
www.allitebooks.com

http://www.allitebooks.org


Raspberry Pi Computer 
Architecture Essentials

Explore Raspberry Pi's architecture through innovative 
and fun projects

Andrew K. Dennis

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Raspberry Pi Computer Architecture Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1170316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-797-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com 
http://www.allitebooks.org


Credits

Author
Andrew K. Dennis

Reviewer
Ed Snajder

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Divya Poojari

Content Development Editor
Trusha Shriyan

Technical Editor
Shivani Kiran Mistry

Copy Editor
Safis Editing

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org


About the Author

Andrew K. Dennis is the manager of professional services software development 
at Prometheus Research. Prometheus Research is a leading provider of integrated 
data management for research and is the home of HTSQL, an open source 
navigational query language for RDBMS.

Andrew has a diploma in computing, a BSc in software engineering, and is currently 
studying for a second BSc in creative computing in his spare time.

He has over 12 years of experience working in the software industry in the UK, 
Canada, and the USA. This experience includes e-learning courseware development, 
custom CMS and LMS development, SCORM consultancy, web development in 
a variety of languages, open source application development, blogging about the 
integration of web technologies with electronics for home automation, and punching 
lots of Cat5 cables.

His interests include web development, e-learning, 3D printing, Linux, the 
Raspberry Pi and Arduino, open source projects, home automation and the use of 
web technology in this sphere, amateur electronics, home networking, and software 
engineering.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewer

Ed Snajder is a database engineer and hardware hacker working at Jive Software. 
When not breaking databases and distributed data systems, Ed spends a lot of time 
in the community evangelizing Raspberry Pi, Arduino, and open source 3D printing. 
His belief is that if every child could have a Raspberry Pi, we will soon have the 
flying cars we've always dreamed of. He lives in Portland, Oregon, with his partner, 
Lindsay and his Shih-Tzus, Obi-wan and Gizmo.

www.allitebooks.com

http://www.allitebooks.org


www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org


[ i ]

Table of Contents
Preface vii
Chapter 1: Introduction to the Raspberry Pi's Architecture  
and Setup 1

History and background of the Raspberry Pi 1
Raspberry Pi hardware specifications 2
Dimensions 3
System on Chip 3
CPU 4
GPU 4
SDRAM 4
4 USB 2.0 ports and 1 SoC on-board USB 4
MicroSD card port 4
Ethernet port 5
Audio 5
GPIO pins 5
Video – analog TV out 6
Video – HDMI port 6

Basic hardware needed 6
The microSD card – the main storage and boot device  
of the Raspberry Pi 2 7

Preinstalled microSD card versus creating your own 8
The NOOBS operating system installation manager 8
Downloading the latest version of Raspbian 9
Setting up your microSD card and installing the Raspbian  
operating system 9
Raspbian installation wrap-up 11
Check SSH is running 11

RSA key generation for SSH 12

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Assign a static IP to your Raspberry Pi 2 17
Installing Screen and Vim 19

Vim – an optional handy text editor 20
Running tests on the OS and configuration changes 21

Diagnostic tests 21
Over and underclocking the Raspberry Pi 22
Going further – testing the GPIO pins 23

Some handy Linux commands 23
Troubleshooting 24
Summary 24

Chapter 2: Programming on Raspbian 25
Which programming languages? 25
Assembly language 26

Assembling and linking 29
The C and C++ languages 31

C – a brief introduction 31
A quick look at C++ 32
Our first C program 33

Geany – a handy text editor and development environment 33
Creating a new C program 34

C libraries – a trove of reusable code 36
The C (and C++) compiler 37
Compiling and running our application 38

The Python language 39
A simple Python program 40
Running a Python program from a file 42

Summary 44
Chapter 3: Low-Level Development with Assembly Language 45

Back to basics 45
Multiline comments 47
Directives 47
Single line comments 48
Registers 48
Branching 49
The assembler 49
The linker 50
Makefiles 50

Memory and addresses 52
The .data directive 53

The .balign directive 54

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iii ]

Words 54
Labels 54

The memory 55
The addresses 55
LDR and SUB 56
Running our program 57

Adding power to our program – control structures 58
If else statements 60
Iteration 61
Testing our control structures 61

Summary 62
Chapter 4: Multithreaded Applications with C/C++ 63

What are threads? 63
Thread types 65

User level threads 65
Kernel level threads 65
Hybrid threads 66

POSIX threads 66
Steps involved in implementing threads 67

Creation and termination 67
Synchronization 68
Scheduling 69

An example in C 69
Trying out our program 73

A C++ equivalent 74
The g++ command 76

Going further – mutexes and joins 77
Compile and test 80

Summary 81
Chapter 5: Expanding on Storage Options 83

Booting up 83
Setting up the external HDD 85

Getting the disk name 85
Setting up the HDD 86
Modifying cmdline.txt 87

Network-attached storage (NAS) 88
Installing Samba 89
Testing the NAS 90

Mac 90
Linux 91
Windows 91

Summary 92

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ iv ]

Chapter 6: Low-Level Graphics Programming 93
VideoCore IV GPU 93

Sample programs 94
Accessing the frame buffer 96

Check the display settings 97
Testing our C code 100

Filling the screen with a color 100
A C program to turn the screen red 101
Compile and run the C program 105

Drawing a line 106
Plotting pixels and drawing lines 106
Compile and run 110
Next steps – polygons 111

Summary 112
Chapter 7: Exploring the Raspberry Pi's GPIO Pins 113

Introduction to GPIO pins 113
Standard GPIO 114
I2C 115
Serial Rx and Tx 117
SPI 118
PWM and PPM 119
GPIO power voltages 120

Hardware choices 120
Prototyping shields and boards 120
Cooking Hacks Arduino bridge shield 121
Connecting directly to the GPIO pins 123

Switching an LED on and off 123
Setting up the hardware 123
C blinking LED program 124
Python blinking LED program 126
Reading data from the GPIO pins in Python 129

Summary 131
Chapter 8: Exploring Sound with the Raspberry Pi 2 133

Introduction to the Raspberry Pi's sound 134
Configuring the audio output 134
Setting the audio output 135

Interacting with audio through GPIO 135
Installing the audio drivers 136
Hardware setup 136



Table of Contents

[ v ]

Loading drivers 137
Getting some drum tracks 138
Python drum machine 138
Audio shields for the Raspberry Pi 142

C and ALSA 142
ALSA examples 145

Introducing Sonic Pi 147
Setup 147
Experimenting with Sonic Pi 149

Summary 151
Chapter 9: Building a Web Server 153

Introduction to web servers 153
HTTP requests 154
HTML 155

Popular web servers available on the Raspberry Pi 156
Apache 156
NGINX 158

Building a Python web server 159
Python web server code 160
Adding an index page and a favicon 162

Adding database support 163
SQLite 163
SQL – a quick overview 163
Python program with SQLite support 164
Flask – displaying database data via Python 166
Next steps 168

Summary 169
Chapter 10: Integrating with Third-Party Microcontrollers 171

Genuino/Arduino microcontroller 172
Setting up the Arduino software 173

Installing the IDE on your Raspberry Pi 2 173
A quick guide to the Arduino IDE 174

Integration with Arduino 175
Serial communication over USB 175
Communication between the Arduino and Raspberry Pi via GPIO 178
Communication over I2C 182
Communication over the Web 188

Summary 189



Table of Contents

[ vi ]

Chapter 11: Final Project 191
Choose your storage mechanism 192
Building a Flask-based website 192

Adding a database 192
A basic website 193
Web forms 198

Add 198
Edit 200

Adding in an LED 202
Building the circuit – a recap 202
Integrating with our Python app 203

Extending the project further 205
Replace the LED with a screen 205
E-mail support 205
Playing a sound 206

Summary 206
Index 207



[ vii ]

Preface
Are you interested in the myriad features of your Raspberry Pi 2? From the hardware 
to the software, do you wish to understand how you can interact with these features?

Then this is the book for you!

The Raspberry Pi 2 is one of the latest hardware offerings in the Raspberry Pi family. 
With many new and improved features than previous versions, there is so much 
more an enthusiast can do.

This book will walk you through how you can get the most out of your device.

You will learn about how to program on the Raspberry Pi using the Assembly 
language, Python, and C/C++. This will include building a web server in Python 
and saving data to an SQLite database. Ever wondered what threads are? These are 
covered here too.

In addition to this, you will explore the various types of GPIO pins and how these 
can be used to interact with third party microcontrollers and electronic circuits.

The sound and graphics capabilities of the Raspberry Pi 2 are also experimented  
with through a number of projects. And to expand the Raspberry Pi's storage option, 
we will also set up an external HDD via USB.

Finally, the book concludes with a project that brings together many of the 
technologies explained throughout the chapters.

By the time you finish reading this book, you'll have a firm knowledge of the 
Raspberry Pi 2 and how you can devise your own projects that use its capabilities.



Preface

[ viii ]

What this book covers
Chapter 1, Introduction to the Raspberry Pi's Architecture and Setup, provides an 
introduction to the Raspberry Pi and its hardware architecture. We will explore 
the various hardware components in detail, and this will provide a basis for the 
programming projects in future chapters. A quick guide to getting Raspbian installed 
and SSH enabled is also provided.

Chapter 2, Programming on Raspbian, provides an introduction to the programming 
languages used in this book. An explanation will be provided of which language 
is used and why. This chapter will also guide you through setting up the tools for 
Assembler, C/C++, and Python. Three introduction programs will then be walked 
through to give you the opportunity to test that your setup works.

Chapter 3, Low-Level Development with Assembly Language, explores programming  
in the Raspbian operating system using the Assembler programming language.

Chapter 4, Multithreaded Applications with C/C++, having looked at Assembler, 
we move up the programming hierarchy to C/C++. We learn how to write 
multithreaded applications and understand their usefulness. Through these 
applications, we learn more about the multi-core CPU of the Raspberry Pi 2.

Chapter 5, Expanding on Storage Options, offers a guide to expanding the storage 
options of the Raspberry Pi beyond the SD card.

Chapter 6, Low-Level Graphics Programming, shows you how to interact with the 
graphics hardware on the Raspberry Pi 2. Here you will learn how to draw to the 
screen via the frame buffer.

Chapter 7, Exploring the Raspberry Pi's GPIO Pins, shows you how to interact with 
electronic components using the Raspberry PI's GPIO pins. Here we look at how 
Python libraries can be used to simplify the process.

Chapter 8, Exploring Sound with the Raspberry Pi 2, gives an introduction to the basics 
of sound programming using the Raspberry Pi's hardware. Learn about live coding 
via the Sonic-Pi IDE to generate your own algorithmic music.

Chapter 9, Building a Web Server, expands upon your knowledge of Python to build 
a web server via Flask. This chapter explores the Ethernet and Wi-Fi capabilities of 
the Raspberry Pi for delivering web-based applications. In this chapter, you will also 
learn about using SQLite to store data and display it via a web page. Topics covered 
also include Apache and NGINX.

Chapter 10, Integrating with Third-Party Microcontrollers, in this chapter we learn how 
to interact with third-party microcontrollers such as the Arduino. These devices can 
form the basis of robotics projects and augment the abilities of the Raspberry Pi.



Preface

[ ix ]

Chapter 11, Final Project, will conclude the book with a final project that brings 
together many of the topics explored throughout previous chapters.

What you need for this book
The following list provides an overview of the recommended and optional hardware 
needed for the projects in this book. Where hardware is needed for a specific chapter, 
the relevant chapter is listed:

• Raspberry Pi 2.
• USB keyboard.
• HDMI monitor.
• USB mouse.
• MicroSD card.
• Wall power unit for the Raspberry Pi 2.
• A working Internet connection.
• A selection of wires for connecting to the GPIO pins; 12 recommended for 

Chapter 7, Exploring the Raspberry Pi's GPIO pins, Chapter 10, Integrating with 
Third-Party Microcontrollers, and Chapter 11, Final Project.

• An LED for Chapter 7, Exploring the Raspberry Pi's GPIO pins and Chapter 11, 
Final Project.

• 1.6K, 3.3k Ohm resistor for Chapter 10, Integrating with Third-Party 
Microcontrollers.

• 270 Ohm resistor for Chapter 7, Exploring the Raspberry Pi's GPIO pins  
and Chapter 11, Final Project.

• USB hard drive for Chapter 5, Expanding on Storage Options. 
• Cooking Hacks Raspberry Pi to Arduino Bridge Shield or Pi Cobbler.  

These are optional and not necessary, as the breadboard can replace these.
• Breadboard. Only required if not using a third-party shield. Needed for 

Chapter 7, Exploring the Raspberry Pi's GPIO pins, Chapter 10, Integrating with 
Third-Party Microcontrollers, and Chapter 11, Final Project.

• Arduino Uno. Needed for Chapter 10, Integrating with Third-Party 
Microcontrollers.

• USB cable to connect Arduino to Raspberry Pi. Needed for Chapter 10, 
Integrating with Third-Party Microcontrollers.



Preface

[ x ]

Who this book is for
Are you interested in the architecture that forms the Raspberry Pi 2? Would you like 
to learn how its components work through interactive projects?

This book provides a hands-on guide to the Raspberry Pi 2's hardware and software. 
Each chapter builds upon the last to develop applications and electronics that 
leverage many of the features of the Raspberry Pi 2. From programming sound to 
integrating with third party microcontrollers, it's all covered here.

Aimed at the Raspberry Pi enthusiast, this is a perfect introductory text on how to 
get the most out of your new device.

While understanding programming concepts is helpful, no prior knowledge of the 
programming languages covered in this book is required.

Some simple electronics projects are included but no soldering is required.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The cd command allows you to change directories."

A block of code is set as follows:

int main(void)
{
int a;
printf("Please input an integer: ");
scanf("%d", &a);
printf("You entered the number: %d\n", a);
return 0;
}

Any command-line input or output is written as follows:

mv /home/pi/test.txt /home/pi/test2.txt

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"Click on the Generate button."



Preface

[ xi ]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support


Preface

[ xii ]

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


[ 1 ]

Introduction to the Raspberry 
Pi's Architecture and Setup

This chapter provides a brief introduction to the Raspberry Pi 2 Model B including 
both its history and its hardware architecture.

As well as discussing its system architecture, we will also look at some time saving 
methods for installing the Raspbian operating system.

Finally, we will wrap up with a number of tips and tricks, including how to monitor 
the voltage, overclock the CPU, and check the device's temperature. These quick 
tips should get you started exploring the operating system, installing software, and 
investigating the hardware.

We will mainly focus on the following topics:

• Raspberry Pi hardware architecture and components
• Installing Raspbian via a boot loader and enabling and testing SSH with RSA 

keys

History and background of the Raspberry 
Pi
The Raspberry Pi is a credit card-sized computer designed and manufactured in the 
UK with the initial intention of providing a cheap computing device for education. 
Since its release, however, it has grown far beyond the sphere of academia.



Introduction to the Raspberry Pi's Architecture and Setup

[ 2 ]

Its origins can be found in the University of Cambridge's Computer Laboratory 
in 2006. Computer scientist Eben Upton, along with Rob Mullins, Jack Lang and 
Alan Mycroft, were concerned that incoming computing undergraduate students 
had grown divorced from the technical aspects of computing. This was largely 
due to school syllabuses that placed an emphasis on using computers rather than 
understanding them.

Off the back of this initial concern, the Raspberry Pi foundation was formed. Over 
the next six years the team worked on developing a cheap and accessible device that 
would help schools to teach concepts such as programming, thus bringing students 
closer to understanding how computing works.

The Raspberry Pi's initial commercial release was in February 2012. Since then, the 
board has gone through a number of revisions and has been available in two models, 
those being Model A and Model B.

The Model A device is the cheaper and simpler of the two computers and the Model 
B the more powerful, including support for Ethernet connectivity.

In February 2015, the Raspberry Pi 2 Model B was released, and this is the device 
discussed in this book.

The new Raspberry Pi 2 is significantly more powerful than previous versions, 
opening us up to many new possibilities.

We will now look at the hardware of the device to get a basic understanding of what 
it is capable of doing. Future chapters will build upon the basics presented here.

Raspberry Pi hardware specifications
The new Raspberry Pi is built on the back of the Broadcom BCM2836. The BCM2836 
is a system-on-a-chip processor containing four ARM cores and Broadcom's 
VideoCore® IV graphics stack.

In contrast to this, previous Raspberry Pi A and B models only contained  
a single core.

On top of this, several other components make up the device, including USB, RCA, 
and microSD card storage. The previous Raspberry Pi Model B only contained two 
USB drives and a microUSB compared to the four USB drives and microUSB of the 
second version.

You can read a good breakdown of how the two boards standup to each other by 
visiting the following website: http://www.alphr.com/raspberry-pi-2/1000353/
raspberry-pi-2-vs-raspberry-pi-b-a-raspberry-pi-comparison.

http://www.alphr.com/raspberry-pi-2/1000353/raspberry-pi-2-vs-raspberry-pi-b-a-raspberry-pi-comparison
http://www.alphr.com/raspberry-pi-2/1000353/raspberry-pi-2-vs-raspberry-pi-b-a-raspberry-pi-comparison


Chapter 1

[ 3 ]

So, compared to earlier models, version 2 is a far more capable computer, yet still 
remains at the same price. The added benefit of having multiple cores allows us to 
explore different programming techniques for utilizing them.

Next, we shall cover the core components of the Raspberry Pi board in more detail. 
The following is an image of the board with a description of each component:

Image courtesy of Wikipedia

Dimensions
The Raspberry Pi 2 is a small machine measuring only 85.60 mm x 56 mm x 21 mm 
and weighing approximately 45g. This small size makes it suitable for embedded 
projects, home automation devices, arcade machines, or building small multi-device 
clusters.

System on Chip
The System on Chip (SoC) architecture that the Raspberry Pi 2 implements is the 
Broadcom BCM2836, which we touched upon earlier in this chapter. This contains  
a CPU, GPU, SDRAM, and single USB port. Each of these items is discussed in more 
detail under the appropriate heading.



Introduction to the Raspberry Pi's Architecture and Setup

[ 4 ]

CPU
A central processing unit is the brain of your Raspberry Pi. It is responsible for 
processing machine instructions, which are the result of your compiled programs.

The BCM2836 implements a 900 MHz quad-core ARM Cortex-A7 processor.  
This runs on the ARMv7 instruction set.

The ARM architecture reference manual can be downloaded from ARM's website at 
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0406c/index.html.

GPU
The graphics processing unit (GPU) is a specialist chip designed to handle the 
complex mathematics required to render graphics.

The Broadcom VideoCore Iv 250 MHz supports OpenGL ES 2.0 (24 GFLOPS)  
Mpeg-2 and VC-1 (with license). It also includes a 1080p30 H.264/MPEG-4 AVC 
decoded/encoder.

The documentation for the GPU can be found on Broadcom's website at https://
www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf.

SDRAM
The Raspberry Pi 2 comes equipped with 1 GB of SDRAM, which is shared between 
the GPU and CPU.

4 USB 2.0 ports and 1 SoC on-board USB
The previous version of the Raspberry Pi Model B contained only a single microUSB 
port and a two standard USB ports. The Raspberry Pi 2 has been expanded to include 
an onboard 5-port USB hub.

This allows you to connect four standard USB cables to the device and a single 
microUSB cable. The micro USB port can be used to power your Raspberry Pi 2.

MicroSD card port
The microSD card is the main boot and storage mechanism of the Raspberry Pi. 
It is upon the microSD card that you will load your operating system and store 
data. Later in this book we will look at using the microSD purely for booting the 
Raspberry Pi, and then using a USB hard drive as a storage mechanism. In this 
chapter, we will delve into how we can setup the SD card with the Raspbian 
operating system.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0406c/index.html
https://www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf
https://www.broadcom.com/docs/support/videocore/VideoCoreIV-AG100-R.pdf


Chapter 1

[ 5 ]

Ethernet port
One of the benefits of the Raspberry Pi 2 Model B is that it contains an Ethernet 
port. Many Raspberry Pi packages available on Amazon and similar stores include 
a wireless USB dongle; however, this results in you having to use up a USB port. If 
you plan to place your Raspberry Pi near a router or switch or have enough Ethernet 
cable, then you can connect your Raspberry Pi directly with the Ethernet jack.

The Raspberry Pi 2 supports 10/100 Mbps Ethernet, and the USB adapter in the 
third/fourth port of USB hub can also be used for Ethernet via a USB to Ethernet 
adapter.

Ethernet to USB adapters can be purchased from most good electronics stores and 
you can read more about the technology at https://en.wikipedia.org/wiki/
Ethernet_over_USB.

Audio
The Raspberry Pi 2 implements the Inter-IC Sound (I2S) serial bus for audio input 
and output. This allows the device to connect multiple digital audio devices together. 
A 3.5mm TRRS jack is available and shared with the analog video output. The HDMI 
component also provides digital audio output.

Further information on configuring the audio output of the Raspberry Pi can be 
found on the official Raspberry Pi website: https://www.raspberrypi.org/
documentation/configuration/audio-config.md.

GPIO pins
The main method for interacting with electronic components and expansion boards 
is through the general purpose input/output (GPIO) pins on the Raspberry Pi.

The Raspberry Pi 2 Model B contains 40 pins in total. Future chapters will also look 
at how we can program these to control electronic devices.

As the acronym suggests the GPIO pins can accept both input and output commands 
and can be controlled by programs in a variety of languages running on the 
Raspberry Pi.

The input for example could be readings from a temperature sensor, and the output 
a command to another device to switch an LED on or off.

The Raspberry Pinout project provides an interactive guide to each GPIO pin and can 
be found at http://pinout.xyz/.

https://en.wikipedia.org/wiki/Ethernet_over_USB
https://en.wikipedia.org/wiki/Ethernet_over_USB
https://www.raspberrypi.org/documentation/configuration/audio-config.md
https://www.raspberrypi.org/documentation/configuration/audio-config.md
http://pinout.xyz/


Introduction to the Raspberry Pi's Architecture and Setup

[ 6 ]

Video – analog TV out
As well as providing a digital method for hooking up to a TV or monitor, the 
Raspberry Pi 2 also comes with analog support. The method of connection is 
commonly known as a composite or RCA port and earlier models of the Raspberry 
Pi came specifically with an RCA jack. RCA cables typically come with three 
connectors, two for audio and one (often yellow) for video.

With the release of the Raspberry Pi 2 the composite video (RCA) and 3.5 mm 
audio jacks functionality has been merged into a single TRRS hardware component. 
Therefore, if you wish to use video through this port, you may need to get a 3.5mm 
Mini AV TRRS to RCA cable instead. These can be found at any good electronics 
stores or on Amazon.

The Raspberry Pi 2 supports both PAL and NTSC standards.

Video – HDMI port
Also included is a High-Definition Multimedia Interface (HDMI) port. This allows 
the Raspberry Pi 2 to be hooked up to high definition devices such as televisions and 
monitors. This port provides a digital alternative to the TRRS jack.

The HDMI port is ideal for streaming video and audio to your TV or monitor.

Basic hardware needed
In order to get up and running with your Raspberry Pi 2 you will need the following 
additional hardware components:

• MicroSD card
• Micro USB power cable
• Monitor—preferably HDMI
• HDMI cable or 3.5mm to RCA AV cable
• USB keyboard
• USB mouse
• Protective case—optional
• Wi-Fi dongle or Ethernet cable

Many websites offer starter kits that include some of these components, and an 
existing monitor can be reused.



Chapter 1

[ 7 ]

The eLinux website also provides a good guide to peripherals at http://elinux.
org/RPi_VerifiedPeripherals.

Before we can power up and start using our Raspberry Pi, however, we need to 
install an operating system on a microSD card.

The microSD card – the main storage  
and boot device of the Raspberry Pi 2
A micro secure digital (microSD) card is a portable high performance storage medium 
used in a variety of electronic devices including cameras, phones and computers. You 
may already be familiar with them if you use one of the devices we have just listed.

Our Raspberry Pi 2 comes equipped with a microSD slot, which lets us use a 
microSD card as our main storage and boot mechanism. The card is therefore used  
in a similar manner to a hard drive on a traditional computer or portable device.

The previous Raspberry Pi models used a standard SD card, which was much larger. 
Therefore, the microSD card saves space on the circuit board and does not poke out as 
far, reducing the risk of it being broken.

When choosing a microSD card for your projects, there are a variety of brands on the 
market, and they come in a range of storage sizes running into the tens of gigabytes.

For the projects in this book we recommend using a card with a large amount  
of storage and you should look at choosing a card that is at least 8 GB in size.  
The NOOBS application, for example, requires a card of at least this size.

The official Raspberry Pi website provides a guide to microSD cards at  
http://www.raspberrypi.org/documentation/installation/sd-cards.md  
and is a good place to start.

We will now discuss the option of purchasing a microSD card preinstalled with 
the Raspbian operating system or New Out Of the Box Software(NOOBS) versus 
formatting and installing the operating system ourselves.

For those who really wish to understand the Raspberry Pi 2 in detail, installing the 
operating system from scratch may be a more rewarding experience.

http://elinux.org/RPi_VerifiedPeripherals
http://elinux.org/RPi_VerifiedPeripherals
http://www.raspberrypi.org/documentation/installation/sd-cards.md


Introduction to the Raspberry Pi's Architecture and Setup

[ 8 ]

Preinstalled microSD card versus creating 
your own
A number of websites offer microSD cards preloaded with one of the operating 
systems that are available for the Raspberry Pi 2. An example can be found at the 
Allied Electronics website at http://www.alliedelec.com/raspberry-pi-8gb-
sd-card-raspberry-pi-noobs-1-4/70470344/.

These are a good solution for anybody looking to get up and running quickly or who 
are not comfortable installing an operating system by themselves from scratch. They 
are also useful for those who do not have second computer to work with in order to 
format a new microSD card.

The official Raspberry Pi distributions Element 14 also offer a preinstalled microSD 
card equipped with NOOBS, a Raspberry Pi 2 operating system boot loader. It can be 
found at https://www.element14.com/community/community/raspberry-pi.

The second option is to purchase a new blank microSD card and follow the 
instructions contained in this chapter.

It should be noted that if you do not have a home Mac or PC accessible to format a 
new blank microSD card, then we would recommend acquiring a preformatted card. 
This should come loaded with either Debian Jessie Raspbian, or the NOOBS boot 
loader application.

The NOOBS operating system installation 
manager
This book assumes that the reader will be installing the Raspbian operating system 
himself or herself. The simplest method for doing this is to install the NOOBS 
operating system installation manager onto your microSD card.

NOOBS makes the setup of your Raspberry Pi 2 easy and also provides you with 
a mechanism for choosing other operating systems that are compatible with the 
Raspberry Pi.

The official Raspberry Pi website contains an introduction and guide to NOOBS  
and can be found at http://www.raspberrypi.org/help/noobs-setup/.

If you already have a blank microSD card, you can download NOOBS from 
https://www.raspberrypi.org/downloads/noobs/.

http://www.alliedelec.com/raspberry-pi-8gb-sd-card-raspberry-pi-noobs-1-4/70470344/
http://www.alliedelec.com/raspberry-pi-8gb-sd-card-raspberry-pi-noobs-1-4/70470344/
https://www.element14.com/community/community/raspberry-pi
http://www.raspberrypi.org/help/noobs-setup/
https://www.raspberrypi.org/downloads/noobs/


Chapter 1

[ 9 ]

When installing Raspbian for the first time via NOOBS you will also be presented 
with the raspi-config screen. This provides some handy shortcuts that allow you to 
do the following:

• Expand the file system
• Change the user password
• Enable boot to desktop
• Change language
• Enable the camera if you have purchased the peripheral
• Add to Rastrack Raspberry Pi Map
• Overclock your Raspberry Pi
• Explore some advanced configuration options

If you choose not to install Raspbian via NOOBS, then the following section will 
guide you through the process. If you are using NOOBS you can skip to the Raspbian 
installation wrap-up section.

Downloading the latest version of Raspbian
Your first task will be to download the Raspbian operating system from the official 
Raspberry Pi website at https://www.raspberrypi.org/downloads/raspbian/.

There are several options for downloading Raspbian including an older version of 
the OS based on Debian Wheezy. We recommend grabbing the latest version, and it 
can be obtained over either BitTorrent or via a ZIP file.

The latest version as of September 2015 is Raspbian Jessie

Once you have obtained a copy of the operating system you can move onto 
formatting your microSD card and installing the image.

Setting up your microSD card and installing 
the Raspbian operating system
The Raspbian installation process involves two steps:

• Formatting the microSD card to the FAT file system
• Copying the Raspbian image to the card

https://www.raspberrypi.org/downloads/raspbian/


Introduction to the Raspberry Pi's Architecture and Setup

[ 10 ]

It is important that we quickly look at what File Allocation Table (FAT) is and why 
we need it.

FAT is a method for defining which sectors of a disk or microSD card files are stored 
in and which sectors on the disk are free to have new data written to them.

The standard has its origins in the 1970s for use on floppy disks and was developed 
by Bill Gates and Marc McDonald.

You can read more about FAT here: https://en.wikipedia.org/wiki/File_
Allocation_Table.

Due to its simplicity of implementation and robustness, this standard is still used 
on SD and microSD cards today. Therefore, it is the format you will need in order to 
install the Raspberry Pi's operating system onto your microSD card.

Due to its widespread adoption you may find and microSD card you purchase is 
already formatted to FAT.

We recommend, however, formatting any new cards you purchase to ensure you do 
not encounter any problems.

The official Raspberry Pi website provides handy how-to guides for the three major 
operating systems on how to format and install the Raspbian image.

You can read an up-to-date overview of the installation procedure at https://www.
raspberrypi.org/documentation/installation/installing-images/README.md.

The following are guides to formatting an SD card for your particular operating 
system:

• Windows (https://www.raspberrypi.org/documentation/
installation/installing-images/windows.md)

• Mac OS X (https://www.raspberrypi.org/documentation/
installation/installing-images/mac.md)

• Linux (https://www.raspberrypi.org/documentation/installation/
installing-images/linux.md)

Having completed installing the operating system we can now look at some final 
configuration before exploring some interesting features of Raspbian.

https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/README.md
https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md


Chapter 1

[ 11 ]

Raspbian installation wrap-up
The following section assumes you have your Raspberry Pi connected to a monitor and 
with a keyboard and mouse available. It also assumes you have your configuration set 
to boot to desktop and have powered up and logged into your device.

You should at this point connect your device to your home router. If you are 
planning on using Wi-Fi, read on.

Now that you have successfully installed Raspbian you should see the Linux desktop.

If you do not see the desktop, but the command line instead, 
you can type startx to start the GUI.

This desktop contains icons in the top menu linking to a number of programs 
installed by default with the operating system.

One important icon is the link to LXTerminal. This icon launches the Linux terminal 
window. Click on this icon and you should see the command line load.

The following tasks in this section can all be performed in this window.

As a handy shortcut you can also load the raspi-config application at any time by 
typing the following command:

sudo raspi-config

You can read about the sudo command here: 
https://www.sudo.ws/.

If you update settings in this manner you may need to reboot the Raspberry Pi for 
them to take affect.

Check SSH is running
In order to connect to our Raspberry Pi 2 from another device via a terminal window 
we need to ensure that the Secure Shell(SSH) server is up and running. SSH is the 
default mechanism for secure communication between our Linux machines. If you 
used NOOBS to install the OS you may have configured the SSH server at this point 
via the advanced options. We can check that the SSH service is running successfully 
as follows.

www.allitebooks.com

https://www.sudo.ws/
http://www.allitebooks.org


Introduction to the Raspberry Pi's Architecture and Setup

[ 12 ]

Open up a terminal window from the Raspbian desktop and type the following 
command:

ps aux | grep sshd

The following sshd process should be displayed. This tells us the services are up  
and running:

root    2017  0.0  0.3   6228  2892 ?        Ss   15:13   0:00 /usr/sbin/
sshd

If the SSH process does not appear, it is simple to start it. Enter the following 
command into the terminal:

sudo /etc/init.d/ssh start

After you have executed this command try running the following again and check 
that the sshd process is now running:

ps aux | grep sshd

By default, to login to the Raspberry Pi 2 over SSH you will be prompted for a 
username and password. If you have not changed this the username is pi and the 
password is raspberry.

In addition to the username and password method, we can also use an RSA key to 
authenticate and gain access to the Raspberry Pi over a network. We discuss this 
process next.

RSA key generation for SSH
RSA keys are a useful method to login to the Raspberry Pi. They remove the need 
to enter a username and password and lock down access to a handful of hardware 
devices.

A RSA key consists of two parts: a public and private key. A public key can be 
shared with anyone and any machine with that key on and can in theory let you 
have access. Therefore, if you purchase more Raspberry Pis, you can place your 
public key on each, and negate the need to remember multiple passwords.

The private key portion should be kept secret and is located on the machine you 
will use to access your Raspberry Pi from. For security reasons it is best to keep the 
private key on a single device.

You can read more about RSA keys and the cryptographic theory behind them here: 
https://en.wikipedia.org/wiki/RSA_(cryptosystem).

https://en.wikipedia.org/wiki/RSA_(cryptosystem)


Chapter 1

[ 13 ]

One important piece of information you will need is the IP address or hostname of 
your Raspberry Pi.

If Wi-Fi is disabled/not connected, you can enable it via the 
Menu | Preferences | WiFi Configuration link on the desktop

You can obtain this by looking at your local home router, or by running the 
following commands in the terminal window of Raspbian.

For the IP address, run this command:

sudo ip addr show

Where to look depends on whether you are using a wireless or wired connection. 
Ethernet can be found usually at eth0 and wireless at wlan0.

If you would prefer to see the hostname you can run this command:

sudo hostname

Make a note of this information, as you will need it to connect to the Raspberry Pi 2 
from your second device.

If you are using a Mac or Linux to SSH into the Raspberry Pi you can generate 
the RSA key via the terminal window using the following steps. If you are using 
Windows, skip to the relevant section further on in this chapter.

Linux and Mac RSA key generation
Start by opening up your Mac or Linux terminal. From the command line run the 
following command:

ssh-keygen -t rsa -b 4096 -C "username"

You should replace the username with your own. A message similar to the following 
will be displayed:

Generating public/private rsa key pair.

Following this you will see a prompt:

Enter file in which to save the key (/Users/username/.ssh/id_rsa):

You can press enter here and the key will be saved to the path listed in the prompt. 
Note that it may look slightly different to the preceding example depending on your 
username and operating system.



Introduction to the Raspberry Pi's Architecture and Setup

[ 14 ]

Following this, you have the option of adding a password to the RSA private key. 
These prevent unauthorized users of your second computer from accessing the 
Raspberry Pi.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Once you have added a passphrase, the key generation process is complete. You 
should now see your key's fingerprint:

Your identification has been saved in /Users/username/.ssh/id_rsa.

Your public key has been saved in /Users/username/.ssh/id_rsa.pub.

The key fingerprint is:

Now we have our key, we need to load it into ssh-agent and then copy it onto the 
Raspberry Pi 2.

Adding the key to the agent can be done with the following command:

ssh-add ~/.ssh/id_rsa

This now allows the SSH command to use your key when trying to authenticate.

If your ssh-agent isn't running, you can use the following 
command to start it:
eval "$(ssh-agent –s)"

Before we can SSH into the Raspberry Pi we need to add the public key you created 
to it.

Thankfully, we can do this in a single command using the Raspberry Pi's default 
username and password, or if you changed it, that username and password. Run the 
following command from your terminal. Remember to swap the IP address in the 
command below with the IP address or hostname you recorded earlier:

cat ~/.ssh/id_rsa.pub | ssh user@ip'cat >> .ssh/authorized_keys'

With the public key now located on the Raspberry Pi you can attempt to SSH in.

If the .ssh directory and authorized_keys file do not exist on 
your Raspberry Pi you can create them under the pi user. To create 
the directory type mkdir .ssh and to create an empty file in this 
directory type touch authorized_keys.



Chapter 1

[ 15 ]

This can be achieved using the SSH command along with your username  
and IP address:

ssh –A username@ip

You will notice that you can now login to the computer remotely and will be 
presented with a terminal window prompt.

Windows RSA key generation
In order to connect to the Raspberry Pi from a Windows device you will need three 
pieces of software, Pageant, PuTTY, and PuTTYgen.

Start by downloading PuTTYgen from the following URL: http://the.earth.
li/~sgtatham/putty/latest/x86/puttygen.exe.

Next download PuTTY from this URL: http://the.earth.li/~sgtatham/putty/
latest/x86/putty.exe. Like PuTTYgen, this is also an executable you can run from 
your desktop.

Then finally grab Pageant from this URL: http://the.earth.li/~sgtatham/
putty/latest/x86/pageant.exe.

We will start by generating our public and private key pair. Open up the PuTTYgen 
executable.

Once you have this open, run through the following steps:

1. Set the key type as SSh-2 RSA.
2. Click on the Generate button.
3. You'll now be asked to move your mouse around to generate some  

random data.
4. Give your key a passphrase.
5. Next, use the Save private key button to save the generated private key.
6. Finally, click the Save public key button.

Our next task is going to be to add the key to the Raspberry Pi 2's authorized_keys 
file.

You will need the Raspberry Pi's login details and IP 
for the next steps.

http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe
http://the.earth.li/~sgtatham/putty/latest/x86/puttygen.exe
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://the.earth.li/~sgtatham/putty/latest/x86/pageant.exe
http://the.earth.li/~sgtatham/putty/latest/x86/pageant.exe


Introduction to the Raspberry Pi's Architecture and Setup

[ 16 ]

Open up the PuTTY executable.

