
[1]

www.allitebooks.com

http://www.allitebooks.org

Protocol-Oriented Programming
with Swift

Build fast and powerful applications by exploiting the
power of protocol-oriented programming in Swift

Jon Hoffman

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Protocol-Oriented Programming with Swift

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Production reference: 1190216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-294-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Jon Hoffman

Reviewer
Chuck Gaffney

Commissioning Editor
Wilson D'souza

Acquisition Editor
Tushar Gupta

Content Development Editor
Sumeet Sawant

Technical Editor
Jayesh Sonawane

Copy Editors
Stephen Copestake

Akshata Lobo

Project Coordinator
Dinesh Rathe

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Jon Hoffman has over 20 years of experience in the field of information technology.
Over these 20 years, Jon has worked in the areas of system administration, network
administration, network security, application development, and architecture.
Currently, Jon works as a senior software engineer for Syn-Tech Systems.

Jon has been developing extensively for the iOS platform since 2008. This includes
several apps that he has published in the app store—apps that he wrote for third
parties and numerous enterprise applications.

Packt Publishing published Jon's first book, iOS and OS X Network Programming, in
January 2014.

What really drives Jon is the challenges in the Information Technology field and
there is nothing more exhilarating to him than overcoming a challenge. Some of Jon's
other interests are watching baseball (go Sox) and basketball (go Celtics). Jon also
really enjoys tae kwon do where he and his oldest daughter Kailey earned their black
belts together early in 2014. Kim (his wife) earned her black belt in December 2014
and his youngest daughter is currently working towards her black belt.

I would like to thank my wonderful wife Kim, without whose
support, encouragement, patience, and understanding, this book
would never have been written. I would also like to thank my two
wonderful daughters Kailey and Kara who have both been my
inspiration and driving force since the days they were born.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Chuck Gaffney is the owner of the website/store and indie studio Chuck's Anime
Shrine as well as Anime.FM. He is a programmer by trade, ranging from games,
non-games, VR, AR, and mobile applications. He has worked with iOS native
(Swift/Objective-C/XCode) code, Flash animation, and game development as well
as web design. Recently, he has been working almost exclusively in Unity/C#,
making mobile applications that work with games, non-games, AR, VR, and third-
party API integrations.

Interestingly, he is also a professional voice actor with work in games, museum
experiences, movie dubs, and more. He is the owner of the long running fan site, store,
and indie game studio Chuck's Anime Shrine. He recently worked with two major
NYC studios and with clients that include some financial giants and the Late Show
with Steven Colbert. He is currently developing an app for a major beer company.

I would like to thank my fiancée Danielle for putting up with the
late nights and all nighters that come with the territory of being a
programmer, voice actor, and business owner.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Object-Oriented and Protocol-Oriented Programming 1

Swift as an object-oriented programming language 2
Swift as a protocol-oriented programming language 13
Summarizing protocol-oriented programming and object-oriented
programming 18
Object-oriented programming versus protocol-oriented programming 19

Protocol and protocol extensions versus superclasses 19
Implementing drink types 22
Value types vs reference types 24

The winner is... 25
Summary 26

Chapter 2: Our Type Choices 27
The class 28
The structure 30
The enumerations 31
The tuple 36
Protocols 37
Value versus class types 38
Recursive data types (reference types only) 44
Inheritance (reference types only) 46
Swift built-in data types and data structures 49
Summary 50

Chapter 3: Catching Our Errors 51
Using the guard statement 52
Error handling 55
Error handling with return values 56

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Error handling with NSError 58
Error handling with Swift 2 61

Representing errors 62
Throwing errors 63
Catching errors 67

When to use error handling 70
Summary 72

Chapter 4: All about the Protocol 73
Protocol syntax 75

Defining a protocol 75
Property requirements 76
Method requirements 76
Optional requirements 77
Protocol inheritance 78

Protocol composition 79
Using protocols as a type 81
Polymorphism with protocols 83
Type casting with protocols 84
Associated types with protocols 85
Delegation 87
Designing and developing with protocols 90
Summary 95

Chapter 5: Let's Extend Some Types 97
Defining an extension 99
Protocol extensions 101
Text validation 106
Summary 114

Chapter 6: Adopting Design Patterns in Swift 115
What are design patterns? 116
Creational patterns 117

The singleton design pattern 118
Understanding the problem 118
Understanding the solution 119
Implementing the singleton pattern 119

The builder design pattern 121
Understanding the problem 121
Understanding the solution 121
Implementing the builder pattern 122

The factory method pattern 127
Understanding the problem 127

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Understanding the solution 127
Implementing the factory method pattern 128

Structural design patterns 131
The bridge pattern 131

Understanding the problem 131
Understanding the solution 132
Implementing the bridge pattern 132

The façade pattern 136
Understanding the problem 136
Understanding the solution 136
Implementing the façade pattern 137

The proxy design pattern 139
Understanding the problem 139
Understanding the solution 140
Implementing the proxy pattern 140

Behavioral design patterns 142
The command design pattern 143

Understanding the problem 143
Understanding the solution 143
Implementing the command pattern 143

The strategy pattern 146
Understanding the problem 146
Understanding the solution 146
Implementing the strategy pattern 146

The observer pattern 148
Understanding the problem 148
Understanding the solution 148
Implementing the observer pattern 149

Summary 154
Chapter 7: Case Studies 155

Logging service 156
Requirements 157
The design 157
Conclusion 166

Data access layer with SQLite.swift 166
Requirements 167
The design 168
Connection layer 169
Data model layer 171
Data helper layer 172
Conclusion 181

Calculator application 181
Requirements 182

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

The design 183
Conclusion 187

Summary 187
Index 189

[v]

Preface
This book is about protocol-oriented programming. When Apple announced Swift 2
at the World Wide Developers Conference (WWDC) in 2015, they also declared that
Swift was the world's first protocol-oriented programming language. By its name, we
may assume that protocol-oriented programming is all about the protocol; however,
that would be wrong assumption. Protocol-oriented programming is about so much
more than just the protocol; it is actually a new way of not only writing applications,
but thinking about programming as well.

One of the biggest misconceptions about protocol-oriented programming is that
it is just another name for object-oriented programming. Chapter 1, Object-Oriented
and Protocol-Oriented Programming, immediately takes on this myth by comparing
protocol-oriented programming to object-oriented programming to see what is
similar and what the differences are. We will also discuss the advantages and
disadvantages of both programming paradigms.

From Chapter 2, Our Type Choices, to Chapter 5, Let's Extend Some Types, we will take
an in-depth look at each of the components of the protocol-oriented programming
paradigm. These chapters are designed to give the reader a solid understanding
of the different components of protocol-oriented programming, so users will
understand how they can use these components in their applications.

The last two chapters are written to help the reader understand how they can design
their application in a protocol-oriented programming way. Chapter 6, Adopting
Design Patterns in Swift, looks at how we would implement several design patterns
in a protocol-oriented way and Chapter 7, Case Studies, looks at three real-world case
studies to reinforce everything previously discussed in the book.

Preface

[vi]

What this book covers
Chapter 1, Object-Oriented and Protocol-Oriented Programming, will show the
differences between object-oriented programming and protocol-oriented
programming, giving the reader a good understanding of the different paradigms.
By the end of the chapter, the reader should have a basic understanding of
protocol-oriented programming and what it offers.

Chapter 2, Our Type Choices, will look at the different types that Swift offers
(structs, classes, enums, and tuples). We will show several examples of when
to use the various types and when not to.

Chapter 3, Catching Our Errors, will look at the various ways we can catch and report
errors. This chapter will not only cover the new Swift 2 do-try-catch blocks, but also
the older error handling patterns.

Chapter 4, All about the Protocol, will be all about the protocol. We will show
the advantages of using protocols and why, in our design, we should start
with the protocol.

Chapter 5, Let's Extend Some Types, will cover extensions in great detail. We will
look at how to extend standard Swift types, such as structures and classes. We will
also look at protocol extensions and discuss why they are so important in protocol-
oriented programming.

Chapter 6, Adopting Design Patterns in Swift, will be implementing several design
patterns using protocol-oriented programming. For each of the design patterns,
we will look at the problem they are designed to solve and how to implement the
pattern.

Chapter 7, Case Studies, will explore three case studies. This chapter is designed to
pull everything from the first six chapters together to show the reader how to use
protocol-oriented programming with design patterns in real-world situations.

What you need for this book
To follow along with the examples in this book, the reader will need to have an
Apple computer with OS X 10.10 or higher installed. They will also need to install
Xcode version 7.0 or higher with Swift version 2 or higher and have at least basic
knowledge of the Swift programming language.

The examples, as they are shown in this book, should work with the Linux port of
the Swift language however the downloadable code for this book requires Xcode
which is only available on the Apple platform.

Preface

[vii]

Who this book is for
This book is for Swift developers who have at least an introductory knowledge
of the Swift programming language, who want to learn and implement
protocol-oriented programming in their real-world applications. It is also for
developers who not only want to understand protocol-oriented programming,
but also want to fully understand the different components of the programming
paradigm. This book is written for developers who learn best by looking at and
working with code, because every concept covered in the book is backed by example
code written to give the reader a solid understanding of the current topic and to
demonstrate how to properly implement it.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

class Jolt {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var canSize: Double
 var description: String

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
answer to this question is polymorphism.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[ix]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

[1]

Object-Oriented and
Protocol-Oriented

Programming
This book is about protocol-oriented programming. When Apple announced Swift 2
at the World Wide Developers Conference (WWDC) in 2015, they also declared that
Swift was the world's first protocol-oriented programming language. By its name, we
may assume that protocol-oriented programming is all about the protocol; however,
this would be a wrong assumption. Protocol-oriented programming is about so
much more than just the protocol; it is actually a new way of not only writing
applications, but also how we think about programming.

In this chapter, you will learn:

• How Swift can be used as an object-oriented programming language
• How Swift can be used as a protocol-oriented programming language
• The differences between object-oriented programming and protocol-oriented

programming
• The advantages that protocol-oriented programming offers as compared to

object-oriented programming

While this book is about protocol-oriented programming, we are going to start off
by discussing how Swift can be used as an object-oriented programming language.
Having a good understanding of object-oriented programming will help us
understand protocol-oriented programming and also give us some insight into the
issues protocol-oriented programming is designed to solve.

Object-Oriented and Protocol-Oriented Programming

[2]

Swift as an object-oriented programming
language
Object-oriented programming is a design philosophy. Writing applications with
an object-oriented programming language is fundamentally different than writing
applications with older procedural languages, such as C and Pascal. Procedural
languages use a list of instructions to tell the computer what to do step by step by
relying on procedures (or routines). Object-oriented programming, however, is all
about the object. This may seem like a pretty obvious statement given the name. But
essentially, when we think about object-oriented programming, we need to think
about the object.

The object is a data structure that contains information about the attributes of the object
in the form of properties and the actions performed by or to the object in the form of
methods. Objects can be considered a thing, and in the English language, they would
normally be considered nouns. These objects can be real-world or virtual objects. If you
take a look around, you will see many real-world objects and, virtually, all of them can
be modeled in an object-oriented way with attributes and actions.

As I am writing this chapter, I look outside and see a lake, numerous trees, grass, my
dog, and the fence in our backyard. All of these items can be modeled as objects with
both properties and actions.

While I am writing this chapter, I am also thinking about one of my all-time favorite
energy drink. That energy drink is called Jolt. Not sure how many people remember
Jolt soda or Jolt energy drink, but I would not have made it through college without
them. A can of Jolt can be modeled as an object with attributes (volume, caffeine
amount, temperature, and size) and actions (drinking and temperature change).

We could keep the cans of Jolt in a cooler to keep them cold. This cooler could also
be modeled as an object because it has attributes (temperature, cans of Jolt, and
maximum number of cans) and actions (adding and removing cans).

The object is what makes object-oriented programming so powerful. With an
object, we can model real-world objects, such as a can of Jolt, or virtual objects like
characters in a video game. These objects can then interact within our application to
model real-world behavior or the behavior we want in our virtual world.

Within a computer application, we cannot create an object without a blueprint that
tells the application what properties and actions to expect from the object. In most
object-oriented languages, this blueprint comes in the form of a class. A class is a
construct that allows us to encapsulate the properties and actions of an object into a
single type that models the object we are trying to represent in our code.

Chapter 1

[3]

We use initializers within our classes to create instances of the class. We usually use
these initializers to set the initial values of the properties for the object or perform
any other initialization that our class needs. Once we create the instance of a class,
we can then use it within our code.

All of this explanation about object-oriented programming is fine, but nothing
demonstrates the concepts better than the actual code. Let's see how we would use
classes in Swift to model cans of Jolt and a cooler to keep our Jolt cold. We will begin
by modeling the cans of Jolt as follows:

class Jolt {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var canSize: Double
 var description: String

 init(volume: Double, caffeine: Double,
 temperature: Double) {
 self.volume = volume
 self.caffeine = caffeine
 self.temperature = temperature
 self.description = "Jolt energy drink"
 self.canSize = 24
 }

 func drinking(amount: Double) {
 volume -= amount
 }
 func temperatureChange(change: Double) {
 temperature += change
 }
}

In this Jolt class, we defined five properties. These properties are volume
(the amount of Jolt in the can), caffeine (how much caffeine comes in a can),
temperature (the present temperature of the can), description (the description of
the product), and cansize (the size of the can itself). We then define one initializer
that will be used to initiate the properties of the object when we create an instance
of the class. This initializer will ensure that all of the properties are properly
initialized when the instance is created. Finally, we defined two actions for the can.
These two actions are drinking (called when someone drinks from the can) and
temperatureChange (called when the temperature of the can changes).

Object-Oriented and Protocol-Oriented Programming

[4]

Now, let's see how we would model a cooler that we can use to keep our cans of Jolt
cold because no one likes warm cans of Jolt:

class Cooler {
 var temperature: Double
 var cansOfJolt = [Jolt]()
 var maxCans: Int

 init(temperature: Double, maxCans: Int) {
 self.temperature = temperature
 self.maxCans = maxCans
 }

 func addJolt(jolt: Jolt) -> Bool {
 if cansOfJolt.count < maxCans {
 cansOfJolt.append(jolt)
 return true
 } else {
 return false
 }
 }

 func removeJolt() -> Jolt? {
 if cansOfJolt.count > 0 {
 return cansOfJolt.removeFirst()
 } else {
 return nil
 }
 }
}

We modeled the cooler in a similar fashion to how we modeled the cans of Jolt.
We began by defining the three properties of the cooler. The three properties are
temperature (the present temperature in the cooler), cansOfJolt (the cans of Jolt
in the cooler), and maxCans (the maximum number of cans the cooler can hold). We
then used an initializer to initiate the properties when we create the instances of the
Cooler class. Finally, we defined the two actions for the cooler. They are addJolt
(used to add a can of Jolt to the cooler) or removeJolt (used to remove a can of Jolt
from the cooler). Now that we have our Jolt and Cooler classes, let's see how we
would use these two classes together:

var cooler = Cooler(temperature: 38.0, maxCans: 12)

for _ in 0...5 {
 let can = Jolt(volume: 23.5, caffeine: 280,

Chapter 1

[5]

 temperature: 45)
 let _ = cooler.addJolt(can)
}

let jolt = cooler.removeJolt()
jolt?.drinking(5)
print("Jolt Left in can: \(jolt?.volume)")

In this example, we created an instance of the Cooler class using the initializer to
set the default properties. We then created six instances of the Jolt class and added
them to the cooler using a for-in loop. Finally, we took a can of Jolt from the cooler
and drank some of it. A refreshing drink of Jolt and the jolt of caffeine. What could
be better?

This design seems to work well for our simplistic example; however, it really is
not that flexible. While I really like caffeine, my wife doesn't; she prefers Caffeine
Free Diet Coke. With our present cooler design, when she goes to add some of her
Caffeine Free Diet Coke to the cooler, we would have to tell her that it is not possible
because our cooler only accepts instances of Jolt. This would not be good, because
this is not the way coolers work in the real world and also because I would not want
to tell my wife that she can't have her Diet Coke (trust me no one wants to tell her
she can't have her Diet Coke). So, how could we make this design more flexible?

The answer to this question is polymorphism. Polymorphism comes from the
Greek words Poly (for many) and Morph (forms). In computer science, we use
polymorphism when we want to use a single interface to represent multiple types
within our code. Polymorphism gives us the ability to interact with multiple types
in a uniform manner. When we interact with multiple objects through a uniform
interface, we are able to add additional object types that conform to that interface at
any time. We can then use these additional types in our code with little to no changes.

With object-oriented programming languages, we can achieve polymorphism
and code reuse with subclassing. Subclassing is when one class is derived from
another superclass. For example, if we had a Person class that modeled a typical
person, we could then subclass the Person class to create a Student class. The
Student class would then inherit all of the properties and methods of the Person
class. The Student class could override any of the properties and methods that it
inherited and/or add its own additional properties and methods. We could then add
additional classes that are also derived from the Person superclass, and we could
interact with all of these subclasses using the interface presented by the Person class.

Object-Oriented and Protocol-Oriented Programming

[6]

When one class is derived from another class, the original class, the one we are
deriving the new class from, is known as the super or the parent class and the new
class is known as the child or subclass. In our person-student example, the Person
was the super or parent class and the Student was the sub or child class. In this
book, we will be using the terms superclass and subclass.

Polymorphism is achieved with subclassing because we can interact with the
instances of all the child classes though the interface that is presented by the
superclass. As an example, if we had three child classes (Student, Programmer, and
Fireman) that were all subclasses of the Person class, then we could interact with
all three of the subclasses though the interface that is presented by the Person class.
If the Person class had a method named running(), then we can be assured that
all the subclasses of the Person class has a method named running() (either the
method from the Person class or one from the subclass that overrides the method
from the Person class). Therefore, we can interact with all the subclasses using the
running() method.

Let's see how polymorphism can help us add drinks other than Jolt to our cooler.
In our original example, we were able to hard code the can size in our Jolt class
because Jolt energy drinks were only sold in 24 oz cans (the sodas had different sizes,
but the energy drink was only sold in 24 oz cans). The following enumeration defines
the can sizes that our cooler will accept:

enum DrinkSize {
 case Can12
 case Can16
 case Can24
 case Can32
}

This DrinkSize enumeration lets us use 12, 16, 24, and 32 oz drink sizes in
our cooler.

Now, let's look at our base or superclass that all of our drink types will derive from.
We will name this superclass Drink:

class Drink {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 init(volume: Double, caffeine: Double,
 temperature: Double, drinkSize: DrinkSize) {

Chapter 1

[7]

 self.volume = volume
 self.caffeine = caffeine
 self.temperature = temperature
 self.description = "Drink base class"
 self.drinkSize = drinkSize
 }

 func drinking(amount: Double) {
 volume -= amount
 }
 func temperatureChange(change: Double) {
 self.temperature += change
 }
}

This Drink class is very similar to our original Jolt class. We defined the same
five properties that we had in our original Jolt class; however, drinkSize is
now defined to be of the DrinkSize type rather than Double. We defined a single
initializer for our Drink class that initializes all the five properties of the class.
Finally, we have the same two methods that were in the original Jolt class, which
are drinking() and temperatureChange(). One thing to take note of is, in the
Drink class, our description is set to Drink base class.

Now, let's create the Jolt class that will be a subclass of the Drink class. This class
will inherit all the property and methods from the Drink class:

class Jolt: Drink {
 init(temperature: Double) {

 super.init(volume: 23.5, caffeine: 280,
 temperature: temperature, drinkSize: DrinkSize.Can24)
 self.description = "Jolt energy drink"
 }
}

As we can see in the Jolt class, we do not need to redefine the properties and the
methods from the Drink superclass. We will add an initializer for our Jolt class.
This initializer only requires that the temperature of the can of Jolt be provided. All
the other values are set to their default values for a can of Jolt.

Now, let's see how we would create the Cooler class that will accept other drink
types besides Jolt:

class Cooler {
 var temperature: Double
 var cansOfDrinks = [Drink]()

Object-Oriented and Protocol-Oriented Programming

[8]

 var maxCans: Int

 init(temperature: Double, maxCans: Int) {
 self.temperature = temperature
 self.maxCans = maxCans
 }

 func addDrink(drink: Drink) -> Bool {
 if cansOfDrinks.count < maxCans {
 cansOfDrinks.append(drink)
 return true
 } else {
 return false
 }
 }

 func removeDrink() -> Drink? {
 if cansOfDrinks.count > 0 {
 return cansOfDrinks.removeFirst()
 } else {
 return nil
 }
 }
}

This new Cooler class is exactly like the original Cooler class, except that we replace
all the references to the Jolt class with the references to the Drink class. Since the
Jolt class is a subclass of the Drink class, we can use it any place where an instance
of the Drink class is required. Let's see how this would work. The following code
will create an instance of the Cooler class. Add six cans of Jolt to the cooler, remove
one of the cans from the cooler, and then take a drink of Jolt:

var cooler = Cooler(temperature: 38.0, maxCans: 24)

for _ in 0...5 {
 let can = Jolt(temperature: 45.1)
 let _ = cooler.addDrink(can)
}

let jolt = cooler.removeDrink()
cooler.cansOfDrinks.count
jolt?.drinking(5)
print("Jolt Left in can: \(jolt?.volume)")

Chapter 1

[9]

Notice that in this example, we used instances of the Jolt class where instances of
the Drink class are required. This is polymorphism in action. Now that we have a
cooler with our Jolt in it, we are ready to go on a trip. My wife of course wants to
bring her Caffeine Free Diet Coke so she asks if she can put some in the cooler to
keep it cold. Knowing that we do not want to deprive her of Diet Coke, we quickly
create a CaffeineFreeDietCoke class that we can use with the cooler. The code for
this class is:

class CaffeineFreeDietCoke: Drink {

 init(volume: Double, temperature: Double, drinkSize:
DrinkSize) {

 super.init(volume: volume, caffeine: 0,
 temperature: temperature, drinkSize: drinkSize)
 self.description = "Caffiene Free Diet Coke"
 }
}

The CaffeineFreeDietCoke class is very similar to the Jolt class. They both are
subclasses of the Drink class, and they each define an initializer that initializes the
class. The key is that they both are subclasses of the Drink class, which means we can
use instances of both classes in our cooler. Therefore, when my wife brings her six
Caffeine Free Diet Cokes, we can put them in the cooler just like the cans of Jolt. The
following code demonstrates this:

var cooler = Cooler(temperature: 38.0, maxCans: 24)
for _ in 0...5 {
 let can = Jolt(temperature: 45.1)
 let _ = cooler.addDrink(can)
}
for _ in 0...5 {
 let can = CaffeineFreeDietCoke(volume: 15.5, temperature: 45,
 drinkSize: DrinkSize.Can16)
 let _ = cooler.addDrink(can)
}

In this example, we created an instance of the cooler; we added six cans of Jolt and
six cans of Caffeine Free Diet Coke to it. Using polymorphism, as shown here, allows
us to create as many subclasses of the Drink class as we need, and all of them can
be used with the Cooler class without changing the code of the Cooler class. This
allows our code to be extremely flexible.

Object-Oriented and Protocol-Oriented Programming

[10]

So, what happens when we grab a can from the cooler? Obviously, if my wife grabs
a can of Jolt, she will want to put it back and get a different can. But how will she
know which can she grabbed?

To check whether an instance is of a particular type, we use the type check operator
(is). The type check operator will return true if the instance is of the type or false if
it isn't. In the following code, we use the type check operator to continuously remove
cans from the cooler until we find a can of Caffeine Free Diet Coke:

var foundCan = false
var wifeDrink: Drink?

while !foundCan {
 if let can = cooler.removeDrink() {
 if can is CaffeineFreeDietCoke {
 foundCan = true
 wifeDrink = can
 } else {
 cooler.addDrink(can)
 }
 }
}

if let drink = wifeDrink {
 print("Got: " + drink.description)
}

In this code, we have a while loop that continuously loops until the foundCan
Boolean is set to true. Within the while loop, we remove a drink from the cooler
and then use the type check operator (is) to see whether the can that we removed
is an instance of the CaffeineFreeDietCoke class. If it is an instance of the
CaffeineFreeDietCoke class, then we will set the foundCan Boolean to true and set
the wifeDrink variable to the instance of the drink we just removed from the cooler.
If the drink is not an instance of the CaffeineFreeDietCoke class, then we will put
the can back in the cooler and loop back to grab another drink.

In the previous example, we showed how Swift can be used as an object-oriented
programming language. We also used polymorphism to make our code very flexible
and easy to expand; however, there are several drawbacks to this design. Before
we move on to protocol-oriented programming, let's take a look at two of these
drawbacks. Then, we will see how protocol-oriented programming can be used to
make this design better.

Chapter 1

[11]

The first drawback of our design is the initializers of the drink (Jolt,
CaffeineFreeDietCoke, and DietCoke) classes. When we initialize a subclass, we
need to call the initializer of the superclass. This is a double-edged sword. While
calling the initializer of our superclass gives us consistent initialization, it can also
give us improper initialization if we are not careful. For example, let's say that we
created another Drink class named DietCoke with the following code:

class DietCoke: Drink {
 init(volume: Double, temperature: Double, drinkSize: DrinkSize) {
 super.init(volume: volume, caffeine: 45,
 temperature: temperature, drinkSize: drinkSize)
 }
}

If we look carefully, we will see that in the initializer of the DietCoke class, we never
set the description property. Therefore, the description of this class will end up
being Drink base class, which is not what we want.

We need to be careful when we create subclasses like this to ensure that all of
the properties are properly set and we don't just assume that the initializer of the
superclass will properly set all of the properties for us.

The second drawback to our design is we are using reference types. While those who
are familiar with object-oriented programming may not see this as a drawback and
reference types are preferred in a lot of cases, in our design, it makes more sense to
define the drink types as value types. If you are not familiar with how reference and
value types work, we will be looking at them in depth in Chapter 2, Our Type Choices.

When we pass an instance of a reference type (that is, we pass to a function or a
set in a collection like an array), we are passing a reference to the original instance.
When we pass an instance of a value type, we are passing a new copy of the original
instance. Let's see the issue that using reference types can cause if we are not careful
by examining the following code:

var jolts = [Drink]()

var myJolt = Jolt(temperature: 48)
for _ in 0...5 {
 jolts.append(myJolt)
}

jolts[0].drinking(10)

for (index,can) in jolts.enumerate(){
 print("Can \(index) amount Left: \(can.volume)")
}

Object-Oriented and Protocol-Oriented Programming

[12]

In this example, we created an array that will contain instances of the Drink class or
instances of a type that is a subclass of the Drink class. We then created an instance
of the Jolt class and used it to populate our array with six cans of Jolt. Next, we took
a drink from the first can in our array and printed out the remaining volume of each
can in our array. If we run this code, we would see the following results:

Can 0 amount Left: 13.5
Can 1 amount Left: 13.5
Can 2 amount Left: 13.5
Can 3 amount Left: 13.5
Can 4 amount Left: 13.5
Can 5 amount Left: 13.5

As we can see from the results, all of the cans in the array have the same amount
of Jolt remaining. This is because we created a single instance of the Jolt class and
then, to the jolts array, we added six references to this single instance. Therefore,
when we took a drink from the first can in the array, we actually took a drink from
all of the cans in the array.

A mistake like this to an experienced object-oriented programmer may seem out of
the question; however, it's amazing how often it occurs with junior developers or
developers who are not familiar with object-oriented programming. This error occurs
more often with classes that have complex initializers. We can avoid this issue by
using the Builder pattern that we will see in Chapter 6, Adopting Design Patterns in
Swift or by implementing a copy method in our custom class that will make a copy of
an instance.

One other thing to note about object-oriented programming and subclassing, as
shown in the previous example, is that a class can only have one superclass. For
example, the superclass for our Jolt class is the Drink class. This can lead to a single
superclass that is very bloated and contains code that is not needed or wanted by all
the subclasses. This is a very common problem in game development.

Now, let's look at how we would implement our drinks and cooler example using
protocol-oriented programming.

Chapter 1

[13]

Swift as a protocol-oriented
programming language
With object-oriented programming, we usually begin our design by thinking
about the objects and the class hierarchy. Protocol-oriented programming is a little
different. Here, we begin our design by thinking about the protocols. However, as
we stated at the beginning of this chapter, protocol-orientated programming is about
so much more than just the protocol.

As we go through this section, we will briefly discuss the different items that make
up protocol-oriented programming with regards to our current example. We will
then discuss these items in depth over the next couple of chapters to give you a
better understanding of how to use protocol-oriented programming as a whole in
our applications.

In the previous section, when we looked at Swift as an object-oriented programming
language, we designed our solution with a class hierarchy, as shown in the
following diagram:

To redesign this solution with protocol-oriented programming, we would need to
rethink a couple areas of this design. The first area that we would want to rethink
is the Drink class. Protocol-oriented programming states that we should begin with
a protocol rather than a superclass. This means that our Drink class would become
a Drink protocol. We would then use protocol extensions to add common code for
our drink types that will conform to this protocol. We will go over the protocols in
Chapter 4, All about the Protocol, and we will cover the protocol extensions in Chapter
5, Let's Extend Some Types.

www.allitebooks.com

http://www.allitebooks.org

Object-Oriented and Protocol-Oriented Programming

[14]

The second area that we would want to rethink is the use of reference (class) types.
With Swift, Apple has stated that it is preferable to use value types over reference
types where appropriate. There is a lot to consider when we decide whether to use
reference or value types, and we will go over this in depth in Chapter 2, Our Type
Choices. In this example, we will use value (structure) types for our drink types (Jolt
and CaffeineFreeDietCoke) and a reference (class) type for our Cooler type.

The decision to use value types for our drink types and a reference type for our
Cooler type, in this example, is based on how we would use the instances of these
types. The instance of our drink types will only have one owner. For example, when
a drink is in the cooler, the cooler owns it. But then, when a person takes the drink
out, the drink is removed from the cooler and given to a person who would then
own it.

The Cooler type is a little different from the drink types. While the drink types will
have only one owner interacting with it at a time, instances of the Cooler type may
have several parts of our code interacting with it. For example, we may have one part
of our code adding drinks to the cooler while we have instances of several people
taking drinks from the cooler.

To summarize it, we use a value type (structure) to model our drink types because only
one part of our code should be interacting with an instance of the drinks type at any one
time. However, we use a reference type (class) to model our cooler because multiple
parts of our code will be interacting with the same instance of the Cooler type.

We are going to stress this many times in this book: one of the main differences
between reference and values types is how we pass the instances of the type. When we
pass an instance of a reference type, we are passing a reference to the original instance.
This means that the changes made are reflexed in both the references. When we pass
an instance of a value type, we are passing a new copy of the original instance. This
means that the changes made in one instance are not reflexed in the other.

Before we examine protocol-oriented programming further, let's take a look at how
we would rewrite our example in a protocol-oriented programming manner. We will
start by creating our Drink Protocol:

protocol Drink {
 var volume: Double {get set}
 var caffeine: Double {get set}
 var temperature: Double {get set}
 var drinkSize: DrinkSize {get set}
 var description: String {get set}
}

Chapter 1

[15]

Within our Drink protocol, we defined the five properties every type that conforms
to this protocol must provide. The DrinkSize type is the same DrinkSize type that
we defined in the object-oriented section of this chapter.

Before we add any types that conform to our Drink protocol, we want to extend the
protocol. Protocol extensions were added to the Swift language in version 2, and
they allow us to provide functionality to conforming types. This lets us define the
behavior for all types that conform to a protocol rather than adding the behavior to
each individual conforming type. Within the extension for our Drink protocol, we
will define two methods: drinking() and temperaturChange(). These are the same
two methods that were in our Drink superclass in the object-oriented programming
section of this chapter. Following is the code for our Drink extension:

extension Drink {
 mutating func drinking(amount: Double) {
 volume -= amount
 }
 mutating func temperatureChange(change: Double) {
 temperature += change
 }
}

Now, any type that conforms to the Drink protocol will automatically receive the
drinking() and the temperaturChange() methods. Protocol extensions are perfect
for adding common functionality to all the types that conform to a protocol. This
is similar to adding functionality to a superclass where all subclasses receive the
functionally from the superclass. The individual types that conform to a protocol
can also shadow any functionality provided by an extension similar to overriding
functionality from a superclass.

Now let's create our Jolt and CaffeineFreeDietCoke types:

struct Jolt: Drink {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 init(temperature: Double) {
 self.volume = 23.5
 self.caffeine = 280
 self.temperature = temperature
 self.description = "Jolt Energy Drink"
 self.drinkSize = DrinkSize.Can24

Object-Oriented and Protocol-Oriented Programming

[16]

 }

}

struct CaffeineFreeDietCoke: Drink {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 init(volume: Double, temperature: Double,
 drinkSize: DrinkSize) {

 self.volume = volume
 self.caffeine = 0
 self.temperature = temperature
 self.description = "Caffiene Free Diet Coke"
 self.drinkSize = drinkSize
 }
}

As we can see, both the Jolt and CaffeineFreeDietCoke types are structures rather
than classes. This means that they are both value types rather than reference types,
as they were in the object-oriented design. Both of the types implement the five
properties that are defined in the Drink protocol as well as an initializer that will be
used to initialize the instances of the types.

There is more code needed in these types as compared to the drink classes in the
object-oriented example. However, it is easier to understand what is going on in
these drink types because everything is being initialized within the type itself rather
than in a superclass.

Finally, let's look at the cooler type:

class Cooler {
 var temperature: Double
 var cansOfDrinks = [Drink]()
 var maxCans: Int

 init(temperature: Double, maxCans: Int) {
 self.temperature = temperature
 self.maxCans = maxCans
 }

Chapter 1

[17]

 func addDrink(drink: Drink) -> Bool {
 if cansOfDrinks.count < maxCans {
 cansOfDrinks.append(drink)
 return true
 } else {
 return false
 }
 }

 func removeDrink() -> Drink? {
 if cansOfDrinks.count > 0 {
 return cansOfDrinks.removeFirst()
 } else {
 return nil
 }
 }
}

As we can see, the Cooler class is the same class that we created in the Object-oriented
programming section of this chapter. There could be a very viable argument for
creating the Cooler type as a structure rather than a class, but it really depends on
how we plan to use it in our code. Earlier, we stated that various parts of our code
will need to interact with a single instance of our cooler. Therefore, in our example, it
is better to implement our cooler as a reference type rather than a value type.

Apple's recommendation is to prefer value types over reference types
where appropriate. Therefore, when in doubt, it is recommended that
we go with a value type rather than a reference type.

The following diagram shows how the new design looks:

Object-Oriented and Protocol-Oriented Programming

[18]

Now that we have finished redesigning, let's summarize what protocol-oriented
programming is and how it is different from object-oriented programming.

Summarizing protocol-oriented
programming and object-oriented
programming
We just saw how Swift can be used as both an object-oriented programming
language and a protocol-oriented programming language, and what is the real
difference between the two. In the example presented in this chapter, there were two
major differences between the two designs.

The first difference that we saw with protocol-oriented programming is that we
should start with a protocol rather than a superclass. We can then use protocol
extensions to add functionality to the types that conform to that protocol. With
object-oriented programming, we started with a superclass. When we redesigned
our example, we converted the Drink superclass to a Drink protocol and then used a
protocol extension to add the drinking() and temperatureChange() methods.

The second real difference that we saw was the use of value types (structures) rather
than reference types (class) for our drink types. Apple has said that we should
prefer value types over reference types where appropriate. In our example, it was
appropriate to use value types when we implemented our drink types; however, we
still implemented the Cooler type as a reference type.

Mixing and matching value and reference types may not be the best approach for
the long-term maintainability of our code. We used it in our example to stress the
difference between the value and reference types. In Chapter 2, Our Type Choices, we
will discuss this in detail.

Both the object-oriented design and the protocol-oriented design used
polymorphism to let us interact with different types using the same interface. With
the object-oriented design, we used the interface provided by the superclass to
interact with all the subclasses. In the protocol-oriented design, we used the interface
provided by the protocol and the protocol extension to interact with the types that
conform to the protocol.

Now that we have summarized the differences between the object-oriented
programming design and the protocol-oriented programming design, let's take a
closer look at these differences.

