
 www.allitebooks.com

http:// /
http://www.allitebooks.org

ReSharper Essentials

Make your Microsoft Visual Studio work smarter
with ReSharper

Łukasz Gąsior

BIRMINGHAM - MUMBAI

 www.allitebooks.com

http:// /
http://www.allitebooks.org

ReSharper Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1130214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-870-2

www.packtpub.com

Cover Image by Michal Jasej (milak6@wp.pl)

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Credits

Author
Łukasz Gąsior

Reviewers
Maciej Aniserowicz

Piotr Owsiak

Jacek Spólnik

Acquisition Editors
Kartikey Pandey

Llewellyn Rozario

Content Development Editor
Rikshith Shetty

Technical Editors
Shubhangi H. Dhamgaye

Shweta S. Pant

Ritika Singh

Rohit Kumar Singh

Copy Editors
Kirti Pai

Stuti Srivastava

Project Coordinator
Aboli Ambardekar

Proofreader
Maria Gould

Indexer
Hemangini Bari

Graphics
Yuvraj Mannari

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

 www.allitebooks.com

http:// /
http://www.allitebooks.org

About the Author

Łukasz Gąsior is a programming enthusiast with several years of experience.
A big fan of ReSharper and jQuery, he is primarily involved in projects related to
web applications (ASP.NET and ASP.NET MVC). He enjoys trying his hand at
different technologies, such as creating Android applications, just for the fun of it.
He strongly believes that JavaScript can be mastered just like any other language.

If you would like to get in touch, he tweets at @lukaszgasior and blogs at
http://gasior.net.pl and http://codingtv.pl (both blogs are in Polish).

I would like to dedicate this book to my wonderful wife, Magda, and
my son, Michał, who have always been there to support me in all
of my efforts. I would also like to thank Piotr Owsiak, who many
years ago, showed me why using proper tools such as ReSharper
is important!

 www.allitebooks.com

http:// /
http://www.allitebooks.org

About the Reviewers

Maciej Aniserowicz is a software developer from Poland. His main focus is
Microsoft .NET. He's been implementing web and service applications for almost
10 years now. During this time, he tried to not only constantly improve his skills, but
also find pleasure and joy in his everyday work by experimenting with "alternative"
tools and frameworks and avoiding productivity and "fun-killers" such as TFS
and SharePoint.

His main interests as a software developer in general are test-driven development
and the Git source control system.

Maciej blogs about software development and a developer's life in general. His blog
(written in Polish) can be found at http://www.maciejaniserowicz.com. You can
also find him on Twitter (@maniserowicz).

He is trying to gain experience as a speaker by visiting Polish user groups and
conferences. His other goal is to deliver quality internal training to companies that
are willing to learn how to use Git (and source control in general) and test-driven
development properly.

He's been a Microsoft MVP (Visual C# category) since 2008.

Maciej lives his everyday life with a beautiful wife, a lovely daughter, and a stupid
cat. He enjoys listening to metal music while coding.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Piotr Owsiak is a web developer with nearly 10 years of experience in .NET. He
spends most of his time working in C# and ASP.NET, focusing on craftsmanship
and good practices.

Piotr first started using Resharper Version 3, and he got hooked on it immediately
and became a strong advocate of Resharper and other JetBrains tools.

Apart from .NET, he also likes to keep up with the interesting things that go on
outside the .NET community. He likes playing with more dynamic languages
such as JavaScript and Python.

Lately, he's been working as a contractor for financial institutions.

I'd like to thank my dad, Jan Owsiak, for giving me the inspiration to
follow in his footsteps and start playing with computers.

Jacek Spólnik is a software engineer with over five years of commercial
experience. In the past, he has created the .NET Object Database, NDatabase.
He has also created software solutions for big companies such as GM, Loreal,
and Lockheed Martin. He now heads the software engineering team that works
for a top tier investment bank. He is focused on learning new things and actively
spending time with his son and daughter.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with ReSharper 5

Introduction to ReSharper 5
Available versions 6
Support for various versions of Visual Studio 7
Support for various languages 7

Installing and configuring ReSharper 7
Installing ReSharper 8
Configuring ReSharper 9

Options 9
Manage options 11

Integration with Visual Studio 11
Summary 13

Chapter 2: Write Smarter Code 15
Code generation 15

Generating code for non-existent objects 15
Introduce variable 18
Generating constructors 18
Surround with 19
Generating object members 20

Using code editing helpers 20
Enhanced IntelliSense 21
Extending the code selection 22
Safe delete 22
Auto-importing namespaces 23
Quick documentation 23

Templates 23
Templates as snippets 24

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Table of Contents

[ii]

File template 24
Customization 24
Multifile templates 25

Refactoring 26
Rename 26
Moving to a separate file 27
Refactor this… 28

Summary 29
Chapter 3: Finding What You Need Quickly 31

Finding files 31
Going to a proper file 32
Bookmarks 32
The last edited location 33
Go to Everything 33

Searching code references 34
Go to Declaration 34
Code usage 34
The Navigate to feature 35

Displaying code structure 36
File members 36
The File Structure window 36
Value Origin and Destination 37

Navigating to the library code 38
Summary 39

Chapter 4: Making Your Code Better 41
Code quality analysis 41

Background analysis 42
Solution-wide inspections 42
Disabling code inspections 43
Code Issues 44

Eliminating errors and code smells 45
Quick fixes 45
Fix in scope 45
Structural Search and Replace 46
Code Cleanup 48

Summary 49
Chapter 5: Extended Support for Web Developers 51

ASP.NET Web Forms and ASP.NET MVC tools 52
Writing ASP.NET smartly 52
Templates 52

http:// /

Table of Contents

[iii]

Enhanced navigation 53
ASP.NET MVC specific support 54

Support for JavaScript 54
Smart IntelliSense 55
The Code Analysis and refactoring options 55
Navigation and smart usages 56
Structural Search and Replace (SSR) 56

Support for TypeScript 56
Support for HTML/CSS 57

Writing HTML/CSS code 57
CSS hierarchy 59
Navigation 59
Browser compatibility support 60
Templates 60
Code analysis 61

Summary 61
Chapter 6: Unit Testing 63

Test runner 63
The Unit Test Explorer window 65
The Unit Test Sessions window 66

Testing JavaScript 67
Running JavaScript unit tests 67
Integration with PhantomJS 70

Analyzing code coverage with dotCover 70
Summary 71

Chapter 7: Extending ReSharper 73
Why you should extend ReSharper 73
The ReSharper API 74

Platform 75
Program Structure Interface (PSI) 76
Features and plugins 76
Daemons 76

Internal mode 76
PSI Browser 77
PSI Module Browser 78
PSI Viewer 78
Enabling the Internal mode 79

The ReSharper SDK 79
Installing the ReSharper SDK 79
Getting the required NuGet packages 80

http:// /

Table of Contents

[iv]

Your first plugin 80
Creating a project 80
Project elements 81

Assembly info 82
Actions 82
Context action 84
Other project elements 85

Debugging a plugin 85
Deploying a plugin 86
Your plugin in action 87

Sample SDK plugins 87
Summary 88

Chapter 8: Tools for Architects 89
Architecture View 89
Advanced references view 90

The Referenced Code window 90
The Optimize References window 91

Global refactoring 92
Summary 92

Chapter 9: Code Analysis Beyond Visual Studio 93
Finding code duplicates 93
Running code analysis 95
TeamCity 95
Summary 96

Chapter 10: Recommended Plugins 97
The ReSharper gallery 97
xUnit.net tests support 98
Mnemonic Live Templates 98
Support for AngularJS 99
JSLint for ReSharper 99
The Utility Pack 99
Summary 100

Appendix: Keyboard Shortcuts 101
Write smarter code 101
Finding what you need quickly 102
Extended support for web developers 103
Unit testing 103

Index 105

http:// /

Preface
ReSharper adds an amazing set of features that make Visual Studio a much,
much better IDE, making a developer's work easier. It's probably the best
plugin for Visual Studio.

Throughout this book, we will explain all the features that help you write smarter
code, find things quicker, and provide better quality code.

ReSharper Essentials shows you how ReSharper improves a developer's work.

What this book covers
Chapter 1, Getting Started with ReSharper, explains what ReSharper is, what versions
are available, and how to get them.

Chapter 2, Write Smarter Code, describes the features that allow you to write code
easier. You will learn about generating code, using templates, and the available
refactoring mechanisms.

Chapter 3, Finding What You Need Quickly, shows you how you can use ReSharper
to quickly find the required class, file, or anything you need in your project. It also
describes tools that show code references and structure.

Chapter 4, Making Your Code Better, discusses tools that will improve your code.
You will learn how to use code-quality analysis and eliminate errors and code smells.

Chapter 5, Extended Support for Web Developers, describes the features that help in
writing web applications. It explains how ReSharper helps write ASP.NET (MVC),
JavaScript, TypeScript, and HTML/CSS code.

Chapter 6, Unit Testing, shows you how ReSharper helps run unit tests and how you
can use it with dotCover to analyze code coverage.

http:// /

Preface

[2]

Chapter 7, Extending ReSharper, comes as a quick introduction to writing plugins
for ReSharper. It quickly explains the ReSharper API, the built-in tools that help
in writing plugins, and how you can create a simple plugin step-by-step.

Chapter 8, Tools for Architects, describes new tools that help analyze the project
structure and check referenced assemblies.

Chapter 9, Code Analysis Beyond Visual Studio, describes new, free command-line tools
to run code analysis beyond Visual Studio.

Chapter 10, Recommended Plugins, provides you with a description of five plugins
recommended by the author.

Appendix, Keyboard Shortcuts, provides you with a list of the most useful shortcuts
covered in this book.

What you need for this book
As ReSharper is a Visual Studio plugin, you need to have Visual Studio installed
on your computer. Unfortunately, the free Express edition is not enough. The
screenshots presented in this book come from Visual Studio 2013, but all the
presented features will also work with older versions starting from 2005.

You will also need ReSharper, of course. You can use the free 30-day trial to learn
the presented features. We will show you how to get it in Chapter 1, Getting Started
with ReSharper.

Who this book is for
ReSharper Essentials is aimed at developers who work with Visual Studio and want to
make their work more efficient. It is most useful for new ReSharper users, but those
who are currently using it will also find many useful things to learn.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, folder names, and filenames are shown as follows: "As you can
see, this class starts with ActionHandler, which contains the name that we used in
the Actions.xml file."

http:// /

Preface

[3]

A block of code is set as follows:

if (false = $value$)
{
$statement$
}

Any command-line input or output is written as follows:

dupFinder [OPTIONS] source

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "From this
screen you can click on Install to run the installation process, or click on Advanced
to configure more settings."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

http:// /

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http:// /

Getting Started
with ReSharper

We, as developers, want to perform the right tasks using the right tools. For .NET
developers, the most popular tool is Microsoft Visual Studio. It contains almost
everything you need to create .NET applications. If it lacks something, ReSharper
fills that gap and adds many more functionalities.

ReSharper, as a .NET developer productivity tool, helps you in the tasks you
need to perform on a daily basis. It helps you avoid doing boring, repetitive and
manual things. It makes refactoring your code easier, saves you time by supporting
navigation through the project, and helps by generating code. In this chapter, we will
cover the following topics:

• Introduction to ReSharper
• Downloading and installing ReSharper
• Basic configuration
• Integrating ReSharper with Visual Studio

Introduction to ReSharper
ReSharper is probably the best plugin for Visual Studio. It extends your favorite IDE
with a lot of incredibly useful features.

ReSharper is developed by JetBrains (http://www.jetbrains.com).
ReSharper v1.0 was released on July 21, 2004 as the second product of
this company.

http:// /

Getting Started with ReSharper

[6]

Thanks to the features, code generation and code templates, you will be able
to write smarter code. Navigation and search will help you find things quicker.
With code analysis and code cleanup, you can provide better quality software as
ReSharper will find and highlight errors, potential problems, and bad practices in
your code. ReSharper will support you with almost any kind of applications that
you can write in Visual Studio.

Available versions
ReSharper comes in the following three versions:

• C# Edition
• VB.NET Edition
• Full Edition

These versions differ in support for the main language used in your projects.
According to the name, if you are using C#, you should choose the C# Edition.
If you are using VB.NET, you should choose the VB.NET Edition. Finally,
if you are using both these languages, you should choose the Full Edition.

All other features, such as support for web development, unit tests, and XAML
are the same in all of these versions except decompiler, which is not available
in the VB.NET Edition.

Apart from the provided features, ReSharper can be categorized based on license.
Depending on your needs, you can purchase any of the following licenses:

• Commercial License: ReSharper can be used by any developer in your
company but the total number of concurrent users cannot exceed the
number of purchased licenses

• Personal License: ReSharper can be used only by the person who
purchased it

If you are a teacher, a trainer, a Microsoft's MVP (Most Valuable Professional),
or if you are working on a non-commercial open source project, you can get
ReSharper for free.

For more information about ReSharper licenses, you can visit the
Licensing & Upgrade page at http://www.jetbrains.com/
resharper/buy/license-matrix.jsp.

http:// /

Chapter 1

[7]

Support for various versions of Visual Studio
ReSharper v8 provides support for Visual Studio 2013, 2012, 2010, 2008, and 2005.
ReSharper works with all editions of Visual Studio except the Express Edition.