From the Category list on the left, select Session if this is not already open. Now add 
the following details:

1. In the Host Name field, enter the Raspberry Pi's IP address.
2. Set the Port to 22.
3. Select the SSH radio button.
4. You can now optionally save these details for future connections.
5. Click the Open button.

If this is your first connection, you should now see a popup appear called PuTTY 
Security Alert. Click the Yes button to move on.

If you entered the connection details successfully, the PuTTY terminal window will 
now present you with a login prompt for the Raspberry Pi.

You will need to enter in the login name here. By default, this is set as pi; however, 
you may have changed it if you setup the device via NOOBS.

Following this you will be prompted for the password. This will be raspberry by 
default, or whichever password you set if you configured Raspbian via NOOBS.

If your login was successful, you should now see the Raspbian command line prompt.

We now want to edit the authorized_key file. We can use the default text editor 
installed by Raspbian to edit this file. If the file does not exist, you can create it and 
the .ssh directory.

It is located under the pi user account:

.ssh/authorized_keys'

Copy and paste the public key you saved from PuTTYgen into this file.

Save the file and exit it.

You can now logout of the Raspberry Pi.

The final tool we need to test is the Pageant application. This is our windows SSH 
authentication agent.

Open up the Pageant application. It should be available in the system tray  
in Windows.



Chapter 1

[ 17 ]

Next, follow these steps:

1. Right click on the Pageant icon.
2. Select Add Key from the menu.
3. A pop-up will display listing any keys you have.
4. Select the Add Key button.
5. From the pop-up window, select the private key you generated with 

PuTTYgen.
6. Click the Open button.
7. Next, you should be prompted to enter the passphrase for your key.
8. Fill this in and click OK.
9. You should now see it listed in the Pageant Key List window.
10. You can now close the key list.

Whenever you try and access the Raspberry Pi via PuTTY, all you have to enter is the 
username and host.

Open up PuTTY and connect to the Raspberry Pi again. You should now see you 
are logged in without a password prompt appearing. This is because you have 
authenticated your private key against your public key, which was added to the 
authorized_keys list.

On the first time logging in over SSH you may see a 
security alert/prompt. You can select Yes to this.

This completes setting up access to the Raspberry Pi remotely. We can now add a 
static IP address and run some diagnostic tests on our device.

We shall now move onto running some tests on the Raspberry Pi via Raspbian.  
These can be performed either directly on the Pi via the terminal window, or over  
the SSH connection you just created.

Assign a static IP to your Raspberry Pi 2
Assigning a static IP address to your Raspberry Pi means that when you switch 
it on or off a new IP will not be assigned. Instead, it will always contain the same 
IP address, meaning you do not have to hunt down the value assigned to it by the 
DHCP server each time you reboot.



Introduction to the Raspberry Pi's Architecture and Setup

[ 18 ]

To start with, check the IP address range on your router and find a free IP address. 
You will also need the subnet mask and the default gateway.

Next, we need to assign the free address to the Raspberry Pi. Editing the interfaces 
file can do this:

sudo nano /etc/network/interfaces

In the open file you will need to locate the line that specifies eth0 or wlan0 
depending on whether you are wired or wireless. For example:

iface eth0 inet dhcp

Change the value dhcp to static:

iface eth0 inet static

Once this is done we need to add three lines directly below it specifying the IP 
address we wish to assign, netmask, and gateway. You should have these values 
from checking your router earlier.

You can always check the gateway and netmask address directly on 
the Raspberry Pi by typing: netstat –rn.

Paste these in below the interface. An example is show here:

address 192.168.1.132

netmask 255.255.255.0

gateway 192.168.1.1

Save the file using Ctrl + X and press Y to save.

We do not need to reboot the Raspberry Pi to apply these changes, but can stop and 
start the network interface using the following commands:

sudo /etc/init.d/networking stop

sudo /etc/init.d/networking start

If you now run the command from earlier to check the IP address, you should see it 
is the new value you assigned:

sudo ip addr show

In the preceding example we used the nano text editing tool. We shall now look at 
some other options for editing files.



Chapter 1

[ 19 ]

Installing Screen and Vim
Two useful tools to install on your Raspberry Pi 2 are Screen—a terminal 
multiplexor—and Vim—a text editor.

We will be installing these via a package management tool called apt-get. A package 
management tool is used for installing extra software onto your operating system.  
It makes the process easy by keeping track of and downloading any libraries  
or dependencies needed by the software. It also makes upgrades and removal  
quite simple.

You can read more about apt-get at http://linux.die.net/man/8/apt-get.

Before installing Screen and Vim you should update the cache of the apt-get 
repository. This can be done by running the following command:

sudo apt-get update

We are now ready to install our terminal multiplexor.

We will start by installing Screen. This will allow you to keep multiple bash shells 
open when you login and out of your Raspberry Pi, so you can leave applications 
running while you are not directly connected to the device.

The Bourne Again Shell (bash) is the shell used in Raspbian by 
default. You can read more about it here: https://www.gnu.org/
software/bash/

To install Screen you can use the apt-get package manager:

sudo apt-get install screen

Once installation is complete, to run Screen you simply type the following command:

screen

The Screen application will now load, allowing you to create multiple windows 
containing bash sessions. To create a new window in the screen session type the 
following command:

Ctrl + a then c

If you want to remove a window you can kill it. The command to do this is  
as follows:

Ctl + a then k

http://linux.die.net/man/8/apt-get
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/


Introduction to the Raspberry Pi's Architecture and Setup

[ 20 ]

When you have multiple windows open you will want to navigate between them.  
To move between each open window use the following command:

Ctrl + a then num #where num is the screen number, for example 1 or 3

To give the screens window a user friendly name type this command:

Ctrl + a then Shift + a.

This will give you a prompt where you can label the window for ease of use.

To detach from a screen session type the following command:

Ctrl + a then d

To re-attach you can then type this command:

screen –x

If more than one screen session is open, type the ID in after the -x, for example:

screen –x 1234

More information can be found at https://www.gnu.org/software/screen/
manual/screen.html.

By default, the Screen application is very plain looking. However, its look and feel 
can be modified through a .screenrc file.

To learn more about this process, check out the gnu.org site's section on customizing 
screen at https://www.gnu.org/software/screen/manual/html_node/
Customization.html#Customization.

Vim – an optional handy text editor
In addition to the text editors installed by default with Raspbian, you may also wish 
to install Vim, a powerful text-editing tool. You will see this tool referenced later in 
this book, so you may find it easier to follow along if you install this.

To install it via our package manager run the following command:

sudo apt-get install vim

Vim is a complex tool but if you persist with it, you will find it rewarding. A guide 
can be found here: http://vimhelp.appspot.com/.

Finally, there are a number of other text editors worth exploring if you wish. You can 
find a list at the official Raspberry Pi website here: https://www.raspberrypi.org/
documentation/linux/usage/text-editors.md.

https://www.gnu.org/software/screen/manual/screen.html
https://www.gnu.org/software/screen/manual/screen.html
https://www.gnu.org/software/screen/manual/html_node/Customization.html#Customization
https://www.gnu.org/software/screen/manual/html_node/Customization.html#Customization
http://vimhelp.appspot.com/
https://www.raspberrypi.org/documentation/linux/usage/text-editors.md
https://www.raspberrypi.org/documentation/linux/usage/text-editors.md


Chapter 1

[ 21 ]

Running tests on the OS and 
configuration changes
There are ranges of hardware tests we can run on the Raspberry Pi to learn more 
about it. These include checking voltage readings, the temperature of the device,  
and testing that the GPIO pins work correctly.

You can run these tests by either connecting to the Pi over SSH or loading up the 
LXTerminal from the desktop.

Diagnostic tests
The following diagnostic tests provide basic information on your Raspberry Pi.  
This just provides a taster and many more are available. A more comprehensive list 
of commands is available via the links at the end of this section.

You should, however, run these tests to get a basic idea of what is possible.

The system information of your Raspberry Pi can be run via the following command:

cat /proc/cpuinfo

Version information can be seen via the following command:

cat /proc/version

Memory information can be accessed using the following command:

cat /proc/meminfo

The microSD cards partitions via the following command:

cat /proc/partitions

To check the temperature of the device we can use the vcgencmd command:

vcgencmd measure_temp

We can also use this command with a different parameter to see the voltages.  
The basic command is as follows:

vcgencmd measure_volts id



Introduction to the Raspberry Pi's Architecture and Setup

[ 22 ]

In this command, id is one of the following items:

• core for the core voltage
• sdram_c for the sdram Core voltage
• sdram_i for the sdram I/O voltage
• sdram_p for the sdram PHY voltage

You can find more commands at elinux.org where a guide to vcgencmd can be found 
(http://elinux.org/RPI_vcgencmd_usage).

Over and underclocking the Raspberry Pi
You may want to tweak the performance of your Raspberry Pi 2. This can be 
achieved by overclocking the device.

Overclocking is the process of forcing the CPU or other component, for example the 
GPU, to operate faster than its advertised or OS configured clock frequency. In the 
process of overclocking it is also possible to change the operating voltage to increase 
the device's speed.

There is a risk associated with overclocking a device, such as instability of its 
operation or faster degradation of components.

The raspi-config menu provides a set of screens to guide you through this process.

You can access raspi-config from the command line by typing this command:

sudo raspi-config

Then you select an overclock option from the menu that is presented.

Alternatively, you can modify the boot configuration file directly from inside the 
terminal window.

You will need to edit the /boot/config.txt file.

Once you have this open you will see a number of commented out values,  
for example, #arm_freq=800.

In the case of our Raspberry Pi 2 the processor runs at 700MHz. We could 
uncomment this line and up the speed of the processor to 800MHz.

An in-depth guide to overclocking the Raspberry Pi 2 can be found at Hayden James' 
website: http://haydenjames.io/raspberry-pi-2-overclock/.

http://elinux.org/RPI_vcgencmd_usage
http://haydenjames.io/raspberry-pi-2-overclock/


Chapter 1

[ 23 ]

Going further – testing the GPIO pins
For those interested in exploring diagnostic tools further there is the option of 
downloading the pigpio GPIO pin test. As you start to work more with the pins this 
test will come in handy for debugging problems, and allow you to check if you have 
accidentally damaged a pin.

You can download the pigpio library directly to your Raspberry Pi from  
http://abyz.co.uk/rpi/pigpio/download.html.

An overview and instructions on use can be found at http://abyz.co.uk/rpi/
pigpio/index.html.

Example applications and tests can be found at http://abyz.co.uk/rpi/pigpio/
examples.html.

For those looking for a digital waveform view for the Raspberry Pi's GPIO pins you 
can install piscope from http://abyz.co.uk/rpi/pigpio/piscope.html.

Some handy Linux commands
The following Linux commands are very useful and you will find yourself using 
them often. Remember you can type man command where command is the command 
you are interested in at any time to learn more about it and the parameters it accepts.

Most commands also contain a more concise set of 
documentation under help as well.

The cd command allows you to change directories:

cd /home/pi

The touch command creates an empty file:

touch test.txt

The cp command can be used to copy files:

cp  /home/pi/test.txt /home/newuser/test.txt

The mv command can be used to move a file or rename a file:

mv /home/pi/test.txt /home/pi/test2.txt

The rm command will remove a file or directory depending on the flag used:

rm text.txt

http://abyz.co.uk/rpi/pigpio/download.html
http://abyz.co.uk/rpi/pigpio/index.html
http://abyz.co.uk/rpi/pigpio/index.html
http://abyz.co.uk/rpi/pigpio/examples.html
http://abyz.co.uk/rpi/pigpio/examples.html
http://abyz.co.uk/rpi/pigpio/piscope.html


Introduction to the Raspberry Pi's Architecture and Setup

[ 24 ]

To find out which directory you are in you can use the pwd (present working 
directory) command:

pwd

If you wish to list the contents of a directory you can use the ls command:

ls

To learn more about basic Linux commands, the Debian operating system website 
provides a in-depth guide at https://www.debian.org/doc/manuals/user/ch6.
html.

Troubleshooting
You may from time to time hit problems in your setup or when running software or 
hardware with your Raspberry Pi 2. A good first place to check for help is the eLinux 
Raspberry Pi troubleshooting page at http://elinux.org/R-Pi_Troubleshooting.

As well as this site, the official Raspberry Pi website has an active and friendly forum 
where you can post questions for help at https://www.raspberrypi.org/forums/.

Finally, the Raspberry Pi section of Stack Exchange is another great resource, 
athttp://raspberrypi.stackexchange.com/.

Summary
In this chapter we learned about the basics of the Raspberry Pi 2's hardware.  
We discovered how to setup a microSD card and install the Raspbian operating 
system on it.

Following this, we created RSA keys to access our RPI over SSH and installed 
a number of useful tools via a package manager and experimented with some 
diagnostic tests.

With our Raspberry Pi 2 setup and ready to go we can now move onto writing 
applications that work on the device.

https://www.debian.org/doc/manuals/user/ch6.html
https://www.debian.org/doc/manuals/user/ch6.html
http://elinux.org/R-Pi_Troubleshooting
https://www.raspberrypi.org/forums/
http://raspberrypi.stackexchange.com/


[ 25 ]

Programming on Raspbian
In this chapter we will start to examine programming on the Raspbian operating 
system. This will give you the chance to explore the Raspberry Pi's hardware in more 
detail and interact with some of its components.

The topics covered in this chapter include the following:

• Assembly language and the assembler
• An introduction to the C and C++ languages and their compilers
• The Python programming language and IDLE

Each of these topics will lay the foundation for projects in future chapters. For this 
chapter you will need to either be logged into your Raspberry Pi via SSH or have a 
terminal window open.

Which programming languages?
There is a plethora of programming languages available on the Raspberry Pi, so 
knowing where to start can be hard. Many languages are useful for a variety of 
different project types, including building websites, programming hardware, and 
writing desktop applications.

In this book we will use Assembly, C/C++, and Python. Each of these languages 
provides us with methods for exploring different aspects of the Raspberry Pi.

Assembly language, being so close to the computer's hardware, will help you to 
explore more about computer architecture and how it is realized on the Raspberry 
Pi. You'll also have the benefit that some of steps needed to build your executable in 
Assembly carry over to C and C++.



Programming on Raspbian

[ 26 ]

The C/C++ languages are popular for building software for controlling external 
electronics hardware and in the case of C, are the language Raspbian is written in. 
Using the knowledge you gain about Assembly, you'll be able to start tackling C 
programs next.

Finally, the Python programming language is incredibly versatile. From writing  
web servers to controlling hardware, you'll find it a useful tool for your future 
projects. The understanding of the C language you will gain will help to shed  
some light onto Python.

The first language we are going to start with is Assembly language, so login to your 
Raspberry Pi and get ready to write some code.

Assembly language
The Raspberry Pi comes equipped with an ARM v7 quad core processor. Each 
processor has its own set of specific machine code that it understands; this machine 
code is represented in binary format. The machine code is different for each processor 
architecture, so the Raspberry Pi's ARM processor machine code will not work on an 
IBM or Intel CPU.

Short of writing out 32-bit binary machine code instructions, the lowest level of 
programming language we can find ourselves using is Assembler language, also 
known as Assembly language.

The computer architecture's Assembly language is usually a one-to-one mapping 
between itself and the underlying machine code. This is achieved through using a 
mnemonic. A combination of these mnemonic codes will result in an operation such 
as addition or subtraction.

A program written in Assembly language is compiled into machine code by the 
Assembler program. This program passes through the code one or more times and 
generates an object file as part of this process. The Assembler in some cases will also 
perform a variety of optimizations on the code in its subsequent passes.

Following this, a program called the Linker generates an executable file you can run 
on your computer.

Two important terms you will come across when writing Assembly language are 
opcode and operand. The opcode is an instruction (such as add) and the operand 
is data (such as an integer value). Each opcode and operand is created through the 
combination of sets of 8 bits (1 byte).



Chapter 2

[ 27 ]

In this chapter we will write a simple program in Assembly language in order to 
understand the basics. The subject of the ARM v7 Assembly language is covered 
in more detail in later chapters; however, the University of Michigan hosts a useful 
guide to the ARM v7 architecture in PDF format at https://web.eecs.umich.
edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf.

You maybe interested in reviewing this as a supplement to the topics covered here.

So what do the mnemonic codes that make up Assembly language look like before 
being converted to machine code?

Let's take a look at an example and see. Here we demonstrate how we can take 
register 0 of the CPU and assign a number to it, in this case, 10.

MOV R0, #10

In Assembly code, MOV is short hand for assigning a value. The register is an  
example of the processor's internal memory storage location and of course 10  
is an integer value.

You can read more on CPU registers at Wikipedia: 
https://en.wikipedia.org/wiki/Processor_
register

As you explore the language further you will become familiar with these types of 
command, as they are the building blocks of your program.

How about looking at another example? What do you think this does?

ADD R0, R1, R2

This simple program introduces us to another mnemonic, ADD. Here we are taking 
the values of registers 1 and 2, adding them, and assigning them to register 0.

Running commands like this on the Raspberry Pi is very simple; we can add them to 
a file assemble and link them ourselves.

We shall now explore a short Assembly language program that incorporates these 
two commands, MOV and ADD.

Let's start by creating a new directory under the pi user:

mkdir /home/pi/assem_programs

This will be the place we store our Assembly code.

https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Processor_register


Programming on Raspbian

[ 28 ]

Navigate into this directory:

cd /home/pi/assem_programs

Next we need to create a new file to place our code in. You can choose any text editor 
you are comfortable with in order to write the program. We have used Vim in the 
following example:

vim first_assem_prog.s

To this file add the following block of code. Make sure that you include the spacing 
as demonstrated below:

       .global main

       .func main

main:

       MOV R0, #0

       MOV R1, #10

       MOV R2, #20

       ADD R0, R1, R2

       BX LR

So what does this program do?

The first line in the program defines a directive called main. The prefix of .global 
tells the Assembler that the name is global and thus available to the C runtime.

A directive is code executed by the Assembler at assembly time, rather 
than the processor. We could have called this directive anything 
but have gone with main to keep it consistent with our C program. 
Assembler, unlike C, does not require the program entry point to be 
called main.

As you will see, we will use the GCC compiler/linker to build an executable for 
our program, so the format we are writing the Assembly language in mimics that 
of a C program in some areas. This is why you will see references to the C runtime 
mentioned when discussing Assembly in this chapter.

Following this, we then define that main is a function. Here we can see another 
directive, called .func, is used to specify this.

So now we have main available we can denote where this function starts, which in 
our case is the third line.



Chapter 2

[ 29 ]

Contained in the function are three lines of code for adding values to the registers. 
These should be familiar from our earlier examples. What we have done is assigned 
the value 0 to R0, 10 to R1, 20 to R2 and then added the values together and stored 
the result (30) in R0.

Finally, we call BX LR to return the value of register 0 back to the operating system.

As you can see this program is very simple, but it demonstrates how to add numbers 
and store the results.

Save the file and exit your text editor. You should now be back at the command line.

This leads us to the next step of assembling and linking in order to generate a file we 
can run.

Assembling and linking
Now we have a program we need to test. This is a two-step process that involves 
assembling the code and then linking it, which we touched upon at the start of this 
section. We will also explain these two items in more technical detail later in this 
book, but for this chapter it will suffice to understand roughly what they do and how 
to run them.

When you come to explore the C language next, you will see linking is also  
a component there as well; in fact, we use the same tool for both C and  
Assembly—the GCC compiler.

Briefly, these two steps to generate a runnable program can be summed up  
as follows:

• Assembling is the process of generating the machine code object file from the 
Assembly mnemonics

• Linking is the process of creating an executable from one or more object files

The first command we will run, called as(the GNU assembler), will take the code we 
wrote previously and create an object file as its output.

Run the following command from inside the folder where you created your program:

as –o first_assem_prog.o first_assem_prog.s

If it assembled correctly, you should see no output.



Programming on Raspbian

[ 30 ]

Following this we need to run the linker, which is invoked with the gcc command. 
There is also another linker available, called ld. However, since we are writing our 
Assembly in a C-like manner, use the gcc tool.

You will also need to run this command in the same directory that you ran as in.

gcc –o first_assem_prog first_assem_prog.o

GCC stands for the GNU Compiler Collection.

If everything is successful, you shouldn't see any output.

We now have an executable file we can run from the Linux command line.

To do this you can simply type this command:

./first_assem_prog

You'll notice there is no output, however. So how do we know the program  
executed correctly?

We can use the Linux echo command, as follows:

echo $?

This displays the exit code of the previous process, which in our case is the  
result of program we just ran. You may remember that we wrote this value using  
the BX LR code.

As our program simply returned a value of 30 to register 0, this is the result we can 
see when using the echo command.

You can try changing the values in your program and assembling and linking once 
more. The result you see when running echo should reflect your changes.

Try changing the program to use R1 instead of R0 in the add function 
and see what happens.

So in a few easy steps you have created an Assembly language program and learned 
how to assemble, link, and run it.

This forms the basics you will need in order to tackle the more complex programs in 
the next chapter, where we will discuss the language in more depth.



Chapter 2

[ 31 ]

Now we have our first program under our belt, let's move on to take a look at the C 
and C++ languages and explore GCC further.

The C and C++ languages
Even if you are new to programming you may have come across C and C++ 
mentioned in literature, webpages, and text books. You'll often see C/C++ written. 
However, it is important to realize that while C++ is based upon C they are indeed 
different languages, and useful in different contexts.

We are going to start by giving a brief overview of these languages and explain a bit 
about them. Following this we will write some experimental programs and explore 
how the compiler works.

Let's start by delving a bit further into C.

C – a brief introduction
The C programming language has been around since 1970s and was closely tied with 
the development of the Unix operating system.

In 1972, the computer scientist Dennis Ritchie started the development of C in 
Assembly language on the PDP-11 Unix system. As we demonstrated in the previous 
section, Assembly language is converted to machine code, and Ritchie's C language 
represented another level of abstraction from the computer hardware and Assembly 
itself.

Shortly after, in February 1973, the C language could be found bundled with the 
Unix release and available for developers.

In the 1980s, due to its widespread adoption, the American National Standards 
Institute (ANSI) formed a committee known as X3J11 to adopt a standard for the C 
programming language. This would help to govern the direction of the language and 
formalize its specifications.

By 1990 the C standard championed by ANSI was adopted by the International 
Organization for Standardization (ISO) who would then help to steer its future path.

From these early days the C language has gone through several revisions and  
been ported to many computer architectures, including Linux on the Raspberry 
Pi 2. It has thus become a popular choice for application development due to its 
ubiquitous nature.

www.allitebooks.com

http://www.allitebooks.org


Programming on Raspbian

[ 32 ]

The Linux operating system, of which Raspbian is a flavor, is written in the C 
language. Therefore, if you wish to write applications at the operating system level, 
having a good command of the C language is invaluable.

One of the great features of C and a contributing factor to why it is popular for 
embedded device software development is its speed. Most C implementations are 
compiled directly to machine code and the software engineer has full control over 
what happens at the hardware level.

Later in this book we cover hardware development and programming, and the C 
language is something you will encounter when working on these projects.

Now that we have briefly touched upon C, let's take a look at C++.

A quick look at C++
The C++ programming language's origins can be found in the late 1970s with Danish 
computer scientist Bjarne Stroustrup. Stroustrup looked to implement a version of 
the C programming language that incorporated object-oriented features from the 
Simula programming language, such as classes.

At first, the language was known as C with classes and in 1983 adopted the name we 
are all familiar with, C++.

Throughout the 1980s, the book The C++ Programming Language acted as the main 
reference guide to the language. Following this the language went through several 
revisions and was adopted as an ISO standard in 1998.

While C++ is based upon C it does contain some notable differences due to not 
retaining complete source level compatibility with the original C language.

For those interested in a further look at these differences you can find a summary 
on Wikipedia at https://en.wikipedia.org/wiki/Compatibility_of_C_
and_C%2B%2B.

Where C++ also differs from C is its inclusion of many OOP features such as  
the following:

• Classes
• Interfaces and abstract classes
• Objects
• Inheritance

https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B
https://en.wikipedia.org/wiki/Compatibility_of_C_and_C%2B%2B


Chapter 2

[ 33 ]

You may be wondering why we are interested in both C and C++. After all, if the 
operating system is written in C, and C is good for many electronic projects, why 
look at C++?As you will discover in the Raspberry Pi world, hardware such as the 
Raspberry Pi to Arduino Connection Bridge uses a C++-based library.

Therefore, familiarizing yourself with the language will help you to implement third 
party libraries that contain many interesting features and functionality.

As we noted, since C++ is based upon the C language, in this chapter we will start by 
writing a simple C program only.

This will give you an introduction to the basic structure of a program and header 
files. In future chapters we will expand upon this to include C++ libraries, explore 
the differences between the languages when relevant, and look at how to include C 
header files in a C++ application.

Let's now delve into writing our first C application.

Our first C program
In order to write our first program we need three key things. These are similar to 
those needed when writing our Assembly language program:

• A good text editor such as Vim
• C libraries of re-usable code
• The C compiler

The text editor you use will largely be driven by your own tastes. In the previous 
chapter of this book we briefly looked at Vim and also linked to a number of other 
text editors recommended on the Raspberry Pi website.

When writing our Assembly language application, you were presented the choice of 
using whichever editor you were comfortable with.

Another popular GUI-based text editor you may be interested in using is Geany.  
Feel free to skip this section if you would prefer not to use this editor.

Geany – a handy text editor and development 
environment
The Geany text editing environment provides support for integrating development 
tools such as Makefiles and compilers and provides a neat GUI for editing code files. 
This integration can help when you start to work on larger projects.



Programming on Raspbian

[ 34 ]

For example, you can hook up the GCC compiler to work in Geany and thus compile 
your applications and test them from within the text editor.

Makefiles are a way of combining many commands, such as those 
needed to compile projects into a single file. These can then be run 
from the command line using the make application. You can read 
more on make at http://man7.org/linux/man-pages/man1/
make.1.html.

If you are interested in testing this out, you can install it via the package manager:

sudo apt-get install geany

More information on the editor and its development tool support can be found at 
http://www.geany.org/Documentation/Manual.

Now, with whichever text editor you have chosen we are going to create a new C 
program. This will help us to explore the second and third bullet point from our 
previous list.

Creating a new C program
Our first task is to create a new folder on the Raspberry Pi 2 to store our source  
code in.

In the exercise in this section of the chapter we will store the code in a directory 
called c_programs. You can create this under the Pi user as follows:

mkdir /home/pi/c_programs

Once you have this directory created we can write our C program. Using whichever 
text editor you prefer, create a file called first_c_prog.c. For example, if you were 
using Vim, you would create the file as follows:

vim /home/pi/c_programs/first_c_prog.c

Users of Geany can create a new file from directly inside the IDE.

The following program demonstrates how we can enter a value into our program via 
the keyboard and then display it back to the user. Let's start by adding the first line 
at the top of the file:

#include <stdio.h>

http://man7.org/linux/man-pages/man1/make.1.html
http://man7.org/linux/man-pages/man1/make.1.html
http://www.geany.org/Documentation/Manual


Chapter 2

[ 35 ]

This is an example of an include statement. Here we are telling the program to use 
the stdio.h library. This library contains standard input and output functions. 
Examples of functions in this program we will be using from this library include 
printf() and scanf().The next section of this chapter explains libraries in more 
detail. So for the moment let's move on and add the main body of our program:

int main(void)
{
  int a;
  printf("Please input an integer: ");
  scanf("%d", &a);
  printf("You entered the number: %d\n", a);
  return 0;
}

Each C program needs to contain a main() function. You'll remember from your 
Assembly program we also had a function called main. This is the entry point of  
the program.

The signature of our function is as follows:

int main(void)

This tells us that the main function has no variables passed to it but returns an 
integer value when it has finished running.

Within the braces of the program we have five lines of code.

The first line defines an integer variable with the name a. The second line uses a 
function that is included from the stdio.h library called printf(). This function 
allows us to print text to the screen.

In our case we are prompting the user to enter an integer value.

Following this, the scanf() function is used to take user input from the keyboard 
and store it in the a variable.

The %d you can see in the function tells us that the function is expecting an integer. 
Here we can also see the reference to the variable a uses the & symbol. In this 
instance, & is used to tell the scanf() function the location of the variable, rather 
than the variable's value.

The next thing we want to do is print out the value entered. This is done using the 
printf() function once again. Here we use %d to say we want to output an integer 
as part of the string. \n is used to denote a new line. Finally, you can see the a 
variable is included. This time we want its actual value so we do not include the &.



Programming on Raspbian

[ 36 ]

The value of a is then inserted into the string where %d is when the string is 
displayed.

The final line of code before the closing brace is the return statement. The return 
statement contains the integer 0 after it (and is why we prefixed int to the function 
name). This means our program executed without a problem, so we return 0 to 
show there is no error code.

In our Assembly program we returned the value 30. As you will see, this 0 value is 
also available via the echo command we were introduced to earlier.

Before running this program, we are going to return to the top of our program and 
explore libraries further.

C libraries – a trove of reusable code
As you saw in our first C program we included a header file: stdio.h.

Within the C language, many problems have already been solved, for example, how 
to take input from the keyboard and print it to the screen. These solved problems are 
then packaged as C code libraries and can be included via .h files, thus sharing the 
code between multiple source files.

Header files can be written by either the programmer working on a project, or 
included in the default system code that comes bundled with your operating system.

To include a header in your application you use the include statement, #include.

There are then two formats for how you specify the library to include. One uses 
angular brackets (<) and the other uses quotation marks (").

When you are including a system header such as stdio.h, then use angular brackets:

#include <stdio.h>

The compiler will then look in a list of standard system directories such as /usr/lib.

If you wish to include a header file you wrote yourself, then use quotations:

#include "mylib.h"

You can find a comprehensive list of system level header files at  
http://en.cppreference.com/w/c/header.

http://en.cppreference.com/w/c/header


Chapter 2

[ 37 ]

Strictly speaking, the header file tells the C compiler certain things, such as function 
declarations, but does not contain their definitions. The library file however contains 
the actual executable code referenced in the header file. When we explore the C 
compiler in the next section, we will explain how we include the executable code via 
the linker.

The simplest way to think of this is: the header tells us what exists and the library 
contains the code that does it.

The C (and C++) compiler
We now have the source code for our small program, but until it has been compiled 
it can't be run.

The compiler performs the task of taking a high level language such as C and 
decoding it into machine code. This machine code can then be read by the processor 
and is how the computer executes our program.

However, even after we have compiled our program successfully, it is still not ready 
to be run. There is another stage we need to consider—linking. You will recognize 
this from our earlier Assembly language program.

The linker is an important part of the process of building a C-based executable.  
It is responsible for taking separate object files and linking them together in order to 
create a single executable. This methodology allows us to take a compiled third party 
library, reference it in our code, and then include it via the linking method. Thus we 
do not need to recompile the third party library along with our code.

Unlike the steps required for Assembly, the preceding can usually be performed in a 
single command, which handles the linking and machine code generation.

In fact, the process of building an executable is even more complex than we have 
touched upon here. However, for the program you will be writing, understanding 
you need to invoke the compiler and link to third party objects should be sufficient.

For those interested in reading further can visit http://www.tenouk.com/ModuleW.
html, which provides a greater breakdown.

As you saw previously, the GCC compiler is installed by default on Raspbian. You 
can read more about it at the gnu.org website, https://gcc.gnu.org/.

The GCC compiler supports a number of languages other than Assembly including 
C and C++. When we wish to compile a program we can use the gcc command in 
the terminal window to invoke the compiler.

http://www.tenouk.com/ModuleW.html
http://www.tenouk.com/ModuleW.html
https://gcc.gnu.org/


Programming on Raspbian

[ 38 ]

You will be familiar with this from using it in the linking stage in your first  
Assembly program.

As you come to use the compiler there are a number of items you need to consider. 
These include the following:

• The input file that is your C code
• The output file that is your compiled program
• Options for the linker to tell it which libraries to include

Taking the program we wrote, first_c_prog.c, we will now compile and run it so 
you can see gcc in action and explore the preceding bullet points.

Compiling and running our application
The following instructions assume you saved your C code into the c_programs 
directory.

Navigate into this directory:

cd /home/pi/c_programs

From here we will now invoke the GCC compiler using the following command:

gcc –o first_c_prog first_c_prog.c

This command is very simple, and we have not had to specify the linker. You may be 
wondering why this is, considering the fact we included the stdio header.

This is because certain functions are linked by default, such as those in libc, 
therefore we do not need to manually link them. As you explore the C language 
further, however, you will quickly come across instances where you have to link.

You can check which headers are available from the C standard library in each 
version of the C language at https://en.wikipedia.org/wiki/C_standard_
library.

In this command we have addressed the first bullet point in the list, the input file that 
is our program. In our command it is the last parameter we pass in.

As we stated, we do not need to add any references to the linker, which would be the 
third bullet point.

Finally, the second bullet point is covered by –o first_c_prog, which tells us to 
output the executable called first_c_prog.

https://en.wikipedia.org/wiki/C_standard_library
https://en.wikipedia.org/wiki/C_standard_library


Chapter 2

[ 39 ]

If you run ls in the directory, you should see the first_c_prog file.

You can now run this by typing:

./first_c_prog

If this executed successfully, you will be prompted to enter an integer. Once entering 
this you will see it output to the screen.

Try entering a non-integer such as an alphabet 
character and see what happens.

This concludes writing our first C program. Hopefully you will agree it was fairly 
easy to write!

Next we will look at the Python programming language. Python is a handy scripting 
and object-oriented programming language and uses C as its base, as you will see.

The Python language
Software Engineer Guido van Rossum founded what would come to be known as 
the Python programming language in the late 1980s. Spawned from a project he was 
working on to develop an interpreter for a scripting language, he chose the working 
title Python derived from the popular British comedy series Monty Python's Flying 
Circus.

The official Python website can be found at https://www.python.org/.

Unlike the C language, Python is an interpreted language. This in essence means that 
the language's instructions are performed by an interpreter rather than compiled 
down to machine code.

You can read more about interpreted languages here https://en.wikibooks.org/
wiki/Introduction_to_Programming_Languages/Interpreted_Programs.

The most widely used implementation of the Python language is known as CPython, 
which is written in C. This is also the implementation you will be using on the 
Raspbian operating system.

You can read more about this implementation at https://docs.python.org/2/c-
api/.

This means the Python language is also extensible via C and C++. The Python 
website provides a guide to extending its functionality at https://docs.python.
org/2/extending/extending.html.

https://www.python.org/
https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Interpreted_Programs
https://en.wikibooks.org/wiki/Introduction_to_Programming_Languages/Interpreted_Programs
https://docs.python.org/2/c-api/
https://docs.python.org/2/c-api/
https://docs.python.org/2/extending/extending.html
https://docs.python.org/2/extending/extending.html


Programming on Raspbian

[ 40 ]

The two popular versions of the language are version 2 and version 3.

There are some backward incompatibility issues between version 3 and 2 of the 
language. Currently, version 2 has wider adoption. In this book we will therefore be 
using version 2. Version 2 also comes shipped by default with Raspbian.

Let's now take a look at writing a simple application that performs a similar task to 
that of the C program we just completed.

A simple Python program
We are going to start by opening the IDLE Python development tool. IDLE stands 
for Integrated DeveLopment Environment and is the program you can use on your 
Raspberry Pi to directly write Python applications and run them.

At the command line, type the following command:

python

Once loaded you will see a blank document with some information about the version 
of Python displayed at the top. The following screenshot shows an example:

Example of IDLE on the Raspberry Pi.

In Python, white spacing is very important. Unlike C we do not use braces to signify 
the start and end of a function, but rather white space indentation.

In our example programs we will use four spaces of indentation.

Our first simple program contains a prompt to the user to enter an integer and then 
outputs it.

Type the following into IDLE:

def main():
    a = raw_input("Please enter an integer: ");
    print "You entered the number : ", a



Chapter 2

[ 41 ]

When you have finished adding the code, press the Return key twice. You will now 
see the prompt again.

Into this, type the following command:

main()

You should now be requested for input. Enter a number, for example, 8, and then 
press Return.

This number should now be displayed with the message You entered the number: 
prefixing it. This was even easier to write and execute than the Assembly and C 
program: we needed less code and did not have to run a compiler or linker!

Let's take a look at what each section of the program does.

The first piece of code we entered was the function signature. This has some 
similarities to the C program we wrote, in that it is called main.

However, unlike the C program, we could have called this anything, for example 
hello().

If you wish, try re-entering the program with a different name for the function  
and execute it again. You'll see that it still works.

Following the function definition, we define a variable called a. Python does not 
force us to define the variable type (for example int) via a prefix when we declare it. 
We can simply give the variable a name and that will suffice.

The raw_input() function prompts the user and assigns the value typed in by the 
user to the a variable.

Following this, we output the user's input using the print statement. Therefore,  
in three lines we have achieved that which took eight in C.

Another interesting property of our program is that unlike our C program we can 
type any value we want into the prompt, whether it is an integer or not.

You can try this for yourself and see what happens.

While using IDLE is great, if we shut down IDLE our program vanishes. So how do 
we get around that?



Programming on Raspbian

[ 42 ]

Running a Python program from a file
As we develop projects for our Raspberry Pi we want to be able to save our programs 
into a file and execute them this way. This allows for re-use. We also may not want to 
use IDLE but our favorite text editor.

Thankfully we can and shall now walk through the steps to do this.

