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Chapter 1

Introduction

This book presents examples and case studies on how to use R for data mining applications.

This chapter introduces some basic concepts and techniques for data mining, including a data
mining procedure and popular data mining techniques, such as clustering, classification and asso-
ciation rules. It also presents R and its packages, functions and task views for data mining. At
last, some datasets used in this book are described.

1.1 Data Mining

Data mining is ....
The main techniques for data mining are listed below. More detailed introduction can be found
in text books on data mining [Han and Kamber, 2000,/ Hand et al., 2001,/ Witten and Frank, 2005|.

e Clustering:

Classification:

Association Rules:

Sequential Patterns:

e Time Series Analysis:

Text Mining:

1.2 R

RE] IR Development Core Team, 2012] is a free software environment for statistical computing and
graphics. It provides a wide variety of statistical and graphical techniques. R can be extended
easily via packages. There are more than 3000 packages available in the CRAN package repository
EL as on May 20, 2011. More details about R are available in An Introduction to R E] [Venables
et al., 2010] and R Language Definition E] |[R Development Core Team, 2010b).

R is widely used in academia and research, as well as industrial applications.

Thttp://www.r-project.org/
%http://cran.r-project.org/
3http://cran.r-project.org/doc/manuals/R-intro.pdf
4http://cran.r-project.org/doc/manuals/R-1lang.pdf
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1.2.1 R Packages and Functions for Data Mining

A collection of R packages and functions available for data mining are listed below. Some of them
are not specially for data mining, but they are included here because they are useful in data mining
applications.

1. Clustering

e Packages:
— Jc
— cluster
— puclust

— meclust

Partitioning-based clustering: kmeans, pam, pamk, clara

Hierarchical clustering: hclust, pvclust, agnes, diana

Model-based clustering: mclust

Density-based clustering: dbscan

Plotting cluster solutions: plotcluster, plot.hclust

e Validating cluster solutions: cluster.stats
2. Classification

e Packages:
— rpart
— party
— randomForest
— rpartOrdinal
— tree
— marginTree
— maplree

— survival
e Decision trees: rpart, ctree
e Random forest: cforest, randomForest
e Regression, Logistic regression, Poisson regression: glm, predict, residuals

e Survival analysis: survfit, survdiff, coxph
3. Association Rules and Frequent Itemsets

e Packages:

— arules: supports to mine frequent itemsets, maximal frequent itemsets, closed fre-
quent itemsets and association rules

— drm: regression and association models for repeated categorical data

e APRIORI algorithm, a level-wise, breadth-first algorithm which counts transactions:
apriori, drm

e ECLAT algorithm: employs equivalence classes, depth-first search and set intersection
instead of counting: eclat

4. Sequential Patterns

e Package: arulesSequences
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e SPADE algorithm: cSPADE
5. Time Series

e Package: timsac
e Time series construction: ts

e Decomposition: decomp, decompose, stl, tsr
6. Statistics

e Package: Base R, nime

Analysis of Variance: aov, anova

Density analysis: density

Statistical test: t.test, prop.test, anova, aov
e Linear mixed-effects model fit: 1me

e Principal components and factor analysis: princomp
7. Graphics

e Bar chart: barplot

e Pie chart: pie

e Scattered plot: dotchart

e Histogram: hist

e Density: densityplot

e Candlestick chart, box plot: boxplot

e QQ (quantile-quantile) plot: qgnorm, qgplot, qqline
e Bi-variate plot: coplot

e Tree: rpart

e Parallel coordinates: parallel, paracoor, parcoord

e Heatmap, contour: contour, filled.contour

e Other plots: stripplot, sunflowerplot, interaction.plot, matplot, fourfold-

plot, assocplot, mosaicplot

e Saving graphs: pdf, postscript, win.metafile, jpeg, bmp, png
8. Data Manipulation

e Missing values: na.omit

e Standardize variables: scale
e Transpose: t

e Sampling: sample

e Stack: stack, unstack

Others: aggregate, merge, reshape
9. Interface to Weka

e RWeka: an R/Weka interface enabling to use all Weka functions in R.

1.3 Datasets

The datasets used in this book.
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1.3.1 Iris Dataset

Iris dataset consists of 50 samples from each of three classes of iris flowers [Frank and Asuncion,
2010].One class is linearly separable from the other two, while the latter are not linearly separable
from each other. There are five attributes in the dataset:

e sepal length in cm,
e sepal width in cm,
e petal length in cm,
e petal width in cm, and

e class: Iris Setosa, Iris Versicolour, and Iris Virginica.

> str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 56 5.4 4.6 5 4.4 4.9 ..

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.561.41.71.41.51.41.5

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa",'"versicolor",..: 1 111111111

1.3.2 Bodyfat Dataset

Bodyfat is a dataset available in package mboost |[Hothorn et al., 2012]. It has 71 rows, which
each row contains information of one person. It contains the following 10 numeric columns.

e age: age in years.

e DEXfat: body fat measured by DXA, response variable.

e waistcirc: waist circumference.

e hipcirc: hip circumference.

e elbowbreadth: breadth of the elbow.

e kneebreadth: breadth of the knee.

e anthro3a: sum of logarithm of three anthropometric measurements.
e anthro3b: sum of logarithm of three anthropometric measurements.
e anthro3c: sum of logarithm of three anthropometric measurements.
e anthro4: sum of logarithm of three anthropometric measurements.

The value of DEXfat is to be predicted by the other variables.

> data("bodyfat", package = "mboost")
> str(bodyfat)

'data.frame’: 71 obs. of 10 variables:

$ age : num 57 65 59 58 60 61 56 60 58 62 ...

$ DEXfat :num 41.7 43.3 35.4 22.8 36.4 ...

$ waistcirc : num 100 99.5 96 72 89.5 83.5 81 89 80 79 ...
$ hipcirc :num 112 116.5 108.5 96.5 100.5 ...

$ elbowbreadth: num 7.1 6.5 6.2 6.1 7.1 6.5 6.9 6.26.47 ...
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kneebreadth
anthro3a
anthro3b
anthro3c
anthro4

€ hH P P &PH

: num
. num
. num
. num
:onum

9.4 8.98.99.210 8.88.98.58.88.8...

4.42 4.63 4.12 4.03 4.24 3.55 4.14 4.04 3.91 3.66 ...
4.95 5.01 4.74 4.48 4.68 4.06 4.52 4.7 4.32 4.21

4.5 4.48 4.6 3.91 4.15 3.64 4.31 4.47 3.47 3.6

6.13 6.37 5.82 5.66 5.91 5.14 5.69 5.7 5.49 5.25
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Chapter 2

Data Import/Export

This chapter shows how to import data into R and how to export R data frames. For more details,
please refer to R Data Import/Export E] IR Development Core Team, 2010a].

2.1 Save/Load R Data

Data in R can be saved as .Rdata files with functions save. After that, they can then be loaded
into R with load.

> a <-1:10

> save(a, file = "data/dumData.Rdata")
> rm(a)

> load("data/dumData.Rdata")

> print(a)

[1] 1 2 3 4 5 6 7 8 910

2.2 Import from and Export to .CSV Files

The example below creates a dataframe a and save it as a .CSV file with write.csv. And then,
the dataframe is loaded from file to variable b with read.csv.

> varl <- 1:5

> var2 <- (1:5) / 10

> var3 <- c("R", "and", "Data Mining", "Examples", "Case Studies")
> a <- data.frame(varl, var2, var3)

> names(a) <- c("VariableInt", "VariableReal", "VariableChar")

> write.csv(a, "data/dummmyData.csv", row.names = FALSE)

> #rm(a)

> b <- read.csv("data/dummmyData.csv")

> print(b)

VariableInt VariableReal VariableChar

1 1 0.1 R
2 2 0.2 and
3 3 0.3 Data Mining
4 4 0.4 Examples
5 5 0.5 Case Studies

Thttp://cran.r-project.org/doc/manuals/R-data.pdf

7
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2.3 Import Data from SAS

Package foreign provides function read.ssd for importing SAS datasets (.sas7bdat files) into R.
However, the following points are essential to make importing successful.

e SAS must be available on your computer, and read.ssd will call SAS to read SAS datasets
and import them into R.

e The file name of a SAS dataset has to be no longer than eight characters. Otherwise, the
importing would fail. There is no such a limit when importing from a .CSV file.

e During importing, variable names longer than eight characters are truncated to eight char-
acters, which often makes it difficult to know the meanings of variables. One way to get
around this issue is to import variable names separately from a .CSV file, which keeps full
names of variables.

An empty .CSV file with variable names can be generated with the following method.

1. Create an empty SAS table dumVariables from dumData as follows.

data work.dumVariables;
set work.dumData(obs=0);

run;
2. Export table dumVariables as a .CSV file.

The example below demonstrates importing data from a SAS dataset. Assume that there is a
SAS data file dumData.sas7bdat and a .CSV file dumVariables.csv in folder “Current working
directory/data”.

> library(foreign) # for importing SAS data

> sashome <- "C:/Program Files/SAS/SAS 9.1"

> filepath <- "data"

> # filename should be no more than 8 characters, without extension

> fileName <- "dumData"

> # read data from a SAS dataset

> a <- read.ssd(file.path(filepath), fileName, sascmd = file.path(sashome, "sas.exe'))
> print(a)

VARIABLE VARIABL2 VARIABL3
1 1 0.1 R
2 2 0.2 and
3 3 0.3 Data Mining
4 4 0.4 Examples
5 5 0.5 Case Studies

Note that the variable names above are truncated. The full names are imported from a .CSV
file with the following code.

> variableFileName <- "dumVariables.csv"

> myNames <- read.csv(paste(filepath, variableFileName, sep="/"))
> names(a) <- names (myNames)

> print(a)

VariableInt VariableReal VariableChar

1 1 0.1 R
2 2 0.2 and
3 3 0.3 Data Mining
4 4 0.4 Examples
5 5 0.5 Case Studies
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Although one can export a SAS dataset to a .CSV file and then import data from it, there are
problems when there are special formats in the data, such as a value of “$100,000” for a numeric
variable. In this case, it would be better to import from a .sas7bdat file. However, variable
names may need to be imported into R separately.

Another way to import data from a SAS dataset is to use function read.xport to read a file
in SAS Transport (XPORT) format.

2.4 Import/Export via ODBC

Package RODBC provides connection to ODBC databases.

2.4.1 Read from Databases

> library (RODBC)

> Connection <- odbcConnect(dsn="servername",uid="userid",pwd="s*****")
> @uery <- "SELECT * FROM 1lib.table WHERE ..."

> # or read query from file

> # Query <- readChar("data/myQuery.sql", nchars=99999)

> myData <- sqlQuery(Connection, Query, errors=TRUE)

> odbcCloseAll()

There are also sqlSave and sqlUpdate for writing or updating a table in an ODBC database.

2.4.2 Output to and Input from EXCEL Files

> library (RODBC)

> filename <- "data/dummmyData.xls"

> x1sFile <- odbcConnectExcel(filename, readOnly = FALSE)
> sqlSave(xlsFile, a, rownames = FALSE)

> b <- sqlFetch(xlsFile, "a")

> odbcCloseAll()

Note that there is a limit of the number of rows to write to an EXCEL file.
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Chapter 3

Data Exploration

This chapter shows examples on data exploration in R. It starts with inspecting the dimensionality,
structure and data of an R object, followed by basic statistics and various charts like pie charts
and histograms. FExploration of multiple variables are then demonstrated, including grouped
distribution, grouped boxplots, scattered plot and pairs plot. After that, examples are given on
level plot, contour plot and 3D plot. It also shows how to saving charts to files with various
formats.

3.1 Have a Look at Data

The iris data is used in this chapter for demonstration of data exploration in R. See[Section 1.3.1
for details of the iris data.
Check the dimensionality

> dim(iris)
[1] 150 5

Variable names or column names
> names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species"

Structure

> str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 54.44.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.51.41.71.41.51.41.5

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 .

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1111111111

Attributes

> attributes(iris)

11
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$names
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[6] "Species"

$row.names
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[17] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
[33] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
[49] 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
[656] 65 66 67 68 69 70 71 72 73 74 75 T6 77 78 79 80
[81] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
[97] 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
[113] 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
[129] 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
[145] 145 146 147 148 149 150

$class
[1] "data.frame"

Get the first 5 rows
> iris[1:5,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa

The first or last parts of iris data can be retrieved with head() or tail().
> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

> tail(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width  Species

145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

Get Sepal.Length of the first 10 rows
> iris[1:10, "Sepal.Length"]

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9
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Same as above

> iris$Sepal.Length[1:10]

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9

3.2 Explore Individual Variables

13

Distribution of every numeric variable can be checked with function summary (), which returns the
minimum, maximum, mean, median, and the first (25%) and third quartile (75%). For factors, it
shows the frequency of every level.

> summary(iris)

Sepal.Length Sepal.Width

Min. :4.300 Min. :2.000 Min.

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:

Median :5.800 Median :3.000 Median :

Mean :5.843 Mean :3.057 Mean

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:

Max. :7.900 Max. :4.400 Max.
Species

setosa :50

versicolor:50
virginica :50

Petal.Length

[o) NG IV o

01

.000
.600
.350
.758
.100
.900

Petal.Width

Min.

1st Qu.:
Median :

Mean

3rd Qu.:

Max.

N BB e

:0.100

0.300
.300
.199
.800
.500

The mean, median and range can be obtained with functions with mean(), median() and

range (). Quartiles and percentiles are supported by function quantile() as below.

> quantile(iris$Sepal.Length)

0% 25%
4.3 5.1

50%

75% 100%
5.8 6.4 7.9

> quantile(iris$Sepal.Length, c(.1, .3,

10% 30%

65%

4.80 5.27 6.20

Frequency

> table(iris$Species)

setosa versicolor virginica

5

0

50

.65))
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Pie chart

> pie(table(iris$Species))

versicolor

virginica

Figure 3.1: Pie Chart

Variance of Sepal.Length

> var(iris$Sepal.Length)

[1] 0.6856935
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Histogram

> hist(iris$Sepal.Length)

Histogram of iris$Sepal.Length

30
|

25

20

Frequency
15

10

iris$Sepal.Length

Figure 3.2: Histogram

15
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Density

> plot(density(iris$Sepal.Length))

CHAPTER 3. DATA EXPLORATION

density.default(x = iris$Sepal.Length)

Density
0.3 0.4

0.1

0.0

N =150 Bandwidth =0.2736

Figure 3.3: Density

3.3 Explore Multiple Variables

Covariance of two variables

> cov(iris$Sepal.Length, iris$Petal.Length)

[1] 1.274315

> cov(iris[,1:4])

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 0.6856935 -0.0424340
Sepal.Width -0.0424340 0.1899794
Petal.Length 1.2743154 -0.3296564
Petal.Width 0.5162707 -0.1216394

Correlation of two variables

> cor(iris$Sepal.Length, iris$Petal.Length)

[1] 0.8717538

> cor(iris[,1:4])

1.2743154  0.5162707
-0.3296564 -0.1216394
3.1162779 1.2956094
1.2956094 0.5810063

Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698
Sepal.Width -0.1175698 1.0000000
Petal.Length 0.8717538 -0.4284401
Petal.Width 0.8179411 -0.3661259

0.8717538  0.8179411
-0.4284401 -0.3661259
1.0000000  0.9628654
0.9628654 1.0000000
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Distribution in subsets

> aggregate(Sepal.Length ~ Species, summary, data=iris)

Species Sepal.Length.Min. Sepal.Length.1st Qu.

1 setosa 4.300 4.800
2 versicolor 4.900 5.600
3 virginica 4.900 6.225
Sepal.Length.Median Sepal.Length.Mean Sepal.Length.3rd Qu.
1 5.000 5.006 5.200
2 5.900 5.936 6.300
3 6.500 6.588 6.900
Sepal.Length.Max.
1 5.800
7.000
3 7.900

Box plot, also known as box-and-whisker plot, shows the median, first and third quartile of
a distribution (i.e., the 50%, 25% and 75% points in cumulative distribution), and outliers. The
bar in the middle is the median. The box shows the interquartile range (IQR), which is the range
between the 75% and 25% observation.

> boxplot(Sepal.Length™Species, data=iris)

7.0

6.5

6.0

5.5

5.0

4.5

'
—_

setosa versicolor virginica

Figure 3.4: Boxplot
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Scatter plot

> with(iris, plot(Sepal.Length, Sepal.Width, col=Species, pch=as.numeric(Species)))
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° AN AAAFA A +
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A AN+ +
a + A Ant &+
A A
o A A A
A A
27 A

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Sepal.Length

Figure 3.5: Scatter Plot
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When there are many points, some of them may overlap. We can use jitter() to add a small

amount of noise to the data.

