or Deque

A deque is a homogeneous list in which elements can be
inserted or deleted from both the ends. i.e.; we can add
a new element at the rear or front end and also we can
remove an element from both front and rear end. Hence it
is called as double ended queue.
 There are two types of deque depending upon the
restriction to perform insertion or deletion operations at
the two ends. They are:
 1. Input restricted deque
 2. Output restricted deque
 An input restricted deque allows insertion at only one
end (rear end), but allows deletion at both the ends, rear
and front end of the lists.
 An output-restricted deque allows deletion at only one
end (front end), but allows insertion at both ends (rear and
front ends) of the lists. The possible operations performed
on a deque are:

 1. Add an element at the rear end
 2. Add an element at the front end
 3. Delete an element from the front end
 4. Delete an element from the rear end
 Only 1st, 3rd, and 4th operations are performed by
input-restricted deque and 1st, 2nd and 3rd operations are
performed by output-restricted deque.

12.3.3 Applications of Queue

Direct Application
 ∑ Print queue The most common application of a

queue is the print queue. When multiple print jobs
are sent to a printer, each printing job is inserted at
the rear of the queue in the order it was sent. Each job
is then printed in the order sent to the printer.

 ∑ Ready queue Processes waiting to be executed by
a CPU are usually in the form of a queue. These may
also take the form of a priority queue. For example,
in a multi-user system, there will be several programs
competing for the central processor at one time. The

506 Programming in C

programs have a priority value associated to them and
are held in a priority queue. The program with the
highest priority gets the fi rst opportunity to use the
central processor. Scheduling of jobs within a time-
sharing system is another application of queues.

 ∑ Message queue In a computer network, messages
from one computer to another are generally created
asynchronously. These messages therefore need to be
buffered until the receiving computer is ready for it.
These communication buffers make extensive use of
queues by storing these messages in a queue. Also the
messages need to be sent to the receiving computer
in the same order in which they are created, i.e. FIFO
order.

 ∑ Any type of stream throughput of I/O will use a queue.
Scheduling of jobs within a time-sharing system
is another application of queues. In such a system,
many users may request processing at a time and the
computer time is divided among these requests. The
simplest approach sets up one queue that stores all
the requests for processing. The computer processes
the request at the front of the queue and fi nishes it
before starting on the next. The same approach is also
used when several users want to use the same output
device, say a printer.

 ∑ Auxiliary data structure in algorithms
 Queues are used in fi nding the shortest path in a graph
 Queues can be used for Discrete Event Simulation

12.4 TREE
Trees are useful for organizing data in a manner that makes
it effi cient to retrieve it. To illustrate this, let a collection
of data be organized in a linked list structure. To fi nd an
item in the list, the only option is to traverse the entire list
sequentially from one end to the other until the item is
found. This is not effi cient for a large amount of data. A
better approach in this case would be to use a tree structure
to organize the data. A special type of tree known as a
 binary search tree would be more useful. The binary search
tree is organized in such a way that all the items less than
the item in a chosen node are contained in the left sub-tree
and all the items greater than the chosen node are contained
in the right sub-tree. In this manner, one does not have to
search the entire tree for a particular item in the manner of
linked list traversals. Consequently, search times through
the data structure are, on an average, greatly reduced.

 A tree is a set of points and lines. The points are called
 nodes and the lines are called edges as is depicted in Fig.
12.9. The edges connect two distinct nodes. The tree becomes
a data structure when the nodes hold some data and the links
between the nodes are established with the use of pointers.
The diagram in Fig. 12.9 is an example of a tree.

Root node, parent of
nodes B, C and D

Child of node A and
parent of nodes E and F

Child of node
B and leaf

A

B

E

C

F G

D

Level 2

Level 1

Level 0

C

Figure 12.9 A sample tree

 Actually, there are two different approaches to defi ning
a tree structure, one is a recursive defi nition and the other
is a non-recursive defi nition. The non-recursive defi nition
basically considers a tree as a special case of a more general
data structure, the graph. In this defi nitionm the tree is
viewed to consist of a set of nodes which are connected
in pairs by directed edges such that the resulting graph
is connected. That is every node is connected to at least
one other node – no node exists in isolation and cycle-
free. This general defi nition does not specify that the tree
have a root and thus a rooted-tree is a further special case
of the general tree such that every node except the one
designated as the root is connected to at least one other
node. In certain situations the non-recursive defi nition
of a tree has certain advantages. However, the recursive
defi nition of a tree is given below.
 A tree is a set of one or more nodes T such that:
 ∑ There is a specially designated node called a root
 ∑ The remaining nodes are partitioned into n disjointed

set of nodes T1, T2,…,Tn, each of which is a tree.
 To form a tree with nodes and edges, these nodes and
edges have to satisfy the following primary properties:
 ∑ In a tree structure, one node is distinct and is called

the root. The root is the top-most node from which
edges originate, but no edges terminate.

 ∑ Nodes may be categorized as a parent or a child or a
leaf. Every node, in a tree, other than the root node, is

Stacks, Queues, and Trees 507

connected by an edge to another node, called parent,
which is one level above it.

 ∑ All nodes are related to the root node.
 In Figure 12.9, A is the root node and parent to B, C
and D. B is the parent node to nodes E and F. In a similar
way, D is the parent node of node G. On the other hand,
nodes B, C and D are the child nodes of node A. The nodes
E and F are the child nodes of node B while node G is a
child node of node D. Nodes C, E, F and G do not have
any child nodes. Such nodes are called leaf nodes.
 Each node in a tree belongs to a particular level. The
level of the root node is zero. This is considered to be
the datum level and nodes drawn below this datum level
belong to level 1, 2, ... upto the maximum level in a given
tree. In Figure 12.9, node A being the root node, it is at
level 0. Nodes B, C and D belong to level 1 while nodes
E, F and G belong to level 2. The concept of level in a
tree structure indicates that the nodes are arranged in an
hierarchy from top to bottom and are connected with the
edges between them in order.
 The different types of trees structures in decreasing
order of generality are:
 ∑ Trees
 ∑ Rooted trees
 ∑ Ordered trees
 ∑ M-ary trees and binary trees

12.4.1 Some Basic Tree Terminology

 Tree A tree is a non-empty collection of nodes (or
vertices) and edges (or lines) that satisfi es the condition
that a unique node exists at the topmost level which may
or may not have a node(s) connected in a hierarchical
order below it with edges.
 Node Each element of a tree is called a node of the tree.
 Edge An edge is a connecting link between two nodes
(or vertices).
 Root It is the topmost node in a tree and all other nodes
branch off from this node.
 Leaf It is a node that does not have any child node of its
own. It means that such a node is a special child node that
has a parent but does not have any node which is a child
to it.
 Sibling Nodes with a common parent are called
siblings.

 External node A leaf or external node is any node that
has no non-empty children.
 Internal node An internal node is any node that has at
least one non-empty child.
 Level The level of a node in a binary tree:
 ∑ the root of the tree has level 0
 ∑ the level of any other node in the tree is one more

than the level of its parent.
 Path A path in a tree is a list of distinct vertices in which
successive vertices are connected by edges.
 Height It is defi ned to be the length of the longest path
from the root to a leaf in that tree (including the path to
root).
 Depth The depth of a tree is defi ned as the maximum
value of the level of the node of the tree considering the
root node as the datum node. It may be noted that the root
of a tree is said to be at depth 0, and every other nodes is
said to have a depth which is the number of links from the
root to the node. The depth of the tree as a whole is the
maximum depth of all nodes within the tree.
 Descendants The descendants of a node are all the nodes
that are on some path from the node to any leaf.
 Ancestors The ancestors of a node are all the nodes that
are on the path from the node to the root.
 Degree The degree of a node of a tree is the number
of sub-trees having this node as a root. In other words,
the degree is the number of descendants of a node. If the
degree is zero, it is called a terminal or leaf node. The
degree of a tree is defi ned as the maximum of degree of
the nodes of the tree, that is, degree of tree = max (degree
(node i) for i = 1 to n)

12.4.2 Binary Tree

A tree in which each node can have maximum of two
children is known as a binary tree. Hence, in such a tree,
each node can have no child, one child, or two children.
The binary tree has a left child and a right child. The
mathematical defi nition of a binary tree is given below.
A binary tree is a fi nite set of elements that is either empty
or is partitioned into three disjoint subsets. The fi rst subset
contains a single element called the root of the tree. The
other two subsets are themselves binary trees called the
left and right sub-trees. Each element of a binary tree is
called a node of the tree.

508 Programming in C

It is graphically represented in Fig. 12.10.

a

b e

c d f g

Figure 12.10 Graphical representation of a binary tree

A binary tree is known as a full binary tree when
 ∑ Each non leaf node has exactly two child nodes.
 ∑ All leaf nodes have identical path length.
 ∑ All possible node slots are occupied.
 Figure 12.11 shows two structures, of which one is a
full binary tree and the other one is not.

A

B

D E F G

C

R

M

W X

N

(a) Full binary tree (b) Not a full binary tree

Figure 12.11 Examples of binary tree

 A complete binary tree is a special case, in which all the
levels, except perhaps the last, are full; while on the last
level, any missing nodes are to the right of all the nodes
that are present. Figure 12.12 depicts an example of a
 complete binary tree.

H

B C

D E F G L

I

J K

A Level 0

Level 1

Level 2

Level 3

Figure 12.12 An example of a complete tree

 It is clear from the example of a complete binary tree
(Fig. 12.12) that at level 0, there is only one node. At level
1, the number of nodes is 2. At level 2, the number of nodes
is 2. At level 3, there are 8 nodes and so on. Therefore,
it can be concluded that in a complete binary tree at a
particular level k, the number of nodes is equal to 2k. It
is to be remembered that this formula for the number of
nodes is for a complete binary tree only. It is not necessary
that every binary tree fulfi ls this criterion. The depth of a
tree is defi ned as the maximum value of the level of the
node of the tree considering the root node as the datum
node. Let ‘d’ be the depth of the tree. Therefore the total
number of nodes in a complete binary tree of depth d
can be computed by adding the number of nodes at each
level.

20+ 21+ 22 + ... + 2d = 2
d

iÂ = 2d+1 – 1

 Therefore, the total number of nodes in a complete
binary tree of depth d will be (2d+1 – 1) and all the leaf
nodes are at the depth level d. So the number of nodes
at level d will be 2d . These are the leaf nodes. Thus the
difference of total number of nodes and number of leaf
nodes will give us the number of non-leaf nodes. It will
be (2d+1 – 1) – 2d, i.e., 2d – 1. Thus we conclude that in a
complete binary tree, there are 2d leaf nodes and (2d – 1)
non-leaf (inner) nodes.
 Some more results can be concluded from the above
formula. Say there is a complete binary tree with n total
nodes, then by the equation of the total number of nodes is
given by the following equation:

n = 2d+1 – 1

 Now solving the above equation as follows, the depth
of the tree, d, can be calculated.

2d+1 – 1 = n

2d+1 = n + 1

d + 1 = log2 (n + 1)

d = log2 (n + 1) – 1

 Therefore if there is a complete binary tree with n
numbers of nodes, the depth d of the tree can be found by
the following equation:

d = log2 (n + 1) – 1

Stacks, Queues, and Trees 509

Points to Note

 • Tree is a non-linear data structure.
 • The maximum level of any leaf in a binary tree is called

the depth of the tree.
 • Other than the root node, the level of each node is one

more than the level of its parent node.
 • A complete binary tree is necessarily a strictly binary

tree but not vice versa.
 • At any level k, there are 2k nodes at that level in a

complete binary tree.
 • The total number of nodes in a complete binary tree of

depth d is (2d+1 – 1).
 • In a complete binary tree, there are 2d leaf nodes and

(2d – 1) non-leaf nodes.

 Counting Binary Trees

Let bn denote the number of binary trees on n vertices.
We defi ne, for convenience, b0 = 1. Clearly, b1 = 1. For
n > 1, a binary tree on n vertices has a left subtree on, say,
j vertices and a right subtree on n–1–j vertices. To count
the number of trees, we would add up the possibilities for
each value of j, thus:

bn = b0bn–1 + b1bn–2 + ... + bn–1b0
 This recursion relation is known as the Catalan
recursion and the numbers bn are known as the Catalan
numbers. The Catalan numbers solve a large number of
different looking counting problems.
 The number bn of different binary trees on n vertices is
given by

b
nn n

n=
+

)1
1
2(

 Therefore, the number of possible binary trees in n
nodes is: 1/n * C(2n, n) = 1/(n+1) * (2n)!/(n!n!).
 An almost complete binary tree is a tree in which for
a right child, there is always a left child, but for a left
child there may not be a right child. More strictly, to be an
almost complete binary tree,
 1. all leaves are at level d or d – 1.
 2. L if a node is having right descendant at level d, then

all leaves in its left subtree will be at level d.
 If every non-leaf node in a binary tree has non-empty
left and right subtrees, the tree is termed as a strictly binary
tree. That is, it is a binary tree where every non-leaf node
must have both left and right child.

 A perfect binary tree (PBT) is a complete binary tree
in which all leaves (vertices with zero children) are at the
same depth (distance from the root, also called height).
The number of nodes in a PBT is always 2h + 1 – 1 where h
is the height of the tree.
 Sometimes the perfect binary tree is called as the
complete binary tree. Some others defi ne a complete
binary tree to be a binary tree in which all leaves are at
depth n or n – 1 for some n.

12.4.3 Traversals of a Binary Tree

Traversing of a tree basically entails visiting all the nodes
of the binary tree. In the traversal technique, each node in
the tree is processed or visited once, systematically one
after the other. Processing may include just displaying
the contents of the node or assist in some other operation.
There are three commonly used traversals for a binary
tree, (a) preorder, (b) inorder, and (c) postorder.
 The names for the different traversals are chosen
according to the sequence in which the root node and its
children are visited.
 For in-order traversal, start at the root and fi rst traverse
each node’s left sub-tree, then the node and fi nally the
node’s right sub-tree. This is a recursive process since
each left and right branch is a tree in itself.
 In preorder traversal, the root node is visited fi rst. Then,
if there is a left child, the visit has to be made to the left
subtree (all the nodes) in pre-order fashion starting with
that left child. In case there is a right child, then the visit
has to be made to the right subtree in pre-order fashion
starting with that right child.
 In case of postorder traversal, the left subtree (all the
nodes) is visited and then its right subtree (all the nodes) is
visited and fi nally its root node is visited.
 Let us take the case of three nodes in the tree that has
the following arrangement (Fig. 12.13).

A

B C

Figure 12.13 A binary tree with 3 nodes

510 Programming in C

 For in-order traversal, the order is left-child, root node,
right-child. This means that the order of visiting the nodes
in the given tree BAC. In case of pre-order traversal, the
order is root node, left-child, right-child. This implies that
the order of visiting the nodes is ABC. Similarly for post-
order traversal, the order is left-child, right-child, root
node, which means that the order of visiting the nodes
is BCA. The above example is a simple one. A tree may
typically have more than three nodes. Instead of nodes B
and C, as shown in the above example, there could be sub-
trees. Let us take another binary tree as depicted in Fig.
12.14.

D

F G

C

E

A

B

Figure 12.14 A binary tree with 7 nodes

 In-order traversal gives rise to the sequence B A F D G
C E. Here, A is root. Before traversing A, its left child B has
to be traversed. The right child of A is a sub-tree itself. The
inorder traversal of right subtree produces the sequence
F D G C E.

 B ………… left
 A ………… root
 F D G C E... right

Points to Note
 Inorder traversal:

 1. Traverse the left sub-tree in inorder
 2. Visit the root
 3. Traverse the right sub-tree in inorder

In short LNR where L, N, R stand for Left, Node, and Right,

respectively.

 Similarly, pre-order traversal of the binary tree (Fig.
12.14) gives the sequence A B C D F G E as
 A …………………………….. root
 B …………………………….. left
 C D F G E ….... right
 Post-order traversal gives rise to the sequence: B F G D
E C A

 b …………… left
 f g d e c ……. right
 a …………… root

Points to Note
 Preorder traversal:

 1. Visit the root
 2. Traverse the left sub-tree in preorder
 3. Traverse the right sub-tree in preorder

In short NLR where L, N, R stand for Left, Node, and Right,
respectively.

 Postorder traversal:
 1. Traverse the left-sub tree in postorder
 2. Traverse the right-sub tree in postorder
 3. Visit the root

In short LRN where L, N, R stand for Left, Node, and Right,
respectively.

 Two more examples are given in Fig. 12.15(a) and
12.15(b), where these traversals are demonstrated.

9

4 3

8 2 5

40

30

10 32 60

70

90

6535

(a) (b)

Figure 12.15

 With the tree shown in Fig. 12.15(a) inorder traversal
produces the sequence of values 8 4 2 9 3 5.
 For postorder traversal, start at the root and fi rst access
each node’s left branch, then the node’s right branch and
fi nally the node itself. For the given tree, the corresponding
sequence is 8 2 4 5 3 9.

Stacks, Queues, and Trees 511

 In the case of preorder traversal, start at the root and
access the node itself, its left branch and fi nally its right
branch. This leads to the sequence 9 4 8 2 3 5 for the tree.
 Preorder: 40, 30, 10, 32, 35, 70, 60, 65, 90
 Inorder: 10, 30, 32, 35, 40, 60, 65, 70, 90
 Postorder: 10, 35, 32, 30, 65, 60, 90, 70, 40
 The implementation of the different traversal methods
are discussed for such tree structures in Section 12.4.5.
 It should be noted that these traversals correspond to the
familiar prefi x, postfi x, and infi x notations for arithmetic
expressions. Preorder arises in game-tree applications in
Artifi cial Intelligence, where one is searching a tree of
possible strategies by depth-fi rst search. Postorder arises
naturally in code generation in compilers.

12.4.4 Kinds of Binary Trees

There are several variations of binary trees which are
useful models in many different situations. Three of the
more common ones are:
 ∑ Binary search tree
 ∑ Expression tree
 ∑ Heap
 A binary search tree is a binary tree in which each node
contains a key, all keys are unique, and for any node the
keys in its left sub-tree are less than the key in the node
itself and the keys in its right sub-tree are greater than the
key in the node itself.
 An expression tree is a binary tree that stores an expression
such as an arithmetic expression in such a way that each
leaf node contains an operand of the expression, and each
interior node contains an operator of the expression.
 A heap is a complete binary tree, each of whose nodes
contains a key which is greater than or equal to the key in
each of its children. Actually, this is technically a maxheap.
A minheap is a complete binary tree, each of whose nodes
contains a key which is less than or equal to the key in each
of its children. The following tree is an example of a heap.

7

9

1

5 3

Figure 12.16 An example of a heap

12.4.5 Binary Search Tree

In a binary tree, if the values in its nodes are arranged in
a specifi c order, with all the values stored in the nodes
smaller than that of the root stored in the left sub-tree and
all nodes with values greater than that of the root stored
as the right sub-tree, it represents a sorted list. The reason
for such ordering is that the complexity of searching an
element reduces considerably, as one has to check only
one node at each level of the height, so complexity is given
by the height of the tree, and the height of the tree is much
less than the total number of elements.
 When a binary tree has ‘m’ levels counting down
0,1,2,…., m, the tree can have a maximum of (2m+1

 –1)
nodes. The complexity for searching in a binary tree will
be of the order of 2m+1 whereas if it is a binary search tree,
it will be of the order (m+1). Of course, one has to keep in
mind that the tree has to be organized in a specifi c manner.
Such a tree is known as a binary search tree, because it
permits the user to carry out a search similar to the binary
search method that is used on a sorted array. A binary
search tree can be defi ned as follows:
 A binary search tree, BST, is an ordered binary tree T
such that either it is an empty tree or
 ∑ each data value in its left sub tree less than the root

value,
 ∑ each data value in its right sub tree greater than the

root value, and
 ∑ left and right sub trees are again binary search trees.
 It is known as a search tree, because searching for a
particular value in a normal tree will be as complicated as
moving to the depth of the tree.
 For example, a binary search tree is formed using a
sequence of numbers 5, 2, 3, 7, 8, 1, 4, 6. The numbers are
added in that order. It should be noted that if the numbers are
added in a different order, a different tree may be formed.

5

2

1 3 6

7

8

4

Figure 12.17 A binary search tree formed with the sequence
of numbers 5, 2, 3, 7, 8, 1, 4, 6

512 Programming in C

Constructing a Binary Search Tree

Generally we say that once the root is created, if the value
is less, it should go to the left sub-tree, otherwise to the

right sub-tree. Actually with the value to be searched, the
current node in the tree should inform us, in some way,
whether the value should be searched in the left sub-tree
or right sub-tree of the node.

Example

 7. Construct a binary search tree from the following set of values: 9, 5, 6, 12, 10, 17, 3, 11, 4.

9

Root node
9

5

9

5

6

(a) The root node is created with value 9.

9

5

6

12

9

5

6

12

10

9

5 12

6 10 17

9

5 12

3 6 10 17

9

5

3 6 10

12

17

11

9

5

3 6

4 11

10 17

12

(b) Since the next data is 5, which is less
than 9, the node containing 5 is created
on the left of node containing 9

(c) The next data is 6, which being less than
9, traversal has to be to the left of node
containing 9. Here, the node holding 5
exists, this being less than 6, the node
holding 6 is placed to its right.