Create a new directory under your /home/pi/ user called python_programs.

Into this we are going create a new file called first_python_prog.py.

For example, you can use the touch command to create an empty file:

touch first_python_prog.py

Open this file up in your text editor and copy the code in from our earlier example. 
This will be the code you typed into IDLE.

Once complete at the top of your file you will need to add the shebang:

#!/usr/bin/python

The shebang contains the path to the version of Python being run. This allows  
the script to be standalone without having to type python before it as you will  
see shortly.

To the bottom of the file you will also need to add the following:

if __name__ == '__main__':
    main()

This piece of code checks to see if the Python interpreter has set the __name__ variable 
to __main__, meaning that the program being run is the main program. If this is true, 
then it executes the main() function. We did not have to call our function main. Unlike 
C, Python will allow you to name the entry point to your program anything you like. 
However, for consistency in our projects we will use the name main.

You can read more about Python runtime services on the official website, where 
__main__ is also touched upon, at https://docs.python.org/2/library/python.
html.

Having added the code, the file should look as follows:

#!/usr/bin/python

def main():

https://docs.python.org/2/library/python.html
https://docs.python.org/2/library/python.html


Chapter 2

[ 43 ]

  a = raw_input("Please enter an integer: ");
  print "You entered the number: ", a

if __name__ == '__main__':
    main()

Save this code and return to the command line.

To run the application, we can simply type the following command:

python first_python_prog.py

You should now see on the screen a prompt to enter some text. Add this and press 
return and it will be output back to you.

As with the earlier example of this program, the application will take text characters 
as well as integers.

We mentioned that the shebang means we do not need to add the command python 
before running the script. However, before we can simply execute the file from the 
command line we need to set the permissions on the file to allow it to execute.

In the terminal type this command:

chmod +x first_python_prog.py

Now you can try running the script again by typing the following:

./first_python_prog.py

Once again the prompt should appear.

You can read more about chmod here: https://en.wikipedia.org/
wiki/Chmod

This wraps up our Python section. Here we created the same program in Python as 
we did in C to compare the complexity and syntax.

We will explore the Python language further in future chapters in which we build a 
web server.

Let's now review what we have learned so far.

https://en.wikipedia.org/wiki/Chmod
https://en.wikipedia.org/wiki/Chmod


Programming on Raspbian

[ 44 ]

Summary
In this chapter we explored the programming languages we will be using in this 
book. This included Assembler, C/C++ and Python.

A guide to writing a small Assembly language program was shared, and we then 
assembled and linked our program.

Following this, we learned some basics of how to write a C application and how to 
compile and run it. Also discussed were some of the similarities between Assembly 
language and C when it comes to generating an executable file.

The last program we explored was Python. Here you learned to write a program that 
contained the same functionality as your C program in the Python IDLE.

Following this, we moved our program into a file and demonstrated how it can be 
run standalone.

The tasks performed over the course of this chapter will lay the foundation for future 
projects where we build upon these skills.

So what's next? In the next chapter we will discuss the Assembly language in more 
detail and start to write some interesting programs with it.



[ 45 ]

Low-Level Development with 
Assembly Language

Now you have had the chance to write a basic program in Assembly language,  
it is time to dive into the subject in more detail.

In this chapter we will learn more about:

• The assembler
• The GNU compiler
• Branching
• Comments
• Memory
• Addresses
• Control structures
• Makefiles

These will help to give you a better understanding of the ARM architecture that the 
Raspberry Pi 2 uses.

First of all, let's go back to basics and explore some of the items we touched upon in 
the previous chapter in more detail.

Back to basics
In the previous chapter we wrote a simple program that introduced a handful of 
Assembly language mnemonics and showed us how to assemble and link a program.



Low-Level Development with Assembly Language

[ 46 ]

This introduction program was written in ARM Assembly language, ARM being the 
type of CPU architecture the Raspberry Pi 2 contains. Acorn RISC Machine (ARM) 
implements RISC, which stands for Reduced Instruction Set Computing. This 
results in a smaller optimized set of machine code, which in turn leads to a smaller 
but expressive Assembly language.

If you wish to understand the subject further you can read more about RISC on 
Wikipedia at https://en.wikipedia.org/wiki/Reduced_instruction_set_
computing.

The next program we will write is very similar to that in the previous chapter,  
but slightly simpler.

Make sure you are logged into your Raspberry Pi over SSH or have a terminal 
window open in Raspbian.

Create a new file in your assem_programs directory called second_assem_prog.s.

Create the file as follows:

vim /home/pi/assem_programs/second_assem_prog.s

Into this file add the following code:

/* second_assem_prog */
.global main
.func main
main:
    MOV R0, #7 @Add 7 to register 0
    BX LR

Let's walk through this and look at each line in detail. You should be familiar with 
some of the commands now, but we have added some new syntax as well.

An interesting fact about Assembly language is that commands such as 
MOV and references to registers such as R0 can also be written in lower 
case as well.
For example, MOV could be written as mov. For ease of reading and to 
distinguish comments and directives from commands we will use a 
convention of uppercase when referencing commands, registers, and 
similar, and lowercase for directives and comments.

https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing


Chapter 3

[ 47 ]

Multiline comments
The first item you will see is the value/* second_assem_prog */. What we have 
done here is wrapped a plain text English string in /*and */. This is known as a 
comment block.

Comment blocks allow us to add text to annotate our programs in plain English  
(or whichever language you speak) to provide information to other programmers  
on why a program performs a certain task.

If you have programmed in other languages, you may already be familiar with this 
concept. As you come to write programs in C and C++ you will also encounter the 
use of comments, which like Assembly language can be wrapped in /* and */.

When the assembler processes the code in our program it knows to ignore any text 
located in the comment blocks. So as long as you have wrapped the text correctly 
inside the symbols you can include any information you think makes sense.

Following the comment block we have two examples of directives. These are 
.global main and .func main.

We touched upon these briefly in the first chapter, where we explained they were 
written C style. Now we shall go into more detail.

Directives
A directive in Assembly language is a command that is part of the ARM assembly 
syntax but is not part of the CPU's instruction set. Therefore, it does not have a  
one-to-one mapping. You will therefore sometimes see directives referenced as 
pseudo-op codes. Unlike a regular opcode such as the binary representation of MOV,  
a directive is referenced by the assembler, but not by the CPU at runtime.

Common practice is to denote a directive using "." beforehand and to write it in 
lower case. In our example program you can see this with the .global and .func 
directives.

Some of the benefits of directives include the following:

• Making a program easier to read for the engineers working on it
• Reserving memory and initializing the value of it prior to runtime
• Making the assembly of a program reliant upon input, thus allowing for a 

developer to implement multiple assembly options based upon environment 
or application



Low-Level Development with Assembly Language

[ 48 ]

The reason we use C-style directives is we can then use the C runtime to handle the 
initialization step and termination step of the application.

The initialization step includes calling the main function. As you will remember 
when we wrote our C application in Chapter 2, Programming on Raspbian, we had to 
include this function to specify the start of the program.

Let's now take a look at this line:

    MOV R0, #7 @Add 7 to register 0

You'll see something new here. Let's explore this further.

Single line comments
This should look familiar to you. Here we are moving an integer, 7, into register 0. 
However, at the end of the line you will see we have added a plain text prefix with 
the @ symbol.

The @ symbol can also be used for comments. However, in this case it only takes 
a single line. If you wish to comment more than one line you will need to use a 
multiline comment block.

We know from the previous chapter that a register is a form of memory available  
to the CPU; however, let's look at this in more detail.

Registers
The registers found on a CPU are small storage units that contain the operands of 
our programs.

These registers are divided up into different types, depending on the type of number 
we are saving to them. There are floating point registers and integer registers.

You will see these referenced in our programs in the following format: R0, R1, 
through to R15.

We can use mathematical operations such as ADD, SUB, and MOV to set the value  
of the register.

For more information on the ARM architecture and the registers, you can refer to the 
ARM website: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.subset.cortexa.cortexa7/index.html.

You'll get used to using registers a lot when writing Assembly programs. One 
important register reference is LR, which we will explore with regard to branching.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa7/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexa.cortexa7/index.html


Chapter 3

[ 49 ]

Branching
The final line of our application handles the branching and exchange:

    BX LR

The branching and exchange portion of the command (BX) means that we change the 
sequential execution by branching to the LR register. Branching allows us to switch 
from one sequential path to another, if, for example, a state changes.

In the case of our program, this branching results in us exiting the main function and 
terminates our program.

The LR portion of this command is a special register that contains the address the 
program returns to when a function is complete. In our case, this will be the register 
to return to once main has finished executing.

Further on in this chapter you will see how you can use branching within your 
program. This will allow you to jump to another block of code when a condition  
is met.

The assembler
In the previous chapter we briefly touched upon the portable GNU assembler,  
which was activated via the as command.

The assembler is a powerful tool that supports many options, most of which are out 
of scope of this book.

For further information on the tool you can refer to the GNU assembler man page  
at http://linux.die.net/man/1/as.

You can also access the man pages by typing the following command:

man as

The man command loads the manual for the tool passed into it. You will find that 
many Linux applications contain a manual.

So at its heart, what does the Assembler do?

First of all, the program takes each mnemonic and converts it into the correct 
machine code representation.

For example, MOV R4, R1 could be represented in binary as follows:

1110 0001 1010 0000 0100 0000 0000 0001

http://linux.die.net/man/1/as


Low-Level Development with Assembly Language

[ 50 ]

A handy guide to how the binary maps to the ARM instruction set can be found at 
http://stackoverflow.com/questions/11785973/converting-very-simple-
arm-instructions-to-binary-hex.

The preceding code could also be presented in Hexadecimal format as follows:

E1A04001

This process will also pick up on syntax mistakes in your program and throw an 
error if it comes across a mnemonic that is not part of its set.

You define where the output of the as command is stored using the –o flag. This file, 
known as the object file, is then passed into the linker for the creation of the final 
executable.

The linker
After you have generated your object file you are now ready to generate an 
executable file that can be run within the Linux operating system. You'll remember 
from the earlier chapter that the gcc command was used.

You may also remember we briefly mentioned that an ld command exits, the GNU 
linker. The gcc compiler actually acts as a frontend or wrapper to the ld command.

It also provides us with a handy set of flags we can use when linking our object files. 
One example is as follows:
-v

The v is short for verbose and this will print out all of the commands that are run 
during the linking phase.

As you come to use the linker more you may find using the v flag is useful, especially 
if multiple files are being linked to create a single executable.

You can read more about the GCC compiler, including a guide to many of its flags, at 
https://gcc.gnu.org/wiki/Building_Cross_Toolchains_with_gcc?action=At
tachFile&do=get&target=billgatliff-toolchains.pdf.

Makefiles
When we completed the program in the previous chapter we ran the two commands 
we just discussed, the assembler and linker.

This process can be tedious, especially if we have multiple files to link and other 
steps to perform. Thankfully there is an easier method, so here we introduce you to 
Makefiles.

http://stackoverflow.com/questions/11785973/converting-very-simple-arm-instructions-to-binary-hex
http://stackoverflow.com/questions/11785973/converting-very-simple-arm-instructions-to-binary-hex
https://gcc.gnu.org/wiki/Building_Cross_Toolchains_with_gcc?action=AttachFile&do=get&target=billgatliff-toolchains.pdf
https://gcc.gnu.org/wiki/Building_Cross_Toolchains_with_gcc?action=AttachFile&do=get&target=billgatliff-toolchains.pdf


Chapter 3

[ 51 ]

The command Make is a utility you can use for maintaining programs by chaining 
together multiple commands and compilation directives in a single file. The Make 
command will process this file, called a Makefile.

The Make command man page can found online here: http://linux.die.net/
man/1/make.

It can also be found by running this command:

man make

We will now create a simple Makefile to demonstrate how this process works.  
This file will be responsible for containing the assembly and link instructions for  
the program at the beginning of this chapter.

Start by navigating into the assem_programs directory if you are not already there.

We are now going to create a new file called Makefile using whichever text editor 
you are comfortable with:

vim Makefile

Add the following lines to this file:

all: second_assem_prog

second_assem_prog: second_assem_prog.o

                       gcc –o $@ $+

second_assem_prog.o: second_assem_prog.s

                       as –o $@ $<

Let's take a look at what each of these statements does.

The top line kicks off the program. When we run make, this is the first command to 
be executed. What it does is say "run the second line."

The second line then calls the third, which uses the assembler to generate the object 
file. This object file is then passed back to the second line as input, which then runs 
the gcc command.

Finally, the executable is output and the make application exits.

Save this file and exit your text editor.

We can now test that this works by simply running the following command:

make

http://linux.die.net/man/1/make
http://linux.die.net/man/1/make


Low-Level Development with Assembly Language

[ 52 ]

Once the command has completed you should see your generated second_assem_
prog file.

Try running this command:

./second_assem_prog

Then check, using the echo command, that the value 7 is output:

echo $?

The Make man page includes a list of the flags it is also possible to 
use when running Makefiles. You may find some of these useful to 
experiment with including the –d flag for debugging. You can also try 
adding in the –v flag and running the Makefile again.

Going forward, you can use this Makefile as a template for other programs, 
updating the labels as necessary, and adding further bash commands as required.

The Makefile can of course also be used for Python and C programs. In the case of a 
C program, the Makefile will also be used to invoke the gcc command.

This concludes a review of the basics. Let's now write a more complex program so 
we can explore the Assembly language further.

Memory and addresses
In this section, we will write a program that subtracts the value of one register from 
another and stores the result in register 0.

In order to do this, we will create a number of variables with integers that are then 
assigned to the register. This will introduce you to the concepts of memory and 
addresses. During this process you will also understand a few new terms that are 
important to the Assembly language.

We will use the following program to explore these items:

.data
/* Variable definition */
.balign 4
wordvar1:
    .word 7
.balign 4
wordvar2:
    .word 3



Chapter 3

[ 53 ]

.text
/* code definition */
.balign 4
.global main
main:
    LDR R1, wordvar1addr
    LDR R1, [R1]
    LDR R2, wordvar2addr
    LDR R2, [R2]
    SUB R0, R1, R2 @ Subtract 3 from 7
    BX LR

wordvar1addr : .word wordvar1
wordvar2addr : .word wordvar2

Add this program to a new file called third_assem_prog.s and save it.

This should be stored with the other Assembly programs you created in the  
assem_programs directory.

Let's look at the new features we have introduced.

The .data directive
The first new feature compared to our earlier two programs is a new definition at the 
top of the file called data:

.data
/* Variable definition */
.balign 4
wordvar1:
    .word 7
.balign 4
wordvar2:
    .word 3

The period (.) should alert you that .data is a directive. Under this directive we 
have a chunk of code that contains .word, labels, and .balign.

These are used to define variables and the data for our program in advance.

Each of these items will be discussed in more detail.



Low-Level Development with Assembly Language

[ 54 ]

The .balign directive
A .balign directive is used to make sure that the next piece of data or instruction is 
a multiple of 4 bytes.

The ARM architecture restricts the types of address of data you can use. You can 
read more about .balign at https://sourceware.org/binutils/docs/as/
Balign.html.

The next piece of data we will be storing will be 32bits long. We will now look at this.

Words
A word in Assembly language actually refers to a 32-bit (4-byte) integer. Therefore, 
when using the .word directive we are telling the assembler that it should represent 
the value as a 32-bit value.

In the following block of code we are defining a 4-byte integer with the value 7:

 wordvar1:
    .word 7

The value 7 would be represented in binary format as:

0000 0000 0000 0111

This word with the value 7 is stored as a variable with the label wordvar1. Let's now 
take a look at labels in a little more detail.

Labels
In the previous section we discussed how wordvar1 was a label. There are some 
further examples in the program, including the following code:

wordvar2addr : .word wordvar2

Here we can also see the label wordvar2addr. We will discuss what this line of code 
is doing shortly; however, for the moment we are interested in the label itself.

In Assembly language, labels are a way of referencing unique spaces in memory. 
They should not be confused with directives, which start with a period (such as 
.data and .text).

It is also important to remember that the label references the memory address and 
not the contents. You'll come to have a better understanding of what this means as 
we look at memory and then addresses next.

https://sourceware.org/binutils/docs/as/Balign.html
https://sourceware.org/binutils/docs/as/Balign.html


Chapter 3

[ 55 ]

The memory
If the CPU has a limited set of storage in the form of registers, then where do we 
keep larger amounts of data?

This is where the memory comes in. Placing aside the cache and the registers, our 
Raspberry Pi has two forms of memory. There is the RAM where data is stored as 
long as the Raspberry Pi is powered.

The second type is the microSD card. This is our long-term storage and memory 
mechanism. Files are written here and can be accessed again once the device is 
powered back up.

In our assembler programs, when we want to store data outside of the CPU registers, 
we tap into the RAM of the computer.

The program contained in the text portion of our program is already loaded into 
memory when we run it from the command line.

We can define data to be stored in memory as follows:

.balign 4
wordvar2:
    .word 3

Here we have defined a variable called wordvar2. It is 4 byte aligned and is a word 
length (32bits, which is 4 bytes). The actual value of this variable is the integer 3.

This could be represented in a binary word as follows:

0000 0000 0011

The command we can use to load data from memory into a register is as follows:

LDR

However, we cannot directly load a reference from wordvar2 into a register. We need 
to know where wordvar2 is stored in memory. We can achieve this via addresses.

The addresses
We discussed earlier the code block found at the bottom of the program:

wordvar2addr : .word wordvar2

Here we have referenced our variable wordvar2 again, so why couldn't we just have 
directly referenced that in an LDR command?



Low-Level Development with Assembly Language

[ 56 ]

When we create a variable and assign it a name via a label, we need to know where 
it is stored in memory, hence the name address. Once we have this address we can 
then look at it to see where our variable is stored, and the value it contains.

The address is a 32-bit number that can be used to reference any 8-bit portion of 
memory. For example:

0000 0000 0000 0000

This would be our first byte of memory.

Now let's imagine we have stored a variable at this address. We can take this 32-bit 
address number and load it into one of our integer registers on the CPU. With this 
variable now accessible via its address, we can load the value from it.

You may remember when we looked at the C program in Chapter 2, Programming 
on Raspbian, we did something similar. Here we defined a variable, but when we 
actually wanted to assign a value to it, we prefixed it with the & symbol. What you 
are seeing here is the same concept, the separation between the variable definitions 
and accessing it to assign or read a value.

LDR and SUB
In this program we introduce you to two new commands, LDR and SUB. You can see 
them both in the following code block:

    LDR R2, wordvar2addr
    LDR R2, [R2]
    SUB R0, R1, R2 @ Subtract 3 from 7

The first command we will look at is LDR. This stands for load register. You may be 
wondering why we have referenced it twice.

In the first instance of LDR we get the address of our variable wordvar2, which is 
denoted by wordvar2addr. So what we have done is loaded the address of the 
variable, rather than its value, into the register.

Next, you will see that the R2 register is wrapped in square brackets [R2].

Currently our register has the address of our variable, but it does not contain the value 
of the variable.

The square bracket around the second parameter is saying grab the value of the 
memory location addressed in R2 and store the result in R2.

After these two commands have executed, we have the integer value 3 stored in R2.



Chapter 3

[ 57 ]

Finally, we use the SUB command. As you may be able to guess, this subtracts the 
value in the second register from the first and stores it in register 0.

This block of code demonstrates how we can load a value from memory into a 
register and then use it to complete a simple subtraction. Our next task is to try the 
program out.

Running our program
Let's now assemble, link, and run second_assem_prog. We are going to modify our 
earlier Makefile to include this new program.

Start by opening up the Makefile in your text editor:

vim /home/pi/assem_progams/Makefile

Update it so that the all statement is renamed second:

second: second_assem_prog

Following this, add a new section to the Makefile to assemble and link the  
third program:

third: third_assem_prog

third_assem_prog: third_assem_prog.o

                        gcc -o $@ $+

third_assem_prog.o: third_assem_prog.s

                        as -o $@ $<

When adding spacing to the file, use the Tab key in order to align your 
commands correctly.

This completes the modification of the Makefile. Of course, you could also add 
the information necessary to compile the Assembly program from Chapter 2, 
Programming on Raspbian, so they are all located in one place.

Your file should look as follows. Remember to use tabs for spacing:

second: second_assem_prog

second_assem_prog: second_assem_prog.o

                        gcc -o $@ $+

second_assem_prog.o: second_assem_prog.s

                        as -o $@ $<

third: third_assem_prog



Low-Level Development with Assembly Language

[ 58 ]

third_assem_prog: third_assem_prog.o

                        gcc -o $@ $+

third_assem_prog.o: third_assem_prog.s

                        as -o $@ $<

We can now run the make command, passing in third as a parameter. This will 
result in our third_assem_prog executable being generated:

make third

You should see the results of the linker and gcc displayed on the screen, as follows:

as -o third_assem_prog.o third_assem_prog.s

gcc -o third_assem_prog third_assem_prog.o

If this step was successful then run the executable:

./third_assem_prog.

Finally, when you run the echo command you should see the result of the subtraction:

echo $?

The output of this should be the number 4.

Let's now move onto some more advanced concepts you may be familiar with from 
other programming languages you have explored in the past.

Adding power to our program – control 
structures
Within programming languages, control structures are one of the most useful 
features. They allow us to say things such as the following:

• If this action happens then do this, otherwise do this
• Keep doing this until some condition is met

The most common control structures you may be familiar with are the if  
and else statements.

As with C and Python, we can implement a control structure like this in  
Assembly language.



Chapter 3

[ 59 ]

Also included in control structures are loops. You may have seen these in the format 
of the for loop and while loop.

The following program demonstrates how we can implement iteration via loops  
and if else structures in Assembly language via branching.

We will be building upon our previous program where we introduced you to the SUB 
command, and will also explore some new commands including CMP and BLT.

Create a new file called fourth_assem_prog.s in the assem_programs directory.

To this file we are now going to add the following code:

.data
/* Variable definition */
.balign 4
wordvar1:
    .word 30
.balign 4
wordvar2:
    .word 1

.text
/* code definition */
.balign 4
.global main
main:
    LDR R1, wordvar1addr
    LDR R1, [R1]
    LDR R2, wordvar2addr
    LDR R2, [R2]
while:
    CMP R1, #2
    BLT end          @if less than goto end
    SUB R1, R1, R2   @else subtract R1 from R2
    B while
end:
    ADD R0, R1, #1
    BX LR

wordvar1addr : .word wordvar1
wordvar2addr : .word wordvar2

Let's now take a look at an example of the ifelse statement equivalent here.



Low-Level Development with Assembly Language

[ 60 ]

If else statements
There is no specific if and else syntax available in ARM but there is a way to 
achieve this using the CMP opcode.

CMP stands for compare. It will take the two values passed to it and set a condition 
register based upon the comparison it performs by simple arithmetic.

In our example program we have specified this as follows:

    CMP R1, #2

This checks the value of register 1 and subtracts the integer 2 from it. If the value is 
less than 2 after the subtraction, then the condition register records a less than value. 
Otherwise it will record that it is greater than or equal to.

Following this, we see if the condition register is set to LT (less than) using the 
following code:

BLT end

If it is less than, we branch to our end statement, otherwise we continue with the 
process of subtracting values until the condition is met.

In the C language we might write this as follows:

if ( a < b) {
…
} else {
…
}

As you can see, it is fairly easy to mimic this conditional statement using a 
comparison and branching approach in ARM Assembly language. There are a 
number of opcodes available for doing other comparisons, such as a greater than.

You can read more about these at the ARM website by visiting http://infocenter.
arm.com/help/index.jsp?topic=/com.arm.doc.kui0100a/armasm_cegihjgh.
htm.

As you may have noticed, we were checking if the value in our program was less 
than two, and if not, continued subtracting values until this condition was met.  
This approach used iteration, commonly known as looping.

Let's now take a look at this in closer detail.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.kui0100a/armasm_cegihjgh.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.kui0100a/armasm_cegihjgh.htm
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.kui0100a/armasm_cegihjgh.htm


Chapter 3

[ 61 ]

Iteration
Often when writing a program we want to do a single task multiple times, or continue 
doing a task until some other event takes place. This is the heart of iteration and is 
represented by writing loops in programming languages.

You may have heard of for and while loops, but if not you can read more about  
the idea behind them here https://en.wikipedia.org/wiki/For_loop and 
https://en.wikipedia.org/wiki/While_loop.

So how do we write a loop in Assembly language? Well, in fact we have done that 
with this very program.

This is the code located in the while block:

while:
    CMP R1, #2
    BLT end          @if less than goto end
    SUB R1, R1, R2   @else subtract R1 from R2
    B while

The process continues to run over and over, subtracting the value of register 2 from 
register 1. This will only complete when our if statement, which is checking if the 
value of R1 is less than 2, is true. At this point, the loop exits as we call the end code.

In C we could represent this as follows:

while ( a >= b)  {
…
}

Here we are continuing to execute the code in the braces until the variable a is less 
than b, in which case the program would exit from the while loop.

That concludes our look at control structures; let's see what happens when we run 
the program.

Testing our control structures
We can modify our earlier Makefile to now include this fourth program.

fourth: fourth_assem_prog

fourth_assem_prog: fourth_assem_prog.o

                        gcc -o $@ $+

fourth_assem_prog.o: fourth_assem_prog.s

                        as -o $@ $<

https://en.wikipedia.org/wiki/For_loop
https://en.wikipedia.org/wiki/While_loop


Low-Level Development with Assembly Language

[ 62 ]

Once you have added this to the Makefile, save it and execute the following 
command:

make fourth

You should now have the executable ready to run. From the command line you can 
simply type the following command:

./fourth

When the program has finished, we can check register 0 and see what result  
is present:

echo $?

You should now see the value 2. Why 2? After our loop completed, leaving register 1 
with the value of 1, we called the end block of code.

In this we added the integer 1 to the value of register 1 and stored it in R0.  
This resulted in a value of 2 being stored when the application exited.

Summary
This concludes our chapter on the Assembly language, and has provided you with  
a hands-on guide to programming the CPU and using memory.

The ARM Assembly language is rich with features, and this chapter makes a great 
jumping off point for those interested in working with the subject further.

Our Raspberry Pi 2, however, contains other hardware components we wish to 
interact with. As you discovered, Assembly programs can be fairly verbose to write 
to perform simple tasks, even with the help of mnemonics.

Next, we will return to the C programming language and look at another interesting 
subject, programming threads.



[ 63 ]

Multithreaded Applications 
with C/C++

In this chapter we will explore the Raspberry Pi 2 further via the C/C++ languages 
and a technology known as threads.

This chapter builds upon the previous material and will help you to understand how 
applications can run tasks concurrently. In addition to this, you will see how these 
concurrent operations can access a shared memory space and manipulate its value 
without overwriting each other's computations.

Topics also covered include the following:

• A look at pthreads
• Writing threaded applications in C
• Adapting a C-based threaded application for C++
• Understanding mutexes

To start with we will look at what threads are before writing several applications in 
both C and C++.

What are threads?
In order to understand threads, it helps to understand what a process is first.

Within Linux, if you run the command ps you will see a list of processes running on 
the machine:

  PID TTY          TIME CMD

20215 pts/0    00:00:00 bash

20231 pts/0    00:00:00 ps



Multithreaded Applications with C/C++

[ 64 ]

A process is a running instance of a program at a particular point in time. We can see 
in the example that both the ps command we typed and the bash shell is shown in 
the list.

Each process has a unique ID identifying it and has a number of other properties. 
These are:

• System resources
• Security attributes
• Memory
• Processor state

At any point in time multiple processes could be running that need access to the 
register in the CPU, for example. It is the job of the short-term scheduler to decide 
which process is to be executed.

A thread can be thought of as a sub-division of a process and is the smallest unit  
a scheduler will work with to allocate resources.

Just as the operating system can have multiple programs running and a program can 
have multiple processes, a process can have multiple threads.

A program can be split across multiple processes, which allows the 
concept of multiprocessing to come into play. This is where a program 
can leverage more than one CPU to execute itself.

There are of course some differences between threads and processes. A process,  
for example, does not share its address space with that of another process; however, 
threads do.

Synchronization between processes is handled by the kernel or in some cases by 
technologies such as Message Passing Interface (MPI). Thread synchronization is 
handled within the process.

Within the process, each of these threads is executed asynchronously, and context 
switching between threads is far faster than between processes. This asynchronous 
approach allows us to divide our workload up between each thread within a 
program. As a result of this, a number of benefits can be found. The following 
example is used to illustrate this.

Take, for instance, a program that is required to process several inputs. These could 
be values returned from the Raspberry Pi's GPOI pins that take multiple readings, 
multiple socket connections, or some similar scenario.



Chapter 4

[ 65 ]

If we did not have the option of using threads, the inputs would need to be processed 
one after another in a sequential fashion. This of course can slow down the program's 
ability to respond with certain outputs, if, for example, the processing of one input 
takes longer than expected or the operations needs to wait for another to complete.

In a system that requires real-time input and output this would be very inconvenient, 
for example, with a web server where multiple users may be trying to access a 
resource concurrently.

Several different types of thread exist to deal with these issues. Let's take a look  
at them.

Thread types
There are three types of thread you may see discussed when writing applications. 
These are as follows:

• User level threads
• Kernel level threads
• Hybrid threads

We will quickly run through each of these types.

User level threads
The first in our list is user level threads. These are created by user level libraries and 
not by the kernel, thus the kernel has no control over how they are processed.

In user level threads we follow a co-operative multitasking model where the thread 
is responsible for releasing the CPU when ready, rather than the scheduler assuming 
this role. This allows fast switching between different threads and thus lowers the 
overhead.

You may see references in literature to fibers. These are lightweight 
threads of execution that use a co-operative multitasking model.

Kernel level threads
The next type of thread is kernel level threads. As you may have guessed, these are 
created and controlled by the kernel itself. There is a corresponding kernel level 
scheduled entity that maps to the user threads.



Multithreaded Applications with C/C++

[ 66 ]

Unlike user level threads, kernel level threads implement a preemptive multitasking 
model. This results in the scheduler preempting a thread in execution and replacing 
it with a higher priority thread. This methodology therefore allows the scheduler to 
replace a blocked thread by an unblocked one, thus not holding up the process from 
executing.

Hybrid threads
Finally, we have hybrid threads, which act as a compromise between the kernel level 
and user level. In this instance, the threading library is responsible for the process of 
scheduling, which makes switching between threads very efficient as no system calls 
are required.

You can read more about these three models at https://en.wikipedia.org/wiki/
Thread_(computing)#Processes.2C_kernel_threads.2C_user_threads.2C_
and_fibers.

For a slide-based comparison of the pros and cons of each thread type, check out 
http://faculty.cs.tamu.edu/bettati/Courses/410/2014A/Slides/threads.
pdf.

The library we will use in our C programs (pthreads) is an interface that generates 
kernel level threads.

Now let's look at the standard model that this and many thread libraries are built to 
support: POSIX.

POSIX threads
In Linux, we use POSIX thread libraries. You will see these referenced in C and C++ 
code with the pthread header.

POSIX is a thread execution model that exists independently of the C language. Our 
pthreads library provides a C interface for interactions with this model.

When we import pthreads we thus have a wide variety of functions available to us. 
This includes the following:

• Managing threads, including creating and terminating
• Including conditional variables
• Synchronizing between threads
• Implementing mutual exclusion (mutexes)

https://en.wikipedia.org/wiki/Thread_(computing)#Processes.2C_kernel_threads.2C_user_threads.2C_and_fibers
https://en.wikipedia.org/wiki/Thread_(computing)#Processes.2C_kernel_threads.2C_user_threads.2C_and_fibers
https://en.wikipedia.org/wiki/Thread_(computing)#Processes.2C_kernel_threads.2C_user_threads.2C_and_fibers
http://faculty.cs.tamu.edu/bettati/Courses/410/2014A/Slides/threads.pdf
http://faculty.cs.tamu.edu/bettati/Courses/410/2014A/Slides/threads.pdf


Chapter 4

[ 67 ]

The documentation for the standard can be acquired via the IEEE 
standards association website at http://standards.ieee.org/findstds/
standard/1003.1-2008.html.

Let's look a little further into the steps involved in creating, managing, and 
terminating threads. We will discuss some of the areas in the bullet points in  
more detail.

Steps involved in implementing threads
When we want to implement a thread in our program there are several steps  
to be considered:

• Creation
• Termination
• Synchronization
• Scheduling

We will now look at each of these items and discuss what is involved.

This will give you a high-level overview of the process so you can understand  
what is happening in the later programs in this chapter.

Links to relevant documentation will also be provided for those interested in  
reading further.

Creation and termination
The creation step is, as you have probably guessed, the process of generating a new 
thread. The termination step is the process of killing the thread.

When a thread is generated in Linux it has its own set of register values, a program 
counter, and its own call stack. It is also allocated memory where the stack is stored. 
These are used throughout the lifetime of the thread.

A detailed description of the creation process can be found at http://man7.org/
linux/man-pages/man3/pthread_create.3.html.

Killing a thread involves the inverse of the creation process. In its simplest form the 
stack is removed and the memory is freed up.

A more detailed description including what happens with regards to mutexes and 
conditional variables can be found at http://man7.org/linux/man-pages/man3/
pthread_exit.3.html.

http://standards.ieee.org/findstds/standard/1003.1-2008.html
http://standards.ieee.org/findstds/standard/1003.1-2008.html
http://man7.org/linux/man-pages/man3/pthread_create.3.html
http://man7.org/linux/man-pages/man3/pthread_create.3.html
http://man7.org/linux/man-pages/man3/pthread_exit.3.html
http://man7.org/linux/man-pages/man3/pthread_exit.3.html


Multithreaded Applications with C/C++

[ 68 ]

In the C and C++ programs that follow you will see two functions in action that 
handle the creation and termination phases.

Once we have generated the threads we need to know how to coordinate, we will 
look at synchronization.

Synchronization
Thread synchronization is an important topic. When a program generates multiple 
threads we often need to organize them to avoid a number of pitfalls.

There are three key areas we are interested in:

• Mutexes
• Joins
• Conditional variables

A mutex is used to prevent multiple threads operating upon the same memory area 
at the same time. Without implementing mutexes we can encounter problems such 
as race conditions, inconsistent results, and data loss.

Therefore, a mutex can be implemented to take an asynchronous process and serialize 
it so that operations take place in a certain order. Thus we can guarantee the program 
will run consistently each time.

Further information on mutexes can be found at http://linux.die.net/man/3/
pthread_mutex_init.

Following this are joins. These can be used to cause the program to pause until all 
the threads have finished executing. For example, say we wished to spawn four 
threads and have each of them estimate pi. We could then wait until each thread has 
finished executing, collect the results, and then run an average with the combined 
results.

For those interested you can read more about joins at http://linux.die.net/
man/3/pthread_join.

Our final category is conditional variables. These allow us to perform operations 
such as halting a program, thus allowing the process to be used for another action 
until some state is true. Conditional variables are used in conjunction with mutexes.

For more information on conditional variables, visit http://linux.die.net/
man/3/pthread_cond_init.

http://linux.die.net/man/3/pthread_mutex_init
http://linux.die.net/man/3/pthread_mutex_init
http://linux.die.net/man/3/pthread_join
http://linux.die.net/man/3/pthread_join
http://linux.die.net/man/3/pthread_cond_init
http://linux.die.net/man/3/pthread_cond_init


Chapter 4

[ 69 ]

When multiple threads come into play, a method is needed to say when to execute 
each one. This is achieved via scheduling. We will let Raspbian handle this, but will 
briefly explore the concept next.

Scheduling
Raspbian by default will continuously select a single unblocked thread for execution. 
This default behavior is optimal for the programs we use to demonstrate threading 
concepts.

Thread scheduling, however, allows a programmer to set the priority of threads and 
choose which algorithm/policy is used to control thread priority. This in essence 
allows a program to override the default behavior of the operating system.

The POSIX standard implementation via C allows us to control some details 
regarding how threads are scheduled. They can be implemented as follows:

• During the creation process
• Dynamically after the creation process
• Via a mutex when creating said mutex
• Through a synchronization operation

Implementation of an override for scheduling is out of the scope of the programs 
in this book. However, for those of you who are interested, you can read more in 
Chapter 4, Managing Pthreads, in an excellent book called Pthreads, O'Reilly, authored 
by Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell.

We shall now look at our first example in the C programming language.

In this program we will explore how to generate a number of threads that output text 
to the screen.

An example in C
Here we have an example C program that implements the thread creation process.

Start by creating a new file under your c_programs folder called second_c_prog.c:

vim /home/pi/c_programs/second_c_prog.c

Add the following code to this file:

#include<stdio.h>
#include<pthread.h>



Multithreaded Applications with C/C++

[ 70 ]

pthread_t thread_id[4];

void* thread_processor(void *arg)
{
    pthread_t t_id = pthread_self();

    printf("\n Thread %d processing\n", t_id);

    return NULL;
}

int main(void)
{
    int i = 0;
    int error;

    while(i < 4)
    {
        error = pthread_create(&(thread_id[i]), NULL,  
&thread_processor, NULL);
        if (error != 0)
        {
            printf("\nthere was a problem creating thread: %s",  
strerror(error));
        }
        else
        {
            printf("\n Thread number %d created.\n", i);
        }
        i++;
    }

    sleep(10);
    return 0;
}

Let's now step through what we have here and discuss what it does.

At the top of the file we see we have included two header files:

#include<stdio.h>
#include<pthread.h>

The first of these, stdio.h, you are already familiar with from our first C program.