ReSharper does not work with the Express Edition as it does not support
add-ins and extensions.

It is also possible to use ReSharper with Visual Studio 2003. ReSharper 2.0 is still
available; it provides support for this version of Visual Studio.

Support for various languages
ReSharper provides extensive support to many languages/technologies, which are
listed as follows:

• C#, VB.NET
• ASP.NET, ASP.NET MVC, HTML, JavaScript, TypeScript, CSS
• NAnt, MSBuild
• XML
• XAML

It doesn't matter what kind of application you are working on, ReSharper will make
your life easier!

Installing and configuring ReSharper
Although ReSharper comes in a couple of versions and supports various versions of
Visual Studio, there is only one main installation package. The version used depends
on the license key used during activation.

During the free 30-day trial, you use ReSharper as a Full Edition by
default. You can change this in the License Information window. To open
it, navigate to RESHARPER | Help | License Information… from the
Visual Studio toolbar.

http:// /

Getting Started with ReSharper

[8]

Installing ReSharper
Installing ReSharper is quite straightforward. Perform the following steps:

1. Download the main installation package from the Download ReSharper
page at http://www.jetbrains.com/resharper/download/index.html.

2. After opening the downloaded installation package, you should see the
following screenshot:

In this step, you can select the versions of Visual Studio in which you would
like to use ReSharper (in case you have more than one already installed).
From this screen, you can just click on Install to run the installation process,
or click on Advanced to configure more settings.

3. If you have chosen Advanced settings, in the later steps you can choose what
to do if you have a previous version of ReSharper already installed and how
to change the installation location.

http:// /

Chapter 1

[9]

Configuring ReSharper
ReSharper is fully configurable. To access the ReSharper settings, you need to
navigate to RESHARPER | Options from the Visual Studio toolbar.

Options
ReSharper configuration is divided into four areas, which are listed as follows:

• Environment: This allows you to change the general ReSharper settings
such as UI and Visual Studio integration

• Code Inspection: This allows you to change the settings related to
code analysis

• Code Editing: This allows you to change the formatting, naming, and code
cleanup rules

• Tools: This allows you to change the ReSharper tool's settings, such as Unit Test
frameworks, patterns used for to-do items, and navigation to external sources

Code cleanup is a set of ReSharper features that make
your code cleaner. Among the most important things, it
can format your code, remove redundancies, and optimize
the using (Imports in VB.NET) statements.

We will not go through all the available options in detail but present only those parts
that, in our opinion, are the most useful.

Let's take a look at the tabs available under the Environment section.

The General tab
In this tab, you can change settings that are related to user interface. We suggest
that you check the Show managed memory usage in status bar and Show tips on
startup options. The first one will show you, on the bottom status bar, how much
memory is used by ReSharper and the second one will try to teach you something
new every time you open Visual Studio.

The Keyboard & Menus tab
This tab allows you to set how ReSharper integrates with Visual Studio. We propose
that you check Hide overridden Visual Studio menu items and select Visual Studio
as ReSharper keyboard scheme. The first one hides those options from the Visual
Studio menu that are overridden by ReSharper; for example, the Refactor option
in the context menu in the editor. This will indicate that you are using ReSharper
features. The Visual Studio scheme adds shortcuts in order to avoid conflicts with
the existing Visual Studio shortcuts.

http:// /

Getting Started with ReSharper

[10]

In this book, we will present many shortcuts and all will be related
to the Visual Studio scheme. For shortcuts from the ReSharper 2.x/
Intellij IDEA scheme, please check the ReSharper Documentation site
at http://www.jetbrains.com/resharper/documentation/.

Now, let's look at the tabs that are available under the Code Inspection section.

The Settings tab
This tab contains general settings for code analysis. Our suggestion is to check all the
options available below the Enable code analysis checkbox:

• Color identifiers
• Highlight color usages
• Analyze errors in whole solution
• Show code inspection options in action list
• Show the "Import namespace" action using popup

Please note that checking the Analyze errors in whole solution option
can hit Visual Studio's performance in big projects.

The Inspection Severity tab
This tab contains the most important settings related to code analysis. Settings are
divided by language. It is highly recommended that you review these options to
make sure that ReSharper will prompt suggestions that are consistent with your
coding standards.

Next, we'll see the tabs under the Code Editing section.

The C#, VB.NET, and Naming Style tab
On this screen, you can find rules based on which ReSharper validates names used
in your code. Same as with code analysis, it is recommended that you review the
naming settings to make sure that they are consistent with your coding standards.

There are many more interesting and useful settings. We encourage you
to test a couple of different configurations to customize ReSharper to
your needs.

http:// /

Chapter 1

[11]

Manage options
ReSharper v8 allows you to store configuration on the following three levels:

• Computer: This contains settings that are applied to all your projects.
• Solution team-shared: This contains settings for a specific project. These

settings are stored in the sln.DotSettings file in your solution folder and
override the settings specified at computer level. To share these settings with
your team, you need to commit this file to your source control repository.
Configuration on this level should be used to share common coding
standards, such as naming conventions, code formatting, and code
inspection rules, with your team.

• Solution personal: This contains your private settings. These settings
are stored in the sln.DotSettings.User file in your solution folder
and override Solution team-shared configuration. This file should not
be committed to your source control repository as it will override other
users' settings.
Usually, this level is used to change environment options such as preferred
shortcuts, IntelliSense behaviors, and ReSharper UI settings.

To open the Manage Options… window, navigate to RESHARPER | Manage
Options… from the Visual Studio toolbar. You can also open this window by
clicking on the Manage… button in the Options window.

Integration with Visual Studio
ReSharper is visible almost everywhere in Visual Studio. Sometimes, it is difficult to
recognize if some option has come from Visual Studio or from ReSharper.

ReSharper extends Visual Studio in the following places:

• Shortcuts: Almost every ReSharper feature is accessible via a shortcut.
• Custom windows: ReSharper provides custom windows with more

advanced features such as Unit Test Runner and Assembly Explorer.
You can access these windows by navigating to the RESHARPER |
Windows option from the Visual Studio toolbar.

• IntelliSense: ReSharper extends or replaces standard IntelliSense available in
Visual Studio by providing more useful hints.

• Code editor extensions: In a visual way (for example, by icons), this shows
you the available ReSharper options or marks the code on which you can run
some ReSharper options.

http:// /

Getting Started with ReSharper

[12]

As extending the code editor is the most commonly visible ReSharper feature, we
will discuss it in more detail.

The following screenshot presents Visual Studio with some ReSharper extensions:

The most used features are accessible via context actions (numbered 1 in the
preceding screenshot). Context actions are accessible by clicking on an icon or with
the Alt + Enter shortcut. Context actions contain features related to code refactoring,
code generation, navigation, and more. Quick fixes can be displayed along with
context actions.

Alt + Enter is your best friend in ReSharper. In a very smart way, it
provides you with the needed options based on the context in which
you are using this shortcut.

One of the most important ReSharper features is continuous code quality analysis.
ReSharper highlights detected errors and warnings in the marker bar (numbered
2 in the preceding screenshot). The status indicator (numbered 3 in the preceding
screenshot) is displayed on the top of the Marker Bar, which contains the summary
of the found errors and warnings.

http:// /

Chapter 1

[13]

Summary
This chapter explained what ReSharper is and showed you how easy it is to start
using it. You learned how to adjust the ReSharper configuration to suit your needs
alongside your project and team standards.

In the next chapter, we will go deeper into the ReSharper features that will help you
write code, and you will learn what it means to write smarter code.

http:// /

http:// /

Write Smarter Code
In this chapter, we will focus on one of the most important parts of a developer's
work—writing code. ReSharper comes with many features that speed up writing and
editing code. It is not possible to go through all of them in one book so we will focus
on the most important ones.

We will cover the following topics in this chapter:

• Generating code
• Using code editing helpers
• Templates
• Refactoring

Code generation
There are many other ways to write code rather than simply pressing keys on your
keyboard. ReSharper comes with many features that can generate code for you.
You can find some of these features directly in Visual Studio but ReSharper comes
with more. Even if ReSharper comes with some feature that exists in Visual Studio,
ReSharper provides more user-friendly ways to use it.

Generating code for non-existent objects
Usually, when you are designing a class in your project, you start by writing
complete code, such as class name, properties, and functions. When you are
done, you can use that class in your application.

What if I told you there is a different way?

How about you start using your class before creating it and then let ReSharper create
what you need?

http:// /

Write Smarter Code

[16]

This is a standard approach when you write applications using Test
Driven Design (TDD).

As the best way to learn something is to start doing it, we will show you how
ReSharper helps with generating code.

Let's open Visual Studio and create a new console application project.

To create a new console application project, navigate to FILE |
New Project… from the Visual Studio toolbar. This will open a
New Project window. Navigate to Installed | Templates | Visual
C# | Windows from the left-hand menu and click on Console
Application from the list of available projects.

By default, the console application project comes with one Program.cs file. Let's
open it and write the following line inside the Main(string[] args) method:

new UserManager();

Your code should look like the following screenshot:

The preceding screenshot is a great example to show you the power of ReSharper.
The name of our class, UserManager, is marked in red, which means that this class
does not exist. This is also marked by a red line on the marker bar. The new keyword
is underlined in blue to tell you that you are creating a new object without assigning
it to any variable. The args parameter in the Main method and all using statements
are grayed out to show you they are not used.

http:// /

Chapter 2

[17]

There are many problems that can cause an underlining of the code by
ReSharper. To check what exactly is wrong, simply move your mouse
cursor above the underlined word and ReSharper will display a pop up
with a description of the problem that has occurred.

Finally, there is a context action icon, which tells you that there are some ReSharper
actions that you can run on this code.

Before we continue, please have a look at the same code in the following screenshot,
but without ReSharper:

Without ReSharper, it looks like everything is fine with this code, doesn't it?

As you remember from the previous chapter, if there is a context action icon, you
should press Alt + Enter. Then, select Create class 'UserManager' from the displayed
options. This will create a new internal class, UserManager. To change this, move
your cursor to the following line:

internal class UserManager

Press Alt + Enter and select To public. Now your new class is public.

In the same way, you can create methods, properties, enums, and everything you
need. Just write the necessary code and press Alt + Enter!

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Write Smarter Code

[18]

Introduce variable
Now, let's come back to our first line. The new keyword is still underlined so we need
to fix this. Move your cursor to the following line and press Ctrl + R, V (this means
that you press Ctrl and R at the same time and then release R while still holding Ctrl,
and then press V):

new UserManager();

This shortcut is associated with the Introduce variable feature and will convert your
code to the following line:

var userManager = new UserManager();

Generating constructors
Now let's add a constructor to our class. In this constructor, we will assign a new
value to the property Repository.

We do not have such a property yet, so let's create it inside the class. You can write
the following code:

public UserRepository Repository { get; set; }

Properties can be easily created using the prop snippet. Just write prop
and double press Tab.

Now we are ready to create our constructor. Press Alt + Insert and from the newly
displayed menu, select Constructor. This will open a new dialog window in which
you can configure your constructor—you can select a constructor from a base class
that you would like to implement. You can select the properties and variables that
you would like to set in this constructor and change the access rights. A sample view
of this screen is presented in the following screenshot:

http:// /

Chapter 2

[19]

In our case, just check Repository:UserRepository and click on Finish.

As we created our constructor, ReSharper marked our first line because we are
using their default constructor without parameters. By pressing Alt + Enter, you
can generate a second constructor without parameters.

In your code, the UserRepository class is still marked in red—you already know
what to do with this!

Surround with
Now, let's assume that we would like to assign a new value to our property only if
the parameter in the constructor is not null. Move your cursor to the following line:

Repository = repository;

Press Ctrl + E, U and select if from the list. Now write your condition as shown in
the following code:

if (repository != null)

Surround with contains many more options. Check them and use them
for your daily work.

http:// /

Write Smarter Code

[20]

Generating object members
So far, we have used Alt + Insert only to create the constructor but as you can see in
the following screenshot, there are more interesting options:

Let's describe those that are used the most:

• Read-only properties and Properties: These allow you to create properties
for variables.

• Missing members: This is very useful when your class implements an
interface or extends a class. This option allows you to create all members
(methods, properties) that need to be implemented in your class.

• Overriding members: This allows you to override methods from
inherited members. For example, you can use this option to override
the ToString() method.

Using code editing helpers
Writing code is not only about writing, but also about getting more information on
your code and support editing it.

http:// /

Chapter 2

[21]

Enhanced IntelliSense
IntelliSense is a standard tool in Visual Studio. ReSharper extends it by adding a
couple of very useful features.

One of the most useful extensions for IntelliSense is CamelHumps, which
allows you to filter options from IntelliSense by writing only capital letters from
prompted options. By typing just UM (or um), ReSharper displays UserManager(),
UnmanagedMarshal, and so on, as shown in the following screenshot:

ReSharper also extends the available options by adding objects from namespaces
that are not used in the current file. In the preceding screenshot, only the first option
comes from a developed project and the others come from unused namespaces.