(d) The next data being 12, which is greater
than 9, the node that holds it is placed
on the right of the root node.

(e) The next data is 10. This is larger than 9,
the value in the root, so the traversal is
to the right of the root node. Next when
the node holding 12 is encountered, 10
being lesser than 12, the node holding
10 is placed to its left.

(f) The next data being 17, which is greater
than 9 and 12, the node holding it is
placed to the right of the node holding 12.

(g) The data that follows is 3. This being
lesser than both 9 and 5, the traversal
is towards the left of nodes holding 5
and 9. Thus, the node holding 3 is
placed as a left child of the node
holding the value 5.

(h) The next data is 11. The traversal for
locating this node is to the right of root
node. As 11 is lesser than 12, the next
traversal is towards the left of node
holding 12. Beyond the node holding 10,
11 being larger than 10, the node
holding 11 is placed at the right of it.

(i) The last data is 4, which is less than 9
and 5 while it is larger than 3, thus the
traversal is as shown in the figure and
the node holding this value is placed as
shown.

Figure 12.18 Different stages of constructing the BST for the given data sequence

Stacks, Queues, and Trees 513

Implementation of a Binary Search Tree

As is case of stacks and queues, a binary search tree can be
implemented using arrays as well as using linked lists.

Implementation of a binary search tree using array As
trees are not a linear data structure, representing a tree using
arrays requires a proper mapping from the tree structure
into a linear organization. In general representing trees
using arrays is feasible (without excessive complications)
only if the maximum number of edges coming out
of each node is known in advance. In case of binary
search tree, each node may have at most two successors.
Consider the tree in Fig. 12.19. The nodes in the tree have
been numbered consecutively, starting from 0 (root),
1 and 2 have been assigned to the children of the root,
3... 6 have been used for the grandchildren of the root and
so on.

6

0

1

3
4

2

5

9
4
13
3
6
10

0
1
2
3
4
5
6
7

9

4

3 10

13

Figure 12.19 Binary search tree using array

 Figure 12.19 suggests an idea for representing trees
using array; the above numbering scheme needs to be
considered, and if a node is assigned node j, simply that
node has to be stored in the location a[j] of the array.
Thus, if one is positioned in a node which is in position i
of the array, then we can easily identify:

 ∑ the left child will be in position 2 × i + 1,
 ∑ the right child will be in position 2 × i + 2,
 ∑ the root is in position 0.

 We assume that if a node does not exist, then the
corresponding entry in the array is fi lled with a default
value say –1.

Example

 8. The array implementation of a tree is given below.

#include <stdio.h>

#defi ne SIZE 30

#defi ne TRUE 1

#defi ne FALSE 0

struct bnode

 {

 int item;

 int used;

 }node[SIZE];

 int i=0;

void order(void);

void inorder(void);

void setleft(int,int);

void setright(int,int);

int main()

{

 char ans=‘y’;

 int p,q,n;

 printf(“\n ENTER THE ROOT :”);

 scanf(“%d”,&n);

 node[0].item=n;

 node[0].used=TRUE;

 for(p=1;p<SIZE;p++)

 node[p].used=FALSE;

 while(ans==‘Y’ || ans==‘y’)

 {

 p=q=0;

 printf(“\n ENTER THE value :”);

 scanf(“%d”,&n);

 while(q<SIZE && node[q].used && n!=node[p].item)

 {

 p=q;

 if(n<node[p].item)

 q=2*p+1;

 else

 q=2*p+2;

 }

 if(n==node[p].item)

 printf(“\nDUPLICATE.....”);

514 Programming in C

 else if(n<node[p].item)

 setleft(p,n);

 else

 setright(p,n);

 i++;

 printf(“\nDo you add more(y/n)?”);

 ffl ush(stdin);

 scanf(“%c”,&ans);

 }

 order();

 return 0;

 }

void setleft(int p,int x)

{

 int q;

 q=2*p+1;

 if(q>SIZE)

 printf(“\nArray overfl ow”);

 else if(node[q].used)

 printf(“\nInvalid insertion”);

else

 {

 node[q].item=x;

 node[q].used=TRUE;

 }

}

void setright(int p,int x)

{

 int q;

 q=2*p+2;

 if(q>SIZE)

 printf(“\nArray overfl ow”);

 else if(node[q].used)

 printf(“\nInvalid insertion”);

 else

 {

 node[q].item=x;

 node[q].used=TRUE;

 }

}

void order(void)

{

int c;

for(c=0;c<=i;c++)

printf(“%d-->”,node[c].item);

}

 The major problem is that the array required to store even a relatively
small tree can be very large.

Implementation of a BST using linked list The structure
used for representing the node for a binary search tree
with three fi elds: a data value, a left link and a right link is
shown below:

typedef struct node
{
 int data;
 struct node *left;
 struct node *right;
} NODE;

typedef NODE *NODEPTR;

 Here the data fi eld may be of any type and size, and two
pointers are used to point to the left child and right child
respectively. This structure is again dynamic in nature and
there is no limitation on the number of nodes, and one can
go on building the tree in any form until malloc() fails.
When the tree is not required, one can free all the nodes so
that the memory can be utilized for some other process.
 The ‘root’ pointer points to the topmost node in the tree.
A null pointer represents a binary tree with no elements,
the empty tree.
 The linked representation of a binary search tree is
shown in Fig. 12.20.

7

5

3 6 10

13

Root

15

Figure 12.20 Linked representation of a binary search tree

Stacks, Queues, and Trees 515

 Here is a function to create a node of this type to store
a given integer.

NODEPTR create_node(int x)

{

 NODEPTR pTemp;

 pTemp = (NODEPTR) malloc (sizeof(NODE));

 if (pTemp == NULL)

 {

 printf(“Out of memory, could not store number! \n”);

 }

 else

 {

 pTemp->data = x;

 pTemp->left = NULL;

 pTemp->right = NULL;

 }

 return pTemp;

}

 The create_node() function for creating a node is
almost identical with that of a linked list, except that there
are now two pointers which must be set to NULL.
 When inserting nodes into a binary tree using the
ordering rule discussed above, all new nodes are inserted
as leafs in the tree. To determine the location to insert a
new node, one has to start searching the tree at the root. If
the data in the new node is greater than or equal to the data
in the current node, it is needed to move to the right child
of the current node and continue the search. If the data in
the new node is less than the data in the current node, it
necessitates stepping to the left child of the current node
and the search has to be continued.
 Here is a function which will insert a node into a binary
search tree and return a pointer to the root of the new tree,
assuming the ordering rule discussed above:

NODEPTR insert_node(NODEPTR pRoot, NODEPTR pNew)

{

 NODEPTR pParent, pCur;

 /* If this is the fi rst element, it becomes the
root of the tree. */

 if (pRoot == NULL)

 return pNew;

 /* Find position of new element, start searching
at root of tree. */

 pParent = NULL;

 pCur = pRoot;

 do

 {

 if (pNew->data < pCur->data)
 {
 /* New node belongs in left subtree. */
 pParent = pCur;
 pCur = pCur->left;
 }
 else
 {
 /* New node belongs in right subtree. */
 pParent = pCur;
 pCur = pCur->right;
 }
 } while (pCur != NULL);

 /* Insert new node as appropriate leaf. */
 if (pNew->data <= pParent->data)
 pParent->left = pNew;
 else
 pParent->right = pNew;
 return pRoot;

}

 This function inserts a node into a binary search tree
starting at pRoot. If the root is NULL, then the new node
becomes the root of a new tree. Otherwise, it is required to
search left and right, following the rule which determines
the ordering, until a NULL is reached. At that point, the new
node is inserted as a leaf where the NULL was found.
 All the traversals are implemented using recursive
functions. The functions are listed below.

void inorder_traversal(NODEPTR pCur)
{
 if (pCur == NULL)
 return;

 inorder_traversal(pCur->left);
 printf(“%d”, pCur->data);
 inorder_traversal(pCur->right);
 return;
}

void preorder_traversal(NODEPTR pCur)
{
 if (pCur == NULL)
 return;

 printf(“%d”, pCur->data);
 preorder_traversal(pCur->left);
 preorder_traversal(pCur->right);
 return;
}

516 Programming in C

void postorder_traversal(NODEPTR pCur)
{
 if (pCur == NULL)
 return;

 postorder_traversal(pCur->left);
 postorder_traversal(pCur->right);
 printf(“%d”, pCur->data);
 return;
}

 Finally, given below is the complete program in which
the function main() allows the user to type in integers until
he or she presses control-z (in Windows) or control-d (in
LINUX) which signals EOF and then displays the numbers
in inorder, preorder, and postorder.
 One point to be discussed here is that a node with
duplicate value cannot be inserted in a binary search tree.
To confi rm this, in the main() function, another function
named search() has to be called. The search() function
returns 1 if the value matches with the value stored in the
data fi eld of any node of the tree, otherwise it returns 0.
As the name suggests, binary search trees have the aim of
simplifying the process of search. It requires less number
of comparisons to check whether a particular node value is
present. If the value to be searched is equal to that stored
in the data fi eld of the current node, 1 has to be returned. If
the value is less, it should go to the left sub-tree, otherwise
to the right sub tree.
 Actually with the value to be searched, the value stored
in the data fi eld of the current node in the tree should
determine whether the value should be searched in the left
sub-tree or right sub-tree of the node. In such a way, if
NULL is reached while moving to left or right child, then
surely the value is not present in the tree. As a result, 0 will
be returned from the function that indicates that the value
can be inserted in the binary search tree as a leaf.

#include <stdio.h>

#include <stdlib.h>

typedef struct node

{

 int data;

 struct node *left;

 struct node *right;

} NODE;

typedef NODE * NODEPTR;

int search(NODEPTR h, int val)

{

 if (h == NULL)

 return(0);

 if (h->data == val)

 return (1);

 if (val < h->data)

 return (search (h->left, val));

 else

 return (search (h->right, val));

}

/* Creates a node for given data and return pointer
to it. */

NODEPTR create_node(int x)

{

 NODEPTR pTemp;

pTemp = (NODEPTR) malloc (sizeof(NODE));

if (pTemp == NULL)

{

 printf(“Out of memory, could not store number! \n”);

}

else

{

 pTemp->data = x;

 pTemp->left = NULL;

 pTemp->right = NULL;

}

 return pTemp;

}

/* Inserts node pNew into pTree. */

NODEPTR insert_node(NODEPTR pRoot, NODEPTR pNew)

{

 NODEPTR pParent, pCur;

 /* If this is the fi rst element, it becomes the
root of the tree. */

 if (pRoot == NULL)

 return pNew;

 /* Find position of new element, start searching
at root of tree. */

 pParent = NULL;

 pCur = pRoot;

 do

 {

 if (pNew->data < pCur->data)

 {

 /* New node belongs in left subtree. */

 pParent = pCur;

 pCur = pCur->left;

 }

Stacks, Queues, and Trees 517
 else

 {

 /* New node belongs in right subtree. */

 pParent = pCur;

 pCur = pCur->right;

 }

 } while (pCur != NULL);

 /* Insert new node as appropriate leaf. */

 if (pNew->data <= pParent->data)

 pParent->left = pNew;

 else

 pParent->right = pNew;

 return pRoot;

}

void inorder_traversal(NODEPTR pCur)

{

 if (pCur == NULL)

 return;

 inorder_traversal(pCur->left);

 printf(“%d”, pCur->data);

 inorder_traversal(pCur->right);

 return;

}

void preorder_traversal(NODEPTR pCur)

{

 if (pCur == NULL)

 return;

 printf(“%d”, pCur->data);

 preorder_traversal(pCur->left);

 preorder_traversal(pCur->right);

 return;

}

void postorder_traversal(NODEPTR pCur)

{

 if (pCur == NULL)

 return;

 postorder_traversal(pCur->left);

 postorder_traversal(pCur->right);

 printf(“%d”, pCur->data);

 return;

}

int main(void)

{

 int x;

 NODEPTR pNode, pRoot = NULL;

 printf(“\n Enter the sequence of integers to
form BST”);

 printf(“\n Press CTRL-Z and Enter key to end\n”);

 while(scanf(“%d”, &x) != EOF)

 {

 if(search(pRoot,x)==1)

 {

 printf(“\n %d is a duplicate value”, x);

 continue;

 }

 pNode = create_node(x);

 if (pNode != NULL)

 pRoot = insert_node(pRoot,pNode);

 }

 printf(“BST in inorder traversal\n”);

 inorder_traversal(pRoot);

 printf(“BST in preorder traversal\n”);

 preorder_traversal(pRoot);

 printf(“BST in postorder traversal\n”);

 postorder_traversal(pRoot);

 return 0;

}

 The more complex operation on binary search trees is
the deletion of a node. Removing a node from a BST is
fairly straightforward, with four cases to be considered:

 1. the value to be removed is a leaf node; or
 2. the value to be removed has a right sub-tree, but no

left sub-tree; or
 3. the value to be removed has a left sub-tree, but no

right sub-tree; or
 4. the value to be removed has both a left and a right

sub-tree.

 There is also an implicit fi fth case whereby the node to
be removed is the only node in the tree. This case is already
covered by the fi rst, but should be noted as a possibility
nonetheless.
 If the node to be deleted has no child, it may be deleted
without further adjustment to the tree. If the node to be
deleted has only one sub-tree, its only child can be moved
up to take its place. If the node ‘p’ to be deleted has

518 Programming in C

two sub-trees, its inorder successor ‘s’ must take its place.
The inorder successor cannot have a left sub-tree. Thus the
right child of ‘s’ can be moved up to take the place of ‘s’.

void deleteNode(NODEPTR *r, int key)
{
NODEPTR p,q,f,s,rp;
p = *r;
q = NULL;
/* search for the node with the data value key,

set p to point to the node and q to its
father, if any. */

while (p!= NULL && p->data!= key)
{
 q = p;
 p=(key < p->data) ? p->left : p->right;
} /* end while */

if (p ==NULL){
/* The key does not exist in the tree, leave the

tree unchanged */

 printf(“\n The key does not exist in the tree”);
 return;
}
/* set the pointer rp to the node that will replace

node pointed by p. fi rst two cases: the node
to be deleted has at most one child */

if(p->left == NULL)
 rp = p->left;
else if (p->right == NULL)
 rp = p->right;
 else
 {
 /* third case: node pointed by p has two children.

Set rp to the inorder successor of p and
f to the father of rp */

 f=p;
 rp = p->right;
 s = rp->left;

/* s is always the left child of rp */
 while (s!= NULL)
 {
 f = rp;
 rp = s;
 s = rp->left;
 } /* end while */

 /* at this point, rp is the inorder successor of p */
 if (f!= p)
 {

 /* p is not the father of rp and rp ==left
child of f */

 f->left = rp->right;

/* remove node(rp) from its current position
and replace it with the right child of
node pointed by rp, node pointed by rp
takes the place of node p */

 rp->right = p->right;
 } /* end if */

/* set the left child of node pointed by rp so that
node pointed by rp takes the place of node
pointed by p */

 rp->left = p->left;
 }
/* insert node pointed by rp into the position formerly

occupied by the node pointed by p */
 if (q == NULL)
 /* node pointed by p was the root of the tree */
 *r = rp;
 else if(p == q->left)
 q->left = rp;
 else
 q->right = rp;
 free(p);
 return;
}

Here the calling statement would be
deleteNode(&pRoot,k);

12.4.6 Application of Tree

Trees are used to help analyze electrical circuits and to
represent the structure of mathematical formulas. Trees
also arise naturally in many different areas of computer
science. One of the most familiar uses of tree structures is to
organize fi le systems. Files are kept in directories (which are
also sometimes called folders) that are defi ned recursively
as sequences of directories and fi les. Within the context
of programming language execution, compilers utilize
tree structures to obtain forms of an arithmetic expression,
which can be evaluated effi ciently. The in-order traversal
of the binary tree for an arithmetic expression produces
the infi x form of the expression, while the pre-order and
post-order traversal lead to the prefi x and postfi x (reverse
Polish) forms of the expression respectively. Trees are also
used to organize information in database systems.
 Apart from these, trees can be used in a wide variety of
applications, which includes set representations, decision
making, game trees, etc.

Stacks, Queues, and Trees 519

SUMMARY

While solving a problem, it is needed to represent relation between
its data items. That is why data structures are used. The logical inter-
relation between elementary data items is called as data structure. Non-
primitive data structures cannot be manipulated directly by machine
instructions. Arrays, linked lists, trees, etc., are some non-primitive
data structures. Different linear data structures are stacks, queues, and
linear linked lists such as singly linked list, doubly linked list, etc. Trees,
graphs, etc., are non-linear data structures. A stack is an ordered
collection of elements into which new elements may be inserted and
from which elements may be deleted at one end called the top of the
stack. The stack is based on the LIFO (Last In First Out) principle. Apart
from initialization, the common operations associated with a stack are
push and pop. There are various applications of stack in computer
system such as the system stack is used to process function calls, and
recursive functions are handled by runtime stack. Another application
of the stack is in expression evaluation.
 A queue is an ordered set of homogeneous elements in which the
items are added at one end (called the rear) and are removed from the
other end (called the front). It is a First In First Out (FIFO) data structure
where the fi rst element, which is inserted into the queue, will be the fi rst
one to be removed.

 The common operations on a queue include enqueue and dequeue.
Priority queue is a special type of queue in which items can be inserted or
deleted based on the priority. There are different types of priority queues
such as ascending priority queue and descending priority queue.
 A deque is a homogeneous list in which elements can be inserted
(push operation) or removed from both the ends (pop operation). That
is we can add a new element at the rear or front end and also we can
remove an element from both the front and rear end. Hence it is called
Double Ended Queue.
 The most common application of queues is the print queue. Processes
waiting to be executed by a CPU are usually in the form of a queue. The
communication buffers make extensive use of queues by storing these
messages in a queue.
 Trees are useful for organizing data in a manner that makes it
effi cient to retrieve it. A tree in which each node can have a maximum of
two children is known as a binary tree. There are three commonly used
traversals for a binary tree—Preorder, Inorder, and Postorder. There
are several variations of binary trees which are useful models in many
different situations. One of the most familiar uses of tree structures is
to organize fi le systems. Trees are also used to organize information
in database systems and to represent the syntactic structure of source
programs in compilers.

KEY-TERMS

Binary tree A tree in which each node can have a maximum of two
children is known as a binary tree.

Data structure The logical inter-relation between elementary data
items is called as data structure.

Deque A deque is a homogeneous list in which elements can be
added or inserted and deleted or removed from both the ends.

Expression tree An expression tree is a binary tree that stores an
expression in such a way that each leaf node contains an operand
of the expression, and each interior node contains an operator of the
expression.

Heap A heap is a complete binary tree, each of whose nodes contains
a key which is greater than or equal to the key in each of its children.

Priority queue Priority queue is a special type of queue in which
items can be inserted or deleted based on the priority.

Queue A queue is an ordered set of homogeneous elements in which
the items are added at one end (called the rear) and are removed from the
other end (called the front).

Stack A stack is an ordered collection of elements into which new
elements may be inserted and from which elements may be deleted at
one end called the top of the stack.

FREQUENTLY ASKED QUESTIONS

1. Compare array-based stack and linked stack.
 On an average, all the operations in array-based as well as in linked
list based stack implementations take constant time. The only basis
for comparing these two implementations of the stack is the memory
space requirement. The array-based stack must declare an array of
fi xed size to store the list of elements, and may lead to wastage of
space if fewer number of elements of the array is used. The stack
can grow or shrink as the program demands it to but requires the
overhead of a pointer fi eld for every number. However, if a small

and/or a fi xed amount of data are being dealt with, it is often simpler
to implement the stack as an array.

2. Are binary tree and binary search tree same?
 A binary tree is made up of a fi nite of elements called nodes (or
vertexes). This set is either empty or consists of a node called the root
together with two binary trees, called the left and right sub-trees, which
are disjoint from each other and from the root. Either or both of a tree’s
two sub-trees may be empty.

520 Programming in C

 A binary search tree (BST) is a type of binary tree where the nodes
are arranged in order; every node’s left sub-tree has a key less than the
node’s key, and every right sub-tree has a key greater than the node’s
key.

3. Which structure can generally be searched more rapidly: a
doubly-linked list or a binary tree? Why?
 A binary tree is generally searched more rapidly. In case of a doubly-
linked list, to fi nd a single item in the list, one’s only option is to traverse
the entire list from one end to the other until the item is found. This is
not effi cient for a large amount of data. A better approach in this case
would be to use a binary tree. A special type of binary tree known as

a binary search tree would be more appropriate to search an element.
The binary search tree is organized in such a way that all the items
less than the item in a chosen node are contained in the left sub-tree
and all the items greater than the chosen node are contained in the
right sub-tree. In this manner, one does not have to search the entire
tree for a particular item in the manner of linked list traversals.
 More formally, a binary tree of n items would have log2(n) levels,
and while searching a binary tree, we go on to the next level at each
iteration of the search. Thus, we need to traverse only log2(n)/2
items on the average. However, in case of a doubly-linked list, this
average is n/2.