Chapter 1

[19]

Object-oriented programming versus
protocol-oriented programming
I mentioned at the beginning of the chapter that protocol-oriented programming is
about so much more than just the protocol and that it is a new way of not only writing
applications but also thinking about programming. In this section, we will examine the
difference between our two designs to see what that statement actually means.

As a developer, our primary goal is always to develop an application that works
properly, but we should be focused on writing clean and safe code as well. In this
section, we will be talking about clean and safe code a lot, so let's look at what we
mean by these terms.

Clean code is code that is very easy to read and understand. It is important to write
clean code because any code that we write will need to be maintained by someone
and that someone is usually the person who wrote it. There is nothing worse than
looking back at code you wrote and not being able to understand what it does. It is
also a lot easier to find errors in the code that is clean and easy to understand.

By safe code we mean code that is hard to break. There is nothing more frustrating
as a developer than to make a small change in our code and have errors pop up
throughout the code base or to have numerous bugs pop up within our application.
By writing clean code, our code will be inherently safer because other developers
will be able to look at the code and understand exactly what it does.

Now, let's briefly look at the difference between protocols / protocol extensions and
superclasses. We will be covering this a lot more in Chapter 4, All about the Protocol,
and Chapter 5, Let's Extend Some Types.

Protocol and protocol extensions versus
superclasses
In the object-oriented programming example, we created a Drink superclass from
which all of the drink classes were derived. In the protocol-oriented programming
example, we used a combination of a protocol and a protocol extension to achieve
the same results; however, there are several advantages of using protocols.

To refresh our memory of the two solutions, let's look at the code for both the Drink
superclass and the Drink protocol and protocol extension. The following code shows
the Drink superclass:

class Drink {
 var volume: Double

Object-Oriented and Protocol-Oriented Programming

[20]

 var caffeine: Double
 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 init(volume: Double, caffeine: Double,
 temperature: Double, drinkSize: DrinkSize) {
 self.volume = volume
 self.caffeine = caffeine
 self.temperature = temperature
 self.description = "Drink base class"
 self.drinkSize = drinkSize
 }

 func drinking(amount: Double) {
 volume -= amount
 }
 func temperatureChange(change: Double) {
 temperature += change
 }
}

The Drink superclass is a complete type that we can create instances of. This can
be a good or a bad thing. There are times, like in this example, when we should not
be creating instances of the superclass; we should only be creating instances of the
subclasses. For this, we can still use protocols with object-oriented programming;
however, we will need to use protocol extensions to add the common functionality
that will then lead us down the protocol-oriented programming path.

Now, let's look at how we would use protocol-oriented programming with the Drink
protocol and the Drink protocol extension:

protocol Drink {
 var volume: Double {get set}
 var caffeine: Double {get set}
 var temperature: Double {get set}
 var drinkSize: DrinkSize {get set}
 var description: String {get set}
}

extension Drink {
 mutating func drinking(amount: Double) {
 volume -= amount
 }

Chapter 1

[21]

 mutating func temperatureChange(change: Double) {
 temperature += change
 }
}

The code in both the solutions is pretty safe and easy to understand. As a personal
preference, I like separating the implementation from the definition. Therefore, to
me, the protocol / protocol extension code is better, but this really is a matter of
preference. However, we will see in the next few pages that the protocol / protocol
extension solution as a whole is cleaner and easier to understand.

There are three other advantages that protocols / protocol extensions have over
superclasses. The first advantage is that types can conform to multiple protocols;
however, they can only have one superclass. What this means is that we can create
numerous protocols that add very specific functionality rather than creating a
single monolithic superclass. For example, with our Drinks protocol, we could
also create the DietDrink, SodaDrink, and EnergyDrink protocols that contain
specific requirements and functionality for these types of drinks. Then, the DietCoke
and CaffeineFreeDietCoke types would conform to the Drink, DietDrink,
and SodaDrink protocols, while the Jolt structure would conform to the Drink
and EnergyDrink protocols. With a superclass, we would need to combine the
functionality defined in the DietDrink, SodaDrink, and EnergyDrink protocols into
the single monolithic superclass.

The second advantage that protocol / protocol extensions have is that we can use
protocol extensions to add functionality without needing the original code. What
this means is that we can extend any protocol, even the protocols that are a part of
the Swift language itself. To add functionality to our superclass, we need to have the
original code. We could use extensions to add functionality to a superclass, which
means that all the subclass will also inherit that functionality. However, generally we
use extensions to add functionality to a specific class rather than adding functionality
to a class hierarchy.

The third advantage that protocols / protocol extensions have is that protocols can
be adopted by classes, structures, and enumerations, while class hierarchies are
restricted to class types. Protocols / protocol extensions give us the option to use
value types where appropriate.

Object-Oriented and Protocol-Oriented Programming

[22]

Implementing drink types
The implementation of drink types (the Jolt and CaffeineFreeDietCoke types)
was significantly different between the object-oriented example and the protocol-
oriented example. We will look at the differences between these two examples, but
first let's take a look at the code again to remind us about how we implemented
the drink types. We will look at how we implemented the drink types in the object-
oriented example first:

class Jolt: Drink {
 init(temperature: Double) {

 super.init(volume: 23.5, caffeine: 280,
 temperature: temperature, drinkSize: DrinkSize.Can24)
 self.description = "Jolt energy drink"
 }
}

class CaffeineFreeDietCoke: Drink {

 init(volume: Double, temperature: Double, drinkSize:
DrinkSize) {

 super.init(volume: volume, caffeine: 0,
 temperature: temperature, drinkSize: drinkSize)
 self.description = "Caffeine Free Diet Coke"
 }
}

Both of these classes are subclasses of the Drink superclass and both implement a
single initializer. While these are pretty simple and straightforward implementations,
we really need to fully understand what the superclass expects to implement them
properly. For example, if we do not fully understand the Drink superclass, we
may forget to set the description properly. In our example, forgetting to set the
description may not be that big of an issue, but in more complex types, forgetting
to set a property may cause very unexpected behavior. We could prevent these
mistakes by setting all the properties in the superclass's initializer; however, this may
not be possible in some situations.

Now, let's look at how we implemented the drink types in the protocol-oriented
programming example:

struct Jolt: Drink {
 var volume: Double
 var caffeine: Double

Chapter 1

[23]

 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 init(temperature: Double) {
 self.volume = 23.5
 self.caffeine = 280
 self.temperature = temperature
 self.description = "Jolt Energy Drink"
 self.drinkSize = DrinkSize.Can24
 }

}

struct CaffeineFreeDietCoke: Drink {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 init(volume: Double, temperature: Double,
 drinkSize: DrinkSize) {

 self.volume = volume
 self.caffeine = 0
 self.temperature = temperature
 self.description = "Caffiene Free Diet Coke"
 self.drinkSize = drinkSize
 }
}

Implementing the types in the protocol-oriented programming example takes
significantly more code than the object-oriented programming example; however,
the code in the protocol-oriented example is a lot safer and easier to understand. The
reason we say the protocol-oriented example is safer and easier to understand is how
the properties and initializer are implemented in both the examples.

In the object-oriented programming example, all of the properties are defined in the
superclass. We will need to look at the code or the documentation for the superclass
to see what properties are defined and how they are defined. With protocols, we
also need to look at the protocol itself or the documentation for the protocol to see
what properties to implement, but the implementation is done in the type itself.
This allows us to see how everything is implemented for the type without having
to look back at the code for the superclass or having to dig through a complete class
hierarchy to see how things are implemented and initialized.

Object-Oriented and Protocol-Oriented Programming

[24]

The initializer in the subclass must also call the initializer in the superclass to ensure
that all the properties of the superclass are set properly. While this does ensure that
we have a consistent initialization between the subclasses, it also hides how the
class is initialized. With the protocol example, all the initialization is done within
the type itself. Therefore, we do not have to dig through a class hierarchy to see how
everything is initialized.

Superclasses in Swift provide an implementation of our requirements. Protocols in
Swift are simply a contract that says any type that conforms to a given protocol must
fulfill the requirements specified by the protocol. Therefore, with protocols, all of the
properties, methods, and initializers are defined in the conforming types themselves.
This allows us to very easily see how everything is defined and initialized.

Value types vs reference types
There are several fundamental differences between reference and value types, and
we will discuss these in greater detail in Chapter 2, Our Type Choices. Right now, we
will focus on one of the main differences between the two types and that is how
the types are passed. When we pass an instance of a reference type (class), we are
passing a reference to the original instance. This means that any changes made are
reflected back to the original instance. When we pass an instance of a value type, we
are passing a new copy of the original instance. This means any changes made are
not reflected back to the original instance.

As we mentioned earlier, in our example, an instance of the drink types should
only have one owner at a time. There should never be a need for multiple parts of
our code to interact with a single instance of a drink type. As an example, when we
create an instance of a drink type, we will put it in an instance of the cooler type.
Then, if a person comes along and removes that instance from the cooler, the person
will own that drink instance. If one person gives the drink to another person, then
that second person will own the drink.

Using value types ensures that we always get a unique instance since we pass a copy
of the original instances rather than a reference to the original instance. Therefore, we
can trust that no other part of our code is going to unexpectedly change that instance
on us. This is especially helpful with multithreaded environments, where a different
thread can alter the data and create unexpected behavior.

We need to make sure that we use value types and reference types appropriately. In
this example, the drink types illustrated when value types should be preferred and
the Cooler type illustrated when a reference type should be preferred.

Chapter 1

[25]

In most object-oriented languages, we do not have the option of implementing our
custom types as value types. In Swift, classes and structures are much closer in
functionality than other languages and we have the option of creating custom types
as value types. We just need to make sure we use the appropriate type when we
create our custom types. We will discuss these options in greater detail in Chapter 2,
Our Type Choices.

The winner is...
As we were reading through this chapter and seeing all of the advantages that
protocol-oriented programming has over object-oriented programming, we may
think that protocol-oriented programming is clearly superior to object-oriented
programming. However, this assumption may not be totally correct.

Object-oriented programming has been around since the 1970s and is a tried and true
programming paradigm. Protocol-oriented programming is the new kid on the block
and was designed to correct some of the issues with object-oriented programming.
I have personally used the protocol-oriented programming paradigm in a couple of
projects and I am very excited about its possibilities.

Object-oriented programming and protocol-oriented programming have similar
philosophies like creating custom types that model real-world objects and
polymorphism to use a single interface to interact with multiple types. The difference
is how these philosophies are implemented.

To me, the code base in a project that uses protocol-oriented programming is much safer
and easier to read as compared to a project that uses object-oriented programming. This
does not mean that I am going to stop using object-oriented programming altogether. I
can still see plenty of need for class hierarchy and inheritance.

Remember, when we are designing our application, we should always use the right
tool for the right job. We would not want to use a chainsaw to cut a piece of 2 x 4
lumber, but we also would not want to use a skilsaw to cut down a tree. Therefore,
the winner is the programmer, where we have the choice of using different
programming paradigms rather than being limited to only one.

Object-Oriented and Protocol-Oriented Programming

[26]

Summary
In this chapter, we saw how Swift can be used as an object-oriented programming
language and also saw how it can be used as a protocol-oriented programming
language. While these two programming paradigms have similar philosophies, they
implement these philosophies differently.

With object-oriented programming, we would use classes as our blueprints when
we create objects. With protocol-oriented programming, we have the choice of using
classes, structures, and enumerations. We can even use other types, as we will see in
Chapter 2, Our Type Choices.

With object-oriented programming, we can implement polymorphism using class
hierarchies. With protocol-oriented programming, use a combination of protocols
and protocol extensions to implement polymorphism. We will look at protocols in
depth in Chapter 4, All about the Protocol.

With object-oriented programming, we are able to implement functionality in our
superclasses that is inherited by the subclasses. The subclasses do have the ability
to override the functionality provided by the superclass. With protocol-oriented
programming, we use protocol extensions to add functionality to types that conform
to our protocols. These types can also shadow this functionality if they choose to. We
will look at protocol extensions in depth in Chapter 5, Let's Extend Some Types.

While object-oriented programming has been around since the 1970s and it is a tried
and true programming paradigm, it is also beginning to show some wear and tear.
In this chapter, we looked at the problems and design issues that protocol-oriented
programming was designed to solve.

Now that we have seen an overview of protocol-oriented programming, it is time
to look at each area that makes up protocol-oriented programming in greater detail.
By getting a better understanding of the different areas, we will be able to better
implement protocol-oriented programming in our applications. We will start off
by looking at the various type choices that we have with the Swift programming
language and how we should use each of them.

[27]

Our Type Choices
In most traditional object-oriented programming languages we create classes,
which are reference types, as blueprints for our objects. In Swift, unlike other object-
oriented languages, structures have much of the same functionality as classes;
however, they are a value type. Apple has said that we should prefer value types,
such as structures, to reference types, but what are the actual advantages? Swift
actually has a number of type choices that we can use and, in this chapter, we
will look at each of these types to see the advantages and disadvantages of each.
Knowing how and when to use each type is important to properly implement
protocol-oriented programming in your projects.

In this chapter, you will learn:

• What is a class and how to use it?
• What is a structure and how to use it?
• What is an enumeration and how to use it?
• What is a tuple and how to use it?
• What is the difference between value and reference types?

Swift classifies types as either named or compound types. A named type is a type
that can be given a name when it is defined. These named types include classes,
structures, enumerations, and protocols. In addition to user-defined named types,
Swift also defines many commonly used named types within the Swift standard
library, including arrays, sets, and dictionaries.

Our Type Choices

[28]

Many of the data types that we would normally consider Primitive types in other
languages are actually named types in Swift and are implemented in the Swift
standard library using structures. These include types that represent numbers,
strings, characters, and Boolean values. Since these types are implemented as named
types, we are able to extend their behavior using extensions as we would with any
other named type. As we will see in this chapter and the future ones, the ability to
extend a named type, including types that would traditionally be considered as
primitive types and protocols, is an extremely powerful feature of the Swift language
and is one of the pillars of protocol-oriented programming.

A compound type is a type that is not given a name when it is defined. In Swift, we
have two named types: function types and tuple types. Function types represent
closures, functions, and methods, while tuple types are a comma-separated list that
are enclosed in parentheses.

We are able to use the typealias declaration to give an alias to our compound types.
This allows us to use the alias name instead of the type itself within our code.

There are also two categories of types: reference types and value types. When
we pass an instance of a reference type, we are passing a reference to the original
instance, which means that the two references are sharing the same instance. Classes
are reference types. When we pass an instance of a value type, we are passing a new
copy of the instance, which means that each instance is getting a unique copy. Value
types include structures, enumerations, and tuples.

Every type in Swift will be either a named or compound type, and they will also be
either a reference or value type, except in the case of protocols. Since we are unable
to create an instance of a protocol, it is neither a reference nor a value type. Sounds a
bit confusing? It really isn't. As we look at all of our type choices and how we can use
them, we will see how easy this is to understand.

Now, let's begin looking at the type choices that we have in Swift. We will begin by
looking at the backbone of object-oriented programming: the class.

The class
In object-oriented programming, we cannot create an object without a blueprint that
tells the application what properties and methods to expect from the object. In most
object-oriented languages, this blueprint comes in the form of a class. A class is a
construct that allows us to encapsulate the properties, methods, and initializers of
an object into a single type. Classes can also include other items, such as subscripts;
however, we are going to focus on the basic items that make up classes not only in
Swift but in other languages as well.

Chapter 2

[29]

Let's look at how we would use the class in Swift. The following code shows
how we defined the Drink class in Chapter 1, Object-Oriented and Protocol-Oriented
Programming:

class Drink {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 init(volume: Double, caffeine: Double,
 temperature: Double, drinkSize: DrinkSize) {
 self.volume = volume
 self.caffeine = caffeine
 self.temperature = temperature
 self.description = "Drink base class"
 self.drinkSize = drinkSize
 }

 func drinking(amount: Double) {
 volume -= amount
 }
 func temperatureChange(change: Double) {
 temperature += change
 }
}

An instance of a class is typically called an object; however, in Swift, structures and
classes have much of the same functionalities therefore, we will use the term instance
when referring to instances of either type. We will create an instance of the Drink
class as follows:

var myDrink = Drink(volume: 23.5, caffeine: 280,
 temperature: 38.2, drinkSize: DrinkSize.Can24)

Anyone who has used object-oriented programming in the past is probably familiar
with the class type. It has been the backbone of object-oriented programming since
its inception.

When we create instances of the class, it is named therefore the class is a named type.
The class type is also a reference type.

The next type we are going to look at is arguably the most important type in the
Swift language: the structure.

Our Type Choices

[30]

The structure
Apple has not only said that Swift developers should prefer value types over
reference types, but they have also been taking that philosophy to heart. If we look at
the Swift standard library (https://developer.apple.com/library/prerelease/
ios/documentation/General/Reference/SwiftStandardLibraryReference/
index.html), we will see that the majority of the types are implemented using
structures. The reason Apple is able to implement the majority of Swift's standard
library with structures is that, in Swift, structures have many of the same
functionalities as classes. There are, however, some fundamental differences between
classes and structures and we will be looking at these differences later in this chapter.

In Swift, a structure is a construct that allows us to encapsulate the properties,
methods, and initializers of an instance into a single type. They can also include other
items, such as subscripts. However, we are going to focus on the basic items that
make up a structure. This description may sound a lot like how we described classes
in the last section. This is because classes and structures are so similar in Swift.

Let's see how we could create a structure. The following example shows how we
could create a Drink structure that has the same functionality as the Drink class:

struct Drink {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 mutating func drinking(amount: Double) {
 volume -= amount
 }
 mutating func temperatureChange(change: Double) {
 temperature += change
 }
}

If we compare this Drink structure to the Drink class from the previous section, we
can see some very basic differences. In the Drink structure, we are not required to
define an initializer because the structure will create a default initializer for us if we
do not provide one. This default initializer will require us to provide initial values
for all the properties of the structure when we create an instance of it.

https://developer.apple.com/library/prerelease/ios/documentation/General/Reference/SwiftStandardLibraryReference/index.html
https://developer.apple.com/library/prerelease/ios/documentation/General/Reference/SwiftStandardLibraryReference/index.html
https://developer.apple.com/library/prerelease/ios/documentation/General/Reference/SwiftStandardLibraryReference/index.html

Chapter 2

[31]

The other difference between the structure and the class is the mutating keyword
used for each function in the structure. Structures are value types; therefore, by
default, the properties of the structure cannot be changed from within the instance
methods. By using the mutating keyword, we are opting for the mutating behavior
of that particular method. We must use the mutating keyword for any method
within the structure that changes the values of the structure's properties.

We could create an instance of the Drink structure as follows:

var myDrink = Drink(volume: 23.5, caffeine: 280,
 temperature: 38.2, drinkSize: DrinkSize.Can24,
 description: "Drink Structure")

The structure is a named type because, when we create instances of the type, it is
named. The structure type is also a value type.

The next type that we are going to look at is Swift's supercharged enumerations.

The enumerations
In most languages, enumerations are little more than a data type consisting of a set
of named values called elements. In Swift, however, the enumerations have been
supercharged to give them significantly more power. Enumerations in Swift are a lot
closer in functionality to classes and structures; however, they can still be used like
enumerations in other languages.

Before we see how enumerations are supercharged in Swift, let's see how we can use
them as standard enumerations. The following code defines an enumeration called
Devices:

enum Devices {
 case IPod
 case IPhone
 case IPad
}

In the Devices enumeration, we defined three possible values: IPod, IPhone,
and IPad.

One of the items that make enumerations different in Swift as compared to other
languages is that they can be prepopulated with values known as raw values. As
an example, we could redefine our Devices enumeration to be prepopulated with
String values, as shown in the following example:

enum Devices: String {
 case IPod = "iPod"

Our Type Choices

[32]

 case IPhone = "iPhone"
 case IPad = "iPad"
}

We can then use the rawValue property to retrieve the raw value for any of the
enumeration's elements, as shown in the following code:

Devices.IPod.rawValue

In Swift, we can also store the associated values alongside our case values. These
associated values can be of any type and can vary each time we use the case. This
enables us to store additional custom information with our case types. Let's see how
this works by redefining our Devices enumeration with the associated values:

enum Devices {
 case IPod(model: Int, year: Int, memory: Int)
 case IPhone(model: String, memory: Int)
 case IPad(model: String, memory: Int)
}

In the previous example, we defined three associated values with the IPod case and
two associated values with the IPhone and IPad cases. We can then use this new
Devices enumeration with the associated values, as follows:

var myPhone = Devices.IPhone(model: "6", memory: 64)
var myTablet = Devices.IPad(model: "Pro", memory: 128)

In this example, we defined the myPhone device as an iPhone 6 with 64 GB of
memory and the myTablet device as iPod Pro with 128 GB of memory. We can now
retrieve the associated values as follows:

switch myPhone {
case .IPod(let model, let year, let memory):
 print("iPod: \(model) \(memory)")
case .IPhone(let model, let memory):
 print("iPhone: \(model) \(memory)")
case .IPad(let model, let memory):
 print("iPad: \(model) \(memory)")
}

In this example, we will simply print out the associated values of the myPhone
device.

Chapter 2

[33]

What we have seen so far makes enumerations far more powerful than enumerations
in other languages. However, we are not done showing off what enumerations can
do in Swift. In Swift, enumerations are not limited to a list of elements. They can also
contain computed properties, initializers, and methods just like classes and structures.

Let's take a look at how we can use methods and computed properties with
enumerations. Since it almost feels like Christmas with all of these exciting new
features, our example will take a bit of a holiday theme:

enum Reindeer: String {
 case Dasher, Dancer, Prancer, Vixen,
 Comet, Cupid, Donner, Blitzen, Rudolph

 static var allCases: [Reindeer] {
 return [Dasher, Dancer, Prancer, Vixen,
 Comet, Cupid, Donner, Blitzen, Rudolph]
 }

 static func randomCase() -> Reindeer {
 let randomValue = Int(
 arc4random_uniform(
 UInt32(allCases.count)
)
)
 return allCases[randomValue]
 }
}

In this example, we created an enumeration called Reindeer that contains the
names of Santa's nine reindeers (we cannot forget Rudolph you know). Within the
Reindeer enumeration, we created an allCases computed property that returns
an array containing all of the possible cases for the enumeration. We also created a
randomCase() method that will return a random reindeer from our enumeration.

The previous examples showed how to use the individual features of Swift's
enumerations, but what really makes them powerful is when we use these features
together. Let's take a look at one more example where we combine the associated
values with methods and properties to make a supercharged enumeration. We will
start off by defining a basic enumeration that defines the various formats of a book
with the page count and the price of each format stored in an associated value:

enum BookFormat {
 case PaperBack (pageCount: Int, price: Double)
 case HardCover (pageCount: Int, price: Double)
 case PDF (pageCount: Int, price: Double)

www.allitebooks.com

http://www.allitebooks.org

Our Type Choices

[34]

 case EPub (pageCount: Int, price: Double)
 case Kindle (pageCount: Int, price: Double)
}

This enumeration would work great, but there are some basic drawbacks. The first
one, and the one that really drives me nuts, is retrieving the associate values from
our enumerations. For example, let's create the following instance:

var paperBack = BookFormat.PaperBack(pageCount: 220, price: 39.99)

Now, to retrieve the page count and the price of this enumeration, we could use the
following code:

switch paperBack {
case .PaperBack(let pageCount, let price):
 print("\(pageCount) - \(price)")
case .HardCover(let pageCount, let price):
 print("\(pageCount) - \(price)")
case .PDF(let pageCount, let price):
 print("\(pageCount) - \(price)")
case .EPub(let pageCount, let price):
 print("\(pageCount) - \(price)")
case .Kindle(let pageCount, let price):
 print("\(pageCount) - \(price)")
}

This is quite a bit of code to retrieve the associated values, especially where we may
need to retrieve these values in multiple locations throughout our code. We could
create a global function that would retrieve these values, but we have a better way
in Swift. We can add a computed property to our enumeration that will retrieve the
pageCount and price values of our enumeration. The following example shows how
we could add these computed properties:

enum BookFormat {
 case PaperBack (pageCount: Int, price: Double)
 case HardCover (pageCount: Int, price: Double)
 case PDF (pageCount: Int, price: Double)
 case EPub (pageCount: Int, price: Double)
 case Kindle (pageCount: Int, price: Double)

 var pageCount: Int {
 switch self {
 case .PaperBack(let pageCount, _):
 return pageCount
 case .HardCover(let pageCount, _):
 return pageCount

Chapter 2

[35]

 case .PDF(let pageCount, _):
 return pageCount
 case .EPub(let pageCount, _):
 return pageCount
 case .Kindle(let pageCount, _):
 return pageCount
 }
 }

 var price: Double {
 switch self {
 case .PaperBack(_, let price):
 return price
 case .HardCover(_, let price):
 return price
 case .PDF(_, let price):
 return price
 case .EPub(_, let price):
 return price
 case .Kindle(_, let price):
 return price
 }
 }
}

With these computed properties, we can very easily retrieve the associated values of
our BookFormat enumeration. The following code demonstrates how to use them:

var paperBack = BookFormat.PaperBack(pageCount: 220, price: 39.99)
print("\(paperBack.pageCount) - \(paperBack.price)")

These computed properties hide the complexity of the switch statement and give
us a much cleaner dot syntax to use. We can also add methods to our enumerations.
Let's say, as an example, that if a person buys multiple copies of our book in different
formats, they would receive a 20% discount. The following function could be added
to our BookFormat enumeration to calculate this discount:

func purchaseTogether(otherFormat: BookFormat) -> Double {
 return (self.price + otherFormat.price) * 0.80
}

We could now use this method as shown in the following code:

var paperBack = BookFormat.PaperBack(pageCount: 220, price: 39.99)
var pdf = BookFormat.PDF(pageCount: 180, price: 14.99)
var total = paperBack.purchaseTogether(pdf)

Our Type Choices

[36]

As we can see, enumerations in Swift are a lot more powerful than enumerations
in other languages. The one thing to avoid is overusing the enumeration. They
are not meant to be a replacement for either the class or the structure. Deep down
enumerations are still a data type consisting of a finite set of named values and all of
these new exciting features are there to make them more useful to us.

When we create instances of the enumeration, it is named therefore it is a named
type. The enumeration type is also a value type. Now, let's look at one of the most
underutilized types in Swift, the Tuple type.

The tuple
In Swift, the tuple is a finite ordered comma-separated list of elements. While there
are tuples in other languages that I have used, I never really took advantage of them.
To be honest I was only vaguely aware that they actually existed in those other
languages. In Swift, tuples are more prominent than they are in other languages,
which forced me to take a closer look at them. What I found is they are extremely
useful. In my opinion, tuples are one of the most underutilized types in Swift and, as
we go through this book, especially in the case study section, I will point some out
many cases where the tuple can be used.

We can create a tuple and access the information within it, as shown in the
following example:

let mathGrade1 = ("Jon", 100)
let (name, score) = mathGrade1
print("\(name) - \(score)")

In the previous code, we grouped a String and an Integer into a single tuple type. We
then decomposed the tuple using pattern matching which places the values into the
name and score constants.

What we saw in the last example is unnamed tuples. They work great in a pinch,
but I have found that I use named tuples more often because it is much easier to
retrieve the values from a named tuple. We can create a named tuple and access the
information stored within it, as shown in the following example:

let mathGrade2 = (name: "Jon", grade: 100)
print("\(mathGrade2.name) - \(mathGrade2.grade)")

Chapter 2

[37]

Notice that when we grouped the String and Integer values in this tuple, we assigned
names to each of the values. We can then use these names to access the information
within the tuple, thereby avoiding the decomposing step.

Apple has stated that we can use tuples as a return type for a function to return
multiple values. The following example shows how we would use tuples to return
multiple values from a function:

func calculateTip(billAmount: Double,tipPercent: Double) ->
 (tipAmount: Double, totalAmount: Double) {

 let tip = billAmount * (tipPercent/100)
 let total = billAmount + tip
 return (tipAmount: tip, totalAmount: total)
 }

In this example, we created a calculateTip() function that calculates the tip based
on the bill amount and tip percentage that are passed in. We then returned both the
tip amount that was calculated and also the total bill amount in a named tuple value.

We could then use this function as shown in the following code:

var tip = calculateTip(31.98, tipPercent: 20)
print("\(tip.tipAmount) - \(tip.totalAmount)")

What we have seen in this section is how tuples are typically used in Swift. As we
go through this book, we will be using tuples in various examples. Tuples are very
useful when we need to pass a temporary collection of values in our code.

In Swift, a tuple is a value type. Tuples are also compound types; however, we are
able to give a tuple an alias using the typealias keyword. The following example
shows how we would assign an alias to a tuple:

typealias myTuple = (tipAmount: Double, totalAmount: Double)

In Swift, protocols are also considered to be a type.

Protocols
To some, it may seem surprising that protocols are considered a type, since we
cannot actually create an instance of them; however, we can use them as a type.
What we mean by this statement is that when we define the type for a variable,
constant, tuple, or collection, we can use a protocol for that type.

Our Type Choices

[38]

We are not going to cover protocols in depth in this section, since we have a whole
chapter dedicated to them however it is important to understand that they are
considered a type in Swift.

Each type that we have discussed so far is either a value or a reference type; however, a
protocol is neither because we are not able to create an instance of them.

It is really important to have a complete understanding of the difference between
value and reference types in Swift, so let's compare the two.

Value versus class types
There are some very fundamental differences between value types (structures,
enumerations, and tuples) and reference types (classes). The primary difference is
how the instances of value and reference types are passed. When we pass an instance
of a value type, we are actually passing a copy of the original instances. This means
that the changes made to one instance are not reflected back to the others. When
we pass an instance of a reference type, we are passing a reference to the original
instance. This means that both references point to the same instance; therefore, a
change made to one reference will reflect in the others.

The explanation in the previous paragraph is a pretty straightforward explanation.
We have seen this explanation a couple of times already in this book, but it is a
very important concept that you must understand. In this section, we are going
to examine the difference between value and reference types, so we know the
advantages of each and also the pitfalls to avoid when using them.

Let's begin by creating two types. One is going to be a structure (value type) and
the other is going to be a class (reference type). We will be using these types in this
section to demonstrate the differences between value and reference types. The first
type that we will see will be named MyValueType. We will implement MyValueType
using a structure, which means that it is a value type as its name tells us:

struct MyValueType {
 var name: String
 var assignment: String
 var grade: Int
}

Chapter 2

[39]

Within MyValueType, we defined three properties. Two of the properties are of the
String type (name and assignment) and one is of the Int type (grade). Now, let's
look at how we would implement this as a class:

class MyReferenceType {
 var name: String
 var assignment: String
 var grade: Int

 init(name: String, assignment: String, grade: Int) {
 self.name = name
 self.assignment = assignment
 self.grade = grade
 }
}

MyReferenceType defines the same three properties as MyValueType; however, we
need to define an initializer in the MyReferenceType type that we did not need to
define in the MyValueType type. The reason for this is structures provide us with
a default initializer that will initialize all of the properties if we do not provide a
default initializer for that type.

Let's look at how we could use each of these types. The following code shows how
we could create instances of each of these types:

var ref = MyReferenceType(name: "Jon", assignment: "Math Test 1",
grade: 90)
var val = MyValueType(name: "Jon", assignment: "Math Test 1",
grade: 90)

As we see in this code, instances of structures are created exactly like the instances of
classes. Being able to use the same format to create instances of structures and classes
is good because it makes our lives easier. However, we need to keep in mind that
value types behave in a different manner than reference types. Let's take a look at
this. The first thing we need to do is create two functions that will change the grades
for the instances of our two types:

func extraCreditReferenceType(ref: MyReferenceType, extraCredit: Int)
{
 ref.grade += extraCredit
}

func extraCreditValueType(var val: MyValueType, extraCredit: Int) {
 val.grade += extraCredit
}

Our Type Choices

[40]

Each of these functions takes an instance of one of our types and also an extra
credit amount. Within the function, we will add the extra credit amount to the
grade. Now, let's see what happens when we use each of these functions. Let's
start off by seeing what happens when we use the MyReferenceType type with the
extraCreditReferenceType() function:

var ref =
 MyReferenceType(name: "Jon", assignment: "Math Test 1", grade:
90)
extraCreditReferenceType(ref, extraCredit:5)
print("Reference: \(ref.name) - \(ref.grade)")

In this code, we created an instance of MyReferenceType with a grade of 90. We
then used the extraCreditReferenceType() function to add five extra points to the
grade. If we run this code, the following line would be printed in the console:

Reference: Jon - 95

As we can see, five extra credit points were added to the grade. Now let's try to
do the same thing with the MyValueType type and the extraCreditValueType()
function. The following code shows how to do this:

var val =
 MyValueType(name: "Jon", assignment: "Math Test 1", grade: 90)
extraCreditValueType(val, extraCredit:5)
print("Value: \(val.name) - \(val.grade)")

In this code, we created an instance of MyValueType with a grade of 90. We then
used the extraCreditValueType() function to add five extra points to the grade. If
we run this code, the following line would be printed in the console:

Value: Jon - 90

As we can see, the five extra credit points are missing from our grade in this
example. The reason for this is when we pass an instance of a value type to a
function, we are actually passing a copy of the original instance. This means, when
we add the extra credit to the grade within the extraCreditValueType() function,
we are adding it to a copy of the original instance which means that the change is not
reflected back to the original.

Chapter 2

[41]

Using a value type does protect us from making accidental changes to our instances
because the instances are scoped to the function or type that they are created in. Value
types also protect us from having multiple references to the same instance. Let's take a
look at this, so we can understand the type of issues we may face when we use reference
types. We will begin by creating a function that is designed to retrieve the grade for
an assignment from a data store. However, to simplify our example, we will simply
generate a random score. The following code shows how we would write this function:

func getGradeForAssignment(assignment: MyReferenceType) {
 // Code to get grade from DB
 // Random code here to illustrate issue
 let num = Int(arc4random_uniform(20) + 80)
 assignment.grade = num
 print("Grade for \(assignment.name) is \(num)")
}

This function is designed to retrieve the grade for name and assignment that is
defined in the MyReferenceType instance that is passed into the function. Once the
grade is retrieved, we will use it to set the grade property of the MyReferenceType
instance. We will also print the grade out to the console, so we can see what the
grade is. Now, let's see how we would not want to use this function:

var mathGrades = [MyReferenceType]()
var students = ["Jon", "Kim", "Kailey", "Kara"]
var mathAssignment = MyReferenceType(name: "", assignment: "Math
Assignment", grade: 0)

for student in students {
 mathAssignment.name = student
 getGradeForAssignment(mathAssignment)
 mathGrades.append(mathAssignment)
}

In the previous code, we created a mathGrades array that will store the grades for
our assignment and a students array that will contain the name of the students we
wish to retrieve the grades for. We then created an instance of the MyReferenceType
class that contains the name of our assignment. We will use this instance to request
the grades from the getGradeForAssignment() function. Now that everything
is defined, we will loop through the list of students to retrieve the grades. The
following is a sample output from this code:

Grade for Jon is 90

Grade for Kim is 84

Grade for Kailey is 99

Grade for Kara is 89

Our Type Choices

[42]

This appears to look exactly like what we want. However, there is a huge bug in this
code. Let's loop through our mathGrades array to see what grades we have in the
array itself:

for assignment in mathGrades {
 print("\(assignment.name): grade \(assignment.grade)")
}

The output of this code would look as follows:

Kara: grade 89

Kara: grade 89

Kara: grade 89

Kara: grade 89

That is not what we wanted. The reason we see these results is because we
created one instance of MyReferenceType and then we kept updating that single
instance. This means that we kept overwriting the previous name and grade. Since
MyReferenceType is a reference type, all the references in the mathGrades array
pointed to the same instance of MyReferenceType that ended up being Kara's grade.

Most veteran object-oriented developers have learned the hard way to be careful to
avoid this type of issue, but they do still occasionally happen, especially with junior
developers. Using value types can help us avoid these issues; however, there are times
when we would like to have this type of behavior. Apple has provided a way for us to
do this with the inout parameters. An inout parameter allows us to change the value
of a parameter and to have the change persist after the function call has ended.

We define an inout parameter by placing the inout keyword at the start of the
parameter's definition. An inout parameter has a value that is passed into the
function. This value is then modified by the function and is passed back out of the
function to replace the original value.