Chapter 4

[ 71 ]

The second, pthread.h, is new. This header stands for POSIX threads and contains 
the function references we need in order to implement threads in our application.

The next line of code we are interested in is this:

pthread_t thread_id[4];

Here we are defining an array of length 4. This array by the name of thread_id  
will contain 4 threads.

The array uses a 0 based index; therefore, the first 
item is 0, the second is 1, and so on.

Next we come to our first custom function, thread_processor:

void* thread_processor(void *arg)
{
    pthread_t t_id = pthread_self();

    printf("\n Thread %d processing\n", t_id);

    return NULL;
}

The method is responsible for outputting the ID of the thread each time it is called. 
This is achieved through the pthread_self() function. When this is invoked it 
returns the thread's ID to our t_id variable.

Using the printf()method we can output this to the screen.

Finally, we exit the function by returning NULL.

Following this we define our main() function. This is the main entry point into  
our application. Let's now take a look at some of the lines of code contained in it.

The first two lines are variable definitions:

int i = 0;
int error;

The integer i variable is used as a counter. Each time we create a new thread, at the 
bottom of the main function we increment this variable:

i++;



Multithreaded Applications with C/C++

[ 72 ]

Following this is another integer variable called error. When we create a new thread 
it should return a code of 0 to show that no error was thrown. However, if for some 
reason the thread could not be created, the relevant error code is returned and stored 
in our variable.

We can therefore check the error variable after an attempt to spawn a thread to see if 
it was successful.

You may see some parallels here when we created our Assembly language program 
and returned a number to register 0. This number could then be viewed via the echo 
command. If our Assembly language program threw an error, this could have been 
stored in register 0 and when running echo $? we could see the exit code that is the 
error code of the application.

Following this, we include a while loop:

while(i < 4)

This ties into the code that increments the i variable. While our variable is less than 
4 (starting at 0) we run the code in the while loop block. Once again, you will be 
familiar with this idea of a while loop from our Assembly language programs.

Now we get to a very interesting piece of code, the thread creation:

error = pthread_create(&(thread_id[i]), NULL, &thread_processor, 
NULL);

As we just mentioned, the output of this is stored in error, but let's look at the 
pthread_create function. This function creates a new thread inside of the process, 
and it takes a number of parameters. The first we have passed in is a reference to the 
thread_id array we specified at the top of the program. Following this, the second 
parameter is NULL.

This second parameter is where we could pass in attributes to the thread creation 
process. If we leave it NULL, as we have, the default attributes will be used.

You can read more about the POSIX thread attributes here http://man7.org/
linux/man-pages/man3/pthread_attr_init.3.html.

Following this, we are passing in a reference to the thread_processor function. This 
is the code we looked at earlier that displays the ID of the newly spawned thread.

Finally, once again we pass in NULL. This final parameter is a void* pointer that can 
point to any user data to be used as input to start_routine when the thread starts. 
Since we have passed in NULL, then a NULL pointer is used as an input parameter.

http://man7.org/linux/man-pages/man3/pthread_attr_init.3.html
http://man7.org/linux/man-pages/man3/pthread_attr_init.3.html


Chapter 4

[ 73 ]

The term pointer is used to describe a variable that 
contains the memory address of another variable.

This concludes the call to generate a thread. Following this, we use an if else 
statement to display a message to the screen. If we successfully generated a thread 
we communicate this; otherwise, we output the error code.

Now we have walked through our program, it's time to try it out.

Trying out our program
We can compile this with gcc as follows:

gcc -pthread -o second_c_prog second_c_prog.c

In this command we have linked the pthread library with our own code so we can 
implement it into the executable file.

Once compiled, you can run the application from the command line:

./second_c_prog

Something like the following should be output to the screen:

Thread 1994273904 processing

Thread number 0 created.

Thread number 1 created.

Thread 1985885296 processing

Thread number 2 created.

Thread 1977496688 processing

Thread number 3 created.

Thread 1969108080 processing

To exit from the program you can press Ctrl+ C.

Now that we have completed our second C program, let's take a look at how we 
might write this application in C++.



Multithreaded Applications with C/C++

[ 74 ]

A C++ equivalent
The following C++ code demonstrates how we can implement the threading 
program. It shows that there are some subtle differences between C and C++ 
with regard to outputting strings to the screen. However, as you will discover, C 
functionality can also be implemented in C++.

It also importantly introduces us to thread termination via the pthread_exit 
function.

As you will encounter C and C++ used heavily in many hardware projects designed 
for the Raspberry Pi, this program will give you a basic introduction to C++, which 
you can use as a jumping off point.

You can read more about C++ at http://www.cplusplus.com/doc/ and find a 
wealth of tutorials.

Our next task is going to be to create a new file under your c_programs directory:

vim first_cpp_prog.cpp

Let's start by adding the include statements to the top of the file:

#include <iostream>
#include <cstdlib>
#include <pthread.h>

Here we include a library to handle input and output, called iostream. This 
provides us with some methods in C++ to handle outputting text to the screen.

Next we include a library called cstdlib. This library contains C code that has been 
ported to work in C++ and contains all the functions that were available in the C 
stdlib library.

You can read more about it at http://en.cppreference.com/w/cpp/header/
cstdlib.

Following this, we include the header for the POSIX thread library, pthread.h.

Now add the following two lines of code to your file below the header definitions:

using namespace std;

pthread_t thread_id[4];

The first line should be new to you. Here we are saying we want to use the 
namespace std. This allows us to call a function such as cout without having to 
prefix the namespace for example, we can use cout rather than std::cout.

http://www.cplusplus.com/doc/
http://en.cppreference.com/w/cpp/header/cstdlib
http://en.cppreference.com/w/cpp/header/cstdlib


Chapter 4

[ 75 ]

Following this we have a variable called thread_id. You should be familiar with  
this from our earlier C program, and it serves the same purpose, that is, it saves the 
thread ID.

Next we are going to add the thread processing function:

void* thread_processor(void *thread_id)
{
   long t_id;
   t_id = (long)thread_id;
   cout <<" Thread "<< t_id <<" processing"<< endl;
   pthread_exit(NULL);
}

You'll see that this function looks very similar to our C one. The differences are, 
though, that we are using the C++ method of outputting text to the screen, cout.

We also introduce the function:

pthread_exit(NULL);

This is responsible for terminating the calling thread. Our initial program  
didn't contain this. You can read more about the thread termination process at 
http://man7.org/linux/man-pages/man3/pthread_exit.3.html.

Following this, we are going to add the main() function of our application. Copy 
and paste this code just below the thread processing function:

int main(void)
{
   int i = 0;
   int error;

   while (i < 4)
   {
      error = pthread_create(&thread_id[i], NULL, &thread_processor,  
(void *)i);
      if (error != 0){
         cout <<" there was a problem creating thread: "<< error << 
endl;
      }
      else
      {

http://man7.org/linux/man-pages/man3/pthread_exit.3.html


Multithreaded Applications with C/C++

[ 76 ]

         cout <<" Thread number "<< i <<" created"<< endl;
      }
     i++;
   }
   pthread_exit(NULL);
}

You may notice that there are some similarities here with our C program. We have 
an error variable and an i variable. Both of these are used for our while loop and 
for recording an error code (or success) when the thread is generated.

When we implement the pthread_create function you'll notice a slight change 
from before. Instead of passing NULL as the final parameter, we in fact pass the 
following:

(void *)i

You may remember that this is where we can pass in user data. In our case we pass 
in the variable i, which is the counter in the loop. Thus each thread will be assigned 
an ID based upon which thread it is, that is, thread 1, thread 2, and so on.

As you will see when you run the program, the ID will be a single integer rather than 
the longer number we had before.

Next we have the if else statement again, and this will display the relevant 
message based upon the error code.

Finally, we finish the program with another reference to pthread_exit.

Let's compile and run this program and see what the results look like.

The g++ command
We are now going to explore a new command called g++. Like gcc, this is also part 
of the GNU Compiler Collection.

The g++ compiler is geared towards C++. As you may remember when we wrote 
our C programs, certain libraries are linked by default. By using g++ we get the C++ 
equivalent of these. If we used the GCC compiler we would need to specify that 
we wish to link to the C++ equivalent libraries rather than C. Another interesting 
difference between the two commands is that gcc will compile to either C or C++; 
however, g++ will automatically compile our code into C++.

So let's compile and link our program to try this out:

g++ -pthread -o first_cpp_prog first_cpp_prog.cpp



Chapter 4

[ 77 ]

You will now have an executable output that you can run.

As with your other programs you can run the executable directly from the  
command line:

./first_ccp_prog

When it runs you should see something similar to the following:

Thread number 0 created

Thread 0 processing

Thread number 1 created

Thread number 2 created

Thread 2 processing

Thread 1 processing

Thread number 3 created

Thread 3 processing

You'll notice that you did not need to cancel out of the program. In fact, when it 
finishes running it returns us to the command line.

Both the C and C++ programs are fairly simple. Next we will explore some of the 
other concepts explained in this chapter in a more expansive C program that builds 
upon the earlier one.

Going further – mutexes and joins
We touched upon mutexes and what they are; now we are going to implement a C 
program that demonstrates how they work.

Create a new file called third_c_prog.c inside the c_programs directory.

vim third_c_prog.c

Add the following code to this file:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
pthread_t thread_id[4];
int counter = 0;



Multithreaded Applications with C/C++

[ 78 ]

void *thread_processor()
{
 pthread_mutex_lock( &mutex1 );
 counter++;
 printf(" Counter: %d\n",counter);
 pthread_mutex_unlock( &mutex1 );
}

int main(void)
{

int i = 0;
int error;

  while(i < 4) {

  error = pthread_create(&(thread_id[i]), NULL, &thread_processor,  
NULL);
  if (error != 0)
  {
      printf("\nthere was a problem creating thread: %s",  
strerror(error));
  }
  else
  {
      printf("\n Thread number %d created.\n", i);
  }
  pthread_join( thread_id[i], NULL);
  i++;
 }

}

This program is a variation on the first C program we wrote. However, there are a 
number of differences. First, we are going to look at the variable definitions at the top 
of our program:

pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
pthread_t thread_id[4];
int counter = 0;

You'll be familiar with the thread_id array. However, there are two new ones, the 
mutex1 variable and the counter variable.

The mutex1 variable is assigned a value called PTHREAD_MUTEX_INITIALIZER, which 
can be thought of as a macro that contains predefined values. When we assign this to 
the mutex1 variable we initialize a mutex with default attributes.



Chapter 4

[ 79 ]

We can then use the mutex in our code to protect shared data from concurrent 
modifications. That is, we can prevent two threads from attempting to access a 
variable at the same time, which could result in inconsistent values.

The counter variable is going to represent the shared memory space we wish to 
protect from concurrent modifications. This will make more sense after we examine 
the thread_processor function:

void *thread_processor()
{
 pthread_mutex_lock( &mutex1 );
 counter++;
 printf(" Counter: %d\n",counter);
 pthread_mutex_unlock( &mutex1 );
}

As we explained, mutexes can be used for preventing data inconsistencies and race 
conditions. In our function we are going to increment the counter variable. There is 
a risk that multiple threads trying to access the counter variable concurrently would 
result in unexpected results.

For example, one thread may increment the counter variable at the same time as 
another, overwriting its result. In this case, instead of the counter variable being 
incremented sequentially giving us a value of 2, we may find the value overwritten 
by one thread giving it a value of only 1.

The purpose of this function is to lock the mutex, increment the counter variable, 
output its value, and then unlock the mutex again. Once unlocked, the next threads 
can then follow the same process to increment the counter variable.

We create a lock using the pthread_mutex_lock( &mutex1 )function and then 
remove the lock using pthread_mutex_unlock( &mutex1 ).

If we attempt a mutex lock against a mutex currently used by one of the other 
threads, the thread is blocked until the mutex is unlocked again. Thus we can avoid 
the issues we discussed earlier.

Finally, in our main()function we see another new line of code:

  pthread_join( thread_id[i], NULL);

The pthread_join method is our first implementation of joins, which we discussed 
previously.

This function call suspends execution until the target thread terminates. In our case 
we suspend the program until all our target threads (4) have completed.



Multithreaded Applications with C/C++

[ 80 ]

By applying the mutex and join functionalities to our program we should see a 
program that generates four threads and increments a shared counter from 1 to 4.

Let's test this and see it in action.

Compile and test
We are going to use gcc to compile this program. At the command line run the 
following command:

gcc -pthread -o third_c_prog third_c_prog.c

You should now see a new program called third_c_prog.

You can run this as follows:

./third_c_prog

The following screenshot demonstrates what the output should look like:

Here we can see that each thread is created and then the counter variable is 
incremented. You may notice that the thread uses a 0 based index and the counter 
variable 0. This is because we initialized the counter variable with the value 0. The 
first thread, which is thread 0, incremented the counter variable by 1. This differs 
from the prior examples in the manner in which it addresses thread serialization.

This concludes our final thread program.

A comprehensive guide to threads for those interested in delving further 
can be found at https://www.cs.cf.ac.uk/Dave/C/node29.html#SECTI
ON002910000000000000000.

Now let's recap what we have learned so far.

https://www.cs.cf.ac.uk/Dave/C/node29.html#SECTION002910000000000000000
https://www.cs.cf.ac.uk/Dave/C/node29.html#SECTION002910000000000000000


Chapter 4

[ 81 ]

Summary
This chapter introduced us to the concept of threads. First, we learned what they are 
and why they are useful. Following this we studied how they can be implemented 
in both C and C++. This allowed us to apply some of the theoretical concepts in 
practice. Our programs showed how we can create multiple threads, use mutexes to 
lock memory locations for concurrent updates, and finally how to terminate threads.

Through studying threads in C and C++ we built upon some of what we have 
learned in previous chapters.

Next we will look at how we implement a USB HDD as our main storage mechanism 
rather than use the microSD card. This will allow us to increase the storage capacity 
of the Raspberry Pi and also learn a little about the Raspberry Pi's boot process.

www.allitebooks.com

http://www.allitebooks.org




[ 83 ]

Expanding on Storage 
Options

In this chapter we will explore how we can expand the storage options of the 
Raspberry Pi 2 beyond that of the microSD card.

As you come to write more applications or use different media types on your device 
you may find that the microSD card becomes too restrictive. Also, using the Raspberry 
Pi with an external HDD allows you to create your own Network-attached storage 
(NAS) device. We will explore the Samba suite of software to achieve this.

In order to use these devices there are some modifications that are required in the 
boot up process.

We will cover the following topics:

• Setting up the external HDD
• Network attached storage
• Installing Samba
• Testing the NAS for different operating systems

We'll start by looking at the Raspberry Pi and how it boots up, then discuss what 
changes are required.

Booting up
What follows is a brief explanation of the process that eventually results in  
Raspbian being loaded. This will provide some context when we come to modify  
the cmdline.txt file in order to boot the operating system from the HDD rather  
than the microSD card.



Expanding on Storage Options

[ 84 ]

Start by running the following ls command:

ls /boot/

This is the boot directory as its name suggests. In here you will see a variety  
of files that are used in a specific order to boot the Raspberry Pi 2 up into the  
operating system.

The following screenshot illustrates what this directory typically looks like:

We will now summarize how these files are used in the overall process.

The first step happens when we power up the Raspberry Pi. The CPU and other 
components start up and the VideoCore GPU kicks off the boot process based upon 
its firmware located in Read Only Memory (ROM).

This firmware can optionally be updated with the latest version by following the 
steps in the document available at https://github.com/Hexxeh/rpi-update.

For those who are interested, the Raspberry Pi firmware can also be acquired from 
the repository available at https://github.com/raspberrypi/firmware.

Be careful updating your firmware. Updating to an experimental 
version can risk locking up your Raspberry Pi. The following guide 
is worth reading before attempting this task if you are new to it. The 
GPU bootloaders section is of particular interest: http://elinux.
org/RPi_Software

Next, the bootcode.bin file is called. You should be able to see this in the boot 
directory. The bootcode.bin file starts the GPU up. While the bootcode.bin file is 
in machine code format, the config.txt file (also in the /boot directory) is human 
readable. This can be used to pass configuration parameters during startup.

You can read more about these and config.txt at the official Raspberry Pi website, 
available at https://www.raspberrypi.org/documentation/configuration/
config-txt.md.

https://github.com/Hexxeh/rpi-update
https://github.com/raspberrypi/firmware
http://elinux.org/RPi_Software
http://elinux.org/RPi_Software
https://www.raspberrypi.org/documentation/configuration/config-txt.md
https://www.raspberrypi.org/documentation/configuration/config-txt.md


Chapter 5

[ 85 ]

Following this, the next stage is start.elf, which is then loaded. start.elf is 
responsible for loading the configuration parameters from cmdline.txt and also the 
operating system kernel (Linux). In essence it kicks off the operating system running 
on our ARM architecture.

For the tasks in this chapter we are interested in cmdine.txt, which we will need to 
edit once we have our external drive setup.

At a superficial level the boot process is very simple and results in the operating 
system loaded on the microSD card being used. Since we plan to use an external HDD 
instead, let's look at getting our hardware setup so we can boot Raspbian from it.

Setting up the external HDD
Next we will explore how we can use an external HDD attached to one of the USB 
ports to store our programs and operating system. This will involve modifying the 
boot settings as well as setting up the external hardware.

First of all, we need to know what the disk name of our external hard drive is so we 
can copy the operating system to it and configure the Raspberry Pi to use it.

The first step is to plug the external hard drive into one of the free USB drives.  
Once you have done this, you can proceed with the next steps.

Getting the disk name
Grabbing the disk name for the device once it is connected is fairly simple;  
you'll need this and the microSD card name as we move through this chapter.

Start by loading up the command line if you don't have it open already. There is 
a utility called df, which tells us the amount of space left on the file system of the 
mounted disk. In addition, it lists the names of the disks attached to the Raspberry Pi 2.

You can run the command with the -h flag as follows:

df -h

As explained, this will list the disks. The following is an example of the type of 
output you can expect. This will be different based upon the devices connected to 
your Raspberry Pi:

Filesystem      Size  Used Avail Use% Mounted on

rootfs          6.3G  2.5G  3.6G  41% /

/dev/root       6.3G  2.5G  3.6G  41% /



Expanding on Storage Options

[ 86 ]

devtmpfs        460M     0  460M   0% /dev

tmpfs            93M  296K   93M   1% /run

tmpfs           5.0M     0  5.0M   0% /run/lock

tmpfs           186M  332K  186M   1% /run/shm

/dev/mmcblk0p5   60M   15M   45M  25% /boot

/dev/mmcblk0p3   27M  397K   25M   2% /media/SETTINGS

You will  need the disk name of your HDD. As an example this could be as follows:

/dev/sda1

You can use ls /dev/sd* to see the drive if it doesn't automatically 
mount.

In addition to this you will also need the name of your microSD card:

/dev/mmcblk0p5

You can also always find the device name in the 
cmdline.txt file specified as the root value.

Once you have this we can now move onto copying the card's contents to the external 
disk drive. This will then result in the HDD acting as the new hard drive for the 
Raspberry Pi and the location where the operating system is loaded.

Setting up the HDD
The process of setting up the external disk drive involves mounting our device so we 
can copy the microSD card image onto the HDD.

Once complete, our files will be stored on the HDD. However, the Raspberry Pi will 
continue to boot from the microSD card. Let's now take a look at the steps required 
to achieve this.

Your HDD should already be plugged in from when you grabbed the disk name. We 
now need to mount the device to a directory. Create a new directory to be the target 
of the mounting process:

mkdir ~/usb

You can then mount this folder with the following command:

sudo mount /dev/sda1 ~/usb



Chapter 5

[ 87 ]

The disk should now be mounted and available to start copying its contents over. 
Remember, you can use the df –h command at any time to see a list of mounted 
devices.

To unmount a disk, you can use umount /disk/
name where disk/name is your device.

We are now going to use the dd command to achieve this. The dd command allows 
us to convert and copy a file between disks.

We run dd from the command line as follows. Remember to use the values from your 
microSD card and external HDD:

sudo dd bs=1M if=/dev/mmcblk0p1 of=/dev/sda1

This command can take a little while to run. Let's take a look at what it does. 

The first parameter is bs. This stands for block size and represents the size of the 
chunks of data copied across. Following this is if which is the input to the dd 
command. In our case, this is the microSD card that we are copying the operating 
system from. Finally, the parameter of is included, which is the target device we are 
copying the data to. This, of course, will be your external HDD.

There are many types of filesystem. A comprehensive introduction 
can be found on Wikipedia for those interested in reading further: 
https://en.wikipedia.org/wiki/File_system

Once this process has finished copying, we need to tell the Raspberry Pi 2 to use this 
to boot the OS in future.

Modifying cmdline.txt
You will remember we looked at the cmdline.txt file in the /boot/ directory.  
Open this up and you should see something similar to the following example:

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 console=tty1 root=/dev/
mmcblk0p6 rootfstype=ext4 elevator=deadline rootwait

We can now edit this and update it to include the USB hard disk drive:

dwc_otg.lpm_enable=0 console=ttyAMA0,115200
kgdboc=ttyAMA0,115200 console=tty1 root=/dev/sda1
rootfstype=ext4 elevator=deadline rootwait

https://en.wikipedia.org/wiki/File_system


Expanding on Storage Options

[ 88 ]

Make sure that /dev/sda1 matches the mount point of your disk. Next, we can 
repartition the disk.

This process allows us to divide a disk up into smaller units, or merge them into 
larger ones. You may have seen this on Windows machines, for example, where a 
single physical hard disk is divided up into multiple drives such as C: and D:.

To repartition a disk in Linux we use the following command:

sudo resize2fs /dev/sda1

Once this has completed the partition should fill the disk space.

Remember you can use man resize2fs to learn 
more about the tool.

We now need to edit the fstab file. Here we can change the settings so that the 
Raspberry Pi 2 will mount our new HDD drive on boot up:

vim etc/usb/fstab

You'll need to add the details for your HDD. The following example assumes the 
name sda1:

proc                     /proc   proc    defaults       0       0

/dev/mmcblk0p1           /boot   vfat    defaults       0       2

/dev/sda1                /ext4    defaults,noatime      0       1

Save these changes to complete the configuration setup. Next, reboot the Raspberry 
Pi 2. We should now be running from the new HDD.

You can now try adding files to the mounted HDD to see it working.

Network-attached storage (NAS)
Now we have seen how to setup a single external HDD let's take a look at creating 
a Network-attached storage (NAS) device. This is particularly handy if you have 
a number of machines on your home network, such as Macs or Windows PCs, and 
want to create a central storage device for files that they can all access.

Setting up the NAS builds up the work we completed in the first part of this chapter.



Chapter 5

[ 89 ]

The technology we will use to achieve this is Samba. Samba is an open source 
application suite that provides both file and print sharing services. It re-implements 
the SMB/CIF protocol and was originally aimed at Windows users.

You can read more about this at the Samba website by visiting https://www.samba.
org/samba/what_is_samba.html.

For now, all you need to know is that it will allow you to network your Raspberry Pi 
2 and use it as a storage medium on your home network.

Let's start by grabbing the packages we need to set things up.

Installing Samba
We can use apt-get to grab the Samba packages and install them onto our device:

sudo apt-get install samba samba-common-bin

Once the installation process has completed we need to edit the configuration file. 
This can be found in the ./etc/samba directory:

sudo vim /etc/samba/smb.conf 

Find and edit the following line:

# security = user

It should be changed to the following line:

security = user

What we have done here is remove the comment activating this line in the 
configuration. If the file does not contain this line you can add it yourself.

We can now add our NAS Samba configuration as follows. Add it to the end of the 
file, below any other configuration settings:

[NAS]
comment = NAS directory
path = /ext4/
valid users = @users
force group = users
create mask = 0660
directory mask = 0771
read only = no

https://www.samba.org/samba/what_is_samba.html
https://www.samba.org/samba/what_is_samba.html


Expanding on Storage Options

[ 90 ]

The first line [NAS] is the name of the share. You can label this whatever you like.

Following this we have the comment. This is a description text associated with the 
share. This can be a plain text string explaining what the configuration is for.

After this we include the path. This is the path to our mounted HDD, for example,/
ext4/ or /.

Next we include the list of valid users permitted to access the share. Here we use @
users. The next line includes force group. Here we specify the UNIX group name 
that will be assigned for all users who access the share.

The create mask and directory mask follow on the next two lines. This contains 
the permissions that all directories on the share are given by default including when 
they are created.

The final setting read only is set to no. This allows users to add files to the share.

Save the file and exit.

We can now test that the NAS is working.

Testing the NAS
First of all, we will restart the Samba server to pick up our configuration changes.

At the command line, run the following command:

sudo /etc/init.d/samba restart

Next, connect your user to Samba as follows:

sudo smbpasswd –a pi

You will be prompted to enter a password for the pi user.

We can now test the network share is working from external devices. Follow the 
steps in the next section for the device you have. Instructions are included for Mac, 
Linux, and Windows:

Mac
To connect your Mac to the NAS follow these steps:

1. Select Go from the top menu bar and then select Connect to Server.
2. In the popup window enter in the IP address of the Raspberry Pi followed by 

the NAS network folder, for example, smb://10.0.0.64/NAS.



Chapter 5

[ 91 ]

3. Click Connect and enter the login credentials.
4. You should now be connected.

This completes the steps to access your Raspberry Pi via the Mac. You can now add 
and remove files to test everything is working.

Linux
Linux machines can also access the Samba share via the smbclient application.

If your device does not already have this installed, you can add it via the  
following command:

sudo apt-get install samba-client

Once you have installed it, follow these steps:

1. Start by searching for a list of hosts on your network using smbclient –L 
10.0.0.64 where the IP address is your Raspberry Pi's.

2. You'll now be presented with a list of machines.
3. To connect, use /usr/bin/smbclient \\\\10.0.0.64\NAS <passwd> where 

the IP address is your Raspberry Pi and the <passwd> is your password.
4. Once connected you will see a prompt.

The http://www.tldp.org/HOWTO/SMB-HOWTO-8.html website provides an in 
depth guide to using the Samba client on Linux.

This completes the testing of the Samba client in Linux. You should now be able to 
use the Raspberry Pi 2 for storing files.

Windows
Connecting to the Samba NAS from Windows is relatively straightforward.  
The following steps illustrate this:

1. Open Explorer up.
2. Select Network.
3. You should now see your Raspberry Pi on the network with the name you 

assigned it.
4. Double click the network folder icon.
5. You'll be prompted for your login credentials.
6. The device will now be accessible inside Explorer like any other.

http://www.tldp.org/HOWTO/SMB-HOWTO-8.html


Expanding on Storage Options

[ 92 ]

Try adding and removing files to confirm everything is working.

We now have a working NAS device that we can use to store and share large files 
across our home network.

Summary
In this chapter we learned how to expand the Raspberry Pi 2's storage options by 
using an external USB HDD. In the process, we explored how the boot process works 
and learned some new Linux commands, including dd.

Next, we looked at how we could install Samba to turn our device into a NAS device 
for saving files from the other machines on our network.

Next, we will look at graphics programming on the Raspberry Pi using C/C++.



[ 93 ]

Low-Level Graphics 
Programming

So far in this title we have looked at programming in both Assembly language and 
C/C++. Next we will look at how we can take our C programming skills and explore 
writing graphics on the Raspberry Pi 2.

This will take advantage of the VideoCore IV GPU. In this chapter you will learn 
about the following topics:

• The GPU on your Raspberry Pi
• Writing C programs that interact with the frame buffer
• How to draw to the screen via a C program

Let's start with a recap on this GPU unit and some of the technologies it comes 
equipped with.

VideoCore IV GPU
As we covered in Chapter 1, Introduction to the Raspberry Pi's Architecture and Setup,  
of this title, the Raspberry Pi 2 comes equipped with a Broadcom VideoCore IV GPU.

A GPU is a piece of electronic hardware specifically geared towards calculating 
complex mathematics and altering memory at high speed for the creation and 
manipulation of images in a frame buffer.

You will be exploring how to access the frame buffer via a C program shortly.

The graphical processing unit the Raspberry Pi 2 comes with provides a variety of 
features, including OpenMAX, Open EGL, OpenGL 1.1 and 2.2, and Open VG1.1.  
We will explore some of these briefly later in this chapter as well.



Low-Level Graphics Programming

[ 94 ]

However, due to the complexity of these technologies, it is out of the scope of this book 
to delve into each in detail. For those who are interested, a comprehensive guide can be 
found at https://jan.newmarch.name/RPi/, including example programs.

In order to showcase some of the abilities of the GPU you will find a number 
of example programs bundled with the Raspberry Pi 2 that implement these 
technologies.

These can be accessed via the /opt/vc/src/hello_pi folder in Raspbian.

If you find the programs on your version of Raspbian are not yet 
compiled you can use the rebuild.sh script to generate the 
executables.

Let's take a look at these in more detail. You will need to be logged into your 
Raspberry Pi and have access to the Raspbian desktop.

Sample programs
Your first task is to open a terminal window on the desktop.

Once you have this loaded, navigate via the shell to the hello_pi directory:

cd /opt/vc/src/hello_pi

Each program we will run is located in its own folder in this directory.

We are going to start by looking at some programs that use the OpenMAX API.

OpenMax, an acronym for Open Media Acceleration, is a cross-platform set of 
C programming interfaces. These are geared towards video, image, and audio 
processing. You can read more about OpenMax at https://www.khronos.org/
openmax/.

Let's start by running the first program. This is called hello_encode:

./hello_encode/hello_encode.bin output

We have passed in the name of an output file for the program to write to. If the file 
does not exist it will be created.

You will now see some text displayed on the screen; the following is a sample of this:

Port 200: in 1/1 15360 16 disabled,not pop.,not cont. 160x64 160x64 
@1966080 20

Port 200: in 1/1 15360 16 disabled,not pop.,not cont. 640x360 640x360 
@1966080 20

https://jan.newmarch.name/RPi/
https://www.khronos.org/openmax/
https://www.khronos.org/openmax/


Chapter 6

[ 95 ]

OMX_SetParameter for video_encode:201...

Current Bitrate=1000000

encode to idle...

enabling port buffers for 200...

enabling port buffers for 201...

encode to executing...

looping for buffers...

0 0 0 1 27 64 0 1e ac 2b 40 50 17 fc b0 f 12 26 a0 

Writing frame 1/300

0 0 0 1 28 ee 2 5c b0

Once hello_encode has run you should now see the following file in the directory:

output

This is a file in the H.264 format. H.264, also known as MPEG-4 Part 10 AVC, is a 
commonly used video encoding format. You will find it implemented in a variety of 
areas, including YouTube, Apple iTunes, and Blu-ray discs.

The following Wikipedia article provides more information on this format:

https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

The output file we generated will be used in a moment as input to one of the other 
example programs that comes bundled with the Raspberry Pi 2. Let's take a look at 
how this works.

Navigate to the hello_video directory. Let's now try using the output of  
hello_encode as a parameter for the hello_video program. As before, this  
is a binary file we can run from the command line:

./hello_video/hello_video.bin ../hello_encode/output

When you run this, you should see a variety of colors scrolling to the top  
left-hand corner of the screen. You'll no longer be able to see the command line  
or the Raspberry Pi's desktop.

To exit hello_video press Ctrl + C. This will close the program and allow you access 
to the command line again.

By running this we have demonstrated how we can take the output of a video 
encoding program and then run it on the Raspberry Pi 2.

There is also a demo file in this directory you can try out with the following 
command if you wish:

./hello_video/hello_video.bin test.h264

https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC 


Low-Level Graphics Programming

[ 96 ]

Once again, press Ctrl+ C to exit at any time.

The next example we will look at uses OpenGL ES. This is a subset of the OpenGL 
graphics rendering suite and is often used for rendering 2D and 3D graphics for 
computer games.

You can read about the technology at https://www.khronos.org/opengles/.

The program is located in the hello_triangle directory. Looking in this location 
you will see a number of other files, such as Gaudi_128_128.raw. These .raw files 
are images that are implemented by the hello_triangle program.

You can run the OpenGL ES example as follows:

./hello_triangle/hello_triangle.bin

When the program launches a cube is displayed. This cube rotates and each face 
contains one of the three raw image files that were included in the directory. To exit, 
as with our other examples, you can use the Ctrl + C command.

Let's look at one more example of this technology in the hello_triangle2 directory.

We can run this program as follows:

./hello_triangle_2/hello_triangle2.bin

When this program runs it produces a fractal-style image implementing  
Mandelbrot sets.

You can exit by pressing the Ctrl + C command.

If you look through the hello_pi directory you will see plenty more examples you 
can try out. Also, each directory contains the source code. Feel free to edit it and then 
use the Makefile to rebuild the executable.

This concludes the examples that demonstrate some of the features of the GPU.  
Let's now take a look at writing applications that directly access the frame buffer  
and draw color and lines to the screen.

Accessing the frame buffer
When we discussed what the GPU is we mentioned that it manipulates images in the 
frame buffer.

The frame buffer, also known as a framebuffer or framestore, is a section of the 
computer's RAM that contains the current video frame to be displayed on the 
monitor or similar device.

https://www.khronos.org/opengles/


Chapter 6

[ 97 ]

Within Linux, we also have what is known as the Linux framebuffer, which is 
a software abstraction designed to show graphics on screen via a hardware-
independent method.

This can be accessed as a file and its API library can be imported into C programs  
via the header linux/fb.h.

When we open the frame buffer as a file we can then make input/output control 
(ioctl) calls to it. An ioctl system call is used to manipulate device-specific I/O 
operations. You will see ioctl calls implemented when interacting with a variety  
of hardware devices, including DVD drives, USB devices, and similar.

We can use a call to the frame buffer to get the current display settings, for example. 
Let's take a look at how we can do this.

Check the display settings
Let's write a C program that outputs the value of the display settings via an ioctl 
call to the Linux frame buffer.

Create a new program called fourth_c_prog.c in your c_programs directory:

vim fourth_c_prog.c

To this file, add the following C code:

#include <stdio.h>
#include <fcntl.h>
#include <linux/fb.h>

int main(void)
{
  struct fb_var_screeninfo info;

  int framebuff_filedesc = 0;
  framebuff_filedesc = open("/dev/fb0", O_RDWR);

  if (framebuff_filedesc == -1) {
    printf("Error: Unable to open frame buffer device.\n");
    return(1);
  }

  if (ioctl(framebuff_filedesc, FBIOGET_VSCREENINFO, &info)) {
    printf("Error: Unable to read variable info.\n");
    return(1);
  }



Low-Level Graphics Programming

[ 98 ]

  printf("Display information: %d x %d, %d bpp\n",
         info.xres, info.yres, info.bits_per_pixel );

  close(framebuff_filedesc);
  return 0;

}

We will now walk through the code to understand what is going on.

To start with, we added three headers to the file:

#include <stdio.h>
#include <fcntl.h>
#include <linux/fb.h>

The stdio.h library you should already be familiar with and needs no further 
explanation. The next two headers are new.

The first is fcntl.h. This library provides us with methods for performing 
operations on file descriptors in Linux.

A file descriptor is an indicator used to access files and I/O resources. 
You can read more at Wikipedia: https://en.wikipedia.org/
wiki/File_descriptor#Operations_on_file_descriptors.

Following this, we then included the fb.h library, which gives us methods to access 
the frame buffer. You can read more about the library at https://www.kernel.org/
doc/Documentation/fb/framebuffer.txt.

After this we then see our main()function.

Here, we defined a struct called info of the type fb_var_screeninfo. This data 
type is new and this is the first time we have implemented one:

  struct fb_var_screeninfo info;

A struct, short for structure, is a complex data type that allows us to combine 
different data types (array, int, char, and so on) in a nested format within a single 
block of memory.

The following is an example of a struct:

struct Example {
    int nums[30];
    char letters[26];
}

https://en.wikipedia.org/wiki/File_descriptor#Operations_on_file_descriptors.
https://en.wikipedia.org/wiki/File_descriptor#Operations_on_file_descriptors.
https://www.kernel.org/doc/Documentation/fb/framebuffer.txt
https://www.kernel.org/doc/Documentation/fb/framebuffer.txt


Chapter 6

[ 99 ]

Here, we have declared struct called Example that allows us to store both an array 
of integers and an array of characters.

Data types like this can be very useful for grouping relevant information together.

The fb_var_screeninfo struct is used to group together data about the display 
settings that we can access, such as the bits per pixel. You'll see later in the main() 
function we access this variable and display some of its contents.

Next we need a variable to store our error code in:

int framebuff_filedesc = 0;

This is like the error variable we used in our earlier programs. Here, we have 
labeled it to indicate it contains the framebuffer file description. We can check the 
value of this variable at a later stage in our program and display an error message if 
something goes wrong.

Following the variable definition, we attempt to open the framebuffer and store the 
result of this operation in framebuff_filedesc:

framebuff_filedesc = open("/dev/fb0", O_RDWR);

As mentioned, we would like to know if we got an error and if so, display this to 
the user. The following if statement checks to see if we successfully opened the 
framebuffer:

if (framebuff_filedesc == -1) {
    printf("Error: Unable to open frame buffer device.\n");
    return(1);
  }

If it failed, we exit the program and return an error code of 1. 