EXERCISES

 1. What is a stack? How does it differ from queue? Explain the
operations performed on stack.

 2. What is a queue? Explain the operations performed on queues.

 3. How can you get the effective size of the stack implemented with
an array?

 4. What is a circular queue? Why are circular queues used?

 5. What is priority queue?

 6. Write the applications of stacks.

 7. What are the uses of queues in computer science?

 8. How can you use stacks to check parenthesis?

 9. How can you use a queue to check whether a string is palindrome
or not?

 10. What is a deque? Explain its operations.

 11. Give an example of an application where a stack would be a
useful structure and explain why?

 12. Give an example of an application where a queue would be a
useful structure and explain why?

 13. Write a function to print a (singly) linked list of integers in reverse
order using a stack.

 14. Describe how a circular queue would be implemented using an
array. How would you tell the difference between an empty queue
and a full queue in this implementation?

 15. Create two stacks using single array. One grows from the
bottom and another shrinks from the top. There is no fi xed size
for any stack. Write a program in C that implements push and
pop operations for the stacks.

 16. Write a program in C that copies a stack into another. Don’t use
any external array for intermediate storage.

 17. Implement a stack using array where 0th element of the array is
used to indicate the top of the stack and where second element

through (n – 1)th element contain elements on the stack where
n is the size of the array. Show how to initialize such an array to
represent the empty stack and write routines for push, pop and
peek operations.

 18. Write a C program to implement queue using circular linked list.

 19. Write a C program to implement deque using doubly linked list.

 20. Write a C program to implement deque using array.

 21. By defi nition, what is a binary search tree?

 22. Write a C function to search through a BST for a given element.
If the element is found, its address must be returned; otherwise
the return value should be NULL.

 23. List two advantages and two disadvantages of array-based
implementations of trees.

 24. What is the number of BST with 3 nodes which when traversed
in postorder gives the sequence A, B, C? Draw all these BST.

 25. Explain the applications of binary tree.

 26. Describe at least three methods of traversing a binary tree,
providing the results of the traversal.

 27. What is threading? What are the advantages of threaded binary
trees.

 28. Explain with suitable example: strictly binary tree, complete
binary tree, almost binary tree.

 29. Deduce the number of leaves in a complete BST.

 30. Represent a binary tree using pointers and write a function that
traverses a given tree level by level.

 31. Represent a BST using an array. Write a C function to traverse
such a tree in inorder.

 32. Draw the expression tree for the expression.
(A + B) * C + (D + E)

Stacks, Queues, and Trees 521

Problem Statement
Check the correctness of nested parenthesis in an arithmetic
expression.

Analysis
Consider an arithmetic expression that includes several sets of nested
parenthesis. For example,

c-((a*((a+b/d-2))+e)/3)

For simplicity, it is assumed that the operands are composed of a
single character. Now it is needed to scan the expression from the
left hand side.

To ensure that the parentheses are nested correctly, basically it is
needed to ensure two facts. Firstly, there are an equal number of right
and left parentheses. Secondly, every right parenthesis is preceded
by a matching left parenthesis.

Stack may be used to match a closing parenthesis with the opening
parenthesis. When there is an opening parenthesis, brace or bracket,
there should be the corresponding closing parenthesis otherwise the
expression is not a valid one. Whenever an opening parenthesis is
found during scanning the expression from left to right it is pushed
on to stack. Whenever a closing parenthesis is encountered during
scanning, the stack has to be examined. If the stack is empty, the
closing parenthesis does not have a matching opening parenthesis
and the expression is therefore invalid. If the stack is not empty,
the stack has to be popped and the popped parenthesis is checked
with the corresponding closing parenthesis. If yes, then it should be
continued further, otherwise the expression is invalid.

When the end of expression is reached the stack must be
empty; otherwise one or more opening parenthesis does not have
corresponding closing parenthesis and the expression is incorrect.

Even a properly parenthesized expression may contain incorrect
sequence of operators and operands before or after opening or
closing parenthesis. Those are discussed below.

If an operand is followed by an opening parenthesis, then the
expression is not a valid expression e.g. (a+b)*c(d-f) where an
operator is missing between c and (. Similarly if opening parenthesis
is followed by an operator is also an invalid expression. For example
in (a+b)*(-c), an operand is missing after second opening
parenthesis.

If an operator is followed by a closing parenthesis, e.g. ((a+b)*)
is an incorrect expression. There are some other occurrences of

incorrect expression which are to be considered in designing program
which are indicated below.

 ∑ (a+b)(c+d)
 Here, a closing parenthesis is followed by an opening parenthesis.

In mathematics it is written frequently, but it is not a valid
expression in computer programming as an operator is missing
between a closing and opening parenthesis.

 ∑ (a+b)-()
 An empty pair of parenthesis is also wrong.

 ∑ ((a+b)c-d)
 An operand after closing parenthesis without an operator

between them is also an invalid expression, though it is a properly
parenthesized expression.

Design
From the analysis, the solution of the above problem may be
summarized by the following algorithm.

 1. START
 2. INPUT THE PARENTHESIZED EXPRESSION
 3. INITIALIZE THE STACK
 4. EXTRACT THE FIRST SYMBOL (CHARACTER) FROM THE

EXPRESSION
 5. IF END OF EXPRESSION THEN GOTO 12
 6. IF THE SYMBOL IS AN OPENING PARENTHESIS THEN

GOTO 7
 ELSE IF THE SYMBOL IS CLOSING PARENTHESIS

THEN GOTO 8
 ELSE GOTO 11
 7. IF THE SYMBOL IS NOT THE FIRST SYMBOL OF THE

EXPRESSION THEN
 IF THE PRECEDING SYMBOL IS AN OPERAND OR THE

NEXT SYMBOL IS AN OPERATOR THEN
 GOTO 13
 ELSE
 PUSH THE SYMBOL ONTO STACK: GOTO 11
 ELSE IF THE NEXT SYMBOL IS AN OPERATOR THEN
 GOTO 13
 ELSE
 PUSH THE SYMBOL ON TO STACK: GOTO 11
 8. IF THE STACK IS EMPTY THEN
 PRINT “OPENING AND CLOSING PARENTHESIS

CASE STUDY

Project Questions
 1. Write a C program that evaluates an arithmetical expression and

prints the result.

 2. Write a C program to simulate the following problem.
 When cars on a toll road arrive at a toll plaza, the cars are the

clients, and the toll booths are the servers. If the rate at which the

cars pass through the toll booths is slower than their arrival rate,
then a waiting-line builds up. Clients arrive for service at random
times and services have random durations. Each client will have
an arrival time, a time when service starts, and a time when it
ends. All time values will be integers.

522 Programming in C

MISMATCH”: GOTO 13
 ELSE
 POP THE STACK
 9. IF THE POPPED PARENTHESIS DOES NOT MATCH WITH

THE SYMBOL JUST SCANNED THEN GOTO 13
 10. IF THE PRECEDING SYMBOL IS AN OPERATOR OR THE

PRECEDING SYMBOL IS AN OPEN PARENTHESIS OR
 THE NEXT SYMBOL IS AN OPENING PARENTHESIS OR

THE NEXT SYMBOL IS AN OPERAND THEN
 GOTO 13
 11. EXTRACT THE NEXT SYMBOL FROM THE EXPRESSION :

GOTO 5
 12. IF STACK IS EMPTY THEN
 PRINT “PARENTHESIS ARE PROPERLY BALANCED” :

GOTO 14
 ELSE
 PRINT “PARENTHESIS ARE NOT PROPERLY BALANCED”
 13. PRINT “INVALID EXPRESSION”
 14. STOP

C Implementation

#include<stdio.h>
#include<stdlib.h>
#include<ctype.h>

#defi ne SIZE 50

struct stack
{
 int top;
 char list[SIZE];
};

void push(struct stack *, char);
char pop(struct stack *);
int isOperator(char);
int isOpenParenthesis(char);
int isCloseParenthesis(char);

int isMatch(char c, char d)
{
 switch(c)
 {
 case ‘(’ : return d == ‘)’; break;
 case ‘[’ : return d == ‘]’; break;
 case ‘{’ : return d == ‘}’; break;
 default : return 0;
 }
}

int check(char *str)
{
 int i;
 char c,d;
 struct stack s;
 s.top=-1;

 for(i=0;str[i]!=‘\0’;++i)
 {
 d=str[i];
 if(isOpenParenthesis(d))
 {
 if(i!=0)
 {
 if(isalpha(str[i-1])||isdigit(str[i-1]))
 {
 printf(“\n Mising operator\

operand %c and %c” str[i-1],d);
 return 0;
 }
 else if(str[i+1]!=‘\0’ && isOperator(str[i+1]))
 {
 printf(“\n Missing operand after %c and

before %c”,d,str[i+1]);
 return 0;
 }
 else
 push(&s,d);
 }
 else
 {
 if(str[i+1]!=‘\0’ && isOperator (str[i+1]))
 {
 printf(“\n Missing operand after %c and\

before\ %c”,d,str[i+1]);
 return 0;
 }
 else
 push(&s,d);
 }

 }
 else if(isCloseParenthesis(d))
 {
 if(s.top== -1)
 {
 printf(“\n Closing parenthesis does not match\

with opening parenthesis”);
 return 0;
 }
 else
 {
 c=pop(&s);

 if(!isMatch(c,d))
 {
 printf(“\n Mismatched Parenthesis:

 %c and %c”,c,d);
 return 0;
 }
 else
 {
 if(isOperator(str[i-1]))

Stacks, Queues, and Trees 523

 {
 printf(“\n Missing operand after\

 %c and before %c”,str[i-1],d);
 return 0;
 }
 if(isOpenParenthesis(str[i-1]))
 {
 printf(“\n Missing operand between %c\

 and %c”,str[i-1],d);
 return 0;
 }
 if(isOpenParenthesis(str[i+1]))
 {
 printf(“\n Missing operator between %c\

 and %c”,d,str[i+1]);
 return 0;
 }
 if(str[i+1]!=‘\0’)
 if(isalpha(str[i+1])||isdigit(str[i+1]))
 {
 printf(“\n Mising operator operand %c and\

%c”,d,str[i+1]);
 return 0;
 }}}}}

 if(s.top== -1)
 {
 printf(“\n Parentheses are properly balanced”);
 return 1;
 }
 else
 {
 printf(“\n Parenthesis are not properly\

balanced”);
 return 0;
 }
}

int main(void)
{
 char st[80];
 printf(“\nEnter the expression,\
 Do not give space between operand and\

operator: \n\n”);
 scanf(“%[^\n]”, st);
 if(check(st))
 printf(“\n Expression is valid”);
 else
 printf(“\n Expression is not valid”);
 return 0;
}
void push(struct stack *sp, char ch)
{
 if(sp->top==(SIZE - 1))
 {
 printf(“\n Stack overfl ow”);
 return;
 }

 sp->list[++sp->top]=ch;
}
char pop(struct stack *sp)
{
 if(sp->top==-1)
 {
 printf(“\n Stack overfl ow”);
 return ‘\0’;
 }
 return sp->list[sp->top--];
}

int isOperator(char ch)
{

 if(ch==‘+’||ch==‘-’||ch==‘*’||ch==‘/’)
 return 1;
 else
 return 0;
}
int isOpenParenthesis(char ch)
{

 if(ch==‘(’||ch==‘[’||ch==‘{’)
 return 1;
 else
 return 0;
}
int isCloseParenthesis(char ch)
{

 if(ch==‘)’||ch==‘}’||ch==‘]’)
 return 1;
 else
 return 0;
}

Sample Run
Enter the expression, Do not give space between
operand and operator:

 c-((a*((a+b/d-2))+e)/3)

Parentheses are properly balanced
Expression is valid

Enter the expression, Do not give space between
operand and operator:

(a+b)(c-d)

Missing operator between) and (
Expression is not a valid expression

Enter the expression, Do not give space between
operand and operator:

(a+b)-c(d-2)

Missing operator between c and (
Expression is not valid

544 Programming in C

Gary J. Bronson (2001), ANSI C, 3rd edn, Thomson Asia, Singapore.
H. M. Deitel (2001), C How to Program—Introducing C++ and Java,

3rd edn, Pearson, India.
Greg Perry (2000), C by Example, 1st edn, Prentice Hall, India.
C. L. Tondo and S. E. Gimple (1989), The C Answer Book, 1st edn,

Pearson, Singapore.
B. S. Gottfried (2000), Programming with C, 2nd edn, Tata Mcgraw-

Hill, India.
A. Pandey (2003), Programming in C, 1st edn, Cybertech

Publications, India.
Y. Kanetkar (2001), Understanding Pointers in C, 3rd edn, BPB

Publications, India.
R. Radcliffe (1992), Encyclopedia C, 1st edn, BPB Publications, India.
A. N. Kamthane (2002), Programming ANSI and Turbo C, 1st edn,

Pearson, Singapore.
E. Balaguruswamy (1998), ANSI C, 2nd edn, Tata McGraw-Hill, India.
Peter van der Linden (1994), Expert C Programming: Deep C Secrets,

1st edn, Prentice Hall, India.
Y. Kanetkar (1991), Let Us C, 4th edn (revised), BPB Publications, India.
Y. Kanetkar (2001), Let Us C Solution, 1st edn, BPB Publications, India.
H. Schildt (2000), Complete Reference C, 4th edn, Tata McGraw-

Hill, India.
S. Prata (1991), C Primer Plus, 3rd edn, Techmedia, India.

R. Heathfi eld et al. (2000), C Unleashed, 1st edn, Techmedia, India.
B. Kerninghan and D. Ritchie (1999), C Programming Language,

2nd edn, Prentice Hall, India.
S. Summit (2000), C Programming FAQs, 1st edn, Pearson, Singapore.
A. L. Kelly and I. Pohl (1999), A Book on C, 4th edn, Pearson, Singapore.
S. Kaicker (1996), The Complete ANSI C, 1st edn, BPB Publications,

India.
B. A. Forouzan and R. F. Gilberg (2001), A Structured Programming

Approach using C, 2nd edn, Thomson Asia, Singapore.
Paul S.R. Chisholm, David Hanley, Michael Jones, Michael Lindner,

and Lloyd Work (1995), Programming: Just the FAQs, 1st edn,
Sams Publishing.

Ivor Horton (2006), Beginning C – From Novice to Professional,
4th edn, USA.

Stephen Prata (1998), C Primer Plus, 3rd edn, Sams Publishing, USA.
K.N. King (2005), C Programming – A Modern Approach, 2nd edn,

W.W.Norton, NewYork, London.
Jeri R Hanly, Elliot B Koffman (2007), Problem Solving and Programming

in C, 5th edn, Pearson Education – Addison Wisley, USA.
Stephen G. Kochan (2005), Programming in C, 3rd edn, Sams

Publishing, Indiana.
Samuel P. Harbison III, Guy L. Steele Jr. (2007), C—A Reference

Manual, 5th edn, Pearson Education, India

http://cplus.about.com
http://goforit.unk.edu/cprogram/default.htm
http://mathbits.com/
http://publications.gbdirect.co.uk/c_book
http://students.cs.byu.edu/~cs130ta/index.html
www.netnam.vn/unescocourse/os/operatin.htm
www.minich.com/education/psu/cplusplus/index.htm
www.cs.utk.edu/~cs102/lectures/index.html
www.coronadoenterprises.com
www.eskimo.com
www.ics.uci.edu/~dan
www.fredosaurus.com/notes-cpp/arrayptr/26arraysas pointers.html
www.ibiblio.org/pub/languages/
www.cs.cf.ac.uk/Dave/C/CE.html
www.cplusplus.com/doc/tutorial/
www.cs.mun.ca/~michael/c/problems.html

www.comp.nus.edu.sg/~hchia/Teaching/cs1101c/tut10/tut10.html
www.digitalmars.com/
www.borland.com/
www.function-pointer.org/
www.juicystudio.com
www.antioffl ine.com/h/c/
www.coronadoenterprises.com/coders/index.html
www.mrx.net/c/
www.scit.wlv.ac.uk/cbook/
www.cs.cmu.edu
www.its.strath.ac.uk/courses/c/tableofcontents3_1. html
www.scit.wlv.ac.uk/~jphb/cbook/html/chap10.bit. fi elds.htm
www.xploiter.com/mirrors/cprogram/default.htm
http://yolinux.com/
www.cs.columbia.edu/
ftp://scitsc.wlv.ac.uk//pub/cprog/

C
d et al. (2000), C Unleashed, 1st edn, Techmedia, India.

Bibliography and
References

524 Programming in C

Appendix A—ASCII Chart

Dec Oct Hx Char

0 0 00 NUL

1 1 01 SOH

2 2 02 STX

3 3 03 ETX

4 4 04 EOT

5 5 05 ENQ

6 6 06 ACK

7 7 07 BEL

8 10 08 BS

9 11 09 HT

10 12 0A LF

11 13 0B VT

12 14 0C FF

13 15 0D CR

14 16 0E SO

15 17 0F SI

16 20 10 DLE

17 21 11 DC1

18 22 12 DC2

19 23 13 DC3

20 24 14 DC4

21 25 15 NAK

22 26 16 SYM

23 27 17 ETB

24 30 18 CAN

25 31 19 EM

Dec Oct Hx Char

26 32 1A SUB

27 33 1B ESC

28 34 1C FS

29 35 1D GS

30 36 1E RS

31 37 1F US

32 40 20 SP

33 41 21 !

34 42 22 “

35 43 23 #

36 44 24 $

37 45 25 %

38 46 26 &

39 47 27 ‘

40 50 28 (

41 51 29)

42 52 2A *

43 53 2B +

 44 54 2C ,

45 55 2D -

46 56 2E .

47 57 2F /

48 60 30 0

49 61 31 1

50 62 32 2

51 63 33 3

Dec Oct Hx Char

52 64 34 4

53 65 35 5

54 66 36 6

55 67 37 7

56 70 38 8

57 71 39 9

58 72 3A :

59 73 3B ;

60 74 3C <

61 75 3D =

62 76 3E >

63 77 3F ?

64 100 40 @

65 101 41 A

66 102 42 B

67 103 43 C

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4A J

75 113 4B K

76 114 4C L

77 115 4D M

Dec Oct Hx Char

78 116 4E N

79 117 4F O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

89 131 59 Y

90 132 5A Z

91 133 5B [

92 134 5C \

93 135 5D]

94 136 5E ^

95 137 5F _

96 140 60 ‘

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

Dec Oct Hx Char

104 150 68 h

105 151 69 i

106 152 6A j

107 153 6B k

108 154 6C l

109 155 6D m

110 156 6E n

111 157 6F o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7A z

123 173 7B {

124 174 7C |

125 175 7D }

126 176 7E ~

127 177 7F DEL

 Note The fi rst 32 characters and the last character are control characters; they cannot be printed.

C
Appendices

Appendices 525

Appendix B—Four Most Frequently used Number Systems

Decimal Binary Octal Hexadecimal
0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

 Notice that there are eight octal digits and 16 hexadecimal
digits. The octal digits range from 0 to 7; the hexadecimal digits
range from 0 to 9, and A to F. Each octal digit is equivalent
to three binary digits (3 bits), and each hexadecimal digit
is equivalent to four binary digits (4 bits). Thus, octal and
hexadecimal numbers offer a means of representing binary
bit patterns. For example, the bit pattern 1101 0011 can be
represented in hexadecimal as D3. To see this relationship
more clearly, rearrange the bits into groups of four and
represent each group by a single hexadecimal digit; e.g., 1101
0011 is represented as D3.
 Similarly, this same bit pattern (11010011) can be
represented in octal as 323. To see this relationship more
clearly, add leading zeros (so that the number of bits in the
bit pattern will be some multiple of three), rearrange the bits
into groups of three, and represent each group by a single octal
digit; e.g., 011 010 011 is represented as 323.

Appendix C—Escape Sequence

Character Escape Sequence ASCII Value

Bell (alert) \a 007

Backspace \b 008

Horizontal tab \t 009

Newline (line feed) \n 010

Vertical tab \v 011

Form feed \f 012

Carriage return \r 013

Quotation mark (“) \” 034

Apostrophe (‘) \’ 039

Question mark (?) \? 063

Character Escape Sequence ASCII Value
Backslash (\) \\ 092

Null \0 000

Octal number \ooo (o represents an
octal digit)

Hexadecimal number \xhh (h represents a
hexadecimal digit)

 Usually, not more than 3 octal digits are permitted. For
example, \5, \005, \123, \177.
 Usually, any numbers of hexadecimal digits are permitted.
For example, \x5, \x05, \x53, \x7f.

D—Operator Summary

Precedence Group Operators Associativity
function, array, structure
member, pointer to
structure member

() [] . -> L → R

unary operators - ++ –– ! - * &
sizeof

R → L

arithmetic multiply, divide,
and remainder

* / % L → R

arithmetic add and
subtract

+ - L → R

bitwise shift operators << >> L → R
relational operators < <= > >= L → R
equality operators == != L → R
bitwise AND & L → R
bitwise exclusive OR ^ L → R
bitwise OR | L → R
logical AND && L → R
logical OR || L → R
conditional operator ? : R → L
assignment operators = += -= *= /= %=

&= ^= |= <<= >>= R → L
comma operator , L → R

Note The precedence groups are listed from highest to lowest.
Some C compilers also include a unary plus (+) operator, to
complement the unary minus (–) operator. However, a unary
plus expression is equivalent to the value of its operand, i.e.,
+V has the same value as V.