Let's look at how we can use value types with the inout keyword to create a version
of the previous example that will work correctly. The first thing we need to do is
modify the getGradesForAssignment() function to use an instance of MyValueType
that it can modify:

func getGradeForAssignment(inout assignment: MyValueType) {
 // Code to get grade from DB
 // Random code here to illustrate issue
 let num = Int(arc4random_uniform(20) + 80)
 assignment.grade = num
 print("Grade for \(assignment.name) is \(num)")
}

Chapter 2

[43]

The only change we made to this function was the way we defined the parameter
that was passed in. The property is now defined to be of MyValueType and we added
the inout keyword to allow the function to modify the instance that was passed in.
Now let's see how we could use this function:

var mathGrades = [MyValueType]()
var students = ["Jon", "Kim", "Kailey", "Kara"]
var mathAssignment = MyValueType(name: "", assignment: "Math
Assignment", grade: 0)

for student in students {
 mathAssignment.name = student
 getGradeForAssignment(&mathAssignment)
 mathGrades.append(mathAssignment)
}

for assignment in mathGrades {
 print("\(assignment.name): grade \(assignment.grade)")
}

Once again, this code looks a lot like the code from the previous example.
However, we did make two changes. The first is that the mathAssignment
variable is now defined to be of the MyValueType type and, when we called
the getGradeForAssignment() function, we prefixed the argument with an &
ampersand. The ampersand tells us that we are passing a reference to the value type,
so any changes made in the function are reflected back to the original instance.

The output of this new code will look as follows:

Grade for Jon is 97

Grade for Kim is 83

Grade for Kailey is 87

Grade for Kara is 85

Jon: grade 97

Kim: grade 83

Kailey: grade 87

Kara: grade 85

The output from this code is what we expected to see, where each instance in the
mathGrades array represents a different grade. The reason this code works correctly
is that when we add the mathAssignment instance to the mathGrades array, we are
adding a copy of the mathAssignment instance to the array. However, when we pass
the mathAssignment instance to the getGradeForAssignment() function, we are
passing a reference.

Our Type Choices

[44]

There are some things we cannot do with value types that we can do with reference
(class) types. The first thing that we will look at is the recursive data types.

Recursive data types (reference types
only)
A recursive data type is a type that contains other values of the same type as a
property for the type. Recursive data types are used when we want to define
dynamic data structures, such as lists and trees. The size of these dynamic data
structures can grow or shrink depending on our runtime requirements.

Linked lists are perfect examples of a dynamic data structure that we would
implement using a recursive data type. A linked list is a group of nodes that are
linked together, where, in its simplest form, each node maintains a link to the next
node in the list. The following diagram shows how a very basic linked list works:

Each node in the list contains some value or data, and it also contains the link to the
next node in the list. If one of the nodes within the list loses the reference to the next
node, the remainder of the list will be lost because each node is only aware of the
next node in the list. Some linked lists maintain a link to both the previous and next
nodes to allow us to move both forward and backward through the list.

The following code shows how we could create a linked list using a reference type:

class LinkedListReferenceType {
 var value: String
 var next: LinkedListReferenceType?

 init(value: String) {
 self.value = value
 }
}

Chapter 2

[45]

In the LinkedListReferenceType class, we have two properties. The first property
is named value and it contains the data for this instance. The second property is
named next, which points to the next item in the linked list. If the next property is
nil, then this instance will be the last node in the list. If we tried to implement this
linked list as a value type, the code could look like the following code:

struct LinkedListValueType {
 var value: String
 var next: LinkedListValueType?
}

When we add this code to a playground, we receive the following error:

Recursive value type 'LinkedListValueType' is not allowed

This tells us that Swift does not allow recursive value types. However, we are able to
implement them in as a reference type, which we saw earlier.

I have never read anything official from Apple concerning the reason recursive value
types are not allowed. However if we think about it, recursive value types are a really
bad idea because of how value types function. Let's examine this for a minute because
it will really stress the difference between value and reference types. It will also help
you understand why there are times we would need to use reference types.

Let's say that we were able to create the LinkedListValueType structure without
any errors. Now let's create three nodes for our list, as shown in the following code:

var one = LinkedListValueType(value: "One",next: nil)
var two = LinkedListValueType (value: "Two",next: nil)
var three = LinkedListValueType (value: "Three",next: nil)

Now we will link these nodes together with the following code:

one.next = two
two.next = three

Our Type Choices

[46]

Do you see the problem with this code? If not, think about how a value type is
passed. In the first line, one.next = two, we are not actually setting the next
property to the two instance itself; we are setting it to a copy of the two instance. This
means that in the next line, two.next = three, we are setting the next property of
the two instance itself to the three instance. However, this change is not reflected
back in the copy that was made for the next property of the one instance. Sounds a
little confusing? Let's clear it up a little by looking at a diagram that shows the state
of our three LinkedListValueType instances if we were able to run this code:

As we can see from the diagram, the next property of the one instance is pointing
to a copy of the two instances whose next property is still nil. The next property of
the original two instance, however, is pointed to the three instance. This means that
if we try to go through the list by starting at the one instance, we would not reach
the three instance because the copy of the two instances would still have a next
property that is nil.

The second thing that we can only do with reference (class) types is inheritance.

Inheritance (reference types only)
In object-oriented programming, inheritance refers to one class (known as a sub or
child class) being derived from another class (known as a super or parent class).
The subclass will inherit methods, properties, and other characteristics from the
superclass. With inheritance, we can also create a class hierarchy where we can have
multiple layers of inheritance.

Let's look at how we could create a class hierarchy with the classes in Swift. We will
start off by creating a base class named Animal:

class Animal {
 var numberOfLegs = 0

Chapter 2

[47]

 func sleeps() {
 print("zzzzz")
 }
 func walking() {
 print("Walking on \(numberOfLegs) legs")
 }
 func speaking() {
 print("No sound")
 }
}

In the Animal class, we defined one property (numberOfLegs) and three methods
(sleeps(), walking(), and speaking()). Now, any class that is a subclass of the
Animal class will also have these properties and methods. Let's see how this works by
creating two classes that are subclasses of the Animal class. These two classes will be
named Biped (an animal with two legs) and Quadruped (an animal with four legs):

class Biped: Animal {
 override init() {
 super.init()
 numberOfLegs = 2
 }
}

class Quadruped: Animal {
 override init() {
 super.init()
 numberOfLegs = 4
 }
}

Since these two classes inherit all of the properties and methods from the Animal
class, all we need to do is create an initializer that sets the numberOfLegs property to
the correct number of legs. Now, let's add another layer of inheritance by creating a
Dog class that will be a subclass of the Quadruped class:

class Dog: Quadruped {
 override func speaking() {
 print("Barking")
 }
}

Our Type Choices

[48]

In the Dog class, we inherited from the Quadruped class that inherits from the
Animal class. Therefore, the Dog class will have all of the properties, methods, and
characteristics from both the Animal and Quadruped classes. If the Quadruped class
overrides anything from the Animal class, then the Dog class will inherit the version
from the Quadruped class.

We can create very complex class hierarchies in this manner. As an example, the
following image expands on the class hierarchy that we just created to add several
other animal classes:

As we can see, class hierarchies can get very complex. However, as we just saw,
they can eliminate a lot of duplicate code because our subclasses inherit methods,
properties, and other characteristics from their superclasses. Therefore, we do not
need to recreate them in the subclasses.

The biggest drawback of a class hierarchy is complexity. When we have a complex
hierarchy, as shown in the preceding diagram, it is easy to make a change and not
realize how it is going to affect all of the subclasses. As an example, if we think about
the dog and cat classes, we may want to add a furColor property to our Quadruped
class, so we can set the color of the animal's fur. However, horses do not have fur;
they have hair. So, before we can make any changes to a class in our hierarchy, we
need to understand how it will affect all the classes in the hierarchy.

Chapter 2

[49]

In Chapter 1, Object-Oriented and Protocol-Oriented Programming, we compared class
hierarchies, such as the one here, to protocol-oriented programming. In Swift, it is
best to avoid using complex class hierarchies, as shown in this example, and use a
protocol-oriented approach, unless there are specific reasons to use them.

In most object-oriented languages, the standard library is in the form of a class
hierarchy where the majority of the library is implemented using classes, as shown
in this section. However, Swift is a bit different.

Swift built-in data types and data
structures
If you are reading this book, you are probably very familiar with Swift's built-in
data types and data structures. However, to really unleash their power, we need to
understand how they are implemented in the Swift standard library.

The Swift standard library defines several standard data types such as Int, Double,
and String. In most languages, these types are implemented as primitive types, which
means that they cannot be extended or subclassed. In Swift, however, these types are
implemented in the Swift standard library as structures, which means that we can
extend these types just as we can with any other type that is implemented as a structure.

We can read more about Swift's standard library here:
https://developer.apple.com/library/prerelease/
ios/documentation/General/Reference/
SwiftStandardLibraryReference/index.html.

Swift also defines several standard data structures, such as the array, dictionary, and
set. Just like the built-in data types, these are also implemented as structures in the
Swift standard library.

We will be discussing extensions in great detail in Chapter 5, Let's Extend Some Types,
but for right now, let's quickly see what we can do with extensions. As we will
see, it is important to understand that data types and data structures in Swift are
implemented with structures.

Let's say that, in our application, we needed to calculate the factorial of some
integers. A factorial is written as 5!. To calculate a factorial, we take the product of
all the positive integers less than or equal to the number. To calculate the factorial of
5, we will do as follows:

5! = 5*4*3*2*1
5! = 120

https://developer.apple.com/library/prerelease/ios/documentation/General/Reference/SwiftStandardLibraryReference/index.html
https://developer.apple.com/library/prerelease/ios/documentation/General/Reference/SwiftStandardLibraryReference/index.html
https://developer.apple.com/library/prerelease/ios/documentation/General/Reference/SwiftStandardLibraryReference/index.html

Our Type Choices

[50]

We could very easily create a global function to calculate the factorial and we would
do that in most languages. But extensions in Swift give us a better way to add
functions like this and, since the Int type has been implemented as a structure, we
can extend it, as shown in the following example:

extension Int {
 func factorial() -> Int {
 var answer = 1
 for x in self.stride(to: 1, by: -1) {
 answer *= x
 }
 return answer
 }
}

We could now calculate the factorial of any integer, as follows:

var f = 10
print(f.factorial())

It is sometimes better to extend a protocol rather than a single type, as shown here,
because when we extend a protocol, all the types that conform to this protocol will
receive the functionality rather than just the single type. We will discuss extensions
in greater detail in Chapter 5, Let's Extend Some Types. The key to keep in mind here is
that any type derived from a named type can be extended.

Summary
In most object-oriented programming languages, our type choices are pretty limited.
In Swift, however, we have numerous choices. This allows us to use the right type
for the right situation. The one type we did not cover to deeply is the protocol. That
is because we will be covering the protocols in more detail in Chapter 4, All about the
Protocol. In this chapter, we also looked at the difference between value and reference
types. This is a very important concept to understand and we will be discussing it
throughout this book.

[51]

Catching Our Errors
When I first started writing iOS and OS X applications with Objective-C, one of the
most noticeable deficiencies was the lack of exception handling when working with
the Cocoa and Cocoa Touch frameworks. Most modern programming languages
(such as Java and C#) use try-catch blocks or something similar to handle
exceptions. While Objective-C did have the try-catch block, it wasn't used within
the Cocoa framework itself and it never felt like a true part of the language. I do
have significant experience with C, so I was able to understand how the Cocoa and
Cocoa Touch frameworks received and responded to errors; to be honest, I actually
preferred this method however I had grown accustomed to exception handling
with Java and C#. When Swift was first introduced, I was hoping that Apple would
put true error handling into the language, so we would have the option of using it;
however, it was not in the initial release. Now, with Swift 2, Apple has added error
handling to Swift. While this error handling may look similar to exception handling
in Java and C#, there are some very significant differences.

We will cover the following topics in this chapter:

• Using return values to handle errors
• Using NSError to handle errors
• Using Swift 2's error handling
• How to use the guard statement
• How to use the defer keyword
• When to use each of the error handling patterns

Error handling is the process of responding to, and recovering from, error conditions
within our applications. Prior to Swift 2.0, error handling followed the same patterns
that we used in Objective-C. Starting with Swift 2.0, we have additional options. In
this chapter, we will be covering various options for error handling so we can see the
advantages and disadvantages of the different options.

Catching Our Errors

[52]

When we design our applications or frameworks it is important that we properly
respond to and recover from errors. This can be the difference between a successful or
a failed launch of your application. With proper error handling our applications can
respond to improper input or less than ideal conditions (network connection drops or
data files becoming corrupt) and inform the user what went wrong. Without proper
error handling, our applications could crash causing user frustration and bad reviews.
Error handling may not be one of the first areas that you think about when you think
about protocol-oriented programming but it should be one of the first items you think
about when you are designing your application or framework.

In the simplest form of error handling, the return value from the function will
indicate whether the function was successful or not. This return value could be
something as simple as a Boolean true/false value or something more complex such
as an enumeration, whose values indicate what actually went wrong if the function
was unsuccessful. If we needed to report additional information about the error that
occurred, we could add an NSError out parameter of the NSErrorPointer type or
we could use associated values with our enumerations.

Starting with Swift 2.0, we have a new way to handle errors. Languages such as Java
and C# generally refer to the error handling process as exception handling; within
the Swift documentation, Apple refers to this process as error handling. While, on
the outside, Java and C# exception handling may look very similar to Swift's error
handling, there are some significant differences.

While the new error handling mechanism in Swift 2.0 is very efficient at handling
errors, it is still valid, and sometimes preferable, to use the same patterns that we
used prior to Swift 2.0. In this chapter we will be looking at different ways to handle
errors in Swift and examine when and how we should use each. We will begin by
looking at the new guard statement that was introduced in Swift 2.0 because we will
be using this statement in the majority of the examples in this chapter.

Using the guard statement
In Swift and most modern languages, our conditional statements tend to focus on
testing for true conditions. As an example, the following code tests to see if the
variable x is greater than 10. If so, we perform some function; otherwise, we handle
the error condition:

var x = 9
if x > 10 {
 // Functional code here
} else {
 // Do error condition
}

Chapter 3

[53]

This type of code leads us to having our functional code embedded within conditional
statements and the error conditions tucked away at the end of the code. While we
may be use to reading code like this, because that is how we handle errors in most
modern languages, it does make our code a challenge to read at times especially if
we need to do several checks. Wouldn't it be nice if we could handle error conditions
at the beginning of our code and get them out of the way? I know in our simple
example we could easily check if x is less than or equal to 10, and if so perform the
error condition, but not all conditional statements are that easy to rewrite, especially
items such as optional binding. Let's look at how we would write a function that
would use optional binding at the beginning of the code to check for nil values but
first let's define a structure named Blog, which we will use to demonstrate the guard
statement. This structure will contain three optional properties.

struct Blog {
 var author: String?
 var name: String?
 var url: NSURL?
}

Now let's write a function that takes one parameter of the optional type that could
contain nil or could contain an instance of the Blog type. Within the function, we
will print out information about the blog; however we will need to make sure that
the parameter is not nil and also that the author and name properties are not nil.
Here is the code for that function:

func blogInfo(blog: Blog?) {
 if let blog = blog {
 if let author = blog.author, name = blog.name{
 print("BLOG:")
 print(" Author: \(author)")
 print(" name: \(name)")
 } else {
 print("Author or name is nil")
 }
 } else {
 print("Blog is nil")
 }
}

In the blogInfo() function, we have two optional binding statements to check if
the blog parameters are nil and also if the author or name properties are nil. We
could combine these into one optional binding statement. However, in this example
we want separate messages for each check; therefore we use two separate optional
binding statements.

Catching Our Errors

[54]

As we can see in this example, our functional code is embedded within the two
optional binding statements and our error messages are at the end of the function.
If we want to see how we are handling each error condition, we need to follow the
brackets for our if statement. If our function has fifty to sixty lines of functional code
it can be hard to trace. Luckily our IDEs can fold our code to make it a little easier to
read but with Swift 2 we can use the guard statement to make it even easier to read
and manage.

The guard statement is designed to transfer program control out of the current scope
if a condition is not met. This allows us to trap errors and perform the error checks
early in our functions/methods/initializers. This makes our code much easier to
read and understand. Keep in mind that, whenever we make our code easier to read
and understand, we make it safer, less error-prone, and easier to maintain. We could
rewrite our previous example using the guard statement like this:

func blogInfo2(blog: Blog?) {
 guard let blog = blog else {
 print("Blog is nil")
 return
 }

 guard let author = blog.author, name = blog.name else {
 print("Author or name is nil")
 return
 }

 print("BLOG:")
 print(" Author: \(author)")
 print(" name: \(name)")
}

In this example, we create a function named blogInfo2() that accepts an optional
parameter named blog that contains either an instance of the Blog type or a nil
value. We then used two guard statements with optional binding. The first guard
statement is used to verify that the blog parameter is not nil. The second guard
statement is used to verify that the author and name properties do not contain nil
values. If they do contain nil values, then the code within the guard statements
is executed. Notice that each guard statement contains a return statement. This
is because guard statements must contain a transfer of control statement like the
return statement.

What is really nice about using the guard statement with optional binding is that the
new variable that is created is in scope for the rest of the function rather than just
within the scope of the optional binding statement. This means we are able to use the
blog, author, and name variables throughout the blogInfo2() function.

Chapter 3

[55]

As we can see, it is much easier to read and understand the code within the
blogPost2() function that uses the guard statements as compared to the blogInfo()
function, which uses if-else statements to perform the same functionality.

Error handling
Now let's explore how we can do error handling in Swift. We will begin by looking
at some of the patterns we used prior to Swift 2.0. These patterns are still valid, and
sometimes preferred, even with the do-catch blocks that were introduced in Swift
2.0 because there are times we want something simpler and we also do not want to
have do-catch blocks everywhere in our code.

We will use a Drink structure that is similar to the code we created in Chapter 1,
Object-Oriented and Protocol-Oriented Programming, to demonstrate the various error
handling methods. Here is the code for the Drink structure:

struct Drink {
 var volume: Double
 var caffeine: Double
 var temperature: Double
 var drinkSize: DrinkSize
 var description: String

 mutating func drinking(amount: Double) {
 volume -= amount
 }
 mutating func temperatureChange(change: Double) {
 temperature += change
 }
}

For each error handling pattern, we will add a single error condition for the
drinking() method that is returned or thrown if the amount parameter (which
specifies how much we are drinking) is greater than the volume property (which
defines the amount remaining in the drink). We will also define two error conditions
for the temperatureChange() method that will be returned or thrown if the drink
gets too hot or too cold.

Now let's begin with our error handling patterns. The first pattern that we will show
is how to use return values to indicate success or failure.

Catching Our Errors

[56]

Error handling with return values
As we mentioned earlier, error handling, in its most simplest form, uses the return
value from a function or method to indicate whether it was successful or not. This
return value could be something as simple as a Boolean true/false value or something
more complex such as an enumeration, whose values indicate what actually went
wrong if the function or method was unsuccessful. This was one of the primary error-
handling patterns with Objective-C and also with Swift prior to version 2.0. This is
still a very valid pattern if we just need something to indicate success or failure.

Let's see how we would use the return value to add error handling to the
drinking() method of the Drink structure. For this function, we just need an
indicator that will let us know if we were able to successfully take the drink. This
is the ideal situation for using a Boolean return value. A return value of true will
indicate that the function was successful and a return value of false will indicate
that it failed. Let's see how we would implement this with the drinking() method:

mutating func drinking(amount: Double) -> Bool {
 guard amount <= volume else {
 return false
 }
 volume -= amount
 return true
}

In this method, we use the guard statement to verify that the amount that we want
to drink is less than or equal to the volume remaining in the drink. If not, we return a
false value indicating that the method failed; otherwise, we subtract the amount we
drank from the volume remaining in the drink and return a true value, indicating
that the method was successful.

Adding a simple Boolean return value to our methods is one of the easiest ways to
add error handling to our applications. It is also very easy to check for errors with
this type of error handling. For example the following code creates an instance of the
Drink class and then uses the drinking() method to take a drink. We then verify
that we successfully took a drink:

var myDrink = Drink(volume: 23.5, caffeine: 280,
 temperature: 38.2, drinkSize: DrinkSize.Can24,
 description: "Drink Structure")

if myDrink.drinking(50.0) {
 print("Had a drink")
} else {
 print("Error")
}

Chapter 3

[57]

In this code, to check for errors all we needed to do was to call to the drinking()
method in an if statement to verify that the method was successful.

Now let's look at how we would use a return value to indicate whether the
temperature of the drink is still in the acceptable range after a call to the
temperatureChange() method. The return value for the method will be an
enumeration that will let us know if the temperature of the drink is too cold,
too hot, or just right. This enumeration will look like this:

enum DrinkTemperature {
 case TooHot
 case TooCold
 case JustRight
}

Now let's see how we would change the temperatureChange() method to let us
know whether the temperature of the drink is within the acceptable range:

mutating func temperatureChange(change: Double) -> DrinkTemperature {
 temperature += change
 guard temperature >= 35 else {
 return .TooCold
 }
 guard temperature <= 45 else {
 return .TooHot
 }
 return .JustRight
}

The acceptable range of temperature for our drinks is between 35 and 45 degrees;
therefore in our code we need to verify that the temperature of the drink is greater
than or equal to 35 degrees and less than or equal to 45 degrees. In our new method
we use a guard statement to verify that the drink is greater than or equal to 35
degrees; otherwise we return a TooCold value. We then use another guard statement
to verify that the drink is less than or equal to 45 degrees; otherwise we return a
TooHot value. If the temperature successfully passes the two guard statements, we
return a JustRight value.

We would use this function like this:

var results = myDrink.temperatureChange(-5)
switch results {
case .TooHot:
 print("Drink too hot")
case .TooCold:
 print("Drink too cold")

Catching Our Errors

[58]

case .JustRight:
 print("Drink just right")
}

In this example we used a switch statement after we changed the temperature to
see if the temperature of the drink got too hot, too cold, or was still in the acceptable
range. We could use an if statement if all we wanted to do was to verify that the
temperature was in an acceptable range.

If we needed additional information about our error, we could use associated values
with our enumeration. In our example, this additional information could be the
actual temperature of the drink.

What we saw in this section is the easiest error-handling pattern to implement;
however, there are several drawbacks to this pattern. The biggest drawback to this
error-handling pattern is that it is by far the easiest form to ignore. It is very easy, in
our code, to call these functions and then ignore the returned value. This can cause
issues in our application if we simply assume a function/method was successful
when it isn't.

As a general rule, if a function/method has a return value we should always check
it to verify that the function completed successfully. The next error handling pattern
that we will look at is how we would use the NSError class to return detailed
information about an error.

Error handling with NSError
The NSError class encapsulates information about an error into a single object. It
consists of an error domain, a domain-specific error code, and a user information
dictionary that contains specific information about the error. When we use NSError
in Swift we add an NSError inout parameter of the NSErrorPointer type to our
method's parameter list.

As a general rule we should not use an NSError instance to indicate whether an error
occurred or not. Our methods should instead return either a nil or a Boolean false
to indicate a failure. We can then use the NSError instance to give details about the
error that occurred.

Let's look at how we can use the NSError class in our code. We will want to begin
by defining our error domain and error codes as constants. The following structure
defines these:

struct ErrorConstants {
 static let ERROR_DOMAIN = "com.masteringswift.nserrorexample"

Chapter 3

[59]

 static let ERROR_INSUFFICENT_VOLUME = 200
 static let ERROR_TOO_HOT = 201
 static let ERROR_TOO_COLD = 202
}

Let's see how we could change the drinking() method to use an NSError inout
parameter. The NSError parameter will be used to return details about any errors
that occur to the code that called this method.

mutating func drinking(amount: Double, error: NSErrorPointer) -> Bool
{
 guard amount <= volume else {
 error.memory = NSError(
 domain: ErrorConstants.ERROR_DOMAIN,
 code: ErrorConstants.ERROR_INSUFFICENT_VOLUME,
 userInfo: ["Error reason":"Not enough volume for drink"])
 return false
 }
 volume -= amount
 return true
}

In this example, we use the guard statement to see if the amount that we are
drinking is less than or equal to the volume remaining in the drink. If it is not, we
then set the memory property of the NSErrorPointer parameter to a new instance
of the NSError class. For this new NSError instance, we set the domain to the
ERROR_DOMAIN defined in the ErrorConstants structure and the code to the
ERROR_INSUFFICENT_VOLUME constants defined in the ErrorConstants structure.
We also create a user info directory that contains details about the error.

NSErrorPointer is actually a typealias for the
AutoreleasingUnsafeMutablePointer structure.
Using the NSErrorPointer structure is the equivalent of
NSError** in Objective-C, which is used in methods as an
inout expression.

We then return false, letting the code that called this method know that an error
occurred so it can check the NSError object for details about the error.

We would use this method like this:

var myDrink = Drink(volume: 23.5, caffeine: 280,
 temperature: 38.2, drinkSize: DrinkSize.Can24,
 description: "Drink Structure")

Catching Our Errors

[60]

var myError: NSError?
if myDrink.drinking(50.0, error: &myError) {
 print("Had a drink")
} else {
 print("Error: \(myError?.code)")
}

In this example, we create an instance of the Drink structure and the NSError class.
We then call the drinking() method of the Drink instance, passing in the amount
we wish to drink and also a reference to the NSError instance that we created. If
the drinking() method returns true, then we successfully took the drink and the
myError instance should be nil. If the drinking() method returned false, then
there was a problem taking the drink and we print out an error message with the error
code. Now let's look at the temperatureChange() method and see how we would use
the NSError class to let us know if the temperature of the drink gets too hot or too cold:

mutating func temperatureChange(change: Double, error: NSErrorPointer)
-> Bool {
 temperature += change
 guard temperature >= 35 else {
 error.memory = NSError(
 domain: ErrorConstants.ERROR_DOMAIN,
 code: ErrorConstants.ERROR_TOO_COLD,
 userInfo: ["Error reason":"Drink too cold"])
 return false
 }
 guard temperature <= 45 else {
 error.memory = NSError(
 domain: ErrorConstants.ERROR_DOMAIN,
 code: ErrorConstants.ERROR_TOO_HOT,
 userInfo: ["Error reason":"Drink too warm"])
 return false
 }
 return true
}

In the temperatureChange() method, we begin by adjusting the temperature
property based on the change parameter that was passed into the method. We
then verify that the temperature property is greater than or equal to 35 degrees;
if not, we set the memory property of the NSErrorPointer parameter to a new
instance of the NSError class. For this new NSError instance we set the domain to
the ERROR_DOMAIN defined in the ErrorConstants structure and the code to the
ERROR_TOO_COLD constants defined in the ErrorConstants structure. We also create
a user information directory that contains details about the error. Finally we return a
Boolean false from the method, indicating that the temperature of the drink is not
in the appropriate range.

Chapter 3

[61]

We have a second guard statement that verifies that the temperature property
is less than or equal to 45 degrees; if not, we set the memory property of the
NSErrorPointer parameter to a new instance of the NSError class. This error
specifies that the drink got too hot. We then return a Boolean false from the
method, indicating that the temperature of the drink is not in the appropriate range.

If both of our guard statements were successful, we return a true from the
method indicating that the method was successful and the drink was still in the
appropriate range.

In the Error handling with return values section, we saw how to use a return value to
indicate if our methods or functions were successful or not. In this section we basically
expanded on that section to include an NSError instance to give details about the error.
We demonstrated these error handling methods by showing how to add them to the
drinking() and temperatureChange() methods of the Drink structure.

For the drinking() method, there was only a single error condition. That error
occurred when we tried to drink more than the amount remaining in the drink.
When we have just a single error condition, such as the drinking() function, it
is usually not necessary to use an NSError object to describe the error condition;
therefore, using just a return value is preferred. We would, however, want to make
sure that we document what a false return value from our function meant.

For the temperatureChange() method, we had two error conditions that occurred
when the temperature of the drink got too cold or too hot. In the Error handling
with return values section, we used an enumeration to indicate what error condition
occurred while in this section we used an NSError object. If we just need to report
the error, the enumeration is the easiest method to use; however, if we need to give
additional information about the error, the NSError method could be used. In the
next section, we will explore another error handling pattern that should be preferred
over the NSError pattern in these cases.

The error handling patterns that we have seen so far were the patterns that we used
prior to Swift 2. While these patterns are still valid, Swift 2 has added a new error
handling pattern that we can use.

Error handling with Swift 2
On the surface, exception handling in languages such as Java and C# may look very
similar to Swift's new error handling pattern; however there are some significant
differences. Developers accustomed to exception handling with these languages
will notice these differences as they read this section. Before we explore how this
error handling works, we need to see how we represent errors in this new
error-handling pattern.

Catching Our Errors

[62]

Representing errors
In Swift, errors are represented by values of types that conform to the ErrorType
protocol. Swift's enumerations are very well suited for modeling these error
conditions because, generally, we have a finite number of error conditions to
represent. We can also use associated values to add additional information about
our errors.

Let's look at how we could use an enumeration to represent an error. For this, we
will define a fictitious error named MyError with three error conditions: Minor, Bad,
and Terrible:

 enum MyError: ErrorType {
 case Minor
 case Bad
 case Terrible
 }

In this example, we define that the MyError enumeration conforms to the ErrorType
protocol. We then define the three error conditions: Minor, Bad, and Terrible.
We can also use the associated values with our error conditions to give additional
information about the error that occurred. Let's say that we wanted to add a
description to one of the error conditions; we would do it like this:

 enum MyError: ErrorType {
 case Minor
 case Bad
 case Terrible (description: String)
 }

Those who are familiar with exception handling in Java and C# can see that
representing errors in Swift is a lot cleaner and easier. Another advantage that
we have is that it is very easy to define multiple error conditions and group them
together; so all the related error conditions are of one type.

Let's see how we would represent the error conditions for our Drink type:

enum DrinkErrors: ErrorType {
 case insufficentVolume
 case tooHot
 case tooCold
}

Chapter 3

[63]

We begin by defining that the DrinkErrors enumeration conforms to the ErrorType
protocol. Within the DrinkErrors enumeration, we define our three error conditions
that could occur within our Drink structure. As we mentioned earlier in this section,
we can use associated values with our ErrorType enumerations. With associated
values, we could rewrite our DrinkErrors enumeration like this:

enum DrinkErrors: ErrorType {
 case insufficentVolume
 case tempOutOfRange (Description: String)
}

This is a perfectly acceptable way to define errors in Swift; however, it is not
recommended to define them in this way. When an error is thrown in an application,
we want to make sure we can catch the specific error so we know how to react
to it. In this example we would be able to catch the tempOutOfRange error as it
was thrown but we would then need to do an additional lookup to find out if the
temperature was too high or too low. Having to do this additional lookup would not
be ideal and would add additional complexity that is not necessary.

If we are going to use associated values with our error types, the associated values
should be used to add additional information about the error condition rather than
being used to specify the type of error that occurred. For example we could use
associated values to return the actual temperature as shown in the following example:

enum DrinkErrors: ErrorType {
 case insufficentVolume
 case tooHot (temp: Double)
 case tooCold (temp: Double)
}

Now that we have seen how to define errors, let's look at how we would throw an
error if an error condition occurred.

Throwing errors
When an error occurs in a function, the code that called the function must be made
aware of it; this is called throwing the error. When a function throws an error, it
assumes that the code that called it, or some code further up the chain, will catch and
recover appropriately from the error.

Catching Our Errors

[64]

To throw an error from a function or method we use the throws keyword. This
keyword lets the code that called it know that an error may be thrown. Unlike
exception handling in other languages, we do not list the specific errors types that
may be thrown.

Since we do not list the specific error types that may be
thrown from a function within the function's definition, it
would be good practice to list them in the documentation and
comments for the function so that other developers who use
our function know what error types to catch.

Let's look at how we would throw errors in Swift. We will start by seeing how we
would throw an error for our drinking() method. This method will throw an error
if we do not have enough volume left in our drink. The error that is thrown will be
the insufficentVolume error:

 /**
 This method will take a drink from our drink if we have
 enough liquid left in our drink.

 - Parameter amount: The amount to drink
 - Throws: DrinkError.insufficentVolume if there is not
 enough volume left

 */
 mutating func drinking(amount: Double) throws {
 guard amount < volume else {
 throw DrinkErrors.insufficentVolume
 }
 volume -= amount
 }

Notice how we start the drinking() method with a comment. This comment block
starts off by describing what the method does. We then describe what the amount
parameter is and finally we list the errors that could be thrown by this method. When
we use comments as shown in this example we are able to hold down the option key
and then click on the function name anywhere in our code. Xcode will then display a
popup with the description of the function, as shown in the following screenshot:

Chapter 3

[65]

Using comments in the way we have just demonstrated will help us document what
our method does, what type of parameters they accept, the return value, and what
type of errors are thrown from the method. Remember earlier we mentioned that we
do not specify the types of errors thrown from our functions, methods, or initializers
but, if we document our code as shown here, we can document the error types that
could be thrown and what the errors mean.

When we define the drinking() method we define it with the throws keyword at
the end of the declaration. The throws keyword indicates that a function, method,
or initializer can throw an error. If our function or method had a return type, the
throws keyword will appear after the parameter list but before the return type.
The following example shows how we would use the throws keyword if we had a
return value:

func myFunc(parm: String) throws -> String

Catching Our Errors

[66]

Within the drinking() method, we use the guard statement to verify that we have
enough volume left to take our drink. If we do not have enough volume left we
throw the DrinkErrors.insufficentVolume error. To throw an error, we use the
throw keyword followed by the error we wish to throw. When an error is thrown,
control is returned to the code that called the function or method.

Now let's look at how we would write the temperatureChange() method that could
throw either the DrinkErrors.tooHot or DrinkErrors.tooCold error:

 /**
 This method will change the temperature of the drink.

 - Parameter change: The amount to change, can be negative
 or positive

 - Throws:
 - DrinkError.tooHot if the drink is too hot
 - DrinkError.tooCold if the drink is too cold

 */
 mutating func temperatureChange(change: Double) throws {
 temperature += change
 guard temperature > 35 else {
 throw DrinkErrors.tooCold(temp: temperature)
 }
 guard temperature < 45 else {
 throw DrinkErrors.tooHot(temp: temperature)
 }
 }

In the temperatureChange() method, we use comments similar to how we use them
in the drinking() method to document what the method does and also what errors
could be thrown. Within the method itself, we begin by adjusting the temperature
of the drink. We then use two guard statements that verify whether the temperature
of the drink is still within the acceptable range. If the temperature is outside the
acceptable range, we throw either the DrinkErrors.tooHot or DrinkErrors.
tooCold error.

Now let's look at how we would catch the errors that are thrown.

Chapter 3

[67]

Catching errors
When an error is thrown from a function, we need to catch it in our code; this is done
using the do-catch block. The do-catch block takes the following syntax:

do {
 try [Some function that throws an error]
} catch [pattern] {
 [Code if function threw error]
}

When we call a function or method that throws an error, we must prefix the call with
the try keyword. The try keyword helps us quickly identify the code that could
potentially throw errors.

If an error is thrown, it is propagated out until it is handled by a catch clause. The
catch clause consists of the catch keyword, followed by a pattern to match the error
against. If the error matches the pattern, the code within the catch block is executed.

Let's see how we would catch the errors thrown from the drinking() method:

do {
 try myDrink.drinking(50.0)
} catch DrinkErrors.insufficentVolume {
 print("Error taking drink")
}

In this example, we surrounded the call to the drinking() method with the do-catch
block and we also prefixed the call to the drinking() method with the try keyword.
The catch statement attempts to match the DrinkErrors.insufficentVolume error
since that is the error thrown by the drinking() method.

If the DrinkErrors.insufficentVolume error is thrown from the drinking()
method we then print the message Error taking drink to the console.

We do not have to include a pattern after the catch statement. If a pattern is not
included after the catch statement or we put an underscore, the catch statement
will match all error conditions. For example, either one of the following two catch
statements will catch all errors:

do {
 // our statements
} catch {
 // our error conditions
}

do {

Catching Our Errors

[68]

 // our statements
} catch _ {
 // our error conditions
}

If we are unsure of the errors that may be thrown from a function or method it is a
good idea to include a catch statement that will match all error conditions to avoid
having an error at runtime that is not caught. If we have an error at runtime that is
not caught the application will crash.

