
www.allitebooks.com

http://www.allitebooks.org

Puppet for Containerization

Learn about configuration management and gain
complete control of your Docker containers using Puppet

Scott Coulton

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Puppet for Containerization

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1130516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-328-6

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Scott Coulton

Reviewer
Ajeet Singh Raina

Commissioning Editor
Sarah Crofton

Acquisition Editor
Rahul Nair

Content Development Editor
Sumeet Sawant

Technical Editor
Dhiraj Chandanshive

Copy Editor
Neha Vyas

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Scott Coulton is a solutions architect with 10 years of experience in the field of
managed services and hosting space. He has extensive experience in architecture
and in rolling out systems and network solutions for national and multinational
companies with a wide variety of technologies including AWS, Puppet, Docker,
Cisco, VMware, Microsoft, and Linux. His design strengths are in cloud computing,
automation, and security space.

You can find him at https://www.linkedin.com/in/scott-coulton-22864813.
You can find him on Twitter at @scottcoulton and on GitHub at https://github.
com/scotty-c.

www.allitebooks.com

https://www.linkedin.com/in/scott-coulton-22864813
https://github.com/scotty-c
https://github.com/scotty-c
http://www.allitebooks.org

About the Reviewer

Ajeet Singh Raina is a Docker Captain (https://www.docker.com/community/
docker-captains) as well as technical lead engineer at Dell India R&D. He has
picked up a variety of skills in his career, from having worked as an IT consultant
and systems administrator to system integration testing. He received a certification
as a VMware Certified Professional (VCP 4.1) while he was a part of the VMQA
GOS validation team at VMware and has more than 8 years of industry experience.
He is currently working with Enterprise Solution Group at Dell India R&D and has
solid understanding of diverse range of topics, such as IT infrastructures, systems
management, system integration engineering, and quality assurance.

Ajeet has a great passion for upcoming trends and technologies. He loves
contributing toward open source space through writing and blogging at
http://www.collabnix.com. He is currently busy evaluating and building
up containers and microservices for his organization. Last year, he reviewed
PowerCLI Cookbook, Packt Publishing.

This book would not have been a success without direct and indirect
help from many people. Thanks to my wife and 7-year old kid for
putting up with me, for all the missing family time, and for providing
me with love and encouragement throughout the reviewing period.
Thanks to my parents and family members for all their love, guidance,
and encouragement during the tough times. Thanks to all my past
and present colleagues and mentors at VMware and Dell Inc. for the
insightful knowledge they shared with me.

www.allitebooks.com

https://www.docker.com/community/docker-captains
https://www.docker.com/community/docker-captains
http://www.collabnix.com
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To Halen,

Dream big and work hard. There is nothing in your life that
you won't be able to achieve.

Love,
Dad

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Installing Docker with Puppet 1

Installing Vagrant 1
The installation 2

VirtualBox 2
Vagrant 6

Vagrantfile 9
Welcome to the Puppet Forge 11

The Puppet Forge 11
Creating our puppetfile 13

Installing Docker 15
Setting our manifests 15

Summary 17
Chapter 2: Working with Docker Hub 19

Working with Docker Hub 19
An overview of Docker Hub 20
Creating a Docker Hub account 24
Exploring official images 26

Automated builds in Docker Hub 31
Automated builds 32
Pushing to Docker Hub 35

Working with official images 36
Dockerfiles 36
Docker Compose 38
Puppet manifest 41

Summary 42

Table of Contents

[ii]

Chapter 3: Building a Single Container Application 43
Building a Puppet module skeleton 43

The Puppet module generator 44
Coding using resource declarations 48

File structures 49
Writing our module 49
Running our module 53

Coding using .erb files 55
Writing our module with Docker Compose 55
Docker Compose up with Puppet 57

Summary 59
Chapter 4: Building Multicontainer Applications 61

Decoupling a state 62
State versus stateless 62

Docker_bitbucket (manifest resources) 63
Creating our module skeleton 63
Let's code 64
Running our module 67

Docker_bitbucket (Docker Compose) 70
Let's code – take 2 71
Running our module – take 2 72

Summary 73
Chapter 5: Configuring Service Discovery and
Docker Networking 75

Service discovery 75
The theory 75
The service discovery module 78

Docker networking 95
The prerequisites 95
The code 95

Summary 98
Chapter 6: Multinode Applications 99

The design of our solution 99
The Consul cluster 100
The ELK stack 100

Putting it all together 101
The server setup 102
The Consul cluster 104
The ELK stack 113

Summary 120

Table of Contents

[iii]

Chapter 7: Container Schedulers 121
Docker Swarm 121

The Docker Swarm architecture 122
Coding 122

Docker UCP 133
The Docker UCP architecture 133
Coding 134

Kubernetes 143
The architecture 143
Coding 144

Summary 154
Chapter 8: Logging, Monitoring, and Recovery Techniques 155

Logging 155
The solution 156
The code 156

Logstash 163
Monitoring 167

Monitoring with Consul 168
Recovery techniques 172

Built-in HA 172
Summary 176

Chapter 9: Best Practices for the Real World 177
Hiera 177

What data belongs in Hiera 178
Tips and tricks for Hiera 179

The code 179
UCP 180
Kubernetes 192

Summary 198
Index 199

[v]

Preface
This book teaches you how to take advantage of the new benefits of containerization
systems such as Docker, Kubernetes, Docker Swarm, and Docker UCP, without
losing the panoptical power of proper configuration management. You will learn to
integrate your containerized applications and modules with your Puppet workflow.

What this book covers
Chapter 1, Installing Docker with Puppet, covers how to create a development
environment with Docker using Puppet. We will look at how to install Vagrant and
VirtualBox. Then, we will look at Puppet Forge and how to search for modules and
their dependencies. We will briefly touch upon r10k to be our transport mechanism
from the Puppet Forge to our environment. Then, we build our environment
with Puppet.

Chapter 2, Working with Docker Hub, covers a lot about the Docker Hub ecosystem:
what are official images, how automated builds work, and of course, working
with images in three different ways.

Chapter 3, Building a Single Container Application, contains our first Puppet module to
create a Docker container. In this chapter, we will look at writing rspec-puppet unit
tests to make sure that our module does what it's meant to do. We will know how to
map our Puppet module dependencies with our metadata.json and fixtures.yml
files.

Chapter 4, Building Multicontainer Applications, introduces Docker Compose. We will
look at the docker-compose .yaml file construct. We will then take that knowledge
and create a Puppet template (.erb file) and wrap that into a module. We will also
touch on the Docker Compose functionality that will let us scale containers.

Preface

[vi]

Chapter 5, Configuring Service Discovery and Docker Networking, introduces two very
important topics when working with containers. First, we will look at service
discovery, what it is, why do we need it, and lastly, the different types of service
discovery.

Chapter 6, Multinode Applications, introduces all the skills that you've learned in the
book so far. We are really going to step it up a notch. In this chapter, we are going
to deploy four servers, and we are going to look at how to Consul cluster. In this
chapter, we are going to look at the two ways to network our containers. Firstly,
using the stand host IP network, that our Consul cluster will communicate on.
We will also install the ELK (Elasticsearch, Logstash, and Kibana) stack.

Chapter 7, Container Schedulers, covers container schedulers such as Docker Swarm
and Kubernetes. Then, we will build a dev environment containing four servers,
three cluster nodes, and a master. We will also build a Docker network and service
discovery framework.

Chapter 8, Logging, Monitoring, and Recovery Techniques, will take the environment that
we created in the last chapter and add monitoring, logging, and recovery techniques
to it. This will make our applications robust and ready for production.

Chapter 9, Best Practices for the Real World, focuses more on the best practices for
deploying Puppet itself within a containerized environment using all the new skills
that you learned in the previous chapters. By the end of this journey, readers will be
able to master Puppet and Docker and apply them in the real world.

What you need for this book
For this book we need Intel i5 or above, 8 GB of ram (16 preferable), 50 GB of free
disk space, and any OS that can run Vagrant.

Who this book is for
This book is designed for system administrators who are looking to explore
containerization. Intermediate experience and expertise of Puppet is presumed.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The other change that we have made to the servers.yaml file is we have added
entries to the /etc/hosts directory."

Any command-line input or output is written as follows:

command: -server --client 0.0.0.0 --advertise <%= @consul_advertise
%> -bootstrap-expect <%= @consul_bootstrap_expect %>

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The next
thing we need to do is click on the Create button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/PuppetforContainerization_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/PuppetforContainerization_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/PuppetforContainerization_ColorImages.pdf

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.allitebooks.org

[1]

Installing Docker with Puppet
In this chapter, we will be setting up our development environment so that we can
develop our first container application. To do this, we will use Vagrant. In our first
topic, we will look at how to install Vagrant. We will look at how a Vagrantfile is
constructed using Puppet as the provisioner. We will also look at how to get Puppet
modules from the Puppet Forge using a puppetfile and r10k. In the last topic, we will
install Docker on a Centos 7 box with Puppet. The following are the topics that we
will cover in this chapter:

• Installing Vagrant
• An introduction to Puppet Forge
• Installing Docker

Installing Vagrant
You may ask, why are we using Vagrant for our development environment?

Vagrant is a must-have for Puppet development. The idea that you can spin up
environments for development locally in minutes was a revolution in Vagrant's
early releases. The product has now grown in leaps and bounds, with multiple
provisioners such as Chef and Salt. Paired with multiple virtualization backends
such as VirtualBox, VMware Workstation/Fusion, KVM, and we are going to use
VirtualBox and Puppet as your provisioner.

Installing Docker with Puppet

[2]

The installation
Let's install Vagrant. Firstly, we will need our virtualization backend, so let's
download and install VirtualBox. At the time of writing, we use VirtualBox 5.0.10
r104061. If that's outdated by the time you read this book, just grab the latest version.

You can download VirtualBox from https://www.virtualbox.org/wiki/
Downloads. Choose the version for your OS, as shown in the following screenshot:

Once the package is downloaded, follow the given installation process for your OS.

VirtualBox
Follow these steps to install Vagrant on Mac OSX:

1. Go to your Downloads folder and double-click on VirtualBox.xxx.xxx.dmg.
The following installation box will pop up:

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Chapter 1

[3]

2. Then, click on VirtualBox.pkg. Move on to the next step, as shown in the
following screenshot:

The installer will then check whether the software is compatible with the Mac
OSX version.

Installing Docker with Puppet

[4]

3. After this, click on Continue. Once the check is successful, we can move on to
the next step:

4. We then choose the default location for the installation and click on Install.
5. Then, enter your admin password and click on Install Software:

Chapter 1

[5]

The installation is now complete. The following screenshot shows what the screen
looks like after completing the installation:

Now that we have the virtualization backend, we can install Vagrant:

Installing Docker with Puppet

[6]

At the time of writing this book, we are going to use Vagrant 1.7.4; if that
is no longer the latest version, please grab the latest one. You can find this
version of Vagrant at https://www.vagrantup.com/downloads.
html. Again, download the installation package for your OS.

Vagrant
Here, we are just going to complete a standard installation. Follow these steps to
do so:

1. Go to the folder in which you downloaded vagrant.1.7.4.dmg and double-
click on the installer. You will then get the following pop up:

2. Double-click on vagrant.pkg.

https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/downloads.html

Chapter 1

[7]

3. Then, in the next dialogue box, click on Continue:

4. Then, click on the Install button:

Installing Docker with Puppet

[8]

5. Enter your admin password in the given field:

6. Once the installation is complete, open your terminal application. In the
command prompt, type vagrant. After this, you should see the following
screenshot:

Chapter 1

[9]

Vagrantfile
Now that we have a fully working Vagrant environment, we can start with and look
at how Vagrant works and how we are going to provision our machines. As this
book is not about Vagrant, we won't be writing a Vagrantfile from scratch. Instead, I
have created a Vagrantfile that we will be using throughout the book:

You can download or Git pull the repo from https://github.com/
scotty-c/vagrant-template.

www.allitebooks.com

https://github.com/scotty-c/vagrant-template
https://github.com/scotty-c/vagrant-template
http://www.allitebooks.org

Installing Docker with Puppet

[10]

Let's look at the Vagrantfile construct:

Chapter 1

[11]

As you can see from the preceding screenshot, the Vagrantfile is actually a Ruby file.
As it is Ruby, it opens up a world of opportunities for us to make our code elegant
and efficient. So, in this Vagrantfile, we have extracted all the low-level configurations
and replaced them with a few parameters. Why are we doing this? The reason is to
split up our logic from our configuration and also iterate our configuration in order
to stop replication of our code. So, where is all the configuration stored? The answer
is in the servers.yaml file. This is where we set the vagrant box that we want to
deploy, the number of CPUs for the box, the internal network's IP, the hostname, the
forwarded ports between the guest and host, and the RAM and shell provider for bash
commands that we need to get the environment ready for Puppet to run, for example,
downloading modules and their dependencies from the Puppet Forge:

The benefit of this approach is also that any developer using a Vagrantfile does not
need to actually modify the logic in the Vagrantfile. They only need to update the
configuration in servers.yaml. As we go through the book, we will work with the
other files in the repository, such as Puppetfile, hieradata, and manifests. Now
that we have set up our Vagrant environment, let's look at how to get our Puppet
modules from the Puppet Forge.

Welcome to the Puppet Forge
In this topic, we will look at how to find modules from the Puppet Forge. Then, we
will see how to pull them with their dependencies using a puppetfile and r10k. This
will set us up for our last topic, Installing Docker with Puppet.

The Puppet Forge
One of the great things about puppetlabs and their products is the community. If you
ever get a chance to attend PuppetConf or a Puppet Camp, depending on where you
live, I would really recommend you to attend it. There will be a wealth of knowledge
there and you will meet some really great people.

Installing Docker with Puppet

[12]

The Puppet Forge is a website that puppetlabs runs. It is a place where other Puppet
developers publish modules that are ready to use. You might be asking, what about
GitHub? Can't you get modules from there? Yes, you can. The difference between the
Puppet Forge and GitHub is that the Puppet Forge is the stable, releasable version of
the module, whereas GitHub is the place to contribute to the module, that is, a place
to create pull requests.

You can find the Puppet Forge at https://forge.puppetlabs.com/.

The following screenshot shows the home page of Puppet Forge:

Now that we have been introduced to the Puppet Forge, let's use it to find our
Docker module that we will be using to build our environment.

We are going to use the garethr/docker Docker module, which you can
find at https://forge.puppetlabs.com/garethr/docker.

https://forge.puppetlabs.com/
https://forge.puppetlabs.com/garethr/docker

Chapter 1

[13]

Now that we have selected our module, we can move on to setting up our puppetfile:

Creating our puppetfile
In the previous topic, we cloned our Vagrant template using Git. In that repo, there
is also a puppetfile. A puppetfile is used as a control file for our modules. It will
list all the modules that we need (in this instance, just to install Docker). r10k will
then reference the puppetfile and pull the modules from the Puppet Forge into our
environment's directory.

As modules have dependencies, we need to make sure that we capture them in our
puppetfile. For the Docker module, we have three dependencies: puppetlabs/stdlib
(>= 4.1.0), puppetlabs/apt (>= 1.8.0 <= 3.0.0), and stahnma/epel (>= 0.0.6), as shown
in the following screenshot.

Now, we know all the modules that we need to build a Docker environment. We just
need to add them to our puppetfile.

Installing Docker with Puppet

[14]

The following screenshot is an example of what the puppetfile should look like:

Now, when we run vagrant up, r10k will pull the modules from the Puppet Forge.
We invoke r10k on line 13 of servers.yaml with the r10k puppetfile install—
verbose command. The following screenshot shows the output of this command:

If we are successful, the terminal will provide the following output:

Now that we have our puppetfile set up, we can install Docker.

Chapter 1

[15]

Installing Docker
In this topic, we will put together all the configuration from our Vagrant repo and
knowledge of the Puppet Forge to create the Docker environment.

Setting our manifests
The first thing that we need to do to install Docker is set our manifest to include the
Docker class on our node. To do this, let's go to our Vagrant repo. In the repo, there
is a file in the manifests directory called default.pp. We need to edit the file to
include the Docker class node 'node-01' { include docker}. We can now save
the file, and we are ready to run our environment.

The first step is to open our terminal and change to root of the Vagrant repo.
Then, we need to enter the vagrant up command:

This will now provide us with our CentOS 7 box. Install r10k and then run Puppet
and apply the Docker class. This will take about 4 minutes depending on your laptop
and network connection. If the box was provisioned successfully, you will see the
following output:

We can also verify that the Docker installation was successful by logging in to
the box via SSH. We will do that with the vagrant ssh command. Once we are in,
we will sudo up to root (sudo -i). Now, let's just check whether Docker is installed
with the docker command.

Installing Docker with Puppet

[16]

You will see the following output on the terminal:

Chapter 1

[17]

Summary
In this chapter, we covered how to create a development environment with Docker
using Puppet. We looked at how to install Vagrant and VirtualBox. Then, we looked
at the Puppet Forge, how to search for modules and their dependencies. We then
took the dependencies and mapped them to a puppetfile. We briefly touched on
r10k, which is our transport mechanism from the Puppet Forge to our environment.
Then, we built our environment with Puppet.

In the next chapter, we'll take a look at how to access Docker Hub and pull
public images.

[19]

Working with Docker Hub
In this chapter, we will look at Docker Hub, what it is, how to sign up for an account,
how to pull an image, how to push an image, and automated image builds. This
will give us a good solid foundation for future topics when we need to work with
official images.

In this chapter, we will cover the following topics:

• What is Docker Hub?
• Automated builds
• Working with official images

Working with Docker Hub
In this section, we will discuss Docker Hub, what it is used for, what features does it
provide, and lastly, how is it different from other repository sites, such as GitHub or
Puppet Forge. We will then create an account and explore our account settings. After
this, we will look at official images to get a solid foundation for the next topic.

Working with Docker Hub

[20]

An overview of Docker Hub
In the last chapter, we looked at the Puppet's repo service, The Forge as it is called
by the community (https://forge.puppetlabs.com/). Now, let's look at Docker's
repo service, Docker Hub. We can find Docker Hub at https://hub.docker.com/.

The following screenshot shows what the screen looks like:

In Docker Hub, there are two type of images:

• Official images
• Images authored by developers

https://forge.puppetlabs.com/
https://hub.docker.com/

Chapter 2

[21]

First, we will talk about official images. On Docker Hub, you can get official images
for just about any major operating system or application. So, the benefit for you as a
developer is that the work to install the application is done for you, saving you the
time and effort. This allows you to focus your time on developing. Let's look at an
example—we will use golang.