Appendix E—Data Types and Data Conversion Rules

Data
Type

Description Memory
Requirements

int Integer quantity 2 bytes or 1 word (varies from
one computer to another)

short Short integer quantity (may
contain fewer digits than int)

2 bytes or 1 word (varies from
one computer to another)

long Long integer quantity (may
contain fewer digits than int)

1 or 2 words (varies from
one computer to another)

contd contd

Appendices 525

Appendix B—Four Most Frequently used Number Systems

Decimal Binary Octal Hexadecimal
0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

 Notice that there are eight octal digits and 16 hexadecimal
digits. The octal digits range from 0 to 7; the hexadecimal digits
range from 0 to 9, and A to F. Each octal digit is equivalent
to three binary digits (3 bits), and each hexadecimal digit
is equivalent to four binary digits (4 bits). Thus, octal and
hexadecimal numbers offer a means of representing binary
bit patterns. For example, the bit pattern 1101 0011 can be
represented in hexadecimal as D3. To see this relationship
more clearly, rearrange the bits into groups of four and
represent each group by a single hexadecimal digit; e.g., 1101
0011 is represented as D3.
 Similarly, this same bit pattern (11010011) can be
represented in octal as 323. To see this relationship more
clearly, add leading zeros (so that the number of bits in the
bit pattern will be some multiple of three), rearrange the bits
into groups of three, and represent each group by a single octal
digit; e.g., 011 010 011 is represented as 323.

Appendix C—Escape Sequence

Character Escape Sequence ASCII Value

Bell (alert) \a 007

Backspace \b 008

Horizontal tab \t 009

Newline (line feed) \n 010

Vertical tab \v 011

Form feed \f 012

Carriage return \r 013

Quotation mark (“) \” 034

Apostrophe (‘) \’ 039

Question mark (?) \? 063

Character Escape Sequence ASCII Value
Backslash (\) \\ 092

Null \0 000

Octal number \ooo (o represents an
octal digit)

Hexadecimal number \xhh (h represents a
hexadecimal digit)

 Usually, not more than 3 octal digits are permitted. For
example, \5, \005, \123, \177.
 Usually, any numbers of hexadecimal digits are permitted.
For example, \x5, \x05, \x53, \x7f.

D—Operator Summary

Precedence Group Operators Associativity
function, array, structure
member, pointer to
structure member

() [] . -> L → R

unary operators - ++ –– ! - * &
sizeof

R → L

arithmetic multiply, divide,
and remainder

* / % L → R

arithmetic add and
subtract

+ - L → R

bitwise shift operators << >> L → R
relational operators < <= > >= L → R
equality operators == != L → R
bitwise AND & L → R
bitwise exclusive OR ^ L → R
bitwise OR | L → R
logical AND && L → R
logical OR || L → R
conditional operator ? : R → L
assignment operators = += -= *= /= %=

&= ^= |= <<= >>= R → L
comma operator , L → R

Note The precedence groups are listed from highest to lowest.
Some C compilers also include a unary plus (+) operator, to
complement the unary minus (–) operator. However, a unary
plus expression is equivalent to the value of its operand, i.e.,
+V has the same value as V.

Appendix E—Data Types and Data Conversion Rules

Data
Type

Description Memory
Requirements

int Integer quantity 2 bytes or 1 word (varies from
one computer to another)

short Short integer quantity (may
contain fewer digits than int)

2 bytes or 1 word (varies from
one computer to another)

long Long integer quantity (may
contain fewer digits than int)

1 or 2 words (varies from
one computer to another)

contd contd

Appendices 525

Appendix B—Four Most Frequently used Number Systems

Decimal Binary Octal Hexadecimal
0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

 Notice that there are eight octal digits and 16 hexadecimal
digits. The octal digits range from 0 to 7; the hexadecimal digits
range from 0 to 9, and A to F. Each octal digit is equivalent
to three binary digits (3 bits), and each hexadecimal digit
is equivalent to four binary digits (4 bits). Thus, octal and
hexadecimal numbers offer a means of representing binary
bit patterns. For example, the bit pattern 1101 0011 can be
represented in hexadecimal as D3. To see this relationship
more clearly, rearrange the bits into groups of four and
represent each group by a single hexadecimal digit; e.g., 1101
0011 is represented as D3.
 Similarly, this same bit pattern (11010011) can be
represented in octal as 323. To see this relationship more
clearly, add leading zeros (so that the number of bits in the
bit pattern will be some multiple of three), rearrange the bits
into groups of three, and represent each group by a single octal
digit; e.g., 011 010 011 is represented as 323.

Appendix C—Escape Sequence

Character Escape Sequence ASCII Value

Bell (alert) \a 007

Backspace \b 008

Horizontal tab \t 009

Newline (line feed) \n 010

Vertical tab \v 011

Form feed \f 012

Carriage return \r 013

Quotation mark (“) \” 034

Apostrophe (‘) \’ 039

Question mark (?) \? 063

Character Escape Sequence ASCII Value
Backslash (\) \\ 092

Null \0 000

Octal number \ooo (o represents an
octal digit)

Hexadecimal number \xhh (h represents a
hexadecimal digit)

 Usually, not more than 3 octal digits are permitted. For
example, \5, \005, \123, \177.
 Usually, any numbers of hexadecimal digits are permitted.
For example, \x5, \x05, \x53, \x7f.

D—Operator Summary

Precedence Group Operators Associativity
function, array, structure
member, pointer to
structure member

() [] . -> L → R

unary operators - ++ –– ! - * &
sizeof

R → L

arithmetic multiply, divide,
and remainder

* / % L → R

arithmetic add and
subtract

+ - L → R

bitwise shift operators << >> L → R
relational operators < <= > >= L → R
equality operators == != L → R
bitwise AND & L → R
bitwise exclusive OR ^ L → R
bitwise OR | L → R
logical AND && L → R
logical OR || L → R
conditional operator ? : R → L
assignment operators = += -= *= /= %=

&= ^= |= <<= >>= R → L
comma operator , L → R

Note The precedence groups are listed from highest to lowest.
Some C compilers also include a unary plus (+) operator, to
complement the unary minus (–) operator. However, a unary
plus expression is equivalent to the value of its operand, i.e.,
+V has the same value as V.

Appendix E—Data Types and Data Conversion Rules

Data
Type

Description Memory
Requirements

int Integer quantity 2 bytes or 1 word (varies from
one computer to another)

short Short integer quantity (may
contain fewer digits than int)

2 bytes or 1 word (varies from
one computer to another)

long Long integer quantity (may
contain fewer digits than int)

1 or 2 words (varies from
one computer to another)

contd contd

Appendices 525

Appendix B—Four Most Frequently used Number Systems

Decimal Binary Octal Hexadecimal
0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

 Notice that there are eight octal digits and 16 hexadecimal
digits. The octal digits range from 0 to 7; the hexadecimal digits
range from 0 to 9, and A to F. Each octal digit is equivalent
to three binary digits (3 bits), and each hexadecimal digit
is equivalent to four binary digits (4 bits). Thus, octal and
hexadecimal numbers offer a means of representing binary
bit patterns. For example, the bit pattern 1101 0011 can be
represented in hexadecimal as D3. To see this relationship
more clearly, rearrange the bits into groups of four and
represent each group by a single hexadecimal digit; e.g., 1101
0011 is represented as D3.
 Similarly, this same bit pattern (11010011) can be
represented in octal as 323. To see this relationship more
clearly, add leading zeros (so that the number of bits in the
bit pattern will be some multiple of three), rearrange the bits
into groups of three, and represent each group by a single octal
digit; e.g., 011 010 011 is represented as 323.

Appendix C—Escape Sequence

Character Escape Sequence ASCII Value

Bell (alert) \a 007

Backspace \b 008

Horizontal tab \t 009

Newline (line feed) \n 010

Vertical tab \v 011

Form feed \f 012

Carriage return \r 013

Quotation mark (“) \” 034

Apostrophe (‘) \’ 039

Question mark (?) \? 063

Character Escape Sequence ASCII Value
Backslash (\) \\ 092

Null \0 000

Octal number \ooo (o represents an
octal digit)

Hexadecimal number \xhh (h represents a
hexadecimal digit)

 Usually, not more than 3 octal digits are permitted. For
example, \5, \005, \123, \177.
 Usually, any numbers of hexadecimal digits are permitted.
For example, \x5, \x05, \x53, \x7f.

D—Operator Summary

Precedence Group Operators Associativity
function, array, structure
member, pointer to
structure member

() [] . -> L → R

unary operators - ++ –– ! - * &
sizeof

R → L

arithmetic multiply, divide,
and remainder

* / % L → R

arithmetic add and
subtract

+ - L → R

bitwise shift operators << >> L → R
relational operators < <= > >= L → R
equality operators == != L → R
bitwise AND & L → R
bitwise exclusive OR ^ L → R
bitwise OR | L → R
logical AND && L → R
logical OR || L → R
conditional operator ? : R → L
assignment operators = += -= *= /= %=

&= ^= |= <<= >>= R → L
comma operator , L → R

Note The precedence groups are listed from highest to lowest.
Some C compilers also include a unary plus (+) operator, to
complement the unary minus (–) operator. However, a unary
plus expression is equivalent to the value of its operand, i.e.,
+V has the same value as V.

Appendix E—Data Types and Data Conversion Rules

Data
Type

Description Memory
Requirements

int Integer quantity 2 bytes or 1 word (varies from
one computer to another)

short Short integer quantity (may
contain fewer digits than int)

2 bytes or 1 word (varies from
one computer to another)

long Long integer quantity (may
contain fewer digits than int)

1 or 2 words (varies from
one computer to another)

contd contd

526 Programming in C

Data
Type

Description Memory
Requirements

unsigned Unsigned (positive) integer
quantity (maximum permissible
quantity is approximately twice
as large as int)

2 bytes or 1 word (varies
from one computer to
another)

char Single character 1 byte

signed
char

Single character, with
numerical values ranging
from –128 to +127

1 byte

unsigned
char

Single character, with
numerical values ranging
from 0 to 255

1 byte

fl oat Floating-point number (i.e., a
number containing a decimal
point and/or an exponent)

1 word

double Double-precision fl oating-
point number (i.e., more
signifi cant fi gures, and an
exponent that may be larger
in magnitude)

2 words

long
double

Double-precision fl oating-
point number (may be higher
precision than double)

2 or more words (varies
from one computer to
another)

void Special data type for function
that do not return any value

(not applicable)

enum Enumeration constant
(special type of int)

2 bytes or 1 word (varies
from one computer to
another)

Note The qualifi er unsigned may appear as short int or
long int, e.g., unsigned short int (or unsigned short), or
unsigned long int (or unsigned long).

Conversion Rules
These rules apply to arithmetic operations between two
operators with dissimilar data types. There may be some
variation from one version of C to another.
 1. If one of the operands is long double, the other will be

converted to long double and the result will be long
double.

 2. Otherwise, if one of the operands is double, the other will
be converted to double and the result will be double.

 3. Otherwise, if one of the operands is fl oat, the other will
be converted to fl oat and the result will be fl oat.

 4. Otherwise, if one of the operands is unsigned long int,
the other will be converted to unsigned long int and
the result will be unsigned long int.

 5. Otherwise, if one of the operands is long int and the
other is unsigned int, then:

 (a) If unsigned int can be converted to long int, the
unsigned int operand will be converted as such and
the result will be long int.

 (b) Otherwise, both operands will be converted to
unsigned long int and the result will be unsigned
long int.

 6. Otherwise, if one of the operands is long int, the other
will be converted to long int and the result will be long
int.

 7. Otherwise, if one of the operands is unsigned int, the
other will be converted to unsigned int and the result
will be unsigned int.

 8. If none of the above conditions applies, then both
operands will be converted to int (if necessary), and
the result will be int.

 Note that some versions of C automatically convert all
fl oating-point operands to double-precision.

Assignment Rules

If the two operands in an assignment expression are of
different data types, then the value of the right-hand operand
will automatically be converted to the type of the operand on
the left. The entire assignment expression will then be of this
same data type. In addition,
 1. A fl oating-point value may be truncated if assigned to

an integer identifi er.
 2. A double-precision value may be rounded if assigned to

a fl oating-point (single-precision) identifi er.
 3. An integer quantity may be altered (some high-order

bits may be lost) if it is assigned to a shorter integer
identifi er or to a character identifi er.

Appendix F—Commonly used scanf and printf
Conversion Characters

scanf Conversion
Character

Meaning

c Data item is a single character

d Data item is a decimal integer

e Data item is a fl oating-point value

f Data item is a fl oating-point value

g Data item is a fl oating-point value

h Data item is a short integer

i Data item is a decimal, hexadecimal, or octal
integer

o Data item is an octal integer

s Data item is a string followed by a whitespace
character (the null character

‘\0’ will automatically be added at the end)

u Data item is an unsigned decimal integer

x Data item is a hexadecimal integer

[...] Data item is a string which may include
whitespace characters

526 Programming in C

Data
Type

Description Memory
Requirements

unsigned Unsigned (positive) integer
quantity (maximum permissible
quantity is approximately twice
as large as int)

2 bytes or 1 word (varies
from one computer to
another)

char Single character 1 byte

signed
char

Single character, with
numerical values ranging
from –128 to +127

1 byte

unsigned
char

Single character, with
numerical values ranging
from 0 to 255

1 byte

fl oat Floating-point number (i.e., a
number containing a decimal
point and/or an exponent)

1 word

double Double-precision fl oating-
point number (i.e., more
signifi cant fi gures, and an
exponent that may be larger
in magnitude)

2 words

long
double

Double-precision fl oating-
point number (may be higher
precision than double)

2 or more words (varies
from one computer to
another)

void Special data type for function
that do not return any value

(not applicable)

enum Enumeration constant
(special type of int)

2 bytes or 1 word (varies
from one computer to
another)

Note The qualifi er unsigned may appear as short int or
long int, e.g., unsigned short int (or unsigned short), or
unsigned long int (or unsigned long).

Conversion Rules
These rules apply to arithmetic operations between two
operators with dissimilar data types. There may be some
variation from one version of C to another.
 1. If one of the operands is long double, the other will be

converted to long double and the result will be long
double.

 2. Otherwise, if one of the operands is double, the other will
be converted to double and the result will be double.

 3. Otherwise, if one of the operands is fl oat, the other will
be converted to fl oat and the result will be fl oat.

 4. Otherwise, if one of the operands is unsigned long int,
the other will be converted to unsigned long int and
the result will be unsigned long int.

 5. Otherwise, if one of the operands is long int and the
other is unsigned int, then:

 (a) If unsigned int can be converted to long int, the
unsigned int operand will be converted as such and
the result will be long int.

 (b) Otherwise, both operands will be converted to
unsigned long int and the result will be unsigned
long int.

 6. Otherwise, if one of the operands is long int, the other
will be converted to long int and the result will be long
int.

 7. Otherwise, if one of the operands is unsigned int, the
other will be converted to unsigned int and the result
will be unsigned int.

 8. If none of the above conditions applies, then both
operands will be converted to int (if necessary), and
the result will be int.

 Note that some versions of C automatically convert all
fl oating-point operands to double-precision.

Assignment Rules

If the two operands in an assignment expression are of
different data types, then the value of the right-hand operand
will automatically be converted to the type of the operand on
the left. The entire assignment expression will then be of this
same data type. In addition,
 1. A fl oating-point value may be truncated if assigned to

an integer identifi er.
 2. A double-precision value may be rounded if assigned to

a fl oating-point (single-precision) identifi er.
 3. An integer quantity may be altered (some high-order

bits may be lost) if it is assigned to a shorter integer
identifi er or to a character identifi er.

Appendix F—Commonly used scanf and printf
Conversion Characters

scanf Conversion
Character

Meaning

c Data item is a single character

d Data item is a decimal integer

e Data item is a fl oating-point value

f Data item is a fl oating-point value

g Data item is a fl oating-point value

h Data item is a short integer

i Data item is a decimal, hexadecimal, or octal
integer

o Data item is an octal integer

s Data item is a string followed by a whitespace
character (the null character

‘\0’ will automatically be added at the end)

u Data item is an unsigned decimal integer

x Data item is a hexadecimal integer

[...] Data item is a string which may include
whitespace characters

Appendices 527

A prefi x may precede certain conversion characters.
Prefi x Meaning

h Short data item (short integer or short unsigned
integer)

l Long data item (long integer, long unsigned
integer, or double)

L Long data item (long double)

printf Conversion
Character

Meaning

c Data item is displayed as a single character

d Data item is displayed as a signed decimal integer

e Data item is displayed as a fl oating-point value
with an exponent

f Data item is displayed as a fl oating-point value
without an exponent

g Data item is displayed as a fl oating-point value
using either e-type or f-type conversion, depending
on value; trailing zeros, trailing decimal point will
not be displayed.

i Data item is displayed as a signed decimal integer

o Data item is displayed as an octal integer, without
a leading zero

s Data item is displayed as a string

u Data item is displayed as an unsigned decimal
integer

x Data item is displayed as a hexadecimal integer,
without leading Ox

 Some of these characters are interpreted differently
compared to the scanf function. A prefi x may precede certain
conversion characters.

Prefi x Meaning

h Short data item (short integer or short unsigned integer)

l Long data item (long integer, long unsigned integer, or
double)

L Long data item (long double)

Flags or Format Tags

Flag Meaning

- Data item is left justifi ed within the fi eld (blank spaces
required to fi ll up the minimum fi eld-width will be added
after the data item rather than before the data item).

+ A sign (either + or -) will precede each signed
numerical data item. Without this fl ag, only negative
data items are preceded by a sign.

Flag Meaning

0 Causes leading zeros to appear instead of leading
blanks. Applies only to data items that are right
justifi ed within a fi eld whose minimum size is larger
than the data item.
(Note: Some compilers consider the zero fl ag to be
a part of the fi eld-width specifi cation rather than an
actual fl ag. This assures that the 0 is processed last,
if multiple fl ags are present.)

.. (blank
space)

A blank space will precede each positive signed
numerical data item. This fl ag is over-ridden by the +
fl ag, if both are present.

(with 0-
and x-type
conversion)

Causes octal and hexadecimal data items to be
preceded by 0 and 0x, respectively.

(e-, f-
and f-type
conversion)

Causes a decimal point to be present in all fl oating-
point numbers, even if the data item is a whole
number. Also prevents the truncation of trailing zeros
in g-type conversion.

Typical Boundaries of Primitive Integral Types

The following is a list of the common integral types and
their typical sizes and boundaries. These may vary from one
implementation to another.