If we want to capture the error, we can use the let keyword, as shown in the
following example:

do {
 // our statements
} catch let error {
 print("Error: \(error)")
}

Now let's see how we would catch the DrinkErrors.tooHot and
DrinkErrors.tooCold errors from the temperatureChange() method:

do {
 try myDrink.temperatureChange(20.0)
} catch DrinkErrors.tooHot(let temp) {
 print("Drink too hot: \(temp) degrees ")
} catch DrinkErrors.tooCold(let temp) {
 print("Drink too cold: \(temp) degrees ")
}

In this example, we have two catch statements where each catch statement matches
a different error condition. In addition we also capture the associated value for the
error by using the let statement within the parentheses, as shown in this example.

When I am working with exceptions in languages such as Java and C#, I see a lot of
empty catch blocks. This is where we need to catch the exception because one might
be thrown; however, we do not want to do anything with it. In Swift, the code would
look something like this:

do {
 try myDrink.temperatureChange(20.0)
} catch {}

Chapter 3

[69]

Seeing code like this is one of the things that I dislike about exception handling. The
Swift developers have an answer for this: the try? keyword. The try? keyword
attempts to perform an operation that may throw an error. If the operation succeeds,
the results, if any, are returned in the form of an optional; however, if the operation
fails with an error being thrown, the operation returns a nil and the error is
discarded. We would use the try? keyword like this:

try? myDrink.temperatureChange(20.0)

If the function or method had a return type, we would use optional binding to
capture the value returned, as shown in the next example:

if let value = try? myMethod(42) {
 print("Value returned \(value)")
}

As we can see, the try? keyword makes our code much cleaner and easier to read.

We can also let the errors propagate out rather than immediately catching them.
To do this, we just need to add the throws keyword to the function definition.
For instance, in the following example rather than catching the error, we let it
propagate out to the code that called the function rather than handling the error
within the function:

func myFunc() throws {
 try myDrink.temperatureChange(20.0)
}

If we need to perform some clean up action, regardless of whether we had any errors
or not, we can use the defer statement. We use the defer statement to execute a
block of code just before code execution leaves the current scope. The following
example shows how we would use the defer statement:

 func deferFunction() {
 print("Function started")
 var str: String?
 defer {
 print("In defer block")
 if let s = str {
 print("str is \(s)")
 }
 }
 str = "Jon"
 print("Function finished")
}

Catching Our Errors

[70]

If we called this function, the first line that is printed to the console is: Function
started. The execution of the code skips the defer block and Function finished
would be printed to the console next. Finally, the defer code block will be executed
just before we leave the function's scope, and we see the message: In defer block.
The following is the output from this function:

 Function started
 Function finished
 In defer block
 str is Jon

The defer block will always be called before execution leaves the current scope, even
if an error is thrown. The defer block is very useful when we need to perform some
clean up functions prior to leaving a function.

The defer statement is very useful when we want to make sure we perform all
the necessary clean up, even if an error is thrown. For example, if we successfully
open up a file to write to, we will always want to make sure we close that file, even
if we have an error during the write operation. We could then put the file-closed
functionality in a defer block to make sure that the file is always closed prior to
leaving the current scope.

In this chapter we have seen three ways that we can do error handling in Swift, but
which one should we use?

When to use error handling
The three distinct error-handling patterns that we saw in this chapter were:

• Error handling with return values
• Error handling with NSError
• Error handling with do-catch blocks

Now that we have explored these three error-handling patterns, we need to decide
when to use each one. In order to help us understand which error-handling pattern
to use, we need to really understand the advantages and disadvantages of each.

Error handling with return values is definitely the easiest error-handling pattern
to implement. In this pattern, the value that is returned from a method or function
indicates whether we had an error or not. This return value could be something as
simple as a Boolean true value (indicating success) or a false value (indicating
failure). The return value could also be something more complex, such as an
enumeration whose values would indicate specific success or failure conditions.

Chapter 3

[71]

Handling errors with the NSError pattern is the most complex because we need
to deal with the complexities of the NSError class. Once we get use to using the
NSError class, it really is not that bad; however, compared to the other two patterns
it still adds additional complexity.

Error handling with the do-catch block is the error-handling pattern that was
introduced with Swift 2. This pattern is very easy to use but it does add additional
complexity that is sometimes not needed when we simply want to know if a function
was successful or not.

It is very easy to ignore errors when we use the return values and NSError patterns
for handling errors since the returning code is responsible for specifically checking
for the errors. If we use these patterns, we need to make sure that we check the
return value and respond to any error that may occur.

Let's look at a couple of examples to see when we should use each error-handling
pattern. In this first example, let's say that we have a function that checks to see what
type of network connection we have. Our return values would be an enumeration
that could contain the following values: WIFI, MOBILE, or NONETWORK. In this
function, if an error occurs while checking the network connection, we would
generally want to set the network type to NONETWORK and have our code assume that
there is no network connection. This would be a great candidate for handling errors
with return values.

In this example, if we do need additional information about the errors that occurred,
we could add additional enumeration values. We could also throw the error using
the do-catch block; however that may be an overkill if our code simply treats any
error with the network check as not having a network connection.

For our next example, let's assume that we have a function that retrieves values from
a data source (a Web Service or database). Simply returning a nil value to indicate
that our data source is not available may not be enough because we would also
return a nil value if no value was found. In this example, we should use the new
error-handling pattern that was introduced with Swift 2. This will allow us to return
a nil value if the value was not found or throw an error to let the code know that
the data source is not available. Our code would probably want to treat these two
conditions separately.

In reality, the only time we should use the NSError pattern for handling errors is if
we are planning to create a framework that may be used by applications that do not
support Swift 2 or may be used with Objective-C.

Catching Our Errors

[72]

Summary
Error handling is the process of responding to, and recovering from, error conditions
within our applications. In this chapter we looked at three different error-handling
patterns that we can use in Swift. Each error-handling pattern has its advantages and
disadvantages. Knowing when to use each (and using it appropriately) can make our
applications and frameworks safer and easier to maintain.

In the next chapter, we will look at how and why we should use protocols.

[73]

All about the Protocol
Coming from an object-oriented background, I am very familiar with protocols (or
interfaces, as they are known in other object-oriented languages); however, prior
to Apple introducing protocol-oriented programming, protocols or interfaces were
rarely the focal point of my application designs unless I was working with an OSGI-
based project. When I designed an application in an object-oriented way, I always
began the design with the objects. The protocols or interfaces were then used where
they made sense mainly for polymorphism when a class hierarchy did not make
sense. Now all that has changed and with protocol-oriented programming the
protocol has been elevated to the focal point of our application design.

In this chapter you will learn:

• How to define property and method requirements within a protocol
• How to use protocol inheritance and composition
• How to use a protocol as a type
• What polymorphism is
• How to use Associated values with a protocol
• How to use the delegation pattern in Swift
• How to design type requirements with protocols

When we are designing an application in an object-oriented way, we begin the
design by focusing on the objects and how they interact. The object is a data structure
that contains information about the attributes of the object in the form of properties
and the actions performed by or to the object in the form of methods. We cannot
create an object without a blueprint that tells the application what attributes and
actions to expect from the object. In most object-oriented languages, this blueprint
comes in the form of a class. A class is a construct that allows us to encapsulate the
properties and actions of the object into a single type.

All about the Protocol

[74]

Most object-oriented programming languages contain an interface type. This
interface is a type that contains method and property signatures but does not contain
any implementation details. An interface can be considered a contract where any
type that conforms to the interface must implement the required functionality
defined within the interface.

Interfaces in most object-oriented languages are primarily used as a way to achieve
polymorphism. There are some frameworks, such as OSGI, that use interfaces
extensively; however in most object-oriented designs the interface takes a back seat
to the class and class hierarchy.

Designing an application in a protocol-oriented way is significantly different from
designing it in an object-oriented way. As we stated earlier, object-oriented design
begins with the objects and the interaction between the objects while protocol-
oriented design begins with the protocol. While protocol-oriented design is about so
much more than just the protocol, we can think of the protocol as the backbone of
protocol-oriented programming. After all, it would be pretty hard to have protocol-
oriented programming without the protocol.

A protocol in Swift is similar to interfaces in object-oriented languages where
the protocol acts as a contract that defines the methods, properties, and other
requirements needed by our types to perform their task. We say that the protocol
acts as a contract because any type that adopts, or conforms, to the protocol promises
to implement the requirements defined by the protocol.

Any class, structure, or enumeration can conform to a protocol. A type cannot conform
to a protocol unless it implements all required functionality defined within the
protocol. If a type adopts a protocol and it does not implement all functionality defined
by the protocol, we will get a compile time error and the project will not compile.

Most modern object-oriented programming languages implement their standard library
with a class hierarchy; however, the basis of the Swift's standard library is the protocol.
(https://developer.apple.com/library/prerelease/ios/documentation/
General/Reference/SwiftStandardLibraryReference/index.html). Therefore, not
only does Apple recommend that we use the protocol-oriented programming paradigm
in our applications, but they also use it in the Swift standard library.

With the protocol being the basis of the Swift standard library and also the backbone
of the protocol-oriented programming paradigm, it is very important that we fully
understand what the protocol is and how we can use it. In this chapter we will go
over the basic usage of the protocol, which will include the syntax for defining the
protocol, how to define requirements in a protocol, and how to make our types
conform to a given protocol. At the end of this chapter, we will look at how to
implement the delegation pattern in Swift using protocols and how to use protocol
composition to create small, very specific protocols rather than large monolithic ones.

https://developer.apple.com/library/prerelease/ios/documentation/General/Reference/SwiftStandardLibraryReference/index.html
https://developer.apple.com/library/prerelease/ios/documentation/General/Reference/SwiftStandardLibraryReference/index.html

Chapter 4

[75]

Protocol syntax
In this section we will look at how to define a protocol, define requirements within
a protocol, and specify that a type conforms to a protocol. We will start off by seeing
how we define a protocol.

Defining a protocol
The syntax we use to define a protocol is very similar to the syntax used to define a
class, structure, or enumeration. The following example shows the syntax used to
define a protocol:

protocol MyProtocol {
 //protocol definition here
}

To define the protocol, we use the protocol keyword followed by the name of
the protocol. We then put the requirements, which our protocol defines, between
curly brackets. Custom types can state that they conform to a particular protocol by
placing the name of the protocol after the type's name, separated by a colon. The
following example shows how we would state that the MyStruct structure conforms
to the MyProtocol protocol:

struct MyStruct: MyProtocol {
 //structure implementation here
}

A type can also conform to multiple protocols. We list the multiple protocols that
the type conforms to by separating them with commas. The following example
shows how we would specify that the MyStruct structure type conforms to the
MyProtocol, AnotherProtocol, and ThirdProtocol protocols:

struct MyStruct: MyProtocol, AnotherProtocol, ThirdProtocol {
 // Structure implementation here
}

Having a type conform to multiple protocols is a very important concept within
protocol-oriented programming, as we will see later in the chapter. This concept is
known as protocol composition.

Next let's see how we would add property requirements to our protocol.

All about the Protocol

[76]

Property requirements
A protocol can require that the conforming types provide certain properties with
specified names and types. The protocol does not say if the property should be a
stored or computed property, because the implementation details are left up to the
conforming types.

When defining a property within a protocol, we must specify whether the property
is a read-only or a read-write property by using the get and set keywords. We
also need to specify the property's type since we cannot use the type inference in a
protocol. Let's look at how we would define properties within a protocol by creating
a protocol named FullName as shown in the next example:

protocol FullName {
 var firstName: String {get set}
 var lastName: String {get set}
}

In the FullName protocol we define two properties named firstName and lastName.
Any type that conforms to the FullName protocol must implement both of these
properties. Both of these properties are defined as read-write properties. If we
wanted to define the property as a read-only, we would define it using only the get
keyword like this:

var readOnly: String {get}

If the property is going to be a type property then we must define it in the protocol.
A type property is defined using the static keyword as shown in the following
example.

static var typeProperty: String {get}

Now let's see how we would add method requirements to our protocol.

Method requirements
A protocol can require that the conforming types provide specific methods. These
methods are defined within the protocol exactly as we define them within a class or
structure but without the curly brackets and method body. We can define that these
methods are instance or type methods using the static keyword. Adding default
values to the method's parameters is not allowed when defining the method within
a protocol.

Let's add a method named getFullName() to our FullName protocol:

protocol FullName {
 var firstName: String {get set}

Chapter 4

[77]

 var lastName: String {get set}

 func getFullName() -> String
}

Our fullName protocol now requires one method named getFullName() and two
read-write properties named firstName and lastName.

For value types, like the structure, if we intend for a method to modify the instances
that it belongs to, we must prefix the method definition with the mutating keyword.
This keyword indicates that the method is allowed to modify the instance it belongs
to and any properties of that instance. The following example shows how to use the
mutating keyword with a method definition:

mutating func changeName()

If we mark a method requirement as mutating we do not need to write the mutating
keyword for that method when we adopt the protocol with a reference (class) type.
The mutating keyword is only used with value (structures or enumerations) types.

Optional requirements
There are times when we want protocols to define optional requirements—that is,
methods or properties that are not required to be implemented. To use optional
requirements we need to start off by marking the protocol with the @objc attribute.

It is important to note that only classes can adopt protocols
that use the @objc attribute. Structures and enumerations
cannot adopt these protocols.

To mark a property or method as optional, we use the optional keyword. Let's
look at how we would use the optional keyword to define optional properties and
methods:

@objc protocol Phone {
 var phoneNumber: String {get set}
 optional var emailAddress: String {get set}

 func dialNumber()
 optional func getEmail()
}

All about the Protocol

[78]

In the Phone protocol we just created, we define a required property named
phoneNumber and an optional property named emailAddress. We also defined a
required function named dialNumber() and an optional function named getEmail().

Now let's explore how protocol inheritance works.

Protocol inheritance
Protocols can inherit requirements from one or more other protocols and then
add additional requirements. The following code shows the syntax for protocol
inheritance:

protocol ProtocolThree: ProtocolOne, ProtocolTwo {
 // Add requirements here
}

The syntax for protocol inheritance is very similar to class inheritance in Swift except
that we are able to inherit from more than one protocol. Let's see how protocol
inheritance works. We will use the FullName protocol that we defined earlier in this
section and create a new protocol named Person.

protocol Person: FullName {
 var age: Int {get set}
}

Now when we create a type that conforms to the Person protocol we must
implement the requirements defined in the Person protocol and also the
requirements defined in the FullName protocol. As an example, we could define a
Student structure that conforms to the Person protocol like this:

struct Student: Person {
 var firstName = ""
 var lastName = ""
 var age = 0

 func getFullName() -> String {
 return "\(firstName) \(lastName)"
 }
}

Notice that in the Student structure we implemented the requirements defined
in both the FullName and Person protocols; however, the only protocol specified
when we defined the Student structure was the Person protocol. We only needed
to list the Person protocol because it inherited all of the requirements from the
FullName protocol.

Chapter 4

[79]

Now let's look at a very important concept in the protocol-oriented programming
paradigm: protocol composition.

Protocol composition
Protocol composition lets our types adopt multiple protocols. This is a major
advantage that we get when we use protocols rather than a class hierarchy because
classes can only inherit from one super-class. The syntax for protocol composition
is the same as protocol inheritance that we just saw. The following shows how to do
protocol composition:

struct MyStruct: ProtocolOne, ProtocolTwo, Protocolthree {
 // implementation here
}

Protocol composition allows us to break our requirements into many smaller
components rather than inheriting all requirements from a single superclass or
class hierarchy. This allows our type families to grow in width rather that height,
which means we avoid creating bloated types that contain requirements that are
not needed. Protocol composition may seem like a very simple concept but it is a
concept that is essential to protocol-oriented programming. Let's look at an example
of protocol composition so we can see the advantage we get from using it.

Let's say that we have a class hierarchy as shown in the following diagram:

All about the Protocol

[80]

In this class hierarchy we have a base class named Athlete. The Athlete base class
then has two sub-classes named Amateur and Pro. These classes are used depending
on whether the athlete is an amateur athlete or a pro athlete. An amateur athlete may
be a colligate athlete and we would need to store the information like which school
they go to and their GPA. A pro athlete is one that gets paid for playing the game.
For the pro athletes, we would need to store information such as what team they
play for and their salary.

In this example, things get a little messy under the Amateur and Pro classes.
As we can see, we have a separate football player class under both the Amateur
and Pro classes (the AmFootballPlayer and ProFootballPlayer classes). We
also have a separate baseball class under both the Amateur and Pro classes (the
AmBaseballPlayer and ProBaseballPlayer classes). This will require us to have a
lot of duplicate code between theses classes.

With protocol composition, instead of having a class hierarchy where our subclasses
inherit all functionality from a single super-class, we have a collection of protocols
that we can mix-and-match in our types.

We then use one or more of these protocols as needed for our types. For example, we
can create an AmFootballPlayer structure that conforms to the Athlete, Amateur,
and Footballplayer protocols. We could also create the ProFootballPlayer
structure that conforms to the Athlete, Pro, and Footballplayer protocols. This
allows us to be very specific about the requirements for our types and only adopt the
requirements that we need.

Chapter 4

[81]

This last example from a pure protocol point of view may not make a lot of sense
right now because protocols only define the requirements. In Chapter 5, Let's Extend
Some Types, we will look at this example again to see how protocol extensions can be
used to implement these types with minimal duplicate code.

Now let's look at how a protocol is a full-fledged type in Swift.

Using protocols as a type
Even though no functionality is implemented in a protocol, they are still considered
a full-fledged type in the Swift programming language and can mostly be used like
any other type. What this means is that we can use protocols as parameter or return
types for a function. We can also use them as the type for variables, constants, and
collections. Let's take a look at some examples. For these next few examples we will
use the following PersonProtocol protocol:

protocol PersonProtocol {
 var firstName: String {get set}
 var lastName: String {get set}
 var birthDate: NSDate {get set}
 var profession: String {get}

 init (firstName: String, lastName: String, birthDate: NSDate)
}

In this PersonProtocol, we define four properties and one initializer.

For this first example we will show how to use a protocol as a parameter and return
type for a function, method, or initializer. Within the function itself we also use the
PersonProtocol as the type for a variable:

 func updatePerson(person: PersonProtocol) -> PersonProtocol {
var newPerson: PersonProtocol
 // Code to update person goes here
 return newPerson
 }

We can also use protocols as the type to store in a collection, as shown in the
next example:

var personArray = [PersonProtocol]()
var personDict = [String: PersonProtocol]()

All about the Protocol

[82]

The one thing we cannot do with protocols is create an instance of one. This is
because no functionality is implemented within a protocol. As an example, if we
tried to create an instance of the PersonProtocol protocol as shown in the following
example, we would receive this error: error: protocol type 'PersonProtocol'
cannot be instantiated:

var test = PersonProtocol(firstName: "Jon", lastName: "Hoffman",
birthDate: bDateProgrammer)

We can use the instance of any type that conforms to our protocol anywhere that
the protocol type is required. As an example, if we define a variable to be of the
PersonProtocol protocol type, we can then populate that variable with the instance
of any type that conforms to the PersonProtocol protocol. Let's assume that we
have two types named SwiftProgrammer and FootballPlayer that conform to the
PersonProtocol protocol. We can then use them as shown in this next example:

var myPerson: PersonProtocol

myPerson = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
birthDate: bDateProgrammer)

myPerson = FootballPlayer(firstName: "Dan", lastName: "Marino",
birthDate: bDatePlayer)

In this example, the myPerson variable is defined to be of the PersonProtocol
protocol type. We can then set this variable to instances of either of the
SwiftProgrammer and FootballPlayer types. One thing to note is that Swift does
not care if the instance is a class structure or enumeration. It only matters that the
type conforms to the PersonProtocol protocol type.

As we saw earlier, we can use our PersonProtocol protocol as the type for an
array, which means that we can populate the array with instances of any type that
conforms to the PersonProtocol protocol. The following is an example of this (note
that the bDateProgrammer and bDatePlayer variables are NSDate instances that
would represent the birthdate of the individual):

var programmer = SwiftProgrammer(firstName: "Jon", lastName:
"Hoffman", birthDate: bDateProgrammer)

var player = FootballPlayer(firstName: "Dan", lastName: "Marino",
birthDate: bDatePlayer)

var people: [PersonProtocol] = []
people.append(programmer)
people.append(player)

Chapter 4

[83]

What we are seeing in these last couple of examples is a form of polymorphism.
To use protocols to their fullest potential, we need to understand what
polymorphism is.

Polymorphism with protocols
The word polymorphism comes from the Greek roots polys (meaning many) and
morphe (meaning form). In programming languages, polymorphism is a single
interface to multiple types (many forms). There are two reasons to learn the meaning
of the word polymorphism. The first reason is that using such a fancy word can
make you sound very intelligent in a casual conversion. The second reason is that
polymorphism provides one of the most useful programming techniques not only in
object-oriented programming, but also protocol-oriented programming.

Polymorphism lets us interact with multiple types though a single uniform interface.
In the object-oriented programming world, the single uniform interface usually
comes from a super class, while in the protocol-oriented programming world that
single interface usually comes from a protocol.

In the last section we saw two examples of polymorphism with Swift. The first
example was the following code:

var myPerson: PersonProtocol

myPerson = SwiftProgrammer(firstName: "Jon", lastName: "Hoffman",
birthDate: bDateProgrammer)

myPerson = FootballPlayer(firstName: "Dan", lastName: "Marino",
birthDate: bDatePlayer)

In this example we had a single variable of the PersonProtocol type. Polymorphism
allowed us to set the variable to instances of any type that conforms to the
PersonProtocol protocol, such as the SwiftProgrammer or FootballPlayer types.

The other example of polymorphism was in the following code:

var programmer = SwiftProgrammer(firstName: "Jon", lastName:
"Hoffman", birthDate: bDateProgrammer)

var player = FootballPlayer(firstName: "Dan", lastName: "Marino",
birthDate: bDatePlayer)

var people: [PersonProtocol] = []
people.append(programmer)
people.append(player)

www.allitebooks.com

http://www.allitebooks.org

All about the Protocol

[84]

In this example we create an array of PersonProtocol types. Polymorphism allowed
us to add instances of any types that conform to PersonProtocol to this array.

When we access an instance of a type though a single uniform interface as we just
showed, we are unable to access type-specific functionality. As an example, if we had
a property in the FootballPlayer type that records the age of player, we would be
unable to access that property because it is not defined in the PeopleProtocol protocol.

If we do need to access type-specific functionality, we can use type casting.

Type casting with protocols
Type casting is a way to check the type of an instance and/or to treat the instance as
a specified type. In Swift we use the is keyword to check if an instance is of a specific
type and the as keyword to treat an instance as a specific type.

The following example shows how we would use the is keyword:

if person is SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")
}

In this example, the conditional statement returns true if the person instance is of
the SwiftProgrammer type or false if it isn't. We can also use the switch statement
(as shown in the next example) if we want to check for multiple types.

for person in people {
 switch (person) {
 case is SwiftProgrammer:
 print("\(person.firstName) is a Swift Programmer")
 case is FootballPlayer:
 print("\(person.firstName) is a Football Player")
 default:
 print("\(person.firstName) is an unknown type")
 }
}

We can use the where statement in combination with the is keyword to filter an
array to only return instances of a specific type. In the next example, we filter an
array that contains instances of the PersonProtocol to only return those elements of
the array that are instances of the SwiftProgrammer type:

for person in people where person is SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")

}

Chapter 4

[85]

Now let's look at how we would cast an instance to a specific type. To do this, we can
use the as keyword. Since the cast can fail if the instance is not of the specified type,
the as keyword comes in two forms: as? and as!. With the as? form, if the casting
fails it returns a nil; with the as! form, if the casting fails we get a runtime error.
Therefore, it is recommended to use the as? form unless we are absolutely sure of
the instance type or we perform a check of the instance type prior to doing the cast.

The following example shows how we would use the as? keyword to attempt to cast
an instance of a variable to the SwiftProgammer type:

if let p = person as? SwiftProgrammer {
 print("\(person.firstName) is a Swift Programmer")
}

Since the as? keyword returns an optional, in the last example we could use optional
binding to perform the cast. If we are sure of the instance type, we can use the as!
keyword as shown in the next example

for person in people where person is SwiftProgrammer {
 let p = person as! SwiftProgrammer
}

Now let's see how we can use associated types with protocols.

Associated types with protocols
When defining a protocol, there are times where it is useful to define one or more
associated types. An associated type gives us a placeholder name that we can use
within the protocol in place of a type. The actual type to use for the associated type
is not defined until the protocol is adopted. The associated type basically says, We do
not know the exact type to use; therefore when a type adopts this protocol it will define it. As
an example, if we were to define a protocol for a queue, we would want the type that
adopts the protocol to define the instance types that the queue contains rather than
the protocol.

To define an associated type we use the typealias keyword. Let's see how to use
associated types within a protocol. In this example, we will define the QueueProtocol
protocol that will define the requirements needed to implement a queue:

protocol QueueProtocol {
 typealias QueueType
 mutating func addItem(item: QueueType)
 mutating func getItem() -> QueueType?
 func count() -> Int
}

All about the Protocol

[86]

In this protocol, we define one associated type named QueueType. We then use
this associated type twice within the protocol, once as the parameter type for the
addItem() method. We then use it again when we define the return type of the
getItem() method as an optional type that might return an instance defined by the
QueueType associated type; alternatively, it might return nil.

Any type that implements the QueueProtocol protocol must specify the type to use
for the QueueType placeholder and must also ensure that only items of that type are
used where the protocol uses the QueueType placeholder.

Let's look at how to implement QueueProtocol in a non-generic class called
IntQueue. This class will implement the QueueProtocol protocol using the Int type:

struct IntQueue: QueueProtocol {
 var items = [Int]()

 mutating func addItem(item: Int) {
 items.append(item)
 }

 mutating func getItem() -> Int? {
 if items.count > 0 {
 return items.removeAtIndex(0)
 }
 else {
 return nil
 }
 }

 func count() -> Int {
 return items.count
 }
}

As we can see in the IntQueue structure, we use the Int type for both the parameter
type of the addItem() method and the return type of the getItem() method.
These are the same types that were defined as the QueueType typealias in the
QueueProtocol protocol.

In the preceding example, we implemented the QueueProtocol protocol in a non-
generic way. Generics in Swift allow us to define the type to use at runtime rather
than compile time. Let's see how to implement the QueueProtocol protocol as a
generic type called GenericQueue:

class GenericQueue<T>: QueueProtocol {
 var items = [T]()

Chapter 4

[87]

 func addItem(item: T) {
 items.append(item)
 }

 func getItem() -> T? {
 if items.count > 0 {
 return items.removeAtIndex(0)
 } else {
 return nil
 }
 }

 func count() -> Int {
 return items.count
 }
}

The GenericQueue implementation is very similar to the IntQueue implementation,
except that we define the type to use with the generic placeholder T. We can then use
the GenericQueue class as we would use any generic type. Let's take a look at how to
use the GenericQueue class:

var intQ2 = GenericQueue<Int>()
intQ2.addItem(2)
intQ2.addItem(4)
print(intQ2.getItem())
intQ2.addItem(6)

Now that we have explored protocols in some detail, let's look at how we would
implement the delegation design pattern using protocols.

Delegation
Delegation is used extensively within the Cocoa and Cocoa touch frameworks. The
delegation pattern is a very simple but powerful pattern where an instance of one
type acts on behalf of another instance. The instance that is doing the delegating
keeps a reference to the delegate instance and then, when an action happens, the
delegating instance sends a message to the delegate who performs some function.
Sounds confusing? It really isn't.

This design pattern is implemented in Swift by creating a protocol that defines the
delegates' responsibilities. The type that conforms to the protocol, known as the
delegate, will adopt this protocol, guaranteeing that it will provide the functionality
defined by the protocol.

All about the Protocol

[88]

Let's look at an example of the delegation pattern in Swift. For this example, we will
have a Person structure. This structure will have two properties of the String type
named firstName and lastName. It will also have a third property that will store
the delegate instance. When either the firstName or lastName properties are set,
we will call a method in the delegate instance that will display the full name. Since
the Person structure is delegating the responsibility for displaying the name to
another instance, it does not need to know or care how the name is being displayed.
Therefore, the full name could be displayed in a console window or in a UILabel;
alternatively, the message may be ignored altogether.

Let's start off by looking at the protocol that defines the delegate's responsibilities.
We will name this delegate DisplayNameDelegate:

import Foundation

protocol DisplayNameDelegate {
 func displayName(name: String)
}

In the DisplayNameDelegate protocol we define one method that the delegate
needs to implement named displayName(). It is assumed that within this method
the delegate will somehow display the name; however it is not required. The only
requirement is that the delegate implements this method.

Now let's look at the Person structure. This is the structure that will do the
delegation.

import Foundation

struct Person {
 var displayNameDelegate: DisplayNameDelegate

 var firstName = "" {
 didSet {
 displayNameDelegate.displayName(getFullName())
 }
 }
 var lastName = "" {
 didSet {
 displayNameDelegate.displayName(getFullName())
 }
 }

 init(displayNameDelegate: DisplayNameDelegate) {
 self.displayNameDelegate = displayNameDelegate

Chapter 4

[89]

 }

 func getFullName() -> String {
 return "\(firstName) \(lastName)"
 }
}

In the Person structure, we start off by adding our three properties,
which are named displayNameDelegate, firstName, and lastName. The
displayNameDelegate property contains an instance of our delegate type. This
instance will be responsible for displaying the full name when the values of the
firstName and lastName properties change.

Within the definitions for the firstName and lastName properties, we define
property observers. The property observers are called each time the value of the
properties is changed. Within these property observers, we call the displayName()
method of our delegate instance, which is responsible for displaying the name.

Now let's create a type that will conform to the DisplayNameDelegate protocol. We
will name this type MyDisplayNameDelegate and implement the displayName()
method defined in the protocol.

struct MyDisplayNameDelegate: DisplayNameDelegate {
 func displayName(name: String) {
 print("Name: \(name)")
 }
}

In this example, all we do is print the name to the console. Now let's see how we
would use this delegate:

var displayDelegate = MyDisplayNameDelegate()
var person = Person(displayNameDelegate: displayDelegate)

person.firstName = "Jon"
person.lastName = "Hoffman"

In this code, we begin by creating an instance of the MyDisplayNameDelegate type
and then use that instance to create an instance of the Person type. We then assign
the name of Jon to the firstName property. When the value of the firstName
property changes, the property observer that we set is called, which calls the delegate
to display the name; therefore, the value of Jon is printed to the console. Finally we
set the lastName property to Hoffman. Just like the firstName property, when the
value of the lastName property changes the property observer that we set is called,
which then calls the delegate to display the name. This time the value Jon Hoffman
is printed to the console.

All about the Protocol

[90]

Displaying values to the console like this really does not show off the power of the
delegation pattern. Within the downloadable code for this book there is a simple
project named Delegation that shows how we can use the delegation pattern to
display the name within a UILabel whenever the values of the names change.

If you download the code for the Delegation project, you will notice that the
DisplayNameDelegate protocol and the Person structure are exactly the same as
the example in the book. This is one of the many advantages of using the delegation
pattern. Since the type that is delegating the functionality does not care how the
delegate implements the functionality (in our example, it displays the name to the
console) we can reuse the code within a single project or across multiple projects.

Another advantage that we get from using the delegation pattern is loose coupling.
In our example we separated the logic part of our code from the view by using
the delegate to display the name whenever the firstName or lastName properties
changed. Loose coupling promotes a separation of responsibility where each type
is responsible for very specific tasks; this makes it very easy to swap out these tasks
when requirements change, because we all know that requirements change often.

So far in this chapter, we have looked at protocols from a coding point of view. In
this final section we will look at protocols from a design point of view.

Designing and developing with protocols
With protocol-oriented programming, we should always begin our design with
the protocols, but how should we design these protocols? In the object-oriented
programming world, we have super-classes that contain all of the base requirements
for the sub-classes.

In the protocol-oriented programming world, we use protocols instead of
super-classes and it is preferable to break our requirements into smaller, very
specific protocols rather than having bigger monolithic protocols. In this section
we will look at how we can separate our requirements into smaller, very specific
protocols and then use protocol composition to add the requirements to our types.

In this section, we will be demonstrating how to define property requirements in
our protocols. In the next chapter, Let's Extend Some Types, we will show how to add
functionality to all types that conform to a protocol using protocol extensions.

Chapter 4

[91]

For the example in this section we will model something that my daughters and I
really enjoy doing and that is Tae Kwon Do. As we progress through the Tae Kwon
Do ranks, we are required to take tests to see if we know the requirements for our
belt color and rank. If we pass the tests, we are promoted to the next belt color and/
or rank. Each of these belt colors and ranks has different testing requirements. For
example, to test for a yellow belt we need to do our form, one-step, and focus pad
drills but to test for a blue belt we need to do our form, focus pad drills, board
breaks, and sparring.

The different testing areas are:

• Forms
• Focus pad drills
• One-steps
• Board breaks
• Sparring

If we were going to model the different testing requirements in an object-oriented
way, we would start off by creating a super class that contained all of the testing
areas even though not all subclasses will need all of the testing areas. We would then
create sub-classes of this super-class that would contain the individual requirements
for each of the tests. Before we see how we would do this in an object-oriented way,
let's create two enumerations that will define the different belt colors and ranks.
We will also create a type alias that will define the board break requirements. The
following code shows how we would define these:

enum TKDBeltColors: Int {
 case White, Yellow, Orage, Green, Blue, Purple, Red,
FirstDegreeBlack, SecondDegreeBlack, ThirdDegreeBlack,
ForthDegreeBlack
}

enum TKDColorRank: Int {
 case NoRank, Probationary, Decided, Intermediate, Senior
}

typealias BoardBreak = (name: String, required: Bool)

For the board breaking requirements, we have to break a certain number of boards
(depending on the rank) from a list of possible techniques. Some of these techniques
are required techniques while others are optional. Our BoardBreak typealias is a
tuple that contains a string value that specifies the technique and a Boolean value
that specifies whether that technique is required or not.

All about the Protocol

[92]

Now that we have defined our enumerations and typealias, let's design our class
hierarchy that will model our different testing requirements. We will start off by
creating a super-class named TKDTestingRequirements and all of the other Tae
Kwon Do testing classes will be sub-classes of this super-class:

class TKDTestingRequirements {
 var color = TKDBeltColors.White
 var rank = TKDColorRank.NoRank
 var formName = ""
 var focusPadDrills = [String]()
 var focusPadMissesAllowed = 2
 var sparringRoundsRequired = 0
 var boardBreaksRequired = 0

 var boardBreaks: [BoardBreak]?
 var oneStepsNumbers: [Int]?
}

In the TKDTestingRequirments class, we defined all possible requirements that
we may have for testing. This includes requirements such as the one-steps, which
are only requirements for the white and yellow belt testing. All other belt and rank
classes will need to set the oneStepsNumbers property to nil, indicating that it is not
required for testing.

We can then sub-class the TKDTestingRequirments class to define the requirements
for our tests. As examples, the following classes define the requirements for the
White and Senior Green Belt tests:

class WhiteBelt: TKDTestingRequirements {
 override init () {
 super.init()
 color = TKDBeltColors.White
 rank = TKDColorRank.NoRank
 formName = "Chon-Ji"
 oneStepsNumbers = [1,2,3]
 focusPadDrills = ["Reverse Punch", "Number 1 Front Kick"]
 focusPadMissesAllowed = 2
 boardBreaksRequired = 0
 sparringRoundsRequired = 0
 }
}

class GreenBeltSenior: TKDTestingRequirements {
 override init() {
 super.init()

Chapter 4

[93]

 color = TKDBeltColors.Green
 rank = TKDColorRank.NoRank
 formName = "Do-San"
 focusPadDrills = ["Back Fist", "Number 2 Crescent"]
 focusPadMissesAllowed = 2
 boardBreaks = [(name:"Hammer Fist", required: false),
 (name:"Front Kick", required: false)]
 boardBreaksRequired = 1
 sparringRoundsRequired = 2
 oneStepsNumbers = nil
 }
}

This design would work and it would be fairly easy to create different classes for
each of our tests. However, we are defining requirements that are not necessary
for all of our testing; this is not an optimal design. As an example, we are setting
the boardBreaksRequired and sparringRoundsRequired properties to 0 in the
WhiteBelt class. Wouldn't it be nice if we only needed to define the requirements
that are necessary for the particular test? With protocol-oriented programming, we
can. Let's redesign this solution in a protocol-oriented way.