First, we will search for golang in the search box at the top right-hand side of the
front page, as shown in the following screenshot:

Working with Docker Hub

[22]

Our search will return the following results:

We will click on the official release of golang, as shown in the following screenshot:

Chapter 2

[23]

As we can see in the preceding screenshot, this repository gives us a lot of options.
So, we can use multiple, different versions of golang, even on multiple different
operating systems. So, to build a golang app, all we need to do is choose an image.
We will use the following image in our Dockerfile:

We will then use the COPY method in our Dockerfile to get our code into the container
on build. Lastly, we will run the command shown in the following screenshot to
build our container:

Working with Docker Hub

[24]

So, as you can see, it was very easy to build our app, where almost all of our
development time would be spent on the actual application. This will increase our
productivity and bring the applications to production a lot faster. In this day and
age, where agility is everything, you would have to be mad to not see the benefit.

The second type of image on Docker Hub is developed and open sourced by
developers and is maintained by them individually. The easiest way to tell whether
an image is official or has been developed by an individual is through the image's
name. In our last example, we looked at the golang image. The name of that image
is golang. Now, let's look at a container that I have open sourced. For this example,
we will look at my consul image. If you want to use my image, you would call it
scottyc/consul. As you can see, the name is different, as it calls the author name
scottyc and then the image name, consul. Now, you can see the difference in the
naming convention between an official image and an authored image.

Now that we have covered the different images hosted at Docker Hub, we can move
on to how images get to Docker Hub. There are two different ways to get images to
Docker Hub. Both ways, we need a Docker Hub account, which we will cover in the
next section.

The first way is to build the image locally and simply use the docker push command.
The second way is using automated builds, which is an awesome functionality that
Docker has built into Docker Hub. We will cover this later in much more detail. At
a high level, it is a CD (continuous delivery) process to build the image based on a
Dockerfile that is stored in a GitHub or Bitbucket public repository.

Creating a Docker Hub account
In this topic, we will create a Docker Hub account and look at how to log in to the
Docker daemon manually (we will cover how to do this with Puppet in the next
chapter). So, let's start. First, we will need to go to Docker Hub (https://hub.
docker.com/) and fill out the form on the right-hand side of the page. Just replace
yourusername with your desired username, you@youremail.com, with your e-mail
ID, and, of course, enter a secure password:

https://hub.docker.com/
https://hub.docker.com/

Chapter 2

[25]

After that, go to your e-mail ID and confirm your account. This will then redirect you
to the Docker login page. Log in and you should see the following web page:

Now that we have an account, let's log in to our daemon. So, let's use vagrant ssh
back into our Docker vagrant box. We will change to root (sudo –i) and then enter
the docker login command:

Working with Docker Hub

[26]

Enter the username that we just created:

Then, enter your password:

After this, enter your e-mail ID. Once this is done, you should see the following output:

You have now successfully logged in the Docker daemon.

Exploring official images
In this topic, we are going to provide a quick overview of how to search for images
on Docker Hub. There are two ways to do this:

• Through the Docker Hub website
• Through the command line

Chapter 2

[27]

Let's look at the website first. If you remember, in our golang example we already
used the web interface to search for an image. Let's look at another example. In this
example, we will look for bitbucket, Atlassian's git server. So, we will go back to
Docker Hub (https://hub.docker.com/) and enter bitbucket in the search field:

https://hub.docker.com/

Working with Docker Hub

[28]

Our search will return the following output:

As you can see from the preceding screenshot, we got 43 results. So what should
we look for to choose the right image? We always look for three things, which are
as follows:

• We check the number of pulls. The more people using an image, the more
likely it will run with no issues.

• We also check Docker's official rating system: how many stars a repository
has. Stars are awarded by other members of the community when they like
the image, which is very similar to the star system on GitHub.

Chapter 2

[29]

• We check whether the repo has a Dockerfile. This gives you peace of mind
about how the image is built. You can see all the commands that were run
to complete the build.

Using the three metrics, let's pick an image. Looking at the results, atlassian/
bitbucket-server looks good, with 21 stars and 7.3k pulls. So, let's click on the
repo and look for a Dockerfile:

www.allitebooks.com

http://www.allitebooks.org

Working with Docker Hub

[30]

If we click on the Dockerfile tab under the main image title, it takes us to the
Dockerfile page. Not every repository has a Dockerfile; however, this does not
mean that it's a bad image. This just means that it will take more testing before you
would be able use it in production. Some authors, such as Jess (Jessie Frazelle) from
Docker, have their Dockerfiles on their GitHub page. She has awesome images on
Docker Hub and the Dockerfiles can be found at https://github.com/jfrazelle/
dockerfiles. Alright, back to our example. As you can see in the following
screenshot, there is a Dockerfile:

So, I think this is the winner!!!!

https://github.com/jfrazelle/dockerfiles
https://github.com/jfrazelle/dockerfiles

Chapter 2

[31]

Now, let's do the same search from the command line. In the command line, type
docker search bitbucket, and the search will return the following output:

As you can see, it has returned the same information, and the only thing missing is
the number of pulls. Again, it looks like we will use atlassian/bitbucket-server.

Automated builds in Docker Hub
In this topic, we are going to look at how automated builds work at a high level,
and how to publish an image via the push method on Docker Hub.

Working with Docker Hub

[32]

Automated builds
In Docker Hub, we have two ways to publish images: via a simple push method or
via an automated build. In this topic, we will cover automated builds. First, we will
look at the flow of an automated build. In this example, we will be using GitHub, but
you can also use Bitbucket. So, the first thing that we need to do is link our Docker
Hub account to our GitHub account. This is done by navigating to Settings | Linked
Accounts & Services:

Just follow the prompts to link the accounts.

Once this is completed, let's go to our GitHub account and create a repo. I am going
to use the one that I have already set up:

Chapter 2

[33]

Working with Docker Hub

[34]

As you can see in the preceding screenshot, the repo contains a Dockerfile. Now, let's
looks at the same repo except Docker Hub:

After this, we will look at the Build Details tab:

Chapter 2

[35]

So, how does that build automate ? Well, it is quite simple. Every time we check in a
change to the GitHub repo, it will trigger web hooks at Docker Hub. When Docker
Hub receives the trigger, it will grab the Dockerfile and build the image. Docker Hub
will take care of things such as version numbers for us with every build. So, at a high
level, this is how automated builds work.

Pushing to Docker Hub
This is a quite simple way to get an image to Docker Hub, but the downside is
that there is no automated build process and the Dockerfile does not get placed in
the Docker Hub repo automatically. So, in this example, we will assume that we
have created an image called scottyc/super_app. To push this to Docker Hub,
we simply type docker push scottyc/super_app in the terminal. Note that the
Docker daemon needs to be logged in at the time of the push.

Working with Docker Hub

[36]

Working with official images
Now that we know how Docker Hub serves images to us, let's look at how to
integrate them into our code via three methods. The first will be a Dockerfile, the
second will be in the docker-compose.yaml file, and the last will be straight into a
Puppet manifest.

Dockerfiles
In this topic, we will look at using nginx in a basic Dockerfile. In a Dockerfile, we
need to add a few things. The first is the image that we are basing our application on;
for us it will be nginx. The second is a maintainer. It should look like as shown in the
following screenshot:

As the base nginx image has already got port 80 and 443 exposed, we will not need
that configuration for our Dockerfile. The next thing we will add is a simple run
command to update the packages in the container. As its base OS is Debian, we will
add the command shown on line 5 in the following screenshot:

As we are building a simple application, this is all that we are going to add to our
Dockerfile. There are heaps of configurations that can be done with a Dockerfile.

If you would like to read about Dockerfiles, you can do so at
https://docs.docker.com/engine/reference/builder/.

https://docs.docker.com/engine/reference/builder/

Chapter 2

[37]

Now, let's build our image. You will note that server.yaml in our Vagrant repo
already has port 80 forwarding to port 8080, so we won't need to make any changes
there. Copy the Dockerfile that we created into the root of your Vagrant repo. Then,
let's start our vagrant box with vagrant up from our terminal. Then, use vagrant
ssh once the box is up. Let's change to root (sudo -i). Then, if we change directories
to /vagrant, we should see our Dockerfile. Now, let's build our image with the
command, docker build -t YOUR AUTHOR NAME/nginx . (note that . is part
of the command). You will get the following output on your terminal:

Next, let's test our image and spin up a container with the following command:

docker run -d -p 80:80 --name=nginx YOUR AUTHOR NAME/nginx

Working with Docker Hub

[38]

If it was successful, we should get the nginx default page in your browser at
127.0.0.1:8080, as follows:

Docker Compose
Now, we are going to deploy the same nginx image with Docker Compose.
We are going to run Docker Compose at a high level in this topic just to get an
understanding of the technology. We will look at it in depth in another chapter
of this book. The first thing we need to do is install Docker Compose.

At the time of writing this book, my pull request is still open, so we
will have to use my branch of Gareth's module.

To do this, let's modify our puppetfile in the Vagrant repo with the commands
shown in the following screenshot:

So, in the Puppetfile we added a new module dependency, stankevich/python,
as Docker Compose is written in Python. We also updated our epel module to
use the latest. Just to get a fresh working environment, we will run the command,
vagrant destroy && vagrant up, in our terminal. Once the box is up, we will use
vagrant ssh and then change to root (sudo -i). We will then change the directory
to /vagrant and type docker-compose.

Chapter 2

[39]

If the build was successful, we will see the following screen:

Now, let's create docker-compose.yaml:

Working with Docker Hub

[40]

As you can see, we used the official image, gave the container a name nginx, and
exposed ports 80:80 again to be able to hit the nginx page. So, if we copy our docker-
compose.yml file to the root of the Vagrant directory, log in to our vagrant box, and
change the directory to root (vagrant ssh, then sudo -i), we will be able to change
the directory to /vagrant again. Now, run docker-compose up -d. We will get the
following output after running it:

We can then go to our web browser and visit the nginx page at 127.0.0.1:8080:

If you want to read more about Docker Compose, go to
https://docs.docker.com/compose/.

https://docs.docker.com/compose/

Chapter 2

[41]

Puppet manifest
In this section, we are going to build the same ngnix container with a simple Puppet
manifest. This is just a proof of concept. In the next chapter, we will write a full
module. This is just to give us a foundation and understanding of how Puppet
interacts with Docker. So, in our Vagrant repo, let's modify manifest/default.pp.
The file should contain the following code:

We will then open our terminal at the root of our Vagrant repo and run vagrant
provision. Note that you should have no other containers running at this time.
You will see the following output, which shows that Puppet provisioned a Docker
container called nginx:

We can then check our browser again at 127.0.0.1:8080. We will get the nginx
page again:

Working with Docker Hub

[42]

Summary
In this chapter, we covered a lot about the Docker Hub ecosystem. We discussed
what official images are, how automated builds work, and of course, how to work
with images in three different ways. After working through this chapter, we now
have the tools in our tool belt to build our first application with Puppet.

In the next chapter, we will write our first Puppet module to create a Docker
container and we will look at writing rspec-puppet unit tests to make sure that
our module does what it's meant to do.

[43]

Building a Single Container
Application

In this chapter, we are going to write our first module to deploy our first
containerized application. The application that we are going to deploy is Consul
from HashiCorp (https://www.consul.io/). We will talk about Consul a little later
in the chapter. The first thing we will look at is how to construct a Puppet module
with the correct file structure, unit tests, and gems. Once we have our module
skeleton, we will look at the two ways to deploy Consul with Puppet in a container.
The first will be to use resource declarations in a manifest and the second will be to
use Docker Compose as a template .erb file. These are the topics that we will cover
in this chapter:

• Building a Puppet module skeleton
• Coding using resource declarations
• Coding using .erb files

Building a Puppet module skeleton
One of the most important things in development is having a solid foundation.
Writing a Puppet module is no different. This topic is extremely important for the
rest of the book, as we will be reusing the code over and over again to build all our
modules from now on. We will first look at how to build a module with the Puppet
module generator. Once we have our module skeleton, we will look at its construct.
We will look at the plumbing Puppet uses with Ruby, and lastly, at basic unit tests.

https://www.consul.io/

Building a Single Container Application

[44]

The Puppet module generator
One of the best things about working with Puppet is the number of tools out there,
both from the community and from puppetlabs itself. The Puppet module generator
is a tool that is developed by puppetlabs and follows the best practices to create
a module skeleton. The best thing about this tool is that it is bundled with every
Puppet agent install. So, we don't need to install any extra software. Let's log in to
our Vagrant box that we built in the last chapter. Let's change directory to the root
of our Vagrant repo and then use the vagrant up && vagrant ssh command.
Now that we are logged in to the box, let's sudo to root (sudo -i) and change the
directory to /vagrant. The reason for this is that this folder will be mapped to our
local box. Then, we can use our favorite text editor later in the chapter. Once we're
in /vagrant, we can run the command to build our Puppet module skeleton. The
puppet module generate <AUTHOR>-consul command for me will look like this:
puppet module generate scottyc-consul.

The script will then ask a few questions such as the version, author name,
description, where the source lives, and so on. These are very important questions
that are to be considered when you want to publish a module to the Puppet Forge
(https://forge.puppetlabs.com/), but for now, let's just answer the questions as
per the following example:

https://forge.puppetlabs.com/

Chapter 3

[45]

Building a Single Container Application

[46]

Now that we have our Puppet module skeleton, we should look at what the structure
looks like:

Now, we are going to add a few files to help us with unit tests. The first file is
.fixtures.yml. This file is used by spec-puppet to pull down any module
dependencies into the spec/fixtures directory when we run our unit tests.
For this module, the .fixtures.yml file should look like the one shown in the
following screenshot:

The next file that we are going to add is a .rspec file. This is the file that
rspec-puppet uses when it requires spec_helper, and it sets the pattern for our
unit test folder structure. The file contents should look as shown in this screenshot:

Chapter 3

[47]

Now that we have our folder structure, let's install the gems that we need to run
our unit tests. My personal preference is to install the gems on the vagrant box; if
you want to use your local machine, that's fine as well. So, let's log in to our vagrant
box (cd into the root of our Vagrant repo, use the vagrant ssh command, and then
change the directory to root using sudo -i). First, we will install Ruby with yum
install -y ruby. Once that is complete, let's cd into /vagrant/<your modules
folder> and then run gem install bundler && bundle install. You should
get the following output:

As you can see from the preceding screenshot, we got some warnings. This is
because we ran gem install as the root. We would not do that on a production
system, but as this is our development box, it won't pose an issue. Now that
we have all the gems that we need for our unit tests, let's add some basic facts to
/spec/classes/init_spec.rb. The facts we are going to add are osfamily and
operatingsystemrelease. So, the file will look as shown in this screenshot:

Building a Single Container Application

[48]

The last file that we will edit is the metadata.json file in the root of the repo. This
file defines our module dependencies. For this module, we have one dependency,
docker, so we need to add that at the bottom of the metadata.json file, as shown
in the following screenshot:

The last thing we need to do is put everything in its place inside our Vagrant repo.
We do that by creating a folder called modules in the root of our Vagrant repo. Then,
we issue the mv <AUTHOR>-consul/ modules/consul command. Note that we
removed the author name because we need the module to replicate what it would
look like on a Puppet master. Now that we have our basic module skeleton ready,
we can start with some coding.

Coding using resource declarations
In this section, we are going to use our module skeleton to build our first Docker
application. We are going to write it using standard Puppet manifests.

But first, why is the first module that we are writing Consul? I chose this application
for a few reasons. First, Consul has a lot of awesome features such as service
discovery and health checks, and can be used as a key/value store. The second
reason is that we will use all the features I just mentioned later in the book. So,
it will come in handy when we look at Docker Swarm.

Chapter 3

[49]

File structures
Let's create two new files, install.pp and params.pp, in the manifests folder.
The structure should look as shown in the following screenshot:

Writing our module
Let's start writing our module. We will start with init.pp; this module is not going to
be very complex as we are only going to add a few lines of code and some parameters.
As you can see in the preceding screenshot, we created three files in the manifests
directory. When I write a module, I always like to start at params.pp, as it gives me a
good starting structure to work for the code that provides the module logic. So, let's
look at params.pp for this module, which is shown in the following screenshot:

Building a Single Container Application

[50]

Now, let's look at the parameters that we have set:

• $docker_version: This is the version of Docker that we will install.
• $docker_tcp_bind: This is the IP address and port that the Docker API will

bind to.
• $docker_image: This is the Docker image we will be using from Docker

Hub. We will be using my Consul image. To read more about the image or
get the Dockerfile, go to https://hub.docker.com/r/scottyc/consul/.

• $container_hostname: This is going to set the hostname inside the container.
• $consul_advertise: This is the IP address that Consul is going to advertise.

We are going to use a built-in Puppet fact, $::ipaddress_enp0s8.
• $consul_bootstrap_expect: This sets the number of nodes in the Consul

cluster. We are using just the one. If it was a production cluster, you would
use at least three.

Now that we have set up our parameters, let's get started on install.pp. As the name
implies, this class will contain the logic that installs Docker, pulls the image, and runs
the container. So, let's take a look at the code shown in the following screenshot:

To look at the code in more depth, we will break the class into two, the Docker
installation and the container configuration. In the Docker installation, the first piece
of code is a simple package type for device-mapper-libs. The reason we make sure
that this package and its dependencies are installed is that it will be the storage drive
that Docker will use to mount the container's filesystem.

https://hub.docker.com/r/scottyc/consul/

Chapter 3

[51]

Now, we move on to the Docker install. We start by declaring the docker class.
For this class, we will set the Docker version, calling the parameters we set in
params.pp, and the version of Docker that we are using is 1.9.1 (which is the latest
at the time of writing this book). The next piece of configurations we will declare are
the Docker API's TCP bind. Again, we will call our params.pp class and set the value
to tcp://127.0.0.1:4242. This binds the API to listen to the localhost address on
the TCP port 4242.

The last value we will set to our Docker install is the Unix socket, which Docker will
use. We will declare this without calling a parameter. The last piece of code makes
sure that device-mapper-libs is installed before Docker, as it is a prerequisite to
the Docker install:

Now that we have Docker installed, let's look at the code to build our Consul
container. The first class that we call is docker::image. This will pull the image from
Docker Hub before we call the docker::run class. In the docker::run class, we set
navmar as the same value as the container's hostname. We will get that value from
params.pp and it will be set to consul.

The next configuration we will set is the image. Now, this is different from calling
docker::image. When you call docker::image, it pulls the image from Docker Hub
to the local filesystem. When we set the image value in the docker::run class, it sets
the value for the base image where the container will be deployed from. The value
is set to scottyc/consul, and again we will get that value from params.pp. The
hostname parameter is going to set the hostname inside the container.