Implicit
Specifi er

Explicit
Specifi er

Bits Bytes Minimum
Value

Maximum
Value

char same 8 1 –128 or 0 127 or 255

signed
char

same 8 1 –128 127

unsigned
char

same 8 1 0 255

short signed
short int

16 2 –32768 32767

unsigned
short

unsigned
short int

16 2 0 65535

long signed
long int

32 4 –2147483648 2147483647

unsigned
long

unsigned
long int

32 4 0 4294967295

Constants that Defi ne Boundaries of Primitive Data Types

The standard header fi le limits.h defi nes the minimum
and maximum values of the integral primitive data types,
among other limits. The standard header fi le fl oat.h defi nes
the minimum and maximum values of fl oat, double, and
long double. It also defi nes other limits that are relevant to
the processing of fl oating-point, single-precision, and double-
precision values as they are defi ned in the IEEE 754 standard.

contd

528 Programming in C

Implicit
Specifi er

Explicit
Specifi er

Minimum
Value

Maximum
Value

char same CHAR_MIN CHAR_MAX

signed char same SCHAR_MIN SCHAR_MAX

unsigned
char

same 0 UCHAR_MAX

short signed short
int

SHRT_MIN SHRT_MAX

unsigned
short

unsigned
short int

0 USHRT_MAX

none, signed,
or int

signed int INT_MIN INT_MAX

unsigned unsigned int 0 UINT_MAX

long signed long
int

LONG_MIN LONG_MAX

unsigned
long

unsigned
long int

0 ULONG_MAX

Appendix G—Library Functions

Function Return
Type

Description Header File

abs(i) int Return the absolute value of i stdlib.h

acos(d) double Return the arc cosine of d math.h

asin(d) double Return the arc sine of d math.h

atan(d) double Return the arc tangent of d math.h

atan2 (d1,d2) double Return the arc tangent of d1/d2 math.h

atof(s) double Convert string s to a double-
precision quantity

stdlib.h

atoi(s) int Convert string s to an integer stdlib.h

atol(s) long Convert string s to a long
integer

stdlib.h

calloc
(u1,u2)

void* Allocate memory for an array
having u1 elements, each
of length u2 bytes. Return a
pointer to the beginning of
the allocated space

malloc.h
or

stdlib.h

ceil(d) double Return a value rounded up to
the next higher integer

math.h

cos(d) double Return the cosine of d math.h

cosh(d) double Return the hyperbolic cosine
of d

math.h

exit(u) void Close all fi les and buffers, and
terminate the program, (Value
of u is assigned by function, to
indicate termination status)

stdlib.h

exp(d) double Raise e to the power d
(e=2.7182818 … is the base
of the natural (Naperian)
system of logarithms

math.h

contd contd

Function Return
Type

Description Header File

fabs(d) double Return the absolute value of d math.h

fclose(f) int Close fi le f. Return 0 if fi le is
successfully closed

stdio.h

feof(f) int Determine if an end-of-fi le
condition has been reached.
If so, return a non-zero value;
otherwise, return 0

stdio.h

fgetc(f) int Enter a single character form
fi le f

stdio.h

fgets
(s,i,f)

char* Enter string s, containing i
characters, from fi le f

stdio.h

fl oor(d) double Return a value rounded down
to the next lower integer

math.h

fmod (d1,d2) double Return the remainder of d1/
d2 (with same sign as d1)

math.h

fopen (s1,s2) fi le* Open a fi le named s1 of type
s2. Return a pointer to the fi le

stdio.h

fprintf (f, ..) int Send data items to fi le f
(remaining arguments are
complicated—see Chapter 15)

stdio.h

fputc(c,f) int Send a single character to
fi le f

stdio.h

fputs(s,f) int Send string s to fi le f stdio.h

fread
(s,i1,i2,f)

int Enter i2 data items, each of size
i1 bytes, from fi le f to string s

stdio.h

free(p) void Free a block of allocated
memory whose beginning is
indicated by p

malloc.h
or stdio.h

fscanf (f, ..) int Enter data items from fi le f
(remaining arguments are
complicated—see Chapter 15)

stdio.h

fseek
(f,l,i)

int Move the pointer for fi le f
to a distance of 1 byte from
location i (i may represent
the beginning of the fi le, the
current pointer position, or
the end of the fi le)

stdlib.h

ftell(f) long
int

Return the current pointer
position within fi le f.

stdio.h

fwrite
(s,i1,i2,f)

int Send i2 data items, each of
size i1 bytes from string s to
fi le f.

stdio.h

getc(f) int Enter a single character from
fi le f.

stdio.h

getchar() int Enter a single character from
the standard input device.

stdio.h

gets(s) char* Takes a string as input from
the standard input device.

stdio.h

isalnum(c) int Determine if argument is
alphanumeric. Return a non-
zero value if true; 0 otherwise.

ctype.h

528 Programming in C

Implicit
Specifi er

Explicit
Specifi er

Minimum
Value

Maximum
Value

char same CHAR_MIN CHAR_MAX

signed char same SCHAR_MIN SCHAR_MAX

unsigned
char

same 0 UCHAR_MAX

short signed short
int

SHRT_MIN SHRT_MAX

unsigned
short

unsigned
short int

0 USHRT_MAX

none, signed,
or int

signed int INT_MIN INT_MAX

unsigned unsigned int 0 UINT_MAX

long signed long
int

LONG_MIN LONG_MAX

unsigned
long

unsigned
long int

0 ULONG_MAX

Appendix G—Library Functions

Function Return
Type

Description Header File

abs(i) int Return the absolute value of i stdlib.h

acos(d) double Return the arc cosine of d math.h

asin(d) double Return the arc sine of d math.h

atan(d) double Return the arc tangent of d math.h

atan2 (d1,d2) double Return the arc tangent of d1/d2 math.h

atof(s) double Convert string s to a double-
precision quantity

stdlib.h

atoi(s) int Convert string s to an integer stdlib.h

atol(s) long Convert string s to a long
integer

stdlib.h

calloc
(u1,u2)

void* Allocate memory for an array
having u1 elements, each
of length u2 bytes. Return a
pointer to the beginning of
the allocated space

malloc.h
or

stdlib.h

ceil(d) double Return a value rounded up to
the next higher integer

math.h

cos(d) double Return the cosine of d math.h

cosh(d) double Return the hyperbolic cosine
of d

math.h

exit(u) void Close all fi les and buffers, and
terminate the program, (Value
of u is assigned by function, to
indicate termination status)

stdlib.h

exp(d) double Raise e to the power d
(e=2.7182818 … is the base
of the natural (Naperian)
system of logarithms

math.h

contd contd

Function Return
Type

Description Header File

fabs(d) double Return the absolute value of d math.h

fclose(f) int Close fi le f. Return 0 if fi le is
successfully closed

stdio.h

feof(f) int Determine if an end-of-fi le
condition has been reached.
If so, return a non-zero value;
otherwise, return 0

stdio.h

fgetc(f) int Enter a single character form
fi le f

stdio.h

fgets
(s,i,f)

char* Enter string s, containing i
characters, from fi le f

stdio.h

fl oor(d) double Return a value rounded down
to the next lower integer

math.h

fmod (d1,d2) double Return the remainder of d1/
d2 (with same sign as d1)

math.h

fopen (s1,s2) fi le* Open a fi le named s1 of type
s2. Return a pointer to the fi le

stdio.h

fprintf (f, ..) int Send data items to fi le f
(remaining arguments are
complicated—see Chapter 15)

stdio.h

fputc(c,f) int Send a single character to
fi le f

stdio.h

fputs(s,f) int Send string s to fi le f stdio.h

fread
(s,i1,i2,f)

int Enter i2 data items, each of size
i1 bytes, from fi le f to string s

stdio.h

free(p) void Free a block of allocated
memory whose beginning is
indicated by p

malloc.h
or stdio.h

fscanf (f, ..) int Enter data items from fi le f
(remaining arguments are
complicated—see Chapter 15)

stdio.h

fseek
(f,l,i)

int Move the pointer for fi le f
to a distance of 1 byte from
location i (i may represent
the beginning of the fi le, the
current pointer position, or
the end of the fi le)

stdlib.h

ftell(f) long
int

Return the current pointer
position within fi le f.

stdio.h

fwrite
(s,i1,i2,f)

int Send i2 data items, each of
size i1 bytes from string s to
fi le f.

stdio.h

getc(f) int Enter a single character from
fi le f.

stdio.h

getchar() int Enter a single character from
the standard input device.

stdio.h

gets(s) char* Takes a string as input from
the standard input device.

stdio.h

isalnum(c) int Determine if argument is
alphanumeric. Return a non-
zero value if true; 0 otherwise.

ctype.h

Appendices 529

Function Return
Type

Description Header File

isalpha(c) int Determine if argument is
alphabetic. Return a non-zero
value if true; 0 otherwise.

ctype.h

isascii(c) int Determine if argument is ASCII
character. Return a non-zero
value if true; 0 otherwise.

ctype.h

iscntrl(c) int Determine if argument is
ASCII control character. Re-
turn a non-zero value if true; 0
otherwise.

ctype.h

isdigit(c) int Determine if argument is
decimal digit. Return

ctype.h

isgraph(c) int Determine if argument is
graphic ASCII a non-zero
value if true; 0 otherwise.
character (hex 0x21-0x7e;
octal 041-176). Return a non-
zero value if true; 0 otherwise

ctype.h

islower(c) int Determine if argument is
lowercase. Return a non-zero
value if true; 0 otherwise

ctype.h

isodigit(c) int Determine if argument is an
octal digit. Return a non-zero
value if true; 0 otherwise

ctype.h

isprint(c) int Determine if argument is a
printing ASCII character (hex
0x20-0x7e; octal 040-176).
Return a non-zero value if
true; 0 otherwise

ctype.h

ispunct(c) int Determine if argument is a
punctuation character. Return
a non-zero value if true; 0
otherwise

ctype.h

isspace(c) int Determine if argument is a
white space character. Return
a non-zero value if true; 0
otherwise

ctype.h

isupper(c) int Determine if argument is
uppercase. Return a non-zero
value if true; 0 otherwise

ctype.h

isxdigit(c) int Determine if argument is a
hexadecimal digit. Return a non-
zero value if true; 0 otherwise

ctype.h

labs(l) long
int

Return the absolute value of l. math.h

log(d) double Return the natural logarithm
of d.

math.h

log10(d) double Return the logarithm (base
10) of d.

math.h

malloc(u) void* Allocate u bytes of memory.
Return a pointer to the beginning
of the allocated space.

malloc.h
or

stdlib.h

Function Return
Type

Description Header File

pow(d1,d2) double Return d1 raised to the d2
power

math.h

printf(...) int Send data items to the stan-
dard output device (argu-
ments are complicated—see
Appendix G)

stdio.h

putc(c,f) int Send a single character to
fi le f

stdio.h

putchar(c) int Send a single character to
the standard output device

stdio.h

puts(s) int Send string s to the standard
output device

stdio.h

rand() int Return a random positive
integer.

stdlib.h

rowind(f) void Move the pointer to the be-
ginning of the fi le f.

stdio.h

scanf(...) int Enter data items from the
standard input device (argu-
ments are complicated—see
Appendix G)

stdio.h

sin(d) double Return the sine of d. math.h

sinh(d) double Return the hyperbolic sine
of d.

math.h

sqrt(d) double Return the square root of d. math.h

srand(u) void Initialize the random number
generator.

stdlib.h

strcmp (s1,s2) int Compare two strings lexico-
graphically. Return a nega-
tive value if s1 < s2; 0 if s1
and s2 are identical; and a
positive value if s1 > s2

string.h

strcmpi (s1,s2) int Compare two strings lexico-
graphically, without regard
to case. Return a negative
value if s1 < s2; 0 if s1 and
s2 are identical; and a posi-
tive value if s1 > s2

string.h

strcpy (s1,s2) char* Copy string s2 to string s1 string.h

strlen(s) int Return the number of
characters in a string

string.h

strset
(s,c)

char* Set all characters within s to
c (excluding the terminating
null character \0).

string.h

system(s) int Pass command s to the
operating system. Return 0 if
the command is successfully
executed, otherwise, return a
non-zero value, typically –1.

stdlib.h

tan(d) double Return the tangent of d. math.h

tanh(d) double Return the hyperbolic tangent
of d.

math.h

contd contd

530 Programming in C

Function Return
Type

Description Header File

time(p) long
int

Return the number of sec-
onds elapsed beyond a des-
ignated base time.

time.h

toascii(c) int Convert value of argument to
ASCII.

ctype.h

tolower(c) int Convert letter to lowercase. ctype.h or
stdlib.h

toupper(c) int Convert letter to uppercase. ctype.h or
stdlib.h

Note Type refers to the data type of the quantity that is
returned by the function. An asterisk (*) denotes a
pointer.

 c denotes a character-type argument.
 d denotes a double-precision argument.
 f denotes a fi le argument.
 i denotes an integer argument.
 l denotes a long integer argument.
 p denotes a pointer argument.

s denotes a string argument.
u denotes an unsigned integer argument.

Illustrations of Library Functions

Functions from ctype.h

 1. tolower(),toupper():
 #include <stdio.h>
 #include <ctype.h>
 int main()
 {
 char s1[]=“oxford”;
 char s2[]=“UNIVERSITY”;
 int i;
 for(i=0;s1[i]!=‘\0’;++i)
 s1[i]=toupper(s1[i]);
 for(i=0;s2[i]!=‘\0’;++i)
 s2[i]=tolower(s2[i]);

 printf(“\n s1 = %s”,s1);
 printf(“\n s2 = %s”,s2);
 return 0;
 }

 Output:
 s1 = OXFORD
 s2 = university

 2. isalpha(), isdigit(), isspace():
 #include <stdio.h>
 #include <ctype.h>
 #defi ne FALSE 0
 #defi ne TRUE 1
 int main()
 {
 char ch;

 char s[]=“AB 12”;
 int i=0;
 while(s[i] !=‘\0’)
 {
 ch = s[i];
 if(isalpha(ch) != FALSE)
 printf(“%c is an Alphabet.\n”,ch);

 if(isdigit(ch) != FALSE)
 printf(“%c is a numeric character.\n”,ch);
 if(isspace(ch) != FALSE)
 printf(“%c is white space\n”, ch);
 }
 return 0;
 }

 Output:
 A is an Alphabet.
 B is an Alphabet.
 is white space
 1 is a numeric character.
 2 is a numeric character.

Functions from stdio.h

 1. putchar():
 #include <stdio.h>
 int main()
 {
 char ch;
 for(ch = ‘A’; ch <= ‘Z’; ch++) {
 putchar(ch);
 }
 return 0;
 }

 Output:
 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 2. getchar():
 #include <stdio.h>
 int main()
 {
 char ch;
 puts(“Enter text. Press ENTER to fi nish. ”);
 do {
 ch=getchar();
 putchar(ch);
 } while(ch != ‘\n’);
 return 0;
 }
 Output:
 A line of text is echoed when <Enter> is pressed.

 3. gets():
 #include <stdio.h>
 int main()
 {
 char s[80];
 printf(“Enter your Name:”);

Appendices 531
 gets(s);
 printf(“Your Name is: %s\n”,s);

 }

 Output:
 Enter your Name: Rabindra Nath Tagore
 Your Name is: Rabindra Nath Tagore

 4. puts():
 #include <stdio.h>
 int main()
 {
 char s[] = “The Times of India”;
 puts(s);
 }

 Output:
 The Times of India

 5. fopen(), fclose():
 #include <stdio.h>
 int main()
 {
 FILE *fp;
 fp = fopen(“exmpl.txt”,“w”);
 if(fp!=NULL)
 {
 fputs(“fopen example”,fp);
 fclose(fp);
 }
 else
 printf(“\n File opening error”);
 return 0;
 }

 Output:
 This program creates a fi le called exmpl. txt and writes

‘fopen example’ on it. Then the fi le is closed.

 6. fgets():
 #include <stdio.h>
 int main()
 {
 FILE *fp;
 char str[80];
 fp = fopen(“exmpl.txt” , “r”);
 if(fp == NULL)
 printf(“Error in opening fi le”);
 else {
 fgets(str , 80 , fp);
 puts(str);
 fclose(fp);
 }
 return 0;
 }

 Output:
 It displays the contents of the fi le exmpl. txt.

 7. fputs():
 #include <stdio.h>
 int main()
 {
 FILE *fp;
 char s[80];
 printf(“Enter a sentence”);
 fgets(s,80,stdin);
 fp = fopen(“exmpl.txt”,“a+”);
 fputs(s,fp);
 fclose(fp);
 return 0;
 }

 Output:
 This program allows appending a line to a fi le called

exmpl.txt each time one runs it.

 8. getc():
 #include <stdio.h>
 int main()
 {
 FILE *fp;
 char c;
 int n = 0;
 fp = fopen(“exmpl.txt”,“r”);
 if(fp==NULL)
 printf(“File opening error”);
 else
 {
 do {
 c = getc(fp);
 if(c == ‘@’) n++;
 } while(c != EOF);
 fclose(fp);
 printf(“Number of @ = %d \n”,n);
 }
 return 0;
 }

 Output:
 This program reads exmpl.txt character by character and

uses the n variable to count the number of @ characters
it contains.

 Number of @ = 5

 9. putc():
 #include <stdio.h>
 int main()
 {
 FILE * fp;
 char c;

 fp=fopen(“alphabet.txt”,“w+”)
 for(c = ‘A’; c <= ‘Z’; c++) {
 putc(n, fp);
 }
 fclose(fp);
 return 0;
 }

532 Programming in C

 Output:
 This program creates a fi le called alphabet.txt and

writes
 ABCDEFGHIJKLMNOPQRSTUVWXYZ on it.

 10. fgetc():
 #include <stdio.h>
 int main()
 {
 FILE * fp;
 char ch;
 int n = 0;
 fp=fopen(“exmpl.txt”,“r”);
 if(fp==NULL)
 printf(“Error opening fi le”);
 else
 {
 do {
 ch = fgetc(fp);
 if(ch == ‘@’) n++;
 } while(ch != EOF);
 fclose(fp);
 printf(“File contains %d @.\n”,n);
 }
 return 0;
 }

 Output:
 This program reads existing fi le exmpl.txt character by

character and uses the n variable to count the number of
@ characters the fi le contains.

 11. fputc():
 #include <stdio.h>

 int main()
 {
 FILE * fp;
 char c;
 fp = fopen(“alphabet.txt”,“w”);
 if(fp!=NULL)
 {
 for(c = ‘A’; c <= ‘Z’; c++)
 {
 fputc(c, fp);
 }
 fclose(fp);
 }
 return 0;
 }

 Output:
 This program creates a fi le called alphabet.txt and

writes
 ABCDEFGHIJKLMNOPQRSTUVWXYZ on it.

 12. feof():
 #include <stdio.h>
 int main()

 {
 FILE * fp;
 long n = 0;
 fp = fopen(“exmpl.txt”,“rb”);
 if(fp==NULL)
 printf(“\n Error in opening fi le”);
 else
 {
 while(!feof(fp)) {
 fgetc(fp);
 n++;
 }
 fclose(fp);
 printf(“Total number of bytes: %d\n”,n);
 }
 return 0;
 }

 Output:
 This code opens a fi le called exmpl.txt, and counts the

number of characters that it contains by reading them
one by one. Finally the total amount of bytes is printed
out. For example,

 Total number of bytes: 20

 13. ffl ush():
 #include <stdio.h>
 int main()
 {
 int n;
 char s[80];
 for(n=0; n<2; n++)
 {
 printf(“Enter some words:”);
 scanf(“%s”, s);
 printf(“The fi rst word entered is: %s\n”, s);
 ffl ush(stdin);
 }
 return 0;
 }

 Output:
 Enter some words: Oxford University
 The fi rst word entered is : Oxford
 Enter some words: C is sea
 The fi rst word entered is : C

 14. fseek():
 #include <stdio.h>

 int main()
 {
 FILE * fp;
 fp = fopen(“exmpl.txt”,“w”);
 fputs(“This is an apple.”,fp);
 fseek(fp,9,SEEK_SET);
 fputs(“man”,fp);
 fclose(fp);
 return 0;
 }

Appendices 533

 Output:
 After this code is executed, a fi le called example.txt

will be created and will contain the sentence
 This is a sample.

 15. ftell():
 #include <stdio.h>
 int main()
 {
 FILE *fp;
 long size;
 fp = fopen(“exmpl.txt”,“rb”);
 if(fp==NULL)
 printf(“Error in opening fi le”);
 else
 {
 fseek(fp, 0, SEEK_END);
 size=ftell(fp);
 fclose(fp);
 printf(“Size of exmpl.txt: %ld bytes.\n”, size);
 }
 return 0;
 }

 Output:
 This program opens example.txt for reading and

calculates its size. Output may be as follows.
 Size of example.txt: 735 bytes

 16. rewind():
 #include <stdio.h>
 int main()
 {
 int n;
 FILE * fp;
 char buffer[27];
 fp = fopen(“exmpl.txt”,“w+”);
 for(n=‘A’; n<=‘Z’; n++)
 fputc(n, fp);
 rewind(fp);
 fread(buffer,1,26,fp);
 fclose(fp);
 buffer[26]=‘\0’;
 puts(buffer);
 return 0;
 }

 Output:
 A fi le called exmpl.txt is created for reading and writing

and is fi lled with the alphabets. The fi le is rewinded, read,
and its contents are stored in a buffer, which is written
to the standard output (screen).

 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 17. fprintf():
 #include <stdio.h>
 int main()
 {
 FILE *fp;

 int n;
 char name[80];

 fp = fopen(“exmpl.txt”,“w”);
 printf(“Enter three names one by one”);
 for(n=0; n<3; n++)
 {

 gets(name);
 fprintf(fp, “Name %d [%-10.10s]\n”,n,name);
 }
 fclose(fp);
 return 0;
 }

 Output:
 This example prompts the user for three names and then

writes them to exmpl.txt each one in a line with a fi xed
length (a total of 19 characters plus newline).