> plot(jitter(iris$Sepal.Length), jitter(iris$Sepal.Width))
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Figure 3.6: Scatter Plot with Jitter
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Pairs plot

> pairs(iris)
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3.4 More Explorations

3D Scatter plot with package scatterplot3d |Ligges and Méchler, 2003]

> library(scatterplot3d)
> scatterplot3d(iris$Petal.Width, iris$Sepal.Length, iris$Sepal.Width)

45
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0.0 0.5 1.0 15 2.0 2.5

iris$Petal.Width

Figure 3.8: 3D Scatter plot

Level Plot with package lattice [Sarkar, 2008|

> library(lattice)
> print(levelplot(Petal.Width~Sepal.Length*Sepal.Width, iris, cuts=9,

+ col.regions=grey.colors(10)[10:1]))
1 1 1
25
4.0 -
2.0
|
|
3.5 r
E [ ] F15
2
oy
& 30+ [ | -I.- r Lo
1,0 -
]
25 1 | | nn ol Los
20+ [ r 0.0
T T T —
5 6 7
Sepal.Length

Figure 3.9: Level Plot
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Contour

> filled.contour(volcano, color=terrain.colors, asp=1,
+ plot.axes=contour (volcano, add=T))

180

160

140

120

100

Figure 3.10: Contour
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3D Surface

= "lightblue")

0.5, col

theta = 25, phi 30, expand =

> persp(volcano,
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Figure 3.11: 3D Surface

Interactive 3D Scatter Plot with package rg! [Adler and Murdoch, 2012]

iris$Sepal.Width)

> library(rgl)
> plot3d(iris$Petal.Width, iris$Sepal.Length,
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Parallel coordinates

> parcoord(iris[1:4], col=iris$Species)

N\

S/
NS
I/’A“}i‘%

Sepal.Length Sepal.Width Petal.Length Petal.Width

Figure 3.12: Parallel Coordinates
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> library(lattice)
> parallelplot(“iris[1:4] | Species, data=iris)

virginica

Petal.Width

Petal.Length

Sepal.Width

Sepal.Length

versicolor

Petal.Width

Petal.Length

|
(q
N

) \
'«!§\~§\

\
\\

Sepal.Width

Sepal.Length

Figure 3.13: Parallel Coordinates with lattice

Package ggplot2 [Wickham, 2009] supports complex graphics, which are very useful for ex-

ploring data. A simple example is given below. More examples on that package can be found at
http://had.co.nz/ggplot2/.


http://had.co.nz/ggplot2/
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> library(ggplot2)

> gplot(Sepal.Length, Sepal.Width, data=iris, facets=Species ~.)
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Figure 3.14: with ggplot2

3.5 Save Charts into Files

Save as a .PDF file

pdf ("myPlot.pdf")
x <- 1:50
plot(x, log(x))
graphics.off ()

vV VvV VvV

Save as a postscript file

> postscript("myPlot.ps")
> x <= -20:20

> plot(x, x°2)

> graphics.off ()



Chapter 4

Decision Trees and Random Forest

There are a couple of R packages on decision trees , regression trees and random forest, such as
rpart, rpartOrdinal, randomForest, party, tree, marginTree and maptree.

This chapter shows how to build predictive models with packages party, rpart and random-
Forest. 1t starts with building decision trees with package party and using the built tree for
classification, followed by another way to build decision trees with package rpart. After that, it
presents an example on training a random forest model with package randomForest.

4.1 Building Decision Trees with Package party

This section shows how to build a decision tree for iris data (see for details of

the data) with ctree in package party [Hothorn et al., 2010]. Sepal.Length, Sepal.Width,

Petal.Length and Petal.Width are used to predict the Species of flowers. In the package,

function ctree() builds a decision tree, and predict () makes prediction for unlabeled data.
The iris data is split below into two subsets: training (70%) and testing (30%).

> str(iris)

'data.frame': 150 obs. of 5 variables:

$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 54.44.9 ...

$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.51.41.7 1.41.51.41.5

$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 .

$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1111111111

set.seed(1234)

ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
trainData <- iris[ind==1,]

testData <- iris[ind==2,]

vV VvV Vv VvV

Load package party, build a decision tree, and check the prediction.

library(party)

myFormula <- Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
iris_ctree <- ctree(myFormula, data=trainData)

# check the prediction

table(predict(iris_ctree), trainData$Species)

vV VvV Vv Vv Vv

setosa versicolor virginica

setosa 40 0 0
versicolor 0 37 3
virginica 0 1 31

27
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After that, we can have a look at the built tree by printing the rules and plotting the tree.

> print(iris_ctree)

Conditional inference tree with 4 terminal nodes

Response: Species
Inputs: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
Number of observations: 112

1) Petal.lLength <= 1.9; criterion = 1, statistic = 104.643
2)* weights = 40
1) Petal.Length > 1.9
3) Petal.Width <= 1.7; criterion = 1, statistic = 48.939
4) Petal.Length <= 4.4; criterion = 0.974, statistic = 7.397
5)* weights = 21
4) Petal.length > 4.4
6)* weights = 19
3) Petal.Width > 1.7
7)* weights = 32

> plot(iris_ctree)

Petal.Length
p <0.001

<1.9 .
Petal.Length
p =0.026
<44 >4.4
/ N\

Node 2 (n = 40) Node 5 (n = 21) Node 6 (n = 19) Node 7 (n = 32)
1 1 1 1
0.8 0.8 — 0.8 — 0.8
0.6 0.6 0.6 0.6
0.4 0.4 — 0.4 — 0.4
0.2 0.2 0.2 — 0.2
0 O 7711 0 ——17 |—\| 0 71
setosavirginica setosavirginica setosavirginica setosavirginica

Figure 4.1: Decision Tree
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> plot(iris_ctree, type="simple")

(1]
Petal.Length
p <0.001

n=32
y = (0, 0.031, 0.969)

[RA)
n=21 n=19
y=(0,1,0) y = (0, 0.842, 0.158)

Figure 4.2: Decision Tree (Simple Style)

Test the built tree with test data.

> # predict on test data
> testPred <- predict(iris_ctree, newdata = testData)
> table(testPred, testData$Species)

testPred setosa versicolor virginica
setosa 10 0 0
versicolor 0 12 2
virginica 0 0 14

The current version of ctree() (i.e. version 0.9-9995) does not handle missing values well. An
instance with a missing value may sometimes go to the left sub-tree and sometimes to the right.
It might be because of surrogate rules.

Another issue is that, when a variable exists in training data and is fed into ctree() but does
not appear in the built decision tree, the test data must also have that variable to make prediction.
Otherwise, a call to predict() would fail. Moreover, if the value levels of a categorical variable
in test data are different from that in train data, it would also fail to make prediction on the test
data. One way to get around the above issue is, after building a decision tree, to call ctree() to
build a new decision tree with data containing only those variables existing in the first tree, and
to explicitly set the levels of categorical variables in test data to the levels of the corresponding
variables in train data.

4.2 Building Decision Trees with Package rpart

Package rpart [Therneau et al., 2010] is used to build a decision tree on bodyfat data (see
for details of the data). Function rpart() is used to build a decision tree, and the
tree with the minimum prediction error is select. After that, it is applied to makes prediction for
unlabeled data with function predict().
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> data("bodyfat", package = "mboost")
> # have a look at the data
> dim(bodyfat)

[1] 71 10

> attributes(bodyfat)

$names
[1] "age" "DEXfat" "waistcirc" "hipcirc"
[56] "elbowbreadth" "kneebreadth" "anthro3a" "anthro3b"
[9] "anthro3c" "anthro4"

$row.names

[1] l|47|| |l48" ||49|| |l50’| ||51|| |l52l| ||53|| |l54l| ||55|’ |l56l| ||57|’
[12] ll58|l I1591| ll60|l I161" "62" I163" "64" I165ll ||66|I Il67ll |I68|l
[23] lI69|I |l70|| l|71|I Il72ll ll73|l Il74l| ll75|l Il76l| ll77|l Il78l| |I79|I
[34] l|80|| Il81ll "82" Il83ll l|84|| Il85ll l|86ll Il87l| l|88ll Il89l| ||90|I
[45] l|91|| Il92l| "93" Il94ll "95" Il96l| ||97|| Il98l| lI99|I |l100|l lllolll
[56] "102" |l103|l "104" |l105|l ||106|| |l107|l ||108|| |l109|l ||110|| |l111|l ||112||
[67] l|113|| I1114Il ||115|| I1116Il ||117||

$class
[1] "data.frame"

> bodyfat[1:5,]

age DEXfat waistcirc hipcirc elbowbreadth kneebreadth anthro3a

47 57 41.68 100.0 112.0 7.1 9.4 4.42

483 65 43.29 99.5 116.5 6.5 8.9 4.63

49 59 35.41 96.0 108.5 6.2 8.9 4.12

50 58 22.79 72.0 96.5 6.1 9.2 4.03

51 60 36.42 89.5 100.5 7.1 10.0 4.24
anthro3b anthro3c anthro4

47 4.95 4.50 6.13

48 5.01 4.48 6.37

49 4.74 4.60 5.82

50 4.48 3.91 5.66

51 4.68 4.15 5.91

> # split into training and test subsets
> set.seed(1234)

> ind <- sample(2, nrow(bodyfat), replace=TRUE, prob=c(0.7, 0.3))
> bodyfat.train <- bodyfat[ind==1,]
> bodyfat.test <- bodyfat[ind==2,]
> # train a decision tree
> library(rpart)

> myFormula <- DEXfat "~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth
> bodyfat_rpart <- rpart(myFormula, data = bodyfat.train,

+ control = rpart.control(minsplit = 10))

> attributes(bodyfat_rpart)

$names
[1] "frame" "where" "call" "terms" "cptable"
[6] "splits" "method" "parms" "control" "functions"



4.2. BUILDING DECISION TREES WITH PACKAGE RPART

[11] "y" "ordered"

$class
[1] "rpart"

> print(bodyfat_rpart$cptable)

CP nsplit rel error xerror xstd
1 0.67272638 0 1.00000000 1.0194546 0.18724382
2 0.09390665 1 0.32727362 0.4415438 0.10853044
3 0.06037503 2 0.23336696 0.4271241 0.09362895
4 0.03420446 3 0.17299193 0.3842206 0.09030539
5 0.01708278 4 0.13878747 0.3038187 0.07295556
6 0.01695763 5 0.12170469 0.2739808 0.06599642
7 0.01007079 6 0.10474706 0.2693702 0.06613618
8 0.01000000 7 0.09467627 0.2695358 0.06620732

> print (bodyfat_rpart)

n= 56

node), split, n, deviance, yval
* denotes terminal node

1) root 56 7265.0290000 30.94589
2) waistcirc< 88.4 31 960.5381000 22.55645
4) hipcirc< 96.25 14 222.2648000 18.41143
8) age< 60.5 9 66.8809600 16.19222 *
9) age>=60.5 5  31.2769200 22.40600 *
5) hipcirc>=96.25 17 299.6470000 25.97000
10) waistcirec< 77.75 6  30.7345500 22.32500 *
11) waistcire>=77.75 11 145.7148000 27.95818
22) hipcirc< 99.5 3 0.2568667 23.74667 *
23) hipcire>=99.5 8  72.2933500 29.53750 *
3) waistcirc>=88.4 25 1417.1140000 41.34880
6) waistcirc< 104.75 18 330.5792000 38.09111
12) hipcire< 109.9 9 68.9996200 34.37556 *
13) hipcire>=109.9 9 13.0832000 41.80667 *
7) waistcirc>=104.75 7 404.3004000 49.72571 *

31
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> plot(bodyfat_rpart)
> text(bodyfat_rpart, use.n=TRUE)

waistcirc< 88.4
t

hipcircg 96.25 waistcir¢< 104.8

age< 60.5 waistcirg< 77.75
1619 22141 hipcirct 109.9
n=9 n=5 hipcirg< 99.5 49'73
22:33 2375 2954 3438 a1ls1 n=7

n=6 n=2 n= n=9 n=9

Figure 4.3: Decision Tree with rpart

> opt <- which.min(bodyfat_rpart$cptablel, "xerror"])
> cp <- bodyfat_rpart$cptablelopt, "CP"]

> bodyfat_prune <- prune(bodyfat_rpart, cp = cp)

> print (bodyfat_prune)

n= 56

node), split, n, deviance, yval
* denotes terminal node

1) root 56 7265.02900 30.94589
2) waistcirc< 88.4 31 960.53810 22.55645
4) hipcirc< 96.25 14 222.26480 18.41143
8) age< 60.5 9 66.88096 16.19222 *
9) age>=60.5 5  31.27692 22.40600 *
5) hipcirc>=96.25 17 299.64700 25.97000
10) waistcirc< 77.75 6  30.73455 22.32500 *
11) waistcirc>=77.75 11 145.71480 27.95818 *
3) waistcirc>=88.4 25 1417.11400 41.34880
6) waistcirc< 104.75 18 330.57920 38.09111
12) hipcirc< 109.9 9  68.99962 34.37556 *
13) hipcire>=109.9 9 13.08320 41.80667 *
7) waistcirc>=104.75 7 404.30040 49.72571 *

> DEXfat_pred <- predict(bodyfat_prune, newdata = bodyfat.test)

The predicted values are compared with real labels.
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> xlim <- range(bodyfat$DEXfat)

> plot(DEXfat_pred ~ DEXfat, data = bodyfat.test, xlab = "Observed",
+ ylab = "Predicted", ylim = xlim, xlim = xlim, jitter=T)

> abline(a = 0, b = 1)
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Figure 4.4: Prediction Result

4.3 Random Forest

Package randomForest |[Liaw and Wiener, 2002] is used below to build a predictive model for
iris data (see for details of the data). There are two limitations with function
randomForest (). First, it cannot handle data with missing values, and users have to impute data
before feeding them into the function. Second, there is a limit of 32 to the maximum number of
levels in each categorical attribute. Attributes with more than 32 levels have to be transformed
first before using randomForest ().

An alternative way to build a random forest is to use function cforest from package party,
which is not limited to the above maximum levels.

The iris data is split below into two subsets: training (70%) and testing (30%).

> ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
trainData <- iris[ind==1,]
> testData <- iris[ind==2,]

v

Load randomForest and then train a random forest.

> library(randomForest)
rf <- randomForest(Species ~ ., data=trainData, ntree=100, proximity=TRUE)
> table(predict(rf), trainData$Species)

v

setosa versicolor virginica

setosa 36 0 0
versicolor 0 31 2
virginica 0 1 34

> print (rf)
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Call:

randomForest (formula = Species ~ ., data = trainData, ntree = 100, proximity = TRUE)

Type of random forest: classification
Number of trees: 100
No. of variables tried at each split: 2

00B estimate of error rate: 2.88%
Confusion matrix:
setosa versicolor virginica class.error

setosa 36 0 0 0.00000000
versicolor 0 31 1 0.03125000
virginica 0 2 34 0.05555556

> attributes(rf)

$names

[1] "call" "type" "predicted"

[4] "err.rate" "confusion" "votes"

[7] "oob.times" "classes" "importance"
[10] "importanceSD" "localImportance" "proximity"
[13] "ntree" "mtry" "forest"
[16]1 "y" "test" "inbag"

[19] "terms"
$class

[1] "randomForest.formula" "randomForest"

Error rates with various number of trees

> plot(rf)
if

o
N
=}
n
9
3

8

i o
-
<}
[T S I L .
o [ H !
S Vo

A
o
Q e
e T T T T T T
0 20 40 60 80 100

trees

Figure 4.5: Error Rate of Random Forest
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Variable importance.

> importance(rf)

MeanDecreaseGini
Sepal.Length 6.913882
Sepal.Width 1.282567
Petal.Length 26.267151
Petal.Width 34.163836

> varImpPlot (rf)
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Figure 4.6: Variable Importance
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Test the built random forest on test data

> irisPred <- predict(rf, newdata=testData)
> table(irisPred, testData$Species)

irisPred setosa versicolor virginica
setosa 14 0 0
versicolor 0 17 3
virginica 0 1 11

> plot(margin(rf,testData$Species))
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Figure 4.7: Margin of Predictions

The margin of a data point is as the proportion of votes for the correct class minus maximum
proportion of votes for the other classes. Generally speaking, positive margin means correct
classification.



Chapter 5

Regression

Regression is to build a function of independent variables (also known as predictors) to predict
a dependent variable (also called response). For example, banks assess the risk of home-loan
customers based on their age, income, expenses, occupation, number of dependents, total credit
limit, etc.

This chapter introduces basic concepts and presents examples of various regression techniques.
At first, it shows an example on building a linear regression model to predict CPI data. After that,
it introduces logistic regression. The generalized linear model (GLM) is then presented, followed
by a brief introduction of non-linear regression.

A collection of some helpful R functions for regression analysis is available as a reference card
on R Functions for Regression Analysis B

5.1 Linear Regression
Linear regression is to predict response with a linear function of predictors as follows:
Y =co+c1x1 + caxg + - + X,

where 1, s, - - -,z are predictors and y is the response to predict.

Linear regression is demonstrated below with function 1m on the Australian CPI (Consumer
Price Index) data, which are CPIs in four quarters in every year from 2008 to 2010 ﬂ

Thttp://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
2From Australian Bureau of Statistics <http://www.abs.gov.au>
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w
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##cpi <- read.csv("CPI.csv")

year <- rep(2008:2010, each=4)

quarter <- rep(1:4, 3)

cpi <- c(162.2, 164.6, 166.5, 166.0, 166.2, 167.0, 168.6, 169.5,
171.0, 172.1, 173.3, 174.0)

plot(cpi, xaxt="n", ylab="CPI", xlab="")

# draw x-axis

axis(1, labels=paste(year,quarter,sep="Q"), at=1:12, las=3)
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Figure 5.1: Australian CPIs in Year 2008 to 2010

We check the correlation between CPI and the other variables, year and quarter.
> cor(year,cpi)
[1] 0.9096316
> cor(quarter,cpi)
[1] 0.3738028

Then a linear regression model is built on the above data, using year and quarter as predictors
and CPI as response.