Building a Single Container Application

[52]

Now we get to the the resource attribute that passes running configurations'
parameters to the container. The command attribute is an arbitrary attribute that
allows you to pass configurations to the container at boot. In this case, we are going
to pass the boot configuration for the Consul setting as the server role, the IP address
that the Consul application will bind to, and the number of servers that are there
in the Consul's cluster. In the first case, all the values in the arguments that we are
passing to the command attribute come from params.pp:

Now, last but definitely not least, let's look at what our init.pp file contains. The
first thing that you will note at the top after the main class declaration is the mapping
of all our parameters to params.pp. The reason we do this is to set any sensible
configurations or defaults in params.pp and any sensitive data we can overwrite
the defaults with Hiera lookups. We will look at Hiera lookups in the next chapter.
The last line of code includes our consul::install class, which we covered in the
preceding section:

Now, let's run our module.

Chapter 3

[53]

Running our module
Now that we have written our module, I am sure we are all keen to run it; however,
before we can do that, there is one more piece of configuration that we need to add to
servers.yml and default.pp. First, we need to make sure that our module consul
is located in modules/consul. The next step is to open our servers.yml file and add
the following line at the bottom of the shell commands:

- { shell: cp /home/vagrant/node-01/modules/* -R /tmp/modules }

This will copy our module into the correct module path in the vagrant box. We also
need to forward the Consul port so that we can hit the GUI. This is done by adding
- { guest: 8500, host: 8500 } to the forwarded port's attribute. It should look
as shown in the following screenshot:

Now, let's open our manifests directory and edit default.pp. We just need to add
our module to the node definition. You can do this by adding the include consul
configuration, as shown in the following screenshot, and saving both files:

Building a Single Container Application

[54]

Let's head to our terminal, change the directory to the root of our Vagrant repo, and
type the vagrant up command. Now, if this box is already running, issue a vagrant
destroy -f && vagrant up command. The output should look as shown in this
screenshot:

Even though we a have successful run Puppet, it can take a couple of minutes for
the container to come up the first time, as it downloads the image from Docker Hub,
so just be patient. You can easily check when the container is up by going to your
browser and navigating to 127.0.0.1:8500. You should get the consul GUI, as
shown in the following screenshot:

As you can see, we have one node that is running, named consul, which is the
hostname that we gave to our container.

Chapter 3

[55]

Coding using .erb files
In this topic, we are going to deploy the same container using docker-compose
with a twist. The twist is with Puppet, where we can turn the docker-compose.
yml file into docker-compose.yml.erb. This allows us to take advantage of all the
tools Puppet gives us to manipulate template files. This is definitely the way I like
to deploy containers with Puppet; however, I will let you decide for yourself the
method you like best as we continue through the book.

Writing our module with Docker Compose
In the chapter, we are going to look at how to use docker-compose as an .erb
template file. In this example, we are only deploying a single container, but when an
application contains five or six containers with links, this way is much more efficient
than using the standard manifest declarations.

So, we will take our consul module from the last topic and modify it now to use
docker-compose. If you want to keep that module, just make a copy. First, we are
not going to touch init.pp and params.pp—they will remain the same. Now, let's
look at install.pp:

Building a Single Container Application

[56]

As you can see in the preceding screenshot, the top half of the class is exactly the
same. However, we still install device-mapper-libs and declare the docker class
in exactly the same way. The next attribute is different though; here, we call the file
resource type. The reason is that this is the configuration that is used to place our
docker-compose file on the local filesystem. You can see that we are declaring the
contents with a template file located in the templates directory of the module. We
will come back to this in a minute.

Now, let's look at the last resource type in install.pp. We are calling the
docker_compose type because this is the resource type that will run the
docker-compose command to bring up our container. Let's look at the attributes
that we have configured. The first is navmar; this will set the name tag in Docker
for the container. We are calling this value from params.pp, and it will be set to
consul. ensure is a puppet meta parameter container which ensures that the
container is always there.

If we want to delete the container, we would have to set this value to absent. The
next attribute is source; this sets the folder where the docker-compose command
can find the docker-compose file. We have set this to root. You could change the
value to any folder on your system. The last attribute is scale. This tells docker-
compose how many containers we want. The value is set to 1 in this instance. If
we were deploying an nginx web farm, we might set the value to a figure such as
5. Now, let's get back to that template file. The first thing we need to do is create a
folder called templates in the root of our consul module:

Chapter 3

[57]

The next step after that is to create our .erb template file. In install.pp, we
declared the filename as docker-compose.yml.erb, so in our templates directory,
let's create a file with that name. The contents of the file should look as shown
in the following screenshot:

So, the first thing that you should note in the preceding screenshot are the variables
that are set, such as <%= @container_hostname %>. This maps back to init.pp
as $container_hostname. As you can see, attributes such as image, hostname,
ports, and command look very familiar. This is because they are the same attributes
that we declared in the preceding section. In this example, we only configured
our docker-compose file for a single container; in the next topic, we will look at a
much more complex configuration. Before we get to that, let's make sure that this
module runs.

Docker Compose up with Puppet
To run our module, let's make sure that our module is located in the modules/
consul directory in the root of your Vagrant repo. We have the configuration to
forward port 8500 (forwarded_ports: - { guest: 8500, host: 8500 }) and
copy our module to our module's path directory using - { shell: cp /home/
vagrant/node-01/modules/* -R /tmp/modules }.

Building a Single Container Application

[58]

Once this is in place, let's run vagrant up in our terminal in the root of our Vagrant
repo. Again, if you have a box that is running, issue the vagrant destroy -f &&
vagrant up command. The terminal should give you the following output:

Again, we can go to 127.0.0.1:8500 and get the Consul GUI:

Now, let's log in to our vagrant box; we will do that by issuing the vagrant ssh
command in our terminal from the root of our Vagrant repo. Once we have logged
in, we can su to root (sudo -i). Then, we can issue the docker ps command to look
at all the running containers. The terminal should give you the following output:

As you can see, the container is up and running.

Chapter 3

[59]

Summary
In this chapter, we deployed our first container with Puppet. In doing so, we actually
covered a lot of ground. We now have our script to create Puppet modules, and we
know how to map our Puppet module's dependencies with metadata.json and
.fixtures.yml.

In our tool belt, we now have two ways to deploy a container with Puppet, which
will come in very handy in the chapters to come.

[61]

Building Multicontainer
Applications

In the last few chapters, we built some cool stuff with Puppet and Docker. It has
all been straight forward. Now, we are getting into the more complex topics such
as how to keep a state and why to keep a state in a container. Docker is known to
couple hand in hand with the micro service architecture, where the container would
for the most part just be receiving data and transforming it into an output for a
downstream application or data source to ingest. Thus, the container never keeps
any state. Docker does not limit itself to such applications. In this chapter, we are
going to prove this by building a fully functional Bitbucket server with a separate
Postgres backend. We will mount the data that is stateful to the underlying host and
decouple the applications from that state.

The other good feature of building Bitbucket is that you can use it for your Git server
at home to make sure that all your future modules are in source control. Atlasssian
offers a $10 dollar license for start-ups or developers that allow up to 10 users, which
is a bargain.

In this chapter, we will build applications using standard manifest resources and
then Docker Compose. Before we jump into coding, let's talk a little more about
decoupling the state of an application from the actual application itself. The
following are the topics that we will cover in this chapter:

• Decoupling a state
• Docker_bitbucket (manifest resources)
• Docker_bitbucket (Docker Compose)

Building Multicontainer Applications

[62]

Decoupling a state
In this topic, we are going to talk about state in containers. This topic will be all
theory, but don't worry, we are going to put that theory to test when we write our
module. We need to understand the theory behind state versus stateless so that in
future, when writing your own Puppet modules to ship Docker, you can make the
right design choice about states.

State versus stateless
So, we briefly touched on the topic of state versus stateless in the preceding
section, but now, let's get into the nuts and bolts of it. So, let's look at two example
applications: one with state and one without. First, we will start with a redis
container. Its job is to be the backend store for activemq. The application that uses
the queue has logic to check whether the message has been received and expects
a response. If that fails, it will retry to send the message. Thus, the queue itself is
stateless. We are using redis as a cache. There is no need to give the redis container
state, as the information it holds is ephemeral. If the container fails, we just respawn
a new one and it will cache the queue again.

Now, let's look at a container that needs state and the options we have to keep state.
In the application, we are going to build two containers. One is Bitbucket itself, and
then Postgres will be used as the backend database. So, both of these need state. Let's
look at Bitbucket first. If we don't give states to the Bitbucket server, every time we
restart the container, we would lose all the projects that we checked in via Git. That
doesn't sound like it would be a viable solution. Now, let's look at the options that
we have to give to the container's state. First, we could add volume to our Dockerfile:

This will give the container state; we can reboot the application and all the data will
be there, which is good. That is what we want. There is a downside to this method.
Volume resides inside the container and is not decoupled from the application. So
when we run into issues with this method, the main operational issue is when we
need to update the version of the application in the container. As all our data lives in
the container, we can't just pull the latest. So we are stuck with the available options.
Now, let's look at how to map a folder from localhost to the container. We do this
using /data:/var/atlassian/application-data/bitbucket. The left side of the
colon is the localhost running the Docker daemon and the right side is the container.

Chapter 4

[63]

Docker uses fully qualified paths, so it will create the /data directory. Now, we
have decoupled our application from our data. If we want to update the version of
Bitbucket, all we would need to do is change the image tag in our Puppet code to the
new version. Then, we would run Puppet. Once that is complete, the new version of
Bitbucket will boot with our existing data. Now, there is a cost to using this method
as well. We have now tied this container to the one host. If you are using schedulers
such as Kubernetes or Docker Swarm, this probably isn't the best idea. This problem
has been solved by the new volume driver added to the Docker engine 1.8 and
above. This allows us to create storage objects that are external of the host on which
the engine is running.

This is out of the scope of this book, but if you would like to do some
more reading about the technology, I would recommend that you visit
https://clusterhq.com/flocker/introduction/. Now, we
have a good understanding of state versus stateless containers. Let's
start the fun bit and get coding!

Docker_bitbucket (manifest resources)
In this topic, we are going to write our module that will install Atlassian's Bitbucket.
The application will be comprised of two containers, among which one will be
Postgres as we mentioned earlier. We are actually going to tweak the container to
secure the backend and make it only accessible to Bitbucket. Then, we will run the
Bitbucket container, configure the user it will run as, and then map the filesystem
from the host machine to the container.

Creating our module skeleton
This is just going to be a quick refresher, as we covered this in the last chapter. If you
are still not feeling comfortable with this step, I would recommend you to go over
the last chapter again until you have a good grasp of the process.

So, we are going to open up our terminal and change directory or cd into the root of
our Vagrant repo. Then, we will type vagrant up, and once the box is up, we will
use SSH into it with vagrant ssh. The next step is to change to root (sudo -i). Now
that we are root, let's change the directory to /vagrant, which maps back to our
local machine. We are then going to issue the puppet module generate <AUTHOR>-
docker_bitbucket command. Again, there are a few more tweaks that we need, but
they are in the last chapter, so let's not repeat ourselves here. Once you have completed
the outstanding task, you can move on to the next chapter.

https://clusterhq.com/flocker/introduction/

Building Multicontainer Applications

[64]

Let's code
Now, we have our module skeleton and we have moved it into the modules
directory in the root of our Vagrant environment. We need to add two new files:
install.pp and params.pp. Our module should look like as shown in the following
screenshot:

In this example, we have a few new things going on, so I have not used params.pp
in this example. This gives you a perfect opportunity to use the knowledge that you
gained in the last chapter and apply it. So, for now, we will leave params.pp empty.
Seeing as we are not putting parameters in init.pp, let's look at that first:

Chapter 4

[65]

As you can see in the preceding screenshot, we are only calling the docker_
bitbucket::install class. We can now move on to the chunky install.pp class.
Again, we are going to brake this down into three parts. This will make it easier to
explain the logic of the class. Let's look at part one, which is as follows:

In this top section of the class, we are installing the device-mapper-libs package.
This is a prerequisite for the RHEL family and Docker. The next thing that we are
declaring is the Docker class. In this resource, we are defining the version of Docker
that we want to be installed, the TCP bind that Docker will use, and lastly, the Unix
socket that Docker will bind to. This is the same configuration that we used to define
our Docker daemon in the last chapter. This will stay fairly static until we move into
Docker schedulers. Let's now move to Postgres:

First, we will define the image of Postgres that we would like to use. For this
example, we are using Postgres 9.2. So, the correct tag from Docker Hub is
postgres:9.2. Now, let's look at the docker::run class; this is where all the
configurations for Postgres will be defined. So, you can see that we are calling
the image that we set in the preceding resource postgres:9.2. We will then set
the hostname as bitbucket-db. This setting is important, so let's store it into our
memory for later use.

Let's look at the env resource declaration as we have a bit going on there. In this
one line, we are declaring the Postgres user, the database password, the name of the
database that we will connect with Bitbucket, and lastly the path where Postgres
with store the database. Lastly, we are declaring our volumes as /root/db:/var/
lib/postgresql/data/pgdata.

Building Multicontainer Applications

[66]

As mentioned earlier, the left-hand side of the colon is mapping the the local machine
and the right is mapping the container. There are two major call outs with our
configuration. First, the /root/db folder is arbitrary and not what you would use in
production. The second is that you will note that the left side of the colon, /var/lib/
postgresql/data/pgdata, and the value in env, PGDATA, are the same. This is no
coincidence; that folder holds the only state that we care about: the actual database.
That is the only state that we will keep. Nothing more and nothing less. You will note
that we have not exposed any ports from this container. This is by design. We are
going to link our Bitbucket container to Postgres. What does link mean? It means that
by default, the Postgres image exposes port 5432. This is the port that we will use to
connect to our database. By linking the containers, only the Bitbucket container has
access to 5432; if we exposed the port (5432:5432), any other application that has access
to the host instance could hit the port. Thus, linking is much more secure. So, we need
to remember a few things from this section of code for later use: the hostname and the
entire env line. For now, let's move on to the Bitbucket container:

As you can see in the preceding screenshot, the image resources are the same, but
instead of calling Postgres, we are going to call atlassian/bitbucket-server.
The next resource we will declare is the ports resource. You will note that we are
declaring two ports 7990:7990, which will be the port that we hit the web UI on, and
7999:7999, which is the port that Bitbucket uses for SSH. We will set the username
to root. This is recommended in Atlassian's documentation (https://hub.docker.
com/r/atlassian/bitbucket-server/).

Next, we are going to map our volume drive. In this case, we are only going to
map Bitbucket's data directory. This is where all our Git repo, user information,
and so on is kept. Again, /data is an arbitrary location; you could use any location
you like. The important location to note is on the left-hand side of the colon, /var/
atlassian/application-data/bitbucket.

https://hub.docker.com/r/atlassian/bitbucket-server/
https://hub.docker.com/r/atlassian/bitbucket-server/

Chapter 4

[67]

Lastly, we link our two containers. Another benefit of linking containers is that
the Docker daemon will write to both the containers' /etc/hosts files with their
hostname and IP address. So, the containers have no issue talking to each other.
There is no need to worry about the IP address, as it is arbitrary and is looked after
by the Docker daemon. Now that we have written our module, we can build our
application.

Running our module
The first thing that we need to do is forward the correct ports on our servers.yml
file that allow us to hit the ports we forwarded to Bitbucket. To do this, we need to
modify the file so that it looks as shown in the following screenshot:

So, let's open our terminal and change the directory to the root of our Vagrant repo
and run vagrant up. You should get the following output after this:

Building Multicontainer Applications

[68]

Now that our application is built, we can go to http://127.0.0.1:7990. We should
get the following page:

Earlier in the topic, we had remembered some details about our Postgres install.
Now is the time to use them, so let's begin. The first thing that we need to do is
use an external database. The next piece of configuration we need to choose is the
database type. Of course, we are going to choose Postgres.

Chapter 4

[69]

The hostname will be set to the hostname of the bitbucket-db container, the port
is 5432, and the database name is bitbucket, as we set in our code. We will use
PostgreSQL as the username and the password will be Gr33nTe@. Refer to the
following screenshot to know more:

www.allitebooks.com

http://www.allitebooks.org

Building Multicontainer Applications

[70]

Next, click on the Test button, and we should get the Successfully established
database connection. message, as shown in the following screenshot:

I will let you finish the rest of the setup. But what we just set up was not simple, and
now, we have a very solid base to move on to more complex applications.

Docker_bitbucket (Docker Compose)
In this topic, we are going to build the same Bitbucket application. The difference
this time is that we are going to use docker-compose as a .erb file instead of the
resource declarations in a manifest.

Chapter 4

[71]

Let's code – take 2
We covered a lot of what happens under the hood in the last topic. We will not be
repeating ourselves, so this topic will be just about the code. We are going to keep
both init.pp and params.pp the same as we did in the last topic. So, let's jump
straight to install.pp. It will look very similar to install.pp from the last chapter:

All the magic happens in our template file. So, let's jump to our .erb file that lives in
the templates folder in the root of our module:

As you can see in our .erb file in the preceding screenshot, all the configurations are
familiar. There are absolutely no changes to what we covered in our last topic.

Building Multicontainer Applications

[72]

Running our module – take 2
Let's open our terminal and change the directory to the root of our Vagrant repo and
run vagrant up. You should get the following output:

Now, let's just go to http://127.0.0.1:7990, and we should get the following page:

Chapter 4

[73]

Just follow the same setup as in the preceding topic to configure Bitbucket.
You can use a trail license to try the application, or as I mentioned earlier,
there is a development/startup license at https://bitbucket.org/product/
pricing?tab=server-pricing with the proceeds of the $10 license going to charity.

Summary
By building a multicontainer application, we learned and covered a lot. We first
looked at state versus stateless containers, the pros and cons of having state, and
what design choices we have to keep a state. We then looked at linked containers
and how they communicate with each other through their hostfiles. All the topics in
this chapter will set us up with the knowledge that we need to move forward with
topics such as service discovery and container schedulers.

https://bitbucket.org/product/pricing?tab=server-pricing
https://bitbucket.org/product/pricing?tab=server-pricing

[75]

Configuring Service
Discovery and Docker

Networking
In this chapter, we will be looking at two very important topics when working with
containers. First, we will be looking at what is service discovery, why do we need it,
and the different types of service discovery. The second topic we will cover is Docker
networking. There are many ways to run container networks. There are some great
technologies out there such as the CoreOS project flannel (https://coreos.com/
flannel/docs/latest/). There is also Weave from Weave Works (http://weave.
works/), but we are going to use the native Docker networking stack released in
engine version 1.9.1.