For comparison, the options available when you are not using ReSharper are shown
in the following screenshot:

ReSharper provides smart mode too that, in a smart way, filters the available
IntelliSense options. For example, if you are comparing enum values, it displays only
enum members. If you are passing some parameters to a method, it will display only
members with the correct type. Smart mode is made available using the Ctrl + Alt +
Space bar shortcut.

http:// /

Write Smarter Code

[22]

The last extension that we would like to describe is providing IntelliSense for
objects that don't exist. It sounds strange but the following screenshot explains
what this means:

As you can see, we have created a MyProvider class and a new IsReady property.
After this, ReSharper knows that MyProvider will contain the IsReady property
and display it in the available options.

Extending the code selection
It is very common that you will need to select some code. Normally, you select code
by using the mouse or by using the Shift + arrows shortcut. ReSharper allows you to
extend your selection by pressing Ctrl + Alt + the right arrow. Move your cursor to
a word in your code and press Ctrl + Alt + the right arrow, which will select the
whole word. Pressing Ctrl + Alt + the right arrow will extend the selection as
shown in the following screenshot:

You can continue extending your selection until you select the whole file.

Safe delete
The Safe delete option allows you to check whether deleting an object member
would break your code or not. The Safe delete option is made available using the
Alt + Delete shortcut.

http:// /

Chapter 2

[23]

If it is safe to delete a selected member, ReSharper will just delete it. If not, ReSharper
will display a warning or error for the conflicts found.

Auto-importing namespaces
As we have described previously, ReSharper marks objects that do not exist in red.
However, this does not always mean that we would like to create it, because it can
exist, but in namespace, which is not included in our file.

Such a situation is shown in the following screenshot:

In this case, you can just add the missed namespace by pressing Alt + Enter.

Quick documentation
ReSharper can provide you with more information about your code if you press
Ctrl + Shift + F1. This will display a pop up similar to the following screenshot:

The Summary and Parameters description comes from a comment related to the
UpdateConnectionStringInWebConfig method.

Templates
ReSharper provides you with a very powerful template mechanism that generates
code for the most commonly used actions, such as creating a new class, constructor,
and the const variables.

http:// /

Write Smarter Code

[24]

Templates as snippets
Visual Studio provides you with simple templates called snippets by default.
ReSharper extends these templates with Live Templates. Live Templates can
be accessed using the Ctrl + E, L shortcut or by using an associated name.

Do you need a GUID? Just write nguid and press Tab. Do you need an iterator?
Write iterindex. Maybe you need to override the Equals() method? Write equals.

By pressing Ctrl + E, L, you can review all the available Live Templates.

File template
With Live Templates, you can generate some parts of code but ReSharper allows you
to generate whole files too.

Creating a new file from a template can be done by pressing Ctrl + Alt + Insert in the
code editor or by pressing Alt + Insert in the Solution Explorer.

Customization
Each ReSharper template can be configured. Also, you can add new templates
if needed.

Templates can be managed through the Templates Explorer window. To access
this window, navigate to RESHARPER | Templates Explorer… from the Visual
Studio toolbar. A sample view of this Templates Explorer window is shown in the
following screenshot:

http:// /

Chapter 2

[25]

Separate tabs to manage Live Templates, Surround Templates (we have described
them in the first part of this chapter), and File Templates are available.

To present how adding new templates work, let's do something useful and add
a new Live Template for the unit test method. To do this, select C# in the Scopes
area and click on the new template icon (third from left in the toolbar). This will
open the template editor. Put test as your Shortcut name and the following code
as your template body:

[Test]
public void $NAME$()
{
END
}

Let's look at the $NAME$ and END parameters. END is a built-in parameter and
means a place in your code where the cursor will be placed. $NAME$ is our custom
parameter and we need to configure it. You can do this by clicking on the Choose
macro link below the NAME parameter and selecting Constant value. After this,
a new textbox will be displayed that allows you to put the default value for this
parameter. Let's put a test word there. Save your template and try it. In the
same way, you can add Surround and File templates.

Multifile templates
ReSharper v8 comes with a new feature that allows you to create many files from
one template.

How can this be useful?

Let's say that you often create a class and test this class at the same time. For
now, you are probably creating two files in two steps. Why not do this in one
step? Or maybe, according to your architecture, you need to create a couple of files
to add new application modules, such as UserRepository, UserManager, and
UserSomething. With ReSharper, you can create all these files in one step.

By default, ReSharper does not provide any multifile templates. You can add
your custom template in the File Templates tab in the Templates Explorer window.
Start by adding the standard file template. In the file template editor, there are two
additional buttons available: Add new file and Add file from existing template,
which allow you to add more files to your template.

http:// /

Write Smarter Code

[26]

A sample view of a template with two files is shown in the following screenshot:

As you can see, you can specify a different destination folder and even a different
project for different files.

Refactoring
You will seldom work with the ideal code. Almost every code can be improved—
variables or methods can have better names, and code can be better structured
and less complicated. This means that you would like to refactor such code.
Refactoring code is a very hard and complicated process but ReSharper makes
it a bit less painful.

Let's go back to our code that was used at the beginning of this chapter and refactor
it a bit.

Rename
Let's say that we would like to rename the Repository property to UserRepository.
Move your cursor to the definition or usage of this property and press Ctrl + R, R,
input a new name, and press Enter. ReSharper will rename all occurrences of
this property.

http:// /

Chapter 2

[27]

ReSharper also checks your string values, comments, JavaScript code, and other
string literals as there can be some values related to our code that should also be
updated. As you can see in the following screenshot, ReSharper displays all the
places that can be potentially updated and allows you to check what all should
be updated:

When renaming a class name, ReSharper will also change the name of the
file that this class contains.

Moving to a separate file
Now it is time to clean up our project's structure. We have three classes: Program,
UserManager, and UserRepository, and all are in the same file. This is not a good
practice, so let's change this.

Move your cursor to the class named UserManager and press Ctrl + R, O. From the
displayed menu, select Move To Folder. This will open a new window in which
you can change some settings related to moving your class. Let's put in a new
folder named Code. In the Target folder field, write ConsoleApplication1\Code
and click on Create this folder. Next, select Put classes into separate files and Fix
namespaces. Finally, select the classes that you would like to move, UserManager
and UserRepository in our case, and press Enter.

Quick, easy, and very useful.

http:// /

Write Smarter Code

[28]

There are two more options available after using the Ctrl + R, O shortcut:

• Move To Another File: This moves your class to a separate file in the same
folder that the current file is located in

• Move Type To Another Namespace: This moves your class to a new
namespace but it is still in the same file

Refactor this…
Rename and move to separate file are the two most used refactorings. More options
are available through the Ctrl + Shift + R shortcut.

Let's move your cursor again to the name of the UserManager class, press Ctrl +
Shift + R, and select Extract Superclass. This will allow you to create a base class
for your UserManager class. In the new window, write the name of base class that
you would like to create, select the members that should be moved to the new class,
and press Enter.

If, instead of the base class, you would prefer to create the interface, just select the
Extract Interface option.

Another very useful option is Extract Method. It is available after selecting the code
that you would like to move to a new method. A sample window to extract the
method is shown in the following screenshot:

http:// /

Chapter 2

[29]

ReSharper comes with many other refactoring options. Every time you would like
to refactor some code, press Ctrl + Shift + R and check if there is an option that can
help you. You can find options such as Convert Abstract Class to Interface, Convert
Property to Method, Extract Class, Introduce Variable, and many more.

Summary
It has been an interesting journey. We have learned about a lot of features that help
you in writing code. Review this chapter, note down the presented shortcuts, and
try to use them. If you are writing similar code again, maybe it is worth creating a
custom template. Think how you can use the features presented in this chapter for
your daily work. Write code smarter.

In the next chapter, we will check how ReSharper can improve navigation through
our solution and makes it easier to find what you need. See you on the next page!

http:// /

http:// /

Finding What You
Need Quickly

It is always important to find proper things quickly. ReSharper comes with many
features to find files, code references, or navigate through your code quickly.
Now let us find out how to use these features.

In this chapter, we will cover the following topics:

• Finding a proper file
• Searching for code references
• Navigating to library code
• Displaying the code structure

Finding files
In every project, code is divided into files. Depending on the size of your application,
there can be hundreds or even thousands of files. More files make it harder to find
the right one. ReSharper provides you with a few features that can help you find the
file you need, quicker.

Every time you search for something in ReSharper, you can use the
following wildcards:

• * (asterisk) as zero or more characters
• ? (question mark) as one character or zero characters
• + (plus) as one or more characters

CamelHumps are also supported by ReSharper and you can specify the line to which
you would like to go.

http:// /

Finding What You Need Quickly

[32]

Going to a proper file
The easiest way to find a file is to search it by its name. With ReSharper, it is very
easy—just press Ctrl + Shift + T (Go to File) and write the name of the file that you
would like to open.

Another useful way to open the proper file is to find a type contained in it. The type
can be class, enum, and so on. Let's press Ctrl + T, T (Go to Type) and type the name
of your class or any other type that you need.

Even if your project contains thousands of files, you are usually working on only a
couple of them. In this case, it can be helpful for you to display a list of Recent Files.
Just press Ctrl + , and you will see a list similar to the following screenshot:

You can easily filter a list of these files. Just start typing
what you need!

Another often-used shortcut is Shift + Alt + L. It selects the currently opened file in
Solution Explorer. It is useful when you need to open the current file properties or
just open a file in the same folder.

Bookmarks
Bookmarks allow you to mark the most important places in your code and quickly
navigate to them.

You can add up to 10 numbered bookmarks and unlimited non-numbered
bookmarks. To create a numbered bookmark, just press Ctrl + Shift + any number
from the keypad. With the same shortcut, you can remove the bookmark—just
press it a second time on the same line. To go to a numbered bookmark, press
Ctrl + that number.

http:// /

Chapter 3

[33]

You can also display a list of all bookmarks using the Ctrl + ` shortcut. The same
shortcut allows you to manage non-numbered bookmarks.

The following screenshot presents a list of created bookmarks and markers with
numbered bookmarks:

The last edited location
Additionally, to move between bookmarks, you can easily jump to the latest place at
which you edited the code. To do this, press Ctrl + Shift + Backspace.

Go to Everything
As you can see, ReSharper allows you to find the proper file by searching for it using
the name or type contained in it. To do this, you need to use different shortcuts,
but not if you are using ReSharper v8.

ReSharper v8 comes with a new way to find files—Go to Everything. This is
a merged version to search by name or type and really allows you to search
everything! You can search almost everything you have in your code by your
class name, method, and properties.

http:// /

Finding What You Need Quickly

[34]

In every Go to … option, you can open search results in a separate Find
Results window by pressing + on the numerical pad or by clicking on the
Show in Find Results icon as shown in the following screenshot:

To use the Go to Everything feature, just press Ctrl + T.

Searching code references
When we are writing about finding something in your project, it is not only about
opening the files that you are working on, but also about finding relations within
your code.

Go to Declaration
When you are analyzing your code, it is a very common scenario that you need
to go to a particular place where a type is declared.

With ReSharper, you can do this by pressing F12 (Go to Declaration) on your
type, method, or property use/call. Another way to achieve this is by pressing
Ctrl, moving your mouse cursor above a symbol, and clicking on the left
mouse button.

Code usage
As you need to go to declaration, you probably also want to check where your
symbol (class, method, and so on) is used. To do this, just move cursor to your
symbol and press Shift + F12 (Find usages). If there is only a single instance of
the symbol being used, then ReSharper will just move you there. If there are
more instances, then ReSharper will display a new Find Results window
with all occurrences, as shown in the following screenshot:

http:// /

Chapter 3

[35]

The Find Results window also allows you to display a preview of the code in which
your symbol is used.

ReSharper can also highlight symbol usage in the current file. This will increase the
readability of your code. The sample code with the highlighted userId variable is
shown in the following screenshot:

The Navigate to feature
The Go to Declaration and Find usages are two of the most used options when
analyzing code references, but they are not the only ones.

You can find more options in the Navigate to feature (Alt + `). The more important
ones that you will find there are listed as follows:

• Go to Implementation: This option is useful when your class inherits from
another class or implements an interface

• Extension methods: This option displays all the available extension methods
available for your type

http:// /

Finding What You Need Quickly

[36]

• Type of Symbol: This option allows you to go to a type that your symbol has
(that is, the type that is returned by your method)

• Derived Symbols: This option displays all the derived symbols

ReSharper can also visually indicate when a method overrides or implements
another one, as shown in the following screenshot:

Displaying code structure
So far, we have learned how to search for files and relations in your project.
Now, let's see how ReSharper can help you view your code structure.

File members
When you are working with a file, ReSharper makes it very easy to navigate between
different members in the file.

Simply press Alt + \ (File members) and ReSharper will display a list of all the
available members, and will allow you to quickly jump to the selected member
by pressing Enter.

The File Structure window
Additionally, you can display the file structure in a separate window. You can
open the File Structure window by navigating to RESHARPER | Windows | File
Structure from the Visual Studio toolbar or by using the Ctrl + Alt + F shortcut.