> fit <- 1lm(cpi ~ year + quarter)
> fit

Call:
Im(formula = cpi ~ year + quarter)

Coefficients:
(Intercept) year quarter
-7644.488 3.888 1.167
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With the above linear model, CPI is calculated as
cpi = cg + c1 * year + co * quarter,

where ¢y, ¢1 and ¢y are coefficients from model fit. Therefore, the CPIs in 2011 can be get as
follows. A simpler way for this is using function predict, which will be demonstrated at the end
of this subsection.

> ¢pi2011 <- fit$coefficients[[1]] + fit$coefficients[[2]]*2011 + fit$coefficients[[3]]*(1:4)
More details of the model:

> attributes(fit)

$names
[1] "coefficients" '"residuals" "effects" "rank"
[6] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
$class
[1] "1m"

> fit$coefficients

(Intercept) year quarter
-7644.487500 3.887500 1.166667

The differences between observed values and fitted values are

> #differences between observed values and fitted values
> residuals(fit)

1 2 3 4 5
-0.57916667 0.65416667 1.38750000 -0.27916667 -0.46666667
6 7 8 9 10
-0.83333333 -0.40000000 -0.66666667 0.44583333 0.37916667
11 12
0.41250000 -0.05416667

> summary (fit)

Call:
Im(formula = cpi

year + quarter)

Residuals:
Min 1Q Median 3Q Max
-0.8333 -0.4948 -0.1667 0.4208 1.3875

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -7644.4875 518.6543 -14.739 1.31e-07 *xx*
year 3.8875 0.2582 15.058 1.09e-07 *xx*
quarter 1.1667 0.1885 6.188 0.000161 **x*

Signif. codes: 0 S**x§ 0.001 S**3 0.01 $*S 0.05 S.5 0.1 § S 1

Residual standard error: 0.7302 on 9 degrees of freedom
Multiple R-squared: 0.9672, Adjusted R-squared: 0.9599
F-statistic: 132.5 on 2 and 9 DF, p-value: 2.108e-07

Iwww . al litebooks.cond
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> plot(fit)
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Figure 5.2: Prediction with Linear Regression Model - 1

are shown as red triangles in [Figure 5.3

With the model, the CPIs in year 2011 can be predicted as follows, and the predicted values
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data2011 <- data.frame(year=2011, quarter=1:4)
cpi2011 <- predict(fit, newdata=data2011)
style <- c(rep(1,12), rep(2,4))
plot(c(cpi, cpi2011), xaxt="n", ylab="CPI", xlab="", pch=style, col=style)
axis(1, at=1:16, las=3,
labels=c(paste(year,quarter,sep="Q"), "2011Q1", "2011Q2", "2011Q3", "2011Q4"))
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Figure 5.3: Prediction of CPIs in 2011 with Linear Regression Model

5.2 Logistic Regression

Logistic regression is used to predict the probability of occurrence of an event by fitting data to a
logistic curve. A logistic regression model is built as the following equation:

logit(y) = co + 11 + coa + - - - + g,

where x1, za, - -, x), are predictors, y is a response to predict, and logit(y) = ln(ﬁ) The above
equation can also be written as ‘

1
y= 1 & e—(cotcrziteozat - tenar)’

Logistic regression can be built with function glm by setting family to binomial (1ink="logit").
Detailed introductions on logistic regression can be found at the following links.

e R Data Analysis Examples - Logit Regression
http://www.ats.ucla.edu/stat/r/dae/logit.htm

e Logistic Regression (with R)
http://nlp.stanford.edu/ manning/courses/1ing289/logistic.pdf
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5.3 Generalized Linear Regression

The generalized linear model (GLM) generalizes linear regression by allowing the linear model
to be related to the response variable via a link function and by allowing the magnitude of the
variance of each measurement to be a function of its predicted value. It unifies various other
statistical models, including linear regression, logistic regression and Poisson regression. Function
glm is used to fit generalized linear models, specified by giving a symbolic description of the linear
predictor and a description of the error distribution.

A generalized linear model is built below with glm on bodyfat data (see [Section 1.3.2| for
details of the data).

> data("bodyfat", package = "mboost")

> myFormula <- DEXfat " age + waistcirc + hipcirc + elbowbreadth + kneebreadth
> bodyfat.glm <- glm(myFormula, family = gaussian("log"), data = bodyfat)

> summary (bodyfat.glm)

Call:
glm(formula = myFormula, family = gaussian("log"), data = bodyfat)

Deviance Residuals:
Min 1Q Median 3Q Max
-11.5688 -3.0065 0.1266 2.8310 10.0966

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.734293 0.308949 2.377 0.02042 *
age 0.002129 0.001446 1.473 0.14560
waistcirc 0.010489 0.002479 4,231 7.44e-05 *x*
hipcirc 0.009702 0.003231  3.003 0.00379 *x*
elbowbreadth 0.002355 0.045686 0.052 0.95905
kneebreadth 0.063188 0.028193 2.241 0.02843 x*

Signif. codes: 0 S#*x3 0.001 S**S 0.01 $%5 0.05 $.50.1 S8 1

(Dispersion parameter for gaussian family taken to be 20.31433)
Null deviance: 8536.0 on 70 degrees of freedom

Residual deviance: 1320.4 on 65 degrees of freedom

AIC: 423.02

Number of Fisher Scoring iterations: 5

> pred <- predict(bodyfat.glm, type = "response")

In the code above, type indicates the type of prediction required. The default is on the scale of
the linear predictors, and the alternative "response" is on the scale of the response variable.
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> plot(bodyfat$DEXfat, pred, xlab="Observed Values", ylab="Predicted Values")
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Figure 5.4: Prediction with Generalized Linear Regression Model

In the above code, if family = gaussian("identity") is used, the resulted model would
be similar to linear regression. One can also make it a logistic regression by setting family to
binomial("logit").

5.4 Non-linear Regression

While linear regression is to find the line that comes closest to data, non-linear regression is to
fit a curve through data. Function nls provides nonlinear regression. More details on non-linear

regression can be found at

e A Complete Guide to Nonlinear Regression
http://www.curvefit.com/|
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Chapter 6

Clustering

This chapter presents examples of various clustering techniques, including k-means clustering,
hierarchical clustering and density-based clustering. The first section demonstrates how to use
k-means algorithm to cluster the iris data. The second section shows an example on hierarchical
clustering on the same data. The third section describes the basic idea of density-based clustering
and the DBSCAN algorithm, and shows how to cluster with DBSCAN and then label new data
with the clustering model.

6.1 k-Means Clustering

This section shows k-means clustering of iris data (see[Section 1.3.1| for details of the data).
> iris2 <- iris

> # remove species from the data to cluster

> iris2$Species <- NULL

Apply kmeans () to iris2, and store the clustering result in kc. The cluster number is set to
3.

> (kmeans.result <- kmeans(iris2, 3))
K-means clustering with 3 clusters of sizes 38, 50, 62

Cluster means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

1 6.850000 3.073684 5.742105 2.071053
2 5.006000 3.428000 1.462000 0.246000
3 5.901613 2.748387 4.393548 1.433871

Clustering vector:

[11 222222222222222222222222222222222
[34]1 222222222222222223313333333333333
[67] 333333333331333333333333333333333
[t00] 313111131111113311113131311331111
[133 131 111311131113113

Within cluster sum of squares by cluster:
[1] 23.87947 15.15100 39.82097
(between_SS / total_SS = 88.4 %)

45
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Available components:

[1] "cluster" "centers" "totss" "withinss"
[6] "tot.withinss" "betweenss" "size"

Compare the Species label with the clustering result

> table(iris$Species, kmeans.result$cluster)

1 2 3
setosa 050 O
versicolor 2 0 48
virginica 36 0 14

The above result shows that cluster “setosa” can be easily separated from the other clusters, and
that clusters “versicolor” and “virginica” are to a small degree overlapped with each other.

Plot the clusters and their centers. Note that there are four dimensions in the data and that
only the first two dimensions are used to draw the plot below. Some black points close to the
green center (asterisk) are actually closer to the black center in the four dimensional space. Note
that the results of k-means clustering may vary from run to run, due to random selection of initial
cluster centers.

> plot(iris2[c("Sepal.Length", "Sepal.Width")], col = kmeans.result$cluster)
> points(kmeans.result$centers[,c("Sepal.Length", "Sepal.Width")], col = 1:3,
+ pch = 8, cex=2)
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Figure 6.1: Results of k-Means Clustering

6.2 k-Medoids Clustering

This sections shows k-medoids clustering with functions pam() and pamk(). The k-medoids clus-
tering is very similar to k-means, and the major difference between them is that: while a cluster
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is represented with its center in the k-means algorithm, it is represented with the object closest to
the center of the cluster in the k-medoids clusteing. The k-medoids clustering is more robust than
k-means in presence of outliers. PAM (Partitioning Around Medoids) is a classic algorithm for
k-medoids clustering. While the PAM algorithm is inefficient for clustering large data, the CLARA
algorithm is an enhanced technique of PAM by drawing multiple samples of data, appling PAM on
each sample and then returning the best clustering. It performs better than PAM on larger data.
Functions pam() and clara() in package cluster [Maechler et al., 2012] are respectively imple-
mentations of PAM and CLARA in R. For both algoritms, a user has to specifiy &k, the number of
clusters to find. As an enhanced version of pam(), function pamk() in package fpc [Hennig, 2010)
does not require a user to choose k. Instead, it calls the function pam() or clara() to perform a
partitioning around medoids clustering with the number of clusters estimated by optimum average
silhouette width.
With the code below, we demonstrate how to find clusters with pam() and pamk().

> library(fpc)

> pamk.result <- pamk(iris2)
> # number of clusters

> pamk.result$nc

[1] 2

> # check clustering against real species
> table(pamk.result$pamobject$clustering, iris$Species)

setosa versicolor virginica
1 50 1 0
0 49 50

> layout (matrix(c(1,2),1,2)) # 2 graphs per page
> plot(pamk.result$pamobject)
> layout(matrix(1)) # change back to one graph per page
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Figure 6.2: Clustering with the k-medoids Algorithm - I

In the above example, pamk () produces two clusters: one is “setosa”; and the other is a mixture
of “versicolor” and “virginica”. In[Figure 6.2] the left chart is a 2-dimensional “clusplot” (clustering
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plot) of the two clusters and the lines show the distance between clusters. The right one shows their
silhouettes. In the silhouette, a large s; (almost 1) suggests that the corresponding observations
are very well clustered, a small s; (around 0) means that the observation lies between two clusters,
and observations with a negative s; are probably placed in the wrong cluster. Since the average S;
are respectively 0.81 and 0.62 in the above silhouette, the identified two clusters are well clustered.

Next, we try pam() with k& = 3.

> pam.result <- pam(iris2, 3)
> table(pam.result$clustering, iris$Species)

setosa versicolor virginica

1 50 0 0
0 48 14
3 0 2 36

> layout (matrix(c(1,2),1,2)) # 2 graphs per page
> plot(pam.result)
> layout(matrix(1)) # change back to one graph per page

clusplot(pam(x = iris2, k = 3)) Silhouette plot of pam(x = iris2, k = 3)
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Figure 6.3: Clustering with the k-medoids Algorithm - II

With the above result produced with pam(), there are three clusters: 1) cluster 1 is species
“setosa” and is well separated from the other two; 2) cluster 2 is mainly composed of “versicolor”,
plus some cases from “virginica”; and 3) the majority of cluster 3 are “virginica”, with two cases
from “versicolor”.

It’s hard to say which one is better out of the above two clusterings produced respectively with
pamk () and pam(). It depends on the target problem and domain knowledge and experience. In
this example, the result of pam() is better, because it identifies three clusters, corresponding to
three species. Therefore, the heuristic way to identify the number of clusters in pamk () does not
necessarily give the best result. Note that we cheat by setting £ = 3 when using pam(), which is
already known to us as the number of species.
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6.3 Hierarchical Clustering

This page demonstrates a hierarchical clustering with hclust() on iris data (see [Section 1.3.1
for details of the data).
Draw a sample of 40 records from iris data, and remove variable Species

> idx <- sample(1:dim(iris)[1], 40)
> irisSample <- iris[idx,]
> irisSample$Species <- NULL

Hierarchical clustering

> hc <- hclust(dist(irisSample), method="ave")

> plot(hc, hang = -1, labels=iris$Species[idx])
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Figure 6.4: Cluster Dendrogram

Similar to the above clustering of k-means, [Figure 6.4] also shows that cluster “setosa” can be
easily separated from the other two clusters, and that clusters “versicolor” and “virginica” are to a
small degree overlapped with each other.

6.4 Density-based Clustering

DBSCAN from package fpc [Hennig, 2010] provides a density-based clustering for numeric data
|[Ester et al., 1996]. The idea of density-based clustering is to group objects into one cluster if
they are connected to one another by densely populated area. There are two key parameters in
DBSCAN :

e eps: Reachability Distance, which defines the size of neighborhood;

e MinPts: Reachability minimum no. of points.
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If the number of points in the neighborhood of point « is no less than MinPts, then « is a dense
point. All the points in its neighborhood are density-reachable from « and are put into the same
cluster as a.

The strengths of density-based clustering are that it can discover clusters with various shapes
and sizes and is insensitive to noise. As a comparison, k-means tends to find clusters with sphere
shape and with similar sizes.

library(fpc)

iris2 <- iris[-5] # remove class tags

ds <- dbscan(iris2, eps=0.42, MinPts=5)

# compare clusters with original class labels
table(ds$cluster, iris$Species)

vV V. Vv VvV

setosa versicolor virginica

0 2 10 17
1 48 0 0
2 0 37 0
3 0 3 33

In the above table, “1” to “3” in the first column are three discovered clusters, while “0” stands for
noises or outliers, i.e., objects that are not assigned to any clusters. The noises are shown as black
circles in figures below.

> plot(ds, iris2)
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Figure 6.5: Density-based Clustering - 1
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> plot(ds, iris2[c(1,4)]1)
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Figure 6.6: Density-based Clustering - 11

Another way to show the clusters. Note that the data are projected to distinguish classes.

> plotcluster(iris2, ds$cluster)

dc 2

3330
3
3033
1 1 3
33 3
01 0
3 i . 3 59 33
it 05, %3 83
1oy g 0°2 5 3
ML 2, g 3
%1 » <2 N
11 0 5%257 3
a1 w2 2 36
224)3% g 0
%8
0 0 o
R
T T T T T
-8 -6 -4 -2 0

dc1

Figure 6.7: Density-based Clustering - III

Label new data

o1

The clustering model can then be used to label new data, based on the similarity between a new
object and the clusters. The following example draws a sample of 10 objects from iris and adds
small noise to them to make a new dataset for labeling.
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# create a new dataset for labeling

set.seed(435)

idx <- sample(1:nrow(iris), 10)

newData <- iris[idx,-5]

newData <- newData + matrix(runif(10%4, min=0, max=0.2), nrow=10, ncol=4)

# label new data

# check the labels assigned to new data
plot(iris2[c(1,4)], col=1+ds$cluster)
points(newDatal[c(1,4)], pch="*", col=1+myPred, cex=3)

# check cluster labels

table (myPred, iris$Species[idx])

>
>
>
>
>
>
> myPred <- predict(ds, iris2, newData)
>
>
>
>
>

myPred setosa versicolor virginica
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Figure 6.8: Prediction with Clustering Model

As we can see from the above result, in the 10 new unlabeled data, 8(=3+43+2) are assigned
with correct class labels. The new data are shown as asterisk(“*”) in the above figure and the
colors stand for cluster labels.

6.5 Fuzzy Clustering

This section is not available yet in this version.

6.6 Subspace Clustering

This section is not available yet in this version.



Chapter 7

Outlier Detection

This chapter presents examples of outlier detection with R. At first, it demonstrates univariate
outlier detection. After that, an example of outlier detection with LOF is given, followed by
examples on outerlier detection with clustering. At last, it presents an example of outlier detection
from time series data.

7.1 Univariate Outlier Detection

This section shows an exampele of univariate outlier detection, and demonstrates how to ap-
ply it to multivariate data. In the example, univariate outlier detection is done with function
boxplot.stats(), which returns the statistics for producing box plots. In the result returned
by the above function, one component is out, which gives a list of outliers. More specifically, it
lists data points lying beyond the extremes of the whiskers. An argument of coef can be used to
control how far the whiskers extend out from the box of a boxplot. More details on that can be
obtained by running ?boxplot.stats in R.
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> set.seed(3147)
> x <= rnorm(100)
> summary (x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.3150 -0.4837 0.1867 0.1098 0.7120 2.6860

> # outliers
> boxplot.stats(x)$out

[1] -3.315391 2.685922 -3.055717 2.571203

> boxplot(x)

oo

Figure 7.1: Univariate Outlier Detection with Boxplot

The above univariate outlier detection can be used to find outliers in multivariate data in a
simple ensemble way. In the example below, we first generate a dataframe df, which has two
columns, x and y. After that, outliers are detected separately from x and y. We then take outliers
as those data which are outliers for both columns. In outliers are labelled with “+” in
red.