Service discovery
This is a fairly important topic in the world of containers, when we start to move
into multinode applications and Docker schedulers. The question is what is service
discovery? Is it limited to containers? What are the types of service discovery for us
to make smart design choices in our Puppet modules.

The theory
Service discovery is essential when we start to work with multinode applications, as
it allows our applications to talk to each other as they move from node to node. So, as
you can see in the world of containers, this is fairly important. We have a few choices
when we choose a service discovery backend. The two big names in this space are
etcd (https://coreos.com/etcd/), which again is from CoreOS, and Consul from
HashiCorp (https://www.consul.io/).

https://coreos.com/flannel/docs/latest/
https://coreos.com/flannel/docs/latest/
http://weave.works/
http://weave.works/
https://coreos.com/etcd/
https://www.consul.io/

Configuring Service Discovery and Docker Networking

[76]

You might remember that we have already written a consul module. So for this
chapter, we are going to choose the same, as we already have the written code. First,
let's look at the architecture of Consul so we can understand how the backend works,
how it handles failure, and what option do we get with our configuration of Consul.

So, let's talk about how Consul works. In Consul, we have two types of configuration
that we can give to a server. First is a server role and the second is an agent role.
Although the two interact, they serve different purposes. Lets dive into the server
role first. The server's role is to participate in the RAFT quorum; this is to maintain
the state of the cluster. In Consul, we have the idea of data centers. What is a data
centre, you may ask? It is a group of logical servers and agents. For example, if you
are an AWS, a data center could be an AZ or even a VPC. Consul allows connectivity
between data centers; it is the role of the sever to look after the communications
between data centers. Consul uses the gossip protocol to achieve this. The server
also holds the key/value store and replicates it between the servers using the serf
protocol. Let's look at a diagram of what we discussed:

The agent's role is to report to the server about the state of the machine and any
health checks that may be assigned to it. Again, Consul will use the serf protocol to
pass the communication.

Now that we have an understanding of what Consul is doing behind the scenes, let's
look at the features that it has that we can take advantage of in our Puppet modules.
The first feature we will take advantage of is DNS service discovery. In the container
world, this is pretty important. As our containers move from node to node, we need
to know how to connect to them. DNS service discovery solves this very neatly. So,
let's look at an example to understand this.

Chapter 5

[77]

In this example, we have a mario service and we have Docker swarm cluster of three
nodes. When we hit the Docker API and swarm schedules the container, we don't
know which of the three machines mario will end up on. But we have other services
that will need to find mario as soon as he is up. If we tell the other services that
mario is actually at mario.service.consul, no matter what node the container comes
up on, it will resolve mario.service.consul to the right address. Refer to the following
diagram to understand this in detail:

In this case, if we were to ping mario.service.consul, we would get 192.168.100.11.
Pending our scheduling configuration in swarm, if Server b fails, mario.service.
consul could end up on Server d. So, the response to mario.service.consul would
now come from 192.168.100.13. This would take no human intervention and would
be seamless to the applications. That is all the theory we will see for service discovery
in this chapter; there is more that we will cover in the later chapters. Now, let's get to
writing some code.

Configuring Service Discovery and Docker Networking

[78]

The service discovery module
In this module, we are going to write a module that uses consul as our DNS service
discovery backend. As we already have a consul module, we won't start from scratch
but add new features to the existing module. We will again write the module with
manifests and Docker Compose. So, let's start with the manifests.

Our folder structure should look like this:

Let's jump straight to install.pp. Without making any changes, it should look
as shown in the following screenshot:

Chapter 5

[79]

Now, we are going to add one extra container that is going to be part of the
plumbing for our DNS service discovery solution. We will need something to
register our containers with Consul as they spawn. For this, we will use a golang
application called registrator (https://github.com/gliderlabs/registrator).
This is a fantastic app. I have been using it for over a year, and it has been faultless.
So, let's make changes to our params.pp file to allow the new container. At the
moment, params.pp looks like the one shown in the following screenshot:

The first thing that we will do is make changes to the docker_image and container_
hostname parameters. As we already have the convention of consul_xxx, we can
carry on with that:

Now, let's add the parameters for registrator:

https://github.com/gliderlabs/registrator

Configuring Service Discovery and Docker Networking

[80]

As you can see, we have added the parameter for the image as $reg_docker_image
= 'gliderlabs/registrator' and the parameter for the hostname as $reg_
container_hostname = 'registrator'. We have told the container to listen to the
host's $reg_net = 'host' network. The next parameter will need some explaining.
The registrator maps the Unix socket that the Docker daemon is bound to into its
Unix socket. It does this to listen to any new services that get spawned and need to
be registered in consul for discovery. As you can see, we do this with $reg_volume
= ['/var/run/docker.sock:/tmp/docker.sock']. The last parameter tells
registrator where to find consul. We are going to set that with $reg_command =
"consul://$::ipaddress_enp0s8:8500". Now, let's move over to our init.pp file.

Our init.pp file should look as shown in the following screenshot:

Let's add our new parameters, as shown in the following screenshot:

Chapter 5

[81]

Now that we have all our parameters set up, we can go to our install.pp file to add
our code in order to install registrator:

As you can see in the preceding screenshot, we have added a new block of code at the
bottom of our file. It's similar to our code that configures Consul; however, there are a
few different parameters. We covered those earlier, so let's not repeat ourselves. Now
that we've made a fair chunk of changes to our module, we should run it in Vagrant to
check whether we have any issues. Before we can run Vagrant, we need to change our
servers.yaml file in the root of our Vagrant repo so that it allows us to hit the Consul
URL on port 8500. We do this with the following change to the code:

Configuring Service Discovery and Docker Networking

[82]

Now, let's open our terminal and change the directory to the root of our Vagrant
repo. From there, we will just issue the vagrant up command. The output from
our terminal should look as shown in the following screenshot:

After this, let's open our browser and go to 127.0.0.1:8500:

Chapter 5

[83]

You will notice now that there are a lot more services listed in the Consul web UI
than when we ran the module in the last chapter. This is because now, registrator is
listening on the Unix socket, and any container with a port mapped to the host will
be registered. So the good news is that our module is working. Now, let's add an
application to the module.

The easiest way to do this is to add another container module to our node. So, let's
add our bitbucket module. We do this by adding the class to our default.pp file
that lives in our manifests directory:

We will also need to make some quick modifications to the bitbucket module so
that we don't get duplicate declaration errors. Note that this is not something you
would do in production. But it is good enough for our test lab. We need to comment
out the top block of code as shown in the following screenshot:

Configuring Service Discovery and Docker Networking

[84]

We can even comment out the code as shown in the following screenshot:

This depends on whether you used the manifest module or the compose module.
I used the compose module.

So, let's go back to our terminal in the root of our Vagrant repo and issue
the vagrant provision command. The output of the terminal should look
as shown in the following screenshot:

Chapter 5

[85]

Now, let's look at our browser again. We can see that our bitbucket services have
been registered, as shown in this screenshot:

Configuring Service Discovery and Docker Networking

[86]

We have the service discovery working; however, we still need to add another class to
our module for DNS service discovery. So, let's go back to our consul module. We will
add a new file called package.pp. In this file, we will install the bind package and add
two templates, one to configure named.conf and the other to configure consul.conf
in the directory named /etc/. Let's start coding. The first thing we will need to do is
create our package.pp file in the manifests directory of our module:

We will add the following code to the file:

Chapter 5

[87]

Now, let's create a templates folder. In this example, we are not parameterizing
the files, and in a production instance, you would. That's why we are using the
templates folder and not files:

Now, let's create a file called named.conf.erb and add the following code to it:

Configuring Service Discovery and Docker Networking

[88]

The code is just setting our DNS resolver to listen to 127.0.0.1. Remember that we
have set port forwarding on our Consul container to forward port 53. That is how
the host will connect to the container. Lastly, it will call our next template file /etc/
named/consul.conf. Let's create that now:

The code that we will add is as follows:

Chapter 5

[89]

You will note that we are forwarding port 8600, which is the port that Consul uses
for its DNS traffic, and removing port 53. As TCP bind will use port 53, we will
forward the request to 8600, as shown in the following piece of code:

We need to make one more change before we can run Puppet. We need to add the
new code of package.pp to our init.pp file. We can do so like this:

Configuring Service Discovery and Docker Networking

[90]

Now, we can run our module. Let's go to the terminal and change to root of our
Vagrant repo. We will issue the vagrant up command and if you already have a box
running, just issue the vagrant destroy -f && vagrant up command. Now, let's
check the web UI (127.0.0.1:8500):

As you can see in the preceding screenshot, we have a new service registered on port
8600 (consul-8600). Now, we need to make sure that our machines are listening
to the right DNS servers on their interfaces. We are going to do this in servers.
yaml, as I would usually add this configuration to my user data in AWS. You could
very well control this with Puppet. So, in future, you can decide the right place for
the configuration of your environment. The line we are going to add is - { shell:
'echo -e "PEERDNS=no\nDNS1=127.0.0.1\nDNS2=8.8.8.8">>/etc/sysconfig/
network-scripts/ifcfg-enp0s3 && systemctl restart network'}. We will
add it as shown in the following screenshot:

Chapter 5

[91]

Now, let's go to our terminal and issue the vagrant up command. If you have a box
already running then issue the vagrant destroy -f && vagrant up command.
The terminal output should look like the one shown in the following screenshot:

We can then log in to our vagrant box using vagrant ssh and test whether our
DNS setup works. We can do this by selecting a service and trying to ping it. We
are going to choose our ping bitbucket-server-7990 service by entering the
ping bitbucket-server-7990.service.consul command, and we should get
the following results:

Configuring Service Discovery and Docker Networking

[92]

As you can see in the preceding screenshot, it returns the echo response as the
loopback, as the service is running locally on this host. If we were external of the
host, it would return the IP of the host that is running the service. Now, we run our
container schedulers, such as Docker swarm, that have multiple host. We now know
how service discovery works.

Now, let's have a look at what this would look like using Docker Compose.

In order to not repeat ourselves, let's make our init.pp file the same as the module
that uses the manifests method. We have to make one small change to the params.
pp file; docker-compose expects that you pass it strings. So, we need to remove the
brackets around $reg_volume as shown in the following screenshot:

Then, we will add our package.pp file as we did earlier and also create the two
templates for our bind config. Then, we need to update our docker-compose.yml.erb
file in our templates directory. We need to add our second container, regisrator.
We are going to use the same parameters as we did in the manifest module earlier in
this chapter. The code for this should look as shown in the following screenshot:

Chapter 5

[93]

You will also note that we changed the ports on our Consul container as we did
earlier in the chapter (we removed port 53 and added 8600 tcp/udp). Now, we can
go to our terminal, change to root of our Vagrant repo, and issue the vagrant up
command. Our terminal should look like the one shown in the following screenshot:

Configuring Service Discovery and Docker Networking

[94]

Again, we can also check our browser at 127.0.0.1:8500:

As you can see in the preceding screenshot, it looks the same as it did earlier in the
chapter.

Let's log in to our box and test our DNS service discovery. For this, enter the vagrant
ssh command and then ping a service. This time, we will choose something
different. We will use the ping consul-8500.service.consul command. We
should get the following response after this:

So that's all for service discovery in this chapter. We will be picking it up again in the
container scheduler chapter.

Chapter 5

[95]

Docker networking
In this topic, we are going to look at the native networking stack that comes with
Docker Engine. There is a wealth of knowledge that you can achieve by reading
on this subject. I strongly suggest that you do, as there is a lot you can do with
Docker networking. If you have not used it before, I would suggest that you start
reading the guide at https://docs.docker.com/engine/userguide/networking/
dockernetworks/. From here, you can read about the different types of drivers, how
to use VXLAN to separate your networks, and the best practices when designing
your Docker network. We are going to cover the basics now and the more advanced
features in later chapters.

The prerequisites
Before we can even start to code for our network, there are a few things we need.
First, we need a key/value store. Docker will use this to map all the containers, IP
addresses, and vxlans that are created. Seeing as there usually would be more than
one host attached to a network, the key/value store is usually distributed to give it
resiliency against failure. Luckily enough, we have already built a key/value store
that we can take advantage of, it's Consul of course. The other configuration that
you will need are extra args when we start our Docker Engine. This is to let Docker
Engine know how to access the key/value store. These are the basic prerequisites
that we need to get coding.

The code
Let's create our first Docker network. To do this, we are going to add to our consul
module. I am not going to do this twice for both manifests and docker-compose, as the
configuration can be ported between the two. I am going to use the docker-compose
module for my example. If this is the first time that you are creating a Docker network,
it would be a worth while exercise to port the configuration to both. So, lets' start. We
are only going to make changes to our install.pp file. The first change that we are
going to make is to our extra arguments for our docker-engine daemon. We do this
by adding the code shown in the following screenshot:

https://docs.docker.com/engine/userguide/networking/dockernetworks/
https://docs.docker.com/engine/userguide/networking/dockernetworks/

Configuring Service Discovery and Docker Networking

[96]

The code sets our key/value store's address and port. Then, it also tells other
machines what interface and port we are advertising our networks on.

The next code we are going to add will create the network. We will create a new file
called network.pp. Then, we will add the code shown in the following screenshot to it:

The next thing we will have to do is make sure that our classes get installed in the
correct order, as the Docker network is dependent on Consul being there. If Consul
is not there, our catalogue will fail. So, we need to use the contain functionality built
into Puppet. We do this by adding the code shown in the following screenshot:

Chapter 5

[97]

As you can see, we are just setting up a basic network. We could set things such as IP
address range, gateway, and so on. If we do that, it would look like this:

Now that we have our code, let's go to our terminal and issue the vagrant up
command from root of our Vagrant repo. Our terminal output should look like
the one shown in the following screenshot:

Configuring Service Discovery and Docker Networking

[98]

Now, we can check to make sure that our network is there by logging in to our
vagrant box (vagrant ssh from the root of our Vagrant repo). Once we log in to our
box, we need to change to root (sudo -i) and then issue the docker network ls
command. This will list the available networks on the box. The one we are looking
for is docker-internal with the overlay driver:

As you can see from the output of our terminal, we were successful and our network
has been configured. That is all we are going to do with networking in this chapter.
In the next chapter, we will be attaching containers and spanning our Docker
network across multiple hosts.

Summary
In this chapter, you learned a lot about how the container ecosystem handles service
discovery. I can't emphasize on how important it will be to understand this topic
when you start using containers at scale. I would really suggest that you get a solid
understanding of service discovery before moving on to further chapters. We also
covered the basics of Docker networking. Don't worry, as in the next chapter, we
will go into Docker networking in more depth as we will be building multihost
applications.

[99]

Multinode Applications
In this chapter, we are going to start playing with the really cool stuff. We are going
to use all the skills we have learned in the book so far. We are really going to step
it up by a notch. In this chapter, we are going to deploy four servers. We will look
at how to cluster Consul, which will give us a perfect opportunity to further our
modules' functionality. In this chapter, we are going to look at two ways to network
our containers. First, by using the standard host IP network, that our Consul cluster
will communicate on. We will also install the ELK (Elasticsearch, Logstash, and
Kibana) stack (https://www.elastic.co/). To do this, we will be writing a module
for each of the products. Because Elasticsearch is our data store in this solution, we
want to hide it so that only Logstash and Kibana can access the application. We will
accomplish this using the native Docker networking stack and isolate Elasticsearch
using VXLAN. As you can see, we are going to get through a lot in this chapter. We
will cover the following topics in this chapter:

• The design of our solution
• Putting it all together

The design of our solution
As there are a lot of moving parts in the solution, it would be best to visualize what
we are going to be coding for. As this will be a big step up from our last chapter,
we will break down the solution. In the first topic, we will look at the design for
our Consul cluster.

https://www.elastic.co/

Multinode Applications

[100]

The Consul cluster
In the design, we are going to use four servers: node-01, node-02, node-03, and
node-04. We will use node-01 to bootstrap our Consul cluster. We will add the
other three nodes to the cluster as servers. They will be able to join the conciseness,
vote, and replicate the key/value store. We will set up an IP network that is on the
172.17.8.0/24 network. We will map our container ports to the host ports that sit
on the 172.17.8.0/24 network. The following image will show the network flow:

The ELK stack
Now that we have our Consul cluster, we can look at what our ELK stack is going
to look like. First, we will walk through the design of the network. The stack will be
connected to the native Docker network. Note that I have not listed the IP addresses
of our Docker network. The reason for this is that we will let the Docker daemon
select the networking address range. For this solution, we are not going to route
any traffic out of this network, so letting the daemon choose the IP range is fine. So
you will also note that Elasticsearch is only connected to our Docker network. This
is because we only want Logstash and Kibana. This is to keep other applications
from being able to send requests or queries to Elasticsearch. You will note that
both Logstash and Kibana are connected to both the Docker network and the host
network. The reason for this is that we want applications to send their logs to
Logstash, and we will want to access the Kibana web application:

Chapter 6

[101]

To get the full picture of the architecture, we just need to overlay both the diagrams.
So, let's start coding!!!

Putting it all together
Now that we have looked at the design, let's put it all together. We will look at
the changes to the plumbing of our Vagrant repo. Then, we will code the extra
functionality into our consul module. We will then run our Vagrant repo to make
sure that our Consul cluster is up and running. After we have completed that task,
we will build the ELK stack, and we will build a module for each of the products.
We will also set up Logstash to forward logs to node-03, just so we can test to make
sure that our ELK stack is correct. Let's get some light on this.

Multinode Applications

[102]

The server setup
We will now look at the changes we are going to make to our new Vagrant repo.
The first file that we are going to look at is our servers.yaml file. The first thing we
need to do is change our base box. As we are going to be connecting containers to
the native Docker network, our host machines must run a kernel version above 3.19.
I have created a prebuilt vagrant box with just this configuration. It is the Puppetlabs
box that we have been using in all the other chapters with the kernel updated to
version 4.4:

As you can note in the preceding screenshot, the other change that we have made to
the servers.yaml file is that we have added entries to the /etc/hosts directory. We
have done this to simulate a traditional DNS infrastructure. If this had been in your
production environment, we wouldn't have needed to add that configuration.

Now, we have to add the other three servers. The following screenshot will show
exactly how it should look:

Chapter 6

[103]

So, the ports that we will hit once all our servers are built are 8500 on node-01 (the
Consul web UI 127.0.0.1:8500) and 8081 (the Kibana web UI 127.0.0.1:8081).