With protocol-oriented programming, instead of putting all of the requirements
into a single type, as we did with the object-oriented example, we separate the
requirements into multiple smaller protocols. Each of these protocols will contain the
requirements for a specific testing area. For our example, the requirements are the
individual testing areas:

• Forms
• Focus pad drills
• One-steps
• Board breaks
• Sparring

With object-oriented programming, a class can only inherit from a single super class;
therefore we need to put all of our requirements into a single monolithic super-class.
With protocol composition we are able to let a single type adopt multiple protocols;
thus, we can break our requirements into multiple smaller protocols. This allows us
to implement only the requirements necessary for our type.

Our testing area protocols would look like this:

protocol TKDRankProtocol {
 var color: TKDBeltColors {get}
 var rank: TKDColorRank {get}

All about the Protocol

[94]

}
protocol BoardBreakProtocol {
 var boardBreaks: [BoardBreak] {get}
 var boardBreaksRequired: Int {get}
}

protocol FormProtocol {
 var formName: String {get}
}

protocol FocusPadProtocol {
 var focusPadDrills: [String] {get}
 var focusPadMissesAllowed: Int {get}
}

protocol OneStepsProtocol {
 var oneStepsNumbers: [Int] {get}
}

protocol SparringProtocol {
 var sparringRoundsRequired: Int {get}
}

Each of these protocols only contains the requirements for its specific testing areas.
When we design our applications, it is important to separate our requirements into
smaller protocols like this so we do not have to implement requirements that do not
pertain to our type.

We could now adopt these protocols as shown in the next example:

struct WhiteBelt: TKDRankProtocol, FormProtocol, OneStepsProtocol,
 FocusPadProtocol {
 let color = TKDBeltColors.White
 let rank = TKDColorRank.NoRank
 let formName = "Chon-Ji"
 let oneStepsNumbers = [1,2,3]
 let focusPadDrills = ["Reverse Punch", "Number 1 Front Kick"]
 let focusPadMissesAllowed = 2
}

struct GreenBeltSenior: TKDRankProtocol, FormProtocol,
 BoardBreakProtocol, FocusPadProtocol, SparringProtocol {
 let color = TKDBeltColors.Green
 let rank = TKDColorRank.NoRank
 let formName = "Do-San"

Chapter 4

[95]

 let focusPadDrills = ["Back Fist", "Number 2 Crescent"]
 let focusPadMissesAllowed = 2
 let boardBreaks = [(name:"Hammer Fist", required: false),
 (name:"Front Kick", required: false)]
 let boardBreaksRequired = 1
 let sparringRoundsRequired = 2
}

For each of these types, we only adopt the requirements that are needed; therefore
we are not implementing any unnecessary requirements. This is a more optimal
design and should be preferred to the object-oriented design that we saw earlier in
this section.

We can then use the is and as keywords as described in the Type casting with
protocols section of this chapter to check if an instance conforms to a specific type.
Checking for and casting to a specific protocol takes the same form as checking for
and casting to a specific type.

Summary
While protocol-oriented programming is about so much more than just the protocol,
it would be impossible to have the protocol-oriented programming paradigm
without the protocol. We can think of the protocol as the backbone of protocol-
oriented programming; therefore it is important to fully understand the protocol in
order to properly implement protocol-oriented programming.

In this chapter we looked at how to implement protocols in our application. We also
looked at many of the features that protocols offer. We concluded this chapter with
two sections on how to properly use protocols.

Extensions are the final piece in the protocol-oriented programming puzzle and, in
the next chapter, we will look at how we can use extensions in Swift.

[97]

Let's Extend Some Types
Back in the early 90's, when the primary language that I developed in was C, I had
numerous custom libraries that contained functionality that was not part of the
standard C library. I found these libraries extremely usefully because I tended to use
the functionality they provided in most of my projects. This functionality included
things such as converting the first letter of a string to uppercase or converting a
double value to a currency string (two digits after the decimal point and a currency
symbol). Having libraries such as this is extremely useful because there is always
functionality that we find useful that is not included in the standard library of the
language we are developing in. I usually implemented this extra functionality, in C,
with global functions. In more modern object-oriented languages, we can implement
this functionality by sub-classing the class we wish to add the functionality to, but
in Swift we can use extensions to add this functionality to existing types without the
need to use global functions or sub-classing. To make extensions even more useful,
starting in Swift 2.0, Apple gave us the ability to extend protocols, which lets us add
functionality to any type that adopts a protocol.

What we will learn in this chapter:

• How to extend structures, classes, and enumerations
• How to extend protocols
• How to use extensions in a real-world example

Extensions are one of the most useful features in the Swift language. They allow us
to add functionality to an existing type even if we do not have the source code for
the type. If you are not familiar with protocol extensions, you may be wondering
how we can add functionality to a protocol when protocols do not contain any
functionality. Well, that is arguably one of the most exciting features about
extensions and we will see how to use protocol extensions later in the chapter. First,
however, we will look at what extensions are and how to extend classes, structures,
and enumerations.

Let's Extend Some Types

[98]

With extensions, we can add the following items to an existing type:

• Computed properties
• Instance and type methods
• Convenience initializers
• Subscripts

One drawback of extensions is that we cannot override the functionality of the type
we are extending. Extensions are designed to add additional functionality and are
not designed as a means of changing the functionality of a type. Another thing
that we cannot do with extensions is add stored properties; however, we can add
computed properties.

To understand why extensions are so useful we need to understand the problem
that they are designed to solve. In most object-oriented languages, when we want
to add additional functionality to an existing class we generally sub-class the class
we want to add the extra functionality to. We then add the new functionality to this
new sub-class. The problem with this method is that we are not actually adding the
functionality to the original class; therefore we have to change all instances of the
original class, which need this extra functionality, to instances of this new sub-class.
With some classes, such as the NSString class, it can take a significant amount of
code to create a sub-class. There is a sample Objective-C project in the downloadable
code that demonstrates this.

Another problem we can run into is that we can only subclass reference types
(classes). This means we are unable to subclass value types such as a structure or
enumeration. What makes matters even worse is the fact that the greater part of
the Swift standard library is made up of value types. Therefore we are unable to
add functionality to types from the Swift standard library by sub-classing them.
Apple has also recommended that we prefer value types to reference types in our
applications, which means that if we listen to Apple's recommendation we cannot
subclass the majority of our custom types.

With extensions, we are able to add new functionality directly to the types that we
are extending. This means that all instances of that type automatically receive the
new functionality without the need to change the type of the instance. We are also
able to extend both reference and value types, which includes protocols. As we will
see later in this chapter, the ability to extend protocols is one of the things that make
protocol-oriented programming possible.

Let's begin by looking at how we extend types such as structures, enumerations,
and classes.

Chapter 5

[99]

Defining an extension
An extension is defined by using the extension keyword followed by the name of the
type you are extending. We then put the functionality that we are adding to the type
between curly brackets. The following example shows how to define an extension:

extension String {
 // Add functionality here
}

The previous example would add an extension to the String type from the Swift
standard library. Since we can extend any type, we can use extensions to add
functionality to types from the Swift standard library, types from frameworks/
libraries, or our own custom types. While we can use extensions to add functionality
to our own custom types, it is usually better to add the functionality directly to
the type itself. The reason for this is that our code is easier to maintain if all of the
functionality (code) for our custom types is located together.

If we are adding functionality to a framework and we have the code for that
framework, it is still better to add the functionality with an extension rather than
changing the code within the framework itself. The reason for this is that, if we add
the functionality directly to the code within the framework, when we get newer
versions of the framework our changes will be overwritten. Newer versions of the
framework will not overwrite our extensions as long as we do not put them in a file
that belongs to the framework.

To add the functionality to a type with an extension we use the same syntax that we
use when we add the functionality to a standard Swift type. For example, the following
code extends the String type to add a method that returns an optional value that
contains either the first character of the string or a nil, if the string is empty:

extension String {
 func getFirstChar() -> Character? {
 guard self.characters.count > 0 else {
 return nil
 }
 return self[startIndex]
 }
}

Let's Extend Some Types

[100]

Once we add this extension to our application, all instances of the String type can
take advantage of the new functionality. There is also nothing special that needs to
be done to access the functionality; instances of the String type do not know or care
whether the functionality came from the original implementation of the type or from
an extension. The following example shows how we use the getFirstChar() method:

var myString = "This is a test"
print(myString.getFirstChar())

The previous example will print the character T to the console. It is just as easy to
add other functionality such as subscripts to existing types. The following example
shows how we would add a subscript to our String extension that accepts a range
operator and returns a substring with the characters defined by the range operator:

extension String {
 func getFirstChar() -> Character? {
 guard self.characters.count > 0 else {
 return nil
 }
 return self[startIndex]
 }

 subscript (r: Range<Int>) -> String {
 get {
 return substringWithRange(Range(
 start: startIndex.advancedBy(r.startIndex),
 end: startIndex.advancedBy(r.endIndex)))
 }
 }
}

In Chapter 2, Our Type Choices, we mentioned that types that are normally
implemented as primitives in other languages are implemented as named types in
Swift. These include types that represent numbers, characters, and Boolean values.
Since they are implemented as named types we are also able to extend them as we
would any other type. As an example, if we wanted to extend the Int type to add a
method that would return the value of the integer squared, we could do it with an
extension like this:

extension Int {
 func squared() -> Int {
 return self * self
 }
}

Chapter 5

[101]

We could then use this extension to get the value of any integer squared as shown in
the next example:

var i = 21
print(i.squared())

Another example would be to extend the Double type to add a method that would
convert the value of the double to a String type representing the value as a
currency. This method would round the number to two decimal places and add a
currency symbol. The following code demonstrates how we could do this:

extension Double {
 func currencyString() -> String {
 let divisor = pow(10.0, 2.0)
 let num = round(self * divisor) / divisor
 return "$\(num)"
 }
}

We cannot add stored properties with extensions; however; we can add computed
properties. Earlier in this section we added a method named squared() to the Int
type. We could have implemented this functionality as a computed property, as
shown in the following example:

extension Int {
 var squared: Int {
 return self * self
 }
}

Now that we have seen how to extend a standard type such as classes, enumerations,
or structures, let's see what protocol extensions are all about.

Protocol extensions
Protocols, like other types, can be extended. Protocol extensions can be used to
provide common functionality to all types that conform to a particular protocol.
This gives us the ability to add functionality to any type that conforms to a protocol
rather than adding the functionality to each individual type or though a global
function. Protocol extensions, like regular extensions, also give us the ability to add
functionality to types that we do not have the source code for.

Let's Extend Some Types

[102]

Protocol-oriented programming and frameworks such as GamePlayKit would not
be possible without protocol extensions. Without protocol extensions, if we wanted
to add specific functionality to a group of types that conformed to a protocol, we
would have to add the functionality to each of the types. If we were using reference
types (classes), we could create a class hierarchy but that is not possible for value
types. Apple has stated that we should prefer value types to reference types and with
protocol-extensions we have the ability to add common functionality to a group of
value and/or reference types that conform to a specific protocol, without having to
implement that functionality in all types.

Let's see what protocol extensions can do for us. The Swift standard library provides
a protocol named CollectionType (https://developer.apple.com/library/
ios//documentation/Swift/Reference/Swift_CollectionType_Protocol/
index.html#//apple_ref/swift/intf/s:PSs14CollectionType). This protocol
inherits from the Indexable and SequenceType protocols and is adopted by all of
Swift's standard collection types, for example, Dictionary and Array.

Let's say that we wanted to add the functionality to all types that conform to the
CollectionType. This new functionality would shuffle the items in a collection or
return only the items whose index number is an even number. We could very easily
add this functionality by extending the CollectionType protocol, as shown in the
following code:

extension CollectionType {
 func evenElements() -> [Generator.Element] {

 var index = self.startIndex
 var result: [Generator.Element] = []
 var i = 0
 repeat {
 if i % 2 == 0 {
 result.append(self[index])
 }
 index = index.successor()
 i++
 } while (index != self.endIndex)
 return result
 }

 func shuffle() -> [Self.Generator.Element] {
 return sort(){ left, right in
 return arc4random() < arc4random()
 }
 }
}

https://developer.apple.com/library/ios//documentation/Swift/Reference/Swift_CollectionType_Protocol/index.html#//apple_ref/swift/intf/s:PSs14CollectionType
https://developer.apple.com/library/ios//documentation/Swift/Reference/Swift_CollectionType_Protocol/index.html#//apple_ref/swift/intf/s:PSs14CollectionType
https://developer.apple.com/library/ios//documentation/Swift/Reference/Swift_CollectionType_Protocol/index.html#//apple_ref/swift/intf/s:PSs14CollectionType

Chapter 5

[103]

Notice that, when we extend a protocol, we use the same syntax and format
that we use when we extend other types. We use the extension keyword
followed by the name of the protocol that we are extending. We then put the
functionality we are adding between the curly brackets. Now every type that
conforms to the CollectionType protocol will receive both the evenElements()
and shuffle() functions. The following code shows how we would use these
functions with an array:

var origArray = [1,2,3,4,5,6,7,8,9,10]

var newArray = origArray.evenElements()
var ranArray = origArray.shuffle()

In the previous code, the newArray array will contain the elements 1, 3, 5, 7, and 9
because those elements have index numbers that are even (we are looking at the
index number, not the value of the element). The ranArray array will contain the
same elements as the origArray but the order will be shuffled.

Protocol extensions are great for adding functionality to a group of types without
the need to add the code to each of the individual types; however, it is important to
know what types conform to the protocol we are extending. In the previous example,
we extended the CollectionType protocol by adding the evenElements() and
shuffle() methods to all types that conform to the protocol. One of the types that
conform to this protocol is the Dictionary type. However, the Dictionary type is
an unordered collection; therefore the evenElements() method will not work as
expected. The following example illustrates this:

var origDict = [1:"One",2:"Two",3:"Three",4:"Four"]
var returnElements = origDict.evenElements()
for item in returnElements {
 print(item)
}

Since the Dictionary type does not promise to store the items in any particular
order, any of the two items could be printed to the screen in this example. The
following shows one possible output from this code:

(2, "two")
(1, "One")

Let's Extend Some Types

[104]

Another problem is that anyone who is not familiar with how the evenElements()
method is implemented may expect the returnElements instance to be of the
Dictionary type since the original collection is a Dictionary type; however, it is actually
an instance of the Array type. This can cause some confusion; therefore, we need to be
careful when we extend a protocol to make sure the functionality we are adding works
as expected for all types that conform to the protocol. In the case of the shuffle() and
evenElements() methods, we might have been better served to add the functionality
as an extension directly to the Array type rather than the CollectionType protocol;
however, there is another way. We can add constraints to our extensions that will limit
the types that receive the functionality defined in an extension.

In order for a type to receive the functionality defined in a protocol extension, it must
satisfy all constraints defined within the protocol extension. A constraint is added
after the name of the protocol that we are extending using the where keyword. The
following shows how we would add a constraint to our CollectionType extension:

extension CollectionType where Self: ArrayLiteralConvertible {
 //Extension code here
}

In the CollectionType protocol extensions in the previous example, only types
that also conform to the ArrayLiteralConvertible protocol will receive the
functionality defined in the extension. Since the Dictionary type does not conform
to the ArrayLiteralConvertible protocol, it will not receive the functionality
defined within the protocol extension.

We could also use constraints to specify that our CollectionType protocol extension
only applies to a collection whose elements conform to a specific protocol. In this
next example, we use constraints to make sure that the elements in the collection
conform to the Comparable protocol. This may be necessary if the functionality that
we are adding relies on the ability to compare two or more elements in the collection.
We could add this constraint like this:

extension CollectionType where Generator.Element: Comparable {
 // Add functionality here
}

Constraints give us the ability to limit which types receive the functionality defined
in the extension. One thing that we need to be careful of is using protocol extensions
when we should actually be extending an individual type. Protocol extensions
should be used when we want to add functionality to a group of types. If we are
trying to add the functionality to a single type, we should look to extend that
individual type.

Chapter 5

[105]

In Chapter 4, All about the Protocol, we created a series of protocols that defined the
Tae Kwon Do testing areas. Let's see how we could extend the TKDRank protocol
from that example to add the ability to store which testing areas the student passed
and which areas they failed. The following code is for the original TKDRank protocol
from Chapter 4, All about the Protocol:

protocol TKDRank {
 var color: TKDBeltColors {get}
 var rank: TKDColorRank {get}
}

We will begin by adding an instance of the Dictionary type to our protocol. This
Dictionary type will store the results of our tests. The following example shows
what the new TKDRank protocol will look like:

protocol TKDRank {
 var color: TKDBeltColors {get}
 var rank: TKDColorRank {get}
 var passFailTests: [String:Bool] {get set}
}

We can now extend the TKDRank protocol to add a method that we can use to set
whether the student passes or fails an individual test. The following code shows how
we would do this:

extension TKDRank {
 mutating func setPassFail(testName: String, pass: Bool) {
 passFailTests[testName] = pass
}

Now any type that conforms to the TKDRank protocol will have the setPassFail()
method automatically.

Now that we have seen how to use extensions and protocol extensions, let's look at
a real-world example. In this example we will show how to create a text validation
framework.

Let's Extend Some Types

[106]

Text validation
In numerous apps, across multiple platforms (iOS, Android, and Windows), I have
been tasked to validate user input either after the user has entered it or as it is
entered. This validation can be done very easily with regular expressions; however,
we do not want various regular expression strings littered throughout our code. We
can solve this problem by creating different classes or structures that contain the
validation code. The question is; how would we organize these types to make them
easy to use and maintain? Prior to protocol extensions in Swift, I would have used
protocols to define the validation requirements and would then create a type that
would conform to the protocol for each validation type needed.

Prior to looking at how we would accomplish this text validation, let's take a quick
look at what regular expressions are and how we would use them in Swift. A regular
expression (also known as regex) is a special text string that is used to describe a
search or matching pattern. The regular expression string, also known as a pattern,
consists of one or more characters, operators, or constructs. Regular expressions are
very useful when searching a string for a particular pattern or (as we use it here)
validating a string.

Regular expressions are not unique to Swift. Almost all modern languages have
a way to use regular expressions. Whole books have been written about regular
expressions so in this section we will give a very brief introduction with enough
information for you to understand the examples in this chapter.

In its simplest form, a regular expression is a string of characters such as abc or
12345. Using a regular expression such as this will match the pattern within a string,
as shown in the following examples:

Regex Matches Description
abc xyzabcxyzabc Matches the string abc
12345 1234567890 Matches the string 12345

We can also define character sets using square brackets ([]). Character sets will
match one character in the string to any character within the set. To define the set,
we can use a string of characters, as shown in the last example, or we can use the –
(minus sign) operator to specify a range:

Regex Matches Description
[abc] xyzabcxyz Matches any character in the set abc
[a-zA-Z] xyzabcxyz Matches any lower or uppercase letter

Chapter 5

[107]

We use curly brackets ({ }) to specify the amount of repetition so we can match
more than one character. For example, if we used {2,5} then that would mean we
want to match at least 2 characters but no more than 5 characters:

Regex Matches Description
[a-z]{2,5} xyzabcxyz Matches 2 to 5 lower case letters
[a-z0-9]{2,5} xyzabcxyz Matches 2 to 5 lower case letters or

numbers

The caret (^) at the beginning means we want to match at the beginning and the
dollar sign ($) means match at the end. We can use these two special characters to
match a full string. For example, the ^[a-z]{0,5}$ pattern will match a string only
if there are between 0 and 5 lowercase letters. The match will fail if there are any
other characters besides lowercase letters or more than five characters:

Regex Matches Description
^[a-z]{2,5}$ xyzabcxyz Fails more than five characters
[a-z0-9]{0,5} xyz12 Matches five lowercase or

number characters

Finally, let's look at is some additional special characters within regular expressions.
These are characters that need to be escaped using the backslash (\) and have
special meaning:

Character Definition
. The dot matches any single character
\n Matches a newline character
\t Matches a tab
\d Matches a digit [0-9]
\D Matches a non-digit
\w Matches an alphanumeric character [a-zA-Z0-9]
\W Matches a non-alphanumeric character
\s Matches a whitespace character
\S Matches a non-whitespace character

There is a lot more to regular expressions than we have just seen. In this section, we
only gave enough information to help you understand the text validation examples
in this chapter. If you plan on using regular expressions on a regular (pun intended)
basis, I would suggest reading more about them.

Let's Extend Some Types

[108]

 Now let's look at how we would develop our validation framework without
protocol extensions. We will begin by defining a TextValidationProtocol protocol
that will define the requirements for any type that we will use for text validation.
This will allow us to use the TextValidationProtocol protocol in place of
implementation types. If you recall, this is a form of polymorphism:

 protocol TextValidationProtocol {

 var regExMatchingString: String {get}
 var regExFindMatchString: String {get}
 var validationMessage: String {get}

 func validateString(str: String) -> Bool
 func getMatchingString(str: String) -> String?
}

In this protocol we define three properties and two methods that any type that
conforms to the TextValidationProtocol protocol must implement. The three
properties are:

• regExMatchingString: Regular expression string used to verify that the
input string contains only valid characters.

• regExFindMatchString: Regular expression string used to retrieve a new
string from the input string that contains only valid characters. This regular
expression is generally used when we need to validate the input in real time,
as the user enters information, because it will remove all characters starting
with the first invalid characters to the end of the string.

• validationMessage: This is the error message to display if the input string
contained non-valid characters.

The two methods for this protocol are:

• validateString: This method will return true if the input string contains
only valid characters. The regExMatchingString property will be used in
this method to perform the match.

• getMatchingString: This method will return a new string that contains only
valid characters. This method is generally used when we need to validate
the input in real time, as the user enters information, because it will remove
all characters starting with the first invalid characters. We will use the
regExFindMatchString property in this method to retrieve the new string.

Chapter 5

[109]

Now let's see how we would create a class that conforms to this protocol. The following
class would be used to verify that the input string contains 0 to 10 alpha characters:

class AlphaValidation1: TextValidationProtocol {
 static let sharedInstance = AlphaValidation1()
 private init(){}

 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"

 var regExMatchingString: String { get {
 return regExFindMatchString + "$"
 }
 }

 func validateString(str: String) -> Bool {
 if let _ = str.rangeOfString(regExMatchingString, options:
.RegularExpressionSearch) {
 return true
 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.rangeOfString(regExFindMatchString,
options: .RegularExpressionSearch) {
 return str.substringWithRange(newMatch)
 } else {
 return nil
 }
 }
}

In this implementation, the regExFindMatchString and validationMessage
properties are stored properties and the regExMatchingString property
is a computed property. We also implement the validateString() and
getMatchingString() methods within the class to conform to the protocol.

Normally, we would have several different types that conform to the
TextValidationProtocol protocol where each one would validate a different type
of input. As we can see from the AlphaValidation1 class, there is quite a bit of code
involved with each validation type. A lot of the code would need to be duplicated
for each validation type. This is not ideal. However, if we wanted to avoid creating a
class hierarchy with a super class containing the duplicate code, we would have no
other choice. Protocol extensions give us a better option. Let's take a look at how we
would implement our text validation types with protocol extensions.

Let's Extend Some Types

[110]

With protocol extensions, we need to think about the code a little differently. The big
difference is that we do not need, nor want to define, everything in the protocol. With
standard protocols or when we use a class hierarchy, all methods and properties that
we want to access using the interface provided by the generic superclass or protocol
type have to be defined within the superclass or protocol. With protocol extensions, it is
actually preferable for us to not define a computed property or method in the protocol if
we are going to implement it within the protocol extension. Therefore, when we rewrite
our text validation types with protocol extensions, the TextValidationProtocol
protocol would be greatly simplified and would look like this:

protocol TextValidationProtocol {
 var regExFindMatchString: String {get}
 var validationMessage: String {get}
}

In the original TextValidationProtocol protocol, we defined three properties and
two methods. As we can see in this new protocol, we are only defining two properties.
Now that we have our TextValidationProtocol defined, let's create a protocol
extension where we implement the other two methods and the computed property:

extension TextValidationProtocol {

 var regExMatchingString: String { get {
 return regExFindMatchString + "$"
 }
 }

 func validateString(str: String) -> Bool {
 if let _ = str.rangeOfString(regExMatchingString, options:
.RegularExpressionSearch) {
 return true
 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.rangeOfString(regExFindMatchString,
options: .RegularExpressionSearch) {
 return str.substringWithRange(newMatch)
 } else {
 return nil
 }
 }
}

Chapter 5

[111]

In the TextValidationProtocol protocol extension, we implement the
two methods and the computed property that were defined in the original
TextValidationProtocol protocol but not defined in the new one.

Now that we have created our protocol and protocol extension, we are able to define
our text validation types. In the following code we define three classes that we will
use to validate text:

class AlphaValidation: TextValidationProtocol {
 static let sharedInstance = AlphaValidation()
 private init(){}

 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
}

class AlphaNumericValidation: TextValidationProtocol {
 static let sharedInstance = AlphaNumericValidation()
 private init(){}

 let regExFindMatchString = "^[a-zA-Z0-9]{0,15}"
 let validationMessage = "Can only contain Alpha Numeric
characters"
}

class DisplayNameValidation: TextValidationProtocol {
 static let sharedInstance = DisplayNameValidation()
 private init(){}

 let regExFindMatchString = "^[\\s?[a-zA-Z0-9\\-_\\s]]{0,15}"
 let validationMessage = "Display Name can contain only contain
Alphanumeric Characters"
}

In each of the text validation classes, we create a static constant and a private initiator
so we can use the class as a singleton. For more information on the singleton pattern
please see the Singleton Design Pattern section of Chapter 6, Adopting Design Patterns
in Swift.

Let's Extend Some Types

[112]

After we define the singleton pattern, all we do in each type is set the values for the
regExFindMatchString and the validationMessage properties. Now we have
virtually no duplicate code between the types except the code to implement the
singleton pattern. Even if we could, we would not want to define the singleton code
in the protocol extension because we would not want to force that pattern on all
conforming types. We can also see that we are able to define these three classes with
less code than it took to define the one class without protocol extensions.

We could use these validation classes like this:

var myString1 = "abcxyz"
var myString2 = "abc123"

var validation = AlphaValidation.sharedInstance

validation.validateString(myString1)
validation.validateString(myString2)

validation.getMatchingString(myString1)
validation.getMatchingString(myString2)

In this example, we create two String types, each containing a different string
value. We then get the shared instance of the AlphaValidation type. We use the
validateString() method of the AlphaValidation instance to validate the strings,
which verifies that the whole string matches the regular expression pattern defined
in the AlphaValidation instance. We then use the getMatchingString() method
of the AlphaValidation instance to return a new string that contains only the valid
characters defined in the regular expression pattern.

The validateString() method returns a true value for the myString1 instance
because the value of myString1 matches the regular expression pattern; however
it returns a false value for the myString2 instances because their value contains
numbers which do not match the ^[a-zA-Z]{0,10} regular express pattern defined
in the AlphaValidation type.

The getMatchingString() method returns the full value of myString1 because
the value matches the regular express pattern defined in the AlphaValidation
type. However, for the value of the myString2 instance it only returns an instance
of the string type that contains the value of abc because that is the only part of the
myString2 value that matches the pattern.

Chapter 5

[113]

Let's look at how we could use the text validation code to validate input into
a UITextField in an iOS application. We will not go through how to add a
UITextField in a storyboard or wiring up the UITextField with our backend code
but you can take a look at the sample application included with the downloadable
code for this book to see how it all works together. To start with, we would want to
create a Dictionary object that maps the UITextField instances to the validation
classes like this:

var validators = [UITextField: TextValidationProtocol]()

We could then populate the validators dictionary as shown here:

validators[alphaTextField!] = AlphaValidation.sharedInstance

validators[alphaNumericTextField!] =
AlphaNumericValidation.sharedInstance

validators[displayNameTextField!] =
DisplayNameValidation.sharedInstance

We can now set the set the Editing Changed event of the text fields to a single
method. This method would look like this:

@IBAction func keyPressed(textField: UITextField) {
 if let validator = validators[textField] where
!validator.validateString(textField.text!) {
 textField.text =
validator.getMatchingString(textField.text!)
 messageLabel?.text = validator.validationMessage
 }
 }

In this method, we use the if let validator = validators[textField]
statement to retrieve the validator for the particular text field and then we use the
where !validator.validateString(textField.text!) statement to validate
the string that the user has entered. If the string fails validation, we use the
getMatchingString() method to update the text in the text field by removing all
characters from the input string, starting with the first invalid character, and then
display the error message from the text validation class.

In the downloadable code for this book, you will find a sample project that
demonstrates how to use text validation types.

Let's Extend Some Types

[114]

Summary
In this chapter, we looked at the final piece in the protocol-oriented programming
puzzle: extensions. In the original version of Swift, we were able to use extensions to
extend structures, classes, and enumerations but, starting with Swift 2, we are able to
use extensions to also extend protocols.

Without protocol extensions, protocol-oriented programming would not be possible,
but we need to make sure that we use protocol extensions where appropriate and do
not try to use them where regular extensions should be used.

In the next chapter, we will look at how to use design patterns with Swift.

[115]

Adopting Design Patterns
in Swift

While the first publication of the Gang of Four's Design Patterns: Elements of
Reusable Object-Oriented Software was released in October of 1994, I have only been
paying attention to design patterns for seven or eight years. Like most experienced
developers, when I first started reading about design patterns, I recognized a lot
of the patterns because I had already been using them without realizing what they
were. I would have to say that in the past seven or eight years since I first read
about design patterns, I have not written a serious application without using at least
one of the Gang of Four's design patterns. I will tell you that I am definitely not a
design pattern zealot and, if I get into a conversation about design patterns, there
are usually only a couple of them that I can name without having to look them up.
But one thing that I do remember is the concepts behind the major patterns and
the problems they are designed to solve. This way, when I encounter one of these
problems, I can look up the appropriate pattern and apply it. So remember, as you go
through this chapter, to take the time to understand the major concepts behind the
design patterns rather than trying to memorize the patterns themselves.

In this chapter, you will learn about the following topics:

• What are design patterns?
• What types of patterns make up the creational, structural, and behavioral

categories of design patterns?
• How to implement the builder, factory method, and singleton creational

patterns in Swift
• How to implement the bridge, façade, and proxy structural patterns in Swift
• How to implement the strategy, command, and observer behavioral patterns

in Swift

Adopting Design Patterns in Swift

[116]

What are design patterns?
Every experienced developer has a set of informal strategies that shape how he
or she designs and writes applications. These strategies are shaped by their past
experiences and the obstacles that they have had to overcome in their previous
projects. While these developers might swear by their own strategies, it does not
mean that their strategies have been fully vetted. The use of these strategies can also
introduce inconsistent implementations between different projects and developers.

While the concept of design patterns dates back to the mid 80s, they did not gain
popularity until the Gang of Four released their Design Patterns: Elements of Reusable
Object-Oriented Software book, published in 1994. The book's authors, Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (also known as the Gang of Four),
discuss the pitfalls of object-oriented programming and describe 23 classic software
design patterns. These 23 patterns are broken up into three categories: creational,
structural, and behavioral.

A design pattern identifies a common software development problem and provides
a strategy to deal with it. These strategies have been proven, over the years, to
be an effective solution for the problems they are intended to solve. Using these
patterns can greatly speed up our development process because they provide us
with solutions that have already been proven to solve several common software
development problems.

Another advantage that we get when we use design patterns is consistent code that
is easy to maintain because, months or years from now, when we look at our code,
we will recognize the patterns and understand what the code does. If we properly
document our code and document the design pattern we are implementing, it will
also help other developers understand what our code is doing.

The two main philosophies behind design patterns are code reuse and flexibility. As
a software architect, it is essential that we build reusability and flexibility into our
code. This allows us to easily maintain our code in the future and also makes it easier
for our applications to expand to meet future requirements because we all know how
quickly the requirements change.

While there is a lot to like about design patterns and they are extremely beneficial
for developers and architects, they are not the solution for world hunger that some
developers make them out to be. Sometime in your development career, you will
probably meet a developer or an architect who thinks that design patterns are
immutable laws. These developers usually try to force the use of design patterns
even when they are not necessary. A good rule of thumb is to make sure that you
have a problem that needs to be fixed before you try to fix it.

Chapter 6

[117]

Design patterns are starting points for avoiding and solving common programming
problems. We can think of each design pattern as a recipe for a food dish. Just like a
good recipe, we can tinker and adjust it to meet our particular tastes. But we usually
do not want to stray too far from the original recipe because we may mess it up.

There are also times when we do not have a recipe for a certain dish that we want to
make just like there are times when there isn't a design pattern to solve the problem
we face. In cases like this, we can use our knowledge of design patterns and their
underlying philosophy to come up with an effective solution for our problem.

Design patterns are split into three categories. They are as follows:

• Creational patterns: Creational patterns support the creation of objects
• Structural patterns: Structural patterns concern types and object compositions
• Behavioral patterns: Behavioral patterns concern communication between

types

While the Gang of Four defined over 20 design patterns, we are only going to look
at examples of some of the more popular patterns in this chapter. Let's start off by
looking at creational patterns.

Design patterns were originally defined for object-oriented
programming. In this chapter, where possible, we will focus
on implementing the patterns in a more protocol-oriented
way. Therefore, the examples in this chapter may look a little
different from examples in other design pattern books, but the
underlying philosophy of the solutions will be the same.

Creational patterns
Creational patterns are design patterns that deal with how an object is created. These
patterns create objects in a manner suitable for particular situations.

There are two basic ideas behind creational patterns. The first is encapsulating the
knowledge of which concrete types should be created and the second is hiding how
the instances of these types are created.

There are five well-known patterns that are a part of the creational pattern category.
They are as follows:

• Abstract factory pattern: This provides an interface for creating related
objects without specifying the concrete type

• Builder pattern: This separates the construction of a complex object from its
representation, so the same process can be used to create similar types

Adopting Design Patterns in Swift

[118]

• Factory method pattern: This creates objects without exposing the
underlying logic of how the object (or which type of object) is created

• Prototype pattern: This creates an object by cloning an existing one
• Singleton pattern: This allows one (and only one) instance of a class for the

lifetime of an application

In this chapter, we are going to show examples on how to implement the builder,
factory method, and singleton patterns in Swift. Let's start off by looking at one of
the most controversial and possibly overused design patterns, the singleton pattern.

The singleton design pattern
The use of the singleton pattern is a fairly controversial subject among certain corners
of the development community. One of the main reasons for this is that the singleton
pattern is probably the most overused and misused pattern. Another reason this
pattern is controversial is that the singleton pattern introduces a global state into an
application, which provides the ability to change the object at any point within the
application. The singleton pattern can also introduce hidden dependencies and tight
compiling. My personal opinion is that, if the singleton pattern is used correctly, there
is nothing wrong with using it. However, we do need to be careful not to misuse it.

The singleton pattern restricts the instantiation of a class to a single instance for the
lifetime of an application. This pattern is very effective when we need exactly one
instance to coordinate actions within our application. An example of a good use of
a singleton is if our application communicates with a remote device over Bluetooth
and we also want to maintain that connection throughout our application. Some
would say that we could pass the instance of the connection class from one page
to the next, which is essentially what a singleton is. In my opinion, the singleton
pattern, in this instance, is a much cleaner solution, because with the singleton
pattern any page that needs the connection can get it without forcing every page to
maintain the instance. This also allows us to maintain the connection without having
to reconnect each time we go to another page.

Understanding the problem
The problem the singleton pattern is designed to address is when we need one and
only one instance of a type for the lifetime of our application. The singleton pattern
is usually used when we need centralized management of an internal or external
resource, and a single global point of access. Another popular use of the singleton
pattern is when we want to consolidate a set of related activities, needed throughout
our application, that do not maintain a state, in one place.