> y <- rnorm(100)

df <- data.frame(x, y)
m(x, y)

head (df)

vV Vv Vv

x y
-3.31539150 0.7619774
~0.04765067 -0.6404403
.69720806 0.7645655
.35979073  0.3131930
.18644193 0.1709528
.27493834 -0.8441813

DO WN -
O O O O
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> attach(df)
> # find the index of outliers from x
> (a <- which(x 7inj, boxplot.stats(x)$out))

[1] 1 33 64 74

> # find the index of outliers from y
> (b <- which(y 7inJ, boxplot.stats(y)$out))

[1] 24 25 49 64 74

> detach(df)

> # outliers in both x and y
> (outlier.listl <- intersect(a,b))

[1] 64 74

> plot(df)
> points(df[outlier.listl,], col="red", pch="+", cex=2)
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Figure 7.2: Outlier Detection - I

Similarly, we can also take outliers as those data which are outliers in either x or y.
outliers are labelled with “x” in blue.
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> # outliers in either x or y
> (outlier.list2 <- union(a,b))

[1] 1 33 64 74 24 25 49

> plot(df)
> points(df[outlier.list2,], col="blue", pch="x", cex=1.5)
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Figure 7.3: Outlier Detection - 11

When there are three or more variables in an application, a final list of outliers might be
produced with majority voting of outliers detected from individual variables. Domain knowledge
should be involved when choosing the optimal way to ensemble in real-world applications.

7.2 QOutlier Detection with LOF

LOF (Local Outlier Factor) is an algorithm for identifying density-based local outliers |[Breunig
et al., 2000]. With LOF, the local density of a point is compared with that of its neighbors. If
the former is signaficantly lower than the latter (with an LOF value greater than one), the point
is in a sparser region than its neighbors, which suggests it be an outlier. A short-coming of LOF
is that it works on numeric data only.

Function lofactor () calculates local outlier factors using the LOF algorithm, and it is available
in packages DMwR [Torgo, 2010] and dprep. An example of outlier detection with LOF is given
below, where k is the number of neighbours used in the calculation of the local outlier factors.
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> library(DMwR)

> # remove "Species", which is a categorical column
> iris2 <- iris[,1:4]

> outlier.scores <- lofactor(iris2, k=5)

> plot(density(outlier.scores))

density.default(x = outlier.scores)
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Figure 7.4: Density of outlier factors

> # pick top 5 as outliers

> outliers <- order(outlier.scores, decreasing=T)[1:5]
> # who are outliers

> print (outliers)

[1] 42 107 23 110 63

> print(iris2[outliers,])

Sepal.Length Sepal.Width Petal.Length Petal.Width

42 4.5 2.3 1.3 0.3
107 4.9 2.5 4.5 1.7
23 4.6 3.6 1.0 0.2
110 7.2 3.6 6.1 2.5
63 6.0 2.2 4.0 1.0

Next, we show outliers with a biplot of the first two principal components.
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> n <- nrow(iris2)

> labels <- 1:n

> labels[-outliers] <- "."

> biplot(prcomp(iris2), cex=.8, xlabs=labels)
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Figure 7.5: Outliers

In the above code, prcomp () performs a principal component analysis, and biplot () plots the
data with its first two principal components. In the x- and y-axis are respectively the
first and second principal components, the arrows show the original columns (variables), and the
five outliers are labeled with their row numbers.

We can also show outliers with a pairs plot as below, where outliers are labeled with ”"+” in
red.
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> pch <- rep(".", n)

> pchloutliers] <- "+"

> col <- rep("black", n)

> colloutliers] <- "red"

> pairs(iris2, pch=pch, col=col)
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Figure 7.6: Outliers

Package Rlof [Hu et al., 2011] provides function lof (), a parallel implementation of the LOF
algorithm. Its usage is similar to the above lofactor (), but lof () has two additional features
of supporting multiple values of k£ and several choices of distance metrics. Below is an example of
lof (). After computing outlier scores, outliers can be detected by selecting the top ones.

> library(Rlof)

> outlier.scores <- lof(iris2, k=5)

> # try with different number of neighbours (k = 5,6,7,8,9 and 10)
> outlier.scores <- lof(iris2, k=c(5:10))
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7.3 Outlier Detection by Clustering

Another way to detecte outliers is clustering. By grouping data into clusters, those data not
assigned to any clusters are taken as outliers. For example, with density-based clustering such as
DBSCAN |Ester et al., 1996], objects are grouped into one cluster if they are connected to one
another by densely populated area. Therefore, objects not assigned to any clusters are isolated
from other objects and are taken as outliers. An example of DBSCAN be found in
[Density-based Clustering]

We can also detect outliers with the k-means algorithm. With k-means, the data are partitioned
into k groups by assigning them to the closest cluster centers. After that, we can calculate the
distance (or dissimilarity) between each object and its cluster center, and pick those with largest
distances as outliers. An example of outlier detection with k-means from the iris data (see

Section 1.3.1| for details of the data) is given below.

> # remove species from the data to cluster
> iris2 <- iris[,1:4]

> kmeans.result <- kmeans(iris2, centers=3)
> # cluster centers

> kmeans.result$centers

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000
2 6.850000 3.073684 5.742105 2.0710563
3 5.901613 2.748387 4.393548 1.433871

> # cluster IDs
> kmeans.result$cluster

AJ+111111111111111111111111111111111111
377 111111111111113323333333333333333333
[73 333332333333333333333333333323222232
[109] 222223322223232322332222232222322232
[145] 223223

> # calculate distances between objects and cluster centers
> centers <- kmeans.result$centers[kmeans.result$cluster, ]
> distances <- sqrt(rowSums((iris2 - centers) 2))

> # pick top 5 largest distances

> outliers <- order(distances, decreasing=T)[1:5]

> # who are outliers

> print (outliers)

[1] 99 58 94 61 119
> print(iris2[outliers,])

Sepal.Length Sepal.Width Petal.Length Petal.Width

99 5.1 2.5 3.0 1.1
58 4.9 2.4 3.3 1.0
94 5.0 2.3 3.3 1.0
61 5.0 2.0 3.5 1.0
119 7.7 2.6 6.9 2.3
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# plot clusters

plot(iris2[,c("Sepal.Length", "Sepal.Width")], pch="o",
col=kmeans.result$cluster, cex=0.3)

# plot cluster centers

points (kmeans.result$centers[,c("Sepal.Length", "Sepal.Width")], col=1:3,

pch=8, cex=1)
# plot outliers
points(iris2[outliers, c("Sepal.Length", "Sepal.Width")], pch="+", col=4)
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Figure 7.7: Outliers with k-Means Clustering

In the above figure, cluster centers are labeled with asterisks and outliers with “+4”.

7.4 Outlier Detection from Time Series Data

This section presents an example of outlier detection from time series data. In the example, the
time series data are first decomposed with robust regression using function st1() and then outliers

are identified. An introduction of STL (Seasonal-trend decomposition based on Loess) |Cleveland

et al., 1990] is available at http://cs.wellesley.edu/ cs315/Papers/stl)20statistical¥20model.
pdfl More examples of time series decomposition can be found in


http://cs.wellesley.edu/~cs315/Papers/stl%20statistical%20model.pdf
http://cs.wellesley.edu/~cs315/Papers/stl%20statistical%20model.pdf
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> # use robust fitting
> f <- stl(AirPassengers, "periodic", robust=TRUE)
> (outliers <- which(f$weights<le-8))

[1] 79 91 92 102 103 104 114 115 116 126 127 128 138 139 140

# set layout

op <- par(mar = c(0, 4, 0, 3), oma = c(5, 0, 4, 0), mfcol = c(4, 1))

plot(f, set.pars=NULL)

sts <- f$time.series

# plot outliers

points(time(sts) [outliers], 0.8+*sts[,"remainder"][outliers], pch="x", col="red")
par(op) # reset layout
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Figure 7.8: Outliers in Time Series Data

In above figure, outliers are labeled with “x” in red.

7.5 Discussions

The LOF algorithm is good at detecting local outliers, but it works on numeric data only. A
fast and scalable outlier detection strategy for categorical data is the Attribute Value Frequency
(AVF) algorithm [Koufakou et al., 2007].

Package Rlof uses the multicore package, which does not work under Mac OS X.
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Some other R packages for outlier detection are:

e Package extremevalues [van der Loo, 2010]: univariate outlier detection;

o Package mvoutlier [Filzmoser and Gschwandtner, 2012]: multivariate outlier detection based
on robust methods; and

e Package outliers [Komsta, 2011]: tests for outliers.
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Chapter 8

Time Series Analysis and Mining

This chapter presents examples on time series decomposition, forecast, clustering and classification.
The first section introduces briefly time series data in R. The second section shows an example
on decomposing time series into trend, seasonal and random components. The third section
presents how to build an autoregressive integrated moving average (ARIMA) model in R and use
it to predict future values. The fourth section introduces Dynamic Time Warping (DTW) and
hierarchical clustering of a time series data with Euclidean distance and with DTW distance. The
fifth section shows three examples on time series classification: one with original data, the other
with DWT (Discrete Wavelet Transform) transformed data, and another with k-NN classification.
The chapter ends with discussions and further readings.

8.1 Time Series Data in R

Class ts represents data which has been sampled at equispaced points in time. A frequency of 7
indicates that a time series is composed of weekly data, and 12 and 4 are used for respectively a
monthly series and a quarterly series. An example below shows the construction of a time series
with 30 values (1 to 30). Frequency=12 and start=c(2011,3) suggest that it is a monthly series
starting from March 2011.

> a <- ts(1:30, frequency=12, start=c(2011,3))
> print(a)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2011 1 2 3 4 5 6 7 8 9 10
2012 11 12 13 14 15 16 17 18 19 20 21 22
2013 23 24 25 26 27 28 29 30
> str(a)
Time-Series [1:30] from 2011 to 2014: 1 234567 89 10 ...

> attributes(a)

$tsp
[1] 2011.167 2013.583 12.000

$class
[1] nggh
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8.2 Time Series Decomposition

Time Series Decomposition is to decompose a time series into trend, seasonal, cyclical and irregular
components. The trend component stands for long term trend, the seasonal component is seasonal
variation, the cyclical component is repeated but non-periodic fluctuations, and the residuals are
irregular component.

A time series of AirPassengers is used below as an example to demonstrate time series de-
composition. It is composed of monthly totals of Box & Jenkins international airline passengers
from 1949 to 1960. It has 144(=12*12) values.

> plot(AirPassengers)

AirPassengers
400 500 600
| | |

300
|

200
|

100
|

I I I I I I
1950 1952 1954 1956 1958 1960

Time

Figure 8.1: A Time Series of AirPassengers

Function decompose is called to AirPassengers to break it into various components.
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# decompose time series

apts <- ts(AirPassengers, frequency = 12)
f <- decompose (apts)

# seasonal figures

f$figure

vV V.V VvV

[1] -24.748737 -36.188131 -2.241162 -8.036616 -4.506313 35.402778
[7] 63.830808 62.823232 16.520202 -20.642677 -53.593434 -28.619949

> plot(f$figure, type="b", xaxt="n", xlab="")

> # get names of 12 months in English words

> monthNames <- months(ISOdate(2011,1:12,1))

> # label x-axis with month names

> # las is set to 2 for vertical label orientation
> axis(1, at=1:12, labels=monthNames, las=2)
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Figure 8.2: Seasonal Component
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> plot(f)
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Figure 8.3: Time Series Decomposition

The first chart is the original time series. The second is trend in the data, the third shows
seasonal factors, and the last chart is the remaining components after removing trend and sea-
sonal factors. Some other functions for time series decomposition are st1() in package stats [R
Development Core Team, 2012], decomp() in package timsac [of Statistical Mathematics, 2012],
and tsr() in package ast.

8.3 Time Series Forecasting

Time series forecasting is to forecast future events based on known past data. One example is
to predict the opening price of a stock based on its past performance. Some popular models are
autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA)

Here is an example to fit an ARIMA model to a univariate time series and then use it for
forecasting.
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fit <- arima(AirPassengers, order=c(1,0,0), list(order=c(2,1,0), period=12))

fore <- predict(fit, n.ahead=24)

# error bounds at 95), confidence level

U <- fore$pred + 2+fore$se

L <- fore$pred - 2+fore$se

ts.plot (AirPassengers, fore$pred, U, L, col=c(1,2,4,4), 1ty = c(1,1,2,2))

legend("topleft", c("Actual", "Forecast", "Error Bounds (95], Confidence)"),
col=c(1,2,4), 1ty=c(1,1,2))
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Figure 8.4: Time Series Forecast

The red solid line shows the forecasted values, and the blue dotted lines are error bounds at a
confidence level of 95%.

8.4 Time Series Clustering

Time series clustering is to partition time series data into groups based on similarity or distance,
so that time series in the same cluster are similar.

Measure of distance/dissimilarity: Euclidean distance, Manhattan distance, Maximum norm,
Hamming distance, the angle between two vectors (inner product), Dynamic Time Warping
(DTW) distance, etc.

8.4.1 Dynamic Time Warping

Dynamic Time Warping (DTW) [Keogh and Pazzani, 2001] finds optimal alignment between
two time series. Package dtw [Giorgino, 2009 is used in the example below. In this package,
function dtw(x, y, ...) computes dynamic time warp and finds optimal alignment between two
time series x and y, and dtwDist (mx, my=mx, ...) or dist(mx, my=mx, method="DTW", ...)
calculates the distances between time series mx and my.
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> library(dtw)
Loaded dtw v1.14-3. See 7dtw for help, citation("dtw") for usage conditionmns.

idx <- seq(0, 2*pi, len=100)

a <- sin(idx) + runif(100)/10

b <- cos(idx)

align <- dtw(a, b, step=asymmetricPl, keep=T)
dtwPlotTwoWay (align)
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Figure 8.5: Alignment with Dynamic Time Warping

8.4.2 Synthetic Control Chart Time Series Data

Synthetic Control Chart Time Series E| The dataset contains 600 examples of control charts syn-
thetically generated by the process in Alcock and Manolopoulos (1999). Each control chart is a
time series with 60 values. There are six classes:

e 1-100 Normal

e 101-200 Cyclic

201-300 Increasing trend

301-400 Decreasing trend

401-500 Upward shift

501-600 Downward shift

Firstly, the data is read into R with read.table(). Parameter sep is set to "" (no space
between double quotation marks), which is used when the separator is white space, i.e., one or
more spaces, tabs, newlines or carriage returns.

Thttp://kdd.ics.uci.edu/databases/synthetic_control/synthetic_control.html


http://kdd.ics.uci.edu/databases/synthetic_control/synthetic_control.html
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>

>

sc <- read.table("data/synthetic_control.data", header=F, sep="")
> # show one sample from each class

> idx <- ¢(1,101,201,301,401,501)

> samplel <- t(sc[idx,])

plot.ts(samplel, main="")
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Figure 8.6: Six Classes in Synthetic Control Chart Time Series

8.4.3 Hierarchical Clustering with Euclidean Distance

n cases were randomly sampled from each class.
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>n <= 10

> 5 <- sample(1:100, n)

> idx <- c(s, 100+s, 200+s, 300+s, 400+s, 500+s)

> sample2 <- sc[idx,]

> observedLabels <- c(rep(1,n), rep(2,n), rep(3,n), rep(4,n), rep(5,n), rep(6,n))
> # hierarchical clustering with Euclidean distance

> hc <- hclust(dist(sample2), method="ave")

> plot(hc, labels=observedLabels, main="")
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Figure 8.7: Hierarchical Clustering with Euclidean Distance

cut tree to get 8 clusters

> memb <- cutree(hc, k=8)
> table(observedLabels, memb)

memb
observedlLabels 1 2 3 4 5 6 7 8
110 0 0 0 0 O O O
2 06 1 2 1 0 0 O
3 00 0 0 O 6 4 0
4 0 0 0 0 0 0 010



8.4. TIME SERIES CLUSTERING

o o
o O
[N e}
[N e}
(el e}
o O

o N

o 00

o O

73



74 CHAPTER 8. TIME SERIES ANALYSIS AND MINING

8.4.4 Hierarchical Clustering with DTW Distance

distMatrix <- dist(sample2, method="DTW")
hc <- hclust(distMatrix, method="average")
plot (hc, labels=observedLabels, main="")
# cut tree to get 8 clusters

memb <- cutree(hc, k=8)

table (observedLabels, memb)
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Figure 8.8: Hierarchical Clustering with DTW Distance
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8.5 Time Series Classification

Time series classification is to build a classification model based on labeled time series and then
use the model to predict the label of unlabeled time series.

Some techniques for feature extraction are Singular Value Decomposition (SVD), Discrete
Fourier Transform (DFT), Discrete Wavelet Transform (DWT), Piecewise Aggregate Approxima-
tion (PAA), Perpetually Important Points (PIP), Piecewise Linear Representation, and Symbolic
Representation.

8.5.1 Classification with Original Data

We use ctree() from package party [Hothorn et al., 2010] to demonstrate classification of time
series with original data. The class labels are changed into categorical values before feeding the
data into ctree, so that we won’t get class labels as a real number like 1.35.
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> classId <- c(rep("1",100), rep("2",100), rep("3",100),
+ rep("4",100), rep("5",100), rep("6",100))
> newSc <- data.frame(cbind(classId, sc))
> library(party)
> ct <- ctree(classId ~ ., data=newSc,
+ controls = ctree_control (minsplit=30, minbucket=10, maxdepth=5))
> pClassId <- predict(ct)
> table(classId, pClassId)
pClassId
classId 1 2 3 4 5 6
97 O O O O 3
93 2 0 0 4
0 96 0 4 0
0 0
0

0 10 0 86

1
2
3
4
5
6 0O O 87 0 13

O P> O O -
o
o
=
o
o

> # accuracy
> (sum(classId==pClassId)) / nrow(sc)

[1] 0.8083333

> plot(ct, ip_args=list(pval=FALSE), ep_args=list(digits=0))
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Figure 8.9: Decision Tree

8.5.2 Classification with Extracted Features

DWT (Discrete Wavelet Transform) [Burrus et al., 1998]

Wavelet transform provides a multi-resolution representation using wavelets. An example of
Haar Wavelet Transform, the simplest DW'T, is available at http://dmr.ath.cx/gfx/haar/. DFT
(Discrete Fourier Transform) is another popular feature extraction technique [Agrawal et al., 1993].