A sample view of the File Structure window is shown in the following screenshot:

http:// /

Chapter 3

[37]

Value Origin and Destination
With ReSharper, you can easily check how values are passed around in your code.
By pressing Ctrl + Shift + Alt + A (Value Origin and Destination), you can open a
menu with the following two options:

• Value Origin: This shows you where the analyzed variable comes from
• Value Destination: This shows you where the analyzed variable will be

passed to

Results are displayed in the Inspection Results window. A sample view of this
window is shown in the following screenshot:

In the previous screenshot, we analyzed the blogToCreate variable inside the
CreateBlog method from the BlogRepository class. As you can see, this value
can be passed from the BlogService or BlogRepositoryTests class. You can check
how this value is passed to these classes or how it is created inside them. ReSharper
displays the code preview, which shows you exactly how this variable has been
used. You can easily navigate between these places, which makes the process of
analyzing your code much easier.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Finding What You Need Quickly

[38]

Navigating to the library code
So far we have analyzed references between code only inside your own projects.
How about analyzing the code of external libraries even if you do not have their
source code?

Move your cursor to any method from the external library and press Alt + `
(Navigate to). From the displayed list, select the Sources from Symbol Files
option. This option will try to display the code of the selected method based
on debug information files (PDB).

If you do not have a PDB file, you can select the Decompiled Sources option.

The following screenshot presents the decompiled Asserts.cs file from NUnit:

As you can see, in code decompiled this way, you can use all the features described
in this chapter.

http:// /

Chapter 3

[39]

By default, ReSharper will not decompile methods and will only display
the method declaration. To enable decompiling methods, you need to
navigate to RESHARPER | Options from the Visual Studio toolbar and
then navigate to Tools | External Sources from the ReSharper Options
window and check Decompile methods.

Summary
In this chapter, we saw an overview of the features that will help you find and
navigate to a proper place in your code. ReSharper helps you with not only
opening the necessary files, but also with finding relations and displaying
your code structure.

Let's try to use these features the next time you open Visual Studio. And remember
bookmarks—they are very useful!

In the next chapter, we will learn how ReSharper can help make your code better.

http:// /

http:// /

Making Your Code Better
So far, we have learned how ReSharper can help you write code and improve
navigation around your project. In this chapter, we will focus on one of the most
notable ReSharper features—code analysis.

In this chapter, we will cover the following topics:

• Code quality analysis
• Eliminating errors and code smells

Code quality analysis
The fact that you can compile your code does not mean your code is good. It does
not even mean it will work. There are many things that can easily break your code.
A good example is an unhandled NullReferenceException. You will be able to
compile your code and you will be able to run your application, but there will be
a problem.

ReSharper v8 comes with more than 1400 code analysis rules and more than 700
quick fixes, which allow you to fix detected problems. What is really cool is that
ReSharper provides you with code inspection rules for all supported languages. This
means that ReSharper not only improves your C# or VB.NET code, but also HTML,
JavaScript, CSS, XAML, XML, ASP.NET, ASP.NET MVC, and TypeScript.

Apart from finding possible errors, code quality analysis rules can also improve the
readability of your code. ReSharper can detect code that is unused and mark it as
grayed, which prompts you that maybe you should use auto properties or objects
and collection initializers, or use the var keyword instead of an explicit type name.

http:// /

Making Your Code Better

[42]

ReSharper provides you with five severity levels for rules and allows you to configure
them according to your preference. Code inspection rules can be configured in the
ReSharper's Options window. A sample view of code inspection rules with the list
of available severity levels is shown in the following screenshot:

Background analysis
One of the best features in terms of code quality in ReSharper is Background
analysis. This means that all the rules are checked as you are writing your code.
You do not need to compile your project to see the results of the analysis. ReSharper
will display appropriate messages in real time.

Solution-wide inspections
By default, the described rules are checked locally, which means that they should
be checked in the current class. Because of this, ReSharper can mark some code
as unused if it is used only locally; for example, there can be any unused private
method or some part of code inside your method.

http:// /

Chapter 4

[43]

These two cases are shown in the following screenshot:

Additionally, for local analysis, ReSharper can check some rules in your entire project.
To do this, you need to enable Solution-wide inspections. The easiest way to enable
Solution-wide inspections is to double-click the circle icon in the bottom-right corner
of Visual Studio, as seen in the following screenshot:

With enabled Solution-wide inspections, ReSharper can mark the public methods or
returned values that are unused.

Please note that running Solution-wide inspections can affect
Visual Studio's performance during big projects. In such cases,
it is better to disable this feature.

Disabling code inspections
With ReSharper v8, you can easily mark some part of your code as code that should
not be checked by ReSharper.

http:// /

Making Your Code Better

[44]

You can do this by adding the following comments:

// ReSharper disable all
// [your code]
// ReSharper restore all

All code between these two comments will be skipped by ReSharper in code
inspections. Of course, instead of the all word, you can use the name of any
ReSharper rule such as UseObjectOrCollectionInitializer.

You can also disable ReSharper analysis for a single line with the following comment:

// ReSharper disable once UseObjectOrCollectionInitializer

ReSharper can generate these comments for you. If ReSharper highlights an issue,
then just press Alt + Enter and select Options for "YOUR_RULE" inspection, as
shown in the following screenshot:

Code Issues
You can also an ad-hoc run code analysis. An ad-hoc analysis can be run on the
solution or project level.

To run ad-hoc analysis, just navigate to RESHARPER | Inspect | Code Issues in
Solution or RESHARPER | Inspect | Code Issues in Current Project from the
Visual Studio toolbar.

This will display a dialog box that shows us the progress of analysis and will finally
display the results in the Inspection Results window. You can filter and group the
displayed issues as and when you need to. You can also quickly go to a place where
the issue occurs just by double-clicking on it.

http:// /

Chapter 4

[45]

A sample report is shown in the following screenshot:

Eliminating errors and code smells
We think you will agree that the code analysis provided by ReSharper is really cool
and helps create better code. What is even cooler is that ReSharper provides you with
features that can fix some issues automatically.

Quick fixes
Most errors and issues found by ReSharper can be fixed just by pressing Alt + Enter.
This will display a list of the available solutions and lets you select the best one
for you.

Fix in scope
The quick fixes we just described allow you to fix the issues in one particular place.
However, sometimes there are issues that you would like to fix in every file in
your project or solution. A great example is removing unused using statements
or the this keyword.

http:// /

Making Your Code Better

[46]

With ReSharper v8, you do not need to fix such issues manually. Instead, you can
use a new feature called Fix in scope. You start as usual by pressing Alt + Enter but
instead of just selecting a solution, you can select more options by clicking the small
arrow on the right from the available options.

A sample usage of the Fix in scope feature is shown in the following screenshot:

This will allow you to fix the selected issue with just one click!

Structural Search and Replace
Even though ReSharper contains a lot of built-in analysis, it also allows you to create
your own analyses. You can create your own patterns that will be used to search some
structures in your code. This feature is called Structural Search and Replace (SSR).

To open the Search with Pattern window, navigate to RESHARPER | Find | Search
with Pattern…. A sample window is shown in the following screenshot:

http:// /

Chapter 4

[47]

You can see two things here:

• On the left, there is a place to write your pattern
• On the right, there is a place to define placeholders

In the preceding example, we were looking for if statements to compare them with
a false expression.

You can now simply click on the Find button and ReSharper will display every piece
of code that matches this pattern. Of course, you can also save your patterns.

You can create new search patterns from the code editor. Just
select some code, click on the right mouse button, and select
Find Similar Code….This will automatically generate the
pattern for this code, which you can easily adjust to your needs.

SSR allows you not only to find code based on defined patterns, but also replace
it with different code. Click on the Replace button available on the top in the
preceding screenshot. This will display a new section on the left called Replace
pattern. There, you can write code that will be placed instead of code that matches
the defined pattern.

For the pattern shown, you can write the following code:

if (false = $value$)
{
$statement$
}

This will simply change the order of expressions inside the if statement.

The saved patterns can also be presented as Quick fixes. Simply navigate to
RESHARPER | Options | Code Inspection | Custom Patterns and set the
right severity for your pattern, as shown in the following screenshot:

http:// /

Making Your Code Better

[48]

This will allow you to define patterns in the code editor, which is shown in the
following screenshot:

Code Cleanup
ReSharper also allows you to fix more than one issue in one run. Navigate to
RESHARPER | Tools | Cleanup Code… in the Visual Studio toolbar or just press
Ctrl + E, Ctrl + C. This will display the Code Cleanup window, which is shown in
the following screenshot:

http:// /

Chapter 4

[49]

By clicking on the Run button, ReSharper will fix all issues configured in the selected
profile. By default, there are two patterns:

• Full Cleanup
• Reformat Code

You can add your own pattern by clicking on the Edit Profiles button.

Summary
Code quality analysis is a very powerful feature in ReSharper. As we have described
in this chapter, ReSharper not only prompts you when something is wrong or can be
written better, but also allows you to quickly fix these issues.

If you do not agree with all rules provided by ReSharper, you can easily configure
them to meet your needs.

There are many rules that will open your eyes and show you that you can write
better code. With ReSharper, writing better, cleaner code is as easy as just pressing
Alt + Enter.

In the next chapter, we will review features that support web development.

http:// /

http:// /

Extended Support
for Web Developers

ReSharper has been focused on supporting backend languages such as C# or
VB.NET from the beginning. Fortunately, with almost every release, there are
more and more languages that are supported.

Currently, ReSharper provides you with many features that can be used by almost
every .NET developer. Most of these features are dedicated to web developers.

In this chapter, we will explain how ReSharper supports the following:

• ASP.NET and ASP.NET MVC
• JavaScript
• TypeScript
• HTML/CSS

As we have described most of these features, here we will only quickly describe how
they support web development without a detailed description.

Some of the presented features already exist in newer versions of Visual
Studio, but ReSharper adds these features to all supported versions.

http:// /

Extended Support for Web Developers

[52]

ASP.NET Web Forms and ASP.NET MVC
tools
In terms of web development in Visual Studio, ASP.NET was the first area that
was supported by ReSharper. Currently, almost every ReSharper feature supports
ASP.NET in some way—both Web Forms and MVC.

Writing ASP.NET smartly
In the same way as in C#, ReSharper helps you write ASP.NET by extending
IntelliSense, generating code, and providing you with some refactoring methods.

IntelliSense provides you with prompts for web-related things, such as ASP.NET
controls, ASP.NET MVC helpers, resources, JavaScript symbols, and so on.

While working with ASP.NET, ReSharper helps you in importing required
namespaces and removing unused directives (same as with using statements in C#).

As with C#, ReSharper allows you to generate members based on the
implemented interface; in ASP.NET, you can generate Content tags based on
ContentPlaceHolders from your Master Page and the required event handlers.

Templates
When you are working with the ASP.NET project, ReSharper allows you to use file
templates that are specific to ASP.NET. You can find templates to add web pages,
controls, and Razor views, as shown in the following screenshot:

http:// /

Chapter 5

[53]

Quick reminder: creating a new file from a template can be done by
pressing Ctrl + Alt + Insert from the code editor or by pressing Alt + Insert
in Solution Explorer.

And of course, you can define your own templates.

Enhanced navigation
In case of navigation, you can find well-known features such as displaying the File
Structure or navigation through file using the Go to File Member option by pressing
Alt + \. Using the Go to File Member option, you can search by HTML tags, IDs,
CSS classes, and any other object used in your view. A sample search by HTML
tag and element ID is shown in the following screenshot:

A very useful feature in web applications is Go to Related Files. You can access
this option by pressing Ctrl + Alt + F7. It is also available in C# but is most useful in
ASP.NET or HTML code. It allows you to quickly navigate to related files, such as
JavaScript, CSS, Master Page, Controls, and any related code.

The following screenshot presents you with a list of related files for a sample ASP.
NET MVC view:

As you can see, it contains the controller that is related to this view, the JavaScript
files declared in this file, the master layout, and CSS files declared in this layout.

http:// /

Extended Support for Web Developers

[54]

ASP.NET MVC specific support
In case of support for ASP.NET MVC, the most important feature is IntelliSense,
which prompts you the controllers and controller's methods every time you need
to specify them. A sample usage is shown in the following screenshot:

ReSharper also improves navigation between controllers and views, and detects
non-existent views, as you can see in the following screenshot:

The preceding screenshot presents the return statement from the Process method.

In Visual Studio, there's a very useful shortcut, Ctrl + G, M, which
allows you to easily switch between View and Controller. Just put your
cursor somewhere in the controller method or in the view method and
use this shortcut.

Support for JavaScript
For a long time, writing JavaScript code in Visual Studio was very painful. There
were no tools that could support writing JavaScript. But ReSharper changed this
by providing you with a rich set of features that you know from C#.

ReSharper supports JavaScript code, both written in separate files and
inline in the same way.

http:// /

Chapter 5

[55]

Smart IntelliSense
Support for JavaScript starts with IntelliSense. IntelliSense prompts you with
defined JavaScript keywords and methods, and objects and methods from your
custom objects as well as from external JavaScript libraries such as jQuery.
A sample prompt for jQuery methods is shown in the following screenshot:

In jQuery, selectors are very important as they allow you to access any
HTML element. ReSharper can help you with specifying selectors by
providing you with a list of available CSS classes and HTML tags.

The Code Analysis and refactoring options
Another well-known ReSharper feature is Code Analysis. It allows you to quickly
find and fix some common errors.

From this analysis, ReSharper will notify you when it will find any one of the
following conditions:

• Unused or redundant code
• Duplicate labels in the switch statement or property declaration
• Statement not terminated with a semicolon
• Possibly unassigned property or variable

You can find a complete list of available Code Inspections in the ReSharper options
by navigating to Code Inspection | Inspection Severity in the JS tab.