Multinode Applications

[104]

The Consul cluster
We are well aquatinted with the consul module now, but we are going to take it to
the next level. For this chapter, we are just going to use the compose version. The
reason why is because when you start getting into more complex applications or
need to use an if statement to add logic, an .erb file gives us that freedom. There
are a fair few changes to this module. So, let's start again at our params.pp file:

As you can see, we have added two new parameters. The first one is $consul_
master_ip and the other parameter is $consul_is_master. We will use this to
define which server will bootstrap our Consul cluster and which server will join
the cluster. We have hardcoded the hostname of node-01. If this was a production
module, I would not hardcode a hostname that should be a parameter that is looked
up in Hiera (https://docs.puppetlabs.com/hiera/3.0/). We will pick up on this
again when we look at our docker-compose.yml.erb file. The other parameters
should look very familiar to you.

https://docs.puppetlabs.com/hiera/3.0/

Chapter 6

[105]

Next, let's look at our init.pp file:

As you can see here, we have not changed this file much, as we have added a
Boolean ($consul_is_master). However, we will want to validate the input. We do
this by calling the stdlib function, validate_bool.

Let's quickly browse through the install.pp file:

Multinode Applications

[106]

Now, let's look at the network.pp file:

Finally, we will look at the package.pp file:

As you can see, we have not made any changes to these files. Now, we can look at
the file that will really have the logic for deploying our container. We will then move
to our templates folder and look at our docker-compose.yml.erb file. This is
where most of the changes in the module have been made.

Chapter 6

[107]

So, let's look at the contents of the file, which are shown in the following screenshot:

So as you can see, the code in this file has doubled. Let's break it down into three
pieces, as shown in the following screenshot:

Multinode Applications

[108]

In the first block of code, the first change that you will note is the if statement. This
is a choice to determine whether the node will be a master for bootstrapping Consul
or a server in the cluster. If you remember from our params.pp file, we set node-01
as our master. When we apply this class to our node, if its node-01, it will bootstrap
the cluster. The next line that we want to pay attention to is as follows:

command: -server --client 0.0.0.0 --advertise <%= @consul_advertise
%> -bootstrap-expect <%= @consul_bootstrap_expect %>

We should just take note to compare the same line in the next block of code:

First, we can see that this is elsif, the second half of our if statement. So, this will
be the block of code that will install Consul on the other three nodes. They will still
be servers in the cluster. They will just not have the job of bootstrapping the cluster.
We can tell this from the following line:

command: -server -bind 0.0.0.0 --client 0.0.0.0 --advertise <%= @consul_
advertise %> -join <%= @consul_master_ip %>

Remember earlier that we looked at the same line from the first line of code. You
see the difference? In block one, we declare -bootstrap-expect <%= @consul_
bootstrap_expect %>, and in the second block, we declare -join <%= @consul_
master_ip %>. By looking at the code, this is how we can tell the bootstrap order.
Lastly, we can see that we are declaring <% end -%> to close the if statement.

Now, let's look at the last block of code:

Chapter 6

[109]

As you can see, it's going to deploy the registrator container. As this sits outside
the if statement, this container will be deployed on any node that the consul class
is applied to. We have made a lot of progress till now. We should check the module
changes before moving on to creating our new elastic modules. The one last thing
we need to change is our default.pp manifest file, which is as follows:

As you can see, we have a node declaration for each node and have applied the
consul class. Now, let's open our terminal change directory to the root of our
Vagrant repo and issue the vagrant up command. This time, it will download a
new base box from Hashicloud. So, depending on your Internet connection, this
could take some time. Remember that the reason we need this new box is that it has
an updated kernel to take advantage of the native Docker networking. In the last
chapter, we were able to create a network, but we weren't able to connect containers
to it. In this chapter, we will. Also, we are going to build four servers, so running
Vagrant should take about 5 minutes. As soon as our first machine is up, we can log
on to the consul web UI. There we can watch the progress as each node is joined.

As you can see in the following screenshot, our cluster is bootstrapped:

Multinode Applications

[110]

We can also check whether all our services are up and stable on the SERVICES tabs,
as shown in this screenshot:

As you can see in the following screenshot, our second node has checked in:

The following screenshot shows what the screen looks like when we go to our
SERVICES tab:

Chapter 6

[111]

As you can see, our services have doubled. So things are looking good.

Now, the vagrant up command is complete, and our terminal output should look
like the following screenshot:

Let's log back into our web browser to our Consul UI (127.0.0.1:8500). Under our
NODES tab, we should now see all four nodes:

Multinode Applications

[112]

We can see that our cluster is in a good state as all four nodes have the same amount
of services, which is 10, and that all services are green. The last thing that we need to
check is our DNS service discovery. So lets login to one of our boxes. We will choose
node-03. So in our terminal, let's issue the vagrant ssh node-03 command. We
need to specify the node now as we have more than one vagrant box. We are going
to ping the Consul service 8500. So, we just issue the ping consul-8500.service.
consul command. The terminal output should look like the following screenshot:

This is now working perfectly. So, let's check one more thing now. We need to make
sure that our Docker network is configured. For that, we will need to change the
directory to root (sudo -i) and then issue the docker network ls command,
as follows:

Now that everything is up and running, let's move on to our ELK stack.

Chapter 6

[113]

The ELK stack
One of the focuses I had when planning this book was to use examples that could
be ported to the real world so that readers get some real value. The ELK stack is no
exception. The ELK stack is a very powerful stack of applications that lets you collate
all your application logs to see the health of your application. For more reading on
the ELK stack, visit https://www.elastic.co/. It has great documentation on all
the products. Now, let's start our first new module.

As per our design, there is an order in which we need to install the ELK stack. Seeing
as both Logstash and Kibana depend on Elasticsearch, we will build it first. All the
images that we are going to use in our modules are built, maintained, and released
by Elasticsearch. So we can be sure that the quality is good. The first thing that we
need to do is create a new module called <AUTHOR>-elasticsearch. We covered
how to create a module in the previous chapter, so if you are unsure how to do this,
go back and read that chapter again. Now that we have our module, let's move it
into the modules directory in the root of our Vagrant repo.

Seeing as the containers are already built by elastic, these modules are going to be
short and sweet. We are just going to add code to the init.pp file:

As you can see, we are calling the docker::image class to download ealsticsearch.
In the docker::run class, we are calling our elasticearch container, and we are
going to bind our container only to the docker-internal Docker network. You will
note that we are not binding any ports. This is because, by default, this container will
expose port 9200. We only want to expose port 9200 on the Docker network. Docker is
smart enough to allow the exposed ports automatically on a Docker native network.
In the next resource we are declaring just the host network for elasticsearch. We
are specifying 0.0.0.0 as we don't know the IP that the container is going to get
from the Docker network. As this service will be hidden from the outside world, this
configuration will be fine. We will then map a persistent drive to keep our data.

https://www.elastic.co/

Multinode Applications

[114]

The next thing that we need to do now is to add elasticsearch to a node. As per
our design, we will add elasticsearch to node-02. We do this in our default.pp
file in our manifests directory, as shown in the following screenshot:

You will note that I have used contain instead of include. This is because I want
to make sure that the consul class is applied before the elasticsearch class, as
we need our Docker network to be there before elasticsearch comes up. If the
network is not there, our catalogue will fail as the container will not build.

The next module we are going to write is logstash. Our logstash module is going
to be a little more complicated, as it will be on both the Docker network and the host
network. The reason we want it on both is because we want applications to forward
their logs to logstash. We also need logstash to talk to elasticsearch. Thus, we
add logstash to the Docker network as well. We will create the module in the same
way we did for elasticsearch. We will call our <AUTHOR>-logstash module. So,
let's look at our code in our init.pp file, which is as follows:

Chapter 6

[115]

Here, the first thing you will note is that we are creating a directory. This is to map
to the container and will contain our logstash.conf file. The next declaration is a
file type. This is our logstah.conf file, and as we can see, it's a template from the
code. So, let's come back to it after looking at the rest of the code in our init.pp
file. The next line of code will pull our logstash image from Docker Hub. In the
docker::run class we will call our logstash container, use the logstash image,
and attach the container to our docker-internal Docker network.

The next line of code will tell logstash to start using our logstash.conf file; we
will then mount the directory we created earlier in our init.pp file to the container.
Now, you can see in this module that we've exposed ports to the host network. In
the last line, we tell logstash about our Elasticsearch host and Elasticsearch port.
How does Logstash know where Elasticsearch is? We are not linking the containers
like we did in previous chapters. This works in the same way to when we named
our Elasticsearch container elasticsearch, and our Docker network has an inbuilt
DNS server that lives at the address 127.0.0.11. Any container that joins that
network will register itself as its container name. This is how services on the docker-
internal network find each other.

The last thing we need to look at is our template file for our logstash.conf file that
we declared in our init.pp file. So, create a new folder called templates in the root
of our module and then a file called logstash.conf.erb. We will add the following
configuration to accept logs from syslog and Docker.

Multinode Applications

[116]

Lastly, at the bottom, we put our Elasticsearch configuration, as shown in this
screenshot:

Now, let's add our logstash module to node-03 in the same way that we did with
our elastcsearch module.

Again, we will use contain instead of include. Now it's time to move on to our
last module. We will create this in the same way as we have done for the last two
modules. We will call this module <AUTHOR>-kibana.

Chapter 6

[117]

In Kibana, we will only be adding code to the init.pp file, as shown in the following
screenshot:

As you can see, we are downloading the kibana image. In the docker::run class, we
are calling our kibana container using the kibana image, attaching the container to
our local Docker network. In the next line, we are mapping the container port 5601
(Kibana's default port) to port 80 on the host. This is just for ease of use for our lab.
In the last line, we are telling kibana how to connect to elasticsearch.

Let's add kibana to node-04 again using contain instead of include:

Multinode Applications

[118]

We are now ready to run our Vagrant environment. Let's open our terminal and
change the directory to the root of our Vagrant repo. We will build this completely
from scratch, so let's issue the vagrant destroy -f && vagrant up command.

This will take about 5 minutes or so to build, depending on your Internet connection,
so please be patient. Once the build is complete, our terminal should have no errors
and look like the following screenshot:

Chapter 6

[119]

The next thing we will check is our Consul web UI (127.0.0.1:8500):

In the preceding screenshot, you can see that our Logstash and Kibana services are
there, but where is Elasticsearch ? Don't worry, Elasticsearch is there, but we can't see
it in Consul as we have not forwarded any ports to the host network. Registrator will
only register services with exposed ports. We can make sure that our ELK stack is
configured by logging in to our Kibana web UI (127.0.0.1:8080):

Multinode Applications

[120]

The next thing we need to do is click on the Create button. Then, if we go to the
Discover tab, we can see the logs from Logstash:

Logstash's logs

Summary
In this chapter, we looked at how to use Puppet to deploy containers across multiple
nodes. We took advantage of the native Docker networking to hide services. This is a
good security practice when working with production environments. The only issue
with this chapter is that we don't have any failover or resiliency in our applications.
This is why container schedulers are so important.

In the next chapter, we will drive into three different schedulers to arm you with the
knowledge that you will need to make sound design choices in the future.

[121]

Container Schedulers
Now, we are at the business end of the book. There is a lot of buzz at the moment
around this topic. This is where containers are going to go in future, and schedulers
solve a lot of problems, for instance, spreading the load of our application across
multiple hosts for us pending on load and starting our containers on another instance
if the original host fails. In this chapter, we will look at three different schedulers.
First, we will look at Docker Swarm. This is a Docker open source scheduler. We will
build five servers and look at how to create a replicated master. We will then run a
few containers and look at how Swarm will schedule them across nodes. The next
scheduler we will look at is Docker UCP (Universal Control Plane). This is a Docker
enterprise solution that is integrated with Docker Compose. We will build a three-
node cluster and deploy our Consul module. As UCP has a graphical interface, we
will look at how UCP is scheduled from there. The final scheduler we will look at
is Kubernetes. This is Google's offering and is also open source. For Kubernetes, we
will build a single node using containers and use Puppet to define the more complex
types. As you can see, we are going to look at each one differently, as they all have
their individual strengths and weaknesses. Depending on your use case, you might
decide on one or all of them to solve a problem that you may face.

Docker Swarm
For our first scheduler, we are going to look at Docker Swarm. This is a really solid
product and in my opinion is a bit underrated compared to Kubernetes. It has really
come on in leaps and bounds in the last few releases. It now supports replicated
masters, rescheduling containers on failed hosts. So, let's look at the architecture
of what we are building. Then, we will get into the coding.

Container Schedulers

[122]

The Docker Swarm architecture
In this example, we are going to build five servers, where two will be replicated
masters and the other three nodes will be in the swarm cluster. As Docker Swarm
needs a key/value store backend, we will use Consul. In this instance, we are not
going to use our Consul modules; instead, we are going to use https://forge.
puppetlabs.com/KyleAnderson/consul. The reason for this is that in all three
examples, we are going to use different design choices. So, when you are trying
to build a solution, you are exposed to more than one way to skin the cat. In this
example, we are going to install Swarm and Consul onto the OS using Puppet and
then run containers on top of it.

Coding
In this example, we are going create a new Vagrant repo. So, we will Git clone
https://github.com/scotty-c/vagrant-template.git into the directory of our
choice. The first thing that we will edit is the Puppetfile. This can be found in the root
of our Vagrant repo. We will add the following changes to the file:

The next file we will edit is servers.yaml. Again, this is located in the root of our
Vagrant repo. We are going to add five servers to it. So, I will break down this file
into five parts, one for each server.

https://forge.puppetlabs.com/KyleAnderson/consul
https://forge.puppetlabs.com/KyleAnderson/consul
https://github.com/scotty-c/vagrant-template.git

Chapter 7

[123]

First, let's look at the code for server 1:

Now, let's look at the code for server 2:

The following screenshot shows the code for server 3:

Container Schedulers

[124]

The following screenshot shows the code for server 4:

Finally, the code for server 5 is as follows:

All this should look fairly familiar to you. The one call out is that we have used
servers one through three as our cluster nodes. Four and five will be our masters.

The next thing we are going to do is add some values to Hiera. This is the first time
we have used Hiera, so let's look at our hiera.yaml file to see our configuration in
the root of our Vagrant repo, which is as follows:

As you can see, we have a basic hierarchy. We just have one file to look at, which is
our global.yaml file. We can see that the file lives in our hieradata folder as it is
declared as our data directory. So, if we open the global.yaml file, we are going
to add the following values to it:

Chapter 7

[125]

The first value will tell Swarm what version we want to use. The last value sets the
version of Consul that we will be using, which is 0.6.3.

The next thing we need to do is write our module that will deploy both our Consul
and Swarm clusters. We have created quite a few modules so far in the book, so
we won't cover it again. In this instance, we will create a module called <AUTHOR>-
config. We will then move the module into our modules folder at the root of our
Vagrant repo. Now, let's look at what we are going to add to our init.pp file:

As you can see, this sets up our module. We will need to create a .pp file for each of
our entries in our init.pp file, for example, consul_config.pp, swarm.pp, and so
on. We have also declared one variable called consul_ip, whose value will actually
come from Hiera, as that is where we set the value earlier. We will look at our files in
alphabetical order. So, we will start with config::compose.pp, which is as follows:

Container Schedulers

[126]

In this class, we are setting up a registrator. We are going to use Docker Compose
for this, as it is a familiar configuration and something that we have already covered.
You will note that there is an if statement in the code. This is a logic to run the
container only on a cluster member. We don't want to run container applications on
our masters. The next file we will look at is consul_config.pp, which is as follows:

Chapter 7

[127]

In this class, we will configure Consul, something that we have already covered in
this book. I always like to look at multiple ways to do the same job, as you never
know the solution that you might need to produce tomorrow and you always want
the right tool for the right job. So, in this instance, we will not configure Consul in a
container but natively on the host OS.

You can see that the code is broken into three blocks. The first block bootstraps our
Consul cluster. You will note that the configurations are familiar, as they are the
same as those we used to set up our container in an earlier chapter. The second block
of code sets the members of the cluster after the cluster is bootstrapped. We have not
seen this third block before. This sets up a service for Consul to monitor. This is just
a taste of what we can manage, but we will look at this in anger in the next chapter.
Let's look at our next file, that is, dns.pp:

Container Schedulers

[128]

You will note that this file is exactly the same as we used in our consul module.
So, we can move on to the next file, which is run_containers.pp:

This is the class that will run our containers on our cluster. At the top, we are
declaring that we want master number two to initiate the call to the cluster. We are
going to deploy three container applications. The first is jenkins, and as you can see,
we will expose Jenkins web port 8080 to the host that the container runs on. The next
container is nginx, and we are going to forward both 80 and 443 to the host, but also
connect nginx to our private network across our swarm-private cluster. To get our
logs from nginx, we will tell our container to use syslog as the logging driver. The
last application that we will run is redis. This will be the backend of nginx. You will
note that we are not forwarding any ports, as we are hiding Redis on our internal
network. Now that we have our containers sorted, we have one file left, swarm.pp.
This will configure our Swarm cluster and internal Swarm network as follows:

Chapter 7

[129]

The first resource declaration will install the Swarm binaries. The next resource
will configure our Docker network on each host. The next if state will define if
the Swarm node is a master or part of the cluster via hostname. As you can see, we
are declaring a few defaults that are the first values that tell Swarm what backend
to use Consul with. The second value tells Swarm the IP address of the Consul
backend which is 172.17.8.101. The third value tells Swarm about the port it can
access Swarm on, 8500. The fourth value tells Swarm which interface to advertise
the cluster on, which in our case is enp0s8. The last value sets the root of the key
value store Swarm will use. Now, let's create our templates folder in the root of
our module.

www.allitebooks.com

http://www.allitebooks.org

Container Schedulers

[130]

We will create three files there. The first file will be consul.conf.erb and the
contents will be as follows:

The next file will be named.conf.erb and its contents will be as follows:

The last file will be registrator.yml.erb, and the file's content will be as follows:

Chapter 7

[131]

The next thing that we need to add is our config class to our default.pp manifest
file in the manifest folder in the root of our Vagrant repo:

Now, our module is complete and we are ready to run our cluster. So, let's open
our terminal and change the directory to the root of our Vagrant repo and issue
the vagrant up command. Now, we are building five servers, so be patient. Once
our last server is built, our terminal output should look like that shown in this
screenshot:

Terminal output

Container Schedulers

[132]

We can now look at our Consul cluster's web UI at 127.0.0.1:9501 (remember that
we changed our ports on our servers.yaml file) as follows:

Now, let's see what host our Jenkins service is running on:

In this example, my service has come up on cluster node 101. You could get a
different host for your cluster. So, we need to check what port 8080 forwards to our
servers.yaml file guest. In my example, it's 8081. So, if I go to my web browser and
open a new tab and browse to 127.0.0.1:8081, we will get the Jenkins page, which
is as follows:

Chapter 7

[133]

You can do the same with nginx, and I will leave that up to you as a challenge.