The next check we perform is to see if we can grab the display settings and store 
them in our info variable. We achieve this by passing a reference to the info 
variable and the call we would like to make (in this case, FBIOGET_VSCREENINFO) to 
a method that handles ioctl calls:

  if (ioctl(framebuff_filedesc, FBIOGET_VSCREENINFO, &info)) {
    printf("Error: Unable to read variable screen info.\n");
    return(1);
  }

If we cannot successfully glean the data we require, we exit the program returning 
an error code of 1 and displaying a message to the user.



Low-Level Graphics Programming

[ 100 ]

Hopefully our call has been successful. In this case we now display this information 
to the screen. Here we show the X and Y resolution and the bits per pixel (bpp):

  printf("Display information: %d x %d, %d bpp\n",
         info.xres, info.yres, info.bits_per_pixel );

The bpp tells us the number of bits of data displayed per pixel by the graphics 
adapter.

Our final calls are to close the file handler referencing the frame buffer and to then 
exit the program returning an error code of 0:

  close(framebuff_filedesc);
  return 0;

Now that we have a program that pulls data back on the display settings, let's give it 
a test run.

Testing our C code
As with our other C programs, you can use gcc to compile fourth_prog.c.

Also, if you wish, you can create a Makefile, like we did for the Assembly language 
applications. If you are using the Geany IDE, this Makefile can then be executed 
directly from the application.

The command to compile our application is as follows:

gcc -o fourth_c_prog fourth_c_prog.c

Once we have our executable we can run it using the following command:

./fourth_assem_prog

You should now see something similar to the following:

Display information: 1776 x 952, 16 bpp

Writing our first program was very simple. Let's get a bit more advanced and take a 
look at drawing a color on the screen.

Filling the screen with a color
We are now going to demonstrate how to fill the screen with the color red.  
This seems a fitting color choice since our device is named the Raspberry Pi.



Chapter 6

[ 101 ]

This program starts off looking very similar to our previous one; however,  
it will introduce you to some new concepts, such as memory mapping, setting,  
and unmapping.

Start by creating a new program in the c_programs directory called fifth_c_
prog.c:

vim fifth_c_prog.c

We are now ready to start writing our application.

A C program to turn the screen red
Copy and paste the following code into your fifth_c_prog.c file.

Once you have done this, we will walk through the code to see what exactly is going 
on here:

#include <stdio.h>
#include <fcntl.h>
#include <linux/fb.h>
#include <sys/mman.h>
#include <string.h>

int main(void)
{
  struct fb_fix_screeninfo info;

  int framebuff_filedesc = 0;
  char *device_map = 0;

  framebuff_filedesc = open("/dev/fb0", O_RDWR);

  if (framebuff_filedesc == -1) {
    printf("Error: Unable to open frame buffer device.\n");
    return(1);
  }

  if (ioctl(framebuff_filedesc, FBIOGET_FSCREENINFO, &info)) {
    printf("Error: Unable to read fixed info.\n");
    return(1);
  }



Low-Level Graphics Programming

[ 102 ]

  device_map = (char*)mmap(0,
                info.smem_len,
                PROT_READ | PROT_WRITE,
                MAP_SHARED,
                framebuff_filedesc, 0);

  if ((int)device_map == -1) {
     printf("Error: Failed to mmap to device_map variable.\n");
     return(1);
  }

  memset(device_map, 0x80, info.smem_len);
  munmap(device_map, info.smem_len);
  close(framebuff_filedesc);
  return 0;
}

Let's start by looking at the top of the program and the headers we have included:

#include <stdio.h>
#include <fcntl.h>
#include <linux/fb.h>
#include <sys/mman.h>
#include <string.h>

The first three we also used in fourth_c_prog.c but we have included two more 
new ones you may not be familiar with.

The first is sys/mman.h. This library contains code for memory management. We 
will be using features from this library including mmap and munmap. A description 
of the library's functionality can be found at http://pubs.opengroup.org/
onlinepubs/9699919799/basedefs/sys_mman.h.html.

Following this is string.h, which is used for string manipulation. We need to 
reference this library so we can include the memset function. This is used later  
in our program to set the screen color.

That wraps up our headers. Let's delve into the main()method now and look at 
some of the similarities and differences with our previous program:

struct fb_fix_screeninfo info;

Once again we have declared a variable that is of the struct type. The main 
difference to what we declared before, however, is that it uses the fb_fix_
screeninfo structure rather than the variable equivalent.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_mman.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_mman.h.html


Chapter 6

[ 103 ]

fb_fix_screeninfo contains device-independent immutable information about  
the frame buffer. This is in contrast to fb_var_screeninfo, which you saw earlier. 
This contains device independent mutable information about the frame buffer, such 
as the bits per pixel.

Following this variable definition we declare a further two variables:

  int framebuff_filedesc = 0;
  char *device_map = 0;

The first variable is the same as we declared in our program to check the 
framebuffer. However, we have also included a new variable called device_map. 
This will be used to store the values of the mmap function.

Next, we open a connection to the framebuffer and check to see if we were 
successful:

  framebuff_filedesc = open("/dev/fb0", O_RDWR);

  if (framebuff_filedesc == -1) {
    printf("Error: Unable to open frame buffer device.\n");
    return(1);
  }

Following this we make an ioctl call to assign the FBIOGET_FSCREENINFO values to 
our info variable:

  if (ioctl(framebuff_filedesc, FBIOGET_FSCREENINFO, &info)) {
    printf("Error: Unable to read fixed info.\n");
    return(1);
  }

As before, if there is an error in attempting to do this, we exit the program.

Our next block of code introduces us to the mmap function:

  device_map = (char*)mmap(0,
                info.smem_len,
                PROT_READ | PROT_WRITE,
                MAP_SHARED,
                framebuff_filedesc, 0);

The mmap function is used to map or unmap devices or files into memory. You can 
read a detailed description about the function at http://man7.org/linux/man-
pages/man2/mmap.2.html.

http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html


Low-Level Graphics Programming

[ 104 ]

In our code we pass a number of parameters into the method; in fact, we pass six 
in total. The first parameter is the starting address for the new mapping. We have 
passed in the value 0 and the Linux kernel will handle creating this mapping.

Following this we pass in length bytes derived from our info variable.  
The smem_len attribute is the length of the frame buffer memory.

Next we pass in two values separated by a pipe specifying the memory protection. 
These are PROT_READ and PROT_WRITE. This means the page can be read and written 
to. Here, page means a chunk of either virtual or physical memory.

You can check the system's default page size using the following 
command in the terminal window: getconf PAGESIZE.

Our next parameter is flags. Here we can specify whether updates to a mapping are 
available to other processes mapping in the same area.

In our case, we pass in the value MAP_SHARED. This means other processes that map 
this file can see the mappings associated with it.

Mapping a file into memory results in a one-to-one correspondence 
between an address in memory and a word in the mapped file. This 
allows the file to be accessed directly through memory.

The final two values we pass in are the framebuffer file description and the offset.  
In our case the file description is the file we opened earlier using this command:

framebuff_filedesc = open("/dev/fb0", O_RDWR);

The offset value is set to 0 and thus the length value starts from this position in the 
framebuff_filedesc file.

After assigning the results of the mmap to device_map we check if there was an error. 
You will notice that we cast the value of device_map as an integer:

  if ((int)device_map == -1) {
     printf("Error: Failed to mmap to device_map variable.\n");
     return(1);
  }

If there was an issue we exit the program, displaying a message to the screen.



Chapter 6

[ 105 ]

Our final block of code consists of the following:

memset(device_map, 0x80, info.smem_len);
munmap(device_map, info.smem_len);
close(framebuff_filedesc);
return 0

Let's take a look at what exactly is going on here.

You can see we use the memset()method from the String library to turn the screen 
red. This is achieved by passing in a number of parameters.

First is the device_map variable we just covered. This gives us a reference to the 
memory space we want to update.

The next value, 0x80, represents red, the color we fill the screen with. Last of all,  
we have reused the info variable to get the length of the frame buffer.

Directly after memset we unmap using the munmap function. This deletes the  
mapping for the address range. You can read more about this function if you  
wish at http://linux.die.net/man/2/munmap.

The last two lines of our application are very simple. The close(framebuff_
filedesc) function closes the handler to the framebuffer. We then use the return 
statement to exit the program.

Let's try this code out now.

Compile and run the C program
We will once again be using the gcc compiler.

The command to compile our application is as follows:

gcc -o fifth_c_prog fifth_c_prog.c

You do not need to link any libraries. Once we have our program we can run it  
as follows:

./fifth_assem_prog

The screen should now fill red, covering up any windows that are open, including 
the terminal. If you move your mouse around, the desktop will start to re-render, 
replacing the red.

Here we have seen how to fill the screen with color, but how about drawing a line  
on it?

http://linux.die.net/man/2/munmap


Low-Level Graphics Programming

[ 106 ]

Drawing a line
Next, we are going to start drawing to the screen; this is where things get interesting.

The following program demonstrates how to draw a line on the screen. You can then 
use this as a base to further explore creating new shapes if you wish.

Let's start by creating a new file to store this program in:

vim sixth_c_prog.c

Plotting pixels and drawing lines
The following code demonstrates how to turn the screen black and draw a line on 
it. With these two concepts you should be able to go on to create more complex 
graphics drawing programs. The line forms the basis of any shape, such as a 
triangle or square.

Add the following code to the file you created:

#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <linux/fb.h>
#include <sys/mman.h>

char *device_map = 0;
struct fb_fix_screeninfo fixed_info;
struct fb_var_screeninfo var_info;

void pixel_plotter(int x, int y, int c)
{
    unsigned int pix_offset = x + y * fixed_info.line_length;
    *((char*)(device_map + pix_offset)) = c;

}

void line_drawer(int x0, int y0, int x1, int y1, int c) {

    int sx, sy, dx, dy, error, error2, complete;

    dx = x1 - x0;
    dx = (dx >= 0) ? dx : -dx;



Chapter 6

[ 107 ]

    dy = y1 - y0;
    dy = (dy >= 0) ? dy : -dy;

    if (x0 < x1)
    {
        sx = 1;
    }
    else
    {
        sx = -1;
    }

    if (y0 < y1)
    {
        sy = 1;
    }
    else
    {
        sy = -1;
    }

    error = dx - dy;
    complete = 0;

while (!complete)
    {
        pixel_plotter(x0, y0, c);
        if ((x0 == x1) && (y0 == y1))
        {
            complete = 1;
        }
        else
        {
            error2 = 2 * error;
            if (error2 > -dy) {
                error = error - dy;
                x0 = x0 + sx;
            }
            if (error2 < dx) {
                error = error + dx;
                y0 = y0 + sy;
            }
        }



Low-Level Graphics Programming

[ 108 ]

    }
}

int main(void)
{

    int framebuff_filedesc = 0;

    framebuff_filedesc = open("/dev/fb0", O_RDWR);
    if (framebuff_filedesc == -1) 
{
      printf("Error: Unable to open frame buffer device.\n");
      return(1);
    }

    if (ioctl(framebuff_filedesc, FBIOGET_FSCREENINFO,  
&fixed_info))
{
      printf("Error: Unable to read fixed info.\n");
      return(1);
    }

    if (ioctl(framebuff_filedesc, FBIOGET_VSCREENINFO, &var_info)) 
{
      printf("Error: Unable to read variable info.\n");
      return(1);
    }

    device_map = (char*)mmap(0,
                fixed_info.smem_len,
                PROT_READ | PROT_WRITE,
                MAP_SHARED,
                framebuff_filedesc, 0);

    if ((int)device_map == -1) 
{
       printf("Error: Failed to mmap to device_map variable.\n");
       return(1);
    }



Chapter 6

[ 109 ]

    memset(device_map, 0x00, fixed_info.smem_len);
    line_drawer(0, 0, 100, var_info.yres - 1, 0x80);

    munmap(device_map, fixed_info.smem_len);
    close(framebuff_filedesc);
    return 0;

}

Let's now go through this and see what is taking place.

The headers section of the program is the same as the previous application we wrote, 
so we don't need to revisit this.

However, following the headers we have three variable declarations:

char *device_map = 0;
struct fb_fix_screeninfo fixed_info;
struct fb_var_screeninfo var_info;

Unlike our previous two applications, these are declared at the global scope rather 
than at the function level. This is because these variables will be used by more than 
one function.

As we wish to access both the fixed and variable screen information in this program, 
we have prefixed the variable name info with the type of information it will be 
storing; for example, fixed_info or var_info.

Following this, we define a function to plot a pixel on the screen. The pixel is the 
smallest element we draw:

void pixel_plotter(int x, int y, int c)
{
    unsigned int offset = x + y * fixed_info.line_length;
    *((char*)(device_map + offset)) = c;

}

This function takes an x and y coordinate and a color. It then updates the value of the 
device_map variable to reflect this point.

Following this we define a function to draw a line:

void line_drawer(int x0, int y0, int x1, int y1, int c) {



Low-Level Graphics Programming

[ 110 ]

This is a rather large method and implements Bresenham's line algorithm. You can 
read more about this on Wikipedia:

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

Several implementations of this can also be found in the C programming language 
for those who are interested. The following site demonstrates the algorithm in C and 
C++ as well as a variety of other languages:

http://rosettacode.org/wiki/Bitmap/Bresenham's_line_algorithm#C

The code in the main function will be familiar to you from our previous two 
programs. In fact it is an amalgamation of them.

Where it does differ, however, is with the inclusion of these two lines:

    memset(device_map, 0x00, fixed_info.smem_len);
    line_drawer(0, 0, 100, var_info.yres - 1, 0x80);

This time we fill the screen black rather than red. Once we have done that, we call 
the function to draw the line on the screen. You can try updating the values here, 
such as 100, which represents the x coordinate. Or, if you wish, you could modify 
the program to take an integer from the command line. This will then reposition the 
line on the screen.

Our program then wraps up as before:

    munmap(device_map, fixed_info.smem_len);
    close(framebuff_filedesc);
    return 0;

This completes our line drawing program. Let's try it out.

Compile and run
As before, use gcc to compile the application:

gcc -o sixth_c_prog sixth_c_prog.c

Once the executable has been output you can run it from the command line:

./sixth_assem_prog

The screen will now turn black, and a red line should be present. Where it appears 
on the screen depends on whether you changed the x or y coordinates.

If you move your mouse around, once again the desktop will re-render.

https://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm 
http://rosettacode.org/wiki/Bitmap/Bresenham's_line_algorithm#C 


Chapter 6

[ 111 ]

Next steps – polygons
Now that you can draw a line on the screen, you have the basics for drawing any 
type of shape both in the 2D and 3D realms.

The following code demonstrates how you might render a square or rectangle on  
the screen:

void rect_square_drawer(int x, int y, int w, int h, int c)
{
    line_drawer(x, y, x + w, y, c); // top line
    line_drawer(x + w, y, x + w, y + h, c); // right line
    line_drawer(x, y + h, x + w, y + h, c); // bottom line
    line_drawer(x, y, x, y + h, c); // left line
}

You can try implementing this in sixth_c_prog.c and experiment with it.

A term you may come across in reference to graphics is polygon. Polygons form 
the basis of 3D computer graphics. Traditionally, you will find that many graphics 
engines use triangles as their base polygon.

It would therefore be fairly simple to take the existing program you have written and 
the preceding function and update it to render a triangle on the screen in whichever 
coordinates you wish.

By combining multiple triangles in a mesh it is then possible to render a 3D object. 
The following Wikipedia article contains some example images that demonstrate  
this process:

https://en.wikipedia.org/wiki/Polygon_mesh

As you explore this feature further you may wish to implement the graphics libraries 
we discussed earlier, all of which use 3D polygons for rendering. The following 
guide provides a handy introduction to writing OpenGL-based programs in C++:

https://open.gl/introduction

This concludes our look at polygons and graphics; let's recap what we have learned.

https://en.wikipedia.org/wiki/Polygon_mesh 
https://open.gl/introduction 


Low-Level Graphics Programming

[ 112 ]

Summary
In this chapter we explored some example programs that leverage the power of the 
Raspberry Pi 2's GPU.

Following this we delved into the framebuffer. Using the C programming language, 
we wrote a number of applications that used the framebuffer and memory to paint 
the screen a different color and to render lines upon it.

We ended with a brief discussion on polygons and methods for rendering both 2D 
and 3D shapes.

In the next chapter we will experiment with the Raspberry Pi's GPIO pins and learn 
how we can interact with other electronic components connected to our device.



[ 113 ]

Exploring the Raspberry Pi's 
GPIO Pins

In this chapter we will explore the next piece of the Raspberry Pi's hardware, the 
GPIO pins.

GPIO stands for general purpose input/output. The pins can be used to connect 
external electronic devices to the Raspberry Pi. This also allows us to build our own 
circuits and control them using software we have written in languages such as C, 
Assembly, and Python.

In this chapter we will cover:

• An introduction to the GPIO pins
• Creating simple electronic devices that run off the pins
• Writing Python applications that interact with the pins

We will start by walking through the GPIO pins and looking at what each type is.

Introduction to GPIO pins
The GPIO pins can be divided into a number of categories. These are:

• Standard GPIO
• I2C
• Serial Rx and Tx
• SPI
• PWN and PPM



Exploring the Raspberry Pi's GPIO Pins

[ 114 ]

Let's begin by looking at the standard GPIO pins and understanding what they do. 
A diagram with a breakdown of the pins can be downloaded from https://www.
raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/images/
physical-pin-numbers.png.

A general overview of the GPIO pins can also be found at the Raspberry Pi website 
at https://www.raspberrypi.org/documentation/hardware/raspberrypi/
gpio/README.md.

Standard GPIO
The standard GPIO pins on your Raspberry Pi 2 provide an interface for other 
electronic devices you may wish to either control or read data from.

These pins can be configured as output or inputs. As you will in see in the Python 
and C programs we will write, it is possible to programmatically switch between  
the two.

One important thing to note is the numbering format. There are two different ways 
in which we can refer to the pins, via the GPIO number or the physical numbering.

The GPIO numbering (also known as BCM) is the method by which the Broadcom 
chip sees them. These numbers will appear to be random to you, so it helps to use a 
reference sheet.

An updated guide to the numbering format can be found at http://pinout.xyz/.

When writing applications, you will need to know these BCM pin numbers in order 
to switch them between modes.

The second methodology for listing the pins is by their physical position.

You can find the Raspberry Pi 2 physical pin listings at https://www.raspberrypi.
org/documentation/usage/gpio-plus-and-raspi2/images/physical-pin-
numbers.png. This maps the physical pin location to the pin type.

You will also notice from looking at this diagram that a number of the pins are 
power pins with a specific voltage. These are important to note, and are discussed in 
more detail later in this chapter.

Let's now look at some of the specialist pins used on the device.

https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/images/physical-pin-numbers.png
https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/images/physical-pin-numbers.png
https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/images/physical-pin-numbers.png
https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md
http://pinout.xyz/
https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/images/physical-pin-numbers.png
https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/images/physical-pin-numbers.png
https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/images/physical-pin-numbers.png


Chapter 7

[ 115 ]

I2C
The I2C standard is used to allow one microchip to talk to another. The Raspberry 
Pi 2 supports I2C using pins 3 and 5. In Chapter 10, Integrating with Third-Party 
Microcontrollers, we explore how to use this methodology to communicate between 
the Raspberry Pi and a microcontroller.

You can read more about I2C at https://learn.sparkfun.com/tutorials/i2c.

With I2C support, we can connect multiple devices to the Raspberry Pi 2 and assign 
each a unique address. In order to see what devices are hooked up, we can use the 
i2c-tool application.

To install the toolkit, start by running the following command:

sudo apt-get install python-smbus

This installs a Python module that allows SMBus access via the I2C interface  
on Raspbian.

A guide to using this module in Python applications can be found at https://pypi.
python.org/pypi/smbus-cffi/0.4.1.

Once the installation is complete, you can then run apt-get to install i2c-tools if this 
wasn't included when you installed python-smbus:

sudo apt-get install i2c-tools

A guide to the tools can be found at http://elinux.org/Interfacing_with_I2C_
Devices#i2c-tools.

Let's try checking whether the software installed successfully. Run the i2cdetect 
command with the –l flag:

i2cdetect –l

The command returns a list of installed buses on the Raspberry Pi 2 and for the 
moment should return no values.

Remember, you can use man i2cdetect to read the manual.

Let's now add kernel support for I2C so we can use it in future if we want. Open up 
the modules file:

sudo vim /etc/modules

https://learn.sparkfun.com/tutorials/i2c
https://pypi.python.org/pypi/smbus-cffi/0.4.1
https://pypi.python.org/pypi/smbus-cffi/0.4.1
http://elinux.org/Interfacing_with_I2C_Devices#i2c-tools
http://elinux.org/Interfacing_with_I2C_Devices#i2c-tools


Exploring the Raspberry Pi's GPIO Pins

[ 116 ]

Now edit the file so it looks like the following:

# /etc/modules: kernel modules to load at boot time.
#
# This file contains the names of kernel modules that should be loaded
# At boot time, one per line. Lines beginning with "#" are ignored.
# Parameters can be specified after the module name.

snd-bcm2835
i2c-bcm2708
i2c-dev

Here we have added these two lines to the bottom of the original file:

i2c-bcm2708
i2c-dev

Save the file and exit.

The raspi-config provides a GUI for editing the I2C settings as 
well. You can access this via sudoraspi-config and then select the 
advanced options setting.

Next we need to edit the boot config.txt file:

1. Open this up in your text editor:
sudo vim /boot/config.txt

2. Add the following code to the bottom of your file. If you used NOOBS,  
then add it under the NOOBS autogenerated parameters:
dtparam=i2c1=on
dtparam=i2c_arm=on

3. We can now reboot the Raspberry Pi so the changes kick in:
sudo reboot

4. Once the device has rebooted you can then log back in.
5. Now let's try the command again. This time, put sudo in front; this will show 

more information when you run the command:
sudo i2cdetect -l

6. You should see something similar to:
i2c-1i2c       3f804000.i2c                    I2C adapter



Chapter 7

[ 117 ]

7. To see any connected devices on the I2C pins, run:

sudo i2cdetect -y 1

This wraps up the enabling of the I2C port. A huge number of projects are available 
on the Web that leverage this technology.

The website https://learn.adafruit.com/adding-a-real-time-clock-to-
raspberry-pi demonstrates how to build a real time clock using I2C support.

Let's now move on and take a look at Rx and Tx pins.

Serial Rx and Tx
The Rx and Tx pins are responsible for serial communication. Serial communication 
is the process of sending data one bit at a time in sequence over a communications 
medium.

Typically, these ports can be used for console input and output. Thus another serial 
device can be connected to the Raspberry Pi 2 and the serial data read and displayed 
to the user, allowing them to debug problems.

This is particularly helpful, for example, during the boot process.

You can see whether the console shell is enabled by running the following command 
from the terminal window:

dmesg | grep tty

You should see the following line in the output:

[    1.266731] console [ttyAMA0] enabled

However, if we wish to use the serial ports to communicate with another serial 
device such as a modem, then the console login feature would need to be disabled.

This is very simple to do via the raspi-config application.

1. Start by launching this:
sudo raspi-config.

2. From the screen that loads, select Advanced Option.
3. Then scroll down and select Serial.
4. You will be presented with a screen that allows you to switch the login shell 

on and off.

https://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi
https://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi


Exploring the Raspberry Pi's GPIO Pins

[ 118 ]

5. If you wish to disable it select <Yes>.
6. Exit from raspi-config and then reboot the Raspberry Pi 2.
7. On logging back in via the command line, run:

dmesg | grep tty

Your serial pins are now available to experiment with serial devices. Later in this 
book you will experiment with using serial pins to communicate with an Arduino 
microcontroller.

To learn more about the subject of serial communication, check out https://learn.
sparkfun.com/tutorials/serial-communication.

SPI
Serial Peripheral Interface (SPI) is a bus designed for synchronous serial 
communication.

It is useful for communicating between peripheral devices quickly over short 
distances.

The Raspberry Pi 2 comes with a single SPI bus that has two chip selects.  
This bus can be interacted with via the SPI pins on the P1 header.

By default, the SPI master drive is disabled, but we can enable it in a similar fashion 
to switching the Rx/Tx console off via raspi-config or by manually editing the 
raspi-blacklist.conf file:

1. To edit via the GUI, start by loading the raspi-config command.
sudo raspi-config

2. Next, select the Advanced Options and locate the SPI option.
3. From here, follow the options to enable SPI.
4. Once you have made these changes, reboot the Raspberry Pi and then log 

back in.
5. A simple command line test can be run to check everything was enabled 

correctly:
echo -ne "\x01\x02\x03"> /dev/spidev0.0

6. If you wish to manually edit the blacklist in order to enable SPI, this can be 
done via:
vim /etc/modporbe.d/raspi-blacklist.conf.

https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/serial-communication


Chapter 7

[ 119 ]

7. Here you will need to remove the blacklisting for spi-bcm2708.
8. Once this is done you can reload the driver via:

sudo modprobe spi-bcm2708.

A guide to interacting with the SPI bus can be found on the official Raspberry 
Pi website at https://www.raspberrypi.org/documentation/hardware/
raspberrypi/spi/README.md

This link also provides information on the nomenclature used when interacting  
with SPI.

Later in this chapter, we will install the wiringPi library, which also provides a 
number of tools for interacting with the GPIO pins, including SPI.

PWM and PPM
Finally, we have a number of standard GPIO pins that can be used for PWM and 
PPM. PWM stands for Pulse Width Modulation. This methodology can be used to 
control the amount of power sent to an electrical motor, thus controlling its speed. 
The principle behind this is the implementation of a square wave.

You can read more about PWM and see a diagram of the square wave at  
https://en.wikipedia.org/wiki/Pulse-width_modulation.

It is also possible to generate a software-based PWN square wave using any of the 
standard GPIO pins. The wiringPi library comes equipped with instructions on how 
to achieve this at http://wiringpi.com/reference/software-pwm-library/.  
It also includes a number of example projects.

The second acronym, PPM, can also be used to control electrical motors. PPM stands 
for Pulse Position Modulation and is popularly implemented for servos.

Servos—short for servomechanisms—are a type of electrical component, such as a 
motor, that uses error sensing negative performance to correct its position.

If you wish to undertake any projects that control R/C devices, such as R/C cars 
and boats, via your Raspberry Pi, this will be of interest to you as they typically 
implement servos.

You can find a comparison between PPM and PWM at http://www.endurance-rc.
com/ppmtut.php.

You can find example servo projects at https://learn.adafruit.com/adafruits-
raspberry-pi-lesson-8-using-a-servo-motor/overview.

https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md
https://en.wikipedia.org/wiki/Pulse-width_modulation
http://wiringpi.com/reference/software-pwm-library/
http://www.endurance-rc.com/ppmtut.php
http://www.endurance-rc.com/ppmtut.php
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-8-using-a-servo-motor/overview
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-8-using-a-servo-motor/overview


Exploring the Raspberry Pi's GPIO Pins

[ 120 ]

Finally, further information and reading on the GPIO pins can be found at https://
www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/.

Next, we will discuss the power voltages and pins.

GPIO power voltages
With the Raspberry Pi 2, we need to be aware of the voltages used. The GPIO banks 
all use a voltage of 3.3v. It is important to remember this as applying a voltage higher 
than this to the pins can seriously damage your device.

The pins can be set to OFF, LOW, and HIGH. You will see this in action when we 
learn how to switch an LED on and off.

Among the Raspberry Pi GPIO pins, you will also find two 3.3v pins, two 5 volt pins, 
and several ground pins.

These can be used for powering other devices attached to your Raspberry Pi, either 
through a breadboard or via the GPIO headers directly.

Hardware choices
There are a multitude of options for connecting devices to the Raspberry Pi. We will 
touch on a few of these in the following sections. You can purchase these devices if 
you wish and expand the options that are available for you on the Raspberry Pi.

Regardless of whether you purchase a shield or not, you will need the components 
listed under the Connecting directly to the GPIO pins section if you wish to run the 
programs in this chapter.

First, we will look at prototyping shields.

Prototyping shields and boards
A number of prototyping shields are available on the market for the Raspberry Pi. 
A prototyping shield is an electronic component that sits on top of the Raspberry Pi 
and is connected to the GPIO pins.

Part of the device acts as a breadboard, which allows you to connect a variety of 
electronic components to it and control them via applications running on Raspbian.

https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/
https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/


Chapter 7

[ 121 ]

Some examples of prototyping plates include:

• Pi Cobbler
• Adafruit Prototyping Pi Plate Kit
• RKPT Lucia
• Humble Pi

The Pi Cobbler is a popular choice and can be found on the Adafruit website. Unlike 
the other devices, it does not sit on top of the Raspberry Pi 2, but rather uses a ribbon 
cable to attach a breadboard to the GPIO pins.

If you would prefer not to use a plate, this is the best option. It can be found at 
https://www.adafruit.com/products/914.

The next shield we will look at is the Adafruit Prototyping Pi Plate Kit. This is a set 
of components that can be put together into a plate. This plate then sits on top of the 
Raspberry Pi.

Once assembled, electronic components can then be attached to the plate. This allows 
you to build a device directly connected to the Raspberry Pi.

The plate can be obtained from Adafruit industries available at https://www.
adafruit.com/products/801.

A similar device to the Prototyping Pi Plate Kit is the RKPT Lucia available from the 
RK Education website at http://www.rkeducation.co.uk/RKPT-lucia.php.

This kit also requires some soldering to put together.

Finally we come to the Humble Pi. This device can be found at http://shop.
ciseco.co.uk/k001-humble-pi/.

Once the kit has been built in a similar way to the previous shields, it can be attached 
on top of the Raspberry Pi 2 and you can then build projects directly on top of it.

Let's now look at an alternative to these types of shield.

Cooking Hacks Arduino bridge shield
The next device we will be looking at allows us to interface with hardware devices 
designed to work with Arduino.

Arduino is a popular open source microcontroller and will be discussed later in this 
book when we look at how we can communicate between the Raspberry Pi and other 
microcontrollers.

https://www.adafruit.com/products/914
https://www.adafruit.com/products/801
https://www.adafruit.com/products/801
http://www.rkeducation.co.uk/RKPT-lucia.php
http://shop.ciseco.co.uk/k001-humble-pi/
http://shop.ciseco.co.uk/k001-humble-pi/


Exploring the Raspberry Pi's GPIO Pins

[ 122 ]

A popular feature of Arduino is the many shields that can be attached to it. These 
shields contain pre-soldered components such as relays, motors, and WiFi support.

You can read more about these on the official Arduino website at https://www.
arduino.cc/en/Main/ArduinoShields.

Using the Cooking Hacks Arduino bridge shield, we can connect these third party 
Arduino shields to the Raspberry Pi.

The following image shows some of the features of the Cooking Hacks shield:

Image courtesy of Cooking Hacks

Using the C++ library provided with the shield's hardware, we can write 
applications that control the Arduino shields via the Raspberry Pi.

The shield can be purchased from the Cooking Hacks website at https://www.
cooking-hacks.com/raspberry-pi-to-arduino-shield-connection-bridge.

Additionally, Arduino shields are available from a variety of manufacturers and 
stores. A list of over 127 different shields can be found at http://shieldlist.org/.

What if we don't have a shield? Let's look at our final alternative.

https://www.arduino.cc/en/Main/ArduinoShields
https://www.arduino.cc/en/Main/ArduinoShields
https://www.cooking-hacks.com/raspberry-pi-to-arduino-shield-connection-bridge
https://www.cooking-hacks.com/raspberry-pi-to-arduino-shield-connection-bridge
http://shieldlist.org/


Chapter 7

[ 123 ]

Connecting directly to the GPIO pins
Another option is to connect to the GPIO pins directly using wires and a breadboard. 
In this chapter, we will write programs that use this methodology. You can always 
adapt these to use one of the other hardware options presented earlier in this chapter.

In this instance you will need a breadboard, wires, and the components you wish  
to control.

Switching an LED on and off
Our first project is going to be to attach an LED and resistor to the GPIO pins and 
switch the LED on and off.

We will look at how we can do this using both C and Python. Let's get started setting 
up the hardware.

Setting up the hardware
In order to build this project you will need the following components:

• LED
• 270 Ohm Resistor
• Breadboard
• Wires

We will setup the circuit as follows; you can refer back to this diagram as needed:



Exploring the Raspberry Pi's GPIO Pins

[ 124 ]

Start by powering down your Raspberry Pi. Next, you will need to attach the wires 
from the GPIO pins to the breadboard. You will need one from a ground pin and one 
from a regular GPIO pin, such as number 4.

Next, we need to add the LED and resistor to the breadboard. The resistor is used to 
prevent the LED from burning out.

These should be configured as per the diagram, so that the GPIO pin wire attaches to 
the resistor, the resistor is connected to the LED, and finally the LED is connected to 
the ground pin wire.

Once we have this setup, we are ready to start writing our C program to control it.

C blinking LED program
We will install a library called wiringPi. This is a bunch of C libraries and command 
line tools that allow us to interact with the GPIO pins.

The wiringPi code can be obtained from http://wiringpi.com/download-and-
install/.

There are two options for downloading and installing the code. The first is to use Git 
and the second is to download it as a ZIP, then extract and build the source code.

Git is a version control system. You can read more 
about it here: https://git-scm.com/.

Instructions for both options are provided at the wiringPi URL. Whichever method 
you use, remember to install it in the c_programs directory.

Once you have obtained and installed the code, you can test it is working by typing 
the following:

gpio –v

You should then see the version information output:

gpio version: 2.31

Copyright (c) 2012-2015 Gordon Henderson

This is free software with ABSOLUTELY NO WARRANTY.

For details type: gpio -warranty

Raspberry Pi Details:

  Type: Pi 2, Revision: 01, Memory: 1024MB, Maker: Embest

http://wiringpi.com/download-and-install/
http://wiringpi.com/download-and-install/
https://git-scm.com/


Chapter 7

[ 125 ]

  Device tree is enabled.

  * Root or sudo required for GPIO access.

We are now going to create a C program that makes the LED we hooked up blink.

Navigate to the c_programs directory and create a new file called seventh_c_
prog.c.

To this file, add the following code:

#include <wiringPi.h>
int main(void)
{
  wiringPiSetup() ;
  pinMode (4, OUTPUT) ;
  for (;;)
  {
    digitalWrite(4, HIGH) ;
    delay(400) ;
    digitalWrite(4, LOW) ;
    delay(400) ;
  }
  return 0 ;
}

We will now review the code and discuss what it does.

Let's start by looking at the include statement. Here we have included the wiringPi 
library. This gives us access to a variety of functions we can use for interacting with 
the GPIO pins, including setting the pinMode and writing and reading to/from  
the pins.

Next, we define out main() function. In this, we call the wiringPiSetup() function. 
This sets up the mappings between the wiringPi library and the underlying BCM 
GPIO pins.

A guide to the mapping can be found on the wiringPi website at https://projects.
drogon.net/raspberry-pi/wiringpi/pins/.

Next in this function, we set pin 4 to output mode. This allows us to switch a device 
on and off, such as our LED.

Following this is a for loop. This has been defined in a way that makes it  
run infinitely.

https://projects.drogon.net/raspberry-pi/wiringpi/pins/
https://projects.drogon.net/raspberry-pi/wiringpi/pins/


Exploring the Raspberry Pi's GPIO Pins

[ 126 ]

Inside this for loop we can see:

digitalWrite(4, HIGH) ;
delay(400) ;
digitalWrite(4,  LOW) ;
delay(400) ;

Here, the digitalWrite function uses HIGH and LOW to switch between high and low 
voltage, which causes the LED to blink.

There is a 4-second delay when we do this.

Finally, we return 0 to show no error occurred.

Save and exit this file.

Now we can compile this, including a link to the wiringPi library:

gcc -l wiringPi -o seventh_c_prog seventh_c_prog.cpp

Once compiled, to run the application type:

sudo ./seventh_c_prog

You should now the see the LED starts blinking. You can press Ctrl + C to quit the 
program. Congratulations, you've written your first program that uses the GPIO pins 
to interact with other components.

The wiringPi library comes with a number of utilities that can be used from the 
command line or in other programs. You can read more about these by checking  
the man page:

man gpio

We are not restricted to just writing applications in C; we can also use the Python 
programming language to interact with the GPIO pins.

Python blinking LED program
The following Python program demonstrates how we can turn on an LED as well.  
As you will see, you do not need to install any third-party software in order to  
do this.

In the python_programs directory, create a new file called second_python_prog.py:

vim second_python_prog.py



Chapter 7

[ 127 ]

To this file, we are going to add the following program:

importRPi.GPIO as GPIO
import time

def main():
    GPIO.setmode(GPIO.BCM)
    GPIO.setwarnings(False)
    LED = 4
    GPIO.setup(LED, GPIO.OUT)
    print"Switching LED on"
    GPIO.output(LED, 1)
    time.sleep(4)
    print"Switching LED off"
    GPIO.output(LED, 0)
    GPIO.cleanup()

if __name__ == "__main__":
    main()

Let's now take a look at what it does.

To start with, we import two libraries into our program:

import RPi.GPIO as GPIO
import time

The first is a Python library that allows us to interact with the Raspberry Pi's GPIO 
pins. You can see we have used the as keyword. This allows us to shorten the name 
of the library every time we reference it. So we can now simply use GPIO rather than 
RPi_GPIO.

Next, we import the time library. This allows us to use features such as the sleep() 
function, something you will see in a moment.

Following the import statements, we drop in our main() function. The next two lines 
will be new to you:

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)



Exploring the Raspberry Pi's GPIO Pins

[ 128 ]

We start by setting the GPIO mode. There are two options, board and BCM. These are 
used to define the numbering method we will use when referencing the pins.