 Enter three names one by one
 Raja
 Raja-Mohan
 Rama
 exmpl.txt would contain:
 Name 1 [Raja]
 Name 2 [Raja-Mohan]
 Name 3 [Rama]

 18. fscanf():
 #include <stdio.h>

 int main()
 {
 char str[80];
 fl oat f;
 FILE *fp;
 fp = fopen(“exmpl.txt”,“w+”);
 fprintf(fp, “%f %s”, 3.1416, “PI”);
 rewind(fp);
 fscanf(fp, “%f”, &f);
 fscanf(fp, “%s”, str);
 fclose(fp);
 printf(“I have read: %f and %s \n”,f,str);
 return 0;
 }
 Output:
 This sample code creates a fi le called exmpl.txt and

stores a fl oat number and a string, then the stream is
rewinded and both values are read with fscanf. Finally
the following output is produced:

 I have read: 3.141600 and PI

Functions from math.h

(Standard C library for mathematic operations)

 1. ceil():
 #include <stdio.h>
 #include <math.h>
 int main()

534 Programming in C

 {
 printf(“ceil(3.4)=%.1lf\n”, ceil(3.4));
 printf(“ceil(2.7)= %.1lf\n”, ceil(2.7));
 printf(“ceil(-3.4)=%.1lf\n”, ceil (-3.4));
 printf(“ceil(-2.7)= %.1lf\n”, ceil (-2.7));
 return 0;
 }

 Output:
 ceil(3.4)=4.0
 ceil(2.7)= 3.0
 ceil(-3.4)=-3.0
 ceil(2.7)= -2.0

 2. exp():
 #include <stdio.h>
 #include <math.h>

 int main()
 {
 double x=3;
 printf(“Exponential of %lf = %lf\n”, x, exp(x));
 return 0;
 }

 Output:
 Exponential of 3.000000 = 20.085537

 3. fabs():
 #include <stdio.h>
 #include <math.h>

 int main()
 {
 printf(“Absolute value of 3.1416\
 is %lf\n”, fabs(3.1416));
 printf(“Absolute value of -3.14 is\
 %lf\n”, fabs(-3.14));
 return 0;
 }

 Output:
 Absolute value of 3.1416 is 3.141600
 Absolute value of -10.6 is 3.140000

 4. fl oor():
 #include <stdio.h>
 #include <math.h>

 int main()
 {
 printf(“fl oor(3.4)=%.1lf\n”, fl oor(3.4));
 printf(“fl oor(2.7)= %.1lf\n”, fl oor(2.7));
 printf(“fl oor(-3.4)=%.1lf\n”, fl oor(-3.4));
 printf(“fl oor(-2.7)= %.1lf\n”, fl oor(-2.7));
 return 0;
 }

 Output:
 fl oor(3.4)=3.0
 fl oor(2.7)= 2.0
 fl oor(-3.4)=-4.0
 fl oor(2.7)= -3.0

 5. log(), log10():
 #include <stdio.h>
 #include <math.h>
 int main()
 {
 double x=3.5;
 printf(“ln(%lf) = %lf\n”, x, log (x));
 printf(“log10(%lf) = %lf\n”, x, log10(x));
 return 0;
 }

 Output:
 ln(3.500000) = 1.252763
 ln(3.500000) = 0.544068

 6. pow(), sqrt():
 #include <stdio.h>
 #include <math.h>

 int main()
 {
 printf(“2 ^ 4 = %lf\n”,pow(2,4));
 printf(“3.5 ^ 3 = %lf\n”,pow (3.5,3));
 printf(“sqrt(%lf) = %lf\n”, 3.5, sqrt(3.5));
 return 0;
 }

 Output:
 2 ^ 4 = 16.000000
 3.5 ^ 3 = 42.875000
 sqrt(3.500000) = 1.870829

 7. sin(),cos(), tan():
 #include <stdio.h>
 #include <math.h>

 int main()
 {
 double x = 0.5;

 printf(“sin(%lf) = %lf\n”, x, sin(x));
 printf(“cos(%lf) = %lf\n”, x, cos(x));
 printf(“tan(%lf) = %lf\n”, x, tan(x));
 return 0;
 }

 Output:
 sin(0.500000) = 0.479426
 cos(0.500000) = 0.877583
 tan(0.500000) = 0.546302

Functions from string.h

(Standard C library to manipulate C strings)

 1. strlen():
 #include <stdio.h>
 #include <string.h>
 int main()
 {
 char s[80];
 printf(“Enter a sentence:”);

Appendices 535
 gets(s);
 printf(“\nSentence entered is %u characters\

 long”,strlen(s));
 return 0;
 }

 Output:
 Enter sentence: Computer Fundamentals
 Sentence entered is 21 characters long

 2. strcpy():
 #include <stdio.h>
 #include <string.h>
 int main()
 {
 char s1[]=“Oxford University Press”;
 char s2[80];
 strcpy(s2,s1);
 printf(“s1: %s\n s2: %s\n”,s1,s2);
 return 0;

 }
 Output:
 s1: Oxford University Press
 s2: Oxford University Press

 3. strcat():
 #include <stdio.h>
 #include <string.h>
 int main()
 {
 char s[80];
 strcpy(s,“string”);
 strcat(s,“concatenation”);
 puts(s);
 return 0;

 }

 Output:
 string concatenation

 4. strcmp():
 #include <stdio.h>
 #include <string.h>

 int main()
 {
 char s1[]=“C is sea”;
 char s2[80];
 char s3[]=“C IS SEA”;
 strcpy(s2,s1);
 if(strcmp(s1,s2)==0)
 printf(“\n Both s1 and s2 are equal”);
 else
 printf(“\n s1 and s2 are unequal”);

 if(strcmp(s1,s3)==0)
 printf(“\n Both s1 and s3 are equal”);

 else
 printf(“\n s1 and s3 are unequal”);
 return 0;
 }

 Output:
 Both s1 and s2 are equal
 s1 and s3 are unequal

 5. strcmpi():
 #include <stdio.h>
 #include <string.h>

 int main()
 {
 char s1[]=“C is sea”;
 char s2[80];
 char s3[]=“C IS SEA”;
 strcpy(s2,s1);
 if(strcmpi(s1,s2)==0)
 printf(“\n Both s1 and s2 are equal”);
 else
 printf(“\n s1 and s2 are unequal”);

 if(strcmpi(s1,s3)==0)
 printf(“\n Both s1 and s3 are equal”);
 else
 printf(“\n s1 and s3 are unequal”);
 return 0;
 }

 Output:
 Both s1 and s2 are equal
 Both s1 and s3 are equal

 6. memcpy():
 #include <stdio.h>
 #include <string.h>

 int main()
 {
 char s1[]=“Oxford University”;
 char s2[40];
 memcpy(s2,s1,strlen(s1)+1);
 printf(“s1: %s\ns2: %s\n”,s1,s2);
 return 0;
 }

 Output:
 s1: Oxford University
 s2: Oxford University

 7. strset():
 #include <stdio.h>
 #include <string.h>

 int main()
 {
 char string[10] = “123456789”;
 char symbol = ‘c’;
 printf(“Before strset(): %s\n”, string);

536 Programming in C

 strset(string, symbol);
 printf(“After strset(): %s\n”, string);
 return 0;
 }

 Output:
 Before strset(): 123456789
 After strset(): ccccccccc

Functions from stdlib.h
(General purpose standard C library functions, including
memory allocation, process control, conversions, and
others)

 1. abs():
 #include <stdio.h>
 #include <stdlib.h>
 int main()
 {
 printf(“abs(23)=%d\n”, abs(25));
 printf(“abs(-11)=%d\n”, abs(-13));
 return 0;
 }

 Output:
 abs(25)=25
 abs(-13)=13

 2. atof():
 #include <stdlib.h>
 #include <stdio.h>

 int main()
 {
 double d;
 char str[] = “12345.67”;

 d = atof(str);
 printf(“str = %s d = %f\n”, str, f);
 return 0;
 }

 Output:
 str = 12345.67 d = 12345.67

 3. atoi():
 #include <stdlib.h>
 #include <stdio.h>

 int main()
 {
 int n;
 char str[] = “12345.67”;

 n = atoi(str);
 printf(“str = %s n = %d\n”, str, n);
 return 0;
 }

 Output:
 str = 12345.67 n = 12345

 4. atol():
 #include <stdlib.h>
 #include <stdio.h>
 int main()
 {
 long l;
 char str[] = “987654321”;

 l = atol(str);
 printf(“str = %s \n”, str);
 printf(“l=%ld”,l);
 return 0;
 }

 Output:
 str = 12345.67
 l = 12345

 5. itoa():
 #include <stdlib.h>
 #include <stdio.h>

 int main()
 {
 int n = 12345;
 char str[25];

 itoa(n, str, 10);
 printf(“n = %d str = %s\n”, n, str);
 return 0;
 }

 Output:
 n = 12345 str =12345

 6. ltoa():
 #include <stdlib.h>
 #include <stdio.h>

 int main()
 {
 char str[25];
 long l = 123456789L;

 ltoa(l,str,10);
 printf(“l = %ld str = %s\n”, value, string);
 return 0;
 }

 Output:
 l = 123456789 str = 123456789

 7. malloc():
 #include <stdio.h>
 #include <alloc.h>
 #include <string.h>

 int main()
 {
 char *str = NULL;

 /* allocate memory for string */
 str =(char *) malloc(10 * sizeof(char));

Appendices 537
 /* copy “Oxford” into string */
 strcpy(str, “Oxford”);

 /* display string */
 printf(“String is %s\n”, str);

 /* free memory */
 free(str);
 return 0;
 }

 Output:
 String is Oxford

 8. system():
 /* system example : DIR */
 #include <stdio.h>
 #include <stdlib.h>

 int main()
 {
 int i;
 printf(“Trying to execute command DIR”);
 i = system(“dir”);
 if(i==-1)
 printf(“Error executing DIR”);
 else
 printf(“Command successfully executed”);
 return 0;
 }

 Output:
 Trying to execute command DIR
 Volume in drive C has no label.
 Volume Serial Number is 24F4-EA35

 Directory of C:\

 11/28/2005 04:37 PM <DIR> WINDOWS
 11/28/2005 04:43 PM <DIR> Documents
 and Settings
 11/28/2005 05:11 PM <DIR> Program
 Files
 11/28/2005 05:13 PM 0 CONFIG.SYS
 11/28/2005 05:13 PM 0 AUTOEXEC.BAT
 12/02/2005 06:21 PM <DIR> TC
 12/07/2005 05:02 PM <DIR> oracle10g
 12/29/2005 06:47 PM <DIR> intel
 01/02/2006 04:01 PM 0 tt
 12/22/2005 11:23 AM <DIR> AVIJIT
 11/29/2005 12:44 PM <DIR> TEMP
 3 File(s) 0 bytes
 8 Dir(s) 279,359,488 bytes free
 Command successfully executed

 9. exit():
 #include <stdlib.h>
 #include <conio.h>
 #include <stdio.h>

 int main()
 {

 int status;

 printf(“Enter either 1 or 2\n”);
 status = getchar();
 /* Sets DOS errorlevel */
 exit(status - ‘0’);
 printf(“\n Good Bye”);
 return 0;
 }

 Output:
 Enter either 1 or 2
 1
 After entering 1 or 2, program terminates. The line

“printf(“\n Good Bye”);” will never be executed.

 10. rand():
 #include <stdlib.h>
 #include <stdio.h>

 int main()
 {
 int i;

 randomize();
 printf(“Five random numbers from 0 to 99\n\n”);
 for(i=0; i<5; i++)
 printf(“%d\n”, rand() % 100);
 return 0;
 }

 Output:
 6
 50
 3
 72
 23

 11. calloc(),free():
 #include <stdio.h>
 #include <alloc.h>
 #include <string.h>

 int main()
 {
 char *str = NULL;

 /* allocate memory for string */
 str = (char *) calloc(10, sizeof(char));

 /* copy “Oxford” into string */
 strcpy(str, “Oxford”);

 /* display string */
 printf(“String is %s\n”, str);

 /* free memory */
 free(str);
 return 0;
 }

 Output:
 String is Oxford

538 Programming in C

Appendix I—Evaluation Order
A conforming C compiler can evaluate expressions in any
order between sequence points. Sequence points are defi ned
by
 Statement ends at semicolons.
 The sequencing operator: a comma.
 The short-circuit operators: logical AND (&&) and

logical OR (||).
 The conditional operator (?:): This operator evaluates

its fi rst sub-expression fi rst, and then its second or third
(never both of them) based on the value of the fi rst.

 Expressions before a sequence point are always evaluated
before those after a sequence point. In the case of short-circuit
evaluation, the second expression may not be evaluated
depending on the result of the fi rst expression. For example,
in the expression (a()||b()), if the fi rst argument evaluates
to true, the result of the entire expression will also be true,
so b() is not evaluated.

Undefi ned Behavior
An interesting (though certainly not unique) aspect of the C
standards is that the behavior of a certain code is said to be
‘undefi ned’. In practice, this means that the program produced
from this code can do anything, from working as intended, to
crashing every time it is run.
 For example, the following code produces undefi ned
behavior, because the variable b is operated on more than
once in the expression a = b++ + b++;:
#include <stdio.h>
int main(void)
{
 int a, b = 1;
 a = b++ + b++;
 printf(“%d\n”, a);
 return 0;
}

 Because there is no sequence point between the access
of b in b++ + b++, it is possible to resolve the statement in
more than one order, resulting in an ambiguous statement.
However, to allow the compiler to make certain optimizations
the standard is even more pessimistic than this. In general,
any separate modifi cation and access of a value between
sequence points invokes undefi ned behavior.

Appendix J—Common Problems Encountered in C

 = vs ==
 Symptom The body of an if, while, or for statement

is always (or is never) executed when it should not be.

 Description = used by mistake in a conditional context
instead of ==.

 Missing & in call to scanf
 Symptom Segmentation fault (core dumped)
 Description When calling scanf(), the arguments

corresponding to %d, %u, %o, %x, %i, %n, %e, %g, %f, and
%c must be pointers to integers, fl oats, doubles, or
characters. If an integer is passed instead of a pointer
to an integer (e.g., x instead of &x), one will probably
get a core dump. Note that although %s and %[^\n] take
pointers, the & is usually not required as C passes arrays
by reference.

 Not including math.h
 Symptom Functions such as atof, sin, and cos appear

not to return reasonable values.
 Description If a function which returns a fl oat or

double is not declared as such, the compiler will assume
it returns an int; this usually leads to very strange values
being returned.

 Arrays are 0 based, not 1 based
 Symptom Values of variables changing when they

have not been assigned.
 Description The fi rst element in an array in C is at

index 0 (not index 1), and the last index is n – 1 (not
n), where n is the number of elements in the array.
Programmers often forget this and write loops such as

 for(i = 1; i <= n; i++)

 array[i] = ...;

 when they should write
 for(i = 0; i < n; i++)

 array[i] = ...;

 Since C does no run-time bound checking on array
references, references to array[n] refer to the memory
just past the end of the array—there is a very good
chance that some other variable happens to reside at this
location, and it will be read or written by accident.

 Not initializing variables
 Symptom A function behaves differently each time it

is called (when it should behave the same).
 Description When a variable is declared in a function,

space is allocated for it on the stack—the initial value
of the variable is whatever it is on the stack, which is
usually a fairly random value that will change between
invocations of the function. Similar things can happen
when memory allocated using malloc() or realloc()
is not initialized before being used.

 Not allocating memory for pointers
 Symptom Segmentation fault (core dumped)

538 Programming in C

Appendix I—Evaluation Order
A conforming C compiler can evaluate expressions in any
order between sequence points. Sequence points are defi ned
by
 Statement ends at semicolons.
 The sequencing operator: a comma.
 The short-circuit operators: logical AND (&&) and

logical OR (||).
 The conditional operator (?:): This operator evaluates

its fi rst sub-expression fi rst, and then its second or third
(never both of them) based on the value of the fi rst.

 Expressions before a sequence point are always evaluated
before those after a sequence point. In the case of short-circuit
evaluation, the second expression may not be evaluated
depending on the result of the fi rst expression. For example,
in the expression (a()||b()), if the fi rst argument evaluates
to true, the result of the entire expression will also be true,
so b() is not evaluated.

Undefi ned Behavior
An interesting (though certainly not unique) aspect of the C
standards is that the behavior of a certain code is said to be
‘undefi ned’. In practice, this means that the program produced
from this code can do anything, from working as intended, to
crashing every time it is run.
 For example, the following code produces undefi ned
behavior, because the variable b is operated on more than
once in the expression a = b++ + b++;:
#include <stdio.h>
int main(void)
{
 int a, b = 1;
 a = b++ + b++;
 printf(“%d\n”, a);
 return 0;
}

 Because there is no sequence point between the access
of b in b++ + b++, it is possible to resolve the statement in
more than one order, resulting in an ambiguous statement.
However, to allow the compiler to make certain optimizations
the standard is even more pessimistic than this. In general,
any separate modifi cation and access of a value between
sequence points invokes undefi ned behavior.

Appendix J—Common Problems Encountered in C

 = vs ==
 Symptom The body of an if, while, or for statement

is always (or is never) executed when it should not be.

 Description = used by mistake in a conditional context
instead of ==.

 Missing & in call to scanf
 Symptom Segmentation fault (core dumped)
 Description When calling scanf(), the arguments

corresponding to %d, %u, %o, %x, %i, %n, %e, %g, %f, and
%c must be pointers to integers, fl oats, doubles, or
characters. If an integer is passed instead of a pointer
to an integer (e.g., x instead of &x), one will probably
get a core dump. Note that although %s and %[^\n] take
pointers, the & is usually not required as C passes arrays
by reference.

 Not including math.h
 Symptom Functions such as atof, sin, and cos appear

not to return reasonable values.
 Description If a function which returns a fl oat or

double is not declared as such, the compiler will assume
it returns an int; this usually leads to very strange values
being returned.

 Arrays are 0 based, not 1 based
 Symptom Values of variables changing when they

have not been assigned.
 Description The fi rst element in an array in C is at

index 0 (not index 1), and the last index is n – 1 (not
n), where n is the number of elements in the array.
Programmers often forget this and write loops such as

 for(i = 1; i <= n; i++)

 array[i] = ...;

 when they should write
 for(i = 0; i < n; i++)

 array[i] = ...;

 Since C does no run-time bound checking on array
references, references to array[n] refer to the memory
just past the end of the array—there is a very good
chance that some other variable happens to reside at this
location, and it will be read or written by accident.

 Not initializing variables
 Symptom A function behaves differently each time it

is called (when it should behave the same).
 Description When a variable is declared in a function,

space is allocated for it on the stack—the initial value
of the variable is whatever it is on the stack, which is
usually a fairly random value that will change between
invocations of the function. Similar things can happen
when memory allocated using malloc() or realloc()
is not initialized before being used.

 Not allocating memory for pointers
 Symptom Segmentation fault (core dumped)

Appendices 539

 Description The declaration
 char *p;
 does not associate any memory with p—if it is used without

giving it any memory (e.g., strcpy(p, “hi there”)),
the memory references will be random locations.

 Allocating too few bytes for strings
 Symptom Segmentation fault (core dumped)
 Description When allocating space for strings, do not

forget that space needs to be allocated for the trailing null
byte. A common error is a code like the following:

 char *p = (char *) malloc(strlen(str));
 strcpy(p, str);

 This does not allocate enough space for the string—it
should be

 char *p = (char *) malloc(strlen (str) + 1);
 strcpy(p, str);

 Use of memory after it has been freed
 Symptom Segmentation fault (core dumped); variables

change values without being called.
 Description When allocated memory is de-allocated

using free, the memory may be modifi ed immediately
by the code in free (it uses memory to perform its book
keeping functions) or the memory may be re-used by the
next call to malloc. In either case, if we continue to use
the memory after freeing it, the memory can be modifi ed
unexpectedly, or the modifi cation of it may cause other
parts of the program to act strangely.

 Calling functions with incorrect arguments
 Symptom Segmentation fault (core dumped);
 Description If a function is not declared before it

is used, then the C compiler has no idea what kind of
arguments the function takes, and therefore lets one pass
anything to the function. This can lead to passing too
many, too few, or simply the wrong type of arguments
to functions.

 Syntax error at end of header fi le
 Symptom C compiler complains about apparently valid

code.
 Description If a syntax error (e.g., a missing semicolon)

occurs at the end of a header fi le, the C compiler may
complain about the next line of code, which can be in a
different fi le. This can lead to diffi culties in locating the
actual error.

 Returning pointer to stack memory
 Symptom A buffer (or any memory) initiali-zed by a

function is modifi ed when the function returns (or after
another function is called).

 Description When variables are declared in a function,
the memory for the variables is allocated on the stack;
when the function returns, the memory is re-used by the

next function that is called. This means that the buffer
in the following piece of code can get trashed after the
function returns:

 char *foo(char *str1, char *str2)
 {
 char buf[1024];
 strcpy(buf, str1);
 strcat(buf, str2);
 return buf;
 }
 ...
 printf(“Why isn’t `%s’ `hi
 there’?\n”, foo(“hi”, “there”));
 ...

 (The code is also bad as it assumes buf is big enough to
hold str1 and str2).

Appendix K—Selected Problems and Solutions
All the programs are tested under Turbo C/C++ compilers. It
is assumed that

 programs run under DOS environment.
 the underlying machine is an x86 system.
 necessary header fi les are included.
 the program is compiled using Turbo C/C++ compiler.
 the program output may depend on the information based

on the above assumptions (e.g., sizeof(int) = 2 bytes
may be assumed)

Examples

 1. Write a C program to SWAP the contents of three variables
without using the temporary (or extra) variables.

 Solution
/* Swapping 3 numbers without using an extra
variable */
#include <stdio.h>
#include <conio.h>
void Swap(int *a,int *b,int *c)
{
 *a = *a + *b + *c;
 *b = *a – (*b + *c);
 *c = *a – (*b + *c);
 *a = *a – (*b + *c);
}
int main()
{
 int x=1,y=2,z=3;
 clrscr();
 printf(“BEFORE SWAPPING : %d %d %d\n”,x,y,z);
 Swap(&x,&y,&z);
 printf(“AFTER SWAPPING : %d %d %d”,x,y,z);

 return 0;
} /* End of Main */

Appendices 539

 Description The declaration
 char *p;
 does not associate any memory with p—if it is used without

giving it any memory (e.g., strcpy(p, “hi there”)),
the memory references will be random locations.

 Allocating too few bytes for strings
 Symptom Segmentation fault (core dumped)
 Description When allocating space for strings, do not

forget that space needs to be allocated for the trailing null
byte. A common error is a code like the following:

 char *p = (char *) malloc(strlen(str));
 strcpy(p, str);

 This does not allocate enough space for the string—it
should be

 char *p = (char *) malloc(strlen (str) + 1);
 strcpy(p, str);

 Use of memory after it has been freed
 Symptom Segmentation fault (core dumped); variables

change values without being called.
 Description When allocated memory is de-allocated

using free, the memory may be modifi ed immediately
by the code in free (it uses memory to perform its book
keeping functions) or the memory may be re-used by the
next call to malloc. In either case, if we continue to use
the memory after freeing it, the memory can be modifi ed
unexpectedly, or the modifi cation of it may cause other
parts of the program to act strangely.

 Calling functions with incorrect arguments
 Symptom Segmentation fault (core dumped);
 Description If a function is not declared before it

is used, then the C compiler has no idea what kind of
arguments the function takes, and therefore lets one pass
anything to the function. This can lead to passing too
many, too few, or simply the wrong type of arguments
to functions.