Docker UCP
In this topic, we will be looking at Docker's new offering, UCP. This product is
not open sourced, so there is a licensing cost. You can get a trial license for 30 days
(https://www.docker.com/products/docker-universal-control-plane), and
that is what we will be using. Docker UCP takes out the complexity of managing
all the moving parts of a scheduler. This could be a massive plus pending your use
case. Docker UCP also brings with it a web UI for administration. So, if container
schedulers seem daunting, this could be a perfect solution for you.

The Docker UCP architecture
So, in this example, we are going to build three nodes. The first will be our UCP
controller and the other two nodes will be UCP HA replicas that give the design
some fault tolerance. As UCP is a wrapped product, I am not going to go into all
the moving parts.

https://www.docker.com/products/docker-universal-control-plane

Container Schedulers

[134]

Refer to the following diagram to get a visualization of the main components:

Coding
We are going to do something different in this module, just to show you that our
modules are portable to any OS. We will build this module with the Ubuntu 14.04
server. Again, for this environment, we are going to create a new Vagrant repo.
So, let's Git clone our Vagrant repo (https://github.com/scotty-c/vagrant-
template.git). As in the last topic, we will look at the plumbing first, before we
write our module. The first thing we are going to do is create a file called config.
json. This will have your Docker Hub auth in the file:

The next will be docker_subscription.lic. This will contain your trial license.

https://github.com/scotty-c/vagrant-template.git
https://github.com/scotty-c/vagrant-template.git

Chapter 7

[135]

Now, let's look at our servers.yaml file in the root of our Vagrant repo, which is
as follows:

The main call out here is that now we are using the puppetlabs/ubuntu-14.04-64-
puppet-enterprise vagrant box. We have changed yum to apt-get. Then, we are
copying both our config.json and docker_subscription.lic files to their correct
place on our vagrant box.

Container Schedulers

[136]

Now, we will look at the changes we need to make to our Puppetfile:

You will see that we need a few new modules from the Forge. The Docker module
is familiar, as is stdlib. We will need Puppetlab's apt module to control our repos
that Ubuntu will use to pull Docker. The last module is the Puppetlabs module for
UCP itself. To find out more information about this module, you can read all about
it at https://forge.puppetlabs.com/puppetlabs/docker_ucp. We will write a
module that wraps this class and configures it for our environment.

Now, let's look at our Hiera file in hieradata/global.yaml:

As you can see, we have added two values. The first is ucpconfig::ucp_url:,
which we will set to our first vagrant box. The next is the value for ucpconfig::ucp_
fingerprint:, which we will leave blank for the moment. But remember it, as we
will come back to this later in the topic.

Now, we will create a module called <AUTHOR>-ucpconfig. We have done this
a few times now, so once you have created a module, create a folder in the root
of our Vagrant repo called modules and move ucpconfig into that folder.

We will then create three manifests files in the module's manifest directory. The first
will be master.pp, the second will be node.pp, and the last file will be params.pp.

https://forge.puppetlabs.com/puppetlabs/docker_ucp

Chapter 7

[137]

Now, let's add our code to the params.pp file, as follows:

As you can see, we have four values: Ucp_url, which comes from Hiera;
ucp_username, whose default value is set to admin; we then have ucp_password
whose default value is set to orca. The last value is ucp_fingerprint, which
again comes from Hiera. Now, in a production environment, I would set both the
username and password in Hiera and overwrite the defaults, which we have set in
params.pp. In this case, as it is a test lab, we will just use the defaults.

The next file we will look at is our init.pp file, which is as follows:

You can see that at the top of the class, we are mapping our params.pp file. The next
declaration installs the docker class and sets the socket_bind parameter for the
daemon. Now, the next bit of logic defines whether the node is a master or a node
depending on the hostname. As you can see, we are only setting ucp-01 as our master.

Container Schedulers

[138]

Now, let's look at master.pp:

In this class, we have the logic to install the UCP controller or master. At the top of
the class, we are mapping our parameters to our init.pp file. The next block of code
calls the docker_ucp class. As you can see, we are setting the value of controller to
true, the host address to our second interface, the alternate name of the cluster to
our first interface, and the version to 1.0.1 (which is the latest at the time of writing
this book). We will then set the ports for both the controller and Swarm. Then, we
will tell UCP about the Docker socket location and also the location of the license file.

Chapter 7

[139]

Now, let's look at our last file, node.pp:

As you can see, most of the settings might look familiar. The call out for a node is
that we need to point it to the controller URL (which we set in Hiera). We will get
to know about the admin username and password and the cluster fingerprint just a
little bit later. So, that completes our module. We now need to add our class to our
nodes which we will do by adding the default.pp manifest file in the manifests/
default.pp location from the root of our Vagrant repo, as follows:

Container Schedulers

[140]

Let's go to our terminal and change the directory to the root of our Vagrant repo.
This time, we are going to do something different. We are going to issue the vagrant
up ucp-01 command. This will bring up only the first node. We do this as we need
to get the fingerprint that is generated as UCP comes up.

Our terminal output should look like that shown in the following screenshot:

Terminal output

You will note that the fingerprint has been displayed on your terminal output. For
my example, the fingerprint is INFO[0031] UCP Server SSL: SHA1 Fingerprint=
C2:7C:BB:C8:CF:26:59:0F:DB:BB:11:BC:02:18:C4:A4:18:C4:05:4E. So, we will
add this to our Hiera file, which is global.yaml:

Chapter 7

[141]

Now that we have our first node up, we should be able to log in to the web UI. We
do this in our browser. We will go to https:127.0.0.1:8443 and get the login page
as follows:

We will then add the username and password that we set in our params.pp file:

Container Schedulers

[142]

Then, after we log in, you can see that we have a health cluster, as follows:

Health cluster after logging in

Now, let's return to our terminal and issue the vagrant up ucp-02 && vagrant up
ucp-03 command.

Once that is complete, if we look at our web UI, we can see that we have three nodes
in our cluster, which are as follows:

Chapter 7

[143]

In this book, we are not going to go into how to administer the cluster through the
web UI. I would definitely recommend that you explore this product, as it has some
really cool features. All the documentation is available at https://docs.docker.
com/ucp/overview/.

Kubernetes
There is massive buzz around Kubernetes at the moment. This is Google's offering
to the container world. Kubernetes has some very heavy backers such as Google,
CoreOS, and Netflix. Out of all the schedulers that we have looked at, Kubernetes
is the most complex and is highly driven by APIs. If you are new to Kubernetes,
I would suggest that you read further about the product (http://kubernetes.
io/). We are going to first look at the architecture of Kubernetes, as there are a few
moving parts. Then, we will write our module, and we are going to build Kubernetes
completely with containers.

The architecture
We will be building Kubernetes on a single node. The reason for this is that it will
cut out some of the complexity on how to use flannel over the Docker bridge. This
module will give you a good understanding of how Kubernetes works using more
advanced Puppet techniques. If you want to take your knowledge further after you
have mastered this chapter, I would recommend that you check out the module on
the forge at https://forge.puppetlabs.com/garethr/kubernetes. This module
really takes Puppet and Kubernetes to the next level.

So what we are going to code looks like the following diagram:

https://docs.docker.com/ucp/overview/
https://docs.docker.com/ucp/overview/
http://kubernetes.io/
http://kubernetes.io/
https://forge.puppetlabs.com/garethr/kubernetes

Container Schedulers

[144]

As you can see, we have a container that runs etcd (to read more about etcd, go to
https://coreos.com/etcd/docs/latest/). etcd is similar to Consul, which we are
familiar with. In the next few containers, we are going to use hyperkube (https://
godoc.org/k8s.io/kubernetes/pkg/hyperkube). This will load balance the
required Kubernetes components across multiple containers for us. It seems pretty
easy, right? Let's get into the code so that we get a better perspective on all the
moving parts.

Coding
We are going to create a new Vagrant repo again. We won't cover how to do that
as we have covered it twice in this chapter. If you are unsure, just take a look at the
initial part of this chapter.

Once we have created our Vagrant repo, let's open our servers.yaml file, as follows:

As you can see, there is nothing special there that we have not covered in this book.
There's just a single node that we mentioned earlier, kubernetes. The next file we
will look at is our Puppetfile. We will, of course, need our Docker module, stdlib,
and lastly, wget. We need wget to get kubectl:

https://coreos.com/etcd/docs/latest/
https://godoc.org/k8s.io/kubernetes/pkg/hyperkube
https://godoc.org/k8s.io/kubernetes/pkg/hyperkube

Chapter 7

[145]

That is all the plumbing that we need to set up for our repo. Let's create a new
module called <AUTHOR>-kubernetes_docker. Once it is created, we will move
our module to the modules directory in the root of our Vagrant repo.

We are going to create two new folders in our module. The first will be the
templates folder, and the other folder will be the lib directory. We will get to the
lib directory toward the end of our coding. The first file we will create and edit
is docker-compose.yml.erb. The reason for this is that it is the foundation of our
module. We will add the following code to it:

Let's break this file down into three chunks, as there is a lot going on there. The first
block of code is going to set up our etcd cluster. You can see from the screenshot
name that we are using Google's official images, and we are using etcd version
2.2.1. We are giving the container access to the host network. Then, in the command
resource, we pass some arguments to etcd as it starts.

The next container we create is hyperkube. Again, it is an official Google image.
Now, we are giving this container access to a lot of host volumes, the host network,
and the host process, making the container privileged. This is because the first
container will bootstrap Kubernetes and it will spawn more containers running the
various Kubernertes components. Now, in the command resource, we are again
passing some arguments for hyperkube. The two major ones we need to worry
about are the API server address and config manifests. You will note that we have a
mapped folder from /kubeconfig:/etc/kubernetes/manifests:ro. We are going
to modify our manifest file to make our Kubernetes environment available to the
outside world. We will get to that next. But, we will finish looking at the code in this
file first.

Container Schedulers

[146]

The last container and the third block of code is going to set up our service proxy.
We are going to give this container access to the host network and process. In the
command resource, we are going to specify that this container is a proxy. The next
thing to take notice of is that we specify where the proxy can find the API. Now,
let's create the next file, master.json.erb. This is the file that hyperkube will use
to schedule all the Kubernetes components, which are as follows:

As you can see, we have defined three more containers. This is the first time we will
define a Kubernetes pod (http://kubernetes.io/docs/user-guide/pods/). A
pod is a group of containers that creates an application. It is similar to what we have
done with Docker Compose. As you can see, we have changed all the IP addresses to
the <%= @master_ip %> parameter. We will create four new files: apps.pp, config.
pp, install.pp, and params.pp.

http://kubernetes.io/docs/user-guide/pods/

Chapter 7

[147]

We will now move on to our files in the modules manifest directory. Now, strap
yourselves in, as this is where the magic happens. Well, that's not true. The magic
happens here and in our lib directory. We will need to write some custom types
and providers for Puppet to be able to control Kubernertes as kubectl is the user
interface (for types, visit https://docs.puppetlabs.com/guides/custom_types.
html, and for providers, visit https://docs.puppetlabs.com/guides/provider_
development.html).

Let's start with our init,pp file, which is as follows:

As you can see, there is not much in this file. We are going to use our init.pp
file to control the order in which classes are executed. We are also declaring param
<%= @master_ip %>. We will now move on to our install.pp file, as follows:

https://docs.puppetlabs.com/guides/custom_types.html
https://docs.puppetlabs.com/guides/custom_types.html
https://docs.puppetlabs.com/guides/provider_development.html
https://docs.puppetlabs.com/guides/provider_development.html

Container Schedulers

[148]

In this file, we install Docker as we did before. We will place our two templates
that we created earlier. Then, we will run Docker Compose to bring up our cluster.
Now, we will move on to config.pp, as follows:

The first thing that we declare is that we want wget to be our kubectl client, and
we place it at /usr/bin/ (http://kubernetes.io/docs/user-guide/kubectl/
kubectl/). You really need to understand what this interface does; otherwise, you
might get a bit lost from here. So, I suggest that you have a fairly good idea of what
kubectl is and what it is capable of. Next, we will make it executable and available
for all our users. Now, this last piece of code does not make sense, as we have not
called the kubectl_config class yet:

We now need to jump to our lib directory. This first thing we will do is create
all our folders that we need. The first folder that we will create is puppet under
the lib directory. We will look at our custom types first. We will create a folder
called type under puppet. The following screenshot will give you a visualization
of the structure:

Under the type folder, we will create a file called kubectl_config.rb. In that file,
we will add the new parameters of type as follows:

http://kubernetes.io/docs/user-guide/kubectl/kubectl/
http://kubernetes.io/docs/user-guide/kubectl/kubectl/

Chapter 7

[149]

Let me explain what is happening here. In the first line, we are going to declare our
new type, kubectl_config. We are then going to set the default value of the new
type when it is declared as present. We are going to declare three values to our
type, name, cluster, and kube_context. These are all settings that we will add to
our config file that kubectl will use when we interface with it. Now, we will create
a folder under the lib directory called provider. Then, under that, we will create a
folder with the same name as our custom type, kubectl_config. Inside that folder,
we will create a file called ruby.rb. In this file, we will put the Ruby code that
provides logic to our type as follows:

Container Schedulers

[150]

A provider needs to have three methods for Puppet to be able to run the code.
They are exsists?, create, and destroy. These are pretty easy to understand. The
exists? method checks whether the type has already been executed by Puppet,
create runs the type, and destroy is invoked when the type is set to absent.

We are now going to work through the file, from top to bottom. We need to first load
a few Ruby libraries for some of our methods. We will then tie this provider to our
type. The next thing that we need to declare is the kubectl executable.

Now we will write our first method, interface. This will get the IP address from the
hostname of the box. We will then create three more methods. We will also create an
array and add all our configuration to them. You will note that we are mapping our
parameters from our type in the arrays.

In our exists? method, we will check for our kubectl config file.

In our create method, we are calling our kubectl executable and then passing our
arrays as arguments. We will then link our config file to roots' home directory (this
is fine for our lab. In a production environment, I would use a named user account).

Lastly, we will remove the config file if the type is set to absent. We will now go
back to our manifests directory and look at our last file, which is apps.pp:

In this file, we are going to run a container application on our Kubernetes cluster.
Again, we will write another custom type and provider. Before we get to that, we
should look at the code in this class. As you can see, our type is called kubernetes_
run. We can see that our service is named nginx, the Docker image we will pull is
nginx, and we will then expose port 80.

Let's go back to our lib directory. We will then create a file in our type folder called
kubernetes_run.rb. In this file, we will set up our custom type as we did earlier:

Chapter 7

[151]

As you can see, we are mapping the same parameters that we had in our apps.pp
file. We will then create a folder under the provider folder with the same name as
our kubernetes_run type. Again, in the newly created directory, we will create a file
called ruby.rb. It will have the code shown in the following screenshot:

Container Schedulers

[152]

In this file, we are going to add two commands this time: the first is kubectl and the
second is docker. We will create two methods, again with arrays that map the values
from our type.

Now, let's look at our exists? method. We are going to pass an array as an
argument to kubectl to check whether the service exists. We are then going to catch
the error if kubectl throws an error with the request and returns false. This is used
if there are no services deployed on the cluster.

In our create method, we will first pass an array to kubectl to get the nodes
in the cluster. We are using this as an arbitrary command to make sure that the
cluster is up. Under that, we will capture the error and retry the command until it
is successful. Once it is successful, we will deploy our container with the ensure
resource.

In the destroy method, we will use docker to remove our container.

Now we have all our coding done. We just need to add our class to our node by
editing our default.pp file in the manifests folder in the root of our Vagrant repo
as follows:

Now, let's open our terminal and change the directory to the root of our Vagrant
repo and issue the vagrant up command. Once Puppet has completed its run,
our terminal should look like the following screenshot:

Chapter 7

[153]

We will now log in to our vagrant box by issuing the vagrant ssh command and
then sudo -i and change to root. Once we are root, we will look at our service on
our cluster. We will do this by issuing the kubectl get svc command as follows:

As you can see, we have two services running our cluster: Kubernetes and nginx.
If we go to our web browser and go to the address we gave to the second network
interface, http://172.17.9.101, we will get the following nginx default page:

Now, our cluster is running successfully with our nginx service.

Container Schedulers

[154]

Summary
We covered my favorite three container schedulers; each one of them has their own
pros and cons. Now, you have the knowledge and the required code to give all three
a really good test run. I would suggest that you do so so that you can make the right
choice when choosing the design in your environment.

[155]

Logging, Monitoring, and
Recovery Techniques

In this chapter, we are going to look into one of our schedulers and look at wrapping
some more operational tasks around it. So far, in this book, we have covered more
glamorous subjects; however, monitoring, logging, and automated recovery are just
as important. We want to take this knowledge and make it work in the real world.
From there, we can start to see the benefits to both the development and operations
teams. We are going to use Docker Swarm as our scheduler in this chapter. For
logging, we will use the ELK stack, and for monitoring, we will use Consul. Since
Docker Swarm version 1.1.3, there are some cool features that will help us use
recovery, so we will look at them. We will cover the following topics in this chapter:

• Logging
• Monitoring
• Recovery techniques

Logging
The importance of logging is second to none in a solution. If we need to debug any
issues with any code/infrastructure, the logs are the first place to go. In the container
world, this is no different. In one of the previous chapters, we built the ELK stack.
We are going to use that again to process all the logs from our containers. In this
solution, we will use a fair chunk of the knowledge that we got so far. We will use a
scheduler, a Docker network, and lastly, service discovery with Consul. So, let's look
at the solution, and like we did in the past chapters, we will get to coding.

Logging, Monitoring, and Recovery Techniques

[156]

The solution
As I mentioned in the introduction of this chapter, we will be using Docker Swarm
for this solution. The reason for this choice is that I want to highlight some of the
features of Swarm as it has come on leaps and bounds in the last few releases. For
the logging portion of this chapter, we are going to deploy our three containers and
let Swarm schedule them. We will use a combination of the Docker networking DNS
and our service discovery with Consul to tie everything together. In Swarm, we will
use the same servers as we did in the last chapter: three member nodes and two
replicated masters. Each node will be a member of our Consul cluster. We will again
use Puppet to install Consul on the host system natively.