Chapter 6

[119]

In Chapter 5, Let's Extend Some Types, we used the singleton pattern in the text
validation example because we only needed one instance of our text validation types
throughout the lifetime of our application. In this example, we used the singleton
pattern for our text validation types because we wanted to create a single instance of
the types that could then be used by all the components of the application without
requiring us to create new instances of the types. These text validation types did
not have a state that could be changed. They only had methods that performed the
validation on the text and constants that defined how to validate the text. While
some may disagree with me, I believe types like these are excellent candidates for
the singleton pattern because there is no reason to create multiple instances of these
types.

Understanding the solution
There are several ways to implement the singleton pattern in Swift. The way that
is presented here uses class constants that were introduced in version 1.2 of Swift.
With this method, a single instance of the class is created the first time we access
the class constant. We will then use the class constant to gain access to this instance
throughout the lifetime of our application. We will also create a private initializer
that will prevent external code from creating additional instances of the class.

Note that we use the word class in this description and not
type. The reason for this is that the singleton pattern can only
be implemented with reference types.

Implementing the singleton pattern
Let's look at how we implement the singleton pattern with Swift. The following code
example shows how to create a singleton class:

class MySingleton {
 static let sharedInstance = MySingleton()
 var number = 0

 private init() {}

}

We can see that, within the MySingleton class, we created a static constant named
sharedInstance that contains an instance of the MySingleton class. A static
constant can be called without having to instantiate the class. Since we declared the
sharedInstance constant static, only one instance will exist throughout the lifecycle
of the application, thereby creating the singleton pattern.

Adopting Design Patterns in Swift

[120]

We also created the private initiator that will restrict other code from creating
another instance of the MySingleton class.

Now, let's see how this pattern works. The MySingleton pattern has another
property named number, which is of the Int type. We will monitor how this property
changes as we use the sharedInstance property to create multiple variables of the
MySingleton type, as shown in the following code:

var singleA = MySingleton.sharedInstance
var singleB = MySingleton.sharedInstance
var singleC = MySingleton.sharedInstance

singleB.number = 2

print(singleA.number)
print(singleB.number)
print(singleC.number)

singleC.number = 3

print(singleA.number)
print(singleB.number)
print(singleC.number)

In this example, we used the sharedInstance property to create three variables
of the MySingleton type. We initially set the number property of the second
MySingleton variable (singleB) to the number 2. When we printed out the value of
the number property for singleA, singleB, and singleC, we saw that the number
property for all three equals 2. We then changed the value of the number property of
the third MySingleton variable (singleC) to the number 3. When we printed out the
value of the number property again, we saw that all three now have the value of 3.
Therefore, when we change the value of the number property in any of the instances,
the values of all three change because each variable is pointed to the same instance.

In this example, we implemented the singleton pattern using a reference (class) type
because we wanted to ensure that only one instance of the type existed throughout
our application. If we implemented this pattern with a value type, such as a structure
or an enumeration, we would run the risk of there being multiple instances of our
type. If you recall, each time we pass an instance of a value type, we are actually
passing a copy of that instance, which means that, if we implemented the singleton
pattern with a value type, each time we called the sharedInstance property, we
would receive a new copy, which would effectively break the singleton pattern.

Chapter 6

[121]

The singleton pattern can be very useful when we need to maintain the state
of an object throughout our application; however, be careful not to overuse it.
The singleton pattern should not be used unless there is a specific requirement
(requirement is the keyword here) for having one, and only one, instance of our class
throughout the lifecycle of our application. If we are using the singleton pattern
simply for convenience, then we are probably misusing it.

Keep in mind that, while Apple recommends that we prefer value types to reference
types, there are still plenty of examples, such as the singleton pattern, where we need
to use reference types. When we continuously tell ourselves to prefer value types to
reference types, it can be very easy to forget that there are times where a reference
type is needed. Don't forget to use reference types with this pattern.

Now, let's look at the builder design pattern.

The builder design pattern
The builder pattern helps us with the creation of complex objects and enforces the
process of how these objects are created. With this pattern, we generally separate the
creation logic from the complex type and put it in another type. This allows us to use
the same construction process to create different representations of the type.

Understanding the problem
The problem that the builder pattern is designed to address is when an instance of a
type requires a large number of configurable values. We could set the configuration
options when we create instances of the class but that can cause issues if the options
are not set correctly or we do not know the proper values for all of the options.
Another issue is the amount of code that may be needed to set all of the configurable
options each time we create an instance of our types.

Understanding the solution
The builder pattern solves this problem by introducing an intermediary known as a
builder type. This builder type contains most if not all of the information necessary to
create an instance of the original complex type.

There are two methods that we can use to implement the builder pattern. The first
method is to have multiple builder types where each of the builder types contains
the information to configure the original complex object in a specific way. In the
second method, we implement the builder pattern with a single builder type that
sets all of the configurable options to a default value and then we would change the
values as needed.

Adopting Design Patterns in Swift

[122]

In this section, we will look at both ways to use the builder pattern because it is
important to understand how each works.

Implementing the builder pattern
Before we show how we would use the builder pattern, let's look at how to create a
complex structure without the builder pattern and the problem we run into.

The following code creates a structure named BurgerOld and does not use the
builder pattern:

struct BurgerOld {
 var name: String
 var patties: Int
 var bacon: Bool
 var cheese: Bool
 var pickles: Bool
 var ketchup: Bool
 var mustard: Bool
 var lettuce: Bool
 var tomato: Bool

 init(name: String, patties: Int, bacon: Bool, cheese: Bool,
pickles: Bool,ketchup: Bool,mustard: Bool,lettuce: Bool,tomato: Bool)
{
 self.name = name
 self.patties = patties
 self.bacon = bacon
 self.cheese = cheese
 self.pickles = pickles
 self.ketchup = ketchup
 self.mustard = mustard
 self.lettuce = lettuce
 self.tomato = tomato
 }
}

Chapter 6

[123]

In the BurgerOld structure, we have several properties that define which condiments
are on the burger and also the name of the burger. Since we need to know which
items are on the burgers, and which items aren't, when we create an instance of the
BurgerOld structure, the initializer requires us to define each item. This can lead to
some complex initializations throughout our application, not to mention that, if we
had more than one standard burger (bacon cheeseburger, cheeseburger, hamburger,
and so on), we would need to make sure that each is defined correctly. Let's see how
to create instances of the BurgerOld class:

// Create Hamburger
var burgerOld = BurgerOld(name: "Hamburger", patties: 1, bacon:
 false, cheese: false, pickles: false, ketchup: false, mustard:
 false, lettuce: false, tomato: false)

// Create Cheeseburger
var burgerOld = BurgerOld(name: "Cheeseburger", patties: 1, bacon:
 false, cheese: false, pickles: false, ketchup: false, mustard:
 false, lettuce: false, tomato: false)

As we can see, creating instances of the BurgerOld type requires a lot of code.
Now, let's look at a better way to do this. In this example, we will show how to use
multiple builder types where each type will define the condiments that are on a
particular burger. We will begin by creating a BurgerBuilder protocol that will have
the following code in it:

protocol BurgerBuilder {
 var name: String {get}
 var patties: Int {get}
 var bacon: Bool {get}
 var cheese: Bool {get}
 var pickles: Bool {get}
 var ketchup: Bool {get}
 var mustard: Bool {get}
 var lettuce: Bool {get}
 var tomato: Bool {get}
}

This protocol simply defines the nine properties that will be required for any type
that implements this protocol. Now, let's create two structures that implement this
protocol, the HamBurgerBuilder and the CheeseBurgerBuilder structures:

struct HamBurgerBuilder: BurgerBuilder {
 let name = "Burger"
 let patties = 1
 let bacon = false
 let cheese = false

Adopting Design Patterns in Swift

[124]

 let pickles = true
 let ketchup = true
 let mustard = true
 let lettuce = false
 let tomato = false
}

struct CheeseBurgerBuilder: BurgerBuilder {
 let name = "CheeseBurger"
 let patties = 1
 let bacon = false
 let cheese = true
 let pickles = true
 let ketchup = true
 let mustard = true
 let lettuce = false
 let tomato = false
}

In both the HamBurgerBuilder and the CheeseBurgerBuilder structures, all we
are doing is defining the values for each of the required properties. In more complex
types, we might need to initialize additional resources.

Now, let's look at our Burger structure, which will use instances of the
BugerBuilder protocol to create instances of itself. The following code shows this
new Burger type:

struct Burger {
 var name: String
 var patties: Int
 var bacon: Bool
 var cheese: Bool
 var pickles: Bool
 var ketchup: Bool
 var mustard: Bool
 var lettuce: Bool
 var tomato: Bool

 init(builder: BurgerBuilder) {
 self.name = builder.name
 self.patties = builder.patties
 self.bacon = builder.bacon
 self.cheese = builder.cheese
 self.pickles = builder.pickles
 self.ketchup = builder.ketchup

Chapter 6

[125]

 self.mustard = builder.mustard
 self.lettuce = builder.lettuce
 self.tomato = builder.tomato
 }

func showBurger() {
 print("Name: \(name)")
 print("Patties: \(patties)")
 print("Bacon: \(bacon)")
 print("Cheese: \(cheese)")
 print("Pickles: \(pickles)")
 print("Ketchup: \(ketchup)")
 print("Mustard: \(mustard)")
 print("Lettuce: \(lettuce)")
 print("Tomato: \(tomato)")
}
}

The difference between this Burger structure and the BurgerOld structure shown
earlier is the initializer. In the previous BurgerOld structure, the initializer took
nine arguments—one for each constant defined in the structure. In the new Burger
structure, the initializer takes one argument, which is an instance of a type that
conforms to the BurgerBuilder protocol. This new initializer allows us to create
instances of the Burger class like this:

// Create Hamburger
var myBurger = Burger(builder: HamBurgerBuilder())
myBurger.showBurger()
// Create Cheeseburger with tomatos
var myCheeseBurgerBuilder = CheeseBurgerBuilder()
var myCheeseBurger = Burger(builder: myCheeseBurgerBuilder)
// Lets hold the tomatos
myCheeseBurger.tomato = false
myCheeseBurger.showBurger()

If we compare how we create instances of the new Burger structure to the earlier
BurgerOld structure, we can see that it is much easier to create instances of the
Burger structure. We also know that we are correctly setting the property values for
each type of burger because the values are set directly in the builder classes.

As we mentioned earlier, there is a second method that we can use to implement
the builder pattern. Rather than having multiple builder types, we can have a single
builder type that sets all of the configurable options to a default value; then we
would change the values as needed. I use this implementation method a lot when I
am updating older code because it is easy to integrate it with preexisting code.

Adopting Design Patterns in Swift

[126]

For this implementation, we will create a single BurgerBuilder structure. This
BurgerBuilder structure will be used to create instances of the BurgerOld
structure and will, by default, set all of the ingredients to their default values. The
BurgerBuilder structure also give us the ability to change what ingredients will go
on the burger prior to creating instances of the BurgerOld structure. We create the
BurgerBuilder structure like this:

struct BurgerBuilder {
 var name = "Burger"
 var patties = 1
 var bacon = false
 var cheese = false
 var pickles = true
 var ketchup = true
 var mustard = true
 var lettuce = false
 var tomato = false

 mutating func setPatties(choice: Int) {self.patties = choice}
 mutating func setBacon(choice: Bool) {self.bacon = choice}
 mutating func setCheese(choice: Bool) {self.cheese = choice}
 mutating func setPickles(choice: Bool) {self.pickles = choice}
 mutating func setKetchup(choice: Bool) {self.ketchup = choice}
 mutating func setMustard(choice: Bool) {self.mustard = choice}
 mutating func setLettuce(choice: Bool) {self.lettuce = choice}
 mutating func setTomato(choice: Bool) {self.tomato = choice}

 func buildBurgerOld(name: String) -> BurgerOld {
 return BurgerOld(name: name, patties: self.patties,
 bacon: self.bacon, cheese: self.cheese,
 pickles: self.pickles, ketchup: self.ketchup,
 mustard: self.mustard, lettuce: self.lettuce,
 tomato: self.tomato)
 }
}

In the BurgerBuilder structure, we define our nine properties (ingredients) for our
burger and then create a setter method for each of the properties except for the name
property. We also create one method named buildBurgerOld() that will create
an instance of the BurgerOld structure based on the values of the properties in the
BurgerBuilder instance. We use the BurgerBuilder structure like this:

var burgerBuilder = BurgerBuilder()
burgerBuilder.setCheese(true)
burgerBuilder.setBacon(true)
var jonBurger = burgerBuilder.buildBurgerOld("Jon's Burger")

Chapter 6

[127]

In this example, we create an instance of the BurgerBuilder structure. We then
use the setCheese() and setBacon() methods to add cheese and bacon to our
burger. Finally we call the buildBurgerOld() method to create the instance of the
Burger Old structure.

As we can see, both methods that were used to implement the builder pattern greatly
simplify the creation of our complex type. Both methods also ensured that our
instances were properly configured with default values. If you find yourself creating
instances of types with very long and complex initialization commands, I would
recommend that you look at the builder pattern to see if you can use it to simplify
the initialization.

For our last example of a creational pattern, we will look at the factory
method pattern.

The factory method pattern
The factory method pattern uses methods to create instances of objects without
specifying the exact type that will be created. These methods are called factory
methods. This allows us to pick the type to create at runtime.

I find that the factory pattern is one of the patterns that I use a lot. It is also one of the
patterns that developers tend to recognize when they first start reading about design
patterns because they have used it in previous projects.

Understanding the problem
The problem that the factory pattern is designed to solve is when there are multiple
types that conform to a single protocol and we need to select the appropriate type to
instantiate at run time.

Understanding the solution
The factory method pattern encapsulates the logic used to select which type to
instantiate within a single method. This method exposes only the protocol (or base
class) to the code that calls it and does not reveal the details of how a particular type
was selected.

Adopting Design Patterns in Swift

[128]

Implementing the factory method pattern
To demonstrate how we would use the factory method pattern, we will use the text
validation types that we created at the end of Chapter 5, Let's Extend Some Types. In
this example, we will create a function that will determine which text validation
type to use based on the parameters passed into the factory method by the code that
called it. As a refresher, the code for the TextValidationProtocol protocol and the
TextValidationProtocol protocol extension are shown here:

protocol TextValidationProtocol {
 var regExFindMatchString: String {get}
 var validationMessage: String {get}
}

extension TextValidationProtocol {

 var regExMatchingString: String { get {
 return regExFindMatchString + "$"
 }
 }

 func validateString(str: String) -> Bool {
 if let _ = str.rangeOfString(regExMatchingString, options:
.RegularExpressionSearch) {
 return true
 } else {
 return false
 }
 }
 func getMatchingString(str: String) -> String? {
 if let newMatch = str.rangeOfString(regExFindMatchString,
options: .RegularExpressionSearch) {
 return str.substringWithRange(newMatch)
 } else {
 return nil
 }
 }
}

Within the TextValidationProtocol protocol, we define two properties named
regExFindMatchString and validationMessage. Within the protocol extension, we
implement one computed property named regExMatchingString and two methods
named validateString() and getMatchingString().

Chapter 6

[129]

Now let's create three types that conform to the TextValidationProtocol protocol.
These three types will be named AlphaValidation, NumericValidation, and
AlphaNumericValidation:

class AlphaValidation: TextValidationProtocol {
 static let sharedInstance = AlphaValidation()
 private init(){}

 let regExFindMatchString = "^[a-zA-Z]{0,10}"
 let validationMessage = "Can only contain Alpha characters"
}

class AlphaNumericValidation: TextValidationProtocol {
 static let sharedInstance = AlphaNumericValidation()
 private init(){}

 let regExFindMatchString = "^[a-zA-Z0-9]{0,10}"
 let validationMessage = "Can only contain Alpha Numeric
characters"
}

class NumericValidation: TextValidationProtocol {
 static let sharedInstance = NumericValidation()
 private init(){}

 let regExFindMatchString = "^[0-9]{0,10}"
 let validationMessage = "Can only contain only Alpha and Numeric
characters."
}

The AlphaValidation class can be used to validate strings to ensure they contain
a maximum of 10 alpha characters. The NumericValidation class can be used to
validate strings to ensure they contain a maximum of 10 numeric characters. Finally,
the AlphaNumericValidation class can be used to validate strings to ensure they
contain a maximum of 10 alpha or numeric characters.

To use these validation classes, we need a way to determine which class to use based
on the string that we are validating. The factory method pattern can help us with this
determination. We could implement this pattern as shown in the following code:

func getValidator(alphaCharacters: Bool, numericCharacters: Bool) ->
TextValidationProtocol? {
 if alphaCharacters && numericCharacters {
 return AlphaNumericValidation.sharedInstance
 } else if alphaCharacters && !numericCharacters {

Adopting Design Patterns in Swift

[130]

 return AlphaValidation.sharedInstance
 } else if !alphaCharacters && numericCharacters {
 return NumericValidation.sharedInstance
 } else {
 return nil
 }
}

The getValidator() method accepts two parameters both of the Boolean type
named alphaCharacters and numericCharacters. These parameters define the
type of validation we wish to do and we then return a type that conforms to the
TextValidationProtocol protocol based on the values in the parameters.

One of the biggest advantages that we get with this pattern is that all of the logic on
how the text validation types are selected is encapsulated in this one function. This
means that, if we need to change the logic or change which type to use, the only code
we need to change is the code within this function rather than having to refactor our
entire code base. As an example, if we wish to replace the AlphaValidation class
with a new AlphaSpacesValidation class, the only code that needs to change is
within this function.

We can now use the getValidator() method, as shown in the following code:

var str = "abc123"
var validator1 = getValidator(true, numericCharacters: false)
print("String validated: \(validator1?.validateString(str))")

var validator2 = getValidator(true, numericCharacters: true)
print("String validated: \(validator2?.validateString(str))")

In this code, the validator1 variable contains an instance of the AlphaValidation
type. When we call the validateString() method of this instance, it returns a false
value because the str variable contains numeric values. The validator2 variable
contains an instance of the AlphaNumericValidation type. When we call the
validateString() method of this instance, it returns true because the validation
class looks for both alpha and numeric characters.

One of the key ideas behind creational patterns is that we take the logic about how
and what to create out of our general code base and put it into specific classes or
functions. Then, when we need to make changes to our code in the future, the logic is
encapsulated in a single spot and can be easily changed, rather than having the logic
spread throughout our code.

Now, let's look at structural design patterns.

Chapter 6

[131]

Structural design patterns
Structural design patterns describe how types can be combined to form larger
structures. These larger structures can generally be easier to work with and hide a
lot of the complexity of the individual types. Most patterns in the structural pattern
category involve connections between objects.

There are seven well-known patterns that are part of the structural design pattern
type. These are as follows:

• Adapter: This allows types with incompatible interfaces to work together
• Bridge: This is used to separate the abstract elements of a type from the

implementation so the two can vary
• Composite: This allows us to treat a group of objects as a single object
• Decorator: This lets us add or override behavior in an existing method of

an object
• Façade: This provides a simplified interface for a larger and more complex

body of code
• Flyweight: This allows us to reduce the resources needed to create and use

a large number of similar objects
• Proxy: This is a type acting as an interface for another class or classes

In this chapter, we are going to give examples of how to use bridge, façade, and
proxy patterns in Swift. Let's start off by looking at the bridge pattern.

The bridge pattern
The bridge pattern decouples the abstraction from the implementation so that they
can both vary independently. The bridge pattern can also be thought of as a two-
layer abstraction.

Understanding the problem
The bridge pattern is designed to solve a couple of problems but the one we are
going to focus on here tends to arise over time as new requirements come in with
new features. At some point as these new requirements and features come in, we will
need to change how the features interact. Usually, this will eventually require us to
refactor our code.

In object-oriented programming this is known as an exploding class hierarchy but can
also happen in protocol-oriented programming.

Adopting Design Patterns in Swift

[132]

Understanding the solution
The bridge pattern solves this problem by taking the interacting features and
separating the functionality that is specific to each feature from the functionality that
is shared between them. A bridge type can then be created which will encapsulate
the shared functionality, bringing them together.

Implementing the bridge pattern
To demonstrate how we would use the bridge pattern, we will create two features.
The first feature is a message feature that will store and prepare a message that we
wish to send out. The second feature is the sender feature that will send the message
through a specific channel such as E-mail or SMS messaging.

Let's start off by creating two protocols named MessageProtocol and
SenderProtocol. The MessageProtocol protocol will define the requirements for
types that are used to create messages. The SenderProtocol protocol will be used
to define the requirements for types that are used to send the messages through the
specific channels. The following code shows how we would define these two protocols:

protocol MessageProtocol {
 var messageString: String {get set}
 init(messageString: String)
 func prepareMessage()
}

protocol SenderProtocol {
 func sendMessage(message: MessageProtocol)
}

The MessageProtocol protocol defines one stored property named messageString
of the String type. This property will contain the text of the message and cannot
be nil. We also define one initiator and a method named prepareMessage(). The
initiator will be used to set the messageString property and anything else required
by the message type. The prepareMessage() method will be used to prepare the
message prior to sending it. This method can be used to encrypt the message, add
formatting, or do anything else to the message prior to sending it.

The SenderProtocol protocol defines one method named sendMessage(). This
method will send the message through the channel defined by conforming types. In
this function, we will need to ensure that the prepareMessage() method from the
message type is called prior to sending the message.

Chapter 6

[133]

Now let's see how we would define two types that would conform to the
MessageProtocol protocol:

class PlainTextMessage: MessageProtocol {
 var messageString: String
 required init(messageString: String) {
 self.messageString = messageString
 }
 func prepareMessage() {
 // Nothing to do
 }
}

class DESEncryptedMessage: MessageProtocol {
 var messageString: String
 required init(messageString: String) {
 self.messageString = messageString
 }
 func prepareMessage() {
 // Encrypt message here
 self.messageString = "DES: " + self.messageString
 }
}

Each of these types contains the required functionality to conform to the
MessageProtocol protocol. The only real difference between these types
is in the prepareMessage() methods. In the PlainTextMessage class, the
prepareMessage() method is empty because we do not need to do anything
to the message prior to sending it. The prepareMessage() method of the
DESEncryptionMessage class would normally contain the logic to encrypt the
message but for our example we will just prepend a DES tag to the beginning of the
message, letting us know that this method was called.

Now let's create two types that will conform to the SenderProtocol protocol. These
types would typically handle sending the message through a specific channel;
however, in our example, we will simply print a message to the console:

class EmailSender: SenderProtocol {
 func sendMessage(message: MessageProtocol) {
 print("Sending through E-Mail:")
 print(" \(message.messageString)")
 }
}

class SMSSender: SenderProtocol {

Adopting Design Patterns in Swift

[134]

 func sendMessage(message: MessageProtocol) {
 print("Sending through SMS:")
 print(" \(message.messageString)")
 }
}

Both the EmailSender and the SMSSender types conform to the SenderProtocol
protocol by implementing the sendMessage() function.

We could now use these two features as shown in the following code:

var message = PlainTextMessage(messageString: "Plain Text Message")
message.prepareMessage()
var sender = SMSSender()
sender.sendMessage(message)

This would work great and we could add code similar to this anywhere we needed
to create and send a message. Let's say that, one day in the near future, we get a
requirement to add new functionality that would verify the message prior to sending
it to make sure it meets the requirements of the channel we are sending the message
through. To do this, we would start off by changing the SenderProtocol protocol to
add the verify functionality. The new sender protocol would look like this:

protocol SenderProtocol {
 var message: MessageProtocol? {get set}
 func sendMessage()
 func verifyMessage()
}

To the SenderProtocol protocol, we added a method named verifyMessage()
and also added a property named message. We also changed the definition of the
sendMessage() method. The original SenderProtocol protocol was designed to
simply send the message but now we need to verify the message prior to calling
the send Message() function; therefore, we couldn't simply pass the message to the
function, as we did in the previous definition.

Now we will need to change the types that conform to the SenderProtocol protocol
to make them conform to this new protocol. The following code shows how we
would make these changes:

class EmailSender: SenderProtocol {
 var message: MessageProtocol?
 func sendMessage() {
 print("Sending through E-Mail:")
 print(" \(message!.messageString)")
 }

Chapter 6

[135]

 func verifyMessage() {
 print("Verifying E-Mail message")
 }
}

class SMSSender: SenderProtocol {
 var message: MessageProtocol?
 func sendMessage() {
 print("Sending through SMS:")
 print(" \(message!.messageString)")
 }
 func verifyMessage() {
 print("Verifying SMS message")
 }
}

With the changes that we made to the types that conform to the SenderProtocol
protocol, we will need to change how our code uses these types. The following
example shows how we would now use them:

var message = PlainTextMessage(messageString: "Plain Text Message")
message.prepareMessage()
var sender = SMSSender()
sender.message = message
sender.verifyMessage()
sender.sendMessage()

These changes are not that hard to make; however, without the bridge pattern,
we would need to refactor our entire code base and make the change everywhere
that we are sending messages. The bridge pattern tells us that, when we have two
hierarchies that closely interact together like this, we should put this interaction logic
into a bridge type that will encapsulate the logic in one spot. This way, when we
receive new requirements or enhancements, we can make the change in one spot,
thereby limiting the refactoring that we have to do. We could make a bridge type for
our message and sender hierarchies as shown in the following example:

struct MessageingBridge {
 static func sendMessage(message: MessageProtocol, var sender:
SenderProtocol) {
 message.prepareMessage()
 sender.message = message
 sender.verifyMessage()
 sender.sendMessage()
 }
}

Adopting Design Patterns in Swift

[136]

Now the logic of how our messaging and sender hierarchies interact is encapsulated
into the MessagingBridge structure. Therefore, when the logic needs to change, once
again we make the change to this one structure rather than having to refactor our
entire code base.

The bridge pattern is a very good pattern to remember and use. There have been
(and still are) times that I have regretted not using the bridge pattern in my code
because, as we all know, requirements change frequently and being able to make the
changes in one spot rather than throughout the code base can save us a lot of time in
the future.

Now, let's look at the next pattern in the structural category—the façade pattern.

The façade pattern
The façade pattern provides a simplified interface to a larger and more complex body
of code. This allows us to make our libraries easier to use and understand by hiding
some of the complexities. It also allows us to combine multiple API's into a single,
easier to use, API, which is what we will see in our example.

Understanding the problem
The façade pattern is often used when we have a complex system that has a large
number of independent APIs that are designed to work together. Sometimes it is
hard to tell where we should use the façade pattern during our initial application
design. The reason for this is that we normally try to simplify our initial API design;
however, over time and as requirements change and new features are added, our
APIs become more and more complex and then it becomes pretty evident where we
should have used the façade pattern. A good rule to use is: if you have several APIs
that are working closely together to perform a task, you should think about using the
façade pattern.

Understanding the solution
The main idea of the façade pattern is to hide the complexity of our APIs behind a
simple interface. This offers us several advantages, with the most obvious being that
it simplifies how we interact with the APIs. It also promotes loose coupling, which
allows our APIs to change, as requirements change, without the needed to refactor
all of the code that uses them.

Chapter 6

[137]

Implementing the façade pattern
To demonstrate the façade pattern we will create three APIs: HotelBooking,
FlightBooking, and RentalCarBooks. These APIs will be used to search for and
book hotels, flights, and rental cars for trips. While we could very easily call each of
the APIs individually in our code, we are going to create a TravelFacade structure
that will allow us to access the functionality of the APIs in single calls.

We will begin by defining the three APIs. Each of the APIs will need a data storage
class that will store the information about the hotel, flight, or rental car. We will start
off by implementing the hotel API:

struct Hotel {
 //Information about hotel room
}

struct HotelBooking {
 static func getHotelNameForDates(to: NSDate, from: NSDate) ->
 [Hotel]? {
 let hotels = [Hotel]()
 //logic to get hotels
 return hotels
 }

 static func bookHotel(hotel: Hotel) {
 // logic to reserve hotel room
 }
}

The hotel API consists of Hotel and HotelBooking structures. The Hotel structure
will be used to store the information about a hotel room and the HotelBooking
structure will be used to search for a hotel room and also to book the room for our
trip. The flight and rental car APIs are very similar to the hotel API. The following
code shows both of these APIs:

struct Flight {
 //Information about flights
}

struct FlightBooking {
 static func getFlightNameForDates(to: NSDate, from: NSDate) ->
 [Flight]? {
 let flights = [Flight]()
 //logic to get flights
 return flights

Adopting Design Patterns in Swift

[138]

 }

 static func bookFlight(fight: Flight) {
 // logic to reserve flight
 }
}

struct RentalCar {
 //Information about rental cars
}

struct RentalCarBooking {
 static func getRentalCarNameForDates(to: NSDate, from: NSDate)
 -> [RentalCar]? {
 let cars = [RentalCar]()
 //logic to get flights
 return cars
 }

 static func bookRentalCar(rentalCar: RentalCar) {
 // logic to reserve rental car
 }
}

In each of these APIs, we have a structure that is used to store information and a
structure that is used to provide the search functionality. In our initial design, it
would be very easy to call these individual APIs within our application; however,
as we all know, requirements tend to change, which causes our APIs to change over
time. By using the façade pattern here we are able to hide how we implement the
APIs; therefore, if we need to change how the APIs work in the future, we will only
need to update the façade type rather than refactoring all of our code. This makes
our code easier to maintain and update in the future. Now let's look at how we will
implement the façade pattern by creating a TravelFacade class:

class TravelFacade {

 var hotels: [Hotel]?
 var flights: [Flight]?
 var cars: [RentalCar]?

 init(to: NSDate, from: NSDate) {
 hotels = HotelBooking.getHotelNameForDates(to, from: from)
 flights = FlightBooking.getFlightNameForDates(to, from:
 from)

Chapter 6

[139]

 cars = RentalCarBooking.getRentalCarNameForDates(to, from:
 from)
 }

 func bookTrip(hotel: Hotel, flight: Flight, rentalCar:
 RentalCar) {
 HotelBooking.bookHotel(hotel)
 FlightBooking.bookFlight(flight)
 RentalCarBooking.bookRentalCar(rentalCar)
 }
}

The TravelFacade class contains the functionality to search the three APIs and also
book a hotel, flight, and rental car. We can now use the TravelFacade class to search
for hotels, flights, and rental cars without having to directly access the individual
APIs. We can also use the TravelFacade class to book our hotel, flights, and rental
cars without having to access the individual APIs.

As we mentioned at the start of this chapter, it is not always obvious where we
should use the façade pattern in our initial design. A good rule to follow is: if we
have several APIs that are working together to perform a task, we should think
about using the façade pattern.

Now, let's look at our last structural pattern, which is the proxy design pattern.

The proxy design pattern
In the proxy design pattern, there is one type acting as an interface for another type
or API. This wrapper class, which is the proxy, can then add functionality to the
object, make the object available over a network, or restrict access to the object.

Understanding the problem
We can use the proxy pattern to solve a number of problems but I find that I mainly
use this pattern to solve two problems.

The first problem that I use the proxy pattern to solve is when I need to create a layer
of abstraction between a single API and my code. The API could be a local or remote
API but I usually use this pattern to put an abstraction layer between my code and
a remote service. This will allow changes to the remote API without the need to
refactor large portions of our code.

The second problem that I use the proxy pattern to solve is when I need to make
changes to an API but I do not have the code or there is already a dependency on the
API elsewhere in the application.

Adopting Design Patterns in Swift

[140]

Understanding the solution
To solve these problems, the proxy pattern tells us that we should create a type that
will act as an interface for interacting with the other type or API. In our example, we
will show how to use the proxy pattern to add functionality to an existing type.

Implementing the proxy pattern
In this section, we will demonstrate the proxy pattern by creating a house class that
we can add multiple floor plans to, where each floor plan represents a different
storey of the house. Let's begin by creating a FloorPlanProtocol protocol:

protocol FloorPlanProtocol {
 var bedRooms: Int {get set}
 var utilityRooms: Int {get set}
 var bathRooms: Int {get set}
 var kitchen: Int {get set}
 var livingRooms: Int {get set}
}

In the FloorPlanProtocol protocol, we define five properties that will represent the
number of rooms contained in each floor plan. Now, let's create an implementation
of the FloorPlanProtocol protocol named FloorPlan, which is as follows:

struct FloorPlan: FloorPlanProtocol {
 var bedRooms = 0
 var utilityRooms = 0
 var bathRooms = 0
 var kitchen = 0
 var livingRooms = 0
}

The FloorPlan class implements all five properties required from
FloorPlanProtocol and assigns default values to them. Next, we will create the
House class, which will represent a house:

class House {
 private var stories = [FloorPlanProtocol]()

 func addStory(floorPlan: FloorPlanProtocol) {
 stories.append(floorPlan)
 }
}

Chapter 6

[141]

Within our House class we have an array of FloorPlanProtocols objects where
each floor plan will represent one storey of the house. We also have one function
named addStory(), which accepts an instance of a type that conforms to the
FloorPlanProtocol protocol. This function will add the floor plan to the array of
FloorPlanProtocols protocols.

If we think about the logic of this class, there is one problem that we might
encounter. The problem is, we are allowed to add as many floor plans as we want,
which may lead to houses that are 60 or 70 stories high. This would be great if we
were building skyscrapers, but we just want to build basic single-family houses. If
we want to limit the number of floor plans without changing the House class (either
we cannot change it or we simply do not want to), we can implement the proxy
pattern. The following example shows how to implement the HouseProxy class,
where we limit the number of floor plans we can add to the house, as follows:

class HouseProxy {
 var house = House()

 func addStory(floorPlan: FloorPlanProtocol) -> Bool {
 if house.stories.count < 3 {
 house.addStory(floorPlan)
 return true
 }
 else {
 return false
 }
 }
}

We begin the HouseProxy class by creating an instance of the House class. We then
create a method named addStory() that lets us add a new floor plan to the house.
In the addStory() method, we check to see if the number of stories in the house is
fewer than three; if so, we add the floor plan to the house and return true. If the
number of stories is equal to or greater than three, then we do not add the floor plan
to the house and return false. Let's see how we would use this proxy:

var ourHouse = HouseProxy()

var basement = FloorPlan(bedRooms: 0, utilityRooms: 1, bathRooms:
 1, kitchen: 0, livingRooms: 1)
var firstStory = FloorPlan(bedRooms: 1, utilityRooms: 0,
 bathRooms: 2, kitchen: 1, livingRooms: 1)
var secondStory = FloorPlan(bedRooms: 2, utilityRooms: 0,
 bathRooms: 1, kitchen: 0, livingRooms: 1)

Adopting Design Patterns in Swift

[142]

var additionalStory = FloorPlan(bedRooms: 1, utilityRooms: 0,
 bathRooms: 1, kitchen: 1, livingRooms: 1)

print(ourHouse.addStory(basement))
print(ourHouse.addStory(firstStory))
print(ourHouse.addStory(secondStory))
print(ourHouse.addStory(additionalStory))

In our example code, we start off by creating an instance of the HouseProxy class
named ourHouse. We then create four instances of the FloorPlan class, each with a
different number of rooms. Finally, we attempt to add each of the floor plans to the
ourHouse instance. If we then run the code, we will see that the first three instances
of the FloorPlan class were added to the house successfully, but the last one wasn't
because we are only allowed to add three floors.

The proxy pattern is very useful when we want to add some additional functionality
or error checking to a type, but we do not want to change the actual type itself. We
can also use it to add a layer of abstraction between a remote or local API.

Now, let's look at behavioral design patterns.

Behavioral design patterns
Behavioral design patterns explain how types interact with each other. These
patterns describe how different instances of types send messages to each other to
make things happen.

There are nine well-known patterns that are part of the structural design pattern
type. They are as follows:

• Chain of responsibility: This is used to process a variety of requests, each of
which may be delegated to a different handler.

• Command: This creates objects that can encapsulate actions or parameters so
they can be invoked later or by a different component.

• Iterator: This allows us to access the elements of an object sequentially
without exposing the underlying structure.

• Mediator: This is used to reduce coupling between types that communicate
with each other.

• Memento: This is used to capture the current state of an object and store it in
a manner that can be restored later.

• Observer: This allows an object to publish changes to its state. Other objects
can then subscribe so they can be notified of any changes.

Chapter 6

[143]

• State: This is used to alter the behavior of an object when its internal
state changes.

• Strategy: This allows one out of a family of algorithms to be chosen
at runtime.