An example on extracting DWT (with Haar filter) coefficients is shown below. Package wavelets
[Aldrich, 2010] is used for discrete wavelet transform. In the package, function dwt (X, filter,
n.levels, ...) computes the discrete wavelet transform coefficients, where X is a univariate or
multi-variate time series, filter indicates which wavelet filter to use, and n.levels specifies the
level of decomposition. It returns an object of class dwt, whose slot W contains wavelet coefficients


http://dmr.ath.cx/gfx/haar/
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and V contains scaling coefficients. The original time series can be reconstructed via an inverse
discrete wavelet transform with function idwt () in the same package.

> library(wavelets)
> wtData <- NULL
> for (i in 1:nrow(sc)) {
+ a <- t(scli,])
+ wt <- dwt(a, filter="haar", boundary="periodic")
+ wtData <- rbind(wtData,
+ unlist(c(wt@W, wt@V[[wt@level]])))
+ }
> wtData <- as.data.frame (wtData)
> wtSc <- data.frame(cbind(classId, wtData))
Decision Tree with DWT
> ct <- ctree(classId ~ ., data=wtSc,
+ controls = ctree_control (minsplit=30, minbucket=10, maxdepth=5))
> pClassId <- predict(ct)
> table(classId, pClassId)
pClassId
classld 1 2 3 4 5 6
197 3 0 0 0 O
2 199 0 0 0 O
3 0 081 019 O
4 0 0 063 0 37
5 0 016 084 O
6 0 0 0 1 099

> (sum(classId==pClassId)) / nrow(wtSc)
[1] 0.8716667
> plot(ct, ip_args=list(pval=FALSE), ep_args=list(digits=0))
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Figure 8.10: Decision Tree with DWT
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8.5.3 k-NN Classification

k-NN Classification find the k nearest neighbors of a new instance; label it by majority voting;
needs an ecient indexing structure for large datasets

> k <- 20

> newTS <- sc[501,] + runif(100)*15

> distances <- dist(newTS, sc, method="DTW")

> s <- sort(as.vector(distances), index.return=TRUE)
> # class IDs of k nearest neighbors

> table(classId[s$ix[1:k]])

4 6

3 17

For the 20 nearest neighbors of the new time series, three of them are of class 4, and 17 are of
class 6. With majority voting, that is, taking the more frequent label as winner, the label of the
new time series is set to class 6.

8.6 Discussion

There are many R functions and packages available for time series decomposition and forecasting.
However, there are no R functions or packages specially time series classification and clustering.
There are a lot of research publications on techniques specially for classifying/clustering time series
data, but no R implementations (as far as I know).

To do time series classification, one is suggested to extract and build features first, and then ap-
ply existing classification techniques, such as SVM, k-NN, neural networks, regression and decision
trees, to the feature set.

For time series clustering, one needs to work out his/her own distance or similarity metrics,
and then use existing clustering techniques, such as k-means or hierarchical clustering, to find
clustering structure.

8.7 Further Readings

An introduction of R functions and packages for time series is available as CRAN Task View:
Time Series Analysis at http://cran.r-project.org/web/views/TimeSeries.html.

R code examples for time series can be found in slides Time Series Analysis and Mining with
R at http://www.rdatamining.com/docs|

Some further readings on time series representation, similarity, clustering and classification
are |Agrawal et al., 1993,[Burrus et al., 1998|/Chan and Fu, 1999,/Chan et al., 2003 Keogh and
Pazzani, 1998 Keogh et al., 2000, Keogh and Pazzani, 2000,M&rchen, 2003, Rafiel and Mendelzon,
1998 Vlachos et al., 2003,[Wu et al., 2000, Zhao and Zhang, 2006].


http://cran.r-project.org/web/views/TimeSeries.html
http://www.rdatamining.com/docs

Chapter 9

Association Rules

This chapter presents examples of association rule mining with R. It demonstrates association

rules mining, pruning redundant rules and visualizing association rules.

9.1 The Titantic Dataset

The Titantic dataset in the datasets package is a 4-dimensional table with summarized infor-
mation on the fate of passengers on the Titanic according to social class, sex, age and survival.
To make it suitable for association rule mining, we reconstruct the raw data, where each row

represents a person.

> str(Titanic)

table [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...

- attr(x,

"dimnames")=List of 4

..$ Class

..$ Sex
..$ Age

..$ Survived:

> df <- as.data.frame(Titanic)
> head(df)

Class
1st
2nd
3rd

Crew

DO WN -

}

VvV VV+ + VvV

[1] 2201

Sex
Male
Male
Male
Male

1st Female
2nd Female

4

: chr [1:4]
: chr [1:2]
: chr [1:2]
chr [1:2]

n 1Stll |I2nd|I llsrdll llcrewll
"Male" "Female"

"Child" "Adult"

IINO n IlYesIl

Age Survived Freq

Child
Child
Child
Child
Child
Child

titanic.raw <- NULL
for(i in 1:4) {
titanic.raw <- cbind(titanic.raw, rep(as.character(df[,i]), df$Freq))

No
No
No
No
No
No

0
0
35

o O O

titanic.raw <- as.data.frame(titanic.raw)
names (titanic.raw) <- names(df)[1:4]
dim(titanic.raw)

79
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> str(titanic.raw)

'data.frame': 2201 obs. of 4 variables:

$ Class : Factor w/ 4 levels "1st","2nd","3rd",..: 3333 333333...
$ Sex : Factor w/ 2 levels "Female","Male": 2 222222222 ...

$ Age : Factor w/ 2 levels "Adult","Child": 2222222222 ...

$ Survived: Factor w/ 2 levels "No","Yes": 1 111111111 ...
> head(titanic.raw)

Class Sex  Age Survived

1 3rd Male Child No
2 3rd Male Child No
3 3rd Male Child No
4 3rd Male Child No
5 3rd Male Child No
6 3rd Male Child No

> summary(titanic.raw)

Class Sex Age Survived
1st :325 Female: 470 Adult:2092 No :1490
2nd :285 Male :1731 Child: 109 Yes: 711
3rd :706
Crew:885

Now we have a dataset where each row stands for a person, and it can be used for association
rule mining. The raw Titanic dataset can also be downloaded from http://www.cs.toronto.
edu/~delve/data/titanic/desc.html. The data is file “Dataset.data” in the compressed archive
“titanic.tar.gz”. It can be read into R with the code below.

> # have a look at the 1st 5 lines
> readLines("data/Dataset.data", n=5)

[1] "1st adult male yes" "1st adult male yes" "1st adult male yes"
[4] "1st adult male yes" "1st adult male yes"

> # read it into R
> titanic <- read.table("data/Dataset.data", header=F)
> names(titanic) <- c("Class", "Sex", "Age", "Survived")

9.2 Association Rule Mining

A classic algorithm for association rule mining is APRIORI |Agrawal and Srikant, 1994]. It is a
level-wise, breadth-first algorithm which counts transactions to find frequent itemsets and then
derive association rules from frequent itemsets. An implemention of it is function apriori()
in package arules. Another algorithm for association rule mining is the ECLAT algorithm |Zaki,
2000], which finds frequent itemsets with equivalence classes, depth-first search and set intersection
instead of counting. It is implemented as function eclat () in the same package.

Below we demonstrate association rule mining with apriori(). With the function, the default
settings are: 1) supp=0.1, which is the minmum support of rules; 2) conf=0.8, which is the
minimum confidence of rules; and 3) maxlen=10, which is the maximum length of rules.

> library(arules)
> # find association rules with default settings
> rules <- apriori(titanic.raw)


http://www.cs.toronto.edu/~delve/data/titanic/desc.html
http://www.cs.toronto.edu/~delve/data/titanic/desc.html
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parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen
0.8 0.1 1 none FALSE TRUE 0.1 1 10
target ext
rules FALSE

algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[10 item(s), 2201 transaction(s)] done [0.00s].
sorting and recoding items ... [9 item(s)] done [0.00s].

creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 done [0.00s].

writing ... [27 rule(s)] done [0.00s].

creating S4 object . done [0.00s].

> rules

set of 27 rules

v

quality(rules) <- quality(rules)

> inspect (rules)

lhs rhs support confidence 1ift
1 {3} => {Age=Adult} 0.9504771 0.9504771 1.0000000
2 {Class=2nd} => {Age=Adult} 0.1185825 0.9157895 0.9635051
3 {Class=1st} => {Age=Adult} 0.1449341 0.9815385 1.0326798
4 {Sex=Female} => {Age=Adult} 0.1930940 0.9042553 0.9513700
5 {Class=3rd} => {Age=Adult} 0.2848705 0.8881020 0.9343750
6 {Survived=Yes} => {Age=Adult} 0.2971377 0.9198312 0.9677574
7 A{Class=Crew} => {Sex=Male} 0.3916402 0.9740113 1.2384742
8 {Class=Crew} => {Age=Adult} 0.4020900 1.0000000 1.0521033
9 {Survived=No} => {Sex=Male} 0.6197183 0.9154362 1.1639949
10 {Survived=No} => {Age=Adult} 0.6533394 0.9651007 1.0153856
11 {Sex=Male} => {Age=Adult} 0.7573830 0.9630272 1.0132040
12 {Sex=Female,

Survived=Yes} => {Age=Adult} 0.1435711 0.9186047 0.9664669
13 {Class=3rd,

Sex=Male} => {Survived=No} 0.1917310 0.8274510 1.2222950
14 {Class=3rd,

Survived=No} => {Age=Adult} 0.2162653 0.9015152 0.9484870
15 {Class=3rd,

Sex=Male} => {Age=Adult} 0.2099046 0.9058824 0.9530818
16 {Sex=Male,

Survived=Yes} => {Age=Adult} 0.1535666 0.9209809 0.9689670
17 {Class=Crew,

Survived=No} => {Sex=Male} 0.3044071 0.9955423 1.2658514
18 {Class=Crew,

Survived=No} => {Age=Adult} 0.3057701 1.0000000 1.0521033
19 {Class=Crew,

Sex=Male} => {Age=Adult} 0.3916402 1.0000000 1.0521033
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20

21

22

23

24

25

26

27

VV++ 4+ 4+ VYV

{Class=Crew,
Age=Adult}
{Sex=Male,
Survived=No}
{Age=Adult,
Survived=No}
{Class=3rd,
Sex=Male,
Survived=No}
{Class=3rd,
Age=Adult,
Survived=No}
{Class=3rd,
Sex=Male,
Age=Adult}
{Class=Crew,
Sex=Male,
Survived=No}
{Class=Crew,
Age=Adult,
Survived=No}

{Sex=Male}

{Sex=Male}

{Sex=Male}

=> {Sex=Male}

{Age=Adult}

{Age=Adult}

{Survived=No}

{Age=Adult}

0.

0.

0

.3916402

.6038164

.6038164

.17568292

.1758292

1758292

3044071

.3044071
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.9740113 1.2384742

.9743402 1.0251065

.9242003 1.1751385

.9170616 0.9648435
.8130252 1.0337773
.8376623 1.2373791
1.0000000 1.0521033

0.9955423 1.2658514

As a common phenomenon is assocition rule mining, many rules generated above are unin-
teresting. Suppose that we are interested in only rules with rhs indicating survival, so we set
rhs=c("Survived=No", "Survived=Yes") in appearance to make sure that only “Survived=No”
and “Survived=Yes” will appear in the rhs of rules. All items can appear in the 1hs, as set with
default="1hs". In the above result, we can also see that the left-hand side (1hs) of the first rule
is empty. To exclude such rules, we set minlen to 2 in the code below. Moreover, the details of
progress are suppressed with verbose=F. After associatoin rule mining, rules are sorted by lift to
make high-lift rules appear first.

# rules with rhs containing "Survived" only
rules <- apriori(titanic.raw,

parameter = list(minlen=2, supp=0.005, conf=0.8),
appearance = list(rhs=c("Survived=No", "Survived=Yes"),
default="1hs"),

control = list(verbose=F))

inspect (rules.sorted)

1hs
{Class=2nd,
Age=Child}
{Class=2nd,
Sex=Female,
Age=Child}
{Class=1st,
Sex=Female}
{Class=1st,
Sex=Female,
Age=Adult}
{Class=2nd,
Sex=Female}
{Class=Crew,
Sex=Female}

=>

=>

=>

=>

rhs

{Survived=Yes}

{Survived=Yes}

{Survived=Yes}

{Survived=Yes}

{Survived=Yes}

{Survived=Yes}

0

0

0

0

0

0

rules.sorted <- sort(rules, by="1lift")

support

.010904134

.005906406

.064061790

.063607451

.0422535621

.009086779

confidence lift

1.0000000 3.095640

1.0000000 3.095640

0.9724138 3.010243

0.9722222 3.009650

0.8773585 2.715986

0.8695652 2.691861
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7 {Class=Crew,

Sex=Female,

Age=Adult} => {Survived=Yes} 0.009086779 0.8695652 2.691861
8 {Class=2nd,

Sex=Female,

Age=Adult} => {Survived=Yes} 0.036347115 0.8602151 2.662916
9 {Class=2nd,

Sex=Male,

Age=Adult} => {Survived=No} 0.069968196 0.9166667 1.354083
10 {Class=2nd,

Sex=Male} => {Survived=No} 0.069968196 0.8603352 1.270871
11 {Class=3rd,

Sex=Male,

Age=Adult} => {Survived=No} 0.175829169 0.8376623 1.237379
12 {Class=3rd,

Sex=Male} => {Survived=No} 0.191731031 0.8274510 1.222295

When other settings are unchanged, with a lower minumum support, more rules will be pro-
duced, and the associations between itemsets shown in the rules will be more likely to be by
chance. In the above code, the minmum support is set to 0.005, so each rule is supported at least
by 12 (=ceiling(0.005 * 2201)) cases, which is acceptable for a population of 2201.

Support, confidence and lift are three common measures for selecting interesting association
rules. Besides them, there are many other interestingness measures, such as chi-square, conviction,
gini and leverage [Tan et al., 2002]. More than twenty measures can be calculated with function
interestMeasure() in the arules package.

9.3 Removing Redundancy

From the above rules, we can see that some rules provide little or no extra information when some
other rules are in the result. For example, the above rule 2 provides no extra knowledge in addition
to rule 1, since rules 1 tells us that all 2nd-class children survived. Generally speaking, when a
rule (such as rule 2) is a super rule of another rule (such as rule 1) and the former has the same
or a lower lift, the former rule (rule 2) is considered to be redundant. Other redundant rules in
the above result are rules 4, 7 & 8, compared respectively with rules 3, 6 & 5.

Below we prune redundant rules. Note that the rules have been sorted descendingly by lift.

> # find redundant rules

> subset.matrix <- is.subset(rules.sorted, rules.sorted)
> subset.matrix[lower.tri(subset.matrix, diag=T)] <- NA
> redundant <- colSums(subset.matrix, na.rm=T) >= 1

> which(redundant)

[11 24738

> # remove redundant rules
> rules.pruned <- rules.sorted[!redundant]
> inspect(rules.pruned)

lhs rhs support confidence lift
1 {Class=2nd,

Age=Child} => {Survived=Yes} 0.010904134 1.0000000 3.095640
2 {Class=1st,

Sex=Female} => {Survived=Yes} 0.064061790 0.9724138 3.010243
3 {Class=2nd,
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Sex=Female} => {Survived=Yes} 0.042253521 0.8773585 2.715986
4 {Class=Crew,

Sex=Female} => {Survived=Yes} 0.009086779 0.8695652 2.691861
5 {Class=2nd,

Sex=Male,

Age=Adult} => {Survived=No} 0.069968196 0.9166667 1.354083
6 {Class=2nd,

Sex=Male} => {Survived=No} 0.069968196 0.8603352 1.270871
7 {Class=3rd,

Sex=Male,

Age=Adult} => {Survived=No} 0.175829169 0.8376623 1.237379
8 {Class=3rd,

Sex=Male} => {Survived=No} 0.191731031 0.8274510 1.222295

In the code above, function is.subset(rl, r2) checks whether r1 is a subset of r2 (i.e., whether
r2 is a superset of r1). Function lower.tri() returns a logical matrix with TURE in lower trian-
gle. From the above results, we can see that rules 2, 4, 7 & 8 (before redundancy removal) are
successfully pruned.