Together with Code Analysis, ReSharper comes with some simple refactoring
methods for JavaScript. You will find options such as Rename, Create from
usage, or Introduce variable.

All these features work in JavaScript in the same way as they work in C#.

http:// /

Extended Support for Web Developers

[56]

Navigation and smart usages
With ReSharper, you can also easily review JavaScript code structure in the File
Structure window. A sample structure is shown in the following screenshot:

Same as in other languages, you can navigate between different type members in
your file with the Go to File Member (Alt + \) option and find code dependencies
by finding the code declaration or code usage.

Structural Search and Replace (SSR)
Starting with ReSharper v8, you can use the SSR feature together with JavaScript
code. You can find out more about this feature in Chapter 4, Making Your Code Better.

Support for TypeScript
As support for ASP.NET and JavaScript has been existing in ReSharper for some
time, support for TypeScript is a new feature that comes with ReSharper v8.1.

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. It
allows you to write JavaScript in manner that is similar to C#. As TypeScript is
very similar to JavaScript, ReSharper comes with a very similar support for it.

Same as with JavaScript, ReSharper provides you with Smart IntelliSense
and templates.

http:// /

Chapter 5

[57]

You can navigate through your code by navigating to the File Structure | Go to
File Member options. You can find your code dependency and use some simple
refactoring methods such as Rename or Introduce Variable.

Remember that ReSharper v8.1 is the first version to provide support for TypeScript,
so you can be sure that future versions will come with more.

Support for HTML/CSS
ReSharper v6 was very web development friendly. Besides supporting JavaScript,
it also started supporting HTML and CSS.

Writing HTML/CSS code
ReSharper comes with a couple of features that help you in writing HTML and
CSS code.

The first feature is IntelliSense for HTML tags, attributes, CSS attributes, and values.
In a very smart way, it prompts you about what you wish to probably write. These
options are shown in the following screenshot:

ReSharper can not only prompt defined CSS attributes, but also your custom CSS
classes, as shown in the following screenshot:

ReSharper analyzes your CSS files (and CSS inline code) and allows you to use
created classes in your code. What is really cool is that ReSharper prompts these
classes not only in HTML code, but also in ASP.NET (MVC) as well as JavaScript.

http:// /

Extended Support for Web Developers

[58]

Additionally, ReSharper provides you with context actions that also help you in
writing code. They allow you to remove HTML attributes, add tags, and quickly
create the table structure. The following screenshot shows you how you can easily
create new table rows:

In the same way, you can create new columns.

If you would like to duplicate the whole line (in any type of file),
just hover the cursor over that line and press Ctrl + D!

In the case of CSS, ReSharper comes with a set of context actions that allow you to
convert different methods of presenting colors, such as named colors, hex, and RGB.

ReSharper also displays visually used colors any time you specify a color, as shown
in the following screenshot:

You can also adjust your color by using a palette color. Just move your cursor to the
color definition, press Alt + Enter, and select Pick color from palette.

http:// /

Chapter 5

[59]

CSS hierarchy
CSS hierarchy is a very useful tool that shows you how CSS classes inherit from
other classes. A sample view of the CSS hierarchy window is shown in the
following screenshot:

The CSS hierarchy makes it easier to understand which style will be applied to the
HTML elements.

Navigation
Similar to other languages, you can display the file structure for HTML and CSS code
as you can see in the following screenshot:

This helps you quickly go to the proper place in your file.

http:// /

Extended Support for Web Developers

[60]

You can also search CSS classes with the Go to everything option (Ctrl + T) and use
the Go to declaration or Find usages features to quickly check how your CSS class is
declared and where it is used.

Go to file member (Alt + \) works for both CSS and HTML code.

Browser compatibility support
There are a couple of CSS and HTML versions which may be supported by browsers
a bit differently sometimes. ReSharper can check if your code is compatible with
the CSS and HTML version that you are using as well as with specific versions of
different browsers.

You can configure these settings in the ReSharper options by navigating to Code
Editing | CSS | Inspections, as shown in the following screenshot:

Templates
You can also use templates in HTML and CSS code. From these templates, you can
find the following tags:

• t: This generates open and close tags
• tc: This generates self-closing tags
• <script: This generates the script tag and automatically displays the list of

available script types

http:// /

Chapter 5

[61]

You can check the list of available templates in the Templates
Explorer window. You can find out more about templates in
Chapter 2, Write Smarter Code.

Remember that you can create your own templates as you need!

Surround With (Ctrl + E, U) is a very useful template that
allows you to select some text and surround it with any
HTML tag.

Code analysis
Code analysis is also available in HTML and CSS, where it can quickly find and
fix some common errors, such as unknown tags and IDs, and unused, obsolete,
or redundant code.

You can find the list of available code analysis in ReSharper options by navigating
to Code Inspection | Inspection Severity.

Summary
As you can see, ReSharper comes with a very rich set of features that support web
development. This makes creating web applications much friendlier.

The currently provided features allow you to work with JavaScript in almost the
same way as with C# or VB.NET. The same goes for brand new TypeScript. We
can use templates, a bunch of refactoring methods, and many more well-known
features in ASP.NET. We can use these features even in simple languages such
as HTML or CSS.

In the next chapter, we will focus on the ReSharper features that will help you in
working with Unit Tests.

http:// /

http:// /

Unit Testing
ReSharper comes with a very user-friendly test runner which, by default, supports
tests written with NUnit and MSTest as well as tests written for JavaScript.

As with any ReSharper feature, support for unit tests looks the same in all supported
Visual Studio versions. Thanks to this, you can easily run NUnit and JavaScript unit
tests in Visual Studio versions that only support MSTest.

In this chapter, we will cover the following topics:

• Test runner
• Testing JavaScript
• Analyzing code coverage with dotCover

Test runner
ReSharper provides you with the following two new windows that allow you to
work with unit tests:

• Unit Test Explorer: To open this window, navigate to RESHARPER |
Windows | Unit Tests from the Visual Studio menu or use the
Ctrl + Alt + U shortcut

• Unit Test Sessions: To open this window, navigate to RESHARPER |
Windows | Unit Test Sessions from the Visual Studio menu or use
the Ctrl + Alt + T shortcut

http:// /

Unit Testing

[64]

Additionally, for new windows, the ReSharper test runner is integrated with the
Code Editor in Visual Studio. It adds a new icon for every class that contains unit
tests as well as for each particular test method, as shown in the following screenshot:

The first icon allows you to quickly run or debug all the tests in a class, and the
second one allows you to run or debug particular tests.

Depending on the other tools that are installed, ReSharper also allows you to use
other options such as profiling tests with dotTrace or checking code coverage
with dotCover.

http:// /

Chapter 6

[65]

By default, ReSharper v8.1 comes with support for NUnit 2.6.3. This version of
NUnit is built-in ReSharper and is used to run your tests. If you would like to use a
different version of NUnit, you need to go to the NUnit configuration in ReSharper
(RESHARPER | Options | Tools | Unit Testing | NUnit). These options are shown
in the following screenshot:

ReSharper can also work with NUnit plugins—to use them, you need to put them
into the folder shown in the previous screenshot.

ReSharper can also work with other unit test frameworks by installing proper
plugins. A list of available plugins is present on the page at https://resharper-
plugins.jetbrains.com/packages?q=Tags:"unittest".

The Unit Test Explorer window
The Unit Test Explorer window displays all the unit tests found in your solution.
ReSharper can automatically recognize the tests from supported frameworks.

This window also provides you with the same options as the menu that is integrated
with the Code Editor, and allows you to run or debug tests and add tests to sessions.

http:// /

Unit Testing

[66]

A sample view of Unit Test Explorer is shown in the following screenshot:

Apart from the menu options and icons shown in the preceding screenshot, you can
run tests via shortcuts. Use Ctrl + U, R to run tests or Ctrl + U, D to debug them.

The Unit Test Sessions window
ReSharper runs all unit test in sessions. You can think about sessions as groups.
When you click on the Run Test option, ReSharper automatically creates a new
session for you. You can add as many sessions as you need and configure the tests
that these sessions contain. This allows you to group unit tests according to your
needs. For example, in one session, you can have a test for your routing table in ASP.
NET MVC and in another session, you can have tests related to your business logic.
Thanks to this, you can easily run the needed tests together even if they are placed
in different files or projects.

You can quickly run unit tests from the current session
by using the Ctrl + U, Y shortcut or all unit tests in the
solution by using the Ctrl + U, L shortcut.

http:// /

Chapter 6

[67]

The Unit Test Sessions window is also the place where ReSharper displays test
results. To make it easier to analyze failed tests, ReSharper displays the code of the
failed tests and allows you to quickly navigate to the place at which the test failed,
as shown in the following screenshot:

As with many other windows, in ReSharper, you can group and filter the displayed
tests based on your needs. ReSharper also allows you to select the platform and
.NET Framework version on which you would like to run the tests, as shown in
the following screenshot:

Testing JavaScript
ReSharper can also support you in writing unit tests in JavaScript.

Running JavaScript unit tests
There are many different frameworks that allow you to write unit tests for JavaScript.
The most popular ones are QUnit and Jasmine. What is really cool is that both are
supported by ReSharper. It means that you can run them in the same way that you
run C# tests written in NUnit or other frameworks. Very nice, isn't it?

http:// /

Unit Testing

[68]

A sample unit test written in QUnit is shown in the following screenshot:

As you can see, ReSharper recognizes and marks unit tests in the same way as they
were with NUnit. Even the available menu options are the same.

When you write unit tests in JavaScript, you need to add a reference to the file
that contains the tested methods. You can see a sample reference in the previous
screenshot, which looks as follows:

/// <reference path="Utilities.js"/>

ReSharper needs to know where the code that you are testing is placed. You do the
same in C# but with the using statement.

As we talk about testing JavaScript code that is created for web applications,
ReSharper is running these tests in a web browser. That is why ReSharper will
automatically open your default browser to run the tests. Normally, when you
are writing unit tests in QUnit, you need to add an HTML file that contains a
QUnit runner and displays results. With ReSharper, you do not need to do this
as ReSharper handles this internally.

http:// /

Chapter 6

[69]

A sample report displayed in a web browser after running the unit test looks similar
to the following screenshot:

You can select the browser in which you would like to run tests in ReSharper.
These settings are shown in the following screenshot:

http:// /

Unit Testing

[70]

Integration with PhantomJS
ReSharper allows you to run JavaScript tests outside the browser. This is made
possible by adding support for PhantomJS. PhantomJS is a type of web browser
but without the user interface (also known as headless browser) and is based on
the WebKit engine. It may sound weird but it makes PhantomJS a very powerful
tool. It is available as a command-line tool, so it is easy to integrate PhantomJS
with different tools such as ReSharper. To use PhantomJS with ReSharper, you
need to download it from http://phantomjs.org, unpack it, and set the path
to the phantomjs.exe file in the settings window shown previously.

Analyzing code coverage with dotCover
As we mentioned previously in this chapter, ReSharper can work together with
dotCover—another great tool created by JetBrains. dotCover is a code coverage tool
that can work independently of ReSharper but it can be also used together with it.

dotCover simply analyzes your code and presents a report that shows how much of
your code is covered by unit tests.

To run dotCover from ReSharper, select Cover Unit Tests with dotCover from any
place where you can run unit tests with ReSharper. The report will be displayed in the
Unit Test Sessions window in a separate tab, as shown in the following screenshot:

You can read more about dotCover on the JetBrains website
at http://www.jetbrains.com/dotcover/.

http:// /

Chapter 6

[71]

Summary
In this chapter, we have presented how ReSharper supports working with unit tests
in Visual Studio.

ReSharper not only comes with a new, more user-friendly and configurable test
runner, but also provides you with support for frameworks other than MSTest,
regardless of the Visual Studio version used. ReSharper allows you to run unit tests
written in JavaScript and, thanks to its integration with PhantomJS, allows you to
run these tests without opening the web browser.

You have also learned how to check code coverage with dotCover—a separate tool
provided by JetBrains.

In the next chapter, you will learn how to write a sample plugin for ReSharper.

http:// /

http:// /

Extending ReSharper
ReSharper comes with a robust set of features; users are able to add new features to
it according to their needs. This chapter serves as a basic introduction to extending
ReSharper and is a step-by-step guide for creating a sample plugin.

In this chapter, we will explain:

• Why you should extend ReSharper
• How the ReSharper API looks
• What the Internal mode is and how to enable the ReSharper Internal mode
• How to create your own plugin

Additionally, we will quickly go through a sample project provided with
the ReSharper SDK.

ReSharper provides a couple of ways to extend its functionality; in this chapter,
we will focus on writing plugins.

Why you should extend ReSharper
When we talk about extending ReSharper, you might wonder why you should do
this. As ReSharper extends Visual Studio, why should you extend ReSharper and
not Visual Studio?

To answer this, let's check how we can extend ReSharper. The following are the four
ways to do it:

• Live templates
• Structural Search and Replace
• External annotations
• Plugins

http:// /

Extending ReSharper

[74]

We have already described the first two methods in the previous chapters. They
just provide new rules to the existing ReSharper features, so this gives us a clear
picture about why they are related to extending ReSharper. The same is the case
with external annotations; they provide new rules for the code analysis feature.