• Visitor: This is a way of separating an algorithm from an object structure.

In this section, we are going to give examples of how to use strategy, observer, and
command patterns in Swift. Let's start off by looking at the command pattern.

The command design pattern
The command design pattern lets us define actions that we can execute later. This
pattern generally encapsulates all the information needed to call or trigger the
actions at a later time.

Understanding the problem
There are times in our applications when we need to separate the execution of a
command from its invoker. Typically, this is when we have a type that needs to
perform one of several actions; however, the choice of which action to use needs to
be made at run-time.

Understanding the solution
The command pattern tells us that we should encapsulate the logic for the actions
into a type that conforms to a command protocol. We can then provide instances
of the command types for use by the invoker. The invoker will use the interface
provided by the protocol to invoke the needed actions.

Implementing the command pattern
In this section, we will demonstrate how to use the command pattern by creating a
Light type. In this type we will define the lightOnCommand and lightOffCommand
commands and will use the turnOnLight() and turnOffLight() methods to
invoke these commands.

We will begin by creating a protocol named Command that all of our command's types
will conform to. Here is the command protocol:

protocol Command {
 func execute()
}

Adopting Design Patterns in Swift

[144]

This protocol contains one method named execute, which will be used to execute
the command. Now, let's look at the command types that the Light type will use to
turn the light on and off. They are as follows:

struct RockerSwitchLightOnCommand: Command {
 func execute() {
 print("Rocker Switch: Turning Light On")
 }
}

struct RockerSwitchLightOffCommand: Command {
 func execute() {
 print("Rocker Switch: Turning Light Off")
 }
}
struct PullSwitchLightOnCommand: Command {
 func execute() {
 print("Pull Switch: Turning Light On")
 }
}

struct PullSwitchLightOffCommand: Command {
 func execute() {
 print("Pull Switch: Turning Light Off")
 }
}

The RockerSwitchLightOffCommand, RockerSwitchLightOnCommand,
PullSwitchLightOnCommand, and PullSwitchLightOffCommand commands all
conform to the Command protocol by implementing the execute() method; therefore
we will be able to use them in our Light type. Now, let's look at how to implement
the Light type:

class Light {
 var lightOnCommand: Command
 var lightOffCommand: Command

 init(lightOnCommand: Command, lightOffCommand: Command) {
 self.lightOnCommand = lightOnCommand
 self.lightOffCommand = lightOffCommand
 }

 func turnOnLight() {
 self.lightOnCommand.execute()

Chapter 6

[145]

 }

 func turnOffLight() {
 self.lightOffCommand.execute()
 }
}

In the Light type, we start off by creating two variables named lightOnCommand and
lightOffCommand that will contain instances of types that conform to the Command
protocol. We then create an initiator that lets us set both of the commands when
we initiate the type. Finally, we create the turnOnLight() and turnOffLight()
methods that we will use to turn the light on and off. In these methods, we call the
appropriate command to turn the light on or off.

We would then use the Light type like this:

var on = PullSwitchLightOnCommand()
var off = PullSwitchLightOffCommand()
var light = Light(lightOnCommand: on, lightOffCommand: off)

light.turnOnLight()
light.turnOffLight()

light.lightOnCommand = RockerSwitchLightOnCommand()
light.turnOnLight()

In this example, we begin by creating an instance of the PullSwitchLightOnCommand
type named on and an instance of the PullSwitchLightOffCommand type named
off. We then create an instance of the Light type using the two commands
that we just created and call the turnOnLight() and turnOffLight()
methods of the Light instance to turn our light on and off. In the last two
lines, we change the lightOnCommand method, which was originally set to
an instance of the PullSwitchLightOnCommand class, to an instance of the
RockerSwitchLightOnCommand type. The Light instance will now use the
RockerSwitchLightOnCommand type whenever we turn the light on. This allows us
to change the functionality of the Light type during runtime.

There are a number of benefits from using the command pattern. One of the main
benefits is that we are able to set which command to invoke at runtime, which
also lets us swap the commands out with different implementations that conform
to the Command protocol as needed throughout the life of the application. Another
advantage of the command pattern is that we encapsulate the details of the
command implementations within the command types themselves rather than in the
container type.

Now, let's look at the strategy pattern.

Adopting Design Patterns in Swift

[146]

The strategy pattern
The strategy pattern is pretty similar to the command pattern in that they both
allow us to decouple implementation details from our calling type and also allow
us to switch the implementation out at runtime. The big difference is, the strategy
pattern is intended to encapsulate algorithms. By swapping out an algorithm, we are
expecting the object to perform the same functionality but in a different way. In the
command pattern, when we swap out the commands, we are expecting the object to
change the functionality of the object.

Understanding the problem
There are times in our applications when we need to change the backend algorithm
that is used to perform an operation. Typically this is when we have a type that has
several different algorithms that can be used to perform the same task; however, the
choice of which algorithm to use needs to be made at run-time.

Understanding the solution
The strategy pattern tells us that we should encapsulate the algorithm in a type that
conforms to a strategy protocol. We can then provide instances of the strategy types
for use by the invoker. The invoker will use the interface provided by the protocol to
invoke the algorithm.

Implementing the strategy pattern
In this section, we will demonstrate the strategy pattern by showing you how we
could swap out compression strategies at runtime. Let's begin this example by
creating a CompressionStrategy protocol that each one of our compression types
will conform to. Let's take a look at the following code:

protocol CompressionStrategy {
 func compressFiles(filePaths: [String])
}

This protocol defines one method named compressFiles() that accepts a
single parameter, which is an array of strings that contain the paths to the files
we want to compress. We will now create two structures that conform to the
CompressionStrategy protocol. These are the ZipCompressionStrategy and the
RarCompressionStrategy structures, which are as follows:

struct ZipCompressionStrategy: CompressionStrategy {
 func compressFiles(filePaths: [String]) {
 print("Using Zip Compression")
 }

Chapter 6

[147]

}

struct RarCompressionStrategy: CompressionStrategy {
 func compressFiles(filePaths: [String]) {
 print("Using RAR Compression")
 }
}

Both of these structures implement the CompressionStrategy protocol by having
a method named compressFiles(), which accepts an array of strings. Within
these methods, we simply print out the name of the compression that we are using.
Normally we would implement the compression logic in these methods.

Now, let's look at our CompressContent class, which will be called to compress
the files:

class CompressContent {
 var strategy: CompressionStrategy

 init(strategy: CompressionStrategy) {
 self.strategy = strategy
 }

 func compressFiles(filePaths: [String]) {
 self.strategy.compressFiles(filePaths)
 }
}

In this class, we start off by defining a variable-named strategy that will contain an
instance of a type that conforms to the CompressStrategy protocol. We then create
an initiator that will be used to set the compression type when the class is initiated.
Finally, we create a method named compressFiles() that accepts an array of strings
that contain the paths to the list of files that we wish to compress. In this method, we
compress the files using the compression strategy that is set in the strategy variable.

We will use the CompressContent class like this:

var filePaths = ["file1.txt", "file2.txt"]
var zip = ZipCompressionStrategy()
var rar = RarCompressionStrategy()

var compress = CompressContent(strategy: zip)
compress.compressFiles(filePaths)

compress.strategy = rar
compress.compressFiles(filePaths)

Adopting Design Patterns in Swift

[148]

We begin by creating an array of strings that contains the files we wish to compress.
We also create an instance of both the ZipCompressionStrategy and the
RarCompressionStrategy types. We then create an instance of the CompressContent
class, setting the compression strategy to the ZipCompressionStrategy
instance, and call the compressFiles() method, which will print the Using zip
compression message to the console. We then set the compression strategy to the
RarCompressionStrategy instance and call the compressFiles() method again,
which will print the Using rar compression message to the console.

The strategy pattern is really good for setting the algorithms to use at runtime, which
also lets us swap the algorithms out with different implementations as needed by
the application. Another advantage of the strategy pattern is that, we encapsulate
the details of the algorithm within the strategy types themselves and not in the main
implementation type.

Now let's look at one last pattern, the observer pattern.

The observer pattern
The observer pattern is used to implement distributed event handling where
an observer type is notified when an event occurs within another type. The
observer pattern allows groups of objects to cooperate with one another with few
dependencies between them. This pattern is so widely used that you have probably
come across it many times if you have developed applications using any modern UI
framework such as Cocoa or Cocoa Touch.

Understanding the problem
There are times where we need to perform an action in one or more parts of our
code when some event happens in another part of our code. This is a very common
requirement with most modern UI frameworks, where we wish to be notified when
the user has had some interaction with our user interface.

Understanding the solution
With the observer pattern, the observer registers to be notified when an event
happens. When the event is triggered, any instance that has registered for the event
receives a notification that the event has occurred. In Swift there are several ways
that we can implement the observer pattern and in this section we will look at three
of them. The reason that we will be looking at multiple solutions for this pattern is
that each of these solutions helps us implement the observer pattern under specific
circumstances. We will talk about when to use each one of these solutions as we talk
about the solutions themselves.

Chapter 6

[149]

Implementing the observer pattern
For the first solution we will use the NSNotificationCenter class. The
NSNotificaitionCenter class provides us with a mechanism to register for, post,
and receive notifications. All Cocoa and Cocoa Touch-based applications have a
default notification center when they are running. There is no need to create our own
instance of the NSNotificationCenter class.

When we use NSNotificicationCenter, we need to provide a name for each
notification. One thing we never want to do is to hard code the name in both the
notifying type (the type that posts the notifications) and the receiving types (the
types that receive the notifications). Instead we will want to define the name in a
global constant and use it for both the notifying and the receiving types; therefore we
will begin this example by defining the name for our notification like this:

let NCNAME = "Notification Name"

Now we will create the type that will post our notifications. In this example, our
type will simply post a notification to the default notification center when we call a
method named post.

class PostType {
 let nc = NSNotificationCenter.defaultCenter()

 func post() {
 nc.postNotificationName(NCNAME, object: nil)
 }
}

Finally we will create a type that will receive the notifications when they are posted
to the notification center. This type will register a selector (in this example, a method
named receivedNotification()) with the notification center that will be called
when new notifications, identified by the name, are posted to the notification center:

class ObserverType {
 let nc = NSNotificationCenter.defaultCenter()

 init() {
 nc.addObserver(self, selector: "receiveNotification:",
name: NCNAME, object: nil)
 }

 @objc func receiveNotification(notification: NSNotification) {
 print("Notification Received")
 }
}

Adopting Design Patterns in Swift

[150]

When we use NSNotificationCenter, we have to remember to prefix the
method that will be called with the @objc attribute. The @objc attribute makes
our Swift API available to the Objective-C runtime. This allows us to use the
receiveNotifications() methods with NSNotificationCenter.

We can now use these types like this:

var postType = PostType()
var observerType = ObserverType()
postType.post()

If we run this example, we will see that the Notification Received message from
the ObserverType instance is printed to the console when we execute the post()
method on the instance of the PostType type. Using the notification center is a very
easy and quick way to add the observer pattern to your code.

If our notifier or observer types are written in Objective-C, then we should use
the notification center as shown in this example. It is also easier to notify multiple
recipients with the notification center than it is with the following solutions because
that functionality is built in notification center.

This second solution demonstrates how notifications are handled in the Cocoa and
Cocoa Touch framework where we register an instance of a type, that conforms to
a specific protocol, to receive notifications from instances of another type. In this
example we want to be notified when a zombie type turns or spots us. Let's start by
defining a protocol that any type that wants to receive the notifications must conform
to. This protocol will be named ZombieObserverProtocol.

protocol ZombieObserverProtocol {
 func turnLeft()
 func turnRight()
 func seesUs()
}

This protocol will require that conforming types implement the three functions
defined in the protocol. These will be the methods that are called to notify us when
the zombie turns or spots us.

Now let's define the observer that will receive the notifications from the
Zombie type. We will name this class MyObserver and it will conform to the
ZombieObserverProtocol protocol so it can receive the notifications when the
zombie does something:

 class MyObserver: ZombieObserverProtocol {
 func turnLeft() {
 print("Zombie turned left, we move right")

Chapter 6

[151]

 }
 func turnRight() {
 print("Zombie turned right, we move left")
 }
 func seesUs() {
 print("Zombie sees us, RUN!!!!")
 }
}

Finally we will implement our Zombie type. The Zombie type will send out
notifications to the observer when it turns or spots someone:

struct Zombie {
 var observer: ZombieObserverProtocol

 func turnZombieLeft() {
 //Code to turn left
 //Notify observer
 observer.turnLeft()
 }
 func turnZombieRight() {
 //Code to turn right
 //Notify observer
 observer.turnRight()
 }
 func spotHuman() {
 //Code to lock onto a human
 //Notify observer
 observer.seesUs()
 }
}

In the Zombie type we define one property that is of the ZombieObserverProtocol
type. This is the instance that will receive the notifications when the zombie does
something. Also in the Zombie type we create three methods that are called when our
zombie turns left, turns right, or spots a human. Notice that in each of the methods
we notify the observer of the event that happened. Generally these notifications
would happen on new threads but to simplify the code here we took that code out.

We would use our Zombie and observer types as shown in the following example:

var observer = MyObserver()
var zombie = Zombie(observer: observer)

zombie.turnZombieLeft()
zombie.spotHuman()

Adopting Design Patterns in Swift

[152]

If we ran this example, we will see that the Zombie turned left, we move right,
and Zombie sees us, RUN!!!! messages from the MyObserver instance are printed
to the console when the turnZombieLeft() and spotHuman() methods are called.

Implementing the observer pattern as shown in this example is the method used
by most of the UI elements in the Cocoa and Cocoa Touch framework. If we need
a single observer, this is usually the method we should use. If we need multiple
observers we could make our observer property an array of MyObserver types but
then each time we notified the observers we would need to loop through the array
and notify each observer individually. It is much easier to notify multiple observers
using the NSNotificationCenter class because the logic to call multiple observers is
already implemented for us.

The third and final solution demonstrates how we would receive notifications when
the value of a property is changed. This solution uses Swift's property observers
feature to implement the observer pattern. Property observers, in the Swift language,
observe and respond to changes in a property's value. Property observers are
notified when a property's value is about to change and/or has changed.

We will begin by creating a protocol that any type that wants to receive
notifications when a property changes must conform to. This protocol will be called
PropertyObserverProtocol:

protocol PropertyObserverProtocol {
 func propertyChanged(propertyName: String, newValue: Any)
}

This protocol defines one method named propertyChanged(), which will be called
when the value of a property changes. This method accepts two parameters, one
named propertyName (the name of the property) and the other named newValue
(the new value assigned to the property).

Now let's create a type that will implement the PropertyObserverProtocol
protocol and will be called when the value of our property changes. We will name
this type MyObserverType:

class MyObserverType: PropertyObserverProtocol {
 func propertyChanged(propertyName: String, newValue: Any) {
 print("----changed----")
 print("Property Name: \(propertyName)")
 print("New Value: \(newValue)")
 }
}

Chapter 6

[153]

MyObserverType conforms to the PropertyObserverProtocol by implementing the
propertyChanged() method. In the propertyChanged() method, we print out the
name of the property that changed and what the new value is.

Now we will create a type that will have a property that, when the value changes,
will notify an instance of the MyObserverType type:

struct PropertyObserver {
 var observer: PropertyObserverProtocol
 var property1: String {
 didSet{
 observer.propertyChanged("property1",
 newValue: property1)
 }
 willSet(newValue) {
 print("Property Changing")
 }
 }
}

In this example, our type has a property named observer of the
PropertyObserverProtocol type and another property named property1 of
the String type. We use the didSet and willSet observers, defined in the Swift
standard library, to monitor for changes in the property. When the didSet observer
is called, we call the propertyChanged() method in our observer instance to notify
it that the value of the property has been changed. We would normally call the
propertyChanged() method in our observer instance on a separate thread.

We would use code like this:

var myObserver = MyObserverType()
var p = PropertyObserver(observer: myObserver, property1: "Initial
 String")
p.property1 = "My String"

If we run this code, we will see by the output that the propertyChanged()
method of the MyObserverType class was called when we changed the value of the
property1 property.

We would use this solution anytime that we need to be notified when the value of a
property changes.

This concludes our tour of design patterns in Swift.

Adopting Design Patterns in Swift

[154]

Summary
Design patterns are solutions to software design problems that we tend to see over
and over again in real-world application design. These patterns are designed to help
us create reusable and flexible code. Design patterns can also make our code easier to
read and understand for other developers and also for ourselves when we look back
at out code months/years later.

If we look at the examples in this chapter carefully, we will notice that one of the
backbones of design patterns is protocols. Almost all design patterns (the singleton
design pattern is an exception) use protocols to help us create very flexible and
reusable code.

If this was the first time that you really looked at design patterns, you probably
noticed some similarities to strategies that you have used in the past in your own
code. This is expected when experienced developers are first introduced to design
patterns. I would also encourage you to read more about design patterns because
they will definitely help you to create more flexible and reusable code.

[155]

Case Studies
Ever since I bought my first computer, a Commodore Vic-20, at the age of thirteen,
I have been continuously learning new computer languages. I cannot count the
number of computer languages that I have learned through the years on my fingers
and toes. Even when I was working as a network engineer and security specialist,
I learned languages such as Perl, Python, PHP, and Shell scripting to automate my
administrative tasks. Learning all of those languages has taught me that the best way
to learn a new programming language or a programming paradigm is to come up
with several small projects and figure out how to implement them in the language or
programming paradigm that I was trying to learn. With that in mind, in this chapter
we will take three small projects and see how we would implement them using Swift
and the protocol-oriented programming paradigm. I would recommend that you
read the requirements for the project and then try to implement your own solution
prior to reading our solution. Then you can compare your solution to ours. This will
help you to begin thinking about application design using the protocol-oriented
programming paradigm. I do have one hint for you: don't forget to use design
patterns in your solutions for these projects.

In this chapter you will learn about the following topics:

• How to apply the protocol-oriented programming paradigm in real-world
situations

• How to use design patterns with protocol-oriented programming to create
real-world solutions

Protocol-oriented programming isn't just about using protocols, protocol
extensions, or value types. It is about how we code and architect our applications
and frameworks. Protocol-oriented programming with design patterns focuses on
ensuring that our code base can be easily expanded and maintained.

Case Studies

[156]

Focusing on how we will maintain and expand our applications and frameworks
in the future may sometimes seem like a waste of time with the tight deadlines we
are always on. However in the long term, the time spent on making sure our code
base is easily expandable and maintainable always ends up saving us time because
requirements will change and new features will be added. We need to ensure our
code base is prepared for these changes.

In this chapter we will be looking at three real-world case studies to see how we can
apply the protocol-oriented paradigm with design patterns to write solutions for
real-world projects. These three case studies are:

• Creating a logging service for our applications
• Creating a data access layer for our applications using SQLite
• Creating a basic calculator application

In the first case study, we will look at how we would use the protocol-oriented
programming paradigm to create a logging framework that can be easily maintained
and expanded by our users. In the second case study we will see how we can use
the protocol-oriented programming paradigm to add a SQLite database to our
application using the SQLite.swift framework. The final case study will show us
how we can use the protocol-oriented programming paradigm to create a very basic
calculator that we can easily expand to add additional functionality.

Let's start by looking at how we can create a logging service for our application.

Logging service
If I counted the lines of code that I have written and used in each language over
the course of my life it would probably show that Java is the language that I have
used the most. Java definitely has its good and bad points but one of the things that
I really liked about developing applications in Java is all of the different logging
frameworks that are available for it.

These logging frameworks make it incredibly easy to turn on log messages to make
debugging very easy while we are developing our application. We can then turn
those debugging messages off when it is time to build the production release of our
application. To do this, these logging frameworks let us define how and where we
wish to log messages for predefined log levels. We can also set them to ignore certain
logging levels if we do not need them. The log levels ranged from info (used purely
for debugging) all the way up to fatal (something really bad happened).

Chapter 7

[157]

Some of the logging frameworks that I have used with Java are Log4j, Java Logging
API, and Apache Commons Logging. For this project we will create a logging service
similar to these but with the Swift language. The first thing we need to do is to define
the requirements for our logging service.

Requirements
Our logging service has several requirements as defined in the following list:

• We will need to have multiple log levels. The log levels that our framework
will support are: Fatal, Error, Warn, Debug, and Info

• We will need to have multiple logging profiles. The framework will define
two profiles by default: LoggerNull and LoggerConsole. The LoggerNull
profile will do nothing with the log message (it will pretty much ignore the
message and not log it anywhere) while the LoggerConsole will print the log
message to the console.

• The user will have the ability to add their own logging profile so they can log
messages to a database, a UILabel, or any other location they want.

• We must have the ability to configure the logging framework when the
application starts and keep that configuration throughout the life cycle
of the application. We do not want to force the users of our framework to
reconfigure the framework every time they need to use it.

• We can assign multiple logger profiles to a single log level to give the user
the ability to display or store the logs to multiple profiles.

Before reading further, based on these requirements, see what type of design you
come up with. Once you have worked out your design then continue reading and
compare your design to ours.

The design
We are going to break our design into two sections. The first section will be the logger
profile section that will contain the types that do the actual logging of the messages to a
storage medium or display them. The second section will be the logger section that will
contain the types that our applications interface with. The logger types will determine
the log level of the message and then pass the message to the appropriate logger
profiles to log the message. Let's start off by looking at the logger profile section.

Case Studies

[158]

We will begin the logger profile design by creating a protocol named
LoggerProfileProtocol. This protocol will define the interface that our logger
profile will present and any type that conforms to this protocol can be used to log
messages. Our framework, out of the box, will provide two types that conform
to the LoggerProfileProtocol protocol. These types are the LoggerNull and
LoggerConsole types.

By starting our design with the LoggerProfileProtocol protocol and using the
interface exposed by the protocol to write log messages to the display/storage
medium, we are implementing polymorphism. This will allow users of our
framework to add additional logging profiles, as they need. To add these additional
logging profiles all our uses need to do is to create additional types that conform to
the LoggerProfileProtocol protocol. These types could provide a means to log
messages to any display or storage medium that meets their requirements such as a
database, file, or even a UILabel.

Let's look at a diagram that shows how we implement the LoggerProfileProtocol
protocol design. The diagram shows that we extend the LoggerProfileProtocol
protocol to add a method named getCurrentDateString(). This method will
return a formatted string that contains the current date and time. The diagram
also shows the LoggerNull and LoggerConsole types that conform to the
LoggerProfileProtocol protocol:

Let's look at how we implement this design. We will start off by looking at the
LoggerProfileProtocol protocol and the LoggerProfileProtocol protocol
extension:

protocol LoggerProfileProtocol {
 var loggerProfileId: String {get}
 func writeLog(level: String, message: String)

Chapter 7

[159]

}

extension LoggerProfileProtocol {
 func getCurrentDateString() -> String{
 let date = NSDate()
 let dateFormatter = NSDateFormatter()
 dateFormatter.dateFormat = "MM/dd/yyyy hh:mm"
 return dateFormatter.stringFromDate(date)
 }

}

The LoggerProfileProtocol protocol defines one property and one function. The
property is named loggerProfileId, which is of the String type. This property
is used to uniquely identify the logging profile. We will use this property in our
framework to ensure that we do not add the logger profile to any log level more than
once. The method defined by our protocol is named writeLog() and will be called to
write the log message to the display or storage medium defined by the profile.

We created a protocol extension to the LoggerProfileProtocol protocol to add
a method named getCurrentDateString(). This method returns a formatted
date string of the current date and time. While types that conform to the
LoggerProfileProtocol protocol can elect to not use the getCurrentDateString()
method provided by the protocol extension, it is recommended that they do to ensure
that all logger profile types provide a date and time string with a consistent format.

Now let's look at the LoggerNull and LoggerConsole types:

struct LoggerNull: LoggerProfileProtocol {
 let loggerProfileId = "hoffman.jon.logger.null"
 func writeLog(level: String, message: String) {
 // Do nothing
 }
}

struct LoggerConsole: LoggerProfileProtocol {
 let loggerProfileId = "hoffman.jon.logger.console"
 func writeLog(level: String, message: String) {
 let now = getCurrentDateString()
 print("\(now): \(level) - \(message)")
 }
}

Case Studies

[160]

Both logger profiles have a unique id defined in the loggerProfileId constant.
We use a reverse DNS notation as the format for this id. Reverse DNS notation is a
naming convention that is commonly used to name components, packages, and other
types. A reverse DNS notation string is usually based on a registered domain name
but the names are in reverse order. For these examples I am using my name rather
than a registered domain name.

In both types we also provide an implementation for the writeLog() method that
is required by the LoggerProfileProtocol protocol. For the LoggerNull type
the writeLog() method does not do anything because this type is designed to not
actually write the log anywhere. The LoggerConsole type retrieves a string that
represents the current date and time using the getCurrentDateString() method
provided by the LoggerProfileProtocol protocol extension and then writes the log
message to the console.

The next part of our logger service will be the logger type which will keep track of
what logger profiles are assigned to the various log levels. Our applications will
primarily use the interface provided by the logger type as the means to configure the
logger service and also to log messages.

The logger types will conform to the LoggerProtocol protocol. While the initial
design of our framework will only contain one logger type, we will still want to
begin the design with the protocol to give us the ability to add additional logger
types in the future. It will also give our users the ability to add additional logger
types if they need to. It may not seem like that big a deal right now but, two or three
years down the road, as requirements change and new features are added, we will be
glad that we used the protocol. Trust me on this one.

The first thing we need to do is to define the log levels that our framework will offer.
We will use an enumeration to define these levels since there is a finite number of log
levels. The following enumeration defines the log levels for our logging framework:

enum LogLevels: String {
case Fatal
case Error
case Warn
case Debug
case Info
static let allValues = [Fatal, Error, Warn, Debug, Info]
}

Chapter 7

[161]

The LogLevels enumeration defines five log levels. We also provide an array
that contains all five levels. This array can be used to retrieve all values in the
enumeration if needed. Now let's look at our LoggerProtocol protocol:

protocol LoggerProtocol {
 static var loggers: [LogLevels:[LoggerProfileProtocol]]
 {get set}
 static func writeLog(logLevel: LogLevels, message: String)
}

The LoggerProtocol protocol defines one property named loggers. This property
is defined to be of the Dictionary type whose key is a log level that is defined in the
LogLevels enumeration and whose value is an array of types that conform to the
LoggerProfileProtocol protocol. We also define one method in our LoggerProtocol
protocol named writeLog() . This method is called within our applications to write a
message to the logs and it takes two arguments. The first argument is the log level to
write the log message for and the second is the log message itself.

We define both the loggers property and the writeLog() method as static so we
can access them without having to create an instance of the LoggerProtocol type.
Properties and methods that are defined with the static keyword are known as type
properties and type methods. Another reason we create these as static is that one of
the requirements for our logger framework is to be able to configure the framework
once and have the ability to keep that configuration throughout the life cycle of our
application. By creating these as static there will be one (and only one) instance of
them throughout the life cycle of our application thereby fulfilling this requirement.
We could have used the singleton pattern to fulfill this requirement; however using
type methods/properties would seem to work better in this situation. We will see the
advantage of this when we look at how we will use our logging framework.

Now let's look at the methods that our LoggerProtocol protocol extension provides
to types that conform to the LoggerProtocol protocol. Our protocol extension will
provide six type (static) methods:

• logLevelContainsProfile(logLevel: LogLevels, loggerProfile:
LoggerProfileProtocol) -> Bool: Will check the log level and return
true if it already contains the logger profile.

• setLogLevel(logLevel: LogLevels, loggerProfile:
LoggerProfileProtocol): Adds a logger profile to the log level

• addLogProfileToAllLevels(defaultLoggerProfile:
LoggerProfileProtocol): This will add the logger profile to all log levels

• removeLogProfileFromLevel(logLevel: LogLevels, loggerProfile:Lo
ggerProfileProtocol): Removes the logger profile from the log level if it is
defined for that level

Case Studies

[162]

• removeLogProfileFromAllLevels(loggerProfile:
LoggerProfileProtocol): Removes the log profile from all log levels

• haveLoggersForLevel(logLevel: LogLevels) -> Bool: Returns true
if there is any logger profile configured for the log level; otherwise it
returns false

Now let's look at the code for the individual methods. We will start off by looking at
the logLevelContainsProfile() method.

static func logLevelContainsProfile(logLevel: LogLevels,
 loggerProfile: LoggerProfileProtocol) -> Bool {
 if let logProfiles = loggers[logLevel] {
 for logProfile in logProfiles where
 logProfile.loggerProfileId ==
 loggerProfile.loggerProfileId {
 return true
 }
 }
 return false
 }

This method will return true if the log level contains the logger profile. This method
is used by the setLogeLevel() and addLogProfileToAllLevels() method to
ensure that we do not add a logger profile to a log level more than once. We begin
this method by using optional binding to retrieve a list of logger profiles assigned
to the log level. We then use the for-in statement with the where clause to loop
through the list of logger profiles where the loggerProfileId property matches the
loggerProfileId property of the profile we are looking for. If any item in the array
matches the loggerProfileId property of the profile we are looking for we return
true; otherwise we return false.

The next method we will look at is the setLogLevel() method.

static func setLogLevel(logLevel: LogLevels,
 loggerProfile: LoggerProfileProtocol) {
 if let _ = loggers[logLevel] {
 if !logLevelContainsProfile(logLevel,
 loggerProfile: loggerProfile) {
 loggers[logLevel]?.append(loggerProfile)
 }
 } else {
 var a = [LoggerProfileProtocol]()
 a.append(loggerProfile)
 loggers[logLevel] = a
 }
}

Chapter 7

[163]

The setLogLevel() method will use the logLevelContainsProfile() method to
verify that the logger profile is not already assigned to the specified log level; if it
isn't then it will add the logger profile to that level. We begin this method by using
optional binding to retrieve the list of logger profiles assigned to the log level. We
do this simply to verify that there is a valid array assigned to the log level. We then
use the logLevelContainsProfile() method to verify that the logger profile is not
already assigned to the level and, if not, we add it.

If the optional binding fails at the start of the method then we create a new
array, add the logger profile to it, and assign the array to the log level within the
loggers dictionary.

Now let's look at the addLogProfileToAllLevels() method.

static func addLogProfileToAllLevels(
 defaultLoggerProfile: LoggerProfileProtocol) {
 for level in LogLevels.allValues {
 setLogLevel(level, loggerProfile: defaultLoggerProfile)
 }
}

The addLogProfileToAllLevels() method is used to add a logger profile to all
log levels. This can be used to initialize the logger framework by adding a single
profile to all levels. In this method we loop through each of the log levels and
then call the setLogLevel() method to try to add the logger profile to each of the
individual log levels.

The next method we will look at is the removeLogProfileFromLevel() method.

static func removeLogProfileFromLevel(logLevel: LogLevels,
loggerProfile:LoggerProfileProtocol) {
 if var logProfiles = loggers[logLevel] {
 if let index = logProfiles.indexOf({$0.loggerProfileId
== loggerProfile.loggerProfileId}) {
 logProfiles.removeAtIndex(index)
 }
 loggers[logLevel] = logProfiles
 }
}

The removeLogProfileFromLevel() method will remove the logger profile from the
specified log level. This method starts off by using optional binding to retrieve the
list of logger profiles for the log level. We then use the indexOf() method to locate
the index of the logger profile that matches the logger profile that we want to remove
(it will return nil if it cannot find a match). If we find the profile we then remove it.

Case Studies

[164]

The next method is the removeLogProfileFromAllLevels() method.

static func
removeLogProfileFromAllLevels(loggerProfile:LoggerProfileProtocol) {
 for level in LogLevels.allValues {
 removeLogProfileFromLevel(level,
loggerProfile: loggerProfile)
 }
}

The removeLogProfileFromAllLevels() method will attempt to remove a logger
profile from all log levels. This method will loop through all of the log levels that we
have defined and call the removeLogProfileFromLevel() method in an attempt to
remove the logger profile from the level.

The final method in our LoggerProtocol protocol extension is the
haveLoggersForLevel() method:

static func haveLoggersForLevel(logLevel: LogLevels) -> Bool {
 guard let _ = loggers[logLevel] else {
 return false
 }
 return true
}

The haveLoggersForLevel() method returns true if the log level contains any
logger profiles; otherwise, it returns false. This method uses optional binding with
a guard statement to retrieve the list of logger profiles assigned to the log level. If
the optional binding statement fails then a false value is returned; otherwise a true
value is returned.

Now let's look at our Logger type, which will conform to the LoggerProtocol
protocol.

struct Logger: LoggerProtocol {
 static var loggers = [LogLevels:[LoggerProfileProtocol]]()

 static func writeLog(logLevel: LogLevels, message: String) {
 guard haveLoggersForLevel(logLevel) else {
 print("No logger")
 return
 }

 if let logProfiles = loggers[logLevel] {
 for logProfile in logProfiles {

Chapter 7

[165]

 logProfile.writeLog(logLevel.rawValue,
message: message)
 }
 }
 }
}

The Logger type is the type that we use in our application for configuration of our
log levels and also for logging our messages. The Logger type conforms to the
LoggerProtocol protocol by implementing the requirements defined by the protocol.

The Logger type has one property named loggers that is a dictionary whose key
is a log level defined in the LogLevels enumeration and whose value is an array
of types that conform to the LoggerProfileProtocol protocol. The writeLog()
method is used within our applications to write a message to the log and it takes two
arguments. The first argument is the log level to write the log message for and the
second is the log message itself.

The writeLog() method checks to see if we have any log profiles assigned to the log
level and if so we loop through the list of profiles and call the writeLog() method
on each profile, passing it the message we wish to log.

We could now use our logger framework like this:

Logger.addLogProfileToAllLevels(LoggerConsole())
Logger.writeLog(LogLevels.Debug, message: "Debug Message 1")

Logger.setLogLevel(LogLevels.Error,
loggerProfile: LoggerDataBase())
Logger.setLogLevel(LogLevels.Fatal,
loggerProfile: LoggerDataBase())
Logger.writeLog(LogLevels.Error, message: "Error Message 1")

In this sample code, we begin by adding the LoggerConsole logger profile to all of
our log levels. This will cause all log messages, no matter what the log level is, to be
logged to the console. We then write a log message (Debug Message 1) with the log
level set to Debug. This log message will be printed to the console.

In the next couple of lines we add the LoggerDatabase logger profile (this would be
a user created profile) to both the Error and Fatal log levels. The LoggerDatabase
logger profile would be a profile that would log messages to a database such as
SQLite and will need to conform to the LoggerProfileProtocol protocol. We then
write the log message ErrorMessage 1 with the log level set to Error. This will
write the log message to both the console and database since both logger profiles are
assigned to the Error log level.

Case Studies

[166]

In this example, we can see that we do not need to create an instance of the Logger
type to configure it or to log messages. The reason for this is that we made the
properties and methods static (type methods and type properties). When we are
creating frameworks that should have a very small footprint, for instance our logger
framework, using type methods and properties to avoid instantiation of our types
can make our frameworks significantly easier to use.

Conclusion
The basis of both the logger profiles and the logger itself are protocols. We also use
protocol extensions to add functionality to types that will conform to our protocol;
therefore it is very easy to add additional profiles and loggers by creating new types
that conform to these protocols. These new types also automatically receive the
functionality defined in our protocol extensions. Designing our framework in this
manner allows us to very easily add functionality and new features as we receive new
requirements. It also allows users of our framework to expand it to suit their needs.

When designing frameworks or applications, one thing that all good architects keep
in the back of their mind is not only implementing the current requirements but also
how they can expand the framework or application to meet future needs. This is the
idea behind using protocols and using the interface provided by the protocol rather
than concrete types. If we use the interface provided by the protocol, we have the
ability to use any type that conforms to the protocol, giving us the ability to very
easily expand the framework or application to meet future needs.

Now let's look at how we can add a SQLite database to our application using the
SQLite.swift framework.

Data access layer with SQLite.swift
Most serious applications need to persist some amount of data. This data could be
transactional data, user preferences, or the current state of the application. There
are many ways that we can persist data in our applications and figuring out the
appropriate way to persist it can be one of the most critical decisions that an architect
needs to make.

One of my favorite solutions to persist data in a mobile development environment
is SQLite. SQLite is available for all major mobile platforms, which allows us to take
our data storage design and use it across multiple platforms. Another reason that
I like SQLite so much is that it has been proven to be a very solid solution for over
fifteen years. The first official release of SQLite occurred in August of 2000.