The code
In this chapter, we will build on the code that we used in the last chapter for Docker
Swarm. So, we will go through the plumbing of the Vagrant repo fairly swiftly,
only calling out the differences from the last chapter. We are going to create a new
Vagrant repo again for this chapter. You should be a master at this by now. Once the
new repo is set up, open the servers.yaml file. We will add the following code to it:

Chapter 8

[157]

Code for the severs.yaml file

As you can see, it's not that different from the last chapter. There is one call out.
We have added a new line to each server - { shell: 'echo -e "PEERDNS=no\
nDNS1=127.0.0.1\nDNS2=8.8.8.8">>/etc/sysconfig/network-scripts/ifcfg-
enp0s8 && systemctl restart network'}. We will add this as the server is
multihomed. We will want to make sure that we are resolving DNS correctly on
each interface.

Logging, Monitoring, and Recovery Techniques

[158]

The next thing we will look at is the puppetfile, which is as follows:

As you can see, there are no new changes compared with the last chapter. So, let's
move to our Hiera file located at heiradata/global.yml in the root of our module:

Again, we are setting the Swarm version to v1.1.3, and the backend is set to consul.
We set the IP address of the first node in the Consul cluster, and we set the Consul
port to 8500. We will set the swarm interface that we will advertise from, and last but
not least, we will set our Consul version to 0.6.3.

Chapter 8

[159]

Now, we will create our module. We will again call the config module. Once you
have created your <AUTHOR>-config module, move it to the modules folder in the
root of your Vagrant repo.

Now that we have our module, let's add our code to it. We will need to create the
following files in the manifests directory: compose.pp, consul_config, dns.pp,
run_containers.pp, and swarm.pp. We have no params.pp as we are using Hiera
in this example.

So, let's go through the files in an alphabetical order. In our compose.pp file, we will
add the following code:

Logging, Monitoring, and Recovery Techniques

[160]

As you can see from the code, we are adding our docker-compose.yml file to any
node that is not a swarm master. We will come back to the docker compose.yml file
when we look at the templates directory. The next file is consul_config.pp, which
is as follows:

Chapter 8

[161]

In this file, we are declaring our Consul cluster and defining the bootstrap server.
This should look familiar as it is the same code that we used in the last chapter.
The next file is dns.pp, which is given as follows:

Again, this code should look familiar to you, as we have used it before in the last
chapter. Just to recap, this is setting and configuring our bind package to use
Consul as the DNS server. The next file we will look at is init.pp:

Logging, Monitoring, and Recovery Techniques

[162]

In the init.pp file, we are just ordering our classes within our module. We will now
move on to run_containers.pp. This is where we will schedule our ELK containers
across the swarm cluster:

Let's have a look at this in detail, as there is a lot of new code here. The first
declaration that we will use is to schedule the containers from the second
Swarm master.

The next block of code will configure our logstash container. We will need to first
have these containers here in this example, as we are using them as the syslog server.
If at the time of spawning the containers they can't connect to logstash on TCP port
5000, the build of the container will fail. So, let's move on to the configuration of
logstash. We will use the container that I put in, as it is the official container with
the logstash.conf file that we already added. We will then add logstash to our
internal swarm-private Docker network and expose all the ports for logstash on
all networks. So, we can pipe logs from anywhere to it. After this, we will set the
location of elasticsearch and then we will give the command to start.

Chapter 8

[163]

Logstash
In the second block of code, we will install and configure elasticsearch. We
will use the official elasticsearch container (version 2.1.0). We will only add
elasticsearch to our private Docker network, swarm-private. We will make
the data persistent by declaring a volume mapping. We will set the command with
arguments to start elasticsearch with the command value. Next, we will set
the log drive to syslog and the syslog server to tcp://logstash-5000.service.
consul:5000. Note that we are using our Consul service discovery address as we
are exposing logstash on the external network. Lastly, we set the dependency on
logstash. As I mentioned earlier, the syslog server needs to be available at the time
this container spawns, so we need logstash to be there prior to either this container
or kibana. Talking of Kibana, let's move on to our last block of code.

In our kibana container, we will add the following configuration. First, we will use
the official kibana image (Version 4.3.0). We will add kibana to our swarm-private
network so it can access our elasticsearch container. We will map and expose
ports 5601 to 80 on the host network. In the last few lines, we will set the syslog
configuration in the same way as we did with elasticsearch.

Now, it's time for our last file, swarm.pp, which is as follows:

Logging, Monitoring, and Recovery Techniques

[164]

In this code, we are configuring our Swarm cluster and Docker network.

We will now move to our templates folder in the root of our module. We need to
create three files. The two files Consul.conf.erb and named.conf.erb are for our
bind config. The last file is our registrator.yml.erb Docker compose file. We will
add the code to the following files.

Let's first see the code for consul.conf.erb, which is as follows:

Now, let's see the code for named.conf.erb, which is as follows:

Finally, let's see the code for registrator.yml.erb, which is as follows:

Chapter 8

[165]

All the code in these files should look fairly familiar, as we have used it in previous
chapters.

Now, we have just one more configuration before we can run our cluster. So, let's
go to our default.pp manifest file in the manifests folder located in the root of
our Vagrant repo.

Now, we will add the relevant node definitions to our manifest file:

We are ready to go to our terminal, where we will change the directory to the root of
our Vagrant repo. As so many times that we did before, we will issue the vagrant
up command. If you have the boxes still configured from the last chapter, issue the
vagrant destroy -f && vagrant up command.

Once Vagrant is run and Puppet has built our five nodes, we can now open a
browser and enter the http://127.0.0.1:9501/. We should get the following
page after this:

Logging, Monitoring, and Recovery Techniques

[166]

As you can see, all our services are shown with green color that displays the state of
health. We will now need to find what node our kibana container is running on. We
will do that by clicking on the kibana service.

In my example, kibana has come up on swarm-101. If this is not the same for you,
don't worry as the Swarm cluster could have scheduled the container on any of the
three nodes. Now, I will open a browser tab and enter the 127.0.0.1:8001/, as
shown in the following screenshot:

If your host is different, consult the servers.yaml file to get the right port.

Chapter 8

[167]

We will then create our index and click on the Discovery tab, and as you can see in
this screenshot, we have our logs coming in:

Logs after creating index

Monitoring
In the world of containers, there are a few levels of monitoring that you can deploy.
For example, you have your traditional ops monitoring. So your Nagios and Zabbix
of the world or even perhaps a cloud solution like Datadog. All these solutions have
good hooks into Docker and can be deployed with Puppet. We are going to assume
in this book that the ops team has this covered and your traditional monitoring is in
place. We are going to look at the next level of monitoring. We will concentrate on
the container connectivity and Swarm cluster health. We will do this all in Consul
and deploy our code with Puppet.

The reason we are looking at this level of monitoring is because we can make
decisions about what Consul is reporting. Do we need to scale containers? Is a
Swarm node sick? Should we take it out of the cluster? Now to cover these topics,
we will need to write a separate book. I won't be covering these solutions. What we
will look at is the first step to get there. Now that the seed has been planted, you will
want to explore your options further. The challenge is to change the way we think
about monitoring and how it needs reactive interaction from a human, so we can
trust our code to make choices for us and to make our solutions fully automated.

Logging, Monitoring, and Recovery Techniques

[168]

Monitoring with Consul
One really good thing about using Consul is that Hashicorp did an awesome
job at documenting their applications. Consul is no exception. If you would like
to read more about the options you have with Consul monitoring, refer to the
documentation at https://www.consul.io/docs/agent/services.html and
https://www.consul.io/docs/agent/checks.html. We are going to set up both
checks and a service. In the last chapter, we wrote a service with Consul to monitor
our Docker service on every node:

On the Consul web UI, we get the following reading of the Docker service on
the node:

https://www.consul.io/docs/agent/services.html
https://www.consul.io/docs/agent/checks.html

Chapter 8

[169]

We are going to roll out all our new checks on both the Swarm masters. The reason
for this is that both the nodes are external from the nodes cluster. The abstraction
gives us the benefit of not having to worry about the nodes that the containers are
running on. You also have the monitoring polling from multiple locations. For
example, in AWS, your Swarm masters could be split across multiple AZs. So, if you
lose an AZ, your monitoring will still be available.

As we are going to use the logging solution from the example that we covered in
the previous section, we will check and make sure that both Logstash and Kibana
are available; Logstash on port 5000 and Kibana on port 80.

We are going to add two new service checks to our config module in the
consul_config.pp file, as follows:

As you can see, we have set a TCP check for both kibana and logstash, and we will
use the service discovery address to test the connections. We will open our terminal
and change the directory to the root of our Vagrant repo.

Logging, Monitoring, and Recovery Techniques

[170]

Now, we are going to assume that your five boxes are running. We will issue the
command to Vagrant to provision only the two master nodes. This command
is vagrant provision swarm-master-01 && vagrant provision swarm-
master-02. We will then open our web browser and enter 127.0.0.1:9501. We can
then click on swarm-master-01 or swarm-master-02, the choice is up to you. After
this, we will get the following result:

As you can see, our monitoring was successful. We will move back to our code and
add a check for our swarm master to determine its health. We will do that with the
following code:

Chapter 8

[171]

We will then issue the Vagrant provision command, vagrant provision swarm-
master-01 && vagrant provision swarm-master-02. Again, we will open our
web browser and click on swarm-master-01 or swarm-master-02. You should get the
following result after this:

Logging, Monitoring, and Recovery Techniques

[172]

As you can see from the information in the check, we can easily see which Swarm
master is primary, the strategy for scheduling. This will come in really handy when
you have any issues.

So as you can see, Consul is a really handy tool, and if you want to take away the
things we covered in this chapter, you can really do some cool stuff.

Recovery techniques
It is important in every solution to have some recovery techniques. In the container
world, this is no different. There are many ways to skin this cat, such as load
balancing with HA proxy or even using a container-based application that was built
for this purpose such as interlock (https://github.com/ehazlett/interlock). If
you have not checked out interlock, it's awesome!!! There are so many combinations
of solutions we could use depending on the underlying application. So here, we
are going to look at the built-in HA in Docker Swarm. From there, you could use
something like an interlock to make sure that there is no downtime in accessing
your containers.

Built-in HA
Docker Swarm has two kind of nodes: master nodes and member nodes. Each one of
these has different built-in protection for failure. The first node type we will look at is
master nodes.

In the last topic, we set up a health check to get the information regarding our
Swarm cluster. There, we saw that we had a master or primary Swarm master and
a replica. Swarm replicates all its cluster information over TCP port 4000. So, to
simulate failure, we are going to turn off the master. My master is swarm-master-01,
but yours could be different. We will use the health check that we already created to
test out the failure and watch how Swarm handles itself. We will issue the vagrant
halt swarm-master-01 command. We will open up our browser again to our
Consul web UI, 127.0.0.1:9501. As we can see in the following screenshot,
swarm-master-02 is now a master:

https://github.com/ehazlett/interlock

Chapter 8

[173]

Now, we will move on to container resecluding with our Swarm node HA. As of
version 1.1.3, Swarm is shipped with a feature where a container will respawn on
a healthy node if the original node fails. There are some rules to this such as when
you have filtering rules or linked containers. To know more on this topic, you can
read the Docker docs about Swarm located at https://github.com/docker/swarm/
tree/master/experimental.

To test this out, I will halt the node that hosts Kibana. We will need to add some
code to our kibana container so that it will restart on failure. This is added to
the env resource, as shown in the following screenshot:

https://github.com/docker/swarm/tree/master/experimental
https://github.com/docker/swarm/tree/master/experimental

Logging, Monitoring, and Recovery Techniques

[174]

We will first need to kill our old container to add the restart policy. We can do
that by setting the ensure resource to absent and running the Vagrant provision
swarm-master-02.

Once the Vagrant run is complete, we will change it back to present and run
vagrant provision swarm-master-02.

For me, my kibana container is on swarm-102 (this could be different for you). Once
that node fails, kibana will restart on a healthy node. So, let's issue vagrant halt
swarm-102. If we go to our Consul URL, 127.0.0.1:9501, we should see some
failures on our nodes and checks, as shown in the following screenshot:

If you wait a minute or so, you will see that kibana alerts came back and the
container spawned on another server. For me, kibana came back on swarm-101,
as you can see in the following screenshot:

Chapter 8

[175]

We can then go to our browser and look at kibana. For me, it will be at
127.0.0.1:8001:

Kibana after connecting to Elasticsearch

Logging, Monitoring, and Recovery Techniques

[176]

As you can see, all our logs are there; our service discovery worked perfectly as once
the container changed nodes, our health checks turned green.

Summary
In this chapter, we looked at how to operationalize our container environment using
Puppet. We covered a logging solution using ELK. We took Consul to the next level
with more in-depth health checks and creating services to monitor our cluster. We
then tested the built-in HA functionality that ships with Swarm. We have covered a
lot of ground now since our humble first module in Chapter 2, Working with Docker
Hub. You are fully equipped to take the knowledge that you have got here and apply
it in the real world.

[177]

Best Practices for the
Real World

We have really covered a lot of ground in this book so far. We are now on our final
chapter. Here, we are going to look at how to combine all the skills you have learned
and create a production-ready module. Just to go out with a bang, we will create a
module that configures and deploys Kubernetes as the frontend (note that running
Kuberbetes as frontend has limitations and would not be the best idea for production.
The UCP component of the module will be production ready). Since there will be a
lot of sensitive data, we will take advantage of Hiera. We will create a custom fact to
automate the retrieval of the UCP fingerprint, and we will split out all the kubernetes
components and use interlock to proxy our API service. We will also take UCP further
and look at how to repoint the Docker daemon to use the UCP cluster. The server
architecture will follow the same design as we discussed in the scheduler chapter. We
will use three nodes, all running Ubuntu 14.04 with an updated kernel to support the
native Docker network namespace. We will cover the following topics in this chapter:

• Hiera
• The code

Hiera
In this topic, we will look at how to make our modules stateless. We will move all
the data that is specific to the node that is applied to the module in Hiera (https://
docs.puppetlabs.com/hiera/3.1/). There are two main drivers behind this. The
first is to remove any sensitive data such as passwords, keys, and so on, out of our
modules. The second is if we remove node-specific data or state out our modules so
that they are generic. We can apply them to any number of hosts without changing
the logic of the module. This gives us the flexibility to publish our modules for other
members of the Puppet community.

https://docs.puppetlabs.com/hiera/3.1/
https://docs.puppetlabs.com/hiera/3.1/

Best Practices for the Real World

[178]

What data belongs in Hiera
When we first sit down and start development on a new module, some of the
things that we should consider are: whether we can make our module OS agnostic,
how we can run the module on multiple machines without logic changes or extra
development, and how we can protect our sensitive data?

The answer to all these questions is Hiera.

We are able to leverage Hiera by parameterizing our classes. This will allow Puppet
to automatically look up Hiera at the beginning of the catalogue compilation. So, let's
explore some examples of the data that you will put in Hiera.

Note that in our chapter about container schedulers, we briefly used Hiera. We set
the following values:

As you can see, we are setting parameters such as versions. Why would we want to
set versions in Hiera and not straight in the module? If we set the version of Consul,
for example, we might be running version 5.0 in production. Hashicorp just released
version 6.0 by changing the Hiera value for the environment (for more information
about Puppet environments, go to https://docs.puppetlabs.com/puppet/
latest/reference/environments.html). In Hiera versions from dev to 6.0,
we can run multiple versions of the application with no module development.

The same can be done with IP addresses or URLs. So in the hieradata for dev,
your Swarm cluster URL could be dev.swarm.local and production could be
just swarm.local.

Another type of data that you will want to separate is passwords/keys. You
wouldn't want the same password/key in your dev environment as there are in
production. Again, Hiera will let you obfuscate this data.

We can then take the protection of this data further using eyaml, which Puppet
supports. This allows you to use keys to encrypt your Hiera .yaml files. So, when
the files are checked into source control, they are encrypted. This helps prevent data
leakage. For more information on eyaml, visit https://puppetlabs.com/blog/
encrypt-your-data-using-hiera-eyaml.

https://docs.puppetlabs.com/puppet/latest/reference/environments.html
https://docs.puppetlabs.com/puppet/latest/reference/environments.html
https://puppetlabs.com/blog/encrypt-your-data-using-hiera-eyaml
https://puppetlabs.com/blog/encrypt-your-data-using-hiera-eyaml

Chapter 9

[179]

As you see, Hiera gives you the flexibility to move your data from the module to
Hiera to externalize configurations, making the module stateless.

Tips and tricks for Hiera
There are some really handy tips that you can refer to when using Hiera. Puppet
allows you to call functions, lookups, and query facts from Hiera. Mastering these
features will come in very handy. If this is new to you, read the document available
at https://docs.puppetlabs.com/hiera/3.1/variables.html before moving on
in the chapter.

So, let's look at an example of looking up facts from Hiera. First, why would you
want to do this? One really good reason is IP address lookups. If you have a class
that you are applying to three nodes and you have to advertise an IP address like we
did in our consul module, setting the IP address in Hiera will not work, as the IP
address will be different for each machine. We create a file called node.yaml and add
the IP address there. The issue is that we will now have multiple Hiera files. Every
time Puppet loads the catalogue, it looks up all the Hiera files to check whether any
values have changed. The more files we have, the more load it puts on the master
and the slower our Puppet runs will become. So we can tell Hiera to look up the fact
and the interface we want to advertise. Here is an example of what the code would
look like:

ucpconfig::ucp_host_address: "%{::ipaddress_eth1}"

The one call out is that if we called the fact from a module, we would call it with the
fully qualified name, $::ipaddress_eth1. Unfortunately, Hiera does not support
the use of this. So we can use the short name for the ::ipaddress_eth1 fact.

The code
Now that we have a good understanding of how to make our module stateless, let's
go ahead and start coding. We will split the coding into two parts. In the first part we
will write the module to install and configure Docker UCP. The final topic will be to
run Kubernetes as the frontend.

https://docs.puppetlabs.com/hiera/3.1/variables.html

Best Practices for the Real World

[180]

UCP
The first thing that we need to do is create a new Vagrant repo for this chapter. By
now, we should be masters at creating a new Vagrant repo. Once we have created
that, we will create a new module called <AUTHOR>-ucpconfig and move it to our
modules directory in the root of our Vagrant repo. We will first set up our servers.
yml file by adding the code shown in the following screenshot:

As you can see, we are setting up three servers, where ucp-01 will be the master of
the cluster and the other two nodes will join the cluster. We will add two more files:
config.json and docker_subscription.lic. Here, config.json will contain
the authorization key to Docker Hub, and docker_subscription.lic will contain
our trial license for UCP. Note that we covered both of these files in the container
scheduler chapter. If you are having issues setting up these files, refer to that chapter.