9.4 Visualizing Association Rules

Next we show some ways to visualize association rules, including scatter plot, balloon plot, graph
and parallel coordinates plot. More examples on visualizing association rules can be found in
the vignettes of package arulesViz |[Hahsler and Chelluboina, 2012] on CRAN at http://cran.
r-project.org/web/packages/arulesViz/vignettes/arulesViz.pdf|

> library(arulesViz)
> plot(rules)

Scatter plot for 12 rules
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Figure 9.1: A Scatter Plot of Association Rules
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> plot(rules, method="grouped")

Grouped matrix for 12 rules

size: support

color: lift
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Figure 9.2: A Ballon Plot of Association Rules

> plot(rules, method="graph")

Graph for 12 rules
width: support (0.006 - 0.192)
color: lift (1.222 - 3.096)

{Class=Crew,Sex=Female}
| {Class=2nd,Sex=Male}

|
(CIass=1st,Sex=FemaIe,Age=Abult} {Class=2nd,Sex=Male,Age=AdL
|

|
[{Class=2nd,Sex=Female}

{Survived=No}

| {Class=3rd,Sex=Male}
| {Class=3rd,Sex=Male,Age=Adult}

! {Class=2nd,Age=Child}
{Class=Crew,Sex=Female,Age=Adult}

Figure 9.3: A Graph of Association Rules
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> plot(rules, method="graph", control=list(type="items"))

Graph for 12 rules
size: support (0.006 - 0.192)
color: lift (1.222 - 3.096)

Class=Crew
Class=1st

Q.
’ Sex=Female

Susived:Yes

Age=Adult

e o ~°

@< Age=Child
Class=3rd O Class=2nd

SurvaedizNo
O Sex=Male O
Figure 9.4: A Graph of Items

> plot(rules, method="paracoord", control=list(reorder=TRUE))

Parallel coordinates plot for 12 rules

Survived=Yes —
Class=Crew
Class=1st —
Age=Child —
Survived=No —
Sex=Female —
Class=2nd —
Age=Adult —
Sex=Male —

Class=3rd —

3 2 1 rhs

Position

Figure 9.5: A Parallel Coordinates Plot of Association Rules
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9.5 Discussions and Further Readings

In this chapter, we have demonstrated association rule mining with package arules [Hahsler et al.,
2011]. More examples on that package can be found in Hahsler et al.’s work [Hahsler et al., 2005].
Two other packages related to association rules are arulesSequences and arulesNBMiner. Package
arulesSequences provides functions for mining sequential patterns [Buchta et al., 2012]. Package
arulesNBMiner implements an algorithm for mining negative binomial (NB) frequent itemsets and
NB-precise rules [Hahsler, 2012].

More techniques on post mining of association rules, such as selecting interesting association
rules, visualization of association rules and using association rules for classification, can be found
in Zhao et al’s work |Zhao et al., 2009).
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Chapter 10

Text Mining

This chapter presents examples of text mining with R. TwitteIE] text of @RDataMining is used
as the data to analyze. It starts with extracting text from Twitter. The extracted text is then
transformed to build a document-term matrix. After that, frequent words and associations are
found from the matrix. A word cloud is used to present important words in documents. In the
end, words and tweets are clustered to find groups of words and also groups of tweets. In this
section, “tweet” and “document” will be used interchangably, so are “word” and “term”.

There are three packages used in the examples: twitteR, tm and wordcloud. Package twitteR
|Gentry, 2012] provides access to Twitter data, tm [Feinerer, 2012] provides functions for text
mining, and wordcloud [Fellows, 2012| visualizes the result with a word cloud ﬂ

10.1 Retrieving Text from Twitter

Twitter text is used in this chapter to demonstrate text mining. Tweets are be extracted from
Twitter with the code below using userTimeline () in package twitteR |Gentry, 2012].

If you have no access to Twitter, the tweets data can be downloaded as file “rdmTweets.RData”
at http://www.rdatamining.com/data, and then you can skip this section and proceed directly
to

Package twitteR can be found at http://cran.r-project.org/bin/windows/contrib/. Pack-
age twitteR depends on package RCurl [Lang, 2012a], which is available at http://www.stats.
ox.ac.uk/pub/RWin/bin/windows/contrib/2.14/. Another way to retrieve text from Twitter is
using package XML [Lang, 2012b|, and an example on that is given at http://heuristically.
wordpress.com/2011/04/08/text-data-mining-twitter-r/\

> library(twitteR)

> # retrieve the first 200 tweets (or all tweets if fewer than 200) from the
> # user timeline of @rdatammining

> rdmTweets <- userTimeline("rdatamining", n=200)

> (nDocs <- length(rdmTweets))

[1] 154
Next, we have a look at the five tweets numbered 11 to 15.
> rdmTweets[11:15]

With the above code, each tweet is printed in one single line, which may exceed the boundary
of paper. Therefore, the following code is used in this book to print the five tweets by wrapping
the text to fit the width of paper. The same method is used to print tweets in other codes in this
chapter.

Thttp://www.twitter.com
2http://en.wikipedia.org/wiki/Word_cloud

89

Iwww . al litebooks.cond



http://www.rdatamining.com/data
http://cran.r-project.org/bin/windows/contrib/
http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.14/
http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/2.14/
http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/
http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/
http://www.twitter.com
http://en.wikipedia.org/wiki/Word_cloud
http://www.allitebooks.org

90 CHAPTER 10. TEXT MINING

> for (i im 11:15) {

+ cat(paste("[[", i, "]] ", sep=""))

+ writeLines(strwrap(rdmTweets[[i]]$getText (), width=73))
+ }

[[11]] Slides on massive data, shared and distributed memory,and concurrent
programming: bigmemory and foreach http://t.co/a6bQzxjb

[[12]] The R Reference Card for Data Mining is updated with functions &
packages for handling big data & parallel computing.

http://t.co/FHoVZCyk

[[13]] Post-doc on Optimizing a Cloud for Data Mining primitives, INRIA, France
http://t.co/cA28STPO

[[14]] Chief Scientist - Data Intensive Analytics, Pacific Northwest National
Laboratory (PNNL), US http://t.co/0GdzqlNt

[[15]] Top 10 in Data Mining http://t.co/TkAuNvuf

10.2 Transforming Text

The tweets are first converted to a data frame and then to a corpus, which is a collection of
text documents. After that, the corpus can be processed with functions provided in package
tm [Feinerer, 2012).

> # convert tweets to a data frame
> df <- do.call("rbind", lapply(rdmTweets, as.data.frame))
> dim(df)

[1] 154 10

> library(tm)
> # build a corpus, and specify the source to be character vectors
> myCorpus <- Corpus (VectorSource(df$text))

After that, the corpus needs a couple of transformations, including changing letters to lower
case, removing punctuations, numbers and stop words. The general English stop-word list is
tailored here by adding “available” and “via” and removing “r” and “big” (for big data). Hyerlinks
are also removed in the example below.

> # convert to lower case

> myCorpus <- tm_map(myCorpus, tolower)

> # remove punctuation

> myCorpus <- tm_map(myCorpus, removePunctuation)

> # remove numbers

> myCorpus <- tm_map(myCorpus, removeNumbers)

> # remove URLs

> removeURL <- function(x) gsub("http[[:alnum:]J]*", "", x)
> myCorpus <- tm_map (myCorpus, removeURL)

> # add two extra stop words: "available" and "via"

> myStopwords <- c(stopwords('english'), "available", "via")
> # remove "r" and "big" from stopwords

> idx <- which(myStopwords 7in7 c("r", "big"))

> myStopwords <- myStopwords[-idx]

> # remove stopwords from corpus

> myCorpus <- tm_map(myCorpus, removeWords, myStopwords)
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In the above code, tm_map () is an interface to apply transformations (mappings) to corpora. A
list of available transformations can be obtained with getTransformations (), and the mostly used
ones are as.PlainTextDocument (), removeNumbers (), removePunctuation(), removeWords (),
stemDocument () and stripWhitespace(). A function removeURL() is defined to remove hy-
pelinks. Within the function, pattern "http[[:alnum:]]*" matches strings starting with “http”
and then followed by any number of alphabetic characters and digits. Strings matching this pat-
tern are removed with gsub(). The above pattern is specified as an regular expression, and detail
about it can be found by runing ?regex in R.

10.3 Stemming Words

In many applications, words need to be stemmed to retrieve their radicals, so that various forms
derived from a stem would be taken as the same when counting word frequency. For instance, words
“update”, “updated” and “updating” would all be stemmed to “updat”. Word stemming can be
done with the snowball stemmer, which requires packages Snowball, RWeka, rJava and RWekajars.
After that, we can complete the stems to their original forms, i.e., “update” for the above example,

so that the words would look normal. This can be done with function stemCompletion().

> # keep a copy of corpus to use later as a dictionary for stem completion
> myCorpusCopy <- myCorpus

> # stem words

> myCorpus <- tm_map(myCorpus, stemDocument)

> # inspect documents (tweets) numbered 11 to 15

> # inspect (myCorpus[11:15])

> # The code below is used for to make text fit for paper width
> for (i im 11:15) {

+ cat(paste("[[", i, "]1] ", sep=""))

+ writeLines(strwrap(myCorpus[[i]], width=73))

+ }

[[11]] slide massiv data share distribut memoryand concurr program bigmemori
foreach

[[12]] r refer card data mine updat function packag handl big data parallel

comput

[[13]] postdoc optim cloud data mine primit inria franc

[[14]] chief scientist data intens analyt pacif northwest nation laboratori

pnnl

[[15]] top data mine

After that, we use stemCompletion() to complete the stems with the corpus before stem-
ming as dictionary. With the default setting, it takes the most frequent match in dictionary as
completion.

> # stem completion
> myCorpus <- tm_map(myCorpus, stemCompletion, dictionary=myCorpusCopy)

Then we have a look at the documents numbered 11 to 15 in the built corpus.

> inspect (myCorpus[11:15])

[[11]] slides massive data share distributed memoryand concurrent programming
foreach

[[12]] r reference card data miners updated functions package handling big data
parallel computing

[[13]] postdoctoral optimizing cloud data miners primitives inria france

[[14]] chief scientist data intensive analytics pacific northwest national pnnl
[[15]] top data miners
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As we can see from the above results, there are something unexpected in the above stemming
and completion.

1. In both the stemmed corpus and the completed one, “memoryand” is derived from “... mem-
ory,and ...” in the original tweet 11.

2. In tweet 11, word “bigmemory” is stemmed to “bigmemori”, and then is removed during stem
completion.

3. Word “mining” in tweets 12, 13 & 15 is first stemmed to “mine” and then completed to
“miners”.

4. “Laboratory” in tweet 14 is stemmed to “laboratori” and then also disappears after comple-
tion.

In the above issues, point 1 is caused by the missing of a space after the comma. It can be
easily fixed by replacing comma with space before removing punction marks in For
points 2 & 4, we haven’t figured out why it happened like that. Fortunately, the words involved
in points 1, 2 & 4 are not important in @RDataMining tweets and ingoring them would not bring
any harm to this demonstration of text mining.

Below we focus on point 3, where word “mining” is first stemmed to “mine” and then completed
to “miners”, instead of “mining”, although there are many instances of “mining” in the tweets,
compared to only two instances of “miners”. There might be a solution for the above problem by
changing the parameters and/or dictionaries for stemming and completion, but we failed to find
one due to limitation of time and efforts. Instead, we chose a simple way to get around of that
by replacing “miners” with “mining”, since the latter has many more cases than the former in the
corpus. The code for the replacement is given below.

> # count frequency of "mining"
> miningCases <- tm_map (myCorpusCopy, grep, pattern="\\<mining")
> sum(unlist(miningCases))

[1] 47

> # count frequency of "miners"
> minerCases <- tm_map(myCorpusCopy, grep, pattern="\\<miners")
> sum(unlist (minerCases))

(11 2

> # replace "miners" with "mining"
> myCorpus <- tm_map(myCorpus, gsub, pattern="miners", replacement="mining")

In the first call of function tm_map() in the above code, grep() is applied to every document
(tweet) with argument “pattern="\\<mining"”. The pattern matches words starting with “min-
ing”, where “\<” matches the empty string at the beginning of a word. This ensures that text
“rdatamining” would not contribute to the above counting of “mining”.

10.4 Building a Term-Document Matrix

A term-document matrix represents the relationship between terms and documents, where each
row stands for a term and each column for a document, and an entry is the number of occurrences of
the term in the document. Alternatively, one can also build a document-term matrix by swapping
row and column. In this section, we build a term-document matrix from the above processed
corpus with function TermDocumentMatrix (). With its default setting, terms with less than three
characters are discarded. To keep “r” in the matrix, we set the range of wordLengths in the
example below.
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> myTdm <- TermDocumentMatrix (myCorpus, control = list(wordLengths=c(1,Inf)))
> myTdm

A term-document matrix (444 terms, 154 documents)

Non-/sparse entries: 1085/67291

Sparsity : 98%
Maximal term length: 27
Weighting : term frequency (tf)

As we can see from the above result, the term-document matrix is composed of 444 terms and
154 documents. It is very spase, with 98% of the entries being zero. We then have a look at the
first six terms starting with “r” and tweets numbered 101 to 110.

> idx <- which(dimnames (myTdm)$Terms == "r")
> inspect (myTdm[idx+(0:5),101:110])

A term-document matrix (6 terms, 10 documents)

Non-/sparse entries: 9/51

Sparsity : 85%

Maximal term length: 12

Weighting : term frequency (tf)

Docs

Terms 101 102 103 104 105 106 107 108 109 110
r i1 o0 o0 2 o0 o0 1 1 1
ramachandran 0 O O 0 O O O 0 O O
random o o0 o o o o o o o0 o
ranked o o0 o o o o o o 1 o0
rapidminer 1 o o o o o o o o0 o
rdatamining o o o o o o o 1 o0 o0

Note that the paremeter to control word length used to be minWordLength prior to version
0.5-7 of package tm. The code to set the minimum word length for old versions of ¢m is below.

> myTdm <- TermDocumentMatrix (myCorpus, control = list(minWordLength=1))

The list of terms can be retrieved with rownames (myTdm). Based on the above matrix, many
data mining tasks can be done, for example, clustering, classification and association analysis.

When there are too many terms, the size of a term-document matrix can be reduced by
selecting terms that appear in a minimum number of documents, or filtering terms with TF-IDF
(term frequency-inverse document frequency) [Wu et al., 2008].

10.5 Frequent Terms and Associations

We have a look at the popular words and the association between words. Note that there are 154
tweets in total.

> # inspect frequent words
> findFreqTerms (myTdm, lowfreq=10)

[1] "analysis" "computing" "data" "examples"
[5] "introduction" "mining" "network" "package"
[9] "positions" "postdoctoral" "r" "research"

[13] "slides" "social" "tutorial" "users"
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In the code above, findFreqTerms() finds frequent terms with frequency no less than ten.
Note that they are ordered alphabetically, instead of by frequency or popularity.

To show the top frequent words visually, we next make a barplot of them. From the term-
document matrix, we can derive the frequency of terms with rowSums (). Then we select terms that
appears in ten or more documents and shown them with a barplot using package ggplot2
. In the code below, geom="bar" specifies a barplot and coord_flip() swaps x- and y-axis.
The barplot in clearly shows that the three most requrent words are “r”, “data” and

“mining”.

> termFrequency <- rowSums (as.matrix(myTdm))

> termFrequency <- subset (termFrequency, termFrequency>=10)

> library(ggplot2)

> gplot (names (termFrequency), termFrequency, geom="bar") + coord_flip()

users =
tutorial -
social =
slides -
research -

r-
postdoctoral =
positions =
package —

network —

names(termFrequency)

mining =
introduction -
examples -
data -
computing =

analysis —

I
40
termFrequency

o-
n
=]
@
=]
®
o

Figure 10.1: Frequent Terms
Alternatively, the above plot can also be drawn with barplot() as below, where las sets the
direction of x-axis labels to be vertical.
> barplot(termFrequency, las=2)

We can also find what are highly associated with a word with function findAssocs(). Below
we try to find terms associated with “r” (or “mining”) with correlation no less than 0.25, and the
words are ordered by their correlation with “r” (or “mining”).

> # which words are associated with "r"?
> findAssocs(myTdm, 'r', 0.25)

r users canberra cran list examples
1.00 0.32 0.26 0.26 0.26 0.25

> # which words are associated with "mining"?
> findAssocs (myTdm, 'mining', 0.25)
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mining data mahout recommendation
1.00 0.55 0.39 0.39
sets supports frequent itemset
0.39 0.39 0.35 0.34
card functions reference text
0.29 0.29 0.29 0.26

10.6 Word Cloud

After building a term-document matrix, we can show the importance of words with a word cloud
(also known as a tag cloud) , which can be easily produced with package wordcloud |Fellows,
2012]. In the code below, we first convert the term-document matrix to a normal matrix, and
then calculate word frequencies. After that, we set gray levels based on word frequency and use
wordcloud() to make a plot for it. With wordcloud(), the first two parameters give a list of
words and their frequencies. Words with frequency below three are not ploted, as specified by
min.freq=3. By setting random.order=F, frequent words are plotted first, which makes them
appear in the center of cloud. We also set the colors to gray levels based on frequency. A colorful
cloud can be generated by setting colors with rainbow().

library(wordcloud)

m <- as.matrix(myTdm)

# calculate the frequency of words and sort it descendingly by frequency

wordFreq <- sort (rowSums(m), decreasing=TRUE)

# word cloud

set.seed(375) # to make it reproducible

grayLevels <- gray( (wordFreq+10) / (max(wordFreq)+10) )

wordcloud (words=names (wordFreq), freq=wordFreq, min.freq=3, random.order=F,
colors=grayLevels)
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The above word cloud clearly shows again that “r”, “data” and “mining” are the top three
words, which validates that the @RDataMining tweets present information on R and data mining.
Some other important words are “analysis”, “examples”, “slides”, “tutorial” and “package”, which
shows that it focuses on documents and examples on analysis and R packages. Another set of
frequent words, “research”, “postdoctoral” and “positions”, are from tweets about vacancies on
post-doctoral and research positions. There are also some tweets on the topic of social network

analysis, as indicated by words “network” and “social” in the cloud.