External annotations are not in the scope of this book. You can
read more about this topic on the ReSharper Web Help page at
http://www.jetbrains.com/resharper/webhelp/Code_
Analysis__External_Annotations.html.

The last option, that is, plugins, are the most powerful as they are not strongly
associated with just one feature. They do not even need to be related to ReSharper.

So, the question arises, why should you write plugins for ReSharper? The answer is,
because it is easy. ReSharper comes with a very extensive API, which provides many
useful features. Of course, we do not think that writing plugins for Visual Studio
does not make sense. However, sometimes it is much easier to use features that
already exist in ReSharper than write a custom one from scratch.

In your plugin, you can do everything that ReSharper does as you have access to the
same API. With your plugin, you can not only create some new features but also add
support for new languages or a new unit test framework.

The only disadvantage when we are thinking about plugins for ReSharper is that it
limits the number of potential users, and our users need to have ReSharper.

The ReSharper API
ReSharper provides Open API, which is the same API that has been used to create
all the features of ReSharper.

As we would like to introduce you to only some basic concepts
related to creating plugins in this book, we will quickly describe
only the most important ones.

From an architectural point of view, the ReSharper API is divided into the following
three layers:

• Platform
• Program Structure Interface (PSI)
• Features

http:// /

Chapter 7

[75]

When you are working on a plugin project, you can easily find the related assemblies
based on their names, which are as follows:

• JetBrains.Platform.ReSharper.*

• JetBrains.ReSharper.Psi.*

• JetBrains.ReSharper.Features.* and JetBrains.ReSharper.Feature.
Services.*

The hierarchy of these levels is presented in the following screenshot:

Features Plugins

Program Structure

Interface (PSI)

Platform

Visual Studio

It is important to understand the responsibilities of these layers.

Platform
Platform is the first base layer, which allows you to work directly with the Visual
Studio API.

The most important modules that you can find here are as follows:

• Project model: This is used to work with the Visual Studio project
• Text control: This allows you to work with the Visual Studio editor
• Utils: This provides some useful tools for reading/writing XML,

specialized collections, filesystem path, and so on
• Component model: This provides the ReSharper IoC container

http:// /

Extending ReSharper

[76]

In the case of the component model, there are two types of components: shell
components (created when the Visual Studio shell is created) and solution
components (created when the Visual Studio solution is opened).

Program Structure Interface (PSI)
PSI is the most used layer as it serves as a parser for languages supported by
ReSharper. It builds Abstract Syntax Tree (AST), which you can access and
navigate to through your plugin.

Features and plugins
In the top level, we have the features and plugins that we can see in ReSharper, such
as navigation, code competition, and live templates. As you can see, built-in features
are on the same level as plugins, which means that you, as a plugin developer, have
access to the same methods as JetBrains developers, who create new features.

Daemons
Additionally, you can find JetBrains.ReSharper.Daemon.* assemblies, which are
responsible for background tasks and code analysis.

Internal mode
We can run ReSharper in a special mode called the Internal mode (sometimes called
god mode). This mode provides you with access to some tools and commands that
are very useful when you are creating plugins.

In the Internal mode, two new options are available.

The first provides new entries in the Options window. These entries are as follows:

• Tools | SolBuilderDuo: This allows you to change the settings related to
building plugins

• Internal: This allows you to change the settings related to exceptions,
logging, and the tracking activity

• Internal UI Options: This allows to you change UI-related settings

The second one is a new option, Internal, in the ReSharper menu as presented in the
following screenshot:

http:// /

Chapter 7

[77]

In this menu, you can find a lot of useful options. The most useful are as follows:

• PSI Browser: This can be found by navigating to Internal | Windows
• PSI Module Browser: This can be found by navigating to Internal | Windows
• PSI Viewer: This is available directly in the Internal menu

PSI Browser
PSI Browser is one of the most useful options. It allows you to review the PSI tree for
the currently opened file.

A sample PSI Browser window is shown in the following screenshot:

http:// /

Extending ReSharper

[78]

As you can easily see, the PSI Browser window contains a tree structure for the C#
file. There are two separate nodes for using statements and the namespace. As tree
nodes expand, you can see more code details with all the information needed for
creating plugins.

Reviewing PSI Browser is the best way to learn about PSI tree structure and
PSI types.

PSI Module Browser
The PSI Module Browser window allows you to review all the modules
(assemblies) in your project and track the references between them,
as shown in the following screenshot:

As you can see in the preceding screenshot, each module contains two nodes,
References and Referenced By, which show the relations with other modules
(for example, EnvDTE80 library is referenced by the JetBrains.ReSharper.
SolutionBuilder.vs library).

PSI Viewer
The PSI Viewer window is very similar to PSI Browser with a single change; it
allows you to write code snippets and check how code is represented as a PSI tree.

Remember that you have full access to all the information
available on the PSI Viewer window via the ReSharper SDK,
and you can use it in your plugin.

http:// /

Chapter 7

[79]

Enabling the Internal mode
To run ReSharper in the Internal mode, you need to run Visual Studio with the
/ReSharper.Internal parameter. You can add this parameter to the Target field
in the Visual Studio shortcut properties as presented in the following screenshot:

Or, you can just write the following line in the command line:

devenv.exe /ReSharper.Internal

The ReSharper SDK
To write plugins for ReSharper, you need to have the Software Development Kit
(SDK) installed. Starting from ReSharper v8.1, SDK is divided into two parts, which
we'll be discussing in the following sections.

Installing the ReSharper SDK
The first part of the SDK is the MSI installer, which contains Visual Studio project
templates, item templates, and samples.

Installing the ReSharper SDK is very easy and can be done by performing the
following steps:

1. Download the installation package. Go to the Download ReSharper page
at http://www.jetbrains.com/resharper/download/index.html
and click on ReSharper SDK for ReSharper 8.1.x (.msi) in the Related
Downloads section.

2. After opening the downloaded installation package, you should see the
standard installation screen. By clicking on the Next button, you can
start the installation process.

http:// /

Extending ReSharper

[80]

3. After performing the previous step, you can open the ReadMe.html file,
which contains a quick introduction to creating ReSharper plugins.

Getting the required NuGet packages
The second part of SDK contains all the assemblies that need to be referenced in
the plugin project, MSBuild tasks, and all the required build tools. It is available
as a NuGet package, as shown in the following screenshot:

As you can see, there are actually two packages. The first one contains the assemblies
required to create plugins, and the second one contains assemblies to create tests
for plugins.

Your first plugin
Now let's create your first plugin! In this example, we will use a plugin that is
created automatically when you are creating a ReSharper plugin project. It simply
allows you to reverse strings by adding a new context action and shows how you
can add custom options to different menus in Visual Studio.

Creating a project
Assuming that you have installed SDK, we need to start with opening Visual Studio.
It is important to run Visual Studio as an administrator.

Now let's create a new project. From the Visual Studio menu, navigate to FILE |
New Project and from the New Project window, navigate to Installed | Templates
| Visual C# | ReSharper | v8.1. This will display a list of the types of projects
available to create the ReSharper plugin. Let's select ReSharper Plugin.

http:// /

Chapter 7

[81]

It is very important for you to select the correct version of the .NET
Framework. If you select Version 4.0 or higher, your plugin will be able to
work only with Visual Studio 2010 or higher. If you would like to support
older versions of Visual Studio, you need to select the .NET Framework 3.5.

Enter a name for your plugin, that is, AwesomeReSharperExtension, set a location,
and click on OK.

Visual Studio will ask you to provide some information about your plugin such as
the title, description, and author. Provide some descriptions in the correct fields and
click on OK.

Now let's rebuild your solution to confirm that everything is working as it should.
When building a plugin for the first time, ReSharper will ask you which build engine
you would like to use, as shown in the following screenshot:

Click on VisualStudio. You can change this setting later on in the ReSharper
Options window by navigating to the Tools | SolBuilderDuo screen.

As a project template comes with a reference to the ReSharper NuGet package,
you do not need to add any references.

Project elements
Your project now contains the following four important files:

• AssemblyInfo.cs in the Properties folder
• AboutAction.cs

• Actions.xml

• ReverseStringAction.cs

http:// /

Extending ReSharper

[82]

Assembly info
Let's start with the first file, that is, AssemblyInfo.cs. It contains some metadata
about your project. The plugin's related data contains information that you provided
while creating a project and a file that contains a setting to add new actions to
different menus:

[assembly: ActionsXml("AwesomeReSharperExtension.Actions.xml")]

In this case, these actions are stored in the Actions.xml file in our project
(AwesomeReSharperExtension).

Actions
Now let's open the Actions.xml file. This XML file contains the definition to add
new options for different menus.

It starts with the <action> node, which can contain sets of the <action> (for defining
a new action) and <insert> (for inserting a new option in the menu, or creating a new
action, or using the one created with the <action> attribute) elements.

Our sample file looks like what is shown in the following screenshot:

In the third line, we are referencing the ReSharper menu option, which
is displayed in the Visual Studio menu. We are also setting the position
of the new entry that we would like to add in the menu option—this will
be the last position. Inside the <insert> attribute, we are creating a new
menu option, AwesomeReSharperExtension, with the submenu About
Awesome ReSharper Extension. We are also setting a handler for the
action AwesomeReSharperExtension.About.

http:// /

Chapter 7

[83]

When you want to add new menu options, you can reference different options
as follows:

• ReSharper.Navigate: This will add a new option to the Navigate menu in the
RESHARPER tab

• VS#Solution: This will add a new option to the menu, which is available
after right-clicking on your solution name

• VS#Project: This will add a new option to the menu, which is available after
right-clicking on your project name

As we know that our action will be handled by the AwesomeReSharperExtension.
About handler, let's open the AboutAction.cs file.

Do you remember the Ctrl + T shortcut? Let's use it!

The AboutAction class looks like what is shown in the following screenshot:

As you can see, this class starts with ActionHandler, which contains a name
that we used in the Actions.xml file. Each action class needs to implement the
IActionHandler interface. This interface comes with the following two methods:

• Update(): This method returns a boolean value, which tells ReSharper if our
action is disabled/enabled

• Execute(): This method runs when our action is executed

In our case, the Execute() method just displays a simple message box.

http:// /

Extending ReSharper

[84]

Finally, our action looks like what is shown in the following screenshot:

Context action
The most interesting feature of our plugin is the context action that can reverse strings.

Let's check the ReverseStringAction class. As you can see, it inherits from the
ContextActionBase class and has the ContextAction attribute as shown in the
following screenshot:

Values from the ContextAction attribute are used for displaying this context action
in the ReSharper Options window.

Our class overrides the following two methods and one property:

• IsAvailable()

• ExecutePsiTransaction()

• Text

The Text property returns the name that will be displayed on the list of available
context actions.

http:// /

Chapter 7

[85]

The IsAvailable() method informs ReSharper if our action is available in a specific
context. This method is run every time you move your cursor in the text editor.

In this method, the two most important lines are shown in the following screenshot:

The first line gets the element that is currently under the cursor. We are interested
only in literal expressions (which are strings, numbers, and so on), so we are limiting
the searched elements by the ILiteralExpression interface.

You can check the type of any object in your code in the PSI
Browser window.

The second line checks if the element is a string value. This means that our context
action will be available only if we place the cursor on a string (but not on the
variable, which is a string type).

The second method, ExecutePsiTransaction(), is run when the user selects our
action. It simply reverses the string (which we found in the IsAvailable() method)
and replaces it in the code editor.

Other project elements
You can add more objects to your plugin. ReSharper SDK adds some item templates;
for example, Context Action, Live Template Macro, and Quick Fix, which you
can access by clicking on the right mouse button on your project, navigating to
Add | New Item…, and filtering the available items to ReSharper items.

Each item contains some sample code that you can use in your plugin.

Debugging a plugin
If you started developing a plugin using the ReSharper template, debugging it is
quite easy—just press F5.

http:// /

Extending ReSharper

[86]

This is possible as the template contains proper debugging configuration, which you
can see in the following screenshot:

You can navigate to this screen from your project settings. The important part is
setting devenv.exe (Visual Studio) as the start program and setting two command
line arguments: /ReSharper.Plugin, which loads your plugin, and /ReSharper.
Internal, which we have described earlier in this chapter. Finally, it is important
to set Working directory, so we will need to specify only the filename and not the
complete path to our plugin's .dll file.

Deploying a plugin
Starting from ReSharper 8, plugins are provided as NuGet packages. To deploy
a new plugin, you need to create a new NuGet package and upload it onto the
ReSharper gallery at http://resharper-plugins.jetbrains.com.

Creating NuGet packages is not in the scope of this book. For
more information, you can check the NuGet documentation
site at http://docs.nuget.org, or the ReSharper Plugin
Development page at http://confluence.jetbrains.com/
display/NETCOM/ReSharper+Plugin+Development.

http:// /

Chapter 7

[87]

Your plugin in action
You already know how to debug and deploy your plugin. Additionally, if you would
like to run it locally, you can just copy your .dll file to the Bin/Plugins folder in
the main ReSharper folder.

If you run Visual Studio with your plugin, you can access context action, as shown in
the following screenshot:

Sample SDK plugins
Along with Visual Studio templates, the ReSharper SDK installs sample plugins.
They are available at C:\Program Files (x86)\JetBrains\ReSharper\v8.1\
SDK (if you have 64-bit Windows) and C:\Program Files\JetBrains\ReSharper\
v8.1\SDK (if you have 32-bit Windows).