 Syntax error at end of header fi le
 Symptom C compiler complains about apparently valid

code.
 Description If a syntax error (e.g., a missing semicolon)

occurs at the end of a header fi le, the C compiler may
complain about the next line of code, which can be in a
different fi le. This can lead to diffi culties in locating the
actual error.

 Returning pointer to stack memory
 Symptom A buffer (or any memory) initiali-zed by a

function is modifi ed when the function returns (or after
another function is called).

 Description When variables are declared in a function,
the memory for the variables is allocated on the stack;
when the function returns, the memory is re-used by the

next function that is called. This means that the buffer
in the following piece of code can get trashed after the
function returns:

 char *foo(char *str1, char *str2)
 {
 char buf[1024];
 strcpy(buf, str1);
 strcat(buf, str2);
 return buf;
 }
 ...
 printf(“Why isn’t `%s’ `hi
 there’?\n”, foo(“hi”, “there”));
 ...

 (The code is also bad as it assumes buf is big enough to
hold str1 and str2).

Appendix K—Selected Problems and Solutions
All the programs are tested under Turbo C/C++ compilers. It
is assumed that

 programs run under DOS environment.
 the underlying machine is an x86 system.
 necessary header fi les are included.
 the program is compiled using Turbo C/C++ compiler.
 the program output may depend on the information based

on the above assumptions (e.g., sizeof(int) = 2 bytes
may be assumed)

Examples

 1. Write a C program to SWAP the contents of three variables
without using the temporary (or extra) variables.

 Solution
/* Swapping 3 numbers without using an extra
variable */
#include <stdio.h>
#include <conio.h>
void Swap(int *a,int *b,int *c)
{
 *a = *a + *b + *c;
 *b = *a – (*b + *c);
 *c = *a – (*b + *c);
 *a = *a – (*b + *c);
}
int main()
{
 int x=1,y=2,z=3;
 clrscr();
 printf(“BEFORE SWAPPING : %d %d %d\n”,x,y,z);
 Swap(&x,&y,&z);
 printf(“AFTER SWAPPING : %d %d %d”,x,y,z);

 return 0;
} /* End of Main */

540 Programming in C

 2. Write a C program to multiply any two numbers without
using * (asterisk) and other arithmetic operators such as +,
–, /, and %.

 Solution
/* Multiplication of two numbers using*/
/* BITWISE OPERATORS ONLY */
#include <stdio.h>
int main()
{
 long int i,n,mul,mul2,count,temp,
 a,b,sum,carry,res,tot;
 clrscr();
 printf(“\nEnter any 2 numbers :”);
 scanf(“%ld %ld”,&mul,&n);
 mul2=temp=mul;
 for(i=2; i<=n; i++)
 {
 temp=mul;
 count=32;
 res=1;
 tot=sum=carry=0;
 while (count––)
 {
 a=temp & 0x1;
 b=mul2 & 0x1;
 if ((a^b==1) && (carry==1))
 {
 sum=(a^b)^carry;
 carry=(a^b)&carry;
 }
 else
 {
 sum=a^b|carry;
 carry=a&b;
 }
 temp=temp>>1;
 mul2=mul2>>1;
 tot+=res*sum;
 res=res*2;
 }
 mul2=tot;
 }
 printf(“\n%3ld * %3ld = %3ld”,mul, i-1,tot);
 getch();
 return 0;
}

 Fast multiplication It is well known that bit shifting enables
programmers to perform multiplication when dealing with
numbers such as 2, 4, 8, 16, 32, and 2n.

 For instance,

 a=a<<4; equals a*=16;

 But multiplying by 100 (and for many other numbers) is also
possible:

 a*=100; equals a = a*64 + a*32 + a*4; equals
a=(a<<6)+(a<<5)+(a<<2);

 Some compilers might optimize this by themselves. Finally, when
dealing with fl oats, we can also do fast multiplications by 2, 4, 5,
6 (or by 10, 100, 1000 depending on the internal representation
of the fl oats) simply by increasing/decreasing the exponent.

 3. Write a C program to perform four-letter word unscrambling,
i.e., list all possible combinations of four-letters in a word.
For example, the word ‘TEST’ can be unscrambled as TEST,
TETS, TSET, TSTE, TTSE, TTES, etc.

 Solution
/* four-letter word unscrambling */
#include <stdio.h>
#include <conio.h>
#include <string.h>
int main()
{
int i,j,k,l,sum=6;
char *str;
clrscr();
printf(“Enter a four-letter word or string :”);
scanf(“%s”,str);
if(strlen(str) == 4)
{
printf(“The possible combinations of the given
 four-letter word is….\n”);
for (i = 0; i < 4; i++)
 for (j = 0; j < 4; j++)
 if (i != j)
 {
 for (k = 0; k < 4; k++)
 if ((k != i) && (k != j))
 {
 l = sum - (i + j + k);
 printf(“\n%c%c%c%c”,str[i],str[j],str[k],str[l]);
 }
 }
 printf(“\nTotal combinations = %d”,4*3*2*1);
}
else
printf(“\n Length string must be four-letters
 only”);
getch();

return 0;
}

 4. Write a C program using a user-defi ned C function that takes
a variable argument list and computes the sum of values
specifi ed in the list.

 Solution
/* Compute the sum of values in the */
/* variable argument list */
#include <stdio.h>
#include <stdarg.h>
int Sum(int a,...)
{
 int total=a;
 va_list ap;

Appendices 541
 int arg;
 va_start(ap,a);
 while((arg = va_arg(ap,int)) != 0)
 {
 total+=arg;
 }
 va_end(ap);
 return total;
}
int main()
{
 clrscr();
 printf(“%d”,Sum(5,6,7,8,9,10));
 getch();

 return 0;
}

 5. Write a program in C to compute the sum of two values using
a function that takes two arguments (integers) and returns
the sum without using the return statement, i.e., return type
of the function is integer (int data type). Do not make use of
any global variables or pointers.

 Solution
/* Compute the sum of two values using*/
/* function and return the */
/* result without using RETURN */
/* statement */

#include <stdio.h>
#include <conio.h>
int Sum(int a,int b)
{
 _AX = a + b; /* equivalent to: return (a + b);*/
}
int main(void)
{
 clrscr();
 printf(“Result is = %d”,Sum(4,6));
 getch();
 return 0;
}

 6. Write a C program, which converts fi gures into words, e.g.,
123 should be printed as, ‘One Hundred Twenty Three’.

 Solution
#include <ctype.h>
#include <stdio.h>
#include <string.h>
char *ot[3][9] = {
 {“One”, “Two”, “Three”, “Four”, “Five”, “Six”,
 “Seven”, “Eight”, “Nine” },
 {“Ten”, “Twenty”, “Thirty”, “Forty”, “Fifty”,
 “Sxty”, “Seventy”, “Eighty”, “Ninety” },
 {“Eleven”, “Twelve”, “Thirteen”, “Fourteen”,
 “Fifteen”,” Sixteen”, “Seventeen”,
 “Eighteen”, “Nineteen”}
 };
char *a[5] = { “Hundred”, “Thousand”,
“Lakhs”, “Crore”, “Arab” };
char result[250] = “”;

char *t[50];
int main()
{
 int i, j, ind = 0, c, r, pr = -1, e = 0;
 unsigned long n;
 unsigned long q;
 clrscr();
 printf(“\nEnter a long unsigned number :”);
 scanf(“%ld”, &n);
 printf(“%ld\n”, n);
 q = n;
 if(n == 0)
 strcpy(result, “Zero”);
 else
 {
 for(i = 0; q > 0; i++)
 {
 if((i % 2) && i > 2)
 e++;
 r = q % 10;
 q /= 10;
 if(r != 0)
 {
 if(i == 0)
 t[++ind] = ot[i][r-1];
 else if (i == 1)
 {
 if(r == 1 && pr == 0)
 t[++ind] = ot[i][r-1];
 else if(r == 1 && pr > 0)
 t[––ind] = ot[2][r-1];
 else
 t[++ind] = ot[i][r-1];
 }
 else if(i >= 2)
 {
 if(i == 2)
 {
 t[++ind] = a[e];
 t[++ind] = ot[0][r-1];
 }
 else
 {
 if(i % 2)
 {
 t[++ind] = a[e];
 t[++ind] = ot[0][r-1];
 }
 else
 {
 if(pr == 0)
 {
 t[++ind] = a[e];
 t[++ind] = ot[1][r-1];
 }
 else if(r == 1)
 t[ind] = ot[2][pr-1];
 else
 t[++ind] = ot[1][r-1];
 }
 }

542 Programming in C

 }
 }
 pr = r;
 }
 }/* End for */
 for(i = ind; i >= 0; i— —)
 strcat(result, t[i]);
 printf(“\n%s”, result);
 return 0;
}

 7. The elements of Pascal’s triangle are Binomial coeffi cients
and can be calculated from the formula: n!/((n – r)! * r !).
Write a program to print the Pascal’s triangle without using
the formula or arrays.

 Solution
#include <stdio.h>
int main()
{
 int n, l, m = 1, f = 1, v, i, k, w, j;
 printf(“Enter the number of rows required for
 the Pascal’s triangle”);
 scanf(“%d”, &n);
 printf(“%d\n”, n);
 for(i = 1; i <= n; i++)
 {
 w = 5 + ((n-1) * 3) - ((i - 1) * 3),
 m = 1, f = 1;
 for(j = 1; j <= ((i / 2) + (i % 2)); j++)
 {
 if(i == 1)
 {
 printf(“%*d”, w, j);
 break;
 }
 else if(j == 1)
 printf(“%*d”, w, j), w = 6;
 else
 {
 m = 1, f = 1;
 for(k = 1; k <= j-1; k++)
 {
 m *= (i - k);
 f *= k;
 }
 printf(“%*d”, w, (m / f));
 }
 }
 for(j = i / 2; j >= 1; j— —)
 {
 if(i == 1)
 break;
 else if(j == 1)
 {
 printf(“%*d”, w, j);
 break;
 }
 else

 {
 m = 1, f = 1;
 for(k = j - 1; k >= 1; k— —)
 m *= (i - k), f *= k;
 printf(“%*d”, w, (m / f));
 }
 } /*End of for loop*/
 printf(“\n”);
 } /*End of for loop*/
 getch();
 return 0;
}

 8. Write a program in C to read a line of text and write it out
backwards using the recursive function.

 Solution
/* To reverse a given line of test */
/* using the recursive function */

#include <stdio.h>
void reverse(void)
{
 char c;
 if((c = getchar()) != ‘\n’)
 reverse();
 putchar(c);
 return;
}
int main()
{
 printf(“Please enter a line of text below\n”);
 reverse();
 return 0;
}

 9. Write a C program to convert a string into an integer without
using type casting or conversion function.

 Solution
#include <stdio.h>
int main()
{
 char *str=“12”;
 int i;
 sscanf(str, “%d”, &i);
 printf(“%d\n”, i);
 return 0;
}

 10. Why there is no logical XOR operator in C?

 Solution There are, at least, two reasons why C does not have
the logical XOR operator. They are as follows.

 An XOR logical operator cannot be short circuited unlike
the AND and OR operators. For example, in the Boolean
expression:

 a && b

Appendices 543

 If a is FALSE, then further computation of expressions are
not necessary. The value of the Boolean expression is
FALSE. Similarly, for the Boolean expression:

 a || b if a is TRUE, the value of the expression is TRUE.
This is called short circuiting of a Boolean expression,
which cannot be applied for the XOR operator.

 The logical XOR operation can be implemented using the
existing operators as:

 !(a) ^ !(b)

 11. What is the output of the following?
#include <stdio.h>
int main()
{
 char a[] = “abc”;
 char b[] = “xyz”;
 *a = *b++;
 puts(a);
 return 0;
}

 Solution The only operation that can be performed directly on
an array value is the application of the sizeof and address
(&) operators. For sizeof, the array must be bounded and the
result is the number of storage units occupied by the array. The
result of & is a pointer to (the fi rst element of) the array. And, in
the preceding program we are trying to increment array type, b,
which is not allowed. It is an error.

 12. Find the larger number among four numbers using macro.

 Solution
#include <stdio.h>
#defi ne max2(x, y) (x) > (y) ? (x) : (y)
#defi ne max4(a, b, c, d) max2 (max2 ((a), (b)),
 max2 ((c), (d)))
int main()
{
 printf(“Max: %d\n”, max4(10, 20, 30, 40));
 printf(“Max: %d\n”, max4(10, 0, 3, 4));
 return 0;
}

 13. Print numbers from 0 to 100 or 100 to 0 without using loops.

 Solution
#include <stdio.h>
void prin_down(int i, int min)
{
 if (i % 8 == 0)
 puts(“ ”);
 printf(“%-3d\t”, i);
 if(i > min)
 prin_down(—i, min);
 return;
}
void prin_up(int i, int max)
{
 if(i % 8 == 0)

 puts(“ ”);
 printf(“%-3d\t”, i);
 if(i < max)
 prin_up(++i, max);
 return;
}
int main()
{
 prin_up(1, 100);
 puts(“ ”);
 prin_down(100, 1);
 return 0;
}

 14. Write a program to compare two objects of a structure.

 Solution
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int
main(void)
{
 struct A {
 int _1; /* sizeof (int) == 4 */
 int _2;
 fl oat _3; /* sizeof (fl oat) == 4 */
 char _4; /* sizeof (char) is always == 1 */
 }a, b;
 /* initialize a and b */
 ...
 if(memcmp (&a, &b, sizeof a) == 0)
 printf(“The two structures are equal”);
 else
 printf(“The structures are unequal”);
 return EXIT_SUCCESS;
}

 This program is very general, and might invoke undefi ned
behavior. To make a structure object properly aligned, the compiler
inserts padding bytes whenever (or wherever) necessary. The
standard does not specify what value these padded bytes should
take. A more portable and dependable solution is to compare the
structure member-by-member, i.e.,

if(a._1 == b._1 &&
 a._2 == b._2 &&
 a._3 == b._3 &&
 a._4 == b._4)
 printf(“The two structures are equal”);
else
 printf(“The structures are unequal”);

 15. Display the name of the source program.

 Solution
int main(int argc, char *argv[])
{
 char *p=argv[0];
 printf(“Program name is %s\n”, p);
 return 0;
}

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

Activation record 240

address operator 271

algorithms 14

 flowchart 14

 pseudo-code 40

 step-form 14

ANSI C 220

application software 2

arguments 220

arithmetic operators 66

 binary operators 66

 unary operators 68

array 171 176 201

 accessing 173 201

 fibonacci series 170

 initializations 201

 internal representation 176

 memory allocation 176

 multidimensional 199

 of strings 206

 one-dimensional 171 171 177

 three-dimensional 199 202 307

 two-dimensional 199 309

B

Backslash codes 47

big-O notation 250

binary files 401

binary search 179 241 242 253

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

binary search tree 506 511 512

binary tree 507 508

 complete binary tree 508

 full binary tree 508

bitfields 374

bitwise operator 72 461

 AND 462

 exclusive OR 464

 NOT 464

 OR 463

 shift 465

bounded loop 124

break statements 156

bubble sort 178 254

buffer 389

buffer overflow 334

C

Call by address 279

call by reference 221

call by value 221

calloc() 321

casting 81

catalan recursion 509

circular linked list 424 426 440 442

 444 446

circular doubly linked list 424 450 451

command-line arguments 467

comma operator 73 125

compaction 452

compilation 42

compile errors 43

compiler 249

complexity analysis 249 269

 average-case complexity 249

 best-case complexity 255

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

complexity analysis (Cont.)

 worst-case complexity 249

complex number 86

computer memory 61

conditional operator 158

console 43

constant 61

constant pointers 155

counter 155

counting binary trees 509

D

Dangling else 162

dangling pointer 333

data segment 269

data structure 169 492

 non-primitive 492

 primitive 492

data types 50

debugger 43

decision constructs 15

 if..then 15

 if..then..else 15

declaration 56

degree 507

depth 507

deque 505

dereferencing 276

derived data type 169

descendants 507

designing algorithms 30

 investigation step 30

 stepwise refinement 31

 top-down development step 30

DevC++ 42

direct I/O 402

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

directives 470

doubly linked list 449 446

 deletion of a node 449

 insertion of a node 447

 sorting 450

do-while construct 151

dynamic memory allocation 320

E

Edge 506 507

end of file 394

enumeration 373

exit() 321

expression 65 77

expression tree 511

external node 507

F

Fibonacci series 177

files 390 413

file management functions 413

file modes 391

file pointer 390

files of records 403

flag characters 103

flowchart 28 124

flowchart symbols 26

for construct 143 144

fprintf() 403

fputs() function 394 398

fread() 406

free() 321

fscanf() 406

fseek() 410

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

G

Garbage collection 452

getc() 394

gets() 187

global variables 227

graph 506

H

Header files 47

heap 511

height 507

high-level languages 5

I

IDE 42

identifier 60

if construct 124

if-else statement 125

initialization 64

inline function 234

inorder traversal 510

input and output 100

 control string 100

 format string 100

 formatted 100

 getchar() 96

 gets() 96

 non-formatted 96

 printf() 94

 putchar() 96

 puts() 96

internal node 507

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

K

Keywords 61

L

Leaf 507

limits.h 54

linear loops 249

linear search 241 252

linkage 234

linkage editor 7

linked allocation 423

linked list 424 451 122

 applications of 451

 disadvantages of 454

linker 43

linking errors 8

linking loader 8

loader 7

local variables 227

logarithmic loops 249

logical operators 71

 bitwise AND 462

 bitwise exclusive-OR 464

 bitwise NOT 464

 bitwise OR 463

 bitwise shift operator 465

low-level I/O 414

low-level languages 3

M

Macro 470

macro processor 470

magnitude 57

main() 47

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

malloc() 321

memory addresses 269

memory allocation 372

memory corruption 333 334

memory fragmentation 370

memory layout 270

memory leak 333

message queue 506

modular programming 12

N

Near pointer 481

nested if 129

nested loop 159 162 250

node 506 507

non-procedural languages 11

 functional (applicative) languages 11

 logic-based programming language 11

O

One’s complement 58

one-way decisions 124

operators 65

 assignment 65

 arithmetical 65 66

 binary 66

 bitwise 65 72

 comma 73

 equality 65

 logical 65

 sizeof 74

 unary 68

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

P

Pointer arithmetic 272 289

 addition or subtraction 291

 assignment 290

pointers 274

 array of 302

 initializing 274

 pointers to 300

 to an array 306

 to functions 317

postorder traversal 510

post-test loop 137

preorder traversal 510

preprocessing 42

preprocessor directives 48 47

 #define 471

 #elif 471 473

 #else 471 472

 #endif 471

 #error 471 473

 #if 471 472

 #ifdef 471 473

 #ifndef 471 473

 #include 471 472

 #line 471 474

 #pragma 471 474

 #undef 471 472

pre-test loop 137

primary memory 269

prime read 154

printf() 105

print queue 505

priority queue 505

problem-oriented languages 11

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

procedural languages 10

 algorithmic languages 10

 object-oriented language 10

 scripting languages 11

Q

Quadratic loop 250

queue 499 502 505

 array implementation 499

 linked list implementation 502

quick sort 246

R

Ragged arrays 315

random file access 403

ready queue 505

realloc() 321

reallocating memory blocks 327

recursion 235 239

 linear recursion 236

 mutual recursion 236

 non-linear recursion 236

relational operators 71 119

relocation 7

remove() 413

rename() 413

repetition constructs 15

 repeat 15

 while 15

return statement 156 218

rewind() 412

root 507

rooted-tree 506

runtime errors 43

runtime stack 239

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

rvalue 77

S

Scalar variables 169

scaling 283

scanf () 95 106 187

scanset 185

scopes 229

 block scope 229

 file scope 230

 function prototype scope 230

 function scope 230

selection statements 124

sentinel 425

sequential allocation 423

sibling 507

signed integer 53

singly linked list 424 425 430

sizeof operator 74

size specifiers 51

 long 51

 short 51

 signed 51

 unsigned 51

slack bytes 359

software engineering 214

sorting algorithms 243

 insertion sort 244

 merge sort 246

 quick sort 246

 selection sort 243

space complexity 249

sscanf() 188

stack 498

 application of 498

 array implementation 493

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

stack (Cont.)

 linked list implementation 496

stack 493 496 498

statement block 117

step-form 18

storage class 231 232 234

 auto 231

 extern 232

 register 231

 static 232

stream I/O model 389

string 182 193

 declaration 56

 initialization 64

string arrays 206

stringizing operator 475

string manipulation 191

structure 354

structured programming 11 215

structures 351 362

 and functions 367

 and pointers 282

 arrays of 206 320

T

Test expression 119

text files 393

time complexity 248

token 60

 constant 60

 identifier 60

 keywords 60

 operators 60

 separators 60

token pasting operator 475

top-down analysis 237

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

towers of Hanoi 237

tree 506 507 518

two’s complement 125

two-way decisions 125

type conversion 78

typedef keyword 361

type qualifier 475

 const qualifier 334

 restrict 479

 restrict qualifier 479

 volatile 478

U

Unbounded loop 124 137

union 370–373

 declaring 272

 initializing 274

unsigned integer 57

V

Variables 49 16

variable length argument 480

variable-length array 177

W

while construct 138

	Front Matter
	Preface to the First Edition
	Prefaces
	Preface to the Second Edition