10.7 Clustering Words

We then try to find clusters of words with hierarchical clustering. Sparse terms are removed, so
that the plot of clustering will not be crowded with words. Then the distances between terms are
calculated with dist () after scaling. After that, the terms are clusterd with hclust() and the
dendogram is cut into 10 clusters. The agglomeration method is set to ward, which denotes the
increase in variance when two clusters are merged. Some other options are single linkage, complete
linkage, average linkage, median and centroid. Details about different agglomeration methods can
be found in data mining text books [Han and Kamber, 2000,(Hand et al., 2001,|Witten and Frank,
2005).

# remove sparse terms

myTdm2 <- removeSparseTerms (myTdm, sparse=0.95)
m2 <- as.matrix(myTdm2)

# cluster terms

distMatrix <- dist(scale(m2))

fit <- hclust(distMatrix, method="ward")

vV V.V Vv VvyVv



10.8. CLUSTERING TWEETS 97

> plot(fit)

> # cut tree into 10 clusters
> rect.hclust(fit, k=10)

> (groups <- cutree(fit, k=10))

analysis applications code computing data
1 2 3 4 5
examples introduction mining network package
3 2 6 1 7
parallel positions postdoctoral r research
4 8 8 9 8
series slides social time tutorial
10 2 1 10 2
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Figure 10.3: Clustering of Words

In the above dendrogram, we can see the topics in the tweets. Words “analysis”, “network”
and “social” are clustered into one group, because there are a couple of tweets on social network
analysis. The second cluster from left comprises “positions”, “postdoctoral” and “research”, and
they are clustered into one group because of tweets on vacancies of research and postdoctoral
positions. We can also see cluster on time series, R packages, parallel computing, R codes and
examples, and tutorial and slides. The rightmost three clusters consists of “r”, “data” and “mining”,

which are the keywords of @RDataMining tweets.

10.8 Clustering Tweets

Tweets are clustered below with the k-means and the k-medoids algorithms.
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10.8.1 Clustering Tweets with the k-means Algorithm

We first try k-means clustering, which takes the values in the matrix as numeric. We transpose
the term-document matrix to a document-term one. The tweets are then clustered with kmeans ()
with the number of clusters set to eight. After that, we check the popular words in every cluster
and also the cluster centers. Note that a fixed random seed is set with set.seed() before running
kmeans (), so that the clustering result can be reproduced. It is for the convenience of book writing,

and it is unnecessary for readers to set a random seed.

> # transpose the matrix to cluster documents (tweets)
> m3 <- t(m2)
> # set a fixed random seed
> set.seed(122)
> # k-means clustering of tweets
>k <- 8
> kmeansResult <- kmeans(m3, k)
> # cluster centers
> round (kmeansResult$centers, digits=3)

analysis applications

To make it easy to find what the clusters are about, we then check the top three words in every

code computing

1 0.040 0.040 0.240

2 0.000 0.158 0.053

3 0.857 0.000 0.000

4 0.000 0.000 0.000

5 0.037 0.074 0.019

6 0.000 0.000 0.000

7 0.533 0.000 0.067

8 0.000 0.111 0.000
mining network package parallel

1 0.120 0.080 0.080 0.000

2 1.158 0.000 0.368 0.053

3 0.071 1.000 0.071 0.000

4 0.000 0.000 0.125 0.750

5 0.407 0.000 0.000 0.000

6 0.000 0.000 1.200 0.100

7 0.200 0.067 0.000 0.000

8 0.111 0.000 0.000 0.000
research series slides social

1 0.000 0.040 0.000 0.000 O

2 0.053 0.000 0.053 0.000 O

3 0.071 0.000 0.071 0.786 O

4 0.000 0.000 0.125 0.000 O

5 0.000 0.019 0.074 0.000 O

6 0.100 0.000 0.100 0.000 O

7 0.000 0.400 0.533 0.000 O

8 1.333 0.000 0.000 0.111 0

cluster.

>
+
+
+
+

for (i in 1:k) {
cat (paste("cluster
s <- sort(kmeansResult$centers[i,], decreasing=T)
cat (names (s) [1:3],
# print the tweets of every cluster

n
H

i,

”\n H)

data examples introduction

0.000 0.040 0.320
0.053 1.526 0.105
0.000 0.000 0.071
1.000 0.000 0.000
0.019 0.426 0.037
0.000 0.000 0.100
0.000 0.333 0.200
0.000 0.556 0.000
positions postdoctoral
0.000 0.000
0.000 0.000
0.143 0.143
0.000 0.000
0.093 0.093
0.000 0.000
0.000 0.000
0.444 0.444
time tutorial users
.040 0.200 0.160
.000 0.000 0.158
.000 0.286 0.071
.000 0.125 0.250
.019 0.111 0.019
.000 0.100 0.100
.400 0.000 0.400
.000 0.000 0.000

n

s sep=" n))

O OO, OO~

.320
.947
.214
.000
.000
.600
.000
.000

0

O O O O OO o

.040
.053
.143
.000
.093
.000
.067
.000
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+  # print(rdmTweets [which (kmeansResult$cluster==i)])

+ }
cluster 1: r examples code
cluster 2: data mining r
cluster 3: network analysis social
cluster 4 computing r parallel
cluster 5: data mining tutorial
cluster 6: package r examples
cluster 7: 1r analysis slides

8

cluster research data positions

From the above top words and centers of clusters, we can see that the clusters are of different
topics. For instance, cluster 1 focuses on R codes and examples, cluster 2 on data mining with
R, cluster 4 on parallel computing in R, cluster 6 on R packages and cluster 7 on slides of time
series analysis with R. We can also see that, all clusters, except for cluster 3, 5 & 8, focus on R.
Cluster 3, 5 & 8 are about general information on data mining and are not limited to R. Cluster
3 is on social network analysis, cluster 5 on data mining tutorials, and cluster 8 on positions for
data mining research.

10.8.2 Clustering Tweets with the k-medoids Algorithm

We then try k-medoids clustering with the Partitioning Around Medoids (PAM) algorithm, which
uses medoids (representative objects) instead of means to represent clusters. It is more robust to
noise and outliers than k-means clustering, and provides a display of the silhouette plot to show
the quality of clustering. In the example below, we use function pamk () from package fpc [Hennig,
2010], which calls the function pam() with the number of clusters estimated by optimum average
silhouette.

> library(fpc)

> # partitioning around medoids with estimation of number of clusters
> pamResult <- pamk(m3, metric = "manhattan")

> # number of clusters identified

> (k <- pamResult$nc)

(11 9

> pamResult <- pamResult$pamobject
> # print cluster medoids

> for (i in 1:k) {

+ cat(paste("cluster", i, ": "))

+ cat (colnames (pamResult$medoids) [which (pamResult$medoids[i,]==1)], "\n")
+ # print tweets in cluster i

+  # print(rdmTweets [pamResult$clustering==i])
+ }

cluster 1 : data positions research

cluster 2 : computing parallel r

cluster 3 : mining package r

cluster 4 : data mining

cluster 5 : analysis network social tutorial
cluster 6 : r

cluster 7 :

cluster 8 : examples r

cluster 9 : analysis mining series time users
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> # plot clustering result

> layout(matrix(c(1,2),2,1)) # set to two graphs per page

> plot(pamResult, color=F, labels=4, lines=0, cex=.8, col.clus=1,
+ col.p=pamResult$clustering)

> layout(matrix(1)) # change back to one graph per page

clusplot(pam(x = sdata, k = k, metric = "manhattan™))

Component 2

Component 1
These two components explain 24.81 % of the point variability.

Silhouette plot of pam(x = sdata, k = k, metric = "manhattan”

n=154 9 clusters C;
j:ni|aveng S
Iy ['d.35
2: 8] 054
3: 91026
4: 35| 0.29
5: 14 | 0.32
6: 30| 0.26
7: 32| 035
8: 15 | -0.03
9: 3] 0.46
I T T T T T 1
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Silhouette width s;

Average silhouette width : 0.29

Figure 10.4: Clusters of Tweets
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In the first chart is a 2D “clusplot” (clustering plot) of the k clusters, and the
second one shows their silhouettes. With the silhouette, a large s; (almost 1) suggests that
the corresponding observations are very well clustered, a small s; (around 0) means that the
observation lies between two clusters, and observations with a negative s; are probably placed in
the wrong cluster. The average silhouette width is 0.29, which suggests that the clusters are not
well separated from one another.

The above results and show that there are nine clusters of tweets. Clusters 1, 2,
3, 5 and 9 are well separated groups, with each of them focusing on a specific topic. Cluster 7
is composed of tweets not fitted well into other clusters, and it overlaps all other clusters. There
is also a big overlap between cluster 6 and 8, which is unstandable from their medoids. Some
observations in cluster 8 are of negative silhouette width, which means that they may fit better in
other clusters than cluster 8.

To improve the clustering quality, we have also tried to set the range of cluster numbers
krange=2:8 when calling pamk (), and in the new clustering result, there are eight clusters, with
the observations in the above cluster 8 assigned to other clusters, mostly to cluster 6. The results
are not shown in this book, and the readers can try it with the code below.

> pamResult2 <- pamk(m3, krange=2:8, metric = "manhattan')

10.9 Packages, Further Readings and Discussions

Some R packages for text mining are listed below.

Package tm [Feinerer, 2012]: A framework for text mining applications within R.

Package tm.plugin.mail [Feinerer, 2010]: Text Mining E-Mail Plug-In. A plug-in for the tm
text mining framework providing mail handling functionality.

package textcat [Hornik et al., 2012] provides n-Gram Based Text Categorization.

lda [Chang, 2011] fit topic models with LDA (latent Dirichlet allocation)

topicmodels [Griin and Hornik, 2011] fit topic models with LDA and CTM (correlated topics
model)

For more information and examples on text mining with R, some online resources are:

e Introduction to the tm Package — Text Mining in R
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

o Text Mining Infrastructure in R |Feinerer et al., 2008]
http://www.jstatsoft.org/v25/1i05

e Text Mining Handbook
http://www.casact.org/pubs/forum/10spforum/Francis_Flynn.pdf

e Distributed Text Mining in R
http://epub.wu.ac.at/3034/

e Text mining with Twitter and R
http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/

In addition to frequent terms, associations and clustering demonstrated in this chapter, some
other possible analysis on the above Twitter text is graph mining and social network analysis. For
example, a graph of words can be derived from a document-term matrix, and then we can use
techniques for graph mining to find links between words and groups of words. A graph of tweets
(documents) can also be generated and analyzed in a similar way. It can also be presented and
analyzed as a bipartite graph with two disjoint sets of vertices, that is, words and tweets. We will
demonstrate social network analysis on the Twitter data in|Chapter 11} [Social Network Analysis|



http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
http://www.jstatsoft.org/v25/i05
http://www.casact.org/pubs/forum/10spforum/Francis_Flynn.pdf
http://epub.wu.ac.at/3034/
http://heuristically.wordpress.com/2011/04/08/text-data-mining-twitter-r/
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Chapter 11

Social Network Amnalysis

This chapter presents examples of social network analysis with R, specifically, with package igraph
[Csardi and Nepusz, 2006]. The data to analyze is Twitter text data used in [Chapter 10 [Text|
Putting it in a general scenario of social networks, the terms can be taken as people and
the tweets as groups on LinkedIrE], and the term-document matrix can then be taken as the group
membership of people.

In this chapter, we will first build a network of terms based on their co-occurrence in the same
tweets, and then build a network of tweets based on the terms shared by them. At last, we will
build a two-mode network composed of both terms and tweets. We will also demonstrate some
tricks to plot nice network graphs. Some codes in this chapter are based on the examples at
http://www.stanford.edu/ messing/Affiliation)20Data.html|

11.1 Network of Terms

In this section, we will build a network of terms based on their co-occurrence in tweets. At
first, a term-document matrix, termDocMatrix, is loaded into R, which is actually a copy of
m2, an R object from [Chapter 10f [Text Miningl After that, it is transformed into a term-term
adjacency matrix, based on which a graph is built. Then we plot the graph to show the relationship
between frequent terms, and also make the graph more readable by setting colors, font sizes and
transparency of vertices and edges.

> # load termDocMatrix

> load("data/termDocMatrix.rdata")
> # inspect part of the matrix

> termDocMatrix[5:10,1:20]

Docs

Terms 123456789 10 11 12 13 14 15 16 17 18 19 20
data 110020000 0 1 2 1 1 1 0 1 0 O O
examples 000000000 O O O O OO O O O OO
introduction 0 0 0000000 O 0O O O 0O O O O O 0 1
mining 000000000 O O 1t 1 0 1 O O O O O
network 000000000 O O O O O O 1 0 1 1 1
package 000110000 0 O 1 O O O O O O O O

> # change it to a Boolean matrix

> termDocMatrix[termDocMatrix>=1] <- 1

> # transform into a term-term adjacency matrix

> termMatrix <- termDocMatrix J*}, t(termDocMatrix)

Thttp://www.linkedin.com
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> # inspect terms numbered 5 to 10
> termMatrix[5:10,5:10]

Terms
Terms data examples introduction mining network package
data 53 5 2 34 0 7
examples 5 17 2 5 2 2
introduction 2 2 10 2 2 0
mining 34 5 2 47 1 5
network 0 2 2 1 17 1
package 7 2 0 1 21

In the above code, %*% is an operator for the product of two matrices, and t () transposes a
matrix. Now we have built a term-term adjacency matrix, where the rows and columns represents
terms, and every entry is the number of cooccurrences of two terms. Next we can build a graph
with graph.adjacency () from package igraph.

library(igraph)

# build a graph from the above matrix

g <- graph.adjacency(termMatrix, weighted=T, mode = "undirected")
# remove loops

g <- simplify(g)

# set labels and degrees of vertices

> V(g)$label <- V(g)$name

> V(g)$degree <- degree(g)

After that, we plot the network with layout.fruchterman.reingold.
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> # set seed to make the layout reproducible
> set.seed(3952)

> layoutl <- layout.fruchterman.reingold(g)
> plot(g, layout=layoutl)

'
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Figure 11.1: A Network of Terms - I

In the above code, the layout is kept as layoutl, so that we can plot the graph in the same
layout later.

A different layout can be generated with the first line of code below. The second line produces
an interactive plot, which allows us to manually rearrange the layout. Details about other layout
options can be obtained by running ?igraph: :layout in R.

v

plot(g, layout=layout.kamada.kawai)
tkplot(g, layout=layout.kamada.kawai)

v

We can also save the network graph into a .PDF file with the code below.

v

pdf ("term-network.pdf")
plot(g, layout=layout.fruchterman.reingold)
dev.off ()

vV Vv

Next, we will set the label size of vertices based on their degrees, to make important terms
stand out. Similarly, we also set the width and transparency of edges based on their weights. This
is useful in applications where graphs are crowded with many vertices and edges. In the code
below, the vertices and edges are accessed with V() and E(). Function rgb(red, green, blue,
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alpha) defines a color, with an alpha transparency. We plot the graph in the same layout as

V(g)$label.cex <- 2.2 * V(g)$degree / max(V(g)$degree)+ .2
V(g)$label.color <- rgb(0, 0, .2, .8)

V(g)$frame.color <- NA

egam <- (log(E(g)$weight)+.4) / max(log(E(g)$weight)+.4)
E(g)$color <- rgb(.5, .5, 0, egam)

E(g)$width <- egam

# plot the graph in layoutl

plot(g, layout=layoutl)

vV VVVVYVVYyV
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Figure 11.2: A Network of Terms - II

11.2 Network of Tweets

Similar to the previous section, we can also build a graph of tweets base on the number of terms
that they have in common. Because most tweets contain one or more words from “r”, “data” and
“mining”, most tweets are connected with others and the graph of tweets is very crowded. To
simplify the graph and find relationship between tweets beyond the above three keywords, we
remove the three words before building a graph.

> # remove '"r", "data" and "mining"
> idx <- which(dimnames (termDocMatrix)$Terms Jinj, c("r", "data", "mining"))
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M <- termDocMatrix[-idx,]

# build a tweet-tweet adjacency matrix
tweetMatrix <- t(M) %*J M
library(igraph)

g <- graph.adjacency(tweetMatrix, weighted=T, mode = "undirected")
V(g)$degree <- degree(g)

g <- simplify(g)

# set labels of vertices to tweet IDs
V(g)$label <- V(g)$name

V(g)$label.cex <- 1

V(g)$label.color <- rgb(.4, 0, 0, .7)
V(g)$size <- 2

V(g)$frame.color <- NA

VVVVVVVVVVVVYV

Next, we have a look at the distribution of degree of vertices. From |[Figure 11.3] we can see
that there are around 40 isolated vertices (with a degree of zero). Note that most of them are
caused by the removal of the three keywords.

> barplot (table(V(g)$degree))

30
|

) Halllm DDDD 155 5 S =

0 9 10 11 12 13 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 33 34 35 36 37 39 40 41 42 43 44 45 50 53 55 56 71

Figure 11.3: Distribution of Degree

In the code below, we set vertex colors based on degree, and set labels of isolated vertices to
tweet IDs and the first 20 characters of every tweet. The labels of other vertices are set to tweet
IDs only, so that the graph will not be overcrowded with labels. We also set the color and width
of edges based on their weights.

idx <- V(g)$degree ==

V(g)$label.color[idx] <- rgb(0, 0, .3, .7)

# set labels to the IDs and the first 10 characters of tweets

V(g)$label[idx] <- paste(V(g)$name[idx], substr(df$text[idx], 1, 20), sep=": ")
egam <- (log(E(g)$weight)+.2) / max(log(E(g)$weight)+.2)

E(g)$color <- rgb(.5, .5, 0, egam)

E(g)$width <- egam

V VVVVYVYyV
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> set.seed(3152)
> layout2 <- layout.fruchterman.reingold(g)
> plot(g, layout=layout2)
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Figure 11.4: A Network of Tweets - I

The vertices in crescent are isolated from all others, and next we remove them from graph with

function delete.vertices().