The following article provides a handy guide to the BCM and board pin 
modes:
http://raspberrypi.stackexchange.com/questions/12966/
what-is-the-difference-between-board-and-bcm-for-gpio-
pin-numbering

After this, we disable warnings using the setwarnings() function.

Then, we define the pin the LED is connected to by creating a variable:

LED = 4

Here we are saying we want to use pin number 4, as we did with the C application.

The next block of code is responsible for making the LED blink:

GPIO.setup(LED, GPIO.OUT)

print"Switching LED on"
GPIO.output(LED, 1)

time.sleep(4)

print"Switching LED off"
GPIO.output(LED, 0)

We use the time.sleep() function to cause the LED to stay on for 4 seconds, before 
switching it off with the GPIO.output(LED, 0) function call. You will also note we 
print text to the screen.

Before exiting our program, we then call the GPIO.cleanup() function. This resets 
the pins to input mode.

By default, the GPIO pins on the Raspberry Pi are set 
to input mode.

Now we have reviewed the code, save the file and exit.

We can test the application by simply running the following:

sudo python second_python_prog.py

http://raspberrypi.stackexchange.com/questions/12966/what-is-the-difference-between-board-and-bcm-for-gpio-pin-numbering
http://raspberrypi.stackexchange.com/questions/12966/what-is-the-difference-between-board-and-bcm-for-gpio-pin-numbering
http://raspberrypi.stackexchange.com/questions/12966/what-is-the-difference-between-board-and-bcm-for-gpio-pin-numbering


Chapter 7

[ 129 ]

You should see the LED switch on and then off. The following text is also output to 
the screen:

Switching LED on

Switching LED off

This wraps up our Python program for interacting with the pins in output mode.

If you want to expand this program, you could experiment with adding a command 
line option that allows the user to change the speed of the blinks.

Let's quickly take a look at how we can read values from the pins as well.

Reading data from the GPIO pins in Python
The following program demonstrates how we can read data from a GPIO pin.  
As we currently do not have any hardware connected to the pin, we should expect  
to see a value of 0 returned.

Create a new file called third_python_prog.py in your python_programs directory.

To this file, add the following code:

import RPi.GPIO as GPIO

def main():

    GPIO.setmode(GPIO.BCM)
    GPIO.setwarnings(False)
    GPIO.setup(11, GPIO.IN)
    printGPIO.input(11)
    GPIO.cleanup()

if __name__ == "__main__":
    main()

Here we can see some of the code is very similar to that used for switching the LED 
on and off.

However, there are a couple of notable differences, which are:

GPIO.setup(11, GPIO.IN)



Exploring the Raspberry Pi's GPIO Pins

[ 130 ]

Here, the GPIO pin has been set to input mode, using GPIO.IN and the following 
instructions:

print GPIO.input(11)

In this instance, we print the value being returned from the pin.

Save this file and exit.

We can run this from the command line:

sudo python third_python_prog.py

You should see the value 0 displayed.

The next step is to connect a device such as a button to the GPIO pin. You can then 
use this to switch the LED on and off.

The official Raspberry Pi website provides a guide on how to do this, and extend this 
functionality into a reaction game, at https://www.raspberrypi.org/learning/
python-quick-reaction-game/.

Now you have two options for interacting with the GPIO pins, through C or Python.

You've also seen how you can switch an LED on and off, and how you can read data 
from a pin. The following list provides some ideas for future projects that combine 
these two concepts:

• Thermometer
• Parcel sensor using a pressure sensor
• Switching an LED on and off with a button
• Damp sensor

All of these projects can be assembled cheaply using components purchased either 
online or from a good electronics store.

Let's now review what we have learned in this chapter.

https://www.raspberrypi.org/learning/python-quick-reaction-game/
https://www.raspberrypi.org/learning/python-quick-reaction-game/


Chapter 7

[ 131 ]

Summary
In this chapter, we walked through the GPIO pins on the Raspberry Pi. We discussed 
what each of these pin types does and also learned how to enable and interact with 
them.

A variety of devices that can be connected to the Raspberry Pi were discussed, 
including prototyping shields and the Cooking Hacks Arduino to Raspberry Pi 
bridge shield.

We also looked at how this interaction can be facilitated through either a C or Python 
program. This included downloading the wiringPi library.

These basic skills should leave you in a position to start new interesting projects that 
allow you to interact with other pieces of electronic hardware.

Next, we will look at exploring sound on the Raspberry Pi 2 through programming.





[ 133 ]

Exploring Sound with the 
Raspberry Pi 2

In this chapter we will explore generating audio on the Raspberry Pi. This will include:

• Sound on the Raspberry Pi
• Interacting with the GPIO pins
• Writing applications in Python and C
• Generative composition and live coding with Sonic Pi

We will first learn how to configure the Raspberry Pi to switch between either the 
analogue or digital (HDMI) sound outputs.

Following this, we will discover how we can use the GPIO pins to provide input 
for playing sounds on the Raspberry Pi via Python. This will introduce us to ALSA. 
ALSA stands for Advanced Linux Sound Architecture and provides audio and 
MIDI support to Raspbian.

After looking at audio via Python, we will then move on to see how ALSA is 
implemented in C and how programs can be written that incorporate it.

Our final exploration of sound on the Raspberry Pi will lead us to Sonic Pi. You will 
discover how you can write scripts in the GUI that play a variety of sounds and 
ultimately allow you to construct your own music.

So let's get started with a brief recap on the Raspberry Pi 2's sound hardware.



Exploring Sound with the Raspberry Pi 2

[ 134 ]

Introduction to the Raspberry Pi's sound
There are several options for outputting sound on the Raspberry Pi 2. The first is the 
HDMI port. If you are using this connected to a HDTV, for example, you can stream 
both video and audio at the same time.

The second is the analogue audio jack. This is perfect for attaching headphones or 
speakers that use a headphone-style plug.

However, we are not limited to these two methods.

As explained in Chapter 1, Introduction to the Raspberry Pi's Architecture and Setup, the 
Raspberry Pi 2 implements an Inter-IC Sound (I2S) serial bus for both audio input 
and output. 

From the Raspberry Pi's perspective, implementing I2S allows us to not only use 
HDMI and the analogue audio jack, but also implement audio via the GPIO pins  
or USB.

We can therefore connect an external device to, say, our GPIO pins that can act as a 
HiFi system. Later in this chapter we will look at some example hardware that does 
exactly this.

I2S can be found in a variety of other audio products, including CD players, due to 
its ability to communicate digital audio data between microchips. You can read more 
about the specification at https://en.wikipedia.org/wiki/I%C2%B2S.

The Raspberry Pi 2 gives us the ability to configure which of our audio outputs we 
want to use. In this chapter we will build a device that accepts input from the GPIO 
pins and outputs it to either speakers or headphones connected to the 3.5 mm jack.

Our first task therefore is going to be to understand how we can set the audio  
output mode.

Configuring the audio output
Before we look at changing any configurations, we will quickly touch upon a 
command called Amixer. This command allows us to control the mixer for ALSA 
soundcard drivers via the terminal window.

To see what the default settings are, you can simply type:

amixer -help

This will then display a list of commands.

https://en.wikipedia.org/wiki/I%C2%B2S


Chapter 8

[ 135 ]

We are interested in setting the card control contents. This is basically a way for us to 
switch between using the HDMI audio and the analogue audio options.

The following website provides a guide to Amixer and the parameters it accepts:

http://linux.die.net/man/1/amixer

Let's now use Amixer to set the audio output.

Setting the audio output
To switch the audio to use HDMI, you can use the following command:

amixer cset numid=3 2

You can switch back to using the using analogue by changing the 2 to 1, for example:

amixer cset numid=3 1

To revert to the default automatic mode, use 0:

amixer cset numid=3 0

You can test the speaker output of the Raspberry Pi using the following 
command:
speaker-test -c2 -t wav

The official Raspberry Pi website provides a handy guide to audio setup that you can 
also refer to at https://www.raspberrypi.org/documentation/configuration/
audio-config.md.

For the moment, we will leave the Raspberry Pi 2 using the analogue mode. This will 
set us up ready for our next project. So if you haven't done so, run the command to 
set the output to analogue:

amixer cset numid=3 1

Let's move on to the GPIO pins next.

Interacting with audio through GPIO
Now we are going to build upon what we learned in the previous chapter with 
regards to GPIO pins. We looked very briefly at how we can take a reading from 
the GPIO pins using Python. However, since we had no hardware connected to the 
GPIO pin, we got a reading of 0.

http://linux.die.net/man/1/amixer 
https://www.raspberrypi.org/documentation/configuration/audio-config.md
https://www.raspberrypi.org/documentation/configuration/audio-config.md


Exploring Sound with the Raspberry Pi 2

[ 136 ]

The following project involves connecting a number of buttons to the GPIO pins so 
we can use the input value when pressed to switch between MP3 files.

Before building the hardware, there are a number of software libraries we need to 
install so we can import them into our program.

So let's start by looking at these.

Installing the audio drivers
We are going to be installing the audio drivers for ALSA onto Raspbian first.

As discussed in the introduction, ALSA is used to provide an audio interface for 
Linux to the Raspberry Pi's hardware.

The two libraries we will install are alsa-utils and mpg123.

The alsa-utils library contains a number of utilities that are handy for controlling 
a sound card via Linux. The second library is mpg123; this is an MP3 audio player 
for Linux.

To grab these two libraries, run the following apt-get command:

sudo apt-get install alsa-utils mpg123

Once installed, you will need to power down the Raspberry Pi.

We are now ready to set up the breadboard and electronic components

Hardware setup
We are now going to set up a small electronic device that provides input to the 
Raspberry PI via its GPIO. Based on this input, we will then choose a drum track  
to play.

You will need the following components:

• 10k Ohm resistors
• Momentary push buttons
• Breadboard
• Wires
• Headphones or speakers

You can of course user a device such as the Pi Cobbler or a shield to connect the 
GPIO pins to the breadboard if you wish.



Chapter 8

[ 137 ]

Set up the hardware so the layout looks as follows:

In this diagram, we have the three buttons set up in the middle of the breadboard. 
In line with these are the 10K Ohm resistors. One leg of the resistor should be placed 
into the power strip of the breadboard, and the other leg should be aligned with  
the button.

From each of the buttons, a wire runs into the ground strip on the breadboard.

Finally, we need to connect this to the Raspberry Pi. Run a wire from a ground pin 
on the GPIO to the breadboard's ground strip where you connected the buttons.

Next, take a wire and connect the 3.3v pin on the GPIO to the power strip on the 
breadboard where the 10K resistors are connected.

Finally, run a wire from each of the GPIO pins 23, 24, and 25 to connect the resistor 
and the button.

Once this is complete, we can look at loading the drivers and writing some code.

Loading drivers
Power up your Raspberry Pi, log back in, and reopen the terminal window. We are 
now going to load the sound drivers. To do this, we will use modprobe, which is a 
program for adding loadable kernel modules (LKM) to the Raspbian kernel.

To run this command, type:

sudo modprobe snd_bcm2835



Exploring Sound with the Raspberry Pi 2

[ 138 ]

If this ran successfully, you should see no output on the screen. You can use this 
command in future, any time you wish to load the sound drivers.

If you did not switch back to analogue mode, you can do this using 
the following command: sudo amixer cset numid=3 1

Let's now find some audio files to use with the program we are going to write.

Getting some drum tracks
We are going to grab some files to play with the program. Select three drum  
MP3 samples of your choice from http://ibeat.org/free-drum-samples/.

Alternatively, if you have another audio website you prefer to use, grab three files 
from there.

In the program that follows, we have named these three drum samples drum1.mp3, 
drum2.mp3, and drum3.mp3. If you choose not to use these names, you will need to 
change the reference in the code to the MP3 file name.

Python drum machine
Start by creating a new file under the python_programs directory called fourth_
python_prog.py.

Open this file up and add the following Python code:

#!/usr/bin/python

import os
import RPi.GPIO as GPIO
import time

def main():
    """ Setup the GPIO pins
        then call the play sound
        method
    """

    GPIO.setmode(GPIO.BCM)
    GPIO.setup(23, GPIO.IN)
    GPIO.setup(24, GPIO.IN)

http://ibeat.org/free-drum-samples/


Chapter 8

[ 139 ]

    GPIO.setup(25, GPIO.IN)
    play_sound()

def play_sound():
    """ When the GPIO pins
        receive input we play
        a sound
    """

    while True:
        print "Waiting for input"
        if (GPIO.input(23) == True):
            os.system('mpg123 -q drum1.mp3 &')
        else:
            print "Press button 1 for first drum sample"
        if (GPIO.input(24) == True):
            os.system('mpg123 -q drum2.mp3 &')
        else:
            print "Press button 2 for second drum sample"
        if (GPIO.input(25)== True):
            os.system('mpg123 -q drum3.mp3 &')
        else:
            print "Press button 3 for third drum sample"
        time.sleep(5);

if __name__ == '__main__':
    main()

Now we shall walk through the code to get a better understanding of what the 
program does.

Let's start with the first four lines of code:

#!/usr/bin/python

import os
import RPi.GPIO as GPIO
import time

The shebang at the top you will be familiar with. Under this, we have added three 
import statements. You will also remember the time and GPIO libraries from the 
previous chapter, but the third library, os, is a new one.



Exploring Sound with the Raspberry Pi 2

[ 140 ]

The os library allows us to run commands from the operating system. Therefore  
we can use the commands available in this library to call other programs and run 
bash scripts.

After the import statements, comes our first function, main():

def main():
    """ Setup the GPIO pins
        then call the play sound
        method
    """

    GPIO.setmode(GPIO.BCM)
    GPIO.setup(23, GPIO.IN)
    GPIO.setup(24, GPIO.IN)
    GPIO.setup(25, GPIO.IN)
    play_sound()

Within the main() function, we start off by including a multiline comment that 
explains what the function does. This is also known as a docstring and is enclosed  
in three quotation marks.

Beneath this, we set the GPIO mode and then set three GPIO pins to input mode. 
Following this, we have a function call to play_sound().

The play_sound() function will now be examined:

def play_sound():
    """ When the GPIO pins
        receive input we play
        a sound
    """

    while True:
        print "Waiting for input"
        if (GPIO.input(23) == True):
            os.system('mpg123 -q drum1.mp3 &')
        else:
            print "Press button 1 for first drum sample"
        if (GPIO.input(24) == True):
            os.system('mpg123 -q drum2.mp3 &')
        else:
            print "Press button 2 for second drum sample"
        if (GPIO.input(25)== True):
            os.system('mpg123 -q drum3.mp3 &')
        else:
            print "Press button 3 for third drum sample"
        time.sleep(5);



Chapter 8

[ 141 ]

After the docstring, we define a while loop that runs continuously. Within this loop 
we check if any of the buttons have been pressed. When they have, we play a sound. 
If the button is off, we display a message on the screen.

You will see that we use a function call from the os library called system. This allows 
us to make calls to the operating system.

Inside the system function call, we pass in a reference to the mpg123 command, 
which we installed earlier.

For example, we could use 'mpg123 -q drum1.mp3 &'

In this instance, we call mpg123 with the –q flag (for quiet), an MP3 file to play, and 
finally the & symbol. This will trigger the mpg123 command to play the MP3 file and 
run in the background. This will be audible via the device you have plugged into the 
analogue jack.

The final line of the function creates a 5-second pause. Once this has finished, the 
while loop continues.

Finally, we finish up the program with the familiar if statement for kicking off the 
main() function:

if __name__ == '__main__':
    main()

Save this file and exit. It is now time to try out our hardware and software together.

We can run the application from the command line as follows:

sudo python fourth_python_prog.py

You should now see the following on the screen:

Waiting for input

Press button 1 for guitar

Press button 2 for bass

Press button 3 for drums

The program is waiting for input from the GPIO pins. Start by pressing one of  
your buttons.

You should hear that the corresponding sound plays when the for loop starts again 
after the 5-second pause. One of the messages will also no longer be displayed.

Try each of the buttons and experiment with switching them on and off.



Exploring Sound with the Raspberry Pi 2

[ 142 ]

Congratulations, you have now used the GPIO pins to play sound on the Raspberry 
Pi and build a drum machine.

For further ideas on how to modify this project, you can review the Adafruit Playing 
sounds and using buttons with Raspberry Pi project, which helped to inspire the project 
we just built and is available at https://learn.adafruit.com/playing-sounds-
and-using-buttons-with-raspberry-pi/bread-board-setup-for-input-
buttons.

Let's now look at some commercial options for expanding the Raspberry Pi's  
sound capabilities.

Audio shields for the Raspberry Pi
In addition to building our own electronics that interact with the GPIO pins,  
we can buy off-the-shelf hardware. This includes HiFi and sound card shields.  
The Raspberry Pi 2 does not come with a built-in sound card, so audiophiles may 
wish to purchase a more powerful external device.

HiFi shields give us the ability to implement High Fidelity sound via hardware,  
so we can connect the Raspberry Pi to an AMP or similar audio equipment.

Examples of these devices include the HiFiBerry and Cirrus Logic Audio Card.

You can read more about HiFiBerry at https://www.hifiberry.com/.

Further information and purchasing details for the Cirrus device can be found at 
https://www.adafruit.com/products/1761.

Now we have explored audio input and output via the GPIO pins and hardware, 
let's return to looking at some more software examples.

C and ALSA
In addition to using Python, we can also use the C programming language for 
writing audio applications that leverage ALSA.

Before we begin to write code, we need to install and compile some C programming 
libraries.

These are libasound2 and its development counterpart libasound2-dev.  
Install them using the following command:

sudo apt-get install gcc libasound2 libasound2-dev

https://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi/bread-board-setup-for-input-buttons
https://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi/bread-board-setup-for-input-buttons
https://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi/bread-board-setup-for-input-buttons
https://www.hifiberry.com/
https://www.adafruit.com/products/1761


Chapter 8

[ 143 ]

The libasound2 library contains the shared library for the ALSA application. 
The next library, libasound-dev, is the libasound library's development file 
counterpart. You will often see –dev versions of packages in Linux, as they contain 
the headers related to a library's interface.

We are now ready to write our C application. This will check which version of ALSA 
is installed. The idea behind this program is to introduce you to how to import 
the necessary library into your program. Once you understand this, you can then 
implement the example C programs from the ALSA website.

Navigate to the c_programs directory and create a new file called eighth_c_prog.c.

To this file, add the following code:

#include <stdio.h>
#include <alsa/asoundlib.h>
#include <alsa/pcm.h>

int main(void) {
  int i =0;

  printf("Checking Audio information...\n");
  printf("Version of ALSA installed: %s\n", SND_LIB_VERSION_STR);
  printf("\nPCM stream types:\n");

  for (i; i <= SND_PCM_STREAM_LAST; i++) {
    printf("%s\n", snd_pcm_stream_name((snd_pcm_stream_t)i));
  }

  return 0;
}

Let's now take a look at what is happening.

First, we import a number of libraries:

#include <stdio.h>
#include <alsa/asoundlib.h>
#include <alsa/pcm.h>

The first include statement brings in the standard I/O library so we can print 
information to the screen.

Following this, we include the asoundlib.h header file, which we will use to check 
the ALSA version installed.



Exploring Sound with the Raspberry Pi 2

[ 144 ]

Finally, we include the pcm.h header, which we will use to display the Pulse Code 
Modulation (PCM) stream types available to us.

You can read more about PCM on the ALSA website at http://www.alsa-project.
org/alsa-doc/alsa-lib/pcm.html.

Next is the main() function. The int variable is used later in the program in a for 
loop. The printf statement is responsible for outputting text to the screen.

The middle one of the three printf statements is particularly interesting. Here we 
check the version of ALSA installed:

  printf("Version of ALSA installed: %s\n", SND_LIB_VERSION_STR);

This information is defined in the version.h file, and in fact this file is imported via 
the asoundlib.h file at the top of our program. The location of version.h is:

/usr/include/alsa/version.h

You can open this file directly in your text editor and examine its contents:

vim  /usr/include/alsa/version.h

You should see something similar to this:

/*
 *  version.h
 */

#define SND_LIB_MAJOR           1 /**< major number of library version 
*/
#define SND_LIB_MINOR           0 /**< minor number of library version 
*/
#define SND_LIB_SUBMINOR        25 /**< subminor number of library 
version */
#define SND_LIB_EXTRAVER        1000000 /**< extra version number, 
used mainly for betas */
/** library version */
#define SND_LIB_VERSION         ((SND_LIB_MAJOR<<16)|\
                                 (SND_LIB_MINOR<<8)|\
                                  SND_LIB_SUBMINOR)
/** library version (string) */
#define SND_LIB_VERSION_STR     "1.0.25"

The SND_LIB_VERSION_STR is the value we output in our program via the printf 
statement. When you run the application shortly, you should see these values match.

http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html
http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html


Chapter 8

[ 145 ]

Following this, we can see a for loop in our program:

  for (i; i <= SND_PCM_STREAM_LAST; i++) {
    printf("%s\n", snd_pcm_stream_name((snd_pcm_stream_t)i));
  }

This loops through the available PCM streams and outputs a list to the terminal.  
You should expect to see PLAYBACK and CAPTURE displayed. PLAYBACK corresponds 
to outgoing samples and CAPTURE to incoming samples.

Let's now compile and test the program and see these values displayed. From the 
command line, run the following:

gcc eighth_c_prog.c -o eighth_c_prog -lasound

Remember, you can use a Makefile for your C programs and if you 
use an IDE such as Geany, run the compiler and similar tools from 
inside the IDE.

Once compiled, you can run the new program with this:

./eighth_c_prog

This will output something similar to the following:

Checking Audio information...

Version of ALSA installed: 1.0.25

PCM stream types:

PLAYBACK

CAPTURE

Here, we can see the version of ALSA installed and the PCM stream types available, 
which we discussed briefly previously.

So we have the basics working. Let's take a look at some of the advanced concepts 
from the ALSA website written in C.

ALSA examples
There are a number of programs you can now run on your Raspberry Pi 2 that come 
from the ALSA website. These can be found at http://www.alsa-project.org/
alsa-doc/alsa-lib/examples.html.

We are going to take a look at the program available at http://www.alsa-project.
org/alsa-doc/alsa-lib/_2test_2pcm_min_8c-example.html.

http://www.alsa-project.org/alsa-doc/alsa-lib/examples.html
http://www.alsa-project.org/alsa-doc/alsa-lib/examples.html
http://www.alsa-project.org/alsa-doc/alsa-lib/_2test_2pcm_min_8c-example.html
http://www.alsa-project.org/alsa-doc/alsa-lib/_2test_2pcm_min_8c-example.html


Exploring Sound with the Raspberry Pi 2

[ 146 ]

Copy the code from the preceding URL and add it to your c_program directory.

Before you can run this, you will however need to open it up and make a change. 
If you try to compile it as pasted from the website, you should expect to see the 
following error:

pcm_min.c:4:34: fatal error: ../include/asoundlib.h: No such file or 
directory

compilation terminated.

The include statement for the asoundlib.h library at the top of the program needs 
to be modified from this:

#include "../include/asoundlib.h"

It should be changed to the following:

#include <alsa/asoundlib.h>

Once you have made this modification, save the file and exit.

It can be compiled as follows; in this instance the program has been named 
pcm_min.c, but if you named it something different, then update the compilation 
command to reflect this:

gcc pcm_min.c -o pcm_min -lasound

This should now compile without an error.

You can run the program via the following command:

./pcm_min

With your speakers or headphones plugged in, you should hear some random 
samples.

There are a number of examples on the ALSA website that are interesting to 
experiment with and provide a base for writing your own audio application.

Before we conclude this chapter, we are going to look at one more audio technology 
for the Raspberry Pi, called Sonic Pi.



Chapter 8

[ 147 ]

Introducing Sonic Pi
Sonic Pi is a free live coding synthesizer, which can be installed onto your Raspberry 
Pi to create generative compositions. It uses a very simple programming interface to 
allow you to generate your own sounds and musical pieces.

The official website for the application is http://sonic-pi.net/.

An example of the types of sound that can be generated can be found at  
http://sonic-pi.net/#examples.

The very first example at the site generates some bell sounds. The code to generate 
this is shown here:

loop do
  sample :perc_bell, rate: (rrand 0.125, 1.5)   
  sleep rrand(0, 2) 
end

As you can see, the minimal code they implemented on the example site generates 
some very interesting sounds.

We will now set up Sonic Pi and start experimenting with the programming code to 
generate all sorts of sounds.

Setup
Raspbian Jessie comes pre-installed with Sonic Pi. If you are using an earlier version 
of the Raspbian O/S, or find it is not installed, you can acquire it using apt-get:

sudo apt-get install sonic-pi

Once the installation is finished, you are now ready to start experimenting.

Log in to the Raspberry Pi desktop and locate sonic-pi. You will need to run this 
via the graphical desktop as it cannot be run from the command line.

The application can be found under Start | Programming | Sonic Pi.

http://sonic-pi.net/
http://sonic-pi.net/#examples


Exploring Sound with the Raspberry Pi 2

[ 148 ]

The desktop application should now load. The following screenshot shows the GUI 
where you can write your programs:

Along the top of the application, there are a number of buttons that can be used to 
perform tasks such as play and stop the code running in the buffer window.

The Sonic Pi application comes with a tutorial which guides you through the 
application's menus, function calls, and syntax.

These can be located in the bottom left of the GUI.

Click on the Tutorial link and you will find a menu displayed.

In the center of the screen is the buffer window, where we noted our code will  
be written.

Let's try out a very simple example that illustrates how the menu and buffer window 
interact. In the buffer window, find the following comment:

#Welcome to Sonic Pi v2.6

Add the following command under it:

play 80

Plug in your speakers or headphones if they aren't already, and then press the Run 
button located in the top menu.



Chapter 8

[ 149 ]

You should now hear a note being played. If you wish, try changing the value  
80 to another integer such as 83 and press Run again. This time you will hear  
a different sound.

This is one of the most basic applications you can write in Sonic Pi.

Let's now try some more advanced experiments.

Experimenting with Sonic Pi
Starting your first program is very simple, as you saw; you can play a note just by 
typing play followed by an integer.

Let's now take a look at another example like the one at the beginning of this section 
from the Sonic Pi website.

You may see that in the bottom-left window of the screen there is a list of examples. 
You can experiment with these to see what the different types of command in Sonic 
Pi do.

We are going to choose an example called Pentatonic Beeps from the Sonic Pi 
website:

with_fx :reverb, mix: 0.2 do
  loop do
    play scale(:Eb2, :major_pentatonic, num_octaves: 3).choose, 
release: 0.1, amp: rand
    sleep 0.1
  end
end

Paste this code into the buffer window. If you wish, you can select a different buffer 
tab, such as Buffer 1.

This program constructs a simple loop with a pause, which executes continuously. 
Each time it executes, it plays notes from a major pentatonic scale.

To hear the effect in action, press Run.

You should hear the audio playing; it incorporates both scales and chords. To stop it, 
press the Stop button in the top menu.

If you wish to save any of your programs, you can do this using the Save button.



Exploring Sound with the Raspberry Pi 2

[ 150 ]

Let's try out one more program. This time, we will use the Ocean Waves example  
as a base. You can grab this either from the website or the examples list in Sonic Pi. 
The code is also displayed as follows:

with_fx :reverb, mix: 0.5 do
  loop do
    s = synth [:bnoise, :cnoise, :gnoise].choose, amp: rrand(0.5, 
1.5), attack: rrand(0, 4), sustain: rrand(0, 2), release: rrand(1, 3), 
cutoff_slide: rrand(0, 3), cutoff: rrand(60, 80), pan: rrand(-1, 1), 
pan_slide: 1, amp: rrand(0.5, 1)
    control s, pan: rrand(-1, 1), cutoff: rrand(60, 115)
    sleep rrand(2, 3)
  end
end

Add this to another of the buffer windows and press the Run button.

You should hear a sound that reminds you of ocean waves.

This is achieved through combining different types of noise. Let's edit this program 
to include the sound of a buoy bell. Start by stopping the program.

Add the following two lines above sleep rrand(2, 3) in the preceding code:

    play 80
    play 83

These two notes will both play in quick succession and sound like they are almost 
playing together.

Try starting the application again. You should now hear a periodic bell-like chime.

If you want to export this to an external file such as a WAV, so you can play it 
independently of the Sonic Pi application, this is very simple.

Click the Rec button while your program is executing.

A recording will start until you click the Rec button again to stop it. You will then be 
given the option to save the file to your hard disk.

If you wish to save the program, click the Save button.

This concludes our introduction to Sonic Pi. You can read more about it using the 
tutorials mentioned earlier in this section. These will guide you through writing your 
own advanced projects.



Chapter 8

[ 151 ]

Summary
This concludes our exploration of sound on the Raspberry Pi. In this chapter, 
we have looked at a number of different technologies for creating sounds on the 
Raspberry Pi.

First, we built some hardware that interacted with the Raspberry Pi's GPIO pins.  
In conjunction with this, we wrote a small Python application that took the GPIO 
input and played an MP3.

We explored ALSA through the C language, and looked at implementing an example 
from the ALSA website that generated an audio tone.

Finally, we installed and experimented with the Sonic Pi application. Here we 
saw how simple scripts could be put together to generate music and sounds in a 
graphical user interface.

Now we will move on to learning more about how we can serve web content via our 
Raspberry Pi 2. In order to achieve this, we will build a web service using the Python 
programming language.

We will also examine other options for hosting a web server on our Raspberry Pi.





[ 153 ]

Building a Web Server
In this chapter, we will look at how we can use our Raspberry Pi as a web server.  
A number of topics are covered in this chapter, including:

• The Hypertext Transport Protocol
• Third party web servers
• Writing Python-based web applications
• Connecting to a SQLite data

We will start by looking at how a web server works and then the third-party 
software on the market. Following this, we will write a simple web server in Python 
that displays some HTML content.

Next, we will integrate a small database and display the data. Finally, we will wrap 
up by looking at what we have learned.

Let's start by reviewing what a web server is and what the Hypertext Transport 
Protocol that drives traffic to it is.

Introduction to web servers
At its heart, a web server is a system that handles requests via HTTP. You will see the 
term web server applied in a number of ways, including in reference to the hardware 
that the software stack runs on, as well as the actual software application itself.

Typically, when visiting a web server you will have data returned to your web 
browser in the format of HTML, images, JavaScript, and CSS, among other formats. 
These are what we call web pages, although the web server can also return data in 
other formats as well, such as JavaScript Object Notation (JSON) and Extensible 
Markup Language (XML).



Building a Web Server

[ 154 ]

All of these data types are returned via an HTTP request, which handles transferring 
the information from the web server to the user's web browser (or another 
application that wishes to interact with the server).

Let's now look at the HTTP protocol in a little more detail to understand how  
this works.

HTTP requests
The Hypertext Transfer Protocol (HTTP) was invented at CERN (European 
Organization for Nuclear Research) by the scientist Tim Berners-Lee and his team. 
Looking for a method to communicate information between physicists, they created 
the HTML markup language and the HTTP protocol that allows it to be transferred 
between computers.

An HTTP request can assume one of several methods, the most common being GET 
and POST. These can be thought of as the mechanism that explains what the request 
is trying to do.

A guide to these request methods can be found at https://www.w3.org/
Protocols/rfc2616/rfc2616-sec9.html.

At a high level, the mechanism by which an HTTP request transfer HTML is  
as follows.

A request is made for a web document via a Uniform Resource Locator (URL), for 
example http://www.google.com. This request also contains more information, 
such as the version of HTTP being used and the type of request, for example GET.

The web server running on a port accepts the incoming HTTP request and then 
locates the document on its file system. The document is then returned along with 
an HTTP header, containing information used by the browser or receiving program. 
This header includes things such as the error code. If for example the page you 
requested does not exist, the web server will return a 404 error and a page displaying 
this error code, along with a message in most instances.

Therefore, a browser requesting a document from our Raspberry Pi will make an 
HTTP request. The web server installed on the Raspberry Pi will located the HTML 
document on the Raspbian file system and then return it to the requesting browser.

You can read more about the HTTP protocol at https://www.w3.org/Protocols/.

Since HTML is an important component, we will briefly review the subject.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.google.com
https://www.w3.org/Protocols/


Chapter 9

[ 155 ]

HTML
Hyper Text Markup Language (HTML) is the fundamental building block of web 
content. It acts as a way of marking up documents, so a web browser knows how to 
render them on the screen.

An HTML document consists of sets of nested tags. These tags represent parts of the 
document. For example, the header section of the document uses the <head> tag and 
the body of the document, where the main content is rendered, uses the <body> tag.

Content contained within these tags can then be styled using CSS (Cascading Style 
Sheets). These allow us to change the font, color, and other properties of the tag and 
its contents. While these properties can be changed directly inside a tag in HTML, 
CSS allows the reuse of sets of properties. These could be styling, such as titles 
in bold, links in blue, and so on. This helps to ensure the website is consistently 
rendered and enables easy site-wide changes.

In addition to this, we can then manipulate the HTML tags via programming 
languages such as JavaScript. This allows us to do such things as finding out which 
tag (which could be a button) has been clicked on or animating a part of the screen.

An example of an HTML document is as follows:

<!DOCTYPE HTML>

<html>
<head>
<title> Hello </title>
</head>
<body id="main">
  <div class="content"> Some content </div>
</body>
</html>

This very simple document contains the following components.

The DOCTYPE located at the top of the document denotes that this is an  
HTML document.

Following this, we have the <html> tag. At the bottom of the document is the closing 
</html> tag. All of the content for the webpage is then nested inside these two tags.

After this is the <head> tag. The tags located in here are used to provide information 
about the document. For example, we can include a <title> tag. This will not be 
displayed inside the document itself when rendered by the browser, but will appear 
as the browser tab title.



Building a Web Server

[ 156 ]

Next is the <body> tag. This contains all the tags that will be displayed inside 
the browser tab. In this instance, we have included an id for the tag, which is 
id="main". HTML tags can contain IDs, which can then be used by JavaScript 
applications to locate and manipulate a tag.

Inside the <body> tag we have a <div> tag. This division of the screen contains a 
class attribute. A class attribute is a way of designating that a set of CSS styles 
located in a separate file should be assigned to this tag. Our document does not 
reference a CSS file, however, so no styling would be applied.

You can read more about CSS and discover how to style HTML documents at 
http://www.w3schools.com/css/.

Inside the <div> tag we have some plain text. This will be rendered to the browser 
when the web page is returned from the server.

Each tag in the document has a corresponding closing tag, for example </div>.

In the following projects, you will experiment with a simple HTML document like 
this and return it from the Raspberry Pi's web server.

You can read more about the latest HTML5 standard and its features at  
http://www.w3schools.com/html/html5_intro.asp.

Now we have a basic understanding of HTTP and HTML, we can look at some  
off-the-shelf open source applications that allow us to serve up content over it.  
These are, of course, web servers.

Popular web servers available on the 
Raspberry Pi
Depending on the type of application you wish to serve up, a variety of programs 
are available to download for free. In this chapter, we will look at two popular open 
source web servers, Apache and NGINX.

Apache
Apache has been around for a long time and is a well-known web server. You can 
read about its history at http://www.apache.org/.

To install it onto Raspbian we can use apt-get. Run the following command:

sudo apt-get install apache2 –y

http://www.w3schools.com/css/
http://www.w3schools.com/html/html5_intro.asp
http://www.apache.org/


Chapter 9

[ 157 ]

This will kick off the installation process.

Once complete, we can test it works by visiting localhost in our web browser on 
the Raspberry Pi or by visiting the IP address of the device from a second computer, 
for example http://<ip of rpi>/.

If you find the web server is not running, you can use the 
following command:
sudo apache2ctl –k start

By default, an index.html page is included with the web server.

To add our own HTML files to Apache, we can place these in:

/var/www/html

Rename the existing HTML page to index.html_old. You can use the mv command 
for this:

sudo mv index.html index.html_old

Next, try adding a new index.html file via your text editor:

<html>
  <head>
  </head>
  <body>
  Hello Apache.
  </body>
</html>

If you refresh your browser you should now see the Hello Apache text on the screen.

There are a number of useful commands that can be used for performing tasks such 
as stopping and restarting the web server. 

To stop the web server, run this:

sudo apache2ctl –k stop

To start the server up once it has stopped, run this:

sudo apache2ctl –k start



Building a Web Server

[ 158 ]

For a graceful restart, which will wrap up any existing requests if they exist and then 
restart the server, you can run this:

sudo apache2ctl –k graceful

A variety of other commands can be found listed at the following URL, under the 
reference manual section:

https://httpd.apache.org/docs/2.2/en/

By default, Apache runs on port 80 of your computer. We are now going to try a 
different web server, so stop the Apache web server by using the preceding command.

NGINX
A rival to Apache is NGINX (pronounced "engine x"). Like Apache, you can install it 
on your Raspberry Pi to serve up web content. NGINX is known for its focus on high 
performance with a low memory footprint. This makes it an especially good choice 
for a device like the Raspberry Pi 2.

To install NGINX, you can use apt-get:

sudo apt-get install nginx

Once the install has finished, we can start the web server with the following command:

sudo /etc/init.d/nginx start

Once the web server has started up, we can check the landing page to see it working.

Open up a browser on the Raspberry Pi desktop or a second machine and go to the 
following URL:

http://<ip of rpi>/

You should now see the NGINX landing page with the following text:

Welcome to nginx!