Chapter 9

[181]

The file we will now look at is the puppetfile. We need to add the code shown in the
following screenshot to it:

Now that we have our Vagrant repo set up, we can move on to our module. We will
need to create four files: config.pp, master.pp, node.pp, and params.pp.

The first file we will look at is params.pp. Again, I'd like to code this file first as it
sets a good foundation for the rest of the module. We do this as follows:

Best Practices for the Real World

[182]

As you can see, we are setting all our parameters. We will look at each one in depth
as we apply it to the class. This way, we will have context on the value we are setting.
You might have noted that we have set a lot of variables to empty strings. This is
because we will use Hiera to look up the values. I have hardcoded some values in
as well, such as the UCP version as 1.0.0. This is just a default value if there is no
value in Hiera. However, we will be setting the value for UCP to 1.0.3. The expected
behavior is that the Hiera value will take precedence. You will note that there is a fact
that we are referencing, which is $::ucp_fingerprint. This is a custom fact. This
will automate the passing of the UCP fingerprint. If you remember, in the container
scheduler chapter, we had to build ucp-01 to get the fingerprint and add it to Hiera
for the other nodes' benefit. With the custom fact, we will automate the process.

To create a custom fact, we will first need to create a lib folder in the root of the
module. Under that folder, we will create a folder called facter. In that folder,
we will create a file called ucp_fingerprint.rb. When writing a custom fact, the
filename needs to be the same as the fact's name. The code that we will add to our
custom fact is as follows:

In this code, you can see that we are adding a bash command to query our UCP
master in order to get the fingerprint. I have hardcoded the IP address of the master
in this fact. In our environment, we would write logic for that to be more fluid so that
we are allowed to have multiple environments, hostnames, and so on. The main part
to take away from the custom fact is the command itself.

Chapter 9

[183]

We will now move back to our init.pp file, which is as follows:

Best Practices for the Real World

[184]

The first thing you can see it that we are declaring all our variables at the top of our
class. This is where Puppet will look up Hiera and match any variable that we have
declared. The first block of code in the module is going to set up our Docker daemon.
We are going to add the extra configuration to tell the daemon where it can find the
backend for the Docker native network. Then, we will declare a case statement on
the $::hostname fact. You will note that we have set a parameter for the hostname.
This is to make our module more portable. Inside the case statement, if the host is
a master, you can see that we will use our Consul container as the backend for our
Docker network. Then, we will order the execution of our classes that are applied
to the node.

In the next block of code in the case statement, we have declared the
$ucp_deploy_node variable for the $::hostname fact. We will use this node to
deploy Kubernetes from. We will get back to this later in the topic. The final block
of code in our case statement is the catch all or default. If Puppet cannot find the
fact of $::hostname in either of our declared variables, it will apply these classes.

We will now move on to our master.pp file, which is as follows:

Chapter 9

[185]

The first thing you will note is that we are declaring our variables again at the top of
this class. We are doing this as we are declaring many parameters, and this makes
our module a lot more readable. Doing this in complex modules is a must, and I
would really recommend you to follow this practice. It will make your life a lot easier
when it comes to debugging. As you can see in the following screenshot, we are
tying the parameters back to our init.pp file:

As you can see from the preceding code, there are very few types which we are
values that we are setting in the module.

We will now move on to our node.pp file, as follows:

Best Practices for the Real World

[186]

As you can see, we are declaring the parameters at the top of the class, again tying
them back to our init.pp file. We have declared most of our values as we will
use Hiera.

We will now move on to our config.pp file, as follows:

Chapter 9

[187]

In this class, we are going to make a few vital configurations for our cluster. So, we
will walk through each block of code individually. Let's take a look at the first one:

In this block, we will declare our variables as we have in all the classes in this
module. One call out that I have not mentioned yet is that we are only declaring the
variables that are applied to its class. We are not declaring all the parameters. Let's
look at the next set of code now:

In this block of code, we will pass an array of packages that we need to curl our
UCP master in order to get the SSL bundle that we will need for TLS coms between
nodes. Now, let's see the third block:

In this code, we are going to create a shell script called get_ca.sh.erb to get the
bundle from the master. Let's create the file, and the first thing that we will need to do
is create a templates folder in the root of the module. Then, we can create our get_
ca.sh.erb file in the templates folder. We will add the following code to the file:

Best Practices for the Real World

[188]

As you can see in the script, we need to create an auth token and pass it to the API.
Puppet does not natively handle tasks like these well, as we are using variables
inside the curl command. Creating a template file and running an exec function is
fine as long as we make it idempotent. In the next block of code, we will do this:

In this block of code, we will run the preceding script. You can see that we have set the
parameters, command path, and cwd (current working directory). The next resource
is creates that tells Puppet that there should be a file called ca.pem in the current
working directory. If Puppet finds that the file does not exist, it will execute the exec,
and if the file does exist, Puppet will do nothing. This will give our exec idempotency.

In the next block of code, we will create a file in /etc/profile.d, which will then
point the Docker daemon on each node to the master's IP address, allowing us to
schedule containers across the cluster:

Now, let's create a docker.sh file in our templates directory. In the file, we will put
the following code:

In this file, we are telling the Docker daemon to use TLS, setting the location of the
key files that we got from the bundle earlier in the class. The last thing we are setting
is the Docker host that will point to the UCP master.

Chapter 9

[189]

This last block of code in this class should look very familiar, as we are setting up a
Docker network:

We can now move on to the the file where all our data is, our Hiera file. That file is
located in the hieradata folder, which is present in the root of our Vagrant repo.
The following screenshot shows the various data present in the Hiera file:

So, let's list out all the data we have defined here. We are defining the UCP master
as ucp-01, and our deploy node is ucp-03 (this is the node that we are deploying
Kubernetes from). The UCP URL of the master is https://172.17.10.101. This is
used when we connect nodes to the master and also when we get our ca bundle and
UCP fingerprint. We keep the username and password as admin and orca. We will
use UCP version 1.0.3. We will then use the Hiera fact lookup that we discussed
earlier in the book to set the host address and alternate names for UCP.

Best Practices for the Real World

[190]

The next parameter will tell UCP that we will use an internal CA. We will then set
our scheduler to use spread, define the ports for both Swarm and the controller, tell
UCP to persevere the certs, and send the location of the license file for UCP. Next,
we will set some date for Consul, such as the master IP, the interface to advertise,
the image to use, and how many nodes to expect at the time of booting the Consul
cluster. Lastly, we will set the variables we want our Docker daemon to use, such as
the name of our Docker network, swarm-private, the network driver, overlay, the
path to our certs, and the Docker host that we set in our docker.sh file placed at
/etc/profile.d/.

So, as you can see, we have a whole lot of data in Hiera. However, as we have
already discussed, there is data that could be changed for different environments.
So as you can see, there is a massive benefit in making your module stateless and
abstracting your data to Hiera, especially if you want to write modules that can
scale easily.

We will now add the following code to our manifest file, default.pp located in the
manifests folder in the root of our Vagrant repo. The following code defines our
node definition:

We can then open our terminal and change the directory to the root of our Vagrant
repo. We will then issue the vagrant up command to run Vagrant. Once the three
boxes are built, you should get the following terminal output:

Chapter 9

[191]

We can then log in to the web URL at https://127.0.0.1:8443:

Best Practices for the Real World

[192]

We will log in with the admin username and orca password. In the following
screenshot, we can see that our cluster is up and healthy:

Kubernetes
Since I thought to finish off with a bang, we will do something pretty cool now. I
wanted to deploy an application that had multiple containers in which we could use
interlock to showcase application routing/load balancing. What better application
than Kubernetes. As I mentioned earlier, there are limitations to running Kubernetes
like this, and it is only for lab purposes. The skills we can take away and apply to our
Puppet modules is application routing/load balancing. In our last topic, we set the
parameter for $ucp_deploy_node in the case statement in our init.pp file. In that
particular block of code, we had a class called compose.pp. This is the class that will
deploy Kubernetes across our UCP cluster. Let's look at the file:

Chapter 9

[193]

The first resource just creates a directory called kubernetes. This is where we will
place our Docker Compose file. Now, you will notice something different about how
we are running Docker Compose. An exec? Why would we use an exec when we
have a perfectly good provider that is tried and trusted. The reason we are using the
exec in this case is because we are changing $PATH during the last Puppet run. What
do I mean by that? Remember the file we added to the /etc/profile.d/ directory?
It changed the shell settings for where DOCKER_HOST is pointing. This will only come
into effect in the next Puppet run, so the Docker daemon will not be pointing to the
cluster. This will mean that all the kubernetes containers will come up on one host.
This will cause a failure in the catalogue, as we will get a port collision from two
containers using 8080. Now, this will only come into effect when we run the module
all at once, as a single catalogue.

Best Practices for the Real World

[194]

Now, let's have a look at our Docker Compose file:

In this book, I have been stressing on how I prefer using the Docker Compose
method to deploy my container apps. This Docker Compose file is a perfect example
why. We have seven containers in this compose file. I find it easy as we have all the
logic right there in front of us and we have to write minimal code. Now, let's look
at the code. The first thing that is different and that we wouldn't have seen so far is
that we are declaring version 2. This is because version 1.6.2 of Docker Compose
has been released (https://github.com/docker/compose/releases/tag/1.6.2).
So, to take advantage of the new features, we need to declare that we want to use
version 2.

The first container we are declaring is interlock. We are going to use interlock as our
application router that will make server requests to the Kubernetes API. For this
container, we are going to forward ports, 443, 8080, and 8443, to the host. We will
then map /etc/docker from the host machine to the container. The reason for this
is we need the keys to connect to the Swarm API. So, we will take advantage of the
bundle we installed earlier in the chapter.

https://github.com/docker/compose/releases/tag/1.6.2

Chapter 9

[195]

In the command resource, we will tell interlock where to find the certs, the Swarm
URL, and lastly, that we want to use haproxy. We will then add this container to our
overlay network, swarm-private. The next thing is in the environment resource,
we will set a constraint and we will tell Compose that we can only run interlock on
ucp-03. We will do this to avoid port collision with the Kubernetes API service. The
next container is etcd. Not much has changed regarding this since we configured
Kubernetes in the scheduler chapter, so we will move on. The next container is the
kubernetes API service. The one thing we need to call out with this is that we are
declaring in the environment resource - INTERLOCK_DATA={"hostname":"kubern
etes","domain":"ucp-demo.local"}. This is the URL that interlock will look for
when it sends the request to the API.

This is the main reason we are running kubernetes to gain the skills of application
routing. So, I won't go through the rest of the containers. Kubernetes is very well
documented at http://kubernetes.io/. I would recommend that you read up on
the features and explore Kubernetes—its a beast, there is so much to learn.

So, now we have all our code. Let's run it!

Just to see the end-to-end build process, we will open our terminal and change the
directory to the root of our Vagrant repo. If you have the servers built from the
earlier topics, issue vagrant destroy -f && vagrant up; if not, just a simple
vagrant up command will do. Once the Puppet run is complete, our terminal
should have the following output:

http://kubernetes.io/

Best Practices for the Real World

[196]

We can then log in to our web UI at https://127.0.0.1:8443:

Then, we will log in with the admin username and the orca password. We should
see the following screenshot once we login successfully:

Chapter 9

[197]

You will note that we have one application now. If we click on the application twice,
we can see that Kubernetes is up and running:

You will note that we have our container split across ucp-02 and ucp-03 due to the
environment settings in our Docker Compose file. One thing to take note of is that
interlock in on ucp-03 and the Kubernetes API service is on ucp-02.

Now that we have built everything successfully, we need to log in to ucp-03
and download the kubectl client. We can achieve that by issuing the following
command:

$'wget https://storage.googleapis.com/kubernetes-
release/release/v1.1.8/bin/linux/amd64/kubectl'

So let's log in to ucp-03 and issue the vagrant ssh ucp-03 command from the root
of our Vagrant repo. We will then change to root (sudo -i). Then, we will issue the
wget command, as shown in the following screenshot:

Best Practices for the Real World

[198]

We will then make the file executable by issuing the following command:

$'chmod +x kubectl'

Now remember that we set a URL in the environment settings for the - INTERLOCK_
DATA={"hostname":"kubernetes","domain":"ucp-demo.local"} API container.
We will need to set that value in our host file. So, use your favorite way to edit files
on the local machine, such as vim, nano sed, and so on, and add 172.17.10.103
kubernetes.ucp-demo.local. The IP address points to ucp-03 as that is where
interlock is running.

Now we are ready to test our cluster. We will do that by issuing the ./kubectl -s
kubernetes.ucp-demo.local get nodes command. We should get the following
output after this:

As you can see, everything is up and running. If we go back to our UCP console,
you can see that the API server is running on ucp-02 (with the IP address
172.17.10.102). So, how are we doing this? Interlock is processing the HTTP calls
on 8080 and routing them to our API server. This tells us that our application routing
is in place. This is a very basic example, but something you should play with as you
can really design some slick solutions using interlock.

Summary
In this chapter, we really focused on how to build a Puppet module that is shippable.
The use of Hiera and the separation of data from the logic of the module is not only
applicable to modules that deploy containers, but for any Puppet modules you
write. At some point in your Puppet career, you will either open source a module
or contribute to an already open-sourced module. What you have learned in this
chapter will be invaluable in both of those use cases. Lastly, we finished with
something fun, deploying Kubernetes as the frontend to UCP. In doing this, we also
looked at application routing/load balancing. This is obviously a great skill to master
as your container environment grows, especially to stay away from issues such as
port collision.

[199]

Index
A
automated builds

about 32-35
Docker Hub, pushing to 35
in Docker Hub 31

B
Bitbucket

reference link 73
bitbucket-server

reference link 66

C
coding

about 179
Docker UCP, configuring 180-192
Kubernetes 192-198

coding, with .erb files
about 55
Docker Compose up, with Puppet 57, 58
module, writing with Docker

Compose 55-57
coding, with resource declarations

about 48
file structures 49
module, running 53, 54
module, writing 49-52

continuous delivery (CD) process 24
Consul

modules, reference link 122
reference link 76
used, for monitoring 168

CoreOS project flannel
reference link 75

current working directory (cwd) 188

D
Docker

installing 15
manifests, setting 15

Docker_bitbucket module, building with
docker-compose

about 70
coding 71
running 72, 73

Docker_bitbucket module, building with
manifest resources

coding 64-66
running 67-70
skeleton, creating 63

Docker Compose
about 38-40
reference link 194

Dockerfiles
about 36-38
URL 30, 36

Docker Hub
about 19
account, creating 24-26
account, URL 24
automated builds 31-35
Docker Compose 38-40
Dockerfiles 36, 37
images, authored by developers 20, 23
official images 20
official images, exploring 26-31

[200]

overview 20-24
puppet manifest 41
pushing to 35
URL 20

Docker networking
about 95
code 95-98
prerequisites 95
reference link 95

Docker Swarm
about 121
architecture 122
coding 122-133
reference link 173

Docker UCP (Universal Control Plane)
about 121, 133
architecture 133
coding 134-143

E
Elasticsearch, Logstash, and Kibana (ELK)

about 113
reference link 99

environment
reference link 178

etcd
reference link 75

F
Flocker

reference link 63
Forge

URL 20

H
Hiera

about 177
data components 178
reference link 104
tips and tricks 179

hyperkube
reference link 144

I
interlock

reference link 172

K
kubectl client

reference link 148
Kubernetes

about 143
architecture 143
coding 144-153
reference link 195
URL 143

Kubernetes pod
reference link 146

L
logging

about 155
code, building 156-162
code, Logstash 163-166
solution 156

M
monitoring

about 167
Consul, using 168-172

P
parameters, params.pp

$consul_advertise 50
$consul_bootstrap_expect 50
$container_hostname 50
$docker_image 50
$docker_tcp_bind 50
$docker_version 50

pod 146
Puppet Forge

about 11, 12
puppetfile, creating 13, 14
reference link 12

puppet manifest 41

[201]

Puppet module generator 44-48
Puppet module skeleton

building 43

R
recovery techniques

about 172
built-in HA 172-176

registrator
reference link 79

S
service discovery

about 75
module 78-94
theory 75-77

solution design
about 99
Consul cluster 100-112
ELK stack 100
server setup 102, 103
summarizing 101

state
decoupling 62
versus stateless 62, 63

V
vagrant

installing 1
reference link 6

vagrant installation
about 2
on Mac OSX 2-8
Vagrantfile, creating 9-11

vagrant-template
reference link 9

VirtualBox
download link 2

W
Weave Works

reference link 75

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Docker with Puppet
	Installing Vagrant
	The installation
	VirtualBox
	Vagrant

	Vagrantfile

	Welcome to the Puppet Forge
	The Puppet Forge
	Creating our puppetfile

	Installing Docker
	Setting our manifests

	Summary

	Chapter 2: Working with Docker Hub
	Working with Docker Hub
	An overview of Docker Hub
	Creating a Docker Hub account
	Exploring official images

	Automated builds in Docker Hub
	Automated builds
	Pushing to Docker Hub

	Working with official images
	Dockerfiles
	Docker Compose
	Puppet manifest

	Summary

	Chapter 3: Building a Single Container Application
	Building a Puppet module skeleton
	The Puppet module generator

	Coding using resource declarations
	File structures
	Writing our module
	Running our module

	Coding using .erb files
	Writing our module with Docker Compose
	Docker Compose up with Puppet

	Summary

	Chapter 4: Building Multicontainer Applications
	Decoupling a state
	State versus stateless

	Docker_bitbucket (manifest resources)
	Creating our module skeleton
	Let's code
	Running our module

	Docker_bitbucket (Docker Compose)
	Let's code – take 2
	Running our module – take 2

	Summary

	Chapter 5: Configuring Service Discovery and Docker Networking
	Service discovery
	The theory
	The service discovery module

	Docker networking
	The prerequisites
	The code

	Summary

	Chapter 6: Multinode Applications
	The design of our solution
	The Consul cluster
	The ELK stack

	Putting it all together
	The server setup
	The Consul cluster
	The ELK stack

	Summary

	Chapter 7: Container Schedulers
	Docker Swarm
	The Docker Swarm architecture
	Coding

	Docker UCP
	The Docker UCP architecture
	Coding

	Kubernetes
	The architecture
	Coding

	Summary

	Chapter 8: Logging, Monitoring, and Recovery Techniques
	Logging
	The solution
	The code
	Logstash

	Monitoring
	Monitoring with Consul

	Recovery techniques
	Built-in HA

	Summary

	Chapter 9: Best Practices for the Real World
	Hiera
	What data belongs in Hiera
	Tips and tricks for Hiera

	The code
	UCP
	Kubernetes

	Summary

	Index