> g2 <- delete.vertices(g, V(g)[degree(g)==0])
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> plot(g2, layout=layout.fruchterman.reingold)
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Similarly, we can also remove edges with low degrees to simplify the graph. Below with function
delete.edges (), we remove edges which have weight of one. After removing edges, some vertices
become isolated and are also removed.

> g3 <- delete.edges(g, E(g)[E(g)$weight <= 1])
> g3 <- delete.vertices(g3, V(g3) [degree(g3) == 0])
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> plot(g3, layout=layout.fruchterman.reingold)
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Figure 11.6: A Network of Tweets - 111

In [Figure 11.6] there are some groups (or cliques) of tweets. Let’s have a look at the group in

the middle left of the figure.

> df$text[c(7,12,6,9,8,3,4)]

[7] State of the Art in Parallel Computing with R http://t.co/zmClglqi

[12] The R Reference Card for Data Mining is updated with functions & packages
for handling big data & parallel computing. http://t.co/FHoVZCyk

[6] Parallel Computing with R using snow and snowfall http://t.co/nxp8EZpv

[9] R with High Performance Computing: Parallel processing and large memory

http://t.co/XZ3ZZBRF

[8] Slides on Parallel Computing in R http://t.co/AdDVxbQ0Y
[3] Easier Parallel Computing in R with snowfall and sfCluster
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http://t.co/BPcinvzK
[4] Tutorial: Parallel computing using R package snowfall http://t.co/CHBCyr76

We can see that tweets 7, 12, 6, 9, 8, 3, 4 are on parallel Computing with R. We can also see
some other groups below:

e Tweets 4, 33, 94, 29, 18 and 92: tutorials for R;

e Tweets 4, 5, 154 and 71: R packages;

o Tweets 126, 128, 108, 136, 127, 116, 114 and 96: time series analysis;
e Tweets 112, 129, 119, 105, 108 and 136: R code examples; and

o Tweets 27, 24, 22,153, 79, 69, 31, 80, 21, 29, 16, 20, 18, 19 and 30: social network analysis.

Tweet 4 lies between multiple groups, because it contains keywords “parallel computing”, “tutorial”
and “package”.

11.3 Two-Mode Network

In this section, we will build a two-mode network, which is composed of two types of vertices:
tweets and terms. At first, we generate a graph g directly from termDocMatrix. After that,
different colors and sizes are assigned to term vertices and tweet vertices. We also set the width
and color of edges. The graph is then plotted with layout.fruchterman.reingold.

> # create a graph

> g <- graph.incidence(termDocMatrix, mode=c("all"))
> # get index for term vertices and tweet vertices
> nTerms <- nrow(M)

> nDocs <- ncol(M)

> idx.terms <- 1:nTerms

> idx.docs <- (nTerms+1): (nTerms+nDocs)

> # set colors and sizes for vertices

> V(g)$degree <- degree(g)

> V(g)$color[idx.terms] <- rgb(0, 1, 0, .5)

> V(g)$sizel[idx.terms] <- 6

> V(g)$color[idx.docs] <- rgb(1, 0, 0, .4)

> V(g)$size[idx.docs] <- 4

> V(g)$frame.color <- NA

> # set vertex labels and their colors and sizes
> V(g)$label <- V(g)$name

> V(g)$label.color <- rgb(0, 0, 0, 0.5)

> V(g)$label.cex <- 1.4%V(g)$degree/max(V(g)$degree) + 1
> # set edge width and color

> E(g)$width <- .3

> E(g)$color <- rgb(.5, .5, 0, .3)
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> set.seed(958) #5365, 227
> plot(g, layout=layout.fruchterman.reingold)
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Figure 11.7: A Two-Mode Network of Terms and Tweets - I
The graph above shows that most tweets are around two centers, “r” and “data mining”. Next,
let’s have a look at which tweets are about “r”. In the code below, nei("r") returns all vertices

LL 77

which are neighbors of vertex
> V(g) [nei("r")]

Vertex sequence:

[1] l|3|l Il4l| ll5ll I16l| l|7ll I18l| lIgll "10" ||12H I119" ||21H
[12] n 22" Il25 n n 28" Il30l| l|33|| Il35 n l|36|| Il41 n ||42|| Il55l| n 64"
[23] n 67“ Il68l| lI73II Il74l| l|75ll Il77l| lI78II Il82l| l|84ll Il85l| n 91 n
[34] lI92II Il94ll lI95II "100" |I101|I Il102|l |I105|I Il108|l “109“ "110" |1112|I
[45] lI113lI |l114|l lI117lI |l118|l lI119lI |l120|l |I121|I |l122|l “126“ |l128|l “129“
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[56] 134" "136" "137" "138" "{140" "141" "142" "143" "{145" "{146" "147"
[67] l|149l| Il151|l u152u ||154u

An alternative way is using function neighborhood() as below.

> V(g) [neighborhood(g, order=1, "r")[[1]]]

We can also have a further look at which tweets contain all three terms: “r”, “data” and
“mining”.

> (rdmVertices <- V(g)[nei("r") & nei("data") & nei("mining")])

Vertex sequence:
[1] n 12" Il35ll l|36|I Il42 n l|55ll Il78l| n 117" Il119|l n 138!] Il143|l n 149"
[12] u151u ||152|| u154n

> df$text[as.numeric(rdmVertices$label)]

[12] The R Reference Card for Data Mining is updated with functions & packages
for handling big data & parallel computing. http://t.co/FHoVZCyk

[35] Call for reviewers: Data Mining Applications with R. Pls contact me if you
have experience on the topic. See details at http://t.co/rcYIXfnp

[36] Several functions for evaluating performance of classification models added
to R Reference Card for Data Mining: http://t.co/FHoVZCyk

[42] Call for chapters: Data Mining Applications with R, an edited book to be
published by Elsevier. Proposal due 30 April. http://t.co/HPaBSbRa

[65] Some R functions and packages for outlier detection have been added to R
Reference Card for Data Mining at http://t.co/FHoVZCyk.

To make it short, only the first five tweets are shown in the result. In the above code, df is a
data frame which keeps tweets of RDataMining, and details of it can be found in [Section 10.2

Next, we remove “r”’, “data” and “mining” to show the relationship between tweets with other
words. Isolated vertices are also deleted from graph.
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> idx <- which(V(g)$name 7inj, c("r", "data", "mining"))
> g2 <- delete.vertices(g, V(g)[idx-1])

> g2 <- delete.vertices (g2, V(g2) [degree(g2)==0])

> set.seed(209)

> plot(g2, layout=layout.fruchterman.reingold)
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Figure 11.8: A Two-Mode Network of Terms and Tweets - IT
From we can clearly see groups of tweets and their keywords, such as time series,

social network analysis, parallel computing and postdoctoral and research positions, which are

similar to the result obtained at the end of Section 11.21

11.4 Discussions and Further Readings

In this chapter, we have demonstrated how to find groups of tweets and some topics in the tweets
with package igraph. Similar analysis can also be done with package sna |Butts, 2010]. There
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are also packages designed for topic modelling, such as package Ida [Chang, 2011 and package
topicmodels |Grin and Hornik, 2011].

For readers interested in social network analysis with R, there are some further readings.
Some examples on social network analysis with the igraph package [Csardi and Nepusz, 2006] are
available as tutorial on Network Analysis with Package igraph at http://igraph.sourceforge.
net/igraphbook/| and R for Social Network Analysis at http://www.stanford.edu/ " messing/
RforSNA.html. There is a detailed introduction to Social Network Analysis with package sna
[Butts, 2010] at http://www.jstatsoft.org/v24/i06/paper. A statnet Tutorial is available
at http://www.jstatsoft.org/v24/109/paper| and more resources on using statnet [Handcock

et al., 2003] for network analysis can be found at http://csde.washington.edu/statnet/resources.

shtml. There is a short tutorial on package network |[Butts et al., 2012] at http://sites.stat.
psu.edu/ dhunter/Rnetworks/. Slides on Social network analysis with R sna package can be
found at http://user2010.org/slides/Zhang.pdf. slides on Social Network Analysis in R can
be found at http://files.meetup.com/1406240/sna_in_R.pdf. Some R codes for community
detection are available at http://igraph.wikidot.com/community-detection-in-r.


http://igraph.sourceforge.net/igraphbook/
http://igraph.sourceforge.net/igraphbook/
http://www.stanford.edu/~messing/RforSNA.html
http://www.stanford.edu/~messing/RforSNA.html
http://www.jstatsoft.org/v24/i06/paper
http://www.jstatsoft.org/v24/i09/paper
http://csde.washington.edu/statnet/resources.shtml
http://csde.washington.edu/statnet/resources.shtml
http://sites.stat.psu.edu/~dhunter/Rnetworks/
http://sites.stat.psu.edu/~dhunter/Rnetworks/
http://user2010.org/slides/Zhang.pdf
http://files.meetup.com/1406240/sna_in_R.pdf
http://igraph.wikidot.com/community-detection-in-r

116 CHAPTER 11. SOCIAL NETWORK ANALYSIS



Chapter 12

Case Study I: Analysis and
Forecasting of House Price Indices

This chapter and the other case studies are not available in this version. They are reserved
exclusively for a book version to be published by Elsevier Inc.
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Chapter 13

Case Study II: Customer
Response Prediction

This chapter and the other case studies are not available in this version. They are reserved
exclusively for a book version to be published by Elsevier Inc.
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Chapter 14

Case Study III: Risk Rating on
Big Data with Limited Memory

This chapter and the other case studies are not available in this version. They are reserved
exclusively for a book version to be published by Elsevier Inc.
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Chapter 15

Case Study IV: Customer
Behavior Prediction and
Intervention

This chapter and the other case studies are not available in this version. They are reserved
exclusively for a book version to be published by Elsevier Inc.
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Chapter 16

Online Resources

This chapter presents links to online resources on data mining with R, includes books, documents,
tutorials and slides.

16.1 R Reference Cards

e R Reference Card, by Tom Short
http://rpad.googlecode.com/svn-history/r76/Rpad_homepage/R-refcard.pdf

R Reference Card for Data Mining
http://www.rdatamining.com/docs

R Reference Card, by Jonathan Baron
http://cran.r-project.org/doc/contrib/refcard.pdf

R Functions for Regression Analysis, by Vito Ricci
http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf

R Functions for Time Series Analysis, by Vito Ricci
http://cran.r-project.org/doc/contrib/Ricci-refcard-ts.pdf

16.2 R

e Quick-R
http://www.statmethods.net/

o R Tutorial
http://www.cyclismo.org/tutorial/R/index.html

e The R Manuals, including an Introduction to R, R Language Definition, R Data Import/Export,
and other R manuals
http://cran.r-project.org/manuals.html

e R for Beginners
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf

e Econometrics in R
http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf

e Using R for Data Analysis and Graphics - Introduction, Fxamples and Commentary
http://www.cran.r-project.org/doc/contrib/usingR.pdf
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http://cran.r-project.org/doc/contrib/refcard.pdf
http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf
http://cran.r-project.org/doc/contrib/Ricci-refcard-ts.pdf
http://www.statmethods.net/
http://www.cyclismo.org/tutorial/R/index.html
http://cran.r-project.org/manuals.html
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
http://www.cran.r-project.org/doc/contrib/usingR.pdf
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Lots of R Contributed Documents, including non-English ones
http://cran.r-project.org/other-docs.html

The R Journal
http://journal.r-project.org/current.html

16.3 Data Mining

Introduction to Data Mining, by Pang-Ning Tan, Michael Steinbach and Vipin Kumar
Lecture slides (in both PPT and PDF formats) and three sample chapters on classification,
association and clustering available at the link below.
http://www-users.cs.unn.edu/%7Ekunar/dmbook

Mining of Massive Datasets, by Anand Rajaraman and Jeff Ullman
The whole book and lecture slides are free and downloadable in PDF format.
http://infolab.stanford.edu/%7Eullman/mmds.html

Lecture notes of data mining course, by Cosma Shalizi at CMU
R code examples are provided in some lecture notes, and also in solutions to home works.
http://www.stat.cmu.edu/%7Ecshalizi/350/

Tutorial on Spatial and Spatio-Temporal Data Mining
http://www.inf .ufsc.br/%7Evania/tutorial_icdm.html

Tutorial on Discovering Multiple Clustering Solutions
http://dme.rwth-aachen.de/en/DMCS

A Complete Guide to Nonlinear Regression
http://www.curvefit.com/

A paper on Open-Source Tools for Data Mining, published in 2008
http://eprints.fri.uni-1j.s1/893/1/2008-0penSourceDataMining.pdf

16.4 Data Mining with R

Data Mining with R - Learning by Case Studies
http://www.liaad.up.pt/ ltorgo/DataMiningWithR/

Data Mining Algorithms In R
http://en.wikibooks.org/wiki/Data_Mining Algorithms_In_R

e Data Mining Desktop Survival Guide

http://www.togaware.com/datamining/survivor/

16.5 Decision Trees

o An Introduction to Recursive Partitioning Using the RPART Routines

http://www.mayo.edu/hsr/techrpt/61.pdf

16.6 Time Series Analysis

e An R Time Series Tutorial

http://www.stat.pitt.edu/stoffer/tsa2/R_time_series_quick_fix.htm


http://cran.r-project.org/other-docs.html
http://journal.r-project.org/current.html
http://www-users.cs.umn.edu/%7Ekumar/dmbook
http://infolab.stanford.edu/%7Eullman/mmds.html
http://www.stat.cmu.edu/%7Ecshalizi/350/
http://www.inf.ufsc.br/%7Evania/tutorial_icdm.html
http://dme.rwth-aachen.de/en/DMCS
http://www.curvefit.com/
http://eprints.fri.uni-lj.si/893/1/2008-OpenSourceDataMining.pdf
http://www.liaad.up.pt/~ltorgo/DataMiningWithR/
http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R
http://www.togaware.com/datamining/survivor/
http://www.mayo.edu/hsr/techrpt/61.pdf
http://www.stat.pitt.edu/stoffer/tsa2/R_time_series_quick_fix.htm
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o Time Series Analysis with R
http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/zeitreihen/sommer03/

ts_r_intro.pdf

e Using R (with applications in Time Series Analysis)
http://people.bath.ac.uk/masgs/timej20series/TimeSeriesR2004 . pdf

o CRAN Task View: Time Series Analysis
http://cran.r-project.org/web/views/TimeSeries.html

e Time Series Analysis for Business Forecasting
http://home.ubalt.edu/ntsbarsh/stat-data/Forecast.htm

16.7 Spatial Data Analysis

o Applied Spatio-temporal Data Analysis with FOSS: R+0SGeo
http://www.geostat-course.org/GeoSciences_AU_2011

16.8 Text Mining

o Text Mining Infrastructure in R
http://www.jstatsoft.org/v25/1i05

e Introduction to the tm Package Text Mining in R
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf

o Text Mining Handbook (with R code examples)
http://www.casact.org/pubs/forum/10spforum/Francis_Flynn.pdf

o Distributed Text Mining in R
http://epub.wu.ac.at/3034/

16.9 Regression

o A Complete Guide to Nonlinear Regression
http://www.curvefit.com/


http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/zeitreihen/sommer03/ts_r_intro.pdf
http://www.statoek.wiso.uni-goettingen.de/veranstaltungen/zeitreihen/sommer03/ts_r_intro.pdf
http://people.bath.ac.uk/masgs/time%20series/TimeSeriesR2004.pdf
http://cran.r-project.org/web/views/TimeSeries.html
http://home.ubalt.edu/ntsbarsh/stat-data/Forecast.htm
http://www.geostat-course.org/GeoSciences_AU_2011
http://www.jstatsoft.org/v25/i05
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
http://www.casact.org/pubs/forum/10spforum/Francis_Flynn.pdf
http://epub.wu.ac.at/3034/
http://www.curvefit.com/
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APRIORI,

ARIMA, [6§]
association rule,
AVF, [62]

CLARA, [A7]

clustering, [45] [60] [96] [07]

data exploration,

data mining,

DBSCAN, [49]

decision tree, 27]
density-based clustering, 9]
discrete wavelet transform,

document-term matrix, see term-document ma-

trix

DTW, see dynamic time warping
DWT, see discrete wavelet transform

dynamic time warping, @
ECLAT,
forecasting, [6§]

generalized linear model,

generalized linear regression,

hierarchical clustering, [49] [71} [74} [06]

k-means, see k-means clustering

k-means clustering,

k-medoids, see k-medoids clustering

k-medoids clustering, [46] [09]
k-NN classification, [7§]

linear regression,

LOF, [50]

logistic regression, [41]
non-linear regression,

outlier,

PAM, (7] 9]
parallel coordinates,

R, [

random forest, [33]
regression, [37]

seasonal component,
silhouette, [48]

social network analysis, [103]
stemming, see word stemming

STL, [61]

tag cloud, see word cloud
term-document matrix,
text mining, [89]

TF-IDF, 93]

time series, [61] [65)]

time series classification, [75]
time series clustering,
time series decomposition,
time series forecasting,
topic model,

Twitter, [39] [103]

word cloud,
word stemming, [91]
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