As with Apache, we can change this page as follows:

<html>
  <head>
  </head>
  <body>
  Hello NGINX.
  </body>
</html>

https://httpd.apache.org/docs/2.2/en/ 


Chapter 9

[ 159 ]

The NGINX index.html page is stored in a different location, however:

/usr/share/nginx/html/index.html

Try updating this with the new index.html file and refreshing your browser.

The following commands can be used for stopping, starting, and reloading the server.

To stop the server, use this:

sudo nginx –s stop

To quit, which involves a graceful shutdown, use this:

sudo nginx –s quit

To reload a modified configuration file, use this:

sudo nginx –s reload

To start the server, run the NGINX executable sudo nginx.

More information on the NGINX command line can be found at https://www.
nginx.com/resources/wiki/start/topics/tutorials/commandline/.

Which web server you choose, if you decide to use a third party one, will come down 
to a number of things. A good comparison of NGINX and Apache can be found at 
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-
practical-considerations.

Now we have seen two third party applications that can be installed on the 
Raspberry Pi for serving web content. While this is useful, it would be interesting to 
know how to write our own web server in Python.

This would give us an option for writing lightweight web applications, so we will 
explore this next.

Building a Python web server
The Python programming language provides us with a number of libraries and 
frameworks for building robust web applications. This includes the ability to handle 
incoming HTTP requests, serve up content in a variety of forms including HTML 
and JSON, and retrieve data from a database and share it with a visitor.

In the first application we will write, we will display the directory structure of the 
python_programs folder.

Start by opening a new file called fifth_python_prog.py.

https://www.nginx.com/resources/wiki/start/topics/tutorials/commandline/
https://www.nginx.com/resources/wiki/start/topics/tutorials/commandline/
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations
https://www.digitalocean.com/community/tutorials/apache-vs-nginx-practical-considerations


Building a Web Server

[ 160 ]

Python web server code
Let's start by adding the following block of code to the file and taking a look at what 
it does:

#!/usr/bin/python

import SimpleHTTPServer
import SocketServer

First, we include the shebang, and following this we import two libraries.

The first library is SimpleHTTPServer. As you may have guessed from the name, 
this library provides all the functions and tools necessary for processing and sending 
HTTP requests and responses.

The next library we include is the SocketServer library. This is responsible for 
providing us with the tools for creating a TCP server, which allows for continuous 
streams of data between a client machine and a server:

def main():
    port = 8080

After including out headers we now need to define the main() function. The first 
line we include in this is a variable called port. We assign the value 8080 to this. As 
you will see shortly, this allows us to choose which port on the Raspberry Pi the web 
server will run on, and can thus be visited by browsers to view our web content:

    handler = SimpleHTTPServer.SimpleHTTPRequestHandler
    httpd = SocketServer.TCPServer(("", port), handler)
    print "Serving on port", port
    httpd.serve_forever()

After defining the port we get to the heart of our web server. To start with, we define 
a variable that is responsible for handling HTTP requests. Following this, we define 
the httpd variable. This is responsible for creating the TCP server, which will handle 
the HTTP requests on port 80.

TCP stands for Transfer Control Protocol and is usually suffixed with 
IP (Internet Protocol) to make TCP/IP. TCP is responsible for breaking 
up data into small chunks, called packets, and sending these across 
the Internet. These packets are then reassembled at the other end. You 
can read more about TCP/IP here: http://www.w3schools.com/
website/web_tcpip.asp

Next, we print a message, saying which port the server is running on, to the console.

http://www.w3schools.com/website/web_tcpip.asp
http://www.w3schools.com/website/web_tcpip.asp


Chapter 9

[ 161 ]

Finally, we say we wish the server to run forever, thus accepting multiple  
HTTP requests:

if __name__ == '__main__':
    main()

The final line of our program should be familiar to you from our previous Python 
scripts. Here, once again, we tell the program to call the main() function once it has 
been executed.

Save this program and exit. We can now try running the application. Use the 
following command:

sudo python fifth_python_prog.py

You should see the port number that the app is running on displayed on the 
command line.

Next, from the Raspberry Pi or via a second machine, access the Raspberry Pi on port 
8080 in your web browser, for example: http://localhost:8080/

A directory listing of the python_programs directory should be visible in  
your browser.

Now take a look at the console window in Linux.

A message saying the application has started on port 8080 should be visible, but also 
a number of errors:

Serving on port 8080

127.0.0.1 - - [11/Jan/2016 09:27:09] "GET / HTTP/1.1" 200 -

127.0.0.1 - - [11/Jan/2016 09:27:09] code 404, message File not found

127.0.0.1 - - [11/Jan/2016 09:27:09] "GET /favicon.ico HTTP/1.1" 404 –

These errors are present as there is no index.html file and no favicon.ico file.



Building a Web Server

[ 162 ]

Adding an index page and a favicon
When we first hit the IP address of our Raspberry Pi using NGINX as the web server, 
we saw a welcome page. We will now look at how we can do the same with our 
Python web server.

Typically, a web server will list a folder directory (unless this option is disabled) if no 
index.html page is present.

So let's create a simple index page to greet a visitor:

<html>
  <head>
  </head>
  <body>
  Hello World.
  </body>
</html>

Here we have created a few tags, and in the body tag we have the Hello World. 
message.

Save this as index.html in the python_programs directory.

Once you have done this, restart the web server and navigate back to the URL.

You should now see the following:

Hello World.

We have written an application that serves up a static HTML page and tested  
it works.

To learn more about HTML, you can follow the tutorials at http://www.w3schools.
com/html/html5_intro.asp.

Let's now add a favicon. You can use the following website to design your own:

http://www.favicon.cc/

Save the file into the python_programs directory.

Finally, if you restart the server you should see the error messages have vanished. 
The favicon should appear on the browser tab. This console can be a useful tool 
when debugging your web applications in the future.

http://www.w3schools.com/html/html5_intro.asp
http://www.w3schools.com/html/html5_intro.asp
http://www.favicon.cc/ 


Chapter 9

[ 163 ]

Adding database support
Rather than having simple static pages like our hello world page, we can display 
text stored in a database. This allows us to have a page that dynamically updates, 
depending on the data we have stored.

SQLite
We are going to use a lightweight relational database management system called 
SQLite to demonstrate how our web server can display content stored in a database. 
We will use SQLite version 3 for this project.

SQLite version 3 can be installed via the following command:

sudo apt-get install sqlite3

Once installed, you can create a new database by simply specifying a file name after 
the call to the SQLite shell program:

sqlite3 webserverdb.db

With SQLite 3, every database is simply a file on the system, so go ahead and run the 
preceding command. This will now drop you into the SQLite shell. From here, we 
can use SQL to create a database and populate it with dummy data.

Let's quickly look at some SQL features in order to aid us.

SQL – a quick overview
SQL stands for Structured Query Language, and it is used for interacting with an 
RDBMS (Relational Database Management System). It can be used for both the 
creation of the database and its population and interaction.

Typically, a SQL statement is called a Query.

In this chapter, we need to know a handful of commands, which are:

CREATE TABLE <tablename>

The CREATE TABLE command is used to create a new table in the database.

ALTER TABLE

The ALTER TABLE statement allows us to edit an existing table.

SELECT cols FROM tbl;



Building a Web Server

[ 164 ]

This statement returns a set of columns from a database table. If you wish to return 
all of them, you can replace columns with a *.

INSERT INTO tbl(col) VALUES (data);

We use this command to enter values into the columns of a database table.

INNER JOIN tbl1 ON tbl2.col;

The INNER JOIN statement allows us to combine the data from two tables and return 
the result.

You can read more about JOIN, which also provides a Venn diagram for explanation 
at http://www.sitepoint.com/understanding-sql-joins-mysql-database/.

An in-depth look at SQL is out of the scope of this chapter, but you can read 
more about SQL and how to use it with SQLite at the following link at https://
www.sqlite.org/lang.html. The WHERE and UPDATE statements you will find of 
particular use.

Let's now write a Python application that implements a SQL database.

Python program with SQLite support
We are going to start by creating a new database to store information on food in our 
kitchen. You can re-use the one from earlier called webserverdb.db if you wish, or 
create a new file. Remember, if you create a new file, to use its name going forward 
where we have used webserverdb.

sqlite3 webserverdb.db

With the shell now open, run the following:

CREATE TABLE storage_location (id INTEGER PRIMARY KEY AUTOINCREMENT, 
location VARCHAR(25));

This creates a very small, empty table that contains information on kitchen locations 
where items can be stored. We have named the table storage_location and set 
a PRIMARY KEY (this is a unique identifier for the record). The key is an integer 
that increments as each new record is added. Finally, we include a column called 
location, which can store a 255-character description.

Next, we will add the food_item table:

CREATE TABLE food_item (id INTEGER PRIMARY KEY AUTOINCREMENT, location 
INTEGER, FOREIGN KEY(location) REFERENCES storage_location(id));

http://www.sitepoint.com/understanding-sql-joins-mysql-database/
https://www.sqlite.org/lang.html
https://www.sqlite.org/lang.html


Chapter 9

[ 165 ]

This table is used to store a list of food items. Like the storage_location table, it 
uses an auto-increment integer as the PRIMARY KEY. It also includes a second column. 
This column is a reference to the location column in the storage_location table. 
This allows us to mark a food item as being stored in a particular location. In SQL 
parlance, this is known as a FOREIGN KEY. In order to insert a valid record into this 
column, it must match a value in the storage_location database. You can think of 
this as a way of ensuring we don't buy more food than we have places to keep it!

This table is currently missing something though, the description of the food item! 
So we will now look at implementing the ALTER TABLE statement. This allows us to 
modify an existing table. 

Run the command below in the SQLite shell:

ALTER TABLE food_item ADD COLUMN description VARCHAR(40);

This statement alters our food_item table to add a new column. This is called 
description and allows us to store up to 40 characters.

Let's now add a value to our storage_location table. This is going to be Fridge. 
Execute the following statement:

INSERT INTO storage_location (location) VALUES ('Fridge');

We can check if this is now in the table by using a SELECT statement:

SELECT * FROM storage_location;

Here, the * means to return all the columns. You should now see the following 
results:

1|Fridge

Let's now add some eggs to the food_item table:

INSERT INTO food_item (location, description) VALUES (1, 'eggs');

Once again, we can use the SELECT statement to see the item we added:

SELECT * FROM food_item;

You should now see your eggs returned:

1|1|eggs

What would be interesting would be to see the location and the item stored in it.  
We can use the JOIN statement we discussed earlier to achieve this.



Building a Web Server

[ 166 ]

Run the following SQL query:

SELECT * FROM food_item INNER JOIN storage_location ON food_item.
location;

You should now see the eggs and the Fridge returned:

1|1|eggs|1|Fridge

Here, we have built a simple database that stores information on food items and their 
location. Feel free to add more items if you wish.

You can clean up the results to eliminate the IDs from the query by 
replacing the * with the list of columns you wish to display from 
each table.

Our following Python application will now be able to display information from this 
database, and display it like we did previously using a query, but on a web page.

Flask – displaying database data via Python
We are now going to build a Python web app that connects to our database using the 
Flask framework.

As you saw earlier, we can write our own simple HTTP server that can return HTML 
content. As the features we wish to implement grow in complexity, so does our code. 
Thankfully, a number of frameworks exist that have solved many of the difficult 
problems for you. By implementing these frameworks, you can cut down on the 
amount of code you need to write.

The particular framework we will be using is called Flask. You can read more about 
it at http://flask.pocoo.org/.

Flask takes care of setting up the complexities of the web server for us, and allows us 
to return text from inside a Python program as HTML.

In order to install Flask, we need to install a Python package manager called pip. 
This tool provides an easy method for installing Python libraries onto our computer, 
in a similar fashion to how we have been using apt-get.

You can read more about pip here: https://pypi.python.org/pypi/pip.

Start by installing the pip package manager using apt-get:

sudo apt-get install python-pip

http://flask.pocoo.org/
https://pypi.python.org/pypi/pip


Chapter 9

[ 167 ]

Once this has finished, we can install the Flask package via the pip command  
line tool:

sudo pip install flask

Next, open a new file in your python_programs directory called sixth_python_
prog.py.

To this file, add the following code:

#!/usr/bin/python

from flask import Flask
import sqlite3

The first lines of code include the shebang and the import statements.

In this instance, we are including the Flask framework and sqlite3. This will 
provide us with the tools we need to return data from the database as a webpage:

app = Flask(__name__)

@app.route('/')

Next, we define a new Flask application and, following this, assign a route.  
The route is the path you use to access the application after the URL in the  
browser. In this instance, it is running at the root level:

def index():
    conn = sqlite3.connect('webserverdb.db')
    response = ""

Following this, we add a new function called index(). At the top of this function, we 
define a connection to our database and also create a new variable called response. 
The response variable will store the text to be displayed on the screen:

    cursor = conn.execute("SELECT * FROM food_item INNER JOIN storage_
location ON food_item.location")

The next line of code involves creating a variable called cursor, which contains our 
SQL query inside of a function. You will notice this is the query we used earlier that 
performed the JOIN. The SQL query is executed by the conn.execute function, and 
the results are stored in the cursor variable:

    for row in cursor:
       response = response + "<strong>Food</strong> = " + str(row[2]) 
+ "<br />"
       response = response + "<strong>Location</strong> = " + 
str(row[4]) + "<br />"
    conn.close()



Building a Web Server

[ 168 ]

Following the execution of our query, we loop through the results and extract the 
data we are interested in. This is the location and the food items. These are stored in 
the response variable as a string, with some HTML tags to help formatting.

You can also modify the query to only return the columns you wish, 
by replacing the * with the column name.

Next, we close the database connection we opened:

    return response

The final line of our function returns the response variable so it can be output to the 
browser. The visitor should expect to see a list of items and locations when they visit 
the page.

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0')

Finally we include some code that starts up the application when the script is run. 
This tells the Flask application to run on the localhost of our Raspberry Pi 2 and to 
run in debug mode.

Now we can test our application from the command line:

sudo python sixth_python_prog.py

Navigate to the IP address of your Raspberry Pi or localhost if you are on its desktop. 
The application will be running on port 5000 by default. 

You should see the following:

Food = eggs

Location = Fridge

Congratulations, you now having a working web application that displays data from 
inside a SQLite database.

Next steps
This project can easily be expanded to allow the user to enter data into the database 
via a web form.

A handy guide for building web forms using Flask can be found at  
https://pythonspot.com/flask-web-forms/.

https://pythonspot.com/flask-web-forms/


Chapter 9

[ 169 ]

Using the earlier example program, you should be able to modify it to use the 
INSERT INTO statement. Combining this with a web form will allow a web-based 
method for updating the database's contents.

Summary
In this chapter, we learned a little about HTTP. We came to understand how it could 
be used for serving up content over the Internet. Next, we studied web servers and 
how they can be used as the mechanism for serving this content to the browser, in 
order to be rendered with HTML.

Following this, we used our Python skills, developed in earlier chapters, to write a 
couple of web servers. The first served a simple HTML page, and the second pulled 
data from a SQLite database and implemented the Flask framework.

This now leads us to our final chapter on connecting to third party microcontrollers. 
Here we will look at how other devices such as Arduino can talk to the Raspberry Pi.





[ 171 ]

Integrating with Third-Party 
Microcontrollers

In this chapter, we will explore how we can integrate third-party microcontrollers 
into a project using the Raspberry Pi. This allows us to then build a variety of 
projects, from home automation to robotics. Here, we will bring together some of the 
skills we have learned over the previous chapters. In this chapter we will cover the 
following topics:

• The Genuino/Arduino microcontroller
• Setting up the Arduino software
• Working with the serial and I2C pins we enabled earlier in the book
• Communicating between devices using Python and the Arduino 

programming language

For the projects in this chapter you will need the following components:

• Genuino/Arduino Uno
• USB cable
• 1.6 and 3.3 Ohm resistors
• Wires and breadboard
• Ethernet shield (optional if you wish to try out the Arduino web server 

examples)

We have chosen the Ardunio Uno microcontroller as it is popular, cheap and versatile. 
Next, we will look at it in more detail.



Integrating with Third-Party Microcontrollers

[ 172 ]

Genuino/Arduino microcontroller
Genuino/Arduino is a range of open source microcontrollers developed by Massimo 
Banzi in Italy during the early 2000s. They have been geared toward students and the 
open source hardware hacking community. With products ranging from wearable 
microcontrollers to the wireless Arduino Yun, the range of projects available to 
enthusiasts is only limited by the imagination.

In the US, the product is branded with the Arduino name. Outside of the US you 
will see the Genuino branding. This is due to an ongoing legal dispute over the 
copyright outside of the US. You can read more about this at http://makezine.
com/2015/05/16/arduino-adafruit-manufacturing-genuino/.

The full range of boards can be found at the official Arduino website at  
https://www.arduino.cc/en/Main/GenuinoBrand.

Software developed for Arduino is done via a free programming development 
environment. The Arduino sketch programming language was based upon the  
open source Wiring platform. You can read more about this at the Wiring website  
at http://wiring.org.co/.

Typically, Arduino boards are made up of a microcontroller chip along with a 
number of other features, including GPIO pins and USB ports.

We are going to be using the Arduino/Genuino Uno as well as an Uno-compatible 
Ethernet Shield. The following image demonstrates the layout of the board:

http://makezine.com/2015/05/16/arduino-adafruit-manufacturing-genuino/
http://makezine.com/2015/05/16/arduino-adafruit-manufacturing-genuino/
https://www.arduino.cc/en/Main/GenuinoBrand
http://wiring.org.co/


Chapter 10

[ 173 ]

A complete guide to the device and its microcontroller chipset can be found at the 
arduino.cc website:

https://www.arduino.cc/en/Main/ArduinoBoardUno

Looking at the image, you can see there are a number of GPIO headers located 
on both the top and bottom of the board. These give us access to the power pins 
and data pins. The data pins are both analog (six total) and digital. The board also 
contains a reset switch, an ISCP header, a power connector and a USB port. For the 
power you will need an AC-to-DC power adapter. When the device is plugged into a 
computer via USB, it can draw power through the USB cable.

Let's now take a look at the software you need to install to program the Uno.

Setting up the Arduino software
Our first task will be to install a copy of the Arduino IDE (Integrated Development 
Environment) on our Raspberry Pi. The Arduino IDE is where we will write 
sketches—these are Arduino programs. The IDE also allows us to upload the code 
directly to the Arduino Uno.

The software can be found at the official Arduino website: http://arduino.cc/en/
main/software

The installation instructions cover a variety of operating systems, including Linux, 
Mac OSX, and Windows. For the Raspberry Pi you will want the Linux instructions.

You can, of course, install the IDE onto a separate computer and use this for 
updating the Arduino if you wish.

The following section will provide a quick overview of the Linux installation process.

Installing the IDE on your Raspberry Pi 2
To install the IDE directly onto your Raspberry Pi 2, you can use the terminal.

1. Open a new command line, or via your SSH connection run the following 
command:
sudo apt-get install arduino

2. Accept any prompts displayed on the screen. 
3. When the installation is complete you will be able to open the IDE on your 

Raspberry Pi. You can access it from the desktop and connect your Arduino 
Uno directly to the USB drive.

https://www.arduino.cc/en/Main/ArduinoBoardUno 
http://arduino.cc/en/main/software 
http://arduino.cc/en/main/software 


Integrating with Third-Party Microcontrollers

[ 174 ]

Currently, version 1.0 of the IDE is installed. Depending on whether you run the IDE 
from your Raspberry Pi 2 or another computer, you may see some slight differences 
in the menu structure mainly around the Arduino/Genuino naming convention.

A quick guide to the Arduino IDE
The Arduino IDE is a graphical user interface that allows you to develop an Arduino 
sketch and then upload it to the microcontroller via a USB cable.

1. When you opened the IDE you will have been presented with an empty 
sketch. This is where we will add code for our projects.

2. Located at the top of the IDE, you will find a number of menu items.  
Included are a number of out-of-the-box examples. These can be found  
under File | Examples.

3. Select the option 0.1 Basics | Bare Minimum.
4. This will load a very simple example Arduino sketch. In fact, you will notice 

it looks the same as the default sketch created when you open the Arduino 
IDE, if using a later version of the software. Earlier versions normally have 
just a blank sketch so this may be new to you:
void setup() {
  // put your setup code here, to run once:

}

void loop() {
  // put your main code here, to run repeatedly:

}

5. Upload this example to your Arduino Uno. Next, you will need to set the 
board type. You can do this by selecting Tools | Board.

6. Here you will find a list of Arduino microcontrollers and you can select 
Arduino | Genuino Uno. Next, we need to select the USB port that we 
plugged our microcontroller into. This is so the Arduino IDE can upload 
the sketch code. You can access the USB port from the Tools menu: Tools | 
Serial Port.

7. Once you have the USB correctly selected, we can upload the code.

This is done via the play button icon on the sketch. If everything was configured 
correctly your code should now be running on the Uno.

Before you start the next steps, make sure to unplug the Arduino from the USB port.



Chapter 10

[ 175 ]

Integration with Arduino
As you may remember, we enabled the serial port on the Raspberry Pi earlier. We are 
now going to install a Python library called PySerial that allows us to communicate 
via Python.

This can be installed via apt-get:

sudo apt-get install python-serial

If you already have the latest version of the library, you will see 
this message: 
python-serial is already the newest version.

Once you have this installed you can read more about the library at the PySerial 
website: https://pythonhosted.org/pyserial/.

Before we start writing applications with PySerial, we need to know where our 
Arduino is connected. You may have noticed that this information was provided in 
the Arduino IDE when you selected the serial port. If you used a different machine 
to write the sketch, however, there is a method we can use to find out where it is 
plugged in.

Start by running the following command:

ls /dev/tty*

This will output a list to your screen. Currently, the Arduino Uno isn't connected,  
so make a list of everything you see here. You can use the following command:

ls /dev/tty* | cat >> devices.txt

This will create a text document, which you will use momentarily.

Serial communication over USB
We can use the list we generated to now find where our Arduino is connected via 
USB. Start by plugging the Uno into the USB drive.

If you now run ls /dev/tty*, you should see the list has changed since you last 
looked at it to include the Arduino.

We can confirm this as follows. Generate a second list:

ls /dev/tty* | cat >> new_devices.txt

https://pythonhosted.org/pyserial/


Integrating with Third-Party Microcontrollers

[ 176 ]

We can use the diff command to compare the two lists and see the differences:

diff new_devices.txt devices.txt

The difference between the two lists should reflect the Uno connected via the  
USB port.

Make a note of this value as we will be using it in our program.

Let's start by writing a sketch for the Arduino Uno. We are going to send a message 
to the Raspberry Pi that says Ping. The Raspberry Pi will then output this to the 
command line.

Open a new sketch and add the following code:

void setup(){
  Serial.begin(9600);
}
void loop(){
  Serial.println("Ping");
  delay(3000);
  if (Serial.available()) {
    Serial.print(Serial.read());
  }

}

Let's walk through what the code is doing:

void setup(){
  Serial.begin(9600);
}

Every Arduino sketch has a setup function, which is run first. In this instance we 
have set the Arduino to use a data transfer rate of 9600 bits per second. This is 
sometimes known as the baud rate.

Following this we declared our loop function. This will run continuously:

  Serial.println("Ping");
  delay(3000);

The first line here prints out to the serial connection the word Ping. Following this 
we have a delay of 3 seconds.

  if (Serial.available()) {
    print(Serial.read());
  }



Chapter 10

[ 177 ]

Next we check to see if Serial is available, and if it is we print out any data we read.

Save this file as first_arduino_sketch and upload it via the USB drive to your 
Arduino Uno.

Next, we will write some Python code that accepts an incoming request via the 
serial port.

Create a new file in your python_programs directory called eighth_python_prog.
py.

To this file add, the following code:

#!/usr/bin/python
import serial

def main():
    input = serial.Serial('/dev/ttyACM0', 9600)
    while 1 :     
        text = input.readline()
        print text 

if __name__ == '__main__':
    main()

Let's take a look at what exactly is going on here:

import serial

First we import the serial library. This is PySerial, which we installed earlier.

Following this, we define our main function and include a number of lines of code:

    input = serial.Serial('/dev/ttyACM0', 9600)
    while 1 :     
        text = input.readline()
        print text

The first stores a connection to the serial port we located earlier. You will need to 
replace ttyACM0 with the value you grabbed from running diff.

Following this we have a while loop that runs infinitely.

Inside this loop we read any incoming serial data and then write it to a variable, 
which we print to the screen. It's a fairly simple script, so let's try it out.

Save the file and exit.



Integrating with Third-Party Microcontrollers

[ 178 ]

To run it, use the following command:

python eighth_python_prog.py

Next, open the Serial Monitor from the Arduino IDE tool bar. This can be found 
under Tools | Serial Monitor.

With the two applications running now, you should see the Ping message being 
transferred between devices.

On the command line you will see the following:

Ping

With the basics in place, you can then modify the script to send more data, send 
different types of data, or send a response from the Raspberry Pi back to the 
Arduino.

Let's now look at how we can instead use the GPIO pins to communicate with the 
Arduino. This allows us to then free up the USB port on the Uno.

Communication between the Arduino and 
Raspberry Pi via GPIO
Next, we are going to experiment with using the GPIO pins again. Here, we 
can communicate with the Arduino much like we did with our other electronic 
components in earlier chapters.

We are going to build a circuit that allows the two devices to communicate over 
serials once more, but via their GPIO pins rather than USB. Make sure you power 
down the Raspberry Pi and Arduino when connecting up the electronic components.

For this, we need two resistors. This is due to the fact that the Arduino and 
Raspberry Pi operate at different voltages. These values are 3.3V for the Raspberry 
Pi and 5 volts for the Arduino. These two resistors create what is known as a voltage 
divider, which reduces the voltage of one device's output, to make it compatible 
with another device.

You can read more about voltage dividers, the voltage divider equation, and also 
find a handy calculator at the sparkfun.com website: https://learn.sparkfun.
com/tutorials/voltage-dividers.

The resistors we need are 1.69 kOhm and a 3.3 kOhm. If you plug these values into 
the calculator (you can round up the 1.69 to 1.7) on the preceding website, you will 
get a result of 3.30V.

https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers


Chapter 10

[ 179 ]

We now need to hook up these resistors up via the breadboard to create a circuit 
between the two boards.

Connect up the devices so they look as follows:

Here, we have attached a wire from Rx 0 on the Arduino to the breadboard. We then 
connect another wire to where we hooked up Rx 0 on the breadboard to Tx 8 on the 
Raspberry Pi.

Remember to cross-reference with the pin layout cheat sheet at 
http://pinout.xyz/ to avoid damaging your Raspberry Pi.

Following this we connect up the Tx 1 pin on the Arduino to the breadboard.  
A second wire is then used to connect Tx 1 via the breadboard to the leg of the 3.3 
kOhm resistor. From the other leg of this resistor we then connect a wire to the  
Rx 10 pin on the Raspberry Pi.

Our next task is to hook up a wire from the leg of the 3.3 kOhm resistor we attached 
to the Raspberry Pi's pin 10 to the leg of the 1.6 kOhm resistor. After this, attach a 
wire from the free leg of this resistor to the ground on your breadboard, and then 
connect the ground of your breadboard to the GRD pin on the Arduino.

http://pinout.xyz/


Integrating with Third-Party Microcontrollers

[ 180 ]

Our final task is to simply attach a wire from the Raspberry Pi's ground pin to the 
same ground on the breadboard as the 1.6 kOhm resistor was attached to.

We now have a working circuit for sending data between serial pins on both our 
devices. Let's get started on the code that will make them talk.

Start by powering up both devices again and open up the Arduino IDE.

Add this code to the new sketch:

void setup(){
  Serial.begin(9600);
}

void loop(){
  if (Serial.available()) {
    int num = Serial.read();
    Serial.print("Incoming data: ");
    Serial.println(num, DEC);

  }
}

This program is fairly similar to the previous application.

We start by setting our data transfer rate to 9600 bits per second.

Next, in the loop of the application, we check if Serial is available and then  
catch any sent data using the Serial.read() function. This is then stored in the  
num variable.

The next two lines of code output a message and the value is sent to the Arduino.

And that's it, a simple program for receiving data on the Arduino and then sending  
it back.

Upload this to the Arduino Uno and save the sketch as arduino_sketch_2.

Next we will write a Python program that sends the letter P to the Arduino sketch. 
Create a new Python program called ninth_python_prog.py and add to it the 
following code:

#!/usr/bin/python

import serial

def main():



Chapter 10

[ 181 ]

    ser_con = serial.Serial('/dev/ttyAMA0', 9600, timeout=1)
    ser_con.open()

    ser_con.write('1')
    try:
        while 1:
            resp = ser_con.readline()
            if len(resp) > 0: 
                print "The Arduino said … "
                print resp
    except KeyboardInterrupt:
        ser_con.close()

if __name__ =='__main__':
    main()

Let's break down this code and see what the script is doing.

First we use the import statement to import the serial library.

Following this is our main() function where the action happens.

We then set up a serial connection with a data transfer rate of 9600, as with  
the Arduino:

    ser_con = serial.Serial('/dev/ttyAMA0', 9600, timeout=1)
    ser_con.open()

Once we have defined the serial connection, we then open it.

Following this we then send the number 1 over the serial:

    ser_con.write('1')

Next is the try/except statement:

    try:
        while 1:
            if len(resp) > 0: 
                print "The Arduino said … "
                print resp
    except KeyboardInterrupt:
        ser_con.close()

Here we have a while loop that attempts to take a response after the number was 
sent. If a response is found, it is output to the screen.



Integrating with Third-Party Microcontrollers

[ 182 ]

The except statement allows us to close the script with Ctrl + C on the command 
line. When this happens, the serial connection is closed.

Save the file and exit. Now start it up from the command line using Python:

python ninth_python_prog.py

You should now see the two scripts transferring data to one another:

When the Python script sends the number 1 to the Arduino, it converts it into its 
ASCII value and then sends it back with the message Incoming data.

You can escape from the script using the keyboard command as we noted previously. 
Since the while loop is running infinitely, you could expand the script to start sending 
data constantly back and forth.

Our next experiment in communication between devices is going to use I2C.

Communication over I2C
We covered I2C in an earlier chapter and also enabled it for future use. Now we 
can see how to use it to communicate between the Arduino and Raspberry Pi. At 
this point you may want to plug your Arduino into mains power using the device's 
power socket.

We will be using the Raspberry Pi as the master device and the Uno as the slave. 
What this means will become apparent shortly. There are two important terms we 
also need to understand, SCL and SDA. SCL is a clock line used to synchronize data 
sent across the I2C bus. SDA is the data line where data is sent across.

When sending data, if we want to send a high logic signal, we send 0 volts and  
a low logic signal sends the device's voltage, which, in the case of the Raspberry Pi,  
is 3.3 volts.



Chapter 10

[ 183 ]

Let's start by wiring up our Arduino and Raspberry Pi 2 using the I2C pins. If your 
devices are currently powered up, disconnect them and remove any other components 
attached to the GPIO pins.

Here the GND pins are wired together via the breadboard. Next, the Uno Analog 5 pin 
is wired to the Raspberry Pi GPIO 0 (SDA or BCM2) and the Uno Analogue 4 to the 
Raspberry Pi GPIO 1 pin (SCL or BCM3).

And that's it; we are ready to explore the software side.

We now need to create a new Arduino sketch. Add the following code to this sketch:

#include <Wire.h>

#define SLAVE_ADDRESS 0x04

int num = 0;
int store = 0;

void setup() {

  Serial.begin(9600);
  Wire.begin(SLAVE_ADDRESS);
  Wire.onReceive(recData);
  Wire.onRequest(sendData);



Integrating with Third-Party Microcontrollers

[ 184 ]

}

void loop() {
  delay(100);
}

void sendData(){
  Wire.write(num);
}

void recData(int byteCount){

  while(Wire.available()) {
    store = Wire.read();
    Serial.print("Data received: ");
    Serial.println(store);
 }
 
}

We will now walk through what this sketch does.

First of all, we import the Wire library into our sketch. This is used for I2C 
communication. You can read more about the library at the Arduino website: 
https://www.arduino.cc/en/Reference/Wire.

Following this, we define the SLAVE_ADDRESS. This defines the byte address we will 
use to communicate between our two devices.

The terms master and slave are used when implementing I2C. Master devices drive 
the SCL clock line and slave devices respond to the master. Our Arduino will be the 
slave device. This is because the Raspberry Pi header has a built in resistor where 
the pin is located and thus when we send a high logic signal, we send 3.3 volts to the 
Arduino.

The Arduino registers the 3.3 volts as a low signal; therefore, by sending 0 or 3.3 
volts we can switch between high and low logic values when communicating 
between the Raspberry Pi and Arduino.

You can read more about the master and slave method at the following website: 
http://www.robot-electronics.co.uk/i2c-tutorial.

The next line of code defines a global variable called num, which stores the value 0. 
This value is used later in our sketch in one of the functions, which we will explore 
shortly. The following store variable is used to capture the data sent from the 
Raspberry Pi.

https://www.arduino.cc/en/Reference/Wire
http://www.robot-electronics.co.uk/i2c-tutorial


Chapter 10

[ 185 ]

After this is the setup function:

  Serial.begin(9600);
  Wire.begin(SLAVE_ADDRESS);
  Wire.onReceive(recData);
  Wire.onRequest(sendData);

Here, we initialize the serial connection with a baud rate of 9600.

The next line initializes the Arduino as the slave device using the value we stored in 
the SLAVE_ADDRESS variable.

Following this, we define that when we receive data or send data we reference a 
callback function. This means we pass in a function as a parameter to the onReceive 
and onRequest functions. These two functions, recData() and sendData(), are 
defined later in the sketch.

Next in the sketch is the loop function. This contains a single line of code:

  delay(100);

Here we can see we add a slight pause each time the loop is executed.

Our next function definition is as follows:

void sendData(){
  Wire.write(num);
}

The sendData() function simply sends the value of the num variable, that is, 0.

Its counterpart callback function is recData().

void recData(int byteCount){

  while(Wire.available()) {
    store = Wire.read();
    Serial.print("Data received: ");
    Serial.println(store);
 }
 
}

Inside this function definition is a while loop. Until the I2C connection is lost, the 
loop will continuously execute. The loop contains code that stores incoming data in 
the store variable.



Integrating with Third-Party Microcontrollers

[ 186 ]

We then take this result and print out a message and its value to the serial console.

Save this file as arduino_sketch_three and upload it to the Arduino.

This concludes the Arduino sketch. Let's now take a look at its Python counterpart.

Create a new file in the python_programs directory called tenth_python_prog.py.

To this file add the following code:

#!/usr/bin/python

import smbus
import time

bus = smbus.SMBus(1)
addr = 0x04

def main():
    while True:
        sendNum(1)
        time.sleep(1)
        num = readNum()
        print "The num is", num

def sendNum(value):
    bus.write_byte(addr, value)
    return -1

def readNum():
    num = bus.read_byte(addr)
    return num

if __name__ =='__main__':
    main()

This Python script accepts an input and sends a value back to the Arduino. In this 
case it will receive a 0 from the Arduino and then send the value 1 back to it.

We start the sketch by importing the necessary libraries. The smbus library is used to 
handle our I2C calls.

Following this is the time library, which we can use to pause the script using the 
sleep function.



Chapter 10

[ 187 ]

We then define two variables:

bus = smbus.SMBus(1)
addr = 0x04

The bus variable stores the value of the connection to the I2C bus. Following this, we 
store the value of the address. This is the same value as we used in the Arduino sketch.

After the variable definition is the main() function definition. Inside this is a  
while loop:

    while True:
        sendNum(1)
        time.sleep(1)
        num = readNum()
        print "The num is", num

The while loop continues infinitely and performs the following tasks:

• Send the number 1 to the Arduino
• Pause momentarily
• Receive the value sent by the Arduino and store it in the num variable
• Print out a message with the value of num

The next function to be defined is sendNum():

def sendNum(value):
    bus.write_byte(address, value)
    return -1

Here, we write the integer value to the byte address and then exit the function.

Its counterpart is the function that receives data:

def readNum():
    num = bus.read_byte(addr)
    return num

The readNum() function listens for data being sent from the defined address and 
then returns it.

Finally, we wrap up the script with a call to the main function.



Integrating with Third-Party Microcontrollers

[ 188 ]

Save this file and exit the text editor. We can now test the two scripts.

The Arduino sketch should be running. Start up the Python script from the 
command line:

python tenth_python_prog.py

You will now see the scripts sending data to each other. On the Raspberry Pi 
command line you should see this output:

The num is 0

The num is 0

And you should see this output on the Arduino serial monitor:

Data received: 1

A nice addition to the script would be to add the code to catch the keyboard interrupt 
so we exit the script gracefully. You could also include a try catch loop for capturing 
any other exceptions that are thrown. This concludes our experiment with I2C.

We will now look at one final example before concluding this chapter.

Communication over the Web
Finally, we can use HTTP to send data between our two devices. If you purchased 
an Arduino Ethernet shield, attach this to the Uno now and connect it to your home 
network via an Ethernet cable.

The Arduino comes with example code for setting up a small web server, which can 
leverage the Ethernet shield.

Open the Examples menu from File | Examples | Ethernet | Web Server.

Depending on your home network, you will need to modify this line of code to use a 
free IP address:

IPAddress ip(192, 168, 1, 177);

Once this is updated upload the sketch to the Arduino.

The sketch performs the simple task of checking the values on the analog pins and 
then printing this to anyone who connects to the Uno over HTTP.