In SDK you can find the following three plugins:

• Sample plugin: This presents some basic concepts related to creating custom
actions, context actions, background analysis, and extending options.

• ReSharper PowerToys: This is divided into a couple of projects and presents
more advanced features. Notice that there is no one solution that contains all
these projects.

• Psi plugin: This presents basic concepts related with developing support for
new languages in ReSharper.

You can find more information about these projects in the ReadMe.html file, which is
placed together with samples.

 www.allitebooks.com

http:// /
http://www.allitebooks.org

Extending ReSharper

[88]

Summary
ReSharper comes with many ways of extending its functionality, from simply adding
new templates to creating advanced plugins.

JetBrains provides many tools that make it easier to create plugins for ReSharper—
SDK, samples, and the Internal mode are very powerful and useful tools.

Creating plugins for a big tool such as ReSharper is a very vast topic and can be
described in detail in a separate book. This means that it is not possible to give you
all the information in one chapter. The purpose of this chapter was to show you the
basic concepts related to creating the ReSharper plugin and start thinking about your
amazing plugins.

If you would like to learn more about how to write ReSharper plugins, you can
visit the ReSharper Plugin Development page at http://confluence.jetbrains.
com/display/NETCOM/ReSharper+Plugin+Development and review the plugins
provided with SDK samples. Also, there are a couple of open source plugins that
you can find at http://github.com or http://www.codeplex.com.

In the next chapter, we will learn how ReSharper can help architects.

http:// /

Tools for Architects
From the beginning, ReSharper was created to support developers in their work.
ReSharper v8 comes with a new tool for viewing project dependencies, which can
be very helpful for architects.

In this chapter, we will cover the following topics:

• Architecture View
• Advanced references view
• Global refactoring

Architecture View
While developers are focused mostly on the detailed implementation of projects,
architects need a bird's-eye view of it.

ReSharper v8 comes with a new tool, Architecture View. Architecture View is a
graph that presents the dependencies between projects in your solution. You can
find a similar tool in Visual Studio Ultimate, but with ReSharper, you do not need
to have this most expensive version.

Projects on this graph can be grouped based on solution folders. You can
hide unimportant projects and display only dependent or referenced projects.
Architecture View allows you to configure the displayed graph to provide the
needed perspective.

Architecture View also presents the strength of the relation between two projects.
You can easily see this by looking at the thickness of the lines linking the projects—a
thicker line means a stronger relation, which means that there are more objects used
between these two projects.

http:// /

Tools for Architects

[90]

Architecture View can be useful for small solutions (with just a couple of projects),
but the more projects you have, the more useful it will be for you.

The simple Architecture View is shown in the following screenshot:

The slightly darker area, labeled Tests, is a group that contains two projects that
are in the solution folder Tests. If you have a good folder structure in your solution,
you can analyze references between different layers/modules as you collapse these
groups and only check contained projects if needed.

You can also save your graphs any time and compare them later, so you can quickly
check what has changed in your solution.

Advanced references view
The graph presented in Architecture View allows you to check the dependencies
overview in your solution; it also provides additional tools which come with
more detailed information.

The Referenced Code window
One of these tools is called Referenced Code. Click the right mouse button on your
project (from Architecture View) and select Navigate To… | Referenced Code.

http:// /

Chapter 8

[91]

This will open the Referenced Code window as shown in the following screenshot:

This window presents a list of all the assemblies used by a selected project.
Projects from your solution and external libraries are displayed separately.

If there are some assemblies that are referenced by your project but are
not used, they will not be displayed in the Referenced Code window.

The Referenced Code window allows you to check the number of places you are
using code from a particular assembly and the line this code has used.

The Optimize References window
The next tool is the Optimize References window. You can access it by clicking
the right mouse button on your project (from Architecture View) and selecting
Optimize References….

Unlike Referenced Code, Optimize References displays all referenced assemblies.
It also allows you to check the number of places you are using code from a particular
assembly, and additionally marks assemblies that are referenced but not used.

http:// /

Tools for Architects

[92]

Global refactoring
Architecture tools not only allow you to analyze references between different
modules, but also fix some global issues.

A list of available refactoring options can be accessed from the Refactor This menu
option, as shown in the following screenshot:

As you can see, you can easily adjust namespaces, move classes into separate files,
and remove unused references in different modules.

Summary
Architecture tools provided by ReSharper present you with a global view of your
project. You can easily check references between different modules and quickly fix
some issues.

Such a high perspective view makes it easier to find rules in your architecture
that have been broken, such as undesirable references, and provide code with
better quality.

In the next chapter, we will see how you can use ReSharper without Visual Studio.

http:// /

Code Analysis Beyond
Visual Studio

ReSharper v8 comes with brand new, free command-line tools to run code analysis
outside Visual Studio.

The tools come as a compressed package. To download them, go to the Download
ReSharper page at http://www.jetbrains.com/resharper/download/ and click
on ReSharper Command Line Tools in the Related Downloads section. When
you unpack this package, you will find many .dll files in there that come from
ReSharper and also the following two important .exe files:

• dupfinder.exe: This finds code duplicates
• inspectcode.exe: This runs code analysis

In this chapter, we will quickly describe these applications.

Finding code duplicates
The first tool, dupfinder, can be used to find duplicates in your C# and VB.NET
code. What is really cool is that it not only marks some parts of your code as
duplicated if they are identical, but also if they have a similar structure. This
means that even if two parts of your code contain different variable names or
methods, they can be, in a very smart way, marked as duplicated.

To run dupfinder, use the following command:

dupFinder [OPTIONS] source

http:// /

Code Analysis Beyond Visual Studio

[94]

The source parameter specifies what you would like to analyze. It can be a solution
file or just files from your projects. A sample file path would look as follows:

dupfinder.exe E:\ctv_project\codingblog\trunk\src\CodingBlog.sln

dupfinder.exe E:\ctv_project\codingblog\trunk\src***.cs

At the end, dupfinder will inform you of how many files have been analyzed and
where the report has been created through the following output:

26 files found to analyze.

INFO: Duplicates report was written to
 C:\Users\Lukasz\AppData\Local\Temp\tmp9D32.tmp

By default, it is saved in the Temp folder, but you can change this with the
/output option.

For more options that you can use with dupfinder, run the following command:

dupfinder /help

With additional options, you can exclude some files, check CPU usage and memory
statistics, use debug messages, include duplicated code, and more.

A sample report is shown in the following screenshot:

As it is available as an XML file, you can use an XSL transformation to convert it into
an HTML report or use any custom tool to prepare the required report.

http:// /

Chapter 9

[95]

Running code analysis
The second tool, Inspectcode can be used to run the ReSharper code analysis.

To use Inspectcode, just run the following command:

InspectCode [options] [project file]

As with the [project file] parameter, specify the path to your solution file.

You can check the list of all the available options with the following command:

Inspectcode /help

Like with dupfinder, Inspectcode saves a report to the Temp folder by default,
and you can change this location with the /output option.

The report is generated as an XML file and contains the following two parts:

• A list of all types of issues found during analysis with their severity and the
link to the Wikipedia page (if available) that contains more information on
the issue

• A list of all the issues grouped by projects with a specified file and the line in
which the issue occurs

Inspectcode will use code analysis settings from a .DotSettings file, if it finds
one in your project. With additional options, you can specify which project from
your solution you would like to analyze, and choose if you would like to use
solution-wide analysis and more.

TeamCity
For some time now, both these tools are available in the TeamCity, Continuous
Integration tool developed by JetBrains.

You can use these tools on every new commit that is sent to the repository
managed by TeamCity.

You can get more information about this tool, and even get the free version, at
http://www.jetbrains.com/teamcity/.

http:// /

Code Analysis Beyond Visual Studio

[96]

Summary
ReSharper is helpful not only in developing applications with Visual Studio, but you
can also run it outside, where you can use code inspections and find duplicates in
your code. This allows you to integrate these two ReSharper features with almost
every application. It will be most useful for you to use it with your Continuous
Integration tool, but you can also easily convert results to HTML or prepare any
custom report tool. This makes these free tools very powerful.

In the next chapter, we will check some useful plugins that extend the standard
ReSharper features.

http:// /

Recommended Plugins
ReSharper comes with many useful features. However, there is always room
for more. As we described in Chapter 7, Extending ReSharper, ReSharper can be
extended quite easily using plugins, and there are many interesting plugins
that you can use.

We will cover the following topics in this chapter:

• The ReSharper gallery
• Recommended plugins

The ReSharper gallery
Starting with ReSharper v8, plugins can be installed via the NuGet package
manager. You can access it by navigating to RESHARPER | Extension Manager …
from the Visual Studio menu. A sample view of this window is shown in the
following screenshot:

http:// /

Recommended Plugins

[98]

The Extension Manager window allows you to find, install, and update any plugin
available in the ReSharper gallery. You can also review these plugins via the web
page at http://resharper-plugins.jetbrains.com/.

If you are using a ReSharper version older than v8, you can still use the plugins;
however, you will need to install them using the installation package provided
by the developer of the plugin.

xUnit.net tests support
As we described in Chapter 6, Unit Testing, ReSharper contains a very good unit test
runner. By default, it supports NUnit and MSTest.

If you are a fan of the xUnit library, you can also use the ReSharper test runner by
installing the xUnit.net Contrib plugin.

It allows ReSharper to discover xUnit.net tests and adds a couple of external
annotations, which extend the code analysis made by ReSharper.

It also provides very useful live templates, which speed up the writing of the tests.

More information about this plugin can be found at http://resharper-plugins.
jetbrains.com/packages/xunitcontrib/ and http://xunitcontrib.codeplex.
com, where you will find the available live templates.

Mnemonic Live Templates
The next plugin we would like to recommend is the Mnemonic Live Templates for
C# and VB.NET.

It provides a set of incredibly useful live templates that generate code using
structured abbreviations.

You can use c for creating classes, i for interfaces, m for methods, v for fields,
and p for properties. By using a capital letter, you can create static objects.

You can also specify a return type with a second letter. For example, pi will create a
property that returns int, ps will return string, pby will return byte, and so on.

By using the ~ sign, you can specify collections as return types. For example, p~s will
create a property that returns a collection of strings.

Really awesome, isn't it?

http:// /

Chapter 10

[99]

Using these templates is very intuitive, and you can review a list of newly added
templates in the Templates Explorer window by filtering the mnemonics category.

More information about this plugin can be found at
https://resharper-plugins.jetbrains.com/packages/mnemonics/.

Support for AngularJS
AngularJS is a very popular MVC JavaScript framework used to create Single
Page Applications.

The AngularJS plugin adds support for this framework by providing code
competition for AngularJS HTML attributes and live templates, which helps
you in writing JavaScript code. For example, you can use the ngc template to
generate an Angular controller, or ngfor to generate angular for each loop.

More information about the AngularJS plugin can be found at
https://resharper-plugins.jetbrains.com/packages/AngularJS/.

JSLint for ReSharper
JSLint for ReSharper is another plugin that supports development in JavaScript.
It just adds support for the JSLint tool.

JSLint is a static code analyzer that looks for common bugs and bad practices
in JavaScript. With the JSLint for ReSharper plugin installed, all the rules are
highlighted in the same way as all ReSharper code analysis rules.

More details on JSLint for ReSharper can be found on the ReSharper gallery page
at https://resharper-plugins.jetbrains.com/packages/Resharper.JSLint/.

The Utility Pack
The last plugin that we would like to recommend is the Utility Pack.

The current version, 1.0.2, adds nine new context actions, which are as follows:

• Duplicate Method
• Make Abstract
• Make Virtual
• Pull Parameters
• Reverse For-loop

http:// /

Recommended Plugins

[100]

• Use As Operation
• Use Cast Operation
• Use String.Compare
• Use StringBuilder

Again, a simple and very useful tool.

You can find out more about it at
http://resharper-plugins.jetbrains.com/packages/UtilityPack/.

Summary
As you can see, you can add many interesting features with ReSharper plugins.
You can add more useful live templates and support for a new unit test framework
and even new libraries. If you notice, we have described only five plugins.

There are more plugins that can be useful for you. You can review the ReSharper
plugins gallery and check which plugins will be useful in your work. And remember,
when you cannot find a plugin that you need, you can always create it yourself!

http:// /

Keyboard Shortcuts
Almost every ReSharper action can be executed via a keyboard shortcut. Learning
and practically using these shortcuts can incredibly speed up your coding.

It is a good practice to learn keyboard shortcuts for the tools that you use
often. It helps you avoid moving your hands between the keyboard and
mouse and speeds up your work. So, every day learn at least one new
shortcut and become a Keyboard Ninja!

This appendix provides a list of the most useful shortcuts presented in this book.
You can find more ReSharper shortcuts on the ReSharper Documentation page
at http://www.jetbrains.com/resharper/documentation/.

All presented shortcuts come from the Visual Studio keyboard scheme.