	Table of Contents
	1. Introduction to Programming, Algorithms and Flowcharts
	1.1 Programs and Programming
	1.1.1 System Software
	1.1.2 Application Software

	1.2 Programming Languages
	1.2.1 System Programming Languages
	1.2.2 Application Programming Languages
	1.2.3 Low-Level Languages
	1.2.3.1 Machine Language
	1.2.3.2 Disadvantages of Machine Language
	1.2.3.3 Assembly Language
	1.2.3.4 Disadvantages of Assembly Language

	1.2.4 High-Level Languages
	1.2.4.1 Advantages of High-Level Programming Languages

	1.3 Compiler, Interpreter, Loader, and Linker
	1.3.1 Compiling and Executing High-Level Language Programs
	1.3.2 Linker
	1.3.2.1 Relocation

	1.3.3 Loader
	1.3.4 Linking Loader and Linkage Editor

	1.4 Program Execution
	1.5 Fourth Generation Languages
	1.6 Fifth Generation Languages
	1.7 Classification of Programming Languages
	1.7.1 Procedural Languages
	1.7.2 Problem-Oriented Languages
	1.7.3 Non-Procedural Languages

	1.8 Structured Programming Concept
	1.8.1 Top-down Analysis
	1.8.2 Modular Programming
	1.8.3 Structured Code
	1.8.4 The Process of Programming

	1.9 Algorithms
	1.9.1 What is an Algorithm?
	1.9.2 Different Ways of Stating Algorithms
	1.9.3 Key Features of an Algorithm and the Step-Form
	1.9.3.1 Sequence
	1.9.3.2 The Decision Constructs - if ... then, if ... then ... else ...
	1.9.3.3 The Repetition Constructs - Repeat and while
	1.9.3.4 Termination
	1.9.3.5 Correctness

	1.9.4 What are Variables?
	1.9.4.1 Variables and Data Types
	1.9.4.2 Naming of Variables

	1.9.5 Subroutines
	1.9.5.1 Some Examples on Developing Algorithms Using Step-Form
	1.9.5.2 Pseudo-Code
	1.9.5.3 Flowcharts
	1.9.5.4 Advantages of Using Flowcharts
	1.9.5.5 Limitations of Using Flowcharts

	1.9.6 Strategy for Designing Algorithms
	1.9.6.1 Investigation Step
	1.9.6.2 Top-down Development Step
	1.9.6.3 Stepwise Refinement

	1.9.7 Tracing an Algorithm to Depict Logic
	1.9.8 Specification for Converting Algorithms into Programs

	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise
	Case Study

	2. Basics of C
	2.1 Introduction
	2.1.1 Why Learn C?
	2.1.2 The Future of C

	2.2 Standardizations of C Language
	2.3 Developing Programs in C
	2.4 A Simple C Program
	2.5 Parts of C Program Revisited
	2.6 Structure of a C Program
	2.7 Concept of a Variable
	2.8 Data Types in C
	2.9 Program Statement
	2.10 Declaration
	2.11 How Does the Computer Store Data in Memory?
	2.11.1 How Integers are Stored?
	2.11.1.1 Sign and Magnitude
	2.11.1.2 One's Complement
	2.11.1.3 Two's Complement Form

	2.11.2 How Floats and Doubles are Stored?

	2.12 Token
	2.12.1 Identifier
	2.12.2 Keywords
	2.12.3 Constant
	2.12.4 Assignment
	2.12.5 Initialization

	2.13 Operators and Expressions
	2.13.1 Arithmetic Operators in C
	2.13.1.1 Basic Rules for Using ++ and -- Operators

	2.13.2 Relational Operators in C
	2.13.3 Logical Operators in C
	2.13.4 Bitwise Operators in C
	2.13.5 Conditional Operator in C
	2.13.6 Comma Operator
	2.13.7 sizeof Operator
	2.13.8 Expression Evaluation - Precedence and Associativity

	2.14 Expressions Revisited
	2.15 lvalues and rvalues
	2.16 Type Conversion in C
	2.16.1 Type Conversion in Expressions
	2.16.2 Conversion by Assignment
	2.16.2.1 Conversions of Characters and Integers
	2.16.2.2 Conversions of Float and Double
	2.16.2.3 Conversion of Floating and Integral Types

	2.16.3 Casting Arithmetic Expressions
	2.16.3.1 Rounding a Floating Point Value to a Whole Number
	2.16.3.2 Rounding a Floating Point Value to a Specific Decimal Precision

	2.17 Working with Complex Numbers
	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise

	3. Input and Output
	3.1 Introduction
	3.2 Basic Screen and Keyboard I/O in C
	3.3 Non-Formatted Input and Output
	3.3.1 Single Character Input and Output
	3.3.2 Single Character Input
	3.3.3 Single Character Output
	3.3.4 Additional Single Character Input and Output Functions

	3.4 Formatted Input and Output Functions
	3.4.1 Output Function printf
	3.4.1.1 % Format Specifiers in printf
	3.4.1.2 Formatting the Output in printf
	3.4.1.3 Runtime Adjustment and Precision in printf

	3.4.2 Input Function scanf
	3.4.2.1 Format Specifiers in scanf
	3.4.2.2 Formatted Input in scanf

	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise
	Incremental Problem
	Case Study

	4. Control Statements
	4.1 Introduction
	4.2 Specifying Test Condition for Selection and Iteration
	4.3 Writing Test Expression
	4.3.1 Understanding How True and False is Represented in C
	4.3.1.1 Short-Circuiting Evaluation in C

	4.4 Conditional Execution and Selection
	4.4.1 Selection Statements
	4.4.1.1 One-Way Decisions Using if Statement
	4.4.1.2 if and the Comma Operator
	4.4.1.3 Two-Way Decisions Using if-else Statement
	4.4.1.4 Multi-Way Decisions
	4.4.1.5 Nested if
	4.4.1.6 Dangling else Problem

	4.4.2 The Conditional Operator
	4.4.3 The switch Statement
	4.4.3.1 switch vs. Nested if

	4.5 Iteration and Repetitive Execution
	4.5.1 while Construct
	4.5.1.1 Some Do's and Don'ts for Testing Floating Point 'Equality'

	4.5.2 for Construct
	4.5.2.1 The Equivalence of Bounded and Unbounded Loops
	4.5.2.2 Some Variations of for Loop

	4.5.3 do-while Construct
	4.5.3.1 while and do-while Loop

	4.6 Which Loop Should Be Used?
	4.6.1 Using Sentinel Values
	4.6.2 Using Prime Read
	4.6.3 Using Counter

	4.7 goto Statement
	4.8 Special Control Statements
	4.9 Nested Loops
	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise
	Project Questions
	Incremental Problem
	Case Study

	5. Arrays and Strings
	5.1 Introduction
	5.2 One-Dimensional Array
	5.2.1 Declaration of a One-Dimensional Array
	5.2.2 Initializing Integer Arrays
	5.2.3 Accessing Array Elements
	5.2.4 Other Allowed Operations
	5.2.5 Internal Representation of Arrays in C
	5.2.6 Variable Length Arrays and the C99 Changes
	5.2.7 Working with One-Dimensional Array
	5.2.7.1 Sorting an Array

	5.3 Strings: One-Dimensional Character Arrays
	5.3.1 Declaration of a String
	5.3.2 String Initialization
	5.3.3 Printing Strings
	5.3.4 String Input
	5.3.4.1 Using %s Control String with scanf
	5.3.4.2 Using Scanset
	5.3.4.3 Single-Line Input Using Scanset with ^
	5.3.4.4 Multiline Input Using Scanset
	5.3.4.5 String Input Using scanf with Conversion Specifier %c
	5.3.4.6 Using gets
	5.3.4.7 sscanf
	5.3.4.8 String Input and Output Using fscanf and fprintf

	5.3.5 Character Manipulation in the String
	5.3.6 String Manipulation
	5.3.6.1 Counting Number of Characters of a String
	5.3.6.2 Copying a String into Another
	5.3.6.3 Comparing Strings
	5.3.6.4 Putting Strings Together
	5.3.6.5 Some Sample Programs

	5.4 Multidimensional Arrays
	5.4.1 Declaration of a Two-Dimensional Array
	5.4.2 Declaration of a Three-Dimensional Array
	5.4.3 Initialization of a Multidimensional Array
	5.4.4 Unsized Array Initializations
	5.4.5 Accessing Multidimensional Arrays
	5.4.6 Working with Two-Dimensional Arrays
	5.4.6.1 Transpose of a Matrix
	5.4.6.2 Matrix Addition and Subtraction
	5.4.6.3 Matrix Multiplication
	5.4.6.4 Finding Norm of a Matrix

	5.5 Arrays of Strings: Two-Dimensional Character Array
	5.5.1 Initialization
	5.5.2 Manipulating String Arrays

	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise
	Project Questions
	Incremental Problem
	Case Study

	6. Functions
	6.1 Introduction
	6.2 Concept of Function
	6.2.1 Why are Functions Needed?

	6.3 Using Functions
	6.3.1 Function Prototype Declaration
	6.3.2 Function Definition
	6.3.2.1 return Statement

	6.3.3 Function Calling

	6.4 Call by Value Mechanism
	6.5 Working with Functions
	6.6 Passing Arrays to Functions
	6.7 Scope and Extent
	6.7.1 Concept of Global and Local Variables
	6.7.2 Scope Rules
	6.7.2.1 Block Scope
	6.7.2.2 Function Scope
	6.7.2.3 File Scope
	6.7.2.4 Function Prototype Scope

	6.8 Storage Classes
	6.8.1 Storage Class Specifiers for Variables
	6.8.1.1 The Storage Class - auto
	6.8.1.2 The Storage Class - register
	6.8.1.3 The Storage Class - static
	6.8.1.4 The Storage Class - extern

	6.8.2 Storage Class Specifiers for Functions
	6.8.3 Linkage

	6.9 The Inline Function
	6.10 Recursion
	6.10.1 What is Needed for Implementing Recursion?
	6.10.1.1 The Fibonacci Sequence
	6.10.1.2 Greatest Common Divisor
	6.10.1.3 The Towers of Hanoi
	6.10.1.4 Algorithm

	6.10.2 How is Recursion Implemented?
	6.10.3 Comparing Recursion and Iteration

	6.11 Searching and Sorting
	6.11.1 Searching Algorithms
	6.11.1.1 Sequential or Linear Search Algorithm
	6.11.1.2 Binary Search Algorithm
	6.11.1.3 Binary Search in a Recursive Way

	6.11.2 Sorting Algorithms
	6.11.2.1 Selection Sort
	6.11.2.2 Insertion Sort
	6.11.2.3 Merge Sort
	6.11.2.4 Quick Sort

	6.12 Analysis of Algorithms
	6.12.1 Asymptotic Notation
	6.12.1.1 Big-O Notation
	6.12.1.2 Constant O1
	6.12.1.3 Linear On
	6.12.1.4 Quadratic On^2
	6.12.1.5 Logarithm Olog n
	6.12.1.6 Linear Logarithmic Onlog n
	6.12.1.7 Exponential O2^n
	6.12.1.8 Lower Bounds and Tight Bounds

	6.12.2 Efficiency of Linear Search
	6.12.3 Binary Search Analysis
	6.12.4 Analysis of Bubble Sort
	6.12.5 Analysis of Quick Sort
	6.12.6 Disadvantages of Complexity Analysis

	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise
	Project Question
	Incremental Problem
	Case Study

	7. Pointers in C
	7.1 Introduction
	7.2 Understanding Memory Addresses
	7.3 Address Operator &
	7.4 Pointer
	7.4.1 Declaring a Pointer
	7.4.1.1 Why Should Pointers Have Data Types
	7.4.1.2 Where is a Pointer Stored?

	7.4.2 Initializing Pointers
	7.4.2.1 Printing Pointer Value
	7.4.2.2 Is it Possible to Assign a Constant to a Pointer Variable?

	7.4.3 Indirection Operator and Dereferencing

	7.5 void Pointer
	7.6 NULL Pointer
	7.7 Use of Pointers
	7.8 Arrays and Pointers
	7.8.1 One-Dimensional Arrays and Pointers
	7.8.2 Passing an Array to a Function
	7.8.3 Differences between Array Name and Pointer

	7.9 Pointers and Strings
	7.10 Pointer Arithmetic
	7.10.1 Assignment
	7.10.2 Addition or Subtraction with Integers
	7.10.3 Subtraction of Pointers
	7.10.4 Comparing Pointers

	7.11 Pointers to Pointers
	7.12 Array of Pointers
	7.13 Pointers to an Array
	7.14 Two-Dimensional Arrays and Pointers
	7.14.1 Passing Two-Dimensional Array to a Function

	7.15 Three-Dimensional Arrays
	7.16 Pointers to Functions
	7.16.1 Declaration of a Pointer to a Function
	7.16.2 Initialization of Function Pointers
	7.16.3 Calling a Function Using a Function Pointer
	7.16.4 Passing a Function to Another Function
	7.16.5 How to Return a Function Pointer
	7.16.6 Arrays of Function Pointers

	7.17 Dynamic Memory Allocation
	7.17.1 Dynamic Allocation of Arrays
	7.17.2 Freeing Memory
	7.17.3 Reallocating Memory Blocks
	7.17.4 Implementing Multidimensional Arrays Using Pointers

	7.18 Offsetting a Pointer
	7.19 Memory Leak and Memory Corruption
	7.20 Pointer and const Qualifier
	7.20.1 Pointer to Constant
	7.20.2 Constant Pointers
	7.20.3 Constant Parameters

	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise
	Project Questions
	Incremental Problem
	Case Study

	8. User-Defined Data Types and Variables
	8.1 Introduction
	8.2 Structures
	8.2.1 Declaring Structures and Structure Variables
	8.2.2 Accessing the Members of a Structure
	8.2.3 Initialization of Structures
	8.2.4 Copying and Comparing Structures
	8.2.5 typedef and its Use in Structure Declarations
	8.2.6 Nesting of Structures
	8.2.7 Arrays of Structures
	8.2.8 Initializing Arrays of Structures
	8.2.9 Arrays within the Structure
	8.2.10 Structures and Pointers
	8.2.11 Structures and Functions

	8.3 Union
	8.3.1 Declaring a Union and its Members
	8.3.2 Accessing and Initializing the Members of a Union
	8.3.3 Structure versus Union
	8.3.3.1 Do's and Don'ts for Unions

	8.4 Enumeration Types
	8.5 Bitfields
	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise
	Project Questions
	Incremental Problem
	Case Study

	9. Files in C
	9.1 Introduction
	9.2 Using Files in C
	9.2.1 Declaration of File Pointer
	9.2.2 Opening a File
	9.2.2.1 File Modes - What Sort of Open
	9.2.2.2 Checking the Result of fopen

	9.2.3 Closing and Flushing Files

	9.3 Working with Text Files
	9.3.1 Character Input and Output
	9.3.1.1 putc Function
	9.3.1.2 fputs Function

	9.3.2 End of File EOF
	9.3.2.1 Detecting the End of a File
	9.3.2.2 getc and fgetc Functions
	9.3.2.3 fgets Function

	9.3.3 Detecting the End of a File Using the feof Function

	9.4 Working with Binary Files
	9.5 Direct File Input and Output
	9.5.1 Sequential versus Random File Access

	9.6 Files of Records
	9.6.1 Working with Files of Records

	9.7 Random Access to Files of Records
	9.8 Other File Management Functions
	9.8.1 Deleting a File
	9.8.2 Renaming a File

	9.9 Low-Level I/O
	Summary
	Key-Terms
	Frequently Asked Questions
	Exercises
	Project Questions
	Incremental Problem
	Case Study

	10. Linked Lists
	10.1 Introduction
	10.2 Singly Linked List
	10.2.1 Insertion of a Node in a Singly Linked List
	10.2.1.1 Insertion of a Node after a Specified Node
	10.2.1.2 Insertion of a Node before a Specified Node

	10.2.2 Deletion of a Node from a Singly Linked List
	10.2.3 Sorting a Singly Linked List
	10.2.4 Destroying a Singly Linked List
	10.2.5 More Complex Operations on Singly Linked Lists
	10.2.5.1 Printing a Singly Linked List in Reverse Order
	10.2.5.2 Reverse a Singly Linked List
	10.2.5.3 Copy a Singly Linked List
	10.2.5.4 Maintaining a Linked List in Ascending Order

	10.3 Circular Linked Lists
	10.3.1 Appending a Node
	10.3.2 Displaying a Circular Linked List
	10.3.3 Inserting a Node after a Specified Node
	10.3.4 Inserting a Node before a Particular Node
	10.3.5 Deleting a Node
	10.3.6 Sorting a Circular Linked List

	10.4 Doubly Linked List
	10.4.1 Operations on Doubly Linked List
	10.4.1.1 Insertion of a Node in a Doubly Linked List
	10.4.1.2 Append a Node in a Doubly Linked List
	10.4.1.3 Insertion of a Node after a Specified Node
	10.4.1.4 Insertion of a Node before a Specified Node
	10.4.1.5 Deletion of a Node from Doubly Linked List
	10.4.1.6 Sorting a Doubly Linked List
	10.4.1.7 Deleting All Nodes

	10.4.2 Advantages/Disadvantages of Doubly Linked Lists

	10.5 Introduction to Circular Doubly Linked List
	10.6 Applications of Linked Lists
	10.6.1 Dynamic Storage Management
	10.6.2 Garbage Collection and Compaction

	10.7 Disadvantages of Linked Lists
	10.8 Array versus Linked List Revisited
	Summary
	Key-Terms
	Frequently Asked Questions
	Exercise
	Project Question
	Case Study

	11. Advanced C
	11.1 Introduction
	11.2 Bitwise Operator
	11.2.1 Bitwise AND
	11.2.2 Bitwise OR
	11.2.3 Bitwise Exclusive-OR
	11.2.4 Bitwise NOT
	11.2.5 Bitwise Shift Operator
	11.2.5.1 Bitwise Shift Left
	11.2.5.2 Bitwise Shift Right

	11.3 Command-Line Arguments
	11.4 The C Preprocessor
	11.4.1 The C Preprocessor Directives
	11.4.1.1 #define
	11.4.1.2 #undef
	11.4.1.3 #include
	11.4.1.4 #if, #else, #elif, and #endif
	11.4.1.5 #error
	11.4.1.6 #line
	11.4.1.7 #pragma

	11.4.2 Predefined Identifiers
	11.4.2.1 Stringizing Operator
	11.4.2.2 Token Pasting Operator

	11.5 Type Qualifier
	11.5.1 const Qualifier
	11.5.2 volatile Qualifier
	11.5.3 restrict Qualifier
	11.5.3.1 Some Typical Uses of the restrict Qualifier
	11.5.3.2 Members of Structures

	11.6 Variable Length Argument List
	11.7 Memory Models and Pointers
	Summary
	Key-Terms
	Frequently Asked Questions
	Exercises
	Project Questions
	Case Study

	12. Stacks, Queues, and Trees
	12.1 Introduction
	12.2 Stack
	12.2.1 Implementation of Stack
	12.2.1.1 Array Implementation of Stack
	12.2.1.2 Linked List Implementation of Stack

	12.2.2 Application of Stack
	12.2.2.1 Direct Applications
	12.2.2.2 Indirect Applications

	12.3 Queue
	12.3.1 Implementation of Queue
	12.3.1.1 Array Implementation of Queue
	12.3.1.2 Linked List Implementation of Queue

	12.3.2 Other Variations of Queue
	12.3.2.1 Priority Queue
	12.3.2.2 Double Ended Queue or Deque

	12.3.3 Applications of Queue
	12.3.3.1 Direct Application

	12.4 Tree
	12.4.1 Some Basic Tree Terminology
	12.4.2 Binary Tree
	12.4.2.1 Counting Binary Trees

	12.4.3 Traversals of a Binary Tree
	12.4.4 Kinds of Binary Trees
	12.4.5 Binary Search Tree
	12.4.5.1 Constructing a Binary Search Tree
	12.4.5.2 Implementation of a Binary Search Tree

	12.4.6 Application of Tree

	Summary
	Key-Terms
	Frequently Asked Questions
	Exercises
	Project Questions
	Case Study

	Bibliography and References
	Appendices
	Appendix A: ASCII Chart

	Appendix B: Four Most Frequently Used Number Systems
	Appendix C: Escape Sequence
	Appendix D: Operator Summary
	Appendix E: Data Types and Data Conversion Rules
	Appendix F: Commonly Used scanf and printf Conversion Characters
	Appendix G: Library Functions
	G.1 Illustrations of Library Functions
	G.1.1 Functions from ctype.h
	G.1.2 Functions from stdio.h
	G.1.3 Functions from math.h Standard C Library for Mathematic Operations
	G.1.4 Functions from string.h Standard C Library to Manipulate C Strings
	G.1.5 Functions from stdlib.h General Purpose Standard C Library Functions, Including Memory Allocation, Process Control, Conversions, and Others

	Appendix I: Evaluation Order
	I.1 Undefined Behavior

	I.1 Undefined Behavior
	Appendix J: Common Problems Encountered in C
	Appendix K: Selected Problems and Solutions
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