If you don't attach any electronics to the analog pins then you should expect to 
see no results. This project can be expanded to incorporate a number of electronic 
devices that read/write data back to the analog pins.



Chapter 10

[ 189 ]

On your Raspberry Pi, enter the IP address of the Arduino into a browser and 
connect to the address. You should now see a webpage displayed.

Using the information from earlier chapters, you can now modify the HTML code to 
display more details to the visitor. 

This concludes our simple example of HTTP communication between the two 
devices. A number of other examples, which are interesting to experiment with,  
can be found in the Arduino IDE.

Summary
This concludes our chapter on working with the Raspberry Pi 2 and the Arduino 
microcontroller.

Here, we learned how we could communicate over USB, GPIO, and I2C.  
This brought together some of the tasks we performed in earlier chapters.

Next is the final chapter of the book! Here we will build a project that uses some of 
the skills you have learned so far. You'll test your experience of working with GPIO 
pins, the Python programming language, and web development. Finally, you'll be 
presented with some ideas on how to expand your project further.

So let's get started.





[ 191 ]

Final Project
Over the course of this book you have studied a number of subjects, including:

• The Python programming language
• C and C++
• SQLite
• Assembler
• Graphics programming
• Audio programming
• GPIO pins
• Interacting with electronics
• Integrating third-party microcontrollers

We are now going to build a project that brings many of these ideas together. In this 
chapter, we are going to construct an inventory management device. This will use a 
combination of SQLite, Python, the GPIO pins, a web server, and an LED.

Our project will store information about items stored in our kitchen. It will then 
allow us to update this inventory through a web interface. When an item gets low, 
for example when fewer than two are left, it will trigger an LED to switch on.

Once we have our basic software and electronics in place, some ideas for extending 
the project further will be presented.

Let's start by getting our Raspberry Pi hardware set up.



Final Project

[ 192 ]

Choose your storage mechanism
We recommend you store the website and inventory management system on the 
external hard drive. Of course, if you wish to skip this step, you can, and can simply 
use the SD card. However, this will give you the chance to experiment with the 
information provided in Chapter 5, Expanding on Storage Options.

We are now going to create a sub-directory called final_project to store our source 
code and database. This will either be on the external HD or on the microSD card, 
depending on what you choose as your storage mechanism. All of our development 
work will have in this directory.

Once this is done, navigate into it and you will be ready to start building the website.

Building a Flask-based website
You will be familiar with the basics of Flask from Chapter 9, Building a Web Server. 
Once again, we will be using this framework to create a website that can interact 
with a database.

You can always refer to the Flask documentation site if you find a feature you wish 
to learn more about: http://flask.pocoo.org/docs/0.10/

Our project will involve creating a number of web forms that can update our SQLite 
database with information on what items are stocked in our inventory.

First, we need to create a database to store our inventory data in.

Adding a database
In our previous SQL example, we logged in to SQLite to create the database. We can in 
fact write our SQL in a separate file and dump this into SQLite. This makes managing 
our source code a lot easier, and we can also re-run it against an empty database 
whenever we wish.

So we will therefore take our existing data model from Chapter 9, Building a Web 
Server and convert it into an SQL file. We will also include the INSERT INTO 
statements along with a collection of items.

Create a new empty file called inventory_schema.sql.

http://flask.pocoo.org/docs/0.10/ 


Chapter 11

[ 193 ]

To this, add the following code:

/* Create tables/Data Model */

CREATE TABLE storage_location (id INTEGER PRIMARY KEY AUTOINCREMENT, 
location VARCHAR(25));

CREATE TABLE food_item (id INTEGER PRIMARY KEY AUTOINCREMENT, description 
VARCHAR(40), location INTEGER, FOREIGN KEY(location) REFERENCES storage_
location(id));

/*Insert data*/

INSERT INTO storage_location (location) VALUES ('Fridge'),('Cupboard'),('
Draw');

INSERT INTO food_item (location, description) VALUES (1, 'Eggs'),

(1, 'Sausages'),(1, 'Steaks'),(2, 'Pasta sauce'),(2, 'Canned peas'),

(2, 'Canned beans'),(3, 'Spaghetti');

This is simply an expansion of the DB we built before. Save the file. We can create a 
new database using this file with the following command:

sqlite3 inventory.db < inventory_schema.sql

Once this command runs, open up the database in SQLite.

Try running SELECT * FROM food_item; and you will see the food you imported 
via the SQL file.

Now we have a database in place, we can build an app to sit over it.

A basic website
Our next task is going to be to write the Python and HTML code needed for the 
inventory management system.

We are going to create two further directories called static and templates to store 
our website code in.

Once this is done, create a new Python file called inventory.py and open it in your 
text editor.

This file will contain our applications code. To this file, add in the following:

#!/usr/bin/python

from flask import Flask,request, session, g, redirect, url_for, abort, 
render_template, flash



Final Project

[ 194 ]

import sqlite3

DATABASE = 'inventory.db'
SECRET_KEY = '1234'

app = Flask(__name__)
app.config.from_object(__name__)

def db_connection():
    return sqlite3.connect(app.config['DATABASE'])

@app.before_request
def before_request():
    g.db = db_connection()

@app.teardown_request
def teardown_request(exception):
    db = getattr(g, 'db', None)
    if db is not None:
        db.close()

@app.route('/')
def show_inventory():
    cur = g.db.execute("SELECT food_item.description, storage_
location.location FROM food_item INNER JOIN storage_location ON food_
item.location WHERE storage_location.id==food_item.location;")
    inventory = [dict(description=row[0], location=row[1]) for row in 
cur.fetchall()]
    return render_template('display_inventory.html', 
inventory=inventory)

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0')

You will be familiar with the concepts displayed in a lot of this code from your 
earlier website project. However, we have included a number of new features.  
Let's take a look at these.

The first are some settings used by the application, these being:

DATABASE = 'inventory.db'
SECRET_KEY = '1234'

The DATABASE value contains our inventory SQLite DB. The next setting is the 
SECRET_KEY, which is needed when implementing sessions in a Flask application.



Chapter 11

[ 195 ]

Following this, we include three functions for handling the database functions,  
these being:

def db_connection():
    return sqlite3.connect(app.config['DATABASE'])

@app.before_request
def before_request():
    g.db = db_connection()

@app.teardown_request
def teardown_request(exception):
    db = getattr(g, 'db', None)
    if db is not None:
        db.close()

The methods are responsible for opening a DB connection, and closing the 
connection when we are finished with it.

The final portion of this code that is new is located within the show_inventory() 
function.

As you can see, we have included a query to return all the items in the inventory 
database and have included code that passes the results to our template as a variable. 
This can be seen in the following block of code:

return render_template('display_inventory.html', inventory=inventory)

Of course, this now leads us to the next item we need to setup—a template to display 
these results. This will be written in HTML, which you should be familiar with from 
our first web application.

Navigate into the templates directory and create a new file called template.html. 
To this file, add the following:

<!doctype html>
<title>Inventory management system</title>
<link rel=stylesheet type=text/css href="{{ url_for('static', 
filename='style.css') }}">
<div class=page>
  <h1>Inventory management system</h1>
  {% block body %}{% endblock %}
</div>



Final Project

[ 196 ]

This code will form the base template that all of our web forms will inherit from. 
It uses a technology called Jinja, which provides a template mechanism for Python 
projects. When we implement Jinja web templates, we can pass variables from our 
Python code to the template and display the results in HTML.

You can read more about Jinja here: http://jinja.pocoo.org/docs/dev/.

In this block of HTML code, we can see where Jinja has been implemented.  
This includes:

href="{{ url_for('static', filename='style.css') }}"

It also includes:

{% block body %}{% endblock %}

Our piece of code is used to include a CSS file from the static directory we created. 
The second is used to provide an area where our page templates will be rendered. 
You'll see how this works in more detail next.

We now need to create the HTML that will render the inventory contents on the 
screen. Create a file under the templates directory called display_inventory.html.

To this file, add the following:

{% extends "template.html" %}
{% block body %}
  <ul class="items">
  {% for item in inventory %}
    <li><h2>{{ item.description }}</h2>{{ item.location }}
  {% else %}
    <li><em>Your inventory is empty</em>
  {% endfor %}
  </ul>
{% endblock %}

This code renders the results from the query we constructed in our application code. 
You can see in the for loop that the inventory variable is iterated through and its 
results are embedded in the HTML code. If the inventory is empty, then we display a 
message to the user.

This code is rendered inside the body block we created within the template.html file. 
We achieve this through including the extends keyword with the name of the base 
template. Next, we wrap the code we want rendered in the name of the block from the 
base template where it will be displayed, in this case body. Save this file and exit.

http://jinja.pocoo.org/docs/dev/


Chapter 11

[ 197 ]

Let's try checking what we have developed so far. From the command line, run:

python inventory.py

Once the app is running, navigate to the URL and port where your site will be 
displayed. You should now see a list of items and their location.

So you may notice we are missing a count. Wouldn't be nice if we knew how many 
of each of these items we had? Stop the application and let's add this feature.

We can open the existing SQLite database and run the following command to add a 
column to the food_item table that contains a count of the number of items:

ALTER TABLE food_item ADD COLUMN num INTEGER;

If you like, go back and edit your existing inventory_schema.sql file to include this 
column. Then next time you create a new database from scratch, it will be included.

With a column to store the value, we can now update our Eggs so there are three of 
them. To do this, run the following command:

UPDATE food_item SET num = 3 WHERE id = 1;

Once again, you can modify your existing SQL file to include counts for each of the 
items you insert.

We can now exit SQLite shell and update the HTML and Python code to show the 
count on the web page. First we will edit the HTML template, display_inventory.
html:

<li><h2>{{ item.description }}</h2>{{ item.location }},{{item.count}}

Here, we have added in {{item.count}}, which will display the number of items 
that exist.

Next, we can update the Python code to include the count of items and pass it to the 
HTML template. To the query embedded in the Python code, add the following:

food_item.num

Next, update the variable inventory to return it to the HTML page:

inventory = [dict(description=row[0], location=row[1], count=row[2]) 
for row in cur.fetchall()]

You can save this file and restart the application.



Final Project

[ 198 ]

Now check the web page again you should see the count! 

Remember you can use the SELECT statement to get the ID of the 
column you are updating.

Let's now include the functionality to add and edit items in our inventory.

Web forms
Web forms are the mechanism by which we add, edit, and delete data from the 
database. They provide an easy method for a user to update values via their web 
browser.

We will need two forms, these being the add form and edit form. The edit form  
will also double up as the delete form, allowing us to update existing items in  
an inventory.

Let's start by creating the add functionality.

Add
You will need to start by creating some code to handle the addition of a new item via 
Python. Open up the inventory.py file and add in the following functions above if 
__name__: == '__main__':

@app.route('/add_item')
def add_item():
    return render_template('add_item.html')

@app.route('/add', methods=['POST'])
def add_to_db():
    g.db.execute('INSERT INTO food_item (description, location, num) 
VALUES (?, ?, ?)',
                 [request.form['description'], request.
form['location'], request.form['num']])
    g.db.commit()
    flash('New inventory item added')
    return redirect(url_for('show_inventory'))

Here we have added in the add_item() function, which routes traffic to the HTML 
form add_item.html that we will create shortly.



Chapter 11

[ 199 ]

Next, we include a function to insert values passed by the web form POST method 
into the database. Once this has been committed, we flash a message to the user and 
redirect them back to the display_inventory.html page, where they can see their 
new item.

Let's now create the add_item.html page in the templates directory. To this file, 
add the following:

{% extends "template.html" %}
{% block body %}
    <form action="{{ url_for('add_to_db') }}" method=POST class="add-
item">
        <div>Description: <input type="text" size="30" 
name="description"></div>
        <div>Location: <input type="text" size="30" name="location"></
div>
        <div>Number of items to add: <input type="text" size="30" 
name="num"></div>
        <div><input type="submit" value="Add item"></div>
    </form>
{% endblock %}

This is a simple web form embedded in the body block.

The action value is set to point to the add_to_db() method we just created. When 
we submit the form, it will POST the values back to our Flask application, which can 
then add the values to the database.

Save this file and start up the inventory application again. To test the new form that 
was created, access it via the following URL: http://<rpi ip address>/add_item

From here, you can now add a new item. When you submit the form, you will then 
be redirected to the inventory page and see the new item there.

You may notice some problems with this form, however. First, we have to enter a 
number for the location. It would be better if this had a dropdown list of existing 
locations.

Also, what if an item already exists; do we want to add it again? What if it is in more 
than one location?

Let's first modify the add_item() function so we pull a list of locations back in their 
descriptive form. Stop the application and open up inventory.py. Edit the function 
so it looks as follows:

@app.route('/add_item')
def add_item():
    cur = g.db.execute("SELECT id, location FROM storage_location;")



Final Project

[ 200 ]

    location = [dict(id=row[0], location=row[1]) for row in cur.
fetchall()]
    return render_template('add_item.html', location=location)

Here, we have added in a query that pulls back the descriptive name of each location 
and passes it to the add_item.html template as a variable. With this value now 
available to be displayed, we can edit the form to include it.

We'll be using a dropdown list to display these values. Modify your code to replace 
the location with the following:

<select name="location">
  {% for place in location %}
    <option value={{place.id}}>{{place.location}}</option>
  {% endfor %}
</select>

Using the Jinja for loop, we have built up the values in a dropdown list and included 
the ID of each of the locations. When we submit the form, we pass the ID back rather 
than the descriptive version of the location so we can insert the new record.

Save the form and restart the application. When you try adding a new value to the 
database, you should now see the dropdown list present.

We are still left with the problem of deciding whether we can add an existing item to 
a new location or allow duplicates of an item.

One way around this is to have a table that links items to locations and the number 
of each item stored at that location.

See if you can work out how to implement this change!

Since we can add new items, we'll need to be able to edit them to update the count. 
Let's look at this next.

Edit
We will now update the inventory application to present a web form that allows us 
to add and remove the number of each item we have in the inventory.

To the inventory.py file, add the following code:

@app.route('/edit_item')
def edit_item():
    cur = g.db.execute("SELECT food_item.id, food_item.description, 
food_item.location, food_item.num FROM food_item INNER JOIN storage_
location ON food_item.location WHERE storage_location.id==food_item.
location;")



Chapter 11

[ 201 ]

    items = [dict(id=row[0], description=row[1], location=row[2], 
num=row[3]) for row in cur.fetchall()]
    return render_template('edit_items.html', items=items)

@app.route('/edit', methods=['POST'])
def edit_in_db():
    g.db.execute('UPDATE food_item SET num = ? WHERE id = ?',
                 [request.form['num'], request.form['id']])
    g.db.commit()
    flash('Item updated')
    return redirect(url_for('edit_item'))

These two methods are not dissimilar to those that we used to add items to the 
database. Our first function, edit_item(), returns a list of items from the database 
along with their location and count, and passes the results to a template.

The second function handles an incoming POST request and updates the count for 
the relevant item we are editing.

Save this file and create a new HTML template under templates called edit_
items.html. To this file, add the following code:

{% extends "template.html" %}
{% block body %}
  {% for item in items %}
    <form action="{{ url_for('edit_in_db') }}" method=POST 
class="edit-item">
   <div>
    <input type="hidden" name="id" value={{item.id}}>
    <h2>{{item.description}}</h2>
    Storage location: {{item.location}}<br />
    Update number of items: <input name="num" type="text" 
value={{item.num}}>
   </div>
      <div><input type="submit" value="Edit item"></div>
    </form>
  {% endfor %}
{% endblock %}

This template is very similar to the one we used to add items. Here though we have 
included a hidden input field. This is used to store the ID of the item we are editing. 
When we submit the form back to the application, it will use this ID in the query that 
updates the item count.

Save this file and restart your application. You should now be able to edit an  
existing item.



Final Project

[ 202 ]

Do you see that the location is still a number? Think about how you could modify 
the query to return the description rather than the ID.

Finally, you may remember we added a static directory. This can be used to  
store a CSS file for styling your web pages. In this directory, create a new file  
called style.css.

Throughout the HTML templates we created, you will see a number of CSS classes 
specified. You can try adding your own styling for these class names to the style.
css file. When the web page renders, it will include your styling.

For a guide to styling, you can review the following CSS information: http://www.
w3schools.com/css/.

So we have our web application up and running. Let's look at how we can use it to 
interact with some other hardware. Next we are going to add an LED, which lights 
up when we get low on items in our inventory.

Adding in an LED
You'll already be familiar with how to control an LED from Chapter 7, Exploring the 
Raspberry Pi's GPIO Pins. In this instance, we will once again hook the LED up to the 
Raspberry Pi's GPIO pins. We will then switch it on and off based upon whether one 
of the categories of items in our inventory has fewer than two items left.

Building the circuit – a recap
We will quickly recap on setting up the circuit for the LED. The following diagram 
demonstrates this again:

http://www.w3schools.com/css/
http://www.w3schools.com/css/


Chapter 11

[ 203 ]

Here, we have connected an LED to a 270 Ohm resistor and hooked this up to GPIO 
pin 4. Finally, the LED's other leg is connected to the ground pin.

This circuit is now ready to be controlled from our Flask application.

Integrating with our Python app
Now we have the circuit up and running again, we can hook it into our existing 
Python functions and have them switch the LED on and off.

What we will need to do is trigger the LED to switch on when we edit an item if the 
count is now less than 2, that is, there are 0 or 1 items left.

Open up the inventory.py file.

To the top of the file, we need to add a new import statement:

import RPi.GPIO as GPIO

This includes the RPi.GPIO library, which you'll remember from our previous project.

After this, we need to set up the LED to say it is connected to GPIO pin 4. Add this 
code in the following settings for the DATABASE and SECRET_KEY:

LED = 4

Now we can update our before_request function to include support for GPIO. 
Modify the function to include the code for setting up the GPIO pin:

@app.before_request
def before_request():
    GPIO.setmode(GPIO.BCM)
    GPIO.setwarnings(False)
    GPIO.setup(LED, GPIO.OUT)
    g.db = db_connection()

After this, update the teardown_request method to call the cleanup function:

@app.teardown_request
def teardown_request(exception):
    GPIO.cleanup()
    db = getattr(g, 'db', None)
    if db is not None:
        db.close()



Final Project

[ 204 ]

Next, we need to switch the LED on when we have fewer than two items. We do this 
by updating the edit_item() function with the following if else statement:

@app.route('/edit_item')
def edit_item():
    led_on = False
    cur = g.db.execute("SELECT food_item.id, food_item.description, 
food_item.location, food_item.num FROM food_item INNER JOIN storage_
location ON food_item.location WHERE storage_location.id==food_item.
location;")
    items = [dict(id=row[0], description=row[1], location=row[2], 
num=row[3]) for row in cur.fetchall()]
    for i in items:
        if i['num'] < 2:
            led_on = True
    if led_on:
        GPIO.output(LED, 1)
    else:
        GPIO.output(LED, 0)

    return render_template('edit_items.html', items=items)

Every time we edit the inventory, we run a check to see if any of the items have 
fewer than two left. If this is the case, then the LED is switched on. If not, then the 
LED is switched off.

As you can see, this is a fairly simple change to our inventory management system, 
but opens up lots of possibilities for expanding our circuit to perform other tasks.

Save the file and let's test out the change.

Start up the inventory application again with sudo and navigate to the edit form.

Edit one of your items and submit the change. You should see the LED switches on. 
This is because when we initially added items to the database, we didn't add a count 
to many of the items. If you happened to add a count to each of the items when 
testing the edit form before, then the LED should be off.

Edit each of the items so that they have a count greater than 2. You will see the LED 
switches off.

Now try changing the value associated with the number of Eggs you have to 1.  
On submitting the form, the LED will switch on again.

We now have a basic inventory management system. It can be updated via web 
forms and stores data in the database. When we have fewer than two of any item, 
then an LED is switched on.



Chapter 11

[ 205 ]

Congratulations, you have completed the concluding chapter in this book's project.

So how can we extend this further?

Extending the project further
Now you have a working system, you can consider adding more functionality to it. 
We provide you with some ideas in the following sections with links that will help 
you to implement the functionality.

Replace the LED with a screen
While an LED is a neat feature, it would be nice to know which item has only one  
left in the inventory. The LED also does not distinguish between multiple items 
being in short supply. In fact, we have to check via the web browser to see what 
items are stocked.

One way around this is to integrate a screen with the Raspberry Pi. You could place 
the Raspberry Pi in your kitchen and check the screen to see what is in short supply.

Thankfully this is an easy task. The Raspberry Pi Foundation released a digital touch 
screen you can connect to your Raspberry Pi's GPIO pins.

You can read more about it here: https://www.raspberrypi.org/products/
raspberry-pi-touch-display/.

In addition, hooking up a screen like this will allow you to experiment with the skills 
you learned in Chapter 6, Low-Level Graphics Programming.

E-mail support
A useful feature could be to receive an e-mail when somebody uses the last of an 
item. For example, you could be at work and somebody uses the last egg in the 
fridge. This would then trigger an e-mail reminding you to pick up some more on 
the way home.

Implementing e-mails via Python is very simple. The following guide on the 
Python website shows how you can expand a program to support this functionality: 
https://docs.python.org/2/library/email-examples.html.

You could, for example, update the edit_item() function to include the e-mail 
triggering functionality.

https://www.raspberrypi.org/products/raspberry-pi-touch-display/
https://www.raspberrypi.org/products/raspberry-pi-touch-display/
https://docs.python.org/2/library/email-examples.html


Final Project

[ 206 ]

If you choose to add e-mail support, an existing e-mail account on a service such as 
Gmail can be used.

The following website provides an example of how to configure this:  
http://www.pythonforbeginners.com/google/sending-emails-using-google.

Playing a sound
We already looked at the sound capabilities of the Raspberry Pi. Perhaps we could 
implement some functionality so when we run out of an item a sound plays?

There are a number of ways of doing this, including via Python. As you will remember 
from Chapter 8, Exploring Sound with the Raspberry Pi 2, we can play sounds via the 
os.system command, such as:

os.system('mpg123 -q drum2.mp3 &')

Expanding your code base to include this would be very simple and could trigger  
an MP3 when the LED is switched on.

Summary
In this chapter we built an inventory management system that was a combination of 
hardware and software. We further explored some of the Raspberry Pi's features that 
were covered throughout the book.

Finally, we provided you with a list of ideas to extend the project further and 
implement new features. This concludes the book and now its over to you the  
reader to explore further.

http://www.pythonforbeginners.com/google/sending-emails-using-google


[ 207 ]

Index
Symbols
.balign directive

about  54
reference link  54

.data directive
.balign directive  54
about  53
labels  54
word  54

A
Acorn RISC Machine (ARM)

about  46
reference link  48, 60

addresses  52, 55
Amixer

reference link  135
Apache

about  156
reference link  156, 158

application
compiling  38, 110
running  38, 110

apt-get
about  19
reference link  19

Arduino
and Raspberry Pi communication,  

via GPIO  178-182
communication, over I2C  182-188
communication, over Web  188, 189

integrating with  175
reference link  172
serial communication, over USB  175-178
website link  172-184

Arduino IDE  174
Arduino shields

reference link  122
Arduino software

reference link  173
setting up  173

ARM instruction set
reference link  50

assembler  49
assembly language  26-28
audio interactions, through GPIO

about  136
audio drivers, installing  136
audio shields, for Raspberry Pi  142
drivers, loading  137, 138
drum tracks, obtaining  138
hardware setup  136, 137
Python drum machine  138141
reference link  142

audio output, Raspberry Pi
reference link  5

audio setup
reference link  135

available web servers
about  156
Apache  156, 157
NGINX  158, 159



[ 208 ]

B
basic website  193-198
baud rate  176
BCM

about  114
reference link  128

board pin modes
reference link  128

booting up  83, 84
Bourne Again Shell (bash)

about  19
reference link  19

branching  49
Bresenham's line algorithm

reference links  110

C
C++ code

about  74, 76
g++ command  76, 77
URL  74

chmod
reference link  43

circuit
integrating, with Python app  203, 204
setting up, for LED  202, 203

Cirrus device
reference link  142

C libraries  36
comment blocks  47
conditional variables

about  68
reference link  68

control structures
about  58, 59
if else statements  60
iteration  61
testing  61, 62

C program
about  31-33
and Linux Sound Architecture  

(ALSA)  142-145

compiling  105
creating  34-36
example  69-72
running  105
writing, for turning screen red  101-105

CPU registers
reference link  27

cryptographic theory
reference link  12

C standard library
reference link  38

D
database support

adding  163
data, entering  168
Flask  166-168
Python program, with SQLite  

support  164, 165
SQL  163, 164
SQLite  163

default gateway  18
diagnostic tests  21
directive

about  28, 47
benefits  47

docstring  140
drum MP3 samples

reference link  138

E
e-mail

implementing, via Python  205
support functionality, reference link  205

example servo projects
reference link  119

Extensible Markup Language (XML)  153
external HDD

cmdline.txt file, modifying  87, 88
disk name, obtaining  85
setting up  85-87



[ 209 ]

F
favicon

adding, to Python web server  162
reference link  162

fb.h library
reference link  98

fibers  65
file

Python program, running from  42, 43
File Allocation Table (FAT)

about  10
reference link  10

Flask
about  166-168
reference link  166, 168

Flask-based website
building  192
database, adding  192, 193

for loop
reference link  61

frame buffer
accessing  96, 97
C code, testing  100
display settings, checking  97-99

G
GCC compiler

reference link  37, 50
g++ command  76
Geany

about  33
reference link  34

general purpose input/output. See  GPIO
Genuino/Arduino microcontroller

reference link  173
Git

reference link  124
GPIO

about  113
audio interactions  135
power voltages  120

GPIO pins
about  5, 113
data, reading  129
direct connection  123
I2C  115, 116
power voltages  120
PPM  119
Pulse Position Modulation (PPM)  119
Pulse Width Modulation (PWM)  119
reference link  114, 120
Rx  117
Serial Peripheral Interface (SPI)  118
standard GPIO  114
testing  23
Tx  117

H
hardware options

about  120
boards, prototyping  120, 121
Cooking Hacks Arduino bridge  

shield  121, 122
shields, prototyping  120, 121

hardware specifications, Raspberry Pi  2
HiFiBerri

reference link  142
Humble Pi

reference link  121
hybrid threads

reference links  66
Hyper Text Markup Language (HTML)

about  155
document styling, reference link  156
reference link  156, 162

Hypertext Transfer Protocol (HTTP)
about  154
reference link  154

I
I2C

about  115, 116
in Python applications, reference link  115
real time clock, reference link  117



[ 210 ]

reference link  115
used, for communication between Arduino 

and Raspberry Pi  182-184
if else statements  60
index page

adding, to Python web server  162
Integrated Development Environment (IDE)

about  173
installing, on Raspberry Pi 2  173

Inter-IC Sound (I2S)
about  5, 134
specification, reference link  134

interpreted languages
reference link  39

iteration  61

J
JavaScript Object Notation (JSON)  153
Jinja

reference link  196
joins

about  68, 77, 79
compiling  80
reference link  68
testing  80

K
kernel level threads  66

L
LDR command  56, 57
LED

adding  202
C blinking program  124-126
circuit, setting up for  202, 203
hardware, setting up  123, 124
Python blinking program  126-128
replacing, with screen  205
switching off  123
switching on  123

lines
drawing  106-110

linker  50
linking process  29, 30
Linux

commands  23, 24
connecting, to Network-attached  

storage (NAS)  91
Linux RSA key generation  13, 14
Linux Sound Architecture (ALSA)

and C  142-145
examples  145, 146
examples, reference links  145
reference link  144

loadable kernel modules (LKM)  137
looping  60

M
Mac

connecting, to Network-attached 
storage(NAS)  90

make application  34
makefiles  34, 50, 51
master  184
Message Passing Interface (MPI)  64
microSD card

about  7
setting up  9

mmap function
reference link  103

multiline comments  47
munmap function

reference link  105
mutex

about  68-80
compiling  80
reference link  67, 68
testing  80

N
Network-attached storage (NAS)

about  83, 88, 89
Linux, connecting to  91
Mac, connecting to  90



[ 211 ]

Samba, installing  89, 90
testing  90
Windows, connecting to  91

New Out Of the Box Software (NOOBS)
about  7
operating system installation  

manager  8, 9
references  8

NGINX
about  158
reference links  15

numbering format
reference link  114

O
opcode  26
OpenMax

reference link  94
operand  26
OS

tests, running on  21
overclocking

reference link  22

P
packets

about  160
reference link  160

Pentatonic Beeps  149
physical pin listings

reference link  114
pigpio library

download link  23
references  23

pixels
plotting  106-110

polygon mesh
reference link  111

polygons
creating  111

POSIX threads
about  66
attributes, URL  72
functions  66

preinstalled microSD card  8
program

running  57, 58
programming languages

need for  25, 26
Pulse Code Modulation (PCM)

about  144
reference link  144

Pulse Position Modulation (PPM)
about  119
reference link  119

Pulse Width Modulation (PWM)
about  119
reference links  119

PuTTY
download link  15

PuTTYgen
download link  15

PySerial
about  175
website link  175

Python
about  39
circuit, integrating with  203, 204
database data, displaying via  166-168
data, reading from GPIO pins  129, 130
references  39

Python program
about  40, 41
running, from file  42, 43

Python runtime services
reference link  42

Python web server
building  159
code  160, 161
favicon, adding  162
index page, adding  162

R
Raspberry Pi

and Arduino communication, via  
GPIO  178-182

audio  5
audio shields   142



[ 212 ]

background  1, 2
central processing unit  4
dimensions  3
Ethernet port  5
GPIO pins  5
graphics processing unit (GPU)  4
hardware requisites  6
hardware specifications  2
history  1, 2
microSD card port  4
overclocking  22
reference link  9
reference link, for forums  24
SDRAM  4
SoC on-board USB  4
sound  134
System on Chip (SoC)architecture  3
underclocking  22
USB 2.0 ports  4
video - analog TV out  6
video - HDMI port  6
web servers available   156

Raspberry Pi 2
setting up  173
static IP, assigning to  17, 18

Raspbian
latest version, downloading of  9

Raspbian operating system
installation, wrapping up  11
installing  9

Read Only Memory (ROM)  84
Reduced Instruction Set Computing

about  46
reference link  46

registers  48
Relational Database Management System 

(RDBMS)  163
request methods

reference link  154
RSA key generation, for SSH  12, 13
Rx pin  117

S
Samba

about  89
installing  89, 90
reference link  91
URL  89

screen
about  19
filling, with color  100
installing  19
LED, replacing with  205
references  20

Secure Shell (SSH)  11
serial communication

about  117
reference link  118

Serial Peripheral Interface(SPI)
about  118
reference link  119

servomechanisms (servos)  119
short-term scheduler  64
single line comments  48
slave  184
Sonic Pi

about  147
example, reference link  147
experimenting with  149, 150
reference link  147
setup  147, 148

sound, Raspberry Pi
about  134
audio output, configuring  134
audio output, setting  135

Sparkfun
URL  178

SQLite
about  163
Python program, using with  164-166
reference link  164

standard GPIO  114
static IP

assigning, to Raspberry Pi 2  17, 18



[ 213 ]

storage mechanism
selecting  192

Structured Query Language (SQL)  163
styling guide, CSS

reference link  202
SUB command  56, 57
subnet mask  18
System on Chip (SoC)  3

T
tests

running, on OS  21
threads

about  63-65
implementing, steps  67
in C, example  69-72
program, testing  73
reference link  80
termination process, reference link  75
types  65

threads, implementing
creation, reference link  67
creation step  67
scheduling step  69
steps  67
synchronization step  68
termination step  67

threads, types
hybrid threads  66
kernel level threads  65
user level threads  65

tools
reference link  115

troubleshooting  24
Tx pin  117

U
Uniform Resource Locator (URL)

example, reference link  154
USB

serial communication over  175, 176
user level threads  65

V
VideoCore IV GPU

about  93, 94
reference link  94
sample programs  94-96

Vim
about  20
installing  20
reference link  20

voltage divider  178

W
web forms

about  198
Add function  198, 199
Edit function  200, 201

web servers
about  153, 154
Hyper Text Markup Language  

(HTML)  155, 156
Hypertext Transfer Protocol (HTTP)  

requests  154
while loop

reference link  61
Windows

connecting, to Network-attached storage 
(NAS)  91

Windows RSA key generation  15-17
Wiring

website link  172
wiringPi

code, reference link  124
website link  125




	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to the Raspberry Pi's Architecture and Setup
	History and background of the Raspberry Pi
	Raspberry Pi hardware specifications
	Dimensions
	System on Chip
	CPU
	GPU
	SDRAM
	4 USB 2.0 ports and 1 SoC on-board USB
	MicroSD card port
	Ethernet port
	Audio
	GPIO pins
	Video – analog TV out
	Video – HDMI port

	Basic hardware needed
	The microSD card – the main storage and boot device of the Raspberry Pi 2
	Preinstalled microSD card versus creating your own
	The NOOBS operating system installation manager
	Downloading the latest version of Raspbian
	Setting up your microSD card and installing the Raspbian operating system
	Raspbian installation wrap-up
	Check SSH is running
	RSA key generation for SSH

	Assign a static IP to your Raspberry Pi 2

	Installing Screen and Vim
	Vim – an optional handy text editor

	Running tests on the OS and configuration changes
	Diagnostic tests
	Over and underclocking the Raspberry Pi
	Going further – testing the GPIO pins

	Some handy Linux commands
	Troubleshooting
	Summary

	Chapter 2: Programming on Raspbian
	Which programming languages?
	Assembly language
	Assembling and linking

	The C and C++ languages
	C – a brief introduction
	A quick look at C++
	Our first C program
	Geany – a handy text editor and development environment
	Creating a new C program

	C libraries – a trove of reusable code
	The C (and C++) compiler
	Compiling and running our application

	The Python language
	A simple Python program
	Running a Python program from a file

	Summary

	Chapter 3: Low-Level Development with Assembly Language
	Back to basics
	Multiline comments
	Directives
	Single line comments
	Registers
	Branching
	The assembler
	The linker
	Makefiles

	Memory and addresses
	The .data directive
	The .balign directive
	Words
	Labels

	The memory
	The addresses
	LDR and SUB
	Running our program

	Adding power to our program – control structures
	If else statements
	Iteration
	Testing our control structures

	Summary

	Chapter 4: Multithreaded Applications with C/C++
	What are threads?
	Thread types
	User level threads
	Kernel level threads
	Hybrid threads

	POSIX threads
	Steps involved in implementing threads
	Creation and termination
	Synchronization
	Scheduling

	An example in C
	Trying out our program

	A C++ equivalent
	The g++ command

	Going further – mutexes and joins
	Compile and test

	Summary

	Chapter 5: Expanding on Storage Options
	Booting up
	Setting up the external HDD
	Getting the disk name
	Setting up the HDD
	Modifying cmdline.txt

	Network-attached storage (NAS)
	Installing Samba
	Testing the NAS
	Mac
	Linux
	Windows


	Summary

	Chapter 6: Low-Level Graphics Programming
	VideoCore IV GPU
	Sample programs

	Accessing the frame buffer
	Check the display settings
	Testing our C code

	Filling the screen with a color
	A C program to turn the screen red
	Compile and run the C program

	Drawing a line
	Plotting pixels and drawing lines
	Compile and run
	Next steps – polygons

	Summary

	Chapter 7: Exploring the Raspberry Pi's GPIO Pins
	Introduction to GPIO pins
	Standard GPIO
	I2C
	Serial Rx and Tx
	SPI
	PWM and PPM
	GPIO power voltages

	Hardware choices
	Prototyping shields and boards
	Cooking Hacks Arduino bridge shield
	Connecting directly to the GPIO pins

	Switching an LED on and off
	Setting up the hardware
	C blinking LED program
	Python blinking LED program
	Reading data from the GPIO pins in Python

	Summary

	Chapter 8: Exploring Sound with the Raspberry Pi 2
	Introduction to the Raspberry Pi's sound
	Configuring the audio output
	Setting the audio output

	Interacting with audio through GPIO
	Installing the audio drivers
	Hardware setup
	Loading drivers
	Getting some drum tracks
	Python drum machine
	Audio shields for the Raspberry Pi

	C and ALSA
	ALSA examples

	Introducing Sonic Pi
	Setup
	Experimenting with Sonic Pi

	Summary

	Chapter 9: Building a Web Server
	Introduction to web servers
	HTTP requests
	HTML

	Popular web servers available on the Raspberry Pi
	Apache
	NGINX

	Building a Python web server
	Python web server code
	Adding an index page and a favicon

	Adding database support
	SQLite
	SQL – a quick overview
	Python program with SQLite support
	Flask – displaying database data via Python
	Next steps

	Summary

	Chapter 10: Integrating with Third-Party Microcontrollers
	Genuino/Arduino microcontroller
	Setting up the Arduino software
	Installing the IDE on your Raspberry Pi 2
	A quick guide to the Arduino IDE

	Integration with Arduino
	Serial communication over USB
	Communication between the Arduino and Raspberry Pi via GPIO
	Communication over I2C
	Communication over the Web

	Summary

	Chapter 11: Final Project
	Choose your storage mechanism
	Building a Flask-based website
	Adding a database
	A basic website
	Web forms
	Add
	Edit


	Adding in an LED
	Building the circuit – a recap
	Integrating with our Python app

	Extending the project further
	Replace the LED with a screen
	E-mail support
	Playing a sound

	Summary

	Index