Chapter 7

[167]

SQLite is an open source, lightweight, and cross-platform relational database;
however, you do require a good knowledge of SQL to use it. For me that is not much
of a problem; however it is always better if we can avoid embedding SQL statements
in our source code. This is where frameworks such as SQLite.swift come in.
SQLite.swift is a type-safe, Swift language layer over SQLite 3 that allows us to
access a SQLite database in a pure Swift type interface.

The SQLite.Swift framework makes it very easy to work with a SQLite database
without the need to write a lot of SQL scripts. The SQLite.swift GitHub page has
detailed instructions on how to include the framework in your project. The page is
located here: https://github.com/stephencelis/SQLite.swift. I personally
like to use CocoaPods to install frameworks like this but feel free to use any of
the methods documented on the page. I do want to give major kudos to Stephen
Celis for the awesome work he has done on this framework; it is the best SQLite
framework for Swift that I have seen.

It is important, when designing an application, to design a good data access layer.
This data access layer should separate the application code from the backend data
store. As we saw in the design patterns chapter, our code is easier to maintain and
expand when we have this separation. As an example of this, we would have a really
tough time maintaining our code if we chose to persist our data in an XML formatted
file and then we embedded the code to access the file in every part of our application
that needed to access the data. This would also require us to refactor large parts of
our code base if we ever made a change to how our data was persisted.

Requirements
Our data access layer will have several requirements:

• All access to the backend data store should go through a single type. This
will be known as our data store type.

• There should be one (and only one) instance of our data store type to
maintain clean access to our data store.

• All access to the data store type, after it is initialized, should go through data
helper types. These data helper types will handle all of the CRUD (create,
read, update, and delete) functionality for our tables.

• Code external to this data access layer should not know or care how the data
is persisted.

• For our example, we will need to create two tables, one named player that
will contain information about a baseball player and one named team that
will contain information about a baseball team. Each baseball player will
contain the Team ID and information about the team that they play for.

https://github.com/stephencelis/SQLite.swift/tree/swift-2
https://github.com/stephencelis/SQLite.swift

Case Studies

[168]

Before reading further, based on these requirements see what type of design you
come up with. Once you have worked out your design, continue reading and
compare your design to the one we present.

You do not have to use the SQLite.swift framework in your design but, if you are
not familiar with it, I would recommend that you take a look at it. I really cannot
praise this framework too enough.

The design
Our data access layer will consist of three layers. The bottom-most layer, known as
the connection layer, will consist of one class named SQLiteDataStore, which will
maintain the connection handle for our SQLite database. This class will implement
the singleton pattern so all access to the database will go through this one connection
handle. Remember from the design pattern chapter that the singleton pattern must
be implemented with a reference (class) type.

The next layer will be a data helper layer that will contain one class for each of our
tables. These data helper classes will contain methods to create, read, update, and
delete (known as CRUD) from the specific table. We will need to create a protocol for
the data helper classes to ensure that they contain a minimum set of functionality (for
example, creating the table).

The final layer is the model layer that will contain tuples that model our database
tables. These tuples will be used as temporary storage to read and write data to/
from the data store. Some people prefer using structures at the model layer but I find
that tuples work just as well because we do not want any business logic embedded
within this layer. Keep in mind that these three layers are purely for data access
because we want to maintain good separation between our data access code and our
application logic.

Chapter 7

[169]

In our example, we will have two tables. These are the Teams and the Players tables.
From the preceding description, we can probably guess that this means we will need
two data helper classes (TeamDataHelper and PlayerDataHelper) and two tuples
(Team and Player). The data access layer design will look like this:

Let's start off by looking at our connection layer.

Connection layer
In a design like this, we want to make sure we have good error checking that will let
us know exactly what went wrong if something bad happens. With this in mind, we
will start our design by defining the errors that can be thrown from our data access
layer. We will be using Swift 2's new error handling feature therefore our errors are
defined in an enumeration such as this:

enum DataAccessError: ErrorType {
 case Datastore_Connection_Error
 case Insert_Error
 case Delete_Error
 case Search_Error
 case Nil_In_Data
}

Case Studies

[170]

We will see how these errors are thrown as we go through the code. Now let's look at
the code for our SQLiteDataStore class.

class SQLiteDataStore {
 static let sharedInstance = SQLiteDataStore()
 let BBDB: Connection?

 private init() {

 var path = "BaseballDB.sqlite"

 if let dirs: [NSString] = NSSearchPathForDirectoriesInDo
mains(NSSearchPathDirectory.DocumentDirectory,NSSearchPathDomainMask.
AllDomainsMask, true) as [NSString] {

 let dir = dirs[0]
 path = dir.stringByAppendingPathComponent("db.sqlite");
 print(path)
 }

 do {
 BBDB = try Connection(path)
 } catch _ {
 BBDB = nil
 }
 }

 func createTables() throws{
 do {
 try TeamDataHelper.createTable()
 try PlayerDataHelper.createTable()
 } catch {
 throw DataAccessError.Datastore_Connection_Error
 }

 }
}

The SQLiteDataStore class implements the singleton pattern to ensure there is
only one instance of the class for the life cycle of our application. We implement
this pattern by creating a private initializer that is accessed from a static constant
named sharedInstance. Inside the initializer, we set the path to the file that will
contain our database and then create the BBDB Database connection with this path. If
something goes wrong, we set the BBDB Database connection to nil, indicating that
there was an error initializing the database.

Chapter 7

[171]

The SQLiteDataStore class contains a second method named createTables().
The createTables()method calls the createTable() methods in our data helper
types. This method will let us create all of the tables from a single method. In the
createTable() methods of our data helper types, we will need to verify that the
tables do not exist prior to creating the table.

Now let's look at our data model layer. This is the top-most layer of our design.

Data model layer
In our data model layer we will need to define two types that will model the data
in our data store. These types will be used to transfer the data from our data access
layer to the rest of our code. Since these types should be used exclusively to transfer
the data, using value types is definitely preferred. The reason why we should avoid
using these types in our business logic layer is that we do not want to tightly couple
our business logic with the data structures in our data access layer. If we do not
tightly couple our business logic with our data access layer, we have the ability to
change either one independently of the other. With this in mind, we will use tuples
to model our data, as shown in the following code:

typealias TeamData = (
 teamId: Int64?,
 city: String?,
 nickName: String?,
 abbreviation: String?
)

typealias PlayerData = (
 playerId: Int64?,
 firstName: String?,
 lastName: String?,
 number: Int?,
 teamId: Int64?,
 position: Positions?
)

It is important, as an architect, to avoid using these types in our business logic layer
so we have the ability to change them without having to change our business logic
code. We should have an adapter that will convert the data from these types into
data structures used by the business logic layer. We will implement this adapter later
in this section.

Case Studies

[172]

In our Player tuple, we have an element named position of the Positions type.
The Positions type is an enumeration that contains all of the valid positions that a
player can play. The following code shows how we define the Positions type:

enum Positions: String {
 case Pitcher = "Pitcher"
 case Catcher = "Catcher"
 case FirstBase = "First Base"
 case SecondBase = "Second Base"
 case ThirdBase = "Third Base"
 case Shortstop = "Shortstop"
 case LeftField = "Left Field"
 case CenterField = "Center Field"
 case RightField = "Right field"
 case DesignatedHitter = "Designated Hitter"
}

Now let's look at our data helper layer that will connect the connection layer with the
model layer.

Data helper layer
The data helper layer will be the bridge between our connection layer and our data
model layer. This layer will contain one type for each table in our database. This type
will be used to read and write our data.

We will begin by creating a data helper protocol that will define the minimum set of
methods that each data helper class needs to implement. We define this protocol so
that, months/years from now when we are making changes to our data access layer,
we will know what minimum set of methods are expected within our data helper
classes. The DataHelperProtocol protocol looks like this:

protocol DataHelperProtocol {
 typealias T
 static func createTable() throws -> Void
 static func insert(item: T) throws -> Int64
 static func delete(item: T) throws -> Void
 static func findAll() throws -> [T]?
}

Within this protocol we define four methods. These are:

• createTable: Creates the table
• insert: Inserts a row into the table

Chapter 7

[173]

• delete: Deletes a row from the table
• findAll: Returns all rows in the table

Notice that we only define one method to query our data stores. We do this because
the methods to query each individual table may vary depending on our data;
therefore, the method(s) needed to query the various tables could be different. We
need to evaluate the query method(s) needed for each table on a table-by-table basis.

Now let's build the TeamDataHelper class that will conform to the
DataHelperProtocol protocol. This class will be used to read and write information
to the Teams table of the SQLite data store:

import SQLite

class TeamDataHelper: DataHelperProtocol {
// Code goes here
}

Since we will be working with the SQLite.Swift framework in this class, we will
need to import SQLite as shown in the previous code. We will start the class off by
defining six static constants and a typealias as show here:

static let TABLE_NAME = "Teams"
static let table = Table(TABLE_NAME)
static let teamId = Expression<Int64>("teamid")
static let city = Expression<String>("city")
static let nickName = Expression<String>("nickname")
static let abbreviation = Expression<String>("abbreviation")
typealias T = TeamData

The first property that we define is the TABLE_NAME property. This property defines
the name for the table within our database. Next we define the table property, is
used which represents the SQLite table within the database. The table property to
access the Teams table with in our database. The next four properties (teamId, city,
nickname, and abbreviation) define the name and type of each row in the table.

We define a typealias to set type T to the TeamData type. The typealias of T
is used within our protocol to define the type to use with in the concrete type.
Now let's look at how we implement each of the four methods defined in the
DataHelperProtocol protocol plus one extra method that will search the table by
its unique identifier. We will not discuss the implementation details here because
we are more concerned with the design rather than how SQLite.Swift works. For
information on how to use SQLite.swift, I would recommend looking at its GitHub
page here: https://github.com/stephencelis/SQLite.swift.

https://github.com/stephencelis/SQLite.swift

Case Studies

[174]

We will start off by creating the createTable() method, which will throw an error if
the database was not properly initialized in the connection layer. This method will be
used to create the table within the database:

static func createTable() throws {
 guard let DB = SQLiteDataStore.sharedInstance.BBDB else {
 throw DataAccessError.Datastore_Connection_Error
 }
 do {
 let _ = try DB.run(table.create(ifNotExists: true) {t in
 t.column(teamId, primaryKey: true)
 t.column(city)
 t.column(nickName)
 t.column(abbreviation)
 })

 } catch _ {
 // Error is thrown if table already exists
 // Therefore we ignore this error
 }

}

The next method that we will implement is the insert() method, which will insert
an item into our database. This method will return an Int64 value representing the
unique id of the item we just inserted into the database. This method will also throw
an error if the database was not properly initialized in the connection layer or if there
was an issue inserting the item into the database:

static func insert(item: T) throws -> Int64 {
 guard let DB = SQLiteDataStore.sharedInstance.BBDB else {
 throw DataAccessError.Datastore_Connection_Error
 }
 if (item.city != nil && item.nickName != nil
 && item.abbreviation != nil) {
 let insert = table.insert(city <- item.city!,
 nickName <- item.nickName!,
 abbreviation <- item.abbreviation!)
 do {
 let rowId = try DB.run(insert)
 guard rowId > 0 else {
 throw DataAccessError.Insert_Error
 }
 return rowId
 } catch _ {

Chapter 7

[175]

 throw DataAccessError.Insert_Error
 }
 }
 throw DataAccessError.Nil_In_Data
}

Now let's create the delete() function to remove an item from the database. This
method will throw an error if the database was not properly initialized in the
connection layer or if there was an issue with deleting the item from the database:

static func delete (item: T) throws -> Void {
 guard let DB = SQLiteDataStore.sharedInstance.BBDB else {
 throw DataAccessError.Datastore_Connection_Error
 }
 if let id = item.teamId {
 let query = table.filter(teamId == id)
 do {
 let tmp = try DB.run(query.delete())
 guard tmp == 1 else {
 throw DataAccessError.Delete_Error
 }
 } catch _ {
 throw DataAccessError.Delete_Error
 }
 }
}

Now we will implement the findAll() method, which will return all of the teams
in the Teams table. This method will return an array of TeamData types. This method
will also throw an error if the database was not properly initialized in the connection
layer or if there was an issue retrieving the items from the database:

static func findAll() throws -> [T]? {
 guard let DB = SQLiteDataStore.sharedInstance.BBDB else {
 throw DataAccessError.Datastore_Connection_Error
 }
 var retArray = [T]()
 let items = DB.prepare(table)
 for item in items {
 retArray.append(TeamData(teamId: item[teamId],
 city: item[city],
 nickName: item[nickName],
 abbreviation: item[abbreviation]))
 }
 return retArray
}

Case Studies

[176]

Finally we will implement the find() method to search and return a single item
from the database. We may need additional find methods that return multiple items
from the database but this particular implementation searches the database by the
unique id; therefore it should only return one item. This method will throw an error
if the database was not properly initialized in the connection layer. It will return a
nil value if it could not retrieve the item from the database:

static func find(id: Int64) throws -> T? {
 guard let DB = SQLiteDataStore.sharedInstance.BBDB else {
 throw DataAccessError.Datastore_Connection_Error
 }
 let query = table.filter(teamId == id)
 let items = DB.prepare(query)
 for item in items {
 return TeamData(teamId: item[teamId] ,
 city: item[city],
 nickName: item[nickName],
 abbreviation: item[abbreviation])
 }
 return nil
}

The PlayerDataHelper class is implemented just like the TeamDataHelper class.
To see the code for the PlayerDataHelper class, please download the code from
Packt's website.

If we were so inclined, we could use the data (PlayerData and TeamData) and data
helper (PlayerDataHelper and TeamDataHelper) types directly, as shown in the
following example; however, that would be very unwise:

let bosId = try? TeamDataHelper.insert(
 TeamData(
 teamId: 0,
 city: "Boston",
 nickName: "Red Sox",
 abbreviation: "BOS"))
 print(bosId)

 let ortizId = try? PlayerDataHelper.insert(
 PlayerData(
 playerId: 0,
 firstName: "David",
 lastName: "Ortiz",
 number: 34,
 teamId: bosId,
 position: Positions.DesignatedHitter))
print(ortizId)

Chapter 7

[177]

The reason it would be unwise to use the data and data helper types directly in our
application code is that we would be tightly coupling the data access layer to our
application layer. If we received new requirements that required us to modify the data
access layer then we would have to refactor large parts of our code. This would make it
hard to maintain or expand our data access layer to meet future requirements.

If we look through the design patterns that we discussed earlier in this book, we will
see that the bridge pattern could help us out here. Let's see how we would use the
bridge pattern to maintain a good separation layer between our data access layer and
our application code.

We need to start off by defining how we wish to model our data within our
application. We can model it exactly like the data model for our database or
we can design it significantly differently.

I usually find that, if I properly normalize my data in the
database, there are usually significant differences between how
I store my data and how I use it within my application. By
separating our data access layer from our application code, we
are able to model our data differently between these two layers.

In our example the data in the data access layer and the application layer will have
one small difference but other than that it is pretty much the same. The difference
will be when we enter a team id for a player; the information about that team will be
retrieved and will be a part of the player's data structure. Let's see how we would do
this by looking at how we would represent the team and player in our code:

struct Team {
 var teamId: Int64?
 var city: String?
 var nickName:String?
 var abbreviation:String?

 init(teamId: Int64?, city: String?, nickName: String?,
abbreviation: String?) {
 self.teamId = teamId
 self.city = city
 self.nickName = nickName
 self.abbreviation = abbreviation
 }
}

Case Studies

[178]

In our example here, we are using value types for our data structures in our
applications in line with Apple's recommendations. When we use value types for
data structures like this, we need to remember that changes to these types are only
persisted in the scope that the changes are made in. If we need to persist the changes
outside the scope the changes were made in, we must use inout parameters, as we
will see later in this section. Ultimately the choice between using value or reference
types is yours; the key is to be consistent and document the type used so it is easy for
other developers to know what type was used. However, it is recommended that we
use value types.

In this example the Team structure is designed to mirror the TeamData tuple that
represents the teams in our database. We do not actually need to implement the
initializer in this example because with structures we already receive this initializer;
however, we implement it here for consistency purposes because we need to
implement an initializer for our Player structure (we will explore this next).

Now let's look at the Player structure:

struct Player {
 var playerId: Int64?
 var firstName: String?
 var lastName: String?
 var number: Int?
 var teamId: Int64? {
 didSet {
 if let t = try? TeamBridge.retrieve(teamId!) {
 team = t
 }
 }
 }
 var position: Positions?
 var team: Team?

 init(playerId: Int64?, firstName: String?, lastName: String?,
number: Int?, teamId: Int64?, position: Positions?) {
 self.playerId = playerId
 self.firstName = firstName
 self.lastName = lastName
 self.number = number
 self.teamId = teamId
 self.position = position
 if let id = self.teamId {
 if let t = try? TeamBridge.retrieve(id) {
 team = t
 }

Chapter 7

[179]

 }
 }
}

The Player structure is also similar to the PlayerData tuple except we add
an additional optional property of the Team type. This property will hold the
information about the team that the player is on. We use a property observer to load
the information about the team from the database whenever the teamId property is
set. We also load the team information in the initializer. Remember that the property
observers are not called during initialization of a type; therefore, the didSet observer
is not called when we set the teamId during initialization.

Now let's look at the bridge types that will be used as a bridge between our data access
layer and our application code. We will start off with our TeamBridge structure:

struct TeamBridge {

 static func save(inout team:Team) throws {
 let teamData = toTeamData(team)
 let id = try TeamDataHelper.insert(teamData)
 team.teamId = id
 }

 static func delete(team:Team) throws {
 let teamData = toTeamData(team)
 try TeamDataHelper.delete(teamData)
 }

 static func retrieve(id: Int64) throws -> Team? {
 if let t = try TeamDataHelper.find(id) {
 return toTeam(t)
 }
 return nil
 }

 static func toTeamData(team: Team) -> TeamData {
 return TeamData(teamId: team.teamId , city: team.city,
 nickName: team.nickName,
 abbreviation: team.abbreviation)
 }

 static func toTeam(teamData: TeamData) -> Team {
 return Team(teamId: teamData.teamId, city: teamData.city,
 nickName: teamData.nickName,
 abbreviation: teamData.abbreviation)
 }
}

Case Studies

[180]

The TeamBridge structure has five methods. The first three methods use the
functionality from the TeamDataHelper structure to insert, delete, and retrieve
data from our data access layer. Notice in the save() method that we use an inout
parameter because we are making changes to the team parameter that we want to
persist outside of the scope for this method. The last two methods will convert the
data between the TeamData tuple (data access layer) and the Team class (application
layer). Now if (when) our requirements change, we can change either the data access
layer or the application layer independently of the other. The bridge structure may
need to change as either the data access layer or the application layer changes but it
is a lot easier to make this change in one part of our code rather than refactoring our
entire code base.

Now let's see the PlayerBridge structure:

struct PlayerBridge {

 static func save(inout player:Player) throws {
 let playerData = toPlayerData(player)
 let id = try PlayerDataHelper.insert(playerData)
 player.playerId = id
 }

 static func delete(player:Player) throws {
 let playerData = toPlayerData(player)
 try PlayerDataHelper.delete(playerData)
 }

 static func retrieve(id: Int64) throws -> Player? {
 if let p = try PlayerDataHelper.find(id) {
 return toPlayer(p)
 }
 return nil
 }

 static func toPlayerData(player: Player) -> PlayerData {
 return PlayerData(playerId: player.playerId,
 firstName: player.firstName,
 lastName: player.lastName,
 number: player.number,
 teamId: player.teamId,
 position: player.position)
 }

Chapter 7

[181]

 static func toPlayer(playerData: PlayerData) -> Player {
 return Player(playerId: playerData.playerId,
 firstName: playerData.firstName,
 lastName: playerData.lastName,
 number: playerData.number,
 teamId: playerData.teamId,
 position: playerData.position)
 }
}

As we can see, the PlayerBridge structure is very similar to the TeamBridge
structure except that we are converting between the PlayerData tuple (data access
layer) and the Player class (application layer). Once again this allows us to change
either the data access layer or the application layer independently of the other.

Conclusion
Creating separate layers as we showed in this example may take additional time
when we initially build our application but it will save us time over the long term
because requirements will change and new features will be added; therefore, our
code needs to be easy to change to meet these needs. Creating separate layers, and
using the bridge pattern to connect these layers, gives us the ability to change either
layer easily and independently of the other.

For our third and final case study, we will be creating a very modest calculator
application.

Calculator application
In this case study we will create a very simple calculator application. This application
will give the user the ability to add, subtract, multiply, and divide whole or
decimal numbers.

We will not go through how to set up the application or the UI design in this section.
We will leave that up to you, the reader. This will let you design the UI as you want
to and also allow you to build the application as an iOS or an OS X application.
You could even build it as a Linux-based application since Swift is now
open source.

Case Studies

[182]

You can download my iOS calculator application with the code bundle for this book.
My design looks like the following screenshot:

Now let's look at the requirements.

Requirements
Here are the requirements for our application:

• The calculator needs the ability to add, subtract, multiply, and divide
• We need the ability to clear the current calculation
• We need the ability to clear the last number pressed
• We need to be able to display the value of the current calculation
• We need buttons for the numbers 0 through 9
• We need a button for a decimal point

Chapter 7

[183]

Before reading further, based on these requirements see what type of design you
come up with. Once you have worked out your design, continue reading and
compare your design with the one we present.

The design
The underlying philosophy behind our design is going to be making it easy to
add new features in the future. We may be starting off with a basic calculator but
eventually we will probably want to add additional features such as sine, cosine,
tangent, or other scientific functions. Just like the SQLite.swift case study, there is a
design pattern that can help us. The pattern we will use for this calculator example is
the command pattern.

In order to understand how to design our commands, we need to understand how
our calculator should work. The following steps should achieve this:

• The calculator current value is 0.
• The user presses the [2] button: The number 2 should be displayed.
• The user presses the [5] button: The display should now read 25.
• The user presses the [+] button: Since 25 (what is being displayed) is the first

number in the calculation, we set the current value for the calculation to 25
and clear the display.

• The user presses the [5] button: The display should now read 5.
• The user presses the [=] button: The calculator will add the number that is

displayed to its current value for the calculation since the last command key
that was pressed was the addition key. The calculator will set this new value
as its current value and then display it. The display now reads 30.

What these steps show us is that, each time the user presses a number button,
we update the display. Whenever the user presses a command button (addition,
subtraction, multiplication, division, or equals) we need to perform the function from
the last command key that was pressed on the calculator's current value with the
number that is currently being displayed.

So let's look at how we would write our command structures. We will need to start
by creating a protocol that all command types must conform to. The following code
shows what our command protocol looks like:

protocol CommandProtocol {
 func execute(firstValue: Double, secondValue:Double) -> Double
}

Case Studies

[184]

This protocol defines a method named execute. This method will take two values
of the Double type, perform some function on those two numbers, and then return
a new value of the Double type. This method is designed to encapsulate the logic
needed to perform the mathematical function represented by the command type and
return the results.

Now let's look at our addition, subtraction, multiplication, and division types that
will conform to the command protocol that we just defined.

struct AddCommand: CommandProtocol {
 func execute(firstValue: Double, secondValue: Double) -> Double {
 return firstValue + secondValue
 }
}

struct SubCommand: CommandProtocol {
 func execute(firstValue: Double, secondValue: Double) -> Double {
 return firstValue - secondValue
 }
}

struct MultiplyCommand: CommandProtocol {
 func execute(firstValue: Double, secondValue: Double) -> Double {
 return firstValue * secondValue
 }
}

struct DivideCommand: CommandProtocol {
 func execute(firstValue: Double, secondValue: Double) -> Double {
 return firstValue / secondValue
 }
}

Each of these command types conforms to the CommandProtocol protocol by
implementing the execute() method. The execute() method performs the
appropriate function on the two values that are passed in and then returns the results.

Now let's create our Calculator type, which will use the command types to perform
our calculations:

struct Calculator {
 var currentValue: Double = 0.0
 var lastCommand: CommandProtocol?

 mutating func clear() {

Chapter 7

[185]

 currentValue = 0.0
 }

 mutating func commandEntered(newNumber: Double,
nextCommand: CommandProtocol?) {
 if let lastCommand = self.lastCommand {
 self.currentValue = lastCommand.execute(currentValue,
secondValue: newNumber)
 } else {
 self.currentValue = newNumber
 }
 lastCommand = nextCommand
 }
}

Our Calculator type has two properties. The first property is of the Double type
and is named currentValue. This property will keep track of the current value of
our calculation. The second property is an optional of the CommandProtocol type
and is named lastCommand. This property will store the last command submitted to
the calculator.

We have two methods in our Calculator structure. The first method, named
clear(), simply sets the currentValue property to 0. The second method, named
commandEntered(), accepts two arguments. The first argument of the Double type
is named newNumber and the second argument of the CommandProtocol type is
nextCommand.

The commandEntered method starts off by checking to see if the lastCommand
property contains an instance of a type that conforms to the CommandProtocol. If
it does contain an instance we will call the execute() method of the instance. The
execute() method will perform some functionality and then return a new value.
This new value will then be set as the current value for the calculator. The calculator
does not know, or care, exactly what function the execute() method will perform;
all it knows is that it needs to call that method. This is how the command pattern is
designed to work.

Now let's see how we would use the Calculator class by looking at how we use it in
the iOS example that comes with the downloaded code for this book. In the example
we use instances of the UIbutton class for each of the buttons on our calculator.
In the UIButton class, we have a property named tag that we can use to assign a
unique number to each of our buttons that identifies the button that was tapped. In
our example, the following tags are assigned to each button:

Tag Button
 0 Equals Button

Case Studies

[186]

 1 Addition Button
 2 Subtraction Button
 3 Multiplication Button
 4 Division Button
 5 Clear Button

The method that handles the touch events for the command buttons look like this:

@IBAction func commandButtonTapped(sender: UIButton) {
 if let text = display.text, num = Double(text) {
 var clearDisplay = true
 switch sender.tag {
 case 0:
 calculator.commandEntered(num, nextCommand: nil)
 display.text = "\(calculator.currentValue)"
 clearDisplay = false
 case 1:
 calculator.commandEntered(num, nextCommand: AddCommand())
 case 2:
 calculator.commandEntered(num, nextCommand: SubCommand())
 case 3:
 calculator.commandEntered(num, nextCommand: MultiplyCommand())
 case 4:
 calculator.commandEntered(num, nextCommand: DivideCommand())
 case 5:
 calculator.clear()
 default:
 break
 }
 if clearDisplay {
 display.text = "0"
 }
 }
}

Within the CommandButtonTapped() method, we use a switch statement to pick
the button that was tapped. We then call the commandEntered() method of the
Calculator instance and pass it the current number that is being displayed (entered
by the user) and an instance of the appropriate command type.

Chapter 7

[187]

Conclusion
When we need to add additional functionality to our calculator, all we need to do
is to create additional types that conform to the CommandProtocol protocol that
encapsulates the logic for this new functionality. We are then able to pass instances
of these new types to our calculator. The ability to easily add new functionality to
our applications is what makes the command pattern so powerful.

Summary
In this chapter we looked at three case studies to see how we can use Swift with the
protocol-oriented programming paradigm and how to use design patterns to create
easy-to-maintain and very flexible applications. If you worked through the designs
yourself and your design was different from the ones we presented here, that is OK.
There are many correct answers for each of the problems. The key is to make sure
your applications are designed to be easily maintained and very flexible.

As an architect, your focus should not only be on meeting the requirements of your
framework or application but also on making your code base easy to maintain
and expand to meet future requirements. Using a programming paradigm such as
protocol-oriented programming and emphasizing the use of design patterns in our
application's design can help us meet these requirements.

[189]

Index
A
associated types

with protocols 85-87

B
behavioral design patterns

about 142
chain of responsibility pattern 142
command design pattern 143
command pattern 142
iterator pattern 142
mediator pattern 142
momento pattern 142
observer pattern 142, 148
strategy pattern 143, 146
visitor pattern 143

bridge pattern
about 131
implementing 132-136
issues 131
solution 132

builder design pattern
about 121
implementing 122-126
issues 121
solution 121

built in data types 49, 50

C
calculator application

about 181, 182
conclusion 187
design 183-186
requisites 182

class
using, in Swift 28, 29

command design pattern
about 143
implementing 143-145
issues 143
solution 143

compound type 28
connection layer 169-171
creational patterns

about 117, 118
abstract factory pattern 117
builder design pattern 121
builder pattern 117
factory method pattern 118, 127
prototype pattern 118
singleton design pattern 118
singleton pattern 118

D
data access layer

conclusion 181
connection layer 169-171
data helper layer 172-181
data model layer 171, 172
design 168, 169
requisites 167
with SQLite.swift 166

data helper layer 172-181
data model layer 171, 172
data structures 49, 50
delegation 87-90
design patterns

about 116, 117
behavioral patterns 117

[190]

creational patterns 117
structural patterns 117

drink types
implementing 22-24

E
elements 31
enumerations 31-35
error handling

about 51-55
using 70, 71
with NSError 58-61
with return values 56-58
with Swift 2 61

extension
about 97
defining 99-101
drawbacks 98
protocol 101-105

F
façade pattern

about 136
implementing 137-139
issues 136
solution 136

factory method pattern
implementing 128-130
issues 127
solution 127

G
guard statement

using 52-55

I
inheritance 46-49

L
LoggerProtocol protocol

methods 161
logging service

about 156
conclusion 166

design 157-165
requisites 157

N
NSError

error handling with 58-61

O
object-oriented programming language

drink types, implementing 22-24
Swift as 2-12
vs protocol-oriented programming

language 19
observer pattern

about 148
implementing 149-153
issues 148
solution 148

P
pattern 106
polymorphism

about 5
with protocols 83, 84

primitive types 28
protocol

about 37, 73, 74, 101-105
and protocol extensions, superclasses 19-21
associated types with 85-87
composition 79-81
defining 75
designing with 90-95
developing with 90-95
inheritance 78
method, requisites 76, 77
optional, requisites 77
polymorphism with 83, 84
property, requisites 76
syntax 75
type casting with 84, 85
using, as type 81, 82

protocol-oriented programming language
about 155, 156
drink types, implementing 22-24
Swift as 13-18

[191]

vs object-oriented programming
language 18

proxy design pattern
about 139
implementing 140-142
issues 139
solution 140

R
recursive data type 44-46
reference class types

versus value structure 38-43
reference types

and value types 28
vs value types 24, 25

regex 106
return values

error handling with 56-58

S
singleton design pattern

about 118
implementing 119-121
issues 118, 119
solution 119

SQLite 167
SQLite.swift

data access layer with 166
URL 167, 173

strategy pattern
about 146
implementing 146-148
issues 146
solution 146

structural design patterns
about 131
adapter pattern 131
bridge pattern 131
composite pattern 131
decorator pattern 131
façade pattern 131, 136
flyweight pattern 131
proxy design pattern 139
proxy pattern 131

structure 30, 31
superclasses

vs protocol and protocol extensions 19-21

Swift
as object-oriented programming

language 2-12
as protocol-oriented programming

language 13-18
class, using 28, 29
standard library, URL 30-74

Swift 2, error handling with
about 61
errors, catching 67-70
errors, representing 62, 63
errors, throwing 63-66

Swift standard library
URL 102

T
text

validating 106-113
TextValidationProtocol protocol

getMatchingString method 108
regExFindMatchString 108
regExMatchingString 108
validateString method 108
validationMessage 108

throwing the error 63
tuple 36, 37
typealias declaration 28
type casting

with protocols 84, 85
types

compound type 27
named type 27

V
value structure

versus reference class types 38-40
value types

and reference types 28
vs reference types 24, 25

W
winner is 25
World Wide Developers Conference

(WWDC) 1

Thank you for buying
Protocol-Oriented Programming with Swift

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Application Development with
Swift 2 [Video]
ISBN: 978-1-78588-960-8 Duration: 1:39 hours

Learn how to create engaging, visually impressive
applications for iOS with Swift 2

1. Develop an engaging, feature-rich application
for iOS devices that you can use as an example
to develop your own projects.

2. Explore the key components of application
development with Swift 2: Xcode, Storyboards,
Tableviews, and more.

3. Even if you're a newcomer, you'll find this
course accessible, and you'll learn about the
Swift language through examples along the way.

Swift High Performance
ISBN: 978-1-78528-220-1 Paperback: 212 pages

Leverage Swift and enhance your code to take your
applications to the next level

1. Build solid, high performance applications in
Swift.

2. Increase your efficiency by getting to grips with
concurrency and parallel programming.

3. Use Swift to design performance-oriented
solutions.

Please check www.PacktPub.com for information on our titles

Swift 2 Blueprints
ISBN: 978-1-78398-076-5 Paperback: 276 pages

Sharpen your skills in Swift by designing and
deploying seven fully-functional applications

1. Develop a variety of iOS-compatible
applications that range from health and fitness
to utilities using this project-based handbook.

2. Discover ways to make the best use of the latest
features in Swift to build on a wide array of
applications.

3. Follow step-by-step instructions to create Swift
apps oriented for the real world.

Swift Essentials
Second Edition
ISBN: 978-1-78588-887-8 Paperback: 248 pages

Discover how to build iOS and watchOS applications
in Swift 2 using Xcode

1. Gets you up and running with Swift
programming without any prior iOS
development experience.

2. A fast paced guide showing best practices and
lets you get up to speed with Swift to quickly
build your own iOS applications.

3. A unique practical approach to make your life
with Swift easy.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Object-Oriented and Protocol-Oriented Programming
	Swift as an object-oriented programming language
	Swift as a protocol-oriented programming language
	Summarizing protocol-oriented programming and object-oriented programming
	Object-oriented programming versus protocol-oriented programming
	Protocol and protocol extensions versus superclasses
	Implementing drink types
	Value types vs reference types

	The winner is...
	Summary

	Chapter 2: Our Type Choices
	The class
	The structure
	The enumerations
	The tuple
	Protocols
	Value versus class types
	Recursive data types (reference types only)
	Inheritance (reference types only)
	Swift built-in data types and data structures
	Summary

	Chapter 3: Catching Our Errors
	Using the guard statement
	Error handling
	Error handling with return values
	Error handling with NSError
	Error handling with Swift 2
	Representing errors
	Throwing errors
	Catching errors

	When to use error handling
	Summary

	Chapter 4: All about the Protocol
	Protocol syntax
	Defining a protocol
	Property requirements
	Method requirements
	Optional requirements
	Protocol inheritance

	Protocol composition
	Using protocols as a type
	Polymorphism with protocols
	Type casting with protocols
	Associated types with protocols
	Delegation
	Designing and developing with protocols
	Summary

	Chapter 5: Let's Extend Some Types
	Defining an extension
	Protocol extensions
	Text validation
	Summary

	Chapter 6: Adopting Design Patterns
in Swift
	What are design patterns?
	Creational patterns
	The singleton design pattern
	Understanding the problem
	Understanding the solution
	Implementing the singleton pattern

	The builder design pattern
	Understanding the problem
	Understanding the solution
	Implementing the builder pattern

	The factory method pattern
	Understanding the problem
	Understanding the solution
	Implementing the factory method pattern

	Structural design patterns
	The bridge pattern
	Understanding the problem
	Understanding the solution
	Implementing the bridge pattern

	The façade pattern
	Understanding the problem
	Understanding the solution
	Implementing the façade pattern

	The proxy design pattern
	Understanding the problem
	Understanding the solution
	Implementing the proxy pattern

	Behavioral design patterns
	The command design pattern
	Understanding the problem
	Understanding the solution
	Implementing the command pattern

	The strategy pattern
	Understanding the problem
	Understanding the solution
	Implementing the strategy pattern

	The observer pattern
	Understanding the problem
	Understanding the solution
	Implementing the observer pattern

	Summary

	Chapter 7: Case Studies
	Logging service
	Requirements
	The design
	Conclusion

	Data access layer with SQLite.swift
	Requirements
	The design
	Connection layer
	Data model layer
	Data helper layer
	Conclusion

	Calculator application
	Requirements
	The design
	Conclusion

	Summary

	Index