Write smarter code
The following table contains shortcuts that helps you write the code:

Shortcut Purpose
Alt + Enter Displays quick fixes and context actions
Ctrl + R, V Introduces variable
Alt + Insert Generates code
Ctrl + E, U Surrounds with...
Ctrl + Space bar IntelliSense
Ctrl + Alt + Space bar Smart IntelliSense
Ctrl + W Extends code selection
Alt + Delete Safely deletes

http:// /

Keyboard Shortcuts

[102]

Shortcut Purpose
Ctrl + Shift + F1 Quick documentation

Ctrl + E, L Live templates
Ctrl + Alt + Insert File template
Ctrl + R, R Renames
Ctrl + R, O Moves to a separate file
Ctrl + Shift + R Refactor this...
Ctrl + D Duplicate line

Finding what you need quickly
In Chapter 3, Finding What You Need Quickly, we have presented you with features
that help you find things in a quicker manner. The following table contains shortcuts
related to these features:

Shortcut Purpose
Ctrl + Shift + T Go to file
Ctrl + T, T Go to the type
Ctrl + , Recent files
Shift + Alt + L Select file in Solution Explorer
Ctrl + Shift + any number from the keypad Create a bookmark
Ctrl + same number used to create bookmark Go to the bookmark
Ctrl + ` List of all bookmarks
Ctrl + Shift + Backspace Go to the last edited location
Ctrl + T Go to everything
F12 Go to declaration
Shift + F12 Find usages
Alt + ` Navigate to…
Alt + \ File members
Ctrl + Alt + F File Structure window
Ctrl + Shift + Alt + A Value origin and destination

http:// /

Appendix

[103]

Extended support for web developers
In the chapter related to web development, we introduced only one shortcut, but a
very useful one. You can find it in the following table:

Shortcut Purpose
Ctrl + Alt + F7 Related files

Unit testing
In the following table, you will find shortcuts that will help you run Unit tests:

Shortcut Purpose
Ctrl + Alt + U Unit Test Explorer
Ctrl + Alt + T Unit Test Sessions
Ctrl + U, L Run all unit tests in a solution
Ctrl + U, Y Run unit tests from the current session

http:// /

http:// /

Index
A
AboutAction class 83
Abstract Syntax Tree (AST) 76
Actions.xml file 82
AngularJS

about 99
URL 99

Architecture View
about 89
graphical representation 90

ASP.NET support
about 52
ASP.NET, writing 52
MVC specific support 54
navigation 53
templates 52

AssemblyInfo.cs 82
AwesomeReSharperExtension.About

handler 83

B
background analysis, code quality analysis

42

C
CamelHumps 21, 31
C# Edition, ReSharpner 6
code analysis 6

running 95
code cleanup 6
code cleanup, code quality analysis 48, 49
code duplicates

searching 93, 94

code editing helpers
code selection, extending 22
documentation 23
enhanced IntelliSense 21
namespaces, auto-importing 23
Safe delete option 22
using 20

code generation 6
constructors, generating 18, 19
object members, generating 20
performing, for non existing objects 15-17
surround with, using 19
variable, introducing 18

code inspections 55
code inspections, code quality analysis

disabling 43
code quality analysis

about 41
background analysis 42
code cleanup 48, 49
code inspections, disabling 43
code issues 44
errors, eliminating 45
fix in scope 45
quick fixes 45
solution-wide inspections 42, 43
Structural Search and Replace (SSR) 46, 47

code references, searching
code usage 34
Go to Declaration 34
Navigate to feature 35

code structure
displaying 36
File Structure window 36
Inspection Results window 37
members, filing 36

http:// /

[106]

Value Destination 37
Value Origin 37

code templates 6
code usage 34
commercial license, ReSharpner 6
console application project

creating 16
ContentPlaceHolders 52
Content tags 52
ContextActionBase class 84

D
dotCover

about 70
code coverage, analyzing with 70
running, from ReSharper 70

dupfinder
about 93
used, for finding code duplicates 93, 94

E
ExecutePsiTransaction() method 85

F
file searching

bookmarks 32, 33
Go to Everything feature 33
last edited location 33
performing 31
proper file, going to 32

file template 24
fix in scope feature 45
Full Edition, ReSharpner 6

G
global refactoring 92
Go to Declaration feature 34
Go to Everything feature 33

H
HTML/CSS support

about 57
browser compatibility support 60

code analysis 61
CSS hierarchy 59
HTML/CSS code, writing 57, 58
navigation 59
templates 60

I
Inspectcode

used, for running code analysis 95
installation

ReSharpner 8
IntelliSense 21
Internal mode, ReSharper

about 76
enabling 79
options 76, 77
PSI Browser window 77
PSI Module Browser window 78
PSI Viewer window 78

IsAvailable() method 85

J
Jasmine 67
JavaScript

integrating, with PhantomJS 70
testing 67
unit tests, running 67-69

JavaScript support
about 54
Code Analysis 55
Intellisense 55
navigation 56
refactoring options 55
SSR feature 56

JetBrains
URL 5

JSLint, for ReSharper
about 99
URL 99

L
library code

navigating to 38
Live Templates 24

http:// /

[107]

M
marker bar 16
Mnemonic Live Templates

about 98
URL 99

multifile templates 25
MVP (Most Valuable Professional) 6

N
Navigate to feature 35
navigation and search 6
NuGet packages 80

O
Optimize References window 91

P
personal license, ReSharpner 6
PhantomJS

about 70
JavaScript, integrating with 70
URL 70

plugin
creating 80
debugging 85, 86
deploying 86
implementing 87
project, creating 80, 81
project elements 81

plugin project elements
about 81
Actions.xml file 82
AssemblyInfo.cs 82
ContextAction 84

Program Structure Interface (PSI) 76
prop snippet 18
PSI Browser option, Internal mode 77
PSI Module Browser option, Internal mode

78
Psi plugin 87
PSI Viewer option, Internal mode 78

Q
Quick fixes, code quality analysis 45-47
QUnit 67

R
refactoring

about 26
moving, to seperate file 27
options 28
renaming 26

Referenced Code window 90, 91
ReSharper

about 5
Architecture View 89
C# Edition 6
code analysis 6
code cleanup 6
code generation 6
code quality analysis 41
code templates 6
configuring 9
extending 73, 74
Full Edition 6
global refactoring 92
installing 8
integrating, with Visual Studio 11
Internal mode 76
navigation and search 6
Optimize References window 91
Referenced Code window 90
shortcuts 101
support for ASP.NET 52
support, for various languages 7
support, for Visual Studio versions 7
Unit Test Explorer window 63
unit tests 63
Unit Test Sessions window 63
VB.NET Edition 6
versions 6

ReSharper API
about 74, 75
component model 75
daemons 76
features 76

http:// /

[108]

Platform 75
plugins 76
Program Structure Interface (PSI) 76
project model 75
text control 75
utils 75

ReSharper configuration
computer, manage options window 11
C# tab, Code Editing section 10
general tab, Environment section 9
Inspection Severity tab, Code Inspection

section 10
Keyboard & Menus tab, Environment

section 9
Naming Style tab, Code Editing section 10
performing 9
settings tab, Code Inspection section 10
solution personal, manage options window

11
solution team-shared, manage options

window 11
VB.NET tab, Code Editing section 10

ReSharper Documentation
URL 101

ReSharper gallery
about 97
plugins 97, 98

ReSharper PowerToys 87
ReSharper SDK

about 79
installing 79
NuGet packages 80

ReSharper test runner 64
ReSharpner

commercial license 6
personal license 6

ReverseStringAction class 84

S
SDK plugins

about 87
Psi plugin 87
ReSharper PowerToys 87
sample plugin 87

shortcuts
for code 101

for, finding things 102
for, support for web developers 103
for unit testing 103

snippets 24
SSR feature 56
Structural Search and Replace (SSR), code

quality analysis 46, 47
surround with 19

T
TeamCity 95
templates

about 23
customizing 24, 25
file template 24
multifile templates 25
snippets 24

test runner
working with 64, 65

TypeScript support 56, 57

U
Unit Test Explorer window

about 65
working with 65, 66

Unit Test Sessions window
about 66
working with 66, 67

unit tests, for JavaScript
running 67, 68

Utility Pack
about 99, 100
URL 100

V
VB.NET Edition, ReSharpner 6
Visual Studio-ReSharper integration

performing 11, 12

X
xUnit.net tests support

about 98
URL 98

http:// /

Thank you for buying
ReSharper Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

http:// /

Visual Studio 2012 and .NET 4.5
Expert Development Cookbook
ISBN: 978-1-84968-670-9 Paperback: 380 pages

Over 40 recipes for successfully mixing the powerful
capabilities of .NET 4.5 and Visual Studio 2012

1. Step-by-step instructions to learn the power of
.NET development with Visual Studio 2012

2. Filled with examples that clearly illustrate
how to integrate with the technologies and
frameworks of your choice

3. Each sample demonstrates key concepts to build
your knowledge of the architecture in a practical
and incremental way

C++ Application Development
with Code::Blocks
ISBN: 978-1-78328-341-5 Paperback: 128 pages

Develop advanced applications with Code::Blocks
quickly and efficiently with this concise, hands-on
guide

1. Successfully install and configure Code::Blocks
for C++ development

2. Perform rapid application development with
Code::Blocks

3. Work with advanced C++ features including
code debugging and GUI toolkits

Please check www.PacktPub.com for information on our titles

http:// /

Reporting with Visual Studio and
Crystal Reports
ISBN: 978-1-78217-802-6 Paperback: 148 pages

Create a reporting application from scratch using
Visual Studio and Crystal Reports

1. A step-by-step guide that goes beyond theory,
letting you get hands-on experience

2. Utilize a dataset and table adapter as data
sources for your report

3. Learn how to add reports to forms and pass
parameters dynamically

Software Testing using Visual
Studio 2012
ISBN: 978-1-84968-954-0 Paperback: 444 pages

Learn different testing techniques and features of
Visual Studio 2012 with detailed explanations and
real-time samples

1. Using Test Manager and managing test cases
and test scenarios

2. Exploratory testing using Visual Studio 2012

3. Learn unit testing features and coded user
interface testing

4. Advancement in web performance testing and
recording of user scenarios

Please check www.PacktPub.com for information on our titles

http:// /

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with ReSharper
	Introduction to ReSharper
	Available versions
	Support for various versions of Visual Studio
	Support for various languages

	Installing and configuring ReSharper
	Installing ReSharper
	Configuring ReSharper
	Options
	Manage options

	Integration with Visual Studio
	Summary

	Chapter 2: Write Smarter Code
	Code generation
	Generating code for non-existent objects
	Introduce variable
	Generate constructors
	Surround with
	Generate object members

	Using code editing helpers
	Enhanced IntelliSense
	Extending the code selection
	Safe delete
	Auto-importing namespaces
	Quick documentation

	Templates
	Templates as snippets
	File template
	Customization
	Multifile templates

	Refactoring
	Rename
	Moving to separate file
	Refactor this…

	Summary

	Chapter 3: Finding What You Need Quickly
	Finding files
	Going to proper file
	Bookmarks
	Last edited location
	Go to Everything

	Searching code references
	Go to Declaration
	Code usage
	The Navigate to feature

	Displaying code structure
	File members
	The File Structure window
	Value Origin and Destination

	Navigating to the library code
	Summary

	Chapter 4: Making Your Code Better
	Code quality analysis
	Background analysis
	Solution-wide inspections
	Disabling code inspections
	Code Issues

	Eliminating errors and code smells
	Quick fixes
	Fix in scope
	Structural Search and Replace
	Code Cleanup

	Summary

	Chapter 5: Extended Support for Web Developers
	ASP.NET Web Forms and ASP.NET MVC tools
	Writing ASP.NET smartly
	Templates
	Enhanced navigation
	ASP.NET MVC specific support

	Support for JavaScript
	Smart IntelliSense
	The Code Analysis and refactoring options
	Navigation and smart usages
	Structural Search and Replace (SSR)

	Support for TypeScript
	Support for HTML/CSS
	Writing HTML/CSS code
	CSS hierarchy
	Navigation
	Browser compatibility support
	Templates
	Code analysis

	Summary

	Chapter 6: Unit Testing
	Test runner
	The Unit Test Explorer window
	The Unit Test Sessions window

	Testing JavaScript
	Running JavaScript unit tests
	Integration with PhantomJS

	Analyzing code coverage with dotCover
	Summary

	Chapter 7: Extending ReSharper
	Why you should extend ReSharper
	ReSharper API
	Platform
	Program Structure Interface (PSI)
	Features and plugins
	Daemons

	Internal mode
	PSI Browser
	PSI Module Browser
	PSI Viewer
	Enable the Internal mode

	The ReSharper SDK
	Installing the ReSharper SDK
	Getting the required NuGet packages

	Your first plugin
	Creating project
	Project elements
	Assembly info
	Actions
	Context action
	Other project elements

	Debugging a plugin
	Deploying a plugin
	Your plugin in action

	Sample SDK plugins
	Summary

	Chapter 8: Tools for Architects
	Architecture View
	Advanced references view
	The Referenced Code window
	The Optimize References window

	Global refactoring
	Summary

	Chapter 9: Code Analysis Beyond Visual Studio
	Finding code duplicates
	Running code analysis
	TeamCity
	Summary

	Chapter 10: Recommended Plugins
	The ReSharper gallery
	xUnit.net tests support
	Mnemonic Live Templates
	Support for AngularJS
	JSLint for ReSharper
	The Utility Pack
	Summary

	Appendix: Keyboard Shortcuts
	Write smarter code
	Find what you need quickly
	Extended support for web developers
	Unit testing

	Index

